

New Software Engineering Paradigm
Based on Complexity Science

Jay Xiong

New Software Engineering
Paradigm Based on
Complexity Science

An Introduction to NSE

Jay Xiong
1545 Jackson St. #103
Oakland, CA 94612, USA
jay@nsesoftware.com

Additional material to this book can be downloaded from http://extras.springer.com

ISBN 978-1-4419-7325-2 e-ISBN 978-1-4419-7326-9
DOI 10.1007/978-1-4419-7326-9
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011921248

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://extras.springer.com

v

Preface

Why This Book?

Today software has become the driving force for the development of all kinds of

businesses, engineering, sciences, and the global economy. As pointed by David

Rice, “like cement, software is everywhere in modern civilization. Software is in

your mobile phone, on your home computer, in cars, airplanes, hospitals, busi-

nesses, public utilities, financial systems, and national defense systems. Software is

an increasingly critical component in the operation of infrastructures, cutting across

almost every aspect of the global, national, social, and economic function. One

cannot live in modern civilization without touching, being touched by, or depending

on software in one way or another” [Ric08].

But unfortunately, software itself is not well engineered. The total economic cost

of insecure software is very high: $180 billion a year in the USA [Ros08].

As Dr. Lyle N. Long pointed out, “the list of software disasters grows each year.

Some of the best-known include the following: the Ariane 5 rocket (Flight 501), the

Federal Bureau of Investigation Virtual Case File system, the Federal Aviation

Administration Advanced Automation System, the California Department of Motor

Vehicle system, the American Airlines reservation system, and many, many more.

The F-22 aircraft also had problems initially due to its complex software systems.

Software disasters cost the United States billions of dollars every year, and this may

only get worse since future systems will be more complex. Boeing spent roughly

$800 million on software for the 777, and they might need to spend five times that

on the 787. Aerospace systems will also include some levels of autonomy, accom-

panied by an entirely new level of software complexity” [Lon08].

Since the term software engineering first appeared in the 1968 NATO Software

Engineering Conference it has been more than 40 years past. Although many soft-

ware process models, software development methodologies, software engineering

techniques and tools have been innovated and broadly applied in practices, such as

the Object-Oriented software development techniques, the Agile software develop-

ment methods, RUP (Rational Unified Process), CMMI (Capability Maturity

Model Integration), and the Component-Based Software Development technology,

software are still not well engineered – many fundamental issues still exist.

vi Preface

The Fundamental Issues Exist with Today’s

Software Engineering Paradigm

There are many critical issues existing with today’s software engineering

paradigm:

(a) It is still unclear what should be the right foundation for software engineering.

(b) Software disasters happen more often now.

(c) It is unreliable – “Major software projects have been troubling business activi-

ties for more than 50 years. Of any known business activity, software projects

have the highest probability of being canceled or delayed. Once delivered, these

projects display excessive error quantities and low levels of reliability.”

[Jon06].

(d) It is unmaintainable – “Over three decades ago, software maintenance was

characterized as an ‘iceberg.’ We hope that what is immediately visible is all

there is to it, but we know that an enormous mass of potential problems and

cost lies under the surface. In the early 1970s, the maintenance iceberg was big

enough to sink an aircraft carrier. Today, it could easily sink the entire navy!”

[Pre05-P841], “The fundamental problem with program maintenance is that

fixing a defect has a substantial (20–50%) chance of introducing another”

[Bro95-P122].

(e) The software project success rate is still very low: about 30% – it is not accept-

able in any other industry.

(f) “No Silver Bullet” – pointed by Professor Frederick P. Brooks Jr., “There is

no single development, in either technology or management technique,

which by itself promises even one order-of-magnitude improvement

within a decade in productivity, in reliability, in simplicity.” [Bro95-P179],

“Of all the monsters who fill nightmares of our folklore, none terrify more

than werewolves, because they transform unexpectedly from the familiar into

horrors. For these, we seek bullets of silver that can magically lay them to rest.

The familiar software project has something of this character (at least as

seen by the nontechnical manager), usually innocent and straightforward,

but capable of becoming a monster of missed schedules, blown budgets,

and flawed products.” [Bro95-P180]. “Not only are there no silver bullets

now in view, the very nature of software makes it unlikely that there will

be any – no inventions that will do for software productivity, reliability,

and simplicity what electronics, transistors, and large-scale integration

did for computer hardware. We cannot expect ever to see twofold gains

every two years.” [Bro95-P181].

It seems that having those critical problems is normal to software products and soft-

ware engineering.

viiPreface

A Sudden Realization

I have been working in the field of software engineering for more than 20 years since

I established my first company, Advanced Software Automation, Inc. (ASA) in

Silicon Valley in 1987. At that time, I realized that automation should be the direc-

tion for the development of software engineering. ASA’s first product, Hindsight

designed by me and implemented by me and my colleagues with many automated

functions in software testing and visualization was chosen by Sun Microsystems as

the test suite for its many software products except the operating systems. In 1992,

I established my second software company, International Software Automations,

Inc. (ISA) in Silicon Valley. As the designer of ISA’s first product, Panorama, I

extended the automated capability from the back-end to include the support for the

front-end of software engineering. About Panorama, Professor Roger S. Pressman

stated that “Panorama: developed by International Software Automation, Inc.

encompasses a complete set of tools for object-oriented software development,

including tools that assists test case design and test planning.” [Pre05-P409].

Later on, I realized that although automation is important to software engineer-

ing, it cannot be used to solve the major critical issues existing with software

engineering – low quality and productivity, and high cost and risk.

Where is the outlet of software engineering?

One day in the summer of 2005, in a book store I accidentally found a book

introducing complexity science. After reading it curiously, I suddenly realized that

it is what I am looking for! Yes, complexity science will be the powerful means to

solve the all critical issues existing with today’s software engineering, because

complexity science is the science studying complex systems with many interactive

components. Complexity science offers holistic and global approaches rather than

partial and local approaches to handle complex systems. That day I bought five

different books on complexity science.

“The next century will be the century of complexity” (Stephen Hawking,

January 2000). Complexity science is the driving force for the development of sci-

ences, engineering, and business in the twenty-first century. Complexity science

explains how holism emerges in the world, and more. Definitions of complexity are

often tied to the concept of a complex system – something with many parts that

interact to produce results that cannot be explained by simply specifying the role of

each part. This concept contrasts with traditional machine or Newtonian constructs,

which assume that all parts of a system can be known, that detailed planning pro-

duces predictable results, and that information flows along a predetermined path.

What is Wrong with Today’s Software Engineering Paradigm?

After I changed my standing point from traditional Newtonian constructs to

 complexity science, I realized that almost all of the components of the existing

viii Preface

software engineering paradigm (except the technologies for database, operating

systems, and programming languages) are wrong or outdated:

(a) The foundation of today’s software engineering paradigm is wrong –

Software is a nonlinear complex system. “The complexity of software is an

essential property, not an accidental one….Many of the classical problems of

developing software products derive from this essential complexity and its non-

linear increases with size” [Bro95-P183], but unfortunately, the existing soft-

ware engineering paradigm is based on linear thinking, reductionism, and

superposition principle that the whole of a system is the sum of its parts, so that

almost all tasks/activities are performed linearly, partially, and locally.

(b) The process models are wrong – They are all linear ones (no matter if it is a

waterfall-like model, an incremental development model which is “a series of

Waterfalls” [GSAM03], or an iterative development model in which each time

of the iteration is a waterfall) with which there is only one track in a forward

direction – no upstream movement at all, and the work flow is always going

forward from the upper phases to the lower phases. Those models require that

the developers always do all things right without making any mistake or wrong

decision – it violates the nature of human beings. The result is that defects

introduced in the upper phases easily propagate to the lower phases to make the

defect removal cost increase tenfold many times.

(c) The software development methodologies are outdated – They are based on

linear thinking, reductionism, and Constructive Holism principle to complete

the components of a software product first, then, as CMMI states, “Assemble

the product from the product components, ensure the product, as integrated,

functions properly and deliver the product.” [CMMI1.1] – they handle a logic

software product created by people as a machine which can be assembled.

Regarding the quality assurance, those methodologies are test driven – mainly

depending on software testing after production – it is too late.

(d) The existing software modeling approaches are outdated, because they are

outcomes of reductionism and superposition principle, use different sources for

human understanding and computer understanding of a software system sepa-

rately with a big gap between them. The obtained models are not traceable for

static defect removal, not executable for debugging, and not testable for dynamic

defect removal, not consistent with the source code after code modification,

and not qualified as the road map for software development.

(e) The software testing paradigm is outdated – Most software defects are intro-

duced to a software product in requirement development phase and the product

design phase, but the existing software testing paradigm can only be dynami-

cally used after production, so that NIST (National Institute of Standards and

Technology) concluded that “Briefly, experience in testing software and systems

has shown that testing to high degrees of security and reliability is from a prac-

tical perspective not possible. Thus, one needs to build security, reliability, and

other aspects into the system design itself and perform a security fault analysis

on the implementation of the design.” (“Requiring Software Independence in

VVSG 2007: STS Recommendations for the TGDC,” November 2006,

http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf).

ixPreface

 (f) The quality assurance paradigm is outdated – Current software quality is

ensured mainly through inspection and dynamic testing after production, it vio-

lates W. Edwards Deming’s product quality principle that “Cease dependence

on inspection to achieve quality. Eliminate the need for inspection on a mass

basis by building quality into the product in the first place.” [Dem86].

 (g) The software maintenance paradigm is wrong – with it, software mainte-

nance is performed blindly, partially, and locally without the capability to pre-

vent the side effects in the implementation of requirement changes or code

modifications, making the maintained software product unstable day by day.

 (h) The software visualization paradigm is outdated (see Chap. 2).

 (i) The documentation paradigm is outdated (see Chap. 2).

 (j) The project management paradigm is outdated (see Chap. 2).

 (k) The “Software” definition is outdated (see Chap. 1).

 (l) The entire software engineering paradigm is outdated (see Chap. 2).

 (m) The “No Silver Bullet” conclusion is outdated – it is an outcome of linear

thinking, reductionism, and superposition principle, only suitable to the old-

established software engineering paradigm (see Chap. 2 for more detailed

description).

What Is the Root Cause for Those Critical Issues Existing with

Today’s Software Engineering?

The root cause for those critical issues comes from the wrong foundation of the

software engineering paradigm that software and the software engineering para-

digm are complex nonlinear systems, and should be handled with complexity science

to comply with the essential principles of complexity science, particularly the

Nonlinearity principle and the Holism principle to make all tasks and activities

being performed holistically and globally rather than partially and locally.

The Difficulty in Solving Those Critical Issues

As described above, there are many components with software engineering para-

digm. According to complexity science, the behaviors and characteristics of the

whole of a complex system emerge from the interaction of its components, and

cannot be inferred simply from the behavior of any individual part, so that only

improving its one or two components such as focusing the improvement of software

engineering process and the software management process only will not be able to

make significant improvement to the whole of the software engineering paradigm – it

could be the main reason why the failure rate of the implementation of CMM/

CMMI is about 70% [Nia09].

x Preface

The difficulty in solving those critical issues comes from two major steps – step 1:

bring revolutionary changes to the all major components of the software engineer-

ing paradigm; step 2: after the revolutionary changes of the all major components,

make revolutionary changes of the whole of the software engineering paradigm

emerge from the interaction of all of its components changed revolutionarily – it is

how NSE (Nonlinear Software Engineering paradigm) is established and

implemented, and why this book comes.

The Major Features of This Book

The major features of this book are listed as follows:

(a) New – This book introduces many new concepts, ideas, algorithms, models,

methods, techniques, and tools.

(b) Original – Almost all of the new concepts, ideas, algorithms, models, methods,

techniques, and tools introduced in this book are innovated by me and imple-

mented by me and my colleagues, not collected from others’ contributions or

other books. Those innovations include the following:

1 The new definition of “software” – see Chap. 1.

2 The FDS (Five-Dimension Synthesis Method) general paradigm-shift

framework for various industry revolutions from the old-established para-

digm based on linear thinking and superposition principle to a revolutionary

paradigm based on nonlinear thinking and complexity science (not only for

software engineering) – see Chap. 4.

3 Many new software engineering techniques innovated for the implementa-

tion of NSE – see Chap. 6.

4 The NSE visualization paradigm and the interactive and traceable J-Chart,

J-Diagram, and J-Flow diagram used to make an entire software develop-

ment process and the work products visible – see Chap. 7.

5 The NSE process model which is a nonlinear, incremental, and parallel

model with multiple-tracks for bidirectional iteration – see Chap. 8.

6 The facility for automated and self-maintainable traceability among docu-

ments and test cases and the source code through the use of Time Tags for

data mapping between test cases and the source code, and some special key-

words to indicate the document formats, the file paths, and the bookmarks for

opening the traced documents from the specified locations – see Chap. 9.

7 The NSE software development methodology complying with the Generative

Holism principle (rather than Constructive Holism principle), which is

driven by defect prevention and five types of bidirectional traceabilities – see

Chap. 10.

8 The Holistic, Actor–Action and Event–Response driven, Traceable, Visual,

and Executable technique (HAETVE) used for Source Code Driven

Dynamic Software Modeling and Engineering (see Chap. 11). Here “Dynamic

Software Modeling” means:

xiPreface

Using only one kind of source (source code) for both human understanding

of a complex software in diagrams automatically generated from the

code, and computer understanding of the software in textual format,

through forward engineering using dummy programs (a dummy module

has an empty body or only a list of function call statements) or reverse

engineering using regular programs (Top-down + Bottom-up). Since the

diagrams/models are generated from the source code, they are always

consistent with the code.

The generated diagrams/models are executable directly or indirectly

through the corresponding code.

The generated diagrams/models not only can represent the static properties

of a software product but can also represent the dynamic properties of a

software product, such as the code test coverage and the percentage of

the execution time spent in each module.

The generated diagrams/models are interactive and traceable.

The most important feature of Dynamic Modeling is that the gener-

ated diagrams/models no longer statically exist – they dynamically

exist (“alive”) – the generated diagrams/models, the generators of

the diagrams/models, and the interfaces for accepting users’ com-

mands (using the diagrams/models themselves), are three in one:

when a diagram/model is shown, its generator is always working

and waiting for a user’s command through the diagram/model (act-

ing as the interface) – after receiving a user’s command, the genera-

tor will dynamically respond to it such as generating a subtree (see

Fig. 7.11), printing out a chart (see Fig. 7.23), or performing untested

path analysis and automatically highlighting a “best” one with the most

untested branches and automatically extracting the execution conditions

to help users design the most efficient test case.

The generated diagrams/models and the corresponding source code are no

longer separated; instead, they are combined together to form a power-

ful union to help users develop a software product better, understand

a software product better, test a software product better, and maintain

a software product better. For instance, clicking on a module-box from

the generated call graph to directly edit the source code of that module

as shown in Fig. 11.31, or clicking on a module from the generated

control flow diagram to trace the corresponding test cases and directly

play the captured GUI test operations back dynamically as shown in

Fig. 11.32.

9 The NSE software testing paradigm and the Transparent-box testing

method, which combines functional testing and structural testing

together seamlessly with the capability to establish bidirectional traceabil-

ity among documents and test cases and source code, and can be used

dynamically in the entire software development lifecycle including the

requirement development phase and software design phase (because hav-

ing an output is no longer a condition to use this kind of testing method

xii Preface

and tools dynamically – to each test case, it checks whether the output (if

any, can be none) is the same as what is expected, and checks whether the

execution path covers the expected path specified, and then establishes

bidirectional traceability to help users remove the inconsistency defects,

plus many other ways for defect prevention and inspection using traceable

 documents and traceable source code.) – see Chap. 16.

10 The NSE quality assurance paradigm based on defect prevention and defect

propagation prevention through dynamic testing, software visualization,

and semiautomated inspection and review using traceable documents and

source code diagrammed in the entire software development lifecycle – see

Chap. 17.

11 The NSE maintenance paradigm which is systematic, disciplined, and

quantifiable with the capability to prevent side effects for the implementa-

tion of requirement changes and code modifications supported by various

traceabilities – see Chap. 18.

12 The NSE documentation paradigm with which the documents and the

source code are managed together with bidirectional traceability to keep

them consistent – see Chap. 19.

13 The NSE project management paradigm combining the software develop-

ment process and software project management process together to make

software project management documents also traceable with the imple-

mentation of requirements and the source code – see Chap. 20.

14 The new algorithms innovated to support NSE – see Chap. 21.

15 Many automated tools and the support platform, Panorama++, designed for

supporting NSE – see Chap. 22.

(c) Based on complexity science – Almost all of the new concepts, ideas, algorithms,

models, methods, techniques, and tools innovated are based on complexity

science, complying with the essential principles of complexity science, particu-

larly the Nonlinearity principle and the Holism principle.

(d) The described new concepts, ideas, algorithms, models, methods, tech-

niques are commercially implemented – All of them are supported by the

Panorama++ platform for software development, testing, and maintenance.

(e) Complete [Xio09-1], [Xio09-2] – It covers almost all aspects in software engi-

neering to offer a holistic and global solution for software engineering, rather

than a partial and local solution, and also offers all required tools to support the

applications of NSE to form a complete solution.

(f) Detailed – It not only introduces the concepts or ideas but also introduces the

implementation algorithms step by step.

(g) Easy to read and understand – It describes the contents with several hundred

graphics, most of which are screenshots from real application examples; easy

to try – trial versions of the NSE support platform Panorama++ are provided

with application examples (see the “Toolkits Provided for This Book” sec-

tion); and easy to use – NSE (with its support platform Panorama++) can be

applied for new software product development, or a product being developed

xiiiPreface

using any other method – in this case, the users only need to rewrite the test

cases according to NSE’s simple rules, and set the corresponding bookmarks to

the related documents – other work can be performed automatically by the NSE

support platform Panorama++ in which many easy-to-use automated tools are

integrated.

(h) Beneficial – Preliminary applications of NSE and the support platform

Panorama++ introduced in this book show that compared with the old-estab-

lished software engineering paradigm, it is possible for NSE with its support

platform Panorama++ to help software organizations double their soft-

ware productivity, halve their cost, greatly reduce the risks, remove 99.99%

of the defects in their products, and double their project success rate

because

฀•฀฀ With฀NSE,฀almost฀all฀tasks/activities฀are฀performed฀nonlinearly,฀holistically,฀

and globally, rather than linearly, partially, and locally.

•฀ The฀ quality฀ is฀ ensured฀ through฀ defect฀ prevention฀ and฀ defect฀ propagation฀

prevention performed in the entire lifecycle from the first step down to

maintenance through dynamic Transparent-box testing and semiautomatic

inspection using traceable documents and traceable source code.

•฀฀ Software฀ requirement฀ changes฀ or฀ code฀ modifications฀ are฀ responded฀ to฀ in฀

real time with side-effects prevention through various traceabilities.

•฀ The฀Software฀maintenance฀process฀is฀combined฀with฀the฀software฀develop-

ment process and performed holistically and globally with side-effect pre-

vention. The regression testing after code modification is performed with

test case efficiency measurement and test case minimization and intelligent

test case selection through backward traceability. Because the NSE nonlin-

ear process model is followed and the quality of a software product is

ensured from the first step down to maintenance, the defects propagated to

the maintenance phase is greatly reduced. Even if the product maintenance

team is different from the product development team, according to the new

software definition with NSE and the support platform, the database built

through static and dynamic measurement of the product and a set of

Assisted Online Agents will also be delivered to the customer to form

almost the same conditions as the product development site for maintaining

the product. So, the effort and cost spent in software maintenance will be

almost the same as the effort and cost spent in the software development

process – it means about half of the total effort and cost can be reduced

(usually with the old-established software engineering paradigm, software

maintenance takes 75% or more of the total effort and total cost in a soft-

ware product development. With NSE, software maintenance will take the

total effort and cost almost the same as the development process – only 25%

of the total effort and total cost, it means about 50% of the total effort and

total cost can be saved).

•฀ The฀entire฀process฀of฀a฀software฀development,฀testing,฀and฀maintenance฀is฀

visible through the applications of the NSE software visualization paradigm,

xiv Preface

which generates interactive and traceable J-Chart, J-Diagram, and J-Flow

diagrams automatically.

•฀฀ The฀software฀documents฀are฀traceable฀with฀the฀source฀code฀to฀keep฀consistency฀

among them, and stored virtually without huge disk and memory space.

•฀฀ With฀NSE,฀the฀project฀management฀process฀is฀combined฀with฀the฀product฀

development process closely, making the project management documents

traceable with the implementation of requirements and the source code.

The Scope of This Book

Considering that complexity science is the driving force for the development of

sciences, engineering, and business in the twenty-first century, and software is

becoming the foundation of modern civilization, it means that both are closely

related to the future of mankind and the economic development of the world.

Today, more and more industries are becoming increasingly aware that tradi-

tional approaches to design and engineering are failing to keep up with the increasing

scale of systems [Mck99]. The foundation of those traditional approaches is based

on linear thinking and established science complying with the reductionism and

superposition principle that the whole of a system is the sum of its parts. But, in

fact, all people problems and issues are nonlinear which do not comply with the

superposition principle because they exist in a dynamic and changeable environment,

rather than a static one [Lim05].

Although there are many ways proposed for the applications of complexity science,

none of them aims for a new round of industrial revolution. I believe I am the first

person to not only realize that complexity science can be efficiently applied in a

new round of industrial revolution but also innovated a corresponding paradigm-

shift framework, the Five-Dimensional Structure Synthesis Method (FDS, see

Fig. 1), and successfully use it to complete the paradigm-shift of the software

industry – the most difficult one to handle. It proves that FDS is useful and opera-

tional. Since complexity science and the FDS paradigm-shift framework can be

successfully used to revolutionarily complete the paradigm shift of the software

industry from that based on linear process, reductionism, and superposition prin-

ciple to that based on nonlinear process and complexity science, why can’t other

industries do the same?

I also realize that directly applying complexity science to handle the problems

of an individual complex system in an industry without shifting the entire paradigm

from the old-established one (consisting of many components including the process

models, the development methodologies, the algorithms, the technologies, the quality

standards, and the tools) based on linear process and reductionism principle to a

new one based on nonlinear process and complexity science in that industry will be

very difficult – if not impossible, because the “Sunlight” of complexity science

cannot directly “Reach” the target without removing the big “Umbrella” in the

middle – the old-established paradigm. I suggest that the application of complexity

xvPreface

science should follow two major steps: (1) the first step is to complete the paradigm

shift from the old one based on linear process and reductionism principle to a new

one based on nonlinear process and complexity science; (2) then, after the para-

digm has been shifted, the second step is to apply complexity science to efficiently

handle the problems of an individual complex system. The two-step approach is

also shown in Fig. 1.

The relationships among the five elements represented in the five axes of FDS

are shown in Fig. 2.

For the detailed description about FDS, see Chap. 4.

When FDS is used for the paradigm shift of an industry, it is required to comply

with the essential principles of complexity science (including the Nonlinearity

principle, the Holism principle, the Dynamics principle, the Self-Organization prin-

ciple, the Self-Adaptation principle, the Openness principle, and more) to redefine

the process model, reinnovate the methodology, redesign the tools and platform,

reestablish the quality assurance methodology and the standard, and so on in order

to establish a complete new paradigm in that industry. It is clear that, for instance,

a waterfall-like process model will not be redefined because it does not comply

with the Nonlinearity principle and the Holism principle of complexity science.

After paradigm-shift is done, FDS can also be used for handling the problems of an

individual complex system.

It is why this book is written not only for people in the field of software engi-

neering and computer science but also for people in all other fields who want to

Fig. 1 The innovated FDS (five-dimensional structure synthesis) framework

xvi Preface

apply complexity science as a powerful means to perform a revolutionary para-

digm-shift from the old one based on linear process and superposition principle to

a new one based on nonlinear process and complexity science through the general

paradigm-shift framework, FDS. For more related information, see Chap. 3 titled

“Foundation for Establishing NSE: Complexity Science” and Chap. 4 titled

“Prediction and Practices: A New Round of Industrial Revolution Driven by

Complexity Science, and a General Paradigm-Shift Framework (FDS).”

Who Should Read This Book

People Working in the Field of Software Engineering

or Computer Science

This book is for perplexed software and management professionals who want to

know and use a revolutionary software engineering paradigm based on complex-

ity science to help software organizations to dramatically solve the most critical

 problems with today’s software engineering at the same time – to double their

 productivity and their project success rate, halve their cost, greatly reduce the

risk, and improve the quality of their product tenfold several times, compared

with the existing software engineering paradigm with the same level of the

Fig. 2 The five elements of FDS and their relationships

xviiPreface

resource. If you want to know what critical issues exist with today’s software

engineering paradigm, why those critical issues exist for more than 40 years

without being solved, what are the root causes of those critical issues, what is

complexity science, how complexity science can be applied to solve those critical

issues, how a revolutionary software engineering paradigm (NSE – Nonlinear

Software Engineering paradigm) is established, how can NSE help software orga-

nizations, and how can you try the NSE support platform Panorama++, this book

is for you:

Executives and Project managers should read this book to know what is com-•฀

plexity science, how it can help your organization in the software development,

what are the major differences between NSE and the old-established software

engineering paradigm, how a project can be developed and managed holistically

and globally, and whether the productivity can be doubled, the cost can be

reduced to half, and the quality can be improved greatly at the same time, and

how the project management documents can be traced automatically to get the

first-hand information.

Software developers should read this book to know what is complexity science, •฀

what is NSE, how it can help for you to perform your jobs better, how software

testing can be dynamically performed in the entire software development life-

cycle, how documents and test cases and the source code can be made traceable,

how software maintenance can be done with side-effect prevention, and how

NSE can help you for your career.

Computer science and software engineering researchers should read this book to •฀

consider whether it is a new direction to apply complexity science on software

engineering research, review NSE, compare NSE with the old-established soft-

ware engineering paradigm, then find possible research topics and make contri-

butions to the future of software engineering.

Computer science and software engineering students should read this book to •฀

learn what is complexity science, what is NSE and the major differences

between NSE and the old-established software engineering paradigm, and try

the demo program of NSE.

Customers should read this book to particularly know how requirement •฀

changes can be implemented through bidirectional traceability to prevent

side effects, how a software product can be maintained in your site with

almost the same conditions as that in the product development site – with

NSE, a software (software product) is redefined as and delivered to the cus-

tomer with (1) a computer program (a regular program, or a cloud computing

program, or a program developed through the internet) with the source code,

(2) the data used, (3) all of the related documents (including the test case

scripts too) traceable to and from the source code, plus (4) the database built

though static and dynamic measurement of the program, and (5) a set of

Assisted Online Agents (automated and intelligent tools working with the

program and the database) for handling the issue of complexity and support-

ing the testability, visibility, changeability, conformity, reliability, and

xviii Preface

traceability – making the software product adaptive and truly maintainable

in the new working environment at the customer site, and that the require-

ment validation and the acceptance testing can be done dynamically in a

fully automated way with mouse clicks only.

Recommended Courses Using This Book as a Textbook

in the Computer Science Department of a University

and a Software Engineering College

The twenty-first century is the century of complexity science. Compared with the

old-established software engineering paradigm, the major advantages of NSE can

be summarized in one sentence: with NSE, almost all software engineering tasks

and activities are performed nonlinearly, holistically, and globally rather than lin-

early, partially, and locally. Therefore, although this book describes a complete

revolution in software engineering based on complexity science, it is also suitable

as a textbook in the computer science department of a university or a software

engineering college:

1. It is organized hierarchically according to software engineering workflows,

such as in the following chapters; Chap. 11 introduces requirement engi-

neering under NSE, Chap. 12 introduces software design under NSE, Chap.

13 introduces software coding under NSE, and so on.

2. Several hundred detailed illustrations are provided.

3. Detailed application examples are provided (see Chap. 1) – people work

well through examples.

4. In each chapter, there is a “Summary” section designed.

5. In each chapter, there is a section of “Points and Questions to Ponder”

designed.

6. The hints for answering the “Points and Questions to Ponder” for each chap-

ter are provided in Appendix D.

7. Trial Versions of the NSE support platforms are provided (see the “Toolkits

Provided for This Book” section) for students to get hands-on experience

in using the powerful tools to design, evaluate, test, validate, and maintain

their own learning projects.

8. A detailed Tutorial is also provided to help students to apply NSE and the

support platform Panorama++ in practice, step by step.

Recommended course titles:

(a) Nonlinear Software Engineering Paradigm Based on Complexity Science

(b) Advanced Software Engineering

(c) The Future of Software Engineering

xixPreface

Suggested Level + Length:

1. Undergraduate (seniors), 2 semesters (28–30 weeks)

2. Master program, 1 semester (14–15 weeks)

3. Postgraduate course, 8 weeks

I believe that to meet the urgent needs of the software industry and raising the

competition power in the near future, the earlier the computer science departments

of a university or a software engineering college to offer NSE courses, the better

for them and their students to win over their competition.

Note: Besides universities and software engineering colleges that teach their stu-

dents internally, it is also welcome for an individual or an organization to work with

us to offer co-held training courses for software engineers, programmers, and

employees working in a software-related company. For ensuring the quality of the

courses on NSE with the use of the trial versions of the NSE support platform

Panorama++, the instructors of the courses should take a corresponding exam to get

the authority certificate first. If you are interested in offering a co-held training course

on NSE (the corresponding certificates for trainees will also be provided), please send

an email with your proposal to me (jayxiong@yeah.net and jay@ nsesoftware.com).

People Working in Other Fields Who Want to Know

How Complexity Science and the FDS Framework

Can Be Used to Complete the Paradigm-Shift

Revolutionarily in Their Industries

This book is written for you too! Please ignore Chaps. 1 and 2 (options), pay more

attention to Chaps. 3 and 4, and consider other chapters as an application example

of complexity science and the FDS paradigm-shift framework in the establishment

of NSE, a revolutionary new paradigm for software engineering.

How to Read This Book

For easy comparison of the old-established software engineering paradigm and the

new software engineering paradigm, NSE, to be introduced in detail in this book, it

is strongly recommended for readers to install and try the NSE-CLICK toolkit

through an application example (a calculator software product, see Chap. 1), while

reading this book. After that try the S_Panorama (for C/C++) or S_Panojava (for

Java language) product designed for students to learn NSE with small projects (less

than 1,501 lines of the source code). About how to get those toolkits, see “Toolkits

Provided for This Book” section below.

xx Preface

Organization of This Book

This book is organized as follows:

Chapter 1 is an introduction to this book.•฀

Chapter 2 concludes that the old-established software engineering paradigm is •฀

outdated.

Chapter 3 introduce the Foundation for establishing NSE: Complexity Science.•฀

Chapter 4 describes prediction and practices : a new round of industrial revolu-•฀

tion driven by complexity science, and a general paradigm-shift framework.

Chapter 5 is the outline of NSE Paradigm.•฀

Chapters 6–19 introduce the body of NSE, including the nonlinear NSE process •฀

model, the NSE software development methodology complying with the

Generative Holism principle of complexity science, NSE software visualization

paradigm generating interactive and traceable charts and diagrams which are

holistic and virtual, NSE software testing paradigm based on the innovated

Transparent-box testing method combining functional and structural testing

together seamlessly, the NSE software quality assurance paradigm driven by

defect prevention and defect propagation prevention, the NSE documentation

paradigm to make software documents traceable to and from the source code,

the NSE software maintenance paradigm with side-effect prevention in the

implementation of requirement changes or code modifications.

Chapter 20 introduces the NSE project management paradigm working closely •฀

with the software development process to make the management materials trace-

able with the requirement implementation and the source code.

Chapter 21 introduces the algorithms innovated for establishing NSE.•฀

Chapter 22 describes the NSE support tools and support platforms.•฀

Chapter 23 introduces NSE applications – NSE not only can be used for new •฀

software development but also can be used for a software product being developed

using other methodologies in any stage by rewriting the test cases and set book-

marks to the related documents (other documents can automatically be generated)

for improving the development process, testing and ensuring the product quality,

or efficiently maintaining the product with side-effect prevention.

Chapter 24 summarizes the entire NSE software engineering paradigm, com-•฀

pares it with the old-established software engineering paradigm, and proposes

three Candidates of “Silver Bullet” – the NSE automated and self-maintainable

traceability, the NSE software testing paradigm, and the entire NSE software

engineering paradigm.

Appendix A provides a template for requirement specification.•฀

Appendix B shows an example about how to realize 100% MC/DC (Modified •฀

Condition/Decision Coverage) test coverage for a program unit.

Appendix C describes how to control/simulate the return values to a program •฀

unit being tested.

Appendix D provides hints for answering the “Points and Questions to Ponder” •฀

in each chapter.

Glossary provides a list of specialized terms with definitions.•฀

xxiPreface

Toolkits Provided for This Book

It is strongly recommended for readers to install and try the NSE-CLICK and other

toolkits provided (on Springer Extras at http://extras.springer.com/ and then use this

book’s ISBN).

After downloading the file (NSE_Panorama.rar) and unzipping it, you will find

the following files and directories as shown in Table-P1.

Table P1The files and directories included in the NSE_Panorama Tool Package

Type Name Description

File readme.doc The first document to read

File license_agreement.txt License agreement

File installation.doc Installation guide (NSE support platform
and tools are green software without
complicated installation operations)

File NSE_CLICK_J_Tutorial.pdf A tutorial for using NSE_CLICK_J.

File NSE_CLICK_Tutorial.pdf A tutorial for using NSE_CLICK

File NSE_J_Tutorial.pdf A tutorial for using Pano_java product

File NSE_Tutorial.pdf A tutorial for using Panorama++ product

Directory floating_license The directory with files regarding the
use of floating license of the regular
Panorama++ products

Directory isa_common_tools The directory including all Assisted Online
Agents to be delivered with a software
product developed using NSE

Directory isa_examples The directory including some application
examples, particularly a calculator
software product used to show all the
major features of NSE and the support
platform Panorama++

Directory isa_NSE A trial version of Panorama++ for C/C++
products (for learning NSE)

Directory NSE_CLICK The directory including the NSE-CLICK
toolkit and the Interface – a demo
product for fully automated product
acceptance testing of a C/C++ product

Directory NSE_CLICK_J The directory including the NSE-CLICK_J
toolkit and the Interface – a demo
product for fully automated product
acceptance testing of a Java product

Directory Pano_java A trial version of Panojava for Java
products (for learning NSE)

Acknowledgments I would like to thank Hamid R. Arabnia, Ph.D., a Professor of Computer
Science, Graduate Coordinator, who invited me to offer a tutorial titled “Complete Revolution in
Software Engineering Based on Complexity Science” to WORLDCOMP’09 where I got a lot of
useful feedback to improve the NSE paradigm. I would also like to thank Professor Ni Guangnan,
academician of the Chinese Academy of Engineering, for his insightful suggestions. Thanks to

xxii Preface

professor Zheng Renjie from Tsinghua University of China for sharing his thought on the
old-established software engineering paradigm and his valuable suggestions. Thanks to Michael
Zhao, Jonathan Xiong, and more than 50 of my colleagues of International Software Automation,
Inc. (ISA US) and ISA Shanghai, Ltd for their support in the implementation of NSE and the develop-
ment of the NSE support platform Panorama++ and SilverBullet (both consist of about 10,000
function points with about one million lines of source code). Special thanks to Brett Kurzman
from Springer for his great help in the planning, organization, and publishing of this book.

Oakland, California, US Jay Xiong

References

[Bro95-P122] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 122
[Bro95-P179] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 179
[Bro95-P180] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 180
[Bro95-P181] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 181
[Bro95-P183] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 183
[CMMI1.1] Phillips M (2002) CMMI V1.1 and appraisal tutorial. http://www.sei.cmu.edu/cmmi/
[Dem86] Deming WE (1986) Out of the crisis. MIT Press, Cambridge
[GSAM03] Department of the Air Force Software Technology Support Center (2003) Condensed

GSAM Handbook, Chapter 2. CrossTalk
[Jon06] Jones C (2006) Social and technical reasons for software project failures. CrossTalk, June

Issue
[Lim05] Lindberg C (2005) Complexity, the science of relationships. Nursing, the profession of

relationships. Plexus Institute, Allentown, NJ, 14 November 2005
[Lon08] Long LN (2008) The critical need for software engineering education. CrossTalk, Jan

Issue
[Mck99] McKenzie CA (1999) MIS327 – systems analysis and design. Course Schedule, 1999
[Nia09] Niazi M (2009) Software process improvement implementation: avoiding critical barriers.

CrossTalk, Jan Issue
[Ric08] Rice D (2008) Geekonomics: the real cost of insecure software. Addison-Wesley, Upper

Saddle River
[Ros08] Rosenberg D (2008) Total economic cost of insecure software: $180 billion a year in the

U.S. http://news.cnet.com/8301-13846_3-9978812-62.html
[Pre05-P409] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,

New York, p 409
[Pre05-P841] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,

New York, p 841
[Xio09-1] Xiong J (2009) Tutorial, A complete revolution in software engineering based on com-

plexity science. In: WORLDCOMP’09, Las Vegas, 13–17 July 2009
[Xio09-2] Xiong J, Xiong J (2009) A complete revolution in software engineering based on com-

plexity science. In: WORLDCOMP’09 – SERP (Software Engineering Research and Practice
2009), pp 109–115

http://www.sei.cmu.edu/cmmi/
http://news.cnet.com/8301-13846_3-9978812-62.html

xxiii

Contents

1 Introduction ..1

 1.1 What Is Software? ...1

 1.2 What Is Software Engineering? ..29

 1.3 The Major Activities/Tasks to Be Performed

in Software Engineering ...31

 1.4 The Popular Lifecycle/Process Models with the Existing

Software Engineering Paradigm ...32

1.4.1 The Waterfall Model ...32

1.4.2 The Incremental Development Models34

1.4.3 The Iterative Models ...36

1.4.4 More Popular Process Models ..39

1.4.5 General Comments to All Process Models Existing

with the Old-Established Software Engineering Paradigm43

 1.5 Why the Current Software Is Not Sufficiently Engineered

at This Time to Fulfill the Role of “Foundation”................................45

 1.6 What Does a Revolution Mean? ...47

1.6.1 Three Phases of Scientific Revolutions47

1.6.2 Progress Through Revolutions ..48

 1.7 What Is NSE? ...48

 1.8 Summary ...57

 1.9 Points and Questions to Ponder ..58

1.10 Further Reading and Information Source ...58

References ..58

2 Is the Old-Established Software Engineering

Paradigm Entirely Out of Date? ...61

 2.1 The 20 Famous Software Disasters Reported65

2.1.1 Very High Project Failure Rate Reported67

 2.2 What Is the Root Cause for Software Disasters

and Very High Software Project Failure Rate?67

 2.3 The “Software” Definition Is Outdated ..69

xxiv Contents

 2.4 The Current Software Development Process

Models Are Out of Date ...70

 2.5 Current Software Development Methodologies Are Out of Date71

 2.6 The Existing Software Modeling Approaches Are Outdated72

 2.7 Current Software Testing Paradigm Is Out of Date72

 2.8 Current Software Quality Assurance Paradigm Is Out of Date72

 2.9 Current Software Visualization Paradigm Is Out of Date73

2.10 Current Software Documentation Paradigm Is out of Date73

2.11 Current Software Maintenance Paradigm Is Out of Date73

2.12 Current Software Project Management Paradigm Is Out of Date74

2.13 “The Mythical Man-Month” Is an Outcome of Linear Thinking;

The “No Silver Bullet” Conclusion Is Out of Date74

2.14 Summary ...76

2.15 Points and Questions to Ponder ..77

2.16 Further Reading and Information Source ...77

References ..77

3 Foundation for Establishing NSE: Complexity Science79

 3.1 The Basis of Complexity Science ...79

 3.1.1 Linear and Nonlinear...80

 3.1.2 Reductionism...80

 3.1.3 Chaos Theory ..80

 3.1.4 System ...81

 3.1.5 System Categories ...81

 3.1.6 Linear System..81

 3.1.7 Nonlinear System and Complex System81

 3.1.8 Feedback ...82

 3.1.9 Fractal ..82

3.1.10 Fractal Dimension ...82

3.1.11 Dynamical System ..82

3.1.12 Dissipation Structure ...82

3.1.13 Li–Yorke Theorem: Period Three Theorem83

3.1.14 Self-Organization ..83

3.1.15 Synergetics ..83

3.1.16 Catastrophe Theory ...83

3.1.17 Complex Adaptive System ..84

3.1.18 Meta-Synthesis ..84

3.1.19 Cellular Automata ...84

3.1.20 Genetic Algorithm ...85

3.1.21 Soliton ...86

 3.2 Linear Thinking and Nonlinear Thinking ...86

 3.3 The Essential Principles of Complexity Science87

 3.4 Applications of Complexity Science ..88

xxvContents

 3.5 Complexity Science and NSE ...89

 3.6 Summary ...89

 3.7 Points and Questions to Ponder ..89

 3.8 Further Reading and Information Source ...89

References ..90

4 Prediction and Practices: A New Round of Industrial Revolution Driven

by Complexity Science and a General Paradigm-Shift Framework91

 4.1 Prediction: A New Round of Industrial Revolution Driven by

Complexity Science Is Coming ..91

 4.2 The Contribution and Limitation of Hall’s Systems Engineering

Framework ..92

 4.3 The Background for the Innovation of FDS93

 4.4 The Objectives of Innovating FDS ...93

 4.5 The Description of FDS ..94

4.5.1 The “Principles of Complexity Science” Axis94

4.5.2 The “Environment” Axis ...96

4.5.3 The “People/Logic” Axis ..96

4.5.4 The “New Paradigm” Axis Modified from the

“Knowledge/Skills” Axis in Hall’s Framework97

4.5.5 The “Phases” (Workflows) Axis ...97

 4.6 The Major Features of FDS ..98

 4.7 Applications of FDS ...99

 4.8 Bringing Feedback to the Research and Development

of Complexity Science ..100

 4.9 Summary ...101

4.10 Points and Questions to Ponder ..101

4.11 Further Reading and Information Source ...101

References ..101

5 Outline of the NSE Paradigm ...103

 5.1 A Tree Will Not Fall at One Blow: The Difficulty

in Software Engineering Revolution ...103

 5.2 The Objectives for Establishing NSE ...105

 5.3 The Strategy to Achieve the Objectives of NSE106

 5.4 The Establishment of NSE ..106

 5.5 The Structure of NSE ..107

 5.6 The Components of NSE ..107

 5.7 The Major Feature and Characteristics of NSE109

 5.8 Summary ...112

 5.9 Points and Questions to Ponder ..112

5.10 Further Reading and Information Source ...112

References ..113

xxvi Contents

6 The Techniques Innovated to Support NSE ..115

 6.1 Definitions ..115

 6.2 Holistic, Virtual, and Traceable Diagram Generation Technique117

 6.3 Virtual and Traceable Documentation Technique119

 6.4 Holistic and Intelligent Version Comparison Technique121

 6.5 Holistic and Dynamic Traceability Technique122

 6.6 Comprehensive Software Testing Technique Mainly

Based on the Transparent-Box Method ..122

 6.7 Defect Prevention Driven Quality Assurance Technique123

 6.8 Test Case Efficiency Analysis and

Test Case Minimization Technique ...125

 6.9 Refactoring Technique with Defect Prevention126

6.10 Holistic MC/DC Test Coverage Analysis and Graphical

Representation Technique ...127

6.11 Assisted Test Case Design Technique ..128

6.12 Intelligent Regression Test Case Selection Technique128

6.13 Holistic, Actor–Action and Event–Response Driven,

Traceable, Visual, and Executable Technique

for Requirement Development ..130

6.14 Synthesis Design and Incremental Growing Up

(Implementation and Integration) Technique131

6.15 Holistic, Global, and Side-Effect-Prevention

Based Software Maintenance Technique ..133

6.16 Summary ...133

6.17 Points and Questions to Ponder ..134

6.18 Further Reading and Information Source ...134

References ..134

7 NSE Software Engineering Visualization Paradigm135

 7.1 The Old-Established Software Engineering

Visualization Paradigm Is Outdated ...135

 7.2 The Revolutionary Solution Offered by NSE137

 7.3 The 3J graphics (J-Chart, J-Diagram, and J-Flow)138

 7.4 J-Chart ...138

 7.5 J-Diagram ...140

 7.6 J-Flow ...148

 7.7 Entire Software Life Cycle Visualization with NSE153

 7.8 Rich Options for Generating 3J Graphics ...155

7.8.1 For J-Chart Generation ..155

7.8.2 For J-Diagram and J-Flow Generation160

 7.9 The Major Features of NSE Software Visualization Paradigm160

7.10 Applications ..180

7.11 Self-Documenting ...191

xxviiContents

7.12 Summary ...195

7.13 Points and Questions to Ponder ..196

7.14 Further Reading and Information Source ...196

References ..197

8 NSE Process Model ..199

 8.1 Some Experts’ Expectations ...199

 8.2 All of the Existing Software Engineering Process

Models Are Outdated ..201

 8.3 Outline of the Revolutionary Solution Offered with NSE202

 8.4 The Driving Forces and The Support Techniques203

 8.5 The Graphical Representation of the NSE Process Model204

8.5.1 The Objectives of the Preprocess ..206

8.5.2 The Objectives of the Main Process207

8.5.3 The Objective of the Support Facility for Automated

and Bidirectional Traceability ...208

 8.6 The Major Steps of the Preprocess ...208

 8.7 The Major Steps of the Main Process ...213

 8.8 The Support Facility for Automated

and Bidirectional Traceability ..224

 8.9 The Manifestation of the Essential Principles

of Complexity Science in the NSE Process Model...........................225

8.10 The Major Features and Characteristics

of the NSE Process Model ..226

8.11 Summary ...234

8.12 Points and Questions to Ponder ..235

8.13 Further Reading and Information Source ...236

References ..236

9 The Facility for Automated and Self-Maintainable Traceability237

 9.1 The Importance of Requirement Traceability238

 9.2 The Problems Addressed ..238

 9.3 The Solution Offered with NSE ..239

9.3.1 Part 1 ...240

9.3.2 Part 2 ...240

 9.4 How It Works ..242

9.4.1 Bidirectional Traceability Between the Test Cases

and the Source Code Modules or Branches245

9.4.2 Extending the Bidirectional Traceability

to Include All Related Documents ..246

 9.5 The Major Features ...249

9.5.1 Automated ...249

9.5.2 Self-Maintainable ..250

xxviii Contents

 9.5.3 Methodology-Independent ..250

 9.5.4 Nonlinear, Bidirectional, and Parallel250

 9.5.5 Accurate ..250

 9.5.6 Precise ...251

 9.5.7 Extended to Include Software Project

Management Documents ...251

 9.5.8 Extended to Include Web Pages ..251

 9.5.9 Extended for Multiproject Support251

9.5.10 Dynamic ..252

9.5.11 Easy to Add on at Any Time, In Any Status253

 9.6 Application ...254

 9.7 Summary ...254

 9.8 Points and Questions to Ponder ..255

 9.9 Further Reading and Information Source ...256

References ..256

10 NSE Software Development Methodology Driven

by Defect Prevention and Traceability ...257

 10.1 Almost All Existing Software Development

Methodologies Are Outdated ..257

 10.2 Outline of the Revolutionary Solution Offered by NSE259

 10.3 The Driving Forces for the Innovation of the NSE Software

Development Methodology ...263

 10.4 The Related NSE Software Engineering Process Model265

 10.5 Graphical Presentation of the NSE Software Development

Methodology ...267

 10.6 Application ..270

10.6.1 Some Suggestions About the Applications of the NSE

Software Development Methodology270

 10.7 The Major Features of the NSE Software

Development Methodology ...271

 10.8 Summary ...271

 10.9 Points and Questions to Ponder ..272

10.10 Further Reading and Information Source272

References ..272

11 Requirement Engineering Under NSE: Source Code

Driven Dynamic Software Modeling ..273

 11.1 Are All the Existing Software Modeling

Approaches Outdated? ..273

 11.2 Outline of the Revolutionary Solution Offered by NSE276

 11.3 Description of the HAETVE Technique ...279

 11.4 Applications of HAETVE ...286

 11.5 How to Make a Hard Copy of a Graphical

Requirement Document ..303

xxixContents

 11.6 Suggestions for the Requirement Documentation Design304

 11.7 The Major Features of HAETVE ..306

 11.8 More About Dynamic Modeling ...309

 11.9 Summary ...311

11.10 Points and Questions to Ponder ..311

11.11 Further Reading and Information Source311

References ..312

12 Design Engineering Under NSE ...313

12.1 The Major Problem Addressed ...313

12.2 Outline of the Solution for Software Design with NSE314

12.3 Description of the Innovated “Synthesis Design

and Incremental Growing Up” Technique315

12.3.1 Basic Ideas ..315

12.3.2 What is Synthesis? What is Analysis?316

12.3.3 Recommendation for Graphic Document Creation/

Generation ...318

12.3.4 Self-Documenting ...320

12.3.5 Detailed System Hierarchy Design321

12.3.6 Static Defect Prevention and Defect

Propagation Prevention Through Traceability321

12.3.7 Dynamic Defect Prevention and

Defect Propagation Prevention ...321

12.3.8 Data Structure Design ...323

12.3.9 Detailed Logic Design of the Modules323

12.4 Application ..325

12.5 The Major Features of the Software

Synthesis Design Technique ...336

12.6 Summary ...337

12.7 Points and Questions to Ponder ..337

12.8 Further Reading and Information Source338

References ..338

13 Coding Engineering with NSE ..339

 13.1 The Problems Addressed ..339

 13.2 The Solution: Software Coding Engineering with NSE Using

the Synthesis Design and Incremental Integration Technique341

 13.3 Unit Testing and Integration Testing Support349

 13.4 MC/DC Test Coverage Measurement Support353

13.4.1 Conclusion ..361

 13.5 Semiautomated Inspection Support ..362

 13.6 Defect Prevention Driven Quality Assurance in Programming364

 13.7 Quality Measurement for an Entire Software Product

and Each of Its Components ...366

 13.8 Application ..367

xxx Contents

 13.9 The Major Features ...368

13.10 Summary ...368

13.11 Points and Questions to Ponder ..368

13.12 Further Reading and Information Source369

References ..369

14 The Basis of Software Testing ...371

 14.1 The Purpose of Software Testing ..371

 14.2 Functional Testing and the Black-Box Method373

 14.3 Structural Testing and the White-Box Method373

14.3.1 Test Coverage Metrics ...374

14.3.2 Instrumentation Methods ..374

 14.4 Gray-Box Testing ..375

 14.5 Performance Testing and the Testing Method376

 14.6 Other Nonfunctional Testing ...377

 14.7 Unit Testing, Integration Testing, and System Testing378

 14.8 Regression Test After Code Modification.......................................378

 14.9 Object-Oriented Software Testing ..378

14.10 Web Application Testing ...380

14.11 Embedded Software Testing ...381

14.12 GUI Operation Capture and Playback ..382

14.13 Acceptance Testing ...383

14.14 Why Should Software Testing Tools Be Used383

14.15 The Major Drawback of the Major Existing

Software Testing Paradigm and the Solution383

14.16 Summary ...384

14.17 Points and Questions to Ponder ..384

14.18 Further Reading and Information Source384

References ..384

15 Software Test Case Design ...387

 15.1 What Is a Test Case? ...387

 15.2 The Basis of Test Case Design ..388

15.2.1 Equivalence Class Partition

and Boundary Value Analysis ...388

15.2.2 State Transition Analysis ..389

15.2.3 Conditions Combination Method389

 15.3 Semiautomated Test Case Design ...390

 15.4 Test Case Efficiency Measurement ...391

 15.5 Test Case Minimization ..391

 15.6 NSE Test Case Design with HAETVE Technique

for Both Functional Testing and Structural Testing396

 15.7 Automated Test Case Selection with Automated

Test Case Execution ..405

 15.8 Summary ...406

xxxiContents

 15.9 Points and Questions to Ponder ..407

15.10 Further Reading and Information Source407

References ..407

16 The NSE Software Testing Paradigm Based

on the Transparent-Box Method ..409

16.1 The Major Existing Software Testing Methods,

Techniques, and Tools Are Outdated ..409

16.2 The Transparent-Box Testing Method ..411

16.3 The New Software Testing Paradigm Based

on the Transparent-Box Testing Method...413

16.4 The Major Features of the New Software Testing Paradigm 417

16.5 A General Comparison Between the New Software

Testing Paradigm and the Old One ...429

16.6 Summary ...432

16.7 Points and Questions to Ponder ..432

16.8 Further Reading and Information Source432

References ..432

17 NSE Software Quality Assurance Paradigm Driven

by Defect Prevention ..433

17.1 The Old-Established Software Quality

Assurance Paradigm Is Outdated ..433

17.2 Outline of NSE Software Quality

Assurance Paradigm (NSE-SQA) ...435

17.3 Description of NSE Software Quality Assurance Paradigm436

17.3.1 The Foundation of NSE-SQA ...436

17.3.2 The Framework for Establishing NSE-SQA436

17.3.3 The Purpose of NSE-SQA ..437

17.3.4 Definitions ...437

17.3.5 The Quality Assurance Strategy of NSE-SQA439

17.3.6 The Implementation of the Quality Assurance

Strategy of NSE-SQA ...439

17.4 Application of NSE-SQA ...460

17.5 The Major Features of NSE-SQA ...460

17.6 Summary ...463

17.7 Points and Questions to Ponder ..464

17.8 Further Reading and Information Source464

References ..464

18 NSE Software Maintenance Paradigm:

Systematic, Disciplined, and Quantifiable ...467

18.1 The Existing Software Maintenance Engineering

Paradigm Is Outdated..467

18.2 Outline of the NSE Software Maintenance Paradigm470

xxxii Contents

18.3 Description of NSE Software Maintenance

Engineering Paradigm...476

18.4 Application ...477

18.5 The Major Features ...485

18.6 Summary ...487

18.7 Points and Questions to Ponder ..487

18.8 Further Reading and Information Source ...487

References ..488

19 NSE Documentation Paradigm: Virtual, Traceable,

and Consistent with the Source Code ...489

19.1 The Old-Established Software Documentation

Paradigm Is Outdated..489

19.2 Outline of NSE Documentation Paradigm..491

19.3 Description of the NSE Documentation Paradigm494

19.3.1 The Critical Issues with the Old-Established

Software Documentation Paradigm494

19.3.2 The Solution Offered with NSE ..495

19.3.3 The Objectives of the NSE Documentation Paradigm496

19.3.4 Working with Dummy Programming497

19.3.5 Working with NSE Software Visualization Paradigm497

19.3.6 Working with HAETVE Requirement Development

Technique ..497

19.3.7 How It Works ..500

19.3.8 Making a Software Product Visible in Multiple-Views500

19.4 The Major Features of NSE Documentation Paradigm505

19.5 Application ...510

19.6 Summary ...510

19.7 Points and Questions to Ponder ..512

19.8 Further Reading and Information Source ...514

References ..515

20 NSE Project Management Paradigm: Seamlessly Combined

with the Project Development Process ...517

 20.1 The Old-Established Software Project Management

Paradigm Is Outdated ..517

 20.2 Outline of the NSE Project Management Paradigm518

 20.3 The Foundation of NSE Project Management Paradigm519

 20.4 The Strategy of NSE Project Management Paradigm520

 20.5 People Oriented ...521

 20.6 Focusing on Maintenance ...522

 20.7 More Method and Tool Support ..523

 20.8 Combination of Product Development

and Project Management ...524

 20.9 Finding Problems Early and Solving the Problems in Time528

xxxiiiContents

20.10 Quality Management ...528

20.11 Multiple-Project Management ..528

20.12 Summary ...528

20.13 Points and Questions to Ponder ..529

20.14 Further Reading and Information Source530

References ..530

21 Algorithms Innovated for Establishing NSE ...531

21.1 The Algorithm for Realizing Modified Condition/Decision

Coverage Test Coverage Measurement ...532

21.1.1 The Requirements ...532

21.1.2 The Basic Idea ...532

21.1.3 The Major Steps ..533

21.1.4 Application ..533

21.2 The Algorithm for Test Case Efficiency Analysis

and Test Case Minimization ..533

21.2.1 The Requirements ...533

21.2.2 The Basic Idea ...534

21.2.3 The Major Steps ..535

21.2.4 Application ..536

 21.3 The Algorithm for Performance Analysis536

21.3.1 The Requirements ...536

21.3.2 The Basic Idea ...537

21.3.3 The Major Steps ..538

21.3.4 Application ..539

 21.4 The Algorithm for Cyclomatic Complexity Analysis540

21.4.1 The Requirement ...540

21.4.2 The Basic Idea ...540

21.4.3 The Major Steps ..541

21.4.4 Application ..541

 21.5 The Algorithm for Tracing the Execution

Path of a Runtime Error ..542

 21.6 The Algorithm for the Layout of the Call Graph

of a Program Using J-Chart Notations ..543

 21.7 The Algorithm for Holistic Version Comparison

of a Software Product ..543

 21.8 The Algorithm for Memory Leak

and Usage Violation Analysis ...543

 21.9 The Algorithm for Realizing the Traceability

of the Diagrammed Source Code ..546

21.10 The Algorithm for Dynamic Traceability549

21.11 Summary ...553

21.12 Points and Questions to Ponder ..553

21.13 Further Reading and Information Source555

References ..555

xxxiv Contents

22 NSE Support Tools and NSE Support Platforms557

 22.1 Full Software Development Lifecycle Support557

 22.2 The Product Development History ...557

22.2.1 The First Generation: Hindsight557

22.2.2 Second Generation: Panorama ..558

22.2.3 Panorama++ ..560

 22.3 Automated Tools Integrated with Panorama++560

 22.4 Panorama++ Product Installation ..560

 22.5 A Guided Tour of Panorama++ for C/C++565

 22.6 Network Floating License Support ...574

 22.7 The Major Features of Panorama++ ...575

 22.8 Applications ..575

 22.9 Summary ...575

22.10 Points and Questions to Ponder ..575

22.11 Further Reading and Information Source575

References ..576

23 NSE Applications ...577

 23.1 The Whole and Its Components: A General

Comparison Between NSE and Other Approaches577

 23.2 What Makes NSE Special? ...579

 23.3 Applications in New Software Development579

23.3.1 Benefits ...579

23.3.2 Recommended Process ...580

 23.4 Applications in a Software Product Being Developed

Using Other Approaches ...583

 23.5 Possible Combination with UML ...583

23.5.1 About the Future of UML ...583

23.5.2 Question to the Future of UML ..583

23.5.3 Possible Combination with UML (NSE-UML?)584

23.5.4 Possible Combination with CMMI (NSE-CMMI?)585

 23.6 Possible Combination with Agile Software

Development Approaches ...587

23.6.1 Possible Combination with XP (NSE-XP?)592

 23.7 Possible Combination with RUP (NSE-RUP?)593

 23.8 Support for CBSE ...593

 23.9 Summary ...594

23.10 Points and Questions to Ponder ..595

23.11 Further Reading and Information Source595

References ..595

24 Candidates of “Silver Bullet” ..597

 24.1 Is “The Mythical Man-Month” an Outcome of Linear Thinking,

Reductionism, and Superposition Principle?597

24.1.1 A Great book ...598

24.1.2 Limitation ..599

xxxvContents

 24.2 Is the “No Silver Bullet” Conclusion Outdated?599

 24.3 The First Candidate of “Silver Bullet” ..602

 24.4 The Second Candidate of “Silver Bullet”604

 24.5 Can the “Silver Bullet” Defined by Brooks Slay

the “Werewolves” Defined by Him? ...605

 24.6 What Kind of “Silver Bullet” Can be Used to Slay

the “Werewolves” Defined by Brooks?...607

 24.7 The Third Candidate of “Silver Bullet”:

The Entire NSE Paradigm ...609

24.7.1 What Is NSE: The Whole and Its Components610

24.7.2 The Components of NSE ..614

24.7.3 The Major Features and Characteristics of NSE616

24.7.4 The Major Differences Between NSE and the

Old-Established Software Engineering Paradigm618

24.7.5 Qualification as a Candidate of “Silver Bullet”

for Slaying Software “Werewolves”628

 24.8 Summary ...647

 24.9 Points and Questions to Ponder ..648

24.10 Further Reading and Information Source649

References ..649

Appendix A: Software Requirements Specification Template

To Be Used with NSE ...651

Appendix B: An Example About How to Realize 100% MC/DC

(Modified Condition/Decision Coverage) for a Program Unit675

Appendix C: How to Control/Simulate the Return Values

of a Program Unit Being Tested ..699

Appendix D: Hints for Answering the “Points

and Questions to Ponder” in Each Chapter ..703

Glossary ..727

Index ..731

1J. Xiong, New Software Engineering Paradigm Based on Complexity Science:
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_1,
© Springer Science+Business Media, LLC 2011

Software is becoming the foundation of modern civilization;

software constitutes or will control the products, services,

and infrastructure people will rely on for a wide variety of

daily activities from the vital to the trivial. … software is not

sufficiently engineered at this time to fulfill the role of

“foundation.”

David Rice

Today software is becoming the foundation of modern civilization. It is playing an

important role in the development of all kinds of businesses in the world. It affects

almost all aspects of our lives and our everyday activities.

1.1 What Is Software?

With the existing software engineering paradigm, software is defined as follows:

 1. Instructions (computer programs) that when executed provide desired features,

function, and performance

 2. Data structures that enable the programs to adequately manipulate information

 3. Documents that describe the operation and use of the programs [Pre95-p4]

But this software definition is outdated because

The program(s) and the documents are provided without describing how they are •฀

managed together with bidirectional traceability among them.

The documents are often inconsistent with the source code after code modifica-•฀

tion is done again and again in the software development process.

The history and the results of the static and dynamic program measurement are •฀

missing or ignored.

The program(s) is not represented graphically, making it hard to read and •฀

understand.

Chapter 1

Introduction

2 1 Introduction

The working conditions at the customer’s site are quite different from the •฀

 product development site, making the product acceptance testing and product

maintenance hard to perform.

The software product as defined is not adaptive to its new working environment •฀

in the customer site.

With NSE (Nonlinear Software Engineering paradigm, will be described in

detail from Chaps. 3 to 24 in this book), a software (software product) is redefined

as and delivered to the customer with

 (a) A computer program (a regular program, or a cloud computing program, or a

program developed through the internet) with the source code

 (b) The data used

 (c) All of the related documents (including the test case scripts too) traceable to

and from the source code, plus

 (d) The database built though static and dynamic measurement of the

program

 (e) A set of Assisted Online Agents (automated and intelligent tools working

with the program and the database) for handling the issue of complexity

and supporting the testability, visibility, changeability, conformity, reli-

ability, and traceability – making the software product adaptive and truly

maintainable in the new working environment at the customer site, and

that the requirement validation and the acceptance testing can be done

dynamically in a fully automated way with mouse clicks only

Why should a software product be delivered to the customer with the database

plus a set of intelligent agents too? The main objective is to make the software

product easy to understand, test, and truly maintainable at the customer site.

For comparing the old and new software definition and getting hands-on experi-

ence with the new software definition to know how software acceptance testing can

be done automatically and how software maintenance can be performed globally

and holistically with side-effect prevention, it is strongly recommended for readers

to install and try the NSE-CLICK toolkit provided (see Preface) through an applica-

tion example (a calculator software product). This example shows what a customer

will get for his/her software product developed by a third party (or through

 outsourcing software development) applying the NSE paradigm and the support

platform Panorama++: the customer will get the program with the source code, the

data used, the documents with bidirectional traceability to the source code to keep

 consistency with each other, plus the database built through static and dynamic

measurement, and (after signing a maintenance contract) an end-user license to use

(but not own) a set of Assisted Online Agents, including.

31.1 What Is Software?

The NSE-CLICK interface•฀

The OO-Browser for generating interactive and traceable call graphs or class •฀

inheritance charts shown in J-Chart notations (see Chap. 7) innovated by me

The OO-Diagrammer for generating interactive and traceable logic diagrams •฀

shown in J-Diagram notations or control flow diagram in J-Flow notations (see

Chap. 7) innovated by me

The OO-Test for performing software testing using Transparent-box method •฀

combining functional testing and structural testing (for Modified Condition/

Decision (MC/DC) test coverage analysis) together seamlessly with the capability

to establish bidirectional traceability among the related documents and test cases

and source code (see Chap. 16) innovated by me

The OO-V&V for Requirement Validation and Verification through bidirec-•฀

tional traceability

The OO-SQA for software quality measurement•฀

The OO-Analyzer for dynamic and static program measurement•฀

The OO-MemoryCheck for checking memory leaks and usage violations•฀

The OO-Performance for performance measurement•฀

The OO-DefectTracer for tracing each runtime error to the execution path•฀

The OO-MiniCase for test case efficiency analysis and test case minimization in •฀

order to perform regression testing efficiently after code modification

The OO-Playback for GUI operation capture and playback after code •฀

modification

The OO-CodeDiff for holistic and intelligent software version comparison, etc. •฀

for supporting testability, visibility, changeability, conformity, traceability, and

maintainability.

With these Assistant Online Agents, the acceptance testing can be done in a fully

automated way as follows:

Start the NSE-CLICK (double click the e_NSE_CLICK.exe file from the home •฀

directory of NSE-CLICK after the installation), the NSE-CLICK interface will

show up (see Fig. 1.1).

Load the database of the calculator (from C:\isa_examples\English_examples\•฀

analyzed_for_review\cal) as shown in Fig. 1.2.

View the program structure shown in J-Chart notations with some overall mea-•฀

surement results using OO-Browser (see Figs. 1.3–1.8) – the operations and the

results.

4 1 Introduction

Fig. 1.2 The operations for loading the database of the calculator program

Fig. 1.1 The NSE-CLICK interface (the original icons are shown in different colors)

View the program logic diagram using J-Diagram notations and control flow •฀

diagram using J-Flow diagram with automated traceability as shown in

Figs. 1.1–1.14 – the operations and the results:

Select the corresponding options to view the MC/DC (Modified Condition/•฀

Decision Coverage) test coverage measurement result with untested conditions

and branches highlighted, as shown in Fig. 1.12.

•฀ Try to use the traceability automatically established, as shown in Fig. 1.13.

•฀ View the performance measurement result as shown in Figs. 1.15 and 1.16 –

the operations and the result.

51.1 What Is Software?

Fig. 1.3 Start the OO-Browser

Fig. 1.4 View the overall test coverage measurement result (a bar graph at the bottom of each
module-box shows the percentage of the elements tested)

6 1 Introduction

Fig. 1.6 View the measurement result of the cyclomatic complexity (the number of decision
statements such as “if,” “for,” “while,” “do,” “switch”)

Fig. 1.5 View the performance measurement result for locating bottlenecks (a bar at the bottom
of each module-box shows the percentage of the time used)

71.1 What Is Software?

Fig. 1.7 Highlight/trace a module with all of the related modules calling and called by it

Fig. 1.8 Use a module as the root to generate a sub-call-graph

8 1 Introduction

Fig. 1.9 Assign bottom-up order for incremental unit coding and unit testing for a critical path or
the entire product to support reverse engineering

Fig. 1.10 View the class inheritance chart with test coverage data (note: a class cannot be tested
directly, so the class test coverage data are collected from their instances)

91.1 What Is Software?

Fig. 1.11 Start OO-Diagrammer

Fig. 1.12 The MC/DC (Modified Condition/Decision Coverage) test coverage measurement
result

10 1 Introduction

Fig. 1.14 Convert J-Diagram (showing MC/DC test coverage measurement result with untested
conditions and branches highlighted) to J-Flow diagram

Fig. 1.13 The traceabilities established automatically

111.1 What Is Software?

Fig. 1.15 Start the OO-Performance tool

Fig. 1.16 The performance measurement result

12 1 Introduction

•฀ View the general static and dynamic measurement reports as shown in

Figs. 1.17 and 1.18 – the operations and the results.

•฀ View the quality measurement result as shown in Figs. 1.19 and 1.20 – the

operations and the results.

•฀ View the execution path for a runtime error as shown in Fig. 1.21 – the

operation and the result.

•฀ View the memory leak measurement result as shown in Fig. 1.22.

•฀ View the measurement results of test case efficiency analysis and test case

minimization for efficient regression testing after software modification

shown in Figs. 1.23–1.25 – the operations and the results.

•฀ View the support for bidirectional traceability (established through Time

Tags automatically inserted into both the test cases and the code test cover-

age measurement database for mapping them, see Chap. 9), requirement

validation and verification in Figs. 1.26–1.32 – the operations and the

results:

 – View the traceability between test cases and the source code as shown in

Figs. 1.27–1.29 – the operations and the results.

 – View the traceability extended to include all related documents and test

cases and source code as shown in Figs. 1.30–1.34 – the operations and

the results.

Fig. 1.17 Start the OO-Analyzer tool which generates about 150 dynamic and static measurement
reports

131.1 What Is Software?

Fig. 1.18 Partial reports

Fig. 1.19 Start the OO-SQA tool

14 1 Introduction

Fig. 1.21 View the execution path traced from a runtime error to easily locate the defect

Fig. 1.20 View the total quality measurement result for the entire product or each individual
class/function shown with a Kiviat diagram

151.1 What Is Software?

Fig. 1.22 Start the OO-MemoryCheck tool and view the measurement result

Fig. 1.23 Start the OO-MiniCase tool

16 1 Introduction

•฀ View the version comparison result of a more complex program (a GNU

project: bison) in system level, file level, and statement level as shown in

Figs. 1.35–1.44 – the operations and the results.

•฀ To a program with a GUI (sortdemo), selectively play the test case back

dynamically for efficient regression testing – the operations and the result

(see Figs. 1.45–1.47).

Fig. 1.24 The measurement result of the test case efficiency analysis – here, SCO means visible
branch test coverage, SC1 means visible and invisible branch test coverage, SC2 means enhanced
branch test coverage (a loop statement is considered as three branches)

171.1 What Is Software?

There are more functions available (After trying NSE-CLICK, it is recommended

to try the S_Panorama/S_Panajava product (see Preface) designed for students to

learn NSE with your small project (less than 1,501 lines of the source code)).

The above operations and results show that with the new definition, a software

is much easier to understand, test, maintain, and that the acceptance testing can be

done automatically.

Fig. 1.25 View the test case minimization result (the related algorithm will be introduced in
Chap. 23)

18 1 Introduction

Fig. 1.26 Start the OO-V&V (Requirement Validation and Verification) Tool

Fig. 1.27 Perform forward tracing at the module level – click a test case to trace the modules
tested

191.1 What Is Software?

Fig. 1.28 Perform forward tracing at the segment (a set of statements with the same execution
conditions) level – click a test case to trace the code segments tested

Fig. 1.29 Perform backward tracing from a code segment to find what test cases can be used to
test the segment

20 1 Introduction

Fig. 1.30 View the simple framework showing the relationship between requirement specifications
and the related documents including the test scripts and test cases (file name: C:\isa_examples\
English_examples\analyzed_for_review\cal\document_relationship.jpg)

Fig. 1.31 View the options for selecting the traceability type

211.1 What Is Software?

Fig. 1.32 From the subrequirement ADDITION, a related test case is selected to perform forward
tracing (the requirement specification file is opened and shown from the location pointed by the
ADD bookmark)

Fig. 1.33 Backward tracing from a module. In this example, several test cases and two subrequire-
ments (ADDITION and SUBTRACTION) are traced – it means this module is used for the imple-
mentation of both subrequirements – if it needs to be modified, it should satisfy both requirements

22 1 Introduction

Fig. 1.34 Intelligent test case selection for efficient regression testing after code modification:
when a module or code branch is modified, click it to find what test cases can be used to retest it
through backward tracing – in this example, for retesting segment s3, only one test case is useful

Fig. 1.35 Start the OO-CodeDiff tool

231.1 What Is Software?

Fig. 1.36 Load the databases of the two versions of the program (bison1.24 and bison1.25)
separately

Fig. 1.37 View the system-level differences (in the original figure, shown in color rather than
black and white, the unchanged modules are shown in blue, changed modules are shown in red,
deleted modules are shown in brown, and new added modules are shown in green)

24 1 Introduction

Fig. 1.38 View the new version only

Fig. 1.39 View the old version only

251.1 What Is Software?

Fig. 1.40 View the modules deleted from the old version

Fig. 1.41 View the modules added into the new version

26 1 Introduction

Fig. 1.42 View the changed modules

Fig. 1.43 View the statement-level differences of a changed module

271.1 What Is Software?

Fig. 1.44 View the file-level differences and the statement differences of a modified source file

Fig. 1.45 Load the database of the sortdemo program

Fig. 1.46 Choose the traceability type

Fig. 1.47 Click a test case to selectively play the test operations back (although there is only one of
the GUI record file and the batch file is the same for all test cases in the script file, we can still selec-
tively play the different operations back through the different test cases with different Time Tags)

291.2 What Is Software Engineering?

1.2 What Is Software Engineering?

The term software engineering first appeared in the 1968 NATO Software

Engineering Conference and was meant to provoke thought regarding the “software

crisis” at the time.

According to the IEEE Standard Computer Dictionary, 610, ISBN 1-55937-

079-3, 1990, “Software Engineering” is defined as “The application of a system-

atic, disciplined, quantifiable approach to development, operation, and maintenance

of software; that is, the application of engineering to software.”

But, for instance, do we really have a systematic, disciplined, quantifiable

approach to the maintenance of software with the existing software engineering

paradigm? The answer is no.

As Scott Ambler pointed out, “The Unified Process suffers from several weak-

nesses. First, it is only a development process… it misses the concept of mainte-

nance and support…. It’s important to note that development is a small portion of

the overall software life cycle. The relative software investment that most organiza-

tions make is allocating roughly 20% of the software budget for new development,

and 80% to maintenance and support efforts” [Amb05].

With the existing software engineering paradigm, the maintenance of software

is performed partially, locally, and blindly without the means to prevent the side

effects for the implementation of a requirement change or code modification.

In fact, not only RUP (Rational Unified Process) but almost all existing process

models and methods do not really support software maintenance because of the

lack of various kinds of bidirectional traceabilities. As Professor Brooks pointed

out in his book of “The Mythical Man-Month”:

“Two Steps Forward and One Step Back
…The fundamental problem with program maintenance is that fixing a defect has a sub-
stantial (20-50 percent) chance of introducing another. So the whole process is two steps
forward and one step back.

Why aren’t defects fixed more cleanly? First, even a suitable defect shows itself as a
local failure of some kind. In fact it often has system-wide ramifications, usually nonobvi-
ous. Any attempt to fix it with minimum effort will repair the local and obvious, but unless
the structure is pure or the documentation very fine, the far reaching effects of the repair
will be overlooked. Second, the repairer is usually not the man who wrote the code,…

One Step Forward and One Step Back
…All repairs tend to destroy the structure, to increase the entropy and disorder of the

system. Less and less effort is spent on fixing original design flaws; more and more is spent
on fixing flaws introduced by early fixes. As time passes, the system becomes less and less
well-ordered. Sooner or later the fixing ceases to gain any ground. Each forward step is
matched by a backward one” [Bro95-p120].…

“Clearly, methods of designing programs so as to eliminate or at least illuminate side
effects can have an immense payoff in maintenance cost” [Bro95-p122].

30 1 Introduction

In my opinion, for truly supporting software maintenance, a model or a software

development method must satisfy the following conditions:

 (a) Being able to help users perform software maintenance holistically and globally

 (b) Being able to greatly reduce the amount of defects introduced into the software

product and propagated to software maintenance phase through defect preven-

tion and defect propagation prevention performed from the first step to the

entire software development process

 (c) Being able to help users prevent the side effects for the implementation of

requirement changes or code modifications

 (d) Being able to provide the necessary means to help users greatly reduce the time,

resources requested, and cost in regression testing after the implementation of

requirement changes or code modifications, such as the capability for test case

efficiency analysis and test case minimization, or automated, efficient, and

intelligent test case selection

 (e) Being able to help the customer side to maintain a software product with almost

the same conditions as if the software product is maintained by the product

development side

Different from all existing models and methods, the NSE (with its support

 platform Panorama++) model and methodology based on nonlinear thinking

and complexity science satisfies these five conditions – it brings revolutionary

changes to not only software development but also to software maintenance (see

Chap. 18).

It is possible for NSE to help software developers double their productivity

and halve their cost by reducing about two-third of the effort and cost spent in

software maintenance. For the detailed information about the differences in soft-

ware maintenance between NSE and the existing models and methods, please read

Chap. 18.

It is important to point out that with NSE there is no major difference between

the software development process and the software maintenance process, because

Both processes support requirement changes and code modifications with side-•฀

effect prevention for the implementation of requirement changes or code modi-

fications through various bidirectional traceabilities.

The NSE nonlinear process model is followed and the quality of a software •฀

product is ensured from the first step down to maintenance through defect

 prevention and defect propagation prevention, so that the defects propagated to

the maintenance phase is greatly reduced.

Even if the team for the development of a software product is different from •฀

the team for the maintenance of the software product, as described before in

this chapter with the new software definition, the working conditions (with

the program and the source code, the data used, the documents traceable to the

source code, the database built through static and dynamic measurement, and a

set of Assisted Online Agents) for the product maintenance are almost the same

as that for the product development.

311.3 The Major Activities/Tasks to Be Performed in Software Engineering

1.3 The Major Activities/Tasks to Be Performed

in Software Engineering

The major activities/tasks to be performed in software engineering are listed as

follows:

•฀ Software requirements engineering – defines needed information, function,

behavior, performance and interfaces, mainly including

Requirement elicitation/gathering – the practice of obtaining the require- –

ments of a system from customers (or users/stakeholders).

Functional decomposition of functional requirements (often applying Use –

Case approach) and the description of nonfunctional requirements. With NSE,

it is performed using a Holistic, Actor–Action and Event–Response driven,

Traceable, Visual, and Executable technique (HAETVE, see Chap. 11) to

replace the Use Case approach, which is not a holistic one, and the obtained

results are not traceable and not directly executable for defect removal.

Requirement analysis – a modeling activity where the objective is to under- –

stand what the customer really wants. With NSE, it is done using the

HAETVE technique, dummy programming technique, and visual diagram-

ming techniques (see Chap. 11).

Specification – a complete description of the behavior of the system to be –

developed. With NSE, a template is provided for preventing errors of some-

thing missing.

Validation – tests to ensure that the software conforms to customers’ require- –

ments. With NSE, it is done through forward traceability that is automatically

established.

•฀ Software design engineering – an activity that translates the requirements

model into a more detailed model that is the guide to implementation of the

software, including the data structures, software architecture, interface represen-

tations, and algorithmic details. It is usually done based on the Constructive

Holism principle with Computer-Aided Software Engineering (CASE) tools and

use standards for the format, such as the Unified Modeling Language (UML).

With NSE, it is done mainly through dummy programming and visual diagram-

ming techniques (see Chap. 12) based on the Generative Holism principle.

•฀ Software coding – the construction of software through the use of programming

languages. With NSE, it is done incrementally with defect prevention.

•฀ Software testing – a set of activities conducted with the intent of finding errors

in software. With NSE, it is done by applying the Transparent-box method inno-

vated by me, which combines functional and structural testing together seam-

lessly and can be dynamically used in the entire software development lifecycle

(see Chap. 16).

•฀ Software quality assurance (SQA) – means of monitoring the software engi-

neering processes and methods used to ensure quality. The methods by which this

32 1 Introduction

is accomplished are many and varied, and may include ensuring conformance to

one or more standards, such as ISO 9000 or CMMI (Capability Maturity Model

Integration). With NSE, it is done mainly through defect prevention and defect

propagation prevention (see Chap. 17).

•฀ Software deployment and support – Software deployment is an evolving collec-

tion of interrelated processes such as release, install, adapt, reconfigure, update,

activate, deactivate, remove, and retire. The connectivity of large networks, such

as the Internet, is affecting how software deployment is performed (Richard S.

Hall, Dennis Heimbigner, Alexander L. Wolf, A Cooperative Approach to Support

Software Deployment Using the Software Dock, Software Engineering Research

Laboratory, University of Colorado, Boulder, CO 80309-0430, USA). The soft-

ware developed should be delivered to the customers and supported.

•฀ Software maintenance – Software systems often have problems and need enhance-

ments for a long time after they are first completed. With NSE, it is done using a

systematic, disciplined, quantifiable approach with side-effect prevention for the

implementation of a requirement change or code modification (see Chap. 18).

•฀ Software configuration management – Software systems are very complex,

their configuration (such as versioning and source control) have to be managed

in a standardized and structured method. With NSE, it is done with CVS (a GNU

product) plus intelligent version comparison technique in system level, file level,

module level, and statement level.

•฀ Software engineering management – The management of software systems

borrows heavily from project management, but there are nuances encountered in

software not seen in other management disciplines. With NSE, it is done by

combining the project development process and the project management process

together seamlessly, making the management documents traceable with the

implementation of requirements and the source code (see Chap. 20).

•฀ Software development process – The process of building software is hotly

debated among practitioners with the main paradigms being agile or waterfall or

other paradigms such as NSE. With NSE, a nonlinear process model based on

complexity science is applied (see Chap. 8).

1.4 The Popular Lifecycle/Process Models with the Existing

Software Engineering Paradigm

There are several popular lifecycle/process models with the existing software

 engineering paradigm.

1.4.1 The Waterfall Model

A waterfall model is shown in Fig. 1.48, a modified version of the waterfall model

with feedback is shown in Fig. 1.49. A waterfall model is a typical linear model.

331.4 The Popular Lifecycle/Process Models with the Existing Software Engineering

A waterfall model with feedback is still a linear model. As pointed out by Roger S.

Pressman, “Although the original waterfall model proposed by Winston Royce

made provision for ‘feedback loops,’ the vast majority of organizations that apply

the process model treat it as if it were strictly linear.” It is clear that in a modified

waterfall model with feedback there is only local feedback at the transition between

phases with no real upstream movement. A nonlinear process model must be

 supported with forward and backward traceabilities.

As shown in Figs. 1.48 and 1.49, the waterfall model divides the software life-

cycle into five main processes: requirement analysis, design, coding, testing, and

maintenance. Each lower phase begins after the upper phases are completely

finished.

The first formal description of the waterfall model is often cited to be an article

published in 1970 by Winston W. Royce (1929–1995) [Roy70], although Royce did

not use the term “waterfall” in this article. Royce was presenting this model as an

example of a flawed, nonworking model.

Fig. 1.48 The waterfall model

Fig. 1.49 A modified waterfall model with feedback

34 1 Introduction

Compared with other linear process models, the advantages of the waterfall

models are listed as follows:

 (a) System is well documented.

 (b) It is easy to understand.

 (c) It can be applied with or without tools.

 (d) “Big Design Up Front” can be done to avoid some kind of rework.

 (e) It is suitable for fixed requirement projects such as science computing

projects.

The disadvantages of the waterfall models are as follows:

 (a) All risks must be dealt with in a single software development effort.

 (b) Before a previous phase (such as the requirement analysis) is completed,

the next process (such as the design) phase cannot be performed – it must wait.

It will waste time and human resources.

 (c) Requirement changes are hard to perform efficiently.

 (d) A working product is not available until late in the project – the customer must

wait for the product evaluation until the product is produced.

1.4.2 The Incremental Development Models

Incremental development is a staging and scheduling strategy in which various

parts of the system are developed at different times or rates and integrated as they

are completed.

[Coc08]. The incremental development model is shown in Fig. 1.50.

Fig. 1.50 Incremental development model

351.4 The Popular Lifecycle/Process Models with the Existing Software Engineering

As the name suggests, an incremental software development process model

guides the requirement implementation incrementally rather than totally at one

time. It is also called a Micro-Waterfall Model which divides the total requirements

into some subrequirements and implements and integrates them incrementally. In

this way it reduces the waiting time and also reduces the risk, where the customer

can partially evaluate the product early and find the possible problems early. But it

does not remove the other major drawbacks of the linear process models, such as

the defects introduced in upper phases will still easily propagate to the lower phases

to make the defect removal cost increase tenfold several times.

Compared with other linear process models, the advantages and disadvantages

of the incremental development methods are as follows [GSAM03]:

1.4.2.1 Advantages

Provides some feedback, allowing later development cycles to learn from •฀

 previous cycles.

Requirements are relatively stable and may be better understood with each •฀

increment.

Allows some requirements modification and may allow the addition of new •฀

requirements.

It is more responsive to user needs than the waterfall model.•฀

A usable product is available with the first release, and each cycle results in •฀

greater functionality.

The project can be stopped any time after the first cycle and leave a working •฀

product.

Risk is spread out over multiple cycles.•฀

This method can usually be performed with fewer people than the waterfall •฀

model.

Return on investment is visible earlier in the project [•฀ Mck95].

Project management may be easier for smaller, incremental projects [•฀ Mck95].

Testing may be easier on smaller portions of the system.•฀

1.4.2.2 Disadvantages

The majority of requirements must be known in the beginning.•฀

Formal reviews may be more difficult to implement on incremental releases than •฀

on a complete system [Ree95].

Because development is spread out over multiple iterations, interfaces between •฀

modules must be well-defined in the beginning [Ree95].

Cost and schedule overruns may result in an unfinished system.•฀

Operations are impacted as each new release is deployed.•฀

Users are required to learn how to use a new system with each deployment.•฀

36 1 Introduction

1.4.3 The Iterative Models

Iterative development is a rework scheduling strategy in which time is set aside to

revise and improve parts of the system [Coc08]. There are several different iterative

software development models.

1.4.3.1 The Prototype Models

Two prototype models are shown in Figs. 1.51 and 1.52.

1.4.3.2 Spiral Model

Defined by Barry Boehm, the spiral model (see Fig. 1.53), also called the spiral

lifecycle model, which combines the features of the prototyping model and the

waterfall model together, is often used in large project development.

Compared with other linear process models, the advantages and disadvantages

of the iterative development models/methods are as follows [GSAM03]:

Fig. 1.51 A typical prototype model

371.4 The Popular Lifecycle/Process Models with the Existing Software Engineering

Fig. 1.52 The prototype model used with the preprocess of the NSE model

Fig. 1.53 Spiral model

38 1 Introduction

1.4.3.3 Advantages [GSAM00]

Project can begin without fully defining or understanding requirements.•฀

Final requirements are improved and more in line with real user needs.•฀

Risks are spread over multiple software builds and controlled better.•฀

Operational capability is achieved earlier in the program.•฀

Newer technology can be incorporated into the system as it becomes available •฀

during later prototypes.

Documentation emphasizes the final product instead of the evolution of the •฀

product [Ree95].

This method combines a formal specification with an operational prototype [•฀ Ree95].

1.4.3.4 Disadvantages [GSAM00]

Because there are more activities and changes, there is usually an increase in •฀

both cost and schedule over the waterfall method.

Management activities are increased.•฀

Instead of a single switch over to a new system, there is an ongoing impact to •฀

current operations.

Configuration management activities are increased.•฀

Greater coordination of resources is required.•฀

Users sometimes mistake a prototype for the final system.•฀

Prototypes change between cycles, adding a learning curve for developers and •฀

users.

Risks may be increased in the following areas:•฀

Requirements – temptation to defer requirements definition. –

 (a) Management – Programs are more difficult to control. Better government/

contractor cooperation needed.

 (b) Approval – vulnerable to delays in funding approval, which can increase

schedule and costs.

Architectural – Initial architecture must accommodate later changes: –

 (a) Short term benefits – Risk of becoming driven by operational needs

rather than program goals.

Risk avoidance – Tendency to defer riskier features until later: –

 (a) Exploitation by suppliers – Government bargaining power may be

reduced because initial contract may not complete the entire task, and

subsequent contracts are not likely to be competed.

 (b) Patchwork quilt effects – If changes are poorly controlled, the product

quality can be compromised.

391.4 The Popular Lifecycle/Process Models with the Existing Software Engineering

1.4.4 More Popular Process Models

There are three more popular process models, CMMI, Agile, and RUP.

1.4.4.1 CMMI

According to GSAM Handbook [GSAM03], originally, there were several different

versions of capability maturity models: one for software, one for system engineer-

ing, and one for software acquisition. Recently, these separate models have been

integrated into a single model, the CMMI. As shown in Fig. 1.54, two different

representations are available for the CMMI, a continuous representation and a

staged representation previously used by both the Software and Software

Acquisition CMMs. The staged representation shows progress as a series of five

levels. Each of these levels is described by certain attributes characterizing its level

of competency. Each level is associated with process areas, and each process area

is described in terms of common practices that support that level’s goals. These

levels, descriptions, and process areas are shown in Fig. 1.55.

Fig. 1.54 The two different representations of CMMI

40 1 Introduction

1.4.4.2 Agile Software Development Model

A typical agile software development model, XP (Extreme Programming), is shown

in Fig. 1.56 [Pre05-p78].

 The Agile Manifesto

•฀ Individuals and interactions over processes and tools

•฀ Working software over comprehensive documentation

•฀ Customer collaboration over contract negotiation

•฀ Responding to change over following a plan

Fig. 1.55 The process areas by maturity level

411.4 The Popular Lifecycle/Process Models with the Existing Software Engineering

 Twelve Agile Principles

 1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

 2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.

 3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter time scale.

 4. Business people and developers must work together daily throughout the

project.

 5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

 6. The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation.

 7. Working software is the primary measure of progress.

 8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

 9. Continuous attention to technical excellence and good design enhances

agility.

10. Simplicity – the art of maximizing the amount of work not done – is essential.

11. The best architectures, requirements, and designs emerge from self-organizing

teams.

Fig. 1.56 XP model

42 1 Introduction

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

1.4.4.3 Agile Methods (Table 1.1)

1.4.4.4 Rational Unified Process

Rational Unified Process is graphically shown in Fig. 1.57.

With RUP, in each iteration, a micro-waterfall model is applied as shown in

Fig. 1.58.

As shown in Fig. 1.57, the unified process groups iterations into four phases:

Inception, Elaboration, Construction, and Transition.

Inception identifies project scope, risks, and requirements at a high level but in •฀

enough detail that work can be estimated.

Elaboration delivers a working architecture that mitigates the top risks and ful-•฀

fills the nonfunctional requirements.

Table 1.1 Agile methods (Rich Mironov CMO, Enthiosys, Mitigating Risk with Agile
Development, http://www.enthiosys.com/wp-content/uploads/2009/09/agile_mironov_fairfax.pdf)

Scrum

Extreme
Programming
(XP)

Agile Project
Management
Framework
(APM) Crystal methods

Dynamic
Systems
Development
Model (DSDM)

Rational Unified
Process
(RUP)

Feature Driven
Development
(FDD)

Lean
development

Rapid Application
Development
(RAD)

–

Fig. 1.57 Rational Unified Process

http://www.enthiosys.com/wp-content/uploads/2009/09/agile_mironov_fairfax.pdf

43

Construction incrementally fills-in the architecture with production-ready code •฀

produced from analysis, design, implementation, and testing of the functional

requirements.

Transition delivers the system into the production operating environment.•฀

1.4.5 General Comments to All Process Models Existing with the

Old-Established Software Engineering Paradigm

1.4.5.1 “All models Are Wrong, But Some Are Useful” [Box87]

We know that nothing in the world is completely perfect. Even the NSE paradigm to

be introduced in details from Chaps. 3 to 24 in this book – for instance, the waterfall

model can be applied with or without tool support, the RUP model can be applied

with mainly static tool support, but NSE can only be applied with mainly dynamic

tool support, such as those tools offered by Panorama++ to perform defect preven-

tion and defect propagation prevention, and to establish bidirectional traceabilities.

Of course, this disadvantage of NSE can also be considered as an advantage, because

that in twenty-first century dynamic tools should be used in every software develop-

ment company; otherwise, the company may lose its competition power.

In fact, each process model has its advantages and disadvantages – it mainly

depends on the application environment, the project size, and the project complexity.

For instance, when the requirements are fixed such as in the projects for scientific

computing to solve some mathematical problems, the oldest waterfall model is still

a considerable candidate.

1.4 The Popular Lifecycle/Process Models with the Existing Software Engineering

Fig. 1.58 Micro-Waterfall model applied with RUP for each iteration

44 1 Introduction

1.4.5.2 The Common Limitations of the Existing Process Models

Unfortunately, the existing software engineering paradigm is established with

 linear thinking, reductionism, and the superposition principle that the whole of a

system is the sum of its parts, so that it handles a nonlinear complex software

product as a linear system, making all tasks/activities be performed linearly,

 partially, and locally.

The software engineering paradigm itself is a complex system consisting of

many closely related parts including the software development methods, the pro-

cess models, the software visualization paradigm, the software testing paradigm,

the software quality assurance paradigm, the software documentation paradigm, the

software maintenance paradigm, and the software project management paradigm.

All the parts are connected and interactive. As a complex system, the overall behav-

ior and characteristics of the software engineering paradigm cannot be inferred

simply from the behavior of any individual part only but emerge from the interac-

tion of all its parts – it means that only improving one or two of its parts such as

the process improvement and management improvement without improving the

other parts such as the software development methods, the software testing para-

digm, the software quality assurance paradigm, and the software maintenance para-

digm will not be able to make significant improvement to the entire software

engineering paradigm.

In fact, the old-established software engineering paradigm based on linear thinking,

reductionism, and the superposition principle limits the features and usability of all

existing process models, no matter how great a process model itself may be – the

 common drawbacks of the existing software process models include the following:

 (a) None of them is created to efficiently handle the essential issues existing with a

software product – complexity, invisibility, changeability, and conformity, as

defined by Brooks [Bro95-p182].

 (b) None of them is able to efficiently solve the most critical problems with soft-

ware products – low quality and productivity, and high cost and risk.

 (c) None of them is able to make significant improvement to the software project

success rate – it is still very low.

 (d) All of them are linear process models with no upstream movement at all, making

the defects introduced in upper phases easy to propagate to the lower phases, so that

the defect removal cost will increase tenfold several times, and the maintenance of

a software product is performed linearly, blindly, and locally with high risk.

So, generally speaking, today’s software developed with the existing software

engineering paradigm is not sufficiently engineered at this time to fulfill the role of

“foundation.”

45

1.5 Why the Current Software Is Not Sufficiently Engineered

at This Time to Fulfill the Role of “Foundation”

Many critical problems exist with today’s software products developed through the

old-established software engineering paradigm: low productivity and quality, and

high cost and risk. Many process models have been proposed for improving the

software development processes. Those process models claim that they are based

on “the best practices.” But the question is: do we really have “the best practices”

in software development with the existing software engineering paradigm? If so,

what are “the best practices”? Some people believe they are as follows [Amb04]:

Develop iteratively•฀

Manage requirements•฀

Use components•฀

Model visually•฀

Verify quality•฀

Control changes•฀

It is agreeable to develop a software product iteratively, because in most cases, not

all requirements are completely known by the customers in the beginning, so the

customers need to review the implementation result as early as possible even it is

not the complete product. But how is each iteration performed? It is still performed

linearly using a micro-waterfall model with the existing software engineering para-

digm, so that the defect introduced in the upper phases easily propagate to the lower

phases to make the defect removal cost increase tenfold several times.

Managing requirements is important for software development, but can the

requirements of a software product be best managed without various bidirectional

traceabilities, particularly the automated traceability among the related documents

and the test cases and the source code? The article written by Andrew Kannenberg

and Hossein Saiedian and published in the Issue of Jul/Aug 2009 of CrossTalk

argued that “Software Requirements Traceability Remains a Challenge” [Kan09].

About the use of the components, it is related to two different approaches, one

is based on Constructive Holism applied with the existing software engineering

paradigm, and another one is based on Generative Holism applied with NSE.

According to the Constructive Holism principle, components are completed first,

then the whole of the system is built with the completed components – it handles a

software system like a machine. According to the Generative Holism, the whole of

a system is developed first as an embryo, then the system grows up with its com-

ponents. The benefits of the software development based on Generative Holism will

be discussed in Chap. 10.

Visual tools used with the current models are based on linear thinking and the

superposition principle so that they often generate many small pieces of charts/

diagrams only, without the capability to show the entire system holistically. Even if

an entire system chart/diagram can be generated/created, there are too many

 connection lines with the chart/diagram, making them hard to read and hard to

1.5 Why the Current Software Is Not Sufficiently Engineered

46 1 Introduction

understand without the capability to trace and highlight a module and all of the

related modules calling and called by it.

How to verify the quality of a software produce developed with the existing

software engineering paradigm? Current software quality assurance is mainly

based on product review and testing after production – it is too late. There is no

dynamic way to efficiently verify the quality in the requirement development

phase and the product design phase without various automated and bidirectional

traceabilities.

How should we control software changes? Some possible ways are as follows:

Track changes•฀

Trace the changes•฀

Ensure quality•฀

Be sure changes are tested•฀

Inform users•฀

Update the related documents•฀

Perform system-level, file-level, module-level, and statement-level version com-•฀

parison, etc.

With the existing software engineering paradigm, do we have the best practices

in those fields?

When linear process models are used in the software development lifecycle,

software change control is performed locally, and cannot trace the changes holisti-

cally and globally in system-level to identify how many requirements may be

affected and how many other source modules may be affected – making the quality

hard to ensure, and the related documents hard to update consistently, and the ver-

sion comparison is often not performed in system-level.

Furthermore, with the existing software engineering paradigm, we do not have

the best practices in software requirement development (see Chaps. 2 and 11); we

do not have the best practices in software design (see Chaps. 2 and 12); we do not

have the best practices in software coding (see Chaps. 2 and 13); we do not have

the best practices in software testing (see Chaps. 2 and 16); we do not have the best

practices in software quality assurance (see Chaps. 2 and 17); we do not have

the best practices in software documentation (see Chaps. 2 and 19), we do not

have the best practices in software maintenance (see Chaps. 2 and 18); we do not

have the best practices in software project management too (see Chaps. 2 and 20) – it

Table 1.2 Software project success rates reported by
Standish Group

Date Success rate (%)

First CHAOS report 1994 16

“Extreme CHAOS” 2001 28

Most recent CHAOS 2003 31

471.6 What Does a Revolution Mean?

is why the software project success rate is so low as shown in Table 1.2 (For more

information, see the Standish Group Website at http://www.standishgroup.com/).

In the article “Software development productivity and project success rates: Are

we attacking the right problem?”, the CEO of Ravenflow, Joe Marasco pointed out

that “My conclusion is that we are making progress on the success-rate front, but

slowly. The improvement is about 1.7 percentage points a year and appears to be

linear based on this small sample of data. If the current improvement rate continues,

we should achieve a 50 percent success rate in the year 2014.” (http://www.ibm.

com/developerworks/rational/library/feb06/marasco/).

How about the contribution of CMM/CMMI on the improvement of the software

project success rate? As pointed by Ojelanki Ngwenyama and Peter Axel Nielsen

that “Ever since its first presentation, CMM has been extremely influential on soft-

ware engineering practices around the world. The model has served as a framework

for software process and quality improvement efforts in thousands of software

organizations and the resources expended on CMM-based SPI are in the billions of

dollars. Despite the large investments of resources, the failure rate for SPI programs

is high – too high many would say. The most recent report from the Software

Engineering Institute puts the rate of failure at around 70%; a prior report showed

equally dim results” [Ngw03].

Because today’s software products are not sufficiently engineered, software

disasters happen often (DevTopics Software Development Topics, http://www.

devtopics.com/20-famous-software-disasters/).

1.6 What Does a Revolution Mean?

It means a drastic, complete, and fundamental change of paradigm to resolve some

outstanding and generally recognized problem that can be met in no other way.

According to “The Structure of Scientific Revolutions” [Kuh62], science does not

progress continuously, by gradually extending an established paradigm. It proceeds

as a series of revolutionary upheavals.

1.6.1 Three Phases of Scientific Revolutions

Kuhn described that there are three phases with Scientific Revolutions: the first

phase, which exists only once, is the preparadigm phase, in which there is no

consensus on any particular theory, though the research being carried out can be

considered scientific in nature – this phase is characterized by several incompatible

and incomplete theories; the second phase, is the normal science – if the actors in

the preparadigm community eventually gravitate to one of these conceptual frame-

works and ultimately to a widespread consensus on the appropriate choice of

 methods, terminology and on the kinds of experiments that are likely to contribute

http://www.standishgroup.com/
http://www.ibm.com/developerworks/rational/library/feb06/marasco/
http://www.ibm.com/developerworks/rational/library/feb06/marasco/
http://www.devtopics.com/20-famous-software-disasters/
http://www.devtopics.com/20-famous-software-disasters/

48 1 Introduction

to increased insights, then the normal science begins, in which puzzles are solved

within the context of the dominant paradigm. As long as there is general consensus

within the discipline, normal science continues; the third phase is the revolutionary

science phase – over time, progress in normal science may reveal anomalies, facts

which are difficult to explain within the context of the existing paradigm. While

usually these anomalies are resolved, in some cases they may accumulate to the

point where normal science becomes difficult and where weaknesses in the old

paradigm are revealed; Kuhn refers to this as a crisis. After significant efforts of

normal science within a paradigm fail, science may enter the third phase, that of

revolutionary science, in which the underlying assumptions of the field are

 reexamined and a new paradigm is established. After the new paradigm’s domi-

nance is established, scientists return to normal science, solving puzzles within the

new paradigm. A science may go through these three phases cycles repeatedly,

though Kuhn notes that it is a good thing for science that such paradigm shifts do

not occur often or easily.

1.6.2 Progress Through Revolutions

The first edition of The Structure of Scientific Revolutions, ended with a chapter

entitled “Progress Through Revolutions,” in which Kuhn stated his views on the

nature of scientific progress. Because Kuhn considered problem solving to be a

 central element of science, he saw that for a new paradigm candidate to be accepted

by a scientific community, “First, the new candidate must seem to resolve some out-

standing and generally recognized problem that can be met in no other way. Second,

the new paradigm must promise to preserve a relatively large part of the concrete

problem solving activity that has accrued to science through its predecessors.”

1.7 What Is NSE?

NSE (Nonlinear Software Engineering paradigm) based on complexity science, is

established with the objectives to revolutionarily solve the critical problems existing

with the old-established software engineering paradigm. Those critical problems

can be summarized as follows:

 (a) Incomplete – there is no defined process model and support for software main-

tenance which takes 75% or more of the total effort and cost for a software

product

 (b) Unreliable – the quality of a software product mainly depends on software testing

after production which has been proven impossible to ensure high quality

491.7 What Is NSE?

 (c) Invisible – the existing visualization methods, techniques, and tools do not

offer the capability to make the entire software development lifecycle visible,

the generated charts and diagrams are not holistic and not traceable

 (d) Inconsistent – the documents and the source code are not traceable to each

other and not consistent after code modification again and again

 (e) Unchangeable – the implementation of requirement change or code modifica-

tion is performed locally and blindly with high risks

 (f) Not maintainable – software maintenance is performed partially and locally

without support for bidirectional traceability to prevent side effects, so that

each code modification will have a 20–50% of chance to introduce new defects

into the software product being maintained

 (g) Low productivity and quality – most resources are spent in inefficient software

maintenance, the quality cannot be ensured with the blind and local implemen-

tation of software changes

 (h) High cost and risk – most cost is spent in blind and local maintenance of the

software products, which makes a software product unstable day by day in

responding to needed changes

 (i) Low project success rate – it is still less than 30% for projects with budgets

over $1 million

 (j) Often the software projects developed with the old-established software

engineering paradigm are capable of becoming a monster of missed sched-

ules, blown budgets, and flawed products – because the old-established soft-

ware engineering paradigm is based on linear thinking, reductionism, and

superposition principle, so that almost all tasks/activities are performed lin-

early, partially, and locally

It is clear that those problems are related to the entire software engineering

 paradigm with all of its components, including the process models, the software

development methodologies, the visualization paradigm, the software testing para-

digm, the quality assurance paradigm, the documentation paradigm, the mainte-

nance paradigm, the project management paradigm, and the related techniques and

tools. It means that a local and partial solution will not work – we need a holistic

and global solution in almost all aspects of software engineering: a complete

revolution.

For solving those critical problems existing with today’s software development

efficiently, a new software engineering paradigm, NSE is established by me and

implemented by me and my colleagues. The essential difference between the old-

established software engineering paradigm and NSE is how to handle the relation-

ship between the whole and its parts of a software system. The former adheres to

the reductionism principle and superposition principle that the whole is the

sum of its parts, so that nearly all software development tasks/activities are per-

formed locally, such as the implementation of requirement changes. The latter

complies with the Holism principle of complexity science, that a software product

is a Complex Adaptive System (CAS [Hol95]) having multiple interacting

agents (components), of which the overall behavior and characteristics cannot

50 1 Introduction

be inferred simply from the behavior of its individual agents but emerge from

the interaction of its parts, so that with NSE nearly all software development

tasks/activities are performed globally and holistically to prevent defects in the

entire software lifecycle [Xio09-1], [Xio09-2].

Some primary applications show that the NSE paradigm with its support platform,

Panorama++, can make revolutionary changes to almost all aspects in software engi-

neering to efficiently handle software complexity, invisibility, changeability, and con-

formity, and solve the critical problems (low productivity and quality, high cost and

risk) existing with the old-established software engineering paradigm – NSE makes it

possible to help software development organizations double their productivity, halve

their cost, and remove 99–99.99% of the defects in their software products.

From Chaps. 3 to 24 in this book, I will introduce NSE in detail, including the

foundation for establishing NSE, the framework for establishing NSE, and each of

its components – NSE brings revolutionary changes to almost all aspects in software

engineering, including the following:

•฀ The foundation (see Chaps. 3 and 4)

 From: based on linear thinking and the reductionism principle and superposi-

tion principle that the whole is the sum of its parts, so that nearly all

software development tasks/activities are performed linearly, partially,

and locally, such as the implementation of requirement changes.

 To: based on nonlinear thinking and complexity science – to comply with the

essential principles of complexity science, particularly the Nonlinear

Principle and the Holism Principle that the whole of a complex system is

greater than the sum of its parts – the characteristics and the behavior of

a complex system is an emergent property of the interactions of its com-

ponents (agents), so that with NSE nearly all software development tasks/

activities are performed nonlinearly, holistically, and globally to prevent

defects in the entire software lifecycle – for instance, if there is a need to

change a requirement, with NSE and the support platform Panorama++

the implementation of the change will be performed nonlinearly, holisti-

cally, and globally through various bidirectional traceabilities: (1)

Performs forward tracing for the requirement change (through the corre-

sponding test cases) to determine what modules should be modified. (2)

Performs backward tracing to check related requirements of the modules

to be modified for preventing requirement conflicts. (3) Checks what

other modules may also need to be changed with the modification by

tracing the modules to find all related modules on the corresponding call

graph shown in J-Chart innovated by me. (4) Checks where the global

variables and static variables may be affected by the modification. (5)

After modification, checks all related statements calling the modified

module for preventing inconsistency defects between them. (6) Performs

efficient regression testing through backward tracing from the modified

module to find the related test cases. (7) Performs backward tracing to

find and modify inconsistent documents after code modification.

•฀ The process model(s) (see Chap. 8)

511.7 What Is NSE?

 From: linear ones based on linear thinking and the reductionism principle and

superposition principle, including the waterfall model, the incremental

development models, the iterative development models, or the incremental

and iterative development models with which there is only one track in

one direction – no upstream movement at all, always going forward from

the upper phases to the lower phases, so that defects introduced in the

upper phases will easily propagate to the lower phases to make the defect

removal cost greatly increase.

 To: a nonlinear one (called the NSE process model, innovated by me) based

on nonlinear thinking and complexity science with which there are

 multiple tracks in two directions through various traceabilities to prevent

defects and defect propagation, so that experience and ideas from each

downstream part of the construction process may leap upstream, some-

times more than one stage, and affect the upstream activity. With NSE, the

software development process and software maintenance process are com-

bined together closely; the software development process and the project

management process are also combined together closely so that the project

management documents are traceable with the implementations of soft-

ware requirements and the source code. With the NSE process model,

requirement validation and verification can be done easily through for-

ward traceability in parallel, and code modification can be done with side-

effect prevention through backward traceability in parallel too.

•฀ The software development methodologies (see Chap. 10)

 From: the software development methods based on Constructive holism –

“building” a software system with its components – the components are

Fig. 1.59 An application example of incrementally growing up of a software system

52 1 Introduction

developed first, then the system of a software product is built through the

integration of the components developed. From the point of view of

quality assurance, those methodologies are test-driven, but the functional

testing is performed after coding; it is too late. These methodologies

consider a software product as a machine rather than a logical product

created by human beings. They all comply with the reductionism prin-

ciple and superposition principle.

 To: the software development method (NSE software development method,

innovated by the me) based on generative Holism of complexity science –

having the whole dummy system first, then “growing up” with its

 components as shown in Fig. 1.59.

The benefit by adding only one module each time is that if something

unexpected happens, it is much easier to find and fix the problems.

From the point of view of quality assurance, the NSE software develop-

ment method is defect prevention- and traceability-driven to assure the

quality from the first step to the end.

•฀ The software testing paradigm (see Chap. 16)

 From: mainly based on functional testing using the Black-box testing method

being applied after the entire product is produced, structural testing

using White-box testing method being applied after each software unit

is coded for the incremental software development, and iterative soft-

ware development [Coc08]. Both methods are applied separately with-

out internal logic connections.

 To: mainly based on the Transparent-box method innovated by me to com-

bine functional testing and structural testing seamlessly: to each set of

inputs, it not only verifies whether the output (if any, can be none) is the

same as the expected value, but also helps users to check whether the

execution path covers the expected path with the capability to automati-

cally establish bidirectional traceability among all of the related docu-

ments and the source code for inconsistency defect checking.

•฀ The quality assurance paradigm (see Chap. 17)

 From: a test-driven approach, mainly using Black-box testing method plus

structural testing method and code inspection after coding.

 To: NSE-SQA – defect prevention-driven approach innovated by me, mainly

using the Transparent-box testing method in all phases of a software devel-

opment lifecycle from the first step to the end because having an output is

no longer a condition to use the Transparent-box testing method dynami-

cally. The priority of NSE-SQA for assuring the quality of a software

being developed is ordered as (1) defect prevention; (2) defect propagation

prevention; (3) Refactoring applied to highly complex modules and

module(s) that are performance bottlenecks; (4) Deep and broad testing.

•฀ The software diagramming paradigm (see Chap. 7)

 From: drawing the diagrams manually or using graphic editors or using a tool to

generate partial charts/diagrams which are neither interactive nor traceable in

most cases. Even if some charts/diagrams for an entire software system can

531.7 What Is NSE?

Fig. 1.61 A holistic and traceable logic diagram shown in J-Diagram notations defined by Jay
Xiong with untested branches and conditions highlighted

Fig. 1.60 A call graph shown in J-Chart notation defined by Jay Xiong. (a) A complex program
structure. (b) A module and all of the related modules highlighted with the bottom-up orders for
incremental coding and unit testing

54 1 Introduction

be generated, they are still not useful because there are too many connection

lines to make the charts/diagrams hard to view and hard to understand

without the capability to trace an element with all the related elements.

 To: holistic, interactive, traceable, and virtual software diagramming paradigm

innovated by me to make an entire software development lifecycle visible. The

charts/diagrams are dynamically generated from several Hash tables from the

database and the source code through dummy programming or reverse engi-

neering virtually without storing the hard copies in hard disk or memory to

greatly reduce the space. The generated charts/diagrams are interactive and

traceable between related elements – users can highlight an element with all

of the related elements easily as shown in Figs. 1.60 and 1.61.

•฀ The documentation paradigm (see Chap. 19)

 From: (a) separated from the source code without bidirectional traceability;

(b) inconsistent with the source code after code modifications; (c) requiring

huge disk space and memory space to store the graphical documents;

(d) the display and operation speed is very slow; (e) hard to update; (f) not

very useful for software product understanding, testing, and maintenance.

 To: (a) managed together with the source code based on bidirectional trace-

ability; (b) consistent with the source code after code modification; (c) most

documents are dynamically generated from several Hash tables and exist

virtually without huge storage space; (d) the display and operation speed is

very fast; (e) most documents can be updated automatically; (f) very useful

for software product understanding, testing, and maintenance.

•฀ The software maintenance paradigm (see Chap. 18)

 From: performed blindly, partially, and locally without the capability to prevent

the side effects for the implementation of requirement changes or code

 modifications, takes about 70% of the total effort and cost in the soft-

ware system development in most software organizations.

 To: performed visually, holistically, and globally using a systematic, disci-

plined, quantifiable approach innovated by me to prevent the side effects

for the implementation of requirement changes or code modifications

through various automated traceabilities; takes only about 25% of the

total effort and cost in software system development, because with NSE

there is no big difference between the software development process and

the software maintenance process – both support requirement changes or

code modification with side-effect prevention.

•฀ The software project management paradigm (see Chap. 20)

 From: performed separately from the software product development process,

often making the necessary actions being done too late.

 To: performed closely with the software development process, makes the project

management documents such as the product development schedule, the

cost reports, and the progress reports traceable with the requirement

implementation or the corresponding test cases or the source code, making

the necessary actions being done in time. Figure 1.62 shows a schedule

chart traced and opened when a test case is selected for forward tracing.

551.7 What Is NSE?

Why should NSE bring revolutionary changes to almost all aspects in software

engineering? The answer is that

 (a) According to complexity science, the characteristics and behaviors of the whole

of a complex system emerge from the interaction of its components and the

interaction between it and the environment, cannot be inherited from one or a

few of its individual components, so that partial and local “revolution” for one or

a few components of the entire software engineering paradigm will not work – for

instance, focusing on software process improvement and management improve-

ment only without changing the linear process models, the outdated software

development methodologies based on reductionism and superposition principle,

the inefficient software testing paradigm which cannot be dynamically used in

upstream where most critical software defects are coming from, the inefficient

software quality assurance paradigm based on software testing after production

which violates Deming’s product quality assurance principles, the inefficient

software visualization paradigm by which the generated local and partial charts

and diagrams are not interactive and not traceable, the inefficient software

documentation paradigm by which the generated documents are not traceable to

Fig. 1.62 An example of how management documents can be traced and automatically opened
with bidirectional traceability from a requirement implementation, test case, or the source code

56 1 Introduction

the source code, the blind software maintenance paradigm without support of

automated and self-maintainable traceability, etc., is impossible to bring revolu-

tionary changes to today’s software development. It is also important to point

out that even if all the components of the software engineering paradigm have

been changed revolutionarily, it does not guarantee that the whole of the

software engineering paradigm has been changed revolutionarily – it depends on

Fig. 1.63 The interactive effect among the critical problems existing with today’s software
 development

Fig. 1.64 NSE’s objectives

571.8 Summary

the interaction between them: how they are working together, how they can share

the resources such as the computer memory and the file system, how they can

use the same database, how the obtained results from one component can be

 efficiently used by others, and so on to realize the whole of the software

 engineering paradigm greater (rather than less) than its components.

 (b) It is also related to the objectives of NSE – to solve almost all of the critical

problems existing with today’s software development at the same time: low

productivity and quality, high cost and risk. With the old-established software

engineering paradigm, it is impossible to solve those critical problems together

at the same time – see Fig. 1.63 about their limitation and effects brought by

one to others, and Fig. 1.64 NSE’s objectives.

1.8 Summary

Software is becoming the foundation of modern civilization – it affects almost all

aspects of our lives and our everyday activities. With software engineering, many

tasks/activities are defined, including requirement development, product design,

coding, testing, deployment and support, maintenance, configuration, and project

management. For supporting software development, many software process models

are proposed and used in practice, including the Waterfall lifecycle model, the

Prototype model, the Spiral Model, CMMI, Agile models, and RUP.

But unfortunately, today’s software products are still not sufficiently engineered to

fulfill the role of “foundation.” There are many critical problems existing with today’s

software engineering paradigm: low productivity and quality, and high cost and risk.

The root cause of those critical problem comes from the fact that not only a

software product but also the software engineering paradigm itself is a complex

system consisting of many closely related parts, where the characteristics and

behavior of the whole system emerge from the interaction of its parts – but the

existing software engineering paradigm is established with linear thinking, reduc-

tionism, and the superposition principle that the whole of a system is the sum of

its parts, so that it handles a nonlinear complex software product as a linear system,

making all tasks/activities be performed linearly, partially, and locally.

For efficiently solving the critical problems existing with the old-established

software engineering paradigm, a new revolutionary software engineering para-

digm NSE (Nonlinear Software Engineering) paradigm has been established, which

is based on nonlinear thinking and complexity science.

With NSE, “software” is redefined to include not only a computer program, the

data used, and the documents traceable to the source code but also the database

built through static and dynamic measurement of the program and a set of Assistant

Online Agents to make the program adaptive and maintainable, and the acceptance

testing can be performed in a fully automated way.

With NSE, software maintenance can be performed holistically and globally

with side-effect prevention through various traceabilities.

58 1 Introduction

With NSE, the quality of a software product is ensured from the first step down

to maintenance through defect prevention and defect propagation prevention.

With NSE, the entire software development process is visible, and the docu-

ments are traceable to the source code.

The detailed descriptions on the all related topics will be introduced from

Chaps. 3 to 24 of this book.

1.9 Points and Questions to Ponder

 (a) What are the major differences between the traditional software definition and

the new one defined with NSE? Do you think it is necessary to provide a soft-

ware product to the customer (not the end user) with the database built through

static and dynamic measurement of the product, and a set of Assisted Online

Agents? Why?

 (b) Are today’s software products sufficiently engineered? Why?

 (c) What are the common limitations existing with current software process

models?

 (d) For efficiently supporting software maintenance, what conditions do you think

a process model or software development approach should satisfy?

 (e) Although the software engineering paradigm itself is a complex system consisting

of many related parts which are connected closely and interactively, some

 people still believe that only improving one or two parts of the software engi-

neering paradigm without improving its other parts can still dramatically

improve the overall characteristics, performance, behavior, and the problem-

solving capability of the software engineering paradigm – do you agree with

their conclusion? Why?

1.10 Further Reading and Information Source

 (a) http://www.comdig.org/ complexity digest – subscribe to the newsletter

 (b) http://www.brint.com/Systems.htm Complexity, Complex Systems & Chaos

Theory Organizations as Self-Adaptive Complex Systems

References

[Amb04] Ambler SW, Nalbone J, Vizdos M (2004) Enterprise unified process: extending
the rational unified process. Prentice Hall PTR, Upper Saddle River

[Amb05] Ambler S (2005) A manager’s introduction to the Rational Unified Process
(RUP). http://www.ambysoft.com/downloads/managersIntroToRUP.pdf.
Accessed 20 Feb 2009

http://www.comdig.org/
http://www.brint.com/Systems.htm

59References

[Box87] Box GEP, Draper NR (1987) Empirical model-building and response surfaces.
Wiley, New York, p 424. ISBN 0471810339

[Bro95-p120] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, P120
[Bro95-p122] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, P122
[Bro95-p182] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, P182
[Coc08] Cockburn A (2008) Using both incremental and iterative development, CrossTalk,

May Issue
[GSAM00] USAF Software Technology Support Center (2000) Guidelines for the Successful

Acquisition and Management of Software Intensive Systems (GSAM), version 3,
chapter 5, USAF Software Technology Support Center, May

[GSAM03] USAF Software Technology Support Center (2003) Condensed GSAM hand-
book, chapter 2, CrossTalk

[Hol95] Holland JH (1995) Hidden order: how adaptation builds complexity. Addison-
Wesley, Reading

[Kuh62] Kuhn T (1962) The structure of scientific revolutions. The University of Chicago
Press, Chicago

[Kan09] Kannenberg A et al (2009) Why software requirements traceability remains a
challenge, CrossTalk, Jul/Aug Issue

[Mck95] McKenzie CA (1999) MIS327 – Systems analysis and design, course schedule
[Ngw03] Ngwenyama O, Nielsen PA (2003) Competing values in software process

improvement: an assumption analysis of CMM from an organizational culture
perspective. IEEE Trans Eng Manag 50(1):100–112. doi:10.1109/
TEM.2002.808267

[Ree95] Sorensen R (1995) A comparison of software development methodologies,
Crosstalk, Jan Issue

[Roy70] Royce WW (1970) Managing the development of large software systems con-
cepts and techniques. In: Proc. WESCON, August 1970

[Pre95-p4] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,
New York, Part 4

[Pre05-p78] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,
New York, p P78

[Xio09-1] Xiong J, Xiong J (2009) A complete revolution in software engineering based on
complexity science, WORLDCOMP’09 – SERP (Software Engineering Research
and Practice 2009), Las Vegas, pp 109–115

[Xio09-2] Xiong J (2009) Tutorial: a complete revolution in software engineering based on
complexity science, WORLDCOMP’09, Las Vegas, 13–17 July 2009

61J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_2,
© Springer Science+Business Media, LLC 2011

Major software projects have been troubling business activities

for more than 50 years. Of any known business activity, soft-

ware projects have the highest probability of being cancelled

or delayed. Once delivered, these projects display excessive

error quantities and low levels of reliability.

Capers Jones

One of the primary reasons that many businesses fail is an

attempt to solve a non-linear (or wicked) problem with a linear

process. All people problems and issues are non-linear because

they exist in a dynamic rather than a static environment.

Cityzone, Process Versus Non-Linear Thinking

http://www.city-zone.com/modules/publishing/item.

aspx?iid=138

Software has become a driving force for the development of science, engineering,

and business in the twenty-first century.

Since the term software engineering first appeared in the 1968 NATO Software

Engineering Conference, it is more than 40 years past. Within that period of time,

great progress in software engineering has been achieved, particularly the following

people and their great contributions (without their contributions, it is impossible for

me to write this book) listed by C o m p H i s t . o r g (http://comphist.org/):

Engineering:

1968: Peter Naur et al coined the term “software engineering” at the NATO confer-

ence in Garmisch-Partenkirchen and pointed out that software should follow an

engineering paradigm, it was the response to a software crisis where the quality

was too low, the delivery was too late, and the costs went way over the budget.

1975: Frederick P. Brook, Jr. book on “Software Engineering” which tackles the

question of how to organize and manage large-scale programming projects.

Programming and Design Methodologies:

1972: E.W. Dijkstra book on structured programming

1972: D.L. Parnas “Parnas Module” which proposed information hiding.

Chapter 2

Is the Old-Established Software Engineering
Paradigm Entirely Out of Date?

http://www.city-zone.com/modules/publishing/item.aspx?iid=138
http://www.city-zone.com/modules/publishing/item.aspx?iid=138
http://comphist.org/

62 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

1975: M.A. Jackson book on “Principles of Program Design,” which model data

and algorithms largely separated.

1978: G.J. Myers articles “Composite/Structured Design” for composite design.

1979: Edward Yordon and L.L. Constantine book on structured design.

They affected heavily how programming languages were being structured

afterwards.

User’s Requirements, Requirement Engineering and Description Technologies:

1977: D. Teichrow and E. Hershey paper on prototyping as a tool in the specifi-

cation of user requirements.

1977: D. Ross paper on structured analysis.

1977: M.W. Alford paper on the use of lexical affinities in requirements

extraction

Project Management Technologies:

1981: Barry Boehm book on “Software Engineering, Economics” which

addresses cost estimation issues

1976: T.J. MaCabe paper on software complexity measurement and the detec-

tion of risky factors.

1977: M.H. Halstead book – “Elements of Software Science” which coined the

term E measurement – efforts measurement.

…

At this phase, procedures started to be separated from the data; furthermore,

related procedures and data were brought together into subsystems.

1980–1990 Prototyping technologies and formalization, partial automation in

upstream, includes analysis of dynamic, formal methods, and CASE tools.

1986: William. W. Agresti paper on appearance of prototyping technologies,

which discarded the waterfall model and shifted to prototyping.

Analysis of Dynamic Behavior of Specification:

1983: M.A. Jackson book on JSP (Jackson Structured Programming), a method

for designing programs as compositions of sequential processes and JSD

(Jackson System Development), a method for specifying and designing

systems

1986: Paul T. Ward paper on real-time data flow

1986: Pamela Zave and William Schell paper on PAISLey, an executable

specification language which is accompanied by a set of specification

methods, analysis techniques, and software support tools.

1986: Giorgio Bruno and Giuseppe Marchetto paper on PROTnet, a Process-

Translatable Petri Nets for the Rapid Prototyping of Process Control Systems

…

632 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

Formal Methods:

ISO standardization, such as GKS (1985), the computer graphics standard,

and PREMO (1998) the multimedia standard.

SRI’s PVS (Prototype Verification System) Theorem Prover

Bell Labs’s SPIN model checker

CASE (Computer Aided Software Engineering) Tools:

1988: Meilir Page-Jones book “The Practical Guide to Structured System

Design,” which features SA/SD – structured analysis/structured design

with modularized view; a structure chart is used to show the programmers

of a system how the system is partitioned into modules.

…

Around this time, subsystems began to be layered.

1985–1995 Software Process Model, this includes process programming, CMM,

integrated environment, and analyzing and supporting human factors.

Software Process and SPI – Software Process Improvement:

1986: Frederick P Brooks, Jr. paper on information processing which address

the essence and accidents in software development and the ratio between

them, summarized as “No Silver Bullet”

…

1989: Watts S. Humphrey book “Managing the Software Process,” featured

CMM – Capability Maturity Model, which optimized the software process

in five levels: initial, repeatable, defined, managed, optimizing.

Integrated Environments:

1993: Lois Wakeman and Jonathan Jowett book “PCTE – The Standard for

Open Repositories” which discussed tool integration.

Analyzing and Supporting Human Factors:

1986: Bill Curties paper on protocol and human factors analysis

1988: Colin Potts and Glenn Bruns paper on design decision, which discussed

communication support.

…

1985 to present – the Network Age, this includes Object oriented technologies,

distributed computing, open source software development and web engineering.

Object Oriented Technologies:

Programming Language

1967: O.J. Dahl papers on SIMULA, a precursor to the OO language Simula,

which featured class, instance and module.

64 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

1976: Lampson et al. introduced EUCLID, a related type systems Euclid, one of

the first languages that considered the problem of aliasing, and included

constructs to express it.

1976: Niklaus Wirth introduced Modula, a language derived from Pascal, which

featured the module.

1977: B. Liskov paper on CLU, which was the first implemented programming

language to provide direct linguistic support for data abstraction and

featured clusters.

1979: JD lchbiah et al. Ada, a programming language which featured packages

1981: Alan kay and Dan Ingalls et al. / Xerox introduced Smalltalk 80,

an object-oriented programming language.

1986: Brad Cox introduced the first Objective-C compiler

1986: Bjarne Stroustrup introduced C++ Programming Language

1988: Bertrand Meyer Eiffel, an elegant object-oriented language, designed to

support reuse, and including support for logical assertions.

1989: David. A. Moon introduced CLOS – Common Lisp Object System

1995: James Gosling/Sun Microsystems introduced Java, a simplified C++ like

OOP which is expressly designed for use in the distributed environment of

the Internet.

Object-Oriented Analysis and Design

1986: G. Booch introduced OOD(Object-Oriented Design)

1988: Shlare-Mellor papers on viewing systems as architecture, corresponding

to breaking a large system up into components.

1991: Peter Coad, Edward Yourdon book on the principles of object-oriented

technology

1991: J. Rumbaugh book on Object-Oriented Modeling and Design and intro-

duced OMT (Object Modeling Technique).

1995: Ivar Jacobson paper on using case driven approach, which introduced

OOSE (Object-Oriented Software Engineering).

…

1997: Clemens Szypersky book “Component Software – beyond object-oriented

programming” introduced software components

1999: Ivar Jacobson, James Rumbaugh, Brady Booch books on the unified soft-

ware development process, modeling and language, which introduced UML

Here, the big object orientation methodologies, layering, and OOP advancements

quickly complemented each other.

Open Source Software Development

1997: Eric S. Raymond outlined the core principles of open source movement in

a manifesto called “The Cathedral and the Bazaar.”

Today many software products are about 10,000 times more complex than those

written in 40 years ago. Unfortunately, the old-established software engineering

paradigm is crisis-ridden and frequently disastrous, which is entirely outdated.

652.1 The 20 Famous Software Disasters Reported

2.1 The 20 Famous Software Disasters Reported

Software errors cost the US economy about $60 billion annually in rework, lost

productivity, and actual damages.

DevTopics Software Development Topics listed the 20 Famous Software Disasters

(http://www.devtopics.com/20-famous-software-disasters/), particularly these:

…

2. Hartford Coliseum Collapse (1978)

Cost: $70 million, plus another $20 million damage to the local economy

 Disaster: Just hours after thousands of fans had left the Hartford Coliseum, the

steel-latticed roof collapsed under the weight of wet snow.

 Cause: The programmer of the CAD software used to design the coliseum incor-

rectly assumed the steel roof supports would only face pure compression. But

when one of the supports unexpectedly buckled from the snow, it set off a

chain reaction that brought down the other roof sections like dominoes.

…

4. World War III… Almost (1983)

Cost: Nearly all of humanity

 Disaster: The Soviet early warning system falsely indicated the United States had

launched five ballistic missiles. Fortunately the Soviet duty officer had a “funny

feeling in my gut” and reasoned if the U.S. was really attacking they would launch

more than five missiles, so he reported the apparent attack as a false alarm.

 Cause: A bug in the Soviet software failed to filter out false missile detections

caused by sunlight reflecting off cloud-tops.

…

5. Medical Machine Kills (1985)

Cost: Three people dead, three people critically injured

 Disaster: Canada’s Therac-25 radiation therapy machine malfunctioned and

delivered lethal radiation doses to patients.

 Cause: Because of a subtle bug called a race condition, a technician could acci-

dentally configure Therac-25 so the electron beam would fire in high-power

mode without the proper patient shielding.

…

6. Wall Street Crash (1987)

Cost: $500 billion in one day

 Disaster: On “Black Monday” (October 19, 1987), the Dow Jones Industrial Average

plummeted 508 points, losing 22.6% of its total value. The S&P 500 dropped

20.4%. This was the greatest loss Wall Street ever suffered in a single day.

 Cause: A long bull market was halted by a rash of SEC investigations of insider

trading and by other market forces. As investors fled stocks in a mass exodus,

computer trading programs generated a flood of sell orders, overwhelming the

market, crashing systems and leaving investors effectively blind.

…

http://www.devtopics.com/20-famous-software-disasters/

66 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

 8. Patriot Fails Soldiers (1991)

Cost: 28 soldiers dead, 100 injured

 Disaster: During the first Gulf War, an American Patriot Missile system in

Saudi Arabia failed to intercept an incoming Iraqi Scud missile. The missile

destroyed an American Army barracks.

Cause: A software rounding error incorrectly calculated the time, causing the

Patriot system to ignore the incoming Scud missile.

…

10. Ariane Rocket Goes Boom (1996)

Cost: $500 million

 Disaster: Ariane 5, Europe’s newest unmanned rocket, was intentionally

destroyed seconds after launch on its maiden flight. Also destroyed was its cargo

of four scientific satellites to study how the Earth’s magnetic field interacts with

solar winds.

 Cause: Shutdown occurred when the guidance computer tried to convert the

sideways rocket velocity from 64-bits to a 16-bit format. The number was too

big, and an overflow error resulted. When the guidance system shut down,

control passed to an identical redundant unit, which also failed because it was

running the same algorithm.

…

15. Y2K (1999)

Cost: $500 billion

 Disaster: One man’s disaster is another man’s fortune, as demonstrated by the

infamous Y2K bug. Businesses spent billions on programmers to fix a glitch in

legacy software. While no significant computer failures occurred, preparation

for the Y2K bug had a significant cost and time impact on all industries that

use computer technology.

 Cause: To save computer storage space, legacy software often stored the year

for dates as two digit numbers, such as “99″ for 1999. The software also inter-

preted “00″ to mean 1900 rather than 2000, so when the year 2000 came along,

bugs would result.

…

18. Cancer Treatment to Die For (2000)

Cost: Eight people dead, 20 critically injured

 Disaster: Radiation therapy software by Multidata Systems International

miscalculated the proper dosage, exposing patients to harmful and in some

cases fatal levels of radiation. The physicians, who were legally required to

double-check the software’s calculations, were indicted for murder.

 Cause: The software calculated radiation dosage based on the order in which

data was entered, sometimes delivering a double dose of radiation.

 Why do software disasters happen so frequently? There are many reasons, but

the root cause is that the current software engineering paradigm is entirely out

of date; it does not meet the need for twenty-first century software development,

because it is based on linear thinking and the superposition principle.

672.2 What Is the Root Cause for Software Disasters and Very High Software

2.1.1 Very High Project Failure Rate Reported

In the article of “Why Big Software Projects Fail: The 12 Key Questions,”

Watts S. Humphrey (the innovator of CMM/CMMI) reported that the software

project success rate is still very low as shown in Fig. 2.1 [Hum05].

The definition of a successful project is one that completed within 10% or so of

its committed cost and schedule and delivered all of its intended functions.

As shown in Fig. 2.1, the success rate for a software project with more than

$1,000,000 is about 30% – it means about 70% of the projects have failed.

2.2 What Is the Root Cause for Software Disasters

and Very High Software Project Failure Rate?

There are many different answers to this question:

Several researchers have suggested that “CMM does not effectively deal with

the social aspects of organizations” [Ngw03].

Timothy K. Perkins believes as follows:

the cause of project failures is knowledge: either managers do not have the necessary
knowledge, or they do not properly apply the knowledge they have. [Per06]

Capers Jones concluded as follows:

Both technical and social issues are associated with software project failures. Among the
social issues that contribute to project failures are the rejections of accurate estimates and
the forcing of projects to adhere to schedules that are essentially impossible. Among the
technical issues that contribute to project failures are the lack of modern estimating

Fig. 2.1 Software project success rate based on size

68 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

approaches and the failure to plan for requirements growth during development. However,
it is not a law of nature that software projects will run late, be cancelled, or be unreliable
after deployment. A careful program of risk analysis and risk abatement can lower the

probability of a major software disaster. [Jon06]

Joe Marasco pointed out as follows:

All the effort has gone into two areas: managing requirements and something called “require-
ments traceability.” Requirements management is the art of capturing requirements, cataloging
them, and monitoring their evolution throughout the development cycle. Requirements are
added, dropped, changed, and so on, and we now have requirements management systems
that allow us to keep track of all this. That is a good thing. Traceability is a bit more ambi-
tious. It attempts to link later-stage artifacts, such as pieces of a system and their test cases,
back to the original requirements. That way, we can assess if we are actually meeting the
requirements that were called out. This is a harder problem, but, once again, there has been
substantial progress. To all this I say, wonderful, but not good enough.

For more information, see the Standish Group Web site at http://www.standishgroup.com/
Poor Estimation: Major Root Cause of Project Failure.
Galorath Incorporated, http://www.galorath.com/wp/poor-estimation-major-root-cause-

of-project-failure.php
IT projects have been considered a tough undertaking and have certain characteristics

that make them different from other engineering projects and increase the chances of their
failure. Such characteristics are classified in seven categories (Peffers, Gengler &
Tuunanen, 2003; Salmeron & Herrero, 2005): 1) abstract constraints which generate unre-
alistic expectations and overambitious projects; 2) difficulty of visualization, which has
been attributed to senior management asking for over-ambitious or impossible functions,
the IT project representation is not understandable for all stakeholders, and the late detec-
tion of problems (intangible product); 3) excessive perception of flexibility, which contrib-
utes to time and budget overrun and frequent requests of changes by the users; 4) hidden
complexity, which involves difficulties to be estimated at the project’s outset and interface
with the reliability and efficiency of the system; 5) uncertainty, which causes difficulty in
specifying requirements and problems in implementation of the specified system; 6) the
tendency to software failure, which is due to assumptions that are not thought of during the
development process and the difficulty of anticipating the effects of small changes in soft-
ware; 7) the goal to change existing business processes, which requires IT practitioners’
understanding of the business and processes concerned in the IT system and good pro-
cesses to automate and make them quicker. Such automation is unlikely to make a bad
process better.

International Management Review, 2009 by Al-Ahmad, Walid, et al., A Taxonomy of an

IT Project Failure: Root Causes, Business Publications, http://findarticles.com/p/articles/
mi_qa5439/is_200901/ai_n31965631/?tag=content;col1

In the article “Why Big Software Projects Fail: The 12 Key Questions” [Hum05],

Watts S. Humphrey listed those questions as follows:

Question 1: Are All Large Software Projects Unmanageable?

Question 2: Why Are Large Software Projects Hard to Manage?

Question 3: Why Is Autocratic Management Ineffective for Software?

Question 4: Why Is Management Visibility a Problem for Software?

Question 5: Why Can’t Managers Just Ask the Developers?

Question 6: Why Do Planned Projects Fail?

Question 7: Why Not Just Insist on Detailed Plans?

http://www.standishgroup.com/
http://www.galorath.com/wp/poor-estimation-major-root-cause-of-project-failure.php
http://www.galorath.com/wp/poor-estimation-major-root-cause-of-project-failure.php
http://findarticles.com/p/articles/mi_qa5439/is_200901/ai_n31965631/?tag=content;col1
http://findarticles.com/p/articles/mi_qa5439/is_200901/ai_n31965631/?tag=content;col1

692.3 The “Software” Definition Is Outdated

Question 8: Why Not Tell the Developers to Plan Their Work?

Question 9: How Can We Get Developers to Make Good Plans?

Question 10: How Can Management Trust Developers to Make Plans?

Question 11: What Are the Risks of Changing?

Question 12: What Has Been the Experience So Far?

Root causes of project failure …

Ad hoc requirements management.•฀

Ambiguous and imprecise communication.•฀

Brittle architectures.•฀

Overwhelming complexity.•฀

Undetected inconsistencies in requirements, designs, and implementations.•฀

Insufficient testing.•฀

Subjective project status assessment.•฀

Failure to attack risk.•฀

Uncontrolled change propagation.•฀

Insufficient automation.•฀

devdaily, http://www.devdaily.com/java/java_oo/node7.shtml

In my opinion, they are reasonable answers to the question, but not the funda-

mental reason for software project failure.

According to the essential principles of complexity science, particularly the

Nonlinearity principle and the Holism principle, software is a nonlinear complex

system where the whole is greater than the sum of its parts, the behaviors and

characteristics of the whole emerge from the interaction of its parts and the

interaction between the system and its environment, small differences in

the initial condition or a small change to the system may produce large varia-

tions in the long-term behavior of the system – the “Butterfly-Effect.”

But unfortunately, the existing software engineering paradigm is based on linear

thinking, reductionism, and the superposition principle that the whole is the sum of

its parts, so that almost all tasks/activities are performed linearly, partially, and

locally. It means that the foundation of the existing software engineering paradigm

is wrong. The wrong foundation makes almost all things wrong in software engi-

neering, particularly the process models, the development methods, the visualization

paradigm, the testing paradigm, the quality assurance paradigm, the documentation

paradigm, the maintenance paradigm, and the project management paradigm – in

fact the existing software engineering paradigm is entirely outdated.

2.3 The “Software” Definition Is Outdated

The current software is defined as (1) instructions (computer programs) that when

executed provide desired features, function, and performance; (2) data structures

that enable the programs to adequately manipulate information; and (3) documents

http://www.devdaily.com/java/java_oo/node7.shtml

70 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

that describe the operation and use of the programs [Pre05-p4]. The simplest definition

of a software is: a program + data + documents.

This definition separates the documents and the source code without a facility to

establish the traceability to represent the internal relationship among the documents,

the test cases, and the source code, and gives up the development history and the

database built through static and dynamic measurement, making a software product

hard to understand, test, review, and maintain.

In fact, a software is working in a changing environment dynamically, so that it

should be made adaptive and easy to maintain.

This old definition of software has been replaced by a new one with NSE

(see Sect. 1.1 and Chap. 8).

2.4 The Current Software Development Process Models

Are Out of Date

Current main software development process models are discussed in Sect. 1.4.

A process model recommended by Alistair Cockburn to combine both

Incremental and Iterative development together [Coc08] is shown in Fig. 2.2.

These software engineering process models are out of date because they are

linear models with only one track forward to unidirectional without upstream

movement at all, complying with the superposition principle that the whole of a

software system is the sum of its parts, so that all tasks are performed linearly,

locally and partially, making the defects introduced into a software product at the

upper phases easy to propagate to the lower phases and the defect removal cost

increase tenfold several times as shown in Fig. 2.3.

Fig. 2.2 Putting iterative and incremental development together

712.5. Current Software Development Methodologies Are Out of Date

As shown in Fig. 2.2, a linear process model requires that people always do all

things right without making any mistake, but can we drive a car from our home to

another city always on an one-way with one track traffic only without U-Turns at

all? No. For instance, sometimes we may forget something so that we should go

back to do something – people are also nonlinear, often making wrong decisions

which need to be corrected. Because there is only one track, when the engine of

a car suddenly stops working, the entire traffic will be blocked.

With NSE these “one-way and one track” process models will be replaced by

NSE process model with “two-way and multiple tracks.” Chapter 8 will introduce

the details.

2.5 Current Software Development Methodologies

Are Out of Date

With current software development methodologies, software components are developed

first, then the system of a software product is built through the integration of the com-

ponents developed. From the point of view of quality assurance, those methodologies

are test-driven, but the functional testing is performed after coding – it is too late. These

methodologies handle a software product as a machine rather than a logical product

Fig. 2.3 The cost for removing a defect propagated from the requirement phase to the mainte-
nance phase with linear process models

72 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

created by human beings. They all comply with the superposition principle. With those

methodologies, all tasks/activities are performed linearly, partially, and locally.

Is current CBSD (Component-Based Software Development) Out

of Date Too?

The basis of CBSD is components which are developed with the old-established

software engineering paradigm based on linear thinking and the superposition

principle, so they are hard to ensure the quality and hard to maintain. From this

point of view, the current CBSD is out of date too – it should be shifted to a new

development methodology with the components developed using a novel software

engineering platform based on complexity science.

2.6 The Existing Software Modeling Approaches Are Outdated

The existing software modeling approaches are outdated because they are outcomes

of reductionism and superposition principle, using different sources for human

understanding and computer understanding of a software system separately with a

big gap between them. The obtained models are not traceable for static defect

removal, not executable for debugging, not testable for dynamic defect removal,

not consistent with the source code after code modification, and not qualified as the

road map for software development.

2.7 Current Software Testing Paradigm Is Out of Date

Current software testing paradigm is mainly based on functional testing (plus

structural testing, load testing, and stress testing) being performed after coding.

It is too late, the functional testing cannot be performed in the requirement devel-

opment phase and the design phase dynamically, so that it has no way to find

defects introduced in the requirement development phase and the design phase

dynamically using the existing software testing paradigm.

The current software testing paradigm separates functional testing and structural

testing rather than combining them together seamlessly. To each set of inputs, the func-

tional testing tools only check whether the output is the same as the expected value

without checking whether the program execution path is the same as what is expected.

2.8 Current Software Quality Assurance Paradigm

Is Out of Date

Current software quality assurance paradigm is mainly based on software testing and

inspection using untraceable documents and untraceable source code, particularly

the functional testing performed after coding.

732.11 Current Software Maintenance Paradigm Is Out of Date

NIST (National Institute of Standards and Technology) recommends that “Briefly,

experience in testing software and systems has shown that testing to high degrees of

security and reliability is from a practical perspective not possible. Thus, one needs to

build security, reliability, and other aspects into the system design itself and perform a

security fault analysis on the implementation of the design.” (“Requiring Software

Independence in VVSG 2007: STS Recommendations for the TGDC,” November

2006, http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf).

With current process models and methodologies, the implementation of require-

ment changes and code modifications is performed locally rather than globally and

holistically – without the capability to prevent the side effects, so that the quality of

the modified product is hard to ensure.

2.9 Current Software Visualization Paradigm Is Out of Date

The current software visualization paradigm generates partial charts or diagrams

rather than a complete chart or diagram for a software product. Most tools devel-

oped with the current software visualization paradigm are used for modeling only,

rather than for the entire software development process.

Note: Even if a complete chart or diagram can be generated for an entire

software product, it is still useless because there are too many connection lines,

making the generated chart or diagram very hard to understand. Without trace-

ability among related elements and the capability to highlight a module with all the

related modules, a generated chart or diagram is not useful.

2.10 Current Software Documentation Paradigm Is out of Date

The current software documentation paradigm generates and manages documents

separated from the source code – they are not traceable to each other.

Note: When the source code is modified the generated documents cannot be

updated without bidirectional traceability, so the documents are often inconsistent

with the source code as shown in Fig. 2.4, making them not very useful.

The visual documents generated with the current software visibility paradigm

requires a huge amount of space to store, and the display speed is very slow.

2.11 Current Software Maintenance Paradigm Is Out of Date

The current software maintenance paradigm offers a blind, partial, and local

approach for software maintenance, without support of various traceabilities. There

is no way to prevent the side effects of the implementation of requirement changes

or code modifications.

http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf

74 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

Note: Local and partial software maintenance is risky – each time when a bug is

fixed, there is a 20–50% of chance of introducing another into the software product.

It is why today software maintenance takes more than 75% of the total effort and

total cost for software product development.

2.12 Current Software Project Management Paradigm

Is Out of Date

According to the current software project management paradigm, software project

management is separated from the software development process – the project

development schedules and the cost reports are not traceable with the implementa-

tions of requirements and the source code.

Note: With the current software project management paradigm, often it is too

late in finding and solving the problems.

2.13 “The Mythical Man-Month” Is an Outcome of Linear

Thinking; The “No Silver Bullet” Conclusion Is Out of Date

“The Mythical Man-Month” written by Frederick P. Brooks, Jr. is a great book with

many advanced concepts and ideas. I have learnt a lot from it, and will continue to

learn more.

But unfortunately, because the old-established software engineering paradigm is

based on linear thinking, reductionism, and superposition principle so that almost

all tasks/activities are performed linearly, partially, and locally which limits all

related process models, software development methods, software development

Fig. 2.4 The documents and the source code are inconsistent after code modification with the
current software engineering paradigm

752.13 “The Mythical Man-Month” Is an Outcome of Linear Thinking

techniques and tools – it also affects all books in software engineering, including

“The Mythical Man-Month.”

In the 1995 edition of “The Mythical Man-Month,” Frederick P. Brooks, Jr.

criticized his 1975 edition of the book that “Don’t Build One to Throw Away – The

Waterfall Model Is Wrong! …The biggest mistake in the ‘Build one to throw away’

concept is that it implicitly assumes the classical sequential or waterfall model of soft-

ware construction. …Chapter 11 is not the only one tainted by the sequential waterfall

model; it runs through the book, beginning with the scheduling rule in Chapter 2. ”

Unfortunately, in the 1995 edition of the book, it also assumes a sequential

model – “An Incremental – Build Model” which is “a series of Waterfalls”

[GSAM03] as shown in Fig. 2.5.

Comparing it with the one-time waterfall model, the Incremental – Build Model

can help in reducing risk and waiting time, but it keeps all the major drawbacks of

the one-time waterfall model. For instance, the defects introduced into a software

product in the upper phases can easily propagate to the lower phases, making the

final defect removal cost increase more than 100 times; the requirement changes

and code modifications are implemented locally and blindly without support of

bidirectional traceabilities, making software maintenance take more than 75% of

the total effort and total cost in a software product development.

Brooks’ law: “No Silver Bullet” – “There is no single development, in either

technology or management technique, which by itself promises even one order-of-

magnitude improvement within a decade in productivity, in reliability, in simplicity”

is out of date – in fact only the bidirectional traceability technique by itself promises

one order-of-magnitude improvement within a decade in productivity, in reliability,

in simplicity.

Software traceability can help bring software development into the 21st century. It reduces
costs, gives better visibility and adequate test coverage, and helps software engineers meet
customer needs. Changes can be implemented much faster and new projects can be esti-
mated more accurately.

Rick Coffey, Document Control Supervisor, Tyco Healthcare/Mallinckrodt

In Chap. 24 we will discuss three Candidates of “Silver Bullet.”

After the establishment of NSE based on nonlinear thinking and complexity –

complying with the essential principles, particularly the nonlinearity principle and

the holism principle to perform almost all tasks/activities holistically and globally,

Fig. 2.5 Incremental Model [GSAM03]

76 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

there are many more conclusions stated in “The Mythical Man-Month” book that

are outdated, such as these:

“The fundamental problem with program maintenance is that fixing a defect has

a substantial (20-50 percent) chance of introducing another. So the whole process

is two steps forward and one step back” – with NSE, this problem can be solved by

performing software maintenance holistically and globally through side-effect

prevention.

“All repairs tend to destroy the structure, to increase the entropy and disorder of

the system.” – with NSE, repairs are performed with side-effect prevention.

“Adding manpower to a late software project makes it later” – with NSE a software

system is diagrammed graphically with various traceabilities to make the product

much easier to read and understand; the documents and the source code are managed

together with bidirectional traceability which make the software product much

easier to understand, test, and maintain; a project Web site and the technical forum

will be set and the Web pages are traceable to the implementation of requirements

and the source code to reduce the time and resources for communication; not only

the program and the data used and the documents available, but the database built

through static and dynamic measurement and a set of Assisted Online Agents are

available to support visibility, testability, reliability, traceability, conformity, change-

ability, and maintainability – so that the new members of the development team can

learn the system by themselves quickly, and begin to make contributions quickly.

About the detailed discussion on this topic, please see Chap. 24.

“Theoretically, after each fix one must run the entire bank of test cases previously

run against the system to ensure that it has not been damaged in an obscure way.” –

No, it is time consuming, inefficient, and costly. With NSE, the regression testing

after software modification is performed efficiently through test case efficiency

analysis and test case minimization, plus intelligent test case selection through back-

ward tracing from the modified modules or branches to find what test cases can be

used to retest them. Sometimes, new test cases need to be designed and used.

2.14 Summary

The old-established software engineering paradigm, including the process models,

the software development methods, the test paradigm, the quality assurance

paradigm, the documentation paradigm, the maintenance paradigm, the project

management paradigm, and the definition of software, is entirely out of date,

because not only a software system but the software engineering paradigm itself is

a nonlinear, dynamic, and complex system that cannot be handled as a linear one.

The old-established software engineering paradigm based on linear thinking and

superposition principle should be replaced by a new revolutionary one based on

nonlinear thinking and complexity science which should be able to remove the

drawbacks of the old-established software engineering paradigm efficiently and

bring revolutionary changes to all aspects in software engineering.

77References

2.15 Points and Questions to Ponder

(a) How is a successful project defined?

(b) What is the root cause that about 70% of software projects are failures?

(c) Is the existing software engineering paradigm updated or outdated? Why?

2.16 Further Reading and Information Source

 (a) Zambonelli F, Parunak HVD (2002) Signs of a revolution in computer science and

software engineering, Madrid, Spain. http://citeseer.ist.psu.edu/zambonelli02signs.

html

 (b) Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Upper Saddle

River

 (c) Wikiversity. Unsolved problems in software engineering. http://en.wikiversity.

org/wiki/Unsolved_problems_in_software_engineering

References

[Coc08] Cockburn A (2008) Using both incremental and iterative development. CrossTalk,
May Issue

[GSAM03] Department of the Air Force Software Technology Support Center (2003)
Condensed GSAM handbook, Chap 2, CrossTalk

[Hum05] Humphrey WS (2005) The Software Engineering Institute, Why big software proj-
ects fail: the 12 key questions. CrossTalk, Mar Issue

[Jon06] Capers J (2006) Social and technical reasons for software project failures.
CrossTalk, Jun Issue

[Ngw03] Ngwenyama O, Nielsen PA (2003) Competing values in software process improve-
ment: an assumption analysis of CMM from an organizational culture perspective.
IEEE Trans Eng Manag 50(1):100–112. doi:10.1109/TEM.2002.808267

[Per06] Perkins TK (2006) Knowledge: the core problem of project failure. CrossTalk,
Jun Issue

[Pre05-p4] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-
Hill, New York, p 4

[Sei08] What is CMMI? Software Engineering Institute. Accessed 30 October 2008, http://
www.sei.cmu.edu/cmmi/general/index.html

http://citeseer.ist.psu.edu/zambonelli02signs.html
http://citeseer.ist.psu.edu/zambonelli02signs.html
http://en.wikiversity.org/wiki/Unsolved_problems_in_software_engineering
http://en.wikiversity.org/wiki/Unsolved_problems_in_software_engineering
http://en.wikiversity.org/wiki/Unsolved_problems_in_software_engineering
http://en.wikiversity.org/wiki/Unsolved_problems_in_software_engineering

79J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_3,

© Springer Science+Business Media, LLC 2011

The next century will be the century of complexity

Stephen Hawking, January 2000

This chapter introduces the foundation for establishing NSE – complexity science.

Complexity science is the scientific study of nonlinear, dynamic, complex systems and

the process of self-organization. Complexity science is the driving force for the devel-

opment of sciences, engineering, and business in the twenty-first century. Complexity

science explains how holism emerges in the world, and more. It is the intellectual suc-

cessor to systems theory and chaos theory. Complexity science is a field derived from

multiple disciplines – physics, chemistry, biology, and mathematics. Definitions of

complexity are often tied to the concept of a complex system – something with many

parts that interact to produce results that cannot be explained by simply specifying the

role of each part. This concept contrasts with traditional machine or Newtonian con-

structs, which assume that all parts of a system can be known, that detailed planning

produces predictable results, and that information flows along a predetermined path.

Elements of complexity theory have been incorporated into a number of fields includ-

ing genetics, immunology, cognitive science, economics, computer science, and lin-

guistics. Currently, the most robust research in complexity science involves the study

of inanimate systems such as computer networks and hydrodynamic systems as well

as certain cellular networks (Ashok M. Patel, M.D., Thoralf M. Sundt III, M.D., and

Prathibha Varkey, M.D., Complexity Science – Core Concepts and Applications for

Medical Practice, http://www.minnesotamedicine.com/PastIssues/February2008/

ClinicalFebruary2008/tabid/2462/Default.aspx); [Ber76], [Sar06].

If you are familiar with complexity science, please skip this chapter.

3.1 The Basis of Complexity Science

The basis of complexity science is important to the establishment of NSE and the

innovation of the paradigm-shift framework, FDS (Five-Dimensional Structure

Synthesis Method) to be described in Chap. 4, and directly or indirectly related to

Chapter 3

Foundation for Establishing NSE:

Complexity Science

http://www.minnesotamedicine.com/PastIssues/February2008/ClinicalFebruary2008/tabid/2462/Default.aspx)
http://www.minnesotamedicine.com/PastIssues/February2008/ClinicalFebruary2008/tabid/2462/Default.aspx)

80 3 Foundation for Establishing NSE: Complexity Science

a prediction that a new round of industry revolution in many kinds of businesses

from the old-established one based on linear thinking and reductionism to a new

one based on nonlinear thinking and complexity science (see Sect. 4.1).

3.1.1 Linear and Nonlinear

“Linear” and “nonlinear” are mathematical terms commonly used to distinguish the

function y = f(x). An equation whose graph is a straight line is called a linear

function; other functions are nonlinear functions (see Fig. 3.1).

()Y f x=

3.1.2 Reductionism

Reductionism is sometimes seen as the opposite of holism. Reductionism holds that

a complex system can be explained by reduction to its fundamental parts – a

complex system can always be understood by breaking them down into simpler or

more fundamental components. The old-established software engineering paradigm

is based on reductionism and superposition principle that the whole of a complex

system is the sum of its parts, so that almost all tasks/activities are performed

linearly, partially, and locally.

3.1.3 Chaos Theory

The first experimenter in chaos was a meteorologist, Edward Lorenz. In 1960, he

was working on the problem of weather prediction. He had a computer to model the

weather. One day, he entered the decimal 0.506 instead of entering the full 0.506127

as one of the required conditions to rerun the program. It was expected that the

rounding off would have little or no effect on the final results. However, surprisingly,

what Lorenz found was that the final results were dramatically different. It means

that a small change made in a system can cause major changes in the final output

(sensitivity to initial conditions). This process is popularly known as “the butterfly

Fig. 3.1 Linear and nonlinear

functions

813.1 The Basis of Complexity Science

effect,” because it reflects the idea that a butterfly fluttering its wings in Taiwan

could cause a hurricane in California. If small changes in the initial state of a complex

system can drastically alter the final outcome, then long-term weather prediction is

impossible as there is no way to perfectly measure and describe the weather at any

one point in time. There is always a further level of accuracy to be measured. In other

words, the deterministic nature of these systems does not make them predictable.

This behavior is known as deterministic chaos, or simply chaos. Chaotic behavior

can be observed in many natural systems, such as the weather [Sne97]. Chaos theory

is a field of study in mathematics, physics, and philosophy studying the behavior of

dynamical systems that are highly sensitive to initial conditions.

3.1.4 System

A system is a collection of interacting elements or components that are organized

for a common purpose.

3.1.5 System Categories

Systems can be classified into natural systems, artificial systems, or a combination

of both.

3.1.6 Linear System

A linear system is defined as that the whole of the system is the sum of its parts,

complying with the superposition principle. As long as we know its initial condi-

tions, we can understand its past and predict its future.

3.1.7 Nonlinear System and Complex System

A nonlinear system is a system not satisfying the superposition principle, or its

output is not proportional to its input, small changes in its initial conditions may

eventually cause the entire system to be changed greatly, and its long-term behavior

is unpredictable.

A complex system is a system having multiple interacting components, of which

the overall behavior cannot be inferred simply from the behavior of the compo-

nents, but emerge from the interaction of its components and the interaction

between it and its environment. Complex systems include IT networks, ecosystems,

brains, markets, cities, and businesses. Of course, a complex system is also a

 nonlinear system.

82 3 Foundation for Establishing NSE: Complexity Science

3.1.8 Feedback

Feedback refers to messages or information that are sent back to the source from

the output.

3.1.9 Fractal

An irregular shape with self-similarity which can be split into parts, each of which is

(at least approximately) a reduced-size copy of the whole (see Fig. 3.2) [Man82].

3.1.10 Fractal Dimension

A measure of a geometric object that can take on fractional values. At first used as a

synonym to Hausdorff dimension, fractal dimension is currently used as a more general

term for a measure of how fast length, area, or volume increases with decrease in scale.

3.1.11 Dynamical System

A dynamic system is a system that is constantly changing over time, like the human

body system.

3.1.12 Dissipation Structure

According to the Belgian physicist and Nobel Prize winner Ilya Prigogine’s

proposed doctrine, an open system far from equilibrium, can form spatial and

temporal structures (dissipative structures) that can exist as long as the system is

held far from equilibrium due to a continual flow of energy or matter through

the system.

Fig. 3.2 An example of fractals: Koch island described by Helge von Koch in 1904

833.1 The Basis of Complexity Science

3.1.13 Li–Yorke Theorem: Period Three Theorem

Li–Yorke Theorem holds that any one-dimensional system which exhibits a regular

cycle of period three will also display regular cycles of every other length as well

as completely chaotic cycles.

3.1.14 Self-Organization

The essence of self-organization is that system structure (at least in part) appears

without explicit pressure or constraints from outside the system. In other words, the

constraints on form are internal to the system and result from the interactions

between the components, while being independent of the physical nature of those

components. The organization can evolve either in time or space, can maintain a

stable form or can show transient phenomena. General resource flows into or out of

the system are permitted but are not critical to the concept.

The field of self-organization seeks to discover the general rules under which

such structure appears, the forms which it can take, and methods of predicting the

changes to the structure that will result from changes to the underlying system.

The results are expected to be applicable to any system exhibiting the same

network characteristics (Self-Organization FAQ, http://psoup.math.wisc.edu/

archive/sosfaq.html).

3.1.15 Synergetics

Synergetics is an interdisciplinary field of research. It deals with open systems that

are composed of many individual parts that interact with each other and that can

form spatial, or functional structures by self-organization. Synergetics can refer to a

school of thought on thinking and geometry developed by Buckminster Fuller or

a school of thought on thermodynamics and other systems phenomena developed

by Hermann Haken.

3.1.16 Catastrophe Theory

Originated by the winner of the highest award from the Mathematics – Fields

Medal, the French mathematician Rene Thom in the 1960s, catastrophe theory is a

special branch of dynamical systems theory. It studies and classifies phenomena

that small changes in certain parameters of a nonlinear system can cause large and

sudden changes of the behavior of the system.

http://psoup.math.wisc.edu/archive/sosfaq.html
http://psoup.math.wisc.edu/archive/sosfaq.html

84 3 Foundation for Establishing NSE: Complexity Science

3.1.17 Complex Adaptive System

The term complex adaptive systems (CAS) was coined at the interdisciplinary Santa

Fe Institute (SFI), by John H. Holland, Murray Gell-Mann, and others. Complex

Adaptive Systems involve many components (agents) that adapt or learn as they

interact – are at the heart of important contemporary problems [Hol92]. Examples

of complex adaptive systems include the stock market, social insect and ant

colonies, the biosphere and the ecosystem, the brain and the immune system, the

cell and the developing embryo, and manufacturing businesses.

3.1.18 Meta-Synthesis

The meta-synthesis approach is a method for solving the open giant complex

systems problems proposed by Professor Qian Xuesen and his colleagues in China.

The point of meta-synthesis is to unite organically the expert group, data, all sorts

of information, and the computer technology, and to unite scientific theory of

various disciplines and human experience and knowledge [Dai95]. The develop-

ment phases of meta-synthetic social intelligence engineering are as follows:

 1. From “qualitative and quantitative combined meta-synthesis” to “meta-synthesis

from qualitative to quantitative”

 2. From “meta-synthesis” to “hall for workshop of meta-synthetic engineering

(HWME)”

 3. Meta-synthesis of intelligent systems

 4. From theoretical frameworks to operable platforms

 5. From HWME to CWME – Cyberspace for Workshop of Meta-synthetic

Engineering, a prototype of HWME

 6. From methodology to applications

3.1.19 Cellular Automata

Cellular automata, also known as grid automata, were invented in the 1940s by the

mathematicians John von Neuman [Neu66] and Stanislaw Ulam [Sip02]. Cellular

automata (CA) are – by definition – dynamical systems which are discrete in

space and time, operate on a uniform, regular lattice – and are characterised by

“local” interactions. CAs are dynamical systems in which space and time are dis-

crete. A cellular automaton consists of a regular grid of cells, each of which can be

in one of a finite number of k possible states, updated synchronously in discrete time

steps according to a local, identical interaction rule. The state of a cell is determined

by the previous states of a surrounding neighborhood of cells [Wol84], [Tof87].

The infinite or finite cellular array (grid) is n-dimensional, where n = 1, 2, 3 is

used in practice. The identical rule contained in each cell is essentially a finite state

853.1 The Basis of Complexity Science

machine, usually specified in the form of a rule table (also known as the transition

function), with an entry for every possible neighborhood configuration of states.

The neighborhood of a cell consists of the surrounding (adjacent) cells. For

one-dimensional CAs, a cell is connected to r local neighbors (cells) on either side,

where r is a parameter referred to as the radius (thus, each cell has 2r + 1 neighbors,

including itself). For two-dimensional CAs, two types of cellular neighborhoods

are usually considered: five cells, consisting of the cell along with its four imme-

diate nondiagonal neighbors, and nine cells, consisting of the cell along with its

eight surrounding neighbors. The term configuration refers to an assignment of

states to cells in the grid. When considering a finite-sized grid, spatially periodic

boundary conditions are frequently applied, resulting in a circular grid for the

one-dimensional case, and a toroidal one for the two-dimensional case. (Moshe

Sipper, A Brief Introduction To Cellular Automata, http://www.cs.bgu.ac.il/~sipper/

ca.html, http://www.moshesipper.com/).

3.1.20 Genetic Algorithm

Living organisms are consummate problem solvers. They exhibit a versatility that

puts the best computer programs to shame. This observation is especially galling

for computer scientists, who may spend months or years of intellectual effort on

an algorithm, whereas organisms come by their abilities through the apparently

undirected mechanism of evolution and natural selection. Pragmatic researchers

see evolution’s remarkable power as something to be emulated rather than envied.

Natural selection eliminates one of the greatest hurdles in software design: speci-

fying in advance all the features of a problem and the actions a program should

take to deal with them. By harnessing the mechanisms of evolution, researchers

may be able to “breed” programs that solve problems even when no person can

fully understand their structure. Indeed, these so-called genetic algorithms (GA)

have already demonstrated the ability to make breakthroughs in the design of such

complex systems as jet engines. Genetic algorithms make it possible to explore a

far greater range of potential solutions to a problem than do conventional pro-

grams. Furthermore, as researchers probe the natural selection of programs under

controlled and well-understood conditions, the practical results they achieve may

yield some insight into the details of how life and intelligence evolve in the natural

world. (John H. Holland, Genetic Algorithms, http://econ2.econ.iastate.edu/tesfatsi/

holland.gaintro.htm).

Genetic algorithms come from the classic evolutionary computation methods –

 stochastic global optimization algorithms, according to the “ survival of the fittest”

law of biological genetics and natural selection through computer simulation.

The genetic algorithm can be applied with the following steps:

 1. Define an objective function, for example, using the 26 English lower case letters

plus a space character, to generate random 35 character strings and make it

evolve into the “systems science is very interesting string.”

http://www.cs.bgu.ac.il/~sipper/ca.html
http://www.cs.bgu.ac.il/~sipper/ca.html
http://www.moshesipper.com/
http://econ2.econ.iastate.edu/tesfatsi/holland.gaintro.htm
http://econ2.econ.iastate.edu/tesfatsi/holland.gaintro.htm

86 3 Foundation for Establishing NSE: Complexity Science

 2. A feasible solution of groups under certain constraints is initialized, for example,

by randomly generating 500 35-character strings, each with a feasible solu-

tion to encode a vector x, called a chromosome with the representative weight

vector gene, which corresponds to a particular decision variable feasible

solution.

 3. Calculate the groups for each chromosome x
i
 (i = 1, 2, ..., n) corresponding to

the objective function value (n is an integer, such as the value of 500), and

calculate the fitness value F
i
; according to the size of the F

i
, evaluate whether

the feasible solution is good or bad – for example, in a chromosome where there

are ten characters in the previous cases of the target line (that are correctly

placed), its adaptive value is 10/35 = 0.2857.

 4. Using the mechanism of survival of the fittest, according to their fitness values,

certain chromosomes will survive, whereas certain ones will be eliminated, and

reproduction of randomly selected chromosomes will be carried out to form new

groups.

 5. Through hybridization and mutation operations to produce offspring, two ran-

domly selected chromosomes (parents) will exchange genes and generate two

new individuals (hybrids), with genetic mutations and variations at certain points

(characters).

 6. Repeat steps 3-5 for offspring groups, to generate a new round of genetic evolu-

tion, until the iterations converge (stable adaptation value) or to find the optimal

or quasi-optimal solution. After 46 next-generation iterations, “systems science

is very interesting” strings can be fully obtained for certain.

3.1.21 Soliton

Solitary waves and solitons in nonlinear science are important concepts.

In August of 1834, Bertrand Russell observed the solitary wave. In 1895,

Korteweg and Defree proposed the KDV (Korteweg-De Vries) equation and its soli-

ton solution. The soliton solution is a single peak traveling wave, where wave propa-

gation is constant and the speed is also constant, where the shape and speed after any

collisions remain unchanged.

3.2 Linear Thinking and Nonlinear Thinking

Linear Thinking: To continue to look at something from one point of view. To take

information or observations from one situation, place this data in another situation

(usually later), and make a conclusion in the later situation (see Fig. 3.3) (http://

socialstudies.nelson.com/arnold/skimm/main/items/linearthinking.html).

Defined by Edward de Bono, nonlinear thinking is also called lateral thinking

which can help us conjure creative solutions to emerge a winner in an increasingly

http://(http://socialstudies.nelson.com/arnold/skimm/main/items/linearthinking.html).
http://(http://socialstudies.nelson.com/arnold/skimm/main/items/linearthinking.html).

873.3 The Essential Principles of Complexity Science

complex world. According to de Bono, intelligence is a potential and thinking is a

skill to use that potential [Bon68]. De Bono has developed several techniques of

lateral thinking under three broad categories: Challenge, Alternatives, and

Provocation. The creative challenge is a challenge to exclusivity, which does not

accept the status quo and is particularly relevant in those areas where ideas have

become obsolete with time. Circumstances and situations often restrict the

choice of alternatives and, therefore, it is better to assume a dynamic state of

affairs. Limits and components are changed to enable new ways of doing things to

emerge successful. Provocation is more in the nature of hypothesis where a

situation is first conceived or imagined and then one proceeds to arrive at unique

plausible conclusions.

3.3 The Essential Principles of Complexity Science

The essential principles of complexity science includes the following:

Nonlinearity principle – A complex system is not linear, that is, the system does

not satisfy the superposition principle, or whose output is not proportional to its

input. The behavior of a nonlinear system can change drastically in response to

small changes in the system’s initial conditions.

Holism principle – Holism is sometimes seen as the opposite of Reductionism.

Holism holds that all the properties of a given complex system cannot be

determined or explained by its components alone. Instead, the behaviors

and characteristics of the whole of a complex system emerge from the

interaction of its parts, and the interaction between it and the environment

dynamically. The general principle of holism was concisely summarized

by Aristotle in the Metaphysics: “The whole is more than the sum of

its parts.”

Complexity arises from simple rules principle – Complexity arises from the

interaction of agents following simple rules; Complex systems are based on

simple rules which feedback on itself, or iterate on themselves, and this can

explain all phenomena everywhere.

Initial Condition Sensitivity principle – To a complex system, small causes may

have large effects to the entire system – “Butterfly Effects.”

Fig. 3.3 Linear thinking

88 3 Foundation for Establishing NSE: Complexity Science

Sensitivity to Change principle – To a complex system, small changes may have

large effects to the entire system. It is similar to the Initial Condition Sensitivity

principle.

Dynamics principle – A complex system is a dynamic one adaptive to its changing

environment.

Openness principle – A complex system and its environment are inseparable, and

it is constantly interacting with the environment.

Self-organization principle – see Sect. 3.1.14.

Self-adaptation principle – see Sect. 3.1.17.

3.4 Applications of Complexity Science

Many successful applications of nonlinear thinking and complexity science for

various complex nonlinear systems were reported [Art99], [Nor08], [Den00],

[Fan04], [Kim04].

Some published books and papers show that now more and more software

scientists are applying complexity science to attack the problems facing software

development/IT such as those with the following titles:

“Adaptive Software Development: A Collaborative Approach to Managing Complex

Systems” [Hig00]

“Intelligent Agents: Software Technology for the new Millennium” [Fal00]

“Complexity Science and Software Development, An Introduction to Complexity Science

and Its Applications in Agile Software Development” [Lam03]

“Agent-Oriented Software Engineering” [Jen00]

But unfortunately, the applications of complexity science has not reached the

level expected by people – for instance, when complexity science was applied to solve

the critical problems with an individual software system by us before, we did not

get the expected result in productivity increase or quality improvement. Why? The

main reason is that before making paradigm shift of the entire software engineering

paradigm from the old one based on linear thinking, reductionism, and superposition

principle to the new one based on nonlinear thinking and complexity science, it is

almost impossible to directly apply complexity science to solve an individual soft-

ware system problems because with the old-established software engineering para-

digm, the process models, the development methodology, the testing paradigm, the

quality assurance paradigm, the maintenance paradigm are based on linear

 thinking, reductionism, and superposition principle too. We finally realized that there

should be two major steps: the first one is to complete the entire paradigm shift in the

software engineering from the old one based on linear thinking, reductionism, and

superposition principle to the new one based on nonlinear thinking and complexity

science; then the second one is to apply complexity science to solve the problems

of an individual software system after the completeness of the paradigm shift.

893.8 Further Reading and Information Source

3.5 Complexity Science and NSE

As described in Chap. 4, NSE paradigm is established through FDS (Five-

Dimensional Structure Synthesis Method), a paradigm-shift framework which

requires the new revolutionary paradigm being established by complying with the

essential principles of complexity science, particularly the nonlinearity principle

and the holism principle, so that with NSE almost all tasks/activities are performed

nonlinearly, globally, and holistically.

3.6 Summary

Complexity science is the driving force for the development of sciences, engineering,

and business in the twenty-first century. Complexity science explains how holism

emerges in the world, and more.

The foundation for establishing NSE nonlinear software engineering paradigm

is complexity science. NSE complies with the essential principles of complexity

science, particularly the Nonlinearity principle and the Holism principle that all the

properties of a given complex system cannot be determined or explained by its

components alone. Instead, the behaviors and characteristics of the whole of a

complex system emerge from the interaction of its parts, and the interaction

between it and the environment dynamically, so that with NSE almost all tasks/

activities are performed nonlinearly, globally, and holistically.

3.7 Points and Questions to Ponder

 (a) What is complexity science?

 (b) What are the major differences between Reductionism and Holism?

 (c) What are the essential principles of complexity science? How are they related

to the establishment of NSE?

3.8 Further Reading and Information Source

 (a) Waldrop MM (1992) Complexity: the emerging science at the edge of order and

chaos. Viking, London

 (b) Gleick J (1988) Chaos: making a new science. Cardinal, London

 (c) Castellani B, Hafferty FW (2009) Sociology and complexity science: a new

field of inquiry. Springer, Heidelberg

90 3 Foundation for Establishing NSE: Complexity Science

References

 [Art99] Arthur WB (1999) Complexity and the economy. Science 284:107–109

 [Ber76] Von Bertalanffy L (1976) General system theory. George Braziller, New York

 [Bon68] de Bono E (1968) New think: the use of lateral thinking in the generation of new

ideas. Basic Books, New York

 [Dai95] Dai R (1995) Metasynthetic social intelligence engineering: a review. Institute of

Automation, Chinese Academy of Sciences, Beijing

 [Den00] Dent EB (2000) Complexity science: a paradigm shift. Emergence 1(4):5–19

 [Fal00] Faltings B (2000) Intelligent agents: software technology for the new millennium.

Informatik/Informatique 1:2–5

 [Fan04] Francis J (2004) Managing BPM, BPM and Nonlinear Thinking, June Issue

 [Hol92] Holland JH (1992) Complex adaptive systems. American Academy of Arts &

Sciences, Cambridge

 [Hig00] James A. Highsmith III, Adaptive Software Development: A Collaborative Approach

to Managing Complex Systems, DORSET HOUSE PUBLISHING CO., INC., 2000.

 [Jen00] Jennings NR, Wooldridge M (2000) Agent-oriented software engineering. Department

of Electronic Engineering, Queen Mary & Westfield College, University of London,

London

 [Kim04] Kimball L, Weinstein N, Silber T (2004) Maximizing facilitation skills using principles

of complexity science. OD Network Conference, October 2004

 [Lam03] Lamoreux M (2003) Complexity science and software development, an introduction

to complexity science and its applications in agile software development, http://comdig.

unam.mx/article.php?id_article=13746&find=complexity

 [Man82] Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, San Francisco.

ISBN 0-7167-1186-9

 [Mer06] Yasmin M, McKelvey B (2006) Using complexity science to effect a paradigm shift

in information systems for the 21st century. J Inform Technol 21:211–215

 [Neu66] Von Neumann J (1966) Theory of self-reproducing automata. Edited and completed

by A.W. Burks. University of Illinois Press, Urbana

 [Nor08] Norreys PA (2008) PHYSICS: complexity in fusion plasmas. Science 319:1193

 [Sar06] Sardar Z, Abrams I (2006) Caos Para Todos/Introducing chaos. Icon Books,

Cambridge

 [Sip02] Sipper M (2002) Machine nature: the coming age of bio-inspired computing.

McGraw-Hill, New York

 [Sne97] Raymond Sneyers (1997) Climate chaotic instability: statistical determination and

theoretical background. Environmetrics 8(5):517–532

 [Tof87] Toffoli T, Margolus N (1987) Cellular automata machines. The MIT Press,

Cambridge

 [Wol84] Wolfram S (1984) Universality and complexity in cellular automata. Physica D

10:1–35

91J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_4,

© Springer Science+Business Media, LLC 2011

Framework is a set of ideas, principles, agreements, or rules

that provides the basis or outline for something intended to be

more fully developed at a later stage.

Dictionary (http://encarta.msn.com/dictionary_1861613305/

framework.html)

This chapter describes a prediction – a new round of industrial revolution driven by

Complexity Science, and a paradigm-shift framework, the Five-Dimensional

Structure Synthesis method (FDS). Many businesses fail because of an attempt to

solve nonlinear problems with linear processes. With FDS, the paradigm shift for an

industry can be performed efficiently – from the old-established paradigm based on

linear thinking, reductionism, and superposition principle to a new paradigm based

on nonlinear thinking and complexity science in compliance with the common prin-

ciples of complexity science. FDS has been successfully used in the paradigm shift

of the software industry and could be successfully used for other industries too.

4.1 Prediction: A New Round of Industrial Revolution

Driven by Complexity Science Is Coming

Today, more and more industries are becoming increasingly aware that traditional

approaches to design and engineering are failing to keep up with the increasing scale

of systems [Mck99]. The foundation of those traditional approaches is based on

linear thinking and established science complying with the reductionism and super-

position principle that the whole of a system is the sum of its parts. But in fact, all

people problems and issues are nonlinear which do not comply with the superposi-

tion principle because they exist in a dynamic and changeable environment, rather than

a static one [Lim05]. Complexity science tackles some of science and engineering’s

most challenging and fundamental questions [Mck99]. The FDS is innovated by me

as a framework for making the paradigm shift (defined as “one conceptual world

view is replaced by another” by Thomas Kuhn [Kuh62]) efficiently. Using FDS to

Chapter 4

Prediction and Practices: A New Round

of Industrial Revolution Driven by Complexity

Science and a General Paradigm-Shift

Framework

http://encarta.msn.com/dictionary_1861613305/framework.html
http://encarta.msn.com/dictionary_1861613305/framework.html

92 4 Prediction and Practices: A New Round of Industrial Revolution

perform the paradigm shift of an industry, it is required to comply with the essential

principles (which are common to almost all theories of complexity science) to rede-

fine the process models, redevelop the methodologies and technologies, redesign the

productivity and the quality tools, reset the quality assurance standards, etc. FDS

has been successfully used in the paradigm shift of the software industry (software

engineering) with revolutionary changes made in almost all aspects of software

engineering for efficiently handling almost all critical issues existing with the old-

established paradigm, including the issues of complexity, changeability, invisibility,

and conformity. It is possible to use FDS for making the paradigm shift efficiently

in other industries to greatly improve the productivity and the product quality too.

A Prediction: a deeper and broader industry revolution driven by complexity

science is coming because

 (a) In various industries the old-established paradigms based on linear thinking

and simplified science themselves have become obstacles to the system devel-

opment rather than the driving forces in the twenty-first century. For instance,

the computer software industry is a typical one. As pointed out by Capers Jones,

“Major software projects have been troubling business activities for more than

50 years. Of any known business activity, software projects have the highest

probability of being cancelled or delayed. Once delivered, these projects display

excessive error quantities and low levels of reliability” [Jon06].

 (b) Application results show that complexity science is the most powerful weapon

for handling many critical issues in various complex systems.

 (c) Now more and more people realize that nonlinear, complex adaptive systems are

the best way to understand systems involving people [Gha04], so that it is the

time to shift the old-established paradigm based on linear thinking and simpli-

fied science to a new one based on nonlinear thinking and complexity science for

various industries.

4.2 The Contribution and Limitation of Hall’s Systems

Engineering Framework

In 1962 and 1969, A. D. Hall published his three-dimensional morphology for

systems engineering (Hall’s framework) [Hal62], [Hal69] as shown in Fig. 4.1.

Hall’s framework has been used successfully in many industries in the late

twentieth century. But unfortunately, his framework itself is a linear one. Looking

at the “Phases” coordinate axis in Fig. 4.1, we can easily see that the process phases

are done individually according to a sequence order. When applying Hall’s framework

to software engineering, a waterfall model (or a micro-waterfall model) would be

logically established. There is also nothing related to the environment, which

means that with Hall’s framework, systems engineering can be isolated without

considering the effects of the environment. It is also clear that Hall’s framework is

designed to be used for a detailed engineering project or for detailed systems design

rather than that used for both the paradigm shift of an industry, and engineering for

an individual project after the paradigm shift.

934.4 The Objectives of Innovating FDS

4.3 The Background for the Innovation of FDS

Many businesses fail because of an attempt to use linear process models and method-

ologies to handle a complex nonlinear system, such as an EDA (Electronic Design

Automation) system for VLSI (Very Large Scale Integration) chip design, where a

linear order of processes is followed through chip partitioning, global placement,

global routing, detailed placement, detailed routing, timing simulation, rule check,

and verification, etc. The output obtained from an upper process becomes an input to

a lower process. Often, the optimized result of an upper process (such as the detailed place-

ment) does not satisfy the requirements of a lower process (such as the detailed routing),

so that the upper process must be performed again and again, because the new opti-

mized result of the upper process is obtained blindly and locally, which could be worse

than the old one for the lower process. The same problems exist in many industries,

such as the software industry, where the project success rate is as low as 30% today.

Complexity science can be used to efficiently solve those problems as introduced

in Chap. 3.

It is the time to perform paradigm shifts for many industries, from the

 old-established paradigm based on linear thinking, reductionism, and superposition

to a new revolutionary one based on nonlinear thinking and complexity science.

4.4 The Objectives of Innovating FDS

As pointed out by Warfield, J. N. that there are at least five schools of thought on

complexity science [War96]. They are suitable for different applications, so that it

will be better to combine all of the theories of complexity science together to form

Fig. 4.1 Hall’s systems engineering framework

94 4 Prediction and Practices: A New Round of Industrial Revolution

a powerful set of common principles of complexity science which should be complied

with in performing paradigm shifts for various industries.

Since complexity science is still very young, it will not be easy for individual

engineers to use it for solving a detailed problem, because using complexity science

to perform a detailed task within the limitation of the old-established paradigm

(without changing the entire old-established paradigm including the process models,

the product development methods, the testing paradigm, and the quality assurance

paradigm, etc.) will be very difficult to get the expected result. But performing an

entire paradigm shift in an industry is also very hard to do for a small company – it

should be done by a tool vendor, a research organization, or a company with a

strong professional team. It means that there are some obstacles in applying

complexity science to handle a real complex nonlinear system.

For applying complexity science deeply and broadly within an industry, it is

needed to complete the entire paradigm shift first for that industry, from the

 old-established paradigm based on linear thinking and simplistic science to a new

revolutionary one based on nonlinear thinking and complexity science, by complying

with the common principles of complexity science to redefine the process models,

redevelop the methodologies, redesign the productivity tools, reset the quality

standards, and so on.

How can an old-established paradigm in an industry be efficiently replaced by a

new revolutionary one? It needs at least two things as the primary prerequisites:

 (a) A systematic paradigm-shift framework

 (b) A successful application example of the paradigm-shift framework – people

work well through examples

4.5 The Description of FDS

FDS is graphically shown in Fig. 4.2.

Based on the theories of complexity science and Hall’s three-dimensional

morphology for systems engineering, FDS is designed with changeability to meet

and adapt to different applications in the paradigm shift of various industries.

There are five axes with FDS.

4.5.1 The “Principles of Complexity Science” Axis

Complexity science is still very young, where there are at least five existing schools

of thought on complexity science [War96] which are suitable for different applications.

It seems that it would be the best choice to combine all the theories of complexity

science together to form a powerful synthesis with a set of common principles to

drive the paradigm shift for various industries. As described in Chap. 3, those

common principles include the following:

954.5 The Description of FDS

The •฀ Nonlinearity principle

The •฀ Holism principle

The •฀ Dynamics principle

The •฀ Self-organization principle

The •฀ Self-adaptation principle

The •฀ Openness principle

The •฀ Initial Condition Sensitivity principle

The •฀ Sensitivity to Change principle

The •฀ Complexity Arises From Simple Rules principle, and more

About the definition and meaning of each principle, please visit the Web site of

http://complexity.orconhosting.net.nz/fractal.html (Complexity Pages) and the Web

site of http://www.complexity.ecs.soton.ac.uk/index.php?page=q2 (Complexity

Science Focus).

The essential one within those principles is the Holism principle, which states

that a complex system is a system having multiple interacting agents (components),

of which the overall behavior and characteristics cannot be inferred simply from the

behavior of its individual agents. With FDS, it is required to comply with these

common principles of the complexity science for performing a paradigm shift in

an industry. For instance, when applying FDS for the paradigm shift of the software

industry, the new redefined process model must comply with the Holism principle,

the Nonlinearity principle, and other principles of complexity science, so that a

waterfall-like process model will not satisfy the requirement. For meeting the

Holism principle, any redefined candidate models must require each task to be done

Fig. 4.2 The Five-Dimensional Structure Synthesis method (FDS)

http://complexity.orconhosting.net.nz/fractal.html
http://www.complexity.ecs.soton.ac.uk/index.php?page=q2

96 4 Prediction and Practices: A New Round of Industrial Revolution

globally rather than locally. It means that there is a need for a revolutionary change

in the design of the process models and methodologies, because there are no existing

process models or methodologies meeting this requirement.

For some applications, there may be a need to establish some additional principles

which may not be available in the existing theories. For instance, to establish a new

paradigm for software engineering, the “Synthesis Design” and “Incremental

Integration” principles are needed as pointed out by Brooks:

“NSB (‘No Silver Bullet’) advocates a wholehearted attack on the problem of complexity,

quite optimistic that progress can be made. It advocates adding necessary complexity to a

software system:

•฀ Hierarchically, by layered modules or objects

•฀ Incrementally, so that the system always works.” [Bro95]

4.5.2 The “Environment” Axis

Based on the Openness principle of complexity science, a complex system is

inseparable from its environment – the mutual interaction between the environment

and the system will unceasingly influence the system’s complexity. Openness

means that the behavior of open (living) systems can be understood only in the

context of their environment, so the environment is considered as an important

element in FDS. In different applications, the items of “Environment” may be different.

In most cases, the items on the “Environment” axis include the following:

The •฀ Learning/Training environment.

The •฀ Testing/Validation environment.

The •฀ Operation environment.

The •฀ Application environment.

The •฀ Market environment – for instance, software requirements should be

ordered according to their importance, so that the most important requirements

can be implemented early to meet the market needs: if necessary, some optional

requirements can be ignored to get the products ready on the market in time.

4.5.3 The “People/Logic” Axis

The items of this axis are almost the same as those in Hall’s framework, except that

the Develop Requirement is replaced with Computer Simulation because

Develop Requirement may be combined in the Development part of the “Phases,”

and Computer Simulation is a powerful tool for solving many complexity issues

in a complex system.

974.5 The Description of FDS

4.5.4 The “New Paradigm” Axis Modified from the “Knowledge/

Skills” Axis in Hall’s Framework

With FDS, the Knowledge/Skills axis is considered as the essential condition for

the people to perform the paradigm shift in an industry. The design purpose of FDS

is mainly for the use in paradigm shifting, so the Knowledge/Skills axis is replaced

with the “New Paradigm” axis.

The items in the “New Paradigm” axis may be different for different applications.

In most cases, it could consist of “Process Model,” “Methodology,” “Technology,”

“Tool and Platform,” “Quality Assurance,” “Visual Technique,” “Testing Method,”

“Maintenance Approach,” “Quality Assurance Standard,” “Project Management,”

“self-recovery,” etc. Within them, the most important parts are the “Process Model,”

“Methodology,” and “Technology” elements. It means that making revolutionary

changes to the process model and the methodology and technology from the old-

established paradigm based on linear thinking and simplistic science to the new

revolutionary paradigm based on nonlinear thinking and complexity science is

essential for establishing the new paradigm of an industry.

4.5.5 The “Phases” (Workflows) Axis

The items in this axis are the same as those specified in Hall’s framework. But it is

are recommended to perform those after the paradigm shift of the corresponding

industry has been completed by a tool vendor or the organization itself. With FDS,

the phases being performed do not follow a linear order. As Professor Brooks points

out in his seminal work, The Mythical Man-Month: “There has to be upstream

movement. Like the energetic salmon… experience and ideas from each down-

stream part of the construction process must leap upstream, sometimes more than

one stage, and affect the upstream activity.” [Bro95]. This idea is represented with

a bidirectional traceability bar with this axis. Automated and self-maintainable

traceability is crucial for handling changes globally to meet the Holism principle

and the Self-adaptation principle.

FDS itself is designed as an adaptive framework – when FDS is used for the

paradigm shift of an industry, the contents of each axis may represent different

items.

The meanings of other items in FDS are the same as specified in Hall’s frame-

work. For detailed descriptions of those items and their meaning, please read A. D.

Hall’s original papers [Hal62], [Hal69].

The relationships among the five elements represented in the five axes of FDS

are shown in Fig. 4.3.

As shown in Fig. 4.3, the principles of complexity science should be applied to all

other items, not only those shown in the “New Paradigm” axis. For instance, when

98 4 Prediction and Practices: A New Round of Industrial Revolution

FDS is used for software system development after the paradigm shift is completed,

at least the extended “Synthesis Design” and the “Incremental Integration” principles

should also be applied to the items shown on the “Phases” axis.

It is recommended to handle a complex system design or engineering in two

major steps: the first one is to complete the paradigm shift by the organization

performing the tasks or a tool vendor, then the second one is to handle the detailed

tasks by applying the corresponding new paradigm established in the first step.

4.6 The Major Features of FDS

The major features of FDS are as follows:

 1. Based on complexity science – The essential principles of complexity science

become the requirements to be satisfied for the establishment of a new revolu-

tionary paradigm in an industry.

 2. General – It is innovated for the paradigm shift in many different industries

where the existing paradigm is based on linear process, reductionism, and the

superposition principle. FDS does not follow an individual school of thought but

follows the common essential principles of complexity science.

 3. Operational – FDS has been used to complete the paradigm shift of the software

industry.

 4. Adaptive – It is recommended to make necessary changes to FDS to meet the

needs for different applications. For instance, the Environment part can be quite

different in different applications.

Fig. 4.3 The five elements of FDS and their relationships

994.7 Applications of FDS

 5. Useful for both – The paradigm shift of an industry and the framework for

solving an individual complex system after the completeness of the paradigm

shift in the corresponding industry.

4.7 Applications of FDS

Sampling is a good approach for human beings to work with. As pointed out by

Alistair A. R. Cockburn, “Working from examples. Some cognitive psychologists

convincingly argue that our deductive mechanisms are built around constructing

specific examples of problems. CRC cards and use cases are two software development

mechanisms centered on examples, and are repeatedly cited by practitioners as

effective. ‘Instance diagrams’ are often preferred by newcomers to object-oriented

design, and still are used by experienced designers” [Coc99] – so that as an application

example of the FDS method innovated, the paradigm shift for the software industry

(engineering) is chosen.

The reason to choose the software industry as an application example of FDS is

because

 (a) Software has become an indispensable technology and a driving force for business,

science, and engineering in the twenty-first century.

 (b) Software affects almost every aspect of our lives and has become deeply perva-

sive in our commerce, our culture, and our everyday activities.

 (c) But unfortunately, low productivity, high cost, and poor quality are the major

problems existing with software industry for the past 50 years. Until today, the

project success rate in software industry is only about 30%.

 (d) Software product is a typical complex nonlinear system where the “Butterfly

Effect” (a phrase which encapsulates the more technical notion of sensitive

dependence on initial conditions in chaos theory) is a common occurrence.

 (e) The paradigm shift for the software industry is very hard to perform.

As pointed out by Franco Zambonelli and H. Van Dyke Parunak in their paper

titled “Signs of a Revolution in Computer Science and Software Engineering”

[Zam03] that “We are on the edge of a revolutionary shift of paradigm. The change

in the modeling and understanding of complex software systems will also impact

how such systems are designed, maintained, and tested.”

In the application example, the entire paradigm has been shifted in almost all

major aspects in software engineering, including the following:

 (a) The process models – from linear waterfall models or one-way iteration

“micro-waterfall” models to a nonlinear two-way iteration model, the NSE

model supported with facilities for automated and bidirectional traceability

among all artifacts (including requirement specifications, design documents,

project development plans, test cases, manuals, test results, QA reports, and

the source code), so that the tasks can be done globally rather than locally to

prevent the “Butterfly Effect” (side-effect propagation) in the implementation

of software change.

100 4 Prediction and Practices: A New Round of Industrial Revolution

 (b) The software development methodology – from test-driven approaches to defect

prevention and traceability driven approach, the NSE methodology, in the view-

point of quality assurance. NSE methodology complies with the principles of

complexity science, including the “Synthesis Design” and “Incremental

Integration” principles with the “intention” to respond to requirement changes

in real time. The new software development methodology is based on Generative

holism rather than Constructive holism (see Chap. 10).

 (c) The software testing system – from a Black-box approach (which can be used

only in the case that the system has been completely coded so that to an input there

is a corresponding output to be able to check whether the output is the same as

what is expected) to a transparent-box approach, which can be dynamically used

in the entire lifecycle of a software product development and maintenance, includ-

ing the requirement development phase and the primary design phase, because to

each input the NSE test system not only verifies whether the output (if any, can be

none) is the same as what is expected but also verifies whether the specified exe-

cution path is covered with the execution of the corresponding test case, and

whether some modules and/or branches that are prohibited to hit, have been hit

with the execution of the test case, plus the capability to establish automated bidi-

rectional traceability between the source code and the test case (can be expanded

for all related documents) for identifying and removing inconsistent defects.

 (d) The software maintenance process and system – from the old approach of

blindly and locally responding to requirement change and code modification to

a visible, systematic, disciplined, and quantifiable approach to respond to

requirement changes and code modifications globally, with defect prevention

capabilities through automated bidirectional traceability.

 (e) The quality assurance system – from a testing and correction approach to defect

prevention and defect propagation prevention (“An ounce of prevention is worth a

pound of cure!” [Fra]) plus a deep and broad testing approach, the NSE SQA

system.

 (f) The visual technologies, tools, and their applications – from the technology and

tools without traceability and used in modeling only to the interactive and

traceable 3J graphics (J-Chart, J-Diagram, and J-Flow) defined and implemented

by me which can be used in the entire lifecycle of a software development (see

Chap. 6).

4.8 Bringing Feedback to the Research and Development

of Complexity Science

How can we make more contributions to push the research and development of

complexity science? The best way is to apply it in handling complex nonlinear

systems in the real world, and then get feedback to drive the development of

complexity science.

FDS is designed as a bridge between complexity science and its applications.

101References

4.9 Summary

FDS is designed as a general framework for paradigm shift in an industry from the

old-established paradigm based on linear thinking (linear process), reductionism,

and superposition principle to a new one based on nonlinear thinking (nonlinear

process) and complexity science by complying with the essential principles of com-

plexity science, particularly the Nonlinearity principle and the Holism principle.

There are five axes with FDS: the “Principles of Complexity Science” axis, the

“Environment” axis, the “People/Logic” axis, the “New Paradigm” axis, and the

“Phases (Workflows)” axis.

As an application example, FDS has been successfully used to complete the

paradigm shift of software engineering – the establishment of NSE nonlinear

software engineering paradigm.

4.10 Points and Questions to Ponder

 (a) What are the major differences between Hall’s framework and FDS?

 (b) Why is it recommended to apply complexity science to solve the problems of

a complex system in an industry through two major steps (the first one is to com-

plete the paradigm shift by the organization performing the tasks or a tool vendor,

then the second one is to handle the detailed tasks by applying the corresponding

new paradigm established in the first step)?

4.11 Further Reading and Information Source

 (a) Abran A, Moore JW, Bourque P, Dupuis R (eds) (2004) Guide to the software

engineering body of knowledge – 2004 Version. IEEE Computer Society. p. 1–1.

ISBN 0-7695-2330-7.

 (b) Bolton D. About.com Guide, Definition of Framework. http://cplus.about.com/

od/glossar1/g/frameworkdefn.htm

References

[Bro95] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading

[Coc99] Cockburn AAR (1999) Characterizing people as non-linear, first-order components in

software development. HaT Technical Report 1999.03, Oct 21

[Fra] Franklin B (1736) An ounce of prevention is worth a pound of cure. Philadelphia’s

1706–1790

[Gha04] Gharajedaghi J (2004) Systems methodology: a holistic language of interaction and

design seeing through chaos and understanding complexities, http://www.acasa.

upenn.edu/JGsystems.pdf

http://cplus.about.com/od/glossar1/g/frameworkdefn.htm
http://cplus.about.com/od/glossar1/g/frameworkdefn.htm
http://cplus.about.com/od/glossar1/g/frameworkdefn.htm
http://cplus.about.com/od/glossar1/g/frameworkdefn.htm

102 4 Prediction and Practices: A New Round of Industrial Revolution

[Hal62] Hall AD (1962) A methodology for systems engineering. Van Nostrand, Princeton

[Hal69] Hall AD (1969) Three-dimensional morphology of systems engineering. IEEE Trans

Syst Sci Cybern SSC-5(2):156–160

[Jon06] Jones C (2006) Social and technical reasons for software project failures. CrossTalk,

June Issue

[Kuh62] Kuhn T (1962) The structure of scientific revolutions. University of Chicago press,

Chicago

[Lim05] Lindberg C (2005) Complexity, the science of relationships. Nursing, the profession

of relationships. Plexus Institute, Allentown

[Mck99] McKelvey B (1999) Complexity theory in organization science: seizing the promise

or becoming a fad? Emergence 1(1):5–32

[War96] Warfield JN (1996) Five schools of thought about complexity. In: Proceedings of the

Society for Design and Process Science: integrated design and process technology,

vol 2. SDPS, Austin

[Zam03] Zambonelli F, Van Dyke Parunak H (2003) Signs of a revolution in computer science

and software engineering. Springer, Berlin, http://www.newvectors.net/staff/

parunakv/ZambonelliParunakAOSE02.pdf

http://www.newvectors.net/staff/parunakv/ZambonelliParunakAOSE02.pdf
http://www.newvectors.net/staff/parunakv/ZambonelliParunakAOSE02.pdf

103J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_5,

© Springer Science+Business Media, LLC 2011

The whole is more than the sum of its parts.

A.1, Aristotle

This chapter will briefly introduce the NSE paradigm, including the development

objectives, the basic idea, the technical route to achieve its development objectives,

the structure, the components, and the major features and characteristics of the NSE

paradigm.

5.1 A Tree Will Not Fall at One Blow: The Difficulty

in Software Engineering Revolution

The software engineering paradigm itself is a very complex system consisting of

many parts including the engineering process models, the software development

methodology, the software testing paradigm, the quality assurance paradigm, the

software visualization paradigm, the software documentation paradigm, the software

maintenance paradigm, the software project management paradigm, the applied

technologies, the used algorithms, the support tools, the support platforms, and more.

Unfortunately, as described in Chap. 2 of this book, almost all parts of the existing

software engineering paradigm are established/created/designed based on linear

thinking, reductionism, and the superposition principle – it means that almost all of

the parts of the existing software engineering paradigm are outdated:

The existing engineering process models are outdated because they are linear •฀

ones without upstream movement at all, where almost all software engineering

tasks/activities are performed linearly, partially, and locally, making the defects

introduced into a software product easy to propagate into the maintenance phase

and making the defect removal cost increase tenfold many times.

The existing software development methods are outdated because they are linear •฀

ones complying with the superposition principle to complete the components of a

software product first, then “Assemble the product from the product components,

Chapter 5

Outline of the NSE Paradigm

104 5 Outline of the NSE Paradigm

ensure the product, as integrated, functions properly and deliver the product.”

[CMMI1.1] It seems that those methods handles a software product as a linear

system like a machine which can be assembled. But based on the Generative

Holism principle of complexity science, the whole of a complex system should

exist first as an embryo, then it “grows up” with its components. From the quality

assurance view, the existing software development methods are test-driven, but the

testing is performed after production which has been proven impossible to ensure

high quality of a software product as reported by NIST (National Institute of

Standards and Technology) (“Requiring Software Independence in VVSG 2007:

STS Recommendations for the TGDC,” November 2006, http://vote.nist.gov/

DraftWhitePaperOnSIinVVSG2007-20061120.pdf).

The existing software testing paradigm is outdated – it separates functional testing •฀

and structural testing and can be dynamically used only after production.

The existing software quality assurance paradigm is outdated – it depends on •฀

testing after coding and inspection rather than defect prevention.

The existing software visualization paradigm is outdated – it offers partial, •฀

untraceable capability for software diagramming.

The existing software documentation paradigm is outdated – it makes the software •฀

documents separate from the source code without bidirectional traceability.

The existing software maintenance paradigm is outdated – it offers linear, blind, •฀

partial, and local approaches for software maintenance without the capability to

prevent the side effects for the implementation of requirement changes or code

modifications, making software maintenance take 75% or more of the total effort

and total cost in software product development.

The existing software project management paradigm is outdated – it separates •฀

the project management process and the software product development process.

The documents for project management are not directly traceable to the require-

ment implementation and source code.

Most of the existing software development techniques and tools are outdated – •฀

they are all working with the linear process models complying with reductionism

and the superposition principle.

The definition of “Software” is outdated too – it includes the program, the data •฀

used, and the documents separate from the source code, and ignores the history

of the static and dynamic measurement of the program, with no efficient tools to

help maintainers to handle the complexity, changeability, invisibility, conformity,

traceability, and maintainability.

The improvement of only one or two parts of the existing software engineering

paradigm will not work well for the whole.

Some models mainly focus on software process improvement (SPI) and project

management improvement. Why is the success rate of the implementation of those

models still as low as about 30% [Ngw03], [Nia06]? The root causes are as follows:

 1. According to the Holism principle of complexity science, the behavior and char-

acteristics of the whole of the software engineering paradigm cannot be inferred

1055.2 The Objectives for Establishing NSE

from one or some of its parts, but emerge from the interaction of all of its parts –

not only the process and the management. It means that without bringing revo-

lutionary changes to the outdated software testing paradigm, the outdated

software quality assurance paradigm, the outdated software documentation

paradigm, the outdated software visualization paradigm, and the outdated soft-

ware maintenance paradigm, it is impossible to efficiently improve the whole of

the engineering paradigm to solve the critical issues existing with today’s soft-

ware development. For instance, no matter how good the process has been

improved, if the outdated test paradigm has not been changed revolutionarily, the

quality assurance still mainly depends on functional testing using the Black-box

method after production; there is no efficient way to prevent and remove the

defects introduced into a software product in the requirement development

phase, the design phase, and the coding phase. Even if later on, a requirement

defect or design defect is removed through testing, the cost for the removal of the

defect will increase tenfold many times. Even if all the other parts of the existing

software engineering paradigm have been changed revolutionarily except the

software maintenance paradigm which is still performed blindly, partially, and

locally so that each time when a defect is removed there is a chance of 20–50%

to introduce a new defect into the software system, the software product will

become unstable day by day.

 2. Some popular models focus on SPI but ignore the most important process

improvement – the life cycle models themselves: those popular models require

software organizations to select one of the existing life cycle model such as the

waterfall model, the iteration model, or the incremental model (which is “a series

of Waterfalls”[GSAM03]) for their projects. It is questionable that if the life cycle

model selected by a software organization for its projects is unsuitable, how can

those popular models help the organization to improve the process? In this case it

is possible that the better the process is improved, the worse the result obtained!

It is clear that the establishment of a new revolutionary software engineering

paradigm based on complexity science itself is a big engineering project – only the

support platform will consist of more than 10,000 function points with about one

million lines of source code, and more than 100 new algorithms to be innovated for

the establishment of the new revolutionary paradigm and the development of the

support platforms.

It is why the establishment of NSE takes several years to complete.

5.2 The Objectives for Establishing NSE

The objectives for establishing NSE include

Efficiently handling the essential issues with software and software engineering – •฀

the complexity, invisibility, changeability, and conformity, as defined by Brooks

[Bro95-p182].

106 5 Outline of the NSE Paradigm

Making it possible to help software development organizations double their •฀

productivity, halve their cost, while removing 99–99.99% of defects in

their software products developed with NSE.

Making it possible for software organizations to double their project success rate.•฀

Being candidates of the silver bullet to slay the software werewolf – missed •฀

schedules, blown budgets, and flawed products [Bro95-p181].

Making a software product much easier to read, understand, test, and maintain •฀

in both the product development site and the product maintenance site.

Helping software engineers relax from their daily hard work.•฀

5.3 The Strategy to Achieve the Objectives of NSE

According to complexity science, the property of a complex system is determined

by both the whole and its parts, so that the strategy to achieve the objectives of NSE

is as follows:

 1. The first thing is to bring revolutionary changes to all parts of software engineer-

ing by complying with the essential principles of complexity science, particu-

larly the Nonlinearity principle and the Holism principle to innovate all required

techniques and develop the related tools.

 2. But only this is not good enough, so the second thing is to make all parts work

together closely to change the behaviors and characteristics of the whole to what

we desire, such as developing the support platform to integrate all the related

tools together to share a tiny database using the unique data format, and making

the documents produced by third party tools traceable with the implementation

of requirements and the source code using batch files, etc.

 3. The third thing is to apply the new software engineering paradigm in real soft-

ware product development to see whether it works as what we expected, and

then get the feedback from the users to improve the entire software engineering

paradigm.

5.4 The Establishment of NSE

NSE is established as an application example of the FDS (Five-Dimension

Synthesis Method) paradigm-shift framework as shown in Fig. 5.1.

As shown in Fig. 5.1, each part of the NSE paradigm is developed/created by

complying with the essential principles of complexity science, particularly the

Nonlinearity principle and the Holism principle, so that with NSE almost all soft-

ware engineering tasks/activities are performed holistically and globally.

The FDS framework can also be used for an individual software product devel-

opment after the establishment of NSE.

1075.6 The Components of NSE

5.5 The Structure of NSE

The structure of NSE is shown in Fig. 5.2.

As shown in Fig. 5.1, NSE consists of ten parts, including (1) NSE process

model, (2) NSE software development methodology, (3) NSE diagramming (visu-

alization) paradigm, (4) NSE testing paradigm, (5) NSE quality assurance para-

digm, (6) NSE documentation paradigm, (7) NSE maintenance paradigm, (8) NSE

project management paradigm, (9) NSE support techniques, and (10) NSE support

tools and platforms. They all work together closely.

The NSE paradigm has been implemented and supported by Panorama++ and

SilverBullet platforms.

5.6 The Components of NSE

 1. The NSE process model – It is the core part of NSE, a roadmap of the Nonlinear

Software Engineering paradigm. The NSE process model is nonlinear, through

two way iteration with multiple tracks (see Chap. 8) supported by automated and

self-maintainable traceabilities (see Chap. 9).

 2. The NSE software development methodology – It is based on Generative

Holism and driven by defect prevention and traceability, different from the

Fig. 5.1 The FDS (the Five-Dimensional Structure Synthesis) paradigm-shift framework

108 5 Outline of the NSE Paradigm

existing software development methodology based on Constructive Holism

and driven by testing (see Chap. 10).

 3. The NSE diagramming (visualization) paradigm – It makes the entire soft-

ware engineering process visible from the first step down to the maintenance

phase using interactive and traceable 3J graphics by generating the overall charts/

diagrams for the entire software system and detailed logic diagrams and control

flow diagrams for each file/class/function, with the capability to highlight

untested conditions and branches when working with the MC/DC test coverage

measurement tools integrated into the NSE support platforms (see Chap. 7).

 4. The NSE testing paradigm – It is based on the Transparent-box testing method

which combines functional testing and structural testing together seamlessly; to

each test case it not only checks whether the output (if any, can be none) is the

same as what is expected, but it also helps users to check whether the real execu-

tion path covers the expected one specified in control flow diagram, and then it

automatically establishes bidirectional traceability among the related documents

and test cases and the source code through the use of bookmarks and Time Tags

inserted into both the test case description and the test coverage database for

mapping the test cases and the tested source code together, so that it can be used

dynamically in the entire software development and maintenance process,

including the requirement development phase and the design phase, to greatly

reduce the amount of defects introduced into a software product developed with

NSE (see Chap. 16).

Fig. 5.2 The NSE structure

1095.7 The Major Feature and Characteristics of NSE

 5. The NSE quality Assurance paradigm – It is based on defect prevention and

defect propagation prevention from the first step down to the maintenance phase

(see Chap. 17).

 6. The NSE documentation paradigm – It makes the documents traceable to and

from the source code to keep consistency with the source code at all times. The

generated documents exist virtually to greatly reduce the required space and to

speed up the display much faster (see Chap. 19).

 7. The NSE maintenance paradigm – It helps users perform software mainte-

nance holistically and globally with side-effect prevention for the implementa-

tion of requirement changes or code modification supported by various

traceabilities to ensure the product quality and greatly reduce the cost through

the use of test case minimization and intelligent test case selection in regression

testing after code modification (see Chap. 18).

 8. The NSE project management paradigm – It combines the software development

process and project management process together, making the project management

documents (such as the schedule chart, the project development plan, the cost

estimation tables) traceable with the implementation of requirements and the source

code for finding and fixing the management problems in time (see Chap. 20).

 9. The NSE support techniques – They are the driving force for the establish-

ment of NSE: 14 advanced techniques are innovated and applied into NSE and

the support platforms (see Chap. 6).

 10. The NSE support tools and support platforms – They help software organi-

zations to apply NSE in their software product development easily, no matter if

it is used for new software development, or to test or maintain an existing soft-

ware product (see Chap. 22).

5.7 The Major Feature and Characteristics of NSE

•฀ It is based on a solid foundation – complexity science: The entire NSE para-

digm is established by complying with the essential principles of complexity

science, particularly the Nonlinearity principle and the Holism principle.

•฀ It is complete – NSE itself is complete, including its own process model, soft-

ware development methodology, visualization paradigm, testing paradigm, QA

paradigm, documentation paradigm, maintenance paradigm, management para-

digm, etc.

•฀ It brings revolutionary changes to almost all aspects in software engineering –

It makes them change from the old one based on linear processes and the super-

position principle, to the new one based on nonlinear processes and complexity

science.

•฀ It offers both “what to do” and “how to do” – Different from some popular

models which only offer “what to do” but ignore “how to do,” NSE offers both.

•฀ With it almost all software engineering tasks/activities are performed

holistically and globally – With NSE, from requirement development down to

110 5 Outline of the NSE Paradigm

maintenance, all tasks/activities are performed holistically and globally with

defect prevention including side-effect prevention for the implementation of

requirement changes and code modification.

•฀ It combines the software development process and software maintenance

process together closely – With NSE, requirement changes are welcome and

implemented with side-effect prevention though various bidirectional trace-

abilities (see Chaps. 8 and 18).

•฀ It combines the software development process and software management

process together closely – It makes all documents including the management

documents such the schedule chart and the cost reports traceable to the imple-

mentation of requirements and the source code to control a software project

better and to find and fix the related issues in time (see Chaps. 8 and 20).

•฀ It ensues software product quality from the first step to the final step through

defect prevention and dynamic testing using the Transparent-box testing

method – NSE offers many means to prevent defects introduced into a software

product by people (the customers and the developers) with dynamic testing using

the Transparent-box testing method which combines functional testing and

structural testing seamlessly, can be dynamically used in the cases where there is

no real output from the software system such as a dummy system with dummy

modules only without detailed program logic (see Chaps. 11, 17, and 18).

•฀ With NSE, the design becomes precoding (top-down), and the coding becomes

further design (bottom-up) – With NSE, in most cases the design through

dummy programming using dummy modules becomes precoding, and the coding

becomes further design through reverse engineering (see Chaps. 12 and 13).

•฀ It makes software documents traceable to and from source code – With NSE

all related documents and test cases and the source code are traceable forwards

or backwards though automated and self-maintainable traceabilities.

•฀ It supports real-time communication through traceable Web pages and

traceable technical forum – With NSE, the bidirectional traceability is

extended to include Web pages and BBS for real-time communication.

•฀ It makes the entire software development process visible from the first step

down to the final step – The NSE visualization paradigm is capable of making

the entire software development process visible through dummy programming

and reverse engineering.

•฀ It makes a software product much easier to read, understand, test, and

maintain – With NSE, a software is represented graphically and shown in both

the overall structure of the entire product and the detailed logic diagram and

control flow diagram with various traceabilities and where the untested condi-

tions and branches are highlighted.

•฀ It can be applied at any time in any stage for a software product development

using any original method – NSE can be added onto a software product being

developed using any other approach by adding bookmarks in the related docu-

ments and modifying the test cases to use some key words to indicate the format

of a document and the file path plus the bookmark, then the other work can be

performed by the NSE support platform automatically.

1115.7 The Major Feature and Characteristics of NSE

•฀ It requires much less time, resources, and manpower to apply compared

with other existing approaches – One just needs to reorganize the document

hierarchy using bookmarks and modifying the test case description using some

simple rules; all of the other work can be performed automatically by the NSE

support platform with many automated and intelligent tools integrated together,

including the creation of huge amounts of traceable and virtual documents based

on static and dynamic measurement of the software, the diagramming of the

entire software product to generate holistic and detailed system call graphs and

class inheritance charts, the holistic and detailed test coverage measurement

results shown in J-Chart and J-Diagram or J-Flow diagram with untested condi-

tions and branches highlighted, the holistic and detailed quality measurement

results shown in Kiviat diagram for the entire software product and each class or

function, the holistic and detailed performance measurement results shown in

J-Chart and bar chart with branch execution frequency measurement result

shown in J-Diagram or J-Flow diagram to locate the performance bottleneck

better, the software logic analysis results shown in J-Diagram with various kinds

of traceability for semiautomated code inspection and walk through, the soft-

ware control flow analysis results shown in J-Flow with untested conditions and

branches highlighted, the GUI test operation capture and selective playback for

regression testing after code modification, the test case efficiency analysis and

test case minimization to form a minimized set of test cases to replace all the test

cases to speed up the regression testing process and greatly save the required

time and resources, the establishment of bidirectional traceability among all

related documents and the test cases and the source code, the generation of

more than 100 reports based on the static and dynamic measurement of the

software which can be stored in HTML format for being used on the internet,

the Cyclomatic complexity measurement results shown in J-Chart and J-Flow

diagram for performing refactoring on the over complicated modules to reduce

possible defects, and more.

•฀ It is possible for NSE to help software organizations double their produc-

tivity, halve their cost, and reduce 99–99.99% defects in their software

products – With NSE, the quality of a software product is ensured from the

first step through defect prevention and defect propagation prevention rather

than testing after coding, so that the amount of defects introduced into a soft-

ware product is greatly reduced, and the defects propagating to the mainte-

nance phase are also greatly reduced; software maintenance is performed

holistically and globally with side-effect prevention; the regression testing

after software modification is performed using a minimized test case set and

some test cases selected through backward traceability from the modified

modules and branches; software testing is performed in the entire software

development process dynamically using the Transparent-method which com-

bines functional testing and structural testing together seamlessly, and can be

dynamically used in the case that there is no real output in running some test

cases, when it is used in the requirement development phase and the software

design phase.

112 5 Outline of the NSE Paradigm

5.8 Summary

The old-established software engineering paradigm is entirely outdated because it

is based on linear thinking, reductionism, and the superposition principle that the

whole of a complex system is the sum of its parts, so that almost all tasks/

activities in software engineering are performed linearly, partially and locally – it

is the root cause why many software projects fail.

The NSE paradigm is established with the FDS (Five-Dimension Synthesis

Method) paradigm-shift framework by complying with the essential principles of

complexity science, particularly the Nonlinearity principle and the Holism principle

that the behavior and characteristics of the whole of the software engineering

paradigm cannot be inferred from its parts, but emerge from the interaction

of all its parts, so that with NSE almost all tasks/activities in software engineering

are performed holistically and globally.

The NSE paradigm consists of ten major parts including the (1) NSE process

model, (2) NSE software development methodology, (3) NSE diagramming

(visualization) paradigm, (4) NSE testing paradigm, (5) NSE quality Assurance

paradigm, (6) NSE documentation paradigm, (7) NSE maintenance paradigm,

(8) NSE project management paradigm, (9) NSE support techniques, and (10) NSE

support tools and platforms. They all work together closely.

5.9 Points and Questions to Ponder

 (a) What are the major problems existing with today’s software development? Why

are those problems so hard to solve?

 (b) Why does today’s software maintenance take 75% or more of the total effort

and total cost in software product development?

 (c) What is NSE?

5.10 Further Reading and Information Source

 (a) Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading

 (b) DevTopics Software Development Topics, 20 Famous Software Disasters

(http://www.devtopics.com/20-famous-software-disasters/)

 (c) Xiong J, Xiong J (2009) A complete revolution in software engineering based

on complexity science. In: WORLDCOMP’09 – SERP (Software Engineering

Research and Practice 2009), pp 109–115

http://www.newvectors.net/staff/parunakv/ZambonelliParunakAOSE02.pdf

113References

References

[Bro95-p181] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 181

[Bro95-p182] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 1282

[CMMI1.1] Phillips M (2002) CMMI Program Manager, CMMI V1.1 and Appraisal Tutorial,

http://www.sei.cmu.edu/cmmi/

[GSAM03] USAF Software Technology Support Center (2003) Condensed GSAM

Handbook, Chap 2, CrossTalk

[Ngw03] Ngwenyama O, Nielsen PA (2003) Competing values in software process

improvement: an assumption analysis of CMM from an organizational culture

perspective. IEEE Trans Eng Manag 50(1):100–112. doi:10.1109/

TEM.2002.808267

[Nia06] Niazi M (2009) Keele University, Software process improvement implementa-

tion: avoiding critical barriers. CrossTalk, Jan Issue

http://www.newvectors.net/staff/parunakv/ZambonelliParunakAOSE02.pdf

115J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_6,

© Springer Science+Business Media, LLC 2011

The road ahead for software engineering is driven by software

technologies.

Roger S. Pressman, “SOFTWARE ENGINEERING: A

Practitioner’s Approach”

There are a set of unique techniques innovated to support the NSE process model

and the entire NSE software engineering paradigm for efficiently solving the essential

problems in software development: the complexity, changeability, conformity, and

invisibility described by Frederick P. Brooks Jr. in his book, “The Mythical Man-

Month” [Bro95-p182], plus testability, reliability, traceability, and maintainability.

This set of unique techniques are innovated by me and implemented by me and my

colleagues through the Paradigm-shift framework, FDS, also innovated by me

(see Chap. 4), as shown in Fig. 6.1.

The related techniques innovated for the establishment of NSE is shown in

Fig. 6.2.

6.1 Definitions

There are some definitions to be described first.

Dummy Module: a source code module having an empty body or a simple body

with some function call statements only without real program logic.

Dummy System: a software system consisting of dummy modules, and can be

compiled, executed, and tested without producing any real output.

Dummy Programming (Bone Programming): the process for designing and

coding a dummy software system.

Time Tag: a time mark automatically inserted into a test case description in a test

case script file and the corresponding test coverage database, to indicate the date and

time when a test case is executed and where the corresponding test coverage result is

located in the database. It is used for mapping a test case and the corresponding source

code tested by the test case to establish bidirectional traceability. When a test case is

Chapter 6

The Techniques Innovated to Support NSE

116 6 The Techniques Innovated to Support NSE

Fig. 6.2 Techniques innovated for the establishment

Fig. 6.1 Technology development complying with the principles of complexity science

1176.2 Holistic, Virtual, and Traceable Diagram Generation Technique

modified or the corresponding source code is modified, after rerunning the test case

script, a new Time Tag will be inserted to replace the old one – so the bidirectional

traceability can be automatically maintained without manual modification.

3J Graphics (J-Chart, J-Diagram, and J-Flow): new types of charts, logic dia-

grams, and control flow diagrams innovated by me which are interactive and

traceable; used for making the entire software development lifecycle visible and

the software product much easier to understand, test, and maintain.

Transparent-box Testing Method: a new software testing method innovated and

implemented by me which combines functional testing and structural testing

together seamlessly – to each test case a test tool developed with this method will

check whether the output (if any, can be none – when applied in the requirement

development phase and the preliminary design phase, there is no real output at all)

is the same as what is expected, but also help users to check whether the real execu-

tion path covers the expected path specified using J-Flow diagram, and whether the

execution hits some modules or some branches prohibited for the execution of the

test case; after the execution of the test case, the tool will also build a bidirectional

traceability facility to help users check the consistency among all of the related

artifacts (including the source code too) through forward tracing and backward

tracing. Different from traditional Black-box testing method which can be used

after coding to find functional defects only, the Transparent-box testing method

can be used to find functional defects, structural defects, and inconsistency defects

among all of the artifacts in all phases of the software development life cycle,

because having an output is no longer a condition for the use of the Transparent-

box method dynamically. Chapter 16 will discuss this method in detail.

6.2 Holistic, Virtual, and Traceable Diagram Generation

Technique

The Holistic, Virtual, and Traceable Diagram Generation technique is a new software

diagram generation technique innovated by me and implemented by me and my col-

leagues which uses interactive and traceable 3J graphics to diagram the whole of a

software system and its parts to solve the invisibility issue – making the entire software

development process and the program structure/logic/control flow of an entire soft-

ware product visible in all levels. The generated charts, logic diagrams, and control

flows are traceable between a source file and the included files, a program tree and the

related modules, a function definition body and the corresponding function call state-

ments, a class and the inherited classes, an object and the class definition and the

constructor, a module in a call graph and the corresponding logic diagram or control

flow diagram of the module, or a module and all related modules calling and called by

it, and so on. This technique provides an ideal solution to solve the critical problems

faced with traditional software diagram generation techniques: software systems

become more and more complex, so that using a big call graph to show the whole of

a software system with many connection lines will make it very hard to view as shown

in Fig. 6.3, but using many small call graphics to show the different parts of the entire

118 6 The Techniques Innovated to Support NSE

software product separately with many connection arrows will not be able to show the

big picture of the software system clearly, and often causes confusion. How can the

Holistic, Virtual, and Traceable Diagram Generation technique and the corresponding

tools solve this problem? The answer is that the generated charts/diagrams are trace-

able as shown in Fig. 6.4 when a user traces a module on the generated call graph

shown in J-Chart notation, all the related modules calling and called by it are high-

lighted while the unrelated connection lines are invisible. A user can also select any

module as a new root to let the corresponding tools to generate a subset of the system

and show it in a new window. In addition, a bar chart can be attached on a module in

the generated J-Chart to show the related information. All charts and diagrams are

generated virtually from some simple hash tables without storing a hard copy in the

hard disk or the memory of a computer to greatly save the required space and greatly

reducing the time for displaying and monitoring the charts and diagram (see Sect. 6.3).

Sample traceability of a J-Diagram is shown in Fig. 6.5.

Fig. 6.3 An entire call graph of a complex software system generated with Virtual and Holistic

Diagramming technique

1196.3 Virtual and Traceable Documentation Technique

Fig. 6.4 A module and the related modules (calling and called by it) traced and highlighted

The generated charts and diagrams are virtually existing without storing any

hard copy in disk or memory – they are generated dynamically from several hash

tables from the database. This technique greatly reduces the requirement space

(only needs about 1/100 of the space required by traditional approaches), and makes

the display speed about 1,000 times faster (compared with the old versions of our

own tools). Chapter 7 will discuss this technique in detail.

6.3 Virtual and Traceable Documentation Technique

The Virtual and Traceable Documentation technique is a new software documenta-

tion technique innovated by me and implemented by me and my colleagues. The

corresponding tools developed from this technique automatically generate a great

amount of documents/diagrams (the size is about 100 times bigger than the size of

120 6 The Techniques Innovated to Support NSE

Fig. 6.5 Traceable J-Diagram (logic diagram) automatically generated

the source code) directly from the source code to document the overall measure-

ment result for the whole system and the detailed result for each component of the

software system through system structure analysis, program logic analysis, pro-

gram control flow analysis, test coverage analysis, performance analysis, function

cross reference analysis, global and static variable analysis, version comparison

and quality measurement – with NSE, all graphics and diagrams are also virtually

generated (including J-Charts, J-Diagrams, and J-Flow diagrams), but the size of

the space needed for the documents/diagrams in memory and hard disk is about

the same as the size of the source code, because the generated documents/dia-

grams are virtually existing without any hard copy to be stored in hard disks or the

computer memory (unless the users require it) – each time, the document/diagram

is generated from the corresponding database dynamically with the size being the

same as the opened window for showing the document/diagram; when there is a

need to trace an element to the related elements, for instance from a function call

statement located in block 10 of the entire logic diagram to the called function

body located in block 100,000 of the diagram of an entire complex software prod-

uct, there is no real diagram movement performed from block 10 to block 100,000,

but a new logic diagram is dynamically generated from the corresponding data-

base and displayed from block 100,000. In this way, the users will see the graphi-

cal representation result as if all the documents/diagrams exist in the memory or

hard disk, but the required space can be reduced to about 1/100 (compared

with the traditional approaches), and the time required to display the generated

1216.4 Holistic and Intelligent Version Comparison Technique

documents/diagrams or operate them can be reduced to about 1/1,000. Chapter 19

will discuss this technique and its applications in details. A virtually generated

quality measurement result for an entire software product and any individual class

or function is shown in Fig. 6.6 – it is easy to imagine that if the graphical repre-

sentation of the entire product and any class or function is not generated virtually,

a huge amount of disk space and memory space will be required. But with NSE

they are generated virtually from the corresponding database consisting of only

several hash tables, and the total required space is almost the same as the size of

storing the program source code.

6.4 Holistic and Intelligent Version Comparison Technique

The Holistic and Intelligent Version Comparison technique is a new software

version comparison technique innovated by me and implemented by me and my

colleagues which compares any two versions of an entire software system in

system level, file level, and module/statement level using a virtual and holistic

diagramming technique as shown in Fig. 6.7 in Black-white but the original one

shown on the screen is colorful-blue is used for showing unchanged modules, red

for changed ones, brown for deleted ones, and green for added ones. A new ver-

sion of a module with more space characters in some lines will not be treated as

modified – the tool developed using this technology is, in fact, an expert system

which understands the grammar of the target language.

Fig. 6.6 A virtually generated quality measurement result for an entire software product and an

individual class

122 6 The Techniques Innovated to Support NSE

6.5 Holistic and Dynamic Traceability Technique

The Holistic and Dynamic Traceability technique is a new software traceability

establishment technique innovated by me and implemented by me and my col-

leagues, which is used to establish a self-maintainable facility offering auto-

mated and bidirectional traceability among all artifacts (including all related

documents, test case scripts, test results, and the source code) of an entire soft-

ware product (see Chap. 9), with the capability to selectively and dynamically

play back the captured GUI operations of a traced or selected test case, and show

the test coverage results graphically at the same time. This technique and the

corresponding tools are particularly useful for defect prevention in the entire

software development lifecycle (including the side-effect prevention in software

maintenance for implementing software changes), and realizing full automation

of software acceptance testing though mouse clicks only. Even if the GUI opera-

tion capture is performed for an entire test case script file with many test cases

being executed together, a tool developed with this technique still can selectively

play the captured GUI operations of only one test case back through Time Tags

for data mapping. An application example is shown in Fig. 6.8.

6.6 Comprehensive Software Testing Technique Mainly

Based on the Transparent-Box Method

The Comprehensive Software Testing technique is mainly based on the Transparent-

box testing method to combine functional and structural testing together seamlessly,

with the capability to establish automated and bidirectional traceability among all

Fig. 6.7 An application example of the Holistic and Virtual Version Comparison Technique

1236.7 Defect Prevention Driven Quality Assurance Technique

related documents and the source code. To each set of inputs, the tools developed with

this kind of testing approach not only check whether the output (if any, can be none)

is the same as what is expected, but also check whether the execution path covers the

expected path.

Beside the Transparent-box testing, the Comprehensive Software Testing

Technique also offers the capability for memory leak and memory usage violation

analysis, performance analysis with program branch execution frequency measure-

ment (for locating performance bottlenecks better), run-time error execution path

analysis, incremental unit testing and integration testing, embedded software

system testing, and GUI operation capture and playback.

6.7 Defect Prevention Driven Quality Assurance Technique

Traditional software quality assurance techniques are mainly based on software

testing using the Black-box method and the structural testing method. But both

methods are used after production (coding) – it violates Dr. W. Edwards Deming’s

principles for product quality control, “Cease dependence on inspection to achieve

quality. Eliminate the need for inspection on a mass basis by building quality into

Fig. 6.8 Selective playback: click on a test case to automatically play the captured GUI

operations back with the source code tested being highlighted

124 6 The Techniques Innovated to Support NSE

the product in the first place.” The proposed Defect Prevention Based Quality

Assurance technique is used in the entire software engineering process to prevent

defects through automated traceabilities and many other ways, including dynamic

testing using the Transparent-box testing approach. Chapter 17 will describe the

details. An application example of preventing inconsistency defects in module inter-

faces (between a module definition and the corresponding function call statements)

in the coding process is shown in Fig. 6.9. It is done through incremental coding

based on an assigned coding and unit testing order on the call graph obtained in

the design phase. When writing a function call statement, the engineer can view the

source code of the called function to prevent inconsistency defects because according

to the assigned coding order, the called function must be completed and tested

already. This Defect Prevention Driven Quality Assurance Technique is particularly

Fig. 6.9 Coding with defect prevention

1256.8 Test Case Efficiency Analysis and Test Case Minimization Technique

useful in software maintenance when a requirement is modified, a forward tracing

from the requirement to its implementation is performed to determine what modules

need to be modified, and then a backward tracing is performed from the modules to

the related requirements (which may be more than one) and documents as well as

the modules calling and called by a module to be modified to prevent side effects –

see Chap. 18 for the detailed description.

6.8 Test Case Efficiency Analysis and Test Case

Minimization Technique

For testing a large and complex software product, a huge amount of test cases are

designed and used. But within them the major parts are often useless which just repeat

what have been tested by other test cases. With the old-established software engineering

paradigm the functional testing and structural testing are performed separately, so that

it is difficult to know what test cases are useful or useless. With NSE, the Transparent-

box testing approach is used which combines functional testing and structural testing

together seamlessly with the capability to measure the source code test coverage, so

that it is easy to obtain the test efficiency for each test case by measuring the test

coverage contribution as shown in the left side of Fig. 6.10. With the information of

the test efficiency for each test case, the corresponding tool developed with NSE can

Fig. 6.10 An example of test case efficiency analysis and test case minimization

126 6 The Techniques Innovated to Support NSE

further perform test case minimization to select a minimized set of test cases which

can be used to get the same test coverage result in regression testing after code

modification. The corresponding algorithm for test case minimization will be intro-

duced in Chap. 21. The key point is that whether a test case will be selected or not is

not dependent on its single contribution in code test coverage, but the accumulated

contribution with all the selected test cases. Usually a test case which has found a

defect will be selected into the minimized set of test cases because the execution path

of that test case is different from other test cases. If a test case covered one branch

which has not been covered by all of other test cases, it will be selected into the

minimized set of test cases. Usually the more test cases are used for testing a software

product, the less the percentage the minimized set of test cases occupy. An application

example is shown in the right of Fig. 6.10.

6.9 Refactoring Technique with Defect Prevention

The Refactoring technique with Defect Prevention is a program improvement

approach by restructuring the program to remove duplication, improve communica-

tion, simplify the program, or add flexibility to the program without changing its

behavior, which is performed with defect prevention to avoid the side effects of the

modification. With NSE this approach is mainly used in those modules where: (1)

the Cyclomatic complexity (the number of branch statements such as “if,” “for,”

etc.) of the module is too big (over 30, for instance, as shown in Fig. 6.11), because

often 80% of the defects exist in about 20% of the more complex modules; (2) it is a

Fig. 6.11 An example of Cyclomatic complexity analysis and the control flow diagram of a

complex program module

1276.10 Holistic MC/DC Test Coverage Analysis and Graphical Representation Technique

performance bottleneck as shown in Fig. 6.12. Somehow, refactoring can be consid-

ered as a backward iteration. After refactoring, there is a need to modify the related

design documents in the upper phases. Of course, refactoring can also be done

through a forward approach by modifying the design and the corresponding docu-

ments first before the code modification. After refactoring, the program should be

fully retested, including functional testing and structural testing with performance

analysis, test coverage analysis, memory leak and usage violation analysis, vari-

able analysis, and more, to ensure the quality of the modified program.

6.10 Holistic MC/DC Test Coverage Analysis and Graphical

Representation Technique

According to the RTCA/DO-178B standards (Joseph Wlad, Product Marketing

Manager Wind River, Alameda, CA, DO-178B and Safety-Critical Software

Technical Overview, http://www.opengroup.org/rtforum/jul2001/slides/wlad.pdf),

MC/DC (Modified Condition/Decision Coverage) is required for top quality software

testing. The difficulty includes not only how to perform the MC/DC test coverage

analysis but also how to visually show the test coverage results. The Holistic MC/DC

Test Coverage Analysis and Graphical Representation technique innovated by me

can be used to not only perform MC/DC test coverage for an entire software product

and its parts but can also be used to show the test coverage results in interactive and

traceable J-Chart, J-Diagram, and J-Flow diagrams with the capability to clearly

highlight the untested branches and conditions using small black boxes in the

generated J-Diagram and J-Flow diagrams as shown in Fig. 6.13.

Fig. 6.12 An example of a performance bottleneck and the branch execution frequency analysis

128 6 The Techniques Innovated to Support NSE

6.11 Assisted Test Case Design Technique

At the beginning of software testing for a software product, it seems easy to design

test cases, but later on when the test coverage result reaches 50% or more, the test

case design will become more and more difficult if we want to design a new test

case which will cover code branches or conditions which have not been covered by

the previous test case execution. The proposed Assisted Test Case Design technique

works with the path and test coverage analysis to automatically compare all

untested paths and select one with the most untested branches, then it automatically

extracts the test conditions of the selected path to help users design the corresponding

test case which could be better than ten test cases randomly designed. An applica-

tion example is shown in Fig. 6.14.

6.12 Intelligent Regression Test Case Selection Technique

With the old-established software engineering paradigm, even if only one source

module or only a few branches of the module have been modified, all test cases

should be used for regression testing because without automatic and bidirectional

Fig. 6.13 Call graph shown in J-Chart notations with the MC/DC test coverage analysis result for

the whole and its parts of a software system (here, untested conditions and branches are high-

lighted in small black boxes)

1296.12 Intelligent Regression Test Case Selection Technique

traceability, it is almost impossible to know what test cases can be used to retest the

modified product. It is very clear that a complex software product is a nonlinear

system where a small change may ultimately cause great changes in the entire

system – the Butterfly Effect. The proposed Intelligent Regression Test Case

Selection technique is mainly used to solve this kind of problem – when only a few

modules or only a few source program branches are modified, the maintainers can

easily perform backward tracing from a modified module or a modified branch to

find out all related test cases which can be used to retest the modified product, using

the NSE support platform. An application example is shown in Fig. 6.15 where for

the modified branch S3 (Segment 3), only one test case was found which can be

Fig. 6.14 An application example of Assisted Test Case Design

130 6 The Techniques Innovated to Support NSE

used to retest branch S3; the other test cases do not go through S3, so they are

useless in retesting the branch S3. Of course, sometimes we need to add some new

test cases to retest the modified product better.

6.13 Holistic, Actor–Action and Event–Response Driven,

Traceable, Visual, and Executable Technique

for Requirement Development

The Holistic, Actor-Action and Event-Response Driven, Traceable, Visual, and

Executable technique is a new requirement development technique innovated

and implemented by me for capturing customers’ requirements through top-

down dummy programming for making the requirements much easier to review

and understand. The technique supports Holistic, Actor–Action and Event–

Response driven, Traceable, Visual, and Executable requirement development,

including the decomposition of functional requirements, and the nonfunctional

requirements. About the applications of this technique, see step 1 of the main

process of the NSE process model to be described in Chap. 8. It is innovated

mainly for improving the Use Case approach which is not holistic, not suitable

for event–response applications, and the obtained result is not really traceable

for inspection and review, not easy to map to the product design, and not directly

executable for finding and removing defects.

Fig. 6.15 An application example of the Intelligent Regression Test Case Selection

1316.14 Synthesis Design and Incremental Growing Up

6.14 Synthesis Design and Incremental Growing Up

(Implementation and Integration) Technique

The Synthesis Design and Incremental Growing Up (Implementation and

Integration) technique is a new technique for software development innovated and

implemented by me to efficiently develop a software product and solve the issue of

software complexity. As pointed out by Frederick P. Brooks Jr., “The complexity of

software is an essential property, not an accidental one. … many classical problems

of developing software products derive from this essential complexity and its non-

linearity increases with size…. Much of the complexity in a software construct is,

however, not due to conformity to the external world but rather to the implementa-

tion itself – its data structures, its algorithms, its connectivity.” He then suggested

an approach to efficiently handle the complexity issue:

• “Hierarchically, by layered modules or objects

• Incrementally, so that the system always works” [Bro95-p212]

But, it is not good enough for solving the complexity issues, because there are

several different complexities to be handled, including the following:

 1. Apparent complexity: appears complicated but simple patterns lie underneath

the surface

 2. Detail complexity: has great number of different parts

 3. Dynamic complexity: has a great number of possible interconnections between parts

 4. Inherent complexity: extremely complex with great number of different parts

that have a great number of possible interconnections and feedback loops (http://

www.businessdictionary.com/definition/types-of-complexity.html), or

Formulaic complexity:

Description complexity

Generative complexity

Computational complexity

Compositional complexity

Constitutional complexity

Taxonomical complexity

Structural complexity

Organizational complexity

Hierarchical complexity

Functional complexity

Operational complexity

Normic complexity

So we need much more advanced techniques and tools to solve the complexity issue.

Here, “Synthesis Design” means the following activities:

 1. Collect the information and data related to the requirements, including the

solution method comparison reports, prototype design and risk analysis reports,

132 6 The Techniques Innovated to Support NSE

test results, customer evaluation results, and the documents of the algorithms

used, etc.

 2. Perform functional requirement decomposition and defect removal through

dynamic testing using the Transparent-box approach.

 3. According to the functional requirement decomposition results plus nonfunc-

tional requirements, design an executable dummy system (the preliminary archi-

tecture) through dummy programming.

 4. Remove the defects introduced into the designed dummy system through visual

diagramming and inspection, particularly dynamic testing using the Transparent-

box approach.

 5. Perform optimization of the designed dummy system to reduce the coupling

degree.

 6. Design the preliminary data structures (class structures) according to the

collected information and data.

 7. Compile and execute the designed dummy system mapping to the functional

requirement decomposition plus the nonfunctional requirements.

 8. Further decompose the system, as detailed as possible.

 9. Work with the Incremental Implementation and Integration of requirements to

make the system grow up with new versions of the system executable.

Here, Incremental growing up means the following activities:

 1. Select one or a set of requirements according to the requirement priority assigned.

 2. From the corresponding call graph (shown in J-Chart notation) of the designed

system, highlight the critical module with all modules calling and called by

modules for the selected requirement(s), assign a bottom-up design and coding

order on the automatically generated system hierarchy.

 3. Perform incremental unit coding according to the assigned order to prevent

inconsistency defects between the interfaces of the calling modules and the

called modules (see Fig. 6.9).

 4. Carry out unit testing and integration testing to remove possible defects through com-

prehensive testing (including functional testing, structural testing, memory leak and

usage violation checking, quality measurement, and performance analysis, etc.).

 5. Recompile the entire program to establish a new version of the program, and

then run the program again dynamically.

 6. Different from traditional incremental iteration approaches which complete the

subsystem design and coding for the selected requirement(s) first then carry

out integration, with NSE the incremental implementation and iteration is done

with integration at the same time – each time only one module of the subsystem

for the selected requirements will be coded, tested, and integrated to establish

a new version of the executable program, so that if something wrong is found,

the problems often come from the one added module only rather than the entire

subsystem implemented for the selected requirement(s). An application exam-

ple of the Incremental Implementation, Iteration, and Integration tech-

nique is shown with step 1 of the main process described in Chap. 8.

1336.16 Summary

 7. Combine the processes of software development, testing, and maintenance

together closely through many automated and bidirectional traceabilities for

defect prevention in the entire software product development lifecycle.

 8. If some critical problems are found in any phase, go back to the upper phases to

solve the problem – it is possible to give up the previously selected solution method

such as in the case where the performance is very bad because of the misuse of the

virtual memory – it is a nonlinear way for requirement implementation.

6.15 Holistic, Global, and Side-Effect-Prevention Based

Software Maintenance Technique

The Holistic, Global, and Side-Effect-Prevention Based Software Maintenance tech-

nique is a new software maintenance technique innovated by me and implemented

by me and my colleagues which is also a Systematic, Disciplined, and Quantifiable

approach for software maintenance. The key part of this technique is the various

traceabilities that are established through Transparent-box testing and the Holistic

and Traceable Diagram Generation technique. It is the most important technique

of NSE for greatly reducing the cost and the effort spent in software system develop-

ment. This technique and its applications will be described in detail in Chap. 18.

6.16 Summary

Fourteen unique software engineering techniques are innovated to support NSE.

Those techniques are developed through the FDS framework by complying with the

essential principles of complexity science, particularly the nonlinearity principle

and the holism principle.

Those techniques include the HAETVE for Requirement Development used to

replace the Use Case approach which is not holistic and the results obtained are not

traceable and not directly executable for removing defects; the Holistic, Virtual

and Traceable Diagram Generation technique for generating interactive and

traceable charts/diagrams to make an entire software development process visible;

the Holistic and Dynamic Traceability technique to establish automated and self-

maintainable traceability among documents and test cases and source code for

defect prevention and defect propagation prevention; the Comprehensive Software

Testing technique mainly based on the Transparent-box method combining

functional testing and structural testing together seamlessly with the capability to

establish bidirectional traceability to find functional defects, logic defects, and

inconsistency defects dynamically in the entire software development lifecycle; the

MC / DC Test Coverage Analysis and Graphical Representation technique for

highest quality software product development; the Defect Prevention Driven

Quality Assurance technique, which is the key technique to ensure the quality of

134 6 The Techniques Innovated to Support NSE

a software product; the Refactoring technique with Defect Prevention for further

reducing the defects introduced to a software product because often the 20% most

complex modules will have about 80% of the total defects; the Intelligent

Regression Test Case Selection technique and the Test Case Efficiency Analysis

and Test Case Minimization technique to greatly reduce the cost for regression

testing after software modification; the Virtual and Traceable Documentation

technique which makes the documents traceable to and from the source code to

keep consistency; the Holistic, Global, and Side-Effect-Prevention Based

Software Maintenance technique which is the key technique making it possible

to help software organizations double their productivity and halve their software

development cost; and the Holistic and Intelligent Version Comparison

technique for version control and quick location of new defects after code modifi-

cation. With those techniques and the corresponding tools, NSE with its support

platform can efficiently handle the issue of software complexity, changeability,

invisibility, and conformity, and efficiently solve the critical problems with today’s

software development: the low productivity and quality, and high cost and risk.

6.17 Points and Questions to Ponder

 (a) What are the driving forces for the establishment of NSE (Nonlinear Software

Engineering paradigm)? Describe them in as much detail as possible.

 (b) Which principles do the techniques introduced in this chapter comply with? Why?

6.18 Further Reading and Information Source

Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,

New York

Jones C (2002) Software quality in 2002: a survey of the state of the art, Six

Lincoln Knoll Lane, Burlington, MA. http://www.SPR.com July 23, 2002

Kannenberg A et al (2009) Why Software Requirements Traceability Remains a

Challenge. CrossTalk, Jul/Aug Issue

Xiong J, Xiong J, A complete revolution in software engineering based on

complexity science. In: WORLDCOMP’09 – SERP (Software Engineering

Research and Practice 2009), p 109–115

References

[Bro95-p182] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 182

[Bro95-p212] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 212

135J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_7,

© Springer Science+Business Media, LLC 2011

“One Picture is Worth Ten Thousand Words.”

Chinese Idioms

This chapter introduces the NSE software visualization paradigm which is holistic,

and the generated charts and diagrams are interactive, colorful, and traceable; it is

to be used in the entire software development lifecycle to make all the processes

and the obtained work products visible.

“One Picture Is Worth Ten Thousand Words” – a holistic, interactive, colorful,

and traceable chart/diagram will be more useful in the description of a complex

software product.

The NSE software visualization paradigm is established through the FDS para-

digm-shift framework by complying with the essential principles of complexity

science as shown in Fig. 7.1, particularly the Nonlinearity principle and the Holism

principle.

7.1 The Old-Established Software Engineering Visualization

Paradigm Is Outdated

The old-established software engineering visualization paradigm is outdated

because it is

 1. Based on linear thinking, reductionism, and the superposition principle

 The traditional software engineering visualization techniques and tools are

based on linear thinking, reductionism, and the superposition principle that the

whole of a system is the sum of its parts, so that almost all diagramming tasks

are performed locally and partially.

 2. Not Holistic

 They are not holistic and global diagramming techniques and tools. The applica-

tion results obtained consist of many small pieces without a complete chart/

diagram to show an entire software product.

Chapter 7

NSE Software Engineering Visualization
Paradigm

136 7 NSE Software Engineering Visualization Paradigm

 3. Not automatable in most cases

 Most charts/diagrams are created using graphic editors, and are not automati-

cally generated.

 4. Not interactive

 Most charts/diagrams generated using the old-established software visualization

paradigm are not interactive, making it hard to manipulate.

 5. Not traceable

 Even if a complete chart/diagram for an entire software product can be obtained

by using a few diagramming tools, it is still useless because without traceability

and the capability to highlight an element with all of the related elements, there

are too many connection lines, making the chart/diagram hard to view and hard

to understand.

 6. Not accurate

 Often when the source code is modified, the generated charts and diagrams can-

not be automatically updated to keep consistency with the source code.

 7. Not precise

 For instance, when a logic diagram is used to show the result of program test

coverage measurement, it cannot show whether an invisible “else” part (an “if”

statement without an explicit “else” part) is tested or not. Almost all existing

visualization tools cannot graphically show whether a condition in a decision

statement is tested or not when applied to show the result of MC/DC (Modified

Condition/Decision Coverage) test coverage measurement.

Fig. 7.1 The essential principles applied to the innovation of the NSE visualization (diagram-

ming) paradigm through the paradigm-shift framework FDS

1377.2 The Revolutionary Solution Offered by NSE

 8. Often not consistent with the source code

 The charts/diagrams are often not consistent with the source code after soft-

ware modification.

 9. Not consistent among all related charts and diagrams

 Often they are generated with different formats using different information,

making it hard to keep consistency among them.

 10. Not virtual

 The generated charts and diagrams are stored in hard copies or XML or post-

script format in the memory or hard disk, requiring much more disk space and

long loading times.

 11. Not complete

 The traditional software engineering visualization techniques and tools are not

integrated together to completely support the following areas:

 (a) Visualization of the entire software engineering lifecycle

 (b) Visualization for requirements engineering

 (c) Visualization for design engineering

 (d) Visualization for coding engineering

 (e) Visualization for software inspection

 (f) Visualization for software testing

 (g) Visualization for software maintenance

 (h) Visualization for software architectures

 (i) Visualization for the source code of an entire software product

 (j) Visualization for software debugging

 (k) Visualization for reverse engineering

 (l) Dynamic program behavior visualization

(m) Integration of visualization tools in the software engineering tool

chain

 (n) Visualization for software debugging

7.2 The Revolutionary Solution Offered by NSE

The revolutionary solution offered by NSE will be described in detail in this

chapter, including Sect. 7.8 about the major features of the NSE visualization para-

digm. Here is the outline of the solution:

 1. Based on nonlinear thinking and complexity science

 2. Holistic

 3. Automatic

 4. Interactive

 5. Traceable

 6. Accurate

 7. Precise

 8. Consistent among all related charts and diagrams

 9. Linkable automatically between different charts and diagrams

 10. Virtual

138 7 NSE Software Engineering Visualization Paradigm

 11. UML are supported indirectly

 When there is a need to generate some UML charts or diagrams using graphic

editors, a freeware product, Fujaba (http://www.fujaba.de/), is used with the

NSE visualization paradigm.

 12. Complete in software engineering visualization, including

 (a) Visualization of the entire software engineering lifecycle

 (b) Visualization for requirements engineering

 (c) Visualization for design engineering

 (d) Visualization for coding engineering

 (e) Visualization for software inspection

 (f) Visualization for software testing

 (g) Visualization for software maintenance

 (h) Visualization for software verification/validation

 (i) Visualization for software architectures

 (j) Visualization for the source code of an entire software product

 (k) Visualization for reverse engineering

 (l) Dynamic program behavior visualization

(m) Integration of visualization tools in the software engineering tool

chain

 (n) Visualization for software debugging

7.3 The 3J graphics (J-Chart, J-Diagram, and J-Flow)

The 3J graphics (J-Chart – a new type call graph, J-Diagram – a new type of logic

diagram, and J-Flow – a new type of control flow diagram) are innovated by me and

implemented by me and my colleagues. J-Chart/J-Diagram/J-Flow is a trinity: an

Object-Oriented and structured chart/logic diagram/control flow diagram, the chart/

diagram generator which is always running when the chart/diagram is shown, and

the interface (using the chart/diagram itself) between the generator and the user for

controlling the chart/diagram dynamically with a multiway online traceability/cross

reference facility through which the users can view the related objects easily.

7.4 J-Chart

J-Chart not only can be used to represent the class inheritance relationship, the

function call graph, and the class–-function coupling structure graphically but can

also be used to display incremental unit test order or the related test coverage and

quality data in bar graphics overlaid on each object-box to help users view the

overall results of testing and quality measurement. J-Chart is useful in system

understanding, inspection, test planning, test result display, and reengineering. The

J-Chart notations are shown in Fig. 7.2.

http://www.fujaba.de/

1397.4 J-Chart

Fig. 7.2 J-Chart notations

A comparison between J-Chart and the most traditional call graphs

J-Chart

Traditional

call graph

Is it holistic for directly showing a very complex software product? Yes No

Is it interactive for highlighting a path or getting related information? Yes No

Is it traceable such as to highlight a module with all the related

modules?

Yes No a

Is it supported to use a module as the root to generate a subchart? Yes No

Can a bar chart be added to a module box to show related information? Yes No

Can the source code be directly edited from a module box? Yes No

Can the logic diagram be linked from a module box? Yes No

Can the control flow diagram be linked from a module box? Yes No

Can bottom-up coding orders be assigned to the modules? Yes No

When used for software version comparison, can different colors be

used to show “unchanged modules,” “changed modules,” “deleted

modules,” and “added new modules” separately?

Yes No

a Some tools claim that they can provide dynamic function call graphs, but I have not seen their

application examples.

140 7 NSE Software Engineering Visualization Paradigm

For easy comparison, two traditional call graphs are shown in Figs. 7.3 and 7.4.

An example of J-Chart is shown in Fig. 7.5 – a call graph showing the result of

the Cyclomatic complexity measurement (the number of branch statements such as

“if,” “for,” etc.) with automated and self-maintainable traceability to highlight a

module and all of the related modules calling and called by it. When the source

code is modified, after rebuilding the database automatically, all the related trace-

abilities will be automatically updated. The automated and self-maintainable trace-

ability is an important feature to make J-Chart much more useful than the

old-established software visualization techniques and tools. Particularly, when a

module needs to be modified, the traceability can be used to highlight all the related

modules which may also need to be modified to keep consistency.

7.5 J-Diagram

J-Diagram not only can be automatically generated from source code in all levels

including the class hierarchy tree, class structure diagram, and the class member

function logic diagram with unexecuted class/function/segments/condition outcomes

highlighted but also can be automatically linked together for an entire software

Fig. 7.3 An example of the traditional call graph. (http://www.aisee.com/graph_of_the_month/

perlsm.gif)

http://www.fujaba.de/
http://www.fujaba.de/

1417.5 J-Diagram

Fig. 7.4 Another example of the traditional call graph. (http://gilliganscorner.files.wordpress.

com/2009/07/healthcare_flow_chart.jpg)

http://www.fujaba.de/
http://www.fujaba.de/

142 7 NSE Software Engineering Visualization Paradigm

The major differences between J-Diagram and most Flow Charts

J-Diagram Flow Charts

Is it structured? Yes No

Can it show a very complex entire software product? Yes No

Is it unique? Yes No (arbitrary)

Is the location of the program logic indicated? Yes No

Can it show the result of test coverage measurement? Yes No

Can it show the branch execution frequency? Yes No

Does it offer traceability between related elements? Yes No

Can it be converted to a control flow diagram? Yes No

Does it exist virtually without huge storage space? Yes No

Fig. 7.5 A complex call graph shown with Cyclomatic complexity in J-Chart with the capability

to highlight a module with all the modules calling and called by it

1437.5 J-Diagram

Fig. 7.6 J-Diagram notations

144 7 NSE Software Engineering Visualization Paradigm

Fig. 7.6 (continued)

1457.5 J-Diagram

Fig. 7.7 A sample Flow Chart. (http://images.dailyradar.com/media/uploads/ballhype/story_

large/2009/03/19/march_madness_flow_chart.png)

product to make the diagrammed code traceable in all levels. J-Diagram can be

automatically converted into J-Flow diagram. J-Diagram is particularly useful in

Object-Oriented software understanding, inspections, walkthroughs, and testing.

J-Diagram notations are shown in Fig. 7.6.

For easy comparison, two flow charts are shown in Figs. 7.7 and 7.8

separately.

Two sample J-Diagrams are shown in Figs. 7.9 and 7.10.

Another application example of J-Diagram representing a complex source mod-

ule is shown in Fig. 7.11.

The major differences between J-Flow and traditional control flow diagram

J-Flow Traditional control flow

Is it structured? Yes No

Can it show a very complex entire software product? Yes No

Is it unique? Yes No (arbitrary)

Is the source code locations of the control flow indicated? Yes No

Can it show the result of test coverage measurement? Yes No

Can it show the branch execution frequency? Yes No

Can it be automatically converted to a logic diagram? Yes No

Can it highlight a path with most untested elements? Yes No

Does it exist virtually without huge storage space? Yes No

146 7 NSE Software Engineering Visualization Paradigm

Fig. 7.8 Another sample Flow Chart. (http://www.mdmould.com/images/flow%20chart-english.jpg)

1477.5 J-Diagram

Fig. 7.9 A J-Diagram shown with the detailed information

148 7 NSE Software Engineering Visualization Paradigm

Fig. 7.10 A sample J-Diagram shown with the traceability

Interactive and traceable J-Diagram not only makes a software product much

easier to read, understand, test, and maintain but also makes the code inspection and

walk through much easier to perform in a semiautomated way.

7.6 J-Flow

Most traditional control flow diagrams are unstructured. They often use the same

notation to represent different program logic and cannot display the logic conditions

and the source code locations. The J-Flow diagram, on the other hand, is Object-

Oriented and structured, uses different notations to represent different logic with

the capability to show logic execution conditions and the corresponding source

code locations. J-Flow is particularly useful in logic debugging, path analysis, test

case and code correspondence analysis, and class/function-level test coverage result

display with unexecuted elements (path, segments, and unexecuted condition out-

comes) highlighted.

The notations of J-Flow diagram are shown in Fig. 7.12.

1497.6 J-Flow

F
ig

.
7
.1

1

T
h
e

lo
g
ic

 d
ia

g
ra

m
 o

f
a

co
m

p
le

x
 p

ro
g
ra

m
 m

o
d
u
le

 s
h
o
w

n
 w

it
h
 M

C
/D

C
 t

es
t

co
v
er

ag
e

an
al

y
si

s
re

su
lt

150 7 NSE Software Engineering Visualization Paradigm

Fig. 7.12 J-Flow notations

1517.6 J-Flow

Fig. 7.12 (continued)

Fig. 7.12 (continued)

1537.7 Entire Software Life Cycle Visualization with NSE

Fig. 7.13 Sample traditional control flow diagrams (http://www.codeswat.com/cswat/fc4vb/

images/highexit.jpg)

For easy comparison, some traditional control flow diagrams are shown in

Figs. 7.13 and 7.14.

Two sample J-Flow diagrams are shown in Figs. 7.15 and 7.16.

Another application example representing the control flow of a complex

program model is shown in Fig. 7.17.

Interactive and traceable are the important features of the J-Flow diagram that

are particularly useful for software testing.

7.7 Entire Software Life Cycle Visualization with NSE

With NSE the entire development process of a software product is visible from the

first step in the software requirement development phase down to the final step in

the software maintenance phase as shown in Fig. 7.18.

http://www.fujaba.de/
http://www.fujaba.de/

154 7 NSE Software Engineering Visualization Paradigm

Fig. 7.14 Another traditional control flow diagram. (http://www.codeswat.com/cswat/fc4cs/

images/highexit.jpg)

1557.8 Rich Options for Generating 3J Graphics

Fig. 7.15 A sample J-Flow diagram shown with the program tree and the test coverage analysis

result

The charts/diagrams are generated in two ways: (a) in the requirement develop-

ment phase and the design phase through dummy programming using dummy

modules, each one of which may have an empty body or only some function call

statements without detailed logic – so that the dummy programs are very easy to

write for any programmer without extra training; (b) in lower software development

phases, the charts/diagrams are generated from the source code through forward or

reverse engineering.

7.8 Rich Options for Generating 3J Graphics

There are rich options for generating 3J graphics.

7.8.1 For J-Chart Generation

The interface of a J-Chart generator (Panorama++ OO-Browser) is shown in

Fig. 7.19 with options for selecting the type of J-Chart and the related information

to be shown together such as the Cyclomatic complexity with or without counting

156 7 NSE Software Engineering Visualization Paradigm

Fig. 7.16 A sample J-Flow diagram showing a special path with the most untested elements being

highlighted and its execution conditions being extracted for semiautomated test case design

the “case” statement, the accumulated or last-run test coverage measurement result,

the incremental coding/unit-testing order, etc.

Within a J-Chart, there is a detailed menu to provide more options for users to

select as shown in Fig. 7.20.

From each module box, there is a pull-down menu for choosing the related

operations as shown in Fig. 7.21.

Figure 7.22 shows the chart printing options – in general, there is no hard copy of a

J-Chart being stored in the hard disk or the computer memory, because it virtually exists

for greatly saving space, unless users want to save it or print it out for documentation,

Web page design, or project presentation without using the NSE support platforms.

A sample output of a J-Chart showing the call graph of the cal example with test

coverage measurement result is shown in Fig. 7.23 (where the size of the original

output cal.ps in postscript format is about 19.9 KB, the size of the cps.pdf trans-

ferred by Adobe tool is about 13.1 KB with two pages – a big software may consists

of hundred or more pages for making the output visible, the size of Fig. 7.23 after

merging the two pages to one TIFF file is about 99.9 KB).

1577.8 Rich Options for Generating 3J Graphics

F
ig

.
7
.1

7

T
h
e

co
n
tr

o
l

fl
o
w

 o
f

a
co

m
p
le

x
 p

ro
g
ra

m
 m

o
d
u
le

 s
h
o
w

n
 i

n
 J

-F
lo

w
 d

ia
g
ra

m

158 7 NSE Software Engineering Visualization Paradigm

Fig. 7.19 The interface of J-Chart generator

Fig. 7.18 Entire Software Life Cycle Visualization with NSE

1597.8 Rich Options for Generating 3J Graphics

Fig. 7.20 Rich options for J-Chart to show the related information

Fig. 7.21 A pull-down menu with each module box and the usability

160 7 NSE Software Engineering Visualization Paradigm

Fig. 7.22 The chart printing options

7.8.2 For J-Diagram and J-Flow Generation

The interface of a J-Diagram and J-Flow generator (Panorama++ OO-Diagrammer)

is shown in Fig. 7.24 with options for selecting the type of diagram and the related

information to be shown together such as the accumulated or last-run test coverage

measurement result, the holistic program tree for the entire software product

(function cross references), class cross references, system-level and module-level

test coverage summary, Cyclomatic complexity summary, etc.

There are more pull-down menus for selecting related information to show with

the generated diagrams (see Fig. 7.25).

Figure 7.26 shows the “file” part for object search and diagram printing options

(users may select to print the entire diagram or only a part of the diagram high-

lighted by the users).

Figure 7.27 shows the associated click-to-jump facility.

Figure 7.28 shows the associated facility for manually setting the locations for

jumping.

Figure 7.29 shows the associated facility for semiautomatic test case design.

7.9 The Major Features of NSE Software

Visualization Paradigm

The major features of 3J graphics and NSE software visualization paradigm (which

not only can generate 3J graphics but also can generate other software graphics

such as bar charts and ActionPlus diagrams) include

1617.9 The Major Features of NSE Software Visualization Paradigm

F
ig

.
7
.2

3

A
 s

am
p
le

 o
u
tp

u
t

o
f

J-
C

h
ar

t
sh

o
w

in
g
 t

h
e

ca
ll

 g
ra

p
h
 o

f
th

e
ca

l
ex

am
p
le

 w
it

h
 t

es
t

co
v
er

ag
e

d
at

a

162 7 NSE Software Engineering Visualization Paradigm

Fig. 7.24 The interface of a J-Diagram generator

 1. Based on nonlinear thinking and complexity science

 The NSE software visualization paradigm complies with the essential principles of

complexity science, particularly the nonlinearity principle and the holism principle.

 2. Holistic

 The NSE software visualization paradigm generates entire charts/diagrams of a

software product to show both the overview of the structure of the product and

the detailed logic or control flow for an entire product and each file/class/func-

tion, including

(a) The function call graph of the entire software system

(b) The class inheritance chart of the entire software system

(c) The class and independent function relation chart of the entire software system

(d) The program tree of the entire software system

(e) The overall MC/DC test coverage measurement result of the entire software

system

(f) The overall quality measurement result shown in Kiviat diagram

(g) The overall performance measurement result of the entire software system

(h) The overall Cyclomatic complexity measurement result of the entire software

system

(i) The logic diagram of the entire software system

(j) The control flow diagram of the entire software system

(k) The overall version comparison result shown in J-Chart with unchanged

modules shown in blue, changed modules in red, deleted modules in brown,

and added modules in green (originally on screen in color and not black and

white).

1637.9 The Major Features of NSE Software Visualization Paradigm

Fig. 7.25 More options to be chosen for showing the related information with the diagram

164 7 NSE Software Engineering Visualization Paradigm

Fig. 7.26 Options for object search and printing

Fig. 7.27 Associated click-to-jump facility

1657.9 The Major Features of NSE Software Visualization Paradigm

Fig. 7.28 Associated facility for manually setting the locations for jumping

 3. Automatic

 With the NSE software visualization paradigm all system-level, file-level, and

module-level charts and diagrams are generated automatically from the dummy

programming source code (using dummy modules with empty bodies or only

some function call statements) or the regular program source code.

 4. Structured without size limitation

 All the 3J graphics generated are structured without size limitation, and can be

used to graphically represent very big software products.

 5. Easy to update

 After the dummy programs or the regular programs are modified, the NSE visu-

alization paradigm will rebuild the database to automatically update the 3J

graphics.

 6. Shown with detailed information

 The generated 3J graphics can be shown with detailed information such as the

code test coverage analysis result.

166 7 NSE Software Engineering Visualization Paradigm

Fig. 7.29 The associated facility for semiautomatic test case design

 7. Independent from the source code writing style

 Let us consider the following two different writing styles a and style b:

 The corresponding J-Diagrams show the same logic for writing style a and writ-

ing style b (see Fig. 7.30).

 8. Interactive

 The generated charts and diagrams are interactive – the charts and diagrams

themselves become the interfaces to accept users’ commands. Figure 7.31

shows how a user can select a module as the new root to get the sub call

graph.

 9. Traceable

 The generated charts and diagrams are traceable from a module to trace

the related modules calling and called by it, or from a module box to trace the

detailed logic diagram or control flow diagram, or from a function call state-

ment to the called function body, or from a class to the base classes, or from a

#include statement to the included source file, etc., to support semiautomated

software inspection and review. An application example is shown in Fig. 7.32.

1677.9 The Major Features of NSE Software Visualization Paradigm

 10. Accurate – consistent with the source code

 “To keep documentation maintained, it is crucial that it be incorporated in the

source program, rather than kept as a separate document” [Bro95-p249]. The

generated charts and diagrams are accurate to the source code – when the source

code is modified, all charts and diagrams can be automatically updated after

rebuilding the database automatically.

 11. Precise

 The NSE software visualization paradigm generates charts and diagrams pre-

cisely, such that when a logic diagram is used to show the result of test coverage

measurement of the source code, the generated logic diagram can highlight

each untested branch and each untested condition combination precisely as

shown in Fig. 7.33.

 12. Consistent among all related charts and diagrams

 All charts and diagrams are generated from the same simple databases with

several Hash tables only to keep consistency among them even if the formats

are different.

 13. Linkable automatically

 A module box in a generated call graph or a node of the generated program tree

can be automatically linked to the detailed logic diagram or control flow diagram.

168 7 NSE Software Engineering Visualization Paradigm

An application example linking a module box in a call graph to the logic dia-

gram is shown in Fig. 7.34 with the test coverage analysis result.

 14. Convertible – See Fig. 7.35 to convert a J-Diagram to a J-Flow or ActionPlus

diagram.

 15. Useful for software visualization and the support of incremental software

development – see Fig. 7.36.

 16. Virtual

 The holistic charts and diagrams are generated dynamically from the database

and shown within a Window no more or less, when a chart or diagram is

needed to move, a new one will be regenerated dynamically without really

moving the chart or diagram, so that the required time for tracing a diagram

from block 10 to block 10,000 will be the same as that for tracing it from block

10 to block 20, but the user will still feel that the entire chart/diagram exists.

In fact, with NSE there is no real holistic chart or diagram stored in the mem-

ory or the hard disk – they are dynamically generated virtually to greatly

reduce the required space (only needing about 1/100 of the space required by

a traditional approach with hard copies stored in memory or hard disk), and

speed up the graphic display in about 1,000 times faster compared with the

old version of the Panorama product with which hard copies of the charts or

diagrams are stored in a disk or the memory of a computer. As shown in

Fig. 7.30 Source code writing style-independent logic diagramming

Fig. 7.31 An interaction example for getting a sub call graph

Fig. 7.32 Various traceabilities established with J-Diagram for semiautomated inspection

170 7 NSE Software Engineering Visualization Paradigm

Fig. 7.37, a GNU bison program version 1.24 is used for comparing the space

needed in regular approach and the virtual approach: there are 10,932 lines of

the source code with 34 files, and the size of the source code is 349 KB, but the

size of the built database is only 143 KB, less than ½ of the size of the source

code.

 But as shown in Fig. 7.38, with the small database, a call graph showing the

Cyclomatic complexity measurement result with 169 functions can be dynami-

cally generated virtually.

 For storing the call graph in postscript format using traditional approach, it

requires 795 KB space as shown in Fig. 7.39.

Fig. 7.33 Precise test coverage analysis and the result display graphically

Fig. 7.34 An application example linking a module box in a call graph to the logic diagram

shown with MC/DC test coverage analysis result.

1717.9 The Major Features of NSE Software Visualization Paradigm

Fig. 7.35 An example of converting a J-Diagram to a J-Flow diagram

Fig. 7.36 Assigning bottom-up order for incremental software development, including incremen-

tal unit coding and unit testing

172 7 NSE Software Engineering Visualization Paradigm

Fig. 7.37 The size comparison between the source code and the built database

So storing the following listed charts and diagrams in postscript format will need

the space more than 100 times of the size of the source code:

 The system-level charts/diagrams

(a) The function call graph of the entire software system

(b) The class inheritance chart of the entire software system

(c) The class and independent function relation chart of the entire software system

(d) The program tree of the entire software system

1737.9 The Major Features of NSE Software Visualization Paradigm

Fig. 7.37 (continued)

174 7 NSE Software Engineering Visualization Paradigm

Fig. 7.37 (continued)

1757.9 The Major Features of NSE Software Visualization Paradigm

Fig. 7.39 The size of the chart stored in postscript format

Fig. 7.38 The call graph of bison V1.24 with Cyclomatic complexity measurement result

176 7 NSE Software Engineering Visualization Paradigm

(e) The overall MC/DC test coverage measurement result of the entire software

system

(f) The overall quality measurement result shown in Kiviat diagram

(g) The overall performance measurement result of the entire software system

(h) The overall Cyclomatic complexity measurement result of the entire soft-

ware system

(i) The logic diagram of the entire software system

(j) The control flow diagram of the entire software system

Fig. 7.40 A source code module with defects

Fig. 7.41 An error message given by the system without showing the error location

1777.9 The Major Features of NSE Software Visualization Paradigm

(k) The static and dynamic analysis result of the entire software system

(l) The overall version comparison result shown in J-Chart with unchanged

modules shown in blue, changed modules in red, deleted modules in brown,

and added modules in green.

Plus the file-level charts/diagrams, and the module-level charts/diagrams.

 17. Complete

 NSE software engineering visualization paradigm completely support:

(a) Visualization of the entire software engineering lifecycle

•฀ Visualization for requirements engineering – See Fig. 7.43 for an

application example of functional decomposition of functional require-

ments in the first step.

•฀ Visualization for design engineering – See Fig. 7.44 for an applica-

tion example of a top-down software system design.

•฀ Visualization for coding engineering – See Fig. 7.34 for an applica-

tion example to assign bottom-up incremental coding orders.

Fig. 7.42 The system debugger can only show the location of the object code which is not very

useful

Fig. 7.43 When it is executed under NSE, an error message is given with the detailed source code

location (line 133)

178 7 NSE Software Engineering Visualization Paradigm

•฀ Visualization for software inspection – See Fig. 7.30 for an application

example to establish various traceabilities for code inspection.

•฀ Visualization for software testing – See Fig. 7.47 for an application

example of MC/DC test coverage analysis.

•฀ Visualization for software maintenance – See Figs. 7.47 and 7.48 for

safe implementation of requirement changes or code modifications.

(b) Visualization of software architectures – See Fig. 7.5 for a program

structure (function call graph), Fig. 7.15 for the program tree, and Fig. 7.41

for the data (class) structure of a program.

Fig. 7.44 Visually locating the error location in the control flow of the source code module where

an “EXIT” string has been added to indicate the unexpected program termination location in the

source code

Fig. 7.45 An application example for requirement elicitation/gathering

1797.9 The Major Features of NSE Software Visualization Paradigm

(c) Visualization of source code – See Fig. 7.11 for the detailed logic diagram

of a source code module (shown with untested branches and conditions

highlighted), and Fig. 7.15 for the control flow diagram of a source code

module (shown with the untested branches and conditions highlighted).

(d) Visualization in reverse engineering – See Fig. 7.29 for the call graph

and sub call graph in reverse engineering, and Fig. 7.28 for the logic dia-

gram of a source code module shown with a source code writing style-

independent way.

(e) Dynamic program behavior visualization – See Fig. 7.32 for overall

MC/DC test coverage measurement result and the detailed test coverage

result of a source code module with the untested branches and conditions

highlighted, and Fig. 7.45 in Sect. 7.9 for the overall performance mea-

surement result with the branch execution frequency of a module indicated

in J-Flow diagram.

(f) Integration of visualization tools in the software engineering tool chain

 The NSE software engineering paradigm is integrated into the NSE soft-

ware engineering paradigm and the support platform, Panorama++.

(g) Visualization for software debugging – see Figs. 7.40–7.44:

 After compilation and execution of the program directly without using

NSE tools, the system shows an error message without detailed informa-

tion (see Fig. 7.41):

Fig. 7.46 A top-down system design process shown graphically through dummy programming

and virtual diagramming

180 7 NSE Software Engineering Visualization Paradigm

 Debugging can also be performed visually with the NSE software engi-

neering paradigm as shown in Fig. 7.44.

7.10 Applications

The NSE Software Visualization Paradigm can be applied in the entire software

development process to make the software product much easier to understand, test,

and maintain:

Fig. 7.47 An example of J-Chart shown with some related information

1817.10 Applications

 (a) Making the entire software development process visible – See Fig. 7.5 for

an overview of the structure of a complex software product shown with the

Cyclomatic complexity measurement result, Fig. 7.9 for viewing the detailed

program logic of a complex module and the related information, Fig. 7.20 for

getting many overall program measurement results including the performance

Fig. 7.48 Class test coverage analysis result

Fig. 7.49 The MC/DC test coverage measurement result shown in J-Chart and J-Diagram

182 7 NSE Software Engineering Visualization Paradigm

measurement, the Cyclomatic complexity measurement, the test coverage

 measurement, the module size, etc., Fig. 7.31 for viewing various sub call

graphs using any module box as the root, Fig. 7.36 for getting the information

about how the software product is organized, Fig. 7.45 shows the application in

the first step for requirement elicitation/gathering using the innovated HAETVE

technique through dummy programming and J-Chart generation – this example

shows the first Actor’s first action, and Fig. 7.46 for a top-down system

design.

 (b) Making a complex software product much easier to understand – See

Fig. 7.15 for viewing the overall program tree and the detailed control flow of

each module, Fig. 7.21 for viewing a call graph and the associated pull-down

menu to view interesting information, Fig 7.30 for viewing the detailed pro-

gram logic of a module diagrammed in a way independent from the source code

writing style for easily understanding the module written by others, and

Fig. 7.47 for getting more information from a call graph.

 (c) Making the diagrammed source code traceable for semiautomated code

inspection, review, and walk though – See Fig. 7.10 for tracing a function call

statement to the called function body, Fig. 7.15 for tracing a module from the

related program tree to the control flow diagram of the module, Fig. 7.21 for

tracing a module from a call graph to its logic diagram, Fig. 7.27 to tracing a

function with all the locations of the function call statements, and Fig. 7.34 for

tracing a module with the test coverage measurement result to view the detailed

logic diagram where untested branches and conditions are highlighted in small

black boxes.

 (d) Making a software product much easier to test – See Fig. 7.5 for test plan-

ning, Fig. 7.15 for test coverage analysis result, Fig. 7.16 for efficient test case

design, and Fig. 7.48 for getting the class test coverage analysis result (note: a

class cannot be directly executed, so that the test coverage analysis result is

obtained from its instances), and Fig. 7.49 for overall and detailed MC/DC test

coverage analysis result.

 (e) Making a software product much easier to maintain – See Fig. 7.50 to trace

a module to be modified to find how many requirements are related (in this

example, two requirements are related so that the modification should satisfy

both), and Fig. 7.51 to trace the module to find what other modules may be

affected to prevent the side effects for the modification.

(f) Locating the performance bottleneck easily – see Fig. 7.52.

 (g) Finding logic defects better – Programs written in textual format are hard to

read and understand. A logic defect is not easy to find because a program with

logic defects may run without providing an error message, but the results are

often incorrect. With the NSE visualization paradigm, logic defects can be

found through program logic analysis and diagramming to compare to the pro-

gram algorithm. An application example is shown from Figs. 7.53–7.55.

 (h) Determining runtime error locations visually – see Figs. 7.40–7.44.

(i) Used for multilevel version comparison – The NSE visualization paradigm can

be used to compare two versions of an entire program holistically in system level,

file level, module level, and statement level as shown from Figs. 7.56–7.60.

1837.10 Applications

(j) Used to efficiently handle the issues of complexity – NSE software visualiza-

tion paradigm can be used to efficiently handle the complexity issue because

the “Complexity is levels” [Bro95-p211].

 According to complexity science, a software system complexity includes:

Formulaic complexity:•฀

Description complexity – The NSE software visualization paradigm –

makes it possible to graphically describe a software system with the

source code, including the program structure (see Fig. 7.5), the program

logic of an entire software product (see Figs. 7.9–7.11), and the control

flow of an entire software product (see Figs. 7.15 and 7.17) with various

traceabilities established automatically.

Generative complexity – working with the NSE HAETVE requirement –

development support technique, the NSE software visualization para-

digm supports the NSE software development methodology based on

Generative Holism to form and display the whole of a software system

first through dummy programming, then assigns incremental coding and

unit-testing order to support the system growing up incrementally (see

Figs. 7.36, 7.38, 7.45, and 7.46).

Computational complexity – The NSE software visualization paradigm –

makes the program algorithms much easier to understand through path

analysis and logic diagram and control flow diagram generation as

shown in Figs. 7.53–7.55.

Fig. 7.50 Tracing a module to be modified to see how many requirements are related (in this

example, two requirements are related which should all be satisfied in the module modification)

184 7 NSE Software Engineering Visualization Paradigm

Fig. 7.51 Tracing a module to be modified to the related modules

1857.10 Applications

Fig. 7.53 Two similar versions of a program module with one having a logic defect

Fig. 7.52 A J-Chart showing the performance analysis result with a J-Flow diagram showing the

branch execution frequency for locating the performance bottleneck easily

186 7 NSE Software Engineering Visualization Paradigm

Fig. 7.54 The control flow diagrams shown in J-Flow are different clearly

1877.10 Applications

Fig. 7.55 The logic diagrams shown in J-Diagram can be used to find the logic defect easily

188 7 NSE Software Engineering Visualization Paradigm

Compositional complexity:•฀

Constitutional complexity – The NSE software visualization paradigm –

helps users to handle constitutional complexity in many ways. For

instance, to a class, the NSE software visualization paradigm performs

the structure analysis, the logic analysis, the data member analysis, the

function member analysis, the control flow analysis, etc., and graphically

represents the analysis results as shown in Fig. 7.61.

Taxonomical complexity – working with NSE static and dynamic pro- –

gram measurement tools, the NSE visualization paradigm graphically

shows the measurement results as shown in Figs 7.62–7.64.

Structural complexity:•฀

Organizational complexity – The NSE software visualization paradigm –

helps users understand how a software product organized including the

structure analysis, the file system analysis, the data (variable) analysis,

the program logic analysis, and the control flow analysis.

Hierarchical complexity – The NSE software visualization paradigm –

helps users to understand the system hierarchy by generating the

system interactive and traceable call graph, class inheritance chart,

program tree, etc.

Fig. 7.56 The system-level version comparison result for a GNU bison program (V1.24 and

V1.25)

1897.10 Applications

Functional complexity:•฀

Operational complexity – NSE software visualization paradigm makes –

the Operation process visible, recordable, and easy to playback through

backward traceability from the system control diagram shown in J-Flow

diagram notation, including dynamically running a third-party compli-

cated program using a batch file as shown in Fig. 7.63.

Function and rule complexity – Working with HAETVE requirement –

development technique, the NSE software visualization paradigm helps

users to decompose the function of the functional requirements and make

Fig. 7.57 The Modules deleted from version A to version B

190 7 NSE Software Engineering Visualization Paradigm

Fig. 7.58 The new modules added to version B

the decomposition visible as shown in Figs. 7.45 and 7.46 and represents

function cross relationships graphically by generating the function call

graph shown in J-Chart notations.

 (k) Used to efficiently handle the issue of software invisibility – The NSE soft-

ware visualization paradigm makes the entire software development process

and the entire system visible from the first step (as shown in Figs. 7.45 and 7.46)

down to the maintenance process (as shown in Figs. 7.50, 7.51, 7.56–7.60). The

NSE software visualization paradigm represents software information graphi-

cally in many ways as shown in Fig. 7.64.

1917.11 Self-Documenting

Fig. 7.59 The modules modified in version B

7.11 Self-Documenting

For easy maintenance, many kinds of documents can be merged into the source

code such as the cross references. Sometimes, when there is a need to use some-

thing like the Sequence Diagram to expose time ordering of events/messages, we

can describe the same thing within a program comment such as the use of a

formatted table shown in C/C++ as follows:

192 7 NSE Software Engineering Visualization Paradigm

Fig. 7.60 The detailed difference between a modified module

Fig. 7.61 Class analysis and the analysis result display shown in several ways

1937.11 Self-Documenting

Fig. 7.62 The results of program static and dynamic measurement

Fig. 7.63 Directly running a third-party program through backward traceability from a code

branch shown in J-Flow diagram

194 7 NSE Software Engineering Visualization Paradigm

F
ig

.
7
.6

4

T
h
e

N
S

E
 v

is
u
al

iz
at

io
n
 p

ar
ad

ig
m

 r
ep

re
se

n
ts

 a
lm

o
st

 a
ll

 i
n
fo

rm
at

io
n
 o

f
a

so
ft

w
ar

e
p
ro

d
u
ct

 i
n
 g

ra
p
h
ic

s
–
 (

a
)

m
o
d
u
le

-l
ev

el
 r

el
at

io
n
sh

ip
 c

h
ar

t,
 (

b
)

lo
g
ic

d
ia

g
ra

m
 w

it
h
 s

ta
te

m
en

t-
le

v
el

 c
ro

ss
 r

ef
er

en
ce

 (
ca

ll
ed

 b
y
 a

n
d
 c

al
li

n
g
 t

o
),

 (
c)

 c
o
n
tr

o
l

fl
o
w

 d
ia

g
ra

m
 (

u
se

d
 f

o
r

co
m

p
le

x
it

y
 a

n
al

y
si

s
an

d
 c

o
n
tr

o
l

fl
o
w

 a
n
al

y
si

s)
,

(d
)

A
ct

io
n
P

lu
s

d
ia

g
ra

m
 (

u
se

d
 f

o
r

cl
as

s
at

tr
ib

u
te

 a
n
al

y
si

s,
 e

tc
.)

,
(e

)
b
ar

 c
h
ar

t
u
se

d
 f

o
r

sh
o
w

in
g
 t

es
t

co
v
er

ag
e

an
al

y
si

s,
 e

tc
.)

,
(f

)
a

u
n
te

st
ed

 p
at

h
 h

ig
h
li

g
h
te

d
 w

it
h

th
e

te
st

 c
o
n
d
it

io
n
s,

 (
g
)

K
iv

ia
t

d
ia

g
ra

m
 f

o
r

q
u
al

it
y
 m

ea
su

re
m

en
t

o
f

an
 e

n
ti

re
 p

ro
d
u
ct

 o
r

ea
ch

 i
n
d
iv

id
u
al

 m
o
d
u
le

,
(h

)
co

m
p
le

x
it

y
 a

n
al

y
si

s
re

su
lt

 c
h
ar

t
o
f

cl
as

se
s

o
r

fu
n
ct

io
n
s,

 (
i)

 t
h
e

si
ze

 m
ea

su
re

m
en

t
re

p
o
rt

 t
ab

le
 o

f
so

u
rc

e
fi

le
s,

 (
j)

 a
 p

ro
g
ra

m
 t

re
e

(u
n
te

st
ed

 m
o
d
u
le

s
ar

e
h
ig

h
li

g
h
te

d
 i

n
 s

m
al

l
b
la

ck
 b

o
x
es

)

1957.12 Summary

7.12 Summary

“One Picture Is Worth Ten Thousand Words.” – a holistic, interactive, colorful, and

traceable chart/diagram is more useful in the description of a complex software

product. But unfortunately, the traditional software visualization paradigm works

with linear process models complying with the superposition principle that the

whole of a system is the sum of its parts, so that almost all visualization tasks/

activities are performed linearly, partially, and locally, mainly only making the

modeling process visible with graphic editors to produce many small pieces of

charts or diagrams which are not interactive and not traceable in most cases, rather

than complete, interactive, and traceable ones for graphically representing an entire

software product. Even if a complete chart/diagram can be obtained by using a few

diagramming tools, it is still useless because without automated and self-maintain-

able traceability and the capability to highlight an element with all of the related

elements, there are too many connection lines making the chart/diagram hard to

view and hard to understand.

The NSE software visualization paradigm is based on complexity science, com-

plying with the Nonlinearity principle and the Holism principle, so that almost all

visualization tasks/activities are performed holistically and globally to automati-

cally generate virtual, interactive, and traceable 3J graphics (J-Chart, J-Diagram,

and J-Flow) innovated to make the entire software development process visible.

The NSE software visualization paradigm makes a software product much easier to

understand, test, and maintain.

196 7 NSE Software Engineering Visualization Paradigm

7.13 Points and Questions to Ponder

 (a) What are the major differences between the NSE software visualization para-

digm and the traditional software visualization paradigm?

 (b) What are the major benefits of virtually existing charts and diagrams without

storing hard copies in the hard disk and the memory of a computer?

 (c) Point out the reasons why a system-level call graph or diagram should be made

interactive and traceable.

 (d) Write three small programs for generating the following three charts separately

through dummy programming, then compile them and run the executable pro-

grams to correct possible defects.

7.14 Further Reading and Information Source

Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, Chap 10.

Xiong J (2009) Tutorial. A complete revolution in software engineering based on

complexity science. In: WORLDCOMP’09, Las Vegas, July 13–17, 2009.

197References

Xiong J, Xiong J (2009) A complete revolution in software engineering based on

complexity science. In: WORLDCOMP’09 – SERP (Software Engineering

Research and Practice 2009), pp 109–115.

References

[Bro95-p211] Brooks FP Jr (1995) The mythical man-month. Addison Wesley, Reading, p 211

[Bro95-p249] Brooks FP Jr (1995) The mythical man-month. Addison Wesley, Reading, p 249

199J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_8,

© Springer Science+Business Media, LLC 2011

There has to be upstream movement… experience and ideas

from each downstream part of the construction process must

leap upstream, sometimes more than one stage, and affect the

upstream activity.

Frederick P. Brooks, Jr.

This chapter describes an important component of the NSE (Nonlinear Software

Engineering) paradigm – the NSE process model.

Software process is a road map for software managers and engineers to follow.

A software process model defines a distinct set of activities, actions, tasks, mile-

stones, and work products for developing and maintaining a software product.

The NSE Process Model is different from the old-established ones based on

linear thinking and simplistic science. It is nonlinear, created through a paradigm-

shift framework, the Five-Dimension Synthesis Method (FDS) proposed by me as

shown in Fig. 8.1.

As shown in Fig. 8.1, the new process model is created by complying with the

essential principles of complexity science, particularly the Nonlinearity principle

and the Holism principle. Of course, a waterfall-like process model will not be created

because it does not comply with the Nonlinearity principle and the Holism principle

of complexity science.

8.1 Some Experts’ Expectations

Many software engineering experts not only point out the problems existing with

the old-established software engineering paradigm but also clearly express their

expectations in software engineering innovation.

Professor Roger S. Pressman, the author of the book, “Software Engineering

A Practitioner’s Approach”:

Originally... software engineering was approached as a linear activity in which a series of

sequential steps were applied in order to solve problems. Yet, linear approaches to software

development run counter to the way in which most systems are actually built. In reality,

Chapter 8

NSE Process Model

200 8 NSE Process Model

complex systems evolve iteratively, even incrementally. It is for this reason that a large

segment of the software engineering community is moving toward evolutionary models of

software development. [Pre05-p864]

Frederick P. Brooks Jr., the author of the book, “The Mythical Man-Month”:
There has to be upstream movement… experience and ideas from each downstream part

of the construction process must leap upstream, sometimes more than one stage, and

affect the upstream activity. Designing the implementation will show that some architec-

tures cripple performance; so the architecture has to be reworked. Coding the realization

will show some functions to balloon space requirements; so there may have to be

changes to architecture and implementation. One may well, therefore, iterate through

two or more architecture-implementation design cycles before realizing anything as

code. [Bro95-p122]

After all, software engineering, like chemical engineering, is concerned with the nonlinear

problems of scaling up into industrial-scale process, and like industrial engineering, it is

permanently confounded by the complexities of human behavior. [Bro95-p288]

The fundamental problem with program maintenance is that fixing a defect has a substantial

(20-50 percent) chance of introducing another. So the whole process is two steps forward

and one step back… Clearly, methods of designing programs so as to eliminate or at least

illuminate side effects can have an immense payoff in maintenance costs. So can methods

of implementing designs with fewer people, fewer interface, and hence fewer bugs.

[Bro95-p122]

Fig. 8.1 Redefining the software process model by complying with the essential principles of

complexity science through the proposed paradigm-shift framework, FDS

2018.2 All of the Existing Software Engineering Process Models Are Outdated

Franco Zambonelli, H. Van Dyke Parunak, the authors of the paper “Signs of a

Revolution in Computer Science and Software Engineering”:

We are on the edge of a revolutionary shift of paradigm, pioneered by the multiagent

systems community, and likely to change our very attitudes in software systems modeling

and engineering. [Zam08]

8.2 All of the Existing Software Engineering Process

Models Are Outdated

As described in Sect. 2.5, the existing software engineering process models are out

of date, no matter if they are waterfall style models, incremental development mod-

els, iterative development models, or a new one recommended by Alistair Cockburn

to combine both incremental and iterative development together [Coc08],

because they are linear models with only one track forward in one direction without

upstream movement at all, like one way traffic with only one track as shown in

Fig. 8.2, but what we really need is a process model incrementally supporting

 bidirectional iteration with multiple tracks through various traceabilities, like

 two-way traffic with multiple tracks as shown in Fig. 8.3.

In fact, those existing process models themselves are outcomes of linear

thinking, reductionism, and the superposition principle. It is clear that those

process models handle a software product as a linear system like a machine

which can be assembled to comply with the superposition principle that the

whole of a software system is the sum of its parts. But it violates the Holism

principle of complexity science that the whole of a complex system is greater

than the sum of its parts – the characteristics and behavior emerge from the

interaction of its parts. Based on the Generative Holism principle of

Fig. 8.2 One Way Traffic with only one track

202 8 NSE Process Model

 complexity science, the whole of a complex system should exist first as an

embryo, then it “grows up” with its components as shown in Fig. 1.63 and

Fig. 1.64 shown in Chap. 1.

8.3 Outline of the Revolutionary Solution Offered with NSE

With NSE, a revolutionary solution is offered – the NSE process model:

 (a) The NSE process model is based on complexity science, complying with the

essential principles of complexity science, particularly the Nonlinearity principle

and the Holism principle.

 (b) The NSE process model is supported by many new software engineering

techniques.

 (c) The NSE software process model has been commercially implemented with the

support platform Panorama++ – it not only indicates what needs to be done but

also provides models/techniques and tools to help users solve the issue of how

to do it better.

 (d) The NSE process model not only supports new software product development

but also supports software product maintenance which often takes 75% of the

total effort and total cost for product development with the old-established

software engineering paradigm.

 (e) Almost all of the tools developed to support the NSE process model are dummy

ones, easy to understand and use.

 (f) The NSE process model is established with the goal to solve all essential

problems (complexity, changeability, invisibility, and conformity) and all criti-

cal problems (low quality and productivity, and high cost and risk) existing

with today’s software development.

Fig. 8.3 Two Way Traffic with multiple tracks

2038.4 The Driving Forces and The Support Techniques

8.4 The Driving Forces and The Support Techniques

The driving force for NSE and its process model is complexity science, applied to

solve the essential software engineering difficulties defined by Brooks – complexity,

conformity, changeability, and invisibility, plus testability, reliability, traceability,

and maintainability which we added.

It is established by complying with the essential principles of complexity science

described in Chap. 4, including the Nonlinearity principle, the Holism principle (that

a whole is greater than the sum of its parts), the Dynamics principle, the Self-

organization principle, the Self-adaptation principle, the Openness principle,

the Initial Condition Sensitivity principle, the Sensitivity to Change principle, the

Complexity Arises From Simple Rules principle, etc. to develop the required new

techniques and tools to efficiently slay Fred Brooks’ software engineering werewolf

as shown in Table 8.1. A corresponding mapping between the innovated techniques

described in Chap. 6 and the targeted Issues is shown in Fig. 8.4.

(continued)

Table 8.1 Issues and the solution technique mapping

Issue Solution Techniques

Complexity 1. Synthesis Design and Incremental Implementation/Iteration/Integration

2. Holistic, Actor–Action and Event-Response driven, Traceable, Visual,

and Executable Approach for Functional Requirement Decomposition

3. Holistic and Dynamic Traceability Technique

4. Holistic and Traceable Diagram Generation Technique

5. Virtual and Traceable Documentation Technique

6. Refactoring Technique with Defect Prevention

Conformity 1. Holistic and Dynamic Traceability Technique

2. Virtual and Traceable Documentation Technique

3. Holistic and Traceable Diagram Generation Technique

Changeability 1. Holistic, Actor–Action and Event-Response driven, Traceable, Visual,

and Executable Approach for Functional Requirement Decomposition

2. Holistic and Dynamic Traceability Technique

3. Comprehensive Software Testing Technique

4. Defect Prevention-Based Quality Assurance Technique

5. Holistic and Traceable Diagram Generation Technique

6. Virtual and Traceable Documentation Technique

7. Holistic and Virtual Version Comparison Technique

Invisibility 1. Holistic and Traceable Diagram Generation Technique

2. Virtual and Traceable Documentation Technique

3. Holistic and Dynamic Traceability Technique

Testability 1. Comprehensive Software Testing Technique

2. Holistic and Traceable Diagram Generation Technique

3. Virtual and Traceable Documentation Technique

4. MC/DC Test Coverage Analysis and Graphical Representation

5. Assisted Test Case Design

6. Intelligent Regression Test Case Selection Technique

Reliability 1. Comprehensive Software Testing Technique

2. Defect Prevention-Based Quality Assurance Technique

3. MC/DC Test Coverage Analysis and Graphical Representation

204 8 NSE Process Model

Fig. 8.4 Techniques and the targeted issues

Issue Solution Techniques

Traceability 1. Holistic and Dynamic Traceability Technique

 2. Holistic and Traceable Diagram Generation Technique

 3. Virtual and Traceable documentation technique

Maintainability 1. Holistic and Dynamic Traceability Establishment Technique

 2. Holistic and Traceable Diagram Generation Technique

 3. Virtual and Traceable Documentation Technique

 4. Holistic, Actor–Action and Event-Response driven, Traceable, Visual,

and Executable Approach for Functional Requirement Decomposition

 5. Comprehensive Software Testing Technique

 6. Holistic and Dynamic Traceability Technique

 7. Defect Prevention-Based Quality Assurance Technique

 8. MC/DC Test Coverage Analysis and Graphical Representation

 9. Refactoring Technique with Defect Prevention

10. Assisted Test Case Design

11. Test Case Efficiency Analysis and Test Case Minimization

12. Intelligent Regression Test Case Selection Technique

13. Holistic, Global, and Side-Effect-Prevention Based Software

Maintenance Technique

Table 8.1 (continued)

8.5 The Graphical Representation of the NSE Process Model

The proposed NSE process model (Fig. 8.5) consists of the preprocess part and the

main process part which is supported by a facility for automated and bidirectional

traceability (see Fig. 8.6). Both parts are not really separated but combined together

2058.5 The Graphical Representation of the NSE Process Model

Fig. 8.5 NSE Process Model

206 8 NSE Process Model

Fig. 8.6 The self-maintainable facility for bidirectional traceability

as shown in Fig. 8.5. If a critical problem is found in the main process for the

implementation of a requirement using the solution method selected in the pre-

process, the work flow may go back to the preprocess for the prototyping design

and testing of a new solution method, and so on.

8.5.1 The Objectives of the Preprocess

The objectives of the preprocess are as follows:

 (a) Working closely with the customer to assign priority to the requirements for

better control of the development schedule and the budget.

 (b) Performing prototyping design and evaluation for some unfamiliar require-

ments to reduce project development risk.

 (c) Performing functional decomposition of the functional requirements using the

Holistic, Actor–Action and Event–Response driven, Traceable, Visual, and

Executable technique described in Chap. 7 (see the step 1 of the main process

model for the application examples).

 (d) Working closely with the customer to make a primary version of the require-

ment specification document using standard templates or the NSE requirement

2078.5 The Graphical Representation of the NSE Process Model

specification template (see Appendix A) provided to prevent defects of missing

something.

 (e) Carrying out Synthesis Design of the system using the “Dummy Programming”

technique (through the use of dummy modules) or reverse engineering from an

old software system to complete a dummy system. According to the Generative

Holism Theory of complexity science, the whole of a complex system may not

be “built” from its components but exists (like a human embryo) earlier than its

parts, then “grows up” with its parts (like human eyes). Some real application

examples will be provided in Chap. 10.

 (f) Performing cost estimation based on the necessary prototype design and test

and review, and the functional decomposition of the functional requirements,

and the dummy “whole” system designed.

8.5.2 The Objectives of the Main Process

The objectives of the main process are as follows:

 (a) Implementing the requirements incrementally to make the software system

“grow up” gradually.

 (b) Combining the product development process and the maintenance process

together through bidirectional traceabilities and defect prevention to greatly

reduce the cost and effort spent in software maintenance through side-effect

prevention.

 (c) Combining project management and product development together by

making the project plan and schedule charts and cost charts traceable with

the requirement implementation to avoid budget overuse and schedule

delay.

 (d) Responding to requirement changes in real time with defect prevention through

traceabilities among all artifacts.

 (e) Supporting real-time communication among team members through traceable

project Web sites for distributing development and speeding up the problem-

solving process.

 (f) Making the design documents and the source code traceable to each other.

 (g) Performing dynamic testing in the entire software development lifecycle

(including the requirement development phase and the design phase too) to

prevent defects using the proposed Transparent-box method, which seamlessly

combines functional testing and structural testing together.

 (h) Assure the quality of the product being developed from the first step to the end

through defect prevention and defect propagation prevention with various

bidirectional traceabilities.

 (i) Making it possible to help software organizations double their productivity,

halve their cost, and remove 99–99.99% of the defects in their products.

208 8 NSE Process Model

8.5.3 The Objective of the Support Facility for Automated

and Bidirectional Traceability

The objectives of the support facility for automated and bidirectional traceability

are as follows:

 (a) Helping software developers to prevent side effects in the implementation of

software changes.

 (b) Solving the conformity issue to make the documents and the source code

traceable to each other.

 (c) Removing the problems existing with a man-made Requirement-Traceability

Matrix, which is inaccurate, time consuming, and almost unmaintainable.

This automated traceability facility is self-maintainable: no matter whether the

contents of the documents are changed, or the test cases are changed, or the source

code is changed, after regression testing, the bidirectional traceability will be auto-

matically updated without manual work. For instance, when the source code is

modified, after rerunning the test cases, new Time Tags will be inserted into the test

case scripts and the test coverage database to map them together correspondingly.

8.6 The Major Steps of the Preprocess

The Major Steps of the preprocess are as follows:

Step 1. Start.

Step 2. Work with the customers to sort the initial requirements into several

different classes such as “Critical,” “Essential,” “Needed,” “Better to have,”

“Optional,” and so on, and assign them corresponding priorities to control

the product development plan and the schedule as well as the budget better.

Usually the number of the initial requirements is about half of the final number

of the requirements. With NSE, requirement changes or new requirements

coming from the customers are welcome and responded to in real time to

enhance the customers’ market competition power and catch the best time

for the customers’ product to be available on the market. If necessary, some

noncritical and nonessential functions may be temporarily given up.

Step 3. According to the assigned priorities, take one or a set of requirements to

perform the preprocess (see the following steps).

Step 4. Check whether the requirement(s) are new to the development team to

determine whether risk analysis and prototype design, testing, and evalua-

tion for the requirement(s) are needed. If there is no need to do so, go to

step 14; otherwise go to step 5.

 Step 5. Compare different solution methods, then select the best one according to

the development team’s knowledge.

 Step 6. Perform technology review and risk analysis for the selected solution method.

Step 7. If the selected solution method passes the technology review and risk

analysis, go to step 8; otherwise return to step 5.

2098.6 The Major Steps of the Preprocess

 Step 8. Perform the prototype design and testing or reuse a suitable prototype and

the test cases for the selected solution method.

 Step 9. Provide all of the related material including the prototype design docu-

ments, the source code, and the test cases, as well as the test result to the

customers for them to review.

 Step 10. If the customers are satisfied with the prototype and the test result for the

selected solution method, go to step 11; otherwise go to step 12.

 Step 11. Save all of the information and make them ready to use for the implemen-

tation of the requirement(s) in the main process; then go to step 14.

 Step 12. Get the customers’ decision whether they want to modify the requirement(s) –

if they want to modify the requirement(s), go to step 13; otherwise return to

step 5.

 Step 13. Perform the requirement modification by the customers, then go to step 5.

 Step 14. Check whether all of the requirements have been handled – if so, go to

step 15; otherwise go to step 3.

 Step 15. After all of the requirements have been handled for the preprocess treat-

ment, work closely with the customer to complete a preliminary version of

the requirement specification using a standard template provided inter-

nally or the NSE requirement specification template (see Appendix A) to

prevent something missing (more detailed requirement specifications

should be completed incrementally in the main process); organize the

requirement specifications and the related documents hierarchically (even

if some documents have not been really designed) with inherited book-

marks as shown in Table 8.2 or meaningful bookmarks (so that when a

Table 8.2 Sample document hierarchy with inherited bookmarks

210 8 NSE Process Model

Fig. 8.7 Document directory hierarchy design through dummy programming: (a) An application

example; (b) the document subdirectories of requirement r3 highlighted

document is traced, the document will be shown from the position indicated

by the corresponding bookmark), or organize the document directories as

shown in Fig. 8.7 with a “Bookmark Information List” file in each directory

to indicate three elements in each line, including (1) the bookmark name;

(2) the corresponding document name; and (3) the file type (the source

2118.6 The Major Steps of the Preprocess

Fig. 8.8 Decomposition of functional requirements of a sample project (a) and defect removal

through dummy programming (b)

code of the dummy program is listed in Appendix A), then perform the

decomposition of the functional requirements and the required functions

for nonfunctional requirements and defect removal through dummy

programming (see Fig. 8.8) using the HAETVE technique introduced in

Chap. 11 and the tools; perform top-down system decomposition as shown

in Fig. 8.9, and complete the dummy system hierarchy and defect removal

(through dummy programming too) according to the prototype design

212 8 NSE Process Model

Fig. 8.10 Sample dummy system design and defect removal through dummy programming according

to the result of prototyping and the result of the functional decomposition of the requirements

Fig. 8.9 Software system hierarchy design through dummy programming

2138.7 The Major Steps of the Main Process

result and the result of the functional decomposition of the requirements

as shown in Fig. 8.10; finally make a corresponding project development

plan and cost estimation table, and complete the Project Feasibility Report.

8.7 The Major Steps of the Main Process

The major steps of the main process are as follows:

Step 1: According to the project development plan, the priority assigned to the

requirements, and the “whole” dummy system designed in the preprocess,

take one or a set of requirements to implement visually. It is recom-

mended to select the critical and essential requirements (about 20% of the

initial requirements) first to implement and form an essential version of

the software product (which should be executable) through incremental

integration development which is different from traditional

 incremental development as shown in Figs. 1.2 and 1.3. Incremental

integration development means making a software system grow up

incrementally – each time only a new module will be coded and tested to

form a new executable version as shown in Fig. 1.4.

The NSE process model supports the defect prevention and traceability

driven software development method (see Chap. 10 for details) through the

following activities to be performed by the development team working

closely with the customers:

1. Update the requirement specification to prevent the defects of some-

thing missing.

2. Design the document hierarchy (as shown in Table 8.2) including the

test specification documents and the test case scripts to prevent the

defects of untestable requirements.

3. Check and improve the result of the functional decomposition of the

 functional requirements performed initially in the preprocess to further

remove the defects in the functional decomposition of the functional

requirements using the Holistic, Actor–Action and Event–Response

driven, Traceable, Visual, and Executable approach (see Chap. 11).

4. Use all of the documents related to the prototype design and testing

performed in the preprocess phase to implement the corresponding

requirement(s) according to the approved solution method; if there is a

need to use a new solution method, the new solution method must pass

the preprocess treatment with prototype design and testing and evalua-

tion to prevent the defects coming from unrealizable requirements.

5. If it is possible, reuse approved documents and test cases (test script files)

suitable for the corresponding requirements to reduce the defect rate.

6. If there is a need for the customers to add new requirements after some

partially completed working versions have been delivered to the customers

for review, respond in real time by going back to the preprocess through

214 8 NSE Process Model

the new solution method selection and inspection, prototype design and

testing, customers’ review, and so on if necessary, to prevent the

defects of unrealizable new requirements.

7. If there is a need for the customers to modify some requirements in the

main process phase, respond to it in real time too by implementing

the modified requirements through bidirectional traceability to prevent

the defects coming from the side effects of the modification. If it is

necessary to use a new solution method, go back to the preprocess phase.

8. Realize visual development in the entire software development lifecy-

cle (not only in modeling) to greatly increase the defect removal

rate: according to complexity science, the characteristics and behavior

of a complex system are determined by both the whole and its parts, so

it is needed to use Holistic and Traceable Diagram Generation tech-

nique (see Chap. 7) and mainly the interactive and traceable 3J graph-

ics (J-Chart, J-Diagram, and J-Flow) proposed and implemented by me

to make the entire software development process visible.

9. Perform dynamic testing plus formal inspection and review in the entire

software development lifecycle using traceable documents and traceable

source code to prevent various kinds of defects; even if only the first

one of the requirements is being handled before the beginning of the cor-

responding program design and coding, we should already have a set of

related documents to be checked for consistency, including the objectives

document, the project development plan/schedule, the requirement speci-

fication, the test requirement specification, the prototype design and test

result and the inspection and review reports, and so on, so that we should

design a virtual “main” program and the corresponding test script files

first, then dynamically execute the program with the test scripts using the

Transparent-box testing method (proposed and implemented by me, see

Chap. 16) – It is a very important feature of NSE for ensuring the quality

of a software product in the requirement development phase before the

 corresponding program design and coding using Transparent-box testing

tools dynamically.

 Step 2: Apply the Synthesis Design and Incremental Growing up

(Implementation, Iteration, and Integration) Technique with the

Holistic and Traceable Diagram Generation Technique to further per-

form preliminary design for the selected requirement(s) according to the

detailed requirement specification to improve the corresponding part of

the dummy system obtained in the preprocess phase, then perform formal

inspection and review using traceable documents, and design the corre-

sponding test cases to dynamically test the result of the preliminary

design using the Transparent-box method to prevent inconsistency defects

through bidirectional traceability that is established automatically. After

that, perform detailed design for the selected requirement(s) according to

the result of the preliminary design with formal inspection and review

using traceable documents, and dynamic testing like what was done in the

2158.7 The Major Steps of the Main Process

preliminary design process. For a detailed description on software design

engineering under NSE, see Chap. 12.

Step 3: Apply the Synthesis Design and Incremental Growing up (Imple-

mentation, Iteration, and Integration) Technique to perform incremental

coding: on the generated system decomposition chart (a call graph), highlight

the corresponding key module(s) and the related modules for the selected

requirement(s), then assign an incremental bottom-up coding order to the

modules as shown in Fig. 8.11.

As shown in Fig. 8.12, when we are writing a function call statement to a

called module which has been coded, we can read the diagrammed source

code in another window to know how many parameters are needed, their

types, and their sequence to prevent inconsistency defects between the

module interfaces.

Usually, a logic defect is hard to detect because the program source code

is written in text format, and a program with a logic defect can be executed

without providing error messages but the result is incorrect. For solving

this kind of problem, users may use Panorama++ to generate the control

flow diagram in J-Flow notation, or the logic diagram in J-Diagram

Fig. 8.11 An example of bottom-up ordering for incremental coding

216 8 NSE Process Model

Fig. 8.12 Incremental coding with defect prevention

 notation, to graphically represent the program for finding the logic defects

better. An application example is shown in Fig. 8.13.

If something critical is found in the coding process, go to the upper

phases through backward tracing, or if the solution method does not sat-

isfy the requirement(s), go back to the preprocess again.

Step 4: Perform incremental unit testing with integration testing, and finally system

testing, mainly using the Transparent-box approach to combine functional

and structural testing together with the capability to establish automated

and bidirectional traceability among all documents and the source code for

helping users to remove the inconsistency defects. At the same time, per-

form MC/DC test coverage analysis, performance analysis, memory leak

analysis, and memory usage violation check. According to the incremental

coding and testing order, when we code a module, all modules called by it

must have been coded already so that there is no need to design and use a

stub module to replace a called module – in this way the unit testing also

becomes integration testing with all modules being called together. When a

module being called needs to return some special values, two applicable

approaches are provided in the Appendix C.

If something critical is found in the testing process, treat the situation

as some critical issues found in the coding process.

With the NSE support platform, Panorama++, unit testing can be per-

formed in a semiautomated way through a tool called Panounit whose

features include the following:

1. Semiautomatically designs the corresponding driver program – the

main() function.

2. Automatically put the driver, the program unit being tested, and all

modules called by the program unit together.

2178.7 The Major Steps of the Main Process

Fig. 8.13 Finding out logic defects through graphical representation of the source code

3. If it is retesting for an existing product, Panounit will search all

locations where a value is assigned to a global variable or a static

variable, and lists those values for users to choose.

4. Supports assertion setting and verifying the value in any valid location.

5. Supports semiautomated test case design.

6. Performs MC/DC test coverage analysis and test result display using J-Chart,

J-Diagram, and J-Flow with untested branches and conditions highlighted.

7. Automatically determines the test result – pass or fail.

218 8 NSE Process Model

Fig. 8.13 (continued)

The GUI of Panounit is shown in Fig. 8.14.

In the system testing process, Panorama++ also offers the capability to

capture users’ GUI operations, and plays them back automatically for

 regression testing, and the capability for MC/DC test coverage analysis for

the entire product, plus performance analysis, test case efficiency analysis

2198.7 The Major Steps of the Main Process

Fig. 8.14 The GUI of Panounit tool for unit and integration testing

and test case minimization for efficient regression testing after code modi-

fication. With system testing, an automated and bidirectional traceability

among all artifacts including the source code will be established for defect

prevention.

Chapters 14 and 15 will discuss the software testing support in detail.

Step 5: Perform systematic, disciplined, and quantifiable software maintenance

using the Holistic, Global, and Side-Effect-Prevention Based Software

Maintenance technique:

1. Respond to requirement changes and new requirements or code modifi-

cations in real-time to implement them holistically and globally with

side-effect prevention.

2. Bring great savings to regression testing after requirement changes or

code modification through test case efficiency analysis and test case

minimization, plus intelligent test case selection through backward

traceability between test cases and the source code.

3. Make it possible to reduce the cost and effort spent in software mainte-

nance from more than 75% of the total with the old-established para-

digm to about 25% of the total with NSE, so that it is possible for NSE

to help software organizations to double their productivity and halve

their cost – with NSE there is no essential difference between the soft-

ware development process and the software maintenance process – in

both processes, software changes are supported in real time with side

effects prevented through various kinds of bidirectional traceabilities

(see Chap. 18). An application example of software maintenance

Fig. 8.15 Defect prevention for requirement changes performed by the NSE support platform,

Panorama++: (a) Performs forward tracing for a requirement change (through the corresponding

test cases) to determine what modules should be modified. (b) Performs backward tracing to

check related requirements of the modules to be modified for preventing requirement conflicts (in

this example, two requirements are related). (c) Checks what other modules may also need to be

changed with the modification. (d) After modification, check all related call statements for defect

Fig. 8.15 (continued) prevention. (e) Efficient regression testing through related test case selec-

tion based on backward traceability. (f) Performs backward tracing to find and modify inconsistent

documents after code modification

222 8 NSE Process Model

Fig. 8.15 (continued)

 support is shown in Fig. 8.15 – defect prevention for requirement

changes performed by the NSE support platform, Panorama++.

4. If there is still something wrong after the implementation of a

 requirement change or code modification, perform intelligent version

comparison to locate the defects.

2238.7 The Major Steps of the Main Process

Fig. 8.16 An example of tracing a requirement to the project development schedule

Step 6: Closely combine the project management process and the product devel-

opment process together, making the project plan, schedule charts, and

cost estimation reports traceable with the requirement implementation

and the source code, for better control of the cost and project development

schedule. An application example to trace the project plan/schedule with

the requirement implementation is shown in Fig. 8.16.

Step 7: Establish a project Web site and the related technical forum for real-time

communication and technical discussion among team members to report

the progress of the project, and to open technical discussions for brain-

storming and report a variety of related events, error handling processes

and results, and especially unexpected events in order to discuss the

response, which can all be traced back through the bidirectional and auto-

matic traceability mechanism to update them in real time. It goes without

saying, setting up the project Web site and the project forums is not dif-

ficult. It allows the content of Web sites and forums or topics to be trace-

able with the corresponding requirements, design documents, test cases, and

source code automatically for opening them and achieving real-time

updates, which is its real value. An application example to trace a corre-

sponding Web page from a test case is shown in Fig. 8.17.

Step 8: Frequently deliver working products to the customer for review and

 evaluation from the beginning to the end of the software development

lifecycle, even if there is no real output for a dummy system designed in

224 8 NSE Process Model

the requirement development phase. Get the customer’s feedback to

improve the product development process and the corresponding result.

Each time when a working version of the product is delivered to the

 customer, the related test case scripts should also be delivered so that

the customer can easily duplicate the process and view the results directly.

Finally, when the product is completed and delivered to the customer, not

only should the entire product with the program, data and documents be

delivered, but also the database built through static and dynamic program

measurement plus a set of Assisted Online Agents (automated and intel-

ligent tools – if the database is built using the NSE platform, those

Assisted Online Agents can be distributed without charge) should be

delivered to the customer to efficiently handle the issues of complexity,

invisibility, conformity, changeability, reliability, and traceability, so that

the acceptance testing can be done in a fully automated way and the deliv-

ered product can be easily maintained on the customer side.

8.8 The Support Facility for Automated and Bidirectional

Traceability

As shown in Fig. 8.6, the main facility for bidirectional traceability consists of two

parts:

Fig. 8.17 An application example to trace a test case to a related Web page

2258.9 The Manifestation of the Essential Principles of Complexity Science

 1. Part I.

Part I of the facility is related to the traceability between test cases and the

corresponding source code executed by running the test cases. It is done with

the use of Time Tags which are automatically inserted into both the test case

descriptions and the corresponding test coverage database. For instance, if test

case 1 is executed at 09:00 am on September 2, 2009, and test case 2 is executed

at 10:00 am on the same day, and test case 3 is executed at 11:00 am on the same

day, then the three different Time Tags will be inserted into the three test cases

and the corresponding test coverage database separately. So, when test case 2 is

selected for forward tracing, the Time tag of 10:00 am on September 2, 2009

will be taken from the test case description to search the test coverage data with

the same time tag, so the corresponding test coverage data will be read and

displayed on the corresponding control flow diagram shown in J-Flow notation.

On the other hand, when a module or code segment shown on the J-Flow diagram

is selected, the related time tags (which can be more than one) used to indicate

what time the module or segment was executed will be taken to search the test

case descriptions to see how many test cases there are with the mapping time

tags through backward tracing, then it will highlight all test cases mapped on the

window showing the test case script.

 2. Part II.

Part II of the facility is to extend the bidirectional traceability from test cases and

the source code to include all related documents, the test cases, and the source

code. It is done using some key words (written into the comment part of the

description of the test case) such as @WORD@, @HTML@, @BAT@, @PDF@,

and @EXCEL@ followed with the corresponding file path and a bookmark to

indicate the format of the document, the full path name of the file, and the corre-

sponding bookmark, so that when a test case is selected for forward tracing, or a

module or segment is selected for backward tracing, the corresponding document

will be opened and shown from the location indicated by the bookmark.

This facility is self-maintainable without manual rework – when the docu-

ment is modified or the test case parameter is modified or the source code is

modified, after rerunning the test case script, new Time Tags will be inserted into

both the test case description and the test coverage data to update the facility

automatically.

Chapter 9 will discuss this facility in more detail.

8.9 The Manifestation of the Essential Principles

of Complexity Science in the NSE Process Model

The major essential principles of system science and complexity science are

applied within the creation of the NSE process model as shown in Fig. 8.18, par-

ticularly the Holism principle which is not only applied in the preprocess but also

226 8 NSE Process Model

applied in the main process of the NSE process model, including holistic

 requirement development, holistic system design, holistic diagramming, holistic

documentation, holistic testing, holistic quality assurance, holistic maintenance,

and holistic version comparison.

Why is the Holism principle applied into all phases and so many activities?

Because software is not a linear system but a nonlinear complex system, where small

changes made locally will affect the entire system through the “Butterfly Effect.” For

instance, when the implementation of a requirement change or code modification is

performed locally and blindly with the old-established software engineering para-

digm without bidirectional traceabilities to prevent side effects, the entire system

may be affected with inconsistency defects, so that the quality of the product will

become unreliable. But with the NSE process model, the modification is performed

holistically and globally with side effects prevented to avoid inconsistency defects.

8.10 The Major Features and Characteristics

of the NSE Process Model

The major features and characteristics of the NSE process model include the

following:

Fig. 8.18 The manifestation of the essential principles of complexity science

2278.10 The Major Features and Characteristics of the NSE Process Model

 1. Dual-process: NSE model consists of the preprocess and the main process.

They are different but also closely linked together. The objectives of the prepro-

cess and the main process are different as described in Sect. 8.3.

 2. Nonlinear: The NSE model is established on complexity science and supported

by facilities for two-way multilevel automated traceabilities to avoid a series of

shortcomings existing with the linear process models under the old-established

software development paradigm. Unlike the linear model which assumes that the

upper processes are correct so that the only need is to continue to carry out

the lower-level processes – it makes the existing defects easy to propagate from

the upper phases to the lower phases and the cost for removing the defects increase

10 to 100 times or more – the NSE process model always assumes that there may

be defects introduced in the upper phases so that there is a need to check and

remove the defects in the upper phases through dynamic testing using the

Transparent-box method and backward traceability that is established automati-

cally. Similarly, changes made in the upper phases may affect the work products

obtained in lower-level phases, so that there is also a need to check and remove

the inconsistency defects in lower-level phases through forward traceability.

 3. Parallel with Multiple tracks: “Much of software architecture, implementa-

tion, and realization can proceed in parallel” [Bro95-p233]. For reducing

waiting time and speeding up software development processes, the NSE pro-

cess model supports tasks being performed in parallel with multiple tracks

through bidirectional traceability. Some application examples are shown in

Figs. 8.19–8.21.

 4. Real time: “Timely updating is of critical importance” [Bro95-p235]. The NSE

process model supports real-time updating of the system – even if only one new

module is completed and integrated, a new version of the entire executable

Fig. 8.19 Supporting parallel work for requirement validation through forward traceability

228 8 NSE Process Model

Fig. 8.21 Supporting parallel work for consistent implementation of requirement changes

Fig. 8.20 Supporting parallel work for consistent code modification through backward traceability

2298.10 The Major Features and Characteristics of the NSE Process Model

 system will be updated to check the progress and effects. The NSE process

model also supports requirement changes in real time to implement the changes

with defect prevention through bidirectional traceabilities for increasing the

customer’s market competition power.

 5. Incremental development with two-way iteration: The NSE process model

supports incremental development with two-way iteration, including refactor-

ing to handle highly complex modules and performance bottlenecks with side-

effect prevention through various traceabilities. When a critical issue is found

in the main process, the work flow may go back to the preprocess for selecting

a better solution method, and so on.

 6. The software development process and software maintenance process are

combined together seamlessly: With the NSE process model, there is no big

difference between the software development process and software maintenance

process – according to SPR’s report[Jon02], “Requirements sometimes grow at

>2% per month,” so a 2-year product may double the requirements at the end – it

means that the development process also needs to handle requirement changes.

The NSE process model support safe software changes through various auto-

mated traceabilities to prevent side effects in the implementation of the changes,

whether in the software development process or the maintenance process.

Particularly, with the NSE paradigm, a software product will be delivered to the

customer with the computer program, the data used, all related traceable docu-

ments, plus the database built through static and dynamic measurement of the

product, and a set of Assisted Online Agents (automated and intelligent tools) to

support testability, reliability, and efficiently handle the issues of complexity,

changeability, conformity, and invisibility to make the product maintainable at

the customer site with the same conditions as in the development site.

 7. The software development process and the project management process

are combined together closely: With the NSE process model, all documents

including the project management documents such as the project development

plan, the schedule chart, the cost estimation report are traceable with the

requirement implementation and the source code for better control of the prod-

uct development. NSE process model also supports the critical requirements

and most important requirements being implemented early with the assigned

priority to avoid budget overuse – if necessary, some optional requirements and

not so important requirements can be ignored temporarily.

 8. Reusable Component-Based Software Development support: The NSE pro-

cess model supports component reuse in all phases if the reusable components

are qualified as “Broken Limbs” rather than “Artificial Limbs” – based on com-

plexity science, a complexity system is not built from its parts but is growing

up with its parts, so that a reusable component must be qualified as a Broken

limb with self-adaptive capability – at least no negative effects on the system

quality, no overuse of the system memory, no memory leaks, no negative effects

on the performance, fully tested with test cases for verification, and fully fulfills

the functionality required.

 9. Adaptation focused rather than predictability focused: The entire world is

always changing, so the NSE process model is adaptation focused rather than

230 8 NSE Process Model

predictability focused – it supports requirement changes, code modifications,

data modifications, and document modifications to make them consistent and

updated with side-effect prevention in the implementation of the changes.

10. Defect prevention driven: The NSE process model is defect prevention driven

in the entire software development lifecycle through various kinds of traceabili-

ties and the use of Transparent-box testing, plus inspection and review using

traceable documents and traceable and diagrammed source code.

11. People are considered as the first-order driver for software development –

One of Manifestos for Agile Software Development is “Individual and interac-

tion over processes and tools.” In the paper, “Characterizing people as

non-linear, first-order components in software development,” Alistair A.R.

Cockburn stated that “I now consider the characteristics of people as ‘the domi-

nant, first-order’ project driver,” and “People tend to inconsistency.” When

people like Alistair A.R. Cockburn consider “people as the first-order” to software

development, they focus on how to trust and support people better for their jobs

but ignore the other side of people’s effect on software development – almost all

defects introduced into software products are made by people, the developers,

and the customers. So NSE supports people in two ways: one is to support them

with better methodology, technology, and tools; another one is to prevent the

possible defects to be introduced into the software products by people – it is

done mainly through various automated and bidirectional traceabilities.

 12. Better support for people: The NSE process model with its support platform

Panorama++ provides better support for the software development team mem-

bers and the customers:

(a) Empowered customers: With the NSE process model, customers assign

priority to the requirements, review the solution methods and the prototype

design as well as the test results, have all working versions delivered to

them for review from the dummy system to the final products, make

requirement changes or add new requirements without worrying about the

side effects because the implementation of requirement changes is done

with defect prevention through various automated traceabilities, particu-

larly the outsourcing products developed with the use of the NSE paradigm

are now truly maintainable because the products are delivered to them

with the programs, the data used, the documents, and the database built

in the static and dynamic measurement of the product, plus a set of

Assisted Online Agents to make the product visible, testable, reliable,

and maintainable.

(b) Confident Project Manager: Most software projects fail because of

missed schedules, blown budgets, and flawed products. But with NSE,

the requirements are assigned priorities according to their importance for

better control of the development schedule and budget. With the applica-

tion of the Holistic, Global, and Side-Effect-Prevention Based Software

Maintenance technique, the effort and cost spent in software maintenance

can be greatly reduced. The product quality is assured through defect

2318.10 The Major Features and Characteristics of the NSE Process Model

 prevention performed in the entire software development lifecycle though

dynamic testing using the Transparent-box approach, and inspection using

traceable documents and traceable source code. Now the project managers

do not need to worry about requirement changes because the implementation

of requirement changes will be done with side-effect prevention through

various traceabilities. The NSE process model also supports rapid

 prototyping and customer reviews, frequent delivery of working products

to the customers, incremental integration, and traceabilities among docu-

ments and project management materials, plus traceable project Web sites

and technical discussion forums for efficient problem solving. The project

managers do not need to worry about whether the original designers of the

project have left the development team, because the related documents and

the source code are linked together and traceable with each other, the static

and dynamic measurement results can be duplicated with the corresponding

database and a set of Assisted Online Agents is used to make the project

much easier to maintain and improve.

(c) Equipped Business Analyst: The NSE process model and the support

platform support Business Analysts with

The •฀ Holistic, Actor–Action Driven, Traceable, Visual, and Executable

approach (HAETVE) for Functional Requirement Decomposition

through dummy programming without drawing diagrams by hand in

most product development.

The Transparent-box testing approach which can be dynamically •฀

applied in the requirement development phase to establish bidirectional

traceability for removing inconsistency defects even if the product

version is a dummy system without real outputs.

The •฀ Holistic and Traceable Diagram Generation technique and tools.

The •฀ Virtual and Traceable Documentation technique and tools.

(d) High Efficiency Designer: With the NSE process model and the support

platform Panorama++, software designers have several automated dia-

gramming tools in their hands to generate required charts and diagrams

through dummy programming efficiently without manually drawing them,

so that they can spend more time on design optimization. The defects intro-

duced in the requirement development phase and software design phases

can be removed efficiently through dynamic testing using the Transparent-

box approach without waiting for running Black-box testing after coding.

With the automated traceability facility established by running dynamic

testing using the Transparent-box approach, the designers do not need to

worry about the inconsistency issue among the documents and the source

code. They can respond to the requirement changes in real time through

various traceabilities to prevent the side effects in the implementation of

changes, and more.

(e) Programming engineer: With the NSE process model and the support

platform Panorama ++, coding can be easily done incrementally through

232 8 NSE Process Model

a bottom-up coding order automatically assigned on the call graph shown

in J-Chart notation, so that the programming engineers do not need to

worry about the inconsistency issue in the interfaces between the modules,

because according to the bottom-up coding order, the modules called by a

module being coded must have been coded already. The programming

engineers can open a window to view the source code of the called module

to know the needed parameters when writing a module call statement for

the module being coded. Usually a logic defect is hard to detect because

the source code is written in textual format and a program with some logic

defects is still executable without producing error messages, but the result

is wrong; however, with the NSE process model and the support platform,

logic defects can be easily found through logic diagram generation and

control flow generation. Usually different programming engineers will

have different coding styles so that it is not easy to understand the pro-

grams written by other engineers, but with NSE the logic diagram gener-

ated in J-Diagram notations is not writing-style dependent – this makes the

programs written by other engineers much easier to read and understand.

With the diagramming support tools, the source code of a product can be

entirely diagrammed with traceability between a module call statement

and the called module body, between a class and all inherited classes, an

instance and the corresponding class, a #include statement and the included

file, and so on – it makes the coded programs much easier to inspect and

review for defect removal.

(f) Fully Armed Software Testing Engineer: With the NSE process model

and the support platform, software testing engineers obtain almost all of

the tools and support they need, including

Test planning support through Cyclomatic complexity measurement.•฀

Semiautomated test case generation support through path analysis.•฀

Incremental unit testing support according to a bottom-up coding and •฀

testing order without designing and using stub modules to replace the

modules called by the unit being tested. In this way the unit testing also

becomes integration testing.

Automated driver design for unit testing.•฀

Modified Condition/Decision Coverage (MC/DC) software test coverage •฀

analysis, and the graphical display of the test result with the capability

to highlight untested branches and conditions.

Performance measurement.•฀

Memory leak check and memory usage violation check.•฀

GUI test operation capture and automatic playback.•฀

The capability to trace the execution path for a runtime error.•฀

Test case efficiency analysis and test case minimization for efficient •฀

regression testing after code modification.

Transparent-box testing approach which combines functional and struc-•฀

tural testing together seamlessly and can be dynamically used in the

2338.10 The Major Features and Characteristics of the NSE Process Model

entire software development and maintenance process with the capability

to establish bidirectional traceability for defect prevention and inconsis-

tent defect removal.

(g) Happiest Software Maintainer: A software product developed with linear

process models used in the old-established software engineering paradigm

based on linear thinking and the superposition principle is almost not

maintainable, because

With linear process models, defects will easily propagate from the •฀

upper phases down to the maintenance phase, making the software

maintenance job very hard to perform.

The documents and the source code are separated and often inconsistent •฀

after code modification.

The implementation of requirement changes or code modifications is •฀

done locally and blindly without facilities for bidirectional traceabilities,

so that each time when a bug is fixed, there is a 20–50% chance of

introducing a new bug into the software system.

The regression testing reuses all the test cases – it is time consuming •฀

and costly.

But with the NSE process and the support platform, software mainte-•฀

nance is much easier to do because

With defect prevention performed in the entire software development •฀

lifecycle, only a few defects will exist and propagate down to the

 maintenance phase.

The documents and the source code of a software product are linked •฀

together and traceable with each other.

The implementation of requirement changes or code modifications can •฀

be done holistically and globally with side-effect prevention through

various automated and bidirectional traceabilities.

The regression testing can be done efficiently using a minimized set of •฀

test cases obtained through test case efficiency analysis.

If there is still something unexpected after the requirement changes or •฀

code modifications, the maintainers can compare the new version and

the previous version in system-level, file-level, module-level, and

statement-level to locate the problems using the Holistic and Intelligent

Version Comparison technique and tools offered.

(h) Relaxed Software Development Team: With the NSE process model

and the support platform, a software development team can greatly

increase the productivity, reduce the costs, improve the product quality,

realize complete information sharing, make the documents and the

source code traceable to each other, perform software maintenance with

side-effect prevention through various traceabilities, and more, so that

the team can achieve sustainable development, working just 40 hours

a week.

234 8 NSE Process Model

8.11 Summary

In this chapter, a core part of the NSE paradigm, the NSE process model, was

described which (with the support techniques and platforms) brings revolutionary

changes to almost all aspects in software engineering, including the following:

•฀ The Foundation of Software Engineering – from linear thinking and the

superposition principle to nonlinear thinking and complexity science.

•฀ The Definition of Software – from program + data + documents to program +

data + documents + the database built with the program development life-

cycle through static and dynamic measurement + a set of Associated Online

Agents for supporting testability and reliability, and efficiently solving

the issues of complexity, changeability, invisibility, and conformity – to make

the program adaptive and truly maintainable.

•฀ The Software Development Methodology – from “building” the software

 system with its components to having the whole dummy system first then

“growing up” with its components.

•฀ The Software Diagramming Paradigm – from drawing the diagrams manu-

ally or using graphic editors to automatically generating them virtually through

dummy programming or real source code to efficiently solve the drawbacks that

manually drawn diagrams or diagrams using editors have. These drawbacks

include being hard to draw, being not holistic, requiring much more space to

store (about 100 times more than the diagrams that exist virtually), taking much

more time to display and operate (about 1,000 times longer than the diagrams

that exist virtually), being hard to check whether they are correct, being hard to

change, and being hard to use without traceabilities.

•฀ The Software Documentation Paradigm – from the produced documents

are separated from the source code and not traceable with the source code to

the produced documents are linked with the source code and traceable with

the source code.

•฀ The Software Testing Paradigm – from mainly using the Black-box testing

method for functional testing plus structural testing to be performed separately

after coding (it is too late) to mainly using the Transparent-box method to com-

bine functional testing and structural testing seamlessly: to each set of inputs, it

not only verifies whether the output (if any, can be none) is the same as the

expected value, but also helps users to check whether the execution path covers

the expected path with capability to automatically establish bidirectional trace-

ability among all of the related documents and the source code for inconsistent

defect checking.

•฀ The Software Quality Assurance Paradigm – from test-driven, mainly using

Black-box testing method after coding (it violates Dr. W. Edwards Deming’s

principles for product quality control – “Cease dependence on inspection to

achieve quality. Eliminate the need for inspection on a mass basis by building

quality into the product in the first place.”) to defect prevention driven, mainly

using the Transparent-box testing method in all phases of the software develop-

ment lifecycle.

2358.12 Points and Questions to Ponder

•฀ The Software Maintenance Paradigm – from a local, blind and nonengineer-

ing maintenance approach (each time when a bug is fixed, there is a 20–50%

chance to introduce a new one into the system, so that more than 75% of the

effort and cost are spent in software maintenance in most software organiza-

tions) to a holistic, global, and engineering maintenance approach to perform

systematic, quantifiable, and disciplined software maintenance with side-effect

prevention, so that it is possible to help software organizations to reduce two-third

of the effort and cost spent in software maintenance – almost the same as what is

spent in the new product development process. In fact, with the NSE process

model, there is no big difference between the software development process and

the maintenance process; both support requirement changes and code modifica-

tions in real time with side-effect prevention.

•฀ The Software Project Management Paradigm – from the management

 process being separated from the software development process to the manage-

ment process being combined with the software development process – for

instance, the project schedule and progress chart and the cost report are traceable

with the requirement implementation and the source code for better control. In

the case that there are two projects, project A and project B that are related, the

project plan, schedule, cost, and the progress of project A can be traced to and

from project B, also the project plan, schedule, cost, and the progress of project

B can be traced to and from project A for balancing the two projects.

8.12 Points and Questions to Ponder

 (a) About the software process model, “There has to be upstream movement” – why?

 (b) Why is there no upstream movement at all in all the existing software process

models (excluding the NSE process model)?

 (c) Why should software maintenance be performed globally and holistically?

How can software maintenance be performed globally and holistically?

 (d) Is a modified waterfall model with feedback as shown in the following figure a

linear model or not? Why?

 (e) List the drawbacks of a linear life cycle model without upstream movement.

 (f) What are the major differences between the NSE process model and the existing

process models?

236 8 NSE Process Model

8.13 Further Reading and Information Source

Xiong J (2009) Tutorial, A complete revolution in software engineering based •฀

on complexity science. In: WORLDCOMP’09, Las Vegas, July 13–17, 2009

Xiong J, Xiong J (2009) A complete revolution in software engineering based •฀

on complexity science. In: WORLDCOMP’09 – SERP (Software Engineering

Research and Practice 2009), pp 109–115

Jennings NR and Wooldridge M (2000) Agent-oriented software engineering. •฀

Department of Electronic Engineering, Queen Mary & Westfield College,

University of London

Merali Y, McKelvey B (2006) Using complexity science to effect a paradigm •฀

shift in information systems for the 21st century. J Inform Tech 21:211–215

References

[Bro95-p122] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 122

[Bro95-p233] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 233

[Bro95-p235] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 235

[Bro95-p288] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 288

[Jon02] Jones C (2002) Software quality in 2002: a survey of the state of the art. Six

Lincoln Knoll Lane, Burlington, MA. http://www.SPR.com July 23, 2002

[Pre05-p864] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-

Hill, New York, p 864

[Zam08] Zambonelli F, Van Dyke PH (2003) Signs of a revolution in computer science

and software engineering. Springer, Berlin

237J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_9,

© Springer Science+Business Media, LLC 2011

Requirements traceability has been demonstrated to provide

many benefits to organizations that make proper use of trace-

ability techniques. This is why traceability is an important

component of many standards for software development, such

as the CMMI and ISO 9001:2000. Important benefits from

traceability can be realized in the following areas: project

management, process visibility, verification and validation

(V&V), and maintenance …In spite of the benefits that trace-

ability offers to the software engineering industry, its practice

faces many challenges. These challenges can be identified

under the areas of cost in terms of time and effort, the difficulty

of maintaining traceability through change, different view-

points on traceability held by various project stakeholders,

organizational problems and politics, and poor tool support.

Andrew Kannenberg, Garmin International

Dr. Hossein Saiedian, The University of Kansas

This chapter introduces the facility for automated, dynamic, accurate, precise, and

self-maintainable traceabilities among related software documents and test cases

and source code established through test case execution and some keywords used

within the test case descriptions to indicate the format of the documents as well as

the file paths and the bookmarks for automatically opening the documents from

the corresponding positions when the related test case is selected for forward trac-

ing or traced backwards from the corresponding source code. When a test case is

executed, a Time Tag will be automatically inserted into both the test case descrip-

tion and the database of the test coverage measurement results for mapping them

together. No matter if the contents of a document are modified, or the parameters

of a test case are changed, or the corresponding source code is modified, after

rerunning the test case the traceabilities will be updated automatically without any

manual rework. Here a “document” means a regular file for requirement specifica-

tion, design description, test requirement specification, user manual, project devel-

opment plan, cost report, or a Web page as well as a batch file for dynamically

running a related program such as a tool for selectively playing back the GUI

operations captured with the test case execution, and displaying the test coverage

measurement result shown in a new type of control flow diagram which is

Chapter 9

The Facility for Automated

and Self-Maintainable Traceability

238 9 The Facility for Automated and Self-Maintainable Traceability

 interactive and traceable with untested source modules and branches highlighted

at the same time for automated software acceptance testing.

This traceability facility is used to support the NSE process model described in

Chap. 8.

The contents of a software development process model determines its graphical

representation shape. In understanding the differences between the different pro-

cess models, only comparing their graphical representation makes no sense – what

really needs to be compared are the contents of the models: the features and

characteristics.

9.1 The Importance of Requirement Traceability

Software is a nonlinear complex system where a small change can ripple through

the entire system to cause major unintended impacts – “Butterfly-Effects,” so that

prior to performing the actual change, maintainers need facilities in order to

understand and estimate how a change will affect the rest of the system.

Traceability offers benefits to organizations in the areas of project management,

process visibility, requirement validation and verification, and software maintenance.

Traceability needs to be hardcoded into a process to be replicated iteratively on

each and every project [Kan09]. Without bidirectional traceabilities, software

maintenance cannot be performed globally and holistically to prevent side effects.

Local and blind software changes will make the software product unstable and

unreliable.

9.2 The Problems Addressed

The lack of traceability among software documents, test cases, test results, and

source code is caused by several factors, including (1) the fact that these artifacts are

written in different languages (natural language vs. programming language); (2)

they describe a software system at various abstraction levels (requirements vs.

implementation); (3) processes applied within an organization do not enforce main-

tenance of existing traceability links; (4) a lack of adequate tool support to create and

maintain traceability [Ril07], (5) there are many different types of documents, some

of which are created manually, some of which are generated automatically by inter-

nal tools, some of which are generated automatically by third party tools, some of

which are designed using graphic editors; (6) some documents are stored locally,

some documents are stored in other places through a network; (7) some related documents

are Web pages, which can be read through the internet only; (8) some documents are

related to the software development, while some documents are related to the project

management which should also be traceable; and (9) some documents are not static

materials, and must be viewed dynamically through a program execution.

Unfortunately, neither manual traceability methods nor existing COTS traceability

2399.3 The Solution Offered with NSE

tools available on the market are adequate for the current needs of the software

engineering industry. Poor methods and tool support are perhaps the biggest chal-

lenge to the implementation of traceability – when those tools are used, the trace-

ability information is not always maintained, nor can it always be trusted to be up to

date and accurate [Kan09]. Studies have shown that existing commercial traceability

tools provide only simplistic support for traceability [Ram01]. Why does software

maintenance take 75% or more of the total effort and total budget [Amb05] in most

software projects? One of the critical issues is the lack of bidirectional traceabilities

among the requirement specifications, the design documents, the test cases, the test

results, and the source code of a software product.

9.3 The Solution Offered with NSE

The new requirement traceability approach proposed by me and implemented by

me and my colleagues is graphically shown in Fig. 9.1.

The objectives of this traceability facility are as follows:

 a) Helping software developers to prevent side effects in the implementation of

software changes

Fig. 9.1 The facility for automated, bidirectional, and self-maintainable traceability among the

documents and the test cases and the source code of a software product

240 9 The Facility for Automated and Self-Maintainable Traceability

 b) Solving the inconsistency issue to make the documents and the source code

traceable with each other to keep consistency

 c) Removing the problems existing with a man-made Requirement-Traceability

Matrix which is inaccurate, time consuming, and almost unmaintainable

 d) Making the software development process visible

 e) Making the requirement validation and verification much easier to perform

 f) Making the software product much easier to understand, test, and maintain

As shown in Fig. 9.1, this facility for bidirectional traceability consists of two parts.

9.3.1 Part 1

Part 1 of the facility is related to the traceability between test cases and the corre-

sponding source code executed by running the test cases. It is done with the use of

Time Tags which are automatically inserted into both the test case descriptions and

the corresponding test coverage database. For instance, if test case 1 is executed at

09:00 am on September 2, 2009, and test case 2 is executed at 10:00 am on the same

day, and test case 3 is executed at 11:00 am on the same day, then the three different

Time Tags will be inserted into the three test cases and the corresponding test cover-

age database separately. So, when test case 2 is selected for forward tracing, the

Time tag of 10:00 am on September 2, 2009 will be taken from the test case

description to search the test coverage data with the same time tag, so the corre-

sponding test coverage data will be read and the corresponding modules and

branches will be highlighted on a control flow diagram. On the other hand, when a

module or code segment shown on a control flow diagram is selected, the related

time tags (which can be more than one) used to indicate what time the module or

segment was executed will be taken to search the test case descriptions to see how

many test cases have the mapping time tags through backward tracing, then high-

lights all test cases mapped on the window showing the test case script.

9.3.2 Part 2

Part 2 of the facility is to extend the bidirectional traceability from test cases and

the source code to include all related documents, the test cases, and the source code.

It is done using some key words (written into the comment part of the description

of a test case) such as @WORD@, @HTML@, @BAT@, @PDF@, and

@EXCEL@ followed with the corresponding file path and a bookmark to indicate

the format of the document, the full path name of the file, and the corresponding

location in the document, so that when a test case is selected for forward tracing, or

traced backwards from a module or segment, the corresponding document will be

opened and shown from the location indicated by the bookmark.

2419.3 The Solution Offered with NSE

It is recommended to organize the requirement specifications and the related

documents hierarchically (even if some documents have not been really designed)

with inherited (or meaningful) bookmarks as shown in Table 9.1.

Table 9.1 Document Hierarchy

It is important to make the document hierarchy include the test case scripts (test

case numbers) so that when a requirement needs to be changed or selected for vali-

dation, it is easy to find what test cases need to be used.

The major steps for establishing and applying the bidirectional traceability are

as follows:

 Step 1. Organize the requirement specification and the related documents hierar-

chically with the bookmarks, clearly indicate each requirement and the cor-

responding test scripts and the test case numbers.

 Step 2. Design the test case scripts with the corresponding keywords to indicate the

formats and the file paths and the bookmarks for the related documents.

 Step 3. Perform code instrumentation for test coverage analysis to the entire

program.

 Step 4. Compile the instrumented program.

 Step 5. Execute the test case scripts with the corresponding tool.

 Step 6. Show the modified test case script files with inserted time tags in a

window.

 Step 7. Show the program test coverage measurement result using a control flow

diagram in another window.

242 9 The Facility for Automated and Self-Maintainable Traceability

Step 8. Perform forward tracing from a test case with a tool to map and highlight the

corresponding modules and code branches tested by the test case through the

inserted time tag – at the same time, open the related documents according to

the document formats, file paths, as well as the bookmarks (or run the corre-

sponding batch file if a @BAT@ keyword is used).

Step 9. Perform backward tracing from a program module or code branch with a

tool to map and highlight the related test cases through the inserted time

tags – at the same time, open the related documents according to the docu-

ment formats, file paths, as well as the bookmarks (or run the correspond-

ing batch file if a @BAT@ keyword is used).

 Step 10. After the implementation of code modifications, go to step 3.

 Step 11. If a related document is modified in the contents only without changing

the bookmarks, there is nothing to do; but if the bookmarks are modified

(such as the name of a bookmark is changed), modify the corresponding

test case scripts according to the new bookmarks, then go to step 5.

 Step 12. If only the test cases are modified, go to step 5.

 Step 13. If the source code is modified, go to step 3.

 Step 14. If it is the time to perform requirement validation and verification

(V&V), use the document hierarchy information organized in step 1 to

get each requirement and the corresponding test cases to perform for-

ward tracing one by one to see whether the requirement is completely

implemented.

 Step 15. If a requirement needs to be modified: (1) get the test cases related to this

requirement to perform forward tracing to locate the documents that need

to be updated, and the source modules or branches that need to be modified;

(2) perform backward tracing from those modules or branches to see

whether more requirements are related – if it is related to more require-

ments, the implementation of the code modification must satisfy all of the

related requirements to avoid requirement conflicts.

 Step 16. If it is time to perform regression testing after modification, get the modi-

fied modules or branches to perform backward tracing to collect the corre-

sponding test cases which can be used to retest the modified program

efficiently. Sometimes, there may be a need to add new test cases.

9.4 How It Works

The facility for automated and self-maintainable traceability is based on source

code test coverage analysis. The first step is to perform code instrumentation for

recording the test coverage data.

2439.4 How It Works

To a statement in C/C++ programming language:

Here, “i” is the record order number.

Let’s consider a small program listed as follows:

#include <stdio.h>

static char *tp=NULL;

int r=1, x=0, y=1000000, z=0;

FILE *fd=NULL;

void trouble();

void error (message)

char *message;

{

printf(“\n ERROR! %s”, message);

}

main(argc, argv)

int argc;

char **argv;

{

int k=0;

if(argc == 1)

 enter_data();

else if(argc==2)

 trouble(atoi(argv[1]));

else if (argc==3)

 divite(atoi(argv[1]), atoi(argv[2]));

else if (argc == 4)

 control(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]));

else

 error(“ Too many arguments!”);

}

244 9 The Facility for Automated and Self-Maintainable Traceability

/*##*/

/* trouble.c */

#include <stdio.h>

#include <malloc.h>

#ifdef ERROR_SIMULATION

#include “ISA_simu.h”

#endif

failed(message)

char *message;

{

printf(“Failed! %d\n”,message);

}

extern int x,y,z;

extern FILE *fd;

FILE *fi, *fo;

trouble (x)

int x;

{

int i, t=1;

char c,*pc=NULL,ch[10],*p=NULL,*e=NULL;

if((e=malloc(4))==NULL)printf(“Out of memory,x=%s”,x),

exit(-1);

for(i = x; i <= 8 && t; p=&ch[i++])

 if(i % 2 ==1) {

 p=&c; t=0; }

ch[0] = *p; /* seg. fault when x > 8 */

i = x ;

while (i > -2 && i<=7){/*dead loop if x=7 or x=3*/

 switch (x + z) {

 case 0: case 1: x = z = 1; break;

 case 2: y = 1; break; }

if (i < 7)

 i += 4; }

if (x < 5)

 pc = ch;

if(x < 6)

 fd=fopen(“trouble.c”, “r”);

c = getc (fd); /* seg. fault when x = 6 */

strcpy (pc, “ab”); /* seg. fault if x = 5 */

c = ch[y]; /* seg. fault when x = 4 */

z = x / z; /* Arith. excep. when x = 2 */

if((p=malloc(3))!=NULL) strcpy(p,“OK”);

}

2459.4 How It Works

The Makefile for controlling the builds of this program is as follows:

For testing this small program, three test cases are used. After running the test

cases under the NSE support platform, three different Time Tags were automatically

inserted into the test coverage database and the test script as shown in Fig. 9.2, which

are used for mapping the test cases and the corresponding source code tested.

9.4.1 Bidirectional Traceability Between the Test Cases

and the Source Code Modules or Branches

For realizing bidirectional traceability between the test cases and the source

code, two windows are opened for displaying the accumulated Test Case file

246 9 The Facility for Automated and Self-Maintainable Traceability

(for all test cases together) and the Source Code shown in J-Flow notation with

untested segments highlighted in small black boxes separately.

The operations for forward tracing – click a test case on the Test Case window

to select it, then the corresponding tool will highlight the selected test case descrip-

tion part in the Test Case window, while the source code modules and segments (a

segment is a group of statements with the same execution conditions) will be high-

lighted in the Source Code window through the mapping of Time Tags – see

Figs. 9.3 and 9.4.

The operations for backward tracing – click a segment (or module) on the

Source Code window to select it, then the corresponding tool will highlight

the selected segment or module in the Source Code window, while the test cases

will be highlighted in the Test Case window through the mapping of the Time

Tags – see Fig. 9.5.

9.4.2 Extending the Bidirectional Traceability

to Include All Related Documents

It is done using some keywords such as @WORD@, @HTML@, @PDF@, @

EXCEL@, and @BAT@ written within the comment part of a test case to indicate

the format of the document, followed by the file path of the document and the

bookmark used to open the document from the corresponding position rather than

from the beginning of the document by the corresponding tool.

An application example for forward tracing is shown in Fig. 9.6.

Fig. 9.2 Time tags automatically inserted into the test script

2479.4 How It Works

Fig. 9.3 An application example of forward traceability established

Fig. 9.4 Another application example of forward traceability established

248 9 The Facility for Automated and Self-Maintainable Traceability

Fig. 9.5 An application example of backward traceability established

Fig. 9.6 Forward tracing from a test case to trace the source code with the related requirement

specification, design document, and schedule chart opened

2499.5 The Major Features

An application example for backward tracing is shown in Fig. 9.7 – in this example,

two requirements are traced from a module, and it means that the modification of

that module must be done carefully to satisfy the two requirements at the same

time.

9.5 The Major Features

9.5.1 Automated

This facility works automatically with the capability to insert the Time Tags into

both the test case description part (see Fig. 9.2) and the database of the program test

coverage measurement result, and highlight the test cases selected on the corre-

sponding test script window, and the source code modules/branches shown in a

control flow diagram in the corresponding source code window, or vice versa, as

well as open the related documents traced from the locations pointed by the

bookmarks.

Fig. 9.7 Backward tracing from a module to trace the test cases (which can be used to test that

module) and all of the related documents

250 9 The Facility for Automated and Self-Maintainable Traceability

9.5.2 Self-Maintainable

This facility is self-maintainable no matter if the contents of a document are modi-

fied, the parameters of a test case are modified, or the source code is modified –

after rerunning the test case scripts, the traceability will be automatically updated

without manual rework.

9.5.3 Methodology-Independent

This facility is methodology-independent, no matter which methodology or process

models are used to develop the product.

9.5.4 Nonlinear, Bidirectional, and Parallel

This facility works in a nonlinear, bidirectional, and parallel style as shown in

Fig. 9.8 – when a design defect is found after the product delivery, the developers

can perform backward tracing to check the related requirement, and forward tracing

to find and fix the related source code.

9.5.5 Accurate

This facility is based on the dynamic execution of the test cases and test coverage

measurement and the time tags to map the test cases and the source code tested, so

that it is accurate. After code modification or parameter changes of the test cases,

we can rerun the test cases to automatically update the facility.

Fig. 9.8 Fixing a design defect through forward and backward traceability

2519.5 The Major Features

9.5.6 Precise

This facility is precise to the highest level – up to the code statement/segment (a set

of statements to be executed with the same conditions) level, bidirectionally. It is

particularly useful for side-effect prevention in software maintenance.

9.5.7 Extended to Include Software

Project Management Documents

This facility is extended to include not only the software development documents,

but also include the project management documents such as the product develop-

ment schedule charts, the cost estimation reports, and so on, to combine the soft-

ware development process and the software management process together. If a

project management document (such as a Gantt chart) is designed using a third

party tool, a corresponding batch file should be designed and used with the @

BAT@ keyword to indicate the location of the batch file in the test case description

part such as the following example shown in Fig. 9.6, step (5).

9.5.8 Extended to Include Web Pages

For supporting Web-based software development and applications, this facility is

extended to include Web pages to be traced and automatically opened through the

use of @HTML@ keyword to indicate the URL address and the bookmark

(#NAME) such as the following example:

@HTML@ http://www.stsc.hill.af.mil/CrossTalk/2010/01/index.aspx

When the corresponding test case is selected for forward tracing or backward

tracing from a source code module or a source code branch mapped to the test case,

the corresponding CrossTalk Web page will be opened automatically if the internet

is connected – see Fig. 9.9.

9.5.9 Extended for Multiproject Support

This facility is extended to support multiproject development by making the

related project progress reports, special event reports, schedules, budget control

documents, and cost reports traceable between two related projects (or among more

related projects) as shown in Fig. 9.10.

252 9 The Facility for Automated and Self-Maintainable Traceability

9.5.10 Dynamic

This facility is extended to have the capability to trace a batch file and dynamically

execute the batch file for many kinds of applications such as playing back the

captured GUI operations selectively through the time tags in automated accep-

tance testing, or running a third party tool to handle the corresponding documents

generated by that tool, or dynamically execute a related program for other

purposes.

@BAT@ C:\isa_examples\analyzed_examples\sortdemo\re_run.bat. It will be

used to automatically execute the batch file re_run.bat which includes the following

statement:

Fig. 9.10 Multiproject development support

Fig. 9.9 A Web page opened automatically through the bidirectional traceability

2539.5 The Major Features

C:\isa_examples\\play -hsi=C:\isa_examples\analyzed_examples\sortdemo\

sortdemo.hsi -dbspath=C:\isa_examples\analyzed_examples\sortdemo\dbs\ -tdb=C:\

isa_examples\analyzed_examples\sortdemo\sortdemo.tdb -tdb=C:\isa_examples\

analyzed_examples\sortdemo\playout.tdb

and the corresponding GUI operation capture records will be automatically

played back as shown in Fig. 9.11.

9.5.11 Easy to Add on at Any Time, In Any Status

This facility can be added on at any time and at any status of a software product

development project, even if it is in the requirement development phase where the

product design and coding have not started yet – in this case, we can design a

dummy main program without a real output which can be executed for checking

the consistency between requirement specifications, prototype design documents,

test requirements, and test scripts – it is recommended to design the test scripts with

the requirement specifications at the same time before the product design. In the

case, this facility is used for a product developed or being developed using other

Fig. 9.11 An application example of Dynamic Traceability to play back the GUI operations captured

254 9 The Facility for Automated and Self-Maintainable Traceability

 methodologies, the users only need to set bookmarks to the related documents and

modify the test case description with simple rules listed as follows:

(a) An empty line means a separator between different test cases.

(b) A ‘#’ character at the beginning position of a line means a comment.

(c) Within comments, users can use some keywords such as @WORD@, @

HTML@, @PDF@, and @BAT@ to indicate the format of a document,

followed by the full path name of the document, and a bookmark – for finding

inconsistent defects.

(d) Within comments, users can use [path] and [/path] pair to indicate the expected

execution path using control flow notation (segment numbers) for a test case –

for finding logic defect.

(e) Within comments, users can use Expected Output to indicate the expected value

to be produced – for finding functional defects.

(f) Within comments, users can also use [Not_Hit] and [/Not_Hit] marks to indi-

cate modules or branches (segments) which are prohibited for the related test

case execution to enter.

(g) After the comment part, there is a line to indicate the directory for running the

corresponding program.

(h) The final line in a test case description is the command line (which may start a

program with the GUI) and the options.

Other work can be done automatically by the corresponding tools.

9.6 Application

This automated and self-maintainable traceability technique has been successfully

applied in requirement validation and verification, side-effect prevention for the

implementation of requirement changes and code modifications, inconsistency

checking among documents and test cases and source code, efficient regression

testing through backward tracing from a modified module or branch to select the

corresponding test cases, and quality assurance in the entire software development

lifecycle through defect prevention and defect propagation prevention.

Some application areas of this automated and self-maintainable traceability

techniques provided with NSE are listed in Fig. 9.12.

9.7 Summary

This chapter presented automated and self-maintainable traceability based on test

case execution with Time Tags automatically inserted into both the test cases

and the database of the corresponding program test coverage measurement result,

plus the use of some keywords to indicate the format of the related documents,

2559.8 Points and Questions to Ponder

the file paths, and bookmarks for automatically opening the documents from the

positions pointed by the bookmarks. It is useful for requirement validation and

verification, side-effect prevention in the implementation of requirement changes

and code modifications, automated acceptance testing, conformity check of

artifacts, efficient regression testing, and defect prevention for software quality

assurance in the entire software development lifecycle of a software product.

9.8 Points and Questions to Ponder

 (a) Why is software traceability, particularly requirement traceability, so important?

 (b) Why should a bookmark be used to open a related document that is traced

automatically?

 (c) What are the benefits to use Time Tags for implementing the bidirectional trace-

ability between the test cases and the source code?

 (d) What are the major features of this automated and self-maintainable traceability?

 (e) Where do you think this automated and self-maintainable traceability can be

efficiently used in software engineering?

 (f) How can this automated and self-maintainable traceability be used to make a

document produced by a third party tool traceable with the requirements of a

project being developed with this technique and tools?

Fig. 9.12 Application area of the automated and self-maintainable traceabilities provided

256 9 The Facility for Automated and Self-Maintainable Traceability

9.9 Further Reading and Information Source

 1. Gotel O, Finkelstein A (1994) An analysis of the requirements traceability problem.

In: Proceedings of the first international conference on requirements engineering,

Colorado Springs, 1994, pp 94–101

 2. Dömges R, Pohl K (2008) Adapting traceability environments to project specific

needs. Commun ACM 12:55–62

 3. Palmer JD (1997) Traceability. In: Thayer RH, Dorfman M (eds) Software

requirements engineering. IEEE Computer Society, New York

 4. Wiegers K (2003) Software requirements, 2nd edn. Microsoft, Redmond

 5. Boehm B (2003) Value based software engineering. ACM SIGSOFT Software

Engineering Notes 2

 6. Clarke S et al (1999) Subject-oriented design: towards improved alignment of

requirements, design, and code. Proceedings of the 1999 ACM SIGPLAN

Conference on object-oriented programming, systems, languages, and applica-

tions, Dallas, TX, pp 325–329

References

[Amb05] Ambler SW (2005) A manager’s introduction to the rational unified process (RUP).

Ambysoft. http://www.ambysoft.com/unifiedprocess/rupIntroduction.html

[Kan09] Kannenberg A et al (2009) Why software requirements traceability remains a

challenge. CrossTalk, Jul/Aug 2009 Issue

[Ram01] Ramesh B, Jarke M (2001) Toward reference models for requirements traceability.

IEEE Trans Software Eng 1:58–93

[Ril07] Rilling J et al (2007) CASCON 2007 workshop report, traceability in software

engineering – past, present and future. IBM Technical Report: TR-74-211, October

25, 2007

257J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_10,

© Springer Science+Business Media, LLC 2011

DEFECT PREVENTION: Technologies that minimize the risk

of making errors in software deliverables.

Capers Jones

This chapter describes another important component of NSE – the NSE software

development methodology.

Software development methodology is a framework used to structure, plan, and

control the process of software product development and maintenance.

The NSE software development methodology is innovated by me through the FDS

paradigm-shift framework described in Chap. 4 (see Fig. 10.1), so that it complies

with the essential principles of complexity science, particularly the Non linearity

principle and the Holism principle – with the NSE software development method-

ology, almost all software engineering tasks are performed holistically and globally.

10.1 Almost All Existing Software Development

Methodologies Are Outdated

Almost all existing software development methodologies are outdated because

 1. They are based on reductionism and the superposition principle that the whole of

a system is the sum of its parts, so that almost all software development tasks and

activities are performed linearly, partially, and locally.

 2. They comply with the Constructive Holism principle that software components

are developed first, then, “Assemble the product from the product components,

ensure the product, as integrated, functions properly and deliver the product.”

[CMMI1.1]

 3. From the point of view of quality assurance, those methodologies are test-

driven – through testing after coding and inspection. As pointed by NIST

(National Institute of Standards and Technology) that “Briefly, experience in test-

ing software and systems has shown that testing to high degrees of security and

reliability is from a practical perspective not possible. Thus, one needs to build

Chapter 10

NSE Software Development Methodology

Driven by Defect Prevention and Traceability

258 10 NSE Software Development Methodology Driven

security, reliability, and other aspects into the system design itself and perform a

security fault analysis on the implementation of the design.” (“Requiring Software

Independence in VVSG 2007: STS Recommendations for the TGDC,” November

2006, http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf).

 4. The software development process and the obtained results are almost invisible –

UML is applied mainly in the modeling process and the obtained graphics often

consist of many small pieces without a holistic whole.

 5. The application results of those methodologies show that today the software

project success rate is still very low – only about 30%. It is not acceptable in any

other industry.

 6. Although the CBSD (Component-Based Software Development) method has

been used successfully in some applications, the CBSD concept is not new but

as old as the “Software Engineering” concept – the idea that software should be

componentized – built from prefabricated components first became prominent

with Douglas McIlroy’s address at the NATO conference on software engineer-

ing in Garmisch, Germany, 1968, titled Mass Produced Software Components.

The basic idea about CBSD is that software should be componentized – built

from prefabricated components which are software packages or modules that

encapsulate a set of related functions and data. But there are some fundamental

issues with CBSD:

(a) It is an outcome of linear thinking, reductionism, and the superposition

principle that the whole of a complex system is the sum of its parts.

Fig. 10.1 Innovating the NSE software development methodology by complying with the essential

principles of complexity science through the proposed paradigm-shift framework, FDS

25910.2 Outline of the Revolutionary Solution Offered by NSE

(b) It violates the Nonlinearity principle and the Holism principle of complexity

science that the whole of a complex system is greater than the sum of its

parts, the behavior and characteristics of the whole emerge from the inter-

action of its parts and the interaction between the system and its

environment.

(c) According to the Generative Holism principle of complexity science, the

whole of a complex system may exist earlier than its components, as an

embryo, then grows up with its components.

(d) When a reusable component is integrated into the system, not only the func-

tions and the interface of the component should be considered, but the effects

to the whole of the system should also be considered such as the effects to the

performance, the effects to the file system, and the effects to the product qual-

ity. For instance, if there is a memory leak with the new component, the per-

formance of the entire product may become a critical problem; if there is a

logic error in the new component, the entire system may become unstable.

In fact, today, a component is still designed using the old-established software

engineering paradigm, and its quality is still hard to ensure and its maintenance is

still hard to perform. From these points of view, the current CBSD is out of date

too – it should be shifted to a new development methodology with the components

being developed as, for instance, “Broken Arms” rather than “Artificial Arms”

using a novel software engineering platform based on complexity science.

10.2 Outline of the Revolutionary Solution Offered by NSE

The revolutionary solution offered by NSE in software development methodology

will be described in detail in this chapter later. Here is the outline of the solution:

 1. It is based on complexity science by complying with the essential principles of com-

plexity science, particularly the Nonlinearity principle and the Holism principle that

the whole of a complex system is greater than the sum of its components – the

characteristics and behaviors of the whole emerge from the interaction of its

components, so that with NSE almost all tasks and activities in software develop-

ment are performed holistically and globally. For instance, requirement changes are

implemented holistically and globally with side-effect prevention through various

traceabilities to avoid “Butterfly Effects” (see Chap. 3).

 2. It complies with the Generative Holism principle of complexity science that the

whole of a complex system exists (as an embryo) earlier than its components,

then grows up with its components. As pointed by Frederick P. Books Jr. that

“Incremental development – grow, not build software … that the system should

first be made to run, even though it does nothing useful except call the proper set

of dummy subprograms. Then, bit by bit it is fleshed out, with the subprograms

in turn being developed into actions or calls to empty stubs in the level below.”

[Bro95-P200] “An Incremental-Build Model Is Better – Progressive Refinement

… we should build the basic polling loop of a real-time system, with subroutine

calls (stubs) for all the functions, but only null subroutines. Compile it; test it. …

260 10 NSE Software Development Methodology Driven

After every function works at a primitive level, we refine or rewrite first one

module and then another, incrementally growing the system. Sometimes, to be

sure, we have to change the original driving loop, and or even its module inter-

face. Since we have a working system at all times

(a) we can begin user testing very early, and

(b) we can adopt a build-to-budget strategy that protects absolutely against

schedule or budget overrun (at the cost of possible functional shortfall).”

[Bro95-P267]

 3. From the point of view of quality assurance, the NSE software development meth-

odology is driven by defect prevention, defect propagation prevention, and trace-

ability where software quality is ensured from the first step down to the final step

through defect prevention and defect propagation prevention supported by various

automated and self-maintainable traceability and software visualization. With

NSE, software development methodology software testing is performed dynami-

cally in the entire software development lifecycle (including the requirement

development phase, the product design phase, the coding phase, the testing phase,

and the maintenance phase) using the innovated Transparent-box testing method

(see Fig. 10.2B2 and Chap. 16 and the related reference [Xio09]) which combines

functional testing and structural testing together seamlessly – to each test case, it

not only checks whether the output (if any, can be none – having a real output is

no longer a condition to use this software testing method dynamically) is the same

as what is expected, but also checks whether the real program execution path cov-

ers the expected one specified in J-Flow (see Chap. 7), and then establishes the

automated and self-maintainable traceability among the related documents, the

test cases, and the source code to help users find and remove the inconsistency

defects. It means that the NSE software development methodology complies with

W. Edwards Deming’s product quality principle that “Cease dependence on

inspection to achieve quality. Eliminate the need for inspection on a mass basis

by building quality into the product in the first place.” [Dem86].

The defect prevention and defect propagation prevention is also performed

through software visualization in the entire software development process.

Figure 10.2 shows a comparison of the software design strategy and the qual-

ity assurance strategy between the existing software development methodologies

(part A) and the NSE software development methodology (part B).

 4. It is visual – With NSE, the entire software development process and the obtained

results are visible, supported by the NSE Software Visualization Paradigm.

 5. It works with the NSE documentation paradigm to generate huge amounts of

documents automatically. The generated documents are always updated, precise,

Fig. 10.2 A comparison of the software design strategy and the quality assurance strategy between

the existing software development methodologies (a) and the NSE software development methodol-

ogy (b) – (A1): the software product development strategy based on the Constructive Holism prin-

ciple that the components of a software product are developed first, then the whole system is built

26110.2 Outline of the Revolutionary Solution Offered by NSE

Fig. 10.2 (continued) with the components; (A2): the quality assurance strategy for the incremental

software development method – mainly depends on testing after coding using the Black-box func-

tional testing approach and structural testing approach [Coc08]; (A3): the quality assurance strategy

for the iterative software development method – also mainly depends on testing after coding using

the Black-box functional testing approach and structural testing approach [Coc08]; (B1): the soft-

ware product development strategy based on the Generative Holism principle that the whole of a

software product exists first (as an embryo), then grows up with its components; (B2): the quality

assurance strategy for the NSE software development methodology – mainly depends on defect

prevention and defect propagation prevention through dynamic testing using the Transparent-box

testing method (see Chap. 16) combining functional testing and structural testing together seam-

lessly with the capability to establish automated and self-maintainable traceability among all

related documents and the test cases and the source code through Time Tags automatically inserted

into both the test case description part and the product test coverage measurement database for map-

ping them together, and some keywords (such as @WORD@, @HTML@, @PDF@, @EXCEL@,

@BAT@) written in the test case description part to indicate the types of the related documents,

the file locations, and the bookmarks for opening the traced documents from the corresponding

locations, so that it can be used to find functional defects, structural defects, and inconsistency

defects in the entire software development lifecycle. (B3): The defect prevention, mainly through

dynamic testing using the Transparent-box testing method, is performed in all phases of a software

development lifecycle

262 10 NSE Software Development Methodology Driven

Fig. 10.3 Quality measurement results for an entire software product and each class/function

generated by the NSE software documentation paradigm automatically, dynamically, and virtually

and exist virtually, thus greatly saving the space needed to store them and also

speeding up the display time by about a thousand times (see Chap. 19).

Figure 10.3 shows the quality measurement results using Kiviat diagrams for an

entire software product and each class/function generated through only several

hash tables dynamically, without storing any hard copies in the memory or hard

disk (unless the user wants to store them).

 6. The preliminary applications show that compared with the old-established

 software development methodologies based on reductionism and the superposi-

tion principle, it is possible for the NSE software development methodology

(working with the NSE software development process model) to help software

development organizations double their productivity, halve their cost, improve

their product quality tenfold several times, and double their project success rate.

 7. It brings revolutionary changes to the CBSD approach by shifting the software

component development foundation from that based on reductionism and the

superposition principle to that based on complexity science to greatly ensure the

quality of the components themselves, and make the components adaptive and

maintainable. According to the principle of complexity science that the behavior

and characteristics of a complex system is determined by both the whole of the

system and its components, with NSE a software component used for CBSD

should at least satisfy the following listed conditions:

(a) Being 100% tested using the MC/DC (Modified Condition/Decision Coverage)

test coverage metric, no matter whether it is provided as a class (a class cannot

be directly executed, so the test coverage data should be collected through its

instances) or a regular function (see Appendix B for an example showing how

to realize 100% MC/DC test coverage with NSE)

(b) Being verified that there is no memory leak or memory usage violation found

26310.3 The Driving Forces for the Innovation of the NSE Software Development Methodology

(c) Being verified that it will not become a performance bottleneck to the

application system

(d) Being verified that it will not bring bad effects to the file system and the I/O

system for the applications

(e) Being verified that it satisfies the quality standard in the corresponding

applications

(f) Being verified that it is provided with the related documents, the test cases,

and (if possible) the source code traceable to and from the documents

10.3 The Driving Forces for the Innovation of the NSE

Software Development Methodology

The NSE Software Development Methodology is driven by defect prevention and

various automated and self-maintainable traceabilities:

 1. Defect prevention:

(a) Repeatable Defect Prevention through

Causal analysis•฀

Preventive actions•฀

Increase awareness of quality issues•฀

Data collection•฀

Improvement of the Defect Prevention Plan•฀

(b) New Defect Prevention (more useful) through bidirectional traceability to prevent

Inconsistent or changed requirement definitions that may contain conflicts•฀

Inconsistent designs or design changes•฀

Inconsistent coding (such as inconsistencies between function defini-•฀

tions and calling statements)

Inconsistent source code modification, etc.•฀

Some kinds of defects can be prevented are shown in Fig. 10.4.

 2. Traceabilities, including the following:

(a) Automated and self-maintainable traceability among documents and test

cases and source code, including the documents obtained from project plan-

ning, requirement development, product design, coding, testing, and mainte-

nance. This type of traceability is essential to software validation, verification,

debugging, and the identification of unimplemented requirements and use-

less source code modules, requirements that are related to a module to be

changed (for consistent modification), test cases that can be used for regres-

sion testing (whereby the efficiency of regression testing can be improved

tenfold!), etc. This kind of traceability is established through dynamic testing

using the Transparent-box testing method. The traceability between test cases

264 10 NSE Software Development Methodology Driven

and the source code is established using Time Tags automatically inserted in

the test cases description and the test coverage database.

The traceability between test cases and the source code has been extended

to include all related documents using some keywords written in the descrip-

tion part of a test case to indicate the document formats, the file paths, and

the corresponding bookmarks for showing the documents from the corre-

sponding locations.

(b) Automated and bidirectional traceability within the source code, among

source files, classes, functions, and detailed statements. It is established by

diagramming the entire program, then creating the traceability automati-

cally between header file and “#include”statement, program tree and function

body, function definition and function call statement, class instance and

class definition, goto statement and label, etc. This type of traceability is

essential for efficient source code inspection and walkthrough, testing, bug

checking, consistent source code modification, etc. See Fig. 10.5 for some

examples of established automated traceability.

(c) Capability to trace a runtime error to the execution path and the related

functions. This type of traceability is useful for debugging with testing.

An example of this kind of traceability is shown in Fig. 10.6.

(d) Automated traceability in a systematic analysis of software changes to graph-

ically show version comparison results at the system level, source file level,

class and function level, and statement level. It includes identifying which

modules are deleted (shown in brown), added (shown in green), changed

(shown in red), and unchanged (shown in blue); these colors are shown

on the original screen, and not black and white in the book. To a changed

module, we can further trace the detailed source code to find which state-

ments are deleted, added, and modified. This type of traceability is very useful

for version comparison and debugging, particularly in the maintenance phase

when some bugs have been removed but new bugs are found. An example

of this kind of traceability is shown in Fig. 10.7.

Fig. 10.4 Sample defects can be prevented

26510.4 The Related NSE Software Engineering Process Model

(e) Automated traceability among documents such as those for requirement

management. requirement specifications, requirement changes, etc. To real-

ize this type of automatic traceability, we use a set of predesigned templates

in HTML/XML format. These templates will link together by themselves.

(f) Automatic traceability through all possible execution paths for each module

from a call graph. This kind of traceability is useful in identifying which

other modules may be affected by a change made within a module. An example

of this kind of traceability is shown in Fig. 10.8.

10.4 The Related NSE Software Engineering Process Model

The NSE software development methodology works seamlessly with the NSE

software engineering process model shown in Chap. 8.

The NSE software engineering process model consists of three parts – the pre-

process, the main process, and the support facility for automated and self-maintainable

traceability among the related documents such as the requirement specifications,

the test cases, and the source code (see Chap. 9 for the detailed description).

The main purpose of the preprocess is to assign priority to the requirements

according to its importance, perform prototyping for the important and unfamiliar

Fig. 10.5 Sample traceabilities automatically established with a J-Diagram

266 10 NSE Software Development Methodology Driven

requirements to reduce risk, perform the functional decomposition for functional

requirements and system preliminary design through dummy programming to form

the whole of a software system as an embryo using dummy modules having an

empty body or only some calling statements to call other low-layered modules

without detailed program logic – see the Completeness Percentage axis of the

graphical description of the NSE software development methodology shown in

Fig. 10.9, the “Bone” system (about 5% of the product effort, the first milestone) is

obtained in the preprocess.

Fig. 10.6 Tracing the execution path for a runtime error

26710.5 Graphical Presentation of the NSE Software Development Methodology

The implementation of requirements are performed with the main process incre-

mentally through two-way iteration supported by automated and self-maintainable

traceability – it is recommended to complete the implementation of about 20% of

the most important requirements to form an essential version of the product – see

the Completeness Percentage axis of the graphical description of the NSE software

development methodology shown in Fig. 10.9; it corresponds to the “Essential”

version (second milestone) of the product completeness.

After that, the whole system grows up with more incremental implementations

of the requirements, until the final product is completed. With the NSE software

development methodology, all versions including the “Bone” system are executable

(even if there is no real output provided), and delivered to the customer for review

and then the customer’s feedback will be used to improve the product.

The NSE software engineering process model is a nonlinear one which assumes

that the upper phases may have defects or something wrong, so there is a need to

check the inconsistency with the upper phases to improve the product – when a

critical issue is found, there may be a need to go back to the preprocess to design

a better solution method for the corresponding requirement(s), and perform the

prototyping again.

10.5 Graphical Presentation of the NSE Software

Development Methodology

The graphical description of the NSE software development methodology is shown

in Fig. 10.9.

As shown in Fig. 10.9, there are three axes representing the Work Flow, the

Time, and the Completeness Percentage separately.

Fig. 10.7 Tracing an entire software product to a previous version

268 10 NSE Software Development Methodology Driven

In the Work Flow axis, it not only includes the phases of requirement develop-

ment, design, coding, testing, and maintenance but also includes the project

 management, the product delivery, and the support for the product Web site and

BBS for communication – it combines the product development and maintenance

together, and also combines software development and project management

together. No matter in what phase, defect prevention and defect propagation pre-

vention is performed to ensure the quality of the product being developed. It does

not always follow a linear order – as shown on the right side, upstream movement

is supported through traceability for two-way iteration, if necessary.

The Time axis represents the progress.

Fig. 10.8 Sample traceability between related modules

26910.5 Graphical Presentation of the NSE Software Development Methodology

The Completeness Percentage axis represents how much percent of the product

is completed – there are three milestones:

 1. The first one is the “Bone” system completed through dummy programming.

The “Bone” version is completed through the preprocess – after prototyping

and risk analysis, functional decomposition of the functional requirements will

be performed, then the requirement functional decomposition result will be used

for the preliminary design to establish the “Bone” system through dummy

programming (each dummy module has an empty body or a list of function call

statements without detailed program logic).

 2. The second one is the “Essential” version of the product – about 20% of the most

important requirements have been implemented. It is completed in the main

process incrementally for the most important requirements.

 3. The third one is the final product. Often the number of the requirements will

be doubled, compared with the initial number of the requirements – NSE

supports requirement changes in both the software development process, and

the software maintenance process with side-effect prevention through vari-

ous traceabilities.

With NSE, when a product is delivered to the customer, not only are the

computer program, the data used, and the documents traceable to and from the

source code provided but also the database built through static and dynamic

Fig. 10.9 NSE software development methodology

270 10 NSE Software Development Methodology Driven

measurement of the program, and a set of Assisted Online Agents (automated

and intelligent tools) to support the program’s testability, visibility, reliability,

conformity, changeability, and traceability, to make the program truly adaptive

and truly maintainable.

10.6 Application

The NSE software development methodology has been implemented commercially

and is supported by NSE application platform Panorama++ and SilverBullet++.

The following chapters will describe the detailed applications in the software

development lifecycle:

 (a) The applications in the requirement development phase – see Chap. 11

 (b) The applications in the software design phase – see Chap. 12

 (c) The applications in the software coding phase – see Chap. 13

 (d) The applications in the software testing phase – see Chap. 16

 (e) The applications in software quality assurance – see Chap. 17

 (f) The applications in the software maintenance phase – see Chap. 18

 (g) The applications in software documentation – see Chap. 19

 (h) The applications in software project management – see Chap. 20

As described above, the NSE software development methodology is driven by

defect prevention, defect propagation prevention, and traceability mainly through

dynamic testing using the Transparent-box testing method, and software visualization

in the entire software development process.

About the application examples of the NSE software development methodology

using the Transparent-box testing method for defect prevention and defect propagation

prevention, please read Chaps. 16 and 17.

10.6.1 Some Suggestions About the Applications of the NSE

Software Development Methodology

 (a) It is recommended to use NSE from the beginning for a software project, but

in fact NSE can be applied at any time in any stage using any methodology

originally, to update the product development approach – with NSE, it only

requires users to rewrite the test cases with some simple rules, and set the

corresponding bookmarks for the related documents; almost all the other work

can be done by the NSE support platform automatically.

 (b) Moving the quality assurance strategy from focusing on downstream to focus-

ing on upstream, not only through static review but also through dynamic test-

ing using the NSE software testing paradigm based on the Transparent-box

method, because dynamic testing can be used to detect more defects – many

defects cannot be found without really running the software system, including

the “Bone” system without real output. In the meantime, dynamic testing using

27110.8 Summary

the Transparent-box method can also automatically establish the traceability

among the related documents and test cases and the source code (including the

dummy programming source code where each dummy module has an empty

body or only some function call statements without detailed program logic) to

assist formal review in a semiautomatic way. Upstream defect prevention and

defect propagation prevention (removing defects at their source) is the key to

ensure the product quality and greatly reduce the software development cost.

 (c) It is recommended to reach 100% MC/DC test coverage for each program unit

for any commercial software product to ensure the quality of the product.

See Appendix B for an application example – it shows that with NSE in the unit

testing process, it is not difficult and not expensive to reach a 100% MC/DC test

coverage analysis result.

10.7 The Major Features of the NSE Software

Development Methodology

The major features of the NSE software development methodology are briefly

listed as follows:

 (a) It is based on complexity science.

 (b) It complies with the Constructive Holism principle of complexity science.

 (c) It supports incremental development with two-way iteration through various

traceabilities.

 (d) It combines software development and software maintenance together closely.

 (e) It combines software development and software project management together

closely.

 (f) It makes the entire software development process visible.

 (g) It enhances the communication among developers through traceable project

Web sites and BBS.

 (h) It supports multiple project development – two or more related projects’ documents,

including the management documents and the progress reports, can be traced to

each other as shown in Fig. 9.10 in Chapter 9.

 (i) It supports parallel development.

 (j) It supports refactoring for the highly complex modules through defect prevention.

 (k) It makes the design become pre-coding (through dummy programming), and

the coding become further design (through reverse engineering and backward

traceability to update the design documents).

10.8 Summary

This chapter presented the NSE software development methodology based on

complexity science. It is driven by traceability, defect prevention, and defect

propagation through dynamic testing using the Transparent-box testing method

272 10 NSE Software Development Methodology Driven

and software visualization. Preliminary applications show that compared with the

existing software development methodologies it is possible for the NSE software

development methodology (with the NSE process model and the support plat-

form) to help software development organizations double their productivity and

project success rate, halve their cost, and increase their product quality in tenfold

many times.

10.9 Points and Questions to Ponder

 (a) What are the differences in software development methodology between that

based on Constructive Holism and that based on Generative Holism?

 (b) What are the major differences between RUP (Rational Unified Process) and

the NSE software development methodology?

 (c) How can the NSE software testing paradigm be dynamically used in upstream

quality assurance for defect prevention and defect propagation prevention?

 (d) How can the NSE software visualization paradigm be used in software defect

prevention, defect propagation prevention, software understanding, testing, and

maintenance?

10.10 Further Reading and Information Source

 (a) Kay A, Hewlett Packard (2004) “The computer revolution”, “computer

 science”, and “software engineering” haven’t happened yet. http://portal.acm.

org/citation.cfm?id=1017758. ISBN:1-58113-860-1

 (b) Zambonelli F, Van Dyke Parunak H (2003) Signs of a revolution in computer

science and software engineering. Springer, Berlin. ISSN 0302-9743 (Print)

1611-3349 (Online)

References

[CMMI1.1] Phillips M (2002) CMMI Program Manager. CMMI V1.1 and Appraisal

Tutorial. http://www.sei.cmu.edu/cmmi/, slide 118, titled “Product Integration”

[Bro95-P200] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 200

[Bro95-P267] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 267

[Xio09] Xiong J, Xiong J (2009) A complete revolution in software engineering based on

complexity science. In: WORLDCOMP’09 – SERP (Software Engineering

Research and Practice 2009), pp 109–115

[Dem86] Deming WE (1986) Out of the crisis. MIT Press, Cambridge. ISBN 0-911379-01-0.

OCLC 13126265

[Coc08] Cockburn A (2008) Using both incremental and iterative development.

CrossTalk, May Issue

273

The important thing is that one model is enough – either the

code or the diagrams. They should be reproducible from one

another.

Harry M. Sneed

This chapter introduces the detailed applications of the NSE process model and the
NSE software development methodology in software requirement development.

As described in Chap. 1, software requirement engineering includes requirement
elicitation/gathering, functional decomposition of functional requirements and the
description of the nonfunctional requirements, requirement analysis, requirement
specification, requirement validation, etc.

With NSE, several templates are provided for helping users to prevent possible
defects such as missing something particularly in the requirement specification – a
requirement specification template is attached in Appendix A for readers to review
and use.

Here, in this chapter, we will focus on “Source Code Driven Dynamic Software
Modeling and Engineering” using the innovated HAETVE (Holistic, Actor–Action
and Event–Response driven, Traceable, Visual, and Executable) technique.

11.1 Are All the Existing Software Modeling

Approaches Outdated?

Based on the results of a survey of 113 software practitioners conducted between
April and December 2007, Andrew Forward reported that “Problems and opportu-

nities for model-centric versus code-centric software development … Programmers
that model extensively (versus those that do not model much) are more likely to
agree that models become out of date and inconsistent with code” [For08].

Chapter 11

Requirement Engineering Under NSE: Source
Code Driven Dynamic Software Modeling

J. Xiong, New Software Engineering Paradigm Based on Complexity Science:
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_11,
© Springer Science+Business Media, LLC 2011

274 11 Requirement Engineering Under NSE

State Information Technology Consortium (http://www.state-itc.org/) listed the
benefits and possible drawbacks of the Use Case approach as follows:

“Benefits of Use Cases

Help define user requirements•฀

Identify and document current methods, systems, and stakeholders•฀

Drive detailed application analysis and design•฀

Develop scripts for testing•฀

Suggest prototyping activity•฀

Clarify architecture requirements•฀

Highlight risks and needs for risk management•฀

Potential Use Case drawbacks

Might be incomplete.•฀

Each case may not describe enough detail of use.•฀

Not enough Use Cases; may miss entire areas of functionality.•฀

Might be inaccurate.•฀

Might not have been reviewed.•฀

Might not have been updated when requirements changed.•฀

Might be ambiguous/unclear.•฀

Will not find many bugs.”•฀

How about the future of UML?
As indicated by Jim Arlow and Ila Neustadt in their book, “UML 2 and the

Unified Process: Practical Object-Oriented Analysis and Design (Second Edition)”
[Arl06] that

MDA – the future of UML
The future of UML may be a recent OMG initiative called Model Driven Architecture

(MDA)… MDA defines a vision for how software can be developed based on models… In
MDA software is produced through a series of model transformations aided by an MDA
modeling tool. An abstract computer-independent model (CIM) is used as basis for a
platform-independent model (PIM). The PIM is transformed into a platform-specific model
(PSM) that is transformed into code.

But about MDA, Harry Sneed pointed that

Model driven considered harmful

Model-driven tools magnify the mistakes made in the problem definition.•฀

Model-driven tools create an additional semantic level to be maintained.•฀

Model-driven tools distort the image of what the program is really like.•฀

The model cannot be directly executed. It must first be transformed into code •฀

which may behave other than expected.
Model-driven tools complicate the maintenance process by creating redundant •฀

descriptions which have to be maintained in parallel.
Model-driven tools are designed for top-down development.•฀

Top-down functional decomposition creates maintenance problems.•฀

http://www.state-itc.org/

27511.1 Are All the Existing Software Modeling Approaches Outdated?

“Summary:

If a UML design can really replace the programming code as envisioned by •฀

Jacobson in his paper, UML all the way down, then it becomes just another
programming language.
The question then comes up as to what is easier to change•฀

The design documents or –
The programming language –

This depends on the nature of the problem and the people trying to solve it. If •฀

they are more comfortable with diagrams, they can use diagrams. If they are
more comfortable with text, they should write text.
Diagrams are not always the best means of modeling a solution. A solution can •฀

also be described in words. The important thing is that one model is enough –
either the code or the diagrams. They should be reproducible from one another”
[Sne07].

In my opinion, the major drawbacks of the existing software modeling
approaches are as follows:

 1. They are outcomes of reductionism and the superposition principle that

the whole of a complex system is the sum of its parts, so that with them
almost all software modeling activities are performed partially and locally – it
is the root cause for their many drawbacks.

 2. They are designed to work with the existing linear process models with no

upstream movement at all, making the defects introduced in the requirement
development phase and software design phase easily propagate down to the
maintenance phase, and the defect removal cost increase tenfold several times.

 3. They comply with the Constructive Holism principle that software compo-
nents are developed first, then, “Assemble the product from the product compo-

nents, ensure the product, as integrated, functions properly and deliver the

product.” [CMMI1.1] – it makes the quality of a software product much diffi-
cult to ensure – for instance, when a runtime error happens in the product inte-
gration, it is hard to know where the error comes from.

 4. They use two kinds of sources for software engineering with one in diagrams for
human understanding of a software system and the another one in textual format for
computer understanding of the product – there is a big gap between the two sources.
Here I call them “Two Sources Approach” (TSA) as shown in Fig. 11.1.

 5. They miss the Big Picture – the obtained results consist of many small pieces
without a holistic whole for a complex software system.

 6. The obtained results are not traceable – hard to review for static defect
removal, and even if a holistic result can be obtained, without traceability to
highlight the related elements it is still useless because there will be too many
connection lines, making the result hard to view and hard to understand.

 7. The results obtained are hard to update and maintain – the models are cre-
ated in inefficient ways, not automatically generated.

276 11 Requirement Engineering Under NSE

 8. The obtained results are not consistent with the source code after code
modification.

 9. They are static modeling approaches – the obtained results are not directly

executable, so that there is no debugging at all.
 10. There is no dynamic testing at all – no way to ensure the quality of the models.
 11. No right to be wrong – they offer “one time only” approaches – once the

 models are obtained, they become the road map for the product development
following a linear process model with no upstream movement at all, so that the
creators of the models have no right to be wrong – but it violates the nature of
human beings: people are nonlinear and it is easy to make mistakes in thinking,
working, reading, writing, hearing – everyone makes mistakes and wrong deci-
sions, including in software modeling.

 12. They could be high risk approaches – they force the obtained unqualified
models (without being debugged and tested) to become the road map for soft-
ware product development. I think it is one of the major reasons why about 70%
of software projects are failures.

Conclusion: the existing software modeling approaches are outdated.

11.2 Outline of the Revolutionary Solution Offered by NSE

The revolutionary solution offered by NSE in software modeling and requirement
engineering is described in detail in this chapter later. Here is the outline of the
solution called “Source Code Driven Dynamic Software Modeling and Engineering”

Fig. 11.1 The two sources approach for software modeling (TSA)

27711.2 Outline of the Revolutionary Solution Offered by NSE

using the HAETVE (a Holistic, Actor–Action and Event–Response driven,
Traceable, Visual, and Executable) requirement development technique:

 1. It is based on complexity science by complying with the essential principles of
complexity science, particularly the Nonlinearity principle and the Holism principle
that the whole of a complex system is greater than the sum of its components

– the characteristics and behaviors of the whole emerge from the interaction of

its components, so that with NSE almost all tasks and activities in software model-
ing and requirement engineering are performed holistically and globally.

 2. It works with the NSE process model which is a nonlinear one with two-way

iteration (see Chap. 8) supported by automated and self-maintainable
 traceabilities (see Chap. 9) to prevent defects brought into software products
by the product developers and the customers.

 3. It complies with the Generative Holism principle of complexity science that
the whole of a complex system exists (as an embryo) earlier than its components,
then grows up with its components. As pointed by Frederick P. Books Jr. that
“Incremental development – grow, not build software … that the system should
first be made to run, even though it does nothing useful except call the proper set
of dummy subprograms. Then, bit by bit it is fleshed out, with the subprograms
in turn being developed into actions or calls to empty stubs in the level below.”
[Bro95-p200], we will have a working system at all times to begin user testing
very early and adopt a build-to-budget strategy that protects absolutely against
schedule or budget overrun (at the cost of possible functional shortfall).

 4. It uses one kind of source for both human understanding and computer under-
standing of a software system. Here I call it SDM (Source Code Driven Dynamic
Software Modeling) as shown in Fig. 11.2.

It is the key to bring revolutionary changes to software modeling by making
the models obtained traceable for static defect removal, executable for debugging,
testable for dynamic defect removal using Transparent-box testing method (see
Chap. 16), and always consistent with the source code. With it, the diagrams are
generated automatically through forward engineering using dummy programs
(a dummy module will have an empty body or only a list of function call state-
ments) and reverse engineering using regular programs.

Why are the diagrams generated from code rather than the code generated
from diagrams? The reason is simple:

(a) There is not enough detailed information from the diagrams to generate code.
(b) If there is enough detailed information from the diagrams to generate code,

then the diagrams are useless – there will be too many elements and too
many connection lines to make the diagrams very hard to view and very hard
to understand.

The difficulty for generating diagrams from the code is due to its big size – for
instance, an EDA program may include 100,000 function points with more than ten
million lines of source code. With NSE, there is no size limitation for generating
diagrams from big programs, because NSE visualization paradigm offers features to
generate virtual, holistic, interactive, and traceable diagrams virtually (see Chap. 7).

278 11 Requirement Engineering Under NSE

 5. It offers holistic modeling results for an entire software system to show the
Big Picture of a software product automatically.

 6. The obtained results are traceable – easy to review for static defect removal.
For instance, users can trace a module in the functional decomposition chart of
the functional requirements to highlight all the related functions.

 7. The results obtained are easy to update and maintain – the models are
 automatically generated from the dummy programs or the regular source code.

 8. The obtained results are always consistent with the source code after code
 modification – the models can be updated automatically.

 9. It offers dynamic modeling capability – the obtained results are execut-

able, so that a debugger can be used to find and fix some defects.
 10. With it, dynamic testing is performed from the first step to ensure the

model quality – it works closely with the NSE software testing paradigm using
the innovated Transparent-box testing method which combines functional testing
and structural testing together seamlessly: to each set of inputs to any working
version of a software product (including the dummy whole system without pro-
viding any real output), it not only checks whether the output (if any, can be
none) is the same as what expected, but also checks whether the real execution
path covers a expected one specified in control flow, and then automatically
establishes bidirectional traceability to help users remove inconsistent defects
among the related documents and test cases and source code.

Fig. 11.2 Source Code Driven Dynamic Software Modeling (SDM)

27911.3 Description of the HAETVE Technique

 11. We have the right to be wrong, but we also have the right to be right – we
are human beings, and it is easy to make mistakes in thinking, working, reading,
writing, and hearing, so that with NSE modeling becomes preimplementation
of requirements, and implementation of requirements becomes further modeling
– when something wrong is found with the models in coding, we can fix the
problem by modifying the source code, and then re-generate the models with the
self-adaptation and self-maintenance capability.

 12. It is a high-quality approach – with NSE, the dynamic modeling results are
traceable for static review and defect removal, executable for debugging, and
testable for defect removal performed dynamically to ensure the model quality.
This is one of the major reasons why it is possible for NSE to help users double
their project success rate.

11.3 Description of the HAETVE Technique

As the name suggests, HAETVE is a Holistic, Actor–Action and Event–Response
driven, Traceable, Visual, and Executable technique for software requirement
development. It is innovated by me according to the NSE process model and NSE
software development methodology based on complexity science by complying
with the essential principles of complexity science, particularly the Nonlinearity
principle and the Holism principle, so that with HAETVE almost all tasks/activities
in software requirement engineering are performed holistically and globally.

HAETVE is one of the most important means to the implementation of the
Upstream Quality Assurance strategy and Total Quality Management strategy
to ensure the quality of a software product through defect prevention and defect
propagation prevention from the first step to the final step in the entire software
development and maintenance process, to follow Deming’s Product Quality
Assurance Principles that “Cease dependence on inspection to achieve quality.

Eliminate the need for inspection on a mass basis by building quality into the

product in the first place” [Dem82].
With HAETVE, the graphical notations for representing an actor and an

action for C/C++ programs are shown in Fig. 11.3 where the notation used for
representing an actor is originally designed for representing a recursive program
module.

Fig. 11.3 The notations for
representing an actor and the
action for C/C++

280 11 Requirement Engineering Under NSE

The corresponding dummy source code written in C/C++ is listed separately as
follows:

Bank_Customer ()
{
Bank_Customer ();
}

Void Deposit_Money ()
{
}

The corresponding notations for Java are shown in Fig. 11.4.

The corresponding source code in Java dummy programming is listed as follows:
Why use Java? It is because Java is a platform-independent programming

 language, so that the results obtained in modeling are also independent from the
target languages and platforms. If there is a need, the dummy java source code can
be transformed to a target language.

Here a special Actor – SuperActor is defined and used to request nonfunctional
requirements. With NSE and the support platform, Panorama++, a SuperActor can
request the following nonfunctional requirement as shown in Table 11.1.

Similarly, a sample of Event–Response relationship notations are shown in
Fig. 11.5.

The documents for actor–action are similar to Use Cases. But the event–response
documents are different from those with Use Cases. An example of the event–
response document is shown in Table 11.2.

Fig. 11.4 The notations for
representing an actor and the
action for Java

Table 11.1 Nonfunctional requirements which can be required/specified by the SuperActor

Item of nonfunctional requirements What can be required/specified

Interface design (1) Commend-line
(2) Graphic user interface (GUI)
(3) Both commend-line and GUI (it

needs to further describe the details)

Performance 1. Performance measurement (method
and tool)

2. Code branch execution frequency
measurement for locating
performance bottlenecks better

3. Memory leak and usage violation
check

Quality level related to structural testing 1. MC/DC (modified condition/decision
coverage) test coverage measurement,
or

2. Branch test coverage measurement, or
3. Statement test coverage (low quality

level, not recommended to use)
With all untested conditions and
branches highlighted graphically

Quality measurement metrics 1. Cyclomatic complexity (the
number of decision statements
such as “if” and “for”) for
each module (less than 30 is
recommended)

2. Module size (less than 200 lines
for instance)

3. Class-related metrics:

 (a) Lines of code per class (LOC)
 (b) Number of methods

per class (NOM)
 (c) Number of method users

per class (NMU)
 (d) Weighted methods per class

(WMC) in multiple
complexity metrics

 (e) Depth of inheritance tree
(DIT)

 (f) Number of children
per class (NOC)

 (g) Coupling between objects
(CBO)

 (h) Response for a class (RFC)
 (i) Lines of code reused

per class (LCR)
 (j) Ratio of code reused

per class (RCR)
 (k) Test coverage per class (TCC)

in multiple test coverage
metrics

4. Other metrics
They are flexible, can be selected,
and assigned standard values from
the corresponding menu

282 11 Requirement Engineering Under NSE

An application example provided by Panorama++ with the unexpected termina-
tion event–response treatment is shown in Fig. 11.6.

Correspondingly, the unexpected termination location is also indicated by the
error message and shown on a window after the program termination:

SIGSEGV is caught in trouble.c line 133

For the Actor–Action type applications, HAETVE is similar to the Use Case
approach [Jac92], and is easy to map to Use Case notations as shown in
Figs. 11.7–11.9.

Fig. 11.5 A sample event–response relationship

Table 11.2 Sample event–response table for Panorama++ design

Event System state Response Implementation hint

Unexpected
termination of
the program

Running user’s
program with test
coverage analysis
through the use of
Panorama++

(1) Analyze the error
type

(2) Get the termination
location and map it
to the source code

(3) Record the
execution path

(4) Close the opened
files

Replace the on_exit()
system function with
isa_exit() to get the
related messages earlier

User’s action
to terminate
Panorama++

Running Panorama++
to handle a user’s
program

1. Close the files
opened

2. Save related data
3. Close all tools being

used
4. Exit Panorama++

Set a program termination
button on Panorama++
interface for users to
use

… … … …

… … … …

… … … …

Fig. 11.6 An event–response treatment result provided by Panorama++ with the unexpected
termination location (shown with an EXIT word inserted into the J-Flow diagram) mapped to the
source code of the program being tested

284 11 Requirement Engineering Under NSE

Fig. 11.8 An application example of Use Cases

Fig. 11.7 Notation mapping between Use Case and HAETVE

28511.3 Description of the HAETVE Technique

The analysis result of Use Cases can also be mapped to HAETVE as shown in
Fig. 11.10.

Working with the NSE software visualization paradigm (see Chap. 7) and the
NSE software testing paradigm (see Chap. 16) based on the Transparent-box testing
method, the obtained results using the HAETVE technique are traceable for static
defect removal and executable for dynamic defect prevention and defect propaga-
tion prevention (see next section).

Fig. 11.9 Mapping from HAETVE to Use Cases: (a) mapping to Use Cases shown in Fig. 11.6.
(b) A modified version of (a) with assigned priority (using A, B, C… a, b, c…to order them)

286 11 Requirement Engineering Under NSE

11.4 Applications of HAETVE

An application example in functional requirement decomposition using Use Cases
is shown in Fig. 11.11. The mapping result using the HAETVE approach is
shown in Fig. 11.12.

But there are some special things with HAETVE:

 (a) It supports holistic functional requirement decomposition as shown in Fig. 11.13:
 (b) The obtained result is traceable for static defect prevention and defect propaga-

tion prevention, see Fig. 11.14 – found a defect through traceability: the Order_
Handler should handle Order_Confirmation too:

The modified version with the defect removed is shown in Fig. 11.15.

Fig. 11.11 An application example of Use Case Analysis

Fig. 11.10 Analysis notation mapping between Use Cases (UML) and HAETVE

28711.4 Applications of HAETVE

Fig. 11.12 The result mapping to the Use Case Analysis shown in Fig. 11.9: (a) using class nota-
tions and (b) using regular function notations

288 11 Requirement Engineering Under NSE

Fig. 11.12 (continued)

28911.4 Applications of HAETVE

Fig. 11.13 An example of Holistic requirement functional decomposition

290 11 Requirement Engineering Under NSE

Fig. 11.14 Traceability used for static defect prevention and defect propagation prevention

29111.4 Applications of HAETVE

Fig. 11.14 (continued)

292 11 Requirement Engineering Under NSE

Fig. 11.15 The modified version of the Holistic requirement functional decomposition with the
defect removed

29311.4 Applications of HAETVE

The corresponding source code of dummy programming is listed as follows:

 (c) The functional decomposition result is represented graphically in any level as
shown in Fig. 11.16.

A functional decomposition result for functional requirements with actor–
actions and event–response treatment is shown in Fig. 11.17.

Figure 11.18 shows an event and the response highlighted.
For comparing HAETVE with Use Case more easily, in the following exam-
ples, we only consider the actor–action driven applications (the main() func-
tion is also modified to accept different command line options – see Fig. 11.18)
without considering the event–response applications.

294 11 Requirement Engineering Under NSE

 (d) The program of functional requirement decomposition is executable dynami-
cally for easily finding and removing defects as shown in Fig. 11.19: the module
test coverage analysis process and result.

Using the Transparent-box software testing approach (see Chap. 16), we can further
design many test cases to test the requirement functional decomposition result accord-
ing to the different execution paths, and automatically establish the bidirectional trace-
ability for removing inconsistency defects (see Chap. 9). An example of the
corresponding test cases and the execution results are shown in Figs. 11.20–11.25.

When running the command, Billing_and_Payment.exe Invoice_Buyer, an error
was found:

C:\Billing_and_Payment9 > Billing_and_Payment.exe Invoice_Buyer
Invalid Commands:
Billing_and_Payment.exe Invoice_Buyer
*** Executed. ***

After checking the source code, it is clear that the problem comes from a typing
error:

…
else if (strcmp(argv[1],”INvoice_Buyer”)==0 ||

Fig. 11.16 An example of requirement functional decomposition in any level

29511.4 Applications of HAETVE

strcmp(argv[1],”Invoice_buyer”)==0
|| strcmp(argv[1],”invoice_buyer”)==0)

After removing the error (changing “INvoice_Buyer” to “Invoice_Buyer”) the
program executed correctly:

C:\Billing_and_Payment10 > Billing_and_Payment.exe Invoice_Buyer
*** D_Invoice_Buyer() called. ***
*** Executed. ***

Fig. 11.17 An example of functional decomposition with actor–action and event–response treat-
ments

296 11 Requirement Engineering Under NSE

Fig. 11.18 An event and the response highlighted

29711.4 Applications of HAETVE

Fig. 11.18 (continued)

298 11 Requirement Engineering Under NSE

Fig. 11.19 The test coverage analysis result after dynamic execution

29911.4 Applications of HAETVE

Fig. 11.20 The test coverage measurement result of the example after running the first test case
(Billing_and_Payment.exe New_Order)

Fig. 11.21 The test coverage measurement result after running the second test case (Billing_and_
Payment.exe Confirm_Order)

300 11 Requirement Engineering Under NSE

Fig. 11.22 The test coverage measurement result after running the first and second test cases

Fig. 11.23 The test coverage measurement after running four test cases

30111.4 Applications of HAETVE

Fig. 11.24 Two defects are found through forward tracing from a test case to the source code

Fig. 11.25 The two defects have been removed

302 11 Requirement Engineering Under NSE

The following is a test case script written by complying with the very simple
NSE test case design rules (see Chap. 9):

After running the test script, two defects are found as shown in Fig. 11.24

 1. After checking the source code, we can easily find that there is a defect coming
from an extra space character:

After code modification, the defect is removed:

30311.5 How to Make a Hard Copy of a Graphical Requirement Document

 2. Another defect is found where two bookmarks (New_Order and Pay_Invoice)
are pointing to the same location that is used for Pay Invoice Treatment part. This
defect is corrected by changing the New_Order bookmark to point to the New_
Order Treatment section in the prototyping document.

After fixing the problems, we can get the correct result shown in Fig. 11.25.
Of course, the functional requirement decomposition result is not the requirement

implementation result, but it will become a basis for the requirement implementation.
Besides the functional requirements, there are some other requirements to be

specified, such as the performance requirement and the UI (user interface) require-
ment which can be specified by a SuperActor.

11.5 How to Make a Hard Copy of a Graphical

Requirement Document

Usually, there is no need to print out a graphical document because with NSE the gra-
phical documents are all generated dynamically from several hash tables and exist virtu-
ally to greatly save space, unless users want to make them for documentation, Web page
design, or project presentations without using the NSE support platforms. All graphical
documents can be printed out on paper or to files (it is recommended to print out to a
file in Postscript format, then use Adobe tools to transfer it to PDF format for easy
viewing and saving the required space). Figure 11.26 shows an application example.

Fig. 11.26 An example about how to make a hard copy of a graphical document

304 11 Requirement Engineering Under NSE

11.6 Suggestions for the Requirement Documentation Design

How to design the requirement documents with NSE? There are some suggestions:

 (a) Complete the requirement specification using the NSE requirement specifica-
tion template (see Appendix A) to avoid missing something.

 (b) Complete other related documents such as the Test Requirement Specification
and the Test Script files according to the requirement specification to avoid
something untested.

 (c) Set the bookmarks to all the related requirement documents using inherited
bookmarks or meaningful bookmarks (even if some related documents such as
the Project Design Document have not been designed in detail yet – just a Table
of Contents and the Section Headers). An application example for setting book-
marks in a word file is shown in Fig. 11.27.

 (d) Complete an initial design of the Document Hierarchy Description table used
for establishing automated and self-maintainable traceability among the docu-
ments and the test cases and the source code (see Chap. 9) as shown in the fol-
lowing template (see Table 11.3).

Also do not forget to list the corresponding test case script files and the corre-
sponding test case numbers to be used to perform requirement validation and veri-
fication later through forward traceability – see Chap. 18 about the NSE software
maintenance paradigm.

Fig. 11.27 Bookmark setting example

30511.6 Suggestions for the Requirement Documentation Design

 (e) Ignore the static “Requirement Traceability Matrix” which is time consuming
to make, incomplete, not accurate, not precise, not bidirectional, hard to use,
and hard to maintain.

 (f) If you have some related documents made by third party tools, you can make
them traceable too – design a batch file, then use the @BAT@ keyword in the
 corresponding test cases description, so that when the test case is selected for
forward tracing or traced from the corresponding source code, the batch file will
be automatically executed to use the third-party tools to open the related
document(s). A sample batch file is as follows:

%PANORAMAHOME%\tool_j\bin\java -jar %PANORAMAHOME%\ganttpro\build\
ganttproject-1.9.11.jar
%PANORAMAHOME%\ganttpro\ganttproject-example3.xml.

The application example is shown in Fig. 11.28.

Table 11.3 Document Hierarchy Description template

306 11 Requirement Engineering Under NSE

11.7 The Major Features of HAETVE

The major features of the HAETVE technique include:

 (a) It is an engineering approach for software requirement development.
 (b) It is holistic – with HAETVE almost all tasks/activities of requirement devel-

opment are performed holistically and globally.
 (c) It supports both the actor–action driven software development and the event–

response driven software development.
 (d) It is visual – the application process and the obtained results are visible.
 (e) The obtained results are traceable for review and static defect prevention and

defect propagation prevention – traceability is particularly useful for a complex
software product as shown in Figs. 11.29 and 11.30.

 (f) The obtained results are executable for dynamic defect prevention and defect
propagation prevention through the NSE software testing paradigm based on
the Transparent-box method (see Chap. 16).

 (g) It mainly works through dummy programming using dummy modules having an
empty body or only some function call statements without detailed program logic.

 (h) It uses the notations of 3J graphics (see Chap. 7) to show the obtained results
graphically.

Fig. 11.28 A dynamic traceability example

30711.7 The Major Features of HAETVE

F
ig

.
1
1
.2

9

T
he

 f
un

ct
io

na
l

de
co

m
po

si
ti

on
 r

es
ul

t
of

 a
 c

om
pl

ex
 s

of
tw

ar
e

308 11 Requirement Engineering Under NSE

F
ig

 1
1
.3

0

T
ra

ci
ng

 a
n

el
em

en
t

(l
ex

()
)

fr
om

 t
he

 c
ha

rt
 s

ho
w

n
in

 F
ig

.
11

.2
9

30911.8 More About Dynamic Modeling

 (i) The graphics showing the obtained holistic results are generated automatically,
dynamically, and virtually from the dummy source code without storing any
hard copy in the memory and the hard disk to greatly save the needed space.

 (j) UML is supported indirectly through the use of an open source product,
Fujaba.

 (k) It not only works for C, C++, and Visual Basic, but also works for Java to make
the modeling results independent of the target programming languages and
platforms.

11.8 More About Dynamic Modeling

Dynamic modeling means:

 1. The generated diagrams/models are executable directly or indirectly through the
corresponding code.

 2. The generated diagrams/models not only can represent the static properties of a
software product, but can also represent the dynamic properties of a software
product, such as the code test coverage and the percentage of the execution time
spent in each module.

 3. The generated diagrams/models are interactive and traceable.
 4. The most important feature of Dynamic Modeling is that the generated dia-

grams/models no longer statically exist – they dynamically exist (“alive”) –

the generated diagrams/models, the generators of the diagrams/models, and

the interfaces to accept users’ commands (using the diagrams/models them-

selves) are three in one: when a diagram/model is shown in a Window, its

generator is always working and waiting for a user’s command through the

diagram/model (acting as the interface) – after receiving a user’s command,

the generator will dynamically respond, such as generating a subtree (see Fig.
7.11), printing out a chart (see Fig. 7.23), or performing untested path analysis
and automatically highlighting a “best” one with most untested elements and
automatically extracting the execution conditions to help users design the most
efficient test case.

 5. The generated diagrams/models and the corresponding source code are no lon-
ger separated, instead, they are combined together to form a powerful union to
help users develop a software product better, understand a software product bet-
ter, test a software product better, and maintain a software product better. For
instance, clicking on a module box from the generated call graph to directly edit
the source code of that module as shown in Fig. 11.31, or clicking on a module
from the generated control flow diagram to trace the corresponding test cases
and directly play the captured GUI test operations back dynamically as shown
in Fig. 11.32 (note: during the playback process, we cannot directly make a
screenshot).

Fig. 11.31 Directly select an editor and then edit a module from a generated call graph

Fig. 11.32 Click on a module from a control flow to trace the test cases run on a program(s)

31111.11 Further Reading and Information Source

11.9 Summary

The existing software modeling approaches are outdated because they are outcomes
of reductionism and the superposition principle, and use different sources for
human understanding and computer understanding of a software system separately
with a big gap between them. The obtained models are not traceable for static
defect removal, not executable for debugging, not testable for dynamic defect
removal, not consistent with the source code after code modification, and not quali-
fied as the road map for software development.

This chapter introduced how to perform software requirement development with
NSE through Source Code Driven Dynamic Software Modeling and Engineering
using the innovated Holistic, Actor–Action and Event–Response driven, Traceable,
Visual, and Executable (HAETVE) technique. HAETVE is one of the most impor-
tant means to the implementation of the NSE’s Upstream Quality Assurance
strategy and Total Quality Management strategy to ensure the quality of a soft-
ware product through defect prevention and defect propagation prevention from the
first step to the final step in the entire software development and maintenance
process, following Deming’s Product Quality Assurance Principles that “Cease

dependence on inspection to achieve quality. Eliminate the need for inspection on

a mass basis by building quality into the product in the first place.”

11.10 Points and Questions to Ponder

 (a) What are the major differences between the Use Case approach and the
HAETVE technique?

 (b) Why should the graphical result of the function decomposition of the functional
requirements of a product be made traceable?

 (c) Why do we need not only static review, but also dynamic testing in the software
requirement development phase?

11.11 Further Reading and Information Source

Resource of requirement specification templates:
http://www.systemsguild.com/pdfs/SpecTemplate6.1.pdf
http://www.docin.com/p-49779695.html
http://www.klariti.com/Software-Requirements-Specification-Template/
http://www.cs.iit.edu/~oaldawud/CS487/project/requirement_specification_docu-

ment_template.htm
http://www.lcwu.edu.pk/etm/cs_projdoctemp/SRS.pdf
https://svn.origo.ethz.ch/jid08-team17/trunk/srs_team_view/Eloha%20view%20

SRS.pdf

http://www.systemsguild.com/pdfs/SpecTemplate6.1.pdf
http://www.docin.com/p-49779695.html
http://www.klariti.com/Software-Requirements-Specification-Template/
http://www.cs.iit.edu/~oaldawud/CS487/project/requirement_specification_document_template.htm
http://www.cs.iit.edu/~oaldawud/CS487/project/requirement_specification_document_template.htm
http://www.lcwu.edu.pk/etm/cs_projdoctemp/SRS.pdf
https://svn.origo.ethz.ch/jid08-team17/trunk/srs_team_view/Eloha%20view%20SRS.pdf
https://svn.origo.ethz.ch/jid08-team17/trunk/srs_team_view/Eloha%20view%20SRS.pdf

312 11 Requirement Engineering Under NSE

References

[Arl06] Arlow J, Neustadt I (2006) UML 2 and the unified process: practical object-
oriented analysis and design, 2nd edn. Person Education, Inc., Boston

[Bro95-p200] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 200
[CMMI1.1] Phillips M (2002) CMMI Program Manager, CMMI V1.1 and Appraisal Tutorial,

http://www.sei.cmu.edu/cmmi/
[Dem82] Deming WE (1982) Out of the crisis. MIT Press, Cambridge
[For08] Forward A (2008) Problems and opportunities for model-centric versus code-

centric software development: a survey of software professionals. Proceedings of
the 2008 international workshop on models in software engineering, Leipzig,
Germany, pp 27–32

[Jac92] Jacobson J (1992) Object oriented software engineering: a use case driven
approach. Addison-Wesley, Reading

[Sne07] Sneed H (2007) The drawbacks of model driven software evolution. IEEE CSMR
07 – workshop on model-driven software evolution, Amsterdam, 20 March 2007

http://www.sei.cmu.edu/cmmi/%2c%202002

313J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_12,

© Springer Science+Business Media, LLC 2011

The whole is more than the sum of its parts.

Aristotle

In the software design phase, the major tasks include the planning of the solution

according to the requirement specification, design of the software architecture,

design of the data structure, design of the interfaces, design of the algorithms,

design of the modules, and design of the documents.

This chapter introduces how software design engineering can be performed

holistically, globally, virtually, visually, and efficiently using the innovated

Synthesis Design and Incremental growing up (Implementation and Integration)

technique in the software design phase.

12.1 The Major Problem Addressed

Although in software engineering many methods, techniques, and tools have been

developed for software design and applied in practices, there are still many critical

problems existing with the old-established software design paradigm because

 (a) The old-established software design paradigm (including the methods, tech-

niques, and tools) is based on linear thinking, reductionism, and the superposition

principle that the whole of a complex system is the sum of its components, so that

almost all software design tasks and activities are performed linearly, partially,

and locally – through “Analysis.”

 (b) It follows the Constructive Holism principle that software components are

developed first, then “Assemble the product from the product components,

ensure the product, as integrated, functions properly and deliver the product.”

[CMMI1.1]. It handles a software product as a machine which can be assem-

bled, rather than a logic product created by people.

 (c) Often the designed results consist of many small pieces without a holistic whole

for a complex software system.

Chapter 12

Design Engineering Under NSE

314 12 Design Engineering Under NSE

 (d) The designed results are not traceable – hard to review and hard to understand.

 (e) Even if a holistic result can be designed and shown graphically, without trace-

ability it is still useless because there are too many connection lines, making the

designed result hard to view and hard to understand.

 (f) The designed results are not directly executable – an Upstream Quality

Assurance strategy cannot be implemented dynamically through testing to pre-

vent defects and prevent defect propagation early in the product design phase.

 (g) The designed results are hard to update and maintain, no matter if they are

represented in text or graphics.

 (h) The designed results and the related documents are not traceable backwards to

the requirements or forwards to the source code.

 (i) The designed graphical documents are stored in hard copies or XML or

PostScript format, requiring a huge amount of space.

 (j) About the design documents, there are two extremes: one is requiring a huge

amount of documents but most of which are useless because they are inconsis-

tent with the source code after code modification performed again and again;

another one is based on the concept that “Only the source code is the best

document” so that only a few design documents will be provided – making the

software product more difficult to maintain.

 (k) Working with the linear process models, the defects introduced in the design

phase easily propagate to the lower phases to make the defect removal cost

increase tenfold several times.

 (l) The application results of the old-established software design paradigm show

that today the software project success rate is still very low – only about 30%.

12.2 Outline of the Solution for Software Design with NSE

The solution offered by NSE for software design using the innovated Synthesis

Design and Incremental growing up technique is described in detail in this chapter

later. Here is the outline of the solution:

 (a) It is based on nonlinear thinking and complexity science by complying with

the essential principles of complexity science, particularly the Nonlinearity

principle and the Holism principle that the whole is greater than the sum of its

parts, and the characteristics and behaviors of the whole emerge from the inter-

action of its parts and the interaction of it and the environment, so that with

NSE almost all the software design tasks and activities are performed holisti-

cally and globally.

 (b) It complies with the Generative Holism principle that the whole of a complex

system may exist (as an embryo) earlier than its components, then grows up

with its components incrementally.

 (c) The designed results are holistic for the entire product.

31512.3 Description of the Innovated “Synthesis Design and Incremental Growing Up” Technique

 (d) The designed results are traceable – easy to review and understand.

 (e) With traceability, no matter how complex a software product is, we can easily

highlight a module with all the related modules calling and called by it to make

the designed results much easier to review and understand.

 (f) The designed results are directly executable – an Upstream Quality Assurance

strategy can be implemented dynamically through testing to prevent defects

and prevent defect propagation early in the product design phase.

 (g) The designed results are easy to update and maintain – after modifying the

source code or the dummy programming source code, the design documents

can be automatically updated.

 (h) The designed results and the related documents are traceable backwards to the

requirements or forwards to the source code (see Chap. 9).

 (i) The designed graphical documents virtually exist without storing any hard cop-

ies in disk or the computer memory – they are automatically generated though

several hash tables virtually.

 (j) About the design documents, a huge amount of documents will be automati-

cally generated which are always consistent with the source code– making the

software product much easier to maintain.

 (k) Working with the NSE nonlinear process models through defect prevention and

defect propagation prevention using traceable documents and dynamic testing

using the Transparent-box method (see Chap. 16), the defects introduced into a

software product and the defects propagated to the maintenance phase will be

greatly reduced.

 (l) The application results show that working with the NSE process model and

the NSE software development methodology, it is possible for the NSE soft-

ware design paradigm to help software organizations double their product

success rate.

12.3 Description of the Innovated “Synthesis Design

and Incremental Growing Up” Technique

12.3.1 Basic Ideas

 (a) As pointed out by Aristotle, “The whole is more than the sum of its parts.”

 (b) Software is people oriented – people are the first-order components in software

development [Coc99].

 (c) People are nonlinear.

 (d) People make mistakes and wrong decisions often.

 (e) So, design and coding should be a two-way process by combining design and

coding together closely (top-down + bottom-up).

 (f) With NSE design is precoding, coding is further design.

316 12 Design Engineering Under NSE

12.3.2 What is Synthesis? What is Analysis?

Synthesis means “to put together” and analysis means “to loosen up,” respectively.

Analysis is defined as the procedure by which we break down an intellectual or

substantial whole into parts or components. Synthesis is defined as the opposite

procedure: to combine separate elements or components together to form a coherent

whole – “1 + 1 > 2.”

According to the Generative Holism principle of complexity science, the whole

of a complex system exists earlier than its components – as an embryo, then grows

up with its components.

Here, “Synthesis Design and Incremental growing up” means:

 (a) Combining all NSE components together and make them work together

closely (such as sharing the unique database, using a common interface, etc.)

to form the whole of NSE for the requirement implementation including

software design and coding, including the NSE process model, NSE soft-

ware development methodology, and particularly the NSE software visual-

ization paradigm (see Chap. 7) and the NSE software testing paradigm (see

Chap. 16).

 (b) Combining software design and coding together, supported by the entire NSE

paradigm as shown in Fig. 12.1.

 (c) Combining the “top-down” design approach and “bottom-up” design approach

together through two-way iteration.

 (d) Combining human-intelligence and computer-computing power together to

solve issues such as error simulation used for realizing 100% MC/DC test

coverage, and getting the class test coverage results from their instances

(a class cannot be directly executed).

Fig. 12.1 Design and coding with NSE

31712.3 Description of the Innovated “Synthesis Design and Incremental Growing Up” Technique

 (e) Combining qualitative research and quantitative implementation together such

as the test planning through cyclomatic complexity (the number of the decision

statements) for the entire product and each individual module.

 (f) Combining textual description and graphical representation together – generating

the graphics directly from the dummy source code or the regular source code.

 (g) Combining complexity science and reductionism together – “complexity is by

levels” [Bro95-P211]. Sometimes we need to compare their application results

as well.

 (h) Collecting the information, documents, and data related to the requirements,

including the solution method comparison reports, prototype design and risk

estimation reports, test cases and the test results, customer evaluation results,

the documents of the algorithms used, etc.

 (i) According to the functional requirement decomposition results plus nonfunc-

tional requirements, updating the executable dummy system (the preliminary

architectures were designed in the preprocess) through dummy programming.

 (j) Testing the designed results dynamically using the Transparent-box approach,

and reviewing the result statically using traceable documents and test cases and

the source code – even if there is only one top-level dummy module (main())

available and executable with different command-line options (see Section 12.4).

 (k) Removing the defects introduced into the designed dummy system through

software visualization and inspection, particularly dynamic testing using the

Transparent-box approach.

 (l) Performing optimization of the designed dummy system to reduce the coupling

degree.

 (m) Designing the preliminary data structures (class structures) according to the

collected information and data.

 (n) Compiling and executing the designed dummy system that maps to the func-

tional requirement decomposition plus the nonfunctional requirements.

 (o) Performing detailed design of the modules.

 (p) Working with incremental coding to make the system grow up with new versions

of the system executable.

 (q) Updating the design results through “Design is precoding, and coding is further

design.” – for instance, the design shows function A calls function B only, but

the coding engineers may find that the function A should call function B and

function C – in this case, after coding, they can update the design documents by

rebuilding the database to make the design result consistent to the code (they

may select to modify the design documents first, then change the code).

 (r) If critical issues found, going back to the preprocess to choose a suitable solu-

tion method and performing prototyping again.

With NSE, the preliminary design of the whole of the software system is performed

in the preprocess (see Chap. 8) through dummy programming using dummy modules

based on the result of the functional decomposition of the functional requirements and

the description of the nonfunctional requirements. A dummy module has an empty

body or only some function call statements without detailed program logic.

318 12 Design Engineering Under NSE

With NSE, defect prevention and defect propagation prevention should be

performed in the entire software development process and the maintenance process

using the Transparent-box testing method, plus formal inspection and review using

traceable documents and test cases and the source code supported by various trace-

abilities, plus software visualization.

With NSE, the document hierarchy is specified with a table using bookmarks to

indicate the relationship among the related documents and test cases (see Chap. 11),

which will be used to establish the traceability among all the related documents and

test cases and the source code through the execution of the test cases (see Chap. 9)

using Time Tags that are automatically inserted into both the test cases and the

test coverage database of the source code for data mapping between the test cases and

the source code, and some keywords such as @WORD@, @HTML@, @EXCEL@,

@PDF@, and @BAT@ written within the test case description to indicate the format

of a document, the file path, and the bookmark to open the document from the cor-

responding location when the document is traced. The @BAT@ keyword is used for

dynamic traceability to automatically execute a batch file.

With NSE, the design process and the designed results are visible for static

defect prevention and defect propagation prevention.

With NSE, the design results are always executable.

12.3.3 Recommendation for Graphic Document

Creation/Generation

It is recommended that, in most cases, one should not spend too much time in drawing

design graphics manually or using a graphic editor (draft graphics are good enough

to use for review only), because it is time-consuming, costly, not traceable, not

executable, hard to change, and hard to maintain. I believe in most applications

there is no need to draw a graphic manually or using a graphic editor – in most

cases, all graphics can be generated automatically through dummy programming or

regular source code.

Figure 12.2 shows a draft graphic drawn manually.

Fig. 12.2 A graphic made manually

31912.3 Description of the Innovated “Synthesis Design and Incremental Growing Up” Technique

Figure 12.3 shows that a hand-made graphic is hard to change.

For obtaining the graphic shown in Fig. 12.2, the dummy program in C/C++ is

very simple:

The corresponding J-Chart generated automatically is shown in Fig. 12.4.

Using dummy programming approach, the same modification is easy to perform:

Fig. 12.3 A modified version of the graphic shown in Fig. 12.2

320 12 Design Engineering Under NSE

The modified call graph automatically generated from the modified dummy

source code is shown in Fig. 12.5.

After changing the module NEW_EDA() to main(), the program can be com-

piled and executed.

12.3.4 Self-Documenting

As stated in Chap. 7, to easily maintain a software product, many kinds of docu-

ments can be merged into the source code such as the Sequence Diagram to expose

time ordering of events/messages – we can describe the same thing within a program

comment such as the use of a formatted table in C/C++ shown as follows:

Fig. 12.4 The automatically generated call graph corresponding to Fig. 12.2

Fig. 12.5 The automatically generated call graph corresponding to that shown in Fig. 12.3

32112.3 Description of the Innovated “Synthesis Design and Incremental Growing Up” Technique

12.3.5 Detailed System Hierarchy Design

Through dummy programming, a detailed program hierarchy of a complex soft-

ware product can be designed as shown in Fig. 12.6.

12.3.6 Static Defect Prevention and Defect Propagation

Prevention Through Traceability

It is difficult to review a complex program hierarchy shown graphically with many

modules connected to each other. With NSE, all generated charts and diagrams are

traceable for helping users perform static defect prevention and defect propagation

prevention as shown in Fig. 12.7.

12.3.7 Dynamic Defect Prevention and Defect Propagation

Prevention

Even if only one top module (the main() function, for instance) is preliminarily

designed with some command-line options, we can design a set of test cases to test

the module dynamically through different command-line options, then the testing

Fig. 12.6 The call graph of a complex software product

Fig. 12.7 A module and the related modules highlighted for static defect prevention and defect

propagation prevention

32312.3 Description of the Innovated “Synthesis Design and Incremental Growing Up” Technique

tool using the Transparent-box testing method will establish the automated and

self-maintainable traceability among the related documents, the test cases, and the

source code for preventing inconsistency defects – see Section 12.4.

12.3.8 Data Structure Design

Data structure design is one of the most important tasks in software design. With

NSE, it is also being done through dummy programming. Figure 12.8 shows a class

inheritance chart of a designed program.

12.3.9 Detailed Logic Design of the Modules

With NSE, it is recommended to perform detailed module design using J-Diagram.

Figure 12.9 shows a program design example using the activity diagram of UML.

A sample programming source code used for representing the corresponding

product design specified in the activity diagram is listed as follows:

The J-Diagram generated from the listed dummy programming source code is

shown in Fig. 12.10.

Fig. 12.8 A sample chart showing the class relationship of a program

324 12 Design Engineering Under NSE

Fig. 12.9 A typical activity diagram. Source: Peter Zielczynski, Director of Technology Solutions,

The A Consulting Team, Inc., “Traceability from use cases to test cases”, 2004, http://www.ibm.

com/developerworks/rational/library/04/r-3217/?S_TACT=105AGX52&S_CMP=cn-a-r#author1

http://www.ibm.com/developerworks/rational/library/04/r-3217/?S_TACT=105AGX52&S_CMP=cn-a-r#author1
http://www.ibm.com/developerworks/rational/library/04/r-3217/?S_TACT=105AGX52&S_CMP=cn-a-r#author1

32512.4 Application

12.4 Application

326 12 Design Engineering Under NSE

The following shows an application example for a new EDA software product design.

Fig. 12.10 The generated J-Diagram from the listed dummy source code, shown with the test

coverage measurement result after dynamic testing

328 12 Design Engineering Under NSE

 1. Complying with Deming’s product quality assurance principles – “Cease

dependence on inspection to achieve quality. Eliminate the need for inspec-

tion on a mass basis by building quality into the product in the first

place”[Dem86] – with NSE, the quality of a software product being designed is

ensured from the first step in top-down product hierarchy design with only the

main() program for handling some command-line options – see the dummy

source code listed below:

Usually, with NSE in the beginning of product design, some documents

should be ready for use, including the corresponding requirement specification,

the test requirement specification, the prototyping documents, the product devel-

opment plan, etc., so that according to the test requirement specification and the

command-line options (GUI operation options), we can design a corresponding

test script file as follows:

32912.4 Application

After running the four test cases, the test coverage result is shown in

Fig. 12.11.

Now it is the time to perform defect prevention and defect propagation pre-

vention through dynamic testing and review using traceable documents and the

test cases and the source code:

330 12 Design Engineering Under NSE

Fig. 12.11 The test coverage measurement result of the main() program

After running the test cases, we can perform forward tracing and backward

tracing to find and remove defects – see Figs. 12.12–12.16.

Removing the defects:

(a) Find the location for the first defect and modify the main() program

33112.4 Application

Fig. 12.12 Tracing the first test case to find the corresponding source code and automatically

open the related documents (the requirement specification, the prototyping documents, and the

project development plan) – in this operation, no defect was found

Fig. 12.13 Tracing the second test case with two inconsistency defects found: (1) The real exe-

cution path did not cover the expected execution path main(int, char**) {s0, s3} – segment s3 is

highlighted as untested; (2) The bookmark for opening the global routing section of the prototyp-

ing document, g_router, pointed to the wrong section – the global placement section

Fig. 12.15 Fixing the bookmark mistake

Fig. 12.14 Locating the mistake of the bookmark, g_router

33312.4 Application

(b) Find the mistake related to the bookmark, g_router (Fig. 12.14), and fix it

(Fig. 12.15):

 2. The designed result after adding the second level is shown in Fig. 12.17.

 3. The top-down design result after adding some more levels is shown in

Fig. 12.18.

Figure 12.19 shows that the designed results are always traceable.

The corresponding dummy programming source code for the main() module is

listed as follows:

#include <stdio.h>

#include <string.h>

Fig. 12.16 Verifying that the two defects have been removed through backward tracing from the

segment s3 (the test case 2 was traced and the related documents were opened without defects)

334 12 Design Engineering Under NSE

Fig. 12.17 The design result after adding four subsystems

Fig. 12.18 The top-down design result after adding some more levels

33512.4 Application

extern int dbs_build(char*, char*);

extern int d_routing(char*);

extern int d_placement(char*);

extern int g_routing(char*);

extern int g_placement(char*);

extern int partitioning(char*);

extern int odering(char*);

void main(argc, argv)

int argc;

char **argv;

{

if(argc != 3 && argc != 4)

{

printf(“Usage: \n”);

printf(“ new_EDA dbs_build -conditions=condition_file

-dbs=database_file \n”);

printf(“ new_EDA global_placement -dbs=database_file \n”);

printf(“ new_EDA global_routing -dbs=database_file \n”);

printf(“ new_EDA detailed_placement -dbs=database_file \n”);

printf(“ new_EDA detailed_routing -dbs=database_file \n”);

printf(“ new_EDA partitioning -dbs=database_file \n”);

printf(“ new_EDA ordering -dbs=database_file \n”);

}

else if (argc == 3)

Fig. 12.19 Tracing a module (load_dbs()) to highlight all the related modules

336 12 Design Engineering Under NSE

{

if(strcmp(argv[1],”global_placement”)==0)

 g_placement(argv[2]);

else if(strcmp(argv[1],”global_routing”)==0)

 g_routing(argv[2]);

else if(strcmp(argv[1],”detailed_placement”)==0)

 d_placement(argv[2]);

else if(strcmp(argv[1],”detailed_routing”)==0)

 d_routing(argv[2]);

else if(strcmp(argv[1],”partititionning”)==0)

 partitioning(argv[2]);

else if(strcmp(argv[1],”ordering”)==0)

 ordering(argv[2]);

else

 printf(“Invalid name: %s\n”,argv[1]);

}

 else if (strcmp(argv[2],”dbs_build”) == 0)

 dbs_build(argv[2],argv[3]);

else printf(“Error! Invalid name: %s\n”,argv[1]);

}

 4. About the final result of the top-down design of the NEW_EDA system.

It is the project I may develop with my colleagues in the future based on com-

plexity science – the existing EDA products for VLSI chip design are completely

outdated, because they are outcomes of reductionism and the superposition prin-

ciple. The NEW_EDA system may have more than 50,000 function points with

more than ten million lines of source code.

12.5 The Major Features of the Software Synthesis Design

Technique

The major features of the Software Synthesis Design (and Incremental growing

up) technique include:

 (a) It is an engineering approach for software design.

 (b) It works with the NSE process model and the NSE software development meth-

odology based on complexity science by complying with the essential princi-

ples of complexity science, particularly the Nonlinearity principle and the

Holism principle.

 (c) It complies with the Generative Holism principle of complexity science that the

whole of a complex system exists earlier (as an embryo) than its components,

and then grows up with its components.

 (d) It follows the rule that people is the first-order element in software engineering,

and the natural law about human beings that people are nonlinear and they easily

make mistakes and wrong decisions, so that it combines software design and

33712.7 Points and Questions to Ponder

software coding together to make design become precoding and coding (see

Chap. 13) become further design.

 (e) It meets the NSE Upstream Quality Assurance strategy from the first step to the

end of the software development lifecycle through defect prevention and defect

propagation prevention by dynamic testing using the Transparent-box method,

review and inspection using the traceable documents and source code, and soft-

ware visualization.

 (f) The work products designed using this technique are holistic, visual, traceable,

and always executable.

 (g) It is a component of the entire NSE software engineering paradigm for effi-

ciently handling the essential issues existing with today’s software develop-

ment: the complexity, changeability, invisibility, and conformity, defined by

Brooks [Bro95-P182].

12.6 Summary

The old-established software design paradigm works with the linear process models

based on reductionism and the superposition principle that the whole of a complex

system is the sum of its components, so that with it almost all software design tasks

and activities are performed linearly, partially, and locally – through “Analysis.”

The obtained work products using the old-established software design paradigm are

not holistic, not traceable, not visible, and not directly executable – it means the

quality of the product design is hard to ensure.

With NSE, software design engineering is performed using the Software

Synthesis Design (and Incremental growing up) Technique working with the

NSE process model and the NSE software development methodology based on

complexity science by complying with the essential principles of complexity science,

particularly the Nonlinearity principle and the Holism principle, so that with NSE

almost all the software design tasks and activities are performed holistically and

globally – through “Synthesis.” The obtained work products are holistic, visible,

traceable, and directly executable for defect prevention and defect propagation

prevention mainly using the Transparent-box testing method – it means the quality

of the product design is easy to ensure.

With NSE design becomes precoding, and coding becomes further design.

12.7 Points and Questions to Ponder

 (a) What are the major problems with today’s software design?

 (b) What are the benefits to use the Software Synthesis Design (and Incremental

growing up) technique for software design?

338 12 Design Engineering Under NSE

 (c) Complete the dummy program for generating the top-down design result

shown as follows:

12.8 Further Reading and Information Source

Software design, From Wikipedia, the free encyclopedia. http://en.wikipedia.

org/wiki/Software_design

Software design document template:

http://www.klariti.com/templates/Design-Document-Template.shtml

http://www.rspa.com/docs/Designspec.html

http://en.wikipedia.org/wiki/Software_Design_Description

http://ant.comm.ccu.edu.tw/course/97_Programming/7_SampleCode/

Design%20Document%20Template%20-%20Chapters.pdf

References

[Bro95-P182] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,

p 182

[Bro95-P211] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,

p 211

[CMMI1.1] Phillips M (2002) CMMI program manager, CMMI V1.1 and appraisal tutorial.

http://www.sei.cmu.edu/cmmi/

[Coc99] Cockburn AAR (1999) Characterizing people as non-linear, first-order compo-

nents in software development, Humans and Technology, HaT Technical Report

1999.03, 21 Oct 1999

[Dem86] Deming WE (1986) Out of the crisis. MIT Press, Cambridge

http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Software_design
http://www.klariti.com/templates/Design-Document-Template.shtml
http://www.rspa.com/docs/Designspec.html
http://en.wikipedia.org/wiki/Software_Design_Description
http://ant.comm.ccu.edu.tw/course/97_Programming/7_SampleCode/Design%20Document%20Template%20-%20Chapters.pdf
http://ant.comm.ccu.edu.tw/course/97_Programming/7_SampleCode/Design%20Document%20Template%20-%20Chapters.pdf
http://www.sei.cmu.edu/cmmi/

339J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_13,

© Springer Science+Business Media, LLC 2011

Add one component at a time. This precept, too, is obvious,

but optimism and laziness tempt us to violate it. To do it

requires dummies and other scaffolding, and that takes work….

Note that one must have thorough test cases, testing the partial

systems after each new piece is added.

Frederick P. Brooks, Jr.

This chapter introduces software coding engineering with NSE on which software

coding and software design are combined together closely using the innovated

Synthesis Design and Incremental Integration (growing up) technique – with

NSE, software design becomes precoding and software coding becomes further

design. The quality of the work products (source code and the documents) is

ensured by defect prevention and defect propagation prevention through dynamic

testing using the innovated Transparent-box testing method, inspection using trace-

able documents and the source code, and software visualization.

13.1 The Problems Addressed

Many useful programming techniques have been proposed by software engineering

experts and successfully applied in practices such as Object-Oriented programming

technique [Coa93], the Pair Programming technique [Bec99], and the langrage-

specified program editing technique.

But unfortunately, there are still many critical problems exist with today’s soft-

ware coding engineering paradigm:

(a) It complies with the linear process models and linear software development

methodologies based on reductionism and the superposition principle, so that

almost all software programming tasks are performed linearly, partially, and

Chapter 13

Coding Engineering with NSE

340 13 Coding Engineering with NSE

locally, such as the implementation of program modification, program documen-

tation, test planning, program refactoring, and program version comparison.

(b) It is performed after software design following a top-down order without

upstream movement (bottom-up) at all.

(c) It follows the Constructive Holism principle that the components of a software

product are completed first, then “Assemble” the whole of the entire product

from the components or subsystems, so that system testing and user evaluation

is done at or close to the end of the programming.

(d) The coding process and the work products (source code and the documents) are

not visible.

(e) The work products are not traceable.

(f) Code inspection is performed with separated documents and source code.

(g) Modules are coded randomly without systematic ordering support.

(h) There is a need to design and use stub modules to replace the real modules

called by the unit being coded in unit testing – but stubs will not return the real

value so that it is different from the real application execution.

(i) The quality of the modules coded are low – besides unit testing using stubs,

the code inspection is performed inefficiently without the support of various

traceabilities, and often the modules do not satisfy 100% MC/DC (Modified

Condition/Decision Coverage) test coverage [RTCA92]: most software testing

tools used for structural testing only offer the capability for statement-level

test coverage analysis or branch-level test coverage analysis; although some

tools claim that they do support MC/DC test coverage analysis, the test results

are shown in textual format without the capability to highlight untested condi-

tion graphically and directly, so that the test results are hard to review and

hard to improve.

(j) It is not supported by a coding-style-independent graphical representation tech-

nique and tool, so that the source code written by others is much difficult to read

and understand.

(k) There is no powerful technique and tool to automatically document a source

program and make the documents (such as the call graph, the class inheritance

chart, the logic diagram of the entire product, and the control flow diagram of

the entire product) always consistent with the source code.

(l) The related documents are often inconsistent with the source code after code

 modification – there is no systematic way available to update them in time.

 (m) Programming productivity is hard to calculate without a systematic technique

and tool to count the total amount and the percentages of the comment lines,

partial comment lines, empty lines, and active lines of the source code.

(n) There is a lack of systematic technologies and tools for the support of re- engineering

and reverse engineering to automatically generate huge amount of graphic docu-

ments of the program architectures, the program logic of an entire software product

and the entire control flow diagram of an entire software product with various

traceabilities established, etc.

34113.2 The Solution: Software Coding Engineering with NSE

13.2 The Solution: Software Coding Engineering with NSE

Using the Synthesis Design and Incremental Integration

Technique

Here, the solution is called “NSE-Coding,” which is the application of the inno-

vated Synthesis Design and Incremental Integration (growing up) technique in

coding engineering. This technique combines software design and coding engineer-

ing together to make design become precoding and coding become further design.

Here, the Incremental Implementation and Integration means the following

activities:

 1. Select one or a set of requirements according to the requirement priority assigned.

 2. From the corresponding call graph (shown in J-Chart notation) of the designed sys-

tem, highlight the critical module with all modules calling and called by the module

for the selected requirement(s), assign a bottom-up coding order on them.

 3. Perform incremental unit coding according to the assigned order to prevent

inconsistency defects between the interfaces of the calling modules and the

called modules (see Sect. 13.7).

 4. Carry out unit testing and integration testing together to remove possible defects

through comprehensive testing (including functional testing, structural testing,

memory leak and usage violation checking, quality measurement, performance

analysis, etc., see Chap. 16).

 5. Recompile the entire program to establish a new version of the program, and

then run the program again dynamically.

 6. Different from traditional incremental integration approaches which complete

the subsystem design and coding first then carry out integration for the whole

system, with NSE the incremental implementation and integration is done at the

same time – each time only one module of the subsystem for the selected require-

ments will be integrated to establish a new version of the executable program

(although different critical paths or different subsystems can be coded in paral-

lel, integration should be done by adding one module at a time), so that if some-

thing is found wrong, the problems often come from the one added module only

rather than the entire subsystem implemented for the selected requirement(s).

An application example of the Incremental Implementation, Iteration, and

Integration is shown with the step 1 of the main process described in Chap. 8.

 7. Combine the processes of software development, testing, and maintenance

together closely through many automated and bidirectional traceabilities for

defect prevention in the entire software product development lifecycle.

 8. If some critical problems are found in coding phase, go back to the upper phases

to solve the problem – it is possible to give up the previous selected solution

method such as in the case that the performance is very bad because of the mis-

use of virtual memory – in this case, go back to the preprocess to design new

solution methods.

342 13 Coding Engineering with NSE

The major offerings of NSE-Coding are as follows:

 (a) It complies with the NSE nonlinear process model and the NSE software devel-

opment methodologies based on complexity science, so that almost all soft-

ware programming tasks are performed nonlinearly, holistically, and globally,

such as the implementation of program modification, program documentation,

test planning, program refactoring, and program version comparison – see

Fig. 13.1, an application example of system-level test planning support through

Cyclomatic complexity (the number of decision statements) measurement of

an entire software product being coded.

 (b) With it, software design and coding are combined together closely, making

design become precoding, and coding becomes further design to improve the

design – no matter in software design or coding, people are nonlinear, and it

is easy to make mistakes and wrong decisions (When a critical issue is found

in coding process, the work flow should even go back to the requirement

development phase or the preprocess phase) – see Fig. 13.2, an application

example of design becoming precoding – to code a module by editing the

source code directly from a call graph (shown in J-Chart) generated in the

design process.

 For instance, in the case that the design shows function A calling function

B, but the coding engineers find that function A should call function C and func-

tion C should call function B – after coding they can update the design docu-

ments by rebuilding the database to make the design result consistent with the

code (in this case, they may choose to modify the design first, then edit and

change the code).

 An example of coding becoming further design is shown in Figs. 13.3

and 13.4.

 (c) It follows the Generative Holism principle that the whole of a software prod-

uct exists (as an embryo, but executable) earlier than its components, and then

grows up with its components to continuously form new executable versions,

so that system testing and user evaluation is done at or close to the beginning

of product development.

 (d) The coding process and the work products (source code and the documents)

are always visible as shown in Figs. 13.2 and 13.5.

 (e) The work products are traceable internally and externally or even dynamically

– see Sect. 13.5.

 (f) Code inspection is performed with traceable documents and traceable source

code – see Sect. 13.5 too.

 (g) Modules are coded incrementally with systematic ordering support – see

Fig. 13.6 (ordering for all modules) and Fig. 13.7 (ordering for a critical

path).

 (h) In unit testing with the capability to control the return value (see Sect. 13.3 and

Appendix C about how to control the return values for a function call state-

ment), there is no need to design and use stub modules to replace the real

modules called by the unit being coded.

34313.2 The Solution: Software Coding Engineering with NSE

F
ig

.
1
3
.1

S

y
st

em
-l

ev
el

 t
es

t
p
la

n
n
in

g
 t

h
ro

u
g
h
 C

y
cl

o
m

at
ic

 c
o
m

p
le

x
it

y
 m

ea
su

re
m

en
t

Fig. 13.3 Two function call statements are added in the coding process of the state4::transition

(unsigned char) module designed without using them

Fig. 13.2 Directly coding from a call graph generated in the design process

34513.2 The Solution: Software Coding Engineering with NSE

F
ig

.
1
3
.4

A

ft
er

 r
eb

u
il

d
in

g
 t

h
e

d
at

ab
as

e,
 t

h
e

co
rr

es
p
o
n
d
in

g
 d

es
ig

n
 d

o
cu

m
en

ts
 a

re
 u

p
d
at

ed

Fig. 13.5 A class shown visually with its logic and control flow

Fig. 13.6 Module coding ordering support for an entire product

34713.2 The Solution: Software Coding Engineering with NSE

 (i) The quality of the modules coded will be high – besides unit testing in real

conditions without using stubs, the quality is ensured through defect preven-

tion and defect propagation prevention supported by dynamic testing using the

Transparent-box testing method, semiautomated inspection using traceable

source code and documents (the code inspection is performed efficiently with

the support of various traceabilities – see Sect. 13.5), software visualization

(see Sect. 13.6), and 100% MC/DC (Modified Condition/Decision Coverage)

test coverage result support (see Sect. 13.4).

 (j) It is supported by a coding-style-independent graphical representation tech-

nique and tools, so that the source code written by others is also easy to read

and understand – see Fig. 13.8.

Fig. 13.7 Incremental coding ordering support for a critical path

348 13 Coding Engineering with NSE

 (k) With NSE, there is a set of powerful techniques and tools to automatically

document a source program – with NSE, the source code is also the source for

generating many graphical documents – see Chap. 11 and Figs. 13.1–13.8.

 (l) The source code is consistent with the documents after code modification

through bidirectional traceability and rebuilding the corresponding

database.

 (m) Programming productivity is easy to calculate with a systematic technique and

tool to count the total amount and the percentages of the comment lines, partial

comment lines, empty lines, and active lines of the source code of an entire

software product as shown in Fig. 13.9.

 (n) There are a set of systematic technologies and tools for the support of re-

engineering and reverse engineering – to automatically generate huge amounts

of graphical documents of the program architectures, the program logic of an

entire software product, the control flow diagram of an entire software product

with various traceabilities established, etc. (see Chap. 19).

 (o) It supports parallel coding performed in different subsystems (see Fig. 13.10)

or different critical paths (see Fig. 13.11), but the integration should still be

done by adding one component at a time [Bro95-p149] for easily locating

the possible defects. At any time, the updated whole product should be

executable.

Fig. 13.8 Coding-style-independent program representation shown in J-Diagram

34913.3 Unit Testing and Integration Testing Support

13.3 Unit Testing and Integration Testing Support

With NSE-Coding, unit testing and integration testing are combined together closely

using the PanoUnit toolset. The interface of PanoUnit is shown in Fig. 13.12.

Figure 13.13 shows the test case generation options.

As described above, with NSE the incremental unit testing is performed without

designing and using stubs to replace other units called by the unit being tested,

because according to the incremental coding and testing order, those units called by

the unit being tested must have been coded and tested already. So, it is real product

testing – when a stub unit is used for the traditional unit testing, it is not real product

testing because the stub unit will not return the real value needed.

Fig. 13.9 Productivity measurement support

350 13 Coding Engineering with NSE

F
ig

.
1
3
.1

0

P
ar

al
le

l
co

d
in

g
 f

o
r

d
if

fe
re

n
t

su
b
sy

st
em

s

35113.3 Unit Testing and Integration Testing Support

F
ig

.
1
3
.1

1

P
ar

al
le

l
co

d
in

g
 f

o
r

d
if

fe
re

n
t

p
at

h
s

352 13 Coding Engineering with NSE

Fig. 13.12 The interface of PanoUnit for unit testing and integration testing

Fig. 13.13 The options for test case generation

35313.4 MC/DC Test Coverage Measurement Support

Sometimes, we may want a called unit to return some special values for error

simulation. It is supported in two automatic ways – see Appendix C.

The major features of PanoUnit include:

 1. Automatically collects all the units called by the unit being tested together.

 2. Semiautomatically creates the test driver to help users complete the driver

design.

 3. A set of data generation functions are provided for users to choose.

 4. It helps users to easily insert assertions for checking the test result.

 5. If it is re-testing an existing software product, PanoUnit can collect all the pos-

sible values assigned to a global variable or static variable in different locations

for users to choose, can also collect the values used to meet the requirement of

the constructor of a class object for users to choose.

 6. It can compile the program with the driver and the unit as well as all the units

called together, and execute the test cases automatically.

 7. It can also perform MC/DC test coverage measurement, memory leak check-

ing, etc.

 8. It can show the test results in graphics with the untested branches and conditions

highlighted.

 9. It can automatically identify whether a test passed or not.

About system testing support, please read Chap. 16.

13.4 MC/DC Test Coverage Measurement Support

With NSE-Coding, it is strongly recommended to realize 100% MC/DC (Modified

Condition/Decision Coverage) test coverage for any module in any commercial

application and any engineering project, not only for meeting the RTCA/DO-178B

level A requirements. Why?

Often people believe that statement-level test coverage is not good enough for

the quality assurance of commercial software, but branch-level test coverage may

meet the quality assurance requirements. Is it true?

Before answering the question, let us see some examples.

Func1 is a C program module with the source code as follows:

354 13 Coding Engineering with NSE

If we consider branch-level test coverage only, then there are two logic paths, but if

we consider MC/DC test coverage, there are eight logic paths as shown in Fig. 13.14.

Func2 is another C program module with the same functionary as func1 but writ-

ten in different style without using multiple conditions in a decision statement:

Fig. 13.14 The logic paths of the func1 program module

35513.4 MC/DC Test Coverage Measurement Support

The number of source lines of func2 is 25 while those of func1 is 8.

The number of logic paths for func2 is eight as shown in Fig. 13.15.

The source code of a corresponding main() program used to test func1 module

and func2 modules is listed as follows:

A simple “Makefile” for running this program is listed as follows:

Fig. 13.15 The number of logic paths of func2 program module

356 13 Coding Engineering with NSE

After compilation, it is easy to verify that func1 and func2 have the same

 functionary – the execution command lines and the obtained results are as follows:

C:\Analyzer1 > main 1 1 1

c == 1

c == 1

C:\Analyzer1 > main 1 1 11

c == 12

c == 12

C:\Analyzer1 > main 1 1 111

c == 123

c == 123

C:\Analyzer1 > main 1 1 1111

c == 1234

c == 1234

C:\Analyzer1 > main 1 1 1111

c == 12345

c == 12345

C:\Analyzer1 > main 0 1 1

c == 0

c == 0

C:\Analyzer1 > main 1 0 1

c == 0

c == 0

To achieve 100% branch-level test coverage result for func1 module, only two

test cases are needed:

C:\Analyzer1 > main 0 1 1

c == 0

c == 0

C:\Analyzer1 > main 1 1 1

c == 1

c == 1

The corresponding branch-level test coverage result for func1 is 100% tested as

shown in Fig. 13.16.

But if we consider the MC/DC test coverage result, we will find that there are

many conditions (and six paths) untested as shown in Figs. 13.17 and 13.18.

35713.4 MC/DC Test Coverage Measurement Support

This result is also shown clearly in Fig. 13.18.

The corresponding branch test coverage measurement result of func2 is shown

in Fig. 13.19.

Fig. 13.16 The branch-level test coverage measurement result for func1

Fig. 13.17 The MC/DC test coverage measurement result (untested branches/segments/condi-

tions are highlighted in small black box)

Fig. 13.19 The branch-level test coverage measurement result for func2

Fig. 13.18 The corresponding logic paths executed for func1

35913.4 MC/DC Test Coverage Measurement Support

The corresponding MC/DC test coverage measurement result for func2 is shown

in Fig. 13.20 – the untested paths are the same as that for branch-level test coverage

measurement.

This result is also represented clearly in Fig. 13.21.

For getting 100% MC/DC test coverage result for func1, at least six more test

cases are needed as shown in the following list:

main 1 0 1

main 1 1 0

main 1 1 11

main 1 1 111

main 1 1 1111

main 1 1 11111

After running those test cases, the MC/DC test coverage result for func1 and

func2 are shown in Figs. 13.22 and 13.23, respectively.

Fig. 13.20 The untested paths for func2 in branch-level test coverage measurement and MC/DC

test coverage measurement are the same (six paths are untested)

360 13 Coding Engineering with NSE

Fig. 13.22 All paths in func1 have been tested

Fig. 13.21 The corresponding paths executed for func2

36113.4 MC/DC Test Coverage Measurement Support

How about statement-level test coverage measurement? It is much worse than

the branch-level test coverage measurement, so that it should not be used for any

commercial software testing at all – see Chap. 16.

With NSE and the support platform, Panorama++/Silver Bullet, it is not difficult

and not expensive to achieve 100% MC/DC test coverage measurement result in

unit testing process – see a real application example shown in Appendix B.

13.4.1 Conclusion

 (a) A program module written with multiple conditions in a decision statement is

much easier to read and understand than without multiple conditions written in

a decision statement.

 (b) The size of a program module written without multiple conditions in a decision

statement is much bigger than that of a program module written with multiple

conditions in a decision statement (in this example, the size of func2 is about

three times bigger than that of func1).

Fig. 13.23 All paths in func2 have been tested

362 13 Coding Engineering with NSE

 (c) As shown in this example, to a program written with multiple conditions in a

decision statement, “100% branch-level test coverage” result may be equal to

only 20% of the MC/DC test coverage result – it will not be accepted for any

commercial or engineering software product: the risk is too high! – in many

cases, the execution part of a decision statement with multiple conditions will

be much more complicated and dependent on the conditions, so that if the

untested paths in the product development site are executed in the customer

site in the real applications, something unexpected may happen to harm the

customer’s business.

13.5 Semiautomated Inspection Support

Inspection has been proven a useful technique for finding defects. But traditional

inspection is performed using separated documents and source code without auto-

mated and self-maintainable traceability. Alternatively, with NSE, software inspec-

tion can be done in a semiautomated way supported by various traceabilities – see

Figs. 13.24–13.26.

Fig. 13.24 Internal traceability within the source code

36313.5 Semiautomated Inspection Support

Fig. 13.26 An example of external traceability and dynamic traceability among source code and

test cases and the related document or program execution

Fig. 13.25 Various traceabilities for supporting code inspection

364 13 Coding Engineering with NSE

13.6 Defect Prevention Driven Quality Assurance

in Programming

As described before, with NSE the quality of a software product being developed

is ensured with defect prevention and defect propagation prevention through soft-

ware testing dynamically using the Transparent-box testing method, inspection, and

software visualization.

How to prevent defects and defect propagation through dynamic testing using

the Transparent-box method has been introduced with many examples in Chaps. 11

and 12; here, let us discuss how to prevent defects and defect propagation with

software visualization.

Figure 13.27 shows defect prevention through incremental ordering and soft-

ware visualization: when writing a function call statement for a module being

coded (in this example, the module with order number 6) to call a module coded

(in this example, the module with order number 4), we can see the diagrammed

source code of the called module in a new window to know how many parame-

ters are needed and their order to avoid inconsistent defects in writing the calling

statement.

In the following sample program, there is a logic defect that is not easy to find

because a program is represented in textual format, and a program with logic

defects may execute normally without providing error messages but the result

could be wrong:

#include <stdlib.h>

#include <stdio.h>

int func1 (char *s, int m, int n)

{int value;

switch (s[0])

{

case ‘+’:

value = m + n;

case ‘*’:

value = m * n;

break;

case ‘-’:

value = m - n;

break;

case ‘/’:

value = m / n;

break;

default:

value = -1;

}

return value;

}

36513.6 Defect Prevention Driven Quality Assurance in Programming

Some sample test cases may not be able to find the errors such as the following test

cases and the results:

C:\tem_dir > main + 0 0

The value == 0

C:\tem_dir > main + 2 2

The value == 4

But through program visualization, the logic error is much easier to find as

shown in Fig. 13.28.

Of course, to this very simple program, we can use more test cases to find it such

as the following test cases:

C:\tem_dir > main + 2 3

The value == 6

C:\tem_dir > main * 2 3

The value == 6

But in the real application programs, the execution part for each “case” statement

may be complicated, and it is hard to find the defect that a “break” statement is missing.

Fig. 13.27 Defect prevention through incremental ordering and visualization

void main(int argc, char** argv)

{

printf(“ The value == %d\n”,

func1(argv[1],atoi(argv[2]),atoi(arg

v[3])));

}

366 13 Coding Engineering with NSE

13.7 Quality Measurement for an Entire Software Product

and Each of Its Components

With NSE-Coding, not only the quality of an entire software product will be mea-

sured, but also any individual modules (units) will be measured and shown in Kiviat

diagram – see Fig. 13.29, an application example.

Fig. 13.28 Finding logic defects through software visualization

36713.8 Application

For measuring the quality of classes, some special metrics are used, including

Lines of code per class (LOC)•฀

Number of methods per class (NOM)•฀

Number of method users per class (NMU)•฀

Weighted methods per class (WMC) in multiple complexity metrics•฀

Depth of inheritance tree (DIT)•฀

Number of children per class (NOC)•฀

Coupling between objects (CBO)•฀

Response for a class (RFC)•฀

Lines of code reused per class (LCR)•฀

Ratio of code reused per class (RCR)•฀

Test coverage per class (TCC) in multiple test coverage metrics•฀

Users can set the standard value through the OO-SQA toolkit of Panorama++.

13.8 Application

NSE-Coding using the Synthesis Design and Incremental Integration Technique

has been successfully applied in practices, including the improvement of the NSE

support platform, Panorama++. All screenshots shown in this chapter are from the

application examples of NSE-Coding.

Fig. 13.29 Quality measurement example (the result out of the big circle and inside the small

circle means not satisfying the required quality standard)

368 13 Coding Engineering with NSE

13.9 The Major Features

The major features of NSE-Coding are briefly summarized as follows:

 (a) Holistic – it is based on Generative Holism principle.

 (b) Incremental – coding is done incrementally.

 (c) Parallel – parallel coding is supported to avoid waiting for something.

 (d) Visual – the coding process and the work products (the source code and the

documents) are visible.

 (e) Traceable – the work products are traceable internally and traceable to the test

cases and the documents.

 (f) Consistent – the design documents and the source code are consistent.

 (g) Combined with software design together closely.

 (h) Driven by defect prevention and defect propagation prevention.

 (i) The source code is always entirely executable.

13.10 Summary

This chapter introduced NSE-Coding which applies the innovated Synthesis

Design and Incremental Integration technique. With NSE, coding is performed

holistically and incrementally by complying with the NSE nonlinear process model

and the NSE software development methodology based on complexity science. The

coding process and the work products (source code and the related documents) are

visible. The quality of the coded programs is ensured through defect prevention and

defect propagation prevention performed with dynamic testing using the Transparent-

box testing method and software visualization plus inspection using traceable docu-

ments and traceable source code.

With NSE, product design becomes precoding and the coding becomes further

design – source code is the source for generating most graphical software

 documents – to keep the documents consistent with the program, and traceable

to and from the source code.

13.11 Points and Questions to Ponder

 (a) What are the major problems existing with today’s software programming?

 (b) Why, with NSE, does software design become precoding and coding become

further design?

 (c) Why should all commercial software products satisfy 100% MC/DC test

coverage?

369References

13.12 Further Reading and Information Source

 (a) Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-

Hill, New York

 (b) Sources for coding standards:

http://drupal.org/coding-standards

http://drupal.org/node/302199

http://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/

dp/0321113586

References

[Bec99] Bech K (1999) Extreme programming explained: embrace change. Addison-

Wesley, Boston

[Bro95-p149] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 149

[Coa93] Coad P, Nicola J (1993) Object-oriented programming. Prentice Hall, Englewood

Cliffs

[RTCA92] RTCA/DO-178B (1992) Software considerations in airborne systems and equip-

ment certification. RTCA, Washington, DC

http://drupal.org/coding-standards
http://drupal.org/node/302199
http://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
http://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586

371J. Xiong, New Software Engineering Paradigm Based on Complexity Science:
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_14,
© Springer Science+Business Media, LLC 2011

Practical wisdom is only to be learned in the school of

experience.

Samuel Smiles (1812–1904)

This chapter introduces the basic concepts and knowledge of software testing,

including the purpose of software testing, the basic test methods and technology,

and their characteristics. The complexity and size of today’s software makes writ-

ing bug-free code extremely difficult, even for highly experienced programmers

[Pat00], so that a software should be tested.

14.1 The Purpose of Software Testing

About software testing purposes, although there are different perspectives, in gen-

eral it includes the following points:

 1. Validating whether it is the right software product – meeting the applicable

standards and customer needs, whether it works as expected.

After a software product is built, it should be validated whether the product

meets customer needs, particularly the functionary, through a large number of

test cases to test in order to make accurate judgments. For example, if it is a

sorting program to be used to sort many different types of data, we should use a

variety of test cases to check whether the product is working properly, including

the input of a group of integers, real number, strings, etc.

 2. Verifying whether the product is right – matching the requirement

specification.

Besides the functionary, a software product should be developed as specified in

the requirement specification, such as meeting the internal product development

standard, and other requirements not directly related to customer’s needs, such

as the coupling-degree of the program modules.

 3. Finding defects/bugs introduced into the software product to help the product

development team improve the quality of the product.

Chapter 14

The Basis of Software Testing

372 14 The Basis of Software Testing

A software product not only should meet customer’s needs and the requirement

specification, but also should be stable and reliable, so that we must test the

product through a variety of testing methods and test cases, to find the defects/

bugs as much as possible. For this purpose, we should not only use legitimate

data, but also illegal input data to check an error handling capability.

For instance, to the sorting software, in order to identify possible errors, for

any data type (such as integers), we should at least design a series of test cases

to be used to test the program with

(a) No input data.

(b) Only one input data.

(c) Two input data, in the order from small to big and from big to small.

(d) Three input data in the order of (1) large, medium, small; (2) large, small,

medium; (3) medium, large, small; (4) medium, small, large; (5) small,

large, medium; and (6) small, medium, large.

(e) Groups of randomly selected input data, more or less.

(f) In the case that the software is designed with maximum processing number

MAX (if the software is used to sort the name of the students of a school up

to 1,000 students, the program may set the maximum value for treatment

MAX = 1,000), then enter the three sets of data, the number was MAX − 1,

MAX, and MAX + 1.

(g) Enter the number of illegal data, such as punctuation and negative numbers.

After running these test cases, some possible errors may be found. But some

other types of defects/bugs need different test methods and tools.

Software defect/bug types

(a) From the nature of the defects/bugs

The defects/bugs can be divided into function, structure, performance, reli-

ability, service, user support (user manuals and product brochures), and

other properties of the errors.

(b) From the process phases where the defects/bugs introduced

The defects/bugs can be divided into requirements, design, coding, integra-

tion, interoperability, system, operation, and version control errors.

Therefore, to address the nature and classification of various errors, we

should design many different test cases to find them.

 4. Collecting required data/information for helping the development team

improve the product

Consider the sorting programs – some may run very fast and some may run very

slowly. A program may run fast at the beginning, but later on it runs very slowly.

Why? The testing may find that there are memory leaks to reduce the amount of

available memory, so that the system must swap something often between the

memory and the hard disk.

 5. Providing test documents as an important part of the entire product

documentation

37314.3 Structural Testing and the White-Box Method

The test documentation includes:

(a) The testing requirements – can be partially provided by the customer.

(b) The testing can be divided into unit test plans, integration test plans, and

system test plans, including test purpose, test content, the required resources

(software and hardware equipment), manpower allocation, and so on.

(c) The test scripts and test cases – better to have a test case manager (tool) to

perform test case efficiency analysis and test case minimization to get the

minimum equivalent set of test cases for efficient regression testing after

code modification.

(d) The online overall test coverage analysis report: including project level, file

level, and block level, with the module call graph (Call Graph), bar (Bar

Chart), and the statements given.

(e) The online detailed test coverage analysis report: the logic diagram and the

control flow diagram shown with the untested branch and conditions

highlighted.

(f) That software errors have been resolved and recorded.

(g) Already known but unsolved software error list, a description of the impact

level, and how to “bypass” the errors, so the software can continue to work.

(h) And the summary.

14.2 Functional Testing and the Black-Box Method

Functional testing is to test the functionary of a software product according to the

customer’s needs. It verifies that the system behaves correctly from the user’s/busi-

ness’s perspective and functions according to the requirements, models, story-

boards, or any other design paradigm used to specify the application. Functional

testing is performed using the Black-box testing method (proposed by Myers

[Mye79]) which handles the software as a “black box,” no matter how the internal

structure is and what algorithm is used. The Test Designer/Tester designs and

implements the test cases to validate that the product performs in accordance to the

requirements. To each test case, the tester needs to check whether the output is the

same as what is expected.

14.3 Structural Testing and the White-Box Method

Structural testing uses an internal perspective of the product to design test cases based

on internal structure. It requires programming skills to identify all logic paths through

the software. The tester chooses test case inputs to exercise paths through the code to

determine whether there is something wrong. For instance, there may be enough

memory to be used in the development site, but in the customer site, it is not always

guaranteed – when other programs are running, there may not be enough memory to

374 14 The Basis of Software Testing

be assigned to the corresponding program. In this case, if the code branch used to

handle the event of running out of memory has never been tested in the product devel-

opment process, then something unexpected may happen in the customer site. In this

case, there is a need to use error simulation techniques to complete the test.

It is clear that testing all possible paths is almost impossible, particularly in the

case that there are many loop statements in the program, so we mainly consider the

logic paths rather the absolute paths.

Often structural testing is performed in the unit testing stage.

14.3.1 Test Coverage Metrics

There are three major metrics used in most software development organization: the

statement test coverage, branch (segment) test coverage, and MC/DC (Modified

Condition/Decision Coverage) test coverage.

Considering the fact that software disasters happens often, with NSE, it is

strongly recommended for any commercial software product to realize 100% MC/

DC test coverage result for all program modules. With NSE and the support plat-

form, Panorama++, it is not difficult to do so (see Appendix B).

High percentage statement test coverage result may mislead developers and custom-

ers into thinking that there should be no problem with the program structure. An appli-

cation example shows that there are seven defects/bugs, after reaching 100% statement

test coverage analysis result, none of the defects/bugs are found – see Sect. 16.4.

How about the branch test coverage metric? As shown in Sect. 13.4, 100%

branch test coverage result may be equal to only 20% of the MC/DC test coverage

result – about 80% of the logic paths are untested!

14.3.2 Instrumentation Methods

Mainly there are two different instrumentation methods:

 1. Instrumentation is performed into the object code of the software product.

(a) The main advantage

It does not require source code, only to have the object code (target •฀

program).

It can be compiled in a very short time.•฀

It is easier to handle a variety of computer software written in many dif-•฀

ferent programming languages.

(b) The main drawback

The program execution is much slower (based on my own tests, it •฀

requires about five times longer to run, compared with the instrumentation

method performed into the source code).

37514.4 Gray-Box Testing

In the absence of source code, it can only tell how much the test coverage •฀

is, but cannot show the corresponding locations where the untested ele-

ments are, so that it cannot help users to effectively improve the test

coverage result.

It cannot provide the test coverage results of classes and inline functions •฀

for C++ programs, because the header files are expanded and compiled

with the program.

It cannot update the test coverage database incrementally, each time •฀

when one module or even only one statement is modified, the test cover-

age data obtained before will be cleaned up.

 2. Instrumentation is performed into the source code of the software product.

(a) The main advantage

The additional overhead is small in program execution, usually only •฀

about 20% (but if the original program is very complicated, the overhead

may increase).

It not only can provide the test coverage results of the entire program and •฀

each program module, but can also indicate where the branches are not

tested with the line numbers. With NSE, the support platform can further

highlight untested branches and conditions in small black boxes on the

generated logic diagram or control flow diagram.

With NSE, it can provide the test coverage results of classes (a class can-•฀

not directly execute, so that the test coverage analysis result of a class is

collected from its instances) and inline functions as shown in Fig. 14.1.

It can easily update the test coverage database incrementally if only a few •฀

source files of a product are modified.

(b) The main disadvantages

Need to have the source code.•฀

The compilling process takes a longer time.•฀

For dealing with programs written in different computer languages, it •฀

requires different tools.

14.4 Gray-Box Testing

There are two different descriptions about Gray-box testing:

 (a) Gray-box testing = Black-box testing + White-box testing.

 (b) Gray-box testing is a testing method that tests a software while already having

some knowledge of its underlying code or logic. It implies more understanding

of the internals of the program than Black-box testing, but less than White-box

testing.

In Chap. 16, a new software testing method (Transparent-box) truly combining

functional testing and structural testing together with internal connection is introduced.

376 14 The Basis of Software Testing

14.5 Performance Testing and the Testing Method

Software performance testing is used to determine the speed or effectiveness of a

software program, how many percent of the total execution time is spent in each

program unit, and where is the performance bottleneck. An application example of

performance testing is shown in Fig. 14.2.

Fig. 14.1 Sample class test coverage measurement result provided by Panorama++

37714.6 Other Nonfunctional Testing

14.6 Other Nonfunctional Testing

Other nonfunctional testing includes

 1. The load testing – simulating multiple users to run the software under testing to

check its processing and response capabilities.

 2. The stress testing – to simulate a heavy load of work to view the application at

its peak. The idea of stress testing is to stress a system to the breaking point in

order to find bugs that will make that break potentially harmful.

 3. The reliability testing – reliability refers to the consistency of the measurement.

A test is considered reliable if we get the same result repeatedly. It also checks

for how long the product can work correctly.

 4. Compatibility testing – is the testing conducted on the application to evaluate the

application’s compatibility with the computing environment such as the comput-

ing capacity of the hardware platform the bandwidth handling capacity of net-

working hardware, the peripherals, the operating systems, the database, and

other system software (Web server, networking/messaging tool, etc.)

Fig. 14.2 A performance measurement report provided by Panorama++

378 14 The Basis of Software Testing

14.7 Unit Testing, Integration Testing, and System Testing

Software systems are hierarchically structured, usually designed from top to bottom.

The smallest unit is called a module. It goes without saying that the entire software

system functionality, performance, and quality are highly dependent on the character-

istics of each unit. Therefore, each unit must be first tested. Integration testing is

performed for a related group or subsystem. Finally, when the entire product is ready,

a system-level testing should be performed to see whether the product meets the

customer’s needs and whether the product works as expected. Usually, unit testing

focuses on structural testing, whereas system testing focuses on functional testing.

It is recommended to test software units incrementally, and combine unit testing

and integration testing together seamlessly without designing and using stubs. The

NSE support platform can help users perform unit testing in this way.

14.8 Regression Test After Code Modification

Regression testing makes sure that the previous functionality still works after code

modifications or new functionality is added – the intent of regression testing is to

provide a general assurance that no additional errors were introduced in the process

of fixing other problems or implementing a new/changed requirement.

With NSE, regression testing is performed using the minimized set of test cases

selected through test case efficiency analysis and test case minimization. If only a few

braches or modules are modified, regression testing can be performed with the corre-

sponding test cases only, chosen or directly executed through backward traceability.

14.9 Object-Oriented Software Testing

Object-Oriented software testing and Process-Oriented software testing are basi-

cally the same, but the test plans and strategies need to be appropriately changed.

First, the basic unit of object-oriented software is a class (Class) with member func-

tions and independent functions. (For the Java programming language, there are

only classes.) Class can be inherited. Thus, for test planning, we need to analyze

not only the Cyclomatic complexity of the classes, but also the complexity of the

parent classes in order to more accurately complete the testing plan. Figure 14.3

shows the complexity analysis result of each class itself, and the class with its par-

ent class provided by NSE support platform, Panorama++ products.

The most difficult part in Object-Oriented software testing is the class which is the

most important unit in, for instance, C++ program testing, and cannot execute

directly, so that the test coverage results must be obtained through the instance

objects of a class, then the test coverage results must be mapped to the original class

source code.

37914.9 Object-Oriented Software Testing

With special header files and the interpreter, the NSE support platform,

Panorama++, not only can provide the overall test coverage analysis results of classes,

but also can provide the MC/DC test coverage analysis results shown in J-Diagram

with untested branches and conditions highlighted as shown in Fig. 14.4.

Fig. 14.3 The Cyclomatic complexity of a class with and without the parent classes

380 14 The Basis of Software Testing

14.10 Web Application Testing

The main purpose of Web (Internet) application testing is almost the same as

t raditional software testing – validating whether the applications meet customers’

needs, verifying whether it works as expected according to the requirement specifica-

tion, and finding possible defects/bugs to help the developers to improve the product

quality. The major difference between Web application testing and the traditional

program testing is that Web application is running on the Internet with a variety of

operating systems, browsers, communication protocols, hardware environments for

interaction, etc., so that the test engineers need to learn and acquire more knowledge –

this is certainly a new challenge. On specific test content, in addition to functional

testing, performance testing and structural testing, there should also be particular

emphasis on safety testing, compatibility testing, load testing, interoperability testing,

and product navigation. Web application testing requires specialized testing tools to

simulate the test environment – for example, simulate a large number of users to

simultaneously use the software to be tested to check its capacity and response time.

Fig. 14.4 An example of class test coverage analysis provided by Panorama++

38114.11 Embedded Software Testing

Fortunately, many Web application software testing tools are freeware or open

source products. The following example shows a simple load testing result pro-

vided by a freeware tool, OpenLoad:

14.11 Embedded Software Testing

Embedded systems are becoming larger and more complex with an increasing

amount of software, leading to a growing need for testing methods which help to

tackle the typical problems in embedded software testing.

The difficulty for testing embedded systems is from the following listed factors:

 1. It highly depends on the hardware systems.

 2. There are many different application software embedded in many different types

of systems.

 3. Many embedded systems are real-time systems.

 4. Often there is no file system to be used.

382 14 The Basis of Software Testing

 5. The amount of available memory is small.

 6. Often the software compilation environment is different from the execution

environment.

It means that the test technology, the test process, and the test tools are quite

different from regular software testing.

Figure 14.5 shows an application example of the NSE support platform,

Panorama++, used to test an embedded software running on VxWorks environment.

14.12 GUI Operation Capture and Playback

Often the graphical user interface (GUI) of a software product has many operations

that need to be tested – a very small program such as Microsoft WordPad has more

than 300 possible GUI operations. In a large program, the number of operations can

easily be an order of magnitude larger, so that the GUI testing is a time-consuming

process, and that after program modification the testing process should be repeated

again and again.

Fig. 14.5 The data transfer process between the target system and the host system for MC/DC
test coverage analysis, provided by Panorama++

38314.15 The Major Drawback of the Major Existing Software Testing Paradigm

Sometimes a tester may find that after a complex combination of the GUI opera-

tions, an unexpected error appeared, but the tester cannot show the error to people

because he/she did not remember the procedure of the test operations.

GUI operation capture and playback technique and tools can be used to solve

those problems – they can capture the GUI operations and then play them back

automatically.

14.13 Acceptance Testing

Acceptance testing is performed on a system by the developer prior to its delivery

or by the customer prior to accepting the transfer of the ownership of a software

product.

As described in Chap. 1, with NSE acceptance testing can be performed in a fully

automated way with mouse clicks only, including rerun the test cases dynamically.

14.14 Why Should Software Testing Tools Be Used

Any commercial software product and engineering software product should be tested

manually and using tools, because many kinds of software testing tasks cannot be per-

formed manually, such as the structural testing and memory usage violation testing.

14.15 The Major Drawback of the Major Existing Software

Testing Paradigm and the Solution

The existing major software testing methods, technologies, and tools are working

with the old-established software engineering paradigm based on linear process,

reductionism, and the superposition principle that the whole of a complex software

system is the sum of its components, so that almost all software development tasks

and activities are performed linearly, partially, and locally. With those methods,

technologies, and tools, dynamic software testing is performed after coding. But

most software defects are introduced upstream rather than downstream.

The concept of the “black box” is questionable – for instance, for a mathematical

problem, should the teacher only check the answer given by a student without

checking the student’s problem-solving process? No!

In 2002, the National Institute of Standards and Technology calculated the

annual cost of these operational test failures in the US public and private sectors as

$59.5 billion [RTI02]. An independent study found that more than half of IT acqui-

sitions doubled their initial budget and schedule projections, the average acquisition

provided only 61% of the desired functionality, and one-third of software-intensive

projects were ultimately canceled ([May03], [Fak05]).

384 14 The Basis of Software Testing

For removing those drawbacks of the existing software testing paradigm, a new

revolutionary software testing paradigm based on the innovated Transparent-box

method has been established – the NSE software testing paradigm (see Chap. 16).

14.16 Summary

Software testing is important to ensure the quality of a software product. There are

many types of testing, including functional testing, structural testing, performance

testing, load and stress testing, unit and integration and system testing, etc.

Many types of software testing use automated tools.

The major drawback of the existing software testing paradigm is that most

defects are introduced into a software product in the upstream phases, but the exist-

ing testing is dynamically performed in the downstream phases of a software prod-

uct development lifecycle – too late.

14.17 Points and Questions to Ponder

 (a) Why should a software product be tested before its application?

 (b) How many kinds of tests are needed?

 (c) Can a software product be tested manually only, without using tools?

 (d) Who should test a software product – the product developers, other teams or

groups but not the developers, or both? Why?

14.18 Further Reading and Information Source

 (a) Requiring software independence in VVSG 2007: STS recommendations for

the TGDC. November 2006. http://vote.nist.gov/DraftWhitePaperOnSIin

VVSG2007-20061120.pdf

 (b) Software QA and testing frequently-asked-questions. http://www.softwareqatest.

com/qatfaq1.html

References

[Fak05] Falcone S (2005) A correlated strategic guide for software testing. CrossTalk, July
Issue
[May03] Maybury M, King A, Brooks J (2003) Software intensive system acquisition – best

practices. 2003 Acquisition Conference, Arlington, VA, 28–30 January 2003. http://
www.sei.cmu.edu/products/events/acquisition/2003-presentations/maybury.pdf

http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf
http://www.softwareqatest.com/qatfaq1.html
http://www.softwareqatest.com/qatfaq1.html
http://www.sei.cmu.edu/products/events/acquisition/2003-presentations/maybury.pdf
http://www.sei.cmu.edu/products/events/acquisition/2003-presentations/maybury.pdf

385References

[Mye79] Myers GJ (1979) The art of software testing. John Wiley and Sons, New York. ISBN
0-471-04328-1

[Pat00] Patton R (2000) Software testing. SAMS, Indianapolis
[RTI02] National Institute of Standards and Technology, Planning report 02-3: the economic

impacts of inadequate infrastructure for software testing. National Institute of
Standards and Technology, Washington, DC, May 2002. http://www.nist.gov/director/
prog-ofc/report02-3.pdf

http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://www.nist.gov/director/prog-ofc/report02-3.pdf

387

He who would search for pearls must dive below.

John Dryden (1631–1700)

This chapter introduces how to design test cases for efficiently testing a software

product.

15.1 What Is a Test Case?

1. The traditional definition of test case is [Che06]

(a) A set of test inputs, execution conditions, and expected results developed for

a particular objective such as to execute a particular program path or to

verify compliance with a specific requirement.

(b) Documentation specifying inputs, predicted results, and a set of execution

conditions for the test item.

2. The definition of test case with NSE:

(a) A set of test inputs, execution conditions, expected functional results to verify

compliance with a specific requirement, the expected program execution

path specified in control flow and used to verify whether it is covered by

the real execution path, a list of modules and branches which should not

be hit by the test case execution (see Sect. 15.6 and Chap. 16 about the

Transparent-box testing method), and a list of related document information

specified by some keywords (@WORD@, @HTML@, @PDF@,

@EXCEL@, and @BAT@) to indicate the formats of the documents, fol-

lowed by the file paths, and the bookmarks used to open the traced documents

from the corresponding locations (see Chap. 9).

(b) Documentation specifying inputs, predicted results, expected execution path,

a list of modules and branches which are not allowed to be entered for the

execution of the specified test case, and a set of execution conditions for the

test item.

Chapter 15

Software Test Case Design

J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_15,

© Springer Science+Business Media, LLC 2011

388 15 Software Test Case Design

15.2 The Basis of Test Case Design

If you open any professional book on software testing, it is easy to find a chapter

describing how to design test cases – the contents in the different books are similar,

coming from previous practice and experience.

15.2.1 Equivalence Class Partition and Boundary Value Analysis

1. Equivalence class partition [Bei95] is used to identify whether two (or more)

tests are equivalent. When the two inputs are equivalent, you can expect them to

encounter the same sequence of operations or they will follow the same path in

the source code. Thus, when two or more test cases are equivalent, only one is

usually needed to be implemented in order to save the testing time.

Equivalent class examples:

(a) Digital scope (e.g., all the figures 10 to 99)

(b) Group members (date, time, and name of country)

(c) Illegal input (e.g., input symbols used to calculate numbers)

(d) Produce equivalent output of the events (all produce equivalent output of the

input)

(e) Equivalent operating environment

(f) Duplication of activities

2. The boundary value is equivalent to the change point. It might be some limit that

defines the boundary between supported inputs and unsupported inputs.

Therefore, the boundary-conditions test for finding undiscovered errors is often

more effective [Mye79].

Typically, each equivalent class is divided by its boundary values. Of course, not

all equivalence classes have a border.

However, each equivalent class also represents a potential risk. Therefore, in

the application of a method to design the equivalent class test cases, it is best to

design nine test cases for each partition, including:

(a) Values in the legal division of the region

(b) Values in the low end of the legal division of the border area

(c) Values in the low end of the legal division of district boundaries +1

(d) Values in the low end of the legal division of district boundaries −1

(e) Values in the high end of the legal division of the border area

(f) Values in the high end of the legal division of district boundaries +1

(g) Values in the high end of the legal division of district boundaries −1

(h) Values in much less than its low-end boundary

(i) Values in much larger than its high-end boundary

For example, if an integer is equivalent to the scope of class 1 and 100, then

we can design the nine test cases – the corresponding distribution of the input

integer values: 50, 1, 2, 0, 100, 101, 99, −32,769, 123,456,789. Among them, the

“basic boundary test set” of values is: 50, 0, 101.

38915.2 The Basis of Test Case Design

3. The design of test cases and equivalent class analysis includes the following

main steps:

(a) Determine the equivalent class.

(b) Determine the boundary.

(c) Determine all outputs for the legal inputs.

(d) Determine the error handling part for illegal inputs.

(e) For each equivalent class, finish the test cases table (up to nine test cases).

 4. The serious shortcoming of white-box testing tools which only offer capability

for statement coverage analysis is that the error detecting ability of these kinds

of tools is very poor and not suitable for testing commercial software products

– they often report “100% of statements have been tested” without checking the

boundary values.

15.2.2 State Transition Analysis

State Transition Analysis is the analysis of the status of an application conversion,

conversion trigger events, and conversion results.

To design test cases using this method, the following four steps should be

followed:

 1. Determine all the states supported by an application.

 2. For each test case, define the following:

(a) Initial state

(b) Input events causing state transitions

(c) The output or event for each state transition

(d) End state

 3. Draw a diagram to describe the state, event, and application response relationship.

 4. Make a test case table for each state transition.

15.2.3 Conditions Combination Method

The challenge in software testing is the long time it takes to implement all possible

test cases. However, from the cost and practical considerations, we should try to

compress the required number of test cases, while achieving the required quality

requirements.

There are many ways to reduce the number of test cases.

The Conditions Combination Method includes the variable conditions of portfolio

analysis. Each represents a combination of conditions using the same test scripts and

test processing sequence to test a condition.

390 15 Software Test Case Design

The main steps of this method are as follows:

 1. Identify the variables used.

 2. For each variable, assign a set of unique values.

 3. Create a table for various variables and the values assigned.

For example, suppose a total of three variables A, B, C to be assigned, each with

three unique values, respectively, 1, 2, 3; 4, 5, 6; and 7, 8, 9, then the total combined

number of test cases conditions of 3 × 3 × 3 = 27 is:

Test case number (A, B, C) value

 1. (1, 4, 7)

 2. (1, 4, 8)

 3. (1, 4, 9)

 4. (1, 5, 7)

 5. (1, 5, 8)

 6. (1, 5, 9)

 7. (1, 6, 7)

 8. (1, 6, 8)

 9. (1, 6, 9)

10. (2, 4, 7)

11. (2, 4, 8)

12. (2, 4, 9)

13. (2, 5, 7)

14. (2, 5, 8)

15. (2, 5, 9)

16. (2, 6, 7)

17. (2, 6, 8)

18. (2, 6, 9)

19. (3, 4, 7)

20. (3, 4, 8)

21. (3, 4, 9)

22. (3, 5, 7)

23. (3, 5, 8)

24. (3, 5, 9)

25. (3, 6, 7)

26. (3, 6, 8)

27. (3, 6, 9)

15.3 Semiautomated Test Case Design

In unit testing, it is clear that different test cases will execute in the same or differ-

ent paths consisting of some branches. The more branches in a test path, the higher

the efficiency of the test case. But to a complex unit with many decision statements,

it is difficult to know which path will include more untested branches.

39115.5 Test Case Minimization

A tool provided with the NSE software visualization paradigm can be used to

automatically perform untested path analysis and then automatically select the

“longest” one with more untested branches, highlight it with red color in the gen-

erated control flow diagram, and then automatically extract the execution condi-

tions to help the users design the corresponding test cases easier. It can be used

from the beginning of unit testing with no path tested or after some paths have

been tested. A sample application for a very complex program unit is shown in

Figs. 15.1–15.3.

15.4 Test Case Efficiency Measurement

For testing a complex software product deeply, a huge amount of test cases will

be designed. But within those test cases, the test case efficiency is quite different.

But it is hard to know the efficiency of the test cases without using the corre-

sponding tools. The result of test case efficiency measurement can be used to

realize test case minimization to automatically choose a minimum set of test

cases which can be used to get the same test coverage result as that obtained by

all the test cases used.

With NSE, test case efficiency can be automatically measured. An application

example is shown in Fig. 15.4.

In Fig. 15.4, SC0 means the test coverage of visible segments (a segment is simi-

lar to a branch, but more accurate – a segment is a set of statements with the same

execution conditions), SC1 means the test coverage of visible and invisible seg-

ments (a “if” statement without the corresponding “else” part means there is an

invisible segment), SC1+ means SC1 plus loop boundary test coverage – with NSE,

a loop statement will be handled as three segments. For more detailed information

about SC0, SC1, SC1+, please see “Glossary” of this book.

15.5 Test Case Minimization

The test case minimization technique is used to automatically select a minimum

set of test cases from all the test cases used before for testing a complex software

product. It is required to greatly reduce the running time and resources used in

regression testing after program changes. The minimized set of test cases can be

used to get the same test coverage result as that using all the test cases. The

algorithm for test case minimization with NSE is described in Chap. 21. The key

point is that the test case having the biggest test coverage contribution will

be selected first, whereas the selection of the other test cases does not depend on

test coverage contribution, but on the accumulated test coverage contribution

which covers more untested elements which have not been covered by all

selected test cases.

392 15 Software Test Case Design

F
ig

.
1
5
.1

A

ft
er

 s
o
m

e
p
at

h
s

h
av

e
b
ee

n
 t

es
te

d
,

cl
ic

k
 a

n
 u

n
te

st
ed

 b
ra

n
ch

 t
o
 l

et
 t

h
e

to
o
l

to
 f

in
d
 a

 “
lo

n
g
es

t”
 p

at
h
 w

it
h
 m

o
st

 u
n
te

st
ed

 b
ra

n
ch

es

39315.5 Test Case Minimization

F
ig

.
1
5
.2

T

h
e

“l
o
n
g
es

t
p
at

h
”

h
ig

h
li

g
h
te

d
 c

o
rr

es
p
o
n
d
in

g
ly

394 15 Software Test Case Design

Fig. 15.3 The extracted conditions for helping users to design the corresponding test case to test

the “longest path” (In this figure, a small “T” character means the condition is True, “F” is

false)

39515.6 Test Case Minimization

Usually, a test case that can be used to find a defect/bug will be selected into the

minimized set of test cases, because its execution path will be different from that of

other test cases which have not been able to find a defect/bug.

An application example of test case minimization is shown in Fig. 15.5.

About the algorithm for test case minimization, please see Chap. 21.

Fig. 15.4 An application example of test case efficiency measurement

396 15 Software Test Case Design

15.6 NSE Test Case Design with HAETVE Technique for

Both Functional Testing and Structural Testing

Functional test cases should be designed according to the requirement specification

and test requirement specification. With NSE, test cases can be designed and

dynamically used from the beginning of requirement development using the

HAETVE technique as described in Chap. 11.

HAETVE means Holistic, Actor–Action and Event–Response driven Traceable,

Visual, and Executable requirement development technique working with the

dummy programming technique using dummy modules having an empty body or

only some function call statements.

An example of the dummy source code written in C/C++ for representing an

actor is listed as follows:

Bank_Customer ()

{

Bank_Customer ();

}

Fig. 15.5 An application example of test case minimization

397

Fig. 15.6 Notations for representing an actor and an action

15.6 NSE Test Case Design with HAETVE Technique

An example of the dummy source code for representing an action is as

follows:

Void Deposit_Money ()

{

}

The corresponding notations are shown in Fig. 15.6.

It is easy to map the notations to Use Cases as shown in Figs. 15.7 and 15.8.

Now we can add a main() module to the dummy program with the source as

follows:

The modified call graph is shown in Fig. 15.9.

Different from Use Case, the dummy program is executable after adding the

main() module.

Now we can further design the corresponding test cases to dynamically test this

very simple dummy program for defect prevention and defect propagation

prevention.

void main(int argc,char** argv)

{

int key;

if(strcmp(argv[1],”New_Order”)==0)

 New_Order();

else if (strcmp(argv[1],”Confirm_Order”)==0)

 Confirm_Order();

else if (strcmp(argv[1],”Invoice_Buyer”)==0)

 Invoice_Buyer();

else if (strcmp(argv[1],”Pay_Invoice”)==0)

 Pay_Invoice();

else

 Send_Reminders ();

}

398 15 Software Test Case Design

The simple rules for designing a test case are listed as follows:

(a) An empty line means a separator between different test cases.

(b) A ‘#’ character at the beginning position of a line means a comment.

Fig. 15.7 Notation mapping between Use Cases and HAETVE

399

(c) Within comments, users can use some keywords such as @WORD@, @

HTML@, @PDF@, and @BAT@ to indicate the format of a document, fol-

lowed by the full path name of the document, and a bookmark – for finding

inconsistent defects.

(d) Within comments, users can use [path] and [/path] pair to indicate the expected

execution path using control flow notation (segment numbers) for a test

case – for finding logic defects.

15.6 NSE Test Case Design with HAETVE Technique

Fig. 15.8 Another example mapping Use Cases (a) to HAETVE (b)

400 15 Software Test Case Design

(e) Within comments, users can use Expected Output to indicate the expected value

to be produced – for finding functional defects.

(f) Within comments, users can also use [Not_Hit] and [/Not_Hit] marks to indi-

cate modules or branches (segments) which are prohibited for the related test

case execution to enter.

(g) After the comment part, there is a line to indicate the directory for running the

corresponding program.

(h) The final line in a test case description is the command line (which may start a

program with the GUI) and the options.

Although there is no output from the above simple dummy program, we can

design corresponding test cases to not only check whether there are logic errors,

but can also check whether there are inconsistent defects through the automati-

cally established traceability among related documents and test cases and the

source code.

A simple test script file with five test cases designed for executing the five

actions is listed as follows (please pay more attention to what are the related

documents used):

@HTML@ C:\Billing_and_Payment\Requirement_specification.htm#New_Order

@WORD@ C:\Billing_and_Payment2\Prototype_design.doc bmname New_Order

@WORD@ C:\Billing_and_Payment2\TestRequirements.doc bmname New_Order

[path] main(int, char**) {s0, s1}New_Order void) [/path]

Expected output : none

[Not_Hit] !path [/Not_Hit]

C:\Billing_and_Payment2

Billing_and_Payment.exe New_Order

Fig. 15.9 A call graph with a main() module modified from Fig. 15.8b

401

After test execution with the above test script file, we obtained the test result as

shown in Fig. 15.10.

Our intention is to execute the five dummy actions of the above dummy

program: why has the “Pay_Invoice” action not been executed? Why is the “Send_

Reminders” action executed twice?

With NSE, it is the time we should use the automatically established traceability

to find the possible logic defects and inconsistent defects among the related

documents.

When we clicked test case 1 on the test script window to perform forward tracing

through the NSE support platform, Panorama++, we will find nothing wrong as

shown in Fig. 15.11.

But when we clicked test case 2, we can easily find two defects/bugs as shown

in Fig. 15.12.

test case 2 for Pay Invoice

#@HTML@ C:\Billing_and_Payment2\Requirement_specification.htm#Pay_Invoice

#@WORD@ C:\Billing_and_Payment2\Protorype_design.doc bmname Pay_Invoices

#[path] main(int, char**) {s0, s4}Pay_Invoice(void) [/path]

Expected output : none

[Not_Hit] !path [/Not_Hit]

C:\Billing_and_Payment2

Billing_and_Payment.exe Pay_Invoices

test case 3 for Confirm_Order

#@HTML@ C:\Billing_and_Payment2\Requirement_specification.htm#Confirm_Order

#@WORD@ C:\Billing_and_Payment2\Protorype_design.doc Confirm_Order

#[path] main(int, char**) {s0 s2} Confirm_Order(void) [/path]

Expected output : none

[Not_Hit] !path [/Not_Hit]

C:\Billing_and_Payment2

Billing_and_Payment.exe Confirm_Order

test case 4 for Invoice_Buyer

#@HTML@ C:\Billing_and_Payment2\Requirement_specification.htm#Invoice_Buyer

#@WORD@ C:\Billing_and_Payment2\Protorype_design.doc Invoice_Buyer

#[path] main(int, char**) {s0, s3} Invoice_Buyer (void) [/path]

Expected output : none

[Not_Hit] !path [/Not_Hit]

C:\Billing_and_Payment2

Billing_and_Payment.exe Invoice_Buyer

test case 5 for Send_Reminders

#@HTML@ C:\Billing_and_Payment2\Requirement_specification.htm#Send_Reminders

#@WORD@ C:\Billing_and_Payment2\Protorype_design.doc Send_Reminders

#[path] main(int, char**) {s0, s5} Send_Reminders (void) [/path]

Expected output : none

[Not_Hit] !path [/Not_Hit]

C:\Billing_and_Payment2

Billing_and_Payment.exe Send_Reminders

15.6 NSE Test Case Design with HAETVE Technique

402 15 Software Test Case Design

Fig. 15.11 Tracing test case 1 found no defects/bugs

Fig. 15.10 The test coverage measurement result for the sample program and the test cases

403

As shown in Fig. 15.12, the first defect is due to the inconsistency between the

test execution option – “Pay_Invoices” should be “Pay_Invoice” according to the

dummy program.

The second defect is from the specified bookmark “Pay_Invoices” which is not

found. This defect is due to the name of the bookmark set in the Prototype_design.

doc file as “Pay_Invoice,” but in the description part of test case 2, the specified

bookmark name is “Pay_Invoices” (there is an extra “s” character) – both do not

match each other as shown in Fig. 15.13.

Why is the “Send_Reminders” action executed twice? After reading the dummy

source code carefully, we can easily find that the defect is from the last statement

of the main() function:

“else

Send_Reminders ();”

which does not check whether the option of the command line is

“Send_Reminders.”

It means that there are three defects/bugs found, with one logic defect, one

inconsistent defect between the test cases and the source code, and one inconsistent

defect between the related documents and the test cases.

Fig. 15.12 With tracing test case 2, we can easily find two defects/bugs: (1) the specified book-

mark is not found and (2) the expected execution path is not covered by the real execution path

15.6 NSE Test Case Design with HAETVE Technique

404 15 Software Test Case Design

After fixing the three defects, we obtained the correct result as shown in

Fig. 15.14.

We know that the requirement development result is not the real product design;

why should we remove the defects introduced in requirement development phase?

It is because with NSE the results obtained in the requirement development phase

will become the basis for the product design, and the design is precoding as

described in Chap. 13.

Of course, the above example just shows the capability of NSE to help software

developers remove several logic defects and inconsistent defects introduced in the

software requirement development phase. In real applications, most defects intro-

duced in requirement development phases may come from the inconsistency among

various different documents.

Fig. 15.13 An inconsistent defect found with the use of a bookmark

40515.7 Automated Test Case Selection with Automated Test Case Execution

15.7 Automated Test Case Selection with Automated

Test Case Execution

With NSE, when there is only a few modules or branches being modified, users can

directly click a modified module or branch on the generated control diagram shown

in J-Flow notations to backwardly trace the corresponding test cases or directly

execute them through a batch file as shown in Fig. 15.15.

Fig. 15.14 The updated result with the three defects fixed

406 15 Software Test Case Design

15.8 Summary

Software testing is performed using test cases. The test efficiency highly depends

on the design of the test cases. There are several test case design approaches. With

the old-established software testing methods and technologies, the test cases used

for functional testing are different from the test cases used for structural and other

testing objectives. Because software testing is dynamically performed after coding,

it is too late to be used dynamically to find defects in the requirement development

phase and design phase.

With NSE, the software testing paradigm based on the Transparent-box method,

functional testing and structural testing are combined together seamlessly, and can

be dynamically used in the entire software development lifecycle including the

requirement development phase, design phase, coding phase, testing phase, and

maintenance phase. The corresponding test case design should indicate the expected

Fig. 15.15 Backwards tracing a modified module to not only automatically select the corresponding

test cases through Time Tags, but also automatically execute the test case(s)

407References

value for verifying the functionality, the expected execution path for verifying the

program logic, and the related documents for checking the consistency among the

related documents, test cases, and the source code.

15.9 Points and Questions to Ponder

 (a) What is a test case?

 (b) How many basic test case design methods are used today?

 (c) How can the NSE software testing paradigm and the NSE software visualization

paradigm help users design efficient test cases?

 (d) Describe the simple rules for writing test cases for using the Transparent-box

software testing method and tools.

15.10 Further Reading and Information Source

 (a) Copeland L (2004) A practitioner’s guide to software test design. Artech House

Publishers, Norwood

 (b) Software QA and testing frequently-asked-questions. http://www.softwareqat-

est.com/qatfaq2.html

 (c) Software testing, From Wikipedia, the free encyclopedia. http://en.wikipedia.

org/wiki/Main_Page

References

[Bei95] Beizer B (1995) Black-Box testing. John Wiley and Sons, New York

[Che06] Chernak Y (2006) Understanding the logic of system testing. Crosstalk, Mar Issue

[Mye79] Myers GJ (1979) The art of software testing. John Wiley and Sons, New York. ISBN

0-471-04328-1

http://www.softwareqatest.com/qatfaq2.html
http://www.softwareqatest.com/qatfaq2.html
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page

409

Software Development: The Need for a New Paradigm … it

recognizes an even stronger need in software development to

address quality problems upstream, because that is where

almost all software defects are introduced.

Bijay K. Jayaswal and Peter C. Patton

This chapter introduces another important component of NSE – the NSE software

testing paradigm.

The foundation for the establishment of the NSE software testing paradigm is

complexity science by complying with the essential principles of complexity sci-

ence, particularly the Nonlinearity principle and the Holism principle that the

whole of a complex system is greater than the sum of its components, and that the

characteristics and behaviors of the whole emerge from the interaction of its com-

ponents, so that with the NSE software testing paradigm almost all software testing

engineering tasks/activities are performed holistically and globally to ensure the

quality of a software product.

The establishment of the NSE software testing paradigm is done through the use

of the FDS framework (the Five-Dimensional Structure Synthesis method – an

innovated paradigm-shift framework, see Chap. 4) as shown in Fig. 16.1.

16.1 The Major Existing Software Testing Methods,

Techniques, and Tools Are Outdated

Current software quality assurance is mainly based on functional testing using the

Black-box testing method being applied after the entire product is produced, struc-

tural testing using the White-box testing method after each software unit is coded, and

inspection. It violates Deming’s Product Quality Assurance Principles, that of “Cease

dependence on inspection to achieve quality. Eliminate the need for inspection on

a mass basis by building quality into the product in the first place” [Dem86].

Both methods are applied separately without any internal logic connection. The

White-box testing is mainly performed in unit testing to test an existing product

Chapter 16

The NSE Software Testing Paradigm Based

on the Transparent-Box Method

J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_16,

© Springer Science+Business Media, LLC 2011

410 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

rather than a required product, whereas the Black-box testing is mainly performed

in system testing, so that both methods and the corresponding techniques and tools

cannot be used dynamically in the requirement development phase and the software

design phase.

Even if a requirement development defect or a design defect can be found by

both methods after coding, it is too late: the cost for removing the defect will

increase tenfold several times.

For those software testing methods, NIST (National Institute of Standards and

Technology) concluded that “Briefly, experience in testing software and systems

has shown that testing to high degrees of security and reliability is from a practical

perspective not possible. Thus, one needs to build security, reliability, and other

aspects into the system design itself and perform a security fault analysis on the

implementation of the design” (“Requiring Software Independence in VVSG 2007:

STS Recommendations for the TGDC,” November 2006. http://vote.nist.gov/

DraftWhitePaperOnSIinVVSG2007-20061120.pdf).

Those software testing methods and the related techniques and tools are designed

to work with the old-established software engineering paradigm based on linear

thinking, reductionism, and the superposition principle that the whole of a system

is the sum of its parts, so that almost all tasks/activities are performed linearly,

partially, and locally, making the defects introduced in upper phases easy to propa-

gate to the lower phases to increase the defect removal cost more than 100 times.

Fig. 16.1 The framework for establishing the NSE software testing paradigm

http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf

41116.2 The Transparent-Box Testing Method

As described in Chap. 2, this old-established software engineering paradigm is

entirely outdated and should be replaced by a new revolutionary software engineer-

ing paradigm based on nonlinear thinking and complexity science.

16.2 The Transparent-Box Testing Method

The innovated Transparent-box testing method is graphically described in Fig. 16.2.

As shown in Fig. 16.2, with the Transparent-box testing method, to each test case,

the corresponding tool will not only check whether the output (if any, can be none

when it is dynamically used in the requirement development phase and the design

phase) is the same as what is expected, but also check whether the execution path

covers the expected one specified in the control flow (specified in the description part

of each test case after the [path] mark and before the [/path] mark), and whether the

execution hits some modules or branches (specified in the description part of each test

case after the [Not_Hit] mark and before the [/Not_Hit] mark) which are prohibited

for the execution of the corresponding test case, so that it can be used to find func-

tional defects, logic defects, and inconsistency defects. Having an output is no longer

a condition to apply this method, so it can be used dynamically in the entire software

development lifecycle for defect prevention and defect propagation prevention.

Fig. 16.2 Transparent-box testing method

412 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

The bidirectional traceability between test cases and the source code tested is

established through the use of Time Tags that are automatically inserted into the

description of the test cases and the database of the source code test coverage analy-

sis for mapping them together accurately. Examples of Time Tags that are automati-

cally inserted into the description path of test cases are shown in Fig. 16.3.

For extending the traceability to include the related documents, some keywords

such as @WORD@, @HTML@, @PDF@, and @BAT@ are used for automatically

opening the corresponding documents traced at a location specified by a bookmark.

The simple rules for designing a test case have been introduced in Chap. 9 and

Sect. 15.6.

An sample test case script file with some test case descriptions is listed as follows

(TestScript1):

Fig. 16.3 Time Tag examples

41316.3 The New Software Testing Paradigm Based on the Transparent-Box Testing Method

16.3 The New Software Testing Paradigm Based

on the Transparent-Box Testing Method

Based on the Transparent-box method, a new revolutionary software testing para-

digm is established which offers comprehensive functionalities and capabilities for

software testing, including the support not only for Transparent-box testing, but

also for MC/DC (Modified Condition/Decision Coverage) test coverage analysis,

memory leak and usage violation check, performance analysis, runtime error type

analysis and execution path tracing, GUI operation capture and selective playback,

test case efficiency analysis and test case minimization for efficient regression test-

ing after code modification, incremental unit testing and integration testing com-

bined together seamlessly, semiautomatic test case design, and so on.

Application examples of this new software testing paradigm in the requirement

development phase for finding logic defects and inconsistency defects efficiently

with the Holistic, Actor–Action and Event–Response driven, Visual, Traceable, and

Executable (HAETVE) software requirement development technique innovated by

me to be used to replace the Use Case approach (which is not holistic, not suitable

for event–response type applications, not traceable, and not directly executable for

defect removal) are shown in Figs. 16.4–16.6.

The dummy programming source code of the main() module is listed as follows:

void main(int argc,char** argv)
{
int key;
if(argc==1 /* Missing a parameter * /
 || argc > 2 /* Having an extra parameter */)
 {cout << “Invalid Commands: \n” << argv;
 }
else
{
if(strcmp(argv[1],”New_Order”)==0 || strcmp(argv[1],”New_order”)==0
 || strcmp(argv[1],”new_order”)==0)
 {
 A_New_Order();
 cout << “*** A_New_Order () called. ***\n”;
 }
else if (strcmp(argv[1],”Confirm_Order”)==0 ||
 strcmp(argv[1],”Confirm_order”)==0
 || strcmp(argv[1],”confirm_order”)==0)
 {
 C_Confirm_Order();
 cout << “*** C_Confirm_Order () called. ***\n”;
 }
else if (strcmp(argv[1],”Invoice_Buyer”)==0 ||
 strcmp(argv[1],”Invoice_buyer”)==0
 || strcmp(argv[1],”Invoice_buyer”)==0)
 {
 D_Invoice_Buyer();
 cout << “*** D_Invoice_Buyer() called. ***\n”;
 }

414 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

else if (strcmp(argv[1],”Pay_Invoice”)==0 ||
 strcmp(argv[1],”Pay_invoice”)==0
 || strcmp(argv[1],”pay_invoice”)==0)
 {
 B_Pay_Invoice();
 cout << “\n *** B_Pay_Invoice() called. ***\n”;
 }
else if (strcmp(argv[1],”Send_Reminders”)==0 ||
 strcmp(argv[1],”Send_reminders”)==0
 || strcmp(argv[1],”send_reminders”)==0)
 {
 E_Send_Reminders ();
 cout << “\n *** E_send_Reminders() called. ***\n”;
 }
else
 cout << “Invalid Commands: \n” << (char**) argv <<endl;
 cout << “ *** Executed. *** \n” << (char**) argv <<endl;
 }
}

After execution of the test script file, TestScript1, using this new software testing

paradigm through the Panorama++ product, one logic defect and another inconsis-

tency defect were found as shown in Fig. 16.5.

After checking the source code, we can easily find that the defect is from an

extra space character:

 | an extra space character
 V
if(argc==1 /* Missing a parameter * /
 || argc > 2 /* Having an extra parameter */)
 {
 cout << “Invalid Commands: \n” << argv;
 }
else
{
if(strcmp(argv[1],”New_Order”)==0 || strcmp(argv[1],”New_

order”)==0
 || strcmp(argv[1],”new_order”)==0)
 {
 A_New_Order();
 cout << “*** A_New_Order () called. ***\n”;
 }

After checking the bookmarks, we found that in the TestRequirements.doc file

the bookmark Now_Order is pointing to the Pay_Invoice Treatment position rather

than the New_Order Treatment position. After removing the two defects, a correct

result is obtained as shown in Fig. 16.6.

When this new software testing paradigm is applied to test a software program

without the source code, we can design a virtual main() to indicate the correspond-

ing operations and call the program indirectly through dummy programming too.

41516.3 The New Software Testing Paradigm Based on the Transparent-Box Testing Method

Fig. 16.4 An application result of the HAETVE technique for decomposition of the functional

requirements of a Billing_and_Payment product through dummy programming using dummy

modules (there are some function call statements in the body of a module (or an empty body)

without real program logic)

In this way, the GUI operation can be captured and automatically played back after

code modification with the capability to establish bidirectional traceability to find

the inconsistency defects among the test cases, the test requirements, the user’s

manual, and other related documents even if the source code is not available.

Fig. 16.5 Two defects found through dynamic testing using the Transparent-box method when

performing a forward tracing operation (Note: all the related documents are opened from the

locations indicated by the corresponding bookmarks)

Fig. 16.6 After modification, the two defects shown in Fig. 16.5 are removed

41716.4 The Major Features of the New Software Testing Paradigm

16.4 The Major Features of the New Software Testing Paradigm

The new presented software testing paradigm brings revolutionary changes to soft-

ware testing. The major features of the new software testing paradigm include:

It is based on the Transparent-box testing method which combines functional •฀

testing and structural testing together seamlessly with close logic connections

and a capability to automatically establish bidirectional traceability among the

related documents and test cases and the corresponding tested source code, as

shown from Figs. 16.4–16.6.

It can be used dynamically in the entire software development lifecycle, from the •฀

requirement development phase down to the maintenance phase.

It can be used to find functional defects, structural defects, inconsistency defects, •฀

memory leaks and memory usage violation defects, and performance

bottlenecks.

It supports MC/DC test coverage analysis required for the RTCA/DO-178B •฀

level A standard, being able to show the test coverage analysis results graphically

with untested branches and conditions highlighted as shown in Fig. 16.7.

It supports memory leak analysis and memory usage violation check. An appli-•฀

cation example is shown in Fig. 16.8.

Fig. 16.7 MC/DC test coverage analysis and the analysis results shown graphically

418 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

Fig. 16.8 A report on memory leaks and usage violations check

Fig. 16.9 An application example of performance analysis performed by Panorama++

It supports performance analysis with the capability to report the branch execu-•฀

tion frequency to locate performance bottlenecks better as shown in Fig. 16.9.

It supports efficient test case design by automatically choosing a typical path •฀

with the most untested branches and automatically extracting the execution

conditions of the chosen path as shown in Fig. 16.10.

It supports embedded software testing too, as shown in Fig. •฀ 16.11.

It combines software testing and debugging together visually.•฀

Fig. 16.10 Assisted test case design performed by Panorama++

Fig. 16.11 An application example shows that the MC/DC test coverage data are sent from the

target to the test server

420 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

The NSE software testing paradigm combines software testing and debugging

together closely as shown in the following examples:

 1. The source code of a sample program module “trouble” with seven defects and

the corresponding “main” module is listed as follows:

/* File: main.c */
 1 #include <stdio.h>
 2 static char *tp=NULL;
 3 int r=1, x=0, y=1000000, z=0;
 4 FILE *fd=NULL;
 5 void trouble();
 6
 7 main(argc, argv)
 8 int argc;
 9 char **argv;
 10 {
 11 int k=0;
 12 if(argc>1) trouble(atoi(argv[1]));
 13 if(fd) fclose(fd);
 14 }

/* File: trouble.c */

 1 /* trouble.c */
 2
 3 #include <stdio.h>
 4 #include <malloc.h>
 5
 6 #ifdef ERROR_SIMULATION
 7 #include “ISA_simu.h”
 8 #endif
 9 extern int x,y,z;
 10 extern FILE *fd;
 11 FILE *fi, *fo;
 12
 13 trouble (x)
 14 int x;
 15 {
 16 int i, t=1;
 17 char c,*pc=NULL,ch[10],*p=NULL,*e=NULL;
 18 if((e=malloc(4))==NULL)printf(“Out of memory,x=%s”,x), exit(-1);
 19 for(i = x; i <= 8 && t; p=&ch[i++])
 20 if(i % 2 ==1) {
 21 p=&c; t=0; }
 22 ch[0] = *p; /* seg. fault when x > 8 */
 23 i = x ;
 24 while (i > -2 && i<=7){/*dead loop if x=7 or x=3*/
 25 switch (x + z) {
 26 case 0: case 1: x = z = 1; break;
 27 case 2: y = 1; break; }
 28 if (i < 7)
 29 i += 4; }
 30 if (x < 5)

42116.4 The Major Features of the New Software Testing Paradigm

 31 pc = ch;
 32 if(x < 6)
 33 fd=fopen(“trouble.c”, “r”);
 34 c = getc (fd); /* seg. fault when x = 6 */
 35 strcpy (pc, “ab”); /* seg. fault if x = 5 */
 36 c = ch[y]; /* seg. fault when x = 4 */
 37 z = x / z; /* Arith. excep. when x = 2 */
 38 if((p=malloc(3))!=NULL) strcpy(p,”OK”);
 39 }
 40

 2. The following shows what is provided by a typical test tool using the statement/

block test coverage metric after the execution of the main() function called the

trouble(x) function with x = 0:

#include <stdio.h>
 static char *tp=NULL;
 int r=1, x=0, y=1000000, z=0;
 FILE *fd=NULL;
 void trouble();
 main(argc, argv)
 int argc;
 char **argv;
1 -> {
 int k=0;
 if(argc>1) trouble(atoi(argv[1]));
1 -> if(fd) fclose(fd);
1 -> }

 100.00 Percent of the file executed

 /* trouble.c */
 #include <stdio.h>
 #include <malloc.h>

 #ifdef ERROR_SIMULATION
 #include “ISA_simu.h”
 #endif
 extern int x,y,z;
 extern FILE *fd;
 FILE *fi, *fo;
 trouble (x)
 int x;
1 -> {
 int i, t=1;
 char c,*pc=NULL,ch[10],*p=NULL,*e=NULL;
 if((e=malloc(4))==NULL)printf(“Out of memory,x=%s”,x), exit(-1);
1, 2 -> for(i = x; i <= 8 && t; p=&ch[i++])
2 -> if(i % 2 ==1) {
1 -> p=&c; t=0; }
1 -> ch[0] = *p; /* seg. fault when x > 8 */
 i = x ;
 while (i > -2 && i<=7){/*dead loop if x=7 or x=3*/

422 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

2 -> switch (x + z) {
1 -> case 0: case 1: x = z = 1; break;
1 -> case 2: y = 1; break; }
2 -> if (i < 7)
2 -> i += 4; }
1 -> if (x < 5)
1 -> pc = ch;
1 -> if(x < 6)
1 -> fd=fopen(“trouble.c”, “r”);
1 -> c = getc (fd); /* seg. fault when x = 6 */
1 -> strcpy (pc, “ab”); /* seg. fault if x = 5 */
 c = ch[y]; /* seg. fault when x = 4 */
 z = x / z; /* Arith. excep. when x = 2 */
 if((p=malloc(3))!=NULL) strcpy(p,”OK”);
1 -> }

 100.00 Percent of the file executed

It means that the tool offering statement test coverage analysis capability

reported 100% of the program have been tested without finding any defects.

 3. Comments on a typical statement/block test coverage analysis tool:

(a) The analysis result is coding style dependent

and only the condition parts of them are tested but has never been satisfied,

the first statement will report that the entire statement has been tested, but

the second one will not.

(b) It cannot identify whether an invisible segment (such as when there is an

“if” statement without the “else” part) has been executed or not.

(c) If several “case” statements share an execution body such as

but only one of the conditions of the cases is satisfied (such as case 0 is

satisfied), it cannot indicate that the other cases are not executed.

(d) It cannot identify whether the high end of a loop boundary is executed

or not.

(e) It cannot identify whether a condition outcome or the combination of some

condition outcomes is executed or not.

42316.4 The Major Features of the New Software Testing Paradigm

 4. After compilation, execute the program directly (with X = 6).

Without using NSE tools, the system shows an error message with no detailed

information (see Fig. 16.12).

In this case, the system debugger can be used to report the related informa-

tion in object code format as shown in Fig. 16.13.

 5. But with NSE, the detailed error information will be reported with the error type

and the source code location as shown in Fig. 16.14.

 6. Debugging can also be performed visually with the NSE software engineering

paradigm as shown in Figs. 16.15–16.19.

Fig. 16.12 An error message given by the system without showing the error location

Fig. 16.13 The system debugger can only show the location of the object code which is not very

useful

424 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

Fig. 16.14 When it is executed under NSE, an error message is given with the error type and the

detailed source code location (line 133 in the file trouble.c)

Fig. 16.15 The corresponding program test coverage shown in J-Chart

Figure 16.15 shows that after execution of the main() function called the

trouble(x) function with x = 0, NSE’s support platform, Panorama++, will report

that only 64% of the program have been tested using the MC/DC test coverage

metric.

The untested branches/segments and conditions can be highlighted in the

J-Diagram as shown in Fig. 16.16.

The untested branches and condition can also be highlighted in a J-Flow dia-

gram as shown in Fig. 16.17.

42516.4 The Major Features of the New Software Testing Paradigm

Fig. 16.16 The corresponding logic diagram shown in J-Diagram notation with untested branches

and conditions highlighted in small black boxes

426 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

Fig. 16.17 The corresponding J-Flow diagram shown with the untested branches and conditions

highlighted

42716.4 The Major Features of the New Software Testing Paradigm

Fig. 16.18 Finding the location where a program terminated unexpectedly using J-Flow diagram

through searching the added word “EXIT”

Figure 16.18 shows that when a runtime error happens during the testing pro-

cess, users can directly find the corresponding source code location using the

J-Flow diagram through searching a word “EXIT” which is automatically added

into the J-Flow diagram to indicate the error location (sometimes the defect may

be introduced earlier but the program is terminated later).

 7. With all the untested branches and conditions being tested, seven defects can be

found and fixed by modifying the source code. After that, the logic diagram will

show that 100% of the branches and the conditions are all tested as shown in

Fig. 16.19.

428 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

Fig. 16.19 The final result after removing all defects with the trouble module

42916.5 A General Comparison Between the New Software Testing Paradigm and the Old One

16.5 A General Comparison Between the New Software

Testing Paradigm and the Old One

 (a) The defect finding efficiency

The old testing paradigm used for incremental software development is shown

in Fig. 16.20 [Coc08].

The old testing paradigm used for the iterative software development is

shown in Fig. 16.21 [Coc08].

The new presented software testing paradigm used for incremental or itera-

tive software development is shown in Fig. 16.22.

Comparing Figs. 16.20–16.22, it is clear that the new software testing para-

digm is much more efficient in finding defects in the software product develop-

ment process.

 (b) The timing in finding the defects

The traditional software testing methods can be performed after coding, but it is

too late; in comparison, the new presented software testing paradigm can be

used in all phases of a software development lifecycle, including the requirement

development phase and the design phase.

 (c) The defect types that can be found

The traditional Black-box method can be used to find functional defects; the

traditional structural White-box method can be used to find some structural

Fig. 16.20 Traditional software testing performed with incremental software development

Fig. 16.21 The old testing paradigm used for the iterative software development

430 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

defects for the existing product no matter if it is the customer-required product

or not.

The presented new software testing paradigm can be used to find functional

defects, structural defects, logic defects, and inconsistency defects.

Some functional defects cannot be found by the Black-box method, but can be

found by the new software testing paradigm as shown in Fig. 16.23.

Fig. 16.23 An application example of Transparent-box testing: a bug is found even if the output

is the same as what is expected (this defect is from a “break” statement which is missing, so that

the result 4 is produced through 2 × 2 rather than 2 + 2)

Fig. 16.22 The new presented software testing paradigm used for incremental or iterative software

development

43116.5 A General Comparison Between the New Software Testing Paradigm and the Old One

Fig. 16.24 An example of test coverage analysis result obtained using the presented new software

testing paradigm (the untested branches and conditions are highlighted with small black boxes)

 (d) The graphical representation techniques for displaying the test results

The test results obtained from the applications of most traditional software

testing methods and tools are shown in textual formats or value tables. But the

test results obtained from the applications of the presented new software testing

paradigm are graphically shown in the system level and in the detailed source

code level in Fig. 16.24.

 (e) The capability to establish automated traceability

It is only supported by the new presented software testing paradigm.

 (f) The capability to combine software testing and debugging together visually

It seems that it is only supported by the new presented software testing

paradigm.

432 16 The NSE Software Testing Paradigm Based on the Transparent-Box Method

16.6 Summary

This chapter presented a new software testing paradigm based on the Transparent-

box testing method which brings revolutionary changes to software testing in the

twenty-first century by combining structural testing and functional testing together

seamlessly with internal logic connections and the capability to establish automated

and self-maintainable traceability among the related documents and test cases and

the source code, which can be used dynamically in the entire software development

lifecycle from requirement development down to maintenance.

16.7 Points and Questions to Ponder

 (a) Why is it that the existing software testing methods, techniques, and tools can-

not be dynamically used in the software requirement development phase and

the software design phase?

 (b) Why are software functional testing and structural testing performed separately

with today’s software testing paradigm?

 (c) Software disasters happen often – is it related to the drawbacks of the existing

software testing methods, technologies, and tools? Why?

 (d) Why can and should the Transparent-box testing method and the corresponding

tools be dynamically used in the requirement development phase and the design

phase?

 (e) What are the key points in designing test cases for software testing using the

Transparent-box method?

 (f) What are the major differences between the old-established software testing

paradigm and the NSE software testing paradigm?

16.8 Further Reading and Information Source

 (a) Mead A. Deming’s principles of total quality management (TQM). http://

www.well.com/user/vamead/demingdist.html, http://www.ammdoc.com

 (b) Hower R. Software QA and testing frequently-asked-questions. http://www.

softwareqatest.com/qatfaq1.html

References

[Dem86] Deming WE (1982) Out of the crisis. MIT Press, Cambridge

[Coc08] Cockburn A (2008) Using both incremental and iterative development. CrossTalk,

May Issue

http://www.well.com/user/vamead/demingdist.html
http://www.well.com/user/vamead/demingdist.html
http://www.ammdoc.com
http://www.softwareqatest.com/qatfaq1.html
http://www.softwareqatest.com/qatfaq1.html

433J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_17,

© Springer Science+Business Media, LLC 2011

Cease dependence on inspection to achieve quality. Eliminate

the need for inspection on a mass basis by building quality into

the product in the first place.

W.E. Deming

Regarding software quality, Watts S. Humphrey said, “Over the last 50 years there

has been very little improvement” [Fry07]. Capers Jones said, “Major software

projects have been troubling business activities for more than 50 years. Of any

known business activity, software projects have the highest probability of being

canceled or delayed. Once delivered, these projects display excessive error quanti-

ties and low levels of reliability.” [Jon06].

Why? In fact, the quality of a software product cannot be efficiently ensured by

quality management and quality assurance visibility only, cannot even be efficiently

ensured by general quality assurance methodology and technology and the tools only,

because the issue of software quality is strongly related to almost the entire software

engineering paradigm, including the foundation of the software engineering, the pro-

cess model, the software development methodology, the software testing paradigm,

the software visualization paradigm, the software documentation paradigm, the soft-

ware maintenance paradigm, the software project management paradigm, the soft-

ware support techniques and tools, and the software quality assurance paradigm.

This chapter introduces the NSE software quality assurance paradigm supported

by the entire NSE software engineering paradigm with all of its components.

17.1 The Old-Established Software Quality Assurance

Paradigm Is Outdated

The old-established software quality assurance paradigm is outdated:

 1. It works with the old-established software engineering paradigm based

on reductionism and the superposition principle that the whole of a com-

plex system is the sum of its components, so that almost all of the tasks

Chapter 17

NSE Software Quality Assurance Paradigm
Driven by Defect Prevention

434 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

and activities in software quality assurance are performed linearly, partially,

and locally, such as the implementation of requirement changes or code

modifications.

 2. The corresponding software development process models are linear ones

with no upstream movement at all, making the defects introduced in the

requirement development phase and software design phase easily propagate

down to the maintenance phase, and the defect removal cost increase tenfold

several times.

 3. The corresponding software development methodologies are based on

Constructive Holism principle that the components of a complex system are

developed first, then the whole of the system is built from its components – it

makes the quality of a software product much more difficult to ensure – for

instance, when a runtime error happens in the product integration, it is hard to

know where the error comes from.

 4. It is driven by inefficient inspection and testing after coding/production –

current software inspection uses documents and source code without bidirec-

tional traceability, which is highly inefficient; the testing paradigm is mainly

based on functional testing using Black-box method being applied after the

entire product is produced and on structural testing using the White-box testing

method after each software unit is coded.

 5. There is a lack of systematic strategy for quality assurance in the entire

software product lifecycle from the first step down to the retirement of the

product.

 6. There is a no systematic, quantifiable, and disciplined method/approach to

ensure the quality of a modified product after requirement changes and/or

code modifications.

 7. The quality assurance process and the quality assurance results are almost

invisible – for instance, it is invisible what code branches and condition combi-

nations have not been executed.

 8. The quality management process and the software development process are

separated – for instance, the quality management documents are not traceable

with the implementation of the requirements and the source code, and it is hard

to update them to maintain consistency with the source code.

 9. The application results show:

(a) About software quality, “Over the last 50 years there has been very

little improvement” (said Watts S. Humphrey, who founded the Software

Process Program of the Software Engineering Institute (SEI)) [Fry07].

 (b) The software project success rate is very low (about 30%).

 (c) Software disasters happen often.

Conclusion: The old-established software quality assurance paradigm is outdated

which does not meet the needs for software development in the twenty-first

century.

43517.2 Outline of NSE Software Quality Assurance Paradigm (NSE-SQA)

17.2 Outline of NSE Software Quality Assurance Paradigm

(NSE-SQA)

The solution offered by NSE for software quality assurance is described in detail in

this chapter later. Here is the outline of the solution:

 1. It is based on complexity science by complying with the essential principles

of complexity science, particularly the Nonlinearity principle and the Holism

principle that the whole of a complex system is greater than the sum of its com-

ponents, and that the characteristics and behaviors of the whole emerge from the

interaction of its components, so that with NSE almost all of the tasks and activi-

ties in software quality assurance are performed nonlinearly, holistically, and

globally.

 2. The corresponding software development process model is a nonlinear one

with two-way iteration (upstream movement and downstream movement)

for defect prevention and defect propagation prevention through dynamic test-

ing, inspection using traceable documents and the source code, and software

visualization.

 3. The corresponding software development methodology is based on the

Generative Holism principle that the whole of a complex system comes first

as an embryo, and then grows up with its components – it makes the quality

of a software product much easier to ensure [Bro95-p201]. For instance, each

time the executable whole system grows up with one module, so that if a run-

time error occurs, in most cases the error comes from the newly added

module.

 4. It is driven by defect prevention and defect propagation prevention through

dynamic testing using the Transparent-box method combining functional testing

and structural testing together with the capability to establish bidirectional trace-

ability among related documents and test cases and source code for efficient

inspection and review, and used in the entire software development and mainte-

nance lifecycle.

 5. There is a systematic strategy for the quality assurance in the entire soft-

ware product lifecycle from the first step down to the retirement of the product

through

 (a) Defect prevention

 (b) Defect propagation prevention (removing defects from the source)

 (c) Refactoring for modules with higher Cyclomatic complexity or perfor-

mance bottlenecks

 (d) Deeper and broader testing and quality measurement plus quality assurance

with side-effect prevention in the implementation of requirement changes

and code modification through various traceabilities

 6. There is a systematic, quantifiable, and disciplined method/approach to

ensure the quality of a modified product through side-effect prevention in the

436 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

implementation of requirement changes and code modifications supported by

various traceabilities.

 7. The quality assurance process and the quality assurance results are visible

with the support of the NSE visualization paradigm – for instance, it is visible

what code branches and condition combinations have not been executed.

 8. The quality management process and the software development process are

combined together closely – for instance, the quality management documents

are traceable with the implementation of the requirements and the source code,

making it easy to update to maintain consistency with the source code.

 9. Preliminary application results show that compared with the old-established

software quality assurance paradigm it is possible for NSE to help software

development organizations to

 (a) Remove more than 99.99% of the defects in their software products

 (b) Double their software project success rate (about 60%)

 (c) Greatly reduce software disasters

17.3 Description of NSE Software Quality

Assurance Paradigm

17.3.1 The Foundation of NSE-SQA

The foundation for establishing NSE-SQA is complexity science which can effi-

ciently handle the issues of a complex system with many components connected

together with dynamic interactions.

17.3.2 The Framework for Establishing NSE-SQA

The establishment of NSE-SQA is done through the use of the FDS (the Five-

Dimensional Structure Synthesis method) framework (a paradigm-shift framework,

see Chap. 4) as shown in Fig. 17.1.

As shown in Fig. 17.1, the essential principles of complexity science are complied

with in the establishment of NSE-SQA, particularly the Nonlinearity principle and

the Holism principle that the whole of a complex system is greater than the sum of its

components, and that the characteristics and behaviors of the whole emerge from the

interaction of its components, so that with NSE-SQA almost all software quality

engineering tasks/activities are performed holistically and globally to ensure the qual-

ity of a software product. For instance, with NSE-SQA, software maintenance will

not be performed linearly, partially, and locally anymore, but nonlinearly, holistically,

and globally to prevent the side effects for the implementation of requirement changes

and code modifications to ensure the quality of the modified product.

43717.3 Description of NSE Software Quality Assurance Paradigm

17.3.3 The Purpose of NSE-SQA

The purpose of NSE-SQA is to revolutionarily solve the quality issues in software

product development by applying many software defect prevention techniques, par-

ticularly the NSE software testing paradigm based on the Transparent-box method

to dynamically test a software product from the first step down to the end step for

 (a) Removing more than 99.99% of defects in a software product developed with NSE

 (b) Making a software product truly maintainable through side-effect prevention

 (c) Working with other efficient quality assurance techniques such as software

debugging, Pair Programming, and Joint Application Design (JAD) to realize

Six-Sigma quality standards

17.3.4 Definitions

17.3.4.1 Defect

The term defect refers to an error, fault, or failure [Cla01]. The IEEE/Standard

defines the following terms as error: a human action that leads to an incorrect result.

Fault: an incorrect decision taken while understanding the given information to

solve problems or in the implementation of a process. Failure: inability of a function

to meet the expected requirements ([Zel03], [Tia01]).

Fig. 17.1 The framework for establishing the NSE software quality assurance paradigm

438 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

17.3.4.2 Defect Prevention

 The Popular Definitions

1. Defect prevention (DP) is a process of identifying defects and their root causes,

and taking corrective and preventive measures to prevent them from recurring in

the future, thus leading to the production of a quality software product ([Sum08],

[Nar08], [Vas05], [Hum89], [Ade05], [Kar07]).

2. The activities involved in identifying defects or potential defects and preventing

them from being introduced into a product (SEI).

3. Technologies that minimize the risk of making errors in software deliverables

[Jon02].

 The New Definition with NSE

Defect prevention is the application process of a set of important software quality assur-

ance techniques and tools for efficiently ensuring the quality of a software product in the

entire software development and maintenance lifecycle, from the first step to the retire-

ment of the product, to prevent software defects (majorly in the upstream phases for all

kinds of defects including new ones never being found before, minorly in downstream

phases for new and repeatable defects) from being introduced into the software product.

With NSE, defect prevention is performed mainly through

 1. Dynamic testing using the Transparent-box method combining functional test-

ing and structural testing together seamlessly, can be dynamically used in cases

where there is no output (such as the requirement development phase and the

software design phase) with the capability to establish automated and self-main-

tainable traceability to help users remove inconsistent defects among the related

documents and test cases and source code.

2. Software visualization.

3. Inspection/review using traceable documents and source code.

4. Side-effect prevention in the implementation of requirement changes or code

modifications supported by various traceabilities.

 5. Repeatable Defect Prevention through

 (a) Causal analysis

 (b) Preventive actions

 (c) Increase awareness of quality issues

 (d) Data collection

 (e) Improvement of the Defect Prevention Plan

The key points of the new definition:

 (a) Defect prevention should be performed in the entire software development

and maintenance lifecycle.

 (b) It should be performed from the first step of the software development mainly

through dynamic testing, visualization, and inspection using traceable docu-

ments and source code.

43917.3 Description of NSE Software Quality Assurance Paradigm

 (c) It should be performed until the retirement of a software product, not only in

the product development site, but also in the product maintenance site.

 (d) It should be performed for all kinds of defects (not only to prevent recurring

repeatable defects).

17.3.4.3 Defect Propagation Prevention

The application process of a set of important techniques and tools for removing the

defects introduced into a software product from the source.

17.3.5 The Quality Assurance Strategy of NSE-SQA

With NSE, the software quality assurance strategy consists of four major parts with

different priorities from higher to lower as follows:

 (a) Defect prevention – the top priority

 (b) Defect propagation prevention

 (c) Refactoring for the modules with higher Cyclomatic complexity or which are

the performance bottlenecks (usually 20% of the most-complex modules will

have about 80% of the defects)

 (d) Deeper and broader software testing, quality measurement, and version comparison

17.3.6 The Implementation of the Quality Assurance Strategy

of NSE-SQA

The NSE-SQA strategy has been implemented and commercially supported by the

NSE support platform, Panorama++.

17.3.6.1 Defect Prevention

As introduced in Chaps. 8 and 10, with the NSE process model and the NSE soft-

ware development methodology, defect prevention should be performed in the

entire software development and maintenance lifecycle.

1. In requirement development phase:

 (a) Helps customer assign priority to requirements according to the importance

of the requirements, works with NSE process model to implement the criti-

cal requirements (about 20% of the total requirements) first to form an

essential version of the product and then incrementally grow the product,

delivers all working versions to the customer to review to prevent wrong

product development or overuse of the budget.

440 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

 (b) Works with the HAETVE (Holistic, Actor–Action and Event–Response

driven, Traceable, Visual, and Executable) technique and “dummy pro-

gramming” for requirement development through program execution to

prevent possible defects (see Chap. 11) – for instance, if the dummy pro-

gram cannot be directly executed, there must be something wrong.

 (c) Requests prototype design and review for important requirements to prevent

the defects of unrealizable requirements.

 (d) Provides several standard-based templates to be used to avoid omissions or

errors in requirement development, such as the requirement specification

template (see Appendix A).

 (e) Requests concurrent development of requirement specifications and test

scripts with test cases, to avoid untestable functional requirements as shown

in Fig. 17.2.

 (f) Provides forms for top-down structural documents and test script design

using the requirements specification file as the root to assign directories and

names and bookmarks for other documents before they have been made or

after they have been made, to avoid overlooking any important documents,

and then makes the related documents traceable to the test cases and the

source code (see Chap. 9).

 (g) If the customer requests a requirement change or a new requirement after some

versions of a product have been delivered, and the requirement is critical, it is

recommended to perform a prototype design and review again to avoid unre-

alizable requirements.

 (h) For the implementation of a requirement change, provides forward

 traceability to find what documents and code modules need to be modified

and backward traceability from each module to be modified to find whether

the module is also used for the implementation of other requirement(s), to

avoid conflict among different requirements.

 (i) After the implementation of a requirement change, finds any inconsistent

documents and correct them through bidirectional traceability.

Fig. 17.2 An example of defect prevention in requirement development phase

44117.3 Description of NSE Software Quality Assurance Paradigm

 (j) For consistent modifications, provides backward traceability to find the

related requirement(s), to ensure that the module functionality fulfills the

requirements; also provides path traceability to find all related modules call-

ing or called by the module in order to avoid inconsistency, etc.

 2. In software design phase:

 (a) Combines the product development process and the product maintenance

process together, greatly reduces the defects introduced in the product

upstream and the propagation of defects down to the maintenance phase,

and ensures the quality of a modified product through side-effect prevention

supported by various traceabilities, so that it is possible to reduce up to two-

third of the total effort and total cost spent in software maintenance to

greatly prevent the problems of schedule delay and budget overuse.

 (b) Works with the NSE process model to combine the product development

process and project management process together seamlessly to make the

project management documents (particularly the product development plan

and progress report as well as the cost reports) traceable with the implemen-

tation of requirements and the source code, to further prevent the problems

of schedule delay and budget overuse – see Fig. 17.3.

 (c) Works with the Synthesis Design and Incremental growing up technique

(see Chap. 12) and “dummy programming” for software design through

program execution to prevent possible defects (see Chap. 12) – for instance,

if the program cannot be directly executed, there must be something wrong.

Fig. 17.3 An application example for making project development schedule chart traceable to the

implementation of requirements and the source code

442 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

 (d) Reports unused (uncalled) modules – why are there unused modules in the

system? There must be something wrong as shown in Fig. 17.4.

 (e) Use the documents including the function decomposition chart of the func-

tional requirements, the description of the nonfunctional requirements, and

the Event–Response table (see Table 11.2) as the basis to complete the soft-

ware design to prevent something missing.

 (f) Makes all related design documents and test cases and source code traceable

(see Chap. 9) to prevent inconsistency defects.

Fig. 17.4 An application example of unused module analysis

44317.3 Description of NSE Software Quality Assurance Paradigm

 (g) After the implementation of requirement changes or code modifications,

updates the database automatically to maintain the consistency between the

documents and the source code.

 3. In coding phase:

 (a) Prevents inconsistent defects in the interface coding between the related

modules according to the incremental coding order assigned on the call

graph generated from the design phase – when writing a function call state-

ment, we can open a new window to view the control flow diagram of the

called module (according to the bottom-up coding order, it must have been

coded and tested already) to know how many parameters are needed, their

types, and their order to prevent the inconsistent defects between the func-

tional call statements and the called modules – see Fig. 17.5.

 (b) When there is a need to modify some data such as a global variable or static

variable, performs data analysis to know, for instance, where a global vari-

able is defined, changed, and used to prevent inconsistent defects in data

usage; see Fig. 17.6 for an application example.

4. In software testing phase:

 (a) Graphically presents the untested modules as shown in Fig. 17.7 – why are

they untested? There must be something wrong – either those modules are

not needed or there are not enough designed test cases.

 5. In software maintenance phase:

 (a) See Chap. 18.

Fig. 17.5 An application example of consistent coding

444 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

17.3.6.2 Defect Propagation Prevention

 (a) In requirement development phase:

Works with the HAETVE (Holistic, Actor–Action and Event–Response driven,

Traceable, Visual, and Executable) technique and “dummy programming” for

functional requirement decomposition to prevent defects through dynamic test-

ing using the Transparent-box method combining functional and structural test-

ing together seamlessly (which can be used dynamically in requirement

development phase because having an output is no longer a condition to use this

new software testing method, see Chap. 16) with the capability to establish bidi-

rectional traceability among the related documents and test cases and the dummy

source code to help users find and remove logic (structural) defects and inconsis-

tent defects (see Figs. 15.7–15.9). An application example of requirement devel-

opment and defect propagation prevention is shown in Figs. 17.8 and 17.9.

 As shown in Fig. 17.8, there are two defects found.

 (b) In software design phase:

Similarly, in the software design phase, many defects introduced into the

design phase can also be efficiently removed through dynamic software testing

supported by the NSE software testing paradigm, inspection using traceable

Fig. 17.6 An application example of consistent data (variable) modification support

44517.3 Description of NSE Software Quality Assurance Paradigm

documents and the source code, dummy programming, and diagram/chart

generation supported by the NSE software visualization. An application exam-

ple is shown in Figs. 17.10–17.12.

 (c) In coding phase:

With NSE, defect propagation prevention should also be performed in software

coding mainly though dynamic testing using the Transparent-box method (see

Chap. 16), visualization, and inspection using traceable documents and the

source code. Application examples of defect propagation prevention based on

code traceability are shown in Figs. 17.13 and 17.14.

 Usually, logic defects are hard to find because a program with some logic

defect may work normally without providing any error message, but the output

could be incorrect. With NSE through software visualization, many logic

defects can be found. An application example is shown in Figs. 17.15–17.17.

Fig. 17.7 An application example of untested modules report

Fig. 17.9 An example of defect propagation prevention in the requirement development phase

Fig. 17.8 An application example in functional decomposition of functional requirements

44717.3 Description of NSE Software Quality Assurance Paradigm

Fig. 17.10 A defect found in the top-down product design

Fig. 17.11 A simple defect removal process

 (d) In testing phase:

Many programming defects can be removed through dynamic testing using the

Transparent-box testing method (see Chap. 18). With the NSE software testing

paradigm, software testing and debugging can be combined together – when a

runtime error happens, an extra string “EXIT” or “### Last termination

448 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

Fig. 17.12 A new system hierarchy modified from that shown in Fig. 17.10

 location” will be added into the control flow diagram shown in J-Flow nota-

tions to indicate where (the source code location rather than the object code

location) the program terminated. An application example is shown in

Fig. 17.18.

 (e) In the maintenance phase:

See Chap. 18.

17.3.6.3 Refactoring

Usually, 20% of modules with high Cyclomatic complexity (the number of decision

statements) will have about 80% of the defects in a software product.

Some individual modules, particularly those modules with memory leaks will

take more run time than others – being the performance bottlenecks.

With NSE, refactoring is performed for most complex program modules as

shown in Fig. 17.19 and the modules that are performance bottlenecks as shown in

Fig. 17.20.

With NSE, refactoring is performed with side-effect prevention to ensure the

quality of the modules after refactoring (see Chap. 18).

44917.3 Description of NSE Software Quality Assurance Paradigm

F
ig

.
1
7
.1

3

A
n
 a

p
p
li

ca
ti

o
n
 e

x
am

p
le

 o
f

st
at

ic
 p

ro
g
ra

m
 r

ev
ie

w
 t

h
ro

u
g
h
 t

ra
ce

ab
il

it
y

450 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

Fig. 17.14 An application example of semiautomated code inspection through bidirectional

traceability

Fig. 17.15 Two similar program modules

45117.3 Description of NSE Software Quality Assurance Paradigm

Fig. 17.16 The control flows of the two similar modules shown in Fig. 17.15

17.3.6.4 Deeper and Broader Software Testing, Quality Measurement,

and Version Comparison

With NSE-SQA, for ensuring the quality of a software product, various kinds of

software testing are performed, including

 (a) Unit testing – it is recommended to meet 100% MC/DC test coverage (see

Appendix B for an application example).

 (b) Functional testing to validate whether the product meets the function requirements

– see Fig. 17.21, a C++ program with GUI operation capture and playback.

 (c) Structural testing with the capability to highlight untested branches and

 conditions graphically for testing improvement as shown in Fig. 17.22.

 (d) Memory leak and usage violation analysis as shown in Fig. 17.23.

 (e) Runtime error type analysis and the execution path tracing – see Fig. 17.24.

 (f) Performance testing to check whether the product meets the performance

requirement and how much time spent in each module as shown in Fig. 17.25.

 (g) Holistic and detailed software quality measurement for an entire software

 product and each individual module as shown in Figs. 17.26 and 17.27.

 (h) Holistic and detailed version comparison for handling “Bad Fixes” (secondary

defects) – after fixing some defects, it is still possible to introduce new defects

into the product, so that holistic and detailed version comparison is needed to

help users to locate the new defects as shown in Fig. 17.28.

452 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

Fig. 17.17 The logic diagrams of the two similar modules shown in Fig. 17.15 (it is easy to find

that there is a logic defect with the first module)

45317.3 Description of NSE Software Quality Assurance Paradigm

Fig. 17.18 An application example of software testing combined with debugging

454 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

F
ig

.
1
7
.1

9

C
y
cl

o
m

at
ic

 c
o
m

p
le

x
it

y
 (

th
e

n
u
m

b
er

 o
f

d
ec

is
io

n
 s

ta
te

m
en

t)
 m

ea
su

re
m

en
t

ex
am

p
le

 (
u
su

al
ly

 m
o
d
u
le

 C
y
cl

o
m

at
ic

 c
o
m

p
le

x
it

y
 s

h
o
u
ld

 b
e

le
ss

 t
h
an

 3
0
)

Fig. 17.20 An application example of performance analysis for locating possible performance

bottleneck

Fig. 17.21 An application example of functional testing with GUI operation capture and playback

456 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

Fig. 17.22 An application example of MC/DC test coverage measurement with the capability to

highlight untested branches and conditions

45717.3 Description of NSE Software Quality Assurance Paradigm

Fig. 17.23 An application example of memory leak and usage violation check

458 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

Fig. 17.24 An application example of runtime error type analysis and execution path tracing

45917.3 Description of NSE Software Quality Assurance Paradigm

F
ig

.
1
7
.2

5

A
n
 a

p
p
li

ca
ti

o
n
 e

x
am

p
le

 o
f

p
er

fo
rm

an
ce

 a
n
al

y
si

s

460 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

17.4 Application of NSE-SQA

NSE-SQA has been preliminarily applied in practice. All screenshots shown in this

chapter are taken from real application examples.

With the new revolutionary paradigm for software quality assurance, it is

 possible to remove 99–99.99% of the defects in a software product. Table 17.1

shows a comparison result in efficiency with various software quality assurance

technologies.

17.5 The Major Features of NSE-SQA

The major features of the NSE software quality assurance paradigm are briefly

 summarized as follows:

 (a) Based on complexity science

 (b) Performed holistically and globally

 (c) Defect prevention driven

Fig. 17.26 Selecting quality standards and setting required values

46117.5 The Major Features of NSE-SQA

F
ig

.
1
7
.2

7

A
n
 a

p
p
li

ca
ti

o
n
 e

x
am

p
le

 o
f

h
o
li

st
ic

 q
u
al

it
y
 m

ea
su

re
m

en
t

fo
r

an
 e

n
ti

re
 s

o
ft

w
ar

e
p
ro

d
u
ct

 a
n
d
 i

ts
 i

n
d
iv

id
u
al

 m
o
d
u
le

s

462 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

F
ig

.
1
7
.2

8

H
o
li

st
ic

 a
n
d
 d

et
ai

le
d
 v

er
si

o
n
 c

o
m

p
ar

is
o
n

46317.6 Summary

Table 17.1 SQA technologies and their efficiency

Defect removal technology

Highest defect

removal efficiency (%)

 1 Requirement review 50

Requirement review with traceable documents >50

 2 Top level design review 60

Top level design review using traceable documents and charts >60

 3 Detailed functional design review 65

Detailed functional design review using traceable documents >65

 4 Detailed logic design review 75

Detailed logic design review using traceable diagrams >75

 5 Code inspection 85

Code inspection with bidirectional traceability >85

 6 Unit testing 50

Unit testing incrementally according to the assigned bottom-up

testing order plus MC/DC test coverage analysis capability

and graphical representation of the test result

>50

 7 New function testing 65

New function testing >65

 8 Integration testing 60

Integration testing incrementally >60

 9 System testing 65

System testing combining structural and function

testing seamlessly

>65

10 External beta testing 75

External beta testing with traceable documents

and the source code

>75

11 Cumulative efficiency 99.99

Cumulative efficiency with Defect prevention in the

entire software development life cycle

>99.99

Note: The item and the data written in italics come from the published reports provided by

Software Productivity Research based on the analysis of 12,000 software projects [Jon02]

 (d) Supported by various traceabilities

 (e) Visual in the entire software quality assurance process

 (f) Systematic, quantifiable, and disciplined

 (g) Low cost and high efficiency

17.6 Summary

The old-established software quality assurance paradigm is driven by inefficient

inspection without the support of various traceabilities, and testing performed after

production. It not only violates Deming’s product quality assurance principle that

“Cease dependence on inspection to achieve quality. Eliminate the need for

 inspection on a mass basis by building quality into the product in the first place,”

but also makes high degrees of software product security and reliability impossible

to achieve as pointed by NIST.

464 17 NSE Software Quality Assurance Paradigm Driven by Defect Prevention

With NSE, software quality is ensured through defect prevention, defect propa-

gation prevention, refactoring, deeper and broader testing, plus quality measure-

ment in the entire software development and maintenance process from the first

step down to the retirement of a software product, supported by the NSE software

testing paradigm based on the Transparent-box method which combines functional

testing and structural testing together seamlessly, and can be dynamically used in

requirement development (having an output is no longer a condition to dynamically

use it), design, coding, testing, and maintenance, and also supported by the NSE

software visualization paradigm.

It is possible for NSE-SQA to help software development organizations to

remove 99.99% of the defects in their software product development with NSE.

17.7 Points and Questions to Ponder

 (a) What is the root cause that regarding software product quality, “Over the last

50 years there has been very little improvement.”?

 (b) What is defect prevention? Why should it be performed in the entire software

development lifecycle from the first step down to the retirement of a software

product?

 (c) What are the major differences between the old-established software quality

assurance paradigm and NSE-SQA?

17.8 Further Reading and Information Source

 (a) Rice D (2008) GEEKONOMICS: the real cost of insecure software, 1st edn.

Pearson Education, Inc., Publishing as Addison-Wesley, New Jersey

 (b) Humphrey WS (2008) The Software Engineering Institute, the software quality

challenge. CrossTalk, June Issue

 (c) Software QA and testing resource center, FAQ1 – Software QA and testing

frequently-asked-questions part 1. http://www.softwareqatest.com/

References

 [Ade05] Adeel K, Ahmad S, Akhtar S (2005) Defect prevention techniques and its usage

in requirements gathering-industry practices. Paper appears in Engineering

Sciences and Technology, SCONEST, August 2005, pp 1–5. ISBN 978-0-7803-

9442-1

 [Bro95-p201] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,

p 201

 [Cla01] Clark B, Zubrow D (2001) How good is the software: a review of defect predic-

tion techniques. Sponsored by the US Department of Defense, © 2001 by

Carnegie Mellon University, version 1.0, p 5

http://www.softwareqatest.com/

465References

 [Fry07] Frye C, News Writer (2007) The state of software quality, part 1: problems remain,

but all is not doomed. 16 Feb 2007, SearchSoftwareQuality.com. http://searchsoft-

warequality.techtarget.com/news/article/0,289142,sid92_gci1243311,00.html

 [Hum89] Humphrey WS (1989) Managing the software process. In: Defect prevention,

Chapter 17. Addison-Wesley, Reading. ISBN-0-201-18095-2

 [Jon02] Jones C. (2002) Software quality in 2002: a survey of the state of the art. Six Lincoln

Knoll Lane, Burlington, MA 01803. http://www.SPR.com. Accessed 23 July 2002

 [Jon06] Jones C, Social and Technical Reasons for Software Project Failures, CrossTalk, Jun

2006 Issue

 [Kar07] Karg LM, Beckhaus A (2007) Modelling software quality costs by adapting estab-

lished methodologies of mature industries. In: Proceedings of 2007 IEEE interna-

tional conference in industrial engineering and engineering management in Singapore,

2–4 December 2007, pp 267–271. ISBN 078-1-4244-1529-8

 [Nar08] Narayan P (2008) Software defect prevention in a nut shell. Copyright © 2000–2008

iSixSigma LLC. See also http://software.isixsigma.com/library/content/c030611a.asp

 [Sum08] Suma V, Gopalakrishnan Nair TR (2008) Effective defect prevention approach in

software process for achieving better quality levels. In: International conference on

software engineering (ICSE), WASET, Singapore, vol. 42, pp 258–262

 [Tia01] Tian J (2001) Quality assurance alternatives and techniques: a defect-based survey

and analysis. ASQ by Department of Computer Science and Engineering, Southern

Methodist University, SQP, vol. 3, no. 3. World Academy of Science, Engineering

and Technology 42 2008 260

 [Vas05] Vasudevan S (2005) Defect prevention techniques and practices. In: Proceedings

from 5th annual international software testing conference in India

 [Zel03] Zelkowitz MV (2003) The software defect prevention/isolation/detection model.

www.cs.umd.edu/~mvz/mswe609/book/chapter2.pdf

http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1243311,00.html
http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1243311,00.html
http://www.SPR.com
http://software.isixsigma.com/library/content/c030611a.asp
http://www.cs.umd.edu/~mvz/mswe609/book/chapter2.pdf

467J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_18,

© Springer Science+Business Media, LLC 2011

Over three decades ago, software maintenance was characterized

as an ‘iceberg’. We hope that what is immediately visible is all

there is to it, but we know that an enormous mass of potential

problems and cost lies under the surface. In the early 1970s,

the maintenance iceberg was big enough to sink an aircraft

carrier. Today, it could easily sink the entire navy!

Roger S. Pressman

Clearly, methods of developing programs so as to eliminate or

at least illuminate side effects can have an immense payoff in

maintenance costs.

Frederick P. Brooks, Jr.

This chapter introduces the NSE software maintenance paradigm established by

complying with the essential principles of complexity science through the use of

the innovated FDS (Five-Dimension Synthesis Method) framework (see Chap. 4)

as shown in Fig. 18.1.

18.1 The Existing Software Maintenance Engineering

Paradigm Is Outdated

Software products need to be modified for meeting requirement changes, fixing

bugs, improving performance, and keeping it usable in a changed or changing

environment.

But unfortunately, the old-established software maintenance engineering para-

digm is outdated because

Chapter 18

NSE Software Maintenance Paradigm:

Systematic, Disciplined, and Quantifiable

468 18 NSE Software Maintenance Paradigm

 1. It is based on reductionism and the superposition principle that the whole of

a complex system is the sum of its components, so that almost all of the tasks and

activities in software maintenance engineering are performed partially and

locally.

 2. The corresponding software development process models are linear ones

with no upstream movement at all – which require software engineers to do all

things right at all times without making any mistakes or wrong decisions, but

that is impossible.

 3. With the linear process models, the defects brought into a software product

in the upper phases easily propagate down to the maintenance phase to

make the maintenance tasks much harder to perform as shown in Fig. 18.2.

 4. The corresponding software development methodologies do not offer

“maintainable design” without the support of various kinds of bidirectional

traceabilities.

 5. It is not systematic – the old-established software maintenance engineering

paradigm does not offer systematic approaches for software maintenance: there

is no systematic software maintenance process model defined.

 6. It is not quantifiable – for instance, when a module is modified, there is no

facilities provided to get quantifiable data about how many requirements and

how many modules may be affected.

Fig. 18.1 NSE software maintenance paradigm is established by complying with the essential

principles of complexity science through the innovated paradigm-shift framework, FDS (Five-

Dimension Synthesis Method)

46918.1 The Existing Software Maintenance Engineering Paradigm Is Outdated

 7. It is not disciplined – there is no engineering approach and model defined to

guide maintainers to perform software maintenance step-by-step to prevent

side effects and ensure the quality of the modified products.

 8. It is invisible – the maintenance engineering process and the results obtained

are invisible, making them hard to review and evaluate.

 9. It is blind – for instance, after the implementation of a requirement change or

code modification, it requires the maintainers to use all test cases to perform

regression testing blindly, no matter whether a test case is useful or useless to

re-test the modified software product.

 10. It is costly – as pointed out by Scott W. Ambler, “The Unified Process suffers

from several weaknesses. First, it is only a development process… it misses the

concept of maintenance and support…. It’s important to note that development is

a small portion of the overall software life cycle. The relative software investment

that most organizations make is allocating roughly 20% of the software budget

for new development, and 80% to maintenance and support efforts” [Amb05].

 11. It makes a software product being maintained unstable day by day – as

pointed out by Frederick P. Brooks Jr., “The fundamental problem with pro-

gram maintenance is that fixing a defect has a substantial (20–50 percent)

chance of introducing another. … All repairs tend to destroy the structure, to

increase the entropy and disorder of the system” [Bro95-P120].

 12. It makes a software product developed by others much harder to maintain

at the customer site – today a software product is delivered with the program,

the data used, and the documents separated from the source code without

bidirectional traceability and intelligent agents (intelligent tools) to support

testability, visibility, changeability, conformity, reliability, and maintainability.

Fig. 18.2 Normal defect origin/discovery gaps [Jon02]

470 18 NSE Software Maintenance Paradigm

 13. It is easy to become a project killer or even a business killer – as pointed out

by Roger S. Pressman, “Over three decades ago, software maintenance was char-

acterized as an ‘iceberg’. We hope that what is immediately visible is all there is

to it, but we know that an enormous mass of potential problems and cost lies under

the surface. In the early 1970s, the maintenance iceberg was big enough to sink an

aircraft carrier. Today, it could easily sink the entire navy!” [Pre05-P409].

18.2 Outline of the NSE Software Maintenance Paradigm

The revolutionary solution offered by NSE for software maintenance is described

in detail in this chapter later. Here is the outline of the solution:

 1. It is based on complexity science that the whole of a complex system is greater

than the sum of its components – the characteristics and behaviors of the whole

emerge from the interaction of its components, so that with NSE almost all of the

tasks and activities in software maintenance engineering are performed holistically

and globally.

 2. The corresponding software development process model is a nonlinear one

with two-way iteration (see Chap. 8) supported by automated and self-

maintainable traceabilities to prevent defects brought into software products by

the product developers and the customers. The NSE Process Model includes the

preprocess part and the main process part supported by an automated and self-

maintainable facility for bidirectional traceability using Time Tags automatically

inserted into both the test case description part and the corresponding test cover-

age database for mapping test cases and the tested source code, and some

keywords to indicate the related document types such as @WORD@,

@HTML@, @PDF@, @BAT@, and @EXCEL@ written in the test case

description part followed by the file paths and the bookmarks to be used to open

the traced documents from the specified positions.

 3. With the nonlinear process models, most of the defects brought into a soft-

ware product can be efficiently removed through defect propagation preven-

tion mainly by dynamic testing in the entire software development life cycle

using the Transparent-box testing method (see Chap. 16) innovated by me to

combine functional testing and structural testing together seamlessly: to each

test case it not only checks whether the output (if any, can be none when the

method is applied in the requirement development phase and the design phase –

having an output is no longer a condition to use this software testing method

dynamically) is the same as what is expected, but also checks whether the real

execution path covers the expected one specified in J-Flow (see Chap. 7), and

automatically establishes bidirectional traceability among the related documents,

the test cases, and the source code to help the developers remove inconsistency

defects. NSE complies with W. Edwards Deming’s product quality principle,

“Cease dependence on inspection to achieve quality. Eliminate the need for

47118.2 Outline of the NSE Software Maintenance Paradigm

inspection on a mass basis by building quality into the product in the first place”

[Dem82]. Figure 18.3 shows the difference in software quality assurance between

the old-established software development methodologies and the NSE software

development methodology.

 4. The corresponding software development methodology offers “maintain-

able design” supported by various kinds of bidirectional traceabilities for defect

prevention, defect propagation prevention, and side-effect prevention in the

implementation of requirement changes and code modification (see Chap. 10) –

as pointed out by Frederick P. Brooks, Jr., “Clearly, methods of designing pro-

grams so as to eliminate or at least illuminate side effects can have an immense

payoff in maintenance costs” [Bro95-P120].

 5. It is systematic – the NSE software maintenance engineering paradigm offers

systematic approaches for software maintenance: there is a systematic software

maintenance process model defined to guide users to perform software mainte-

nance holistically and globally (see Sect. 18.3).

 6. It is quantifiable – for instance, when a module or even only one statement of

the source code is modified, the NSE software maintenance engineering

paradigm can help users get quantifiable data on exactly about how many

requirements and other modules may be affected. Figure 18.4 shows that if a

class member function ArraySorted::Swaps is modified, seven related modules

may also need to be modified.

Fig. 18.3 A comparison in quality assurance between the old-established QA paradigm and the

NSE QA paradigm

472 18 NSE Software Maintenance Paradigm

 Figure 18.5 shows that correspondingly there are nine statements calling the

class member function ArraySorted::Swaps – they should be checked to prevent

the possible inconsistency defects.

 Figure 18.6 shows that if a global variable “vw” is modified, 37 modules need

to be checked for consistency.

 7. It is disciplined – there is a defined engineering approach and model to guide

maintainers to perform software maintenance step-by-step to prevent side effects,

ensure the quality of the modified products, and perform regression testing

efficiently.

 8. It is visible – with NSE, the maintenance engineering process and the results

obtained are visible and easy to review and evaluate, because it is supported with

a set of Assisted Online Agents including software visualization tools to auto-

matically generate huge amounts of graphical documents which are interactive

and traceable – see Figs. 18.4 and 18.5 again.

 9. It is not blind – for instance, after the implementation of a requirement change

or code modification, it helps the maintainers efficiently select the useful test

cases through backward traceability and test case minimization for performing

regression testing efficiently.

Fig. 18.4 Quantifiable software maintenance example 1: when a class member function

ArraySorted::Swaps needs to be modified (e.g., the number of the parameters should be changed),

seven related modules may also need to be modified

47318.2 Outline of the NSE Software Maintenance Paradigm

 10. It is not costly – it is possible for the NSE software maintenance engineering

paradigm to help software organizations to greatly reduce the cost and effort

spent in software maintenance because:

(a) With NSE, quality assurance is performed in the entire lifecycle through

defect prevention and defect propagation prevention using the Transparent-

box testing method dynamically, plus inspection using traceable docu-

ments and traceable source code, so that the defects propagated into the

maintenance phase are greatly reduced.

(b) The implementation of requirement changes and code modifications is

performed holistically and globally, rather than partially and locally.

(c) The side effects in the implementation of requirement changes and code

modifications are prevented through various kinds of automated and self-

maintainable traceabilities.

(d) Regression testing after software modification is performed efficiently

through backward traceability to select the corresponding test cases and

perform test case minimization to select the useful test cases to greatly

reduce the required time, resources, and cost.

 11. It makes a maintained software product stable – with NSE, there is no big

difference between the product development process and the product

maintenance process: in both processes, requirement changes are welcome to

support the customers’ market strategy, and implemented holistically and glob-

ally with side-effect prevention through various kinds of traceabilities.

Fig. 18.5 Quantifiable software maintenance example 2: when a class member function

ArraySorted::Swaps is modified, seven related statements calling it should be checked for

consistency

474 18 NSE Software Maintenance Paradigm

F
ig

.
1
8
.6

Q

u
an

ti
fi

ab
le

 s
o
ft

w
ar

e
m

ai
n
te

n
an

ce
 e

x
am

p
le

 3
:

if
 t

h
e

v
ar

ia
b
le

 “
v
w

”
is

 m
o
d
if

ie
d
,

th
en

 3
7
 m

o
d
u
le

s
(h

ig
h
li

g
h
te

d
 i

n
 r

ed
 c

o
lo

r
o
ri

g
in

al
ly

)
n
ee

d
 t

o
 b

e

ch
ec

k
ed

 f
o
r

co
n
si

st
en

cy

47518.2 Outline of the NSE Software Maintenance Paradigm

 12. It makes a software product developed by others easy to maintain at the

customer site – even if a software product is maintained at the customer site

rather than the product development site, software maintenance engineering

can be performed with almost the same conditions as those at the product devel-

opment site, because with NSE the delivery of a software product includes not

only the computer program, the data used, and the documents traceable to and

from the source code, but also the database built through static and dynamic

measurement of the program, and a set of Assisted Online Agents to make the

software adaptive and truly maintainable (see Sect. 18.5 to know how those

Assisted Online Agents work together to support testability, reliability, change-

ability, visibility, conformity, traceability, adaptability, and maintainability).

 13. The NSE software maintenance engineering paradigm becomes a key to

make it possible for NSE to help software organization double their pro-

ductivity and halve their cost in their software product development – with

NSE, not only most defects are removed in the development process through

defect prevention and defect propagation prevention, but also new defects are

prevented in the maintenance process through various kinds of traceabilities

and dynamic testing using the Transparent-box testing method – all software

maintenance tasks are performed holistically and globally with side-effect pre-

vention, so that the effort and cost spent in software maintenance will be almost

the same as that spent in the software development process – each one takes

about 25% of the original cost: about half of the total effort and total cost can

be saved as shown in Fig. 18.7.

Fig. 18.7 Estimated effort and cost spent in software development and software maintenance

476 18 NSE Software Maintenance Paradigm

 14. It can be efficiently applied in the worst case scenario where no documents

exist at all – in this case, the NSE software maintenance engineering paradigm

will use the Assisted Online Agents to automatically generate huge amounts of

various documents through reverse engineering, then help users set bookmarks

in the generated documents. After users re-design the test cases with some

simple rules and re-test the product, the NSE software maintenance engineering

paradigm will automatically establish various automated and self-maintainable

traceabilities to make the product adaptive and maintainable.

18.3 Description of NSE Software Maintenance

Engineering Paradigm

With NSE, the software maintenance process model is defined as shown in Fig. 18.8.

As shown in Fig. 18.8, the major steps for performing software maintenance

engineering are as follows:

Step 1: Begin.

Step 2: Check the maintenance task type. If it is for the implementation of a new

requirement, go to step 3; otherwise go to step 4.

Step 3: Perform the implementation of the requirement through the preprocess

and the main process regularly as what was performed in the software

development process.

Fig. 18.8 NSE software maintenance process model

47718.4 Application

Step 4: Is a critical change of the requirement? If not, go to step 14.

Step 5: Perform solution design.

Step 6: Go through the solution review process.

Step 7: If the review result is not good enough, go to step 5.

Step 8: Perform risk analysis.

Step 9: If the risk analysis result is good enough, go to step 12.

Step 10: Give up? If not, go to step 5.

Step 11: End the process without changes.

Step 12: Is a critical change? If so, go to step 3.

Step 13: Find the modules to be modified through forward traceability (from

requirement -> the corresponding test cases -> the corresponding source

code, see Sect. 18.5 for an application example). Go to step 15.

Step 14: Is it not for changing the source modules? If so, go to step 17.

Step 15: Find the related requirements and documents through backward trace-

ability from each module to be modified.

Step 16: Make modifications carefully to satisfy all of the related requirements

(often a module is used for the implementation of more than one

requirement) and update the related documents. If necessary, add

some new modules and perform unit testing (including memory leak

measurement and performance measurement) for the new modules.

Go to step 18.

Step 17: Is it to change a global or static variable? If not, go to step 20 (end the

process).

Step 18: Find the related modules through calling path analysis from each

module/variable that is modified, and modify them too if necessary.

Step 19: Find the related test cases through backward traceability and perform

test case minimization, then perform regression testing efficiently

(including MC/DC test coverage analysis, memory leak measurement,

performance measurement, quality measurement, and runtime error

location through execution path tracing, see Sect. 18.4 for an example),

and version comparison holistically.

Step 20: End the process.

18.4 Application

As described, with NSE a software product will be delivered with the computer

program, the data used, and the documents traceable to and from the source code,

plus the database built though static and dynamic measurement of the program, and

a set of Assisted Online Agents to support testability, visibility, changeability, con-

formity, traceability, and maintainability.

The following graphics show an example for maintaining a sample program, a

calculator. These graphics are provided by the Assisted Online Agents either in the

product development site or in the customer site.

478 18 NSE Software Maintenance Paradigm

Figure 18.9 shows one of the Assisted Online Agents, NSE-CLICK.

All other Assisted Online Agents are integrated together and can be executed

from the interface.

Figure 18.10 shows the document hierarchy description table using bookmarks

to indicate the relationship of the documents and the test cases with which we can

find what test cases are used for testing the requirement(s) to be changed – for

instance, we want to change the ADDITION requirement.

Figure 18.11 shows how we can perform forward tracing from the corresponding

test case(s) to find what documents and the source code modules are used for the

implementation of the requirement that needs to be modified – click on the test case

(automatically shown in blue) in the test case window, then the corresponding

source code modules will be highlighted (automatically shown in red) in the control

flow window showing the entire product.

Figure 18.12 shows how we can perform backward tracing from the module(s)

to be modified to find how many documents and requirements are related (in this

case, two requirements are related, so that the modification must satisfy both).

Figure 18.13 shows how we can trace a module to be modified from the call

graph shown in J-Chart notation to highlight all of the related modules which may

also need to be modified correspondingly.

Fig. 18.9 The NSE-CLICK interface (the original icons are shown in different colors)

Fig. 18.10 From the requirement(s) to be changed to find the related test cases through the docu-

ment hierarchy description table

Fig. 18.11 Perform forward tracing from the test case(s) to find the related documents and the

program modules (automatically shown in red on the screen originally), and then check what

module(s) needs to be modified (updated)

Fig. 18.12 Perform backward tracing from the module(s) to be modified to find how many

documents and requirements are related (in this case, two requirements are related, so that the

modification must satisfy both)

480 18 NSE Software Maintenance Paradigm

Figure 18.14 shows how we can find all the related statements calling the

module to be modified for ensuring consistency among them from the diagrammed

source code shown in J-Diagram

Figure 18.15 shows how to select the related test cases from a modified source

code segment (a set of statements with the same execution condition without a

decision statement) for efficient regression testing after code modification (in this

example, only one test case is selected – it means the other test cases cannot be used

to re-test that segment).

Figure 18.16 shows how to update the related documents after software modifi-

cation through backward traceability.

Fig. 18.13 Tracing a module to be modified from the call graph to highlight all the related

modules which may need to be modified correspondingly

48118.4 Application

If a global or static variable is modified, all modules using that variable must be

checked to prevent inconsistency as shown in Fig. 18.17.

Usually less than 20% of the test cases are really useful for retesting a modified

software product. Figure 18.18 shows the result of the test case efficiency analysis

which will be the basis for test case minimization.

Based on the result of the test case efficiency analysis, test case minimization

can be performed to get a minimized set of test cases (see Fig. 18.19) which can be

used to obtain the same test coverage results obtained by all test cases (the algorithm

is given in Chap. 21) – usually a test which has found a defect will be included into

the minimized set of test cases because its execution path will be different from

those test cases which have not found a defect.

Fig. 18.14 Diagrammed source code shown with a facility used to trace a module to be modified

with all the related statements calling that module, for ensuring consistency

482 18 NSE Software Maintenance Paradigm

To a software product with a graphical user interface (GUI), we can selectively

play the captured GUI operations back automatically through traceability as shown

in Fig. 18.20. Although there is only one file used to store the captured GUI opera-

Fig. 18.15 Tracing a source code segment (automatically shown in blue on the screen originally)

to select the related test case(s) (automatically shown in red) for efficient regression testing

Fig. 18.16 Updating the related documents after software modification through backward traceability

48318.4 Application

Fig. 18.17 Preventing inconsistent defects in variable modification

Fig. 18.18 Sample result of test case efficiency analysis

tions for many test cases, and only one batch file used to play the captured GUI

operations back, using the Time Tags we can selectively play the corresponding

GUI operations back for each test case separately.

484 18 NSE Software Maintenance Paradigm

After modification, the following testing should be performed to ensure the

quality:

 (a) MC/DC test coverage analysis to the modified modules

 (b) Memory leak and memory usage violation check

 (c) Performance analysis to see whether the modified modules may become per-

formance bottlenecks – if so, perform refactoring with the modified modules

 (d) Quality measurement to make sure that the modified modules satisfy the

required quality standard

Fig. 18.19 A result of test case minimization, to be used for efficient regression testing

48518.5 The Major Features

If new defects are found after the modification, perform runtime error type analysis,

trace the runtime error execution path, and locate the detailed error locations (some-

time the error may be introduced earlier but are found later).

Figure 18.21 shows the execution path traced from a runtime error.

When some new defects are found after software modification for a complex

product, perform holistic version comparison to locate the problems better as

shown in Fig. 18.22.

18.5 The Major Features

As described in the NSE software maintenance process model and shown in the

application examples, the major features of NSE software maintenance engineering

paradigm are briefly summarized as follows:

 (a) Based on complexity science

 (b) Performed holistically and globally

 (c) Side-effect prevention driven

 (d) Supported by various traceabilities

 (e) Visual in the entire software maintenance process

 (f) Intelligent in the test case selection for regression testing through backward

traceability

 (g) Systematic, quantifiable, and disciplined

Fig. 18.20 Selectively playing the captured GUI operations back automatically

486 18 NSE Software Maintenance Paradigm

Fig. 18.21 A program execution path traced from a runtime error

Fig. 18.22 Holistic software version comparison for a complex product (here, with colors on the

screen originally, changed modules are shown in red, unchanged modules in blue, deleted modules

in brown, and undeleted modules in green)

48718.8 Further Reading and Information Source

18.6 Summary

Today software maintenance takes 75% or more of the total effort and total cost in

software product development, because the existing software maintenance

engineering paradigm is based on reductionism and the superposition principle,

so that almost all of the tasks and activities in software maintenance engineering

are performed partially and locally.

This chapter presented the NSE software maintenance engineering paradigm

based on complexity science. With the NSE software maintenance engineering

paradigm, almost all software maintenance tasks/activities are performed holisti-

cally and globally with side-effect prevention in the implementation of requirement

changes and code modifications through various traceabilities. Preliminary applica-

tions show that compared with the old-established software maintenance engineering

paradigm, it is possible for the NSE software maintenance engineering paradigm to

reduce about two-third of the total effort and total cost in software maintenance to

help software organizations double their productivity and halve their cost in their

software product development.

18.7 Points and Questions to Ponder

 (a) Why does software maintenance take 75% or more of the total effort and total

cost in software product development today?

 (b) What are the major differences between the old-established software mainte-

nance paradigm and the NSE software maintenance paradigm?

 (c) How can the side effects in the implementation of requirement changes or code

modifications be prevented?

 (d) When a software product is made through outsourcing development, what

should be provided with the product? Why?

18.8 Further Reading and Information Source

 (a) Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading

 (b) Ramesh G, Bhattiprolu R (2006) Software maintenance: effective practices for

geographically distributed environments. Tata McGraw-Hill, New Delhi. ISBN

9780070483453

 (c) Grubb P, Takang A (2003) Software maintenance. World Scientific Publishing,

New Jersey. ISBN 9789812384256

488 18 NSE Software Maintenance Paradigm

References

[Amb05] Ambler SW (2005) A manager’s introduction to the rational unified process

(RUP). http://www.ambysoft.com

[Bro95-P120] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,

p 120

[Dem82] Deming WE (1982) Out of the crisis. MIT Press, Cambridge

[Jon02] Jones C (2002) Software quality in 2002: a survey of the state of the art, Six

Lincoln Knoll Lane, Burlington, MA 01803. http://www.SPR.com. Accessed

23 July 2002

[Pre05-P409] Pressman RS (2005) Software engineering: a practitioner’s approach.

McGraw-Hill, New York, p 409

http://www.SPR.com

489J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_19,

© Springer Science+Business Media, LLC 2011

The human being, language, reasoning through relationships,

and archival representations are universal priors to science

(i.e., there can be no science without each of them).

John N. Warfield

This chapter introduces another component of NSE – the NSE documentation

paradigm which helps software organizations document their software products

automatically, dynamically, holistically, accurately, precisely, and virtually.

Documents for a software product should at least include the software project

objectives, product specification, schedule, budget, space allocation, organization

chart [Bro95-P110], technical manual, algorithm description, data structure design,

testing methods and process and results, user manual, etc. [Woe09]. What is

focused on in this chapter is technical documentation engineering.

19.1 The Old-Established Software Documentation

Paradigm Is Outdated

The old-established software documentation paradigm is outdated:

 (a) The foundation of the old-established software documentation paradigm is

reductionism and the superposition principle that the whole of a complex sys-

tem is the sum of its components, so that with the old-established software

documentation paradigm almost all tasks and activities in software documenta-

tion are performed linearly, partially, and locally.

 (b) It works with the linear process models in which the workflow goes linearly in

one way with one track only without upstream movement at all – it requires that

the software developers always document the software right without making

any mistake and any wrong decision in software documentation, violating

nature’s laws about people because people are nonlinear and it is easy to make

mistakes, although these mistakes can be corrected.

Chapter 19

NSE Documentation Paradigm:
Virtual, Traceable, and Consistent
with the Source Code

490 19 NSE Documentation Paradigm

 (c) It works with the outdated software development methodologies based on the

reductionism principle and Constructive Holism principle that the components

of a complex system are completed first, then the whole of the system is assem-

bled from its components.

 (d) It is not holistic – with it many small pieces of documents will be created/gener-

ated without the capability to document an entire software system – missing the

“Big Picture” of a software product. Even if some tools can be used to docu-

ment an entire software product, without automated and self-maintainable

traceability the obtained system-level graphical documents will still be useless,

because there will be too many connection lines, making the documents hard to

view and hard to understand as shown in Fig. 19.1.

 (e) The graphic documents and the source code are separated – hard to keep them

consistent.

 (f) The obtained documents are not traceable – hard to use.

 (g) Often the obtained documents are inconsistent with the source code after prod-

uct modification.

 (h) The documents obtained are stored statically as hard copies in Postscript, XML,

or other formats requiring huge amounts of space and long loading times.

 (i) Most graphic documents are created manually or using graphic editors, not

automatically generated.

Fig. 19.1 A traditional call graph without traceability (http://keithcu.com/bookimages/

wordpress_html_m1e9af381.jpg)

http://keithcu.com/bookimages/wordpress_html_m1e9af381.jpg
http://keithcu.com/bookimages/wordpress_html_m1e9af381.jpg

49119.2 Outline of NSE Documentation Paradigm

 (j) The graphic documents are time-consuming to draw, hard to change, and hard

to maintain.

 (k) Often the obtained documents are not accurate.

 (l) Often the obtained documents are not precise – for instance, it cannot directly

and graphically show where a code branch or condition combination has been

tested or not.

19.2 Outline of NSE Documentation Paradigm

NSE documentation paradigm is introduced in detail later. Here is the outline of the

solution:

 (a) The foundation of the NSE documentation paradigm is complying with the

essential principles of complexity science, particularly the Nonlinearity principle

and the Holism principle, so that with NSE almost all software documentation

tasks and activities are performed holistically and globally.

 (b) It works with the NSE process model in which the workflow goes nonlinearly

through two-way iteration with multiple tracks – supporting upstream move-

ment and downstream movement.

 (c) It works with NSE software development methodology based on complexity

science and the Generative Holism principle that the whole of a complex system

comes first as an embryo, then grows up with its components.

 (d) It is holistic – many holistic documents for an entire software product will be

automatically generated to make the documents easy to view and easy to under-

stand as shown in Figs. 19.2 and 19.3.

 (e) With NSE, source code (either a dummy program or a regular program) is the

source for most graphical document generation, whereas the graphic documents

are the visual representation of the corresponding source code – so that they are

always consistent to each other.

 (f) The obtained documents are traceable to and from the source code – easy

to use.

 (g) The obtained documents are consistent with the source code after product

modification – only need to update the database.

 (h) The documents are generated directly from the source code and the correspond-

ing database virtually exists without storing hard copies in memory or hard disk

(unless the users want them) to greatly save the space and make the display

speed about 1,000 times faster.

 (i) With NSE, almost all graphic documents are automatically generated.

 (j) The graphic documents are easy to generate, change, and maintain.

 (k) The generated graphical documents are accurate and consistent with the code.

 (l) The generated graphical documents are precise – for instance, it can directly

and graphically show where a code branch or condition combination has been

tested or not.

492 19 NSE Documentation Paradigm

F
ig

.
1
9
.2

A

n
 a

p
p
li

ca
ti

o
n
 e

x
am

p
le

 f
o
r

N
S

E
 t

o
 d

o
cu

m
en

t
a

co
m

p
le

x
 s

o
ft

w
ar

e
h
o
li

st
ic

al
ly

49319.2 Outline of NSE Documentation Paradigm

F
ig

.
1
9
.3

A

n
 a

p
p
li

ca
ti

o
n
 e

x
am

p
le

 f
o
r

N
S

E
 t

o
 t

ra
ce

 a
 m

o
d
u
le

 w
it

h
 a

ll
 t

h
e

re
la

te
d
 m

o
d
u
le

s

494 19 NSE Documentation Paradigm

19.3 Description of the NSE Documentation Paradigm

The NSE documentation paradigm generates holistic, graphical, interactive, and

traceable documents automatically from the source code of a dummy program for

requirement development and product design or a regular program.

19.3.1 The Critical Issues with the Old-Established Software

Documentation Paradigm

The critical issues with the old-established software documentation paradigm are

shown in Fig. 19.4. Although a few tools claim that partial source code can be

directly generated from the UML diagrams [Arl05], there are still many related

issues that need to be solved.

As shown in Fig. 19.4, with the old-established software documentation para-

digm, the design documents and the source code are separated. The documents

designed using UML are not traceable for static review and not executable for

dynamic defect removal – the quality of the designed documents is almost impos-

sible to ensure.

The issues also come from the fact that there is no automated and self-maintainable

facility to support the traceability among the design documents and the test cases

and the source code – it is almost impossible to make the design documents and the

Fig. 19.4 The big gap between the design documents and the source code

49519.3 Description of the NSE Documentation Paradigm

source code consistent, so that after the source code is changed again and again

with the implementation of requirement changes and code modifications, most

design documents will become useless garbage.

19.3.2 The Solution Offered with NSE

The solution offered with NSE is shown in Fig. 19.5.

As shown in Fig. 19.5, with NSE the source code (either a dummy program or

a regular program) is also the source for automatically generating the graphic

design documents, while the graphical design documents become the visual face

of the source code – design becomes precoding, and coding becomes further

design. The designed graphical documents are traceable for static review as shown

in Fig. 19.3 and executable for dynamic defect removal (see Figs. 11.22 and

11.23).

With NSE, there is an automated and self-maintainable facility established

through dynamic testing using the Transparent-box method to support traceability

among the design documents and the test cases and the source code as shown in

Fig. 19.5 The solution offered with NSE

496 19 NSE Documentation Paradigm

Fig. 19.6 – it makes the design documents and the source code consistent. After the

source code is changed with the implementation of requirement changes and code

modifications, most design documents can be automatically and incrementally

(only the modified source files need to be re-analyzed) updated to maintain consis-

tency with the source code.

19.3.3 The Objectives of the NSE Documentation Paradigm

The objectives of the NSE documentation paradigm are given as follows:

 (a) Combining software programming and graphical software documentation

together seamlessly.

 (b) Making one source for both people understanding and computer “understanding” –

through static people review of the graphical documents and dynamic program

execution to ensure the upstream quality of a software product.

 (c) Making all kinds of documents (including those manually drawn and those gen-

erated by third party tools) traceable to the source code to keep them consistent

with each other through automated and self-maintainable traceability established

by dynamic testing using the Transparent-box method combining functional

testing and structural testing together seamlessly with a capability to establish

bidirectional traceability.

Fig. 19.6 Traceability among all related documents, test cases, and source code

49719.3 Description of the NSE Documentation Paradigm

 (d) Generating most software documents automatically as much as possible.

 (e) Making software documents visible as much as possible.

 (f) With the graphical documents consistent with the source code, making a soft-

ware product truly maintainable and adaptive to the changed or changing

environment.

19.3.4 Working with Dummy Programming

The NSE software documentation paradigm works with dummy programming

using dummy modules consisting of an empty body or only simple function call state-

ments – any software professional can write the dummy programs easily without

extra learning.

19.3.5 Working with NSE Software Visualization Paradigm

The NSE documentation paradigm works closely with the NSE Software

Visualization Paradigm which mainly generates interactive and traceable 3J graphics

(J-Chart, J-Diagram, and J-Flow diagram). As described above, making soft-

ware documents visible as much as possible is one of the objectives of NSE software

documentation paradigm.

19.3.6 Working with HAETVE Requirement Development

Technique

The NSE software documentation paradigm works with the HAETVE (Holistic,

Actor–Action and Event–Response driven, Traceable, Visual, and Executable) require-

ment development technique and the corresponding tools. As described in Chap. 11,

the notations of HAETVE can map with most of the UML notations as follows:

(a) Figure 19.7 shows the sample notations for representing an actor and an

action.

Fig. 19.7 HAETVE notations for representing an actor and an action

498 19 NSE Documentation Paradigm

The dummy Java program corresponding to the notations shown in Fig. 19.7 is

as follows:

The sample notations for representing an actor and the action for C/C++ are

shown in Fig. 19.8.

The corresponding dummy source code written in C/C++ is listed separately as

follows:

Bank_Customer ()

{

Bank_Customer ();

}

 Void Deposit_Money ()

 {

 }

(b) HAETVE notations mapping to Use Cases analysis notations are shown in

Fig. 19.9.

(c) Graphical representation of class.

With HAETVE, classes are represented in several graphical notations as shown

in Fig. 19.10.

Fig. 19.8 The notations for representing an actor and the action for C/C++

49919.3 Description of the NSE Documentation Paradigm

Fig. 19.9 Analysis notation mapping between Use Cases (UML) and HAETVE

Fig. 19.10 NSE graphical representation for a class

(d) Time-Event table.

With NSE, the time-event table is written in the comment part of a dummy

program or a regular program. An example is listed as follows:

500 19 NSE Documentation Paradigm

 (e) Mapping to Activity diagram.

 With NSE, a new type logic diagram, J-Diagram, is used to map to Activity

diagrams. An application example is shown in Figs. 12.9 and 12.10.

(f) Method for graphically representing message sending and receiving.

 With NSE, message sending and receiving are represented with the auto-

matically established “click-to-jump” facility as shown in Fig. 19.11.

19.3.7 How It Works

Figure 19.12 shows the workflow for the NSE software documentation paradigm.

19.3.8 Making a Software Product Visible in Multiple-Views

1. Static + dynamic

 (a) Static analysis of a program’s Cyclomatic complexity – see Fig. 19.13.

 (b) Dynamic analysis of program performance – see Fig. 19.14.

2. Macro + micro

 (a) Holistic MC/DC test coverage analysis for an entire software product

– see Fig. 19.15.

(b) Detailed MC/DC test coverage analysis for a individual class/function

– see Fig. 19.16.

50119.3 Description of the NSE Documentation Paradigm

Fig. 19.11 Click-to-jump facility automatically established for showing message sending and

receiving

Fig. 19.12 The workflow of NSE documentation paradigm

502 19 NSE Documentation Paradigm

3. Procedure + data

(a) Function cross-reference analysis – see Fig. 19.17.

(b) Data analysis – see Fig. 19.18.

4. System level + file level + statement level

(a) System-level version comparison – see Fig. 19.19.

(b) File-level version comparison – see Fig. 19.20.

(c) Statement version comparison – see Fig. 19.21.

Fig. 19.13 An application example of Cyclomatic complexity analysis

50319.3 Description of the NSE Documentation Paradigm

5. Static visibility + dynamic visibility

(a) Forward tracing from a test case to find what modules can be tested –

see Fig. 19.22.

(b) Dynamic visibility – tracing a test case to not only find what modules

can be tested, but also directly play the captured test operations back

through the batch file (.bat) specified in the @BAT@ keyword within

the test case description part – see Fig. 19.23.

6. Integrative + traceable

(a) With NSE, the generated documents are interactive – for instance, users

can click on a module box to use that module as the root to generate a

sub call graph – see Fig. 19.24.

(b) With NSE, most of the generated documents are traceable – see Fig. 19.25.

Fig. 19.14 An application example of performance analysis

504 19 NSE Documentation Paradigm

7. Linkable + convertible

(a) With NSE, different graphical documents can be linked together – see

Fig. 19.26.

(b) Converting between the generated logic diagram and the control flow

diagram – see Fig. 19.27.

8. Local + internet

(a) With NSE, many static and dynamic analysis reports can be automati-

cally generated – see Fig. 19.28.

(b) With NSE, the generated reports for static and dynamic program analy-

sis can be saved in the HTML format to be used as Web pages – see

Fig. 19.29.

Fig. 19.15 Holistic MC/DC (Modified Condition/Decision Coverage) test coverage analysis

50519.4 The Major Features of NSE Documentation Paradigm

19.4 The Major Features of NSE Documentation Paradigm

The graphical documents generated by the NSE documentation paradigm are given

as follows:

•฀ Holistic – NSE documentation paradigm generates holistic charts and diagrams

to document an entire software product.

•฀ Interactive – the generated graphical documents are interactive, the generated

charts/diagrams themselves are also the interfaces to accept the user’s com-

mands/operations.

Fig. 19.16 An application example of detailed test coverage analysis of a module

506 19 NSE Documentation Paradigm

Fig. 19.17 An application example of functional cross-reference analysis

Fig. 19.18 An application example of variable analysis

50719.4 The Major Features of NSE Documentation Paradigm

•฀ Traceable – with NSE, most of the generated documents are traceable, useful

for validation, verification, and semiautomated inspection and walkthrough.

•฀ Accurate – with NSE, the source code of a dummy program or a regular pro-

gram is also the source to automatically generate most graphical documents, so

that the generated documents are accurate and consistent with the source code.

•฀ Precise – the generated graphical documents are precise; for instance, the cor-

responding documents can show how many times a branch is executed, and what

code branches and conditions have not been executed.

•฀ Virtual – with NSE, most graphical documents are dynamically generated from the

source code, there is no need to save their hard copies in memory or disk, so that a

huge amount of space can be saved, and the display speed is about 1,000 times faster.

The generated holistic charts and diagrams are shown within a window, no more or

less. When a chart or diagram needs to move around, a new one will be regenerated

dynamically without the real movement of the chart or diagram, so that the display

Fig. 19.19 An application example of holistic version comparison in system level

508 19 NSE Documentation Paradigm

speed is very fast, but from a users’ point of view, there is no difference between the

virtual charts/diagrams and the regular charts/diagram needing huge amounts of

space to store in hard disk and computer memory.

•฀ Massive – the graphical documents with the size being more than 100 times the

size of the source code (if the documents are stored in disk regularly) can be auto-

matically generated in system level, file level, and module level. For instance, for

each class/function, the NSE documentation paradigm can automatically generate

the logic diagram shown in J-Diagram notations with the untested branches and

untested conditions highlighted, control flow diagram shown in J-Flow diagram

notations, the quality measurement result shown in Kiviat diagram, etc. – massive

documentation.

Fig. 19.20 An application example of file-level version comparison

50919.4 The Major Features of NSE Documentation Paradigm

Fig. 19.21 An application example of statement version comparison

Fig. 19.22 Example of static visibility – tracing a test case to view what modules can be tested

510 19 NSE Documentation Paradigm

19.5 Application

NSE documentation paradigm has been commercially implemented and supported

by Panorama++. All the screenshots shown in this chapter are taken from real appli-

cation examples.

19.6 Summary

The old-established software documentation paradigm is outdated because it is

based on reductionism and the superposition principle that the whole is the sum of

its components, so that with it almost all software documentation tasks and activities

are performed linearly, partially, and locally. The sources used to generate/create

Fig. 19.23 Dynamic visibility – tracing a test case to play the captured operations back

51119.6 Summary

software documents are different from the source code of the software product. The

generated/created graphical documents are not traceable for static review and not

executable for dynamic testing, so that the quality of the documents is hard to

ensure and the documents are hard to maintain consistency with the source code

after code modifications.

The NSE software documentation paradigm is based on complexity science by

complying with the essential principles of complexity science, particularly the

Nonlinearity principle and the Holism principle that the whole of a complex system

is greater than its components, and that the characteristics and behaviors of the

whole emerge from the interaction of its components, so that with NSE software

documentation paradigm almost all software documentation tasks and activities are

performed holistically and globally. The sources used to generate most graphical

software documents are also the source code of the dummy programs or regular

programs. The generated graphical documents are traceable for static review, and

Fig. 19.24 Interaction example: click on a module box to generate an isolated sub call graph

512 19 NSE Documentation Paradigm

the corresponding source code is executable for dynamic testing, so that the quality

of the documents is easy to ensure and the documents are easy to maintain consis-

tency with the source code after code modifications – with NSE design is precod-

ing, while coding is further design.

Source code is not the best documentation of a software product, but source

code is the best source to directly and automatically generate holistic, interac-

tive, traceable, consistent, accurate, precise, massive, and virtual documents of

the software product.

19.7 Points and Questions to Ponder

 (a) What are the major issues existing with the old-established software documen-

tation paradigm?

 (b) Is source code the best documentation for a program? Why?

 (c) What are the major differences between the old-established software documen-

tation paradigm and the NSE software documentation paradigm?

Fig. 19.25 An application example – tracing a module to see all the related modules

Fig. 19.26 An application example – linking a call graph to the logic diagram

Fig. 19.27 An application example of diagram conversion from a logic diagram to the control

flow diagram

514 19 NSE Documentation Paradigm

Fig. 19.28 An application example of static and dynamic program analyses and reporting

19.8 Further Reading and Information Source

 (a) Problems of bad software documentation. http://www.software-documentation.

co.uk/software-documentation-problems.html, © TechScribe, UK. Page

updated 29 December 2008

 (b) Dennis Crane, Writing cost-effective documentation for software systems.

White Papers (Download as Acrobat PDF file). http://www.drexplain.com/

press/cost-effective-documentation-for-software-systems/

http://www.software-documentation.co.uk/software-documentation-problems.html
http://www.software-documentation.co.uk/software-documentation-problems.html
http://www.drexplain.com/press/cost-effective-documentation-for-software-systems/
http://www.drexplain.com/press/cost-effective-documentation-for-software-systems/

515References

Fig. 19.29 Code analysis reports saved in HTML format to be used as Web pages

 (c) Software documentation. From Wikipedia, the free encyclopedia. http://

en.wikipedia.org/wiki/Software_documentation

 (d) Software documentation resource portal. http://www.softwaredocumentation.

info/Default.aspx

References

[Arl05] Arlow J, Neustadt I (2005) UML 2 and the unified process: practical object-

oriented analysis and design. Pearson Education, Inc., Boston

[Bro95-P110] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,

p 182

[Woe09] Woelz C (2009) The KDE documentation primer. http://i18n.kde.org/docs/

doc-primer/index.html. Retrieved 15 June 2009.

http://en.wikipedia.org/wiki/Software_documentation
http://en.wikipedia.org/wiki/Software_documentation
http://www.softwaredocumentation.info/Default.aspx
http://www.softwaredocumentation.info/Default.aspx
http://i18n.kde.org/docs/doc-primer/index.html
http://i18n.kde.org/docs/doc-primer/index.html

517J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_20,

© Springer Science+Business Media, LLC 2011

There is nothing in the world constant but inconstant.

Jonathan Swift

This chapter introduces the NSE project management paradigm with which the

software development process and project management process are combined

together seamlessly, so that the documents for project management are traceable

with the implementation of the requirements and the source code to help the project

management team and the project development teams find possible problems

quickly and solve the problems in time.

20.1 The Old-Established Software Project Management

Paradigm Is Outdated

Software projects need to be managed according to the project development plan,

budget, and functions. Usually software project management tasks include:

 1. Project planning/scheduling

 2. Project monitoring

 3. Risk management

 4. Project cost estimation

 5. Process management

 6. Project documentation

 7. Unexpected event handling

 8. People/team management

Since the term software engineering first appeared in the 1968 NATO Software

Engineering Conference, it has been more than 40 years past. Many books on soft-

ware project management are published. But unfortunately, the project success rate

is still very low – only about 30%. Why?

The root reason is that not only the old-established software engineering

paradigm based on reductionism and the superposition principle is outdated, the

Chapter 20

NSE Project Management Paradigm:
Seamlessly Combined with the Project
Development Process

518 20 NSE Project Management Paradigm

old-established software project management paradigm is also outdated

because

 1. It focuses on process rather than people as the first-order effect on software

development, violating John N. Warfield’s “Twenty laws of complexity” that

“The human being, language, reasoning through relationships, and archival rep-

resentations are universal priors to science (i.e., there can be no science without

each of them)” [War98]. As pointed by Alistair Cockburn that “The fundamental

characteristics of ‘people’ have a first-order effect on software development”

[Coc99]. Even if there are some models claiming people is the first-order effect

on software development, they handle people having positive effects only to

offer better working conditions and tool support for the software development

team – they ignore the negative effects from people. But the fact is, almost all

defects are introduced into a software product by people – the customers and the

developers.

 2. It does not seize the principal contradiction – in most software organizations,

75% or more of effort and cost are spent in software maintenance, but often the

management team does not give more importance to software maintenance –

why? They know it is a critical issue, but they feel powerless.

 3. It cannot efficiently handle the issue of changeability.

 4. There is a lack of support methods and tools.

 5. With it, software development process and project management process are

separated.

 6. The project management is always half a beat behind – hard to find problems in

time and hard to solve problems in time.

 7. With it, the project success rate is still very low – only about 30%, not acceptable

in any other industry.

 8. The root cause for the issues in software project management is that the old-

established software development paradigm and the old-established software

project management paradigm are based on reductionism and the superposition

principle that the whole of a complex system is the sum of its components, so

that with the old-established software project management paradigm almost all

software management tasks are performed partially and locally.

20.2 Outline of the NSE Project Management Paradigm

The revolutionary solution offered by NSE for software project management is

described in detail in this chapter later. Here is the outline of the solution:

 1. It focuses on people rather than process. The NSE software project management

paradigm treats people with two side impacts: the positive side and the negative

side that almost all defects are introduced into a software product by people – the

customer and the developers, so that it forces the management team not only to

offer better working conditions and support to the software development team,

51920.3 The Foundation of NSE Project Management Paradigm

but also to provide many efficient methods and tools to prevent people from intro-

ducing defects into a software product.

 2. It seizes the principal contradiction – software maintenance. It makes both the

software development process and the software maintenance process be man-

aged together and forces side-effect prevention in the implementation of require-

ment changes and code modifications to greatly reduce the effort and cost spent

in software maintenance. It is performed with the support of various automated

and self-maintainable traceabilities.

 3. It can handle the issue of changeability better by preventing the side effects in

the implementation of requirement changes to ensure the quality of a modified

product.

 4. With NSE, there is a lot of methods and tools provided to support software proj-

ect management, such as the method and tool to make the project management

documents traceable to the implementation of requirements and source code.

 5. With it, the software development process and project management process are

combined together.

 6. The project management documents such as the schedule chart, project progress

reports, and cost reports are traceable with the implementation of requirements

and source code, so that the project management team can find the problems

early and solve the problems in time.

 7. With the NSE software engineering paradigm including the NSE project man-

agement paradigm, it is possible for NSE to help software organizations double

their productivity and double their project success rate (see Chap. 24 for more

information about it), compared with the old paradigms.

 8. The foundation for establishing the NSE software project management paradigm

is complexity science. The NSE software project management paradigm com-

plies with the essential principles of complexity science, particularly the

Nonlinearity principle, the Holism principle, the Self-Adaptability principle, and

the Self-Organizing principle, so that with the NSE software project manage-

ment paradigm almost all software project management tasks are performed

holistically and globally, such as the cost estimation is done with the decomposition

result of an entire software product preliminarily designed.

 9. Real-time communication support: with the NSE software project management

paradigm, a project Web site and the corresponding BBS are traceable to and

from the implementation of requirements and source code is required for real-

time communication support.

20.3 The Foundation of NSE Project

Management Paradigm

The foundation for establishing NSE software project management paradigm is

complexity science. It is established through the application of FDS (Five

Dimension Synthesis Method) framework as shown in Fig. 20.1.

520 20 NSE Project Management Paradigm

As shown in Fig. 20.1, the NSE project management paradigm complies with

the essential principles of complexity science.

The NSE project management paradigm consists of project management strategy,

methods, tools, and templates for project planning/scheduling, project monitoring,

risk management, project cost estimation, process management, project documen-

tation, unexpected event handling, and people/team management including

training.

20.4 The Strategy of NSE Project Management Paradigm

The NSE project management paradigm emphasizes on self-organization, self-

adaptation, and self-maintenance.

Self-organization relies on feedback (positive and negative), interaction, and

balance of exploitation and exploration [Bon99], so that, for instance, with the NSE

project management paradigm, all working product versions, even if it is a dummy

whole system (as an embryo), will be provided to customers for review to obtain

customer’s feedback.

Fig. 20.1 The paradigm-shift framework, FDS

52120.5 People Oriented

Self-adaptation emphasizes on the support for software changeability and

maintainability. With NSE, requirement changes are welcome and implemented

with side-effect prevention through various traceabilities. With NSE, a software

product is maintainable not only in the produce development site, but also in the

customer site – with NSE “Software” is redefined as and delivered to the customer

with

 1. Instructions (computer programs) that when executed provide desired features,

function, and performance

 2. Data structures that enable the programs to adequately manipulate information

 3. Documents that describe the operation and use of the programs (including the

test case script files too) plus

 4. The database built through static and dynamic measurement of the

programs

 5. A set of Assisted Online Agents (AOA, artificial intelligence tools working

with the database) for supporting testability, reliability, visibility, change-

ability, conformity, and traceability to make the software program main-

tainable and adaptive

20.5 People Oriented

With NSE, people-oriented management emphasizes on

 1. Innovation and continuous improvement in the existing products and services to

match the fast changing demands of the market.

 2. Establishing a set-up with an environment to enhance operational efficiency of

the organization.

 3. Developing human resources, by taking care of the needs and aspirations relat-

ing to career progression and job satisfaction through involvement, participation,

training, and commitment [Kha02].

 4. Understanding of that people are nonlinear and it is easy to make mistakes in

reading, writing, thinking, making decisions, communication, etc., – almost all

defects are introduced into a software product by people (customers and devel-

opers), so that with NSE a set of methods and tools are developed to prevent the

defects introduced into a software product by people (see Chap. 17). For instance,

we know that the obtained function decomposition result using Use Cases is not

traceable and not directly executable, then how do we know where the defect

exists? With NSE, the HAETVE (Holistic, Actor–Action and Event–Response,

driven Traceable, Visual, and Executable) requirement development technique

and the tool are applied to prevent defects introduced into a software by people

through traceability for static review and program execution for dynamic testing –

see Figs. 20.2 and 20.3.

522 20 NSE Project Management Paradigm

20.6 Focusing on Maintenance

With the old-established software engineering paradigm based on reductionism and

the superposition principle, linear process models are used, making defects easy to

propagate from upstream to downstream, and software maintenance is performed

partially and locally, so that 75% or more of the total effort and total cost are spent

in software maintenance. It is clear that to be able to double software productivity

and halve software development cost, we must solve the issues with software

maintenance.

With NSE, the solution is simple:

 1. Combining the software development process and maintenance process together

closely, supporting requirement changes at any stage through side-effect

prevention.

 2. Greatly reducing the defects introduced into a software product and the defects

propagated into software maintenance through defect prevention and defect

propagation prevention (see Chap. 17).

 3. Greatly reducing the new defects introduced into a software in the maintenance

phase by performing the implementation of requirement changes and code modi-

fications holistically and globally with side-effect prevention supported by vari-

ous traceabilities (see Chap. 18).

Fig. 20.2 The requirement development result using the HAETVE technique is traceable for defect

finding and removing

52320.7 More Method and Tool Support

20.7 More Method and Tool Support

Almost all required methods and tools for supporting software project management

are developed and provided (see Chap. 22), particularly

 1. The method and tool for making project management documents such as the

schedule charts and cost reports traceable with the implementation of the require-

ments and the source code

 2. The methods and tools of the NSE software visualization paradigm to make the

entire software development process and management process visible, and the

work products visible

Fig. 20.3 The requirement development result using the HAETVE technique is executable for

defect removing (as shown in this figure, all “Actions” are executed except the “Actors”)

524 20 NSE Project Management Paradigm

 3. The methods and tools for cost estimation using call graphs shown in J-Chart

notations, see Fig. 20.4

 4. Precise productivity measurement methods and tools – see an application exam-

ple shown in Fig. 20.5

20.8 Combination of Product Development and Project

Management

One of the root causes of software failures is that the project management process

is separated from the product development process. In the article “Social and

Technical Reasons for Software Project Failures,” Capers Jones pointed that there

are five root causes for software failures:

 1. Root causes of inaccurate estimating and schedule planning

 2. Root causes of incorrect and optimistic status reporting

 3. Root causes of unrealistic schedule pressures

 4. Root causes of new and changing requirements during development

 5. Root causes of inadequate quality control [Jon06]

I think the fundamental root cause for software project failures is that the

old-established software engineering paradigm is based on reductionism and

superposition principle, so that with it almost all software engineering tasks and

project management tasks are performed partially and locally. But the root

causes pointed out by Capers Jones are also existing with today’s software

development.

How can we solve these issues? First, these problems should be handled holisti-

cally and globally; the project management process and the product development

process should be combined together to make the project management documents

such as the schedule and cost reports traceable with the requirement implementa-

tion and the source code.

“So it is today. Schedule disaster, functional misfits, and system bugs all arise

because the left hand doesn’t know what the right hand is doing” [Bro95-p74] –

by combining the project management process and the product development

process together, and make the work products of project management and the

work products of the product development traceable, and set up a project/product

Web site and BBS for real-time communication, will make the left hand know

what the right hand is doing, and the right hand know what the left hand is

doing to solve those issues efficiently. A schedule chart traced and opened when

performing forward tracing from a requirement/test case is shown in Fig. 20.6.

A Web page traced and opened when performing forward tracing from a require-

ment/test case is shown in Fig. 20.7.

52520.8 Combination of Product Development and Project Management

F
ig

.
2
0
.4

A

 s
y
st

em
 c

al
l

g
ra

p
h
 s

h
o
w

n
 i

n
 J

-C
h
ar

t
fo

r
co

st
 e

st
im

at
io

n

526 20 NSE Project Management Paradigm

F
ig

.
2
0
.5

P

re
ci

se
 p

ro
d
u
ct

iv
it

y
 m

ea
su

re
m

en
t

su
p
p
o
rt

Fig. 20.6 A schedule chart traced and opened when performing forward tracing for a requirement/

test case

Fig. 20.7 An application example of tracing a requirement/test case to open a related Web page

528 20 NSE Project Management Paradigm

20.9 Finding Problems Early and Solving

the Problems in Time

As pointed by Frederick P. Brooks, Jr., “When one hears of disastrous schedule slippage

in a project, he imagines that a series of major calamities must have befallen it.

Usually, however, the disaster is due to termites, not tornadoes; and the schedule has

slipped imperceptibly but inexorably. Indeed, major calamities are easier to handle;

one responds with major force, radical reorganization, the invention of new

approaches. The whole team rises to the occasion.” “But the day-by-day slippage is

harder to recognize, harder to present, harder to make up”[Bro95-P154].

The benefits of combining software development process and software project

management process together, and making the work products of software develop-

ment and the work products of project management traceable, is that one will be

able to find problems early and solve the problems in time.

20.10 Quality Management

As pointed by Roger S. Pressman, “Software engineering will change – of that we

can be certain. But regardless of how radical the changes are, we can be assured

that quality will never lose its importance and that effective analysis and design and

competent testing will always have a place in the development of computer based

systems” [Pre05-p867].

With NSE, software quality assurance and quality management is performed

from the first step down to the final step – the retirement of a software product – see

Chap. 17.

20.11 Multiple-Project Management

The NSE software project management paradigm supports multiple-project develop-

ment and management – two or more related projects’ documents, including the

management documents and the progress reports, can be traced to each other as

shown in Fig. 20.8. With the traceability, events, progress, and issues in one project

can be viewed by the management team in another project to take corresponding

actions and to help each other.

20.12 Summary

Software project management is an important factor for project success. The old-

established software project management paradigm is outdated which is based on

reductionism and the superposition principle so that with it almost all project

52920.13 Points and Questions to Ponder

management tasks are performed partially and locally, such as the management for

software changes.

The NSE software project management paradigm is based on complexity sci-

ence by complying with the essential principles of complexity science, particularly

the Nonlinearity principle, the Holism principle, the Self-Organization principle,

and the Self-Adaptation principle, so that with the NSE software project manage-

ment paradigm almost all software project management tasks are performed holisti-

cally and globally.

The most important feature of the NSE project management paradigm is that the

software project management process is combined with software development pro-

cess – the management materials such as the schedule charts, cost reports, progress

reports, and unexpected event reports are traceable with the implementation of

requirements and the source code, so that the management team can find possible

problems early and solve the problems in time.

People oriented and maintenance focused are also the important features of the

NSE project management paradigm for efficiently increasing the software project

success rate.

20.13 Points and Questions to Ponder

 (a) What are the benefits of combining the project management process and

product development process together to make their work products

traceable?

 (b) Why should a project Web site and BBS be established and the related Web

pages or BBS title pages be made traceable with the related requirements and

test cases and source code?

Fig. 20.8 Multiple-project management

530 20 NSE Project Management Paradigm

20.14 Further Reading and Information Source

 (a) Software project management, Wikipedia, the free encyclopedia. http://

en.wikipedia.org/wiki/Software_project_management

 (b) Farthing DW Software project management. University of Glamorgan. http://

www.comp.glam.ac.uk/staff/dwfarthi/projman.htm

References

[Bon99] Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to

artificial systems. Oxford University Press, New York, pp 9–11

[Bro95-p74] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 74

[Bro95-P154] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,

p 154

[Coc99] Cockburn AAR (1999) Characterizing people as non-linear, first-order compo-

nents in software development. Humans and Technology, HaT Technical Report

1999.03, 21 October 1999

[Jon06] Jones C (2006) Social and Technical reasons for software project failures.

CrossTalk, June Issue

[Kha02] Khatoon A (2002) People-oriented management. DAWN. http://www.dawn.

com/2002/11/11/ebr19.htm. Accessed November 2002

[Pre05-p867] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-

Hill, New York, p 867

[War98] Warfield JN (1998) Twenty laws of complexity: science applicable in organiza-

tions, Wiley InterScience (http://www.interscience.wiley.com). http://www3.

interscience.wiley.com/journal/71007260/abstract?CRETRY=1&SRETRY=0

http://en.wikipedia.org/wiki/Software_project_management
http://en.wikipedia.org/wiki/Software_project_management
http://www.comp.glam.ac.uk/staff/dwfarthi/projman.htm
http://www.comp.glam.ac.uk/staff/dwfarthi/projman.htm
http://www.dawn.com/2002/11/11/ebr19.htm
http://www.dawn.com/2002/11/11/ebr19.htm
http://www.interscience.wiley.com
http://www3.interscience.wiley.com/journal/71007260/abstract?CRETRY=1&SRETRY=0
http://www3.interscience.wiley.com/journal/71007260/abstract?CRETRY=1&SRETRY=0

531J. Xiong, New Software Engineering Paradigm Based on Complexity Science:
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_21,
© Springer Science+Business Media, LLC 2011

The algorithm is the soul of software.

Jay Xiong

The algorithm is the soul of software.
An algorithm is an effective method for solving a problem expressed as a finite

sequence of steps/instructions.
Because the size limitation of this book, I will not introduce all of the detailed

steps of an algorithm innovated by me and used in the establishment of NSE, but I
will introduce the idea and key steps in the implementation of the algorithm.

Here is a list of the algorithms to be introduced in this chapter:

 1. The algorithm for realizing MC/DC (Modified Condition/Decision Coverage)
test coverage analysis

 2. The algorithm for test case efficiency analysis and test case minimization
 3. The algorithm for performance analysis
 4. The algorithm for Cyclomatic complexity analysis
 5. The algorithm for tracing the execution path of a runtime error
 6. The algorithm for the layout of the call graph of a program
 7. The algorithm for holistic version comparison of a software product
 8. The algorithm for memory leak and usage violation analysis
 9. The algorithm for realizing the traceability of the diagrammed source code
 10. The algorithm for dynamic traceability

Chapter 21

Algorithms Innovated for Establishing NSE

532 21 Algorithms Innovated for Establishing NSE

21.1 The Algorithm for Realizing Modified Condition/

Decision Coverage Test Coverage Measurement

21.1.1 The Requirements

The requirements for implementing MC/DC test coverage measurement [RTCA],
[DO-178B] include:

 1. Realize the function/capability of MC/DC test coverage measurement for large
software products

 2. Do not affect the performance too much (less than one-fifth of the time spent in
the instrumentation method using object code)

 3. Do not require too much space
 4. Support MC/DC test coverage measurement for classes which cannot be directly

executed
 5. Can show the accumulated result or the last-run result
 6. Can show the results graphically, holistically, and precisely with untested

branches and conditions highlighted
 7. Support incremental update of the test coverage measurement results

21.1.2 The Basic Idea

For meeting the above listed requirements, the proposed solution methods
include:

 1. Perform code implementation with the source code rather than object code
 2. To C/C++ program, for instance, use “?:” statement structure to replace the

method using function call
 3. Use only one bit to record whether a branch/condition is tested or not
 4. Design a special preprocessor to replace the system preprocessor for mapping

the test coverage results from class instances to the corresponding class
 5. Record both the accumulated and last-run results
 6. Use J-Chart to show the overall result and J-Diagram or J-Flow diagram (see

Chap. 7) to show the detailed measurement results with the capability to high-
light the untested elements

 7. Store the test coverage measurement results in system level and file level for
supporting incremental database update – for instance, if only one source file
is modified, then only this file should be re-measured without affecting the
results of other files

53321.2 The Algorithm for Test Case Efficiency Analysis and Test Case Minimization

21.1.3 The Major Steps

The major steps for realizing MC/DC test coverage measurement are as follows:

 1. Perform source code analysis to make sure the program itself works
 2. Perform code instrumentation precisely, such as that

to a statement as:
if (a && b) printf (“OK\n”);
change it to:

if (((a) ? (aisai_rp -> con[0] |= excc, 1): (aisai_rp -> con[0] |= 0x33, 0)) && ((b)?
(aisai_rp -> con[1] |= excc, 1): (aisai_rp -> con[1] |= 0x33, 0))) ? (aisai_rp ->
con[2] |= excc, 1): (aisai_rp -> con[2] |= 0x33) printf(“OK\n”);

or (for embedded systems):

if ((a)? (va = con |= excc, 1): (va = con |= 0x33, 0)) && …
(Use a variable rather than a data array to record the test coverage data, which

will be read in real time by a corresponding tool)
 3. Re-compile the program
 4. Run the compiled program with the test cases under the control of Panorama++

21.1.4 Application

A sample MC/DC test coverage measurement for classes is shown in Fig. 21.1.

21.2 The Algorithm for Test Case Efficiency Analysis

and Test Case Minimization

21.2.1 The Requirements

The requirements for test case efficiency analysis include:

 1. Realize the function/capability of test case efficiency analysis and test case
minimization

 2. Combine this function with the MC/DC test coverage measurement
 3. Can show the analysis results according to different test coverage metrics
 4. Support incremental update of the test case efficiency measurement results
 5. Make the minimized test cases useful in regression testing after software

modification

534 21 Algorithms Innovated for Establishing NSE

21.2.2 The Basic Idea

The basic ideas for realizing this function include:

 1. Use Time Tags (when a test case is executed) automatically inserted into both the
test case description part and the test coverage database for data mapping

 2. Perform logic “and” or “or” operations to separate the test results according to
different metrics (such as statement test coverage or branch test coverage)

 3. Set the test case selection rules according to the net contribution rather than
absolute test coverage contribution (see Sect. 21.2.3)

 4. Store the test coverage measurement results in system level and file level for sup-
porting incremental database update

 5. Make it possible to store the minimized test cases which can be used in regression
testing after code modification

Fig. 21.1 MC/DC test coverage measurement for classes

53521.2 The Algorithm for Test Case Efficiency Analysis and Test Case Minimization

Fig. 21.2 The interface for
selecting the metrics for test
case efficiency analysis
(about the meaning of SC0,
SC1, etc., see “Glossary” of
this book)

21.2.3 The Major Steps

The major steps for test case efficiency analysis and test case minimization are as
follows:

 1. After the test case execution, support users to select different metrics through an
interface as shown in Fig. 21.2.

 2. According to the Time Tags and users’ selection, get the test coverage results for
each test case used.

 3. Support users to select different metrics through an interface for test case mini-
mization as shown in Fig. 21.3.

 4. According to the users’ selection, perform test case minimization according to
the net contribution rather than absolute test coverage contribution based on the
test case efficiency analysis result:

(a) Make two sets, A and B
(b) Put all test cases into set A, let set B be empty
(c) From A, select the test case with

Biggest test coverage result, or•฀

A test case which has been used to find a defect•฀

then move it from A to B•฀

(d) From A, select a test case which has the biggest net test coverage contribu-
tion with B (covers most elements which are not covered by all test cases in
set B), then move it from A to B

(e) Repeat step (d) until no test case in A can make any net test coverage
contribution with B

536 21 Algorithms Innovated for Establishing NSE

(f) Set B is the minimized set of test cases
Usually, with NSE, a test case which has found a defect will be selected into
the minimized set of test cases, because the execution path for that test case
is different from other test cases (with NSE support platform Panorama++,
there are some extra statements to be executed to record the defect and ana-
lyze the type of the defect, etc.)

(g) Show the minimized test cases, then support users to decide whether they
want to save the result for regression testing

21.2.4 Application

A sample result of test case efficiency analysis is shown in Fig. 21.4.
A sample result of test case minimization is shown in Fig. 21.5.

21.3 The Algorithm for Performance Analysis

21.3.1 The Requirements

The requirements for performance analysis are as follows:

 1. Implement the function/capability for performance analysis
 2. Combine performance analysis and MC/DC test coverage together as an option

Fig. 21.3 The interface for
users to select the metric for
test case minimization

53721.3 The Algorithm for Performance Analysis

Fig. 21.4 A sample result of test case efficiency analysis

 3. Record the execution frequency for each branch for locating the performance
bottlenecks better

 4. Sort the functions according to the time spent
 5. Show the overall result of performance analysis with the capability to also show

the branch execution frequency

21.3.2 The Basic Idea

The basic idea for performance analysis is about how to record the time spent in
each function and all functions. The method used with NSE is to use a stack to
record when a function is called and when the function returns the control to the

538 21 Algorithms Innovated for Establishing NSE

caller. If there are nested calls, count the time spent in the deepest function first, and
so on, then count the net time spent in each function.

21.3.3 The Major Steps

 1. Analyze the source code of a software product.
 2. Perform instrumentation with capability to record the execution frequency of

each branch.

Fig. 21.5 Sample result of test case minimization

53921.3 The Algorithm for Performance Analysis

 3. Set a stack to record what function and the time Tin – when it is called.
 4. When the program control is returned from a function called by others, record

the time Tout, remove it from the stack, and count the time used by that function:
if it does not call other functions, then

T = Tout − Tin

is the time spent in that function; if the function calls other functions, for
instance, it calls function1 and function2, then count T1 and T2 using the same
method, then the net time

T − T1 − T2 is the net time spent in that function, and record it. Later on if that
function is called again by other functions, accumulate the total time spent in
that function.

 5. After the program execution, show the overall time spent in all functions and the
percentage of the time spent in each function using J-Chart.

 6. Show the performance analysis results through different sorting orders.

21.3.4 Application

Figure 21.6 shows the overall performance analysis results in J-Chart notation with
the capability to show the branch execution frequency of a function.

Figure 21.7 shows a sample sorted performance analysis result.

Fig. 21.6 An application example of performance analysis

540 21 Algorithms Innovated for Establishing NSE

21.4 The Algorithm for Cyclomatic Complexity Analysis

21.4.1 The Requirement

The requirements for Cyclomatic complexity [Mcc76] analysis are as follows:

 1. Offer the function/capability for Cyclomatic complexity (the number of decision
statements) analysis

 2. Count the Cyclomatic complexity with and without including the “case” statements
 3. To classes, count the complexity of the classes with and without the parent classes
 4. Support incremental update
 5. Show the overall complexity analysis results with the capability to show the

control flow of a class or a function for users to understand the complexity of the
class/function better

21.4.2 The Basic Idea

With NSE, it is performed through source code static analysis to count the numbers
of keywords of the decision statements.

Fig. 21.7 Sample sorted performance analysis result

54121.4 The Algorithm for Cyclomatic Complexity Analysis

21.4.3 The Major Steps

The major steps for Cyclomatic complexity analysis are as follows:

 1. Perform code static analysis.
 2. Count the keywords of decision statements with and without including “case”

statements.
 3. Analyze the control flow for each class/function.
 4. Store the complexity analysis results in system level and file level to support

incremental update of the results.
 5. Show the overall Cyclomatic complexity analysis results in J-Chart with a bar

graph at the bottom of each module box to indicate the Cyclomatic complexity
level (a full bar graph means the complexity is equal or bigger than 30), as well
as the capability to display the control flow diagram using J-Flow notations.

21.4.4 Application

An application example is shown in Fig. 21.8.

Fig. 21.8 An application example of Cyclomatic complexity analysis

542 21 Algorithms Innovated for Establishing NSE

21.5 The Algorithm for Tracing the Execution Path

of a Runtime Error

The algorithm and the major steps are similar to that used for performance analysis
but there is no need to count the time spent. The major difference between perfor-
mance analysis and tracing the execution path of a runtime error is that when the
program is unexpectedly terminated, we need to get the information and the control
earlier than the system. It is realized through the replacement of the on_exit() func-
tion with isa_exit() function in a header file.

An application example is shown in Fig. 21.9.

Fig. 21.9 An application example of tracing the execution path for a runtime error

54321.8 The Algorithm for Memory Leak and Usage Violation Analysis

21.6 The Algorithm for the Layout of the Call Graph

of a Program Using J-Chart Notations

The major steps of the algorithm for the layout of a call graph of a program are as
follows:

 1. Put the functions not called by any function at the first level.
 2. Put the functions called by only one function at the next level of the caller.
 3. If a function is called by more than one other functions, put this function at the next

level lower than the function which is at the lowest level among all the callers.
 4. If a function calls itself (recursive), put a small circuit on the top of the function

box.
 5. If there is a loop such as that function A calls function B, function B calls func-

tion C, but function C calls function A, then use a dotted line to link them from
the lowest level to the highest level.

An application example is shown in Fig. 21.10.

21.7 The Algorithm for Holistic Version Comparison

of a Software Product

The major steps of the algorithm are as follows:

 1. To the version A and version B of a software product, remove all the extra space
characters.

 2. Perform static analysis to generate the two databases for the version A and ver-
sion B.

 3. Merge the two databases together by marking unchanged modules in blue,
changed modules in red, deleted modules in brown, and added modules in green.

 4. To changed modules, identify the statement differences.

An application example of holistic version comparison is shown in Fig. 21.11.

21.8 The Algorithm for Memory Leak and Usage

Violation Analysis

The major steps of the algorithm are as follows:

 1. Analyze the source code of a program.
 2. Replace all the memory handling system functions with a new one, such as

replace “new” to “isa_new,” and “malloc” to “isa_malloc.”
 3. To a memory assignment statement, such as malloc(n), use isa_malloc to call

malloc(n + m + m); here “m” is an integer, can be 1 or 2 or more.

544 21 Algorithms Innovated for Establishing NSE

F
ig

.
2
1
.1

0

A
n

ap
pl

ic
at

io
n

ex
am

pl
e

of
 t

he
 l

ay
ou

t
of

 a
 c

al
l

gr
ap

h

54521.8 The Algorithm for Memory Leak and Usage Violation Analysis

Fig. 21.11 An application example of holistic version comparison

 4. To the above example, put special values to the first m memory units and the last
m memory units.

 5. Return the required memory to the memory assignment statement from the m + 1
location, so that if at the end of the program execution the assigned memory has
not been freed, or in the program running time the memory unit within the first
m units or the last m units is used, a memory leak issue or a memory usage viola-
tion issue will be detected.

An application example is shown in Fig. 21.12.

Fig. 21.12 An application example of memory leak and usage violation analysis

546 21 Algorithms Innovated for Establishing NSE

21.9 The Algorithm for Realizing the Traceability

of the Diagrammed Source Code

With NSE, various bidirectional traceabilities for source code are established by
diagramming the source code and showing it with J-Chart, J-Diagram, and J-Flow,
including the traceability between a class and its parent classes, a source file and
the included file, a label and the goto statements, a function and the callers, a class
instance and the class definition and the constructor.

The algorithms used for various traceabilities are almost the same, so that we
only need to know a typical one used to realize the traceability between a function
and the callers/callees.

The related major data structures for realizing the traceability between a function
and the callers/callees are as follows:

54721.9 The Algorithm for Realizing the Traceability of the Diagrammed Source Code

548 21 Algorithms Innovated for Establishing NSE

The major steps of the algorithm for realizing the traceability of the diagrammed
source code are as follows:

 1. Analyze users’ program, fill the Hash table for functions according to the above
data structures, including the information about the callers and the callees.

 2. Put all the source files of the program together to count the relative global block
number and the local line number in the corresponding source file according to the
order of code static analysis, and fill the JumpInfo for the function traceability.

 3. Count the corresponding JumpInfo as follows:
For instance, a function FC1 is defined at line 20 of source file SF1, local block
5, the global block number is also 5; a caller of the function is located in source
file SF5, local block 6, local line 33; if the source file SF1 has 20 blocks, SF2
has 30 blocks, SF3 has 22 blocks, SF4 has 26 blocks, then the global block
number of the caller is

20 + 30 + 22 + 26 + 6 = 104.

 4. Show the generated logic diagram with the JumpInfo – for instance, in global
block 5, the location where the function FC1 is defined, add a jump number 104
on the right side of the diagram.

 5. Make the generated diagram interactive to accept users’ command for realizing
the traceability – for instance, while the user is viewing the diagram of FC1
located in global block 5 in the generated diagram and makes a click on the
number 104 added on the right side of the function FC1, the diagram generator
should jump to global block 104 – there is a caller calling to function FC1.

 6. Correspondingly, after the diagram jumped to global block 104 and the diagram
generator shows the diagram from global block 104, it also adds a jump number
5 on the right side to indicate where the called function is located.

54921.10 The Algorithm for Dynamic Traceability

Note: In the real tool development, the holistic diagram for an entire software
product is virtually existing – there is no big diagram stored in the computer
memory or hard disk at all! All diagrams are generated dynamically from the data-
base with several Hash tables only – each time only a small diagram with the size
same as that of Windows used to show the diagram, so that when a diagram jumps
to a new location, there is no real diagram movement at all, instead, a new one is
dynamically generated. In this way, the display speed is about 1,000 times faster
than the traditional approaches. But as an option, users can also require the tool to
save (to a Postscript file) or print out the entire diagram which can be as large as
100,000 pages or more, depending on the original size of the source program.

An application example is shown in Fig. 21.13.

21.10 The Algorithm for Dynamic Traceability

With NSE, “dynamic traceability” means that when performing forward tracing
from requirements/test cases to find the corresponding source code, or performing
backward tracing from a program module or a segment (branch) to find the

Fig. 21.13 Automated traceability established with diagrammed source code

550 21 Algorithms Innovated for Establishing NSE

 corresponding test cases/requirements, if a batch file specified in the description
part of a test case using the keyword @BAT@ is selected or traced, the batch file
will be executed dynamically. Dynamic traceability is useful for making a docu-
ment created by a third party also traceable with the implementation of require-
ments and test cases and the source code, or automatically playing back the
captured GUI testing operations back for automated acceptance testing, etc.

Now, for instance, let us consider how to automatically play the captured GUI
operation back through dynamic traceability. The major steps of the algorithm/
process are as follows:

 1. Design the corresponding test case script file as follows:
sortdemo.tca:

 2. Run the test cases with Panorama++ to capture the GUI test operations as shown
in Figs. 21.14 and 21.15.

 3. Design a batch file for playing the captured operations back as follows:
re_run.bat:

Here “play” (play.exe) is the tool name, others are the parameters required by
the tool, sortdemo.tdb is the file storing the captured GUI operations.

 4. Although there is only one file (sortdemo.tab) storing the captured GUI test
operations for all test cases in a test script file, clicking on a test case will only
play the corresponding GUI operation for that test case back selectively without
playing other operations captured for other test cases back – it is done through
the Time Tag.

 5. How it works – through an environment variable TIME_TAG to map the corre-
sponding GUI operations captured and play them back selectively.

55121.10 The Algorithm for Dynamic Traceability

Fig. 21.14 Running the test cases to capture the GUI test operations with Panorama++

Fig. 21.15 The test process with GUI operations

552 21 Algorithms Innovated for Establishing NSE

(a) When a user click on a test case, set the environment variable TIME_TAG
before running the batch file:

(b) Run the batch file

void run_bat_file (char * file_name)

{

char cmd_line[1024];

STARTUPINFO si;

PROCESS_INFORMATION pi;

FILE *fp, *ffpp;

char *panohome;

int ln;

 ZeroMemory(&si, sizeof(si));

 si.cb = sizeof(si);

 ZeroMemory(&pi, sizeof(pi));

 if ((panohome=getenv(“PANORAMAHOME”)) == NULL)

 MessageBox (NULL, “Can get the environment variable of

PANORAMAHOME”, “ERROR”, MB_OK);

 else

 {

// Jay 2007, 1, 29, check to see whether there is a need to play

back a test case

// If it is a Code_to_case action, there is no a need.

// But we should check the batch file first to see whether there

is a playback command.

55321.12 Points and Questions to Ponder

sprintf(cmd_line,

 “%s\\run_bat\.exe %s”, panohome, file_name);

// MessageBox (NULL, cmd_line, “The cdm line = “, MB_OK);

CreateProcess(NULL,

cmd_line,

 NULL,

 NULL,

 FALSE,

 0,

 NULL,

 NULL,

 &si,

 &pi);

 }

}

(c) In the play.exe file used for playing the captured GUI operations back, get
the environment variable TIME_TAG used to selectively play the corre-
sponding GUI operations back:

 6. Show dynamic traceability through forward tracing (or backward tracing) opera-
tion using the OO-Validate tool of Panorama++ – see Figs. 21.16 and 21.17.

21.11 Summary

In this chapter, the major steps of ten algorithms are introduced. In the NSE support
platform, Panorama++, much more algorithms are innovated and applied.

Compared with a poor algorithm, the efficiency of an excellent algorithm can
increase more than 1,000 times such as the algorithm example of the virtual dia-
gram generation and display.

Algorithms are the soul of software.

21.12 Points and Questions to Ponder

 (a) Why are software algorithms so important?
 (b) What is a hash table? Where do we need hash tables?

554 21 Algorithms Innovated for Establishing NSE

Fig. 21.16 Process I for dynamic traceability

Fig. 21.17 Process II for dynamic traceability – selectively playing the captured GUI operations
back through forward tracing: click on a test case (automatically shown in blue on the screen
originally) to see the source code modules tested (automatically shown in red on the screen origi-
nally), and run the batch file traced

555References

21.13 Further Reading and Information Source

 (a) Algorithm, Wikipedia, the free encyclopedia. http://www.en.wikipedia.org/
wiki/Algorithm

 (b) What is Algorithm, whatis.com. http://www.whatis.techtarget.com/definition/
0,,sid9_gci211545,00.html

References

[Mcc76] McCabe T (1976) A complexity measure. IEEE Trans Software Eng, December 1976
[DO-178B] DO-178B, DO-254 Questions & answers. http://www.highrely.com/do178b_ques-

tions.php
[RTCA] http://www.rtca.org/

http://www.en.wikipedia.org/wiki/Algorithm
http://www.en.wikipedia.org/wiki/Algorithm
http://www.whatis.techtarget.com/definition/0,,sid9_gci211545,00.html
http://www.whatis.techtarget.com/definition/0,,sid9_gci211545,00.html
http://www.highrely.com/do178b_questions.php
http://www.highrely.com/do178b_questions.php
http://www.rtca.org/

557J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_22,

© Springer Science+Business Media, LLC 2011

Right tool for the right job.

At-Risk Survivors

This chapter introduces NSE support tools and NSE support platform. These tools

are developed mainly from the innovated techniques described in Chap. 7.

22.1 Full Software Development Lifecycle Support

NSE support tools and NSE support platforms, Panorama++ and Silver Bullet++,

fully support the entire software development and maintenance process as shown in

Fig. 22.1.

22.2 The Product Development History

The history of Panorama++ development

First generation: Hindsight•฀

Second generation: Panorama•฀

Third generation: Panorama++•฀

22.2.1 The First Generation: Hindsight

In 1989, I founded Advanced Software Automation, Inc. in Silicon Valley. Our first

product Hindsight designed by me and implemented by me and my colleagues was

chosen by Sun Microsystems as the internal test suite for almost all software prod-

ucts except the operating systems – see Fig. 22.2 for a related article.

Chapter 22

NSE Support Tools and NSE Support
Platforms

558 22 NSE Support Tools and NSE Support Platforms

Hindsight was also selected as one of the typical reverse engineering tools by

CASE OutLook – see Fig. 22.3.

It is pointed in the article shown in Fig. 22.3 that “ASA’s Hindsight The aptly

named Hindsight from Advanced Software Automation (ASA) is a program under-

standing and maintenance workbench for C and Fortran. The company was founded

by Mr. Jay Xiong who formerly worked in the field of CAD for integrated circuit

(microchip) development at Hitachi and U.C. Berkeley. Xiong’s vision in founding

ASA was to address the problems associated with testing and maintaining very

large programs (one million or more lines of code). Hindsight uses algorithms

derived from Xiong’s work with very large IC layout tools to represent large pro-

gram structure.”

22.2.2 Second Generation: Panorama

In 1992, I founded International Software Automation, Inc. (ISA) in Silicon Valley.

Our Panorama product designed by me and implemented by me and my colleagues

was introduced in 1994. In 1995, Panorama was selected as one of the best software

analysis and testing products by Edward Kit in his book “Software Testing in the

Real World” [Kit05] – see Fig. 22.4.

The following contents are a comment from Professor ROGER S.

PRESSMAN:

Panorama: developed by International Software Automation, Inc. (http://www.software-

automation.com. Note: now http://www.nsesoftware.com) encompasses a complete set of

tools for object-oriented software development including tools that assist test case design

and test planning [Pre05].

Fig. 22.1 NSE integrated tools and platforms fully support the software development lifecycle

http://www.softwareautomation.com
http://www.softwareautomation.com
http://www.nsesoftware.com

55922.2 The Product Development History

Expert David Spuler pointed that:

The front end is a GUI that provides many useful reports and code views. ... There is explicit

support for navigating through the source code for assisted code inspections and walkthroughs,

which are an important bug reduction coding technique. Using the coverage data from

OO-Test, it can show analysis of path conditions covered and unexecuted segments [Spu96].

Fig. 22.2 An article on Unix Today

560 22 NSE Support Tools and NSE Support Platforms

Our Web site introducing Panorama got an 5 star award form ItmWEB as shown

in Fig. 22.5.

22.2.3 Panorama++

Panorama++, the third generation of the major product family, is designed by me and

implemented by me and my colleagues for fully supporting NSE nonlinear software

engineering paradigm. The interface of Panorama++ is shown in Fig. 22.6.

The most tools/functions of Panorama++ for C/C++ have been ported to Panojava

for handling Java programs. The Panojava interface is shown in Fig. 22.7.

22.3 Automated Tools Integrated with Panorama++

There are 15 automated tools plus 4 third party tools (open source tools) integrated

into the Panorama++ product family (including Panojava for the java platform) as

shown in Table 22.1.

22.4 Panorama++ Product Installation

Panorama++ is one of the “green software products” without complicated installa-

tion operations.

Fig. 22.3 An article introducing Hindsight as one of the typical reverse engineering products

56122.4 Panorama++ Product Installation

Requirements

Machine Requirements: A PC 486/586 or up running Windows NT/ Windows XP

Disk space required to load Panorama++ C/C++: 500 megabytes

Main Memory required: 640+ megabytes

Fig. 22.4 The information about Panorama from the book “Software Testing in the Real World”

562 22 NSE Support Tools and NSE Support Platforms

Operations

 1. Copy the isa_examples directory to C: disk to form the C:\isa_examples direc-

tory for the example programs provided with the product for trial or directly

view the results in the isa_examples\analyzed_for_review sub-directory.

 2. Copy the isa_common_tools directory to any disk where you have enough space,

such as the F: disk.

 3. Copy the isa_NSE directory to any disk where you have enough space, such as

the G: disk.

 4. Set an environment variable PANORAMAHOME to point to the isa_common_

tools directory. For instance, if it is located in F: disk, then set

PANORAMAHOME=F:\isa_common_tools

Fig. 22.5 Award issued by ItmWEB

Fig. 22.6 The interface of Panorama++ for C/C++

Fig. 22.7 The interface of Panojava

56322.4 Panorama++ Product Installation

T
a
b

le
 2

2
.1

T

o
o
ls

 i
n
te

g
ra

te
d
 i

n
 P

an
o
ra

m
a+

+
 f

o
r

C
/C

+
+

S
u
p
p
o
rt

 t
o
o
ls

P
ro

je
ct

m
an

ag
em

en
t

P
re

p
ro

ce
ss

/

p
ro

to
ty

p
in

g

R
eq

u
ir

em
en

t

d
ev

el
o
p
m

en
t

P
ro

d
u
ct

 d
es

ig
n

C
o
d
in

g
T

es
ti

n
g

M
ai

n
te

n
an

ce

C
o
n
fi

g
u
ra

ti
o
n

(v
er

si
o
n

co
m

p
ar

is
o
n
)

O
O

-B
ro

w
se

r
●

●
●

●
●

●
●

●

O
O

-D
ia

g
ra

m
m

er
●

●
●

●
●

●
●

●

O
O

-T
es

t
●

●
●

●
●

●

O
O

-S
Q

A
●

●
●

●
●

●

O
O

-V
&

V
●

●
●

●
●

●
●

●

O
O

-A
n
al

y
ze

r
●

●
●

●
●

●
●

O
O

-P
er

fo
rm

an
ce

●
●

●
●

●

O
O

-P
la

y
b
ac

k
●

●

O
O

-M
em

o
ry

C
h
ec

k
●

●

O
O

-M
in

iC
as

e
●

●

O
O

-D
ef

ec
tT

ra
ce

r
●

●

O
O

-C
o
d
eD

if
f

●
●

O
O

-D
if

fR
ep

o
rt

er
●

●

O
O

-B
la

ck
B

o
x

●
●

O
O

-T
o
o
lI

n
te

g
ra

ti
o
n

●

O
p
en

 s
o
u
rc

e
p
ro

d
u
ct

s
fr

o
m

 t
h
ir

d
 p

a
rt

y

F
u
ja

b
a

●
●

●

G
an

tp
ro

●

O
p
en

L
o
ad

●

C
V

S
●

●
●

(c
o
n
ti

n
u
ed

)

564 22 NSE Support Tools and NSE Support Platforms

T
h
e

to
o
l

fu
n
ct

io
n
/c

ap
ab

il
it

y
:

O
O

-B
ro

w
se

r
fo

r
g
en

er
at

in
g
 i

n
te

ra
ct

iv
e

an
d
 t

ra
ce

ab
le

 c
al

l
g
ra

p
h
s

o
r

C
la

ss
 I

n
h
er

it
an

ce
 C

h
ar

ts
 s

h
o
w

n
 i

n
 J

-C
h
ar

t
n
o
ta

ti
o
n
s

(s
ee

 C
h
ap

. 7
)

in
n
o
v
at

ed
 b

y
 m

e

O
O

-D
ia

g
ra

m
m

er
 f

o
r

g
en

er
at

in
g
 i

n
te

ra
ct

iv
e

an
d
 t

ra
ce

ab
le

 l
o
g
ic

 d
ia

g
ra

m
s

sh
o
w

n
 i

n
 J

-D
ia

g
ra

m
 n

o
ta

ti
o
n
s

o
r

co
n
tr

o
l

fl
o
w

 d
ia

g
ra

m
 i

n
 J

-F
lo

w
 n

o
ta

ti
o
n
s

(s
ee

C
h
ap

. 7
)

in
n
o
v
at

ed
 b

y
 m

e

O
O

-T
es

t
fo

r
p
er

fo
rm

in
g
 s

o
ft

w
ar

e
te

st
in

g
 u

si
n
g
 T

ra
n
sp

ar
en

t-
b
o
x
 m

et
h
o
d
 c

o
m

b
in

in
g
 f

u
n
ct

io
n
al

 t
es

ti
n
g
 a

n
d
 s

tr
u
ct

u
ra

l
te

st
in

g
 [

fo
r

M
o
d
if

ie
d
 C

o
n
d
it

io
n
/D

ec
is

io
n

(M
C

/D
C

)
te

st
 c

o
v
er

ag
e

an
al

y
si

s]
 t

o
g
et

h
er

 s
ea

m
le

ss
ly

 w
it

h
 t

h
e

ca
p
ab

il
it

y
 t

o
 e

st
ab

li
sh

 b
id

ir
ec

ti
o
n
al

 t
ra

ce
ab

il
it

y
 a

m
o
n
g
 t

h
e

re
la

te
d
 d

o
cu

m
en

ts
 a

n
d
 t

es
t

ca
se

s
an

d

so
u
rc

e
co

d
e

(s
ee

 C
h
ap

. 1
6
)

in
n
o
v
at

ed
 b

y
 m

e

O
O

-V
&

V
 f

o
r

R
eq

u
ir

em
en

t
V

al
id

at
io

n
 a

n
d
 V

er
if

ic
at

io
n
 t

h
ro

u
g
h
 b

id
ir

ec
ti

o
n
al

 t
ra

ce
ab

il
it

y

O
O

-S
Q

A
 f

o
r

so
ft

w
ar

e
q
u
al

it
y
 m

ea
su

re
m

en
t

O
O

-A
n
al

y
ze

r
fo

r
d
y
n
am

ic
 a

n
d
 s

ta
ti

c
p
ro

g
ra

m
 m

ea
su

re
m

en
t

O
O

-M
em

o
ry

C
h
ec

k
 f

o
r

ch
ec

k
in

g
 m

em
o
ry

 l
ea

k
s

an
d
 u

sa
g
e

v
io

la
ti

o
n
s

O
O

-P
er

fo
rm

an
ce

 f
o
r

p
er

fo
rm

an
ce

 m
ea

su
re

m
en

t

O
O

-D
ef

ec
tT

ra
ce

r
fo

r
tr

ac
in

g
 e

ac
h
 r

u
n
ti

m
e

er
ro

r
to

 t
h
e

ex
ec

u
ti

o
n
 p

at
h

O
O

-M
in

iC
as

e
fo

r
te

st
 c

as
e

ef
fi

ci
en

cy
 a

n
al

y
si

s
an

d
 t

es
t

ca
se

 m
in

im
iz

at
io

n
 i

n
 o

rd
er

 t
o
 p

er
fo

rm
 r

eg
re

ss
io

n
 t

es
ti

n
g
 e

ff
ic

ie
n
tl

y
 a

ft
er

 c
o
d
e

m
o
d
if

ic
at

io
n

O
O

-P
la

y
b
ac

k
 f

o
r

G
U

I
o
p
er

at
io

n
 c

ap
tu

re
 a

n
d
 p

la
y
b
ac

k
 a

ft
er

 c
o
d
e

m
o
d
if

ic
at

io
n

O
O

-C
o
d
eD

if
f

fo
r

h
o
li

st
ic

 a
n
d
 i

n
te

ll
ig

en
t

so
ft

w
ar

e
v
er

si
o
n
 c

o
m

p
ar

is
o
n
,

et
c.

O
O

-D
if

fR
ep

o
rt

er
 f

o
r

p
ro

v
id

in
g
 r

ep
o
rt

s
o
n
 s

o
ft

w
ar

e
v
er

si
o
n
 c

o
m

p
ar

is
o
n

O
O

-B
la

ck
B

o
x
 f

o
r

fu
n
ct

io
n
al

 t
es

ti
n
g
 w

it
h
 t

h
e

ca
p
ab

il
it

y
 f

o
r

G
U

I
o
p
er

at
io

n
 c

ap
tu

re
 a

n
d
 p

la
y
b
ac

k
 w

it
h
o
u
t

th
e

so
u
rc

e
co

d
e

O
O

-T
o
o
lI

n
te

g
ra

ti
o
n
 f

o
r

ru
n
n
in

g
 a

 t
h
ir

d
 p

ar
ty

 t
o
o
l

w
it

h
o
u
t

p
re

se
tt

in
g
.

T
h
er

e
ar

e
tw

o
 i

co
n
s

u
se

d
 t

o
 r

u
n
 t

h
e

se
rv

er
-s

id
e

p
ro

g
ra

m
 a

n
d
 t

h
e

cl
ie

n
t-

si
d
e

p
ro

g
ra

m

(s
o
m

e
to

o
ls

 n
ee

d
 b

o
th

,
so

m
e

to
o
ls

 o
n
ly

 n
ee

d
 o

n
e

o
f

th
em

).
 P

an
o
ra

m
a+

+
 s

u
p
p
o
rt

s
d
ee

p
er

 t
o
o
l

in
te

g
ra

ti
o
n
:

n
o
t

o
n
ly

 c
an

 i
t

ru
n
 t

h
ir

d
 p

ar
ty

 t
o
o
ls

 w
it

h
o
u
t

p
re

se
t-

ti
n
g
,

b
u
t

it
 c

an
 a

ls
o
 m

ak
e

th
e

w
o
rk

 p
ro

d
u
ct

s
(o

r
d
o
cu

m
en

ts
)

g
en

er
at

ed
 b

e
tr

ac
ea

b
le

 w
it

h
 t

h
e

im
p
le

m
en

ta
ti

o
n
 o

f
re

q
u
ir

em
en

ts
 a

n
d

 t
es

t
ca

se
s

an
d
 s

o
u
rc

e
co

d
e

th
ro

u
g
h
 t

h
e

u
se

 o
f

a
b
at

ch
 f

il
e

an
d
 a

 s
p
ec

ia
l

k
ey

w
o
rd

 @
B

A
T

@
 t

o
 i

n
d
ic

at
e

th
e

p
at

h
 o

f
th

e
b
at

ch
 f

il
e

in
 t

h
e

te
st

 c
as

e
d
es

cr
ip

ti
o
n
.
S

ee
 a

p
p
li

ca
ti

o
n
 e

x
am

p
le

s
sh

o
w

n

in
 F

ig
s.

 9
.6

 a
n
d
 9

.1
1

N
o
te

:

1
.
D

if
fe

re
n
t
fr

o
m

 o
th

er
 s

o
ft

w
ar

e
te

st
in

g
 t
o
o
ls

,
O

O
-T

es
t
u
si

n
g
 t
h
e

T
ra

n
sp

ar
en

t-
b
o
x
 m

et
h
o
d
 c

an
 b

e
d
y
n
am

ic
al

ly
 u

se
d
 i
n
 t
h
e

en
ti

re
 s

o
ft

w
ar

e
d
ev

el
o
p
m

en
t
li

fe
cy

cl
e

in
cl

u
d
in

g
 t

h
e

re
q
u
ir

em
en

t
d
ev

el
o
p
m

en
t

p
h
as

e
an

d
 t

h
e

d
es

ig
n
 p

h
as

e
fo

r
d
ef

ec
t

p
re

v
en

ti
o
n
 a

n
d
 d

ef
ec

t
p
ro

p
ag

at
io

n
 p

re
v
en

ti
o
n

2
.

A
lt

h
o
u
g
h
 t

h
e

in
te

g
ra

te
d
 t

h
ir

d
 p

ar
ty

 p
ro

d
u
ct

s
ar

e
o
ri

g
in

al
ly

 o
p
en

 s
o
u
rc

e
p
ro

d
u
ct

s,
 u

se
rs

 s
ti

ll
 n

ee
d
 t

o
 c

h
ec

k
 w

h
et

h
er

 t
h
e

p
o
li

ci
es

 o
f

th
o
se

 p
ro

d
u
ct

s
h
av

e
b
ee

n

ch
an

g
ed

 o
r

n
o
t

T
a
b

le
 2

2
.1

(c

o
n

ti
n
u
ed

)

56522.5 A Guided Tour of Panorama++ for C/C++

 5. Set an environment variable PANORAMATMPDIR to a working area (a directory

exists). It is recommended to set it to the existing isa_common_tools\panotemp

subdirectory. For instance, if the isa_common_tools directory is copied to the F:

disk, then set

PANORAMATMPDIR=F:\isa_common_tools\panotemp

 6. Set an environment variable ISA_NSE_HOME to point to the isa_NSE direc-

tory. For instance, if it is located in G: disk, then set

ISA_NSE_HOME=G:\isa_NSE

Verification

After that please click e_panorama from the isa_NSE directory to start the toolkit

to see whether the settings are correct through examples (see the User’s Manual).

22.5 A Guided Tour of Panorama++ for C/C++

The Panorama++ C/C++ software testing, validation, maintenance, and re-engineering

environment is designed to simplify and speed up the tasks of understanding,

 evaluating, testing, validating, and maintaining a software product. It is easy to use.

Panorama++ fully supports the NSE nonlinear software engineering paradigm,

including requirement development by working with the HAETVE technique (see

Chap. 11), software design and coding by working with the Synthesis Design and

Incremental growing up (Implementation and Integration) technique (see

Chaps. 12 and 13), software testing using the Transparent-box method (see

Chap. 16), quality assurance driven by defect prevention and defect propagation

prevention, software maintenance with side-effect prevention in the implementation

of requirement changes and code modifications, etc.

This demo operation guide uses one of the demo programs provided by

Panorama++ C/C++, a calculator program, and for Panorama++ C the provided

demo program is SORTDEMO.

Make sure that your compiler (such as cl.exe) and linker utility (such as link.exe)

can be found in your path. If you use Microsoft Visual C++ 6.0 on Windows NT or

Windows XP, you should select an option to register the environment variable to run

the compiler in command line when you install the Visual C++ – see Fig. 22.8:

If you have not registered it, please ask your system manager to install VC++

again to register the environment variable.

The major operations:

A. Specifying the source program

Panorama++ C/C++ generates information about a software program directly from

its source code. To specify the source files, the user only needs to identify the

566 22 NSE Support Tools and NSE Support Platforms

makefile of the program. If you do not have a makefile for your VC project, you

can get it from the VC interface – see Fig. 22.9.

You may use a batch file (such as xxx.bat) to replace a Makefile.

Fig. 22.8 Register environment variable needed

Fig. 22.9 Exporting a Makefile

56722.5 A Guided Tour of Panorama++ for C/C++

The major steps:

 1. Open the Panorama++ C/C++ toolkit from the HOME directory pointed by the

environment variable, PANORAMA_HOME, and click on the Panorama++ icon.

The Panorama++ MAIN menu will pop up. It contains a tool bar with some but-

tons for dealing with input/output (makefile, hsi and database), and the indi-

vidual tools in Panorama++: OO-Test, OO-Browser, OO-Diagrammer, OO-SQA,

OO-Analyzer, and OO-Validate.

 2. Click on .MAK from the tool bar. The LOAD.MAK FILE menu will come up.

For a sample of Panorama++ C, click on the directory

C:\isa_examples\English_examples\to_be_analyzed\SORTDEMO

For a sample of Panorama++ C++, click on the directory

C:\isa_examples\English_examples\to_be_analyzed\CAL

 3. Select the makefile of program.

For Panorama++ C, click on the file sortdemo.mak, and press OK.

For Panorama++ C++, click on the file cal.mak, and press OK.

The file will be loaded into the white area below the tool bar.

B. Creating an analysis database

Panorama++ will analyze the makefile and build a static and dynamic database. The

analysis results can then be viewed on charts, diagrams, and reports. It also creates

an .hsi file that lists all the source files and the correct CPP options for your refer-

ence. If your program does not contain a makefile such as in the case that your

program has not been completed, you need to manually create a .hsi file specifying

all the files of the program to allow Panorama++ to analyze your program.

 1. Click on MAKE. The CREATE.DBS FILE dialog box will come up.

 2. Click OK to accept the default database file name, for Panorama++ C is sort-

demo.dbs and for Panorama++ C++ is cal.dbs.

The ANALYSIS.MAK FILE menu will come up.

 3. Click DYNAMIC. This will capture dynamic test coverage data.

 4. Click OK.

Panorama++ will analyze the source program to build a database of information.

A new window will be opened to display information. When sortdemo.hsi and

sortdemo.dbs (for Panorama++ C) or cal.hsi and cal.dbs (for Panorama++ C++)

have been generated, you will be notified. You can then close the window.

Follow Step C now to collect dynamic test coverage data or skip to Step D to

directly view only the static analysis information in charts, diagrams, reports, and

metrics diagrams.

C. Getting dynamic test coverage data

You need to run the demo program to obtain its test coverage data. This is done

using a test script or a batch file containing the test cases. A test script sortdemo.

tca (for Panorama++ C) or English_req_a_test.tca and English_req_b_test.tca

568 22 NSE Support Tools and NSE Support Platforms

(for Panorama++ C++) have been provided in the related directory. Just run it from

Panorama++ OO-Test to obtain test data.

 1. On the tool bar of the MAIN menu, click the green OO-TEST button. The

Panorama++ OO-Test menu bar will pop up.

 2. Press the SCRIPT button. The SCRIPT window will come up.

 3. Click FILE, then select LOAD from the submenu. A LOAD CASE FILE dialog

box will pop up.

 4. Load the corresponding test case script file mentioned in the previous step,

and press OK to load the script file. The file will show up in the SCRIPT

window.

 5. Click RUN from the menu bar of the SCRIPT window. The SPECIFY TEST

DATABASE dialog box will come up showing sortdemo.tdb (for Panorama++

C) or cal.tdb (for Panorama++ C++) in the .TDB NAME field.

 6. Press OK to run the script and accumulate data in sortdemo.tdb (for Panorama++

C) or cal.tdb (for Panorama++ C++). A command window will pop up showing

the results of the execution. Then a notification window will come up informing

you that the execution has been completed.

 7. Click OK to close the notification window.

 8. Click FILE then EXIT to quit the SCRIPT window.

D. Obtaining a system-level overview using J-Charts

Panorama++ OO-Browser generates three kinds of J-Charts from your source code:

Function Calling Graph, Class Inheritance Chart, and Class-Function Coupling

Chart. They give a quick, graphic overview of program hierarchies.

 1. On the tool bar of the MAIN menu, click the blue OO-BROWSER button. The

Panorama++ OO-Browser dialog box will pop up.

 2. Select FUNCTION CALL GRAPH.

 3. Select CHART ONLY and press OK. The Function Calling Graph will come up.

Each box represents a function, connecting lines represent function calling

relationships.

 4. Click the left mouse button on a function box in the J-Chart to highlight the

related functions.

 5. Click the right mouse button on a function box will activate the FUNCTION

pop-up menu. For example, select DIAGRAM then J-DIAGRAM to view the

J-Diagram for the function.

 6. Click the right mouse button anywhere outside the function boxes to open the

CHART pop-up menu. For example, select COMPLEXITY then WITH CASE

to overlay complexity information on the chart.

 7. If you have collected test coverage data (step 3), you can select TEST COVERAGE

then ACCU RUN then SC0 from the CHART pop-up menu. Then the test cover-

age data will be shown on the charts.

 8. You can repeat D-1–D-7 for Class Inheritance Chart and Class-Function Calling

Graph for Panorama++ C++.

56922.5 A Guided Tour of Panorama++ for C/C++

 9. Click on HELP from the chart menu bar. A Panorama++ C/C++ Help window

will come up, showing an Index. Text in green can be expanded to show more

information.

 10. Click on the green “Description of Structure Chart” a few lines down from the

top. The Help window will now display the description of the Structure Chart.

 11. Click the BACK from the menu bar to jump back to the Index display.

 12. Click EXIT from the Chart window to exit OO-Browser.

E. Understanding detailed code logic using logic diagrams

Panorama++ OO-Diagrammer generates three kinds of logic diagrams from your

source code: J-Diagram, J-Flow, and ActionPlus. They give insights into the detailed

logic of a program.

1. On the tool bar of the MAIN menu, click the orange OO-DIAGRAMMER but-

ton. The Panorama++ OO-Diagrammer menu will pop up.

2. Select J-DIAGRAM and press OK. The J-Diagram will come up. After the table

of contents is the Function High Level Diagram. It shows the calling relationship

between functions. At the right of each function name is a corresponding active

number.

3. Click the left mouse button on an active number at the right side of the diagram

to jump to detailed diagram for that function.

4. Code in diagrammed format is much easier to read through. You can scroll

through it using the keyboard? or what key?

5. If there is a function call or other reference in the code, just click the left mouse

button on the active number at the right side to jump to the corresponding part

of the diagram. Press again to jump back.

6. If you have collected test coverage data (Step C), you can display test coverage

data on the diagram. From the menu bar, select OPTION, then TEST COVERAGE,

then ACCUMULATED. The test frequencies will be displayed on the top right of

each segment, and the untested segment will be highlighted with black boxes.

7. Select OPTION, then SWITCH, then J-FLOW to switch to the J-Flow Diagram.

In this control flow diagram, you can highlight an untested path and view infor-

mation about it to help you test an untested segment.

8. Scroll down to a function that contains untested segments and is fairly complex.

Each vertical line from the left represents a new control level. So one vertical

line that has many levels is more complex in logic.

9. Double-click the left mouse button on an untested segment (a black box). A

path containing the untested segment will be highlighted in magenta.

10. From the menu bar, select PATH then CURRENT PATH INFO to view the

logic conditions which when satisfied will test this path.

 11. Unselect the path by double-clicking the left mouse button away from the logic

diagram (such as on the line/block number in the left).

 12. Select OPTION, then SWITCH, then ACTIONPLUS to switch to the ActionPlus

Diagram, an enhanced version of the Action Diagram.

 13. Click FILE then EXIT to exit OO-Diagrammer.

570 22 NSE Support Tools and NSE Support Platforms

F. Measuring program quality using metrics diagrams

Panorama++ OO-SQA allows you to set practical quality standards for your object-

oriented program, then collect quality data from your source code and see how it

compares to the standards you have set. The quality data is shown in four easy-to-

see formats: Bar Graph, Kiviat Diagram, MultiMetrics Diagram, and Reports.

 1. On the tool bar of the MAIN menu, click the magenta OO-SQA button. The

Panorama++ OO-SQA menu bar will pop up.

 2. Press CLASSES. The METRICS window will come up.

 3. From the menu bar, click TYPE then BAR GRAPH. The Bar Graph will be dis-

played. For each of the quality assurance metrics listed on the left, a bar shows

how well the classes in the program satisfy the metric: the blue part represents

the passed classes and the red part the failed classes.

 4. Click STANDARD. The STANDARD menu will come up. You can change the

minimum/maximum acceptable value or the weight for each metric, then press

OK to observe the change in the metrics diagram.

 5. Press TYPE, then KIVIAT DIAGRAM to view a different metrics diagram. In

this diagram, each radius represents a metric. The inner circle represents the

minimum acceptable value and the outer circle the maximum acceptable value.

Each function’s metric values are connected to form a polygon, if the polygon

falls entirely within the two circles, the function satisfy all the metrics.

 6. You can also view quality assurance REPORTS and MULTIPLE METRICS

DIAGRAM by selecting them from the TYPE menu.

 7. Click FILE then EXIT to exit OO-SQA.

G. Viewing online program documentation

Panorama++ OO-Analyzer automatically generates reports from the source code to

fully document a software program. More than 100 reports provide information on

program compactness, function/class structure, special functions, global/static

 variable, complexity, and test coverage.

 1. On the tool bar of the MAIN menu, click the yellow OO-ANALYZER button.

The Panorama++ OO-Analyzer menu will pop up.

 2. Press OK on the dialog box. The 44 default reports will be generated. The

REPORT window will come up, showing the Table of Contents.

 3. To the right of each report title is an active number in red. Click the left mouse

button on an active number to view the specific report.

 4. Read the report.

 5. Jump back to the table of contents by pressing the “enter” or “return” key.

 6. Select FILE then EXIT from the report window to exit OO-Analyzer.

H. Regression testing: test case playback

Playback function is very useful for rerunning test cases, especially for user’s inter-

face testing (GUI playback). You must have done Step C (Script action), on Step

57122.5 A Guided Tour of Panorama++ for C/C++

C-5 you must select Record button as TRUE in the SPECIFY TEST DATABASE

dialog box.

 1. On the tool bar of the MAIN menu, click the red OO-Playback button. A Playback

window pops up.

 2. Select FILE then LOAD menu to load the sortdemo.tdb file, and the sortdemo.

tdb file will be shown on the playback window.

 3. Select RUN on the menu bar, then you can select the ALL or MINI submenu. If

you select ALL, A SPECIFY TEST DATABASE dialog box pops up, press OK

and then all test cases in sortdemo.tdb will be played back and all of the test data-

base will be added to the playout.tdb file.

 4. Select RUN then MINI menu. TestCase Minimization Options dialog box pops

up, select options you want then press OK button, the test cases of minimization

will be shown in Minimization Result window. Select Run then ALL menu and

SPECIFY TEST DATABASE dialog box pops up, press OK. The test cases of

minimization result will be played back and all of the test database will be added

to the playout.tdb file.

 5. You can press the FILE menu then SAVE submenu, a SAVE dialog box will pop

up, type file name sortmini.tdb then press OK, the minimized test cases will be

saved in sortmini.tdb.

 6. Modifying the source code of sortdemo (copy sortdemo.c to sortdemo.old, then

copy sortdemo.new to sortdemo.c or directly modify sortdemo.c) then building

a new database. Running step 1 and step 2 with loading sortmini.tdb to playback

(select RUN and ALL this time rather than MINI). The test cases of minimiza-

tion result will be played back and all of the test database will be added to the

playout.tdb file.

 7. View the new result after playing back using minimized test cases by repeating

steps from Sects. 22.4 to 22.7. You will find that the test coverage result obtained

using the minimized test cases through an automated playing back of the opera-

tions is the same or almost the same as that obtained using all the test cases. It

means that with the capture/playback tool seamlessly integrated with test cover-

age analysis, test case minimization, and analysis of program structure, logic,

control flow, complexity, compactness, and data, Panorama++ can bring you

great savings for your software testing and re-testing after code modification.

Note

 1. As you can see from the execution of the sortdemo program, its window position

is different each time as controlled by the Windows Manager. It is recommended

not to move the window (the title) of the sortdemo program; otherwise the win-

dow may be moved completely or partially out of the screen in the automatic

playback process (if it happens, press Alt-Esc to recover it).

 2. Please make the beginning environment for playback be the same as that for

capturing the operations. If the environment is different such as that a file name

to be used to save a file does not exist in the capturing process, but after that it

exists in the playback process, then the message window shown by the Windows

572 22 NSE Support Tools and NSE Support Platforms

Manager will be different so that the playback process may not be successful (for

solving the problem, you may create an empty file before capturing or rename

the file capturing).

 3. The source file names and the dbs names for capture and for playback after code

modification should be the same for correctly running the playback and obtain-

ing the correct test coverage data.

I. Validation of requirement implementation and minimization

of the test cases

You need to have done Step C to capture test coverage data before running this step.

Panorama++ provides an ideal environment for validating the implementation of the

requirements through bidirectional traceability built automatically. In the following

description, we use the CAL example written in C++ programming language.

 1. On the tool bar of the MAIN menu, click the OO-Validate button (next to the

OO-Analyzer icon, with a white background). The Requirement validation

and test case minimization menu bar will pop up. Click on “Requirement vali-

dation and test case minimization,” a “Test Case Analyzer” window will pop up.

Click “OK” to accept the default setting.

 2. The Test Coverage Analysis window will pop up. Use the mouse to change the

width of the window until you can see all the contents.

 3. Click on “Corresp.,” and then click on “File.Class.Function” from the menu bar.

A “File.Class.Function” window will pop up. Use mouse to move this window

to a suitable location without overlaying the “Test Coverage Analysis” window.

 4. Validation through forward traceability: move the mouse to point to a test case

from the “Test Coverage Analysis” window, and make a mouse click, then the

description part of the test case selected will be shown in blue color automati-

cally. The corresponding modules that can be tested by that test case will be

shown in red color automatically in the “File.Class.Function” window. At the

same time, all of the related requirement specification file, the design document

file, and other related documents specified using a keyword to identify the file

type followed by a full path and the corresponding bookmark will be opened

automatically from the location pointed by the bookmark, so that you can vali-

date the requirement with the test case and all related documents and the corre-

sponding source modules to check the consistency to see whether the requirement

has been fully implemented. If there are several test cases used for validating the

requirement, all of them need to be checked.

 5. Validation through backward traceability: move the mouse to point to a tested mod-

ule (not highlighted in black boxes) from the “File.Class.Function” window, and

make a mouse click, then the module will be shown in blue color automatically.

The corresponding test cases that can be used to test that module will be shown in

red color automatically in the “Test Case Analysis” window. At the same time, all

of the related requirement specification file, the design document file, and other

related documents specified using a keyword to identify the file type followed by

a full path and the corresponding bookmark will be opened automatically from the

57322.5 A Guided Tour of Panorama++ for C/C++

 location pointed by the bookmark, so that you can validate how many requirements

are related to the module and how many test cases can be used to test that module.

You can also check the consistency among all of the related documents and the

module.

 6. After you try some operations, please close the “File.Class.Function” window.

 7. The keywords available include @WORD@, @HTML@, @EXCEL@,

@PDF@, and @BAT@. They should be used within the comment line (with a

“#” character at the beginning of the line) in the test case script file.

 8. You can view the bidirectional traceability at the code statement level for

requirement validation too: from the “Test Coverage Analysis” window, click

on “Corresp.,” and then click on “Segment,” a “Segment Level Correspondence”

window will show up.

 9. Repeat step 4 and step 5 using “Segment” to replace “Module” in the step

description.

10. After you try some operations, please close the “Segment Level Correspondence”

window.

J. Analyzing test cases efficiency for more efficient testing

Panorama++ provides an ideal environment for analyzing the test cases efficiency

and performing test case minimization to reduce re-testing effort after code

modification.

 1. Test cases have different test efficiencies. Adopting the highly efficient test

cases results in great savings of test effort. Click EFFICIENCY on the TEST

COVERAGE ANALYSIS window.

The TEST CASE EFFICIENCY ANALYSIS OPTIONS dialog box pops up.

 2. Press OK. The EFFICIENCY ANALYSIS RESULT window will pop up. It

shows all the test cases and their test coverage results for different levels (here

“Function” is used for module coverage; “SCO” for segment (statement) test

coverage; “SC1” for branch test coverage; “SC1+” for branch test coverage plus

loop boundary coverage).

 3. In a large set of test cases, many test cases merely duplicate the test coverage

results obtained by the previous test cases run. A lot of test efforts thus are

wasted. To minimize test cases, press MINIMIZATION on the menu bar of

TEST COVERAGE ANALYSIS window.

The TEST CASE MINIMIZATION OPTIONS dialog box pops up.

 4. Press OK. The MINIMIZATION RESULT window will pop up. It shows the

minimized set of test cases obtained from all the test cases in the sortdemo.tca

(for Panorama++ C) or testcase.cal (for Panorama++ C++) script.

 5. Press FILE then EXIT on the TEST COVERAGE ANALYSIS to exit OO-Test.

K. Memory leak/violation check

If you want to get memory leak and violation information, use the sample program

in the “leak” subdirectory. You must select “Check Memory Leak/Violation” as

574 22 NSE Support Tools and NSE Support Platforms

TRUE in “Panorama++-2 Analysis.mak file” dialog box in Step B. In the Memory

Checker Report, it will show all of the memory leaks and violations to you after

you have run the program.

 1. On the tool bar of the MAIN menu, click the OO-MemoryChecker button. A

Memory Leak/Violation Report window will open. You can see all of the memory

leaks and violation in your program which you have run earlier.

 2. Scroll through the report using the “page down” key.

 3. If you want to clear the earlier record, you can simply click “Clear Record” on

the menu bar.

 4. Press File then Exit to exit Memory Checker Report.

L. Defect Tracer (Optional)

Defect Tracer can trace the execution path from the beginning to the end of an

execution of a program when a problem exists with the execution. It can also iden-

tify the type of the problem in most cases. Use the sample program for program

tracing in the “trouble” subdirectory. You must select “Record Problem Tracing” as

TRUE in “Panorama++-2 Analysis.mak file” dialog box in Step B.

 1. On the tool bar of the MAIN menu, click the OO-DefectTracer button. A Defect

Tracer Report window will open. You can see all of the execution paths of a

program which has some problems you have run earlier.

 2. To the right of each case’s running time is an active number in red. Click the left

mouse button on an active number to view the specific defect tracing report.

 3. Scroll through the report using the “page down” key.

 4. Jump back to the table of contents by pressing the “return” key.

 5. If you want to clear the earlier record, you can simply click “Clear Record” on

the menu bar.

 6. Select FILE then EXIT from the window to exit OO-DefectTracer.

M. Panorama++ Log File

If you want to know the information of making the database, you can click the

“Open Log” button. The Open File dialog box will open. You can select a

Panorama++.log file for reading.

N. Exiting Panorama++

Click FILE then QUIT from the Panorama++ C/C++ MAIN menu.

22.6 Network Floating License Support

With NSE support platform, Panorama++, not only computer-specific licenses are

available, but network floating licenses are also available. The licenses are counted for

each individual tool. Users can select different numbers of licenses for different tools.

57522.11 Further Reading and Information Source

22.7 The Major Features of Panorama++

The major features of Panorama++ are as follows:

•฀ Highly automated – all integrated tools are automated ones

•฀ Highly integrated – all tools are integrated closely to share the same small database

•฀ Intelligent to some degree – for instance, the version comparison tool CodeDiff

•฀ No size limitation – there is no limitation to the tools, depends on the systems

•฀ Small database – there are only six hash tables

•฀ High speed display – the generated holistic results are virtually existing, the

display speeds are very fast

•฀ Incremental update – after the database is built the first time, it can be easily

updated incrementally if a few source files are modified – only the modified files

need to re-analyzed

•฀ Easy to use – this highly automated software development and maintenance

platform is very easy to use with application examples and tutorials provided.

22.8 Applications

All screenshots provided in this chapter and all chapters in this book are application

examples of Panorama++ for C/C++ or Panojava for Java programs. For more

information about the application, please see Chap. 23.

22.9 Summary

In this chapter, many software productivity and quality tools are introduced, which

are integrated into Panorama++, the NSE support platform. Those tools are highly

automated and easy to use.

22.10 Points and Questions to Ponder

 (a) Why do we need to use software tools?

 (b) Why should software tools be automated?

22.11 Further Reading and Information Source

 (a) CVS – Concurrent Versions System. http://www.nongnu.org/cvs/

 (b) The Fujaba Project. http://www.fujaba.de/

http://www.nongnu.org/cvs/
http://www.fujaba.de/

576 22 NSE Support Tools and NSE Support Platforms

 (c) OpenLoad. http://www.opendemand.com/

 (d) Ganttpro/Ganttproject. http://sourceforge.net/projects/ganttproject/

References

[Kit05] Kit E (2005) Software testing in the real world. Addison-Wesley, New York

[Pre05] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,

New York

[Spu96] Spuler D (1996) C++ & C tools, utilities, libraries, and resources. Prentice Hall PTR,

Upper saddle River, pp 233–234. ISBN 0-13-226697-0

http://www.opendemand.com/
http://sourceforge.net/projects/ganttproject/

577J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_23,

© Springer Science+Business Media, LLC 2011

Practical wisdom is only to be learned in the school of

experience.

Samuel Smiles (1812–1904)

This chapter introduces the applications of NSE and its support platform,

Panorama++, for both new software product development and a product being

developed using other approaches – in this case, users only need to rewrite their test

cases according to some simple rules and set bookmarks to the related documents;

the other work can be performed automatically by Panorama++. It means that NSE

can be added on to any approach at any stage.

23.1 The Whole and Its Components: A General

Comparison Between NSE and Other Approaches

Both software and the software engineering paradigm are complex systems with

many components connected closely with strong interactions. According to the

Holism principle of complexity science, the whole of a complex system is greater

than the sum of its components, the characteristics and behaviors of the whole

emerge from the interaction of its components, and cannot be determined or

explained by its components alone, and cannot be inferred simply from the behav-

ior of its individual components.

The old-established software engineering paradigm is based on reductionism

and the superposition principle that the whole of a complex system is the sum of its

components, so that with the old-established software engineering paradigm almost

all tasks and activities in software engineering are performed linearly, partially,

and locally, such as the implementation of requirement changes and code

modification.

Low quality and productivity, high cost and risk – those critical issues exist for

more than 40 years with the old-established software engineering paradigm.

Almost all of its components make bad “contributions” to those issues, including

Chapter 23

NSE Applications

578 23 NSE Applications

the linear process models which always go forward in one direction with only one

track without upstream movement at all – it forces software developers to always

do all things right without making any mistakes, violating the nature of human

beings; the software development methodologies based on the Constructive Holism

principle that the components of a software are developed first, then the whole of

the product is assembled from the components, making the quality hard to ensue;

the test paradigm mainly based on Black-box testing after production, and cannot

be used dynamically to remove the critical defects introduced into a software prod-

uct in requirement development phase and design phase; the quality assurance

paradigm based on inspection and testing after coding; the maintenance paradigm

where the implementation of requirement changes and code modifications are per-

formed partially and locally without means to prevent the side effects; the docu-

mentation paradigm separated from the source code; the project management

paradigm where the project management process is separated from the product

development process, etc. – it means that any partial solution or improvement in

any individual part(s) of software engineering will not be able to solve the

critical issues with software development today: low quality and productivity,

high cost and risk.

Unfortunately, all existent software development approaches and the new ones

being developed such as MDD (Model-Driven Development)/MDA (Model-Driven

Architecture) are partial solution approaches.

NSE is different. NSE offers a holistic and global solution for software

engineering by

 1. Using complexity science as the sharp weapon to complete the revolutionary

change for each component of the software engineering paradigm, including the

process model (see Chap. 8), software development methodology (see Chap. 10),

software testing paradigm (see Chap. 16), software quality assurance paradigm

(see Chap. 17), software visualization paradigm (see Chap. 7), software docu-

mentation paradigm (see Chap. 19), software maintenance paradigm (see

Chap. 18), software management paradigm (see Chap. 20), etc.

 2. Making the desired characteristics and behavior of the whole of the new software

engineering paradigm emerge from the interaction of its new components – let

them work together closely and support each other. For instance, the NSE soft-

ware testing paradigm based on the Transparent-box testing method can be used

dynamically in the requirement development phase with the HAETVE technique

and dummy programming technique. But the dummy programs do not provide

real outputs. In this case, the NSE testing tool will check whether the execution

path covers the expected path shown in J-Flow notations which needs the sup-

port from NSE visualization paradigm; NSE testing paradigm supports MC/DC

test coverage analysis, it also needs support from the NSE visualization para-

digm to show the test results with the capability to highlight the untested branches

and untested conditions graphically.

 3. Making almost all software engineering tasks and activities be performed

 holistically and globally.

57923.3 Applications in New Software Development

23.2 What Makes NSE Special?

About software development strategy, NSE offers a different solution:

 1. One source for both – for human understanding (graphic diagrams) and

 computer understanding (source code).

 2. Design becomes precoding, coding becomes further design – top-down plus

bottom-up. The graphic design diagrams are not only generated through reverse

engineering, but also generated from forward engineering using dummy pro-

grams written in the same language as that used for target coding or different

programming language (such as Java for better portability) – in this case, a language

transformer/translator is needed.

 3. All tasks and activities are performed holistically and globally – to avoid

partial and local solutions and side effects in the implementation of requirement

changes and code modifications.

 4. Dynamic testing using the Transparent-box method to be performed from

the first step down to the delivery of a software product – to ensure the qual-

ity of the product and extend the product life.

 5. Any change, no matter it is in the product development process or mainte-

nance process, is implemented with side-effect prevention through various

traceabilities – to ensure the quality of the product being developed or maintained.

23.3 Applications in New Software Development

23.3.1 Benefits

Applying NSE for a new software product development can bring the maximum

benefits to the product, including:

 1. Low risk – through preprocess (see Chap. 8) to perform prototype design, testing,

and review for critical and not familiar requirements.

 2. High quality – following the NSE process model and NSE methodology, the

product quality can be ensured through defect prevention and defect propagation

prevention in the entire software development and maintenance lifecycle, par-

ticularly in the requirement development phase and the design phase by applying

the Transparent-box testing method dynamically – having an output is no longer

a condition to use this testing method dynamically.

 3. High productivity – high quality also means high productivity (requiring less

time and effort to find and fix defects), plus less defects propagate to the mainte-

nance phase, and the side effects for the implementation of requirement changes

and code modifications can also be prevented through various traceabilities, so

about two-third of the total effort spent in software maintenance can be saved – it

equals to double the productivity.

580 23 NSE Applications

 4. Low cost – following the NSE process model and NSE methodology, less time

and resources need to be used for finding and fixing defects, plus less defects

propagate to the maintenance phase, and the side effects for the implementation

of requirement changes and code modifications can also be prevented through

various traceabilities, so about two-third of the total cost spent in software main-

tenance can be saved – it equals to half the cost.

 5. Easy to meet the schedule – with NSE, the project management process and

product development process are combined together closely – product plans,

schedule charts, and progress reports are traceable with the implementation of

requirements and the source code, plus the project Web site and the BBS are also

traceable with the implementation of requirements and the source code, so that

any schedule issues can be found early and solved in time.

 6. Easy to meet the budget – complying with the Generative Holism principle, the

whole of a software product will be formed first, so that the required budget can

be estimated better; in the requirement development phase, requirements are

ordered according to the importance: the more important ones will be imple-

mented earlier to meet the market needs within the budget – if necessary some

optional requirements or not important requirements can be temporarily ignored

or implemented in the next round; high quality and productivity and low cost

also means easy to meet the budget.

 7. Easy to maintain – with NSE, not only the defects introduced into a software

product and the defect propagated into the maintenance phase can be greatly

reduced, but the new defects introduced in the implementation of requirement

changes and code modifications can also be greatly reduced through side-effect

prevention supported by various traceabilities.

23.3.2 Recommended Process

To fully benefit from applying NSE in new software development, it is strongly

recommended to:

 1. In the preprocess phase:

Assign priority to the requirements according to the importance of the •฀

requirements.

Perform prototype design, testing, and review for important and unfamiliar •฀

requirements to reduce the risks.

Build a project Web site and the corresponding BBS.•฀

 2. In the requirement development phase (see Chap. 11):

Use dummy programming for requirement development and modeling to gen-•฀

erate design documents as much as you can, because graphic documents that

are manually generated or designed using graphic editors are time-consuming

to draw, hard to review, hard to change, and hard to maintain consistency with

the source code.

58123.3 Applications in New Software Development

Use the HAETVE technique for requirement development (including the •฀

function decomposition of the functional requirements); with it, the auto-

matically generated graphical documents are traceable for static review for

defect removal and dynamic execution for dynamic defect prevention and

defect propagation prevention.

Preliminarily design your requirement specification file (which should be •฀

improved in the implementation of the requirements) using the template

shown in Appendix A.

According to the simple rules for writing test cases (see Chap. 9), design the •฀

corresponding test cases to dynamically execute your dummy program for

defect removal. Do not forget to use the special keywords to specify the

related documents.

Run your dummy programs using the Transparent-box testing method – to •฀

each test case it not only checks whether an output (if any, can be none) is

the same as what expected, but also checks whether the execution path is the

same as what expected with the capability to establish bidirectional trace-

ability to help you find and remove the inconsistent defects.

 3. In the preliminary system design phase:

Refer to the requirement development results, perform the system prelimi-•฀

nary design of the product to form the whole of the system as an embryo.

Perform defect prevention and defect propagation prevention using the •฀

Transparent-box testing method.

Estimate your project cost according to your system design results.•฀

Make your product development plan and schedule.•฀

Preliminarily design your document hierarchy using bookmarks (see Chaps. 8 •฀

and 9).

 4. In the implementation process:

Select a set of (or one) requirements according to the assigned priority to •฀

implement it – it is recommended to implement a essential version of the

product (about 20% of the total requirement).

Further improve the requirement specification and design the test require-•฀

ments and the test scripts.

5. In the design phase (see Chap. 12):

Use the •฀ Synthesis Design and Incremental growing up (Implementation

and Integration) technique to improve the preliminary product design, form

the system call graph, and then complete the detailed product design for the

selected requirements.

Dynamically test the designed product version for defect prevention and •฀

defect propagation prevention – with NSE, before coding, all designed ver-

sions should be executable. If something unexpected is found, go back to

improve the design; if it is found that the solution method did not meet the

requirement(s), go back to the preprocess to select a new solution method.

Use the designed system call graph to assign a bottom-up incremental coding order.•฀

582 23 NSE Applications

 6. In the coding phase (see Chap. 13):

Follow the coding order to perform incremental coding.•฀

Insist on performing MC/DC test coverage analysis for each program unit •฀

(see Appendix B).

Prevent possible defects between the interfaces.•฀

If there is a need for a called function to return special values, use the tech-•฀

nique introduced in Appendix C.

Diagram the source code and use the automated traceability to perform code •฀

inspection.

Coding can be parallelly performed, but the integration should be done by •฀

adding modules one by one.

If something critical is found, go upstream; if the solution method does not meet •฀

the requirement(s), go back to the preprocess to try a better solution method.

 7. In the testing phase (see Chaps. 14–16):

Perform system testing using the Transparent-box method.•฀

Perform performance measurement, memory leak, and usage violation check.•฀

Perform GUI testing operation capture and playback after code modification.•฀

Perform code static and dynamic measurement to provide various reports for •฀

documenting the product.

Measure the quality of the executable product and each module.•฀

If something critical is found, go upstream; if the solution method does not meet •฀

the requirement(s), go back to the preprocess to try a better solution method.

 8. In the maintenance phase (see Chap. 18):

Perform implementation of requirement changes and code modifications •฀

with side-effect prevention through various traceabilities.

Perform regression testing using minimized test cases (sometimes there is a •฀

need to design some new test cases), and using backward traceability to find

the corresponding test cases to save time and resources.

If after the implementation of requirement changes and code modifications •฀

some new defects exist, perform holistic and detailed version comparison to

locate the defects.

 9. Others:

Frequently deliver all working products to customers for review, and get feed-•฀

back to improve the product.

Make the project Web site and the BBS as a real-time communication channel •฀

to share information and perform problem solving.

Always combine the software development process and the project manage-•฀

ment process together, and make the project plan, schedule, cost report,

progress report traceable with the implementation of requirements and the

source code, for better project management and budget control.

Perform tasks holistically and globally as much as possible.•฀

Always use the traceability among all related documents and test cases and •฀

the source code to ensure product quality.

58323.5 Possible Combination with UML

23.4 Applications in a Software Product Being Developed

Using Other Approaches

NSE can be applied to a product being developed or tested or maintained at any

stage to help it (currently Panorama++ supports C, C++, Visual Basic, and Java on

Windows. Linux versions of Panorama are under testing). The major work that

users need to do are:

 1. Set bookmarks to your documents.

 2. Use the bookmark to form your documents hierarchy, particularly to indicate

what test script and test cases are used for what requirements.

 3. Redesign your test cases using the basic format specified in Chap. 9.

Almost all other work can be performed automatically by the NSE support plat-

form, Panorama++. As described in Chap. 19, with NSE the source code is also the

source to automatically generate the graphical documents.

23.5 Possible Combination with UML

23.5.1 About the Future of UML

In Chap. 11, I mentioned that regarding the future of UML, Jim Arlow and Ila

Neustadt pointed that:

“MDA – the future of UML

The future of UML may be a recent OMG initiative called MDA… MDA defines a vision for

how software can be developed based on models… In MDA software is produced through a

series of model transformations aided by an MDA modeling tool. An abstract computer-

independent model (CIM) is used as basis for a platform-independent model (PIM). The PIM

is transformed into a platform-specific model (PSM) that is transformed into code” [Arl06].

23.5.2 Question to the Future of UML

About MDA, Harry Sneed pointed that:

“Model driven considered harmful

Model-driven tools magnify the mistakes made in the problem definition.•฀

Model-driven tools create an additional semantic level to be maintained.•฀

Model-driven tools distort the image of what the program is really like.•฀

The model cannot be directly executed. It must first be transformed into code •฀

which may behave other than expected.

Model-driven tools complicate the maintenance process by creating redundant •฀

descriptions which have to be maintained in parallel.

584 23 NSE Applications

Model-driven tools are designed for top-down development.•฀

Top-down functional decomposition creates maintenance problems.”•฀

“Summary:

If a UML design can really replace the programming code as envisioned by •฀

Jacobson in his paper, ‘UML all the way down,’ then it becomes just another

programming language.

The question then comes up as to what is easier to change•฀

The design documents or –

The programming language –

This depends on the nature of the problem and the people trying to solve it. If •฀

they are more comfortable with diagrams, they can use diagrams. If they are

more comfortable with text, they should write text.

Diagrams are not always the best means of modeling a solution. A solution can •฀

also be described in words. The important thing is that one model is enough –

either the code or the diagrams. They should be reproducible from one another”

[Sne07].

23.5.3 Possible Combination with UML (NSE-UML?)

It is possible to combine NSE and UML together using platform-independent pro-

gramming language such as Java programming language as the original programming

language for not only 3J graphics (J-Chart, J-Diagram, and J-Flow) generation, but

also for UML diagram generation. It may need a new programming language which

can be easily used for both graphic document generation and source code design.

As described in Chap. 11, with the Source Code Driven Dynamic Software

Modeling and Engineering using the HAETVE technique, not only the models/

diagrams can be automatically generated from the source code through forward

engineering using dummy programs or reverse engineering using regular source

code, but the generated models/diagrams can also work together with the source

code dynamically to help users understand a software product better, test the product

better, and maintain the product better. Different from traditional software models

which only represent some static properties of a software product, with NSE the

models generated from the source code also represent the dynamic properties of a

software product, such as the overall test coverage, the performance measurement

result, the execution path traced for a runtime error, etc. Furthermore, the generated

models/diagrams can also dynamically respond to users’ requests (see Figs. 11.31

and 11.32).

Instead of making UML diagrams executable (executable UML), I think it will be

better to have one kind of source for both graphic document generation and source code.

A dummy program written in Java for representing an actor and an action with

the corresponding graphical document automatically generated by NSE visualiza-

tion paradigm is shown in Fig. 23.1.

58523.5 Possible Combination with UML

A Java class inheritance chart with the branch test coverage measurement result

and the logic diagram as well as the control flow diagram of a class is shown in

Fig. 23.2.

In my opinion, the future of UML should offer full automation for dynamic

software modeling. The concept using graphic editors to draw graphical software

documents is outdated. I absolutely agree with Harry Sneed’s idea that “The impor-

tant thing is that one model is enough – either the code or the diagrams. They

should be reproducible from one another.”

A virtual comparison of UML and NSE-UML proposed is shown in

Table 23.1.

23.5.4 Possible Combination with CMMI (NSE-CMMI?)

CMMI is a great invention innovated by Watts S. Humphrey and his colleagues. In

my opinion, the great contribution of CMMI is not only in helping DoD to choose

qualified vendors and qualified products, and helping software organizations to

improve their product quality and their management capability, but also in helping

the entire software industry in the world to understand the importance of software

quality improvement and software process improvement much better.

As described in Sect. 23.1 for solving the critical issues (low quality and produc-

tivity, high cost and risk) existing with software development today, partial solu-

tions without bringing revolutionary changes to all areas of software engineering

will not work well, so I believe in the future that CMMI will no longer focus on

Fig. 23.1 The notations for representing an actor and the action for Java

586 23 NSE Applications

F
ig

.
2
3
.2

A

 c
la

ss
 i
n
h
er

it
an

ce
 c

h
ar

t
w

it
h
 t
es

t
co

v
er

ag
e

m
ea

su
re

m
en

t
re

su
lt

 a
n
d
 t
h
e

lo
g
ic

 d
ia

g
ra

m
 a

s
w

el
l
as

 t
h
e

co
n
tr

o
l
fl

o
w

 d
ia

g
ra

m
 o

f
a

cl
as

s
d
ir

ec
tl

y
 g

en
er

at
ed

fr
o
m

 a
 J

av
a

p
ro

g
ra

m

58723.6 Possible Combination with Agile Software Development Approaches

software process improvement and management improvement only, but cover all

the areas of software development and management.

The purpose of CMMI is to guide software organizations on “What to do” or

“What should be done” rather than “How to do,” while the purpose of NSE is for

both – “What to do” and “How to do,” so that NSE can be chosen by software

development organizations as the powerful means for the implementation of the

updated CMMI framework.

The combination of NSE and CMM – NSE-CMMI will bring revolutionary

changes to CMMI as shown in Table 23.2.

23.6 Possible Combination with Agile Software

Development Approaches

Advanced concepts and excellent ideas can be found from the Manifesto for Agile

Software Development:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Table 23.1 Virtual comparison between UML and NSE-UML proposed

Description UML NSE-UML

How many kinds of

sources are used

Two: one in diagrams for

human understanding of a

software system; another

one in textual format for

computer understanding

of a software system

One kind of source for both human

understanding (in diagrams

automatically generated from

the source) and computer

understanding of a software

product (in textual format)

Modeling type Static modeling:

•฀ Not฀traceable

•฀ Not฀executable

•฀ Not฀testable

• The obtained models are

statically existing

Dynamic modeling:

•฀ Traceable

•฀ Executable

•฀ Testable

•฀ The฀obtained฀models฀are฀dynamically฀

existing – when a model/diagram is

shown, the corresponding generator

is always working and waiting

for users’ commands through the

interface (using the model/diagram

itself) for dynamically responding to

users’ requests

Supported software

development

methods

Top-down Top-down and bottom-up: the models

generated from dummy programs

through forward engineering can

be automatically updated through

reverse engineering from the

regular programs

588 23 NSE Applications

Table 23.2 A comparison between CMMI and NSE-CMMI

Comparison item CMMI NSE-CMMI

The software

development

foundation

Reductionism and the

superposition principle

that the whole of a

complex system is the

sum of its components,

so that with it almost

all software engineering

tasks are performed

partially and locally

Complexity science by complying

with the essential principles of

complexity science, particularly

the Nonlinearity principle

and the Holism principle, so that

with NSE-CMMI almost all

software development tasks

will be performed holistically

and globally

The first-order effect on

software development

Process People [“The fundamental

characteristics of ‘people’ have

a first-order effect on software

development” (Alistair Cockburn)]

Does it intend to attack

the essential issues in

software development

(complexity,

conformity,

changeability, and

invisibility)?

No:

1. It does not really attack

the essential issues related

to software complexity,

changeability, invisibility,

and conformity. The

process improvement

suggested by CMMI

misses the most important

part: the improvement

of the process models

themselves

2. It does not really hit the

software maintenance

issue which takes about

75% of the software

development effort

Yes:

1. It attacks the essential issues

related to software complexity,

changeability, invisibility, and

conformity

2. It makes revolutionary changes to

the software engineering paradigm,

including the NSE process model

3. It hits both the software development

issues and the maintenance issue,

with side-effect prevention in the

implementation of requirement

changes or code modifications

through a set of techniques and

tools for many types of traceability

to greatly reduce the effort and cost

spent in software maintenance

Can the design documents

keep consistency with

the source code after

software modification?

No: It is very difficult

to perform without

automated and self-

maintainable facility for

various traceabilities

Yes: It is supported by automated

and self-maintainable facility for

various traceabilities

Does it offer not only

“what to do” but also

“how to do?”

No: It mainly offers “what to

do” only

Yes: It offers both

Does it provide a partial

and local solution or

a holistic and global

solution for solving

the major critical

issues (low quality

and productivity, high

cost and risk) existing

with today’s software

engineering?

Partial and local solution

mainly in software

development process

improvement and

project management

improvement

Holistic and global solution by

bringing revolutionary changes

to almost all areas in software

engineering based on complexity

science, including the process

model, the software development

methodology, the software testing

paradigm, software quality

assurance paradigm, software

visualization paradigm, software

documentation paradigm, software

project management paradigm, and

software maintenance paradigm

(continued)

58923.6 Possible Combination with Agile Software Development Approaches

Table 23.2 (continued)

Comparison item CMMI NSE-CMMI

Is the implementation of

this model expensive?

Yes: There is a lack of

suitable models and

tools to support the

implementation

No: No longer. With NSE-CMM,

many suitable models and

automated tools are available to

support the implementation – for

instance, almost all graphic design

documents will be automatically

generated and maintained. Rough

estimation shows that it may take

only 25% of the cost spent in the

implementation of CMMI

Customer collaboration over contract negotiation

Responding to change over following a plan

XP (Extreme programming) is one of the most popular Agile software develop-

ment approaches. About XP, Kent Beck pointed that:

“Here is a quick summary of each of the major practices in XP.

Planning game. Customers decide the scope and timing of releases based on

estimates provided by programmers. Programmers implement only the function-

ality demanded by the stories in this iteration.

Small releases. The system is put into production in a few months, before solv-

ing the whole problem. New releases are made often anywhere from daily to

monthly.

Metaphor. The shape of the system is defined by a metaphor or set of meta-

phors shared between the customer and programmers.

Simple design. At every moment, the design runs all the tests, communicates

everything the programmers want to communicate, contains no duplicate code,

and has the fewest possible classes and methods. This rule can be summarized

as, ‘Say everything once and only once.’

Tests. Programmers write unit tests minute by minute. These tests are collected

and they must all run correctly. Customers write functional tests for the stories

in the iteration. These tests should also run, although practically speaking, some-

times a business decision must be made comparing the cost of shipping a known

defect with the cost of delay.

Refactoring. The design of the system is evolved through transformations of

the existing design that keep all the tests running.

Pair programming. All production code is written by two people at one

screen/keyboard/mouse.

Continuous integration. New code is integrated with the current system after

no more than a few hours. When integrating, the system is built from scratch and

all tests must pass or the changes are discarded.

590 23 NSE Applications

Collective ownership. Every programmer improves any code anywhere in the

system at any time if they see the opportunity.

Onsite customer. A customer sits with the team full time.

40-h Weeks. No one can work a second consecutive week of overtime. Even

isolated overtime used too frequently is a sign of deeper problems that must be

addressed.

Open workspace. The team works in a large room with small cubicles around

the periphery. Pair programmers work on computers set up in the center.

Just rules. By being part of an Extreme team, you sign up to follow the rules.

But they’re just the rules. The team can change the rules at any time as long as

they agree on how they will assess the effects of the change” [Bec01].

About the advantages and disadvantages, the creator of CMMI, Watts Humphrey,

concluded that:

“Advantages for using XP:

 1. Emphasis on customer involvement: a major help to projects where it can be

applied.

 2. Emphasis on teamwork and communication: as with the TSP, this is very impor-

tant in improving the performance of just about every software team.

 3. Programmer estimates before committing to a schedule: this helps to establish

rational plans and schedules and to get the programmers personally committed

to their schedules – a major advantage of XP and TSP.

 4. Emphasis on responsibility for quality: unless programmers strive to produce

quality products, they probably would not.

 5. Continuous measurement: since software development is a people-intensive

process, the principal measures concern people. It is therefore important to

involve the programmers in measuring their own work.

 6. Incremental development: consistent with most modern development

methods.

 7. Simple design: though obvious, worth stressing at every opportunity.

 8. Frequent redesign or refactoring: a good idea but could be troublesome with

any but the smallest projects.

 9. Having engineers manage functional content: should help control function creep.

 10. Frequent, extensive testing: cannot be overemphasized.

 11. Continuous reviews: a very important practice that can greatly improve any

programming team’s performance (few programmers do reviews at all, let alone

continuous reviews).”

Disadvantages for using XP:

 1. “Code-centered rather than design-centered development: although the lack of

XP design practices might not be serious for small programs, it can be disas-

59123.6 Possible Combination with Agile Software Development Approaches

trous when programs are larger than a few thousand lines of code or when the

work involves more than a few people.

 2. Lack of design documentation: limits XP to small programs and makes it dif-

ficult to take advantage of reuse opportunities.

 3. Producing readable code (XP’s way to document a design) has been a largely

unmet objective for the last 40-plus years. Furthermore, using source code to

document large systems is impractical because the listings often contain thousands

of pages.

 4. Lack of a structured review process: when engineers review their programs on

the screen, they find about 10–25% of the defects. Even with pair programming,

unstructured online reviews would still yield only 20–40%. With PSP’s and

TSP’s structured review process, most engineers achieve personal review yields

of 60–80%, resulting in high-quality programs and sharply reducing test time.

 5. Quality through testing: a development process that relies heavily on testing is

unlikely to produce quality products. The lack of an orderly design process and

the use of unstructured reviews mean that extensive and time-consuming testing

would still be needed, at least for any but the smallest programs.

 6. Lack of a quality plan: we have found with the TSP that quality planning helps

properly trained teams produce high-quality products, and it reduces test time

by as much as 90%. XP does not explicitly plan, measure, or manage program

quality.

 7. Data gathering and use: we have found with the TSP that, unless the data are

precisely defined, consistently gathered, and regularly checked, they will not be

accurate or useful. The XP method provides essentially no data-gathering

guidance.

 8. Limited to a narrow segment of software work: since many projects start as

small efforts and then grow far beyond their original scope, XP’s applicability

to small teams and only certain kinds of management and customer environ-

ments could be a serious problem.

 9. Methods are only briefly described: while some programmers are willing to

work out process details for themselves, most engineers will not. Thus, when

engineering methods are only generally described, practitioners will usually

adopt the parts they like and ignore the rest. Kent Beck notes that, when the XP

method fails in practice, this is usually the cause.

 10. Obtaining management support: the biggest single problem in introducing any

new software method is obtaining management support. The XP calls for a

family of new management methods but does not provide the management

training and guidance needed for these methods to be accepted and effectively

practiced.

 11. Lack of transition support: transitioning any new process or method into general

use is a large and challenging task. Successful transition of any technology

requires considerable resources, a long-term support program, and a measure-

ment and analysis effort to gather and report results. I am not aware of such sup-

port for the XP” [Hum01].

592 23 NSE Applications

23.6.1 Possible Combination with XP (NSE-XP?)

It is possible for NSE to combine with XP together to form NSE-XP to remove the

disadvantages of XP pointed by Watts Humphrey.

 1. Design-centered development: using the HAETVE technique for requirement

development and the Synthesis Design and Incremental growing up (Implemen-

tation and Integration) technique for design for program development of all sizes.

 2. Huge amounts of design documentation: automatically generated from dummy

programs and regular programs.

 3. Automatically generate the call graph, the logic diagram, and the control flow

diagram to document large systems with bidirectional traceability to make the

programs much easier to understand, test, and maintain. The generated graphi-

cal documents are virtually existing, often containing thousands of pages with

almost no extra space needed.

 4. Fully supported structured review process: when engineers review their

 programs on the screen, they will find that the generated holistic and traceable

graphics are much more useful and efficient than PSP’s and TSP’s structured

review.

 5. Quality through defect prevention and defect propagation prevention: a devel-

opment process that relies heavily on traditional testing is unlikely to produce

quality products, so that with NSE-XP, the quality of a software product is

ensured through defect prevention and defect propagation prevention mainly

using the Transparent-box testing method which can be dynamically used in

the entire software development lifecycle to combine functional testing and

structural testing together with the capability to establish bidirectional trace-

ability among the related documents and test cases and the source code.

 6. Plan, measure, and manage program quality better: with NSE-XP, quality plan-

ning, quality measurement, and quality management are performed holistically

for the entire product and in detail for each individual program module, from

the first step down to the retirement of a software product, through defect pre-

vention and side-effect prevention in the implementation of requirement

changes and code modifications.

 7. Data gathering and use: with NSE-XP, detailed information about data (such as

the global variables and static variables) are collected and measured, including

where they are defined, used, referred, changed, never been used, how many of

them are used in each file or each class/module, etc. for helping users to check

and keep their consistency.

 8. Remove the limitation on program size: in fact with the virtual documentation

and virtual diagramming techniques, NSE-XP can easily handle very big pro-

grams without size limitation.

 9. Methods are clearly described: with NSE-XP, the NSE software development

methodology based on the Generative Holism principle will be used to coop-

erate with the NSE nonlinear process model, the HAETVE technique for

requirement development, and the Synthesis Design and Incremental growing

up (Implementation and Integration) technique for product design.

59323.8 Support for CBSE

 10. Obtaining management support: remove the biggest single problem – NSE-XP

can obtain management support by combining the product development pro-

cess and the project management process together and making the management

documents traceable with the implementation of requirements and the source

code, so that managers can directly get first-hand information easily.

 11. Transition support: transitioning NSE-XP into general use is easy because

NSE-XP can be applied for new software development or added on to a product

being developed using any other approach – only need to rewrite the test cases

and set bookmarks to the related documents, all the other work can be per-

formed automatically. With the support platform, Panorama++ that is integrated

with many automated tools, almost no extra resources are needed. Since NSE

has brought revolutionary changes to almost all areas of software engineering,

it is possible for NSE-XP to help software organizations double their produc-

tivity and project success rate, halve their cost, and remove about 99.99% of

defects. It will be easy for NSE-XP to obtain the necessary transition support.

23.7 Possible Combination with RUP (NSE-RUP?)

Many advanced concepts and ideas have been implemented into RUP (Rational

Unified Process), particularly the concepts of Use Case driven, Architecture-

centric, iterative, and incremental development.

But as Scott Ambler pointed out, “The Unified Process suffers from several

weaknesses. First, it is only a development process… it misses the concept of main-

tenance and support… It’s important to note that development is a small portion of

the overall software life cycle. The relative software investment that most organiza-

tions make is allocating roughly 20% of the software budget for new development,

and 80% to maintenance and support efforts” [Amb05].

For overcoming this major drawback, a possible combination (NSE-RUP?) is

proposed and shown in Fig. 23.3.

As shown in Fig. 23.3: (1) the proposed combination model (NSE-RUP) not only

has the inception phase, elaboration phase, construction phase, and transition phase, but

also has the maintenance phase and (2) the proposed combination model supports two-

way iteration with possible upstream movement through various traceabilities, such as

refactoring for a highly complex module to further divide it to several small modules

performed with side-effect prevention through various traceabilities (of course, refactor-

ing can also be done in a forward engineering approach to modify the design first).

23.8 Support for CBSE

According to the Generative Holism principle, the whole of a complex system

should come earlier (as an embryo) than its components, then it grows up with its

components – the integration should be performed by adding one module at a time

(see Chap. 12).

594 23 NSE Applications

Computer software products are nonlinear systems, so that any local and small

change may bring unexpected effects to the entire system – “Butterfly-effects”, so

that a reusable software component should be designed like “Broken Limbs” rather

than “Artificial Limbs” – a reusable component must be qualified as a Broken Limb

with self-adaptive capability – at least no negative effects on the system quality, no

overuse of the system memory, no memory leaks, no negative effects on the perfor-

mance, fully tested with test cases for verification, and fully fulfills the functionality

required.

A reusable component should be tested using the MC/DC metric with memory

leak check, performance measurement, and quality measurement.

23.9 Summary

It is recommended to apply NSE for new software product design to get the maxi-

mum benefit. But NSE can also be applied to a software product being developed

using other approaches by setting bookmarks in the related documents and rewrit-

ing the test case files – the other work can be performed by the NSE support plat-

form Panorama++.

Fig. 23.3 A proposed combination of NSE and RUP (NSE-RUP?)

595References

NSE can be applied by itself to make it possible for NSE to help users double

their productivity, halve their cost, and remove 99.99% defects in their products.

NSE can also be combined with UML, CMMI, XP, and RUP to benefit their users

greatly.

23.10 Points and Questions to Ponder

 (a) Why is it that “The important thing is that one model is enough – either the

code or the diagrams. They should be reproducible from one another”?

 (b) How to realize that “One model is enough – either the code or the diagrams.

They should be reproducible from one another”?

 (c) Complete a small software project with NSE and the NSE support platform

Panorama++.

23.11 Further Reading and Information Source

 (a) Wikiversity. Unsolved problems in software engineering. http://en.wikiversity.

org/wiki/Unsolved_problems_in_software_engineering

 (b) Scientific Research Publishing (SRP: http://www.scirp.org). J Software Eng

Appl. http://www.scirp.org/journal/jsea/

References

[Amb05] Ambler S W (2005) A Manager’s Introduction to The Rational Unified Process

(RUP), Ambysoft.

[Arl06] Arlow J, Neustadt I (2006) UML 2 and the unified process: practical object-oriented

analysis and design, 2nd edn. Pearson Education, Upper Saddle River

[Hum01] Humphrey W (2001) “Comments on eXtreme Programming”, eXtreme Programming

Pros and Cons: what questions remain? IEEE Computer Society Dynabook. http://

www.computer.org/SEweb/Dynabook/HumphreyCom.htm

[Sne07] Sneed H (2007) The drawbacks of model driven software evolution. In: IEEE CSMR

07- Workshop on Model-Driven Software Evolution (MoDSE2007), Amsterdam, 20

Mar 2007. http://www.sciences.univ-nantes.fr/MoDSE2007/; http://www.cs.vu.nl/

csmr2007/workshops/I-%20Summary%20Description.pdf

[Bec01] Beck K (2001) “XP practices”, eXtreme Programming Pros and Cons: what ques-

tions remain? IEEE Computer Society Dynabook. http://www.computer.org/SEweb/

Dynabook/XPPracSdb.htm

http://en.wikiversity.org/wiki/Unsolved_problems_in_software_engineering
http://en.wikiversity.org/wiki/Unsolved_problems_in_software_engineering
http://www.scirp.org
http://www.scirp.org/journal/jsea/
http://www.computer.org/SEweb/Dynabook/HumphreyCom.htm
http://www.computer.org/SEweb/Dynabook/HumphreyCom.htm
http://www.sciences.univ-nantes.fr/MoDSE2007/
http://www.cs.vu.nl/csmr2007/workshops/I-%20Summary%20Description.pdf
http://www.cs.vu.nl/csmr2007/workshops/I-%20Summary%20Description.pdf
http://www.computer.org/SEweb/Dynabook/XPPracSdb.htm
http://www.computer.org/SEweb/Dynabook/XPPracSdb.htm

597J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_24,
© Springer Science+Business Media, LLC 2011

Let us consider the inherent properties of this irreducible

essence of modern software systems: complexity, conformity,

changeability, and invisibility… Therefore it appears that the

time has come to address the essential parts of the software

task, those concerned with fashioning abstract conceptual

structures of great complexity.

Frederick P. Brooks, Jr.

Today software has become the driving force for the development of all kinds of

businesses, engineering, sciences, and the global economy – software reliability

affects not only our lives and the global economy today but also affects the future

of mankind. As pointed by David Rice, like cement, software is everywhere in

modern civilization. One cannot live in modern civilization without touching, being

touched by, or depending on software in one way or another [Ric08].

But unfortunately, software itself is not well engineered. For instance, the total

economic cost of insecure software is very high: $180 billion a year in the USA

[Ros08].

For addressing the essential issues in software engineering, NSE is established

and introduced in this book from Chaps. 3 to 23.

This chapter summarizes the NSE nonlinear software engineering paradigm: the

whole and its components, the main features, the major differences between it and

the old-established software engineering paradigm, and the qualification as candi-

dates of “Silver Bullets” to slay software “werewolves” – a monster of missed

schedules, blown budgets, and flawed products.

24.1 Is “The Mythical Man-Month” an Outcome

of Linear Thinking, Reductionism,

and Superposition Principle?

“The Mythical Man-Month” is a popular book written by Frederick P. Brooks, Jr.

Chapter 24

Candidates of “Silver Bullet”

598 24 Candidates of “Silver Bullet”

24.1.1 A Great book

“The Mythical Man-Month” is a great book from which I learned a lot on software

engineering. I will continuously learn more from it.

What I have particularly learned from it include the following:

“Plan the system for change”•฀

“Plan the organization for change”•฀

“Testing the specification”•฀

“Control changes”•฀

“Add one component at a time”•฀

“Quantize updates”•฀

“Self-documenting programming techniques find their greatest use and power in •฀

high-level languages used with online systems, which are the tools one should

be using”

“Incremental development – grow, not build, software”•฀

“Much of software architecture, implementation, and realization can proceed in •฀

parallel”

“Timely updating is of critical importance”•฀

“There has to be upstream movement”•฀

“To keep documentation maintained, it is crucial that it be incorporated in the •฀

source program, rather than kept as a separate document”

“People are everything (well, almost everything)”•฀

“A program should be shipped with a few test cases, some for valid input data, •฀

some for borderline data, and some for invalid data”

“The fundamental problem with program maintenance is that fixing a defect has •฀

a substantial (20–50%) chance of introducing another. So the whole process is

two steps forward and one step back”

“Why aren’t defects fixed more cleanly? First, even a suitable defect •฀

shows itself as a local failure of some kind. In fact it often has system-

wide ramifications, usually nonobvious. Any attempt to fix it with mini-

mum effort will repair the local and obvious, but unless the structure is

pure or the documentation very fine, the far reaching effects of the repair

will be overlooked. Second, the repairer is usually not the man who wrote

the code”

“All repairs tend to destroy the structure, to increase the entropy and disorder of •฀

the system”

“Less and less effort is spent on fixing original design flaws; more and more is •฀

spent on fixing flaws introduced by early fixes. As time passes, the system

becomes less and less well-ordered. Sooner or later the fixing ceases to gain any

ground. Each forward step is matched by a backward one”

“Clearly, methods of designing programs so as to eliminate or at least illu-•฀

minate side effects can have an immense payoff in maintenance cost”

[Bro95].

59924.2 Is the “No Silver Bullet” Conclusion Outdated?

24.1.2 Limitation

Unfortunately, the old-established software engineering paradigm is based on linear

thinking, reductionism, and the superposition principle that the whole of a system

is the sum of its components, so that with it almost all software engineering tasks

and activities are performed linearly, partially, and locally. It impacts and limits the

book “The Mythical Man-Month” too – the book itself is also an outcome of linear

thinking, reductionism, and the superposition principle.

In the 1995 edition of “The Mythical Man-Month” book, Frederick P. Brooks, Jr.

criticized his 1975 edition of the book that “Don’t Build One to Throw Away –

The Waterfall Model Is Wrong! …The biggest mistake in the ‘Build one to

throw away’ concept is that it implicitly assumes the classical sequential or

waterfall model of software construction. …Chapter 11 is not the only one

tainted by the sequential waterfall model; it runs through the book, beginning

with the scheduling rule in Chapter 2.”

Unfortunately, in the 1995 edition of the book, it also assumes sequential model –

“An Incremental – Build Model” which is “a series of Waterfalls” [GSAM03] as

shown in Fig. 24.1.

Comparing the “Incremental – Build Model” with the traditional waterfall

model, besides that the Incremental – Build Model can help in reducing risk and

waiting time in some degree, it keeps all of the major drawbacks of the one-time

waterfall model – complying with the linear sequence, the defects introduced into

a software product in the upper phases can easily propagate to the lower phases,

making the final defect removal cost increase more than 100 times; the requirement

changes and code modifications are implemented locally and blindly without sup-

port of bidirectional traceability, making software maintenance take 75% or more

of the total effort and total cost in a software product development, etc.

24.2 Is the “No Silver Bullet” Conclusion Outdated?

As Brooks’ law states as “No Silver Bullet”: “There is no single development, in

either technology or management technique, which by itself promises even one

order-of-magnitude improvement within a decade in productivity, in reliability, in

Fig. 24.1 Incremental model [GSAM03]

600 24 Candidates of “Silver Bullet”

simplicity.” [Bro95-P179] “Adding manpower to a late software project makes it

later.” [Bro95-P274]

“Of all the monsters who fill nightmares of our folklore, none terrify more than

werewolves, because they transform unexpectedly from the familiar into horrors.

For these, we seek bullets of silver can magically lay them to rest. The familiar

software project has something of this character (at least as seen by the nontechni-

cal manager), usually innocent and straightforward, but capable of becoming a

monster of missed schedules, blown budgets, and flawed products.” [Bro95-P180]

“Not only are there no silver bullet now, the very nature of software makes it

unlikely that there will be any – no inventions that will do for software productivity,

reliability, and simplicity what electronics, transistors, and large-scale integration

did for computer hardware. We cannot expect ever to see twofold gains every 2

years.” [Bro95-P181].

Brooks’ law and his related conclusions are only suitable to the old-established

software engineering paradigm (based on linear process, reductionism, and super-

position principles) where

“Testing the specification” – is not dynamically supported/implemented.•฀

“Control changes” – is performed partially and locally.•฀

“Add one component at a time” – is not systematically supported.•฀

“Quantize updates” – is not fully supported.•฀

“Self-documenting programming techniques find their greatest use and power in •฀

high-level languages used with online systems, which are the tools one should

be using.” – it is not well supported.

“Incremental development – grow, not build, software” – is not really supported.•฀

“Timely updating is of critical importance,” is not systematically supported.•฀

“There has to be upstream movement,” but people still insist “no upstream •฀

movement at all.”

“People are everything (well, almost everything),” but some models still focus •฀

on process improvement.

“A program should be shipped with a few test cases, some for valid input data, •฀

some for borderline data, and some for invalid data” – is not really supported.

“The fundamental problem with program maintenance is that fixing a defect has •฀

a substantial (20–50%) chance of introducing another. So the whole process is

two steps forward and one step back.” – is true because the implementation of

requirement changes and code modifications are performed partially and locally.

“Why aren’t defects fixed more cleanly? First, even a suitable defect shows itself •฀

as a local failure of some kind. In fact it often has system-wide ramifications,

usually non-obvious. Any attempt to fix it with minimum effort will repair the

local and obvious, but unless the structure is pure or the documentation very

fine, the far reaching effects of the repair will be overlooked. Second, the

repairer is usually not the man who wrote the code” – is still true.

“All repairs tend to destroy the structure, to increase the entropy and disorder of •฀

the system.” – is true because the repairing process is performed blindly and

locally.

60124.2 Is the “No Silver Bullet” Conclusion Outdated?

“Less and less effort is spent on fixing original design flaws; more and more is •฀

spent on fixing flaws introduced by early fixes. As time passes, the system

becomes less and less well-ordered. Sooner or later the fixing ceases to gain any

ground. Each forward step is matched by a backward one.” – is true too.

“Clearly, methods of designing programs so as to eliminate or at least illuminate •฀

side effects can have an immense payoff in maintenance cost.” – but it has not

been realized with the old-established software engineering paradigm.

But Brooks’ law (“No Silver Bullet”) is no longer suitable for NSE, the nonlin-

ear software engineering paradigm based on complexity science, where

“Testing the specification” is dynamically supported by NSE software testing •฀

paradigm.

“Control changes” is performed holistically and globally with side-effect prevention.•฀

“Add one component at a time” is systematically supported by complying with •฀

the Generative Holism principle.

“Quantize updates” is realized through incremental development and incremen-•฀

tal integration.

“Self-documenting programming techniques find their greatest use and power in •฀

high-level languages used with online systems, which are the tools one should

be using.” – with NSE, a set of Assisted Online Agents (AOA) will be delivered

with the corresponding software product, including the tools for automatically

generating many graphical documents directly from the source code or the

dummy program used in high-level product design.

“Incremental development – grow, not build, software” is fully supported by •฀

complying with the Generative Holism principle.

“Timely updating is of critical importance” – now it is one of the key features •฀

of NSE.

“There has to be upstream movement” – it is the key feature of NSE process •฀

model supported by various traceabilities.

“People are everything (well, almost everything)” – NSE treats people as the •฀

first positive order factor in software engineering to fully support them with

many advanced techniques and tools, but also treat people as the first negative

order factor that almost all defects are introduced into a software product by

people, so that NSE provides many techniques and tools to prevent people from

introducing defects into a software product.

“A program should be shipped with a few test cases, some for valid input data, some •฀

for borderline data, and some for invalid data” – is fully supported with NSE.

“The fundamental problem with program maintenance is that fixing a defect has •฀

a substantial (20–50%) chance of introducing another. So the whole process is

two steps forward and one step back.” – it is not suitable for NSE now, because

the implementation of requirement changes is performed holistically and glob-

ally with side-effect prevention supported by various traceabilities.

“Why aren’t defects fixed more cleanly? First, even a suitable defect shows itself •฀

as a local failure of some kind. In fact it often has system-wide ramifications,

usually non-obvious. Any attempt to fix it with minimum effort will repair the

602 24 Candidates of “Silver Bullet”

local and obvious, but unless the structure is pure or the documentation very

fine, the far reaching effects of the repair will be overlooked. Second, the

repairer is usually not the man who wrote the code” – it is not suitable for NSE

now, because the implementation of requirement changes is performed holisti-

cally and globally, no matter who maintains the product.

“All repairs tend to destroy the structure, to increase the entropy and disorder of •฀

the system.” – it is no longer true because with NSE all repairs are performed

with side-effect prevention through various traceabilities.

“Less and less effort is spent on fixing original design flaws; more and more is •฀

spent on fixing flaws introduced by early fixes. As time passes, the system

becomes less and less well-ordered. Sooner or later the fixing ceases to gain any

ground. Each forward step is matched by a backward one.” – it is no longer true

because with NSE software changes are performed holistically and globally with

side-effect prevention.

“Clearly, methods of designing programs so as to eliminate or at least illuminate •฀

side effects can have an immense payoff in maintenance cost.” – with NSE, it is

not good enough, because eliminating or illuminating side effects still requires

time, resources and costs! The better solution offered by NSE is to directly

prevent the side effects through various traceabilities.

24.3 The First Candidate of “Silver Bullet”

Here the first proposed candidate of “Silver Bullet” is the various NSE automated

and self-maintainable traceability techniques, including the most important one

shown in Fig. 24.2 – the traceability among related documents and test cases and

source code.

As shown in Fig. 24.2, the traceability between test cases and the source code is

established through the use of Time Tags automatically inserted into both the test

case description part and the program test coverage database after test case execu-

tion for mapping test cases and the corresponding source code; the traceability

extended to include the related documents is established using some keyword such

as @WORD@, @HTML@, @EXCEL@, @PDF@, @BAT@ written in the com-

ment part of a test case to indicate the format of a document, followed by the file

path of the document and the corresponding bookmark for automatically showing

the document traced from the specified location. The keyword @BAT@ is used

for dynamic traceability to directly run a batch file for special applications such as

playing the captured GUI testing operations back or running a third-party tool for

handling the corresponding document generated by that third-party tool.

“Software traceability can help bring software development into the twenty-first century. It
reduces costs, gives better visibility and adequate test coverage, and helps software engi-
neers meet customer needs. Changes can be implemented much faster and new projects can
be estimated more accurately.”

Rick Coffey, Document Control Supervisor, Tyco Healthcare/Mallinckrodt

60324.3 The First Candidate of “Silver Bullet”

Fig. 24.2 Automated, bidirectional, and self-maintainable traceability among the documents and
the test cases and the source code of a software product

Fig. 24.3 Sample applications of the automated and self-maintainable traceability

604 24 Candidates of “Silver Bullet”

The automated and bidirectional traceability technique, “which by itself promises

even one order-of-magnitude improvement within a decade in productivity, in

reliability, in simplicity” – Software traceability can be applied widely in the

entire software development process as shown in Fig. 24.3, particularly in

requirement validation and verification, defect propagation prevention, side-

effect prevention in the implementation of requirement changes and code modi-

fications, semiautomated inspection. Regarding reliability, NSE traceability

techniques can realize one order-of-magnitude improvement immediately with-

out waiting for a decade.

24.4 The Second Candidate of “Silver Bullet”

Here the second proposed candidate of “Silver Bullet” is the NSE defect prevention

and defect propagation prevention technique mainly based on inspection using

traceable documents and the source code, and the Transparent-box testing method

combining functional testing and structural testing together as shown in Fig. 24.4,

which can be used in the entire software development lifecycle. After the execu-

tion of test cases using the Transparent-box method, a facility for bidirectional

traceability will be automatically established for helping users remove the inconsis-

tent defects.

Fig. 24.4 The Transparent-box software testing method

60524.5 Can the “Silver Bullet” Defined by Brooks Slay the “Werewolves” Defined by Him?

The reasons are as follows:

 1. The Transparent-box testing method combines functional and structural testing

together seamlessly, for each input it not only checks whether the output (if any,

can be none) is the same as what is expected but also checks whether the execution

path is the same as the expected one indicated in J-Flow – so it can find more

defects efficiently, including logic defects.

 2. Having a real output is no longer a condition to dynamically use this technique,

so that it can be dynamically used in the requirement development phase and the

design phase to find out defects introduced in those phases before coding to

ensure the quality of a software product from the first step.

 3. It can also establish automated and bidirectional traceability among the related

documents, the test cases, and the source code to help software developers to

check and remove inconsistent defects.

 4. Based on the traceability established by this technique, software maintenance

can be performed holistically and globally with side-effect prevention – a key to

ensure the quality of a software product being maintained.

Regarding reliability, NSE defect prevention and defect propagation prevention

techniques can realize one order-of-magnitude improvement immediately without

waiting for a decade. Figure 24.5 shows the differences of the defect finding effi-

ciency between NSE testing paradigm using the Transparent-box testing method

and the old-established software testing paradigm.

24.5 Can the “Silver Bullet” Defined by Brooks Slay

the “Werewolves” Defined by Him?

No! It is impossible. The reasons are:

 1. The software “Werewolves” is defined by Brooks as that: “Of all the monsters

who fill nightmares of our folklore, none terrify more than werewolves, because

they transform unexpectedly from the familiar into horrors” and “The familiar

software project has something of this character (at least as seen by the non-

technical manager), usually innocent and straightforward, but capable of

becoming a monster of missed schedules, blown budgets, and flawed

products.”

 2. The “Silver Bullet” is defined by Brooks that “a single development, in either

technology or management technique, which by itself promises even one

order-of-magnitude improvement within a decade in productivity, in reli-

ability, in simplicity.”

 Here it is clear that, the “werewolves” is a monster of missed schedules,

blown budgets, and flawed products – these issues relate to the entire software

engineering paradigm, including the process models, the software development

methodology, the quality assurance paradigm, the software testing paradigm, the

606 24 Candidates of “Silver Bullet”

project management paradigm, the software documentation paradigm, the self-

organization capability, the Capability Maturity of the organization and the team,

and more.

 But the “Silver Bullet” defined by Brooks is a “single development, in either

technology or management technique, which by itself promises even one

order-of-magnitude improvement within a decade in productivity, in reliability,

in simplicity.” – how can a single technology or management technique solve

the issues of missed schedules, blown budgets, and flawed products which

are not only technology or technique issues but strongly related to people and

project management?

Fig. 24.5 A comparison of defect finding efficiency between the old-established software testing
paradigm (A1 for iterative development, A2 for incremental development [Coc08]) and NSE
software testing paradigm (B)

60724.6 What Kind of “Silver Bullet” Can be Used to Slay the “Werewolves” Defined by Brooks?

 3. In theory, it is impossible

 According to complexity science, the whole of a complex system is greater

than the sum of its parts, the characteristics and behaviors of the whole of a com-

plex system emerge from the interaction of its components and cannot be inferred

simply from the behavior of its individual components. It means that no matter

how excellent is the single development, in either technology or management

technique, the characteristics and behaviors of any individual part cannot be

inferred simply by the whole of the software engineering paradigm, so that it is

impossible for the single development, in either technology or management

technique to slay the software monster of missed schedules, blown budgets, and

flawed products – those problems come from the whole of the old-established

software engineering paradigm.

 4. From practices, it is impossible

 After analyzing more than 12,000 software projects, Capers Jones pointed

out in his article titled “Social and Technical Reasons for Software Project

Failures” that “Major software projects have been troubling business activities

for more than 50 years. Of any known business activity, software projects have

the highest probability of being canceled or delayed. Once delivered, these proj-

ects display excessive error quantities and low levels of reliability. Both techni-

cal and social issues are associated with software project failures. Among the

social issues that contribute to project failures are the rejections of accurate

estimates and the forcing of projects to adhere to schedules that are essentially

impossible. Among the technical issues that contribute to project failures are the

lack of modern estimating approaches and the failure to plan for requirements

growth during development. However, it is not a law of nature that software

projects will run late, be canceled, or be unreliable after deployment. A careful

program of risk analysis and risk abatement can lower the probability of a major

software disaster.” [Jon06] – it means that the issues of missed schedules, blown

budgets, and flawed products are not only technology issues but also social

issues, can never be solved by a single development, in either technology or

management technique.

 With the same reasons, focusing on Software Process Improvement and proj-

ect management improvement only without changing the entire software engi-

neering paradigm will not be able to slay the software “werewolves” too.

24.6 What Kind of “Silver Bullet” Can be Used to Slay

the “Werewolves” Defined by Brooks?

Slaying the software “werewolves” (a monster of missed schedules, blown budgets,

and flawed products) is equal to solving the most critical problems existing with

today’s software development – low quality and productivity, and high cost and risk,

608 24 Candidates of “Silver Bullet”

so before answering the question, let us consider what in the old-established soft-

ware engineering paradigm allow the software “werewolves” to exist:

(a) The existing process models (no matter if they are waterfall models, incremen-

tal development models which is “a series of Waterfalls” [GSAM03], or itera-

tive development models on which each time of an iteration is a waterfall) which

are based on linear thinking, reductionism, and the superposition principle that

the whole of a complex system is the sum of its components, so that with them

almost all software process tasks and activities are performed linearly, partially,

and locally, making the defects introduced into a software product upstream

easy to propagate down to the maintenance phase and the final defect removal

cost increase tenfold many times.

(b) The software development methodologies which are based on linear process,

reductionism, superposition, and constructive holism principles, so that with

them almost all software development tasks and activities are performed lin-

early, partially, and locally for the components of a software product first, then

the components are “assembled” to form the whole of the software product –

this makes the quality of the software product very hard to ensure, and software

maintenance much harder to perform.

(c) The software testing paradigm which ignores the fact that most critical software

defects are introduced to a software product in the requirement development

phase and the product design phase, and can only be dynamically used after

production, so that NIST (National Institute of Standards and Technology) con-

cluded that “Briefly, experience in testing software and systems has shown that

testing to high degrees of security and reliability is from a practical perspective

not possible. Thus, one needs to build security, reliability, and other aspects into

the system design itself and perform a security fault analysis on the implemen-

tation of the design.” (“Requiring Software Independence in VVSG 2007:

STS Recommendations for the TGDC,” November 2006, http://www.vote.

nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf.). Even if a defect

has been found through dynamic software testing, the defect removal cost will

increase tenfold several times.

(d) The quality assurance paradigm based on inspection and software testing after

production, which violates W. Edwards Deming’s product quality principle,

“Cease dependence on inspection to achieve quality. Eliminate the need for

inspection on a mass basis by building quality into the product in the first place.”

[Dem86].

(e) The software visualization paradigm mainly supports visual modeling only

and does not make the entire software development and maintenance process

visible, so that software engineers and maintainers need to spend much more

time to understand and maintain a software product.

(f) The software documentation paradigm which are not traceable with the source

code, and often are not consistent with the source code after code modification,

making the software hard to understand and hard to maintain.

http://www.vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf
http://www.vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf

60924.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

(g) The software maintenance paradigm with which the implementation of

requirement changes and code modifications are performed partially and

locally, so that fixing a defect has a substantial (20–50%) chance of introduc-

ing another [Bro95], making a software product unstable day by day.

(h) The project management paradigm with which software project management

process and the software development process are separated, the software man-

agement documents are not traceable to the implementation of requirements

and the source code, making the schedule hard to meet, and the budget hard to

control.

(i) The corresponding software development techniques and tools are designed to

work with the linear process models; it is hard to use them to handle a complex

software which is nonlinear.

(j) The entire software engineering paradigm is based on linear thinking, reduc-

tionism, and the superposition principle, and it is hard to efficiently handle a

nonlinear software system.

It means that almost all parts of the old-established software engineering para-

digm are allowing the possibility for the software werewolves to exist.

Now it is the time we can answer the question: only such a Silver Bullet can be

used to slay software werewolves:

 1. It is based on complexity science, complying with the essential principles of

complexity science, particularly the Nonlinearity principle and the Holism

principle, so that with it almost all software development tasks and activities are

performed holistically and globally.

 2. It not only can bring revolutionary changes to all parts of the software engineer-

ing paradigm, but also can make the required characteristics and behaviors

emerge from the interaction of all of its parts.

In fact, the qualified “Silver Bullet” being able to slay software “werewolves”

(a monster of missed schedules, blown budgets, and flawed products) means a

complete revolution in software engineering through a paradigm-shift from the old

one based on linear thinking, reductionism, and the superposition principle to a new

one based on nonlinear thinking and complexity science.

24.7 The Third Candidate of “Silver Bullet”:

The Entire NSE Paradigm

As discussed in Sect. 24.5 that the “Silver Bullet” defined by Brooks cannot slay

the “Werewolves” defined by him, so that we need another Silver Bullet which is

not “a single development, in either technology or management technique,” but a

qualified Silver Bullet being able to slay the software werewolves – a monster of

missed schedules, blown budgets, and flawed products.

610 24 Candidates of “Silver Bullet”

24.7.1 What Is NSE: The Whole and Its Components

As described in Chap. 1, NSE (Nonlinear Software Engineering paradigm) is a

new revolutionary software engineering paradigm based on complexity science by

complying with the essential principles of complexity science, particularly the

Nonlinearity principle and the Holism principle, so that with NSE almost all soft-

ware engineering tasks and activities are performed holistically and globally.

NSE is established with the objectives to revolutionarily solve the critical prob-

lems existing with the old-established software engineering paradigm. Those criti-

cal problems can be summarized as follows:

(a) Incomplete – For instance, there is no defined process model and support for

software maintenance which takes 75% or more of the total effort and cost for

a software product.

(b) Unreliable – The quality of a software product mainly depends on inspection

and testing after production which has been proven impossible to ensure high

quality.

(c) Invisible – The existing visualization methods, techniques, and tools do not

offer the capability to make the entire software development lifecycle visible,

the generated charts and diagrams are not holistic and not traceable.

(d) Inconsistent – The documents and the source code are not traceable to each

other and not consistent after code modification again and again.

(e) Unchangeable – The implementation of requirement change or code modifica-

tion is performed locally and blindly with high risks.

(f) Not maintainable – Software maintenance is performed partially and locally

without support for bidirectional traceability to prevent side effects, so that each

code modification will have a 20–50% of chance to introduce new defects into

the software product being maintained.

(g) Low productivity and quality – Most resources are spent in inefficient soft-

ware maintenance, the quality cannot be ensured with the blind and local imple-

mentation of software changes.

(h) High cost and risk – Most costs are spent in blind and local maintenance of the

software products, which makes software product unstable day by day in

responding to needed changes.

(i) Low project success rate – It is still less than 30% for projects with budgets

over $1 million.

(j) Often the software projects developed with the old-established software

engineering paradigm are capable of becoming a monster of missed sched-

ules, blown budgets, and flawed products – because the old-established soft-

ware engineering paradigm is based on linear thinking, reductionism, and the

superposition principle.

It is clear that those problems are related to the entire software engineering

paradigm with all of its components, including the process models, the software

development methodologies, the visualization paradigm, the software testing

61124.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

paradigm, the quality assurance paradigm, the documentation paradigm, the

maintenance paradigm, the project management paradigm, and the related tech-

niques and tools. It means that a local and partial solution will not work – we

need a holistic and global solution in almost all aspects of software engineering:

a complete revolution.

For solving those critical problems existing with today’s software development

efficiently, NSE is established. The essential difference between the old-established

software engineering paradigm and NSE is how to handle the relationship between

the whole and its parts of a software system. The former adheres to the reduc-

tionism principle and superposition principle that the whole is the sum of its

parts, so that nearly all software development tasks/activities are performed locally,

such as the implementation of requirement changes. The latter complies with the

Holism principle of complexity science, that a software product is a Complex

Adaptive System (CAS [Hol95]) having multiple interacting agents (compo-

nents), of which the overall behavior and characteristics cannot be inferred

simply from the behavior of its individual agents but emerge from the interac-

tion of its parts, so that with NSE nearly all software development tasks/activities

are performed globally and holistically to prevent defects in the entire software

lifecycle[Xio09-1], [Xio09-2].

NSE brings revolutionary changes to almost all aspects in software engineering,

including the following:

•฀ The foundation (see Chaps. 3 and 4)

From: that based on linear thinking and the reductionism principle and super-

position principle that the whole is the sum of its parts, so that nearly all

software development tasks/activities are performed linearly, partially,

and locally, such as the implementation of requirement changes.

To: that based on nonlinear thinking and complexity science – to comply with

the essential principles of complexity science, particularly the Nonlinearity

Principle and the Holism Principle that the whole of a complex system is

greater than the sum of its parts – the characteristics and the behavior of a

complex system is an emergent property of the interactions of its compo-

nents (agents), so that with NSE nearly all software development tasks/

activities are performed nonlinearly, holistically, and globally to prevent

defects in the entire software lifecycle – for instance, if there is a need to

change a requirement, with NSE and the support platform Panorama++ the

implementation of the change will be performed nonlinearly, holistically,

and globally through various bidirectional traceabilities: (1) Performs for-

ward tracing for the requirement change (through the corresponding test

cases) to determine what modules should be modified. (2) Performs back-

ward tracing to check the related requirements of the modules to be modi-

fied for preventing requirement conflicts – sometimes a module is used for

the implementation of multiple requirements. (3) Checks what other

modules may also need to be changed with the modification by tracing the

modules to find all related modules on the corresponding call graph shown

612 24 Candidates of “Silver Bullet”

in J-Chart. (4) Checks where the global variables and static variables may

be affected by the modification. (5) After modification, checks all related

statements calling the modified module for preventing inconsistency

defects between them. (6) Performs efficient regression testing through

backward tracing from the modified module to find the related test cases.

(7) Performs backward tracing to find and modify inconsistent documents

after code modification.

•฀ The process model(s) (see Chap. 8)

From: linear ones based on linear thinking and the reductionism principle and

superposition principle, including the waterfall model, the incremental

development models, the iterative development models, or the incremental

and iterative development models with which there is only one track in one

direction – no upstream movement at all, always going forward from the

upper phases to the lower phases, so that defects introduced in the upper

phases will easily propagate to the lower phases to make the defect

removal cost greatly increase.

To: a nonlinear one (called the NSE process model) based on nonlinear

thinking and complexity science with which there are multiple tracks

in two directions through various traceabilities to prevent defects and

defect propagation, so that experience and ideas from each down-

stream part of the construction process may leap upstream, sometimes

more than one stage, and affect the upstream activity. With NSE, the

software development process and software maintenance process are

combined together closely, the software development process and the

project management process are also combined together closely so that

the project management documents are traceable with the implementa-

tions of software requirements and the source code. With the NSE

process model, requirement validation and verification can be done

easily through forward traceability in parallel, and code modification

can be done with side-effect prevention through backward traceability

in parallel too.

•฀ The software development methodologies (see Chap. 10)

From: the software development methods based on Constructive holism –

“building” a software system with its components – the components are

developed first, then the system of a software product is built through the

integration of the components developed. From the point of view of quality

assurance, those methodologies are test-driven but the functional testing is

performed after coding; it is too late. These methodologies consider a

software product as a machine rather than a logical product created by

human beings. They all comply with the reductionism principle and super-

position principle.

To: the software development method (NSE software development method,

innovated by the me) based on Generative Holism of complexity science –

having the whole dummy system first, then “growing up” with its

components.

61324.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

•฀ The software testing paradigm (see Chap. 16)

From: that mainly based on functional testing using the Black-box testing

method being applied after the entire product is produced, structural

testing using White-box testing method being applied after each soft-

ware unit is coded for the incremental software development and itera-

tive software development [Coc08]. Both methods are applied separately

without internal logic connections.

To: that mainly based on the Transparent-box method to combine functional

testing and structural testing together seamlessly: to each set of inputs, it

not only verifies whether the output (if any, can be none) is the same as

the expected value but also helps users to check whether the execution

path covers the expected path with the capability to automatically estab-

lish bidirectional traceability among all of the related documents and the

source code for inconsistent defect checking.

•฀ The quality assurance paradigm (see Chap. 17)

From: a test-driven approach, mainly using Black-box testing method plus

structural testing method and code inspection after coding.

To: NSE-SQA – defect prevention-driven approach mainly using the

Transparent-box testing method in all phases of a software development

lifecycle from the first step to the end, because having an output is no lon-

ger a condition to use the Transparent-box testing method dynamically.

The priority of NSE-SQA for assuring the quality of a software being

developed is ordered as (1) defect prevention; (2) defect propagation pre-

vention; (3) Refactoring applied to highly complex modules and module(s)

that are performance bottlenecks; (4) Deep and broad testing.

•฀ The software visualization paradigm (see Chap. 7)

From: that drawing the diagrams manually or using graphic editors or using a

tool to generate partial charts/diagrams which are neither interactive nor

traceable in most cases. Even if some charts/diagrams for an entire soft-

ware system can be generated, they are still not useful because there are

too many connection lines to make the charts/diagrams hard to view and

hard to understand without a capability to trace an element with all the

related elements.

To: a holistic, interactive, traceable, and virtual software visualization

paradigm to make an entire software development lifecycle visible. The

charts/diagrams are dynamically generated from several hash tables

from the database and the source code through dummy programming

or reverse engineering virtually without storing the hard copies in hard

disk or memory to greatly reduce the space. The generated charts/

diagrams are interactive and traceable between related elements – for

instance, users can highlight an element with all of the related ele-

ments easily.

•฀ The documentation paradigm (see Chap. 19)

From: (a) separated from the source code without bidirectional traceability; (b)

inconsistent with the source code after code modifications; (c) requiring

614 24 Candidates of “Silver Bullet”

huge disk space and memory space to store the graphical documents;

(d) the display and operation speed is very slow; (e) hard to update; (f)

not very useful for software product understanding, testing, and

maintenance.

To: (a) managed together with the source code based on bidirectional traceabil-

ity; (b) consistent with the source code after code modification; (c) most

documents are dynamically generated from several hash tables and exist

virtually without huge storage space; (d) the display and operation speed is

very fast; (e) most documents can be updated automatically; (f) very useful

for software product understanding, testing, and maintenance.

•฀ The software maintenance paradigm (see Chap. 18)

From: that performed blindly, partially, and locally without the capability to

prevent the side effects for the implementation of requirement changes

or code modifications, and takes about 75% of the total effort and cost

in the software system development in most software organizations.

To: that performed visually, holistically, and globally using a systematic, dis-

ciplined, quantifiable approach to prevent the side effects for the imple-

mentation of requirement changes or code modifications through various

automated traceabilities; and takes only about 25% of the total effort and

total cost in software system development, because with NSE there is no

big difference between the software development process and the software

maintenance process – both support requirement changes or code modifi-

cation with side-effect prevention.

•฀ The software project management paradigm (see Chap. 20)

From: that performed separately from the software product development pro-

cess, and often makes the necessary actions being done too late.

To: that performed closely with the software development process and

makes the project management documents such as the product develop-

ment schedule, the cost reports, and the progress reports traceable with

the requirement implementation or the corresponding test cases or the

source code, making the necessary actions being done in time.

24.7.2 The Components of NSE

As described in Chap. 5, NSE consists of the following components:

 1. The NSE process model – It is the core part of NSE, a roadmap of the NSE

paradigm. The NSE process model is nonlinear, through two way iteration with

multiple tracks (see Chap. 8) supported by automated and self-maintainable

traceabilities (see Chap. 9).

 2. The NSE software development methodology – It is based on Generative

Holism and driven by defect prevention and traceability, different from the exist-

ing software development methodology based on Constructive Holism and

driven by testing (see Chap. 10).

61524.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

 3. The NSE visualization paradigm – It makes the entire software engineering

process visible from the first step down to the maintenance phase using interac-

tive and traceable 3J graphics by generating the overall charts/diagrams for an

entire software system and detailed logic diagrams and control flow diagrams

for each file/class/function, with the capability to highlight untested conditions

and branches when working with the MC/DC test coverage measurement tools

integrated into the NSE support platforms (see Chaps. 7 and 22).

 4. The NSE testing paradigm – It is based on the Transparent-box testing method

which combines functional testing and structural testing together seamlessly; to

each test case it not only checks whether the output (if any, can be none) is the same

as what is expected, but it also helps users to check whether the real execution path

covers the expected one specified in control flow diagram, and then it automatically

establishes bidirectional traceability among the related documents and test cases

and the source code through the use of bookmarks and Time Tags automatically

inserted into both the test case description and the test coverage database for map-

ping the test cases and the tested source code together, so that it can be used dynam-

ically in the entire software development and maintenance process, including the

requirement development phase and the design phase, to greatly reduce the amount

of defects introduced into a software product developed with NSE (see Chap. 16).

 5. The NSE quality assurance paradigm – It is based on defect prevention and

defect propagation prevention from the first step down to the maintenance

phase (see Chap. 17).

 6. The NSE documentation paradigm – It makes the documents traceable to

and from the source code to keep consistency with the source code at all times.

The generated documents exist virtually to greatly reduce the required space

and to speed up the display much faster (see Chap. 19).

 7. The NSE maintenance paradigm – It helps users perform software mainte-

nance holistically and globally with side-effect prevention for the implementa-

tion of requirement changes or code modifications supported by various

traceabilities to ensure the product quality and greatly reduce the cost in regres-

sion testing after code modification through the use of test case minimization

and intelligent test case selection (see Chap. 18).

 8. The NSE project management paradigm – It combines the software develop-

ment process and project management process together, making the project

management documents (such as the schedule chart, the project development

plan, and the cost estimation tables) traceable with the implementation of

requirements and the source code for finding and fixing management problems

in time (see Chap. 20).

 9. The NSE support techniques – They are the driving force for the establish-

ment of NSE: 14 advanced techniques are innovated and applied to NSE and

the support platforms (see Chap. 6).

 10. The NSE support tools and support platforms – They help software organi-

zations to apply NSE in their software product development easily, no matter if

it is used for new software development or to test or maintain an existing soft-

ware product (see Chap. 22).

616 24 Candidates of “Silver Bullet”

24.7.3 The Major Features and Characteristics of NSE

The major features and characteristics of NSE are listed as follows:

•฀ It is based on a solid foundation – complexity science: The entire NSE para-

digm is established by complying with the essential principles of complexity

science, particularly the Nonlinearity principle and the Holism principle.

•฀ It is complete – NSE itself is complete, including its own process model,

software development methodology, visualization paradigm, testing paradigm,

QA paradigm, documentation paradigm, maintenance paradigm, management

paradigm, etc.

•฀ It brings revolutionary changes to almost all aspects in software engineer-

ing – It makes them change from the old one based on linear processes and the

superposition principle to the new one based on complexity science.

•฀ It offers both “what to do” and “how to do” – different from some popular

models which only offer “what to do” but ignore “how to do,” NSE offers both.

•฀ With it almost all software engineering tasks/activities are performed holis-

tically and globally – With NSE, from requirement development down to main-

tenance, all tasks/activities are performed holistically and globally with defect

prevention including side-effect prevention for the implementation of require-

ment changes and code modifications.

•฀ It combines the software development process and software maintenance

process together closely – With NSE, requirement changes are welcome at any

stage and implemented with side-effect prevention though various bidirectional

traceabilities (see Chaps. 8 and 18).

•฀ It combines the software development process and software management

process together closely – It makes all documents including the management

documents such as the schedule chart and the cost reports traceable to the imple-

mentation of requirements and the source code to control a software project

better and to find and fix the related issues in time (see Chaps. 8 and 20).

•฀ It ensures software product quality from the first step to the final step through

defect prevention and dynamic testing using the Transparent-box testing

method – NSE offers many means to prevent defects that are introduced into a

software product by people (the customers and the developers) with dynamic test-

ing using the Transparent-box testing method which combines functional testing

and structural testing seamlessly and can be dynamically used in cases where there

is no real output from the software system such as a dummy system with dummy

modules only without detailed program logic (see Chaps. 11, 17, and 18).

•฀ With NSE, the design becomes precoding (top-down), and the coding becomes

further design (bottom-up) – With NSE, in most cases the design through

dummy programming using dummy modules becomes precoding, and the coding

becomes further design through reverse engineering (see Chaps. 12 and 13).

•฀ It makes software documents traceable to and from source code – With

NSE, all related documents and test cases and the source code are traceable

forwards or backwards through automated and self-maintainable traceabilities.

61724.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

•฀ It supports real-time communication through traceable Web pages and

traceable technical forums – With NSE, the bidirectional traceability is

extended to include Web pages and BBS for real-time communication.

•฀ It makes the entire software development process visible from first step

down to the final step – The NSE visualization paradigm is capable of making

the entire software development process visible through dummy programming

and reverse engineering.

•฀ It makes a software product much easier to read, understand, test, and

maintain – With NSE, a software is represented graphically and shown in both

the overall structure of the entire product and the detailed logic diagram and

control flow diagram with various traceabilities and where the untested condi-

tions and branches are highlighted.

•฀ It can be applied at any time in any stage for a software product develop-

ment using any other method originally – NSE can be added onto a software

product being developed using any other approach by adding bookmarks in the

related documents and modifying the test cases to use some key words to indi-

cate the format of a document and the file path plus the bookmark, then the other

work can be performed by the NSE support platform automatically.

•฀ It requires much less time, resources, and manpower to apply, compared with

other existing approaches – One just needs to reorganize the document hierarchy

using bookmarks and modify the test case descriptions using some simple rules; all

of the other work can be performed automatically by the NSE support platform with

many automated and intelligent tools integrated together, including the creation of

huge amounts of traceable and virtual documents based on static and dynamic mea-

surement of the software, the diagramming of the entire software product to generate

holistic and detailed system call graphs and class inheritance charts, the holistic and

detailed test coverage measurement results shown in J-Chart and J-Diagram or J-Flow

diagram with untested conditions and branches highlighted, the holistic and detailed

quality measurement results shown in Kiviat diagram for the entire software product

and each class or function, the holistic and detailed performance measurement results

shown in J-Chart and bar chart with branch execution frequency measurement result

shown in J-Diagram or J-Flow Diagram to locate the performance bottleneck better,

the software logic analysis results shown in J-Diagram with various kinds of trace-

ability for semiautomated code inspection and walk through, the software control

flow analysis results shown in J-Flow with untested conditions and branches high-

lighted, the GUI test operation capture and selective playback for regression testing

after code modification, the test case efficiency analysis and test case minimization to

form a minimized set of test cases to replace all the test cases to speed up the regres-

sion testing process and greatly save the required time and resources, the establish-

ment of bidirectional traceability among all related documents and the test cases and

the source code, the generation of more than 100 reports based on the static and

dynamic measurement of the software and the reports can be stored in HTML format

for being used on the internet, the Cyclomatic complexity measurement results shown

in J-Chart and J-Flow diagram for performing refactoring for the over complicated

modules to reduce possible defects, and more.

618 24 Candidates of “Silver Bullet”

•฀ It is possible for NSE to help software organizations double their productivity,

halve their cost, and reduce 99–99.99% of the defects in their software

products – With NSE, the quality of a software product is ensured from the first

step through defect prevention and defect propagation prevention rather than

testing after coding, so that the amount of defects introduced into a software

product is greatly reduced, and that the defects propagating to the maintenance

phase are also greatly reduced; software maintenance is performed holistically

and globally with side-effect prevention; the regression testing after software

modification is performed using a minimized test case set and some test cases

selected through backward traceability from the modified modules and branches;

software testing is performed in the entire software development process

dynamically using the Transparent-box method which combines functional test-

ing and structural testing together seamlessly and can be dynamically used in the

case that there is no real output in running some test cases, when it is used in the

requirement development phase and the software design phase.

Is there any weaknesses with NSE? Yes. We know that nothing in the world is

completely perfect. For instance, the waterfall model can be applied in practice

with or without tool support, the RUP (Rational Unified Process) can be applied

with mainly static tool support, but NSE can only be applied with mainly dynamic

tool support, such as those tools offered by Panorama++ to perform defect preven-

tion and defect propagation prevention, and to establish bidirectional traceabilities.

Of course, this disadvantage of NSE can also be considered as an advantage,

because in the twenty-first century dynamic tools should be used in every software

development company; otherwise, the company may lose its competition power.

24.7.4 The Major Differences Between NSE and the Old-

Established Software Engineering Paradigm

The essential difference between the old-established software engineering paradigm

and NSE is how to handle the relationship between the whole and its parts of a soft-

ware system. The former adheres to the reductionism principle and superposi-

tion principle that the whole is the sum of its parts, so that nearly all software

development tasks/activities are performed locally, such as the implementation of

requirement changes. The latter complies with the Holism principle of complex-

ity science, that a software product is a Complex Adaptive System (CAS

[Hol95]) having multiple interacting agents (components), of which the overall

behavior and characteristics cannot be inferred simply from the behavior of its

individual agents but emerge from the interaction of its parts, so that with NSE

nearly all software development tasks/activities are performed globally and holisti-

cally to prevent defects in the entire software lifecycle[Xio09-1], [Xio09-2].

A comparison between traditional software engineering paradigm and NSE is shown

in Table 24.1.

61924.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

(c
o
n
ti

n
u
ed

)

T
a
b

le
 2

4
.1

A

 g
en

er
al

 c
o
m

p
ar

is
o
n
 b

et
w

ee
n
 t

h
e

tr
ad

it
io

n
al

 s
o
ft

w
ar

e
en

g
in

ee
ri

n
g
 p

ar
ad

ig
m

 a
n
d
 N

S
E

 (
n
o
n
li

n
ea

r
so

ft
w

ar
e

en
g
in

ee
ri

n
g
 p

ar
ad

ig
m

)

C
o
m

p
ar

is
o
n
 i

te
m

T
ra

d
it

io
n
al

 s
o
ft

w
ar

e
en

g
in

ee
ri

n
g
 p

ar
ad

ig
m

N
S

E
 (

n
o
n
li

n
ea

r
so

ft
w

ar
e

en
g
in

ee
ri

n
g
 p

ar
ad

ig
m

)

T
h
e

d
ef

in
it

io
n

o
f

so
ft

w
ar

e
(s

o
ft

w
ar

e
p
ro

d
u
ct

s)

S
o
ft

w
ar

e
is

 (
1
)

in
st

ru
ct

io
n
s

(c
o
m

p
u
te

r
p
ro

g
ra

m
s)

 t
h
at

 w
h
en

 e
x
ec

u
te

d

p
ro

v
id

e
d
es

ir
ed

 f
ea

tu
re

s,
 f

u
n
ct

io
n
,

an
d
 p

er
fo

rm
an

ce
;

(2
)

d
at

a
st

ru
ct

u
re

s
th

at
 e

n
ab

le
 t

h
e

p
ro

g
ra

m
s

to

ad
eq

u
at

el
y
 m

an
ip

u
la

te
 i

n
fo

rm
at

io
n
;

an
d
 (

3
)

d
o
cu

m
en

ts
 t

h
at

 d
es

cr
ib

e
th

e
o
p
er

at
io

n
 a

n
d
 u

se
 o

f
th

e
p
ro

g
ra

m
s

[P
re

0
5
-P

4
]

S
o
ft

w
ar

e
is

 (
1
)

in
st

ru
ct

io
n
s

(c
o
m

p
u
te

r
p
ro

g
ra

m
s)

 t
h
at

 w
h
en

 e
x
ec

u
te

d
 p

ro
v
id

e
d
es

ir
ed

 f
ea

tu
re

s,
 f

u
n
ct

io
n
,

an
d
 p

er
fo

rm
an

ce
;

(2
)

d
at

a
st

ru
ct

u
re

s
th

at
 e

n
ab

le
 t

h
e

p
ro

g
ra

m
s

to
 a

d
eq

u
at

el
y
 m

an
ip

u
la

te
 i

n
fo

rm
at

io
n
;

an
d
 (

3
)

d
o
cu

m
en

ts
 t

h
at

 d
es

cr
ib

e
th

e
o
p
er

at
io

n
 a

n
d
 u

se
 o

f
th

e
p
ro

g
ra

m
s

(i
n
cl

u
d
in

g
 t

h
e

te
st

 c
as

e
sc

ri
p
t

fi
le

s
to

o
);

p

lu
s

(4
)

th
e

d
a
ta

b
a
se

 b
u

il
t

th
o
u

g
h

 s
ta

ti
c

a
n

d
 d

y
n

a
m

ic
 m

ea
su

re
m

en
t

o
f

th
e

p
ro

g
ra

m
s;

 a
n

d
 (

5
)

a
 s

et
 o

f
A

ss
is

te
d

 O
n

li
n

e
A

g
en

ts
 (

A
O

A
,

a
rt

if
ic

ia
l

in
te

ll
ig

en
ce

 t
o
o
ls

 w
o
rk

in
g
 w

it
h

 t
h

e
d

a
ta

b
a
se

)
fo

r
su

p
p

o
rt

in
g
 t

es
ta

b
il

it
y,

re
li

a
b

il
it

y,
 v

is
ib

il
it

y,
 c

h
a
n

g
ea

b
il

it
y,

 c
o
n

fo
rm

it
y,

 a
n

d
 t

ra
ce

a
b

il
it

y
 t

o
 m

a
k

e
th

e

so
ft

w
a
re

 p
ro

g
ra

m
 m

a
in

ta
in

a
b

le
,

a
d

a
p

ti
v
e,

 a
n

d
 t

h
a
t

th
e

st
a
ti

c
a
n

d
 d

y
n

a
m

ic

m
ea

su
re

m
en

t
re

su
lt

s
ca

n
 b

e
v
ie

w
ed

 e
a
si

ly
,

a
n

d
 t

h
e

re
q

u
ir

em
en

t
v
a
li

d
a
ti

o
n

a
n

d
 t

h
e

a
cc

ep
ta

n
ce

 t
es

ti
n

g
 c

a
n

 b
e

d
y
n

a
m

ic
a
ll

y
 d

o
n

e
in

 a
 f

u
ll

y
 a

u
to

m
a
te

d

w
a
y
 t

h
ro

u
g
h

 m
o
u

se
 c

li
ck

s
o
n

ly
 (

w
h
en

 a
 s

o
ft

w
ar

e
is

 d
el

iv
er

ed
 t

o
 a

n
 e

n
d
 u

se
r

ra
th

er
 t

h
an

 t
h
e

cu
st

o
m

er
,

it
 m

ay
 (

fo
r

o
p
en

 s
o
u
rc

e
p
ro

d
u
ct

s)
 o

r
m

ay
 n

o
t

in
cl

u
d
e

th
e

p
ar

t
(4

)
an

d
 t

h
e

p
ar

t
(5

))

T
h
e

fo
u
n
d
at

io
n

in
 s

o
ft

w
ar

e
d
ev

el
o
p
m

en
t

L
in

ea
r

th
in

k
in

g
 a

n
d
 s

im
p
li

st
ic

 s
ci

en
ce

co

m
p
ly

in
g
 w

it
h
 t

h
e

su
p
er

p
o
si

ti
o
n

p
ri

n
ci

p
le

 t
h
at

 t
h

e
w

h
o
le

 o
f

a

sy
st

em
 i

s
eq

u
a
l

to
 t

h
e

su
m

 o
f

it
s

p
a
rt

s,

so
 t

h
at

 a
lm

o
st

 a
ll

 t
as

k
s/

ac
ti

v
it

ie
s

ar
e

p
er

fo
rm

ed
 p

ar
ti

al
ly

 a
n
d
 l

o
ca

ll
y
 t

h
ro

u
g
h
 a

li

n
ea

r
p
ro

ce
ss

N
o
n
li

n
ea

r
th

in
k
in

g
 a

n
d
 c

o
m

p
le

x
it

y
 s

ci
en

ce
 w

it
h
 a

 s
et

 o
f

es
se

n
ti

al
 p

ri
n
ci

p
le

s
in

cl
u
d
in

g

th
e

N
o
n

li
n

ea
ri

ty
 p

ri
n
ci

p
le

,
th

e
H

o
li

sm
 p

ri
n
ci

p
le

 t
h
at

 a
 w

h
o
le

 i
s

g
re

a
te

r
th

a
n

 t
h

e
su

m
 o

f
it

s
p
ar

ts
 –

 t
h

e
ch

a
ra

ct
er

is
ti

cs
 a

n
d

 t
h

e
b

eh
a
v
io

r
o
f

a
 c

o
m

p
le

x
 s

y
st

em

is
 a

n
 e

m
er

g
en

t
p

ro
p

er
ty

 o
f

th
e

in
te

ra
ct

io
n

s
o
f

it
s

co
m

p
o
n

en
ts

 (
a
g
en

ts
),

th

e
D

y
n

a
m

ic
s

p
ri

n
ci

p
le

,
th

e
S

el
f-

o
rg

a
n

iz
a
ti

o
n

 p
ri

n
ci

p
le

,
th

e
S

el
f-

a
d

a
p

ta
ti

o
n

p
ri

n
ci

p
le

,
th

e
O

p
en

n
es

s
p
ri

n
ci

p
le

,
th

e
In

it
ia

l
C

o
n

d
it

io
n

 S
en

si
ti

v
it

y
 p

ri
n
ci

p
le

,
th

e
S

en
si

ti
v
it

y
 t

o
 C

h
a
n

g
e

p
ri

n
ci

p
le

,
th

e
C

o
m

p
le

x
it

y
 A

ri
se

s
F

ro
m

 S
im

p
le

 R
u

le
s

p
ri

n
ci

p
le

,
et

c.
,

so
 t

h
at

 w
it

h
 N

S
E

,
al

m
o
st

 a
ll

 t
as

k
s/

ac
ti

v
it

ie
s

ar
e

p
er

fo
rm

ed
 g

lo
b
al

ly

an
d
 h

o
li

st
ic

al
ly

 t
h
ro

u
g
h
 a

 n
o
n
li

n
ea

r
p
ro

ce
ss

620 24 Candidates of “Silver Bullet”

T
a
b

le
 2

4
.1

(c

o
n
ti

n
u
ed

)

C
o
m

p
ar

is
o
n
 i

te
m

T
ra

d
it

io
n
al

 s
o
ft

w
ar

e
en

g
in

ee
ri

n
g
 p

ar
ad

ig
m

N
S

E
 (

n
o
n
li

n
ea

r
so

ft
w

ar
e

en
g
in

ee
ri

n
g
 p

ar
ad

ig
m

)

H
o
w

 t
o
 d

ev
el

o
p

a
so

ft
w

ar
e

p
ro

d
u
ct

D
ev

el
o
p
 i

ts
 c

o
m

p
o
n
en

ts
 f

ir
st

,
th

en
 b

u
il

d

th
e

w
h
o
le

 f
ro

m
 i

ts
 c

o
m

p
o
n
en

ts

in
cr

em
en

ta
ll

y

D
ev

el
o
p
 a

 d
u
m

m
y
 w

h
o
le

 f
ir

st
,

th
en

 m
ak

e
it

 g
ro

w
 u

p
 w

it
h
 i

ts
 p

ar
ts

 t
h
ro

u
g
h
 i

n
cr

em
en

ta
l

d
ev

el
o
p
m

en
t

an
d
 i

n
te

g
ra

ti
o
n

62124.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm
C

o
m

p
ar

is
o
n
 i

te
m

T
ra

d
it

io
n
al

 s
o
ft

w
ar

e
en

g
in

ee
ri

n
g
 p

ar
ad

ig
m

N
S

E
 (

n
o
n
li

n
ea

r
so

ft
w

ar
e

en
g
in

ee
ri

n
g
 p

ar
ad

ig
m

)

H
o
w

 t
o
 c

ap
tu

re

cu
st

o
m

er
s’

re

q
u
ir

em
en

ts

C
ap

tu
re

s
cu

st
o
m

er
s’

 r
eq

u
ir

em
en

ts
 m

ai
n
ly

u
si

n
g
 t

h
e

U
se

 C
as

e
ap

p
ro

ac
h
:

•

 U
se

d
 w

it
h
 l

in
ea

r
p
ro

ce
ss

 m
o
d
el

s
•

 C
o
m

p
ly

in
g
 w

it
h
 t

h
e

su
p
er

p
o
si

ti
o
n

p
ri

n
ci

p
le

 t
h
at

 t
h
e

w
h
o
le

 o
f

a
sy

st
em

is

 t
h
e

su
m

 o
f

it
s

p
ar

ts
,
so

 t
h
at

 m
an

y

sm
al

l
p
ie

ce
s

ar
e

o
b
ta

in
ed

•

 H
ar

d
 t

o
 g

et
 t

h
e

b
ig

 p
ic

tu
re

 o
f

a
so

ft
w

ar
e

p
ro

d
u
ct

 b
ei

n
g
 d

ev
el

o
p
ed

•

 E
v
en

 i
f

a
b
ig

 p
ic

tu
re

 o
f

th
e

en
ti

re

so
ft

w
ar

e
p
ro

d
u
ct

 c
an

 b
e

o
b
ta

in
ed

,
it

 i
s

st

il
l

u
se

le
ss

 b
ec

au
se

 o
f

th
e

la
ck

 o
f

tr
ac

ea
b
il

it
y
 a

n
d
 t

h
e

la
ck

 o
f

th
e

ca
p
ab

il
it

y

to
 h

ig
h
li

g
h
t

a
u
n
it

 a
n
d
 t

h
e

re
la

te
d
 u

n
it

s

(s
o
 t

h
er

e
w

il
l

b
e

to
o
 m

an
y
 c

o
n
n
ec

ti
o
n

li
n
es

 t
o
 m

ak
e

th
e

en
ti

re
 s

y
st

em
 d

ia
g
ra

m

h
ar

d
 t

o
 r

ea
d
 a

n
d
 u

n
d
er

st
an

d
)

•

 T
h
e

re
su

lt
 o

b
ta

in
ed

 i
s

n
o
t

ex
ec

u
ta

b
le

d
ir

ec
tl

y,
 s

o
 t

h
at

 i
t

is
 h

ar
d
 t

o
 c

h
ec

k
 w

h
et

h
er

th

e
re

su
lt

 o
b
ta

in
ed

 i
s

co
rr

ec
t

o
r

n
o
t

C
ap

tu
re

s
cu

st
o
m

er
s’

 r
eq

u
ir

em
en

ts
 m

ai
n
ly

 u
si

n
g
 H

o
li

st
ic

,
A

ct
o
r–

A
ct

io
n
 a

n
d
 E

v
en

t–
re

sp
o
n
se

 d
ri

v
en

,
T

ra
ce

ab
le

,
V

is
u
al

,
an

d
 E

x
ec

u
ta

b
le

 t
ec

h
n
iq

u
e

(H
A

E
T

V
E

):
•

 U
se

d
 w

it
h
 a

 n
o
n
li

n
ea

r
p
ro

ce
ss

 m
o
d
el

•

 B
as

ed
 o

n
 c

o
m

p
le

x
it

y
 s

ci
en

ce
,

co
m

p
ly

in
g
 w

it
h
 t

h
e

N
o
n
li

n
ea

ri
ty

 a
n
d
 t

h
e

H
o
li

sm

p
ri

n
ci

p
le

s
•

 E
as

y
 t

o
 g

et
 t

h
e

b
ig

 p
ic

tu
re

 o
f

th
e

en
ti

re
 s

o
ft

w
ar

e
p
ro

d
u
ct

•

 M
ak

e
th

e
ch

ar
ts

 o
f

an
 e

n
ti

re
 s

y
st

em
 u

se
fu

l
w

it
h
 t

ra
ce

ab
il

it
ie

s
an

d
 t

h
e

ca
p
ab

il
it

y
 t

o

h
ig

h
li

g
h
t

a
u
n
it

 a
n
d
 a

ll
 o

f
th

e
re

la
te

d
 u

n
it

s
•

 N
o
t

o
n
ly

 u
se

fu
l

fo
r

ac
to

r–
ac

ti
o
n
 t

y
p
e

ap
p
li

ca
ti

o
n
s

b
u
t

al
so

 u
se

fu
l

fo
r

ev
en

t–
re

sp
o
n
se

 t
y
p
e

ap
p
li

ca
ti

o
n
s,

 o
r

fo
r

b
o
th

•

 N
o
t

o
n
ly

 u
se

fu
l

fo
r

th
e

d
ec

o
m

p
o
si

ti
o
n
 o

f
fu

n
ct

io
n
al

 r
eq

u
ir

em
en

ts
 b

u
t

al
so

 u
se

fu
l

fo
r

n
o
n
fu

n
ct

io
n
al

 r
eq

u
ir

em
en

ts
 t

h
ro

u
g
h
 t

h
e

d
ef

in
it

io
n
 a

n
d
 u

se
 o

f
a

S
u
p
er

A
ct

o
r

th
at

ca

n
 r

eq
u
es

t
w

h
at

 f
u
n
ct

io
n
s

o
r

to
o
ls

 a
re

 n
ee

d
ed

 f
o
r

th
e

in
te

rf
ac

e
d
es

ig
n
,

th
e

p
ro

d
u
ct

p
er

fo
rm

an
ce

,
th

e
q
u
al

it
y
 l

ev
el

,
an

d
 m

o
re

•

 E
as

y
 t

o
 m

ap
 t

h
e

re
su

lt
 o

b
ta

in
ed

 t
o
 t

h
e

re
al

 p
ro

d
u
ct

 d
es

ig
n
,

b
ec

au
se

 i
t

is
 d

o
n
e

m
ai

n
ly

 t
h
ro

u
g
h
 d

u
m

m
y
 p

ro
g
ra

m
m

in
g

•

 E
as

y
 t

o
 c

h
ec

k
 w

h
et

h
er

 t
h
e

re
su

lt
 o

b
ta

in
ed

 i
s

co
rr

ec
t

an
d
 c

o
n
si

st
en

t
o
r

n
o
t

th
ro

u
g
h

d
y
n
am

ic
 e

x
ec

u
ti

o
n
 u

si
n
g
 t

h
e

T
ra

n
sp

ar
en

t-
b
o
x
 m

et
h
o
d

H
o
w

 t
o
 e

n
su

re
 t

h
e

q
u
al

it
y
 o

f
a

so
ft

w
ar

e

p
ro

d
u
ct

T
es

t-
d

ri
v
en

:
F

in
d
s

an
d
 f

ix
es

 t
h
e

d
ef

ec
ts

af

te
r

p
ro

d
u
ct

io
n
 (

co
d
in

g
)

th
ro

u
g
h

te
st

in
g
,

in
sp

ec
ti

o
n
,

an
d
 d

eb
u
g
g
in

g

D
ef

ec
t

p
re

v
en

ti
o
n

 d
ri

v
en

:
ac

co
rd

in
g
 t

o
 D

r.
 W

.
E

d
w

ar
d
s

D
em

in
g
’s

 p
ri

n
ci

p
le

s
fo

r
p
ro

d
u
ct

 q
u
al

it
y
 c

o
n
tr

o
l

–
 “

C
ea

se
 d

ep
en

d
en

ce
 o

n
 i

n
sp

ec
ti

o
n
 t

o
 a

ch
ie

ve
 q

u
a
li

ty
.

E
li

m
in

a
te

 t
h
e

n
ee

d
 f

o
r

in
sp

ec
ti

o
n
 o

n
 a

 m
a
ss

 b
a
si

s
b
y

b
u
il

d
in

g
 q

u
a
li

ty
 i

n
to

 t
h
e

p
ro

d
u
ct

 i
n
 t

h
e

fi
rs

t
p
la

ce
.”

 –
 N

S
E

 e
n
su

re
s

th
e

so
ft

w
ar

e
p
ro

d
u
ct

 q
u
al

it
y
 i

n
 t

h
e

en
ti

re

so
ft

w
ar

e
sy

st
em

 d
ev

el
o
p
m

en
t

li
fe

cy
cl

e,
 p

ar
ti

cu
la

rl
y
 i

n
 t

h
e

re
q
u
ir

em
en

t
d
ev

el
o
p
m

en
t

an
d
 d

es
ig

n
 p

h
as

es
 b

ef
o
re

 c
o
d
in

g
 t

h
o
u
g
h
 d

y
n
am

ic
 e

x
ec

u
ti

o
n
 o

f
te

st
 c

as
es

 u
si

n
g

th
e

T
ra

n
sp

ar
en

t-
b
o
x
 m

et
h
o
d
 c

o
m

b
in

in
g
 f

u
n
ct

io
n
al

 t
es

ti
n
g
 a

n
d
 s

tr
u
ct

u
ra

l
te

st
in

g

to
g
et

h
er

 s
ea

m
le

ss
ly

.
T

o
 e

ac
h
 t

es
t

ca
se

,
it

 c
h
ec

k
s

w
h
et

h
er

 t
h
e

o
u
tp

u
t

(i
f

an
y,

 c
an

 b
e

n
o
n
e)

 i
s

th
e

sa
m

e
as

 w
h
at

 i
s

ex
p
ec

te
d
,

ch
ec

k
s

w
h
et

h
er

 t
h
e

ex
ec

u
ti

o
n
 p

at
h
 c

o
v
er

s
th

e
ex

p
ec

te
d
 p

at
h
 s

p
ec

if
ie

d
,

an
d
 t

h
en

 e
st

ab
li

sh
es

 b
id

ir
ec

ti
o
n
al

 t
ra

ce
ab

il
it

y
 t

o
 h

el
p

u
se

rs
 r

em
o
v
e

th
e

in
co

n
si

st
en

cy
 d

ef
ec

ts
 a

m
o
n
g
 t

h
e

re
q
u
ir

em
en

t
sp

ec
if

ic
at

io
n
 a

n
d
 a

ll

re
la

te
d
 d

o
cu

m
en

ts
,

p
lu

s
m

an
y
 o

th
er

 w
ay

s
fo

r
d
ef

ec
t

p
re

v
en

ti
o
n
 a

n
d
 i

n
sp

ec
ti

o
n
 u

si
n
g

tr

ac
ea

b
le

 d
o
cu

m
en

ts
 a

n
d
 t

ra
ce

ab
le

 s
o
u
rc

e
co

d
e

(c
o
n
ti

n
u
ed

)

622 24 Candidates of “Silver Bullet”

T
a
b

le
 2

4
.1

(c

o
n
ti

n
u
ed

)

C
o
m

p
ar

is
o
n
 i

te
m

T
ra

d
it

io
n
al

 s
o
ft

w
ar

e
en

g
in

ee
ri

n
g
 p

ar
ad

ig
m

N
S

E
 (

n
o
n
li

n
ea

r
so

ft
w

ar
e

en
g
in

ee
ri

n
g
 p

ar
ad

ig
m

)

H
o
w

 t
o
 d

y
n
am

ic
al

ly

te
st

 a
 s

o
ft

w
ar

e
p
ro

d
u
ct

M
ai

n
ly

 p
er

fo
rm

s
fu

n
ct

io
n
al

 t
es

ti
n
g
 u

si
n
g
 t

h
e

B
la

ck
-b

o
x
 t

es
ti

n
g
 m

et
h
o
d
 a

ft
er

 c
o
d
in

g
,

an

d
 s

tr
u
ct

u
ra

l
te

st
in

g
 s

ep
ar

at
el

y

P
er

fo
rm

s
fu

n
ct

io
n
al

 t
es

ti
n
g
 a

n
d
 s

tr
u
ct

u
ra

l
te

st
in

g
 t

o
g
et

h
er

 s
ea

m
le

ss
ly

 u
si

n
g
 t

h
e

T
ra

n
sp

ar
en

t-
b
o
x
 m

et
h
o
d
 i

n
 t

h
e

en
ti

re
 s

o
ft

w
ar

e
d
ev

el
o
p
m

en
t

li
fe

cy
cl

e
fr

o
m

 t
h
e

re
q
u
ir

em
en

t
d
ev

el
o
p
m

en
t

p
h
as

e
d
o
w

n
 t

o
 t

h
e

m
ai

n
te

n
an

ce
 p

h
as

e
w

it
h
 t

h
e

ca
p
ab

il
it

y

to
 e

st
ab

li
sh

 b
id

ir
ec

ti
o
n
al

 t
ra

ce
ab

il
it

y
 t

o
 h

el
p
 d

ev
el

o
p
er

s
re

m
o
v
e

in
co

n
si

st
en

cy

d
ef

ec
ts

H
o
w

 t
o
 d

o
cu

m
en

t
a

so
ft

w
ar

e
p
ro

d
u
ct

D
o
cu

m
en

ts
 a

 s
o
ft

w
ar

e
p
ro

d
u
ct

 w
it

h
 a

 m
an

-
m

ad
e

tr
ac

ea
b
il

it
y
-m

at
ri

x
 w

h
ic

h
 i

s
ti

m
e

co
n
su

m
in

g
 t

o
 b

u
il

d
 a

n
d
 v

er
y
 h

ar
d
 t

o

m
ai

n
ta

in
,

so
 t

h
at

 o
ft

en
 t

h
e

d
es

ig
n
ed

d
o
cu

m
en

ts
 a

re
 n

o
t

co
n
si

st
en

t
w

it
h
 t

h
e

so
u
rc

e
co

d
e

af
te

r
co

d
e

m
o
d
if

ic
at

io
n
.

A
lt

h
o
u
g
h
 s

o
m

e
to

o
ls

 m
ay

 b
e

u
se

d
 t

o

es
ta

b
li

sh
 b

id
ir

ec
ti

o
n
al

 t
ra

ce
ab

il
it

y,
 i

t
st

il
l

n
ee

d
s

m
an

u
al

 w
o
rk

 t
o
 m

ai
n
ta

in

D
o

cu
m

en
ts

 a
 s

o
ft

w
ar

e
p

ro
d

u
ct

 w
it

h
 a

 t
ra

ce
ab

il
it

y
 f

ac
il

it
y

 w
h

ic
h

 i
s

au
to

m
at

ic
al

ly
 b

u
il

t
th

ro
u

g
h

 d
y

n
am

ic
 t

es
ti

n
g

 a
n

d
 i

s
se

lf
-m

ai
n

ta
in

ab
le

,
so

 t
h

at
 t

h
e

d
es

ig
n

ed
 d

o
cu

m
en

ts

an
d

 t
h

e
so

u
rc

e
co

d
e

ca
n

 b
e

m
an

ag
ed

 t
o

g
et

h
er

 –
 w

h
en

 t
h

e
so

u
rc

e
co

d
e

is
 c

h
an

g
ed

,
th

e
d

ev
el

o
p

er
s

ca
n

 p
er

fo
rm

 b
ac

k
w

ar
d

 t
ra

ci
n

g
 t

o
 f

in
d

 t
h

e
re

la
te

d
 d

o
cu

m
en

ts
,

ch
ec

k
 t

h
e

co
n

si
st

en
cy

,
an

d
 r

em
o
v
e

th
e

in
co

n
si

st
en

cy
 d

ef
ec

ts
.

B
es

id
es

 t
h

is
,

m
o

re

tr
ac

ea
b

il
it

y
 f

ac
il

it
ie

s
ar

e
p

ro
v

id
ed

 t
o

 m
ak

e
th

e
d

o
cu

m
en

ts
 t

ra
ce

ab
le

 w
it

h
 r

el
at

ed

d
o

cu
m

en
ts

,
an

d
 t

h
e

so
u

rc
e

co
d

e
tr

ac
ea

b
le

 w
it

h
 r

el
at

ed
 s

o
u

rc
e

co
d

e,
 a

n
d

 s
o

 o
n

62324.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm
C

o
m

p
ar

is
o
n
 i

te
m

T
ra

d
it

io
n
al

 s
o
ft

w
ar

e
en

g
in

ee
ri

n
g
 p

ar
ad

ig
m

N
S

E
 (

n
o
n
li

n
ea

r
so

ft
w

ar
e

en
g
in

ee
ri

n
g
 p

ar
ad

ig
m

)

H
o
w

 t
o
 m

an
ag

e
a

so
ft

w
ar

e
p
ro

d
u
ct

d
ev

el
o
p
m

en
t

p
ro

ce
ss

 a
n
d

co
n
tr

o
l

th
e

sc
h
ed

u
le

 a
n
d
 t

h
e

b
u
d
g
et

T
h
e

p
ro

je
ct

 m
an

ag
em

en
t

p
ro

ce
ss

es
 a

re

se
p
ar

at
ed

 f
ro

m
 t

h
e

p
ro

d
u
ct

 d
ev

el
o
p
m

en
t

p
ro

ce
ss

es
 –

 t
h
e

p
ro

je
ct

 p
la

n
/s

ch
ed

u
le

in

fo
rm

at
io

n
 a

n
d
 t

h
e

co
st

 i
n
fo

rm
at

io
n

ar
e

n
o
t

tr
ac

ea
b
le

 w
it

h
 t

h
e

re
q
u
ir

em
en

t
im

p
le

m
en

ta
ti

o
n
,

so
 t

h
at

 o
ft

en
 a

 s
o
ft

w
ar

e
b
ec

o
m

es
 a

 m
o
n
st

er
 o

f
m

is
se

d
 s

ch
ed

u
le

s
an

d
 b

lo
w

n
 b

u
d
g
et

s

T
h
e

p
ro

je
ct

 m
an

ag
em

en
t

p
ro

ce
ss

es
 a

n
d
 t

h
e

p
ro

d
u
ct

 d
ev

el
o
p
m

en
t

p
ro

ce
ss

es
 a

re
 c

o
m

b
in

ed

to
g
et

h
er

,
m

ak
in

g
 t

h
e

p
ro

je
ct

 p
la

n
/s

ch
ed

u
le

 i
n
fo

rm
at

io
n
 a

n
d
 t

h
e

co
st

 i
n
fo

rm
at

io
n

tr

ac
ea

b
le

 w
it

h
 t

h
e

re
q
u
ir

em
en

t
im

p
le

m
en

ta
ti

o
n
 a

n
d
 t

h
e

so
u
rc

e
co

d
e,

 a
ss

ig
n
in

g

im
p
le

m
en

ta
ti

o
n
 p

ri
o
ri

ti
es

 t
o
 t

h
e

re
q
u
ir

em
en

ts
 a

cc
o
rd

in
g
 t

o
 t

h
e

im
p
o
rt

an
ce

 a
n
d
 m

ar
k
et

n
ee

d
s,

 s
o
 t

h
at

 t
h
e

sc
h
ed

u
le

s
an

d
 b

u
d
g
et

s
ca

n
 b

e
co

n
tr

o
ll

ed
 b

et
te

r.
 P

ar
ti

cu
la

rl
y,

 t
h
e

N
S

E
 n

o
n
li

n
ea

r
p
ro

ce
ss

 m
o
d
el

 i
s

u
se

d
 w

it
h
 d

ef
ec

t
p
re

v
en

ti
o
n
 f

o
r

th
e

im
p
le

m
en

ta
ti

o
n

o
f

re
q
u
ir

em
en

t
ch

an
g
es

 o
r

co
d
e

m
o
d
if

ic
at

io
n
 t

o
 g

re
at

ly
 r

ed
u
ce

 t
h
e

co
st

 s
p
en

t
in

 t
h
e

so
ft

w
ar

e
d
ev

el
o
p
m

en
t

p
ro

ce
ss

 a
n
d
 t

h
e

so
ft

w
ar

e
m

ai
n
te

n
an

ce
 p

ro
ce

ss
,

an
d
 e

n
su

re
 t

h
e

q
u
al

it
y
 f

ro
m

 t
h
e

fi
rs

t
st

ep
 t

o
 t

h
e

en
d
 o

f
a

so
ft

w
ar

e
d
ev

el
o
p
m

en
t

p
ro

je
ct

(c
o
n
ti

n
u
ed

)

624 24 Candidates of “Silver Bullet”

T
a
b

le
 2

4
.1

(c

o
n
ti

n
u
ed

)

C
o
m

p
ar

is
o
n
 i

te
m

T
ra

d
it

io
n
al

 s
o
ft

w
ar

e
en

g
in

ee
ri

n
g
 p

ar
ad

ig
m

N
S

E
 (

n
o
n
li

n
ea

r
so

ft
w

ar
e

en
g
in

ee
ri

n
g
 p

ar
ad

ig
m

)

H
o
w

 t
o
 m

ai
n
ta

in
 a

so

ft
w

ar
e

p
ro

d
u
ct

an

d
 h

an
d
le

th

e
is

su
e

o
f

ch
an

g
ea

b
il

it
y

B
as

ed
 o

n
 l

in
ea

r
p
ro

ce
ss

 m
o
d
el

s
w

it
h
o
u
t

fa
ci

li
ti

es
 f

o
r

v
ar

io
u
s

b
id

ir
ec

ti
o
n
al

tr

ac
ea

b
il

it
ie

s
o
r

v
er

y
 l

im
it

ed
 t

ra
ce

ab
il

it
y

m
ad

e
m

an
u
al

ly
,

so
ft

w
ar

e
m

ai
n
te

n
an

ce
 i

s
p
er

fo
rm

ed
 l

o
ca

ll
y
 a

n
d
 p

ar
ti

al
ly

 w
it

h
 n

o

w
ay

 t
o
 p

re
v
en

t
th

e
si

d
e

ef
fe

ct
s

fo
r

th
e

im
p
le

m
en

ta
ti

o
n
 o

f
re

q
u
ir

em
en

t
ch

an
g
es

o
r

co
d
e

m
o
d
if

ic
at

io
n
s,

 s
o
 t

h
at

 o
ft

en

w
h
en

 a
 b

u
g
 i

s
fi

x
ed

,
th

er
e

is
 a

 2
0
–
5
0
%

ch

an
g
e

to
 i

n
tr

o
d
u
ce

 a
 n

ew
 o

n
e

to
 t

h
e

so
ft

w
ar

e
p
ro

d
u
ct

.
O

ft
en

 t
h
e

re
g
re

ss
io

n

te
st

in
g
 i

s
p
er

fo
rm

ed
 b

y
 r

eu
si

n
g
 a

ll
 t

es
t

ca
se

s
–
 i

t
is

 t
im

e
co

n
su

m
in

g
 a

n
d
 c

o
st

ly
.

It

 i
s

w
h
y
 s

o
ft

w
ar

e
m

ai
n
te

n
an

ce
 t

ak
es

m

o
re

 t
h
an

 7
5
%

 o
f

th
e

to
ta

l
co

st
 a

n
d
 t

o
ta

l
ef

fo
rt

 i
n
 s

o
ft

w
ar

e
sy

st
em

 d
ev

el
o
p
m

en
t

B
as

ed
 o

n
 t

h
e

N
S

E
 n

o
n
li

n
ea

r
p
ro

ce
ss

 m
o
d
el

 w
it

h
 t

h
e

su
p
p
o
rt

 o
f

fa
ci

li
ti

es
 f

o
r

v
ar

io
u
s

b
id

ir
ec

ti
o
n
al

 t
ra

ce
ab

il
it

ie
s

th
at

 a
re

 a
u
to

m
at

ic
al

ly
 e

st
ab

li
sh

ed
,

so
ft

w
ar

e
m

ai
n
te

n
an

ce

is
 p

er
fo

rm
ed

 g
lo

b
al

ly
 a

n
d
 h

o
li

st
ic

al
ly

 w
it

h
 s

id
e-

ef
fe

ct
 p

re
v
en

ti
o
n
.

T
h
er

e
is

 n
o

b
ig

 d
if

fe
re

n
ce

 b
et

w
ee

n
 t

h
e

so
ft

w
ar

e
d
ev

el
o
p
m

en
t

p
ro

ce
ss

 a
n
d
 t

h
e

m
ai

n
te

n
an

ce

p
ro

ce
ss

,
b
ec

au
se

 w
it

h
 N

S
E

 r
eq

u
ir

em
en

t
ch

an
g
es

 a
re

 w
el

co
m

e
at

 a
n
y
 t

im
e

to

su
p
p
o
rt

 t
h
e

cu
st

o
m

er
’s

 m
ar

k
et

 c
o
m

p
et

it
io

n
 s

tr
at

eg
y,

 a
n
d

 r
es

p
o
n
d
ed

 t
o
 i

n
 r

ea
l

ti
m

e
w

h
er

e
th

e
si

d
e

ef
fe

ct
s

fo
r

th
e

im
p
le

m
en

ta
ti

o
n
 o

f
re

q
u
ir

em
en

t
ch

an
g
es

 o
r

co
d
e

m
o
d
if

ic
at

io
n
s

ca
n
 b

e
p
re

v
en

te
d
 t

o
 a

ss
u
re

 t
h
e

q
u
al

it
y
 t

h
ro

u
g
h
 v

ar
io

u
s

b
id

ir
ec

ti
o
n
al

tr

ac
ea

b
il

it
ie

s.
 T

h
e

re
g
re

ss
io

n
 t

es
ti

n
g
 a

ft
er

 c
o
d
e

m
o
d
if

ic
at

io
n
 c

an
 b

e
p
er

fo
rm

ed

w
it

h
 m

in
im

iz
ed

 t
es

t
ca

se
s

to
 g

re
at

ly
 s

av
e

th
e

co
st

 a
n
d
 t

im
e.

 I
n
 t

h
e

ca
se

 t
h
at

 o
n
ly

a

fe
w

 c
o
d
e

b
ra

n
ch

es
 a

re
 m

o
d
if

ie
d
,

o
n
ly

 s
o
m

e
re

la
te

d
 t

es
t

ca
se

s
w

il
l

b
e

se
le

ct
ed

fo

r
re

g
re

ss
io

n
 t

es
ti

n
g
 t

h
ro

u
g
h
 b

ac
k
w

ar
d
 t

ra
ci

n
g
 f

ro
m

 t
h
e

m
o
d
if

ie
d
 b

ra
n
ch

es
 t

o

th
e

te
st

 c
as

e
sc

ri
p
ts

.
T

h
e

re
g
re

ss
io

n
 t

es
ti

n
g
 w

il
l

u
se

 t
h
e

T
ra

n
sp

ar
en

t-
b
o
x
 m

et
h
o
d

w
h
ic

h
 c

o
m

b
in

es
 f

u
n
ct

io
n
al

 t
es

ti
n
g
 a

n
d
 s

tr
u
ct

u
ra

l
te

st
in

g
 t

o
g
et

h
er

 s
ea

m
le

ss
ly

 w
it

h

th
e

ca
p
ab

il
it

y
 t

o
 e

st
ab

li
sh

 t
h
e

n
ew

 b
id

ir
ec

ti
o
n
al

 t
ra

ce
ab

il
it

ie
s,

 a
n
d
 t

h
e

ca
p
ab

il
it

y
 t

o

p
er

fo
rm

 p
er

fo
rm

an
ce

 m
ea

su
re

m
en

t,
 m

em
o
ry

 l
ea

k
 a

n
d
 u

sa
g
e

v
io

la
ti

o
n
 c

h
ec

k
,

an
d

M
C

/D
C

 (
M

o
d
if

ie
d
 C

o
n
d
it

io
n
/D

ec
is

io
n
 C

o
v
er

ag
e)

 t
es

t
co

v
er

ag
e

m
ea

su
re

m
en

t.
 I

f
so

m
et

h
in

g
 w

ro
n
g
 i

s
fo

u
n
d
 a

ft
er

 t
h
e

co
d
e

m
o
d
if

ic
at

io
n
,

a
g
lo

b
al

 a
n
d
 h

o
li

st
ic

 v
er

si
o
n

co
m

p
ar

is
o
n
 w

il
l

b
e

p
er

fo
rm

ed
 f

o
r

h
el

p
in

g
 u

se
rs

 t
o
 f

ix
 t

h
e

p
ro

b
le

m
 q

u
ic

k
ly

H
o
w

 t
o
 h

an
d
le

th

e
is

su
es

 o
f

co
n
fo

rm
it

y

W
it

h
o
u
t

b
id

ir
ec

ti
o
n
al

 t
ra

ce
ab

il
it

y,
 o

ft
en

 t
h
e

d
o
cu

m
en

ts
 a

n
d
 t

h
e

m
o
d
if

ie
d
 s

o
u
rc

e
co

d
e

ar
e

in
co

n
si

st
en

t.
 I

t
is

 v
er

y
 h

ar
d
 t

o
 h

an
d
le

th

e
is

su
e

o
f

co
n
fo

rm
it

y

W
it

h
 N

S
E

 p
ro

ce
ss

 m
o
d
el

,
th

e
is

su
e

o
f

co
n
fo

rm
it

y
 c

an
 b

e
so

lv
ed

 e
as

il
y
 t

h
ro

u
g
h
 t

h
e

u
se

 o
f

v
ar

io
u
s

tr
ac

ea
b
il

it
ie

s
es

ta
b
li

sh
ed

 a
u
to

m
at

ic
al

ly
,

p
ar

ti
cu

la
rl

y
 t

h
e

tr
ac

ea
b
il

it
ie

s
am

o
n
g
 t

h
e

re
la

te
d
 d

o
cu

m
en

ts
,

th
e

te
st

 c
as

es
,

an
d
 t

h
e

so
u
rc

e
co

d
e

62524.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm
C

o
m

p
ar

is
o
n
 i

te
m

T
ra

d
it

io
n
al

 s
o
ft

w
ar

e
en

g
in

ee
ri

n
g
 p

ar
ad

ig
m

N
S

E
 (

n
o
n
li

n
ea

r
so

ft
w

ar
e

en
g
in

ee
ri

n
g
 p

ar
ad

ig
m

)

H
o
w

 t
o
 h

an
d
le

th

e
is

su
e

o
f

in
v
is

ib
il

it
y

It
 c

an
 b

e
so

lv
ed

 p
ar

ti
al

ly
 i

n
 t

h
e

m
o
d
el

in
g

p
ro

ce
ss

 u
si

n
g
 U

M
L

 a
n
d
 t

h
e

su
p
p
o
rt

to

o
ls

W
it

h
 t

h
e

N
S

E
 p

ro
ce

ss
 m

o
d
el

 a
n
d
 t

h
e

su
p
p
o
rt

 p
la

tf
o
rm

s,
 t

h
e

en
ti

re
 s

o
ft

w
ar

e
d
ev

el
o
p
m

en
t

p
ro

ce
ss

 i
s

v
is

ib
le

 f
ro

m
 t

h
e

fi
rs

t
st

ep
 t

o
 t

h
e

m
ai

n
te

n
an

ce
 p

h
as

e
u
si

n
g

in
te

g
ra

ti
v
e

an
d
 t

ra
ce

ab
le

 3
J

g
ra

p
h
ic

s
an

d
 t

h
e

co
rr

es
p
o
n
d
in

g
 d

ia
g
ra

m
m

in
g
 t

o
o
ls

,
w

h
ic

h
 g

en
er

at
e

al
l

ch
ar

ts
 a

n
d
 d

ia
g
ra

m
s

g
lo

b
al

ly
 a

n
d
 h

o
li

st
ic

al
ly

 w
it

h
 v

ar
io

u
s

k
in

d
s

o
f

tr
ac

ea
b
il

it
ie

s
to

 m
ak

e
th

e
so

ft
w

ar
e

p
ro

d
u
ct

 b
ei

n
g
 d

ev
el

o
p
ed

 m
u
ch

 e
as

ie
r

to

u
n
d
er

st
an

d
,

te
st

,
an

d
 m

ai
n
ta

in

(c
o
n
ti

n
u
ed

)

626 24 Candidates of “Silver Bullet”

T
a
b

le
 2

4
.1

(c

o
n
ti

n
u
ed

)

C
o
m

p
ar

is
o
n
 i

te
m

T
ra

d
it

io
n
al

 s
o
ft

w
ar

e
en

g
in

ee
ri

n
g
 p

ar
ad

ig
m

N
S

E
 (

n
o
n
li

n
ea

r
so

ft
w

ar
e

en
g
in

ee
ri

n
g
 p

ar
ad

ig
m

)

T
h
e

g
ra

p
h
ic

al

p
re

se
n
ta

ti
o
n

o
f

th
e

p
ro

ce
ss

m

o
d
el

s

62724.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm
C

o
m

p
ar

is
o
n
 i

te
m

T
ra

d
it

io
n
al

 s
o
ft

w
ar

e
en

g
in

ee
ri

n
g
 p

ar
ad

ig
m

N
S

E
 (

n
o
n
li

n
ea

r
so

ft
w

ar
e

en
g
in

ee
ri

n
g
 p

ar
ad

ig
m

)

T
h
e

m
aj

o
r

ch
ar

ac
te

ri
st

ic
s

o
f

th
e

p
ro

ce
ss

m

o
d
el

s

1
.

 L
in

ea
r

2
.

 T
es

t-
d
ri

v
en

3
.

 It
er

at
io

n
 i

n
 o

n
e

d
ir

ec
ti

o
n

4
.

 T
h
er

e
is

 n
o
 p

re
p
ro

ce
ss

,
b
u
t

so
m

e
o
f

m
o
d
el

s
in

cl
u
d
e

a
p
ro

to
ty

p
in

g
 p

ro
ce

ss
5
.

 T
h
er

e
is

 n
o
 s

el
f-

m
ai

n
ta

in
ab

le
 f

ac
il

it
y
 t

o

tr
u
ly

 s
u
p
p
o
rt

 a
u
to

m
at

ed
 a

n
d
 b

id
ir

ec
ti

o
n
al

tr

ac
ea

b
il

it
y

6
.

 T
h
er

e
is

 n
o
 d

ef
in

ed
 p

ro
ce

ss
 o

r
sy

st
em

at
ic

m

et
h
o
d
 f

o
r

so
ft

w
ar

e
m

ai
n
te

n
an

ce
7
.

 T
h
e

so
ft

w
ar

e
d
ev

el
o
p
m

en
t

p
ro

ce
ss

 a
n
d

th
e

p
ro

je
ct

 m
an

ag
em

en
t

p
ro

ce
ss

 a
re

se

p
ar

at
ed

,
th

e
co

st
 r

ep
o
rt

s
an

d
 s

ch
ed

u
le

ch

ar
ts

 a
n
d
 o

th
er

 m
an

ag
em

en
t

m
at

er
ia

l
ar

e
n
o
t

d
ir

ec
tl

y
 t

ra
ce

ab
le

 w
it

h
 t

h
e

re
q
u
ir

em
en

t
im

p
le

m
en

ta
ti

o
n
 a

n
d
 t

h
e

so
u
rc

e
co

d
e

8
.

 D
y
n
am

ic
 s

o
ft

w
ar

e
te

st
in

g
 i

s
p
er

fo
rm

ed

af
te

r
co

d
in

g
9
.

 A
lm

o
st

 a
ll

 t
as

k
s

ar
e

p
er

fo
rm

ed

lo
ca

ll
y
 a

n
d
 p

ar
ti

al
ly

 a
cc

o
rd

in
g
 t

o
 t

h
e

su
p
er

p
o
si

ti
o
n
 p

ri
n
ci

p
le

 t
h
at

 t
h
e

w
h
o
le

 o
f

a
sy

st
em

 i
s

th
e

su
m

 o
f

it
s

p
ar

ts

1
.

 N
o
n
li

n
ea

r
2
.

 D
ef

ec
t

p
re

v
en

ti
o
n
 a

n
d
 t

ra
ce

ab
il

it
y
 d

ri
v
en

3
.

 B
id

ir
ec

ti
o
n
al

 i
te

ra
ti

o
n

4
.

 D
iv

id
ed

 i
n
to

 t
w

o
 p

ar
ts

:
th

e
p
re

p
ro

ce
ss

 a
n
d
 t

h
e

m
ai

n
 p

ro
ce

ss
5
.

 T
h
er

e
ar

e
m

an
y
 s

el
f-

m
ai

n
ta

in
ab

le
 f

ac
il

it
ie

s
to

 s
u
p
p
o
rt

 b
id

ir
ec

ti
o
n
al

 t
ra

ce
ab

il
it

ie
s

6
.

 C
o
m

b
in

in
g
 t

h
e

so
ft

w
ar

e
d
ev

el
o
p
m

en
t

p
ro

ce
ss

 a
n
d
 t

h
e

so
ft

w
ar

e
m

ai
n
te

n
an

ce
 p

ro
ce

ss

to
g
et

h
er

,
re

sp
o
n
d
in

g
 t

o
 s

o
ft

w
ar

e
ch

an
g
es

 i
n
 r

ea
l

ti
m

e
w

it
h
 s

id
e

ef
fe

ct
s

p
re

v
en

te
d

7
.

 C
o
m

b
in

in
g
 t

h
e

so
ft

w
ar

e
d
ev

el
o
p
m

en
t

p
ro

ce
ss

 a
n
d
 t

h
e

p
ro

je
ct

 m
an

ag
em

en
t

p
ro

ce
ss

to

g
et

h
er

 c
lo

se
ly

 t
o
 m

ak
e

th
e

p
ro

je
ct

 m
an

ag
em

en
t

m
at

er
ia

ls
 (

co
st

 r
ep

o
rt

s,
 s

ch
ed

u
le

ch

ar
ts

,
et

c.
)

tr
ac

ea
b
le

 w
it

h
 t

h
e

re
q
u
ir

em
en

t
im

p
le

m
en

ta
ti

o
n
 a

n
d
 t

h
e

so
u
rc

e
co

d
e

8
.

 D
y
n
am

ic
 s

o
ft

w
ar

e
te

st
in

g
 i

s
p
er

fo
rm

ed
 i

n
 t

h
e

en
ti

re
 s

o
ft

w
ar

e
d
ev

el
o
p
m

en
t

p
ro

ce
ss

an

d
 t

h
e

m
ai

n
te

n
an

ce
 p

ro
ce

ss
 f

ro
m

 t
h
e

fi
rs

t
st

ep
 t

o
 t

h
e

en
d
 u

si
n
g
 t

h
e

T
ra

n
sp

ar
en

t-
b
o
x
 t

es
ti

n
g
 m

et
h
o
d
 w

h
ic

h
 c

o
m

b
in

es
 f

u
n
ct

io
n
al

 a
n
d
 s

tr
u
ct

u
ra

l
te

st
in

g
 t

o
g
et

h
er

se

am
le

ss
ly

,
w

it
h
 t

h
e

ca
p
ab

il
it

y
 t

o
 e

st
ab

li
sh

 a
 s

el
f-

m
ai

n
ta

in
ab

le
 f

ac
il

it
y
 t

o
 h

el
p
 u

se
rs

ch

ec
k
 a

n
d
 r

em
o
v
e

in
co

n
si

st
en

cy
 d

ef
ec

ts
 a

m
o
n
g
 a

ll
 r

el
at

ed
 a

rt
if

ac
ts

 a
n
d
 t

h
e

so
u
rc

e
co

d
e

9
.

 A
lm

o
st

 a
ll

 t
as

k
s

ar
e

p
er

fo
rm

ed
 g

lo
b
al

ly
 a

n
d
 h

o
li

st
ic

al
ly

 a
cc

o
rd

in
g
 t

o
 t

h
e

h
o
li

sm

p
ri

n
ci

p
le

 o
f

co
m

p
le

x
it

y
 s

ci
en

ce

628 24 Candidates of “Silver Bullet”

24.7.5 Qualification as a Candidate of “Silver Bullet”

for Slaying Software “Werewolves”

In this section, we will discuss the qualification of NSE as a candidate of the

“Silver Bullet” to slay software “werewolves.”

 1. Efficiently Solving the Issue of Missed Schedules

(a) Helping the project development team and the customer work together

closely to assign priority to requirements according to the importance, so

that the important requirements will be implemented early to meet the

market needs. If necessary, some optional requirements can be temporally

ignored (see Chap. 8).

(b) Making the project plan, the schedule chart, and other related documents

traceable with the implementations of requirements and the source code as

shown in Fig. 24.6, so that the management team can find and solve the

schedule issues in time (see Chap. 9).

(c) Helping the software development team set up a project Web site and tech-

nical forum, and making the Web pages and the topic pages of the technical

forum traceable to the implementation of requirements and the source code,

so that any schedule delay will be known by the members of the team, and

Fig. 24.6 An application example to make the project development schedule chart traceable with
the implementation of requirements and the source code

62924.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

each member may make his/her contribution to solve the issue quickly – see

Fig. 24.7 for an application example.

(d) See (3) “Efficiently Solving the Issue of Flawed Products – Removing More

Than 99.99% of the Defects” – through greatly reducing the amount of

defects to help the development team meet the project development schedule

much more easily.

(e) See (4) “How Is It Possible for NSE to Help Users Double Their

Productivity” – through defect prevention and defect propagation preven-

tion upstream to greatly reduce the defects propagated downstream and

side-effect prevention in the implementation of requirement changes and

code modifications to make it possible to reduce two-thirds of the total

effort spent in software changes and maintenance to help the development

team meet the project development schedule better.

 2. Efficiently Solving the Issue of Blown Budgets

(a) Assigning priority to the requirements according to their importance ((1)

must have, (2) should have, (3) better to have, (4) may have or optional…)

to make the critical and important requirements be implemented early to

form an essential working version (about 20% of the requirements) first,

then making the working product grow up incrementally according to the

assigned priority (see Figs. 24.8 and 24.9), to avoid the issue of blown bud-

gets – if necessary, some optional requirements can be ignored or imple-

mented in the future (see Chap. 8).

Fig. 24.7 An example of making Web pages traceable to the implementation of requirements and
the source code

630 24 Candidates of “Silver Bullet”

(b) Complying with the Generative Holism principle of complexity science,

helping users to form the whole of a software product first through dummy

programming (using dummy modules with an empty body or only some

function call statements) as an embryo through the use of the HAETVE

(Holistic, Actor–Action and Event–Response driven, Traceable, Visual, and

Executable) technique (see Chap. 11) for requirement development and the

Synthesis Design and Incre mental growing up (Implementation and

Integration) technique (see Chap. 12) for product design, to help users

estimate the cost/budget better.

(c) Making the cost estimation chart, the budget plan, and other related docu-

ments traceable with the requirement implementation and the source code,

so that the management team can know the situation in time and control the

budget better (see Chap. 9).

Fig. 24.8 Incremental development support with assignment of bottom-up coding order

63124.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

(d) Making the Web pages or topic pages of the technical forum traceable to the

implementations of requirements and the source code, so that any budget

issue can be known by the members of the team early, and each member

may make his/her contribution to solve the issue quickly.

(e) Helping users to make the product grow up incrementally, according to the

requirement priority (see Chap. 10).

(f) See (3) “Efficiently Solving the Issue of Flawed Products – Removing More

Than 99.99% of the Defects” – through greatly reducing the amount of

defects to help the development team to develop the product within the

budget much more easily.

(g) See (4) “How Is It Possible for NSE to Help Users Double Their

Productivity” – through defect prevention and defect propagation preven-

tion upstream to greatly reduce the defects propagated downstream, and

side-effect prevention in the implementation of requirement changes and

code modifications to make it possible to reduce two-thirds of the total

effort spent in software changes and maintenance to help the development

team to develop the product within the budget better.

(h) See (5) “How Is It Possible for NSE to Help Users Halve Their Cost” –

through greatly reducing the cost to further ensure the product be developed

under the budget.

Fig. 24.9 Incremental development support

632 24 Candidates of “Silver Bullet”

 3. Efficiently Solving the Issue of Flawed Products – Removing More Than

99.99% of the Defects mainly through Defect Prevention and Defect

Propagation Prevention

(a) Helping users efficiently remove defects, particularly upstream defects,

through

Defect prevention by (1) providing some templates such as the requirement •฀

specification template (see Appendix A) to prevent something missing;

(2) helping users apply the HAETVE technique for requirement develop-

ment through dummy programming and making the dummy program

executable under dynamical testing using the Transparent-box method

combining functional and structural testing together seamlessly, which

can be used dynamically in the entire software development lifecycle

(see Chap. 16); (3) supporting incremental coding to prevent inconsisten-

cies between the interfaces (see Chap. 13).

Defect propagation prevention mainly through dynamic testing using the •฀

Transparent-box testing with the capability to perform MC/DC (Modified

Condition/Decision Coverage) test coverage measurement, memory leak

and usage violation check, performance analysis, and the capability to auto-

matically establish bidirectional traceability to help users check and remove

the inconsistency defects among the related documents and the source code,

plus inspection using traceable documents and source code (see Chap. 7).

Refactoring for those modules with higher Cyclomatic complexity (the •฀

number of decision statements) and performance bottleneck modules

with side-effect prevention – often 20% of the highest complex modules

have about 80% of the defects.

(b) Supporting quality assurance from the first step to the end through dynamic

testing using the Transparent-box method.

(c) Providing techniques and tools for quality measurement to the entire soft-

ware product and each component for finding and solving the quality prob-

lems in time.

(d) Helping users perform software maintenance holistically and globally with

side-effects prevention though various bidirectional traceabilities.

(e) See (6) “How Is It Possible for NSE to Help Users Reduce the Risk” and (7)

“Efficiently Handling the Issue of Changeability” for more information

about quality assurance with NSE.

(f) See Table 17.1 about how it is possible for NSE to help users remove

99.99% or more of the defects for a software product (see Chap. 17).

 4. How Is It Possible for NSE to Help Users Double Their Productivity

(a) With the old-established software engineering paradigm, linear process

models are used and dynamic testing is performed after coding, so that

defects are easily introduced into a software product upstream, and the

defects easily propagate to the maintenance phase in which the implementa-

tion of requirement changes and code modifications are performed partially

and locally, so that software maintenance takes 75% or more of the total

63324.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

effort in software development; but with NSE, the nonlinear NSE process

model is used which combines the software development process and main-

tenance process together, ensuring software quality from the first step down

to the final step through defect prevention, defect propagation prevention,

refactoring, and software testing dynamically using the Transparent-box

method in the entire software system development lifecycle, so that the

defects propagated into maintenance phase are greatly reduced, plus that the

implementation of requirement changes and code modifications are per-

formed holistically and globally with side-effect prevention – the result is

that the effort spent in software maintenance will be almost the same as that

spent in the software development process. It means about two-thirds of the

effort originally spent in software maintenance can be saved – about half of

the total effort can be saved (equal to double the productivity).

(b) As described in (3), with NSE about 99.99% of the defects can be removed.

So that as Capers Jones pointed, “Focus on quality, and productivity will

follow” [Jon94].

(c) NSE also supports the reuse of qualified components (see Chap. 8, Sect. 8.10

(5)) to increase software productivity.

(d) With NSE, the NSE software documentation paradigm (see Chap. 19) and

NSE software visualization paradigm support traceability between the soft-

ware documents and source code, making a software product much easier to

read, understand, test, and maintain to increase the productivity.

(e) With NSE, there are more means to help users increase their productivity:

Provides techniques and automated tools to help users manage and con-•฀

trol their software projects better.

Provides automated tools and templates to help users execute their proj-•฀

ect development plan easily.

Provides techniques and visual tools to help users perform requirement •฀

development, product design, and bug fixing quickly.

Supports reverse engineering to generate a lot of design documents •฀

automatically.

Supports incremental and visual coding.•฀

Provides techniques and automated complexity analysis tools to help •฀

users design their test plan quickly.

Provides techniques and tools to help users perform test case design effi-•฀

ciently through unexecuted path analysis.

Provides techniques and tools for capturing GUI operations and playing •฀

them back automatically.

Provides techniques and automated tools for test case efficiency analysis •฀

and test case minimization, to help users perform regression testing

quickly (at least five times faster, in general).

Provides techniques and automated tools for incremental database man-•฀

agement, so that unchanged source files do not need to be analyzed twice

to speed up the regression process (ten times faster than other tools without

incremental database management capability).

634 24 Candidates of “Silver Bullet”

Provides techniques and automated tools to analyze the system structure, •฀

data usage, and logic flow of a users’ software product to help them manage

the product better.

Provides intelligent version comparison tools to help users maintain their •฀

product versions easier.

 5. How Is It Possible for NSE to Help Users Halve Their Cost

(a) All of the techniques and tools used for helping users double their produc-

tivity are also useful for reducing the software development cost.

(b) All techniques and tools provided for reducing 99.99% of the bugs are also

useful for reducing the software development cost.

(c) With the old-established software engineering paradigm, software mainte-

nance takes 75% or more of the total cost in software development; but with

NSE, the nonlinear NSE process model is used which combines the software

development process and maintenance process together, ensuring software

quality from the first step down to the final step through defect prevention,

defect propagation prevention, refactoring, and software testing dynamically

using the Transparent-box method in the entire software system development

lifecycle, so that the defects propagated into the maintenance phase are

greatly reduced, plus the implementation of requirement changes and code

modifications are performed holistically and globally with side-effect

 prevention – the result is that the effort spent in software maintenance will be

almost the same as that spent in the software development process, meaning

that about two-thirds of the cost originally spent in software maintenance can

be saved – about half of the total cost can be saved as shown in Fig. 24.10.

(d) Provides techniques and tools to diagram the entire system of a user’s product

and links the related parts to each other, making code inspection and walk-

through much easier to perform.

(e) Supports efficient regression testing using minimized test cases.

(f) Provides techniques and tools to capture users’ GUI operations and play

them back to reduce regression test costs, plus

Provides techniques and visual tools to help users quickly perform •฀

requirement development, functional decomposition, and bug fixing

Supports reverse engineering to automatically generate design •฀

documents

Supports incremental and visual coding•฀

Provides automated tools for complexity analysis to help users design •฀

their test plan rapidly

Provides tools to help users perform efficient test case design•฀

Provides techniques and tools for capturing GUI operations and playing •฀

them back

Provides techniques and automated tools for test case efficiency analysis •฀

and test case minimization

Provides techniques and tools to diagram the entire system of a user’s soft-•฀

ware product for immediate product comprehension and under standing

63524.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

Fig. 24.10 Estimated effort and cost spent in software development and software maintenance

Provides techniques and automated tools to analyze the system structure, •฀

data usage, and logic flow of users’ software products for better product

management

Provides intelligent version comparison tools to help users maintain their •฀

products effortlessly

Provides automatic forward and backward traceability among require-•฀

ment specifications, design documents, test cases, source code, and tests,

making the software product easier to understand, test, and maintain

 6. How Is It Possible for NSE to Help Users Reduce the Risk

(a) Helping users work with the customer to assign a priority order to require-

ments according to the importance for implementing the important require-

ments earlier.

(b) Helping users perform prototype design and testing for important and unfa-

miliar requirements to prevent unrealizable requirements.

(c) Helping users estimate the cost better using the designed dummy system

through dummy programming.

(d) Making it possible to help users remove 99.99% of the defects in the

designed product, double their productivity, and halve their cost – further

reducing the risk.

 7. Efficiently Handling the Issue of Changeability

(a) Responds to requirement changes in “real-time” without waiting for a

milestone.

636 24 Candidates of “Silver Bullet”

(b) Helps users communicate about the changes through a corresponding title

in a Project BBS with detailed information that is traceable with the require-

ments and source code (also with face-to-face meetings).

(c) Supports side-effect prevention for the implementation of requirement

changes through various traceabilities:

Helps users perform forward tracing from the test cases(s) related to the •฀

requirement to be changed to determine what modules should be modi-

fied for a requirement change – see Fig. 24.11.

Helps users perform backward tracing to check related requirements of •฀

the modified modules for preventing requirement conflicts (in this exam-

ple, two requirements are related) – see Fig. 24.12.

Helps users check what other modules may also need to change with the •฀

modification – see Fig. 24.13.

After modification, helps users check all related call statements for defect •฀

prevention – see Fig. 24.14.

Helps users perform efficient regression testing through related test case •฀

collection based on backward traceability – see Fig. 24.15.

Helps users check the consistency of global variables or static variables – •฀

see Fig. 24.16.

 8. Efficiently Handling the Issues of Complexity

(a) “Complexity is by levels

Hierarchically, by layered modules or objects•฀

Incrementally, so that the system always works” [•฀ Bro95-P211]

With NSE, HAETVE (Holistic, Actor–Action and Event–Response –

driven, Traceable, Visual, and Executable) technique for top-down

function decomposition of functional requirements

Fig. 24.11 Forward tracing for finding the modules to be modified

Fig. 24.13 Helps users checks what other modules may also need to be changed with the modification

Fig. 24.12 Backward tracing from the module(s) to be modified to see how many requirements
are related (if more than one requirement is related, the modification must satisfy all of them)

638 24 Candidates of “Silver Bullet”

Fig. 24.14 Checking all related call statements for defect prevention

Fig. 24.15 Test cases selection through backward tracing for efficient regression testing (in this
example, when code segment s3 is modified, only one test case is needed)

63924.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

F
ig

.
2
4
.1

6

C
h
ec

k
in

g
 v

ar
ia

b
le

 c
o
n
si

st
en

cy

640 24 Candidates of “Silver Bullet”

With NSE, the software development methodology is based on the –

Generative Holism principle that the whole of a software system is

formed first as an embryo, then it grows up with its components incre-

mentally. A system leveling process is shown in Fig. 24.17.

(b) Complying with the Nonlinearity principle and the Holism principle, with

NSE almost all software development tasks and activities are performed

holistically and globally. For instance, the implementation of requirement

changes or code modifications are performed holistically and globally with

side-effect prevention supported by various traceabilities.

(c) Making the entire software development process and the work products

visible through the applications of the NSE software visualization

paradigm.

(d) Helping users perform refactoring for the program modules with higher

Cyclomatic complexity.

(e) For dynamic traceability-based understanding of the complexity and struc-

ture of software and its ecosystem, see Fig. 24–18 to Fig. 24–20.

(f) For comprehensive (static + dynamic) program element analysis, see

Fig. 24.21 and Fig. 24.22.

 9. Efficiently Handling the Issues of Invisibility

With the NSE software visualization paradigm, NSE makes the entire software

development process and the work products visible.

Fig. 24.17 An application example of Top-Down system leveling

64124.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

Fig. 24.23 and Fig. 24.24 show the types of graphics provided/supported.

With NSE, software charts and diagrams can be automatically generated from

both dummy programs and regular programs as shown in Fig. 24.25.

About the detailed application examples for making the entire software develop-

ment process and work products visible, see Chap. 7, Sect. 7.9.

10. Efficiently Handling the Issue of Conformity

(a) Making all documents and test cases and source code traceable forwards and

backwards as shown in Fig. 24.26 through the execution of test cases and the

Time Tags automatically inserted into both the description part of a test case and

the corresponding test coverage database, and some special keywords such as

@WORD@, @HTML@, @PDF@, @EXCEL@, and @BAT@ to indicate the

format of a document followed by the file path and bookmark to open the docu-

ment form the bookmark location.

(b) After the implementation of requirement changes or code modifications, solv-

ing the inconsistency problems between design documents and the modified

source code through bidirectional traceability – see Fig. 24.27.

Fig. 24.18 A call graph without and with dynamic traceability

642 24 Candidates of “Silver Bullet”

Fig. 24.18 (continued)

64324.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

Fig. 24.19 Tracing a module backwardly to highlight the related test cases and the related
requirements (in this example, two sub-requirements are traced, so that the modification of this
module must satisfy both requirements to prevent inconsistent defects)

Fig. 24.20 Program structure analysis based sub-system isolation

644 24 Candidates of “Silver Bullet”

Fig. 24.22 Sample reports of comprehensive (static + dynamic) program element analysis

Fig. 24.21 A report list of comprehensive (static + dynamic) class and other program element
analysis

64524.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm

Fig. 24.24 More graphic types provided with NSE

Fig. 24.23 Graphic types provided with NSE

646 24 Candidates of “Silver Bullet”

Fig. 24.25 Entire software development lifecycle visualization support

Fig. 24.26 With NSE all related documents and test cases and source code are traceable

64724.8 Summary

24.8 Summary

Software has become the driving force for the development of all kinds of businesses,

engineering, sciences, and the global economy. But unfortunately, software itself is

not well engineered – unreliable and almost unmaintainable. The root cause is that

the old-established software engineering paradigm based on linear thinking, reduc-

tionism, and the superposition principle is entirely outdated – with it, almost all

software development tasks and activities are performed linearly, partially, and

locally, making software “Werewolves” (a monster of missed schedules, blown bud-

gets, and flawed products) exist for more than 50 years and hard to find “Silver

Bullets” to slay them.

For efficiently slaying the software werewolves, a new software engineering

paradigm, the NSE paradigm is established which is based on complexity science

by complying with the essential principles of complexity science, particularly the

Nonlinearity principle and the Holism principle that the whole of a complex system

is greater than the sum of its components, and the characteristics and behaviors

emerge from the interaction of its components, so that with NSE, almost all soft-

ware development tasks and activities are performed holistically and globally.

Preliminary applications show that compared with the old-established software

engineering paradigm, it is possible for NSE to help software development organi-

zations double their productivity and their project success rate, halve their cost,

remove 99.99% of defect in their software products, and greatly reduce the software

development risks.

Fig. 24.27 Keeping consistency between documents and the source code through traceability

648 24 Candidates of “Silver Bullet”

Bringing revolutionary changes to almost all aspects in software engineering, NSE

could be a qualified candidate of the “Silver Bullet” to slay the software “Werewolves” –

a monster of missed schedules, blown budgets, and flawed products.

24.9 Points and Questions to Ponder

(a) Can any single development, in either technology or management technique

efficiently solve the critical problems existing with today’s software develop-

ment: low quality and productivity, high cost and risk? Why?

(b) Does a qualified “Silver Bullet” which is able to slay software “Werewolves”

(a monster of missed schedules, blown budgets, and flawed products) mean a

complete revolution in software engineering through a paradigm shift from the

old one based on reductionism and the superposition principle to a revolutionary

one based on complexity science? Why?

(c) What are the major differences between the old-established software engineer-

ing paradigm and NSE?

(d) Refer to Chap. 1, use the NSE-CLICK tool to view the examples as described in

Chap. 1; then use S_Panorama (for C/C++) or S_Panojava (for Java) product

included in the CD attached with this book for your small project development

through all major processes, including the following:

 1. The preprocess to assign priority to the requirements.

 2. Perform prototype design, testing, and review.

 3. Through dummy programming, use the HAETVE technique (see Chap. 11)

to perform function decomposition of functional requirements, write the

requirement specification using the corresponding template (see Appendix

A), use bookmarks to specify the relationship of the requirement specifica-

tion, the prototype design documents, the testing requirement specifica-

tion, the project plan, etc.

 4. Design the corresponding test script and test cases according to the simple

rules (see Chap. 9) – must indicate the expected execution path, and the

related documents using the corresponding keyword for each test case.

 5. Use the OO-Browser tool (see the corresponding user manual) to generate

the call graph, then use the traceability to review the work products for

static defect removal.

 6. Use the OO-Test tool to execute your test cases using the Transparent-box

method and meet the MC/DC test coverage requirement (see Appendix B).

 7. Use OO-Browser and OO-Diagrammer to graphically show your testing

results, then check whether there are logic defects or inconsistent defects – if

there are, remove them; If necessary, go back to the upstream phase.

 8. Use the function decomposition result and the “Synthesis Design and

Incremental growing up” Technique to perform preliminary system design,

and then perform detailed system design. After that repeat steps steps 4–7

and 9 or if something unexpected is found, go back to the upstream

phases.

649References

 9. On the generated call graph, assign the bottom-up coding order.

10. According to the coding order, perform unit programming the testing

incrementally; if something unexpected is found, go back to the upstream

phases.

11. Use OO-Test to perform system testing; repeat steps (d)–(g), then go to

step (l).

12. Use OO-Diagrammer to generate the logic diagram of your entire product,

perform static review using the traceable diagrammed code.

13. Use the OO-Validate tool to remove inconsistent defects through bidirec-

tional traceability.

14. Use other tools of S_Panorama or S_Panojava to perform quality measure-

ment, static and dynamic program measurement, memory leak checking,

performance measurement, tracing the execution path for each runtime

error, and more.

15. Try side-effect prevention for requirement changes or code modification.

16. Make a summary of your project development, then answer the following

questions:

Is the entire development process of your project visible?•฀

Is all of your work products for your project visible?•฀

Have you made your documents traceable to and from the source code?•฀

Have your project satisfied 100% of the MC/DC test coverage? (If it is •฀

not 100% satisfied, then answer the percentage and state the reasons).

Have you prevented the side-effects in the implementation of requirement •฀

changes and code modifications? How did you do it?

What have you learned from this small project?•฀

24.10 Further Reading and Information Source

(a) David Rice (2008) GEEKONOMICS the real cost of insecure software. Pearson

Education Publishing as Addison-Wesley, Reading

(b) Pressman RS (2005) The Road Ahead (Chap. 32). In: Software engineering: a

practitioner’s approach. McGraw-Hill, New York

References

 [Bro95] Brooks FP Jr (1995) The mythical man-month. Addison–Wesley, Reading
 [Bro95-P179] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,

p 170
 [Bro95-P180] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,

p 180
 [Bro95-P181] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,

p 181

650 24 Candidates of “Silver Bullet”

 [Bro95-P211] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,
p 211

 [Bro95-P274] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading,
p 274

 [Coc08] Alistair C (2008) Using both incremental and iterative development, CrossTalk,
May Issue

 [Dem86] Deming WE (1986) Out of the crisis. MIT Press, Cambridge, MA
 [GSAM03] Department of the Air Force Software Technology Support Center, Condensed

GSAM handbook, chapter 2 (2003). CrossTalk
 [Hol95] Holland JH (1995) Hidden order: how adaptation builds complexity. Addison-

Wesley, Reading
 [Jon06] Jones C (2006) Social and technical reasons for software project failures.

CrossTalk, June Issue
 [Jon94] Jones C (1994) Assessment and control of software risks. Prentice Hall,

Englewood Cliffs, p 619
 [Pre05-P4] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,

New York, p 4
 [Ric08] Rice D (2008) Geekonomics the real cost of insecure software. Pearson,

Reading
 [Ros08] Dave R (2008) Total economic cost of insecure software: $180 billion a year in

the U.S. http://www.news.cnet.com/8301-13846_3-9978812-62.html
 [Xio09-1] Jay X (2009) Tutorial, a complete revolution in software engineering based on

complexity science, WORLDCOMP’09, Las Vegas, July 13–17, 2009
 [Xio09-2] Jay X, Jonathan X (2009) A complete revolution in software engineering based

on complexity science, WORLDCOMP’09 – SERP (Software Engineering
Research and Practice 2009), pp 109–115

http://www.news.cnet.com/8301-13846_3-9978812-62.html

651J. Xiong, New Software Engineering Paradigm Based on Complexity Science:

An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9,

© Springer Science+Business Media, LLC 2011

Items that are intended to stay in as part of your document are in bold; explanatory comments

are in italic text. Plain text is used where you might insert wording about your project.

This document is an outline for specifying software requirements with NSE,

adapted from the IEEE Guide to Software Requirements Specifications (Std 830-

1998 and Std 830-1993). The corresponding file name of this document in the

provided disk (or virtual “disk” held on a Web site) of this book is NSE_SRS.doc

with bookmarks inserted, so that the information can be easily used in the descrip-

tion part of the related test cases for establishing automated and self-maintainable

traceability among all the related documents and test cases and the source code (see

Chap. 9 for guidance and examples). It is recommended for the customer and the

software development organization to work closely together to write and maintain

the software requirement specification document.

With NSE, it is recommended to use the HAETVE (Holistic, Actor–Action and

Event–Response driven, Traceable, Visual, and Executable) technique (see

Chap. 11) through dummy programming using dummy modules (only providing

the dummy source code is good enough, providing both the source code and cor-

responding J-Chart is better) to replace the Use Case approach in the requirement

specification.

NSE Software Requirements Specification Template

For

<Project>

Version 1.0 approved

Prepared by <author>

<organization>

<date created>

Revision History

Appendix A

Software Requirements Specification Template
To Be Used with NSE

652 Appendix A

Name Date Reason For change Approval Version

Table of Contents

 1 Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms, and Abbreviations

1.4 References

1.5 Overview

 2 The Overall Description

2.1 Product Perspective

 2.1.1 System Interfaces

 2.1.2 User Interfaces

 2.1.3 Hardware Interfaces

 2.1.4 Software Interfaces

 2.1.5 Communications Interfaces

 2.1.6 Memory Constraints

 2.1.7 Operations

 2.1.8 Site Adaptation Requirements

2.2 Product Functions

2.3 User Characteristics

2.4 Constraints

2.5 Assumptions and Dependencies

2.6 Apportioning of Requirements

 3 Specific Requirements

3.1 External Interfaces

3.2 Functions

3.3 Performance Requirements

3.4 Logical Database Requirements

3.5 Design Constraints

 3.5.1 Standards Compliance

3.6 Software System Attributes

 3.6.1 Reliability

 3.6.2 Availability

 3.6.3 Security

 3.6.4 Maintainability

 3.6.5 Portability

3.7 Organizing the Specific Requirements

 3.7.1 System Mode

 3.7.2 User Class

 3.7.3 Objects

653Appendix A

 3.7.4 Feature

 3.7.5 Stimulus

 3.7.6 Response

 3.7.7 Functional Hierarchy

3.8 Additional Comments

 4 Supporting Information

 5 Change Management Process

 6 Document Approvals

 7 Delivery

 8 Appendix

1 Introduction

The introduction of the SRS should provide an overview of the entire SRS. It should

contain the following subsections:

 (a) Purpose

 (b) Scope

 (c) Definitions, acronyms, and abbreviations

 (d) References

 (e) Overview

1.1 Purpose

This subsection should

 (a) Delineate the purpose of the SRS

 (b) Specify the intended audience for the SRS

1.2 Scope

In this subsection:

 (a) Identify the software product(s) to be produced by name

 (b) Explain what the software product(s) will, and, if necessary, will not do

 (c) Describe the application of the software being specified, including relevant

benefits, objectives, and goals

 (d) Be consistent with similar statements in higher-level specifications if they

exist

654 Appendix A

1.3 Definitions, Acronyms, and Abbreviations

This subsection should provide the definitions of all terms, acronyms, and abbrevia-

tions required to properly interpret the SRS. This information may be provided by

reference to one or more appendixes in the SRS or by reference to other

documents.

1.4 References

In this subsection:

 1. Provide a complete list of all documents referenced elsewhere in the SRS

 2. Identify each document by title, report number (if applicable), date, and publish-

ing organization

 3. Specify the sources from which the references can be obtained

This information may be provided by reference to an appendix or to another

document.

1.5 Overview

In this subsection:

 1. Describe what the rest of the SRS contains

 2. Explain how the SRS is organized

2 The Overall Description

This section of the SRS should describe the general factors that affect the product

and its requirements. This section does not state specific requirements. Instead, it

provides a background for those requirements, which are defined in detail in Sect. 3

of the SRS, and makes them easier to understand. This section usually consists of

six subsections as follows:

 (a) Product perspective

 (b) Product functions

 (c) User characteristics

 (d) Constraints

 (e) Assumptions and dependencies

 (f) Apportioning of requirements

655Appendix A

2.1 Product Perspective

This subsection of the SRS should put the product into perspective with other

related products. If the product is independent and totally self-contained, it should

be so stated here. If the SRS defines a product that is a component of a larger

 system, as frequently occurs, then this subsection should relate the requirements of

that larger system to functionality of the software and should identify interfaces

between that system and the software. A block diagram showing the major

 components of the larger system, interconnections, and external interfaces can be

helpful.

This subsection should also describe how the software operates inside various

constraints. For example, these constraints could include

 (a) System interfaces

 (b) User interfaces

 (c) Hardware interfaces

 (d) Software interfaces

 (e) Communications interfaces

 (f) Memory

 (g) Operations

 (h) Site adaptation requirements

2.1.1 System Interfaces

This should list each system interface and identify the functionality of the software

to accomplish the system requirement and the interface description to match the

system.

2.1.2 User Interfaces

This should specify the following:

 (a) The logical characteristics of each interface between the software product

and its users. This includes those configuration characteristics (e.g., required

screen formats, page or window layouts, content of any reports or menus, or

availability of programmable function keys) necessary to accomplish the soft-

ware requirements.

 (b) All the aspects of optimizing the interface with the person who must use the

system.

This is a description of how the system will interact with its users. Is there a GUI,

a command line or some other type of interface? Are there special interface

requirements? If you are designing for the general student population, for instance,

what is the impact of ADA (American with Disabilities Act) on your interface?

656 Appendix A

2.1.3 Hardware Interfaces

This should specify the logical characteristics of each interface between the soft-

ware product and the hardware components of the system. This includes configura-

tion characteristics (number of ports, instruction sets, etc.). It also covers such

matters as what devices are to be supported, how they are to be supported, and

protocols. For example, terminal support may specify full-screen support as

opposed to line-by-line support.

2.1.4 Software Interfaces

Specify the use of other required software products and interfaces with other appli-

cation systems. For each required software product, include:

 1. Name

 2. Mnemonic

 3. Specification number

 4. Version number

 5. Source

For each interface, provide:

 1. Discussion of the purpose of the interfacing software as related to this software

product

 2. Definition of the interface in terms of message content and format

2.1.5 Communications Interfaces

Specify the various interfaces to communications such as local network protocols,

etc. These are protocols you will need to directly interact with.

With NSE, for improving the communication capability and efficiency, besides

the developer’s internal Web site, it is recommended to share an extra Project Web

Site and the BBS held in the customer site or the developer site, then make the Web

pages and the index pages of the BBS traceable to the requirements and the source

code (see an application example shown in Fig. 8.17).

List:

 1. The URL for the index page of the shared Web site

 2. The URL for the index page of the BBS

 3. The URL for the feedback page

 4. Other important URLs

2.1.6 Memory Constraints

Specify any applicable characteristics and limits on primary and secondary mem-

ory. Do not just make up something here. If all the customer’s machines have only

657Appendix A

128 KB of RAM, then your target design has got to come under 128 KB so there is

an actual requirement. You could also cite market research here for shrink–wrap

type applications “Focus groups have determined that our target market has

between 256 and 512 MB of RAM, therefore the design footprint should not exceed

256 MB.” If there are no memory constraints, so state.

With NSE, memory leak and usage violation should be checked and reported

(see Fig. 16.8).

2.1.7 Operations

Specify the normal and special operations required by the user such as:

 1. The various modes of operations in the user organization

 2. Periods of interactive operations and periods of unattended operations

 3. Data processing support functions

 4. Backup and recovery operations

(Note: This is sometimes specified as part of User Interfaces) If you separate this

from the UI stuff earlier, then cover business process type stuff that would impact

the design. For instance, if the company brings all their systems down at midnight

for data backup that might impact the design. These are all the work tasks that

impact the design of an application, but which might not be located in software.

2.1.8 Site Adaptation Requirements

In this section:

 1. Define the requirements for any data or initialization sequences that are specific

to a given site, mission, or operational mode

 2. Specify the site or mission-related features that should be modified to adapt the

software to a particular installation

If any modifications to the customer’s work area would be required by your system, then

document that here. For instance, “A 100 KW backup generator and 10,000 BTU air

conditioning system must be installed at the user site prior to software installation.”

This could also be software-specific like, “New data tables created for this sys-

tem must be installed on the company’s existing DB server and populated prior to

system activation.” Any equipment the customer would need to buy or any software

setup that needs to be done so that your system will install and operate correctly

should be documented here.

2.2 Product Functions

This subsection of the SRS should provide a summary of the major functions that the

software will perform. For example, an SRS for an accounting program may use this

658 Appendix A

part to address customer account maintenance, customer statement, and invoice

preparation without mentioning the vast amount of detail that each of those functions

requires. Sometimes the function summary that is necessary for this part can be taken

directly from the section of the higher-level specification (if one exists) that allocates

particular functions to the software product. Note that for the sake of clarity:

 (a) The functions should be organized in a way that makes the list of functions under-

standable to the customer or to anyone else reading the document for the first time.

 (b) Textual or graphical methods can be used to show the different functions and

their relationships. Such a diagram is not intended to show a design of a product,

but simply shows the logical relationships among variables.

2.3 User Characteristics

This subsection of the SRS should describe those general characteristics of the intended

users of the product including educational level, experience, and technical expertise. It

should not be used to state specific requirements, but rather should provide the reasons

why certain specific requirements are later specified in Sect. 3 of the SRS.

2.4 Constraints

This subsection of the SRS should provide a general description of any other items

that will limit the developer’s options. These include

 (a) Regulatory policies

 (b) Hardware limitations (e.g., signal timing requirements)

 (c) Interfaces to other applications

 (d) Parallel operation

 (e) Audit functions

 (f) Control functions

 (g) Higher-order language requirements

 (h) Signal handshake protocols (e.g., XON-XOFF and ACK-NACK)

 (i) Reliability requirements

 (j) Criticality of the application

 (k) Safety and security considerations

2.5 Assumptions and Dependencies

This subsection of the SRS should list each of the factors that affect the require-

ments stated in the SRS. These factors are not design constraints on the software

659Appendix A

but are, rather, any changes to them that can affect the requirements in the SRS. For

example, an assumption may be that a specific operating system will be available

on the hardware designated for the software product. If, in fact, the operating sys-

tem is not available, the SRS would then have to change accordingly.

2.6 Apportioning of Requirements

This subsection of the SRS should identify requirements that may be delayed until

future versions of the system.

3 Specific Requirements

This section of the SRS should contain all of the software requirements to a level of

detail sufficient to enable designers to design a system to satisfy those require-

ments, and testers to test that the system satisfies those requirements. Throughout

this section, every stated requirement should be externally perceivable by users,

operators, or other external systems. These requirements should include at a mini-

mum a description of every input (stimulus) into the system, every output (response)

from the system, and all functions performed by the system in response to an input

or in support of an output. As this is often the largest and most important part of

the SRS, the following principles apply:

 (a) Specific requirements should be stated in conformance with all the characteris-

tics described in Sect. 4.3.

 (b) Specific requirements should be cross-referenced to earlier documents that

relate.

 (c) All requirements should be uniquely identifiable.

 (d) Careful attention should be given to organizing the requirements to maximize

readability.

Before examining specific ways of organizing the requirements, it is helpful to

understand the various items that comprise requirements as described in

Sects. 3.1–3.7.

3.1 External Interfaces

This contains a detailed description of all inputs into and outputs from the software

system. It complements the interface descriptions in Sect. 2 but does not repeat

information there. Remember Sect. 2 presents information oriented to the customer/

user while Sect. 3 is oriented to the developer.

660 Appendix A

It contains both content and format as follows:

•฀ Name of item

•฀ Description of purpose

•฀ Source of input or destination of output

•฀ Valid range, accuracy, and/or tolerance

•฀ Units of measure

•฀ Timing

•฀ Relationships to other inputs/outputs

•฀ Screen formats/organization

•฀ Window formats/organization

•฀ Data formats

•฀ Command formats

•฀ End messages

3.2 Functions

Functional requirements define the fundamental actions that must take place in the soft-

ware in accepting and processing the inputs and in processing and generating the outputs.

These are generally listed as “shall” statements starting with “The system shall…”

These include:

•฀ Validity checks on the inputs

•฀ Exact sequence of operations

•฀ Responses to abnormal situations, including

 – Overflow

 – Communication facilities

 – Error handling and recovery

•฀ Effect of parameters

•฀ Relationship of outputs to inputs, including

 – Input/Output sequences

Formulas for input to output conversion –

It may be appropriate to partition the functional requirements into subfunctions or sub-

processes. This does not imply that the software design will also be partitioned that way.

3.3 Performance Requirements

This subsection specifies both the static and the dynamic numerical requirements

placed on the software or on human interaction with the software, as a whole. Static

numerical requirements may include:

 (a) The number of terminals to be supported

 (b) The number of simultaneous users to be supported

 (c) Amount and type of information to be handled

661Appendix A

Static numerical requirements are sometimes identified under a separate section

entitled capacity.

Dynamic numerical requirements may include, for example, the numbers of

transactions and tasks and the amount of data to be processed within certain time

periods for both normal and peak workload conditions.

All of these requirements should be stated in measurable terms.

For example,

95% of the transactions shall be processed in less than 1 s

rather than,

An operator shall not have to wait for the transaction to complete.

(Note: Numerical limits applied to one specific function are normally specified as

part of the processing subparagraph description of that function.)

3.4 Logical Database Requirements

This section specifies the logical requirements for any information that is to be

placed into a database. This may include:

•฀ Types of information used by various functions

•฀ Frequency of use

•฀ Accessing capabilities

•฀ Data entities and their relationships

•฀ Integrity constraints

•฀ Data retention requirements

If the customer provided you with data models, those can be presented here. ER

diagrams (or static class diagrams) can be useful here to show complex data rela-

tionships. Remember a diagram is worth a thousand words of confusing text.

3.5 Design Constraints

Specify design constraints that can be imposed by other standards, hardware limi-

tations, etc.

3.5.1 Standards Compliance

Specify the requirements derived from existing standards or regulations. They might

include:

 1. Report format

 2. Data naming

662 Appendix A

 3. Accounting procedures

 4. Audit tracing

For example, this could specify the requirement for software to trace processing activity.

Such traces are needed for some applications to meet minimum regulatory or financial

standards. An audit trace requirement may, for example, state that all changes to a

payroll database must be recorded in a trace file with before and after values.

3.6 Software System Attributes

There are a number of attributes of software that can serve as requirements. It is

important that required attributes be specified so that their achievement can be

objectively verified. The following items provide a partial list of examples. These

are also known as nonfunctional requirements or quality attributes.

These are characteristics the system must possess, but that pervade (or cross-

cut) the design. These requirements have to be testable just like the functional

requirements. It is easy to start philosophizing here, but keep it specific.

3.6.1 Reliability

Specify the factors required to establish the required reliability of the software sys-

tem at the time of delivery. If you have MTBF requirements, express them here. This

does not refer to just having a program that does not crash. This has a specific

engineering meaning.

3.6.2 Availability

Specify the factors required to guarantee a defined availability level for the entire

system such as checkpoint, recovery, and restart. This is somewhat related to reli-

ability. Some systems run only infrequently on-demand (like MS Word). Some sys-

tems have to run 24/7 (like an e-commerce Web site). The required availability will

greatly impact the design. What are the requirements for system recovery from a

failure? “The system shall allow users to restart the application after failure with

the loss of at most 12 characters of input”.

3.6.3 Security

Specify the factors that would protect the software from accidental or malicious

access, use, modification, destruction, or disclosure. Specific requirements in this

area could include the need to:

663Appendix A

•฀ Utilize certain cryptographic techniques

•฀ Keep specific log or history data sets

•฀ Assign certain functions to different modules

•฀ Restrict communications between some areas of the program

•฀ Check data integrity for critical variables

3.6.4 Maintainability

Specify attributes of software that relate to the ease of maintenance of the software

itself. There may be some requirement for certain modularity, interfaces, complex-

ity, etc. Requirements should not be placed here just because they are thought to be

good design practices.

3.6.5 Portability

Specify attributes of software that relate to the ease of porting the software to other

host machines and/or operating systems. This may include:

•฀ Percentage of components with host-dependent code

•฀ Percentage of code that is host dependent

•฀ Use of a proven portable language

•฀ Use of a particular compiler or language subset

•฀ Use of a particular operating system

3.7 Organizing the Specific Requirements

For anything but trivial systems, the detailed requirements tend to be extensive. For this

reason, it is recommended that careful consideration be given to organizing these in a

manner optimal for understanding. There is no one optimal organization for all systems.

Different classes of systems lend themselves to different organizations of requirements

in Sect. 3. Some of these organizations are described in the following subclasses.

3.7.1 System Mode

Some systems behave quite differently depending on the mode of operation. When

organizing by mode, there are two possible outlines. The choice depends on

whether interfaces and performance are dependent on mode.

3.7.2 User Class

Some systems provide different sets of functions to different classes of users.

664 Appendix A

3.7.3 Objects

Objects are real-world entities that have a counterpart within the system. Associ-

ated with each object is a set of attributes and functions. These functions are also

called services, methods, or processes. Note that sets of objects may share attri-

butes and services. These are grouped together as classes.

3.7.4 Feature

A feature is an externally desired service by the system that may require a sequence

of inputs to effect the desired result. Each feature is generally described in a

sequence of stimulus–response pairs.

3.7.5 Stimulus

Some systems can be best organized by describing their functions in terms of stimuli.

3.7.6 Response

Some systems can be best organized by describing their functions in support of the

generation of a response.

3.7.7 Functional Hierarchy

When none of the above organizational schemes prove helpful, the overall function-

ality can be organized into a hierarchy of functions organized by either common

inputs, common outputs, or common internal data access. Data flow diagrams and

data dictionaries can be used to show the relationships between and among the

functions and data.

With NSE, it is recommended to form a document hierarchy description table

using bookmarks to indicate what requirements are related to what design docu-

ments and other documents and the test scripts as well as the test case numbers, so

that when users want to modify a requirement or perform requirement validation,

it is easy to locate the related test cases to perform forward tracing to identify the

corresponding source code.

3.8 Additional Comments

Whenever a new SRS is contemplated, more than one of the organizational tech-

niques given in Sect. 3.7 may be appropriate. In such cases, organize the specific

665Appendix A

requirements for multiple hierarchies tailored to the specific needs of the system

under specification.

There are many notations, methods, and automated support tools available to

aid in the documentation of requirements. For the most part, their usefulness is a

function of organization. For example, when organizing by mode, finite state

machines or state charts may prove helpful; when organizing by object, object-

oriented analysis may prove helpful; when organizing by feature, stimulus–response

sequences may prove helpful; when organizing by functional hierarchy, data flow

diagrams and data dictionaries may prove helpful.

In any of the outlines below, those sections called “Functional Requirement i”

may be described in native language, in pseudo code, in a system definition

 language, or in four subsections titled: Introduction, Inputs, Processing, and

Outputs.

4 Supporting Information

The supporting information makes the SRS easier to use. It includes the following:

 (a) Table of contents

 (b) Index

 (c) Appendixes

4.1 Table of Contents and Index

The table of contents and index are quite important and should follow general

compositional practices.

4.2 Appendixes

The appendixes are not always considered part of the actual SRS and are not

always necessary. They may include

 (a) Sample input/output formats, descriptions of cost analysis studies, or results of

user surveys

 (b) Supporting or background information that can help the readers of the SRS

 (c) A description of the problems to be solved by the software

 (d) Special packaging instructions for the code and the media to meet security,

export, initial loading, or other requirements

When appendixes are included, the SRS should explicitly state whether or not the

appendixes are to be considered part of the requirements.

666 Appendix A

5 Change Management Process

Identify the change management process to be used to identify, log, evaluate, and

update the SRS to reflect changes in project scope and requirements. How are you

going to control changes to the requirements? Can the customer just call up and

ask for something new? Does your team have to reach consensus? How do

changes to requirements get submitted to the team? Formally in writing, email, or

phone call?

6 Document Approvals

Identify the approvers of the SRS document. Approver name, signature, and date

should be used.

7 Delivery

Indicate what should be delivered – with NSE, it is recommended to deliver:

 1. The computer program (source code and executable product)

 2. The data used

 3. The documents traceable to and from the source code

 4. The database built through static and dynamic measurement of the program

 5. A set of Assisted Online Agents (AOA) to support testability, visibility, reliabil-

ity, traceability, changeability, conformity, and maintainability, including a set

of AOA of NSE if the product is developed with NSE

8 Appendix

This section is optional.

Appendices may be included if any, either directly or by reference, to provide

supporting details that could aid in the understanding of the Software Require-

ments Specifications.

667Appendix A

Outline for SRS Section 3

Organized by mode: Version 1

 3 Specific Requirements

3.1 External Interface Requirements

 3.1.1 User Interfaces

 3.1.2 Hardware Interfaces

 3.1.3 Software Interfaces

 3.1.4 Communications Interfaces

3.2 Functional Requirements

 3.2.1 Mode 1

 3.2.1.1 Functional Requirement 1.1

 …

 3.2.1.n Functional Requirement 1.n

 3.2.2 Mode 2

 …

 3.2.m Mode m

 3.2.m.1 Functional Requirement m.1

 …

 3.2.m.n Functional Requirement m.n

3.3 Performance Requirements

3.4 Design Constraints

3.5 Software System Attributes

3.6 Other Requirements

Outline for SRS Section 3

Organized by mode: Version 2

 3 Specific Requirements

3.1 Functional Requirements

 3.1.1 Mode 1

 3.1.1.1 External Interfaces

 3.1.1.1.1 User Interfaces

 3.1.1.1.2 Hardware Interfaces

 3.1.1.1.3 Software Interfaces

 3.1.1.1.4 Communications Interfaces

 3.1.1.2 Functional Requirement

 3.1.1.2.1 Functional Requirement 1

 …

 3.1.1.2.n Functional Requirement n

 3.1.1.3 Performance

 3.1.2 Mode 2

 3.1.m Mode m

3.2 Design Constraints

3.3 Software System Attributes

3.4 Other Requirements

668 Appendix A

Outline for SRS Section 3

Organized by user class (i.e. different types of users → System

 Administrators, Managers, Clerks, etc.)

 3 Specific Requirements

3.1 External Interface Requirements

 3.1.1 User Interfaces

 3.1.2 Hardware Interfaces

 3.1.3 Software Interfaces

 3.1.4 Communications Interfaces

3.2 Functional Requirements

 3.2.1 User Class 1

 3.2.1.1 Functional Requirement 1.1

 …

 3.2.1.n Functional Requirement 1.n

 3.2.2 User Class 2

 …

 3.2.m User Class m

 3.2.m.1 Functional Requirement m.1

 …

 3.2.m.n Functional Requirement m.n

3.3 Performance Requirements

3.4 Design Constraints

3.5 Software System Attributes

3.6 Other Requirements

Outline for SRS Section 3

Organized by object (Good if you did an object-oriented analysis as part

of your requirements)

 3 Specific Requirements

3.1 External Interface Requirements

 3.1.1 User Interfaces

 3.1.2 Hardware Interfaces

 3.1.3 Software Interfaces

 3.1.4 Communications Interfaces

3.2 Classes/Objects

 3.2.1 Class/Object 1

 3.2.1.1 Attributes (Direct or Inherited)

 3.2.1.1.1 Attribute 1

 …

 3.2.1.1.n Attribute n

 3.2.1.2 Functions (Services, Methods, Direct, or Inherited)

 3.2.1.2.1 Functional Requirement 1.1

 …

 3.2.1.2.m Functional Requirement 1.m

669Appendix A

 3.2.1.3 Messages (Communications Received or Sent)

 3.2.2 Class/Object 2

 …

 3.2.p Class/Object p

3.3 Performance Requirements

3.4 Design Constraints

3.5 Software System Attributes

3.6 Other Requirements

Outline for SRS Section 3

Organized by feature (Good when there are clearly delimited feature sets)

 3 Specific Requirements

3.1 External Interface Requirements

 3.1.1 User Interfaces

 3.1.2 Hardware Interfaces

 3.1.3 Software Interfaces

 3.1.4 Communications Interfaces

3.2 System Features

 3.2.1 System Feature 1

 3.2.1.1 Introduction/Purpose of Feature

 3.2.1.2 Stimulus/Response Sequence

 3.2.1.3 Associated Functional Requirements

 3.2.1.3.1 Functional Requirement 1

 …

 3.2.1.3.n Functional Requirement n

 3.2.2 System Feature 2

 …

 3.2.m System Feature m

3.3 Performance Requirements

3.4 Design Constraints

3.5 Software System Attributes

3.6 Other Requirements

Outline for SRS Section 3

Organized by stimulus (Good for event-driven systems where the events

form logical groupings)

 3 Specific Requirements

3.1 External Interface Requirements

 3.1.1 User Interfaces

 3.1.2 Hardware Interfaces

 3.1.3 Software Interfaces

 3.1.4 Communications Interfaces

3.2 Functional Requirements

 3.2.1 Stimulus 1

670 Appendix A

 3.2.1.1 Functional Requirement 1.1

 …

 3.2.1.n Functional Requirement 1.n

 3.2.2 Stimulus 2

 …

3.2.m Stimulus m

 3.2.m.1 Functional Requirement m.1

 …

 3.2.m.n Functional Requirement m.n

3.3 Performance Requirements

3.4 Design Constraints

3.5 Software System Attributes

3.6 Other Requirements

Outline for SRS Section 3

Organized by response (Good for event-driven systems where the

responses form logical groupings)

 3 Specific Requirements

3.1 External Interface Requirements

 3.1.1 User Interfaces

 3.1.2 Hardware Interfaces

 3.1.3 Software Interfaces

 3.1.4 Communications Interfaces

3.2 Functional Requirements

 3.2.1 Response 1

 3.2.1.1 Functional Requirement 1.1

 …

 3.2.1.n Functional Requirement 1.n

 3.2.2 Response 2

 …

 3.2.m Response m

 3.2.m.1 Functional Requirement m.1

 …

 3.2.m.n Functional Requirement m.n

3.3 Performance Requirements

3.4 Design Constraints

3.5 Software System Attributes

3.6 Other Requirements

671Appendix A

Outline for SRS Section 3

Organized by functional hierarchy (Good if you have done structured

analysis as part of your design)

 3 Specific Requirements

3.1 External Interface Requirements

 3.1.1 User Interfaces

 3.1.2 Hardware Interfaces

 3.1.3 Software Interfaces

 3.1.4 Communications Interfaces

3.2 Functional Requirements

 3.2.1 Information Flows

 3.2.1.1 Data Flow Diagram 1

 3.2.1.1.1 Data Entities

 3.2.1.1.2 Pertinent Processes

 3.2.1.1.3 Topology

 3.2.1.2 Data Flow Diagram 2

 3.2.1.2.1 Data Entities

 3.2.1.2.2 Pertinent Processes

 3.2.1.2.3 Topology

 …

 3.2.1.n Data Flow Diagram n

 3.2.1.n.1 Data Entities

 3.2.1.n.2 Pertinent Processes

 3.2.1.n.3 Topology

 3.2.2 Process Descriptions

 3.2.2.1 Process 1

 3.2.2.1.1 Input Data Entities

 3.2.2.1.2 Algorithm or Formula of Process

 3.2.2.1.3 Affected Data Entities

 3.2.2.2 Process 2

 3.2.2.2.1 Input Data Entities

 3.2.2.2.2 Algorithm or Formula of Process

 3.2.2.2.3 Affected Data Entities

 …

 3.2.2.m Process m

 3.2.1.m.1 Input Data Entities

 3.2.1.m.2 Algorithm or Formula of Process

 3.2.1.m.3 Affected Data Entities

 3.2.3 Data Construct Specifications

 3.2.3.1 Construct 1

 3.2.3.1.1 Record Type

 3.2.3.1.2 Constituent Fields

 3.2.3.2 Construct 2

 3.2.3.2.1 Record Type

672 Appendix A

 3.2.3.2.2 Constituent Fields

 …

 3.2.3.p Construct p

 3.2.3.p.1 Record Type

 3.2.3.p.2 Constituent Fields

 3.2.4 Data Dictionary

 3.2.4.1 Data Element 1

 3.2.4.1.1 Name

 3.2.4.1.2 Representation

 3.2.4.1.3 Units/Format

 3.2.4.1.4 Precision/Accuracy

 3.2.4.1.5 Range

 3.2.4.2 Data Element 2

 3.2.4.2.1 Name

 3.2.4.2.2 Representation

 3.2.4.2.3 Units/Format

 3.2.4.2.4 Precision/Accuracy

 3.2.4.2.5 Range

 …

 3.2.4.q Data Element q

 3.2.4.q.1 Name

 3.2.4.q.2 Representation

 3.2.4.q.3 Units/Format

 3.2.4.q.4 Precision/Accuracy

 3.2.4.q.5 Range

3.3 Performance Requirements

3.4 Design Constraints

3.5 Software System Attributes

3.6 Other Requirements

Outline for SRS Section 3

Showing multiple organizations (Can’t decide? Then glob it all together)

 3 Specific Requirements

3.1 External Interface Requirements

 3.1.1 User Interfaces

 3.1.2 Hardware Interfaces

 3.1.3 Software Interfaces

 3.1.4 Communications Interfaces

3.2 Functional Requirements

 3.2.1 User Class 1

 3.2.1.1 Feature 1.1

 3.2.1.1.1 Introduction/Purpose of Feature

 3.2.1.1.2 Stimulus/Response Sequence

 3.2.1.1.3 Associated Functional Requirements

673Appendix A

 3.2.1.2 Feature 1.2

 3.2.1.2.1 Introduction/Purpose of Feature

 3.2.1.2.2 Stimulus/Response Sequence

 3.2.1.2.3 Associated Functional Requirements

 …

 3.2.1.m Feature 1.m

 3.2.1.m.1 Introduction/Purpose of Feature

 3.2.1.m.2 Stimulus/Response Sequence

 3.2.1.m.3 Associated Functional Requirements

 3.2.2 User Class 2

 …

 3.2.n User Class n

3.3 Performance Requirements

3.4 Design Constraints

3.5 Software System Attributes

3.6 Other Requirements

Outline for SRS Section 3

Organized by HAETVE Applications

 3 Specific Requirements

3.1 External Actor Descriptions

 3.1.1 Human Actors

 3.1.2 Hardware Actors

 3.1.3 Software System Actors

3.2 HAETVE Application Descriptions

 3.2.1 (Dummy Source Code for HAETVE) 1

 3.2.2 (Dummy Source Code for HAETVE) 2

 …

 3.2.n (Dummy Source Code for HAETVE) n

3.3 Performance Requirements

3.4 Design Constraints

3.5 Software System Attributes

3.6 Other Requirements

675

Appendix B

An Example About How to Realize 100%
MC/DC (Modified Condition/Decision
Coverage) for a Program Unit

In this appendix, an example is used for illustrating the test coverage analysis

metrics of Panorama C/C++ for Windows XP.

SUM_PRODUCT is a sample program which requests the input of three inte-

gers: LOW, HIGH, and MAX. The integers should not be negative, otherwise an

error message will be given.

The source code of SUM_PRO.cpp is listed below:

676 Appendix B

Note: if it is for Panorama C, the file name SUM_PRO.cpp must be renamed to

SUM_PRO.c.

A SUM_PRO.hsi file is generated from the Makefile of SUM_PRO.exe and

loaded into the main menu of Panorama. Then, a.dbs file is created for SUM_PRO.

exe. To capture the dynamic test coverage data, SUM_PRO.exe is executed with

several groups of integers as listed below:

LOW HIGH MAX

2 8 0

10 20 12

10 1 11

2 8 −2

2 −2 8

−2 2 8

A series of J-Flow and J-Diagrams in OO-Diagrammer are listed to show the

changes of accumulated test coverage each time when SUM_PRO.exe is

executed.

Note: in this Appendix, the test coverage refers to the accumulated test coverage

in order to show the result of all the executions.

Before the execution of SUM_PRO.exe, the test coverage of the code is zero.

This is reflected in the Bar graph and diagrams given below (Figs. B.1–B.3):

Fig. B.1 Bar graph in OO-Diagrammer:

the test coverage data are all zeros (here, J-Coverage means MC/DC)

The Makefile of SUM_PRO.exe is listed below:

677Appendix B

Fig. B.2 J-Flow in OO-Diagrammer:

all the elements are untested and highlighted

678 Appendix B

Fig. B.3 J-Diagram in OO-Diagrammer:

accumulated test coverage: all the elements are untested and highlighted

679Appendix B

To execute the sample program, type SUM_PRO.exe in the appropriate directory

at the prompt:

C: >\Func\SUM_PRO\sum_pro.exe

Enter positive integers LOW, HIGH, and MAX: 2 8 0

LOW = 2 HIGH = 8 MAX = 0

The bold characters above are typed in at the prompts, while the italic characters

are displayed by the sample program SUM_PRO.

Then check the Bar graph, J-Flow, and J-Diagram in OO-Diagrammer. Select

the accumulated test coverage on the corresponding Options dialog box, then click

OK. The test coverage data are automatically updated (Figs. B.4–B.6):

Fig. B.4 Bar graph in OO-Diagrammer:

after the first execution of sum_pro.exe, the test coverage results are to be improved

680 Appendix B

Fig. B.5 J-Flow in OO-Diagrammer:

after the first execution of sum_pro.exe

681Appendix B

Fig. B.6 J-Diagram in OO-Diagrammer:

after the first execution of sum_pro.exe

682 Appendix B

Now, execute SUM_PRO.exe again. This time three integers 10, 20, and 12 are

inputted. SUM_PRO.exe outputs, from 10 to 20, 11 groups of equations:

C: >\Func\SUM_PRO\sum_pro.exe

Enter positive integers LOW, HIGH, and MAX: 10 20 12

LOW = 10 HIGH = 20 MAX = 12

10 + 10 = 20 10 * 10 = 100

11 + 11 = 22 11 * 11 = 121

12 + 12 = 24 12 * 12 = 144

13 + 13 = 26 13 * 13 = 169

14 + 14 = 28 14 * 14 = 196

15 + 15 = 30 15 * 15 = 225

16 + 16 = 32 16 * 16 = 256

17 + 17 = 34 17 * 17 = 289

18 + 18 = 36 18 * 18 = 324

19 + 19 = 38 19 * 19 = 361

20 + 20 = 40 20 * 20 = 400

The bold characters above are typed in at the prompts, while the italic characters

are displayed by the sample program SUM_PRO.exe.

Then check the Bar graph, J-Flow, and J-Diagram in OO-Diagrammer. Select

the accumulated test coverage data on the corresponding Options dialog box, then

click OK. The test coverage data on the diagrams are automatically updated

(Figs. B.7–B.9):

Fig. B.7 Bar graph in OO-Diagrammer:

the test coverage data have increased significantly

683Appendix B

Fig. B.8 J-Flow in OO-Diagrammer:

accumulated test coverage after the second execution

684 Appendix B

Fig. B.9 J-Diagram in OO-Diagrammer: accumulated test coverage:

the number of unexecuted elements highlighted has been greatly decreased compared with the

diagrams before

685Appendix B

Now, execute SUM_PRO.exe again to increase its test coverage further. This

time integers 10, 1, 11 are inputted.

C: >\Func\SUM_PRO\sum_pro.exe

Enter positive integers LOW, HIGH, and MAX:10 1 11

LOW = 10 HIGH = 1 MAX = 11

The bold characters above are typed in at the prompts, while the italic characters

are displayed by the sample program SUM_PRO.exe.

Since Low =10 > High = 1, no equation is outputted this time.

Then check the Bar graph, J-Flow, and J-Diagram in OO-Diagrammer. Select

the accumulated test coverage on the corresponding Options dialog box, then click

OK. The test coverage data are automatically updated (Figs. B.10–B.12):

Fig. B.10 Bar graph in OO-Diagrammer: accumulated test coverage:

compared with Fig. B.7, one more branch and one more segment are tested. Consequently,

J-Coverage is increased by one too

686 Appendix B

Fig. B.11 J-Flow in OO-Diagrammer: accumulated test coverage:

compared with Fig. B.8, one more segment (branch) is tested

687Appendix B

Fig. B.12 J-Diagram in OO-Diagrammer: accumulated test coverage:

compared with Fig. B.9, one more segment (branch) is tested

688 Appendix B

Now, carefully observe the J-Flow or J-Diagram, you may find out that the con-

dition test coverage should be increased. Since Condition True has reached 100%

coverage, the Condition False needs to be increased.

C: >\Func\SUM_PRO\sum_pro.exe

Enter positive integers LOW, HIGH, and MAX:2 8 −2

LOW = 2 HIGH = 8 MAX = −2

Error! The input data are incorrect!

The bold characters above are typed in at the prompts, while the italic characters

are displayed by the sample program SUM_PRO.exe.

Since a negative integer is inputted, an error message is given this time.

Then check the Bar graph, J-Flow, and J-Diagram in OO-Diagrammer. Select

the accumulated test coverage on the corresponding Options dialog box, then click

OK. The test coverage data are automatically updated (Figs. B.13–B.15):

Fig. B.13 Bar graph in OO-Diagrammer:

the accumulated test coverage of SC0 branch has reached 100%. J-Coverage is increased too

689Appendix B

Fig. B.14 J-Flow in OO-Diagrammer:

accumulated test coverage: only two conditions are untested

690 Appendix B

Fig. B.15 J-Diagram in OO-Diagrammer:

accumulated test coverage: only two conditions are untested

691Appendix B

To increase the coverage of Condition False, run SUM_PRO.exe again and input

another group of integers. This time, integer High is negative.

C: >\Func\SUM_PRO\sum_pro.exe

Enter positive integers LOW, HIGH, and MAX:2 −2 8

LOW = 2 HIGH = −2 MAX = 8

Error! The input data are incorrect!

The bold characters above are typed in at the prompts, while the italic characters

are displayed by the sample program SUM_PRO.exe.

Since a negative integer High is inputted, an error message is given too.

Then check the Bar graph, J-Flow, and J-Diagram in OO-Diagrammer. Select

the accumulated test coverage in the corresponding Options dialog box, then click

OK. The test coverage data are automatically updated (Figs. B.16–B.18):

Fig. B.16 Bar graph in OO-Diagrammer:

J-Coverage has been increased

692 Appendix B

Fig. B.17 J-Flow in OO-Diagrammer:

accumulated test coverage: only one False condition is untested

693Appendix B

Fig. B.18 J-Diagram in OO-Diagrammer:

accumulated test coverage: only one False condition is untested

694 Appendix B

To cover all the conditions, run SUM_PRO.exe again and input another group of

data with negative Low integer.

C: >\Func\SUM_PRO\sum_pro.exe

Enter positive integers LOW, HIGH, and MAX: −2 2 8

LOW = −2 HIGH = 2 MAX = 8

Error! The input data are incorrect!

The bold characters above are typed in at the prompts, while the italic characters

are displayed by the sample program SUM_PRO.exe.

Since a negative integer Low is inputted, an error message is given too.

Then check the Bar graph, J-Flow, and J-Diagram in OO-Diagrammer. Select

the accumulated test coverage on the corresponding Options dialog box, then click

OK. All the conditions should have been covered (Figs. B.19–B.21):

Fig. B.19 Bar graph in OO-Diagrammer:

accumulated test coverage: all the test coverage metrics have been reached 100%

695Appendix B

Fig. B.20 J-Flow in OO-Diagrammer:

accumulated test coverage: the program sum_pro.exe is completely tested

696 Appendix B

Fig. B.21 J-Diagram in OO-Diagrammer:

accumulated test coverage: the program sum_pro.exe is completely tested

697Appendix B

From the example above, it is clearly shown how test coverage data are dis-

played on J-Flows and J-Diagrams and how the result shown may help you to

increase the coverage of your program.

Similarly, other tools of Panorama C/C++, such as the structure charts, software

metrics diagrams, reports, ActionPlus diagrams, etc., can also show the dynamic

test data vividly and help you successfully plan any further testing.

699

There are two ways provided: (1) using a global/static variable to control the return

values from a called program unit and (2) using files to control the return value of

a program unit according to the execution times.

1. The source code (here the statements shown in bold are inserted

for getting/controlling the return value in a function call statement)

(1) main.c

#include <stdio.h>

extern int sub1();

extern int sub2();

void main(argc, argv)

int argc;

char **argv;

{

int i, returned_value1, returned_value2;

if(argc == 1)

 {

 printf(“Order returned_value \n”);

 for (i = 1; i < 7; i++)

 {

 returned_value1 = sub1();

 printf(“%d \t %d\n”, i, returned_value1);

 }

 }

else

 {

 returned_value2 = sub2();

// printf (“###\n”);

 printf(“The retuned value from a unit called by the unit being

tested: %d\n”, returned_value2);

 }

printf(“\n”);

}

(2) trouble.c (a sample application program)

Appendix C

How to Control/Simulate the Return Values
of a Program Unit Being Tested

700 Appendix C

/* trouble.c */

#include <stdio.h>

static int flag = 0;

int send_value1()

{

++ flag;

 switch (flag)

 {

 case 1: return −1;

 case 2: return 0;

 case 3: return 1;

 case 4: return 32797;

 case 5: return 32798;

 case 6: return 32799;

 }

/* The original statements. */

}

int send_value2()

{

char order_file_name[] = “order_file.txt”;

char data_file_name[] = “data_file.txt”;

char line_buf[1024];

FILE *f_order, *f_data;

int order, new_order, line_number, value;

if ((f_order = fopen(order_file_name, “r”)) == NULL)

 {

 printf(“Error in opening the file of %s \n”, order_file_name);

 return −1;

 }

if((fgets(line_buf, sizeof (line_buf), f_order))!=NULL)

 {

 sscanf(line_buf, “%d”, &order);

 fclose (f_order);

 new_order = order +1;

 if((f_order = fopen(order_file_name, “w”)) == NULL)

 {

 printf(“Error in reading the file of %s \n”,

order_file_name);

 return −1;

 }

 fprintf(f_order, “%d”, new_order);

 fclose (f_order);

 }

else

 {

 printf(“Error in reading data from the file of %s \n”,

order_file_name);

 return −1;

 }

if((f_data = fopen(data_file_name,”r”)) == NULL)

 {

 printf(“Error in reading the data file of %s \n”,

data_file_name);

701Appendix C

 return −1;

 }

line_number = 1;

while ((fgets(line_buf, sizeof (line_buf), f_data)) != NULL)

 {

 if(line_number == order) /* It is the right value to be used. */

 {

 sscanf (line_buf, “%d”, &value);

 fclose(f_data);

 return value;

 }

 ++line_number;

 }

fclose(f_data);

/* The original code statements. */

}

int sub1()

{

/* Original code statements */

return send_value1();

}

int sub2()

{

/* Original code statements */

return send_value2();

}

2. Other files

(1) order_file.txt

1

(2) save_order_file.txt

1

(3) data_file.txt

−1

0

1

32797

32798

32799

3. The Makefile

Some n make macros for building Win32 applications

CPU = i386

cc = cl

link = link

cflags = −c

all: trouble.exe

OBJS = main.obj trouble.obj

702 Appendix C

trouble.obj: trouble.c

 $(cc) $(cflags) $*.c

main.obj: main.c

 $(cc) $(cflags) $*.c

panounit.exe: $(OBJS)

 $(link) -out:panounit.exe -subsystem:console main.obj trouble.obj

libc.lib kernel32.lib

_

4. The batch file: run_panounit.bat

copy save_order_file.txt order_file.txt

panounit

panounit 1

panounit 2

panounit 3

panounit 4

panounit 5

panounit 6

703

Note: hints are not real answers, but something to help you make your answers.

Chapter 1

Points and Questions to Ponder

 (a) What are the major differences between the traditional software definition and the

new one defined with NSE? Do you think it is necessary to provide a software

product to the customer (not the end-user) with the database built through static and

dynamic measurement of the product, and a set of Assistant Online Agents? Why?

Hints: Traditional: Software = program + data + document, but the program and the

documents are separated without traceability that is established automatically.

With NSE: Software = program + data + documents traceable to and from the source

code, plus the database built through static and dynamic measurement of the program,

and a set of Assisted Online Agents (automated and intelligent tools working with the

program and the database) for handling the issue of complexity and supporting the

testability, visibility, changeability, conformity, reliability, and traceability – making

the software product adaptive and truly maintainable in the new working environment

at the customer site, and that the requirement validation and the acceptance testing can

be done dynamically in a fully automated way with mouse clicks only.

 (b) Are today’s software products sufficiently engineered? Why?

Hints: Today’s software products are not sufficiently engineered, because the old-

established software engineering paradigm is based on reductionism and the super-

position principle that the whole of a complex system is the sum of its components,

so that almost all software engineering tasks and activities are performed partially

and locally; many critical problems exist such as … (Please complete it).

 (c) What are the common limitations existing with current software process models?

Appendix D

Hints for Answering the “Points
and Questions to Ponder” in Each Chapter

704 Appendix D

Hints: About the common limitations with the current software process models,

refer to Section 1.4.5.2.

 (d) For efficiently supporting software maintenance, what conditions do you think

a process model or software development approach should satisfy?

Hints: The following conditions:

 1. Being able to help users perform software maintenance holistically and

globally.

 2. Being able to greatly reduce the amount of defects introduced into the

software product and propagated to the software maintenance phase

through defect prevention and defect propagation prevention performed

from the first step to the entire software development process.

 3. Being able to help users prevent the side effects for the implementation of

requirement changes or code modifications.

 4. Being able to provide the necessary means to help users greatly reduce the

time, resources requested, and cost in regression testing after the imple-

mentation of requirement changes or code modifications, such as the capa-

bility for test case efficiency analysis and test case minimization, or

automated, efficient, and intelligent test case selection.

 5. Being able to help the customer side to maintain a software product with

almost the same conditions as if the software product is maintained by the

product development side.

 (e) Although the software engineering paradigm itself is a complex system consist-

ing of many related parts which are connected closely and interactively, some

people still believe that only improving one or two parts of the software engi-

neering paradigm without improving its other parts can still dramatically

improve the overall characteristics, performance, behavior, and the problem-

solving capability of the software engineering paradigm – do you agree with

their conclusion? Why?

Hints: No. According to the Holism principle of complexity science, the charac-

teristics and behaviors of the whole of a complex system emerge from the inter-

action of its parts, and cannot be inferred simply from the behavior of its

individual components …(please complete it).

Chapter 2

 (a) How is a successful project defined?

Hints:

The definition of a successful project is one that completed within 10% or so

of its committed cost and schedule and delivered all of its intended

 functions.

 (b) What is the root cause that about 70% of software projects are failures?

705Appendix D

Hints:

 1. The foundation of the old-established software engineering paradigm is

based on linear thinking, reductionism, and the superposition principle.

 2. The old-established software engineering paradigm is outdated including

the process models, the software development methodologies, the soft-

ware testing paradigm, the quality assurance paradigm, the maintenance

paradigm, etc. (please read Sects. 2.5–2.12, write down your notes, then

close this book and make your answer)

Chapter 3

 (a) What is complexity science?

Hints:

Read Sect. 3.1, write down your notes, then close this book and make your

answer.

 (b) What are the major differences between Reductionism and Holism?

Hints:

Compare the difference: the superposition principle and the Holism princi-

ple (about how to handle the relationship between the whole of a complex

system and its parts).

 (c) What are the essential principles of complexity science? How are they related

to the establishment of NSE?

Hints:

Read Sect. 3.2, write down your notes, then close this book and make your

answer.

The essential principles of complexity science are the foundation for estab-

lishing NSE.

Chapter 4

 (a) What are the major differences between Hall’s framework and FDS?

Hints:

Consider the differences in the four aspects:

 1. The objectives

 2. The phases being performed; follow or do not follow a linear order

 3. The contents of the axes

 4. The use of computer simulation

706 Appendix D

 (b) Why is it recommended to apply complexity science to solve the problems of a

complex system in an industry through two major steps (the first one is to

 complete the paradigm shift by the organization performing the tasks or a tool

vendor, then the second one is to handle the detailed tasks by applying the cor-

responding new paradigm established in the first step)?

Hints:

The “Sunlight” of complexity science cannot directly “Reach” the target with-

out removing the big “Umbrella” in the middle – the old-established para-

digm… (please complete it)

Chapter 5

 (a) What are the major problems existing with today’s software development? Why

are those problems so hard to solve?

Hints:

 1. Consider the issues of quality, productivity, cost, risk, missed schedules,

blown budgets, and flawed products …

 2. Those problems cannot be solved by a single development, in either tech-

nology or management technique – they are caused by the entire existing

software engineering paradigm based on reductionism and superposition

principle including the linear process models …

 (b) Why does today’s software maintenance take 75% or more of the total effort

and total cost in software product development?

Hints:

 1. With the linear process models, huge amounts of defects will be intro-

duced into a software product

 2. The defects easily propagate down to the maintenance phase

 3. The implementation of requirement changes and code modifications is per-

formed partially and locally without the means to prevent the side-effects …

 4. The process and the result in software maintenance are invisible.

 (c) What is NSE?

Hints:

Consider:

 1. The objectives

 2. The foundation

 3. The major features

(Read Sect. 1.7, write down your notes, then close this book and make

your answer.)

707Appendix D

Chapter 6

 (a) What are the driving forces for the establishment of NSE (Nonlinear Software

Engineering paradigm)? Describe them in as much detail as possible.

Hints:

Describe each technique listed in Fig. D.1:

Fig. D.1 NSE techniques

 (b) Which principles do the techniques introduced in this chapter comply with?

Why?

Hints:

The essential principles of complexity science, including the Nonlinearity

principle, the Holism principle, the … (read Chap. 3 for the detailed descrip-

tion of the principles).

708 Appendix D

Chapter 7

 (a) What are the major differences between the NSE software visualization para-

digm and the traditional software visualization paradigm?

Hints:

Briefly compare Sects. 7.1 and 7.2.

 (b) What are the major benefits of virtually existing charts and diagrams without

storing hard copies in the hard disk and the memory of a computer?

Hints:

Consider: (1) the space saved; (2) the time spent in loading the graphics and in

displaying the graphics.

 (c) Point out the reasons why a system-level call graph or diagram should be made

interactive and traceable.

Hints:

Consider:

 1. The difference between static graphics and dynamic graphics – which one

is more useful?

 2. About traceability, compare the following Figs. D.2 and D.3, then make

your answer

709Appendix D

F
ig

.
D

.2

A
 c

al
l

g
ra

p
h
 s

h
o
w

n
 i

n
 J

-C
h
ar

t

710 Appendix D

F
ig

.
D

.3

A
 m

o
d
u
le

 a
n
d
 t

h
e

re
la

te
d
 m

o
d
u
le

s
h
ig

h
li

g
h
te

d

711Appendix D

 (d) Write three small programs for generating the three charts shown in Fig. D.4

separately through dummy programming, then compile them and run the exe-

cutable programs to correct possible defects.

Hints:

Refer to Fig. D.5, design your three dummy programs, then use S_Panorama

for C/C++ or S_Panojava for Java (see Preface) to generate the call graphs

and correct possible bugs:

Fig. D.4 Three charts

712 Appendix D

Chapter 8

 (a) About the software process model, “There has to be upstream movement”

– why?

Hints:

Without upstream movement, defects introduced in the upper phases will eas-

ily propagate to the lower phases, and the defect removal cost will increase

tenfold several times – now software maintenance takes 75% or more of the

total effort and total cost of software development.

 (b) Why is there no upstream movement at all in all the existing software process

models (excluding the NSE process model)?

Hints:

Please consider what is the foundation of those models.

 (c) Why should software maintenance be performed globally and holistically?

How can software maintenance be performed globally and holistically?

Hints:

 1. Find out what are called “Butterfly-effects”

 2. Consider what kinds of traceability are needed for performing software

maintenance holistically and globally.

 (d) Is a modified waterfall model with feedback as shown in the following figure

(Fig. D.6) a linear model or not? Why?

Fig. D.5 A dummy program and the graph generated

713Appendix D

Hints:

Read Sect. 1.4 for answering this question.

 (e) List the drawbacks of a linear life cycle model without upstream movement.

Hints:

Read Sects. 2.5 and 8.2 carefully, then make your answer.

 (f) What are the major differences between the NSE process model and the exist-

ing process models?

Hints:

Read Sect. 8.10, then make your answer.

Chapter 9

 (a) Why is software traceability, particularly requirement traceability, so important?

Hints:

Please read

 1. “Requirement Traceability”, http://www.en.wikipedia.org/wiki/

Requirements_traceability

 2. Andrew K, et al (2009) Why software requirements traceability remains a

challenge. CrossTalk, Jul/Aug Issue

 3. Ramesh B, Matthias J (2001) Toward reference models for requirements

traceability. IEEE Trans Software Eng 1:58–93

 4. Juergen R, et al (2007) CASCON 2007 Workshop Report, Traceability in

software engineering – past, present and future. IBM Technical Report:

TR-74-211, 25 Oct 2007

After that, make your answer.

 (b) Why should a bookmark be used to open a related document that is traced

automatically?

Fig. D.6 A waterfall model with feedback

714 Appendix D

Hints:

 1. Usually a requirement specification file will include the descriptions for

all requirements, so that if we do not use bookmarks, all requirements

traced will be shown from the beginning location of the requirement

specification file – it will cause confusion about exactly which require-

ment is traced.

 2. Using bookmarks, we can open the related document and show it from the

location indicated by a bookmark.

 3. Bookmarks will not affect the contents.

 4. When the contents of a document are modified, in most cases the book-

marks will automatically point to the new locations without manual

modification.

 5. Try to set some bookmarks in a document, then modify the contents, and

view the documents again using the bookmarks to see what happens.

 (c) What are the benefits to use Time Tags for implementing the bidirectional trace-

ability between the test cases and the source code?

Hints:

Consider the following points to make your answer:

 1. Automation

 2. Accuracy

 3. Self-maintainability

 (d) What are the major features of this automated and self-maintainable traceability?

Hints:

Read Sect. 9.5 and the article “Software Requirements Traceability Remains a

Challenge” [Kan09], then make your answer.

 (e) Where do you think this automated and self-maintainable traceability can be

efficiently used in software engineering?

Hints:

Consider the following points to make your answer:

 1. Identify and fix the inconsistency defects among documents, and between

documents and source code

 2. Prevent side effects in the implementation of requirement changes and

code modification

 3. Perform regression testing efficiently

 4. Validate and verify the product efficiently

 5. Make the documents generated by third party tools also traceable

 6. Automate the acceptance testing

 (f) How can this automated and self-maintainable traceability be used to make a

document produced by a third party tool traceable with the requirements of a

project being developed using this technique and tools?

715Appendix D

Hints:

Using batch files – try your own examples before making your answer.

Chapter 10

 (a) What are the differences in software development methodology between that

based on Constructive Holism and that based on Generative Holism?

Hints:

Consider the following points to make your answer:

 1. The whole and its parts of a complex system, which one comes first?

 2. With the software development method based on Generative Holism, we

can begin user testing very early, and we can adopt a build-to-budget

strategy that protects absolutely against schedule or budget overrun (at the

cost of possible functional shortfall).

 (b) What are the major differences between RUP (Rational Unified Process) and

the NSE software development methodology?

Hints:

Compare Figs. 1.57 and 1.58, and Sect. 23.7, then make your answer.

 (c) How can the NSE software testing paradigm be dynamically used in upstream

quality assurance for defect prevention and defect propagation prevention?

Hints:

Read Chap. 16, then consider the following points to make your answer:

 1. Having an output is no longer a condition to dynamically use the

Transparent-box method for software testing.

 2. In the case where there is no output in the execution of a test case, we can

specify the expected execution path in the test case description part, and

then check whether the real execution path covers the expected path to

find logic defects.

 3. With the HAETVE technique (see Chap. 11), the requirement develop-

ment work products and graphic design documents are generated from

dummy programs which are executable.

 4. After the execution of the test cases, the bidirectional traceability facility

will be established for checking the consistency among the documents

and test cases and source code.

 (d) How can the NSE software visualization paradigm be used in software defect

prevention, defect propagation prevention, software understanding, testing, and

maintenance?

716 Appendix D

Hints:

Read Chap. 7 and see Figs. 10.10 and 10.11 to make your answer.

Chapter 11

 (a) What are the major differences between the Use Case approach and the HAETVE

technique?

Hints:

Consider the following points to make your answer:

 1. Holism

 2. Visibility

 3. Maintainability

 4. Traceability for static review and defect removal

 5. Execution for dynamic defect prevention and defect propagation

prevention

 6. Whether it is suitable for Event–Response type applications

 (b) Why should the graphical result of the function decomposition of the functional

requirements of a product be made traceable?

Hints:

Consider the following points to make your answer:

 1. Visibility

 2. Big Picture for program understanding

 3. Static review for defect removal

 4. Support for incremental development (to assign orders for incremental

unit coding and testing)

 (c) Why do we need not only static review, but also dynamic testing in the software

requirement development phase?

Hints:

 1. Read Capers Jones’ article “Software quality in 2002: a survey of the state

of the art” (Six Lincoln Knoll Lane, Burlington, Massachusetts 01803

http://www.SPR.com 23 July 2002) to know

Usually how many percent of the defects are introduced in the require-•฀

ment development phase

The impact of those defects introduced in the requirement develop-•฀

ment phase

The difficulty to remove the defects introduced in the requirement •฀

development phase

717Appendix D

 2. Many defects are hard to find without dynamic execution of the program

 3. Without dynamic testing, it is impossible to establish automated and self-

maintainable traceability for detecting the inconsistent defects among the

related documents and test cases and source code.

Chapter 12

 (a) What are the major problems with today’s software design?

Hints: Read Sect. 12.1 carefully to make your answer.

 (b) What are the benefits to use the Software Synthesis Design (and Incremental

growing up) technique for software design?

Hints: Read Sects. 12.2 and 12.5 carefully to make your answer.

 (c) Complete the dummy program for generating the top-down design result shown

in Fig. D.7:

Fig. D.7 A call graph through top-down design

Hints: Read Sect. 12.3 carefully, particularly the corresponding dummy pro-

grams, to complete your dummy program design, then use the S_Panorama or

S_Panojava (see Preface) tools to verify your dummy program design.

Chapter 13

 (a) What are the major problems existing with today’s software programming?

Hints: Read Sect. 13.1 carefully (write down your notes, then close this book) to

make your answer.

718 Appendix D

 (b) Why, with NSE, does software design become precoding and coding become

further design?

Hints: With NSE, the dummy programs used for design to generate graphical

design documents can be directly extended to become the source code in the

coding process, and the extended source code can be directly used to generate

the graphical design documents to update the design.

 (c) Why should all commercial software products satisfy 100% MC/DC test

coverage?

Hints: Read Sects. 13.4 and 16.4 carefully, and consider the following points to

make your answer:

 1. If the MC/DC test coverage is low, or if we only obtain high branch-level

test coverage or high statement-level test coverage, many logic paths may

not be tested.

 2. Once the execution conditions are satisfied for those untested paths in the

customer site, software disasters may happen.

 3. As introduced in Appendix B, with NSE it is not very difficult to get

100% MC/DC test coverage result for program units, because NSE visu-

alization tools can highlight any untested branches and conditions graphi-

cally to help users design the necessary test cases.

Chapter 14

 (a) Why should a software product be tested before its application?

Hints: Read Sect. 14.1 carefully (write down your notes and then close this book)

to make your answer.

 (b) How many kinds of tests are needed?

Hints: Read Sects. 14.3–14.13 carefully (write down your notes and then close

this book) to make your answer.

 (c) Can a software product be tested manually only, without using tools?

Hints: Consider the following points to make your answer:

 1. Can structural testing be performed manually?

 2. Can performance testing be performed manually?

 3. Can memory leak be completely checked manually?

 4. Can the execution path of a runtime error be traced manually?

 5. Can GUI test operations be captured and played back manually?

 6. Can load testing for Web applications be performed manually?

 (d) Who should test a software product – the product developers, other teams or

groups but not the developers, or both? Why?

719Appendix D

Hints: Consider the following points to make your answer:

 1. The types of defects

 2. The required knowledge to test a software product

 3. The timing and the difference of the cost

Chapter 15

 (a) What is a test case?

Hints: Read Sect. 15.1 then make your answer.

 (b) How many basic test case design methods are used today?

Hints: Read Sect. 15.2, write down your notes, then close this book and make

your answer.

 (c) How can the NSE software testing paradigm and the NSE software visualiza-

tion paradigm help users design efficient test cases?

Hints: Read Sect. 15.3, write down your notes, then close this book and make

your answer.

 (d) Describe the simple rules for writing test cases for using the Transparent-box

software testing method and tools.

Hints: Read Sect. 15.6, write down your notes, then close this book and make

your answer.

Chapter 16

 (a) Why is it that the existing software testing methods, techniques, and tools can-

not be dynamically used in the software requirement development phase and

the software design phase?

Hints:

 1. With the old-established software engineering paradigm, there is nothing

executable in the requirement development phase and the design phase –

people will think there is no need to perform software testing dynamically.

 2. The existing software testing methods, techniques, and tools are mainly

based on Black-box testing which is used to compare the output with the

expected value, so that it can only be used dynamically after production.

 (b) Why are software functional testing and structural testing performed separately

with today’s software testing paradigm?

720 Appendix D

Hints: Consider

 1. Today, in functional testing people mainly use the Black-box testing

method.

 2. Most people think the purposes of the two kinds of testing are different.

 3. It is difficult to combine them together without automatic and visual

tools.

 (c) Software disasters happen often – is it related to the drawbacks of the existing

software testing methods, technologies, and tools? Why?

Hints: Consider

 1. Today, in what phases is software testing dynamically performed?

 2. Why did NIST (National Institute of Standards and Technology) conclude

that “Briefly, experience in testing software and systems has shown that test-

ing to high degrees of security and reliability is from a practical perspective

not possible. Thus, one needs to build security, reliability, and other aspects

into the system design itself and perform a security fault analysis on the

implementation of the design.” (“Requiring Software Independence in

VVSG 2007: STS Recommendations for the TGDC,” November 2006 http://

www.vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf)?

 (d) Why can and should the Transparent-box testing method and the corresponding

tools be dynamically used in the requirement development phase and the design

phase?

Hints:

 1. Different from the old-established software engineering paradigm with

which there is nothing executable in the requirement development phase and

the design phase (except for prototype design), with NSE the executable

dummy programs are used for requirement development and product design,

so that dynamic testing is needed for ensuring the quality of the product.

 2. To the Transparent-box testing method, having an output is no longer a

condition to dynamically use the method and the corresponding tool – in

the cases where there is no output, it will check whether the execution

path covers the expected path specified using J-Flow notations for helping

users remove logic defects, and it can also establish the bidirectional

traceability facility to help users remove inconsistent defects.

 3. The forward and backward tracing processes are supported by a set of

visual tools.

 (e) What are the key points in designing test cases for software testing using the

Transparent-box method?

Hints: Read Chap. 9 and Sect. 15.6 carefully (then close this book) to make your

answer.

 (f) What are the major differences between the old-established software testing

paradigm and the NSE software testing paradigm?

721Appendix D

Hints: Read Sect. 16.5 carefully (and then close this book) to make your

answer.

Chapter 17

 (a) What is the root cause that regarding software product quality, “Over the last 50

years there has been very little improvement?”

Hints: Read Sects. 2.3 and 17.1 carefully, write down your notes, then close this

book and make your answer.

 (b) What is defect prevention? Why should it be performed in the entire software

development lifecycle from the first step down to the retirement of a software

product?

Hints: Read Sect. 17.3.4, then consider the following points to make your answer:

 1. The timing

 2. The cost savings

 3. The support for changeability

 4. The possibility to extend the life time of a software product

 5. “An ounce of prevention is worth a pound of cure!”

 (c) What are the major differences between the old-established software quality

assurance paradigm and NSE-SQA?

Hints: Compare Sects. 17.1 and 17.2, write down your notes, then close this book

and make your answer.

Chapter 18

 (a) Why does software maintenance take 75% or more of the total effort and total

cost in software product development today?

Hints: Read Sect. 18.1, write down your notes, then close this book and make

your answer.

 (b) What are the major differences between the old-established software mainte-

nance paradigm and the NSE software maintenance paradigm?

Hints: Compare Sects. 18.1 and 18.2, write down your notes, then close this book

and make your answer.

 (c) How can the side effects in the implementation of requirement changes or code

modifications be prevented?

722 Appendix D

Hints:

 1. Perform software maintenance holistically and globally.

 2. Use various traceabilities.

 3. Read Sect. 18.4, write down your notes, then close this book and make

your answer.

 (d) When a software product is made through outsourcing development, what

should be provided with the product? Why?

Hints: Read Sect. 1.1, particularly about the new definition of software, write

down your notes, then close this book and make your answer.

Chapter 19

 (a) What are the major issues existing with the old-established software documen-

tation paradigm?

Hints: Read Sect. 19.1, write down your notes, then close this book and make

your answer.

 (b) Is source code the best documentation for a program? Why?

Hints: Consider the following points to make your answer:

 1. Text and graphics – which one do people like more for understanding a

complex system?

 2. Traceable and not traceable – which documents are more useful in soft-

ware understanding?

 (c) What are the major differences between the old-established software documen-

tation paradigm and the NSE software documentation paradigm?

Hints: Compare Sects. 19.1 and 19.2, write down your notes, then close this book

and make your answer.

Chapter 20

 (a) What are the benefits of combining the project management process and prod-

uct development process together to make their work products traceable?

Hints: Consider the following points to make your answer:

 1. Timing in finding the possible problems

 2. Timing in solving the problems found

 3. The importance of getting first hand information

723Appendix D

 (b) Why should a project Web site and BBS be established and the related Web

pages or BBS title pages be made traceable with the related requirements and

test cases and source code?

Hints: Consider the following points to make your answer:

 1. Besides regular short meetings, how can the members of the product man-

agement team and product development team communicate efficiently?

 2. In case unexpected events occur, how can everybody contribute to solving

the problems quickly?

 3. In case a project is developed by a distributed network of teams, how can

they share information better?

Chapter 21

 (a) Why are software algorithms so important?

Hints: According to the popular algorithms textbook Introduction to Algorithms

(Second Edition by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

Clifford Stein), “an algorithm is any well-defined computational procedure that

takes some value, or set of values, as input and produces some value, or set of

values as output.” In other words, algorithms are like road maps for accomplish-

ing a given, well-defined task (lbackstrom, Algorithm Tutorial, http://www.

topcoder.com/tc?module=Static&d1=tutorials&d2=importance_of_algorithms).

So the efficiency of problem-solving greatly depends on the algorithm used.

 (b) What is a hash table? Where do we need to use hash tables?

Hints: A hash table or hash map is a data structure that uses a hash function to

map identifying values, known as keys (e.g., a person’s name) to their associated

values (e.g., their telephone number) (Wikipedia, Hash Table, http://www.

en.wikipedia.org/wiki/Hash_table).

Hash tables are used for sorting items such as the names of students.

Chapter 22

 (a) Why do we need to use software tools?

Hints: Please consider the following points to make your answer:

 1. Can every software engineering task be performed manually?

 2. If a task can be done by both people and tools, which one can be used to

save time and resources?

724 Appendix D

 (b) Why should software tools be automated?

Hints: Please consider the following points to make your answer:

 1. The efficiency

 2. The maintainability of the work products

Chapter 23

 (a) Why is it that “The important thing is that one model is enough – either the code

or the diagrams. They should be reproducible from one another”?

Hints: Read Harry Sneed’s article, “The Drawbacks of Model driven Software

Evolution”, IEEE CSMR 07-workshop on model-driven software evolution

(MoDSE2007) Amsterdam, 20 March 2007

http://www.sciences.univ-nantes.fr/MoDSE2007/

http://www.cs.vu.nl/csmr2007/workshops/I-%20Summary%20Description.pdf,

then make your answer.

 (b) How to realize that “One model is enough – either the code or the diagrams.

They should be reproducible from one another”?

Hints: Consider the following points to make your answer:

 1. Diagrams and source code – which one is easier to change?

 2. From code to diagram, and from diagram to code – which one is easier to

do precisely?

 3. What is offered by NSE?

 4. Do you have a better solution? If you do, describe your solution in detail.

 (c) Complete a small software project with NSE and the NSE support platform

Panorama++.

Hints: It is important for you to test yourself how well you have learned from this

book and how well you can apply NSE in practice. Please use the learning ver-

sions of the Panorama++ and Panojava product available to handle your small

projects – try the provided application example (see Chap. 1) first.

Chapter 24

 (a) Can any single development, in either technology or management technique

efficiently solve the critical problems existing with today’s software develop-

ment: low quality and productivity, high cost and risk? Why?

725Appendix D

Hints: Read Sects. 24.5 and 24.6, write down your notes, then close this book

and make your answer.

 (b) Does a qualified “Silver Bullet” which is able to slay software “Werewolf” (a

monster of missed schedules, blown budges, and flawed products) mean a com-

plete revolution in software engineering through a paradigm shift from the old

one based on reductionism and the superposition principle to a revolutionary

one based on complexity science? Why?

Hints:

 1. I recommend reading one or two books introducing complexity science,

or visit the Web site of complexity science map, http://www.art-science-

factory.com/complexity-map_feb09.html.

 2. Read Sect. 24.6, write down your notes, then close this book and make

your answer.

 (c) What are the major differences between the old-established software engineer-

ing paradigm and NSE?

Hints: Read Sect. 24.7.4, write down your notes, then close this book and make

your answer.

MACRO Representation in Diagrams

For code inspection and walk through, users often prefer to having the code of a

class/function diagrammed with the original source code locations (line numbers)

shown before preprocessing. Panorama C/C++/OO-Browser and Panorama C/C++/

OO-Diagrammer provide the logic and control flow diagrams of a class/function,

with or without MACRO definition, before preprocess, thus to satisfy these users’

requirements.

For code test coverage analysis, users often want to have the code being dia-

grammed after preprocessing and have the unexecuted logic elements highlighted.

Panorama C/C++/OO-Test provides the control flow diagram of the class/function

after preprocessing with the unexecuted elements highlighted, thus to satisfy those

users’ demands.

If in the case that the existence of some macro functions in the code makes it hard

to identify the corresponding program logic before preprocessing, a group of lines of

the code with macro functions used will be merged into one block in the diagrams.

727

Glossary

Block A group of contiguous computer program statements that are

treated as a unit.

Both See “Condition Both.”

Branch (1) A computer program construct in which one of two or more

alternative sets of program statements is selected for execution;

or (2) a point in a computer program at which one of two or more

alternative sets of program statements is selected for execution;

or (3) any of the alternative sets of program statements in (1).

Branch testing Testing designed to execute each outcome of each decision point

in a computer program.

Class test coverage Class test coverage is defined as the ratio of the tested classes to

the total number of classes. When one function within a class is

tested, this class is considered to be tested.

Condition Condition (predicate) coverage is defined as the percentage of

(predicate) coverage both simple and compound conditions that have been tested. It is

further defined as follows:

•฀ ฀Condition฀True:฀the percentage of true conditions and func-

tion entry points that have been tested. It can also be

presented as a ratio.

•฀ ฀Condition฀ False:฀ the percentage of false conditions and

function entry points that have been tested. It can also be

presented as a ratio.

•฀ ฀Condition฀Both:฀the percentage of true and false conditions

and function entry points (2 for each function) that have

been tested. It is equal to the ratio of the sum of the numer-

ators for Condition True and Condition False Coverage to

the sum of their denominators.

Note: Function entry points are used in calculating condition coverage, because for an

executed function with no conditions, its condition coverage should be 1/1 or 100%.

728 Glossary

Control level Program control is leveled. Level 1 begins from an entry of a

program and ends at the end of the program. Each time that the

control flow reaches a decision statement and its condition is

satisfied, a new control level is begun. This new control level

ends upon reaching the end of the executable part of the deci-

sion statement.

Cyclomatic complexity Panorama uses a complexity metric adapted from Cyclomatic

complexity metrics. The algorithm is as follows:

•฀ ฀Each function has a base complexity of 1 and each deci-

sion or loop statement adds a complexity of 1 to the

base complexity.

729Glossary

•฀ ฀For switch statements, the user has the option

of including or not including case statements as

part of the calculation. When case statements

are included each N-way switch will add a com-

plexity of (N − 1). When case statements are not

included, the added complexity is 2.

Empty segment (1) If there is no statement between two conjunctive

nodes and the second node is a label, we define that

there is an empty segment between the two nodes. (2)

If the statement preceding the case statement is not an

unconditional escape statement, we define that there

is an empty segment between the case statement label

and the conditional part of the case statement.

False See “Condition False.”

High-level logic The high-level logic is the table presentation of all

functions or all classes within a program. The high-

level logic can be displayed with the detailed logic

and serves as a table in the diagrams.

Invisible segment For each decision statement, if there is no executable

statement associated with the decision statement when

its condition is unsatisfied, we define there should be

an invisible segment next to the decision statement

(e.g., any if statement lacking an else part has an invis-

ible segment by definition). For each repetition state-

ment, there are two invisible segments. One of them

will be executed when the program control reaches

the statement but its condition is never satisfied. The

other will be executed if the condition is satisfied at

least once, and the program control exits the repeti-

tion body normally when the condition is no longer

satisfied (vs. exiting directly from the body).

J-Coverage (condition-segment J-Coverage metric is defined as the ratio of the

coverage) number of executed visible and invisible segments

plus executed outcomes of conditions to the number

of all visible and invisible segments plus all outcomes

of conditions in a program or program module. It is

equal to MC/DC test coverage.

J-Complexity (test complexity) JC0 (Block Test Complexity): Block Test Complexity

is defined as the minimal instrumentation points

required for recording all block (visible segment) test

coverage data.

730 Glossary

JC1 (Segment Test Complexity): Segment Test Complexity is defined

as the minimal instrumentation points required for recording all seg-

ment test coverage data; the value of the Segment Test Complexity is

equal to the sum of visible segments (including empty segments) plus

invisible segments.

JC2 (Condition-Segment Test Complexity): Condition-Segment Test

Complexity is defined as the minimum instrumentation points required

for recording all Condition-Segment Test Coverage (J-Coverage) data.

The value of JC2 is equal to the sum of all outcomes of conditions in all

decision statements plus all visible segments and invisible segments.

J-Complexity used alone usually denotes the Condition-Segment Test

Complexity (JC2).

Node The condition part of a decision statement, an else clause, a junction

such as a label, or an entry or exit point of a program unit is called a

node.

Path A sequence of instructions that may be performed in the execution of a

computer program.

Path condition A set of conditions that must be met in order for a particular program

path to be executed.

Path testing Testing designed to execute all or selected paths through a computer

program.

SC0 The Basic Segment Test Coverage (also known as the Block Test

Coverage). A set of test cases of a program satisfies SC0 if all nodes

and visible segments of the program have been executed at least once.

SC1 The Standard Segment Test Coverage. A set of test cases of a program

satisfies SC1 if it satisfies SC0 coverage and all invisible segments of

the program have been executed at least once.

SC1+ The Standard Segment Test Coverage. A set of test cases of a program

satisfies SC1+ if it satisfies SC1 coverage and all the low-end invisible

segments of the loops in the program have been executed at least once.

731

A

Abstraction, 64, 238

Acceptance testing, 2, 3, 17, 57, 112,

224, 238, 252, 255, 383, 550,

699, 710

Action

actor-, 31, 130, 206, 213, 231, 273, 277,

279, 280, 282, 293, 295, 306, 311,

397, 413, 440, 445, 447, 521, 630,

640, 649

diagram, 569

type, 282

Activity

business, 92, 433, 607

diagram, 323, 324, 500

linear, 199

processing, 660

prototyping, 274

upstream, 51, 97, 200, 612

Actor

action, 31, 130, 206, 213, 231, 273, 277,

279, 280, 282, 293, 295, 306, 311,

397, 413, 440, 445, 447, 521, 630,

640, 649

descriptions, 671

external, 671

special, 280

Adaptation, 86, 229–230

Adaptive software development, 88

Agile

manifesto, 40

methods, 42

models, 57

processes, 41

software development, 40–41, 88, 230,

587–593

Agility, 41

Agent-oriented software engineering, 88, 236

Algorithm, 17, 31, 62, 66, 85–86, 103, 105,

126, 131, 132, 182, 183, 313, 317,

373, 391, 395, 481, 489, 531–555,

558, 669, 719, 723

Analysis

class, 192, 389

complexity, 126, 194, 378, 502, 540–541,

633, 635,

control flow, 111, 120, 188, 194, 617

correspondence, 148

data, 443, 502

dynamic, 177, 500, 504

function cross reference, 120, 502

logic, 111, 120, 182, 188, 617

memory leak, 127, 216, 413, 417, 477

object-oriented, 64, 274, 666–667

path, 123, 148, 183, 232, 309, 391, 477, 633

performance, 120, 123, 127, 132, 185, 216,

219, 341, 413, 418, 454, 459, 484,

503, 536, 537, 539, 540, 542, 632

requirement, 31, 33, 34, 273

risk, 68, 131, 208, 269, 477, 607

source code, 533

static, 500, 540, 541, 543, 548, 567

structured, 62, 63, 669–670

systems, 188

test coverage, 3, 120, 127–128, 133, 149,

155, 165, 168, 170, 178, 181, 182,

194, 216, 217, 219, 232, 241, 242,

271, 294, 298, 374, 375, 379, 380,

382, 412, 413, 417, 422, 431, 477,

484, 500, 504, 505, 571–573, 578,

582, 672, 721

test case efficiency, 3, 12, 16, 30, 76, 111,

125–126, 134, 219, 232, 233, 373,

378, 413, 481, 483, 533–537, 573,

617, 633, 635, 700

variable, 120, 127, 188, 506

Index

732 Index

Application

examples, 2, 51, 94, 99, 101, 106, 122,

124, 126, 129, 130, 132, 145, 153,

166, 168, 170, 177, 178, 182, 206,

207, 210, 216, 222–224, 227,

246–249, 253, 270, 271, 282, 284,

286, 303–305, 326, 341, 342, 361,

366, 367, 374, 376, 382, 391, 395,

396, 413, 418, 419, 430, 441–445,

447–450, 452, 454–461, 485, 492,

493, 500, 502, 503, 505–510,

512–514, 524, 527, 539, 541–545,

549, 575, 628, 629, 640, 642, 643,

654, 720

process, 306, 438, 439

results, 92, 135, 258, 314, 315, 317, 415,

434, 436

systems, 263, 654

Architecture, 31, 38, 41, 42, 64, 69, 132, 137,

138, 178, 200, 227, 274, 313, 317,

340, 348, 578, 593, 598

Assertion, 64, 217, 353

Assisted Online Agents (AOA), 2, 30, 76, 270,

472, 475–478, 601, 664, 699

Assisted test case design, 128, 129, 419

Attributes, 39, 68, 194, 650, 660–662,

665–668, 670, 671

Automated and self-maintainable traceability,

56, 97, 140, 237–256, 260, 261,

263, 265, 267, 304, 323, 362,

432, 438, 490, 496, 519, 602, 603,

649, 710

Automation

full, 122, 585

insufficient, 69

partial, 62

Availability, 650, 653, 660

B

Bandwidth, 377

Batch file, 28, 189, 237, 251, 252, 318, 405,

482, 503, 550, 552, 554, 566, 567,

602, 698

Black box testing, 52, 117, 231, 234, 373, 375,

409, 410, 578, 613, 715, 716

Bookmarks, 21, 108, 110, 111, 209, 210, 225,

237, 240–242, 246, 249, 251, 254,

255, 261, 264, 270, 303, 304, 318,

331–333, 387, 399, 403, 404, 412,

414, 416, 440, 470, 476, 478, 572,

573, 581, 583, 593, 594, 602, 615,

617, 642, 647, 649, 662, 709, 710

Boundary value analysis, 388–389

Builds, 38, 41, 73, 75, 245, 257, 259, 277,

389, 410, 567, 571, 580, 599, 608,

664, 716

Business processes, 68, 655

Butterfly-effect, 69, 81, 87, 129, 226,

238, 594

C

C++ programming language, 64, 243, 572

Candidates, 43, 48, 75, 95, 106,

597–650

Catastrophe theory, 83

CBSD (Component-Based Software

Development), 72, 229, 258,

259, 262

Cellular automata, 84–85

Challenges, 45, 87, 380, 389

Change control, 45, 46, 598, 600,

601, 664

Change management, 664

Changeability, 2, 3, 44, 50, 92, 94, 104, 105,

134, 202, 203, 224, 229, 234, 270,

337, 469, 477, 518, 519, 521, 632,

635–640, 664, 699, 717

Chaos theory, 80–81, 99

Class

definition, 117, 546

diagrams, 659

entity, 662

hierarchy, 140

inheritance, 138

inheritance chart, 3, 8, 111, 162, 172, 188,

323, 340, 568, 585, 586, 617

instance, 264, 532, 546

member function, 140, 378, 471–473

object, 353

overloading member function, 140, 378,

471–473

relationship, 138, 323

structure, 132, 140, 178, 317, 570

test coverage, 8, 181, 182, 316, 376,

380, 722

Client, 564

CMMI (Capability Maturity Model

Integration)

framework, 587

Coding

engineering, 137, 138, 177, 339–369

order, 124, 132, 177, 215, 232, 341, 346,

347, 443, 581, 582, 630, 649

phase, 105, 260, 270, 341, 406, 443,

447, 582

process, 124, 216, 340, 342, 344, 368

733Index

standards, 369

style, 232, 422

Complex adaptive system (CAS), 49, 84, 92,

611, 618

Complex systems, 44, 50, 55, 57, 58, 69, 76,

80, 81, 84, 85, 87–89, 92, 95, 96,

99, 101, 103, 104, 106, 112,

200–202, 207, 214, 226, 238, 258,

259, 262, 275, 277, 313, 314, 316,

336, 337, 434–436, 468, 470,

489–491, 511, 518, 577, 593,

607, 608, 611, 648, 699, 700,

702, 711

Complexity arises from simple rules principle,

87, 95, 203

Complexity science

essential principles of, 50, 69, 75,

87–89, 92, 98, 101, 106, 109,

112, 133, 135, 162, 199, 200,

202, 203, 258, 259, 277, 279,

314, 337, 409, 435, 436, 468,

491, 511, 519, 520, 529, 609–611,

616, 648, 701

generative Holism principle of, 104, 201,

259, 277, 314, 316, 336, 342, 435,

491, 630, 640

holism principle of, 49, 87, 104, 201, 259,

271, 577, 611, 618

manifestation of the Essential Principles

of, 225–226

Communication, 63, 69, 76, 110, 126, 207,

223, 271, 380, 519, 521, 524, 582,

590, 617, 654, 658, 661

Component

important, 199, 237, 257, 409

reusable, 229, 259, 594

reuse, 229, 633

Computer aided software engineering

(CASE), 31, 62, 63, 558,

568, 573

Computer software, 92, 374, 594

Concept, 29, 74, 75, 83, 86, 258,

314, 383, 469, 585, 587,

593, 597

Condition outcomes, 140, 148, 422

Conditions combination method,

389–390

Configuration management, 32, 38

Conformity, 2, 3, 44, 76, 92, 104, 105, 131,

134, 202, 203, 208, 224, 229, 234,

255, 270, 337, 469, 475, 521,

642–643, 664, 699

Consistency, 2, 109, 117, 134, 136, 137, 140,

167, 214, 240, 253, 377, 407, 434,

436, 443, 472–474, 480, 481, 511,

572, 573, 592, 615, 636, 639, 647,

711

Constraints, 68, 83, 86, 652–656, 659–660

Construction, 31, 42, 51, 75, 97, 200, 593,

599, 612

Control flow diagram, 3, 4, 110, 117, 126,

138, 145, 148, 153, 154, 183, 186,

194, 215, 225, 237, 240, 249, 375,

391, 443, 450, 504, 508, 513, 585,

586, 617, 721

Conversion, 389, 513, 658

Cost estimation, 62, 109, 207, 213, 223,

229, 251, 517, 519, 520, 524,

525, 615, 630

Coupling, 132, 138, 317, 367, 568

CRC, 99

Critical issues, 92, 105, 216, 229, 239, 267,

317, 342, 494–495, 518, 577, 578,

585

Critical path, 8, 341, 342, 347, 348

Customers, 2, 30–32, 34, 35, 40, 41, 45,

58, 75, 110, 130, 132, 206,

208, 209, 213, 214, 223, 224,

229–231, 267, 269, 277, 317,

362, 371–374, 378, 380, 383,

430, 439, 440, 469, 470, 473,

475, 477, 518, 520, 521, 582,

589–591, 602, 616, 628, 635,

654–657, 659, 664, 699,

700, 714

Cyclomatic complexity, 6, 126, 142, 155, 160,

317, 378, 379, 439, 450, 453, 500,

502, 531, 540–541, 632, 641,

723–724

Cyclomatic complexity measurement, 111,

140, 162, 170, 175, 176, 181, 182,

232, 343, 617

D

Data dictionary, 662, 663

Data element, 670

Data flow diagram, 662, 663

Data types, 372

Debugging, 72, 137, 138, 148, 179, 180, 263,

264, 276, 277, 279, 311, 418, 420,

423, 431, 437, 450, 452

Design

approach, 316, 406

automation, 93

changes, 263

constraints, 656, 659–660

defect, 105, 250, 410

734 Index

description, 237

documents, 99, 127, 207, 223, 239, 248,

253, 271, 275, 314, 315, 317, 342,

345, 368, 442, 494–496, 572, 580,

584, 633

efficiency, 633

engineering, 31, 137, 138, 177, 215,

313–338

example, 323

flaws, 29, 598, 601, 602

graphics, 318, 495,

579, 711

methodologies, 61–62

optimization, 231, 317

phase, 46, 72, 100, 105, 108, 111, 117,

124, 155, 207, 231, 260, 270, 275,

314, 315, 406, 410, 411, 429, 432,

434, 438, 441–443, 445, 470, 578,

579, 581, 605, 608, 615, 618,

715, 716

process, 179, 215, 318, 342,

344, 591

purpose, 97

result, 211, 317, 318, 333, 334, 338, 342,

581, 713

review, 463

rules, 302

strategy, 260

tasks, 313, 314, 337

Documentation

design, 304–306, 591, 592

engineering, 489

paradigm, 44, 49, 54, 69, 73, 76, 103–105,

107, 109, 112, 234, 260, 262,

489–515, 578, 606, 608, 611,

613–616, 633, 718

tasks, 491, 510, 511

technique, 119–121, 134, 231

Document

approvals, 664

creation, 111, 318–320, 617

generation, 348, 491, 584

hierarchy, 111, 209, 213, 241, 242, 304,

305, 318, 478, 581, 617, 662

information, 317, 387

template, 338

types, 238, 261, 470

Decomposition, 31, 132, 177, 190, 206,

207, 211–213, 215, 231, 266,

269, 273, 274, 278, 286, 289,

292–295, 303, 307, 311, 317, 415,

442, 445, 519, 521, 581, 584, 635,

640, 649, 712

Defect prevention and defect propagation

prevention, 30, 32, 43, 58, 100,

109, 111, 133, 207, 254, 260,

261, 270–272, 279, 290, 306,

311, 315, 318, 321–323, 337,

347, 364, 368, 398, 411, 435, 471,

473, 475, 522, 565, 581, 592, 604,

605, 615, 618, 631, 633, 634, 700,

711, 712

Defect tracer, 3, 574

Definition of a successful project,

67, 700

Deterministic chaos, 81

Dissipation structure, 82

Downstream, 51, 200, 270, 383, 384, 435,

438, 491, 522

Drawbacks, 35, 44, 75, 76, 234, 274,

275, 374–375, 383–384, 432,

593, 599

Driving forces, 61, 79, 89, 92, 99, 109,

134, 203–204, 263–265, 597,

615, 648

Dummy module, 110, 115, 165, 207, 266, 269,

271, 277, 306, 317, 397, 415, 497,

616, 630, 649

Dummy programming technique, 31, 207,

397, 578

Dummy system, 52, 110, 115, 132, 207,

211–214, 223, 230, 231, 234, 317,

612, 616, 635

Downstream movement, 435, 491

Dynamic defect prevention, 285, 306,

321–323, 581, 712

Dynamic modeling, 278, 279, 309–310

Dynamic traceability, 122, 133,

253, 306, 318, 363, 531,

549–554, 602

Dynamic testing, 110, 124, 132, 207, 214,

227, 231, 261, 263, 270, 271,

276, 278, 315, 317, 327, 329,

337, 347, 364, 368, 416, 438,

447, 450, 470, 475, 495, 496,

511, 512, 521, 579, 616, 632,

633, 712, 713, 715, 716

Dynamical system, 81–84

Dynamics principle, 88, 95, 203

E

EDA (Electronic Design Automation), 93,

277, 326, 336

Effort, 29, 30, 34, 47, 48, 54, 62, 68, 74, 75,

85, 104, 112, 133, 202, 207, 219,

230, 235, 239, 266, 441, 469, 473,

475, 487, 518, 519, 522, 573, 579,

591, 593, 598–602, 610, 614, 629,

631–634, 702, 708, 717

735Index

Entity, 659, 662

Equivalence class partition,

388–389

Errors, 3, 12, 14, 31, 65, 66, 92, 123, 176–179,

182, 215, 223, 232, 259, 266, 275,

282, 294, 295, 316, 353, 364, 365,

372–374, 378, 383, 388, 389, 400,

413, 423, 424, 427, 434, 435, 437,

438, 440, 447, 450, 455, 458, 477,

485, 486, 531, 542, 584, 607, 649,

658, 672, 685, 688, 691

Estimation, 62, 68, 109, 207, 213, 223, 229,

251, 317, 517, 519, 520, 524, 525,

615, 630

Extreme programming (XP), 40, 41,

589–593, 595

F

Facility, 70, 117, 122, 138, 160, 164–166, 204,

206, 208, 224–225, 231, 237–256,

265, 470, 481, 494, 495, 500, 501,

604, 711, 716

Feasibility, 213

Feedback, 32, 33, 35, 82, 87, 100, 106, 131,

224, 235, 267, 520, 582, 654, 709

Five-dimensional structure synthesis method

(FDS), 79, 89, 91–101, 106, 107,

112, 115, 133, 135, 136, 199, 200,

257, 258, 409, 436, 467, 468,

519, 520

Floating license, 574

Flow chart, 142, 145, 146

Forms, 62, 82, 83, 560, 636

Formal methods, 62, 63

Foundation, 44–47, 50, 57, 69, 79–89, 91, 109,

234, 262, 409, 433, 436, 489, 491,

519–520, 611, 616, 701, 702, 708

Foundation of modern civilization, 1, 57

Fractal, 82

Fractal dimension, 82

Framework

adaptive, 97

FDS, 79, 89, 91–101, 106, 107, 112, 115,

133, 135, 136, 199, 200, 257, 258,

409, 436, 467, 468, 519, 520

general, 101

Hall’s, 92, 93, 96, 97, 101, 701

Paradigm-shift, 79, 89, 91–101, 106, 107,

112, 115, 135, 136, 200, 257, 258,

409, 436, 468, 520, 609

systems engineering, 92–93

Function call graph, 138, 162, 172, 178,

190, 568

Function decomposition, 31, 177, 206,

211–213, 266, 269, 273, 278, 289,

292–295, 311, 317, 442, 445, 521,

581, 640, 649, 712

Function points, 105, 277, 336

Fundamental problem, 29, 76, 200, 469, 598,

600, 601

G

Genetic algorithm, 85–86

Group, 42, 46, 84, 86, 246, 371, 372, 378, 388,

655, 673, 679, 688, 691, 721

H

Hall’s systems engineering framework, 92, 93

Hardware, 373, 377, 380, 381, 600, 653, 654,

656, 657, 659

Hierarchical design, 210, 212, 213, 321,

328, 581

Hindsight, 557–558, 560

Holism principle of complexity science,

49, 87, 104, 201, 259, 271, 577,

611, 618

I

Idea, 51, 74, 81, 87, 97, 117, 200, 258, 315,

377, 531, 532, 534, 537–538, 540,

585, 587, 590, 593, 612

Incremental development, 34–35, 51, 70, 201,

213, 229, 259, 271, 277, 590, 593,

598, 600, 601, 606, 612, 620, 630,

631, 712

Incremental and iterative development, 51, 70,

77, 201, 612

Incremental unit coding, 8, 132, 341, 712

Index, 569, 654, 663

Industrial revolution, 91–101

Information

flows, 79, 669

hiding, 61

processing, 63, 552

sharing, 233

source, 58, 77, 89, 101, 112, 134, 196–197,

236, 256, 272, 311, 338, 369, 384,

407, 432, 464, 487, 514, 530, 555,

575–576, 595, 650

systems, 236

technology, 274

Inheritance, 3, 8, 111, 138, 162, 172,

188, 323, 340, 367, 568, 585,

586, 617

736 Index

Initial Condition Sensitivity principle, 87, 88,

95, 203

Innovation, 79, 93, 136, 199,

263–265, 521

Installation, 3, 560–565, 655

Instrumentation, 241, 242, 374–375, 532, 533,

538, 724, 725

Integration, 52, 63, 71, 131–133, 214, 215,

231, 275, 313, 341, 348, 384, 434,

565, 581, 582, 592, 593, 600,

612, 630

Integration testing, 123, 132, 216, 219, 232,

341, 349–353, 373, 378, 413

Integrity, 659, 661

Integer, 86, 371, 372, 388, 543, 672, 673, 676,

679, 682, 685, 686, 691

Intelligent agents, 2, 88, 469

Intelligent test case selection, 22, 30, 76, 109,

219, 615, 700

Intelligent version comparison, 32, 121–122,

134, 222, 233, 634, 635

Interface, 31, 35, 68, 132, 138, 155,

158, 160, 162, 166, 200, 215,

232, 259, 303, 309, 313, 316,

341, 349, 382, 443, 478, 482,

505, 535, 560, 566, 582, 632,

653, 654, 656–658, 661

Interface testing, 535

Interoperability, 372, 380

Invisible segment, 381, 422, 724, 725

ISO 9001:2000, 237

J

Java, 64, 280, 309, 378, 498, 560, 575, 579,

583–586, 648, 707

3J graphics (J-Chart, J-Diagram, and J-Flow),

100, 117, 138, 155–160, 195,

497, 584

Joint Application Design (JAD), 437

K

Keywords, 237, 241, 246, 254, 261, 264, 318,

387, 399, 412, 470, 540, 541, 573,

581, 642

Knowledge, 67, 84, 97, 101, 208, 371,

375, 715

L

Lateral thinking, 86, 87

Li-Yorke Theorem, 83

Linear system, 44, 81, 104, 201, 226

Linear thinking, 44, 45, 49, 50, 57, 66, 69,

72, 74–76, 80, 86–88, 91–94, 97,

101, 103, 112, 135, 199, 201, 232,

233, 258, 313, 410, 597–599,

608–612, 648

Load testing, 72, 377, 380, 381, 714

LOC, 367

Logic defects, 133, 182, 185, 187, 215–217,

232, 254, 364, 366, 399, 401, 403,

404, 411, 413, 414, 430, 447, 451,

605, 649, 711, 716

Logic diagram, 4, 53, 110, 120, 136, 138, 140,

149, 162, 166–168, 170, 176, 179,

182, 183, 194, 215, 232, 340, 373,

375, 425, 427, 500, 504, 508, 513,

548, 569, 585, 586, 592, 617

M

Manpower, 76, 111, 373, 600, 617

Maintainability, 3, 76, 104, 115, 203, 469,

475, 477, 521, 650, 661, 664,

712, 720

Maintenance

approach, 97, 235

capability, 279

cost, 29, 471, 598, 601, 602

engineering, 467–473, 475–477, 485, 487

example, 472–474

Iceberg, 467, 470

issue, 588

model, 30, 58, 471, 476, 485, 700

paradigm, 44, 54, 56, 69, 73–74, 76, 88,

103–105, 107, 109, 112, 235, 304,

433, 467–487, 578, 609, 611,

614–616, 717

phase, 30, 103, 108, 109, 153, 233, 260,

264, 270, 275, 315, 406, 417, 434,

441, 443, 450, 468, 473, 522, 579,

580, 582, 593, 608, 615, 618, 632,

633, 700, 702

problems, 274, 584

process, 30, 51, 54, 100, 108, 110, 190,

207, 219, 229, 233, 235, 269,

274, 279, 311, 318, 464, 468, 471,

473, 475, 476, 485, 519, 522, 557,

579, 583, 608, 612, 614–616, 623,

632, 634

site, 106

support, 57, 222

tasks, 468, 475, 476, 487

team, 30

technique, 133, 134, 219, 230

visualization,

737Index

MC/DC test coverage analysis, 3, 127–128,

133, 149, 170, 178, 182, 216, 217,

219, 271, 340, 379, 382, 417, 477,

484, 500, 578, 582

MDA, 274, 578, 583

Measurement

branch execution frequency, 111, 617

Cyclomatic complexity, 111, 140, 162,

170, 175, 176, 181, 182, 232,

343, 617

database, 12, 261

memory leak, 12, 232, 353, 477, 582,

632, 649

performance, 3, 4, 6, 11, 111, 162, 176,

232, 341, 377, 477, 582, 584, 594,

617, 649

productivity, 349, 524, 526

program, 1, 3, 181, 224, 649

quality, 3, 12, 14, 111, 120, 121, 132, 138,

162, 176, 194, 262, 341, 366–367,

435, 439, 454–461, 477, 484, 508,

592, 594, 617

reports, 12, 194, 377

results, 4–6, 9–12, 14–16, 111, 120,

121, 156, 160, 162, 170, 175,

176, 179, 181, 182, 188, 231,

237, 241, 249, 254, 260, 299,

300, 327, 330, 357–359, 361,

376, 402, 508, 532–534,

584–586, 617

size, 194

support, 349, 353–362, 526

test case efficiency,

391, 395

test coverage, 4, 5, 9, 10, 108, 111, 136,

142, 145, 156, 160, 162, 176, 179,

181, 182, 237, 241, 249, 250, 254,

261, 299, 300, 327, 330, 353–362,

376, 402, 456, 532–536, 585, 586,

615, 617, 632

Memory leak, 3, 12, 123, 127, 132, 216, 229,

232, 259, 262, 341, 353, 372, 413,

417, 418, 450, 455, 457, 477, 484,

531, 543–545, 573–574, 582, 594,

632, 649, 655, 714

Meta-synthesis, 84

Metrics, 262, 367, 374, 421, 424, 533–536,

567, 570, 672, 691, 694, 723, 724

Milestone, 267, 269, 635

Model

capability maturity, 39, 63

computer-independent (CIM), 274, 583

incremental, 75, 105, 595

integration, 32

iteration, 99, 105

life cycle, 36, 57, 105, 235, 709

linear, 32, 33, 70, 201, 227, 235, 708

micro-waterfall, 35, 42, 43, 45, 92, 99

modified waterfall, 33

NSE, 37, 99, 227

original waterfall, 33

platform-specific, 274, 583

prototype, 36, 37, 57

quality, 278, 279

requirements, 51, 612

RUP, 39

sequential, 75, 599

SPIN, 61

spiral, 36, 37, 57

transformations, 274, 583

XP, 40, 41

Model-driven tools, 274, 583, 584

Modularity, 661

Monster of missed schedules, blown budges,

and flawed products,

49, 597, 600, 605, 607, 609, 610,

641, 642, 721

Multi-agent systems, 201

N

NIST (National Institute of Standards and

Technology), 73, 104, 257, 383,

410, 463, 608, 716

No Silver Bullet (NSB), 63, 74–76, 96,

599–602

Nonlinear complex system, 69, 81, 88, 93, 94,

99, 100, 226, 238

Nonlinear system, 81, 83, 87, 129, 594

Nonlinear thinking, 30, 50, 57, 75, 76, 80,

86–88, 91–94, 97, 101, 137, 162,

234, 314, 411, 609, 611, 612

Nonlinearity principle, 69, 75, 87, 89, 95, 101,

106, 109, 112, 133, 162, 195, 199,

202, 203, 259, 277, 279, 314, 336,

409, 436, 491, 511, 519, 529, 610,

616, 640, 648, 703

Notations

class, 287

control, 399

event-response relationship, 280

function, 287

HAETVE, 279, 497, 498

J-Chart, 3, 53, 118, 128, 132,

138, 139, 190, 232, 478, 524,

539, 543

738 Index

J-Diagram, 3, 4, 53, 143, 145, 189,

215–216, 232, 425, 508

J-Flow, 3, 148, 150, 189, 215, 225, 246,

405, 450, 541, 578, 716

mapping, 284, 398, 499

UML, 497

use case, 282, 397

use cases analysis, 498

NSE

applications, 270, 577–595

components of, 107–109, 614–615

documentation paradigm, 107, 109,

112, 260, 489–515, 615, 616,

633, 718

establishment of, 75, 79, 89, 101,

105–107, 115, 134, 409, 531,

701, 703

outline of, 103–112, 202, 259–263,

276–279, 314–315, 435–436,

472–476, 491–493, 518–519

process model, 49, 51, 71, 107, 112, 115,

130, 199–235, 238, 273, 275, 277,

279, 315, 316, 336, 337, 439, 441,

470, 491, 580, 601, 612, 614, 634,

708, 709

software development methodology,

107, 112, 183, 257–273, 279, 315,

337, 368, 439, 471, 491, 592, 614,

640, 711

software engineering visualization

paradigm, 135–196

software quality assurance paradigm,

433–464

software testing paradigm, 270,

272, 278, 285, 306, 316,

384, 406, 407, 409–432,

437, 445, 450, 578, 601, 606,

711, 715, 716

structure of, 107, 108

support platform, 2, 30, 50, 108–111, 129,

134, 156, 179, 202, 216, 220, 222,

230–233, 245, 270, 272, 280, 303,

361, 367, 375, 378, 379, 382, 401,

424, 439, 536, 553, 557–575, 577,

583, 593–595, 611, 615, 617, 720

support techniques, 107, 109, 112, 183,

234, 615

support tools, 107, 109, 112,

557–575, 615

NSE-CMMI, 585–589

NSE-RUP, 593, 594

NSE-UML, 584–585, 587

NSE-XP, 592–593

O

Object Oriented analysis and design,

64, 274

Object-Oriented modeling, 64

Object-Oriented software engineering 64

Object oriented technologies, 63

Objectives, 2, 31, 48, 56, 57, 85, 93–94, 103,

105–106, 206–208, 214, 227, 239,

387, 406, 489, 496–497, 591, 610,

651, 701, 702

Obstacles, 92, 94

Open source software development, 63, 64

Openness principle, 88, 95, 96, 203

Operating system, 377, 380, 657, 661

Organization, 33, 47, 50, 54, 67, 83, 94, 97,

98, 101, 105, 106, 111, 134, 203,

207, 219, 235, 238, 262, 272, 315,

374, 436, 464, 469, 473, 475, 487,

489, 518, 519, 521, 585, 587, 593,

598, 606, 614, 618, 649, 652, 655,

658, 661, 663, 670, 702

Outsourcing, 2, 230, 487, 718

P

Package, 64, 258

Pair programming, 339, 437, 589, 591

Panorama product, 170, 558

Panorama++ product, 378, 414, 560–565

Paradigm

existing software engineering, 1, 29,

32–46, 57, 59, 77, 103–105, 702

nonlinear software engineering, 2, 48, 57,

89, 101, 107, 134, 199, 560, 565,

597, 601, 610, 619–627, 703

software documentation, 44, 55, 73,

103–105, 234, 262, 433, 489–491,

494–495, 497, 500–512, 606, 608,

633, 718

software maintenance, 44, 54, 56, 73–74,

103–105, 235, 304, 467–487, 578,

609, 614, 717

software project management, 44, 54, 74,

103, 104, 235, 433, 517–519, 528,

529, 614

software quality assurance, 44, 55, 72–73,

104, 105, 234, 433–464, 578, 717

software testing, 44, 49, 52, 55, 72,

103–105, 234, 270, 272, 278, 285,

306, 316, 383–384, 406, 407,

409–433, 437, 445, 450, 578,

601, 605, 606, 608, 610, 613, 711,

715, 716

739Index

software visualization, 44, 55, 73,

103–105, 135, 136, 160–180,

183, 188–190, 195, 196, 260,

272, 285, 391, 433, 464, 497,

523, 578, 608, 613, 633, 640,

641, 643, 704, 711

traditional software engineering,

618–627

Paradigm-shift framework, 79, 89, 91–101,

106, 107, 112, 115, 135, 136, 200,

257, 258, 409, 468, 520

Parameter, 83, 85, 215, 225, 232,

237, 250, 413, 414, 443, 472,

550, 658

Patterns, 131

Payoff, 29, 200, 471, 598, 601, 602

Performance measurement, 3, 4, 6, 11, 111,

162, 176, 232, 377, 477, 582, 584,

594, 617, 649

Portability, 579, 650, 661

Prediction, 80, 91–101

Preliminary design, 117, 214, 215, 266, 269,

317

Pre-process, 37, 204, 206–214, 216, 225, 227,

229, 265–267, 269, 317, 341, 342,

470, 476, 579–582, 649, 725

Priority, 41, 52, 132, 206, 208, 213, 229, 230,

265, 285, 341, 439, 580, 581, 613,

628, 629, 631, 635, 649

Procedure, 62, 316, 660, 683, 719

Process

business, 68, 655

coding, 124, 216, 340, 342, 344, 368, 714

construction, 51, 97, 200, 612

design, 179, 215, 318, 342, 344, 591

improvement, 44, 105, 600

leveling, 640

linear, 34–36, 44, 46, 55, 71, 91, 93, 98,

101, 104, 109, 195, 227, 233, 275,

276, 314, 337, 339, 383, 468,

489, 522, 600, 608, 609, 616,

632, 706

maintenance, 30, 51, 54, 100, 108, 110,

190, 207, 219, 229, 233, 235, 269,

274, 279, 311, 318, 464, 468,

471, 473, 475, 476, 485, 519,

522, 557, 579, 583, 608, 612,

614–616, 634

management, 32, 51, 104, 109, 110, 223,

229, 235, 251, 434, 436, 441,

517–520, 523, 524, 528, 529, 578,

580, 593, 609, 612, 615, 616, 651,

664, 718

nonlinear, 30, 32, 33, 101, 109, 315, 342,

368, 470, 592

playback, 571, 572

quality assurance, 434, 436, 463

review, 477, 591, 592

solution review, 477

testing, 111, 216, 218, 271, 361, 382, 617

tracing, 716

unified, 29, 42, 274, 593, 618

Production, 43, 46, 48, 55, 104, 105, 123, 434,

438, 463, 578, 589, 608, 610, 715

Productivity

measurement, 349, 524, 526

precise, 524, 526

programming, 340, 348

research, 463

software, 463, 522, 575, 600, 633

software development, 47

Program module, 126, 149, 157, 185, 242,

279, 353–355, 361, 371, 374, 375,

420, 449, 450, 479, 549, 592,

641, 724

Project failure rate, 67–69

Project management, 32, 35, 44, 46, 49, 51,

54, 57, 62, 69, 74, 76, 97, 103, 104,

107, 109, 112, 207, 223, 229, 231,

235, 238, 251, 268, 270, 271, 433,

441, 517–529, 578, 580, 582, 593,

606, 609, 611, 612, 614, 615, 718

Project manager, 230–231

Project plan, 207, 223, 235, 582, 628, 649

Project planning, 263, 517, 520

Project scope, 42, 664

Property, 50, 87, 89, 106, 131, 309, 372,

584, 611

Prototyping

activity, 274

design and evaluation, 206

document, 303, 328, 331

model, 36

technologies, 62

Q

Quality assurance

defect-prevention, 711

driven, 565

methodology, 433

metrics, 570

paradigm, 44, 49, 52, 55, 69, 72–73, 76,

88, 94, 103–105, 107, 109, 112,

234, 433–464, 578, 605, 608, 611,

613, 615, 717

740 Index

principles, 55, 279, 311, 328, 409, 463

process, 434, 436, 463

reports, 570

requirements, 353

results, 434, 436

standards, 92, 97

strategy, 260, 261, 270, 279, 311, 314, 315,

337, 439–460

technique, 123–125, 133, 437, 438

visibility, 433

Quality measurement, 3, 12, 14, 111, 120,

121, 132, 138, 162, 176, 194, 262,

341, 366–367, 435, 439, 454–461,

477, 484, 508, 592, 594, 617,

632, 649

R

Rapid prototyping, 62, 231

Rational unified process (RUP),

29, 39, 42, 43, 57, 272, 593–595,

618, 711

Re-engineering, 138, 565

Realization, 200, 227, 598

Record, 28, 243, 253, 532, 533, 536–539,

571, 574

Reductionism, and superposition principle, 44,

49–52, 55, 69, 72, 74, 80, 88, 91,

98, 101, 103, 104, 112, 135, 201,

257, 258, 262, 275, 311, 313, 336,

337, 339, 383, 410, 433, 468, 487,

489, 510, 517, 518, 522, 524, 528,

577, 597–600, 608–612, 618, 648,

699, 702, 721

Refactoring, 52, 111, 126–127, 134, 271, 340,

342, 435, 439, 450–454, 464,

484, 589, 590, 593, 613, 617,

632–634, 641

Relationship, 20, 70, 97, 98, 138, 190, 194,

280, 282, 318, 323, 389, 478, 518,

568, 569, 611, 618, 649, 656, 658,

659, 662, 701

Reliability, 68, 73, 75, 76, 92, 115, 203, 224,

229, 234, 257, 258, 270, 377, 410,

433, 463, 469, 475, 521, 597, 599,

600, 604–608, 650, 656, 660,

699, 716

Requirement

analysis, 31, 33, 34, 273

change, 29, 30, 32, 34, 49, 50, 54, 73, 75,

100, 104, 109, 110, 178, 207, 208,

219, 220, 222, 226, 228–231, 233,

235, 254, 255, 259, 265, 269,

434–436, 438, 440, 443, 467, 469,

471–473, 487, 495, 496, 519, 521,

522, 565, 577–580, 582, 592,

599–602, 604, 609–611, 614–616,

618, 629, 631–636, 640, 642, 649,

650, 700, 702, 710, 717

conflicts, 50, 220, 611, 636

decomposition, 132, 231, 286, 294, 303,

317, 445

development phase, 46, 72, 100, 105, 108,

111, 117, 153, 207, 214, 224, 231,

253, 260, 270, 275, 311, 404, 406,

410, 411, 413, 417, 429, 432, 434,

438–441, 445, 446, 470, 564,

578–581, 605, 608, 615, 618, 712,

715, 716

documents, 303–306

elicitation/gathering, 31, 178, 182

engineering, 62, 273–311

implementation, 35, 54, 55, 133, 207,

223, 229, 235, 303, 316, 572–573,

614, 630

management, 265

modeling, 31

priority, 132, 341, 631

specification, 20, 21, 214, 237, 239,

241, 248, 253, 273, 313, 328,

331, 371, 396, 440, 581, 632,

649–671

traceability, 208, 238–240, 255, 709

validation and verification, 3, 12, 18, 51,

238, 240, 242, 254, 255, 304,

604, 612

Resources, 30, 34, 38, 47, 49, 57, 76, 83, 111,

373, 391, 473, 521, 580, 582, 591,

593, 602, 610, 617, 700, 719

Retirement, 434, 435, 438, 439, 464, 528, 592,

717

Reusable components, 229, 259, 594

Reverse engineering, 8, 110, 137, 138, 155,

179, 207, 271, 277, 340, 348, 476,

558, 560, 579, 584, 613, 616, 617,

633, 635

Reviews, 35, 45, 46, 68, 70, 130, 166, 182,

207–209, 213, 214, 223, 230–232,

267, 270, 271, 273, 275, 278, 279,

306, 311, 314, 315, 318, 321, 329,

337, 340, 435, 438–440, 448, 469,

472, 477, 494–496, 511, 520, 521,

579–582, 590–592, 649, 712

Revolutionary solution, 137–138, 202,

259–263, 276–279, 470, 518

Risk, 34, 35, 38, 42, 44, 45, 48–50, 56, 57, 68,

69, 75, 131, 134, 202, 206, 208,

266, 269, 274, 317, 362, 388, 438,

477, 517, 520, 577–580, 585, 599,

607, 610, 632, 635, 702, 720

741Index

Risk analysis, 68, 131, 208, 269, 477, 607

Risk management, 274, 517, 520

Road map, 72, 107, 199, 276, 311, 719

Root cause for software disasters, 67–69

Rule, 75, 83–85, 87, 93, 95, 111, 189, 203,

254, 270, 302, 336, 399, 412, 476,

534, 577, 581, 589, 590, 599, 617,

649, 715

RUP. See Rational unified process (RUP)

S

Scheduling, 34, 36, 75, 517, 520, 599

Scope, 42, 388, 589, 591, 650,

651, 664

Security, 73, 257, 258, 410, 463, 608, 650,

656, 660–661, 663, 716

Self-adaptation principle, 88, 95, 97, 203, 529

Self-documenting, 191–194, 320–321, 598,

600, 601

Self-organization principle,

88, 95, 203, 529

Semi-automated test case design, 156, 217,

390–391

Sensitivity to Change principle, 88, 95, 203

Side-effects, 29, 30, 48, 54, 73, 99, 104, 125,

126, 133, 182, 200, 208, 214, 219,

226, 229–231, 238, 239, 436, 469,

471–473, 519, 578–580, 598, 601,

602, 610, 614, 632, 650, 700, 702,

710, 717

Side-effect prevention, 2, 30, 32, 51, 54, 57,

76, 109–111, 122, 134, 207, 219,

229–231, 233, 235, 251, 254, 255,

259, 269, 435, 437, 438, 441, 450,

471, 473, 475, 485, 487, 519, 521,

522, 565, 579, 580, 582, 592, 593,

601, 602, 604, 605, 612, 614–616,

618, 629, 631–634, 636, 640, 649

Silver bullet, 75, 106, 107, 270, 361, 557,

597–650, 721

Simultaneous users, 658

Six sigma, 437

Smalltalk, 64

Software architectures, 31, 137, 138, 178, 227,

313, 598

Software definition

traditional, 58, 699

new, 2, 30

Software configuration management, 32

Software deliverables, 438

Software design engineering, 31, 215, 313,

337, 341

Software development lifecycle, 31, 46, 49,

54, 117, 122, 133, 135, 207, 214,

223, 230, 231, 233, 254, 255, 260,

261, 270, 337, 406, 411, 417, 429,

432, 464, 557, 558, 592, 604, 610,

613, 632, 646, 717

Software development methodologies

test-driven, 52, 71, 100, 104, 257, 612

defect prevention driven, 52, 123–125,

133, 230, 234, 364–366, 460, 613

Software disasters, 47, 65–69, 374, 434, 436,

607, 714, 716

Software documentation paradigm, 44, 55, 73,

103–105, 234, 262, 433, 489–491,

494–495, 497, 500, 510–512, 606,

608, 633, 718

Software engineering, 1, 61, 80, 92, 103–105,

115, 135, 199, 239, 257, 275, 313,

339, 383, 410, 433, 517, 560, 577,

597, 699

Software inspection, semi-automated, 166

Software lifecycle, 50, 611, 618

Software maintenance paradigm, 44, 54, 56,

73–74, 103–105, 235, 304,

467–487, 578, 609, 614, 717

Software metrics, 694

Software process improvement, (SPI), 55, 63,

104, 585, 587, 607

Software process model, 44, 57, 58, 63, 199,

200, 202, 235, 699, 700, 708

Software project management, 44, 46, 54, 74,

103, 104, 235, 251, 270, 271, 433,

517–519, 523, 528, 529, 609, 614

Software quality assurance (SQA), 31–32,

44–46, 55, 72–73, 104, 105, 123,

234, 255, 270, 409, 433–464, 471,

528, 578, 717

Software requirements engineering, 31

Software requirements specification, 649–671s

Software testing. See also Testing

embedded, 381–382, 418

engineering, 409

method, 117, 260, 375, 383, 406, 407,

409–411, 429, 431, 432, 445, 470,

604, 715, 716

object-oriented, 378–380

objectives, 406

paradigm, 44, 49, 52, 55, 72, 103–105,

234, 270, 272, 278, 285, 306, 316,

383–384, 406, 407, 409–433, 437,

445, 450, 578, 601, 605, 606, 608,

610–611, 613, 711, 715, 716

performance, 3, 111, 429, 454, 618, 715

phase, 270, 716

support, 219

system, 100

tasks, 383

742 Index

technique, 122–123, 133

tools, 340, 381, 383

Software understanding, 145, 272, 711, 718

Software process model, 44, 57, 58, 63, 199,

200, 202, 235, 699, 700, 708

Soliton, 86

Solution method, 131, 133, 206, 208, 209,

213, 214, 216, 229, 230, 267, 317,

341, 532, 581, 582

Source code

analysis, 533

design, 584

location, 148, 177, 423, 424, 427, 450, 721

module, 115, 176, 178, 179, 245–246, 249,

251, 263, 478, 554

segment, 480, 482

test coverage, 125, 242, 412

writing style, 166, 168, 179, 182

Spiral model, 36–37, 57

Stage, 51, 68, 97, 110, 200, 270, 374, 522,

577, 583, 612, 616, 617

Stakeholders, 31, 68, 274

Standards, 31, 32, 63, 92, 94, 127, 206, 209,

257, 367, 371, 417, 437, 440, 460,

484, 570, 608, 650, 659–660, 725

State transition, 389

Strategy, 34, 36, 106, 260, 261, 270, 277, 279,

311, 314, 315, 337, 378, 434, 435,

439–460, 473, 520–521, 579, 711

Structured analysis, 62, 63, 669

Structured programming, 61

Sub-call-graph, 7, 166, 169, 179, 182, 503,

511

Support

center, 59

efforts, 29, 469, 593

facility, 208, 224–225, 265

functions, 655

MC/DC test coverage analysis, 340,

353–362, 532

methods, 518

multi-project development, 251, 252, 272

people, 230

platform, 2, 49, 103, 105, 106, 108–112,

129, 134, 156, 179, 220, 230–234,

245, 270, 274, 280, 303, 361, 367,

375, 378, 379, 382, 557–575, 577,

583, 595, 611, 615, 617

platform Panorama++, 30, 50, 202, 216,

231, 374, 378, 401, 424, 439, 536,

553, 593, 594, 611, 720

requirement changes, 30, 54, 235, 473, 614

reverse engineering, 8, 340, 348

software maintenance, 29, 48, 222, 610

software project management, 519

techniques, 107, 109, 112, 183, 203–204,

234, 433, 615

testability, 229, 469, 475, 477, 664

tools, 62, 103, 107, 109, 112, 232, 433,

518, 523–524, 557–575, 615, 618,

663

traceability, 73, 75, 239, 347, 463, 468,

494, 495, 610

two-way iteration, 593

users, 372, 535, 536

visibility, 76

Synergetics, 83

Synthesis design, 96, 98, 100, 131–133, 207,

214–216, 313–324, 336–339,

341–349, 441, 565, 581, 592, 630,

649, 713

System

activation, 655

actors, 671

administrators, 666

attributes, 650, 660–661, 665–668, 670,

671

call graphs, 111, 525, 581, 617

categories, 81

chart, 45

debugger, 177, 423

definition language, 663

design, 73, 92, 98, 177, 179, 182, 212, 226,

258, 410, 581, 608, 649, 716

development, 54, 98, 133, 614, 633, 634

engineering, 92–94

feature, 667

functions, 543

hierarchy, 132, 188, 211, 212, 321, 447

interfaces, 650, 653

level, 16, 23, 32, 46, 121, 160, 165, 172,

182, 188, 196, 233, 264, 342, 343,

378, 431, 490, 502, 507, 508, 532,

534, 541, 568–569, 704

leveling, 640

linear, 44, 81, 104, 201, 226

manager, 565

mode, 650, 661

nonlinear, 81, 83, 87, 88, 93, 94, 99, 100,

129, 594

preprocessor, 532

problems, 84, 88

quality, 229, 594

recovery, 660

requirement, 653

structure, 83, 120, 633, 635

743Index

testing, 100, 123, 216, 218, 219, 340,

342, 353, 378, 384, 410,

582, 649

theory, 79, 83

T

Table, 42, 46, 85, 191, 194, 203, 209, 213,

241, 280–281, 283, 304, 305, 318,

320, 389, 390, 442, 460, 463, 478,

499, 548, 553, 560, 563, 564, 569,

570, 574, 585, 587–589, 618–627,

632, 662, 719, 724

Task, 31–32, 38, 44, 49, 50, 57, 69, 70, 72, 74,

75, 80, 89, 94, 95, 98, 99, 101, 103,

106, 109, 110, 112, 135, 195, 199,

227, 257, 259, 279, 306, 313, 314,

323, 337, 339, 342, 383, 409, 410,

433, 435, 436, 468, 470, 475, 476,

487, 489, 491, 510, 511, 517–519,

524, 529, 565, 577–579, 582, 591,

599, 608–611, 616, 618, 640, 655,

659, 699, 702, 719

Technical forum, 76, 110, 223, 617, 628, 630

Technique

assisted test case design, 128, 129, 203,

204, 419

comprehensive software testing, 122–123,

133, 203, 204

defect-prevention driven quality assurance,

123–125, 133, 364–366, 565

defect propagation prevention, 30, 32, 43,

52, 57, 100, 109, 111, 133, 207,

254, 260, 261, 270–272, 290, 306,

311, 315, 318, 321, 322, 337, 339,

347, 364, 368, 398, 411, 435, 439,

445–450, 471, 473, 475, 522, 565,

581, 592, 604, 605, 615, 618,

631–634, 700, 711, 712

HAETVE, 31, 130, 133, 183, 189, 211,

231, 279–286, 306–309, 311,

396–399, 413, 415, 440, 445,

497–500, 521–523, 565, 578, 581,

584, 592, 630, 632, 640, 649

holistic and dynamic traceability, 122, 133,

203, 204, 253, 306, 318, 363, 531,

549–554, 602

holistic and intelligent version comparison,

121–122, 134, 222, 233

holistic, virtual, and traceable diagram

generation, 117–119, 133, 203, 204,

214, 231

intelligent regression test case selection,

109, 128–130, 134, 203, 204

intelligent version comparison technique,

32, 121–122, 134, 203, 233

refactoring, 52, 111, 126–127, 134, 203,

204, 271, 340, 342, 435, 439,

450–454, 464, 484, 589, 590, 593,

613, 617, 632–634, 641

software maintenance, 2, 29, 30, 32, 44,

46, 48, 51, 54, 56–58, 73–76, 100,

103–105, 110, 111, 122, 125, 133,

134, 138, 178, 204, 207, 219, 222,

229, 230, 233, 235, 238, 239, 251,

269–270, 304, 436, 441, 467–487,

518, 519, 522, 565, 578–580, 599,

605, 608–610, 612, 614, 616, 618,

632–634, 700, 702, 708

synthesis design and incremental growing

up, 96, 98, 100, 131–133, 203,

214, 313–324, 336–339, 341–349,

367, 368, 441, 565, 581, 592, 630,

649, 713

test case efficiency analysis, 3, 12, 16, 76,

111, 125–126, 134, 204, 219, 232,

233, 373, 378, 413, 481, 483,

533–537, 573, 617, 633, 635

test case minimization, 3, 12, 17, 30, 76, 109,

111, 125–126, 134, 204, 219, 232,

373, 378, 391–396, 413, 472, 473,

477, 481, 484, 531, 533–536, 538,

571–573, 615, 617, 633, 635, 700

virtual and traceable documentation,

119–121, 134, 203, 204, 231

Technology, 38, 64, 66, 73, 75, 84, 88, 97,

99, 100, 104, 116, 121, 208, 230,

257, 274, 371, 382, 383, 410, 433,

591, 599, 605–609, 648,

716, 720

Test case

analysis, 148, 219, 572

analyzer, 572

collection, 636

description, 108, 111, 115, 225, 240, 249,

251, 254, 264, 318, 400, 470, 503,

534, 602, 615, 617, 711

design, 128, 129, 156, 160, 182, 203, 204,

217, 302, 387–407, 413, 418, 419,

633, 635

efficiency, 3, 12, 16, 76, 111, 125–126,

134, 204, 219, 232, 233, 373, 378,

391, 395, 413, 481, 483, 533–537,

573, 617, 633, 635

execution, 128, 237, 254, 387, 400,

405–406, 535

generation, 232, 349, 352

inputs, 373

744 Index

manager, 373

minimization, 3, 12, 17, 30, 76, 109, 111,

125–126, 134, 204, 219, 232, 373,

378, 391–396, 413, 472, 473, 477,

481, 484, 531, 533–536, 538,

571–573, 615, 617, 633, 635, 700

numbers, 241, 304, 662

parameter, 225, 250

playback, 570–571

script, 115, 117, 122, 225, 240, 241, 302,

304, 412, 521, 550, 568, 573

selection, 22, 30, 76, 109, 128–130, 134,

203, 204, 219, 405–406, 485, 534,

615, 638, 700

set, 111, 618

window, 246, 478

Test coverage measurement, 4, 5, 9, 10, 108,

111, 136, 156, 160, 162, 176, 179,

181, 182, 237, 241, 249, 250, 254,

261, 299, 300, 327, 330, 353–362,

376, 402, 456, 532–534, 585, 586,

615, 617, 632

Test plan, 633, 635

Testability, 2, 3, 76, 115, 203, 229, 234, 270,

469, 475, 477, 521, 664, 699

Testing. See also Software testing

approach, 100, 123–125, 231, 232,

261, 294

black-box, 52, 117, 231, 234, 373, 375,

410, 578, 613, 715, 716

efficiency, 573

effort, 29, 30, 34, 48, 54, 74, 75, 85, 104,

112, 133, 202, 207, 219, 230, 235,

239, 269, 441, 473, 475, 487, 518,

519, 573, 579, 591, 598–600, 610,

614, 629, 631, 633, 634, 702

engineer, 232–233

functional, 3, 52, 71, 72, 104, 105, 108,

110, 111, 117, 125, 127, 132, 133,

207, 234, 260, 280, 341, 373, 375,

378, 380, 384, 396–406, 409, 417,

432, 434, 454, 455, 464, 470, 496,

592, 604, 613, 615, 616, 618, 715

load, 377, 381, 714

methods, 52, 97, 108, 110, 117, 122, 123,

214, 234, 260, 261, 263, 270, 271,

278, 285, 318, 323, 337, 339, 347,

364, 368, 372, 373, 375, 376, 381,

383, 387, 406, 409–417, 429, 431,

432, 434, 445, 450, 470, 473, 475,

489, 578, 579, 581, 592, 604, 605,

613, 615, 616, 715, 716

operations, 550, 582, 602

order, 124, 156, 183, 216, 232, 349

performance, 376–377, 380, 384, 455, 714

phase, 260, 270, 406, 450, 582

plan, 378

process, 111, 216, 218, 271, 361, 382, 617

purpose, 371–373

regression, 3, 12, 16, 22, 30, 50, 76, 109,

111, 126, 128, 134, 208, 219, 221,

232, 233, 242, 254, 255, 263, 373,

378, 391, 413, 469, 472, 473, 477,

480, 482, 484, 485, 533, 534, 536,

570–572, 582, 612, 617, 618, 633,

635, 636, 638, 700, 710

reliability, 377

resource, 76, 83, 311, 391, 464,

580, 602

requirements, 373, 643

result, 381

stress, 72, 377, 384

structural, 3, 31, 52, 72, 104, 108, 110,

111, 117, 122, 123, 125, 127, 132,

133, 207, 216, 234, 260–261, 278,

340, 341, 373–375, 378, 380, 383,

384, 396–406, 417, 432, 434, 435,

438, 445, 455, 464, 470, 496, 592,

604, 605, 613, 615, 618, 632, 714,

715

support, 219, 232, 349–353

technique, 122–123, 133, 203, 204

tool, 578

transparent-box, 52, 108, 110, 117,

122–124, 133, 214, 230–232, 234,

261, 263, 270, 271, 278, 280, 285,

318, 323, 337, 339, 347, 364, 387,

411–417, 430, 450, 470, 475, 578,

579, 581, 592, 604, 605, 613, 615,

616, 632, 716

visualization, 44, 48, 49, 55, 68, 69,

73, 103–105, 108–110, 112,

135–195, 261, 270, 277, 287,

317, 318, 337, 339, 347, 364–366,

368, 391, 433, 435, 436, 438,

445, 447, 464, 472, 497, 523,

578, 608, 610, 613, 615–617,

633, 640, 641, 643

white-box, 52, 373–375, 389, 409, 429,

434, 613

web, 380–381

The mythical man-month, 29, 74–76, 97,

200–201, 597–599

Thinking

linear, 44–45, 49, 50, 57, 66, 69, 72,

74–76, 80, 86–88, 91–94, 97,

745Index

101, 103, 112, 135, 199, 201,

233, 234, 258, 313, 410, 597–599,

608–612

nonlinear, 30, 50, 57, 75, 76, 80, 86–88,

91–94, 97, 101, 137, 162, 234, 314,

411, 609, 611, 612

Time tags, 12, 28, 108, 122, 208, 225,

240–242, 245, 246, 249, 250,

252, 254, 255, 261, 264, 318,

412, 470, 482, 534, 535, 602,

615, 642, 710

Tool

Adobe, 156, 303

analysis, 422

bar, 567–572, 574

chain, 137, 138, 179

development, 549

freeware, 381

function/capability, 564

integration, 63, 137, 138, 179, 564

modeling, 276, 583

OO-Analyzer, 3, 12, 563, 564, 567,

570, 572

OO-Browser, 3, 5, 155, 563, 564, 567–569,

649, 721

OO-CodeDiff, 3, 22, 563, 564

OO-DefectTracer, 3, 563, 564, 574

OO-Diagrammer, 3, 9, 160, 563, 564, 567,

569, 649, 673–693, 721

OO-MemoryChecker, 574

OO-MiniCase, 3, 15, 563, 564

OO-Test, 3, 559, 563, 564, 567, 568, 573,

649, 721

OO-Validate, 553, 567, 572, 649

Panounit, 216–219, 349, 352, 353, 698

performance, 11

playback, 3, 123, 189, 232, 382–383,

413, 454, 455, 563, 564, 570–572,

582, 617

software engineering, 137, 138, 179

support, 43, 237–239, 518, 523–524, 618

test coverage, 3–5, 8–10, 16, 75, 108, 111,

115, 120, 122, 125–128, 133, 136,

138, 148, 149, 155, 156, 159–162,

165, 168, 170, 176, 178, 179, 181,

182, 194, 208, 216, 217, 219, 225,

237, 240–242, 245, 249, 250, 254,

262, 264, 271, 294, 298–300, 309,

316, 318, 327, 329, 330, 340, 347,

353–362, 367, 374–376, 378–380,

382, 391, 402, 412, 413, 417, 419,

421, 422, 424, 431, 454, 456, 463,

477, 481, 484, 500, 505, 532–536,

567–573, 578, 582, 584–586, 602,

615, 617, 632, 649, 673, 676,

679–685, 688–694, 714, 721, 722,

724, 725

third party, 106, 251, 252, 255, 305, 564,

602, 710

vendor, 94, 97, 98, 101, 702

version comparison, 575, 634, 635

Traceability

backward, 51, 111, 189, 193, 219, 221,

227, 228, 248, 250, 271, 378, 440,

441, 472, 473, 477, 480, 482, 485,

572, 582, 612, 618, 635, 636

bi-directional, 1–3, 12, 49, 52, 54, 55, 73,

75, 76, 97, 99, 100, 104, 108, 110,

111, 115, 117, 122, 133, 204, 206,

208, 214, 216, 219, 224–225, 227,

231, 233, 240, 241, 245–249, 252,

264, 278, 348, 412, 417, 435, 440,

449, 469, 470, 496, 564, 572, 573,

592, 599, 604, 605, 610, 613, 615,

617, 632, 642, 647, 711, 716

code, 447

facility, 117, 208, 231, 238, 239,

711, 716

forward, 31, 227, 247, 304, 440, 477,

572, 612

requirement, 208, 238–240,

255, 305

software, 75, 122, 255, 602, 604

Transaction, 659

Transparent-box testing method, 3, 31, 52,

100, 108, 110, 111, 117, 122–125,

132, 133, 207, 214, 216, 227,

230–232, 234, 260, 261, 263, 270,

271, 277, 278, 285, 294, 306, 315,

317, 318, 323, 337, 339, 347, 364,

368, 375, 384, 387, 406, 407,

409–432, 435, 437, 438, 445, 447,

450, 464, 470, 473, 475, 495, 496,

565, 578, 579, 581, 582, 592, 604,

605, 613, 615, 616, 618, 632–634,

649, 711, 715, 716

U

Unit testing, 8, 53, 123, 124, 132, 156, 171,

183, 216, 232, 271, 340–342, 347,

349–353, 361, 378, 390–391, 409,

413, 454, 477

UML

charts, 138

design, 275, 584

746 Index

diagrams, 494, 584

notations, 497

Upstream movement, 33, 51, 70, 97, 103, 200,

201, 235, 268, 275, 276, 340, 434,

435, 468, 489, 578, 593, 598, 600,

601, 612

Usability, 44, 159

Use case

analysis, 286, 287

approach, 31, 130, 133, 274, 282,

413, 649

drawbacks, 274

notations, 282

User interface, 303, 382, 482

User manual, 237, 489, 649

V

Viewpoints, 100, 237

Virtual, 54, 111, 117–122, 133, 134, 137, 168,

170, 179, 195, 214, 231, 277, 341,

507, 508, 512, 553, 587, 592, 613,

617, 649

Virtual function, 414

Visibility, 2, 3, 68, 73, 75, 76, 238, 270, 433,

469, 475, 477, 503, 509, 510, 521,

602, 664, 699

W

Waterfall model, 32–36, 42, 43, 45,

51, 75, 92, 105, 599, 608,

612, 618

Waterfall model with feedback, 32, 33,

708, 709

Web, 68, 76, 95, 110, 156, 207, 223, 224, 231,

237, 238, 251, 252, 268, 271, 303,

377, 380–381, 504, 515, 519, 524,

527, 529, 560, 580, 582, 617,

628–630, 649, 654, 660, 714,

719, 721

Web engineering, 63

Werewolves, 597, 600, 605–609,

628–647

White box testing, 52, 375, 389, 409, 434, 613

Work flow, 206, 267, 268

Work product, 641–643, 649

Workflows, 97, 101

X

XP. See Extreme programming

Y

Y2K, 66

	New Software Engineering Paradigm Based on Complexity Science

	Preface
	Contents

	Chapter 1: Introduction
	1.1 What Is Software?
	1.2 What Is Software Engineering?
	1.3 The Major Activities/Tasks to Be Performed in Software Engineering
	1.4 The Popular Lifecycle/Process Models with the Existing Software Engineering Paradigm
	1.4.1 The Waterfall Model
	1.4.2 The Incremental Development Models
	1.4.2.1 Advantages
	1.4.2.2 Disadvantages

	1.4.3 The Iterative Models
	1.4.3.1 The Prototype Models
	1.4.3.2 Spiral Model
	1.4.3.3 Advantages [GSAM00]
	1.4.3.4 Disadvantages [GSAM00]

	1.4.4 More Popular Process Models
	1.4.4.1 CMMI
	1.4.4.2 Agile Software Development Model
	The Agile Manifesto
	Twelve Agile Principles

	1.4.4.3 Agile Methods (Table 1.1)
	1.4.4.4 Rational Unified Process

	1.4.5 General Comments to All Process Models Existing with the Old-Established Software Engineering Paradigm
	1.4.5.1 “All models Are Wrong, But Some Are Useful” [Box87]
	1.4.5.2 The Common Limitations of the Existing Process Models

	1.5 Why the Current Software Is Not Sufficiently Engineered at This Time to Fulfill the Role of “Foundation”
	1.6 What Does a Revolution Mean?
	1.6.1 Three Phases of Scientific Revolutions
	1.6.2 Progress Through Revolutions

	1.7 What Is NSE?
	1.8 Summary
	1.9 Points and Questions to Ponder
	1.10 Further Reading and Information Source
	References

	Chapter 2: Is the Old-Established Software Engineering Paradigm Entirely Out of Date?
	2.1 The 20 Famous Software Disasters Reported
	2.1.1 Very High Project Failure Rate Reported

	2.2 What Is the Root Cause for Software Disasters and Very High Software Project Failure Rate?
	2.3 The “Software” Definition Is Outdated
	2.4 The Current Software Development Process ModelsAre Out of Date
	2.5 Current Software Development Methodologies Are Out of Date
	2.6 The Existing Software Modeling Approaches Are Outdated
	2.7 Current Software Testing Paradigm Is Out of Date
	2.8 Current Software Quality Assurance Paradigm Is Out of Date
	2.9 Current Software Visualization Paradigm Is Out of Date
	2.10 Current Software Documentation Paradigm Is out of Date
	2.11 Current Software Maintenance Paradigm Is Out of Date
	2.12 Current Software Project Management Paradigm Is Out of Date
	2.13 “The Mythical Man-Month” Is an Outcome of Linear Thinking; The “No Silver Bullet” Conclusion Is Out of Date
	2.14 Summary
	2.15 Points and Questions to Ponder
	2.16 Further Reading and Information Source
	References

	Chapter 3: Foundation for Establishing NSE: Complexity Science
	3.1 The Basis of Complexity Science
	3.1.1 Linear and Nonlinear
	3.1.2 Reductionism
	3.1.3 Chaos Theory
	3.1.4 System
	3.1.5 System Categories
	3.1.6 Linear System
	3.1.7 Nonlinear System and Complex System
	3.1.8 Feedback
	3.1.9 Fractal
	3.1.10 Fractal Dimension
	3.1.11 Dynamical System
	3.1.12 Dissipation Structure
	3.1.13 Li–Yorke Theorem: Period Three Theorem
	3.1.14 Self-Organization
	3.1.15 Synergetics
	3.1.16 Catastrophe Theory
	3.1.17 Complex Adaptive System
	3.1.18 Meta-Synthesis
	3.1.19 Cellular Automata
	3.1.20 Genetic Algorithm
	3.1.21 Soliton

	3.2 Linear Thinking and Nonlinear Thinking
	3.3 The Essential Principles of Complexity Science
	3.4 Applications of Complexity Science
	3.5 Complexity Science and NSE
	3.6 Summary
	3.7 Points and Questions to Ponder
	3.8 Further Reading and Information Source
	References

	Chapter 4: Prediction and Practices: A New Round of Industrial Revolution Driven by Complexity Science and a General Paradigm-
	4.1 Prediction: A New Round of Industrial Revolution Driven by Complexity Science Is Coming
	4.2 The Contribution and Limitation of Hall’s Systems Engineering Framework
	4.3 The Background for the Innovation of FDS
	4.4 The Objectives of Innovating FDS
	4.5 The Description of FDS
	4.5.1 The “Principles of Complexity Science” Axis
	4.5.2 The “Environment” Axis
	4.5.3 The “People/Logic” Axis
	4.5.4 The “New Paradigm” Axis Modified from the “Knowledge/Skills” Axis in Hall’s Framework
	4.5.5 The “Phases” (Workflows) Axis

	4.6 The Major Features of FDS
	4.7 Applications of FDS
	4.8 Bringing Feedback to the Research and Development of Complexity Science
	4.9 Summary
	4.10 Points and Questions to Ponder
	4.11 Further Reading and Information Source
	References

	Chapter 5: Outline of the NSE Paradigm
	5.1 A Tree Will Not Fall at One Blow: The Difficulty in Software Engineering Revolution
	5.2 The Objectives for Establishing NSE
	5.3 The Strategy to Achieve the Objectives of NSE
	5.4 The Establishment of NSE
	5.5 The Structure of NSE
	5.6 The Components of NSE
	5.7 The Major Feature and Characteristics of NSE
	5.8 Summary
	5.9 Points and Questions to Ponder
	5.10 Further Reading and Information Source
	References

	Chapter 6: The Techniques Innovated to Support NSE
	6.1 Definitions
	6.2 Holistic, Virtual, and Traceable Diagram Generation Technique
	6.3 Virtual and Traceable Documentation Technique
	6.4 Holistic and Intelligent Version Comparison Technique
	6.5 Holistic and Dynamic Traceability Technique
	6.6 Comprehensive Software Testing Technique Mainly Based on the Transparent-Box Method
	6.7 Defect Prevention Driven Quality Assurance Technique
	6.8 Test Case Efficiency Analysis and Test CaseMinimization Technique
	6.9 Refactoring Technique with Defect Prevention
	6.10 Holistic MC/DC Test Coverage Analysis and Graphical Representation Technique
	6.11 Assisted Test Case Design Technique
	6.12 Intelligent Regression Test Case Selection Technique
	6.13 Holistic, Actor–Action and Event–Response Driven, Traceable, Visual, and Executable Technique for Requirement Developme
	6.14 Synthesis Design and Incremental Growing Up (Implementation and Integration) Technique
	6.15 Holistic, Global, and Side-Effect-Prevention Based Software Maintenance Technique
	6.16 Summary
	6.17 Points and Questions to Ponder
	6.18 Further Reading and Information Source
	References

	Chapter 7: NSE Software Engineering Visualization Paradigm
	7.1 The Old-Established Software Engineering Visualization Paradigm Is Outdated
	7.2 The Revolutionary Solution Offered by NSE
	7.3 The 3J graphics (J-Chart, J-Diagram, and J-Flow)
	7.4 J-Chart
	7.5 J-Diagram
	7.6 J-Flow
	7.7 Entire Software Life Cycle Visualization with NSE
	7.8 Rich Options for Generating 3J Graphics
	7.8.1 For J-Chart Generation
	7.8.2 For J-Diagram and J-Flow Generation

	7.9 The Major Features of NSE Software Visualization Paradigm
	7.10 Applications
	7.11 Self-Documenting
	7.12 Summary
	7.13 Points and Questions to Ponder
	7.14 Further Reading and Information Source
	References

	Chapter 8: NSE Process Model
	8.1 Some Experts’ Expectations
	8.2 All of the Existing Software Engineering ProcessModels Are Outdated
	8.3 Outline of the Revolutionary Solution Offered with NSE
	8.4 The Driving Forces and The Support Techniques
	8.5 The Graphical Representation of the NSE Process Model
	8.5.1 The Objectives of the Preprocess
	8.5.2 The Objectives of the Main Process
	8.5.3 The Objective of the Support Facility for Automated and Bidirectional Traceability

	8.6 The Major Steps of the Preprocess
	8.7 The Major Steps of the Main Process
	8.8 The Support Facility for Automated and Bidirectional Traceability
	8.9 The Manifestation of the Essential Principles of Complexity Science in the NSE Process Model
	8.10 The Major Features and Characteristics of the NSE Process Model
	8.11 Summary
	8.12 Points and Questions to Ponder
	8.13 Further Reading and Information Source
	References

	Chapter 9: The Facility for Automated and Self-Maintainable Traceability
	9.1 The Importance of Requirement Traceability
	9.2 The Problems Addressed
	9.3 The Solution Offered with NSE
	9.3.1 Part 1
	9.3.2 Part 2

	9.4 How It Works
	9.4.1 Bidirectional Traceability Between the Test Cases and the Source Code Modules or Branches
	9.4.2 Extending the Bidirectional Traceability to Include All Related Documents

	9.5 The Major Features
	9.5.1 Automated
	9.5.2 Self-Maintainable
	9.5.3 Methodology-Independent
	9.5.4 Nonlinear, Bidirectional, and Parallel
	9.5.5 Accurate
	9.5.6 Precise
	9.5.7 Extended to Include Software Project Management Documents
	9.5.8 Extended to Include Web Pages
	9.5.9 Extended for Multiproject Support
	9.5.10 Dynamic
	9.5.11 Easy to Add on at Any Time, In Any Status

	9.6 Application
	9.7 Summary
	9.8 Points and Questions to Ponder
	9.9 Further Reading and Information Source
	References

	Chapter 10: NSE Software Development Methodology Driven by Defect Prevention and Traceability
	10.1 Almost All Existing Software DevelopmentMethodologies Are Outdated
	10.2 Outline of the Revolutionary Solution Offered by NSE
	10.3 The Driving Forces for the Innovation of the NSE Software Development Methodology
	10.4 The Related NSE Software Engineering Process Model
	10.5 Graphical Presentation of the NSE Software Development Methodology
	10.6 Application
	10.6.1 Some Suggestions About the Applications of the NSE Software Development Methodology

	10.7 The Major Features of the NSE SoftwareDevelopment Methodology
	10.8 Summary
	10.9 Points and Questions to Ponder
	10.10 Further Reading and Information Source
	References

	Chapter 11: Requirement Engineering Under NSE: Source Code Driven Dynamic Software Modeling
	11.1 Are All the Existing Software Modeling Approaches Outdated?
	11.2 Outline of the Revolutionary Solution Offered by NSE
	11.3 Description of the HAETVE Technique
	11.4 Applications of HAETVE
	11.5 How to Make a Hard Copy of a GraphicalRequirement Document
	11.6 Suggestions for the Requirement Documentation Design
	11.7 The Major Features of HAETVE
	11.8 More About Dynamic Modeling
	11.9 Summary
	11.10 Points and Questions to Ponder
	11.11 Further Reading and Information Source
	References

	Chapter 12: Design Engineering Under NSE
	12.1 The Major Problem Addressed
	12.2 Outline of the Solution for Software Design with NSE
	12.3 Description of the Innovated “Synthesis Design and Incremental Growing Up” Technique
	12.3.1 Basic Ideas
	12.3.2 What is Synthesis? What is Analysis?
	12.3.3 Recommendation for Graphic Document Creation/Generation
	12.3.4 Self-Documenting
	12.3.5 Detailed System Hierarchy Design
	12.3.6 Static Defect Prevention and Defect Propagation Prevention Through Traceability
	12.3.7 Dynamic Defect Prevention and Defect Propagation Prevention
	12.3.8 Data Structure Design
	12.3.9 Detailed Logic Design of the Modules

	12.4 Application
	12.5 The Major Features of the Software Synthesis Design Technique
	12.6 Summary
	12.7 Points and Questions to Ponder
	12.8 Further Reading and Information Source
	References

	Chapter 13: Coding Engineering with NSE
	13.1 The Problems Addressed
	13.2 The Solution: Software Coding Engineering with NSE Using the Synthesis Design and Incremental Integration Technique
	13.3 Unit Testing and Integration Testing Support
	13.4 MC/DC Test Coverage Measurement Support
	13.4.1 Conclusion

	13.5 Semiautomated Inspection Support
	13.6 Defect Prevention Driven Quality Assurance in Programming
	13.7 Quality Measurement for an Entire Software Product and Each of Its Components
	13.8 Application
	13.9 The Major Features
	13.10 Summary
	13.11 Points and Questions to Ponder
	13.12 Further Reading and Information Source
	References

	Chapter 14: The Basis of Software Testing
	14.1 The Purpose of Software Testing
	14.2 Functional Testing and the Black-Box Method
	14.3 Structural Testing and the White-Box Method
	14.3.1 Test Coverage Metrics
	14.3.2 Instrumentation Methods

	14.4 Gray-Box Testing
	14.5 Performance Testing and the Testing Method
	14.6 Other Nonfunctional Testing
	14.7 Unit Testing, Integration Testing, and System Testing
	14.8 Regression Test After Code Modification
	14.9 Object-Oriented Software Testing
	14.10 Web Application Testing
	14.11 Embedded Software Testing
	14.12 GUI Operation Capture and Playback
	14.13 Acceptance Testing
	14.14 Why Should Software Testing Tools Be Used
	14.15 The Major Drawback of the Major Existing Software Testing Paradigm and the Solution
	14.16 Summary
	14.17 Points and Questions to Ponder
	14.18 Further Reading and Information Source
	References

	Chapter 15: Software Test Case Design
	15.1 What Is a Test Case?
	15.2 The Basis of Test Case Design
	15.2.1 Equivalence Class Partition and Boundary Value Analysis
	15.2.2 State Transition Analysis
	15.2.3 Conditions Combination Method

	15.3 Semiautomated Test Case Design
	15.4 Test Case Efficiency Measurement
	15.5 Test Case Minimization
	15.6 NSE Test Case Design with HAETVE Technique for Both Functional Testing and Structural Testing
	15.7 Automated Test Case Selection with Automated Test Case Execution
	15.8 Summary
	15.9 Points and Questions to Ponder
	15.10 Further Reading and Information Source
	References

	Chapter 16: The NSE Software Testing Paradigm Based on the Transparent-Box Method
	16.1 The Major Existing Software Testing Methods, Techniques, and Tools Are Outdated
	16.2 The Transparent-Box Testing Method
	16.3 The New Software Testing Paradigm Based on the Transparent-Box Testing Method
	16.4 The Major Features of the New Software Testing Paradigm
	16.5 A General Comparison Between the New Software Testing Paradigm and the Old One
	16.6 Summary
	16.7 Points and Questions to Ponder
	16.8 Further Reading and Information Source
	References

	Chapter 17: NSE Software Quality Assurance Paradigm Driven by Defect Prevention
	17.1 The Old-Established Software Quality Assurance Paradigm Is Outdated
	17.2 Outline of NSE Software Quality Assurance Paradigm (NSE-SQA)
	17.3 Description of NSE Software Quality Assurance Paradigm
	17.3.1 The Foundation of NSE-SQA
	17.3.2 The Framework for Establishing NSE-SQA
	17.3.3 The Purpose of NSE-SQA
	17.3.4 Definitions
	17.3.4.1 Defect
	17.3.4.2 Defect Prevention
	The Popular Definitions
	The New Definition with NSE

	17.3.4.3 Defect Propagation Prevention

	17.3.5 The Quality Assurance Strategy of NSE-SQA
	17.3.6 The Implementation of the Quality Assurance Strategy of NSE-SQA
	17.3.6.1 Defect Prevention
	17.3.6.2 Defect Propagation Prevention
	17.3.6.3 Refactoring
	17.3.6.4 Deeper and Broader Software Testing, Quality Measurement, and Version Comparison

	17.4 Application of NSE-SQA
	17.5 The Major Features of NSE-SQA
	17.6 Summary
	17.7 Points and Questions to Ponder
	17.8 Further Reading and Information Source
	References

	Chapter 18: NSE Software Maintenance Paradigm: Systematic, Disciplined, and Quantifiable
	18.1 The Existing Software Maintenance Engineering Paradigm Is Outdated
	18.2 Outline of the NSE Software Maintenance Paradigm
	18.3 Description of NSE Software Maintenance Engineering Paradigm
	18.4 Application
	18.5 The Major Features
	18.6 Summary
	18.7 Points and Questions to Ponder
	18.8 Further Reading and Information Source
	References

	Chapter 19: NSE Documentation Paradigm: Virtual, Traceable, and Consistent with the Source Code
	19.1 The Old-Established Software Documentation Paradigm Is Outdated
	19.2 Outline of NSE Documentation Paradigm
	19.3 Description of the NSE Documentation Paradigm
	19.3.1 The Critical Issues with the Old-Established Software Documentation Paradigm
	19.3.2 The Solution Offered with NSE
	19.3.3 The Objectives of the NSE Documentation Paradigm
	19.3.4 Working with Dummy Programming
	19.3.5 Working with NSE Software Visualization Paradigm
	19.3.6 Working with HAETVE Requirement Development Technique
	19.3.7 How It Works
	19.3.8 Making a Software Product Visible in Multiple-Views

	19.4 The Major Features of NSE Documentation Paradigm
	19.5 Application
	19.6 Summary
	19.7 Points and Questions to Ponder
	19.8 Further Reading and Information Source
	References

	Chapter 20: NSE Project Management Paradigm: Seamlessly Combined with the Project Development Process
	20.1 The Old-Established Software Project Management Paradigm Is Outdated
	20.2 Outline of the NSE Project Management Paradigm
	20.3 The Foundation of NSE Project Management Paradigm
	20.4 The Strategy of NSE Project Management Paradigm
	20.5 People Oriented
	20.6 Focusing on Maintenance
	20.7 More Method and Tool Support
	20.8 Combination of Product Development and Project Management
	20.9 Finding Problems Early and Solvingthe Problems in Time
	20.10 Quality Management
	20.11 Multiple-Project Management
	20.12 Summary
	20.13 Points and Questions to Ponder
	20.14 Further Reading and Information Source
	References

	Chapter 21: Algorithms Innovated for Establishing NSE
	21.1 The Algorithm for Realizing Modified Condition/Decision Coverage Test Coverage Measurement
	21.1.1 The Requirements
	21.1.2 The Basic Idea
	21.1.3 The Major Steps
	21.1.4 Application

	21.2 The Algorithm for Test Case Efficiency Analysis and Test Case Minimization
	21.2.1 The Requirements
	21.2.2 The Basic Idea
	21.2.3 The Major Steps
	21.2.4 Application

	21.3 The Algorithm for Performance Analysis
	21.3.1 The Requirements
	21.3.2 The Basic Idea
	21.3.3 The Major Steps
	21.3.4 Application

	21.4 The Algorithm for Cyclomatic Complexity Analysis
	21.4.1 The Requirement
	21.4.2 The Basic Idea
	21.4.3 The Major Steps
	21.4.4 Application

	21.5 The Algorithm for Tracing the Execution Path of a Runtime Error
	21.6 The Algorithm for the Layout of the Call Graph of a Program Using J-Chart Notations
	21.7 The Algorithm for Holistic Version Comparison of a Software Product
	21.8 The Algorithm for Memory Leak and Usage Violation Analysis
	21.9 The Algorithm for Realizing the Traceability of the Diagrammed Source Code
	21.10 The Algorithm for Dynamic Traceability
	21.11 Summary
	21.12 Points and Questions to Ponder
	21.13 Further Reading and Information Source
	References

	Chapter 22: NSE Support Tools and NSE Support Platforms
	22.1 Full Software Development Lifecycle Support
	22.2 The Product Development History
	22.2.1 The First Generation: Hindsight
	22.2.2 Second Generation: Panorama
	22.2.3 Panorama++

	22.3 Automated Tools Integrated with Panorama++
	22.4 Panorama++ Product Installation
	22.5 A Guided Tour of Panorama++ for C/C++
	22.6 Network Floating License Support
	22.7 The Major Features of Panorama++
	22.8 Applications
	22.9 Summary
	22.10 Points and Questions to Ponder
	22.11 Further Reading and Information Source
	References

	Chapter 23: NSE Applications
	23.1 The Whole and Its Components: A General Comparison Between NSE and Other Approaches
	23.2 What Makes NSE Special?
	23.3 Applications in New Software Development
	23.3.1 Benefits
	23.3.2 Recommended Process

	23.4 Applications in a Software Product Being Developed Using Other Approaches
	23.5 Possible Combination with UML
	23.5.1 About the Future of UML
	23.5.2 Question to the Future of UML
	23.5.3 Possible Combination with UML (NSE-UML?)
	23.5.4 Possible Combination with CMMI (NSE-CMMI?)

	23.6 Possible Combination with Agile Software Development Approaches
	23.6.1 Possible Combination with XP (NSE-XP?)

	23.7 Possible Combination with RUP (NSE-RUP?)
	23.8 Support for CBSE
	23.9 Summary
	23.10 Points and Questions to Ponder
	23.11 Further Reading and Information Source
	References

	Chapter 24: Candidates of “Silver Bullet”
	24.1 Is “The Mythical Man-Month” an Outcome of Linear Thinking, Reductionism, and Superposition Principle?
	24.1.1 A Great book
	24.1.2 Limitation

	24.2 Is the “No Silver Bullet” Conclusion Outdated?
	24.3 The First Candidate of “Silver Bullet”
	24.4 The Second Candidate of “Silver Bullet”
	24.5 Can the “Silver Bullet” Defined by Brooks Slay the “Werewolves” Defined by Him?
	24.6 What Kind of “Silver Bullet” Can be Used to Slay the “Werewolves” Defined by Brooks?
	24.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm
	24.7.1 What Is NSE: The Whole and Its Components
	24.7.2 The Components of NSE
	24.7.3 The Major Features and Characteristics of NSE
	24.7.4 The Major Differences Between NSE and the Old-Established Software Engineering Paradigm
	24.7.5 Qualification as a Candidate of “Silver Bullet” for Slaying Software “Werewolves”

	Sec32_24
	10.Efficiently Handling the Issue of Conformity
	24.8 Summary
	24.9 Points and Questions to Ponder
	24.10 Further Reading and Information Source
	References

	Appendix A
Software Requirements Specification Template To Be Used with NSE
	Appendix B
An Example About How to Realize 100% MC/DC (Modified Condition/Decision Coverage) for a Program Unit
	Appendix C
How to Control/Simulate the Return Values of a Program Unit Being Tested
	Appendix D
Hints for Answering the “Points and Questions to Ponder” in Each Chapter
	Glossary
	Index
	Cover
	New Software Engineering Paradigm Based on Complexity Science
	Preface
	Contents

	Chapter 1: Introduction
	1.1 What Is Software?
	1.2 What Is Software Engineering?
	1.3 The Major Activities/Tasks to Be Performed in Software Engineering
	1.4 The Popular Lifecycle/Process Models with the Existing Software Engineering Paradigm
	1.4.1 The Waterfall Model
	1.4.2 The Incremental Development Models
	1.4.2.1 Advantages
	1.4.2.2 Disadvantages

	1.4.3 The Iterative Models
	1.4.3.2 Spiral Model
	1.4.3.1 The Prototype Models
	1.4.3.3 Advantages [GSAM00]
	1.4.3.4 Disadvantages [GSAM00]

	1.4.4 More Popular Process Models
	1.4.4.1 CMMI
	1.4.4.2 Agile Software Development Model
	The Agile Manifesto
	Twelve Agile Principles

	1.4.4.4 Rational Unified Process
	1.4.4.3 Agile Methods (Table 1.1)

	1.4.5 General Comments to All Process Models Existing with the Old-Established Software Engineering Paradigm
	1.4.5.1 “All models Are Wrong, But Some Are Useful” [Box87]
	1.4.5.2 The Common Limitations of the Existing Process Models

	1.5 Why the Current Software Is Not Sufficiently Engineered at This Time to Fulfill the Role of “Foundation”
	1.6 What Does a Revolution Mean?
	1.6.1 Three Phases of Scientific Revolutions

	1.7 What Is NSE?
	1.6.2 Progress Through Revolutions

	1.8 Summary
	References
	1.10 Further Reading and Information Source
	1.9 Points and Questions to Ponder

	Chapter 2: Is the Old-Established Software Engineering Paradigm Entirely Out of Date?
	2.1 The 20 Famous Software Disasters Reported
	2.2 What Is the Root Cause for Software Disasters and Very High Software Project Failure Rate?
	2.1.1 Very High Project Failure Rate Reported

	2.3 The “Software” Definition Is Outdated
	2.4 The Current Software Development Process ModelsAre Out of Date
	2.5 Current Software Development Methodologies Are Out of Date
	2.7 Current Software Testing Paradigm Is Out of Date
	2.8 Current Software Quality Assurance Paradigm Is Out of Date
	2.6 The Existing Software Modeling Approaches Are Outdated
	2.10 Current Software Documentation Paradigm Is out of Date
	2.9 Current Software Visualization Paradigm Is Out of Date
	2.11 Current Software Maintenance Paradigm Is Out of Date
	2.12 Current Software Project Management Paradigm Is Out of Date
	2.13 “The Mythical Man-Month” Is an Outcome of Linear Thinking; The “No Silver Bullet” Conclusion Is Out of Date
	2.14 Summary
	2.15 Points and Questions to Ponder
	2.16 Further Reading and Information Source
	References

	Chapter 3: Foundation for Establishing NSE: Complexity Science
	3.1 The Basis of Complexity Science
	3.1.3 Chaos Theory
	3.1.1 Linear and Nonlinear
	3.1.2 Reductionism
	3.1.6 Linear System
	3.1.5 System Categories
	3.1.7 Nonlinear System and Complex System
	3.1.4 System
	3.1.9 Fractal
	3.1.10 Fractal Dimension
	3.1.12 Dissipation Structure
	3.1.11 Dynamical System
	3.1.8 Feedback
	3.1.15 Synergetics
	3.1.16 Catastrophe Theory
	3.1.13 Li–Yorke Theorem: Period Three Theorem
	3.1.14 Self-Organization
	3.1.18 Meta-Synthesis
	3.1.17 Complex Adaptive System
	3.1.19 Cellular Automata
	3.1.20 Genetic Algorithm

	3.2 Linear Thinking and Nonlinear Thinking
	3.1.21 Soliton

	3.3 The Essential Principles of Complexity Science
	3.4 Applications of Complexity Science
	3.5 Complexity Science and NSE
	3.8 Further Reading and Information Source
	3.7 Points and Questions to Ponder
	3.6 Summary
	References

	Chapter 4: Prediction and Practices: A New Round of Industrial Revolution Driven by Complexity Science and a General Paradigm-
	4.1 Prediction: A New Round of Industrial Revolution Driven by Complexity Science Is Coming
	4.2 The Contribution and Limitation of Hall’s Systems Engineering Framework
	4.3 The Background for the Innovation of FDS
	4.4 The Objectives of Innovating FDS
	4.5 The Description of FDS
	4.5.1 The “Principles of Complexity Science” Axis
	4.5.3 The “People/Logic” Axis
	4.5.2 The “Environment” Axis
	4.5.4 The “New Paradigm” Axis Modified from the “Knowledge/Skills” Axis in Hall’s Framework
	4.5.5 The “Phases” (Workflows) Axis

	4.6 The Major Features of FDS
	4.7 Applications of FDS
	4.8 Bringing Feedback to the Research and Development of Complexity Science
	4.11 Further Reading and Information Source
	4.10 Points and Questions to Ponder
	References
	4.9 Summary

	Chapter 5: Outline of the NSE Paradigm
	5.1 A Tree Will Not Fall at One Blow: The Difficulty in Software Engineering Revolution
	5.2 The Objectives for Establishing NSE
	5.3 The Strategy to Achieve the Objectives of NSE
	5.4 The Establishment of NSE
	5.5 The Structure of NSE
	5.6 The Components of NSE
	5.7 The Major Feature and Characteristics of NSE
	5.10 Further Reading and Information Source
	5.8 Summary
	5.9 Points and Questions to Ponder
	References

	Chapter 6: The Techniques Innovated to Support NSE
	6.1 Definitions
	6.2 Holistic, Virtual, and Traceable Diagram Generation Technique
	6.3 Virtual and Traceable Documentation Technique
	6.4 Holistic and Intelligent Version Comparison Technique
	6.6 Comprehensive Software Testing Technique Mainly Based on the Transparent-Box Method
	6.5 Holistic and Dynamic Traceability Technique
	6.7 Defect Prevention Driven Quality Assurance Technique
	6.8 Test Case Efficiency Analysis and Test CaseMinimization Technique
	6.9 Refactoring Technique with Defect Prevention
	6.10 Holistic MC/DC Test Coverage Analysis and Graphical Representation Technique
	6.12 Intelligent Regression Test Case Selection Technique
	6.11 Assisted Test Case Design Technique
	6.13 Holistic, Actor–Action and Event–Response Driven, Traceable, Visual, and Executable Technique for Requirement Developme
	6.14 Synthesis Design and Incremental Growing Up (Implementation and Integration) Technique
	6.16 Summary
	6.15 Holistic, Global, and Side-Effect-Prevention Based Software Maintenance Technique
	References
	6.17 Points and Questions to Ponder
	6.18 Further Reading and Information Source

	Chapter 7: NSE Software Engineering Visualization Paradigm
	7.1 The Old-Established Software Engineering Visualization Paradigm Is Outdated
	7.2 The Revolutionary Solution Offered by NSE
	7.3 The 3J graphics (J-Chart, J-Diagram, and J-Flow)
	7.4 J-Chart
	7.5 J-Diagram
	7.6 J-Flow
	7.7 Entire Software Life Cycle Visualization with NSE
	7.8 Rich Options for Generating 3J Graphics
	7.8.1 For J-Chart Generation

	7.9 The Major Features of NSE Software Visualization Paradigm
	7.8.2 For J-Diagram and J-Flow Generation

	7.10 Applications
	7.11 Self-Documenting
	7.12 Summary
	7.13 Points and Questions to Ponder
	7.14 Further Reading and Information Source
	References

	Chapter 8: NSE Process Model
	8.1 Some Experts’ Expectations
	8.2 All of the Existing Software Engineering ProcessModels Are Outdated
	8.3 Outline of the Revolutionary Solution Offered with NSE
	8.4 The Driving Forces and The Support Techniques
	8.5 The Graphical Representation of the NSE Process Model
	8.5.1 The Objectives of the Preprocess
	8.5.2 The Objectives of the Main Process

	8.6 The Major Steps of the Preprocess
	8.5.3 The Objective of the Support Facility for Automated and Bidirectional Traceability

	8.7 The Major Steps of the Main Process
	8.8 The Support Facility for Automated and Bidirectional Traceability
	8.9 The Manifestation of the Essential Principles of Complexity Science in the NSE Process Model
	8.10 The Major Features and Characteristics of the NSE Process Model
	8.11 Summary
	8.12 Points and Questions to Ponder
	References
	8.13 Further Reading and Information Source

	Chapter 9: The Facility for Automated and Self-Maintainable Traceability
	9.1 The Importance of Requirement Traceability
	9.2 The Problems Addressed
	9.3 The Solution Offered with NSE
	9.3.2 Part 2
	9.3.1 Part 1

	9.4 How It Works
	9.4.1 Bidirectional Traceability Between the Test Cases and the Source Code Modules or Branches
	9.4.2 Extending the Bidirectional Traceability to Include All Related Documents

	9.5 The Major Features
	9.5.1 Automated
	9.5.2 Self-Maintainable
	9.5.5 Accurate
	9.5.4 Nonlinear, Bidirectional, and Parallel
	9.5.3 Methodology-Independent
	9.5.6 Precise
	9.5.9 Extended for Multiproject Support
	9.5.7 Extended to Include Software Project Management Documents
	9.5.8 Extended to Include Web Pages
	9.5.10 Dynamic
	9.5.11 Easy to Add on at Any Time, In Any Status

	9.7 Summary
	9.6 Application
	9.8 Points and Questions to Ponder
	References
	9.9 Further Reading and Information Source

	Chapter 10: NSE Software Development Methodology Driven by Defect Prevention and Traceability
	10.1 Almost All Existing Software DevelopmentMethodologies Are Outdated
	10.2 Outline of the Revolutionary Solution Offered by NSE
	10.3 The Driving Forces for the Innovation of the NSE Software Development Methodology
	10.4 The Related NSE Software Engineering Process Model
	10.5 Graphical Presentation of the NSE Software Development Methodology
	10.6 Application
	10.6.1 Some Suggestions About the Applications of the NSE Software Development Methodology

	10.7 The Major Features of the NSE SoftwareDevelopment Methodology
	10.8 Summary
	10.10 Further Reading and Information Source
	References
	10.9 Points and Questions to Ponder

	Chapter 11: Requirement Engineering Under NSE: Source Code Driven Dynamic Software Modeling
	11.1 Are All the Existing Software Modeling Approaches Outdated?
	11.2 Outline of the Revolutionary Solution Offered by NSE
	11.3 Description of the HAETVE Technique
	11.4 Applications of HAETVE
	11.5 How to Make a Hard Copy of a GraphicalRequirement Document
	11.6 Suggestions for the Requirement Documentation Design
	11.7 The Major Features of HAETVE
	11.8 More About Dynamic Modeling
	11.10 Points and Questions to Ponder
	11.11 Further Reading and Information Source
	11.9 Summary
	References

	Chapter 12: Design Engineering Under NSE
	12.1 The Major Problem Addressed
	12.2 Outline of the Solution for Software Design with NSE
	12.3 Description of the Innovated “Synthesis Design and Incremental Growing Up” Technique
	12.3.1 Basic Ideas
	12.3.2 What is Synthesis? What is Analysis?
	12.3.3 Recommendation for Graphic Document Creation/Generation
	12.3.4 Self-Documenting
	12.3.6 Static Defect Prevention and Defect Propagation Prevention Through Traceability
	12.3.5 Detailed System Hierarchy Design
	12.3.7 Dynamic Defect Prevention and Defect Propagation Prevention
	12.3.8 Data Structure Design
	12.3.9 Detailed Logic Design of the Modules

	12.4 Application
	12.5 The Major Features of the Software Synthesis Design Technique
	12.7 Points and Questions to Ponder
	12.6 Summary
	References
	12.8 Further Reading and Information Source

	Chapter 13: Coding Engineering with NSE
	13.1 The Problems Addressed
	13.2 The Solution: Software Coding Engineering with NSE Using the Synthesis Design and Incremental Integration Technique
	13.3 Unit Testing and Integration Testing Support
	13.4 MC/DC Test Coverage Measurement Support
	13.4.1 Conclusion

	13.5 Semiautomated Inspection Support
	13.6 Defect Prevention Driven Quality Assurance in Programming
	13.7 Quality Measurement for an Entire Software Product and Each of Its Components
	13.8 Application
	13.9 The Major Features
	13.10 Summary
	13.11 Points and Questions to Ponder
	13.12 Further Reading and Information Source
	References

	Chapter 14: The Basis of Software Testing
	14.1 The Purpose of Software Testing
	14.2 Functional Testing and the Black-Box Method
	14.3 Structural Testing and the White-Box Method
	14.3.2 Instrumentation Methods
	14.3.1 Test Coverage Metrics

	14.4 Gray-Box Testing
	14.5 Performance Testing and the Testing Method
	14.6 Other Nonfunctional Testing
	14.9 Object-Oriented Software Testing
	14.8 Regression Test After Code Modification
	14.7 Unit Testing, Integration Testing, and System Testing
	14.10 Web Application Testing
	14.11 Embedded Software Testing
	14.12 GUI Operation Capture and Playback
	14.15 The Major Drawback of the Major Existing Software Testing Paradigm and the Solution
	14.14 Why Should Software Testing Tools Be Used
	14.13 Acceptance Testing
	14.17 Points and Questions to Ponder
	14.16 Summary
	14.18 Further Reading and Information Source
	References

	Chapter 15: Software Test Case Design
	15.1 What Is a Test Case?
	15.2 The Basis of Test Case Design
	15.2.1 Equivalence Class Partition and Boundary Value Analysis
	15.2.2 State Transition Analysis
	15.2.3 Conditions Combination Method

	15.3 Semiautomated Test Case Design
	15.4 Test Case Efficiency Measurement
	15.5 Test Case Minimization
	15.6 NSE Test Case Design with HAETVE Technique for Both Functional Testing and Structural Testing
	15.7 Automated Test Case Selection with Automated Test Case Execution
	15.8 Summary
	15.9 Points and Questions to Ponder
	15.10 Further Reading and Information Source
	References

	Chapter 16: The NSE Software Testing Paradigm Based on the Transparent-Box Method
	16.1 The Major Existing Software Testing Methods, Techniques, and Tools Are Outdated
	16.2 The Transparent-Box Testing Method
	16.3 The New Software Testing Paradigm Based on the Transparent-Box Testing Method
	16.4 The Major Features of the New Software Testing Paradigm
	16.5 A General Comparison Between the New Software Testing Paradigm and the Old One
	16.6 Summary
	16.8 Further Reading and Information Source
	16.7 Points and Questions to Ponder
	References

	Chapter 17: NSE Software Quality Assurance Paradigm Driven by Defect Prevention
	17.1 The Old-Established Software Quality Assurance Paradigm Is Outdated
	17.2 Outline of NSE Software Quality Assurance Paradigm (NSE-SQA)
	17.3 Description of NSE Software Quality Assurance Paradigm
	17.3.2 The Framework for Establishing NSE-SQA
	17.3.1 The Foundation of NSE-SQA
	17.3.3 The Purpose of NSE-SQA
	17.3.4 Definitions
	17.3.4.1 Defect
	17.3.4.2 Defect Prevention
	The New Definition with NSE
	The Popular Definitions

	17.3.6 The Implementation of the Quality Assurance Strategy of NSE-SQA
	17.3.5 The Quality Assurance Strategy of NSE-SQA
	17.3.6.1 Defect Prevention
	17.3.4.3 Defect Propagation Prevention
	17.3.6.2 Defect Propagation Prevention
	17.3.6.3 Refactoring
	17.3.6.4 Deeper and Broader Software Testing, Quality Measurement, and Version Comparison

	17.5 The Major Features of NSE-SQA
	17.4 Application of NSE-SQA
	17.6 Summary
	17.7 Points and Questions to Ponder
	17.8 Further Reading and Information Source
	References

	Chapter 18: NSE Software Maintenance Paradigm: Systematic, Disciplined, and Quantifiable
	18.1 The Existing Software Maintenance Engineering Paradigm Is Outdated
	18.2 Outline of the NSE Software Maintenance Paradigm
	18.3 Description of NSE Software Maintenance Engineering Paradigm
	18.4 Application
	18.5 The Major Features
	18.7 Points and Questions to Ponder
	18.6 Summary
	18.8 Further Reading and Information Source
	References

	Chapter 19: NSE Documentation Paradigm: Virtual, Traceable, and Consistent with the Source Code
	19.1 The Old-Established Software Documentation Paradigm Is Outdated
	19.2 Outline of NSE Documentation Paradigm
	19.3 Description of the NSE Documentation Paradigm
	19.3.1 The Critical Issues with the Old-Established Software Documentation Paradigm
	19.3.2 The Solution Offered with NSE
	19.3.3 The Objectives of the NSE Documentation Paradigm
	19.3.6 Working with HAETVE Requirement Development Technique
	19.3.4 Working with Dummy Programming
	19.3.5 Working with NSE Software Visualization Paradigm
	19.3.8 Making a Software Product Visible in Multiple-Views
	19.3.7 How It Works

	19.4 The Major Features of NSE Documentation Paradigm
	19.5 Application
	19.6 Summary
	19.7 Points and Questions to Ponder
	19.8 Further Reading and Information Source
	References

	Chapter 20: NSE Project Management Paradigm: Seamlessly Combined with the Project Development Process
	20.1 The Old-Established Software Project Management Paradigm Is Outdated
	20.2 Outline of the NSE Project Management Paradigm
	20.3 The Foundation of NSE Project Management Paradigm
	20.4 The Strategy of NSE Project Management Paradigm
	20.5 People Oriented
	20.6 Focusing on Maintenance
	20.7 More Method and Tool Support
	20.8 Combination of Product Development and Project Management
	20.12 Summary
	20.9 Finding Problems Early and Solvingthe Problems in Time
	20.10 Quality Management
	20.11 Multiple-Project Management
	20.13 Points and Questions to Ponder
	References
	20.14 Further Reading and Information Source

	Chapter 21: Algorithms Innovated for Establishing NSE
	21.1 The Algorithm for Realizing Modified Condition/Decision Coverage Test Coverage Measurement
	21.1.1 The Requirements
	21.1.2 The Basic Idea

	21.2 The Algorithm for Test Case Efficiency Analysis and Test Case Minimization
	21.2.1 The Requirements
	21.1.3 The Major Steps
	21.1.4 Application
	21.2.2 The Basic Idea
	21.2.3 The Major Steps

	21.3 The Algorithm for Performance Analysis
	21.2.4 Application
	21.3.1 The Requirements
	21.3.2 The Basic Idea
	21.3.3 The Major Steps
	21.3.4 Application

	21.4 The Algorithm for Cyclomatic Complexity Analysis
	21.4.2 The Basic Idea
	21.4.1 The Requirement
	21.4.3 The Major Steps
	21.4.4 Application

	21.5 The Algorithm for Tracing the Execution Path of a Runtime Error
	21.7 The Algorithm for Holistic Version Comparison of a Software Product
	21.8 The Algorithm for Memory Leak and Usage Violation Analysis
	21.6 The Algorithm for the Layout of the Call Graph of a Program Using J-Chart Notations
	21.9 The Algorithm for Realizing the Traceability of the Diagrammed Source Code
	21.10 The Algorithm for Dynamic Traceability
	21.11 Summary
	21.12 Points and Questions to Ponder
	References
	21.13 Further Reading and Information Source

	Chapter 22: NSE Support Tools and NSE Support Platforms
	22.1 Full Software Development Lifecycle Support
	22.2 The Product Development History
	22.2.1 The First Generation: Hindsight
	22.2.2 Second Generation: Panorama

	22.3 Automated Tools Integrated with Panorama++
	22.4 Panorama++ Product Installation
	22.2.3 Panorama++

	22.5 A Guided Tour of Panorama++ for C/C++
	22.6 Network Floating License Support
	22.9 Summary
	22.7 The Major Features of Panorama++
	22.8 Applications
	22.11 Further Reading and Information Source
	22.10 Points and Questions to Ponder
	References

	Chapter 23: NSE Applications
	23.1 The Whole and Its Components: A General Comparison Between NSE and Other Approaches
	23.2 What Makes NSE Special?
	23.3 Applications in New Software Development
	23.3.1 Benefits
	23.3.2 Recommended Process

	23.4 Applications in a Software Product Being Developed Using Other Approaches
	23.5 Possible Combination with UML
	23.5.2 Question to the Future of UML
	23.5.1 About the Future of UML
	23.5.3 Possible Combination with UML (NSE-UML?)
	23.5.4 Possible Combination with CMMI (NSE-CMMI?)

	23.6 Possible Combination with Agile Software Development Approaches
	23.6.1 Possible Combination with XP (NSE-XP?)

	23.7 Possible Combination with RUP (NSE-RUP?)
	23.8 Support for CBSE
	23.9 Summary
	23.11 Further Reading and Information Source
	References
	23.10 Points and Questions to Ponder

	Chapter 24: Candidates of “Silver Bullet”
	24.1 Is “The Mythical Man-Month” an Outcome of Linear Thinking, Reductionism, and Superposition Principle?
	24.1.1 A Great book

	24.2 Is the “No Silver Bullet” Conclusion Outdated?
	24.1.2 Limitation

	24.3 The First Candidate of “Silver Bullet”
	24.4 The Second Candidate of “Silver Bullet”
	24.5 Can the “Silver Bullet” Defined by Brooks Slay the “Werewolves” Defined by Him?
	24.6 What Kind of “Silver Bullet” Can be Used to Slay the “Werewolves” Defined by Brooks?
	24.7 The Third Candidate of “Silver Bullet”: The Entire NSE Paradigm
	24.7.1 What Is NSE: The Whole and Its Components
	24.7.2 The Components of NSE
	24.7.3 The Major Features and Characteristics of NSE
	24.7.4 The Major Differences Between NSE and the Old-Established Software Engineering Paradigm
	24.7.5 Qualification as a Candidate of “Silver Bullet” for Slaying Software “Werewolves”

	10.Efficiently Handling the Issue of Conformity
	Sec32_24
	24.8 Summary
	24.9 Points and Questions to Ponder
	References
	24.10 Further Reading and Information Source

	Appendix A
Software Requirements Specification Template To Be Used with NSE
	Appendix B
An Example About How to Realize 100% MC/DC (Modified Condition/Decision Coverage) for a Program Unit
	Appendix C
How to Control/Simulate the Return Values of a Program Unit Being Tested
	Appendix D
Hints for Answering the �Points and Questions to Ponder� in Each Chapter
	Glossary
	Index

