Jay Xiong

New Software
Engineering
Paradigm Based on
Complexity Science

An Introduction to NSE

'@ Springer

New Software Engineering Paradigm
Based on Complexity Science

Jay Xiong

New Software Engineering
Paradigm Based on
Complexity Science

An Introduction to NSE

@ Springer

Jay Xiong

1545 Jackson St. #103
Oakland, CA 94612, USA
jay @nsesoftware.com

Additional material to this book can be downloaded from http://extras.springer.com

ISBN 978-1-4419-7325-2 e-ISBN 978-1-4419-7326-9
DOI 10.1007/978-1-4419-7326-9
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011921248

© Springer Science+Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://extras.springer.com

Preface

Why This Book?

Today software has become the driving force for the development of all kinds of
businesses, engineering, sciences, and the global economy. As pointed by David
Rice, “like cement, software is everywhere in modern civilization. Software is in
your mobile phone, on your home computer, in cars, airplanes, hospitals, busi-
nesses, public utilities, financial systems, and national defense systems. Software is
an increasingly critical component in the operation of infrastructures, cutting across
almost every aspect of the global, national, social, and economic function. One
cannot live in modern civilization without touching, being touched by, or depending
on software in one way or another” [Ric08].

But unfortunately, software itself is not well engineered. The total economic cost
of insecure software is very high: $180 billion a year in the USA [Ros08].

As Dr. Lyle N. Long pointed out, “the list of software disasters grows each year.
Some of the best-known include the following: the Ariane 5 rocket (Flight 501), the
Federal Bureau of Investigation Virtual Case File system, the Federal Aviation
Administration Advanced Automation System, the California Department of Motor
Vehicle system, the American Airlines reservation system, and many, many more.
The F-22 aircraft also had problems initially due to its complex software systems.
Software disasters cost the United States billions of dollars every year, and this may
only get worse since future systems will be more complex. Boeing spent roughly
$800 million on software for the 777, and they might need to spend five times that
on the 787. Aerospace systems will also include some levels of autonomy, accom-
panied by an entirely new level of software complexity” [Lon08].

Since the term software engineering first appeared in the 1968 NATO Software
Engineering Conference it has been more than 40 years past. Although many soft-
ware process models, software development methodologies, software engineering
techniques and tools have been innovated and broadly applied in practices, such as
the Object-Oriented software development techniques, the Agile software develop-
ment methods, RUP (Rational Unified Process), CMMI (Capability Maturity
Model Integration), and the Component-Based Software Development technology,
software are still not well engineered — many fundamental issues still exist.

vi

Preface

The Fundamental Issues Exist with Today’s
Software Engineering Paradigm

There are many critical issues existing with today’s software engineering
paradigm:

(a)
(b)
(©

(d)

(e)
®

It is still unclear what should be the right foundation for software engineering.
Software disasters happen more often now.

It is unreliable — “Major software projects have been troubling business activi-
ties for more than 50 years. Of any known business activity, software projects
have the highest probability of being canceled or delayed. Once delivered, these
projects display excessive error quantities and low levels of reliability.”
[JonO06].

It is unmaintainable — “Over three decades ago, software maintenance was
characterized as an ‘iceberg.” We hope that what is immediately visible is all
there is to it, but we know that an enormous mass of potential problems and
cost lies under the surface. In the early 1970s, the maintenance iceberg was big
enough to sink an aircraft carrier. Today, it could easily sink the entire navy!”
[Pre05-P841], “The fundamental problem with program maintenance is that
fixing a defect has a substantial (20-50%) chance of introducing another”
[Bro95-P122].

The software project success rate is still very low: about 30% — it is not accept-
able in any other industry.

“No Silver Bullet” — pointed by Professor Frederick P. Brooks Jr., “There is
no single development, in either technology or management technique,
which by itself promises even one order-of-magnitude improvement
within a decade in productivity, in reliability, in simplicity.” [Bro95-P179],
“Of all the monsters who fill nightmares of our folklore, none terrify more
than werewolves, because they transform unexpectedly from the familiar into
horrors. For these, we seek bullets of silver that can magically lay them to rest.
The familiar software project has something of this character (at least as
seen by the nontechnical manager), usually innocent and straightforward,
but capable of becoming a monster of missed schedules, blown budgets,
and flawed products.” [Bro95-P180]. “Not only are there no silver bullets
now in view, the very nature of software makes it unlikely that there will
be any — no inventions that will do for software productivity, reliability,
and simplicity what electronics, transistors, and large-scale integration
did for computer hardware. We cannot expect ever to see twofold gains
every two years.” [Bro95-P181].

It seems that having those critical problems is normal to software products and soft-
ware engineering.

Preface vii

A Sudden Realization

I have been working in the field of software engineering for more than 20 years since
I established my first company, Advanced Software Automation, Inc. (ASA) in
Silicon Valley in 1987. At that time, I realized that automation should be the direc-
tion for the development of software engineering. ASA’s first product, Hindsight
designed by me and implemented by me and my colleagues with many automated
functions in software testing and visualization was chosen by Sun Microsystems as
the test suite for its many software products except the operating systems. In 1992,
I established my second software company, International Software Automations,
Inc. (ISA) in Silicon Valley. As the designer of ISA’s first product, Panorama, I
extended the automated capability from the back-end to include the support for the
front-end of software engineering. About Panorama, Professor Roger S. Pressman
stated that ‘“Panorama: developed by International Software Automation, Inc.
encompasses a complete set of tools for object-oriented software development,
including tools that assists test case design and test planning.” [Pre05-P409].

Later on, I realized that although automation is important to software engineer-
ing, it cannot be used to solve the major critical issues existing with software
engineering — low quality and productivity, and high cost and risk.

Where is the outlet of software engineering?

One day in the summer of 2005, in a book store I accidentally found a book
introducing complexity science. After reading it curiously, I suddenly realized that
it is what I am looking for! Yes, complexity science will be the powerful means to
solve the all critical issues existing with today’s software engineering, because
complexity science is the science studying complex systems with many interactive
components. Complexity science offers holistic and global approaches rather than
partial and local approaches to handle complex systems. That day I bought five
different books on complexity science.

“The next century will be the century of complexity” (Stephen Hawking,
January 2000). Complexity science is the driving force for the development of sci-
ences, engineering, and business in the twenty-first century. Complexity science
explains how holism emerges in the world, and more. Definitions of complexity are
often tied to the concept of a complex system — something with many parts that
interact to produce results that cannot be explained by simply specifying the role of
each part. This concept contrasts with traditional machine or Newtonian constructs,
which assume that all parts of a system can be known, that detailed planning pro-
duces predictable results, and that information flows along a predetermined path.

What is Wrong with Today’s Software Engineering Paradigm?

After I changed my standing point from traditional Newtonian constructs to
complexity science, I realized that almost all of the components of the existing

viii

Preface

software engineering paradigm (except the technologies for database, operating
systems, and programming languages) are wrong or outdated:

(a)

(b)

(©)

(d)

(e)

The foundation of today’s software engineering paradigm is wrong —
Software is a nonlinear complex system. “The complexity of software is an
essential property, not an accidental one....Many of the classical problems of
developing software products derive from this essential complexity and its non-
linear increases with size” [Bro95-P183], but unfortunately, the existing soft-
ware engineering paradigm is based on linear thinking, reductionism, and
superposition principle that the whole of a system is the sum of its parts, so that
almost all tasks/activities are performed linearly, partially, and locally.

The process models are wrong — They are all linear ones (no matter if it is a
waterfall-like model, an incremental development model which is “a series of
Waterfalls” [GSAMO03], or an iterative development model in which each time
of the iteration is a waterfall) with which there is only one track in a forward
direction — no upstream movement at all, and the work flow is always going
forward from the upper phases to the lower phases. Those models require that
the developers always do all things right without making any mistake or wrong
decision — it violates the nature of human beings. The result is that defects
introduced in the upper phases easily propagate to the lower phases to make the
defect removal cost increase tenfold many times.

The software development methodologies are outdated — They are based on
linear thinking, reductionism, and Constructive Holism principle to complete
the components of a software product first, then, as CMMI states, “Assemble
the product from the product components, ensure the product, as integrated,
functions properly and deliver the product.” [CMMI1.1] — they handle a logic
software product created by people as a machine which can be assembled.
Regarding the quality assurance, those methodologies are test driven — mainly
depending on software testing after production — it is too late.

The existing software modeling approaches are outdated, because they are
outcomes of reductionism and superposition principle, use different sources for
human understanding and computer understanding of a software system sepa-
rately with a big gap between them. The obtained models are not traceable for
static defect removal, not executable for debugging, and not testable for dynamic
defect removal, not consistent with the source code after code modification,
and not qualified as the road map for software development.

The software testing paradigm is outdated — Most software defects are intro-
duced to a software product in requirement development phase and the product
design phase, but the existing software testing paradigm can only be dynami-
cally used after production, so that NIST (National Institute of Standards and
Technology) concluded that “Briefly, experience in testing software and systems
has shown that testing to high degrees of security and reliability is from a prac-
tical perspective not possible. Thus, one needs to build security, reliability, and
other aspects into the system design itself and perform a security fault analysis
on the implementation of the design.” (“Requiring Software Independence in
VVSG 2007: STS Recommendations for the TGDC,” November 2006,
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf).

Preface ix

(f) The quality assurance paradigm is outdated — Current software quality is
ensured mainly through inspection and dynamic testing after production, it vio-
lates W. Edwards Deming’s product quality principle that “Cease dependence
on inspection to achieve quality. Eliminate the need for inspection on a mass
basis by building quality into the product in the first place.” [Dem86].

(g) The software maintenance paradigm is wrong — with it, software mainte-
nance is performed blindly, partially, and locally without the capability to pre-
vent the side effects in the implementation of requirement changes or code
modifications, making the maintained software product unstable day by day.

(h) The software visualization paradigm is outdated (see Chap.2).

(i) The documentation paradigm is outdated (see Chap.?2).

(j) The project management paradigm is outdated (see Chap.?2).

(k) The ““Software’ definition is outdated (see Chap. 1).

(1) The entire software engineering paradigm is outdated (see Chap.2).

(m) The “No Silver Bullet”” conclusion is outdated — it is an outcome of linear
thinking, reductionism, and superposition principle, only suitable to the old-
established software engineering paradigm (see Chap.2 for more detailed
description).

What Is the Root Cause for Those Critical Issues Existing with
Today’s Software Engineering?

The root cause for those critical issues comes from the wrong foundation of the
software engineering paradigm that software and the software engineering para-
digm are complex nonlinear systems, and should be handled with complexity science
to comply with the essential principles of complexity science, particularly the
Nonlinearity principle and the Holism principle to make all tasks and activities
being performed holistically and globally rather than partially and locally.

The Difficulty in Solving Those Critical Issues

As described above, there are many components with software engineering para-
digm. According to complexity science, the behaviors and characteristics of the
whole of a complex system emerge from the interaction of its components, and
cannot be inferred simply from the behavior of any individual part, so that only
improving its one or two components such as focusing the improvement of software
engineering process and the software management process only will not be able to
make significant improvement to the whole of the software engineering paradigm — it
could be the main reason why the failure rate of the implementation of CMM/
CMMLI is about 70% [Nia09].

X Preface

The difficulty in solving those critical issues comes from two major steps — step 1:
bring revolutionary changes to the all major components of the software engineer-
ing paradigm; step 2: after the revolutionary changes of the all major components,
make revolutionary changes of the whole of the software engineering paradigm
emerge from the interaction of all of its components changed revolutionarily — it is
how NSE (Nonlinear Software Engineering paradigm) is established and
implemented, and why this book comes.

The Major Features of This Book

The major features of this book are listed as follows:

(a) New — This book introduces many new concepts, ideas, algorithms, models,
methods, techniques, and tools.

(b) Original — Almost all of the new concepts, ideas, algorithms, models, methods,
techniques, and tools introduced in this book are innovated by me and imple-
mented by me and my colleagues, not collected from others’ contributions or
other books. Those innovations include the following:

1 The new definition of “software” — see Chap. 1.

The FDS (Five-Dimension Synthesis Method) general paradigm-shift
framework for various industry revolutions from the old-established para-
digm based on linear thinking and superposition principle to a revolutionary
paradigm based on nonlinear thinking and complexity science (not only for
software engineering) — see Chap. 4.

3 Many new software engineering techniques innovated for the implementa-
tion of NSE — see Chap. 6.

4 The NSE visualization paradigm and the interactive and traceable J-Chart,
J-Diagram, and J-Flow diagram used to make an entire software develop-
ment process and the work products visible — see Chap. 7.

5 The NSE process model which is a nonlinear, incremental, and parallel
model with multiple-tracks for bidirectional iteration — see Chap. 8.

6 The facility for automated and self-maintainable traceability among docu-
ments and test cases and the source code through the use of Time Tags for
data mapping between test cases and the source code, and some special key-
words to indicate the document formats, the file paths, and the bookmarks for
opening the traced documents from the specified locations — see Chap. 9.

7 The NSE software development methodology complying with the Generative
Holism principle (rather than Constructive Holism principle), which is
driven by defect prevention and five types of bidirectional traceabilities — see
Chap. 10.

8 The Holistic, Actor—Action and Event—Response driven, Traceable, Visual,
and Executable technique (HAETVE) used for Source Code Driven
Dynamic Software Modeling and Engineering (see Chap. 11). Here “Dynamic
Software Modeling” means:

Preface

xi

Using only one kind of source (source code) for both human understanding
of a complex software in diagrams automatically generated from the
code, and computer understanding of the software in textual format,
through forward engineering using dummy programs (a dummy module
has an empty body or only a list of function call statements) or reverse
engineering using regular programs (Top-down + Bottom-up). Since the
diagrams/models are generated from the source code, they are always
consistent with the code.

The generated diagrams/models are executable directly or indirectly
through the corresponding code.

The generated diagrams/models not only can represent the static properties
of a software product but can also represent the dynamic properties of a
software product, such as the code test coverage and the percentage of
the execution time spent in each module.

The generated diagrams/models are interactive and traceable.

The most important feature of Dynamic Modeling is that the gener-
ated diagrams/models no longer statically exist — they dynamically
exist (“alive’’) — the generated diagrams/models, the generators of
the diagrams/models, and the interfaces for accepting users’ com-
mands (using the diagrams/models themselves), are three in one:
when a diagram/model is shown, its generator is always working
and waiting for a user’s command through the diagram/model (act-
ing as the interface) — after receiving a user’s command, the genera-
tor will dynamically respond to it such as generating a subtree (see
Fig. 7.11), printing out a chart (see Fig. 7.23), or performing untested
path analysis and automatically highlighting a “best” one with the most
untested branches and automatically extracting the execution conditions
to help users design the most efficient test case.

The generated diagrams/models and the corresponding source code are no
longer separated; instead, they are combined together to form a power-
ful union to help users develop a software product better, understand
a software product better, test a software product better, and maintain
a software product better. For instance, clicking on a module-box from
the generated call graph to directly edit the source code of that module
as shown in Fig. 11.31, or clicking on a module from the generated
control flow diagram to trace the corresponding test cases and directly
play the captured GUI test operations back dynamically as shown in
Fig. 11.32.

The NSE software testing paradigm and the Transparent-box testing
method, which combines functional testing and structural testing
together seamlessly with the capability to establish bidirectional traceabil-
ity among documents and test cases and source code, and can be used
dynamically in the entire software development lifecycle including the
requirement development phase and software design phase (because hav-
ing an output is no longer a condition to use this kind of testing method

Xii

(©)

(d)

(e)

()
(o)

Preface

and tools dynamically — to each test case, it checks whether the output (if
any, can be none) is the same as what is expected, and checks whether the
execution path covers the expected path specified, and then establishes
bidirectional traceability to help users remove the inconsistency defects,
plus many other ways for defect prevention and inspection using traceable
documents and traceable source code.) — see Chap. 16.

10 The NSE quality assurance paradigm based on defect prevention and defect
propagation prevention through dynamic testing, software visualization,
and semiautomated inspection and review using traceable documents and
source code diagrammed in the entire software development lifecycle — see
Chap. 17.

11 The NSE maintenance paradigm which is systematic, disciplined, and
quantifiable with the capability to prevent side effects for the implementa-
tion of requirement changes and code modifications supported by various
traceabilities — see Chap. 18.

12 The NSE documentation paradigm with which the documents and the
source code are managed together with bidirectional traceability to keep
them consistent — see Chap. 19.

13 The NSE project management paradigm combining the software develop-
ment process and software project management process together to make
software project management documents also traceable with the imple-
mentation of requirements and the source code — see Chap.20.

14 The new algorithms innovated to support NSE — see Chap.21.

15 Many automated tools and the support platform, Panorama++, designed for
supporting NSE — see Chap. 22.

Based on complexity science — Almost all of the new concepts, ideas, algorithms,
models, methods, techniques, and tools innovated are based on complexity
science, complying with the essential principles of complexity science, particu-
larly the Nonlinearity principle and the Holism principle.

The described new concepts, ideas, algorithms, models, methods, tech-
niques are commercially implemented — All of them are supported by the
Panorama++ platform for software development, testing, and maintenance.
Complete [Xi009-1], [Xi009-2] — It covers almost all aspects in software engi-
neering to offer a holistic and global solution for software engineering, rather
than a partial and local solution, and also offers all required tools to support the
applications of NSE to form a complete solution.

Detailed — It not only introduces the concepts or ideas but also introduces the
implementation algorithms step by step.

Easy to read and understand — It describes the contents with several hundred
graphics, most of which are screenshots from real application examples; easy
to try — trial versions of the NSE support platform Panorama++ are provided
with application examples (see the “Toolkits Provided for This Book™ sec-
tion); and easy to use — NSE (with its support platform Panorama++) can be
applied for new software product development, or a product being developed

Preface xiii

(h)

using any other method — in this case, the users only need to rewrite the test
cases according to NSE’s simple rules, and set the corresponding bookmarks to
the related documents — other work can be performed automatically by the NSE
support platform Panorama++ in which many easy-to-use automated tools are
integrated.
Beneficial — Preliminary applications of NSE and the support platform
Panorama++ introduced in this book show that compared with the old-estab-
lished software engineering paradigm, it is possible for NSE with its support
platform Panorama++ to help software organizations double their soft-
ware productivity, halve their cost, greatly reduce the risks, remove 99.99 %
of the defects in their products, and double their project success rate
because

* With NSE, almost all tasks/activities are performed nonlinearly, holistically,
and globally, rather than linearly, partially, and locally.

* The quality is ensured through defect prevention and defect propagation
prevention performed in the entire lifecycle from the first step down to
maintenance through dynamic Transparent-box testing and semiautomatic
inspection using traceable documents and traceable source code.

* Software requirement changes or code modifications are responded to in
real time with side-effects prevention through various traceabilities.

* The Software maintenance process is combined with the software develop-
ment process and performed holistically and globally with side-effect pre-
vention. The regression testing after code modification is performed with
test case efficiency measurement and test case minimization and intelligent
test case selection through backward traceability. Because the NSE nonlin-
ear process model is followed and the quality of a software product is
ensured from the first step down to maintenance, the defects propagated to
the maintenance phase is greatly reduced. Even if the product maintenance
team is different from the product development team, according to the new
software definition with NSE and the support platform, the database built
through static and dynamic measurement of the product and a set of
Assisted Online Agents will also be delivered to the customer to form
almost the same conditions as the product development site for maintaining
the product. So, the effort and cost spent in software maintenance will be
almost the same as the effort and cost spent in the software development
process — it means about half of the total effort and cost can be reduced
(usually with the old-established software engineering paradigm, software
maintenance takes 75% or more of the total effort and total cost in a soft-
ware product development. With NSE, software maintenance will take the
total effort and cost almost the same as the development process — only 25%
of the total effort and total cost, it means about 50% of the total effort and
total cost can be saved).

e The entire process of a software development, testing, and maintenance is
visible through the applications of the NSE software visualization paradigm,

Xiv Preface

which generates interactive and traceable J-Chart, J-Diagram, and J-Flow
diagrams automatically.

* The software documents are traceable with the source code to keep consistency
among them, and stored virtually without huge disk and memory space.

* With NSE, the project management process is combined with the product
development process closely, making the project management documents
traceable with the implementation of requirements and the source code.

The Scope of This Book

Considering that complexity science is the driving force for the development of
sciences, engineering, and business in the twenty-first century, and software is
becoming the foundation of modern civilization, it means that both are closely
related to the future of mankind and the economic development of the world.

Today, more and more industries are becoming increasingly aware that tradi-
tional approaches to design and engineering are failing to keep up with the increasing
scale of systems [Mck99]. The foundation of those traditional approaches is based
on linear thinking and established science complying with the reductionism and
superposition principle that the whole of a system is the sum of its parts. But, in
fact, all people problems and issues are nonlinear which do not comply with the
superposition principle because they exist in a dynamic and changeable environment,
rather than a static one [LimO05].

Although there are many ways proposed for the applications of complexity science,
none of them aims for a new round of industrial revolution. I believe I am the first
person to not only realize that complexity science can be efficiently applied in a
new round of industrial revolution but also innovated a corresponding paradigm-
shift framework, the Five-Dimensional Structure Synthesis Method (FDS, see
Fig. 1), and successfully use it to complete the paradigm-shift of the software
industry — the most difficult one to handle. It proves that FDS is useful and opera-
tional. Since complexity science and the FDS paradigm-shift framework can be
successfully used to revolutionarily complete the paradigm shift of the software
industry from that based on linear process, reductionism, and superposition prin-
ciple to that based on nonlinear process and complexity science, why can’t other
industries do the same?

I also realize that directly applying complexity science to handle the problems
of an individual complex system in an industry without shifting the entire paradigm
from the old-established one (consisting of many components including the process
models, the development methodologies, the algorithms, the technologies, the quality
standards, and the tools) based on linear process and reductionism principle to a
new one based on nonlinear process and complexity science in that industry will be
very difficult — if not impossible, because the “Sunlight” of complexity science
cannot directly “Reach” the target without removing the big “Umbrella” in the
middle — the old-established paradigm. I suggest that the application of complexity

Preface XV

science should follow two major steps: (1) the first step is to complete the paradigm
shift from the old one based on linear process and reductionism principle to a new
one based on nonlinear process and complexity science; (2) then, after the para-
digm has been shifted, the second step is to apply complexity science to efficiently
handle the problems of an individual complex system. The two-step approach is
also shown in Fig. 1.

The relationships among the five elements represented in the five axes of FDS
are shown in Fig. 2.

For the detailed description about FDS, see Chap.4.

When FDS is used for the paradigm shift of an industry, it is required to comply
with the essential principles of complexity science (including the Nonlinearity
principle, the Holism principle, the Dynamics principle, the Self-Organization prin-
ciple, the Self-Adaptation principle, the Openness principle, and more) to redefine
the process model, reinnovate the methodology, redesign the tools and platform,
reestablish the quality assurance methodology and the standard, and so on in order
to establish a complete new paradigm in that industry. It is clear that, for instance,
a waterfall-like process model will not be redefined because it does not comply
with the Nonlinearity principle and the Holism principle of complexity science.
After paradigm-shift is done, FDS can also be used for handling the problems of an
individual complex system.

It is why this book is written not only for people in the field of software engi-
neering and computer science but also for people in all other fields who want to

Bi-directional Traceability &
= i c £F
& S EE 2
E w E ﬁ = 2 ?
o [5 e £ |
3 § 5 8¢ 52ES5E 3 &
2 g« E8, TOBE2E B 5
o 25 ¢ cAEEEL)& E
H ERSE =Egqas 8
z @ § g = 1!1 E E e E
Standard 688’ &a {"i o i
Maintenance o P 24
QA Paradigm g £ 835
Yoot Sernigm E ﬁ v Market Environment
Visualization Paradigm o o

Application Environment
Testing/Validation Environment
Learning/Training Environment
Nonlinearity

Technology
Methodology
Process Model

a ,/Jé‘ Holism
namics
Self-Organization
Self-Adaptation
Openness

Principles of complexity science (with extended principles)

Fig. 1 The innovated FDS (five-dimensional structure synthesis) framework

XVi Preface

h_E;t;eJn ded Five-Dimensional Structure Common Principles of
Principles Synthesis Method (FDS) Complexity Science
. i “——-—-—""(-__

-
=’

4
! People/Logic Complexity System
| e —, E e : __________ /Phases
Self-organized oncept || @ @ | F————————
System omplexity Systemy Pynamics System | 4o oapje System

44

|

|

|

|

|

| h
i 1 e
|

|

|

|

|

|

Fig. 2 The five elements of FDS and their relationships

apply complexity science as a powerful means to perform a revolutionary para-
digm-shift from the old one based on linear process and superposition principle to
a new one based on nonlinear process and complexity science through the general
paradigm-shift framework, FDS. For more related information, see Chap.3 titled
“Foundation for Establishing NSE: Complexity Science” and Chap.4 titled
“Prediction and Practices: A New Round of Industrial Revolution Driven by
Complexity Science, and a General Paradigm-Shift Framework (FDS).”

Who Should Read This Book

People Working in the Field of Software Engineering
or Computer Science

This book is for perplexed software and management professionals who want to
know and use a revolutionary software engineering paradigm based on complex-
ity science to help software organizations to dramatically solve the most critical
problems with today’s software engineering at the same time — to double their
productivity and their project success rate, halve their cost, greatly reduce the
risk, and improve the quality of their product tenfold several times, compared
with the existing software engineering paradigm with the same level of the

Preface XVvii

resource. If you want to know what critical issues exist with today’s software
engineering paradigm, why those critical issues exist for more than 40 years
without being solved, what are the root causes of those critical issues, what is
complexity science, how complexity science can be applied to solve those critical
issues, how a revolutionary software engineering paradigm (NSE — Nonlinear
Software Engineering paradigm) is established, how can NSE help software orga-
nizations, and how can you try the NSE support platform Panorama++, this book
is for you:

Executives and Project managers should read this book to know what is com-
plexity science, how it can help your organization in the software development,
what are the major differences between NSE and the old-established software
engineering paradigm, how a project can be developed and managed holistically
and globally, and whether the productivity can be doubled, the cost can be
reduced to half, and the quality can be improved greatly at the same time, and
how the project management documents can be traced automatically to get the
first-hand information.

Software developers should read this book to know what is complexity science,
what is NSE, how it can help for you to perform your jobs better, how software
testing can be dynamically performed in the entire software development life-
cycle, how documents and test cases and the source code can be made traceable,
how software maintenance can be done with side-effect prevention, and how
NSE can help you for your career.

Computer science and software engineering researchers should read this book to
consider whether it is a new direction to apply complexity science on software
engineering research, review NSE, compare NSE with the old-established soft-
ware engineering paradigm, then find possible research topics and make contri-
butions to the future of software engineering.

Computer science and software engineering students should read this book to
learn what is complexity science, what is NSE and the major differences
between NSE and the old-established software engineering paradigm, and try
the demo program of NSE.

Customers should read this book to particularly know how requirement
changes can be implemented through bidirectional traceability to prevent
side effects, how a software product can be maintained in your site with
almost the same conditions as that in the product development site — with
NSE, a software (software product) is redefined as and delivered to the cus-
tomer with (1) a computer program (a regular program, or a cloud computing
program, or a program developed through the internet) with the source code,
(2) the data used, (3) all of the related documents (including the test case
scripts too) traceable to and from the source code, plus (4) the database built
though static and dynamic measurement of the program, and (5) a set of
Assisted Online Agents (automated and intelligent tools working with the
program and the database) for handling the issue of complexity and support-
ing the testability, visibility, changeability, conformity, reliability, and

XVviii Preface

traceability — making the software product adaptive and truly maintainable
in the new working environment at the customer site, and that the require-
ment validation and the acceptance testing can be done dynamically in a
fully automated way with mouse clicks only.

Recommended Courses Using This Book as a Textbook
in the Computer Science Department of a University
and a Software Engineering College

The twenty-first century is the century of complexity science. Compared with the
old-established software engineering paradigm, the major advantages of NSE can
be summarized in one sentence: with NSE, almost all software engineering tasks
and activities are performed nonlinearly, holistically, and globally rather than lin-
early, partially, and locally. Therefore, although this book describes a complete
revolution in software engineering based on complexity science, it is also suitable
as a textbook in the computer science department of a university or a software
engineering college:

1. Tt is organized hierarchically according to software engineering workflows,
such as in the following chapters; Chap. 11 introduces requirement engi-
neering under NSE, Chap. 12 introduces software design under NSE, Chap.
13 introduces software coding under NSE, and so on.

2. Several hundred detailed illustrations are provided.

3. Detailed application examples are provided (see Chap. 1) — people work
well through examples.

4. 1In each chapter, there is a “Summary” section designed.

5. In each chapter, there is a section of “Points and Questions to Ponder”
designed.

6. The hints for answering the “Points and Questions to Ponder” for each chap-
ter are provided in Appendix D.

7. Trial Versions of the NSE support platforms are provided (see the “Toolkits
Provided for This Book™ section) for students to get hands-on experience
in using the powerful tools to design, evaluate, test, validate, and maintain
their own learning projects.

8. A detailed Tutorial is also provided to help students to apply NSE and the
support platform Panorama++ in practice, step by step.

Recommended course titles:

(a) Nonlinear Software Engineering Paradigm Based on Complexity Science
(b) Advanced Software Engineering
(c) The Future of Software Engineering

Preface Xix

Suggested Level + Length:

1. Undergraduate (seniors), 2 semesters (28—30 weeks)
2. Master program, 1 semester (14-15 weeks)
3. Postgraduate course, 8 weeks

I believe that to meet the urgent needs of the software industry and raising the
competition power in the near future, the earlier the computer science departments
of a university or a software engineering college to offer NSE courses, the better
for them and their students to win over their competition.

Note: Besides universities and software engineering colleges that teach their stu-
dents internally, it is also welcome for an individual or an organization to work with
us to offer co-held training courses for software engineers, programmers, and
employees working in a software-related company. For ensuring the quality of the
courses on NSE with the use of the trial versions of the NSE support platform
Panorama-++, the instructors of the courses should take a corresponding exam to get
the authority certificate first. If you are interested in offering a co-held training course
on NSE (the corresponding certificates for trainees will also be provided), please send
an email with your proposal to me (jayxiong@yeah.net and jay @nsesoftware.com).

People Working in Other Fields Who Want to Know
How Complexity Science and the FDS Framework
Can Be Used to Complete the Paradigm-Shift
Revolutionarily in Their Industries

This book is written for you too! Please ignore Chaps. 1 and 2 (options), pay more
attention to Chaps.3 and 4, and consider other chapters as an application example
of complexity science and the FDS paradigm-shift framework in the establishment
of NSE, a revolutionary new paradigm for software engineering.

How to Read This Book

For easy comparison of the old-established software engineering paradigm and the
new software engineering paradigm, NSE, to be introduced in detail in this book, it
is strongly recommended for readers to install and try the NSE-CLICK toolkit
through an application example (a calculator software product, see Chap. 1), while
reading this book. After that try the S_Panorama (for C/C++) or S_Panojava (for
Java language) product designed for students to learn NSE with small projects (less
than 1,501 lines of the source code). About how to get those toolkits, see ‘“Toolkits
Provided for This Book” section below.

XX

Preface

Organization of This Book

This book is organized as follows:

Chapter 1 is an introduction to this book.

Chapter 2 concludes that the old-established software engineering paradigm is
outdated.

Chapter 3 introduce the Foundation for establishing NSE: Complexity Science.
Chapter 4 describes prediction and practices : a new round of industrial revolu-
tion driven by complexity science, and a general paradigm-shift framework.
Chapter 5 is the outline of NSE Paradigm.

Chapters 6-19 introduce the body of NSE, including the nonlinear NSE process
model, the NSE software development methodology complying with the
Generative Holism principle of complexity science, NSE software visualization
paradigm generating interactive and traceable charts and diagrams which are
holistic and virtual, NSE software testing paradigm based on the innovated
Transparent-box testing method combining functional and structural testing
together seamlessly, the NSE software quality assurance paradigm driven by
defect prevention and defect propagation prevention, the NSE documentation
paradigm to make software documents traceable to and from the source code,
the NSE software maintenance paradigm with side-effect prevention in the
implementation of requirement changes or code modifications.

Chapter 20 introduces the NSE project management paradigm working closely
with the software development process to make the management materials trace-
able with the requirement implementation and the source code.

Chapter 21 introduces the algorithms innovated for establishing NSE.

Chapter 22 describes the NSE support tools and support platforms.

Chapter 23 introduces NSE applications — NSE not only can be used for new
software development but also can be used for a software product being developed
using other methodologies in any stage by rewriting the test cases and set book-
marks to the related documents (other documents can automatically be generated)
for improving the development process, testing and ensuring the product quality,
or efficiently maintaining the product with side-effect prevention.

Chapter 24 summarizes the entire NSE software engineering paradigm, com-
pares it with the old-established software engineering paradigm, and proposes
three Candidates of “Silver Bullet” — the NSE automated and self-maintainable
traceability, the NSE software testing paradigm, and the entire NSE software
engineering paradigm.

Appendix A provides a template for requirement specification.

Appendix B shows an example about how to realize 100% MC/DC (Modified
Condition/Decision Coverage) test coverage for a program unit.

Appendix C describes how to control/simulate the return values to a program
unit being tested.

Appendix D provides hints for answering the “Points and Questions to Ponder”
in each chapter.

Glossary provides a list of specialized terms with definitions.

Preface XXi

Toolkits Provided for This Book

It is strongly recommended for readers to install and try the NSE-CLICK and other
toolkits provided (on Springer Extras at http://extras.springer.com/ and then use this
book’s ISBN).

After downloading the file (NSE_Panorama.rar) and unzipping it, you will find
the following files and directories as shown in Table-P1.

Table P1The files and directories included in the NSE_Panorama Tool Package

Type Name Description

File readme.doc The first document to read

File license_agreement.txt License agreement

File installation.doc Installation guide (NSE support platform

and tools are green software without
complicated installation operations)

File NSE_CLICK_J_Tutorial.pdf A tutorial for using NSE_CLICK_J.

File NSE_CLICK_Tutorial.pdf A tutorial for using NSE_CLICK

File NSE_J_Tutorial.pdf A tutorial for using Pano_java product
File NSE_Tutorial.pdf A tutorial for using Panorama++ product
Directory floating_license The directory with files regarding the

use of floating license of the regular
Panorama++ products

Directory isa_common_tools The directory including all Assisted Online
Agents to be delivered with a software
product developed using NSE

Directory isa_examples The directory including some application
examples, particularly a calculator
software product used to show all the
major features of NSE and the support
platform Panorama++

Directory isa_NSE A trial version of Panorama++ for C/C++
products (for learning NSE)
Directory NSE_CLICK The directory including the NSE-CLICK

toolkit and the Interface — a demo
product for fully automated product
acceptance testing of a C/C++ product

Directory NSE_CLICK_J The directory including the NSE-CLICK _J
toolkit and the Interface — a demo
product for fully automated product
acceptance testing of a Java product

Directory Pano_java A trial version of Panojava for Java
products (for learning NSE)

Acknowledgments I would like to thank Hamid R. Arabnia, Ph.D., a Professor of Computer
Science, Graduate Coordinator, who invited me to offer a tutorial titled “Complete Revolution in
Software Engineering Based on Complexity Science” to WORLDCOMP’09 where I got a lot of
useful feedback to improve the NSE paradigm. I would also like to thank Professor Ni Guangnan,
academician of the Chinese Academy of Engineering, for his insightful suggestions. Thanks to

XXii Preface

professor Zheng Renjie from Tsinghua University of China for sharing his thought on the
old-established software engineering paradigm and his valuable suggestions. Thanks to Michael
Zhao, Jonathan Xiong, and more than 50 of my colleagues of International Software Automation,
Inc. (ISA US) and ISA Shanghai, Ltd for their support in the implementation of NSE and the develop-
ment of the NSE support platform Panorama++ and SilverBullet (both consist of about 10,000
function points with about one million lines of source code). Special thanks to Brett Kurzman
from Springer for his great help in the planning, organization, and publishing of this book.

Oakland, California, US Jay Xiong

References

[Bro95-P122] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 122

[Bro95-P179] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 179

[Bro95-P180] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 180

[Bro95-P181] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 181

[Bro95-P183] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 183

[CMMI1.1] Phillips M (2002) CMMI V1.1 and appraisal tutorial. http://www.sei.cmu.edu/cmmi/

[Dem86] Deming WE (1986) Out of the crisis. MIT Press, Cambridge

[GSAMO3] Department of the Air Force Software Technology Support Center (2003) Condensed
GSAM Handbook, Chapter 2. CrossTalk

[Jon06] Jones C (2006) Social and technical reasons for software project failures. CrossTalk, June
Issue

[LimO5] Lindberg C (2005) Complexity, the science of relationships. Nursing, the profession of
relationships. Plexus Institute, Allentown, NJ, 14 November 2005

[Lon08] Long LN (2008) The critical need for software engineering education. CrossTalk, Jan
Issue

[Mck99] McKenzie CA (1999) MIS327 — systems analysis and design. Course Schedule, 1999

[Nia09] Niazi M (2009) Software process improvement implementation: avoiding critical barriers.
CrossTalk, Jan Issue

[Ric08] Rice D (2008) Geekonomics: the real cost of insecure software. Addison-Wesley, Upper
Saddle River

[Ros08] Rosenberg D (2008) Total economic cost of insecure software: $180 billion a year in the
U.S. http://news.cnet.com/8301-13846_3-9978812-62.html

[Pre05-P409] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,
New York, p 409

[Pre05-P841] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,
New York, p 841

[Xi009-1] Xiong J (2009) Tutorial, A complete revolution in software engineering based on com-
plexity science. In: WORLDCOMP’09, Las Vegas, 13—17 July 2009

[Xi009-2] Xiong J, Xiong J (2009) A complete revolution in software engineering based on com-
plexity science. In: WORLDCOMP’09 — SERP (Software Engineering Research and Practice
2009), pp 109-115

http://www.sei.cmu.edu/cmmi/
http://news.cnet.com/8301-13846_3-9978812-62.html

Contents

T INEroduCtion.........ccoiiiiiiiiiiii et 1
1.1 What IS SOftWare?..........coceeuieiininiiniiiinceicneccseetese et 1
1.2 What Is Software Engineering?cccoecvevcueenieeiieenieenieenee e 29
1.3 The Major Activities/Tasks to Be Performed

in Software ENgineeringccccveveeviienienieeiiienieeieente e 31
1.4 The Popular Lifecycle/Process Models with the Existing

Software Engineering Paradigmccocevvveviiiiiieniiinieniecieeieeeann 32
1.4.1 The Waterfall Modelcocceevvieriiienieeiienieeiieeieeee e 32
1.4.2 The Incremental Development Models............cceecueerieenueennnn. 34
1.4.3 The Iterative MOdelSccccereeririeneniiniinicnieeicneeecnceee e 36
1.4.4 More Popular Process Modelscccceeveeriienienieenienieeneen. 39

1.4.5 General Comments to All Process Models Existing
with the Old-Established Software Engineering Paradigm.....43

1.5 Why the Current Software Is Not Sufficiently Engineered
at This Time to Fulfill the Role of “Foundation”...........c.cccccverueennnn. 45
1.6 What Does a Revolution Mean?cccccocueverienenieneenieneenienceneenne 47
1.6.1 Three Phases of Scientific Revolutions............ccceceeevverieennnn. 47
1.6.2 Progress Through Revolutions...........cceeveevveeneenieeniienieennen. 48
1.7 What IS NSE? ..o 48
1.8 SUMMATY ..oueiiiiiiiiiieiieeiie ettt ettt ettt e 57
1.9 Points and Questions to Ponder............cccoeeeviiiiiiiiiiiieeeiee e 58
1.10 Further Reading and Information SOUICEeccccevevvenvenceieneenieennennn 58
RETETOICES ...ttt 58

2 Is the Old-Established Software Engineering

Paradigm Entirely Out of Date?..............ccooiiiiiiiiinieeeee 61
2.1 The 20 Famous Software Disasters Reported..........ccoevveeveerreennennne. 65
2.1.1 Very High Project Failure Rate Reported..........cccceevveeueennnn. 67

2.2 What Is the Root Cause for Software Disasters
and Very High Software Project Failure Rate?............cccecevvivnuenneen. 67
2.3 The “Software” Definition Is Outdatedccceeeerverieeneriieeneenne. 69

XXiii

XX1v Contents
2.4 The Current Software Development Process

Models Are Out 0f Datecceeeeiiniiiieiiniiieneeeeceeeeeeeeee 70

2.5 Current Software Development Methodologies Are Out of Date 71

2.6 The Existing Software Modeling Approaches Are Outdated............. 72

2.7 Current Software Testing Paradigm Is Out of Date........cc.ccocueeneenee. 72

2.8 Current Software Quality Assurance Paradigm Is Out of Date........... 72

2.9 Current Software Visualization Paradigm Is Out of Date................... 73

2.10 Current Software Documentation Paradigm Is out of Date................ 73

2.11 Current Software Maintenance Paradigm Is Out of Date.................... 73

2.12 Current Software Project Management Paradigm Is Out of Date 74
2.13 “The Mythical Man-Month” Is an Outcome of Linear Thinking;

The “No Silver Bullet” Conclusion Is Out of Datecccceeeueenee. 74

2,14 SUIMNMATY c..eeiiiiiiieiie ettt sttt sttt e sbee s b eaee s 76

2.15 Points and Questions to PoOnderccccceeeeviiiniiniiinieniieniceeeen 77

2.16 Further Reading and Information Sourceccccceeevevievieniennennene 77

REfEIOICES ... 77

3 Foundation for Establishing NSE: Complexity Science.....................c........ 79

3.1 The Basis of CompleXity SCIENCe........cevvuervueerierrieiniieeieeeerieeeeee 79

3.1.1 Linear and Nonlinear...........ccccoceevieinieniiennienieeee e 80

3.1.2 RedUCHONISM......cccuirieiiiieieiieieereieeteeieeee e 80

3.1.3 Chaos TREOTY ...ccceeiiiiiriiiiiiiieeeese et 80

3104 SYSIEIM.c.ueiiiiiiiieeieete e 81

3.1.5 System Cate@Ories.....ccceevueerieerieeriieiieeieeiie et 81

3.1.6 Linear SYSteIM...ccceeiuieriiriieiiieiieniie ettt 81

3.1.7 Nonlinear System and Complex System..........ccccceerveenueennne. 81

3.1.8 Feedbackcccooieiiiiiiiiieiiiiciee e 82

3,19 Fractal.....c.cooooiiiiiiiiiiiicccee e 82

3.1.10 Fractal Dimensionc.ccceveereerseerieeneenieeniieeeeeiee e 82

3.1.11 Dynamical SyStemcccceoveeririeneniieninienieieneeee e 82

3.1.12 DiSSIpation StIUCLUTE.......c..coceeruerurerrerreieereieeeeeeeeee e 82

3.1.13 Li—Yorke Theorem: Period Three Theorem..............c.c.c....... 83

3.1.14 Self-Organizationcccceeeevuerienieneeneeienieeieseeeeeeeee e 83

3,115 SYNEIZEUCS cnvveivieiieeieeeite ettt ettt 83

3.1.16 Catastrophe Theoryccoccierieiiiiniiinieniieieeceee e 83

3.1.17 Complex Adaptive SYStem........cccueerueenieniieniienieeniieeieeeeenn 84

3.1.18 Meta-SynthesiS.....coeevuereeriirienierieieeeeeereie e 84

3.1.19 Cellular AUtOmMata.......c..coouereenierieniinienieereneereee e 84

3.1.20 Genetic AlgOorithm..........cccceovveriiiiiiiniinicienicieeeee e 85

3121 SOEOMN ettt 86

3.2 Linear Thinking and Nonlinear Thinking..........c..cccceevvciininniinnnncnne. 86

3.3 The Essential Principles of Complexity Science........c..cceeceerveenueenee. 87

3.4 Applications of Complexity SCIENCeccceecverrieieniieciinieieneeene 88

Contents XXV
3.5 Complexity Science and NSE.........ccocovviiiiiiniiniiiieieeeceeeee, 89

3.0 SUMIMATY ..oiiiiiiiiiiieeieeeite ettt ettt ettt et st e e 89

3.7 Points and Questions to Pondercceceeveeviiiiiiniiiniiniceeee, 89

3.8 Further Reading and Information Sourcecccceevverveeneerieeneennne. 89
REFEIENCES ...eeeiiieieiie e 90

4 Prediction and Practices: A New Round of Industrial Revolution Driven

by Complexity Science and a General Paradigm-Shift Framework 91
4.1 Prediction: A New Round of Industrial Revolution Driven by
Complexity Science Is COmINgcccceveerierieniieiienieieneeeeseeeeee 91
4.2 The Contribution and Limitation of Hall’s Systems Engineering
Frameworkcocooiiiiiiiiiiiicccec e 92
4.3 The Background for the Innovation of FDSccocciviiniiininnnnnne 93
4.4 The Objectives of Innovating FDSccccooiriiiiiiiiiiniiniiieeeeee 93
4.5 The Description 0f FDS.......cooiiiiiiiiiiieeeetc e 94
4.5.1 The “Principles of Complexity Science” AXiS........ccocveerueenee. 94
4.5.2 The “Environment” AXiS.....c.cceeveeruerneenieernienienieesieenieenanes 96
4.5.3 The “People/LogiC” AXIS ..c.eerierreeniiiiienieeiieeieeiee e 96
4.5.4 The “New Paradigm” Axis Modified from the
“Knowledge/Skills” Axis in Hall’s Framework 97
4.5.5 The “Phases” (Workflows) AXIiScccceeeeeeviuvreeeeeeinreeeeeeennnennn. 97
4.6 The Major Features of FDSccoooiiiiiiiiiiiiiiiceeeeceeeeeeee 98
4.7 Applications of FDSccccooiiiiiiiieeeeeeeeeeeeeeeeae 99
4.8 Bringing Feedback to the Research and Development
Of Complexity SCIENCE.......cc.eveeriirieiiiieiieienieerereeeere e 100
4.9 SUMIMATY ..eeiutieiieeieeiie ettt st ettt st eb e st ebeesbbeebeesaee s 101
4.10 Points and Questions to Ponderccccevverviiniiiiniiniieniieiieeeee 101
4.11 Further Reading and Information Sourcecccccocvererienincennns 101
REfEIOICES ..ot 101
5 Outline of the NSE Paradigmcccooconiiiiininiinieeeeeeee 103
5.1 A Tree Will Not Fall at One Blow: The Difficulty
in Software Engineering Revolution............coeceeviiiveiniieniieenienneens 103
5.2 The Objectives for Establishing NSEcccccccooviniiiininnineenn. 105
5.3 The Strategy to Achieve the Objectives of NSE.........ccccceviiniiennnen. 106
5.4 The Establishment of NSE........c.cocooiiiiiiiniiicceceee 106
5.5 The Structure of NSE......c..cooiiiiiiiiieeeeceeceee e 107
5.6 The Components of NSEccocciiiiiriiiiiiiiiicieeeeeeeeee 107
5.7 The Major Feature and Characteristics of NSE............c.cccccoenine. 109
5.8 SUMMATY ..cuviiiiiiiiiiieeite ettt sttt 112
5.9 Points and Questions to Ponder............ccceeeeiiieeiie e 112
5.10 Further Reading and Information SOUIceccccceecverveeneerieeneennne. 112

RELCICICES ...eei it 113

XXVi Contents
6 The Techniques Innovated to Support NSE ..., 115
6.1 DEfINIONS ..oovieiiiiieiieieciceteiccee et 115
6.2 Holistic, Virtual, and Traceable Diagram Generation Technique..... 117
6.3 Virtual and Traceable Documentation Technique............cccceeuenee. 119
6.4 Holistic and Intelligent Version Comparison Technique.................. 121
6.5 Holistic and Dynamic Traceability Techniquec...ccecceevveenneennen. 122
6.6 Comprehensive Software Testing Technique Mainly
Based on the Transparent-Box Methodcc.cccovieiiniininnenennee. 122
6.7 Defect Prevention Driven Quality Assurance Technique................. 123
6.8 Test Case Efficiency Analysis and
Test Case Minimization Technique...........ccceevueerierieeniienieenieeeene 125
6.9 Refactoring Technique with Defect Prevention..........ccc.cccceveenennen. 126
6.10 Holistic MC/DC Test Coverage Analysis and Graphical
Representation Technique..........ccccocvevieieniieiiininciinccccceeeeen 127
6.11 Assisted Test Case Design Techniquecocceeveeviienienieinieeneennne. 128
6.12 Intelligent Regression Test Case Selection Technique...................... 128
6.13 Holistic, Actor—Action and Event—Response Driven,
Traceable, Visual, and Executable Technique
for Requirement Development..........c..coceeievieniecieniencneencneennennen. 130
6.14 Synthesis Design and Incremental Growing Up
(Implementation and Integration) Techniqueccccccccecenienence. 131
6.15 Holistic, Global, and Side-Effect-Prevention
Based Software Maintenance Technique..........coccceevveevieriieenienneens 133
6.16 SUMMATYooiiiiiiiiiiiiieieeee et 133
6.17 Points and Questions to Ponderccocccovevviiiiiiniiinieniiiieeee 134
6.18 Further Reading and Information Sourcecccccecveeieeieiineennnnne. 134
REfEIOICES...c..viniieiieiieiecece e 134
7 NSE Software Engineering Visualization Paradigmc..c......... 135
7.1 The Old-Established Software Engineering
Visualization Paradigm Is Outdatedccccoeevinieiinnncnenennen. 135
7.2 The Revolutionary Solution Offered by NSE...........cccocevinieninn. 137
7.3 The 3J graphics (J-Chart, J-Diagram, and J-Flow)..........ccccccccueennee.. 138
T4 JCRATT. ittt e 138
7.5 J-DHAGIamoouioiiniiiiiiiiiceiecceee e 140
T J-FLOW ..ottt e 148
7.7 Entire Software Life Cycle Visualization with NSE 153
7.8 Rich Options for Generating 3J GraphiCs..........ccecceevieriieenvennieennnen. 155
7.8.1 For J-Chart Generation............ceceeeeceeneevueneenuenceneneennennen 155
7.8.2 For J-Diagram and J-Flow Generation..........c.ccocceeervenenee. 160
7.9 The Major Features of NSE Software Visualization Paradigm........ 160
710 APPHCALIONS ...ttt 180
711 Self-DOCUMENTING........eeriiriiiiierieeiie ettt 191

Contents XX Vil

T2 SUMMATY c.eeiiiiiiieeiieeieeee ettt sttt et et e s e
7.13 Points and Questions to Pondercoccoevevviiiiiiiniiiniinicieeeee,
7.14 Further Reading and Information Sourcec..cccccecveveeieniineenncnne.
REfEIEICES ..ot
8 NSE Process Model...............ccccooiiiiiniiiniiiiieeeeeeseeseee e
8.1 Some Experts’ EXpectationsc..ccccceeevuirieniereeneniienenreneeienieens
8.2 All of the Existing Software Engineering Process
Models Are Outdated..........ccccocvevrerieniieienieienieieneee e
8.3 Outline of the Revolutionary Solution Offered with NSE................
8.4 The Driving Forces and The Support Techniquesc.ccceoveeeeenee
8.5 The Graphical Representation of the NSE Process Model...............
8.5.1 The Objectives of the Preprocess..........cccceeevvvenerceenencncnnene
8.5.2 The Objectives of the Main Process..........ccccocevercenencnenncns
8.5.3 The Objective of the Support Facility for Automated
and Bidirectional Traceabilitycccoeceerieinienieinieenieeneen.
8.6 The Major Steps of the Preprocessccccoceeveriencnienencenincenens
8.7 The Major Steps of the Main Process........c..cccccovveverienercenencienens
8.8 The Support Facility for Automated
and Bidirectional Traceabilitycccoccevviiviiniiiniiiiiniceieeeeee,
8.9 The Manifestation of the Essential Principles
of Complexity Science in the NSE Process Model.............c..cccc.....
8.10 The Major Features and Characteristics
of the NSE Process Model...........coccooiiieniniininiiniienecieneciees
.11 SUMMATY ..ottt e
8.12 Points and Questions to PONdercccccevvvveviiniiiinienieinicieeeee
8.13 Further Reading and Information Sourceccccceceevvereenirecnncnen.
REfEIOICES ...t
9 The Facility for Automated and Self-Maintainable Traceability
9.1 The Importance of Requirement Traceability...........ccccoceevririenennen.
9.2 The Problems Addressed..........ccccooeevienieiienieiiinieieeeneereneereen
9.3 The Solution Offered with NSE...........ccccooiiiiiiniiiiieee
03,1 Part 1 .o
9.3.2 Part 2 oo e e
9.4 HoOW It WOTKS ..o
9.4.1 Bidirectional Traceability Between the Test Cases
and the Source Code Modules or Branches
9.4.2 Extending the Bidirectional Traceability
to Include All Related Documents...........ccceecveevieeeniieeennnne.
9.5 The Major FEatures.........cccecvereriienieienieienicieeecie e
9.5.1 Automated........cceoieiiiiiiiiieieeeeee e

9.5.2 Self-Maintainable.............ccooevvveeiiieiiiiiei e

XXViii Contents
9.5.3 Methodology-Independent...........ccovueeveerieenieniieeneenieenaeenn 250
9.5.4 Nonlinear, Bidirectional, and Parallelcccoennn. 250
9.5.5 ACCUIALE ..c.enteiieiiiiieieeiecte ettt ettt 250
9.5.0 PIECISE ..ottt 251
9.5.7 Extended to Include Software Project
Management DOCUMENTS........c..cocuevieiinieciinieieneeieeeeee 251
9.5.8 Extended to Include Web Pages.........cccccoevviviiniiininnicnnneene 251
9.5.9 Extended for Multiproject SUPPOItcceecverviiereerrieenienneene 251
9.5.10 DYNAMIC ..ceruviiiieiiiiiieeieeite ettt ettt et 252
9.5.11 Easy to Add on at Any Time, In Any Status........c...cccceeennee. 253
0.6 APPICALION ..ottt e 254
0.7 SUMMATY ..coctiiiiiiiiieiieiett ettt sttt 254
9.8 Points and Questions to Pondercccceeveirieiniiniiinieniiiieniene 255
9.9 Further Reading and Information Sourcec..ccccceeecienieciiniennene 256
REEIENCES ... 256
10 NSE Software Development Methodology Driven
by Defect Prevention and Traceabilityccccocrvinininininininenns 257
10.1 Almost All Existing Software Development
Methodologies Are Outdated...........ccccecvevierieniieienieiienieieneeeee 257
10.2 Outline of the Revolutionary Solution Offered by NSE.................. 259
10.3 The Driving Forces for the Innovation of the NSE Software
Development Methodology.........ccocveevieriiinieniiiinieiieeieeeeee 263
10.4 The Related NSE Software Engineering Process Model................ 265
10.5 Graphical Presentation of the NSE Software Development
MethodOlOZYc.eeviriiiiiieiericcee e e 267
10.6 APPLHCAION......coriiiiiiieiiiiieieeeteeeeeeet et 270
10.6.1 Some Suggestions About the Applications of the NSE
Software Development Methodologycccecveeveenuennne 270
10.7 The Major Features of the NSE Software
Development Methodology..........cocueerieriieinieniienieiceniceeeseee 271
10.8 SUMMATY c...eiiiiiiiiiiieeeieeeee ettt 271
10.9 Points and Questions to Pondercccccoocueevieniiiiiiniiennienieneens 272
10.10 Further Reading and Information Sourceccccoceeevevveciineenncnne. 272
REfEIOINCES...c..viiieiieiicieicc e 272
11 Requirement Engineering Under NSE: Source Code
Driven Dynamic Software Modeling...............ccccoccoevieiiiiniininicnnicncnens 273
11.1 Are All the Existing Software Modeling
Approaches Outdated?cccoeeeierieiiinieiiinieienece e 273
11.2 Outline of the Revolutionary Solution Offered by NSE 276
11.3 Description of the HAETVE Technique...........ccccocceeenieniinienennns 279
11.4 Applications of HAETVE.......ccooiiiiiiiiccceees 286
11.5 How to Make a Hard Copy of a Graphical

Requirement Documentcocoecuevieiienieiinieniieecceeceeeeeeeen 303

Contents XXix
11.6 Suggestions for the Requirement Documentation Design.............. 304
11.7 The Major Features of HAETVE..........cccoooiniiiiniiiiiciens 306
11.8 More About Dynamic Modeling...........coccecerieieneenicnieneneecienens 309
T1.9 SUMMATY ..eiiitiiiieiieeieeteee ettt et 311

11.10 Points and Questions to Pondercccoovvevveeniiiniiinnieniiinieeeee, 311
11.11 Further Reading and Information Sourcec..ccceeveevenienennenne. 311
REfEIENCES....uviiieiiiiicieee e 312
12 Design Engineering Under NSEccccocoiniiininininiiceeeceeee 313
12.1 ~ The Major Problem Addressed...........cccccoveeverienercienencieneeiennenn, 313
12.2 Outline of the Solution for Software Design with NSE.................. 314
12.3 Description of the Innovated “Synthesis Design
and Incremental Growing Up” Techniquecccceveeriieniennennnn. 315
12.3.1 Basic Ideasccccoeeviiiienienieiieecieceeeeeeieeee e 315
12.3.2 What is Synthesis? What is Analysis?.......c.ccccceveevenenne. 316
12.3.3 Recommendation for Graphic Document Creation/
GENETALION. ...c.eeeiiiiieiiiieteetee et 318
12.3.4 Self-Documentingccceeeveereerniieniersieenieeieeneeeeeenaes 320
12.3.5 Detailed System Hierarchy Design......c...ccoceeveevvennueennee. 321
12.3.6 Static Defect Prevention and Defect
Propagation Prevention Through Traceability 321
12.3.7 Dynamic Defect Prevention and
Defect Propagation Preventioncccccceeceenieciencenene. 321
12.3.8 Data Structure Designcccceevcueenieniieinienieneerieeeeee, 323
12.3.9 Detailed Logic Design of the Modules.........c..ccccccceeueennen. 323
12.4 APPLCAION....c..eiiiiiiiiicieiieieteetceee et 325
12.5 The Major Features of the Software
Synthesis Design Techniquec..cccccceecienieiiinieniniencicncceee 336
126 SUMIMATY «.oovtiiiiiieiiiieeieceeceeee ettt 337
12.7 Points and Questions to PONderccceceevierieiniinnieniiiieeeeee, 337
12.8 Further Reading and Information Sourcecccceceeeverveciineenncnne. 338
REfEIEICES ...t e 338

13 Coding Engineering with NSE............c..cocociiiiiiiicce 339
13.1 The Problems Addressedcccceeirieniriiininienenienecreseeieene 339
13.2 The Solution: Software Coding Engineering with NSE Using

the Synthesis Design and Incremental Integration Technique........ 341
13.3 Unit Testing and Integration Testing SUppOrt.........cceeceeevieervenueenns 349
13.4 MC/DC Test Coverage Measurement SUPPOTTeeverreeervenueenns 353

13.4.1 CONCIUSION ..couviniieniiiiiiiicicicteeeeeee e 361
13.5 Semiautomated Inspection SUPPOTTcc.eevveerieriieenieriieeniierieeieene 362
13.6 Defect Prevention Driven Quality Assurance in Programming...... 364
13.7 Quality Measurement for an Entire Software Product

and Each of Its COmMPONENtsccceeeeeviieriiernieenieeieenieeieeeeeee 366
13.8 APPHCALION.....eiiiiiiiiiiiiiieieeee et 367

XXX Contents
13.9 The Major FEaturescccueveeriieeeniiiieiieienceeenecienieerese e 368
13,10 SUIMMATY ..ooutiiiiiiiieiieeieeeteeteete ettt ettt et e s e 368
13.11 Points and Questions to POnderccoceevvieeniiniiinieniiiiieeeee, 368
13.12 Further Reading and Information Sourcecc.ceceeveevenuienennenn. 369
REfEIONCES ..ot 369
14 The Basis of Software Testingcccoccoevirieiirieieeeeee e 371
14.1 The Purpose of Software Testing..........coceeceereevireencniienenieniennns 371
14.2 Functional Testing and the Black-Box Methodc...ccccoceeienes 373
14.3 Structural Testing and the White-Box Methodcccoceeeei. 373
14.3.1 Test Coverage MEtriCs......ccuevvueeniernieenieiieenienieenreeeeees 374
14.3.2 Instrumentation Methodsccccccoevvvevieienincincencncenne. 374
144 Gray-Box TeStiNg......ccccecerieienieiinieiieeetceeeee et 375
14.5 Performance Testing and the Testing Method.........c..cccccoccecvenennnen. 376
14.6 Other Nonfunctional Testing..........ccocueeveeriirneeniieniienienieenreeieens 377
14.7 Unit Testing, Integration Testing, and System Testing 378
14.8 Regression Test After Code Modification...........cccccoceevcrvenennennen. 378
14.9 Object-Oriented Software TeStingccceeveevereeneriencrieeneneenene 378
14.10 Web Application TeStINg........ccceecvereeviirienirieneiienecieneereeieeiene 380
14.11 Embedded Software TeStNGceveerierriienieiiienieeieenie e 381
14.12 GUI Operation Capture and Playbackc.ccocceniiiiniiiinnnnnne 382
14.13 Acceptance TEStINGcccoeevieruieriinieiinieniceeeneereseere e 383
14.14 Why Should Software Testing Tools Be Used..........cccceceecuereennenne. 383
14.15 The Major Drawback of the Major Existing
Software Testing Paradigm and the Solution............cccecceceneenennen. 383
T4.16 SUMIMATY ..ooutiiiiiiiieniieeieeeite ettt ettt et ettt e e s 384
14.17 Points and Questions to PONdercceeveevierieenieiieiniciieeeeee, 384
14.18 Further Reading and Information Sourcecccceceevverveciineennne. 384
REfEIOICES ...t 384
15 Software Test Case DeSign..............ccocciviiiiiiieiiiiee e 387
15.1 What Is @ TeSt Case?ccceveeiirieniieieniieienieeeeseerese e 387
15.2 The Basis of Test Case DeSigN.......coceeveerieenienieiniienieeieesieeieens 388
15.2.1 Equivalence Class Partition
and Boundary Value AnalysiS.......ccccevverveeniernieeniennieens 388
15.2.2 State Transition ANalysisccocceerveerieriieenieniieenienieee 389
15.2.3 Conditions Combination Method...........cccccccceveenirvencnnne. 389
15.3 Semiautomated Test Case DeSiZN......ccouerveerieriieenieniieeniieeieeiees 390
15.4 Test Case Efficiency Measurement..............coceeereenerienieneenennns 391
15.5 Test Case MINIMIZAtioNncc.coueeueruieiinieniinieieneeie e 391
15.6 NSE Test Case Design with HAETVE Technique
for Both Functional Testing and Structural Testing.............cc.c........ 396
15.7 Automated Test Case Selection with Automated
Test Case EXECULIONcc.evieiiiiiiiiiciecicicceceeeceeeeeee e 405
158 SUMMATY .cooiiiiiiiiiiiieeeeeeeee et 406

Contents XXXI

16

17

18

15.9 Points and Questions to Pondercc..ccocueevieniiiiniiniieinienienees 407
15.10 Further Reading and Information Sourcec.cceceeevevieciineenncnne. 407
REfEIONCES...c..oiiieiieiieieeece e 407

The NSE Software Testing Paradigm Based

on the Transparent-Box Methodc.cooiiiiine 409
16.1 The Major Existing Software Testing Methods,

Techniques, and Tools Are Outdatedcoceeevereenireenineencnnne. 409
16.2 The Transparent-Box Testing Methodcccccceeveiincicninienncnnn. 411
16.3 The New Software Testing Paradigm Based

on the Transparent-Box Testing Method...........cc.coceoirveniiccnennnn. 413
16.4 The Major Features of the New Software Testing Paradigm 417
16.5 A General Comparison Between the New Software

Testing Paradigm and the Old Onecccoeceeeiinvieninieeninecnenne. 429
16.6 SUMMATY c..oviiiiiiieiieieieeieeee et 432
16.7 Points and Questions to Ponderccocvevvieniiiininneniiinieeeee 432
16.8 Further Reading and Information Sourcec.ccccceveecvenienennnnn. 432
References........coviiiiiiiiiiniiiiiiiicc 432

NSE Software Quality Assurance Paradigm Driven

by Defect Prevention..............c..cccoeoiiiiiiiiniininincnccccceceeeceee e 433
17.1 The Old-Established Software Quality

Assurance Paradigm Is Outdated........c..ccccooeeieniniininiinieccneenne. 433
17.2 Outline of NSE Software Quality

Assurance Paradigm (NSE-SQA)ooviiriiinieniiiieneeeeeeeee 435
17.3 Description of NSE Software Quality Assurance Paradigm........... 436

17.3.1 The Foundation of NSE-SQAcccooiiiiiiieiiiieieeeeeeee 436

17.3.2 The Framework for Establishing NSE-SQA...................... 436

17.3.3 The Purpose of NSE-SQAcccooviiiiniiniiieneiienceee 437

17.3.4 DefiNitionS. ..cc.cevveeieniieiiiieieniieeeseeee et 437

17.3.5 The Quality Assurance Strategy of NSE-SQA 439

17.3.6 The Implementation of the Quality Assurance

Strategy of NSE-SQAcocoiiiiiiiiiecceceee 439

17.4 Application of NSE-SQAcccoooiiiiiiiriiiieceeeeeeeeeeee 460
17.5 The Major Features of NSE-SQA.......c.cccoceoiiiiniininineceee 460
I17.6 SUMIMATY ..ooviriiiiieiieiieieceee ettt 463
17.7 Points and Questions to PONderccceceevieriiiniiineeniiiiceeeee, 464
17.8 Further Reading and Information Sourcecccceceeevevveciineencnne. 464
REfEIOICES ...t 464

NSE Software Maintenance Paradigm:

Systematic, Disciplined, and Quantifiableccoccooverrninne 467
18.1 The Existing Software Maintenance Engineering
Paradigm Is Outdated..........cc.coceeeirieiiniiiniiiiiceecccceeeeen 467

18.2 Outline of the NSE Software Maintenance Paradigm 470

XXXii

19

20

Contents

18.3 Description of NSE Software Maintenance

Engineering Paradigm.........c..cocooeriiiiiiniiininiiniiinccccc e 476
18.4 APPLCALIONoviiiiiiiiiiciiciceceeec e 477
18.5 The Major Features..........c.cccceveeniirieniniienieieniecicneeieeeee e 485
18.6 SUMIMATY ..ceiutiiiiiiiiieiieeieeste ettt ettt sttt et et e s st e s e e 487
18.7 Points and Questions to Ponderccoceeveevieriiiniinnieniiieeeee, 487
18.8 Further Reading and Information Sourceccccceceeevenieciineennne. 487
REfEIOINCES ...t 488

NSE Documentation Paradigm: Virtual, Traceable,

and Consistent with the Source Code...................c..ccocconiiniininne. 489
19.1 The Old-Established Software Documentation
Paradigm Is Outdated..........cc.coceevierieniniiniiiicencccecc e 489
19.2 Outline of NSE Documentation Paradigm...........cccceeveeniirnieennennne. 491
19.3 Description of the NSE Documentation Paradigm..............cccc....... 494
19.3.1 The Critical Issues with the Old-Established
Software Documentation Paradigmcccecceeviinnieeneenne. 494
19.3.2 The Solution Offered with NSE........c..ccccooviiiniinininnenn. 495
19.3.3 The Objectives of the NSE Documentation Paradigm........ 496
19.3.4 Working with Dummy Programming...........c.c.ccccccoveenennen. 497
19.3.5 Working with NSE Software Visualization Paradigm 497
19.3.6 Working with HAETVE Requirement Development
TeChNIQUEcoviiieiiiieicccceee e 497
19377 HOW It WOIKS ..o 500
19.3.8 Making a Software Product Visible in Multiple-Views 500
19.4 The Major Features of NSE Documentation Paradigm.................... 505
19.5 APPLCALIONoviiniiiiiiieiiccceee e 510
196 SUMMATYoiiiiiiiiiiiiieieeeeeeec et 510
19.7 Points and Questions to Pondercoceeveevieniiiniinniiniiieeeee, 512
19.8 Further Reading and Information Sourceccccceceevvinveciineennne. 514
REfEIEICES ...t e 515

NSE Project Management Paradigm: Seamlessly Combined

with the Project Development Processccccooeieiicinininincncnnenn. 517
20.1 The Old-Established Software Project Management
Paradigm Is Outdated...........cccooueeieniieiiinieiiniccccecceecen 517
20.2 Outline of the NSE Project Management Paradigm 518
20.3 The Foundation of NSE Project Management Paradigm................ 519
20.4 The Strategy of NSE Project Management Paradigm..................... 520
20.5 People Oriented..........cccoouirierieiinienienieieeeeieeeeeereee e 521
20.6 Focusing on Maintenancec.ceceeeerueerenieeeenieeneeneeeeneennennnes 522
20.7 More Method and Tool SUPPOTT......ccceerierrienieriienieeee e 523
20.8 Combination of Product Development
and Project Management..........c.ccoceevuerienienieniieienieiineeee e 524

20.9 Finding Problems Early and Solving the Problems in Time........... 528

Contents

21

XXXiil
20.10 Quality Management..........ccceceerueereenueenrenienienieieneereeeeee e 528
20.11 Multiple-Project Managementc..ccceeeecvenieieneeieneenieeeenenns 528
20.12 SUMMATY .ottt ettt 528
20.13 Points and Questions to Pondercoccevveeniiniiinieniieinieneee 529
20.14 Further Reading and Information Sourceccceeveeienieiennene. 530
References.........ccoviiiiiiiiiiiiiiiiiiicc 530
Algorithms Innovated for Establishing NSE..............c...cccooininnnnn. 531
21.1 The Algorithm for Realizing Modified Condition/Decision
Coverage Test Coverage Measurement............cceeceevueeveenueeeenneenne. 532
21.1.1 The ReqUirementsc.cccoeeceenueeienieecueneenieneeeeeeenneenne 532
21.1.2 The Basic Idea.........cccceviviiiiiiiiiniiiiiiiiiiiicice 532
21.1.3 The Major StEPS.....coceevuerierirrenieeieniiereeeete e sreennes 533
21.1.4 APPHCAION.....civiiiiriiiiiiieiecieeceeeeee e 533
21.2 The Algorithm for Test Case Efficiency Analysis
and Test Case Minimization............ccoceeeviiiiiniiniiniiiiiiiiiiciens 533
21.2.1 The ReqUIremMentsccccecuevueeeereenuereenieneeneneeieneenens 533
21.2.2 The Basic Idea.........ccccoeviiiiiiiiiniiiiiiiiiicicicce 534
21.2.3 The Major StEPS.....coueeveruieierieiinieienieere e 535
21.2.4 APPHCAION......ooiiiiiieiiiicieeecreeeec e 536
21.3 The Algorithm for Performance Analysis........c..cccccvveevervencrnennen. 536
21.3.1 The Requirementsccceeeevuinienueneeneeieneereneenenene 536
21.3.2 The Basic Idea........ccccceviiiiiiiiiiiiiiiiiiiiccc 537
21.3.3 The Major SEPS.....ccveuerieiieieiieeerteeeente e 538
21.3.4 APPHCAION......oriiiiiieiiniieiieiet et 539
21.4 The Algorithm for Cyclomatic Complexity Analysis........c..c........ 540
21.4.1 The Requirement...........ccceeueeveenuieieniiecienienieneeeeneenenaen 540
21.4.2 The Basic Idea.........cccoocoviviiiiiiiiiiiiiiiiiiicc 540
21.4.3 The Major StEPS..c..cocveruerreriieieiieeenieereneere e 541
21.4.4 APPHCAION....c..eoiiiiiiieiieieiicieeeeeee e e e 541
21.5 The Algorithm for Tracing the Execution
Path of a Runtime Error ..., 542
21.6 The Algorithm for the Layout of the Call Graph
of a Program Using J-Chart Notations..........c.ccccceeveevirveencneencnnne. 543
21.7 The Algorithm for Holistic Version Comparison
of a Software Product.............ccccooiviiiiiniiiiiii, 543
21.8 The Algorithm for Memory Leak
and Usage Violation AnalySiS........cccccecveverieniiecienieniineeicneeneeeen 543
21.9 The Algorithm for Realizing the Traceability
of the Diagrammed Source Code...........ccceeuerieriinieninienenienenne. 546
21.10 The Algorithm for Dynamic Traceabilitycccceeeecuinieienncne. 549
2111 SUMMATY .ottt 553
21.12 Points and Questions to PoOnderccoocvevieniinnieniieniieenieeeen 553
21.13 Further Reading and Information Sourcec..cccccevecienieiennnnne. 555

RELCICNCES ...veieiieeieee e et 555

XXX1V Contents
22 NSE Support Tools and NSE Support Platforms..........c..c.cc.cocoveninnne. 557
22.1 Full Software Development Lifecycle Support..........cccceevveeneennnen. 557
22.2 The Product Development HiStoryccccceeevveniniiinienincencnnen. 557
22.2.1 The First Generation: Hindsightcccccoeeeniinninnnnnne. 557
22.2.2 Second Generation: Panorama..........ccccceceecveneeniineenncnne. 558
2223 Panoramadc..coccooierienienienieeeeeeee e 560
22.3 Automated Tools Integrated with Panorama++cccccocenenee. 560
22.4 Panorama++ Product Installation...........c..ceceeieviiniiniiniieninenenne. 560
22.5 A Guided Tour of Panorama++ for C/C++......ccoevvviiniinininennne. 565
22.6 Network Floating License SuUpport..........cocceevcveerieriieeneernieeneennen. 574
227 The Major Features of Panorama++.........cccccoceevienieniinieniencncenne. 575
22.8 APPHCALONS ..oouviiiiiieiiieiieii ettt 575
229 SUMMATY ..ottt ettt st 575
22.10 Points and Questions to PONAErceecvevviieriieniiienieneeieeeeee, 575
22.11 Further Reading and Information Sourceccccccceeveevvireencenenne. 575
RETEIENCES ...t 576
23 NSE APPHCAtIONSc..couoviiiiiiiiiiiicicicicccceeeeeee e 577
23.1 The Whole and Its Components: A General
Comparison Between NSE and Other Approachesc..c......... 577
23.2 What Makes NSE Special?ccccoeviienieninininnencncsceneenee 579
23.3 Applications in New Software Development.............cccccoceenernenen. 579
2331 Benefits c.c.coeeiiiiiiiieieiceeceee e 579
23.3.2 Recommended Processcccccoeeveevirceeniecincencncenenen. 580
23.4 Applications in a Software Product Being Developed
Using Other Approaches..........cccceceecieeeeeiieieninienieeneeeneeneee 583
23.5 Possible Combination with UMLccccocoeviniiiiiniininincceen. 583
23.5.1 About the Future of UMLcccooiiiiniiiiniiiinieee 583
23.5.2 Question to the Future of UMLc..ccoooiiiiiniiiiiienne. 583
23.5.3 Possible Combination with UML (NSE-UML?)............... 584
23.5.4 Possible Combination with CMMI (NSE-CMMI?).......... 585
23.6 Possible Combination with Agile Software
Development Approachesc..cccccoeecverieciinieneneencneeneseeeeen 587
23.6.1 Possible Combination with XP (NSE-XP?)...................... 592
23.7 Possible Combination with RUP (NSE-RUP?)......cccccceevvevcnnnnennn. 593
23.8 Support for CBSE ..ot 593
23.9 SUMMATY ..ottt e 594
23.10 Points and Questions to Pondercocueevieniiniienieniiinieneee 595
23.11 Further Reading and Information Sourcec..cccceeeecieneeiennnne. 595
RETEIENCES.....oiiieiiiieie e 595
24 Candidates of “Silver Bullet™.....................ccoiiiiiiiecee 597
24.1 Is “The Mythical Man-Month” an Outcome of Linear Thinking,
Reductionism, and Superposition Principle?ccccoceveeenenne. 597
24.1.1 A Great BOOK.......ccoeeeviriiniiiiniiiicnicieeceeceeeee 598

24.1.2 LIMItation.......cccocuiviiiiiiiiiiiiiiciceceeeeeeee s 599

Contents XXXV

24.2 Is the “No Silver Bullet” Conclusion Outdated?cccccoccenenee. 599
24.3 The First Candidate of “Silver Bullet”..........cc.cccccoiviinieninnenennn. 602
24.4 The Second Candidate of “Silver Bullet”ccccoccovvieninnenennn. 604
24.5 Can the “Silver Bullet” Defined by Brooks Slay
the “Werewolves” Defined by HIm?..........cocccooviiiiiiniiniiinienienne, 605
24.6 What Kind of “Silver Bullet” Can be Used to Slay
the “Werewolves” Defined by Brooks?..........ccecevveevieniiiinienniennne. 607
24.7 The Third Candidate of “Silver Bullet”:
The Entire NSE Paradigm..........cccoocoeiiniiiiniininiiiecceeceeee, 609
24.7.1 What Is NSE: The Whole and Its Components 610
2472 The Components of NSEcccoceniiiininniniicieneee. 614
24.7.3 The Major Features and Characteristics of NSE.............. 616
24.7.4 The Major Differences Between NSE and the
Old-Established Software Engineering Paradigm............. 618
24.7.5 Qualification as a Candidate of “Silver Bullet”
for Slaying Software “Werewolves”cc.cccceveevrencnne. 628
24,8 SUMIMATY ..ooiriieiiiieieeiieieeeete ettt et ene e saesaeene e ennens 647
24.9 Points and Questions to Ponderocccevcveevieniiiinieniienniienieeene 648
24.10 Further Reading and Information Sourceccccccceeveevvirceencnnenne. 649
RETEIENCES.....c.iiiieiiiiiieeecce e 649

Appendix A: Software Requirements Specification Template
To Be Used With NSEcccooooiiiiiieeeeeeee e 651

Appendix B: An Example About How to Realize 100% MC/DC

(Modified Condition/Decision Coverage) for a Program Unit............... 675
Appendix C: How to Control/Simulate the Return Values

of a Program Unit Being Tested.................ccccceoiiiiiininininincncncncene 699
Appendix D: Hints for Answering the “Points

and Questions to Ponder” in Each Chapterccoccoovnininnnnn. 703
GLOSSATY ...ttt ettt st e ae st ese s e esesneenneas 727

Chapter 1
Introduction

Software is becoming the foundation of modern civilization;
software constitutes or will control the products, services,
and infrastructure people will rely on for a wide variety of
daily activities from the vital to the trivial. ... software is not
sufficiently engineered at this time to fulfill the role of
“foundation.”

David Rice

Today software is becoming the foundation of modern civilization. It is playing an
important role in the development of all kinds of businesses in the world. It affects
almost all aspects of our lives and our everyday activities.

1.1 What Is Software?

With the existing software engineering paradigm, software is defined as follows:

1. Instructions (computer programs) that when executed provide desired features,
function, and performance

2. Data structures that enable the programs to adequately manipulate information

3. Documents that describe the operation and use of the programs [Pre95-p4]

But this software definition is outdated because

e The program(s) and the documents are provided without describing how they are
managed together with bidirectional traceability among them.

* The documents are often inconsistent with the source code after code modifica-
tion is done again and again in the software development process.

e The history and the results of the static and dynamic program measurement are
missing or ignored.

* The program(s) is not represented graphically, making it hard to read and
understand.

J. Xiong, New Software Engineering Paradigm Based on Complexity Science: 1
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_1,
© Springer Science+Business Media, LLC 2011

2 1 Introduction

e The working conditions at the customer’s site are quite different from the
product development site, making the product acceptance testing and product
maintenance hard to perform.

» The software product as defined is not adaptive to its new working environment
in the customer site.

With NSE (Nonlinear Software Engineering paradigm, will be described in
detail from Chaps. 3 to 24 in this book), a software (software product) is redefined
as and delivered to the customer with

(a) A computer program (a regular program, or a cloud computing program, or a
program developed through the internet) with the source code

(b) The data used

(c) All of the related documents (including the test case scripts too) traceable to
and from the source code, plus

(d) The database built though static and dynamic measurement of the
program

(e) A set of Assisted Online Agents (automated and intelligent tools working
with the program and the database) for handling the issue of complexity
and supporting the testability, visibility, changeability, conformity, reli-
ability, and traceability — making the software product adaptive and truly
maintainable in the new working environment at the customer site, and
that the requirement validation and the acceptance testing can be done
dynamically in a fully automated way with mouse clicks only

Why should a software product be delivered to the customer with the database
plus a set of intelligent agents too? The main objective is to make the software
product easy to understand, test, and truly maintainable at the customer site.

For comparing the old and new software definition and getting hands-on experi-
ence with the new software definition to know how software acceptance testing can
be done automatically and how software maintenance can be performed globally
and holistically with side-effect prevention, it is strongly recommended for readers
to install and try the NSE-CLICK toolkit provided (see Preface) through an applica-
tion example (a calculator software product). This example shows what a customer
will get for his/her software product developed by a third party (or through
outsourcing software development) applying the NSE paradigm and the support
platform Panorama++: the customer will get the program with the source code, the
data used, the documents with bidirectional traceability to the source code to keep
consistency with each other, plus the database built through static and dynamic
measurement, and (after signing a maintenance contract) an end-user license to use
(but not own) a set of Assisted Online Agents, including.

1.1 What Is Software? 3

The NSE-CLICK interface

The OO-Browser for generating interactive and traceable call graphs or class
inheritance charts shown in J-Chart notations (see Chap. 7) innovated by me
The OO-Diagrammer for generating interactive and traceable logic diagrams
shown in J-Diagram notations or control flow diagram in J-Flow notations (see
Chap. 7) innovated by me

The OO-Test for performing software testing using Transparent-box method
combining functional testing and structural testing (for Modified Condition/
Decision (MC/DC) test coverage analysis) together seamlessly with the capability
to establish bidirectional traceability among the related documents and test cases
and source code (see Chap. 16) innovated by me

The OO-V&V for Requirement Validation and Verification through bidirec-
tional traceability

The OO-SQA for software quality measurement

The OO-Analyzer for dynamic and static program measurement

The OO-MemoryCheck for checking memory leaks and usage violations

The OO-Performance for performance measurement

The OO-DefectTracer for tracing each runtime error to the execution path

The OO-MiniCase for test case efficiency analysis and test case minimization in
order to perform regression testing efficiently after code modification

The OO-Playback for GUI operation capture and playback after code
modification

The OO-CodeDiff for holistic and intelligent software version comparison, etc.
for supporting testability, visibility, changeability, conformity, traceability, and
maintainability.

With these Assistant Online Agents, the acceptance testing can be done in a fully

automated way as follows:

Start the NSE-CLICK (double click the e NSE_CLICK .exe file from the home
directory of NSE-CLICK after the installation), the NSE-CLICK interface will
show up (see Fig. 1.1).

Load the database of the calculator (from C:\isa_examples\English_examples\
analyzed_for_review\cal) as shown in Fig. 1.2.

View the program structure shown in J-Chart notations with some overall mea-
surement results using OO-Browser (see Figs. 1.3—1.8) — the operations and the
results.

1 Introduction

B CLCK-ONLY for fully automated acceptance testing of outsource software products written in C/C++

Tools Exit

SHESIEEE b0k R 5 ES

Fig. 1.1 The NSE-CLICK interface (the original icons are shown in different colors)

E CLICK-ONLY for fully automated acceptance testing of outsource software products written in C/C++ ||:|_@_23_|
o -4 @
[SIE, [P, MY s AR
] Load dbs File e
@_ll » iv!| « English_examples » analyzed_for_review » cal » -fji,"_search yo)
Eavoiite Lirice Name Date taken Tags Size Rating
). dbs
I Desktop | ddfile
=p Recent Places CALdbs
£ Computer
E Documents
§ Pictures
B Music
& Recently Changed
r,; Searches
J. Public
Folders »
File name: CAL dbs ~ |DBS Files ".dbs) <]
[cone

Fig. 1.2 The operations for loading the database of the calculator program

View the program logic diagram using J-Diagram notations and control flow
diagram using J-Flow diagram with automated traceability as shown in
Figs. 1.1-1.14 — the operations and the results:

Select the corresponding options to view the MC/DC (Modified Condition/
Decision Coverage) test coverage measurement result with untested conditions
and branches highlighted, as shown in Fig. 1.12.

Try to use the traceability automatically established, as shown in Fig. 1.13.
View the performance measurement result as shown in Figs. 1.15 and 1.16 -
the operations and the result.

1.1 What Is Software? 5

Fig. 1.3 Start the OO-Browser

Fig. 1.4 View the overall test coverage measurement result (a bar graph at the bottom of each
module-box shows the percentage of the elements tested)

1 Introduction

Frommsnsatimitl___ B Bay Vi Phvimmanss Buts
Vi ian

T R T

Fimd
Aot chart
Furdtion 1e

Fig. 1.5 View the performance measurement result for locating bottlenecks (a bar at the bottom
of each module-box shows the percentage of the time used)

o
mllﬂﬁ:' ':p.‘ w1 lra With 0 Lrtng
e o
) 4 1 1 r " * i (] 1
D D Im X oo
4 [brcasan)
L, t JESAS | f4e Cphon Tag Twn
»

g

Fig. 1.6 View the measurement result of the cyclomatic complexity (the number of decision
statements such as “if,” “for,” “while,” “do,” “switch”)

1.1 What Is Software? 7

Fig. 1.7 Highlight/trace a module with all of the related modules calling and called by it

Fig. 1.8 Use a module as the root to generate a sub-call-graph

8 1 Introduction

Aunetion

Funct lon

unot ion

Fig. 1.9 Assign bottom-up order for incremental unit coding and unit testing for a critical path or
the entire product to support reverse engineering

£3 (Class Inherilance Tree)
Exit

EXECUTED No. :[____}8B+ Aceumulated Segnent Test Data With Condition True and Palse Level=i
TESTED PERCENT:[___}@®x Total: 52« (235 of 448 Tested)
212

divide constant

Fig. 1.10 View the class inheritance chart with test coverage data (note: a class cannot be tested
directly, so the class test coverage data are collected from their instances)

1.1 What Is Software?

F CLCK-OMLY for fully aut: d acceptance testing of oty

products wntten in C/Ce + [ciza ex-Tengliz-1\anahz~Ticafical i |

=@ = |

License Help ~Switch ~ CMMLsupport Guide Ext

]

DWINVER=0x0300 Disgeam Mode -

I Function/Clazs Summary

Fid=CHSA_EXTENGLIS™
ce-CapRoGRATMIAFag | | © tOuee il AcienPus
CHSA_EX TENGLIS TIAN
CMSA_EXIENGLISTWANE| Wih ———— et Coverage —
CMSA_EXTTENGLISTTIAN 7 R Wk Lo e
T Class High Level © LastRun
I™ Projoct Summary i
™ Fie Summay
F Condlion

=] e |

Fig. 1.11 Start OO-Diagrammer

BT -
Fite Option Tag Path
Panarana Disgranmar
Table of Contanmts
wnct lon HigheLawl Disgran
aprisl.cpp
et lon.cpp
ko |epp
et lon. b
tate.h
Lh
Furct lom High-Lewal Disgran
pooo10 L)
main /% c:\isa, m!nslilqllsh | _smanp lasama lyzed _for_revieuh
calEigrist .con
pooa1y [}
a8 nglish werplash o
analyzed_for_ mumel\ﬁulim .19p Line %7 o7 —00317
b2

tablazzadd_walue /% e2\isa_sanple

.|
sipbol
mlnﬁ_mlswlm_iw mm\ah&‘ht.m Tina |

| Doc
Turect bons soperator(| /# c:\ise_sanples'English wowmplast
analgzed_for_revieu\cal\Funct ioe.cpp line Sémf l—mm

14 -]
syrbol tableczadd value /* eihins wtenpleth
tnluﬁ _sarplas\imalyzed_for_revimical\iynbol.con Line

o 0 _table::add_value /% cihiss el o
| t . |
!%ﬁﬁ "1\;& I:« ::u\nhsght cop ling

poco1?
f 1 English_poarp lash
anilyzed | fnr,rwnd\ul\fw:umxw Line 843 W 30

oo | [T]
l:whal_mh" waluw ¥ cihina_manplis I

: 1] alss if wriatich == ') "Iidgriget_parent 1011
...............,3 0]

d.c_pm..n. oot
metgm 8 .
.

i olse if ylwpchen s igpches - "Higpches '/ |l pgches ")

41
| ey

i nluu—fr_ﬁn'

table: vals /% c2hiss
o S—

Fig. 1.12 The MC/DC (Modified Condition/Decision Coverage) test coverage measurement

result

1 Introduction

noda *right, *laft;
har info;

e

Option Tag Fath

R |
sl Hated 00325
| pblice I
- — "
-

{

paran_coun

| char b |
]
i ek o 1% »

sssst %8 %8 =b s soio| o).t £ F . E

brosanssnssmnenanni] (31
hegn

char gut_charll;
it it lonl d char L

=

Fig. 1.13 The traceabilities established automatically

untested condition

H
eloi if rfich oo ‘+iigtich oo 11 |

f'...........e,;]
=

ruturn £ »

d branch

sarssnnnnend (0]
ratum 53 8
esansnane

F 1

-1 3

E

®ote 8

[-Disgram B N e e [L. N @
e Tag: Eath Help ||| file Option Tag Path Help
H Switch 3 J-Diagram | | b "
m:sl Summary » j-F]-ow % char ch
T Test Coverage » I Action Plus gr—?:;[%w‘ﬂ'a.m-?'l 14
Without Condition L retem
B = g 13;%25“‘.,‘.#‘“ o ")l Egatch e =M1 [H) ‘

alse it grich e °0) T34
w10
L3 relumm
alse i rulmpiquich > 'R'Iibgrich <= "2 1ivaly 114
T‘O El [:T?‘Mﬁ] p."rll
& (4]
Tetum

untested condition

wlie il lich o= "1 10D
6 101 o

untested branch

(I-Lm statalzpohlic statell

0] = |
ant .
trams it donlums igned char chl o

s 10
::;.H’.l.(m e "0 ikumith <= 711 100

L3 relem

b etse ch ve "%} igmlch == =10 [0}
s13 10 e i i

Fig. 1.14 Convert J-Diagram (showing MC/DC test coverage measurement result with untested
conditions and branches highlighted) to J-Flow diagram

1.1 What Is Software?

F CLUCK-ONLY for fully P testing of

software products written in C/C++ [c\iza_ex~T\englis= I\analyz~\cal\calhsi |

11

=

Testiny

Coding

License Help - Switch

CMMI_support Guide Exif

I
ACHMSA_EXTENGLIS TWANALYZ 1\CAL

-0_NTWIN -
D _X86_=1

-D_WINDOWS Renaraea Fepodt

-DWINVER= 00300

-dd=CAUSA_EX IENGLIS TANALYZ T\CALIddfile

-CC=CAPROGRATIMIAFSD T\VCOBIbin\CLEXE Pedomarce | w2

CAISA_EXNMENGLIS TANALYZ ICALYexprist.cpp.
C:SA_EXNENGLIS TWANALYZ \CALfunclion.cpg
CAISA_EXIENGLIS TANALYZ 1\CALYsymbol.cpp

Performance Report Choice

b W Function Pesformancaisored by slpha-beta)

W Function Perfomance{zoted by time spent]

Cancel

Fig. 1.15 Start the OO-Performance tool

[00-Analyzer(Report) % n

File Tag } i
3. Function Perfornance(Sorted by tine spent)

04 19:45:39 2008
ude systen inline functions)

This perfornance tine: Sun Hal{
Motel Run Tine: 0.009 sec (inc

20 30 40 S0 60

-

T T T T
k--averagel 13.83)
int transitionlunsigned ch

float evall)

float evall)

float evall)

int Tet_oarenl]

oid sunbol_table::clear()
int transition(unsigned ch
int statef::transitionluns
oid sunbol table::add_val
loat synbol_table::get va
float evall)

int synbol_table::get_inde
int function::parenthesis(
int function::precedenceln
sgnbn]_table::s?nbol_tab]e
float evall)
function:z:functionl(char *s
statel()
noid function::checkandadd
int transitionfunsigned ch
funct lon:: " funct ionl)
char statel::get_char()
oid synbol_table::add_var

void function::add_operand
Noid function::delete_func
hoid function::add_operato
int function::valid(char *
int nainlint avac,char *%3
Noid function::build_treel

1
]
1
1
i
loat unction::operatorl]l
1
0

Fig. 1.16 The performance measurement result

12 1 Introduction

e View the general static and dynamic measurement reports as shown in
Figs. 1.17 and 1.18 — the operations and the results.

¢ View the quality measurement result as shown in Figs. 1.19 and 1.20 — the
operations and the results.

e View the execution path for a runtime error as shown in Fig. 1.21 — the
operation and the result.

* View the memory leak measurement result as shown in Fig. 1.22.

¢ View the measurement results of test case efficiency analysis and test case
minimization for efficient regression testing after software modification
shown in Figs. 1.23-1.25 — the operations and the results.

¢ View the support for bidirectional traceability (established through Time
Tags automatically inserted into both the test cases and the code test cover-
age measurement database for mapping them, see Chap. 9), requirement
validation and verification in Figs. 1.26-1.32 — the operations and the
results:

— View the traceability between test cases and the source code as shown in
Figs. 1.27-1.29 — the operations and the results.

— View the traceability extended to include all related documents and test
cases and source code as shown in Figs. 1.30-1.34 — the operations and
the results.

F CLCK-ONLY for fully automated scceptance testing of outsource software products written in C/C+ » [cisa_ex=1\englis=1\analyz~\calicalhsi | =B
s Project Requiemen n-Co ting - Measorement Maintenance Configuration License - Help Swdich CMMIsuppont Guide Exit
= -

= 66 B0 10582
-DWINVER=0x0300 ‘ ANALYSIE REPORTS

-dd=CAISA_EX1{E]
-CC=CAPROGRATY
CAISA_EXTENGL |
CAISA_EX T{ENGL
CAISA_EXTIENGL

Generated by Panorans Aaalyzer

TRELE OF CONTENTS

Seurce File Sunmary Tabl «eaRO0BD
Geto Locat ion. .
Usuzed Label
File Compact
Conpactaess Cha
Funct ion Conpactng

Clazs Cross-roference: Inherited By..
Haunbor of Clats Derived fronf Inhar ite
Hunber of Claes Derived From Ch

Hunbser of Clazz Inkaritad by Ch
Conztrucior & ructor.
Dats Hanber.

24 Function Crost-
25 Function Crosi-referes

Calls fren
ferCall fron
to Chart.

27 HNunber of Function Ca
23 Wunber of Funclion
29 Function Mot Tallw
30 Fenction $ize Char

Fig. 1.17 Start the OO-Analyzer tool which generates about 150 dynamic and static measurement
reports

1.1 What Is Software? 13

00-Analyzer(Report) ‘ ‘\ E@ 24, Funct ion Cross-refarences: Calls to £ga0e |
Total Fusctions: 47]
File Tag ,
1. Source Fils Sumnary Table o034 Function Kame] 611 To InFile JLime
1[:‘:}{ gm funct ion:zadd_sparands | funct lon: sehockandadd et \la;ﬁ:_R (13
. anslyz"1healt
File Mana Last Hodifinition Flze ¢ LWL CPp.
e fomctionsiadd oparator | function:ipracedence | cilltaellh 68
GiMisa_wn heng s Ramabizrincall | Sat Mg 00 03:04:62 2004 ?n il
bl funct ion.cpp
il "”\"‘"“'1\“'““ hculy | Wed Fpr 28 2244256 2004 i funct isnzsballd_tree | synbol tables: | coliza, o |4 =
IuacLite.-top : - add_isrishle wngliz 1y
8. Class Crass-raferance: Darived Fron o001y ‘“ia:hl}fg;
ber of classes: 14 i
tiad by alphabots in class mani. finetlensinadih] senaily |
analyz Thealh
Chass Name dorived frem + tamcthvichn
R POy by T26. Last rum Branch tast coverage charl by elass) [ETER]
7R nodn | Pembor ot class: 19
bl Hithout baze class
ninwt nadn n 0 20 M -u S8 60 70 90 100
Itlply i T eaversat 355
node
stated
statel froid
stated o5
stated stated 3
statas stated | :::}:;
1 funct jen
stated stated _|| runholl[leblc
Hate? statel | L ';5“
ated stated } to:ﬂ:;i
warisble nedn | waFiable
W W0 W 4w s 060 90 100
Fig. 1.18 Partial reports
l=l@] & |

¥ CUCK-OMNLY for fully automated acceptance testing of outsource software products written in C/C=» [ciisa_ex-1\englis= l.\nndﬂ Theafical hsi |
Licenze -Hrlp Swnrh LMMI _support Gusde: Eut

-Teak Project Requwement Demgn - Coding Tulmq

-D_NTWI
-D_XBE_=1
-D_WINDOWS
-DWINVER=050300] ianﬂlnnnl Classes I Cancel I
-dd=CSA_EXTTIEN,
-CC=CAPROGRA™
CAISA_EXT{ENGLIS™ IWYZ'!'.C&L\:WIISI opp
CAUSA_EXTTENGLIS TWANALYZ \CALYunction.cpp
CUSA_EXTNENGLISTTWANALYZ T\CALYsymbol.cpp

Fig. 1.19 Start the OO-SQA tool

14 1 Introduction

orbar ol ChaldramTless

Conhing Bt (hjictaTlass Clazses in. Selected classes.
Pigonta For o Class minus -
Wbt of BetbodeiTlass
Wb of Methd BoursiClass
Lines of Codu RestwdiTlass i
2 of o Beused T . :
Thema Seth ¥ I facn Tl
Marbar of ChilérandTlaoe
T condition both T condit ion both haing G b
Y
T condition fabia ¥ condlt o Ak

Wb of FathodniClany

Worber of Bethod BoernTlasn

(]
.‘A\J’;l}'/ga

T condt lon trum T condt ion trum Lirs of Code RusoadiElacs
ot Code bruned/Tlan
T dcomram T Jcomrie Sigw in linaz

1 code

T segrents wsscsted laclel [cogmnts wecated (2141 T conments & shate macing

TN
S

Cyebmat ic complunity fuith canl

T sagwnts ovcsted Gl T sepants emcsted f1cll \ Byclonatic. corplisity luithit cas)
T-conplanit] T-corphisi
T segrants wssonted Leld Tcorphaniigl T vagrants wmonted (s Hawl:::l i
S ety Fecopbemitgle Frommplenited dromgbenitylr

Fig. 1.20 View the total quality measurement result for the entire product or each individual
class/function shown with a Kiviat diagram

Gowoling Bationen 00 isctt/Tlass 1 el 0 g

F CLICK-ONLY for fully " ting of software products witien in C/C e+ [cisa_ex~Tenglis~ Nanalyz~\cafical hsi | l=im|)
Took Propeet Requirernent C License Help Switch CMMI_support Guide Exit

Design Coding Testing

File Tag ClearRecord Help
6 90 155 1
DEFECT TRACING

Error Tuazsignal SIGSECY in cought an cofisa e Linglis"Wamalyz™1icalfsymbol |
L

Garerated by Panorass (-Tracer

THELE [F CINTENTS

funet ion name

1ide nama

Eina

int mainlind arge char ®argu]

caf isa_ e lisLf
sl Icalfwprist.cop

functionzifunct ionlchar #e) ¢

e1/ies o Wenglis)t

woid syrbal_tableziadd_warisblelchar
ol yn_tabl)

amla"Vealfsyebol.cop

1 O untabl] | aalyLeal funct bon.co
2 booo:
3 RO0O03 wolid fumct jonz1build_tree(char o) el MemglisTl! |
L CO0003 ayn_tabll analyz” Uil funct bon.cpp
2 ba e Vamglis™l/ @

Fig. 1.21 View the execution path traced from a runtime error to easily locate the defect

1.1 What Is Software? 15

ZIERE - . h ¥ -

File Type Select Standard

Coisnling Batiopen B ivcts/Chai 1 - 0 =i
F CUCK-ONLY for fully ptance testing of cutiource sohware pr ittem in C/C++ rm«.mngzs-:w -~ eahealh |
| Tools FProject Requirement Design Coding Testing M Con Licerse Help Switch CMMI support Guide Eat
S T . ﬂwmulnmw -_ ‘ @
FICISA_EX TIENGLIS TANALYZ 1\CAL - - —— —
| NTWIN “Llenglis 1analyz Trealfonprist.con oodooz o
O Memory LeakiViclation Report
File Tag CleorRecord Help orror 1gpa line
&6 30 187
EENORY LEAK/VIOLATION REPORT 1. nassry wnl raed (20001 bytes %
2. nanery wnf reed 1001bytes o
Pepiratel:babencrind 3 Trew tuice / no alloced "
TEELE OF CORTENTS
— —
1 cafisa_en” Venglis™ 1 amalyz" 1 califunct lon.cpp. -+ AE0002
2 exfiza_ex"Uenglis"Vamslyz" 1 calfenpriat epp. . - D002
. L—J ' .
— — =

Fig. 1.22 Start the OO-MemoryCheck tool and view the measurement result

F CUCK-ONLY for fully sutomated acceptance testing of outiource software
st brjc oot Oy vy

FlesType:i Sects Standad

Lo ling Betuen (&

-dd=CAISA_EXCT\ | 108 name: [Een_or Moo Tiansr 1 it el itla oty
“cc-cwosrm HL m.: s it ok of ey v 153
CAISA_EXTIENGI o o hue

CAISA EXCHENG| S rme coth

CAISA_EXTTENG

o] Corce |

¥ 50 Basic block]
¥ 5C1 [S00+irnvinible tagement|
[P 51+ {507 +loop bounday]

ltﬁez
2 Mﬂﬁﬂﬁm
'%C\ln)
1th
le case 2 to test kh\%m €

8 Expected:
= \m m%immm]war

Caza 3
B i Bue 1 08 84:E7 300
.

Fig. 1.23 Start the OO-MiniCase tool

16

1 Introduction

F¥ Efficiency Analysis Result C=HiCIE
File Tag
* -
Tue Jul 14 13:45:23 2009 —
Test coverage of each test case 4
Nunber of total test cases (9)
(Class scope: progran)
#
.tdbs name: c:\isa_ew™Thenglis™Thanalyz"Thcalvcal.tdb
.hei nane: ci\isa_ex"lhenglis"Thanalyz"1hcalical.hsi
Case Funct ion 500 81 SC1+
1 73.91% 47.66% 49,621 47.18%
(17/23) (517407 (664133 (67/142)
2 4,352 1.87% 3.01% 2.82%
(1/23) (2/107) (4/133) (4/142)
3 78.26% 51.40% 54.14% £1.41%
(18/23) (55/107) (72/133) (73/142)
q 73.91% 47,661 49, 62% 42,187
(17/23) (517107 (66/133) (67/142)
S 78.26% 51.40% 54.14% 51.491%
(18/23) (55/107) (72/133) (737142
§ 73.91% 47,66 49,621 42.18%
(17/23) (517107 (66/133) (6741421
7 78.26% 51.40% 54.14% 51.491%
(18/23) (55/107) (72/133) (73/142)
3 2.74% 11.21% 12.78% 11.97%
(5/23) (12/107) (17/133) (17/142)
9 78.26% 58.88% 51,654 58.45%
(18/23) (63/107) (82/133) (837142 3
™|

Fig. 1.24 The measurement result of the test case efficiency analysis — here, SCO means visible
branch test coverage, SC1 means visible and invisible branch test coverage, SC2 means enhanced
branch test coverage (a loop statement is considered as three branches)

e View the version comparison result of a more complex program (a GNU
project: bison) in system level, file level, and statement level as shown in

Figs. 1.35-1.44 — the operations and the results.

e To a program with a GUI (sortdemo), selectively play the test case back
dynamically for efficient regression testing — the operations and the result
(see Figs. 1.45-1.47).

1.1 What Is Software? 17

¥ Minimization Result (=] & [t

File Tag
oohisa_ex Nenglis analyz Thcalical.hsi

Tue Jul 14 13:46:54 2009
Nunber of test cases before mininizing: 9
Nunber of test cases after nininizing: 3 (33.33%)

>

Total test coverage of nininized test case set:
Function (Class scope: progran): 86.96% (20/23)

Hininized test case sef:

Case 1

#C: L ISA_EX™INENGL IS 1NARALYZ “1NCALNCAL. he

Sun Hay 04 18:44:47 2008

To test a D03 progrtan whose execut ion will flush the windou (it is nonall.

This is a sanple script file for requirenent validation and bug prevent ion

in code nodif ication to be done through foruard and backuard traceability

arong requirenent specification, test case, design document, source code,

and the test result. The rules for uriting this kind of script file are:

(1) A "% character at the first colunn of any line is a connent.

It is reconnended to have comnent lines to indicate the expected value and

the expected execution path (should hit uhat functions and uhat segnents, should
not hit what functions and uhat segnents according to the J-Flou diagran).

M Hithin a connent line, you can use three special keywords folloued

by a full file nane to specify the related requirenent specif ication or design
docunent in HTHL or HORD or EXCEL file format (see below exanplel.

(# (2) One or nore enpty lines are used to separate test cases.

(3) The first active line of a test case is the divectory to vun it;

E E‘I] 'ﬂ]be second active line is the real test comnand (can be nove lines)

Exanple :

OHTHLE C:\isa_exanples\English_exanplesianalyzed_for_review\cal\English_requirenent .htn#ADD
GUORDR C:\isa_exanples\English_exanpleshanalyzed for_review\cal\design_document.doc brnane AOD
 Test case 1, to test the ofDDG function of a calculator:

Hit: variable::evall)(s0),funct ion::add_operator(node*,node*,charl(s0,s4)...;
Mot hit: function::add_operatorinode*,node*,charlisl,s?,s3)...;

Expected result: 14

:\iga_exanples\English_exanplesianalyzed_for_review\cal

al "i,j:i+j" 2589

Case 3
Sun Hay 04 18:44:57 2008
Test case 3

:i‘iééléxanples\Eng lish_exanplesianalyzed_for_review\cal
al "I, j,keivjH" 3 28.97 3.456 -4.54321

4[:] i .!

Fig. 1.25 View the test case minimization result (the related algorithm will be introduced in
Chap. 23)

There are more functions available (After trying NSE-CLICK, it is recommended
to try the S_Panorama/S_Panajava product (see Preface) designed for students to
learn NSE with your small project (less than 1,501 lines of the source code)).

The above operations and results show that with the new definition, a software
is much easier to understand, test, maintain, and that the acceptance testing can be
done automatically.

18

1 Introduction

F CLCK-OMLY for fully d testing of

]Tnnh, ﬂm,rn hutmmnm Design | Coafing Immg

C{\l&ﬂ E>¢‘1|EN6-1.IS‘1WALYZ‘1\C& |
CAISA EXTIENGLIS™1\ANALYZ-11CAL

Test Case Anslysiz
TOE name: |¢-\on_es™Therghs ™1 \arulyr ™1

HSl name. calha

(o] =" _coest

¥2 Test Coverage Analysis ‘
File Tag | Effic. Mani
File-Class-Function
Segment 1
File-Class- Function (withcut expansion) ':"
K Segment (witheut expansion) 8
E m n ’l charactar af the firrt o.h.n_ul':s Tima iz & comest.

1t in recomended 1 icata the mpected valu and

i o have Conent
(B by wpactid nman path (ohould hit shat functions and what segrants, the

sagnents accordisg to the J-Flau dusgran.
Con s theea spscial egeds fotioaed

i Tew ar pere ety Dines are suparate fent cani
i |!th|m¢1m Lios of o tast cace is the diractony 16 ran It;
The secoed active Line i3 the real test comind (o b nore Lima]

=F

i Euwh
L [n Leshanalyzod_for glish requl
RS L lized far s Bocumen

8 Tt m 1 e Tt m. v P A el

120, o char) (2,541,

JIE;::l‘lurnTs -dd _ipatatoninede®,node¥,char) [51,5,431. .
| t:
thiga, Il‘-& g e nalyzed_for_revbeucal

- _for_ gl it regui
£ e \m_mjmw mlu &qu_mlml‘bwl;ﬁ_ﬂnh
I [‘[;':‘mn 2 bo tut the ility

g 1
:;|u_m|.!|\EWiIhb'mh:\mlu:id_lnr_mllu\u]
af

Cae 3 -4
Bum Mo 1144, 44,57 2000
.

Fig. 1.26 Start the OO-V&V (Requirement Validation and Verification) Tool

File Type Select Standsrd
Louplisg Betuses 0 (ecta/Tlazs 1

2, Test Coverage Analysis

Metrics . b W ¥

Fite Tag: Comespy: Eificc Mink
Laze 1

158 BN TAENEL 15" TURNALYE " TACRL AL ha L
Sun Py 4 10:49:07 2008

To test o [06 progrian whose exscotion uill flush $8e windou (it ix nenall.
This is & sarple script fale for requiresisd walidat bon aed bug prevent lon
u code moditicat lon 12 b done !hm forusrd and backuard l(ml]kly
requiresn] specif ical ion, tesl case, dunign documnt, seurce
-!I’ kho tast nﬂsuh The rules tor lnlk this. Irlnd of scrigt Hh anh
(11 & %" character al tha first colum l:?uu line iz a commnt,
b5 recommnded to have coment Lines to indicate The apected

not hit shat funct dons and uhat & according to the J-ﬂw diagran

Within a connent Line, you con wie thees special keguords folled

w s full 134 nana te w«g&\h Tolated reguiniment wmm Len or Gasdgn
in HTHL or OEDH L 1ibe format fzow balow sceplel

m Cnn i more eply lises are uzed o separate tosl caser,

130 The firat sctive Ling of & tast care in the directory to ron ity

4] The second active Tl bb the raal test conmand [can be nore Limes]

Tust case 1, rul L wetion of a calcslatar

Hit: varbible: aval(1 (200, hla:tm ﬁd_ﬂwnlutlmﬂﬁw fJurIl!B ..
at hn famct don:1add, menriw ide?, charlisl, s 531

X Expucted remit: 14

Lez\Eralash, Bechanal or_ravieshaal
2\?-; el byzed_tor_s \

Cam 2
Sun Moy 4 10:44:52 2009
GHTHLD [2hisa ml..s mhmlrﬁ For_ravioa\cal\ingli:

Lich
Lizh wearplasianalized fer_vevieu\cal\Engl
o 1w R T i

spected: usage
et e Jat 1 4h i ansbyd.farrwvinheal

I walue and
h $0cted sl o path ebould hil chel T st 2o oimeiik ehould

xaple @
m! C \m la3'Eng m Besanabuzed for_ruviedical\ingl ish, JWI.MHW
i \Bq it anarpl b e \Enqlizh,_requ

Click

3
gl

Dogon: 4

(000004 {—tstruct bhespinto |
Btruct-hapniale)

posoos B

000036 —fgmbol_tables:

\poanis b—fint synbol_teblazigel index lchar chi :I
& STk —;m id synbol_table::add_variable (char chl‘{

poanss —!:H..n symbold_tablozzget _valee lint index) :|

00001 f—dtruct _ssbuf | -
e T

50001 -

% c1hisa_en Tunglis™ Thanslyz Diealioynbol.h o/

e
00003 p—fclase synbol_table f

% cthlsa_ex"fhenglis Mhanalyz Ticaliaynbol b o

00003 S ——y |
e

i ervprograPiniaf 84 1hec BB inc Judemalloc b &/

Trac

aynbol_table 1 |

—_—
B00zE F—teold synbol _table:selear 1) |
—_— e

00038 |—fvoid eunbel_table::add_valus Lint indux,!loat £} |

-

Fig. 1.27 Perform forward tracing at the module level — click a test case to trace the modules

tested

1.1 What Is Software?

19

1 'Erglish_requarsnt bin 80
Jocis e lzed_for 1wt ign_ecurmet . doc b 0

1001501,1 cparsonimdas,rede® el ..
d‘.onntartmdu' gt o

it
\&Tm,«wmmiwz for _reviasteal

54 ouang
njuvl

BHTHLE :hiva, ml»\hlu& iocnpletians for_nevieucal\Eng] ish_reguiresint MoSERRTR
BENIELD (: lm,n-om 1ish 1m::l?:a,lur_r-:JmNn:jm_on:m,-mrmlm.xh
g;:‘:m 2 to test the ality

g tod; nassag,
:Pu_mmn]i&_mlu\nw_lar_mI&\cnl

ase 3
a..mnusus?m
Tﬂl

s ‘&ngnwﬁwv]ulns‘&;d |_far_rav leshcal A

181
ﬂ larq(¢
l-) mum 1
i _imvl

it ealidisted)

Jj‘vrlmt 1 = 0
for_invl isdi4)

tar_inv2

sustchingn vard

nun_var+3l 171
(T E I]

m
i€ mun_varg iss
w
[
1

2l

I

5 Test Coverage Analysis . [=]@] Level Correspondence _ﬁm‘
file Tag Cogresp. Effic Mini.
Lasaf’ : ==
\1i[Comesp] Effic Mini, 191 *
1 File-Class-Function ick ' 151 . {40 -
clicl Tilsie » (ehaen) malloct20004 »e 0)
15egment 1. o r|3 S |
- File-Class-Function (mm expansion) select it U] ifised Lst000 [8) &
shown n21 Witstre « fchars) mallocti000) = 0) {9
:::MMI tions and what segmnts accerding 1o the F-Flou d, 1] "(B 013 :3 L
i nct lons 1 accarding 1o Lsgranl.
e e thvw s5cial s folnd blue 00027 vl dstU 18]
h:“ Ined I".’“"";".L."““‘.‘g""‘ or design . ol AT 2. traced (shown
@ fornatl {ses mah.ca" {] 31
12 e o nete ety m are wied to separste test cater. aut ” 027 ls! ’ﬁ] in red
l31 Tha first active Bine of & test cate is the directery !o iy 034 ’4_‘ S taturs 1
ive line b5 The raal tast comand fcan be nare dine! =
00035 i sni21 31 automatically)

2N

Fig. 1.28 Perform forward tracing at the segment (a set of statements with the same execution
conditions) level — click a test case to trace the code segments tested

2 Test Coverage Analysis - \ Segment Level Comespondence =@ & |
He ‘F.g Comesp. Effic. Mini. Fite Tag
\m,tx l\(lﬂ.ls‘}\ﬁﬂ.\‘ﬂ\ﬂl\m. hai ponan int naim Lind arge,char ®*argyl Il!] E:

Sum g 4 16:44,

To test & DS vmmn anllm will flush the window Lit it nomall,

Thiz iz & samle script file for requiresnt validat ion and bug provent ien

in ood- medif icat ion 1o ba dona fhrough fanssed and badmnf nmm!g

reqairement speci Lcat ben, test case, detign

.md :ho tert rosult, T rules for uu:uq thiz kwj af mmt tile n.(

(11 B 8" character a1 the first nl.wn of any Lied is 2 coanent.

(B 1 s reconmeded to unwdmlthmkdwhnaad
the wgacted wut bon Mhuhwl.dhul what funch iont and chat segrants, should

ot bkt uhat r\n:llw, ard shat segrants according R the J-Flom disgranl.

Hithin a comnant o o cam e thoes special rdy 1ol lousd

by full f1la nasa “h wafg"' ralated reguiranent :nmrmmn o derign

document in HTHL or WD Jo fornst (soe belou axengl

131 The first sctive Ling of & text case is tha directery to rum (13
m Th shcond active lins s the real tast comand can be rore Diner)

Hﬂl! t i _anples\ErgLish 4 mh \a\a!waf mm\ul\hﬂl:ﬂm m.-'m
3z

Test cate 1, Bo test tha &mo function of & S

Hit W.thriisﬂ ...

Kot ot e ot mrarnrlw ride® char) (s1,28, 230, 1

thy_sianp lon\analysed for_ravisteal

Traced

&

for_resleucal\Eng Lith requiresent hnSERFIR

\Ewl.nh weanp lesanal

BERTELE l‘ \lsa _wuanplus\Er mt«\mi fnr _varybewhcal\English_tdes gn_error hand il
Tazt cate 2 |e ml the

| B Epected: w
Thisa, mh\mljm l'xw]ls\m]ynd for_reiimical bao0sa
i sz
Casid - | phanosz
o W, 018 10-48.67 5000

£ ™ "

4 (8]
| SRS

it _invl

if_invl
- .I[mrc(ﬁ]
311
L return 1
L

i_iwed

3
S return 1

if invl

for_inwl
tor_invd

suiichinu
casel:
7 I

8100}

11010

11621
© mun_var+3l

in1l3)

i (f.validistel)
erlint | =
| 281

=8 19}
b i [igtr = (char®) nallocl20091) +=
[RS AR 1]

19

b= iffigtre = (char®] nslloc(1081) «= §)
B 12 [0

"

Click

m

m

m
B; 1 < pun_var;

j+e]

153141
(L0

n_varl

[
(K]
171

&

Fig. 1.29 Perform backward tracing from a code segment to find what test cases can be used to

test the segment

20 1 Introduction

Calculator Requirement Sppecification: file path C:\isa examples\English_examples\snalyzed for review\cal\English requirement.htm |

|Design document file path: C:\iza examples\English examples‘analyzed for_ review\cal'Design document. doc
bookmark: ADD
\Test requiresent file: -

Test Case Script 1: C:\isa_examples\English_examples\enalyzed for_review\cal\English_req a_test. tca

| Test ease number: 1 and 3

Test Case Script 2: C:\iza_examples\English_examples\analyzed for_review\cal‘English_req b_test. tca
Test Case nusber: 4.5.6

5ub—Reqmremen:2 Sl'B‘I’FAC‘I’lCE\ bookmark SUB
Design document file path: C:\iza_examples\English_examples\mnalyzed_for_review\cal\Design document. doc |
bookmark SUB
\Test requirement file:

Test Case Script 2: C:\isa_examples\English_examples\analyzed for_review\cal\English_req b_test. tea
\Test Case number: 1,2,3

Sub-Requirementd: ERROR Handling and reporting

Fig. 1.30 View the simple framework showing the relationship between requirement specifications
and the related documents including the test scripts and test cases (file name: C:\isa_examples\
English_examples\analyzed_for_review\cal\document_relationship.jpg)

P2 Test Coverage Analysis L 9 e 7 B Segment Level Comespondence =B B8
Fite Tag [Comesp.| Effic. Mini. File Tag
£ I
:“ ’ bl File-Class-Function * Bagin of c:viza_ex"Dhanglis"Ihanalyz"14ca
R |J
"‘[: et & Segment i
i3 iz 4 o " Fite-Class-Function (wil i
MWLM' mcmWme}
mh.l il ‘Segment [without expansion) 3 hatoos 0a0
(1] A "8" charactor a1 the farst colian of sy Line s & commet.
I ks reconmensded to have conmant Lines 10 indicste The expected valus and banoas 0903
the epacted mulm path umu hit it funct long hat IW: |hw|.6
rot Bit whal functions and chat segments sccording to 1he J-Flou diagr: Panoes oa03
Hithin & coment Line, wou can use throe special keguords 1o]Bnnd
by 4 full file s T specity the related reouiresest specif Lot bon or design pon0ss 0an3
cocumintin HTRL or 86D or EIFEL Tile fomst (s boou il
(21 Ore or sore enpty Lines ave wred o separate Lest cates, Ponne? oans
l!l The first active lina of a test case i the directory to mn t;
tacend i Line. it tha real 1est connad (can be nore Lines)
poooo? 0a05
u_qmvln\hglwh _earp L na Lyoed inwm\u]\&q]nh nwmnw mm .
Lich g, Bocenant doc benurs HEO paons? oans
lmm S8 ealcutatans _n‘ pa0087 oans
2804 o e, chrl[£
mmutm- rodet, charlizl,; s? ... 000007 0004
\m mlu\ﬁzim e Leshanalyzed_for_reviatical popoe? oand
000087 0004
(00007 0004
:anm seovrp Iz \analized for_ravisuical\Eng] ish_reguivenent .htnBEREOR
GERTELY £2\i2d_poarplesiEnglish wusnplosiana :m _veviaucaliEnglih_design_wrror_handing.cls 190007 0a04
Test s 210" test the IR LN capabil i
tady
:;’?.:tm":«?,:i,anw.mw,m,m.m bonoo? oan
. | gpovoez oaod 3
B < '

Fig. 1.31 View the options for selecting the traceability type

1.1 What Is Software?

<. Test Covarage Analysis

i 1. click to select

File mane: Englosh_req_b et t1ca
BHMLE (1 isa_wwanplod \Engl ish nwln analyaed_for_nws inuca [Engl ish_reguirenent heSiE8
Eng| onp Loz analysed tor_revsau'vca s sgn_Socumimt doc brnane S8
,_22: gimitprolpmitore?. bat

i SUBTRAC

3. open
Eng | ush_emang boc ana lysed_for_revieical
Detailed requirements:
(1) 1t can count integer number A
g e ac ant e for_reviawical subtracting integer number B within 32
3 = bit precision.
Part 2 of the Basic calculator design — Exmﬁle: %6 - 78
SUBTRACTION operation
1. Sununary: (2) It should allew the use of a
According to the the calculator should be able to do the calculnegative number

anumber A to sublract another number B, the number A and B canbe an i

float number, so that we use overloading functions to handle different type oo

caleulation

|_Examp1e :

334. 567 - 98.765

-—-::Iu! node

% exhise_ux"Thenglis™1enalyz"1icalViunct lon.h o/

=t lass funct lom '
4

" exhise_ e Tenglis™1hanalyz " Tical\unct ion.h o
ks url*ll'

- 2. traced

-
% exhisa_ox"Planglis™hanalyz"Thecal Vunct lonh &/

F—klars comstant
::] -

Fig. 1.32 From the subrequirement ADDITION, a related test case is selected to perform forward
tracing (the requirement specification file is opened and shown from the location pointed by the

ADD bookmark)

&, Test Commiage Analysia

ADDITION

Detailed requirements:

€1) It can count integer number A adds
integer number B within 32 bit 1.
precision.

| |Example: 34567 + 98765

(2) It can count a float number A plus
a float number B within 32 bit

Part 1 of the Basic calculator design — ADDTION

Summary;

Accordinig to the requirsment, the caleulator should be able to do the caleulation from
anomber A 1o add another number B, the number A and B can be an wmieger, or 2
foat number, o that we use overboadmg functions to handle different type of the

operation

pre.c.:s.:o.n.;. 3. m_i'd alektion
g opened *
m!*s\'mdmnmlkﬂnuufuﬂtm
wi— 2. traced 3 1 = 1. clicked
= SUBTRACTION calculation] [|
#iDetailed requirements: ‘N i i]
Tt | i
foc| (1) It can count integer number A Part of the Basic calculator dESIg;II

subtracting integer number B within 32
o= fbit precision.

' |Example: 36 - 78
(2) It should allow the use of a

negative number
3. wenedt

Example: 334, 567 - 98. 765
traced

L

- 2

Summary:

According to the requirement, the calculator should be able to do the cakculation from
anumber A to subtract another number B, the number A and B canbe an mteger, ora
P float number, so that we use overloading functions to handle different type of the
calculation

2, The sub-system decompotition design iz as fallows

SUBTRACTION operation

Fig. 1.33 Backward tracing from a module. In this example, several test cases and two subrequire-

ments (ADDITION and SUBTRACTION) are traced —

it means this module is used for the imple-

mentation of both subrequirements — if it needs to be modified, it should satisfy both requirements

22

E Test Coverage Analysis

1 Introduction

Level C

e o

L

File: Tag Comesp: Effic. Mini.
ey RnerER 2R

E?F

WB‘I\M\‘T'JM\R‘M

ﬁmm weecut ion wh1l {luh the windos (it Is m].!.
i 4 zenple seript file for uqumm: wvalidst ion snd bug prevent
(uh nadu Leat ion to be done through mﬁum lucululml
ramant spec If icat bon, last cane, ? docunent
h lm rasalt. The rules for urul: this kisd of mlnl l:h ares
A d-mnw ul the First col
havee cenman

=

ii

10 the J-Flou disgrant.
Hwn Mw

A line, g can uig um 3pa lal
it mu!uwm ot design

Lonrn!
la ra 10 p« Teguinenen
WL

ognants, hould

Int nain [int arge,char ssargyl I 131

50 191
| ifflste = (chare) nalloct20000) == 0} (9]
L

] U 1 klim 1%
=l |fll¢Ea: « [ghar®) pallect2000) «« 0} (91

1 s
r
Yy

i_imD is68) 191

L

or Fi I.| fornat Lz beloo wuanplel, b=y iffargcedl (91 .
[21 e o mare anply Um are wsed 1o separsto fast case. ? —-——— Click
131 The first active Liné of & test cate It the directory to rm it} raturn 1
[£1] ni.. second sctive Line s tha real fast comund [can ba more 1inws)
Exarple 2 [T RS [F R)
!NT'I.EE Tashamalized for alish s =S00
SR © lyzed_for e bgn_documsenl o branarie BOD o I8
Tast cawt lo tort ﬂn lmnnn of 3 caléulafor: = if farge ¢ nun_vare3) (7]
Hitz nide? Qu'lhﬂn'll oas 11 ?al
et hit: funct ion::add mula![m«h‘ rodi®, char) (5], 2,531, = ratern 1
Expectod resuli: 14 —
1 In\Enillsh_Mla\wlmd_!w_mm\nl it_imvl B3 M
il " 25 T i
walidistel) 171
Casa 2 -— riind | = 03 0 € nun_var; iss) 127
Sum oy (4 19:44:52 2008 6 (2
BHTHLE [\m _erargleniEnglish_wceplasianalyzed for_revlewcal\English_requirenent MnBERRER
BERCELE C2\2d_socamples\Eng] ish wnamplis'ana! “&Mfw vavivavcal\Engl ish_dezign_error_handling.xls | for_invl is104) 101
Test care 2 Tu-test the AT, THEL NG il A
B Expacted: usage masse. i for_invd 1£200)
:\m,mh:\gnelim,mln\m]gm_m_mm\nl
al suitchinun varl (71
cagels 10T
Las § 27 0
i &n:ﬂqﬂ!i&ﬂﬂm braak
cazed; 131
| =8 13
brask
casads 131
28 1
brask
cazed: 101
slﬂ 0l

1t s ol casasi 1)
24 Exlih byred_for_raviodical 1 Becunent .doc. benana U8 1, 1l
AT mhM:ulipn Wt P
cata 1 for “SE" i ustﬁ: (1]
BeABoah il ooratash e hind fas sfaribasd LI] -

Fig. 1.34 Intelligent test case selection for efficient regression testing after code modification:
when a module or code branch is modified, click it to find what test cases can be used to retest it

through backward tracing —

¥y CLCK-ONLY for fully automated ltwplmhﬂ'l\gelm sarftware products wiitten in L0« | chisa_ex-Lienglis-Tanalyz~ Licafical b |

in this example, for retesting segment s3, only one test case is useful

lel@] = |

Tooks Project R-rquwm Dengn -~ Coding

Faldess

Fm
G@"»_r analyzed for » |43 | search
W -

I Comel | Farvarrte Links Name Date modd... Type Sk
B Desitop & dbs
U Recent Places :;:2: '
M Computer |_ i i
i Documents
E Pictures
n Music

5 Recently Changed
B searches
L Public

cense el Swnch. CMMLrupporn_Guide._Eut

Fig. 1.35 Start the OO-CodeDiff tool

1.1 What Is Software? 23

B Metrics
File Type Select Standard

Counling Batsan B iect 1 S | 10
? ‘CLICK-ONLY for fully automsted acceptance testing of sutsource software products written in C/C+ + | .—_\..a . x=\engls~\analyz~ealicalhi |

ProgramOuff Load DES Files

¥ Load Version B DBS File

Vession & !C".I?aﬂwa\e’bﬂth_em Browrent I
OO | L« anabyzed forreview » bisonliS »

Wesson B 1: iza_examples\engich_exsn I

ox Cancel |

| 43 || seanens

SO KB
Diate rodidied: 5/4/2008 406 AM

& Recently Changed

i Searches

Fig. 1.36 Load the databases of the two versions of the program (bisonl.24 and bisonl.25)
separately

& Cade Diff (Function Call Graph) b)
| Eat Help
I N S - Love izl
Shared W o by L3 _hiy‘ Changed
111841830 14-188) (147183 14771838

Fig. 1.37 View the system-level differences (in the original figure, shown in color rather than
black and white, the unchanged modules are shown in blue, changed modules are shown in red,
deleted modules are shown in brown, and new added modules are shown in green)

24 1 Introduction

[# Code_Diff (Function Cafl Graph) e
[Bt N - : -
IEE N - Lew i1
Shared oty L8 oniy Chanped
(118183 (4 @ar 14183 471830

fibout chart

Hormal

S Din B version

A version only

B version only

Modified units onby
Function size

Complesity »
Chear data

Change Size L4
PS Print

Print

Previous subtree

Fig. 1.38 View the new version only

B Code Diff (Function Call Graph)

Exit

I I s - Levet=
Shared W only U only Chunped

131871831 141831 1141821 NATAEE)

About chart

HNormal

Dien A version

A version only
B version only
Meodified units onky
Function sze
Complesity

Chear data

Change Size

PS Print
Print

Previous subtree

Fig. 1.39 View the old version only

1.1 What Is Software? 25

% Code_Diff [Function Cail Graph) el
Bt Help
Lewel=l
About chart
Hormal
e Dim Aversion
Dim B version
B version cnl y i
Modified units only &
=

Function size
Complexity

=5 =i Clear data
e

'F-Tl‘

Change Size

PS Print
Print

Fig. 1.40 View the modules deleted from the old version

@ Code_Diff (Function Call Graph) e
| Bt Help |
Il I S - ewtsn |
Shared W only i only Chan:
(11g-188) VQBI [14!93! 14771830
About chart
Norrral
Dvm A version
Dsm B version
- e — = A version onl ly
IS """"'"___"‘“‘ "*—-—- e —— Breston otk
= e Modified units only
- 1\” I | \ H\ \HI o || o
= == = Complexity
Ful"’.)""ll : Clear dat
| 1.ﬂ. | I-I
— — = PS5 Print
e —— ey g e ;—'=-;—‘_-'—_—.-_-§E‘ Print
E—— e i —

e

|
§
H

R

[y
U ‘

Fig. 1.41 View the modules added into the new version

26 1 Introduction

& Code_Diff (Function Call Graph) ol <)
[et L i

I N - Lovizt ||

Sha R on i B ol
(it T L o
About chart
I:l D I:l Normal

Dsm A version

Uim B version
A version only

B version only

Function size

Complexity ’
Clear data

Change Size

PS5 Print
Print

Previous sublree

]

Fig. 1.42 View the changed modules

I N S - Lozt |
Shared W on Ly L3 me!.,' um\rd |
1118183 41830 ey AT 183

e

3 Veriom =B S W verion 8 Sl
0427 ,

0428 477

Ba29 478

P430 /% parse what comes after xtoken ¢|B479 /x parse what comes after
@431 For #token, what_is is STOKEN and | @480 For xtoken, what_is is ST
0432 For #nterm, the arguments are reve| @481 For ¥nterm, the arguments

0433 9482

0424 void 2483 void

@435 parse_token_decl (what_is, what_i«| 0484 parse_token_decl (what_is
2436 int what_is, what_is_not; 2485 int what_is, what_is
@437 { @486 {

P38 register IRt startulinenos Uf | 0487 register int token = @;
- 2439 register int token = 8; 2488 register char *typename
= 24490 reaister int previ 2489 reaister struct bucket

Fig. 1.43 View the statement-level differences of a changed module

1.1 What Is Software?

ProgramDiff Chart

27

View Diff Mode
& File Level

~ Function Call Graph

e

flendif 7x not STDC.HEADERS and HAVE| @018
| 2019

Ml

[Version A Sy m\"rmuna
= wB f(Eol]
| 1 #define bcopy(src, dst, num) memcpy ﬂmi #def ine bcopy(src, dst, num) memcpy
2002 #ifdef MSDOS 0002 #ifdef MSDOS
#include <io.h> 2003 #include <io.h>
fendif 0004 wendif
#if def ined(HAVE_STDLIB_H) || defin| @205
206 #include <{stdlib.h> 0906 #if def ined(HAVE_STDLIB_H) || defin
i #endif 0207 #include <stdlib.h>
0028 0008 #endif
2009 #if (defined(VMS) || def ined(MSD0OS)| 2a09
#tdef ine HAVE_STRING_H 1 2010 #if (defined(VMS) || defined(MSDOS)
Hendif 0011 #define HAVE_STRING_H 1
0212 #endif
#if defined(STDC_HEADERS) || define| @913
#include (strlng.h) | @214 #if defined(STDC_HEADERS) || define
/% An ANSI g.h _and pre-ANSI m|$15 #include <{string.h>
#if 'deFined(STDC HEADERS) L& defin & 7% An ANSI string.h and pre-ANSI me
#include <memory.h> f@@l?‘ #if 'def ined(STDC_HEADERS) && defin

#include <{memory.h>
#endif /% not STDCJ‘}EADERS and HAVE
/7#if ndef bcopy

ss#%def ine becopy(src, dst, num) memc

Fig. 1.44 View the file-level differences and the statement differences of a modified source file

F CLUCK-ONLY for fully automated o_me;xlﬂc! testing of outsource software pmdm:ur:mmn m-c}cu [chisa_ex~Dienglis~ l\aaalyt—l-\.ca!-\c_lf.lu.i] ’EL@__ p:

J

e ©

License Help Switch - CMMLsupport Guide Eat

Tools Project Requirermnent Drsagn Coding -Testing

Favorte Links

B Desktop
E Recent Places

1 Computer

l:_ Decuments

E Pictures

B Music

[Recently Changed
I Searches

A Public

[Type DBS File
Size: 4.1 KB
Date modified: 5/4/2008 10:15 AM

Folders

Fie rame: ' sordemo dbs

Tags

Fig. 1.45 Load the database of the sortdemo program

2 Test Covernge Analysis

File Tag [Comesp.| Effic. Mini.
:cnﬁ;‘ Ry File-Class-Function
: 1 Tetart jon) Sagmant

k:\iza_ux"Dhanglis™1hanalyz"Thsort denohsortdenc.cpp |

£* ex\prograimiat 3 w9 inc ludeuinat b #F

EBATE Cxvis File-Class-Function (without expansion) fun. bat 1
Miga_gxanply F—fstruct FLOATIZE |
mortdeso Segment {without expansion) —
"ﬂtﬁ 00547 2068 £% exhprogra™linbsd 34" 1we 08\ inc ludetilnat b #F
: 2 Bubb

00003 F—lunion LARGE_INTEGER

® EBATE [: \m mlﬂ\&q|.Ivh_wwglu\un!umd_lﬂﬂIm\wndm\w_rw‘w

-C:I_‘I;«:'_wmhu\&qiuh_ww!w\un yzed_tor_revhes\soridemn I* crvprogra™inisf 94" Thve 8 ine ludeluinnt b »/
ot ——
([[k F—unlon _smon 0 |
8 Cane 3 | ——
8 Fon My 05 01:20:47 2008 00003 +
(%3 /% et\progra™i\nlat 847 1ve I8 inc ludehuinnt b o
B EBATE C:\iza_snanples\English_searpleshanalyzed_for_revbes\oridentira_rn.bat —_—
-E:\u:_mmlm Lish_ecwplesianalyzed for_reviehsoridens o003 F—union _snon_1 |
sgert e
ne0c: Ll

:- cxhprogra”limiad 8™ 1ve 98\ ine ludeuinmt b #F
0e003 F——nlon _ULARCE_INTEGER '

% cxhprogea™TveiafBd™ e 9 inc ludeduinat b o
06083 F—funion _amon 2 |

® Gz 4

t Hm Hay 05 Q0:21:02 2008

n esare L=\ Tus\English leshanalyzed_for_revied\sort dens'ira_ran.bat
Foic .”...!ﬁ G ish s esunaiazed o rerieonridem

4
% ciprogra”ivniaf 34 we 8\ inc ludatuinat b »/
08003 F—union _amom_3 r

00003 A
03003 < -

& Test Coverage Analysis

mT! L \ g les\Englich leshanalgoed haartdensh bat
124 _sxanp. izh_gxanp. |_Vor_review’ e,

'\Amnk'\inim eianplusanalyzed_for_review\Sortdems

!us.gsrmzsnam g | .click to zelect

inline const CObject* _ cdecl AtslynaniclounCast |
AT m?lu\ﬁn]m Lesanalyzed_for_revieusortdens'ire_run. bat T LT L LT T L LTI
thigs_ewanplos\Eng

ish_soearp et ane lyzed_for_reviestsortdeno 3

s nline CExcept iom:: CException (10

Fig. 1.47 Click a test case to selectively play the test operations back (although there is only one of
the GUI record file and the batch file is the same for all test cases in the script file, we can still selec-
tively play the different operations back through the different test cases with different Time Tags)

1.2 What Is Software Engineering? 29

1.2 What Is Software Engineering?

The term software engineering first appeared in the 1968 NATO Software
Engineering Conference and was meant to provoke thought regarding the “software
crisis” at the time.

According to the IEEE Standard Computer Dictionary, 610, ISBN 1-55937-
079-3, 1990, “Software Engineering” is defined as “The application of a system-
atic, disciplined, quantifiable approach to development, operation, and maintenance
of software; that is, the application of engineering to software.”

But, for instance, do we really have a systematic, disciplined, quantifiable
approach to the maintenance of software with the existing software engineering
paradigm? The answer is no.

As Scott Ambler pointed out, “The Unified Process suffers from several weak-
nesses. First, it is only a development process... it misses the concept of mainte-
nance and support.... It’s important to note that development is a small portion of
the overall software life cycle. The relative software investment that most organiza-
tions make is allocating roughly 20% of the software budget for new development,
and 80% to maintenance and support efforts” [Amb0S5].

With the existing software engineering paradigm, the maintenance of software
is performed partially, locally, and blindly without the means to prevent the side
effects for the implementation of a requirement change or code modification.
In fact, not only RUP (Rational Unified Process) but almost all existing process
models and methods do not really support software maintenance because of the
lack of various kinds of bidirectional traceabilities. As Professor Brooks pointed
out in his book of “The Mythical Man-Month”:

“Two Steps Forward and One Step Back

... The fundamental problem with program maintenance is that fixing a defect has a sub-
stantial (20-50 percent) chance of introducing another. So the whole process is two steps
forward and one step back.

Why aren’t defects fixed more cleanly? First, even a suitable defect shows itself as a
local failure of some kind. In fact it often has system-wide ramifications, usually nonobvi-
ous. Any attempt to fix it with minimum effort will repair the local and obvious, but unless
the structure is pure or the documentation very fine, the far reaching effects of the repair
will be overlooked. Second, the repairer is usually not the man who wrote the code,...

One Step Forward and One Step Back

...All repairs tend to destroy the structure, to increase the entropy and disorder of the
system. Less and less effort is spent on fixing original design flaws; more and more is spent
on fixing flaws introduced by early fixes. As time passes, the system becomes less and less
well-ordered. Sooner or later the fixing ceases to gain any ground. Each forward step is
matched by a backward one” [Bro95-p120]....

“Clearly, methods of designing programs so as to eliminate or at least illuminate side
effects can have an immense payoff in maintenance cost” [Bro95-p122].

30 1 Introduction

In my opinion, for truly supporting software maintenance, a model or a software
development method must satisfy the following conditions:

(a) Being able to help users perform software maintenance holistically and globally

(b) Being able to greatly reduce the amount of defects introduced into the software
product and propagated to software maintenance phase through defect preven-
tion and defect propagation prevention performed from the first step to the
entire software development process

(c) Being able to help users prevent the side effects for the implementation of
requirement changes or code modifications

(d) Being able to provide the necessary means to help users greatly reduce the time,
resources requested, and cost in regression testing after the implementation of
requirement changes or code modifications, such as the capability for test case
efficiency analysis and test case minimization, or automated, efficient, and
intelligent test case selection

(e) Being able to help the customer side to maintain a software product with almost
the same conditions as if the software product is maintained by the product
development side

Different from all existing models and methods, the NSE (with its support
platform Panorama++) model and methodology based on nonlinear thinking
and complexity science satisfies these five conditions — it brings revolutionary
changes to not only software development but also to software maintenance (see
Chap. 18).

It is possible for NSE to help software developers double their productivity
and halve their cost by reducing about two-third of the effort and cost spent in
software maintenance. For the detailed information about the differences in soft-
ware maintenance between NSE and the existing models and methods, please read
Chap. 18.

It is important to point out that with NSE there is no major difference between
the software development process and the software maintenance process, because

* Both processes support requirement changes and code modifications with side-
effect prevention for the implementation of requirement changes or code modi-
fications through various bidirectional traceabilities.

e The NSE nonlinear process model is followed and the quality of a software
product is ensured from the first step down to maintenance through defect
prevention and defect propagation prevention, so that the defects propagated to
the maintenance phase is greatly reduced.

* Even if the team for the development of a software product is different from
the team for the maintenance of the software product, as described before in
this chapter with the new software definition, the working conditions (with
the program and the source code, the data used, the documents traceable to the
source code, the database built through static and dynamic measurement, and a
set of Assisted Online Agents) for the product maintenance are almost the same
as that for the product development.

1.3 The Major Activities/Tasks to Be Performed in Software Engineering 31

1.3 The Major Activities/Tasks to Be Performed

in Software Engineering

The major activities/tasks to be performed in software engineering are listed as
follows:

Software requirements engineering — defines needed information, function,
behavior, performance and interfaces, mainly including

— Requirement elicitation/gathering — the practice of obtaining the require-
ments of a system from customers (or users/stakeholders).

— Functional decomposition of functional requirements (often applying Use
Case approach) and the description of nonfunctional requirements. With NSE,
it is performed using a Holistic, Actor—Action and Event—Response driven,
Traceable, Visual, and Executable technique (HAETVE, see Chap. 11) to
replace the Use Case approach, which is not a holistic one, and the obtained
results are not traceable and not directly executable for defect removal.

— Requirement analysis — a modeling activity where the objective is to under-
stand what the customer really wants. With NSE, it is done using the
HAETVE technique, dummy programming technique, and visual diagram-
ming techniques (see Chap. 11).

— Specification — a complete description of the behavior of the system to be
developed. With NSE, a template is provided for preventing errors of some-
thing missing.

— Validation — tests to ensure that the software conforms to customers’ require-
ments. With NSE, it is done through forward traceability that is automatically
established.

Software design engineering — an activity that translates the requirements
model into a more detailed model that is the guide to implementation of the
software, including the data structures, software architecture, interface represen-
tations, and algorithmic details. It is usually done based on the Constructive
Holism principle with Computer-Aided Software Engineering (CASE) tools and
use standards for the format, such as the Unified Modeling Language (UML).
With NSE, it is done mainly through dummy programming and visual diagram-
ming techniques (see Chap. 12) based on the Generative Holism principle.
Software coding — the construction of software through the use of programming
languages. With NSE, it is done incrementally with defect prevention.
Software testing — a set of activities conducted with the intent of finding errors
in software. With NSE, it is done by applying the Transparent-box method inno-
vated by me, which combines functional and structural testing together seam-
lessly and can be dynamically used in the entire software development lifecycle
(see Chap. 16).

Software quality assurance (SQA) — means of monitoring the software engi-
neering processes and methods used to ensure quality. The methods by which this

32 1 Introduction

is accomplished are many and varied, and may include ensuring conformance to
one or more standards, such as ISO 9000 or CMMI (Capability Maturity Model
Integration). With NSE, it is done mainly through defect prevention and defect
propagation prevention (see Chap. 17).

¢ Software deployment and support — Software deployment is an evolving collec-
tion of interrelated processes such as release, install, adapt, reconfigure, update,
activate, deactivate, remove, and retire. The connectivity of large networks, such
as the Internet, is affecting how software deployment is performed (Richard S.
Hall, Dennis Heimbigner, Alexander L. Wolf, A Cooperative Approach to Support
Software Deployment Using the Software Dock, Software Engineering Research
Laboratory, University of Colorado, Boulder, CO 80309-0430, USA). The soft-
ware developed should be delivered to the customers and supported.

* Software maintenance — Software systems often have problems and need enhance-
ments for a long time after they are first completed. With NSE, it is done using a
systematic, disciplined, quantifiable approach with side-effect prevention for the
implementation of a requirement change or code modification (see Chap. 18).

* Software configuration management — Software systems are very complex,
their configuration (such as versioning and source control) have to be managed
in a standardized and structured method. With NSE, it is done with CVS (a GNU
product) plus intelligent version comparison technique in system level, file level,
module level, and statement level.

* Software engineering management — The management of software systems
borrows heavily from project management, but there are nuances encountered in
software not seen in other management disciplines. With NSE, it is done by
combining the project development process and the project management process
together seamlessly, making the management documents traceable with the
implementation of requirements and the source code (see Chap. 20).

* Software development process — The process of building software is hotly
debated among practitioners with the main paradigms being agile or waterfall or
other paradigms such as NSE. With NSE, a nonlinear process model based on
complexity science is applied (see Chap. 8).

1.4 The Popular Lifecycle/Process Models with the Existing
Software Engineering Paradigm

There are several popular lifecycle/process models with the existing software
engineering paradigm.

1.4.1 The Waterfall Model

A waterfall model is shown in Fig. 1.48, a modified version of the waterfall model
with feedback is shown in Fig. 1.49. A waterfall model is a typical linear model.

1.4 The Popular Lifecycle/Process Models with the Existing Software Engineering 33

Requirement Development

]
Design
D
1 Coding
#
—I Testing

T
—l Maintenance
M

Fig. 1.48 The waterfall model

Fig. 1.49 A modified waterfall model with feedback

A waterfall model with feedback is still a linear model. As pointed out by Roger S.
Pressman, “Although the original waterfall model proposed by Winston Royce
made provision for ‘feedback loops,” the vast majority of organizations that apply
the process model treat it as if it were strictly linear.” It is clear that in a modified
waterfall model with feedback there is only local feedback at the transition between
phases with no real upstream movement. A nonlinear process model must be
supported with forward and backward traceabilities.

As shown in Figs. 1.48 and 1.49, the waterfall model divides the software life-
cycle into five main processes: requirement analysis, design, coding, testing, and
maintenance. Each lower phase begins after the upper phases are completely
finished.

The first formal description of the waterfall model is often cited to be an article
published in 1970 by Winston W. Royce (1929-1995) [Roy70], although Royce did
not use the term “waterfall” in this article. Royce was presenting this model as an
example of a flawed, nonworking model.

34 1 Introduction

Compared with other linear process models, the advantages of the waterfall
models are listed as follows:

(a) System is well documented.

(b) Itis easy to understand.

(c) It can be applied with or without tools.

(d) “Big Design Up Front” can be done to avoid some kind of rework.

(e) It is suitable for fixed requirement projects such as science computing
projects.

The disadvantages of the waterfall models are as follows:

(a) All risks must be dealt with in a single software development effort.

(b) Before a previous phase (such as the requirement analysis) is completed,
the next process (such as the design) phase cannot be performed — it must wait.
It will waste time and human resources.

(c) Requirement changes are hard to perform efficiently.

(d) A working product is not available until late in the project — the customer must
wait for the product evaluation until the product is produced.

1.4.2 The Incremental Development Models

Incremental development is a staging and scheduling strategy in which various
parts of the system are developed at different times or rates and integrated as they
are completed.

[Coc08]. The incremental development model is shown in Fig. 1.50.

e e e T —

delivery
[P MR Me T —yllyrTy
S
oo feedback
s}
[P M RMOMeHT
P: plan T: testing
R: requirement I: integration
D: design M: maintenance
C: coding U: customer

Fig. 1.50 Incremental development model

1.4 The Popular Lifecycle/Process Models with the Existing Software Engineering 35

As the name suggests, an incremental software development process model
guides the requirement implementation incrementally rather than totally at one
time. It is also called a Micro-Waterfall Model which divides the total requirements
into some subrequirements and implements and integrates them incrementally. In
this way it reduces the waiting time and also reduces the risk, where the customer
can partially evaluate the product early and find the possible problems early. But it
does not remove the other major drawbacks of the linear process models, such as
the defects introduced in upper phases will still easily propagate to the lower phases
to make the defect removal cost increase tenfold several times.

Compared with other linear process models, the advantages and disadvantages
of the incremental development methods are as follows [GSAMO3]:

1.4.2.1 Advantages

* Provides some feedback, allowing later development cycles to learn from
previous cycles.

* Requirements are relatively stable and may be better understood with each
increment.

* Allows some requirements modification and may allow the addition of new
requirements.

» It is more responsive to user needs than the waterfall model.

* A usable product is available with the first release, and each cycle results in
greater functionality.

» The project can be stopped any time after the first cycle and leave a working
product.

» Risk is spread out over multiple cycles.

e This method can usually be performed with fewer people than the waterfall
model.

* Return on investment is visible earlier in the project [Mck95].

* Project management may be easier for smaller, incremental projects [Mck95].

» Testing may be easier on smaller portions of the system.

14.2.2 Disadvantages

* The majority of requirements must be known in the beginning.

* Formal reviews may be more difficult to implement on incremental releases than
on a complete system [Ree95].

* Because development is spread out over multiple iterations, interfaces between
modules must be well-defined in the beginning [Ree95].

* Cost and schedule overruns may result in an unfinished system.

* Operations are impacted as each new release is deployed.

» Users are required to learn how to use a new system with each deployment.

36 1 Introduction

1.4.3 The Iterative Models

Iterative development is a rework scheduling strategy in which time is set aside to
revise and improve parts of the system [CocO8]. There are several different iterative
software development models.

1.4.3.1 The Prototype Models

Two prototype models are shown in Figs. 1.51 and 1.52.

1.4.3.2 Spiral Model

Defined by Barry Boehm, the spiral model (see Fig. 1.53), also called the spiral
lifecycle model, which combines the features of the prototyping model and the
waterfall model together, is often used in large project development.

Compared with other linear process models, the advantages and disadvantages
of the iterative development models/methods are as follows [GSAMO3]:

Quick Planning

N\

Communication Modeling &
Quick Design

Testing Implementation
Delivery & of
Feedback Prototype

Fig. 1.51 A typical prototype model

1.4 The Popular Lifecycle/Process Models with the Existing Software Engineering

Start

for one or a set of

requirements

Client
evaluation

Prototyping
And
testing

Solution
Review and [+
Risk analysis

Solution
Selection

]

Y E

NO

p

YES NO

Need to modify
The requirement?

Pass?

Modify the
requirement

Save the related information

Fig. 1.52 The prototype model used with the preprocess of the NSE model

Communication Planning
Start
Deploymen
Modeling
Construction

Fig. 1.53 Spiral model

38 1 Introduction
1.4.3.3 Advantages [GSAMO00]

* Project can begin without fully defining or understanding requirements.

* Final requirements are improved and more in line with real user needs.

» Risks are spread over multiple software builds and controlled better.

e Operational capability is achieved earlier in the program.

* Newer technology can be incorporated into the system as it becomes available
during later prototypes.

* Documentation emphasizes the final product instead of the evolution of the
product [Ree95].

* This method combines a formal specification with an operational prototype [Ree95].

1.4.3.4 Disadvantages [GSAMO00]

* Because there are more activities and changes, there is usually an increase in
both cost and schedule over the waterfall method.

* Management activities are increased.

* Instead of a single switch over to a new system, there is an ongoing impact to
current operations.

» Configuration management activities are increased.

* Greater coordination of resources is required.

» Users sometimes mistake a prototype for the final system.

» Prototypes change between cycles, adding a learning curve for developers and
users.

» Risks may be increased in the following areas:

— Requirements — temptation to defer requirements definition.

(a) Management — Programs are more difficult to control. Better government/
contractor cooperation needed.

(b) Approval — vulnerable to delays in funding approval, which can increase
schedule and costs.

— Architectural — Initial architecture must accommodate later changes:

(a) Short term benefits — Risk of becoming driven by operational needs
rather than program goals.

— Risk avoidance — Tendency to defer riskier features until later:

(a) Exploitation by suppliers — Government bargaining power may be
reduced because initial contract may not complete the entire task, and
subsequent contracts are not likely to be competed.

(b) Patchwork quilt effects — If changes are poorly controlled, the product
quality can be compromised.

1.4 The Popular Lifecycle/Process Models with the Existing Software Engineering 39

1.4.4 More Popular Process Models

There are three more popular process models, CMMI, Agile, and RUP.

1441 CMMI

According to GSAM Handbook [GSAMO3], originally, there were several different
versions of capability maturity models: one for software, one for system engineer-
ing, and one for software acquisition. Recently, these separate models have been
integrated into a single model, the CMMI. As shown in Fig. 1.54, two different
representations are available for the CMMI, a continuous representation and a
staged representation previously used by both the Software and Software
Acquisition CMMs. The staged representation shows progress as a series of five
levels. Each of these levels is described by certain attributes characterizing its level
of competency. Each level is associated with process areas, and each process area
is described in terms of common practices that support that level’s goals. These
levels, descriptions, and process areas are shown in Fig. 1.55.

CMMI Structure
One Model, Two Representations
y - Appendixes
| App
Support
Maturity Level 5 M, PP MA,
01D, CAR CAR, DQAJA{
Maturity Level 4 Erginmiing
OPP, QFM REQM, REQD, TS,
M Level3 PIL, VER, VAL
REQD, T%, Pl, VER, 1
vi?. OPF, OPD, OT, o |
IPM, RSKM, DAR IPM, RSKM, QPM
Maturity Level 2 ¥
REQM, PP, PMC, Prllo??ggg‘?m
SAM, MA, FPQA, CM OPP‘_ R
Overview
Introduction Overview
Structure of the Model Introduction
Mode! Terminology Structure of the Model
: Model Terminology
mmgm ERahures; s Cepenie Soetices Capability Levels and Genenc Model Components
Using the Model Understanding the Model
Using the Model
CMI;;:SE; W CMMI-SE/SW f
ge Continuous '
’ =

Fig. 1.54 The two different representations of CMMI

40

1 Introduction

Process Areas by Maturity Level

Level

Focus

Process Areas

§ Optimizing

Continuous
process
improvement

Organizational Innovation and Deployment
Causal Analysis and Resolution

4 Quantitatively
Managed

Quantitative
management

Organizational Process Performance
Quantitative Project Management

3 Defined

Process
standardization

(SS)

(IPPD)
(IPPD)

‘Requirements Development
Technical Solution

Product Integration

Verification

Validation

Organizational Process Focus
Organizational Process Definition
Organizational Training
Integrated Project Management
Integrated Supplier Management
Risk Management

Decision Analysis and Resolution
Organizational Environment for Integration

Integrated Teaming

2 Managed

Basic
project
management

Requirements Management

Project Planning

Project Monitoring and Control
Supplier Agreement Management
Measurement and Analysis

Process and Product Quality Assurance
Configuration Management

1 Performed

Fig. 1.55 The process areas by maturity level

1.4.4.2 Agile Software Development Model

A typical agile software development model, XP (Extreme Programming), is shown

in Fig. 1.56 [Pre05-p78].

The Agile Manifesto

* Individuals and interactions over processes and tools
* Working software over comprehensive documentation
» Customer collaboration over contract negotiation

* Responding to change over following a plan

1.4 The Popular Lifecycle/Process Models with the Existing Software Engineering 41

Simple Design
User Stories G Koo Spike Solution

(with three sentences
Value in each card) ~_ = P

Acceptance test criteria Des ign

Iteration Plan \ Pair Programming

4

Coding
Refactoring #

Testing ./

N
Release / Unit Testing
Incremental

Acceptance Testing Continuous Integration

Planning

Development

Fig. 1.56 XP model

Twelve Agile Principles

10.
1.

. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.
Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter time scale.
Business people and developers must work together daily throughout the
project.

. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

. The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances
agility.

Simplicity — the art of maximizing the amount of work not done — is essential.
The best architectures, requirements, and designs emerge from self-organizing
teams.

42 1 Introduction

12. At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

1.4.4.3 Agile Methods (Table 1.1)
1.4.4.4 Rational Unified Process

Rational Unified Process is graphically shown in Fig. 1.57.

With RUP, in each iteration, a micro-waterfall model is applied as shown in
Fig. 1.58.

As shown in Fig. 1.57, the unified process groups iterations into four phases:
Inception, Elaboration, Construction, and Transition.

» Inception identifies project scope, risks, and requirements at a high level but in
enough detail that work can be estimated.

e Elaboration delivers a working architecture that mitigates the top risks and ful-
fills the nonfunctional requirements.

Table 1.1 Agile methods (Rich Mironov CMO, Enthiosys, Mitigating Risk with Agile
Development, http://www.enthiosys.com/wp-content/uploads/2009/09/agile_mironov_fairfax.pdf)

Agile Project Dynamic
Extreme Management Systems
Programming Framework Development
Scrum (XP) (APM) Crystal methods Model (DSDM)
Rational Unified Feature Driven Lean Rapid Application —
Process Development development Development
(RUP) (FDD) (RAD)
Phases
Workflows Inception Elabaration Construction Transition
Business Modeling _‘—
Requirements
Analysis & Design
Implementation
Test RIS

v Deplovment
Configuration &
Change Management

Project Management — e

Environment [~ —
I1 12 E1IE2E3 C1C2 Cn T1 T2 T3

2 Time

Iterations

Fig. 1.57 Rational Unified Process

http://www.enthiosys.com/wp-content/uploads/2009/09/agile_mironov_fairfax.pdf

1.4 The Popular Lifecycle/Process Models with the Existing Software Engineering 43

One Time Iteration

! !
R ~ R = R

» Time

R: reguirement analysis D: design
C: coding T testing

Fig. 1.58 Micro-Waterfall model applied with RUP for each iteration

¢ Construction incrementally fills-in the architecture with production-ready code
produced from analysis, design, implementation, and testing of the functional
requirements.

e Transition delivers the system into the production operating environment.

1.4.5 General Comments to All Process Models Existing with the
Old-Established Software Engineering Paradigm

1.4.5.1 “All models Are Wrong, But Some Are Useful” [Box87]

We know that nothing in the world is completely perfect. Even the NSE paradigm to
be introduced in details from Chaps. 3 to 24 in this book — for instance, the waterfall
model can be applied with or without tool support, the RUP model can be applied
with mainly static tool support, but NSE can only be applied with mainly dynamic
tool support, such as those tools offered by Panorama++ to perform defect preven-
tion and defect propagation prevention, and to establish bidirectional traceabilities.
Of course, this disadvantage of NSE can also be considered as an advantage, because
that in twenty-first century dynamic tools should be used in every software develop-
ment company; otherwise, the company may lose its competition power.

In fact, each process model has its advantages and disadvantages — it mainly
depends on the application environment, the project size, and the project complexity.
For instance, when the requirements are fixed such as in the projects for scientific
computing to solve some mathematical problems, the oldest waterfall model is still
a considerable candidate.

44 1 Introduction
1.4.5.2 The Common Limitations of the Existing Process Models

Unfortunately, the existing software engineering paradigm is established with
linear thinking, reductionism, and the superposition principle that the whole of a
system is the sum of its parts, so that it handles a nonlinear complex software
product as a linear system, making all tasks/activities be performed linearly,
partially, and locally.

The software engineering paradigm itself is a complex system consisting of
many closely related parts including the software development methods, the pro-
cess models, the software visualization paradigm, the software testing paradigm,
the software quality assurance paradigm, the software documentation paradigm, the
software maintenance paradigm, and the software project management paradigm.
All the parts are connected and interactive. As a complex system, the overall behav-
ior and characteristics of the software engineering paradigm cannot be inferred
simply from the behavior of any individual part only but emerge from the interac-
tion of all its parts — it means that only improving one or two of its parts such as
the process improvement and management improvement without improving the
other parts such as the software development methods, the software testing para-
digm, the software quality assurance paradigm, and the software maintenance para-
digm will not be able to make significant improvement to the entire software
engineering paradigm.

In fact, the old-established software engineering paradigm based on linear thinking,
reductionism, and the superposition principle limits the features and usability of all
existing process models, no matter how great a process model itself may be — the
common drawbacks of the existing software process models include the following:

(a) None of them is created to efficiently handle the essential issues existing with a
software product — complexity, invisibility, changeability, and conformity, as
defined by Brooks [Bro95-p182].

(b) None of them is able to efficiently solve the most critical problems with soft-
ware products — low quality and productivity, and high cost and risk.

(c) None of them is able to make significant improvement to the software project
success rate — it is still very low.

(d) All of them are linear process models with no upstream movement at all, making
the defects introduced in upper phases easy to propagate to the lower phases, so that
the defect removal cost will increase tenfold several times, and the maintenance of
a software product is performed linearly, blindly, and locally with high risk.

So, generally speaking, today’s software developed with the existing software
engineering paradigm is not sufficiently engineered at this time to fulfill the role of
“foundation.”

1.5 Why the Current Software Is Not Sufficiently Engineered 45

1.5 Why the Current Software Is Not Sufficiently Engineered
at This Time to Fulfill the Role of ‘“Foundation”

Many critical problems exist with today’s software products developed through the
old-established software engineering paradigm: low productivity and quality, and
high cost and risk. Many process models have been proposed for improving the
software development processes. Those process models claim that they are based
on “the best practices.” But the question is: do we really have “the best practices”
in software development with the existing software engineering paradigm? If so,
what are “the best practices”? Some people believe they are as follows [Amb04]:

e Develop iteratively

e Manage requirements
e Use components

e Model visually

e Verify quality

e Control changes

It is agreeable to develop a software product iteratively, because in most cases, not
all requirements are completely known by the customers in the beginning, so the
customers need to review the implementation result as early as possible even it is
not the complete product. But how is each iteration performed? It is still performed
linearly using a micro-waterfall model with the existing software engineering para-
digm, so that the defect introduced in the upper phases easily propagate to the lower
phases to make the defect removal cost increase tenfold several times.

Managing requirements is important for software development, but can the
requirements of a software product be best managed without various bidirectional
traceabilities, particularly the automated traceability among the related documents
and the test cases and the source code? The article written by Andrew Kannenberg
and Hossein Saiedian and published in the Issue of Jul/Aug 2009 of CrossTalk
argued that “Software Requirements Traceability Remains a Challenge” [Kan09].

About the use of the components, it is related to two different approaches, one
is based on Constructive Holism applied with the existing software engineering
paradigm, and another one is based on Generative Holism applied with NSE.
According to the Constructive Holism principle, components are completed first,
then the whole of the system is built with the completed components — it handles a
software system like a machine. According to the Generative Holism, the whole of
a system is developed first as an embryo, then the system grows up with its com-
ponents. The benefits of the software development based on Generative Holism will
be discussed in Chap. 10.

Visual tools used with the current models are based on linear thinking and the
superposition principle so that they often generate many small pieces of charts/
diagrams only, without the capability to show the entire system holistically. Even if
an entire system chart/diagram can be generated/created, there are too many
connection lines with the chart/diagram, making them hard to read and hard to

46 1 Introduction

understand without the capability to trace and highlight a module and all of the
related modules calling and called by it.

How to verify the quality of a software produce developed with the existing
software engineering paradigm? Current software quality assurance is mainly
based on product review and testing after production — it is too late. There is no
dynamic way to efficiently verify the quality in the requirement development
phase and the product design phase without various automated and bidirectional
traceabilities.

How should we control software changes? Some possible ways are as follows:

e Track changes

e Trace the changes

* Ensure quality

* Be sure changes are tested

e Inform users

* Update the related documents

e Perform system-level, file-level, module-level, and statement-level version com-
parison, etc.

With the existing software engineering paradigm, do we have the best practices
in those fields?

When linear process models are used in the software development lifecycle,
software change control is performed locally, and cannot trace the changes holisti-
cally and globally in system-level to identify how many requirements may be
affected and how many other source modules may be affected — making the quality
hard to ensure, and the related documents hard to update consistently, and the ver-
sion comparison is often not performed in system-level.

Furthermore, with the existing software engineering paradigm, we do not have
the best practices in software requirement development (see Chaps. 2 and 11); we
do not have the best practices in software design (see Chaps. 2 and 12); we do not
have the best practices in software coding (see Chaps. 2 and 13); we do not have
the best practices in software testing (see Chaps. 2 and 16); we do not have the best
practices in software quality assurance (see Chaps. 2 and 17); we do not have
the best practices in software documentation (see Chaps. 2 and 19), we do not
have the best practices in software maintenance (see Chaps. 2 and 18); we do not
have the best practices in software project management too (see Chaps. 2 and 20) — it

Table 1.2 Software project success rates reported by
Standish Group

Date Success rate (%)
First CHAOS report 1994 16
“Extreme CHAOS” 2001 28

Most recent CHAOS 2003 31

1.6 What Does a Revolution Mean? 47

is why the software project success rate is so low as shown in Table 1.2 (For more
information, see the Standish Group Website at http://www.standishgroup.com/).

In the article “Software development productivity and project success rates: Are
we attacking the right problem?”, the CEO of Ravenflow, Joe Marasco pointed out
that “My conclusion is that we are making progress on the success-rate front, but
slowly. The improvement is about 1.7 percentage points a year and appears to be
linear based on this small sample of data. If the current improvement rate continues,
we should achieve a 50 percent success rate in the year 2014.” (http://www.ibm.
com/developerworks/rational/library/febO6/marasco/).

How about the contribution of CMM/CMMI on the improvement of the software
project success rate? As pointed by Ojelanki Ngwenyama and Peter Axel Nielsen
that “Ever since its first presentation, CMM has been extremely influential on soft-
ware engineering practices around the world. The model has served as a framework
for software process and quality improvement efforts in thousands of software
organizations and the resources expended on CMM-based SPI are in the billions of
dollars. Despite the large investments of resources, the failure rate for SPI programs
is high — too high many would say. The most recent report from the Software
Engineering Institute puts the rate of failure at around 70%; a prior report showed
equally dim results” [Ngw03].

Because today’s software products are not sufficiently engineered, software
disasters happen often (DevTopics Software Development Topics, http://www.
devtopics.com/20-famous-software-disasters/).

1.6 What Does a Revolution Mean?

It means a drastic, complete, and fundamental change of paradigm to resolve some
outstanding and generally recognized problem that can be met in no other way.
According to “The Structure of Scientific Revolutions” [Kuh62], science does not
progress continuously, by gradually extending an established paradigm. It proceeds
as a series of revolutionary upheavals.

1.6.1 Three Phases of Scientific Revolutions

Kuhn described that there are three phases with Scientific Revolutions: the first
phase, which exists only once, is the preparadigm phase, in which there is no
consensus on any particular theory, though the research being carried out can be
considered scientific in nature — this phase is characterized by several incompatible
and incomplete theories; the second phase, is the normal science — if the actors in
the preparadigm community eventually gravitate to one of these conceptual frame-
works and ultimately to a widespread consensus on the appropriate choice of
methods, terminology and on the kinds of experiments that are likely to contribute

http://www.standishgroup.com/
http://www.ibm.com/developerworks/rational/library/feb06/marasco/
http://www.ibm.com/developerworks/rational/library/feb06/marasco/
http://www.devtopics.com/20-famous-software-disasters/
http://www.devtopics.com/20-famous-software-disasters/

48 1 Introduction

to increased insights, then the normal science begins, in which puzzles are solved
within the context of the dominant paradigm. As long as there is general consensus
within the discipline, normal science continues; the third phase is the revolutionary
science phase — over time, progress in normal science may reveal anomalies, facts
which are difficult to explain within the context of the existing paradigm. While
usually these anomalies are resolved, in some cases they may accumulate to the
point where normal science becomes difficult and where weaknesses in the old
paradigm are revealed; Kuhn refers to this as a crisis. After significant efforts of
normal science within a paradigm fail, science may enter the third phase, that of
revolutionary science, in which the underlying assumptions of the field are
reexamined and a new paradigm is established. After the new paradigm’s domi-
nance is established, scientists return to normal science, solving puzzles within the
new paradigm. A science may go through these three phases cycles repeatedly,
though Kuhn notes that it is a good thing for science that such paradigm shifts do
not occur often or easily.

1.6.2 Progress Through Revolutions

The first edition of The Structure of Scientific Revolutions, ended with a chapter
entitled “Progress Through Revolutions,” in which Kuhn stated his views on the
nature of scientific progress. Because Kuhn considered problem solving to be a
central element of science, he saw that for a new paradigm candidate to be accepted
by a scientific community, “First, the new candidate must seem to resolve some out-
standing and generally recognized problem that can be met in no other way. Second,
the new paradigm must promise to preserve a relatively large part of the concrete
problem solving activity that has accrued to science through its predecessors.”

1.7 What Is NSE?

NSE (Nonlinear Software Engineering paradigm) based on complexity science, is
established with the objectives to revolutionarily solve the critical problems existing
with the old-established software engineering paradigm. Those critical problems
can be summarized as follows:

(a) Incomplete — there is no defined process model and support for software main-
tenance which takes 75% or more of the total effort and cost for a software
product

(b) Unreliable — the quality of a software product mainly depends on software testing
after production which has been proven impossible to ensure high quality

1.7 What Is NSE? 49

(c) Invisible — the existing visualization methods, techniques, and tools do not
offer the capability to make the entire software development lifecycle visible,
the generated charts and diagrams are not holistic and not traceable

(d) Inconsistent — the documents and the source code are not traceable to each
other and not consistent after code modification again and again

(e) Unchangeable — the implementation of requirement change or code modifica-
tion is performed locally and blindly with high risks

(f) Not maintainable — software maintenance is performed partially and locally
without support for bidirectional traceability to prevent side effects, so that
each code modification will have a 20-50% of chance to introduce new defects
into the software product being maintained

(g) Low productivity and quality — most resources are spent in inefficient software
maintenance, the quality cannot be ensured with the blind and local implemen-
tation of software changes

(h) High cost and risk — most cost is spent in blind and local maintenance of the
software products, which makes a software product unstable day by day in
responding to needed changes

(i) Low project success rate — it is still less than 30% for projects with budgets
over $1 million

(j) Often the software projects developed with the old-established software
engineering paradigm are capable of becoming a monster of missed sched-
ules, blown budgets, and flawed products — because the old-established soft-
ware engineering paradigm is based on linear thinking, reductionism, and
superposition principle, so that almost all tasks/activities are performed lin-
early, partially, and locally

It is clear that those problems are related to the entire software engineering
paradigm with all of its components, including the process models, the software
development methodologies, the visualization paradigm, the software testing para-
digm, the quality assurance paradigm, the documentation paradigm, the mainte-
nance paradigm, the project management paradigm, and the related techniques and
tools. It means that a local and partial solution will not work — we need a holistic
and global solution in almost all aspects of software engineering: a complete
revolution.

For solving those critical problems existing with today’s software development
efficiently, a new software engineering paradigm, NSE is established by me and
implemented by me and my colleagues. The essential difference between the old-
established software engineering paradigm and NSE is how to handle the relation-
ship between the whole and its parts of a software system. The former adheres to
the reductionism principle and superposition principle that the whole is the
sum of its parts, so that nearly all software development tasks/activities are per-
formed locally, such as the implementation of requirement changes. The latter
complies with the Holism principle of complexity science, that a software product
is a Complex Adaptive System (CAS [Hol95]) having multiple interacting
agents (components), of which the overall behavior and characteristics cannot

50 1 Introduction

be inferred simply from the behavior of its individual agents but emerge from
the interaction of its parts, so that with NSE nearly all software development
tasks/activities are performed globally and holistically to prevent defects in the
entire software lifecycle [Xio09-1], [Xi009-2].

Some primary applications show that the NSE paradigm with its support platform,
Panorama++, can make revolutionary changes to almost all aspects in software engi-
neering to efficiently handle software complexity, invisibility, changeability, and con-
formity, and solve the critical problems (low productivity and quality, high cost and
risk) existing with the old-established software engineering paradigm — NSE makes it
possible to help software development organizations double their productivity, halve
their cost, and remove 99-99.99% of the defects in their software products.

From Chaps. 3 to 24 in this book, I will introduce NSE in detail, including the
foundation for establishing NSE, the framework for establishing NSE, and each of
its components — NSE brings revolutionary changes to almost all aspects in software
engineering, including the following:

¢ The foundation (see Chaps. 3 and 4)

From: based on linear thinking and the reductionism principle and superposi-
tion principle that the whole is the sum of its parts, so that nearly all
software development tasks/activities are performed linearly, partially,
and locally, such as the implementation of requirement changes.

To: based on nonlinear thinking and complexity science — to comply with the
essential principles of complexity science, particularly the Nonlinear
Principle and the Holism Principle that the whole of a complex system is
greater than the sum of its parts — the characteristics and the behavior of
a complex system is an emergent property of the interactions of its com-
ponents (agents), so that with NSE nearly all software development tasks/
activities are performed nonlinearly, holistically, and globally to prevent
defects in the entire software lifecycle — for instance, if there is a need to
change a requirement, with NSE and the support platform Panorama++
the implementation of the change will be performed nonlinearly, holisti-
cally, and globally through various bidirectional traceabilities: (1)
Performs forward tracing for the requirement change (through the corre-
sponding test cases) to determine what modules should be modified. (2)
Performs backward tracing to check related requirements of the modules
to be modified for preventing requirement conflicts. (3) Checks what
other modules may also need to be changed with the modification by
tracing the modules to find all related modules on the corresponding call
graph shown in J-Chart innovated by me. (4) Checks where the global
variables and static variables may be affected by the modification. (5)
After modification, checks all related statements calling the modified
module for preventing inconsistency defects between them. (6) Performs
efficient regression testing through backward tracing from the modified
module to find the related test cases. (7) Performs backward tracing to
find and modify inconsistent documents after code modification.

¢ The process model(s) (see Chap. 8)

1.7 What Is NSE? 51

From: linear ones based on linear thinking and the reductionism principle and
superposition principle, including the waterfall model, the incremental
development models, the iterative development models, or the incremental
and iterative development models with which there is only one track in
one direction — no upstream movement at all, always going forward from
the upper phases to the lower phases, so that defects introduced in the
upper phases will easily propagate to the lower phases to make the defect
removal cost greatly increase.

To: a nonlinear one (called the NSE process model, innovated by me) based
on nonlinear thinking and complexity science with which there are
multiple tracks in two directions through various traceabilities to prevent
defects and defect propagation, so that experience and ideas from each
downstream part of the construction process may leap upstream, some-
times more than one stage, and affect the upstream activity. With NSE, the
software development process and software maintenance process are com-
bined together closely; the software development process and the project
management process are also combined together closely so that the project
management documents are traceable with the implementations of soft-
ware requirements and the source code. With the NSE process model,
requirement validation and verification can be done easily through for-
ward traceability in parallel, and code modification can be done with side-
effect prevention through backward traceability in parallel too.

¢ The software development methodologies (see Chap. 10)

From: the software development methods based on Constructive holism —

“building” a software system with its components — the components are

3 1
- S atates
%

Fig. 1.59 An application example of incrementally growing up of a software system

52

To:

1 Introduction

developed first, then the system of a software product is built through the
integration of the components developed. From the point of view of
quality assurance, those methodologies are test-driven, but the functional
testing is performed after coding; it is too late. These methodologies
consider a software product as a machine rather than a logical product
created by human beings. They all comply with the reductionism prin-
ciple and superposition principle.

the software development method (NSE software development method,
innovated by the me) based on generative Holism of complexity science —
having the whole dummy system first, then “growing up” with its
components as shown in Fig. 1.59.

The benefit by adding only one module each time is that if something
unexpected happens, it is much easier to find and fix the problems.
From the point of view of quality assurance, the NSE software develop-
ment method is defect prevention- and traceability-driven to assure the
quality from the first step to the end.

The software testing paradigm (see Chap. 16)
From: mainly based on functional testing using the Black-box testing method

To:

being applied after the entire product is produced, structural testing
using White-box testing method being applied after each software unit
is coded for the incremental software development, and iterative soft-
ware development [Coc08]. Both methods are applied separately with-
out internal logic connections.

mainly based on the Transparent-box method innovated by me to com-
bine functional testing and structural testing seamlessly: to each set of
inputs, it not only verifies whether the output (if any, can be none) is the
same as the expected value, but also helps users to check whether the
execution path covers the expected path with the capability to automati-
cally establish bidirectional traceability among all of the related docu-
ments and the source code for inconsistency defect checking.

The quality assurance paradigm (see Chap. 17)
From: a test-driven approach, mainly using Black-box testing method plus

To:

structural testing method and code inspection after coding.

NSE-SQA - defect prevention-driven approach innovated by me, mainly
using the Transparent-box testing method in all phases of a software devel-
opment lifecycle from the first step to the end because having an output is
no longer a condition to use the Transparent-box testing method dynami-
cally. The priority of NSE-SQA for assuring the quality of a software
being developed is ordered as (1) defect prevention; (2) defect propagation
prevention; (3) Refactoring applied to highly complex modules and
module(s) that are performance bottlenecks; (4) Deep and broad testing.

The software diagramming paradigm (see Chap. 7)
From: drawing the diagrams manually or using graphic editors or using a tool to

generate partial charts/diagrams which are neither interactive nor traceable in
most cases. Even if some charts/diagrams for an entire software system can

1.7 What Is NSE? 53

Ed (Function Call Graph) rE £3 (Function Call Graph)
Eak

tryopen

Fig. 1.60 A call graph shown in J-Chart notation defined by Jay Xiong. (a) A complex program
structure. (b) A module and all of the related modules highlighted with the bottom-up orders for
incremental coding and unit testing

{8 J Diagram E) B & ; pisgram
oy (T— : I_—l‘ _
mﬁ;@ 1] e oo0s93 - |
3 L] t]
103 | | tramitionl o) ————————— Y% 10 p.m_?m; I 00k:S
OO0ezT
poss 5 G - :
w ||] untested condition 1 | peblier poisad
I X00E6T
pocsi — - — ponss ® '
1.3 rychen " | [Gpche "= |y pches "1 T pches "#")] 3 | [etasatty 0035
105 E execution times s :I
LRI ol (28
3 19 | | indes = 0
i j
booss: ?
%
| 55 | | oot _parenil 200403:
. v | -

Fig. 1.61 A holistic and traceable logic diagram shown in J-Diagram notations defined by Jay
Xiong with untested branches and conditions highlighted

54

To:

1 Introduction

be generated, they are still not useful because there are too many connection
lines to make the charts/diagrams hard to view and hard to understand
without the capability to trace an element with all the related elements.
holistic, interactive, traceable, and virtual software diagramming paradigm
innovated by me to make an entire software development lifecycle visible. The
charts/diagrams are dynamically generated from several Hash tables from the
database and the source code through dummy programming or reverse engi-
neering virtually without storing the hard copies in hard disk or memory to
greatly reduce the space. The generated charts/diagrams are interactive and
traceable between related elements — users can highlight an element with all
of the related elements easily as shown in Figs. 1.60 and 1.61.

The documentation paradigm (see Chap. 19)
From: (a) separated from the source code without bidirectional traceability;

To:

(b) inconsistent with the source code after code modifications; (c) requiring
huge disk space and memory space to store the graphical documents;
(d) the display and operation speed is very slow; (e) hard to update; (f) not
very useful for software product understanding, testing, and maintenance.
(a) managed together with the source code based on bidirectional trace-
ability; (b) consistent with the source code after code modification; (c) most
documents are dynamically generated from several Hash tables and exist
virtually without huge storage space; (d) the display and operation speed is
very fast; (e) most documents can be updated automatically; (f) very useful
for software product understanding, testing, and maintenance.

The software maintenance paradigm (see Chap. 18)
From: performed blindly, partially, and locally without the capability to prevent

To:

the side effects for the implementation of requirement changes or code
modifications, takes about 70% of the total effort and cost in the soft-
ware system development in most software organizations.

performed visually, holistically, and globally using a systematic, disci-
plined, quantifiable approach innovated by me to prevent the side effects
for the implementation of requirement changes or code modifications
through various automated traceabilities; takes only about 25% of the
total effort and cost in software system development, because with NSE
there is no big difference between the software development process and
the software maintenance process — both support requirement changes or
code modification with side-effect prevention.

The software project management paradigm (see Chap. 20)
From: performed separately from the software product development process,

To:

often making the necessary actions being done too late.

performed closely with the software development process, makes the project
management documents such as the product development schedule, the
cost reports, and the progress reports traceable with the requirement
implementation or the corresponding test cases or the source code, making
the necessary actions being done in time. Figure 1.62 shows a schedule
chart traced and opened when a test case is selected for forward tracing.

1.7 What Is NSE?

. Tes! Covarags Anahysis

clicked

o L ranend MniElE
docinent .doc banew S

8 opened

fane 4
Mon Sep 06 09:00:00 7000 Ll 1-

_sooarg s ana lyzeed_tor_rav

lezhana |_for_raviaucal
L2 4.Gw

+\ ik, weang s EnglLi
I'J.hhl']-}l"g 28.97 3.

P (=] Segment Level Carrespondence
1 L L

55

-

i
L]

- g
1052 10

1 s (1)
3 return 1

-2,

traced

_Apr o3

=14 T 1“ il i

May 03
5 12

Ll a

Moy 3

o

(L]

Fig. 1.62 An example of how management documents can be traced and automatically opened
with bidirectional traceability from a requirement implementation, test case, or the source code

Why should NSE bring revolutionary changes to almost all aspects in software
engineering? The answer is that

(a) According to complexity science, the characteristics and behaviors of the whole
of a complex system emerge from the interaction of its components and the
interaction between it and the environment, cannot be inherited from one or a
few of its individual components, so that partial and local “revolution” for one or
a few components of the entire software engineering paradigm will not work — for
instance, focusing on software process improvement and management improve-
ment only without changing the linear process models, the outdated software
development methodologies based on reductionism and superposition principle,
the inefficient software testing paradigm which cannot be dynamically used in
upstream where most critical software defects are coming from, the inefficient
software quality assurance paradigm based on software testing after production
which violates Deming’s product quality assurance principles, the inefficient
software visualization paradigm by which the generated local and partial charts
and diagrams are not interactive and not traceable, the inefficient software
documentation paradigm by which the generated documents are not traceable to

56 1 Introduction

the source code, the blind software maintenance paradigm without support of
automated and self-maintainable traceability, etc., is impossible to bring revolu-
tionary changes to today’s software development. It is also important to point
out that even if all the components of the software engineering paradigm have
been changed revolutionarily, it does not guarantee that the whole of the
software engineering paradigm has been changed revolutionarily — it depends on

The interactive effects among the critical problems
existing with today's software development engineering
paradigm (assuming that the resources and conditions
are the same)

t —

Quality Cost Productivity Risk
t — 1 |
Productivity Cost Quality Risk
$} — 4
Cost Quality Productivity Risk
o }
Risk Cost Productivity Quality

Fig. 1.63 The interactive effect among the critical problems existing with today’s software
development

NSE’s Objectives
’
|
|
|
. B
Quality Risk Productivity Cost
(removing 99.99% or more Double Half
Defects through defect prevention (reducing about 2/3 of the effor

and cost spent in maintenance
and defect propagaton pmemion) by side-effect prevemion. etc.)

Fig. 1.64 NSE’s objectives

1.8 Summary 57

the interaction between them: how they are working together, how they can share
the resources such as the computer memory and the file system, how they can
use the same database, how the obtained results from one component can be
efficiently used by others, and so on to realize the whole of the software
engineering paradigm greater (rather than less) than its components.

(b) It is also related to the objectives of NSE — to solve almost all of the critical
problems existing with today’s software development at the same time: low
productivity and quality, high cost and risk. With the old-established software
engineering paradigm, it is impossible to solve those critical problems together
at the same time — see Fig. 1.63 about their limitation and effects brought by
one to others, and Fig. 1.64 NSE’s objectives.

1.8 Summary

Software is becoming the foundation of modern civilization — it affects almost all
aspects of our lives and our everyday activities. With software engineering, many
tasks/activities are defined, including requirement development, product design,
coding, testing, deployment and support, maintenance, configuration, and project
management. For supporting software development, many software process models
are proposed and used in practice, including the Waterfall lifecycle model, the
Prototype model, the Spiral Model, CMMI, Agile models, and RUP.

But unfortunately, today’s software products are still not sufficiently engineered to
fulfill the role of “foundation.” There are many critical problems existing with today’s
software engineering paradigm: low productivity and quality, and high cost and risk.

The root cause of those critical problem comes from the fact that not only a
software product but also the software engineering paradigm itself is a complex
system consisting of many closely related parts, where the characteristics and
behavior of the whole system emerge from the interaction of its parts — but the
existing software engineering paradigm is established with linear thinking, reduc-
tionism, and the superposition principle that the whole of a system is the sum of
its parts, so that it handles a nonlinear complex software product as a linear system,
making all tasks/activities be performed linearly, partially, and locally.

For efficiently solving the critical problems existing with the old-established
software engineering paradigm, a new revolutionary software engineering para-
digm NSE (Nonlinear Software Engineering) paradigm has been established, which
is based on nonlinear thinking and complexity science.

With NSE, “software” is redefined to include not only a computer program, the
data used, and the documents traceable to the source code but also the database
built through static and dynamic measurement of the program and a set of Assistant
Online Agents to make the program adaptive and maintainable, and the acceptance
testing can be performed in a fully automated way.

With NSE, software maintenance can be performed holistically and globally
with side-effect prevention through various traceabilities.

58

1 Introduction

With NSE, the quality of a software product is ensured from the first step down
to maintenance through defect prevention and defect propagation prevention.

With NSE, the entire software development process is visible, and the docu-
ments are traceable to the source code.

The detailed descriptions on the all related topics will be introduced from
Chaps. 3 to 24 of this book.

1.9 Points and Questions to Ponder

(@)

(b)
(©)

(d)
(e)

What are the major differences between the traditional software definition and
the new one defined with NSE? Do you think it is necessary to provide a soft-
ware product to the customer (not the end user) with the database built through
static and dynamic measurement of the product, and a set of Assisted Online
Agents? Why?

Are today’s software products sufficiently engineered? Why?

What are the common limitations existing with current software process
models?

For efficiently supporting software maintenance, what conditions do you think
a process model or software development approach should satisfy?

Although the software engineering paradigm itself is a complex system consisting
of many related parts which are connected closely and interactively, some
people still believe that only improving one or two parts of the software engi-
neering paradigm without improving its other parts can still dramatically
improve the overall characteristics, performance, behavior, and the problem-
solving capability of the software engineering paradigm — do you agree with
their conclusion? Why?

1.10 Further Reading and Information Source

(a)
(b)

http://www.comdig.org/ complexity digest — subscribe to the newsletter
http://www.brint.com/Systems.htm Complexity, Complex Systems & Chaos
Theory Organizations as Self-Adaptive Complex Systems

References

[Amb04] Ambler SW, Nalbone J, Vizdos M (2004) Enterprise unified process: extending

the rational unified process. Prentice Hall PTR, Upper Saddle River

[AmbO05] Ambler S (2005) A manager’s introduction to the Rational Unified Process

(RUP). http://www.ambysoft.com/downloads/managersIntroToRUP.pdf.
Accessed 20 Feb 2009

http://www.comdig.org/
http://www.brint.com/Systems.htm

References

[Box87]
[Bro95-p120]
[Bro95-p122]
[Bro95-p182]
[Coc08]

[GSAMO0]

[GSAMO3]
[Hol95]
[Kuh62]
[Kan09]

[Mck95]
[Ngw03]

[Ree95]
[Roy70]
[Pre95-p4]
[Pre05-p78]

[Xi009-1]

[Xi009-2]

59

Box GEP, Draper NR (1987) Empirical model-building and response surfaces.
Wiley, New York, p 424. ISBN 0471810339

Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, P120
Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, P122
Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, P182
Cockburn A (2008) Using both incremental and iterative development, CrossTalk,
May Issue

USAF Software Technology Support Center (2000) Guidelines for the Successful
Acquisition and Management of Software Intensive Systems (GSAM), version 3,
chapter 5, USAF Software Technology Support Center, May

USAF Software Technology Support Center (2003) Condensed GSAM hand-
book, chapter 2, CrossTalk

Holland JH (1995) Hidden order: how adaptation builds complexity. Addison-
Wesley, Reading

Kuhn T (1962) The structure of scientific revolutions. The University of Chicago
Press, Chicago

Kannenberg A et al (2009) Why software requirements traceability remains a
challenge, CrossTalk, Jul/Aug Issue

McKenzie CA (1999) MIS327 — Systems analysis and design, course schedule
Ngwenyama O, Nielsen PA (2003) Competing values in software process
improvement: an assumption analysis of CMM from an organizational culture
perspective. IEEE Trans Eng Manag 50(1):100-112. doi:10.1109/
TEM.2002.808267

Sorensen R (1995) A comparison of software development methodologies,
Crosstalk, Jan Issue

Royce WW (1970) Managing the development of large software systems con-
cepts and techniques. In: Proc. WESCON, August 1970

Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,
New York, Part 4

Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,
New York, p P78

Xiong J, Xiong J (2009) A complete revolution in software engineering based on
complexity science, WORLDCOMP’09 — SERP (Software Engineering Research
and Practice 2009), Las Vegas, pp 109-115

Xiong J (2009) Tutorial: a complete revolution in software engineering based on
complexity science, WORLDCOMP’09, Las Vegas, 13—17 July 2009

Chapter 2
Is the Old-Established Software Engineering
Paradigm Entirely Out of Date?

Major software projects have been troubling business activities
for more than 50 years. Of any known business activity, soft-
ware projects have the highest probability of being cancelled
or delayed. Once delivered, these projects display excessive
error quantities and low levels of reliability.

Capers Jones

One of the primary reasons that many businesses fail is an
attempt to solve a non-linear (or wicked) problem with a linear
process. All people problems and issues are non-linear because
they exist in a dynamic rather than a static environment.

Cityzone, Process Versus Non-Linear Thinking
http://www.city-zone.com/modules/publishing/item.
aspx?iid=138

Software has become a driving force for the development of science, engineering,
and business in the twenty-first century.

Since the term software engineering first appeared in the 1968 NATO Software
Engineering Conference, it is more than 40 years past. Within that period of time,
great progress in software engineering has been achieved, particularly the following
people and their great contributions (without their contributions, it is impossible for
me to write this book) listed by CompHist.org(http://comphist.org/):

Engineering:

1968: Peter Naur et al coined the term “software engineering” at the NATO confer-
ence in Garmisch-Partenkirchen and pointed out that software should follow an
engineering paradigm, it was the response to a software crisis where the quality
was too low, the delivery was too late, and the costs went way over the budget.

1975: Frederick P. Brook, Jr. book on “Software Engineering” which tackles the
question of how to organize and manage large-scale programming projects.

Programming and Design Methodologies:

1972: E.W. Dijkstra book on structured programming
1972: D.L. Parnas “Parnas Module” which proposed information hiding.

J. Xiong, New Software Engineering Paradigm Based on Complexity Science: 61
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_2,
© Springer Science+Business Media, LLC 2011

http://www.city-zone.com/modules/publishing/item.aspx?iid=138
http://www.city-zone.com/modules/publishing/item.aspx?iid=138
http://comphist.org/

62 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

1975: ML.A. Jackson book on “Principles of Program Design,” which model data
and algorithms largely separated.

1978: G.J. Myers articles “Composite/Structured Design” for composite design.

1979: Edward Yordon and L.L. Constantine book on structured design.

They affected heavily how programming languages were being structured
afterwards.

User’s Requirements, Requirement Engineering and Description Technologies:

1977: D. Teichrow and E. Hershey paper on prototyping as a tool in the specifi-
cation of user requirements.

1977: D. Ross paper on structured analysis.

1977: M.W. Alford paper on the use of lexical affinities in requirements
extraction

Project Management Technologies:

1981: Barry Boehm book on “Software Engineering, Economics” which
addresses cost estimation issues

1976: T.J. MaCabe paper on software complexity measurement and the detec-
tion of risky factors.

1977: M.H. Halstead book — “Elements of Software Science” which coined the
term E measurement — efforts measurement.

At this phase, procedures started to be separated from the data; furthermore,
related procedures and data were brought together into subsystems.

1980-1990 Prototyping technologies and formalization, partial automation in
upstream, includes analysis of dynamic, formal methods, and CASE tools.

1986: William. W. Agresti paper on appearance of prototyping technologies,
which discarded the waterfall model and shifted to prototyping.

Analysis of Dynamic Behavior of Specification:

1983: M.A. Jackson book on JSP (Jackson Structured Programming), a method
for designing programs as compositions of sequential processes and JSD
(Jackson System Development), a method for specifying and designing
systems

1986: Paul T. Ward paper on real-time data flow

1986: Pamela Zave and William Schell paper on PAISLey, an executable
specification language which is accompanied by a set of specification
methods, analysis techniques, and software support tools.

1986: Giorgio Bruno and Giuseppe Marchetto paper on PROTnet, a Process-
Translatable Petri Nets for the Rapid Prototyping of Process Control Systems

2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date? 63

Formal Methods:

ISO standardization, such as GKS (1985), the computer graphics standard,
and PREMO (1998) the multimedia standard.

SRI’'s PVS (Prototype Verification System) Theorem Prover

Bell Labs’s SPIN model checker

CASE (Computer Aided Software Engineering) Tools:

1988: Meilir Page-Jones book “The Practical Guide to Structured System
Design,” which features SA/SD — structured analysis/structured design
with modularized view; a structure chart is used to show the programmers
of a system how the system is partitioned into modules.

Around this time, subsystems began to be layered.

1985-1995 Software Process Model, this includes process programming, CMM,
integrated environment, and analyzing and supporting human factors.

Software Process and SPI — Software Process Improvement:

1986: Frederick P Brooks, Jr. paper on information processing which address
the essence and accidents in software development and the ratio between
them, summarized as “No Silver Bullet”

1989: Watts S. Humphrey book “Managing the Software Process,” featured
CMM - Capability Maturity Model, which optimized the software process
in five levels: initial, repeatable, defined, managed, optimizing.

Integrated Environments:

1993: Lois Wakeman and Jonathan Jowett book “PCTE — The Standard for
Open Repositories” which discussed tool integration.

Analyzing and Supporting Human Factors:

1986: Bill Curties paper on protocol and human factors analysis
1988: Colin Potts and Glenn Bruns paper on design decision, which discussed
communication support.

1985 to present — the Network Age, this includes Object oriented technologies,
distributed computing, open source software development and web engineering.

Object Oriented Technologies:
Programming Language

1967: 0O.]J. Dahl papers on SIMULA, a precursor to the OO language Simula,
which featured class, instance and module.

64 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

1976: Lampson et al. introduced EUCLID, a related type systems Euclid, one of
the first languages that considered the problem of aliasing, and included
constructs to express it.

1976: Niklaus Wirth introduced Modula, a language derived from Pascal, which
featured the module.

1977: B. Liskov paper on CLU, which was the first implemented programming
language to provide direct linguistic support for data abstraction and
featured clusters.

1979: JD Ichbiah et al. Ada, a programming language which featured packages

1981: Alan kay and Dan Ingalls et al./Xerox introduced Smalltalk 80,
an object-oriented programming language.

1986: Brad Cox introduced the first Objective-C compiler

1986: Bjarne Stroustrup introduced C++ Programming Language

1988: Bertrand Meyer Eiffel, an elegant object-oriented language, designed to
support reuse, and including support for logical assertions.

1989: David. A. Moon introduced CLOS — Common Lisp Object System

1995: James Gosling/Sun Microsystems introduced Java, a simplified C++ like
OOP which is expressly designed for use in the distributed environment of
the Internet.

Object-Oriented Analysis and Design

1986: G. Booch introduced OOD(Object-Oriented Design)

1988: Shlare-Mellor papers on viewing systems as architecture, corresponding
to breaking a large system up into components.

1991: Peter Coad, Edward Yourdon book on the principles of object-oriented
technology

1991: J. Rumbaugh book on Object-Oriented Modeling and Design and intro-
duced OMT (Object Modeling Technique).

1995: Ivar Jacobson paper on using case driven approach, which introduced
OOSE (Object-Oriented Software Engineering).

1997: Clemens Szypersky book “Component Software — beyond object-oriented
programming” introduced software components

1999: Ivar Jacobson, James Rumbaugh, Brady Booch books on the unified soft-
ware development process, modeling and language, which introduced UML

Here, the big object orientation methodologies, layering, and OOP advancements
quickly complemented each other.

Open Source Software Development

1997: Eric S. Raymond outlined the core principles of open source movement in
a manifesto called “The Cathedral and the Bazaar.”

Today many software products are about 10,000 times more complex than those
written in 40 years ago. Unfortunately, the old-established software engineering
paradigm is crisis-ridden and frequently disastrous, which is entirely outdated.

2.1 The 20 Famous Software Disasters Reported 65

2.1 The 20 Famous Software Disasters Reported

Software errors cost the US economy about $60 billion annually in rework, lost
productivity, and actual damages.

DevTopics Software Development Topics listed the 20 Famous Software Disasters
(http://www.devtopics.com/20-famous-software-disasters/), particularly these:

2. Hartford Coliseum Collapse (1978)
Cost: $70 million, plus another $20 million damage to the local economy
Disaster: Just hours after thousands of fans had left the Hartford Coliseum, the
steel-latticed roof collapsed under the weight of wet snow.
Cause: The programmer of the CAD software used to design the coliseum incor-
rectly assumed the steel roof supports would only face pure compression. But
when one of the supports unexpectedly buckled from the snow, it set off a
chain reaction that brought down the other roof sections like dominoes.

4. World War III... Almost (1983)
Cost: Nearly all of humanity
Disaster: The Soviet early warning system falsely indicated the United States had
launched five ballistic missiles. Fortunately the Soviet duty officer had a “funny
feeling in my gut” and reasoned if the U.S. was really attacking they would launch
more than five missiles, so he reported the apparent attack as a false alarm.
Cause: A bug in the Soviet software failed to filter out false missile detections
caused by sunlight reflecting off cloud-tops.

5. Medical Machine Kills (1985)
Cost: Three people dead, three people critically injured
Disaster: Canada’s Therac-25 radiation therapy machine malfunctioned and
delivered lethal radiation doses to patients.
Cause: Because of a subtle bug called a race condition, a technician could acci-
dentally configure Therac-25 so the electron beam would fire in high-power
mode without the proper patient shielding.

6. Wall Street Crash (1987)
Cost: $500 billion in one day
Disaster: On “Black Monday” (October 19, 1987), the Dow Jones Industrial Average
plummeted 508 points, losing 22.6% of its total value. The S&P 500 dropped
20.4%. This was the greatest loss Wall Street ever suffered in a single day.
Cause: A long bull market was halted by a rash of SEC investigations of insider
trading and by other market forces. As investors fled stocks in a mass exodus,
computer trading programs generated a flood of sell orders, overwhelming the
market, crashing systems and leaving investors effectively blind.

http://www.devtopics.com/20-famous-software-disasters/

66

8.

10.

15.

18.

2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

Patriot Fails Soldiers (1991)

Cost: 28 soldiers dead, 100 injured

Disaster: During the first Gulf War, an American Patriot Missile system in
Saudi Arabia failed to intercept an incoming Iraqi Scud missile. The missile
destroyed an American Army barracks.

Cause: A software rounding error incorrectly calculated the time, causing the
Patriot system to ignore the incoming Scud missile.

Ariane Rocket Goes Boom (1996)

Cost: $500 million

Disaster: Ariane 5, Europe’s newest unmanned rocket, was intentionally
destroyed seconds after launch on its maiden flight. Also destroyed was its cargo
of four scientific satellites to study how the Earth’s magnetic field interacts with
solar winds.

Cause: Shutdown occurred when the guidance computer tried to convert the
sideways rocket velocity from 64-bits to a 16-bit format. The number was too
big, and an overflow error resulted. When the guidance system shut down,
control passed to an identical redundant unit, which also failed because it was
running the same algorithm.

Y2K (1999)

Cost: $500 billion

Disaster: One man’s disaster is another man’s fortune, as demonstrated by the
infamous Y2K bug. Businesses spent billions on programmers to fix a glitch in
legacy software. While no significant computer failures occurred, preparation
for the Y2K bug had a significant cost and time impact on all industries that
use computer technology.

Cause: To save computer storage space, legacy software often stored the year
for dates as two digit numbers, such as “99” for 1999. The software also inter-
preted “00” to mean 1900 rather than 2000, so when the year 2000 came along,
bugs would result.

Cancer Treatment to Die For (2000)

Cost: Eight people dead, 20 critically injured

Disaster: Radiation therapy software by Multidata Systems International
miscalculated the proper dosage, exposing patients to harmful and in some
cases fatal levels of radiation. The physicians, who were legally required to
double-check the software’s calculations, were indicted for murder.

Cause: The software calculated radiation dosage based on the order in which
data was entered, sometimes delivering a double dose of radiation.

Why do software disasters happen so frequently? There are many reasons, but
the root cause is that the current software engineering paradigm is entirely out
of date; it does not meet the need for twenty-first century software development,
because it is based on linear thinking and the superposition principle.

2.2 What Is the Root Cause for Software Disasters and Very High Software 67

10.0 +

6.0-10.0

3.0-6.0

1.5-3.0

0.75-15

Project Size $1,000,000

<0.75

Percent Success - %

Fig. 2.1 Software project success rate based on size

2.1.1 Very High Project Failure Rate Reported

In the article of “Why Big Software Projects Fail: The 12 Key Questions,”
Watts S. Humphrey (the innovator of CMM/CMMI) reported that the software
project success rate is still very low as shown in Fig. 2.1 [HumO5].

The definition of a successful project is one that completed within 10% or so of
its committed cost and schedule and delivered all of its intended functions.

As shown in Fig. 2.1, the success rate for a software project with more than
$1,000,000 is about 30% — it means about 70% of the projects have failed.

2.2 What Is the Root Cause for Software Disasters
and Very High Software Project Failure Rate?

There are many different answers to this question:
Several researchers have suggested that “CMM does not effectively deal with
the social aspects of organizations” [Ngw03].

Timothy K. Perkins believes as follows:

the cause of project failures is knowledge: either managers do not have the necessary
knowledge, or they do not properly apply the knowledge they have. [Per06]

Capers Jones concluded as follows:

Both technical and social issues are associated with software project failures. Among the
social issues that contribute to project failures are the rejections of accurate estimates and
the forcing of projects to adhere to schedules that are essentially impossible. Among the
technical issues that contribute to project failures are the lack of modern estimating

68 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

approaches and the failure to plan for requirements growth during development. However,
it is not a law of nature that software projects will run late, be cancelled, or be unreliable
after deployment. A careful program of risk analysis and risk abatement can lower the

probability of a major software disaster. [Jon06]
Joe Marasco pointed out as follows:

All the effort has gone into two areas: managing requirements and something called “require-
ments traceability.” Requirements management is the art of capturing requirements, cataloging
them, and monitoring their evolution throughout the development cycle. Requirements are
added, dropped, changed, and so on, and we now have requirements management systems
that allow us to keep track of all this. That is a good thing. Traceability is a bit more ambi-
tious. It attempts to link later-stage artifacts, such as pieces of a system and their test cases,
back to the original requirements. That way, we can assess if we are actually meeting the
requirements that were called out. This is a harder problem, but, once again, there has been
substantial progress. To all this I say, wonderful, but not good enough.

For more information, see the Standish Group Web site at http://www.standishgroup.com/

Poor Estimation: Major Root Cause of Project Failure.

Galorath Incorporated, http://www.galorath.com/wp/poor-estimation-major-root-cause-
of-project-failure.php

IT projects have been considered a tough undertaking and have certain characteristics
that make them different from other engineering projects and increase the chances of their
failure. Such characteristics are classified in seven categories (Peffers, Gengler &
Tuunanen, 2003; Salmeron & Herrero, 2005): 1) abstract constraints which generate unre-
alistic expectations and overambitious projects; 2) difficulty of visualization, which has
been attributed to senior management asking for over-ambitious or impossible functions,
the IT project representation is not understandable for all stakeholders, and the late detec-
tion of problems (intangible product); 3) excessive perception of flexibility, which contrib-
utes to time and budget overrun and frequent requests of changes by the users; 4) hidden
complexity, which involves difficulties to be estimated at the project’s outset and interface
with the reliability and efficiency of the system; 5) uncertainty, which causes difficulty in
specifying requirements and problems in implementation of the specified system; 6) the
tendency to software failure, which is due to assumptions that are not thought of during the
development process and the difficulty of anticipating the effects of small changes in soft-
ware; 7) the goal to change existing business processes, which requires IT practitioners’
understanding of the business and processes concerned in the IT system and good pro-
cesses to automate and make them quicker. Such automation is unlikely to make a bad
process better.

International Management Review, 2009 by Al-Ahmad, Walid, et al., A Taxonomy of an
IT Project Failure: Root Causes, Business Publications, http://findarticles.com/p/articles/
mi_qa5439/is_200901/ai_n3196563 1/?tag=content;col

In the article “Why Big Software Projects Fail: The 12 Key Questions” [HumO05],
Watts S. Humphrey listed those questions as follows:

Question 1: Are All Large Software Projects Unmanageable?
Question 2: Why Are Large Software Projects Hard to Manage?
Question 3: Why Is Autocratic Management Ineffective for Software?
Question 4: Why Is Management Visibility a Problem for Software?
Question 5: Why Can’t Managers Just Ask the Developers?

Question 6: Why Do Planned Projects Fail?

Question 7: Why Not Just Insist on Detailed Plans?

http://www.standishgroup.com/
http://www.galorath.com/wp/poor-estimation-major-root-cause-of-project-failure.php
http://www.galorath.com/wp/poor-estimation-major-root-cause-of-project-failure.php
http://findarticles.com/p/articles/mi_qa5439/is_200901/ai_n31965631/?tag=content;col1
http://findarticles.com/p/articles/mi_qa5439/is_200901/ai_n31965631/?tag=content;col1

2.3 The “Software” Definition Is Outdated 69

Question 8: Why Not Tell the Developers to Plan Their Work?
Question 9: How Can We Get Developers to Make Good Plans?
Question 10: How Can Management Trust Developers to Make Plans?
Question 11: What Are the Risks of Changing?

Question 12: What Has Been the Experience So Far?

Root causes of project failure ...

* Ad hoc requirements management.

* Ambiguous and imprecise communication.

 Brittle architectures.

e Overwhelming complexity.

* Undetected inconsistencies in requirements, designs, and implementations.
* Insufficient testing.

* Subjective project status assessment.

» Failure to attack risk.

* Uncontrolled change propagation.

 Insufficient automation.

devdaily, http://www.devdaily.com/java/java_oo/node7.shtml

In my opinion, they are reasonable answers to the question, but not the funda-
mental reason for software project failure.

According to the essential principles of complexity science, particularly the
Nonlinearity principle and the Holism principle, software is a nonlinear complex
system where the whole is greater than the sum of its parts, the behaviors and
characteristics of the whole emerge from the interaction of its parts and the
interaction between the system and its environment, small differences in
the initial condition or a small change to the system may produce large varia-
tions in the long-term behavior of the system — the “Butterfly-Effect.”

But unfortunately, the existing software engineering paradigm is based on linear
thinking, reductionism, and the superposition principle that the whole is the sum of
its parts, so that almost all tasks/activities are performed linearly, partially, and
locally. It means that the foundation of the existing software engineering paradigm
is wrong. The wrong foundation makes almost all things wrong in software engi-
neering, particularly the process models, the development methods, the visualization
paradigm, the testing paradigm, the quality assurance paradigm, the documentation
paradigm, the maintenance paradigm, and the project management paradigm — in
fact the existing software engineering paradigm is entirely outdated.

2.3 The “Software’ Definition Is Outdated

The current software is defined as (1) instructions (computer programs) that when
executed provide desired features, function, and performance; (2) data structures
that enable the programs to adequately manipulate information; and (3) documents

http://www.devdaily.com/java/java_oo/node7.shtml

70 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

that describe the operation and use of the programs [Pre05-p4]. The simplest definition
of a software is: a program + data + documents.

This definition separates the documents and the source code without a facility to
establish the traceability to represent the internal relationship among the documents,
the test cases, and the source code, and gives up the development history and the
database built through static and dynamic measurement, making a software product
hard to understand, test, review, and maintain.

In fact, a software is working in a changing environment dynamically, so that it
should be made adaptive and easy to maintain.

This old definition of software has been replaced by a new one with NSE
(see Sect. 1.1 and Chap. 8).

2.4 The Current Software Development Process Models
Are Out of Date

Current main software development process models are discussed in Sect. 1.4.

A process model recommended by Alistair Cockburn to combine both
Incremental and Iterative development together [Coc08] is shown in Fig. 2.2.

These software engineering process models are out of date because they are
linear models with only one track forward to unidirectional without upstream
movement at all, complying with the superposition principle that the whole of a
software system is the sum of its parts, so that all tasks are performed linearly,
locally and partially, making the defects introduced into a software product at the
upper phases easy to propagate to the lower phases and the defect removal cost
increase tenfold several times as shown in Fig. 2.3.

Ship

Integrate Integrate

Examine Examine Examine

Fig. 2.2 Putting iterative and incremental development together

2.5. Current Software Development Methodologies Are Out of Date 71

\é] ‘ One time iteration :
]

T

100 l

a M

g N\

g =

g | N4 SN Defect propagation

g X1 X4 XI6 increases debugging
Requirement Design Coding Testing Maintenance | COST €xponentially!

Mg Debugging cost

Fig. 2.3 The cost for removing a defect propagated from the requirement phase to the mainte-
nance phase with linear process models

As shown in Fig. 2.2, a linear process model requires that people always do all
things right without making any mistake, but can we drive a car from our home to
another city always on an one-way with one track traffic only without U-Turns at
all? No. For instance, sometimes we may forget something so that we should go
back to do something — people are also nonlinear, often making wrong decisions
which need to be corrected. Because there is only one track, when the engine of
a car suddenly stops working, the entire traffic will be blocked.

With NSE these “one-way and one track™ process models will be replaced by
NSE process model with “two-way and multiple tracks.” Chapter 8 will introduce
the details.

2.5 Current Software Development Methodologies
Are Out of Date

With current software development methodologies, software components are developed
first, then the system of a software product is built through the integration of the com-
ponents developed. From the point of view of quality assurance, those methodologies
are test-driven, but the functional testing is performed after coding — it is too late. These
methodologies handle a software product as a machine rather than a logical product

72 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

created by human beings. They all comply with the superposition principle. With those
methodologies, all tasks/activities are performed linearly, partially, and locally.

Is current CBSD (Component-Based Software Development) Out
of Date Too?

The basis of CBSD is components which are developed with the old-established
software engineering paradigm based on linear thinking and the superposition
principle, so they are hard to ensure the quality and hard to maintain. From this
point of view, the current CBSD is out of date too — it should be shifted to a new
development methodology with the components developed using a novel software
engineering platform based on complexity science.

2.6 The Existing Software Modeling Approaches Are Outdated

The existing software modeling approaches are outdated because they are outcomes
of reductionism and superposition principle, using different sources for human
understanding and computer understanding of a software system separately with a
big gap between them. The obtained models are not traceable for static defect
removal, not executable for debugging, not testable for dynamic defect removal,
not consistent with the source code after code modification, and not qualified as the
road map for software development.

2.7 Current Software Testing Paradigm Is Out of Date

Current software testing paradigm is mainly based on functional testing (plus
structural testing, load testing, and stress testing) being performed after coding.
It is too late, the functional testing cannot be performed in the requirement devel-
opment phase and the design phase dynamically, so that it has no way to find
defects introduced in the requirement development phase and the design phase
dynamically using the existing software testing paradigm.

The current software testing paradigm separates functional testing and structural
testing rather than combining them together seamlessly. To each set of inputs, the func-
tional testing tools only check whether the output is the same as the expected value
without checking whether the program execution path is the same as what is expected.

2.8 Current Software Quality Assurance Paradigm
Is Out of Date

Current software quality assurance paradigm is mainly based on software testing and
inspection using untraceable documents and untraceable source code, particularly
the functional testing performed after coding.

2.11 Current Software Maintenance Paradigm Is Out of Date 73

NIST (National Institute of Standards and Technology) recommends that “Briefly,
experience in testing software and systems has shown that testing to high degrees of
security and reliability is from a practical perspective not possible. Thus, one needs to
build security, reliability, and other aspects into the system design itself and perform a
security fault analysis on the implementation of the design.” (“Requiring Software
Independence in VVSG 2007: STS Recommendations for the TGDC,” November
2006, http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf).

With current process models and methodologies, the implementation of require-
ment changes and code modifications is performed locally rather than globally and
holistically — without the capability to prevent the side effects, so that the quality of
the modified product is hard to ensure.

2.9 Current Software Visualization Paradigm Is Out of Date

The current software visualization paradigm generates partial charts or diagrams
rather than a complete chart or diagram for a software product. Most tools devel-
oped with the current software visualization paradigm are used for modeling only,
rather than for the entire software development process.

Note: Even if a complete chart or diagram can be generated for an entire
software product, it is still useless because there are too many connection lines,
making the generated chart or diagram very hard to understand. Without trace-
ability among related elements and the capability to highlight a module with all the
related modules, a generated chart or diagram is not useful.

2.10 Current Software Documentation Paradigm Is out of Date

The current software documentation paradigm generates and manages documents
separated from the source code — they are not traceable to each other.

Note: When the source code is modified the generated documents cannot be
updated without bidirectional traceability, so the documents are often inconsistent
with the source code as shown in Fig. 2.4, making them not very useful.

The visual documents generated with the current software visibility paradigm
requires a huge amount of space to store, and the display speed is very slow.

2.11 Current Software Maintenance Paradigm Is Out of Date

The current software maintenance paradigm offers a blind, partial, and local
approach for software maintenance, without support of various traceabilities. There
is no way to prevent the side effects of the implementation of requirement changes
or code modifications.

http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf

74 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

Requirement development

\ | Testing

R‘[J)/ The design rm[“jil_té"‘:““"“““
o) %%

linear iteration ﬁ __________ inconsistent

Fig. 2.4 The documents and the source code are inconsistent after code modification with the
current software engineering paradigm

Note: Local and partial software maintenance is risky — each time when a bug is
fixed, there is a 20—50% of chance of introducing another into the software product.
It is why today software maintenance takes more than 75% of the total effort and
total cost for software product development.

2.12 Current Software Project Management Paradigm
Is Out of Date

According to the current software project management paradigm, software project
management is separated from the software development process — the project
development schedules and the cost reports are not traceable with the implementa-
tions of requirements and the source code.

Note: With the current software project management paradigm, often it is too
late in finding and solving the problems.

2.13 ““The Mythical Man-Month” Is an OQutcome of Linear
Thinking; The “No Silver Bullet” Conclusion Is Out of Date

“The Mythical Man-Month” written by Frederick P. Brooks, Jr. is a great book with
many advanced concepts and ideas. I have learnt a lot from it, and will continue to
learn more.

But unfortunately, because the old-established software engineering paradigm is
based on linear thinking, reductionism, and superposition principle so that almost
all tasks/activities are performed linearly, partially, and locally which limits all
related process models, software development methods, software development

2.13 “The Mythical Man-Month” Is an Outcome of Linear Thinking 75

techniques and tools — it also affects all books in software engineering, including
“The Mythical Man-Month.”

In the 1995 edition of “The Mythical Man-Month,” Frederick P. Brooks, Jr.
criticized his 1975 edition of the book that “Don’t Build One to Throw Away — The
Waterfall Model Is Wrong! ...The biggest mistake in the ‘Build one to throw away’
concept is that it implicitly assumes the classical sequential or waterfall model of soft-
ware construction. ...Chapter 11 is not the only one tainted by the sequential waterfall
model; it runs through the book, beginning with the scheduling rule in Chapter 2.

Unfortunately, in the 1995 edition of the book, it also assumes a sequential
model — “An Incremental — Build Model” which is “a series of Waterfalls”
[GSAMO3] as shown in Fig. 2.5.

Comparing it with the one-time waterfall model, the Incremental — Build Model
can help in reducing risk and waiting time, but it keeps all the major drawbacks of
the one-time waterfall model. For instance, the defects introduced into a software
product in the upper phases can easily propagate to the lower phases, making the
final defect removal cost increase more than 100 times; the requirement changes
and code modifications are implemented locally and blindly without support of
bidirectional traceabilities, making software maintenance take more than 75% of
the total effort and total cost in a software product development.

Brooks’ law: “No Silver Bullet” — “There is no single development, in either
technology or management technique, which by itself promises even one order-of-
magnitude improvement within a decade in productivity, in reliability, in simplicity”
is out of date — in fact only the bidirectional traceability technique by itself promises
one order-of-magnitude improvement within a decade in productivity, in reliability,
in simplicity.

Software traceability can help bring software development into the 21st century. It reduces

costs, gives better visibility and adequate test coverage, and helps software engineers meet

customer needs. Changes can be implemented much faster and new projects can be esti-
mated more accurately.

Rick Coffey, Document Control Supervisor, Tyco Healthcare/Mallinckrodt
In Chap. 24 we will discuss three Candidates of “Silver Bullet.”
After the establishment of NSE based on nonlinear thinking and complexity —

complying with the essential principles, particularly the nonlinearity principle and
the holism principle to perform almost all tasks/activities holistically and globally,

—

Fig. 2.5 Incremental Model [GSAMO3]

76 2 Is the Old-Established Software Engineering Paradigm Entirely Out of Date?

there are many more conclusions stated in “The Mythical Man-Month” book that
are outdated, such as these:

“The fundamental problem with program maintenance is that fixing a defect has
a substantial (20-50 percent) chance of introducing another. So the whole process
is two steps forward and one step back” — with NSE, this problem can be solved by
performing software maintenance holistically and globally through side-effect
prevention.

“All repairs tend to destroy the structure, to increase the entropy and disorder of
the system.” — with NSE, repairs are performed with side-effect prevention.

“Adding manpower to a late software project makes it later” — with NSE a software
system is diagrammed graphically with various traceabilities to make the product
much easier to read and understand; the documents and the source code are managed
together with bidirectional traceability which make the software product much
easier to understand, test, and maintain; a project Web site and the technical forum
will be set and the Web pages are traceable to the implementation of requirements
and the source code to reduce the time and resources for communication; not only
the program and the data used and the documents available, but the database built
through static and dynamic measurement and a set of Assisted Online Agents are
available to support visibility, testability, reliability, traceability, conformity, change-
ability, and maintainability — so that the new members of the development team can
learn the system by themselves quickly, and begin to make contributions quickly.
About the detailed discussion on this topic, please see Chap. 24.

“Theoretically, after each fix one must run the entire bank of test cases previously
run against the system to ensure that it has not been damaged in an obscure way.” —
No, it is time consuming, inefficient, and costly. With NSE, the regression testing
after software modification is performed efficiently through test case efficiency
analysis and test case minimization, plus intelligent test case selection through back-
ward tracing from the modified modules or branches to find what test cases can be
used to retest them. Sometimes, new test cases need to be designed and used.

2.14 Summary

The old-established software engineering paradigm, including the process models,
the software development methods, the test paradigm, the quality assurance
paradigm, the documentation paradigm, the maintenance paradigm, the project
management paradigm, and the definition of software, is entirely out of date,
because not only a software system but the software engineering paradigm itself is
a nonlinear, dynamic, and complex system that cannot be handled as a linear one.

The old-established software engineering paradigm based on linear thinking and
superposition principle should be replaced by a new revolutionary one based on
nonlinear thinking and complexity science which should be able to remove the
drawbacks of the old-established software engineering paradigm efficiently and
bring revolutionary changes to all aspects in software engineering.

References 77

2.15 Points and Questions to Ponder

(a) How is a successful project defined?
(b) What is the root cause that about 70% of software projects are failures?
(c) Is the existing software engineering paradigm updated or outdated? Why?

2.16 Further Reading and Information Source

(a) Zambonelli F, Parunak HVD (2002) Signs of a revolution in computer science and
software engineering, Madrid, Spain. http://citeseer.ist.psu.edu/zambonelli02signs.
html

(b) Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Upper Saddle
River

(c) Wikiversity. Unsolved problems in software engineering. http://en.wikiversity.
org/wiki/Unsolved_problems_in_software_engineering

References
[Coc08] Cockburn A (2008) Using both incremental and iterative development. CrossTalk,
May Issue

[GSAMO3] Department of the Air Force Software Technology Support Center (2003)
Condensed GSAM handbook, Chap 2, CrossTalk

[HumO5] Humphrey WS (2005) The Software Engineering Institute, Why big software proj-
ects fail: the 12 key questions. CrossTalk, Mar Issue

[Jon06] Capers J (2006) Social and technical reasons for software project failures.
CrossTalk, Jun Issue
[Ngw03] Ngwenyama O, Nielsen PA (2003) Competing values in software process improve-

ment: an assumption analysis of CMM from an organizational culture perspective.
IEEE Trans Eng Manag 50(1):100-112. doi:10.1109/TEM.2002.808267

[Per06] Perkins TK (2006) Knowledge: the core problem of project failure. CrossTalk,
Jun Issue

[Pre05-p4] Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-
Hill, New York, p 4

[Sei08] What is CMMI? Software Engineering Institute. Accessed 30 October 2008, http://
www.sei.cmu.edu/cmmi/general/index.html

http://citeseer.ist.psu.edu/zambonelli02signs.html
http://citeseer.ist.psu.edu/zambonelli02signs.html
http://en.wikiversity.org/wiki/Unsolved_problems_in_software_engineering
http://en.wikiversity.org/wiki/Unsolved_problems_in_software_engineering
http://en.wikiversity.org/wiki/Unsolved_problems_in_software_engineering
http://en.wikiversity.org/wiki/Unsolved_problems_in_software_engineering

Chapter 3
Foundation for Establishing NSE:
Complexity Science

The next century will be the century of complexity

Stephen Hawking, January 2000

This chapter introduces the foundation for establishing NSE — complexity science.
Complexity science is the scientific study of nonlinear, dynamic, complex systems and
the process of self-organization. Complexity science is the driving force for the devel-
opment of sciences, engineering, and business in the twenty-first century. Complexity
science explains how holism emerges in the world, and more. It is the intellectual suc-
cessor to systems theory and chaos theory. Complexity science is a field derived from
multiple disciplines — physics, chemistry, biology, and mathematics. Definitions of
complexity are often tied to the concept of a complex system — something with many
parts that interact to produce results that cannot be explained by simply specifying the
role of each part. This concept contrasts with traditional machine or Newtonian con-
structs, which assume that all parts of a system can be known, that detailed planning
produces predictable results, and that information flows along a predetermined path.
Elements of complexity theory have been incorporated into a number of fields includ-
ing genetics, immunology, cognitive science, economics, computer science, and lin-
guistics. Currently, the most robust research in complexity science involves the study
of inanimate systems such as computer networks and hydrodynamic systems as well
as certain cellular networks (Ashok M. Patel, M.D., Thoralf M. Sundt III, M.D., and
Prathibha Varkey, M.D., Complexity Science — Core Concepts and Applications for
Medical Practice, http://www.minnesotamedicine.com/Pastlssues/February2008/
ClinicalFebruary2008/tabid/2462/Default.aspx); [Ber76], [Sar06].
If you are familiar with complexity science, please skip this chapter.

3.1 The Basis of Complexity Science

The basis of complexity science is important to the establishment of NSE and the
innovation of the paradigm-shift framework, FDS (Five-Dimensional Structure
Synthesis Method) to be described in Chap. 4, and directly or indirectly related to

J. Xiong, New Software Engineering Paradigm Based on Complexity Science: 79
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_3,
© Springer Science+Business Media, LLC 2011

http://www.minnesotamedicine.com/PastIssues/February2008/ClinicalFebruary2008/tabid/2462/Default.aspx)
http://www.minnesotamedicine.com/PastIssues/February2008/ClinicalFebruary2008/tabid/2462/Default.aspx)

80 3 Foundation for Establishing NSE: Complexity Science

a prediction that a new round of industry revolution in many kinds of businesses
from the old-established one based on linear thinking and reductionism to a new
one based on nonlinear thinking and complexity science (see Sect. 4.1).

3.1.1 Linear and Nonlinear

“Linear” and “nonlinear” are mathematical terms commonly used to distinguish the
function y=f(x). An equation whose graph is a straight line is called a linear
function; other functions are nonlinear functions (see Fig. 3.1).

Y=f(x)
3.1.2 Reductionism

Reductionism is sometimes seen as the opposite of holism. Reductionism holds that
a complex system can be explained by reduction to its fundamental parts — a
complex system can always be understood by breaking them down into simpler or
more fundamental components. The old-established software engineering paradigm
is based on reductionism and superposition principle that the whole of a complex
system is the sum of its parts, so that almost all tasks/activities are performed
linearly, partially, and locally.

3.1.3 Chaos Theory

The first experimenter in chaos was a meteorologist, Edward Lorenz. In 1960, he
was working on the problem of weather prediction. He had a computer to model the
weather. One day, he entered the decimal 0.506 instead of entering the full 0.506127
as one of the required conditions to rerun the program. It was expected that the
rounding off would have little or no effect on the final results. However, surprisingly,
what Lorenz found was that the final results were dramatically different. It means
that a small change made in a system can cause major changes in the final output
(sensitivity to initial conditions). This process is popularly known as “the butterfly

\ > L >
Fig. 3.1 Linear and nonlinear

functions Linear Nonlinear

3.1 The Basis of Complexity Science 81

effect,” because it reflects the idea that a butterfly fluttering its wings in Taiwan
could cause a hurricane in California. If small changes in the initial state of a complex
system can drastically alter the final outcome, then long-term weather prediction is
impossible as there is no way to perfectly measure and describe the weather at any
one point in time. There is always a further level of accuracy to be measured. In other
words, the deterministic nature of these systems does not make them predictable.
This behavior is known as deterministic chaos, or simply chaos. Chaotic behavior
can be observed in many natural systems, such as the weather [Sne97]. Chaos theory
is a field of study in mathematics, physics, and philosophy studying the behavior of
dynamical systems that are highly sensitive to initial conditions.

3.1.4 System

A system is a collection of interacting elements or components that are organized
for a common purpose.

3.1.5 System Categories

Systems can be classified into natural systems, artificial systems, or a combination
of both.

3.1.6 Linear System

A linear system is defined as that the whole of the system is the sum of its parts,
complying with the superposition principle. As long as we know its initial condi-
tions, we can understand its past and predict its future.

3.1.7 Nonlinear System and Complex System

A nonlinear system is a system not satisfying the superposition principle, or its
output is not proportional to its input, small changes in its initial conditions may
eventually cause the entire system to be changed greatly, and its long-term behavior
is unpredictable.

A complex system is a system having multiple interacting components, of which
the overall behavior cannot be inferred simply from the behavior of the compo-
nents, but emerge from the interaction of its components and the interaction
between it and its environment. Complex systems include IT networks, ecosystems,
brains, markets, cities, and businesses. Of course, a complex system is also a
nonlinear system.

82 3 Foundation for Establishing NSE: Complexity Science

Fig. 3.2 An example of fractals: Koch island described by Helge von Koch in 1904

3.1.8 Feedback

Feedback refers to messages or information that are sent back to the source from
the output.

3.1.9 Fractal

An irregular shape with self-similarity which can be split into parts, each of which is
(at least approximately) a reduced-size copy of the whole (see Fig. 3.2) [Man82].

3.1.10 Fractal Dimension

A measure of a geometric object that can take on fractional values. At first used as a
synonym to Hausdorft dimension, fractal dimension is currently used as a more general
term for a measure of how fast length, area, or volume increases with decrease in scale.

3.1.11 Dynamical System

A dynamic system is a system that is constantly changing over time, like the human
body system.

3.1.12 Dissipation Structure

According to the Belgian physicist and Nobel Prize winner Ilya Prigogine’s
proposed doctrine, an open system far from equilibrium, can form spatial and
temporal structures (dissipative structures) that can exist as long as the system is
held far from equilibrium due to a continual flow of energy or matter through
the system.

3.1 The Basis of Complexity Science 83

3.1.13 Li-Yorke Theorem: Period Three Theorem

Li—Yorke Theorem holds that any one-dimensional system which exhibits a regular
cycle of period three will also display regular cycles of every other length as well
as completely chaotic cycles.

3.1.14 Self-Organization

The essence of self-organization is that system structure (at least in part) appears
without explicit pressure or constraints from outside the system. In other words, the
constraints on form are internal to the system and result from the interactions
between the components, while being independent of the physical nature of those
components. The organization can evolve either in time or space, can maintain a
stable form or can show transient phenomena. General resource flows into or out of
the system are permitted but are not critical to the concept.

The field of self-organization seeks to discover the general rules under which
such structure appears, the forms which it can take, and methods of predicting the
changes to the structure that will result from changes to the underlying system.
The results are expected to be applicable to any system exhibiting the same
network characteristics (Self-Organization FAQ, http://psoup.math.wisc.edu/
archive/sosfaq.html).

3.1.15 Synergetics

Synergetics is an interdisciplinary field of research. It deals with open systems that
are composed of many individual parts that interact with each other and that can
form spatial, or functional structures by self-organization. Synergetics can refer to a
school of thought on thinking and geometry developed by Buckminster Fuller or
a school of thought on thermodynamics and other systems phenomena developed
by Hermann Haken.

3.1.16 Catastrophe Theory

Originated by the winner of the highest award from the Mathematics — Fields
Medal, the French mathematician Rene Thom in the 1960s, catastrophe theory is a
special branch of dynamical systems theory. It studies and classifies phenomena
that small changes in certain parameters of a nonlinear system can cause large and
sudden changes of the behavior of the system.

http://psoup.math.wisc.edu/archive/sosfaq.html
http://psoup.math.wisc.edu/archive/sosfaq.html

84 3 Foundation for Establishing NSE: Complexity Science

3.1.17 Complex Adaptive System

The term complex adaptive systems (CAS) was coined at the interdisciplinary Santa
Fe Institute (SFI), by John H. Holland, Murray Gell-Mann, and others. Complex
Adaptive Systems involve many components (agents) that adapt or learn as they
interact — are at the heart of important contemporary problems [Hol92]. Examples
of complex adaptive systems include the stock market, social insect and ant
colonies, the biosphere and the ecosystem, the brain and the immune system, the
cell and the developing embryo, and manufacturing businesses.

3.1.18 Meta-Synthesis

The meta-synthesis approach is a method for solving the open giant complex
systems problems proposed by Professor Qian Xuesen and his colleagues in China.
The point of meta-synthesis is to unite organically the expert group, data, all sorts
of information, and the computer technology, and to unite scientific theory of
various disciplines and human experience and knowledge [Dai95]. The develop-
ment phases of meta-synthetic social intelligence engineering are as follows:

1. From “qualitative and quantitative combined meta-synthesis” to “meta-synthesis
from qualitative to quantitative”

2. From “meta-synthesis” to “hall for workshop of meta-synthetic engineering

(HWME)”

Meta-synthesis of intelligent systems

From theoretical frameworks to operable platforms

5. From HWME to CWME - Cyberspace for Workshop of Meta-synthetic
Engineering, a prototype of HWME

6. From methodology to applications

bl

3.1.19 Cellular Automata

Cellular automata, also known as grid automata, were invented in the 1940s by the
mathematicians John von Neuman [Neu66] and Stanislaw Ulam [Sip02]. Cellular
automata (CA) are — by definition — dynamical systems which are discrete in
space and time, operate on a uniform, regular lattice — and are characterised by
“local” interactions. CAs are dynamical systems in which space and time are dis-
crete. A cellular automaton consists of a regular grid of cells, each of which can be
in one of a finite number of k possible states, updated synchronously in discrete time
steps according to a local, identical interaction rule. The state of a cell is determined
by the previous states of a surrounding neighborhood of cells [Wol84], [Tof87].
The infinite or finite cellular array (grid) is n-dimensional, where n=1, 2, 3 is
used in practice. The identical rule contained in each cell is essentially a finite state

3.1 The Basis of Complexity Science 85

machine, usually specified in the form of a rule table (also known as the transition
function), with an entry for every possible neighborhood configuration of states.
The neighborhood of a cell consists of the surrounding (adjacent) cells. For
one-dimensional CAs, a cell is connected to r local neighbors (cells) on either side,
where r is a parameter referred to as the radius (thus, each cell has 2r + 1 neighbors,
including itself). For two-dimensional CAs, two types of cellular neighborhoods
are usually considered: five cells, consisting of the cell along with its four imme-
diate nondiagonal neighbors, and nine cells, consisting of the cell along with its
eight surrounding neighbors. The term configuration refers to an assignment of
states to cells in the grid. When considering a finite-sized grid, spatially periodic
boundary conditions are frequently applied, resulting in a circular grid for the
one-dimensional case, and a toroidal one for the two-dimensional case. (Moshe
Sipper, A Brief Introduction To Cellular Automata, http://www.cs.bgu.ac.il/~sipper/
ca.html, http://www.moshesipper.com/).

3.1.20 Genetic Algorithm

Living organisms are consummate problem solvers. They exhibit a versatility that
puts the best computer programs to shame. This observation is especially galling
for computer scientists, who may spend months or years of intellectual effort on
an algorithm, whereas organisms come by their abilities through the apparently
undirected mechanism of evolution and natural selection. Pragmatic researchers
see evolution’s remarkable power as something to be emulated rather than envied.
Natural selection eliminates one of the greatest hurdles in software design: speci-
fying in advance all the features of a problem and the actions a program should
take to deal with them. By harnessing the mechanisms of evolution, researchers
may be able to “breed” programs that solve problems even when no person can
fully understand their structure. Indeed, these so-called genetic algorithms (GA)
have already demonstrated the ability to make breakthroughs in the design of such
complex systems as jet engines. Genetic algorithms make it possible to explore a
far greater range of potential solutions to a problem than do conventional pro-
grams. Furthermore, as researchers probe the natural selection of programs under
controlled and well-understood conditions, the practical results they achieve may
yield some insight into the details of how life and intelligence evolve in the natural
world. (John H. Holland, Genetic Algorithms, http://econ2.econ.iastate.edu/tesfatsi/
holland.gaintro.htm).

Genetic algorithms come from the classic evolutionary computation methods —
stochastic global optimization algorithms, according to the “survival of the fittest”
law of biological genetics and natural selection through computer simulation.
The genetic algorithm can be applied with the following steps:

1. Define an objective function, for example, using the 26 English lower case letters
plus a space character, to generate random 35 character strings and make it
evolve into the “systems science is very interesting string.”

http://www.cs.bgu.ac.il/~sipper/ca.html
http://www.cs.bgu.ac.il/~sipper/ca.html
http://www.moshesipper.com/
http://econ2.econ.iastate.edu/tesfatsi/holland.gaintro.htm
http://econ2.econ.iastate.edu/tesfatsi/holland.gaintro.htm

86 3 Foundation for Establishing NSE: Complexity Science

2. Afeasible solution of groups under certain constraints is initialized, for example,
by randomly generating 500 35-character strings, each with a feasible solu-
tion to encode a vector x, called a chromosome with the representative weight
vector gene, which corresponds to a particular decision variable feasible
solution.

3. Calculate the groups for each chromosome x, (i=1, 2, ..., n) corresponding to
the objective function value (n is an integer, such as the value of 500), and
calculate the fitness value F; according to the size of the F, evaluate whether
the feasible solution is good or bad — for example, in a chromosome where there
are ten characters in the previous cases of the target line (that are correctly
placed), its adaptive value is 10/35=0.2857.

4. Using the mechanism of survival of the fittest, according to their fitness values,
certain chromosomes will survive, whereas certain ones will be eliminated, and
reproduction of randomly selected chromosomes will be carried out to form new
groups.

5. Through hybridization and mutation operations to produce offspring, two ran-
domly selected chromosomes (parents) will exchange genes and generate two
new individuals (hybrids), with genetic mutations and variations at certain points
(characters).

6. Repeat steps 3-5 for offspring groups, to generate a new round of genetic evolu-
tion, until the iterations converge (stable adaptation value) or to find the optimal
or quasi-optimal solution. After 46 next-generation iterations, “‘systems science
is very interesting” strings can be fully obtained for certain.

3.1.21 Soliton

Solitary waves and solitons in nonlinear science are important concepts.

In August of 1834, Bertrand Russell observed the solitary wave. In 1895,
Korteweg and Defree proposed the KDV (Korteweg-De Vries) equation and its soli-
ton solution. The soliton solution is a single peak traveling wave, where wave propa-
gation is constant and the speed is also constant, where the shape and speed after any
collisions remain unchanged.

3.2 Linear Thinking and Nonlinear Thinking

Linear Thinking: To continue to look at something from one point of view. To take
information or observations from one situation, place this data in another situation
(usually later), and make a conclusion in the later situation (see Fig. 3.3) (http://
socialstudies.nelson.com/arnold/skimm/main/items/linearthinking.html).

Defined by Edward de Bono, nonlinear thinking is also called lateral thinking
which can help us conjure creative solutions to emerge a winner in an increasingly

http://(http://socialstudies.nelson.com/arnold/skimm/main/items/linearthinking.html).
http://(http://socialstudies.nelson.com/arnold/skimm/main/items/linearthinking.html).

3.3 The Essential Principles of Complexity Science 87

(Problem . . . Solution/\'
N4 .

Fig. 3.3 Linear thinking

complex world. According to de Bono, intelligence is a potential and thinking is a
skill to use that potential [Bon68]. De Bono has developed several techniques of
lateral thinking under three broad categories: Challenge, Alternatives, and
Provocation. The creative challenge is a challenge to exclusivity, which does not
accept the status quo and is particularly relevant in those areas where ideas have
become obsolete with time. Circumstances and situations often restrict the
choice of alternatives and, therefore, it is better to assume a dynamic state of
affairs. Limits and components are changed to enable new ways of doing things to
emerge successful. Provocation is more in the nature of hypothesis where a
situation is first conceived or imagined and then one proceeds to arrive at unique
plausible conclusions.

3.3 The Essential Principles of Complexity Science

The essential principles of complexity science includes the following:

Nonlinearity principle — A complex system is not linear, that is, the system does
not satisfy the superposition principle, or whose output is not proportional to its
input. The behavior of a nonlinear system can change drastically in response to
small changes in the system’s initial conditions.

Holism principle — Holism is sometimes seen as the opposite of Reductionism.
Holism holds that all the properties of a given complex system cannot be
determined or explained by its components alone. Instead, the behaviors
and characteristics of the whole of a complex system emerge from the
interaction of its parts, and the interaction between it and the environment
dynamically. The general principle of holism was concisely summarized
by Aristotle in the Metaphysics: “The whole is more than the sum of
its parts.”

Complexity arises from simple rules principle — Complexity arises from the
interaction of agents following simple rules; Complex systems are based on
simple rules which feedback on itself, or iterate on themselves, and this can
explain all phenomena everywhere.

Initial Condition Sensitivity principle — To a complex system, small causes may
have large effects to the entire system — “Butterfly Effects.”

88 3 Foundation for Establishing NSE: Complexity Science

Sensitivity to Change principle — To a complex system, small changes may have
large effects to the entire system. It is similar to the Initial Condition Sensitivity
principle.

Dynamics principle — A complex system is a dynamic one adaptive to its changing
environment.

Openness principle — A complex system and its environment are inseparable, and
it is constantly interacting with the environment.

Self-organization principle — see Sect. 3.1.14.

Self-adaptation principle — see Sect. 3.1.17.

3.4 Applications of Complexity Science

Many successful applications of nonlinear thinking and complexity science for
various complex nonlinear systems were reported [Art99], [NorO8], [Den00],
[Fan04], [KimO04].

Some published books and papers show that now more and more software
scientists are applying complexity science to attack the problems facing software
development/IT such as those with the following titles:

“Adaptive Software Development: A Collaborative Approach to Managing Complex
Systems” [Hig00]

“Intelligent Agents: Software Technology for the new Millennium” [Fal0O0]

“Complexity Science and Software Development, An Introduction to Complexity Science
and Its Applications in Agile Software Development” [Lam03]

“Agent-Oriented Software Engineering” [Jen00]

But unfortunately, the applications of complexity science has not reached the
level expected by people — for instance, when complexity science was applied to solve
the critical problems with an individual software system by us before, we did not
get the expected result in productivity increase or quality improvement. Why? The
main reason is that before making paradigm shift of the entire software engineering
paradigm from the old one based on linear thinking, reductionism, and superposition
principle to the new one based on nonlinear thinking and complexity science, it is
almost impossible to directly apply complexity science to solve an individual soft-
ware system problems because with the old-established software engineering para-
digm, the process models, the development methodology, the testing paradigm, the
quality assurance paradigm, the maintenance paradigm are based on linear
thinking, reductionism, and superposition principle too. We finally realized that there
should be two major steps: the first one is to complete the entire paradigm shift in the
software engineering from the old one based on linear thinking, reductionism, and
superposition principle to the new one based on nonlinear thinking and complexity
science; then the second one is to apply complexity science to solve the problems
of an individual software system after the completeness of the paradigm shift.

3.8 Further Reading and Information Source 89

3.5 Complexity Science and NSE

As described in Chap. 4, NSE paradigm is established through FDS (Five-
Dimensional Structure Synthesis Method), a paradigm-shift framework which
requires the new revolutionary paradigm being established by complying with the
essential principles of complexity science, particularly the nonlinearity principle
and the holism principle, so that with NSE almost all tasks/activities are performed
nonlinearly, globally, and holistically.

3.6 Summary

Complexity science is the driving force for the development of sciences, engineering,
and business in the twenty-first century. Complexity science explains how holism
emerges in the world, and more.

The foundation for establishing NSE nonlinear software engineering paradigm
is complexity science. NSE complies with the essential principles of complexity
science, particularly the Nonlinearity principle and the Holism principle that all the
properties of a given complex system cannot be determined or explained by its
components alone. Instead, the behaviors and characteristics of the whole of a
complex system emerge from the interaction of its parts, and the interaction
between it and the environment dynamically, so that with NSE almost all tasks/
activities are performed nonlinearly, globally, and holistically.

3.7 Points and Questions to Ponder

(a) What is complexity science?

(b) What are the major differences between Reductionism and Holism?

(c) What are the essential principles of complexity science? How are they related
to the establishment of NSE?

3.8 Further Reading and Information Source

(a) Waldrop MM (1992) Complexity: the emerging science at the edge of order and
chaos. Viking, London

(b) Gleick J (1988) Chaos: making a new science. Cardinal, London

(c) Castellani B, Hafferty FW (2009) Sociology and complexity science: a new
field of inquiry. Springer, Heidelberg

90 3 Foundation for Establishing NSE: Complexity Science

References

[Art99] Arthur WB (1999) Complexity and the economy. Science 284:107-109

[Ber76] Von Bertalanffy L (1976) General system theory. George Braziller, New York

[Bon68] de Bono E (1968) New think: the use of lateral thinking in the generation of new
ideas. Basic Books, New York

[Dai9s] Dai R (1995) Metasynthetic social intelligence engineering: a review. Institute of
Automation, Chinese Academy of Sciences, Beijing

[Den00] Dent EB (2000) Complexity science: a paradigm shift. Emergence 1(4):5-19

[Fal00] Faltings B (2000) Intelligent agents: software technology for the new millennium.
Informatik/Informatique 1:2-5

[Fan04] Francis J (2004) Managing BPM, BPM and Nonlinear Thinking, June Issue

[Hol92] Holland JH (1992) Complex adaptive systems. American Academy of Arts &
Sciences, Cambridge

[Hig00] James A. Highsmith III, Adaptive Software Development: A Collaborative Approach
to Managing Complex Systems, DORSET HOUSE PUBLISHING CO., INC., 2000.

[Jen00] Jennings NR, Wooldridge M (2000) Agent-oriented software engineering. Department
of Electronic Engineering, Queen Mary & Westfield College, University of London,
London

[Kim04] Kimball L, Weinstein N, Silber T (2004) Maximizing facilitation skills using principles
of complexity science. OD Network Conference, October 2004

[Lam03] Lamoreux M (2003) Complexity science and software development, an introduction
to complexity science and its applications in agile software development, http://comdig.
unam.mx/article.php?id_article=13746&find=complexity

[Man82] Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, San Francisco.
ISBN 0-7167-1186-9

[Mer06] Yasmin M, McKelvey B (2006) Using complexity science to effect a paradigm shift
in information systems for the 21st century. J Inform Technol 21:211-215

[Neu66] Von Neumann J (1966) Theory of self-reproducing automata. Edited and completed
by A.W. Burks. University of Illinois Press, Urbana

[Nor08] Norreys PA (2008) PHYSICS: complexity in fusion plasmas. Science 319:1193

[Sar06] Sardar Z, Abrams I (2006) Caos Para Todos/Introducing chaos. Icon Books,
Cambridge

[Sip02] Sipper M (2002) Machine nature: the coming age of bio-inspired computing.
McGraw-Hill, New York

[Sne97] Raymond Sneyers (1997) Climate chaotic instability: statistical determination and
theoretical background. Environmetrics 8(5):517-532

[Tof87] Toffoli T, Margolus N (1987) Cellular automata machines. The MIT Press,
Cambridge

[Wol84] Wolfram S (1984) Universality and complexity in cellular automata. Physica D

10:1-35

Chapter 4

Prediction and Practices: A New Round

of Industrial Revolution Driven by Complexity
Science and a General Paradigm-Shift
Framework

Framework is a set of ideas, principles, agreements, or rules
that provides the basis or outline for something intended to be
more fully developed at a later stage.

Dictionary (http://encarta.msn.com/dictionary_1861613305/
framework.html)

This chapter describes a prediction — a new round of industrial revolution driven by
Complexity Science, and a paradigm-shift framework, the Five-Dimensional
Structure Synthesis method (FDS). Many businesses fail because of an attempt to
solve nonlinear problems with linear processes. With FDS, the paradigm shift for an
industry can be performed efficiently — from the old-established paradigm based on
linear thinking, reductionism, and superposition principle to a new paradigm based
on nonlinear thinking and complexity science in compliance with the common prin-
ciples of complexity science. FDS has been successfully used in the paradigm shift
of the software industry and could be successfully used for other industries too.

4.1 Prediction: A New Round of Industrial Revolution
Driven by Complexity Science Is Coming

Today, more and more industries are becoming increasingly aware that traditional
approaches to design and engineering are failing to keep up with the increasing scale
of systems [Mck99]. The foundation of those traditional approaches is based on
linear thinking and established science complying with the reductionism and super-
position principle that the whole of a system is the sum of its parts. But in fact, all
people problems and issues are nonlinear which do not comply with the superposi-
tion principle because they exist in a dynamic and changeable environment, rather than
a static one [Lim05]. Complexity science tackles some of science and engineering’s
most challenging and fundamental questions [Mck99]. The FDS is innovated by me
as a framework for making the paradigm shift (defined as “one conceptual world
view is replaced by another” by Thomas Kuhn [Kuh62]) efficiently. Using FDS to

J. Xiong, New Software Engineering Paradigm Based on Complexity Science: 91
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_4,
© Springer Science+Business Media, LLC 2011

http://encarta.msn.com/dictionary_1861613305/framework.html
http://encarta.msn.com/dictionary_1861613305/framework.html

92 4 Prediction and Practices: A New Round of Industrial Revolution

perform the paradigm shift of an industry, it is required to comply with the essential
principles (which are common to almost all theories of complexity science) to rede-
fine the process models, redevelop the methodologies and technologies, redesign the
productivity and the quality tools, reset the quality assurance standards, etc. FDS
has been successfully used in the paradigm shift of the software industry (software
engineering) with revolutionary changes made in almost all aspects of software
engineering for efficiently handling almost all critical issues existing with the old-
established paradigm, including the issues of complexity, changeability, invisibility,
and conformity. It is possible to use FDS for making the paradigm shift efficiently
in other industries to greatly improve the productivity and the product quality too.

A Prediction: a deeper and broader industry revolution driven by complexity
science is coming because

(a) In various industries the old-established paradigms based on linear thinking
and simplified science themselves have become obstacles to the system devel-
opment rather than the driving forces in the twenty-first century. For instance,
the computer software industry is a typical one. As pointed out by Capers Jones,
“Major software projects have been troubling business activities for more than
50 years. Of any known business activity, software projects have the highest
probability of being cancelled or delayed. Once delivered, these projects display
excessive error quantities and low levels of reliability” [Jon06].

(b) Application results show that complexity science is the most powerful weapon
for handling many critical issues in various complex systems.

(c) Now more and more people realize that nonlinear, complex adaptive systems are
the best way to understand systems involving people [Gha04], so that it is the
time to shift the old-established paradigm based on linear thinking and simpli-
fied science to a new one based on nonlinear thinking and complexity science for
various industries.

4.2 The Contribution and Limitation of Hall’s Systems
Engineering Framework

In 1962 and 1969, A. D. Hall published his three-dimensional morphology for
systems engineering (Hall’s framework) [Hal62], [Hal69] as shown in Fig. 4.1.

Hall’s framework has been used successfully in many industries in the late
twentieth century. But unfortunately, his framework itself is a linear one. Looking
at the “Phases” coordinate axis in Fig. 4.1, we can easily see that the process phases
are done individually according to a sequence order. When applying Hall’s framework
to software engineering, a waterfall model (or a micro-waterfall model) would be
logically established. There is also nothing related to the environment, which
means that with Hall’s framework, systems engineering can be isolated without
considering the effects of the environment. It is also clear that Hall’s framework is
designed to be used for a detailed engineering project or for detailed systems design
rather than that used for both the paradigm shift of an industry, and engineering for
an individual project after the paradigm shift.

4.4 The Objectives of Innovating FDS 93

Knowledge/Skills

Others

Law
MarketiE

Human Resources
Finance
Management

Science

Science

Architecture

Engineering

Define problem
—Establish Value System
Synthesize Alternatives
Analyze Alternatives
Compare Alternatives
Make Decision
Implement Decision

l Logic
Planning
Development
Creation (Manufacturing/Construction)
Transferral (Distribution/Installation)
Operation/Use
Maintenance/Modification
Retirement/Disposition

Phases

Fig. 4.1 Hall’s systems engineering framework

4.3 The Background for the Innovation of FDS

Many businesses fail because of an attempt to use linear process models and method-
ologies to handle a complex nonlinear system, such as an EDA (Electronic Design
Automation) system for VLSI (Very Large Scale Integration) chip design, where a
linear order of processes is followed through chip partitioning, global placement,
global routing, detailed placement, detailed routing, timing simulation, rule check,
and verification, etc. The output obtained from an upper process becomes an input to
alower process. Often, the optimized result of an upper process (such as the detailed place-
ment) does not satisfy the requirements of a lower process (such as the detailed routing),
so that the upper process must be performed again and again, because the new opti-
mized result of the upper process is obtained blindly and locally, which could be worse
than the old one for the lower process. The same problems exist in many industries,
such as the software industry, where the project success rate is as low as 30% today.

Complexity science can be used to efficiently solve those problems as introduced
in Chap. 3.

It is the time to perform paradigm shifts for many industries, from the
old-established paradigm based on linear thinking, reductionism, and superposition
to a new revolutionary one based on nonlinear thinking and complexity science.

4.4 The Objectives of Innovating FDS

As pointed out by Warfield, J. N. that there are at least five schools of thought on
complexity science [War96]. They are suitable for different applications, so that it
will be better to combine all of the theories of complexity science together to form

94 4 Prediction and Practices: A New Round of Industrial Revolution

a powerful set of common principles of complexity science which should be complied
with in performing paradigm shifts for various industries.

Since complexity science is still very young, it will not be easy for individual
engineers to use it for solving a detailed problem, because using complexity science
to perform a detailed task within the limitation of the old-established paradigm
(without changing the entire old-established paradigm including the process models,
the product development methods, the testing paradigm, and the quality assurance
paradigm, etc.) will be very difficult to get the expected result. But performing an
entire paradigm shift in an industry is also very hard to do for a small company — it
should be done by a tool vendor, a research organization, or a company with a
strong professional team. It means that there are some obstacles in applying
complexity science to handle a real complex nonlinear system.

For applying complexity science deeply and broadly within an industry, it is
needed to complete the entire paradigm shift first for that industry, from the
old-established paradigm based on linear thinking and simplistic science to a new
revolutionary one based on nonlinear thinking and complexity science, by complying
with the common principles of complexity science to redefine the process models,
redevelop the methodologies, redesign the productivity tools, reset the quality
standards, and so on.

How can an old-established paradigm in an industry be efficiently replaced by a
new revolutionary one? It needs at least two things as the primary prerequisites:

(a) A systematic paradigm-shift framework
(b) A successful application example of the paradigm-shift framework — people
work well through examples

4.5 The Description of FDS

FDS is graphically shown in Fig. 4.2.

Based on the theories of complexity science and Hall’s three-dimensional
morphology for systems engineering, FDS is designed with changeability to meet
and adapt to different applications in the paradigm shift of various industries.

There are five axes with FDS.

4.5.1 The “Principles of Complexity Science” Axis

Complexity science is still very young, where there are at least five existing schools
of thought on complexity science [War96] which are suitable for different applications.
It seems that it would be the best choice to combine all the theories of complexity
science together to form a powerful synthesis with a set of common principles to
drive the paradigm shift for various industries. As described in Chap. 3, those
common principles include the following:

4.5 The Description of FDS 95

Bi-directional Traceability 5
o) —
= c £W
S 6 XxX¢ @8
g = [2
£ 2 8 =g
2 g £ co2652 3
3 2 825 Da £ o2 3 £
g o E g v ow N S E .9 o
“n Q T -
o 25 c coESEQ V& E
2 5 O o S ex>3% S
> EEST s=Eahon 2
= e 5 ¢ E3eEC z
D"U £ p = g‘ o © =
Standard o3 2 Sa%0 w
Maintenance a3 ?® g8 ,%
QA Paradigm 2T o3F
ac o >
Teet Paradigm s 90 Market Environment
Visualization Paradigm o o

Application Environment
Testing/Validation Environment
Learning/Training Environment
Nonlinearity

Holism
namics
Self-Organization
Self-Adaptation
Openness
Principles of complexity science (with extended principles)

Technology
Methodology
Process Model

(1

Fig. 4.2 The Five-Dimensional Structure Synthesis method (FDS)

* The Nonlinearity principle

e The Holism principle

* The Dynamics principle

¢ The Self-organization principle

e The Self-adaptation principle

¢ The Openness principle

¢ The Initial Condition Sensitivity principle

¢ The Sensitivity to Change principle

e The Complexity Arises From Simple Rules principle, and more

About the definition and meaning of each principle, please visit the Web site of
http://complexity.orconhosting.net.nz/fractal.html (Complexity Pages) and the Web
site of http://www.complexity.ecs.soton.ac.uk/index.php?page=q2 (Complexity
Science Focus).

The essential one within those principles is the Holism principle, which states
that a complex system is a system having multiple interacting agents (components),
of which the overall behavior and characteristics cannot be inferred simply from the
behavior of its individual agents. With FDS, it is required to comply with these
common principles of the complexity science for performing a paradigm shift in
an industry. For instance, when applying FDS for the paradigm shift of the software
industry, the new redefined process model must comply with the Holism principle,
the Nonlinearity principle, and other principles of complexity science, so that a
waterfall-like process model will not satisfy the requirement. For meeting the
Holism principle, any redefined candidate models must require each task to be done

http://complexity.orconhosting.net.nz/fractal.html
http://www.complexity.ecs.soton.ac.uk/index.php?page=q2

96 4 Prediction and Practices: A New Round of Industrial Revolution

globally rather than locally. It means that there is a need for a revolutionary change
in the design of the process models and methodologies, because there are no existing
process models or methodologies meeting this requirement.

For some applications, there may be a need to establish some additional principles
which may not be available in the existing theories. For instance, to establish a new
paradigm for software engineering, the “Synthesis Design” and “Incremental
Integration” principles are needed as pointed out by Brooks:

“NSB (‘No Silver Bullet’) advocates a wholehearted attack on the problem of complexity,
quite optimistic that progress can be made. It advocates adding necessary complexity to a
software system:

¢ Hierarchically, by layered modules or objects
¢ Incrementally, so that the system always works.” [Bro95]

4.5.2 The “Environment” Axis

Based on the Openness principle of complexity science, a complex system is
inseparable from its environment — the mutual interaction between the environment
and the system will unceasingly influence the system’s complexity. Openness
means that the behavior of open (living) systems can be understood only in the
context of their environment, so the environment is considered as an important
element in FDS. In different applications, the items of “Environment” may be different.
In most cases, the items on the “Environment” axis include the following:

e The Learning/Training environment.

e The Testing/Validation environment.

e The Operation environment.

e The Application environment.

e The Market environment — for instance, software requirements should be
ordered according to their importance, so that the most important requirements
can be implemented early to meet the market needs: if necessary, some optional
requirements can be ignored to get the products ready on the market in time.

4.5.3 The “People/Logic” Axis

The items of this axis are almost the same as those in Hall’s framework, except that
the Develop Requirement is replaced with Computer Simulation because
Develop Requirement may be combined in the Development part of the “Phases,”
and Computer Simulation is a powerful tool for solving many complexity issues
in a complex system.

4.5 The Description of FDS 97

4.5.4 The “New Paradigm” Axis Modified from the “Knowledge/
Skills” Axis in Hall’s Framework

With FDS, the Knowledge/Skills axis is considered as the essential condition for
the people to perform the paradigm shift in an industry. The design purpose of FDS
is mainly for the use in paradigm shifting, so the Knowledge/Skills axis is replaced
with the “New Paradigm” axis.

The items in the “New Paradigm” axis may be different for different applications.
In most cases, it could consist of “Process Model,” “Methodology,” “Technology,”
“Tool and Platform,” “Quality Assurance,” “Visual Technique,” “Testing Method,”
“Maintenance Approach,” “Quality Assurance Standard,” “Project Management,”
“self-recovery,” etc. Within them, the most important parts are the “Process Model,”
“Methodology,” and “Technology” elements. It means that making revolutionary
changes to the process model and the methodology and technology from the old-
established paradigm based on linear thinking and simplistic science to the new
revolutionary paradigm based on nonlinear thinking and complexity science is
essential for establishing the new paradigm of an industry.

4.5.5 The “Phases” (Workflows) Axis

The items in this axis are the same as those specified in Hall’s framework. But it is
are recommended to perform those after the paradigm shift of the corresponding
industry has been completed by a tool vendor or the organization itself. With FDS,
the phases being performed do not follow a linear order. As Professor Brooks points
out in his seminal work, The Mythical Man-Month: “There has to be upstream
movement. Like the energetic salmon... experience and ideas from each down-
stream part of the construction process must leap upstream, sometimes more than
one stage, and affect the upstream activity.” [Bro95]. This idea is represented with
a bidirectional traceability bar with this axis. Automated and self-maintainable
traceability is crucial for handling changes globally to meet the Holism principle
and the Self-adaptation principle.

FDS itself is designed as an adaptive framework — when FDS is used for the
paradigm shift of an industry, the contents of each axis may represent different
items.

The meanings of other items in FDS are the same as specified in Hall’s frame-
work. For detailed descriptions of those items and their meaning, please read A. D.
Hall’s original papers [Hal62], [Hal69].

The relationships among the five elements represented in the five axes of FDS
are shown in Fig. 4.3.

As shown in Fig. 4.3, the principles of complexity science should be applied to all
other items, not only those shown in the “New Paradigm” axis. For instance, when

98 4 Prediction and Practices: A New Round of Industrial Revolution

P W

er® " o . - ———
T Extended Five-Dimensional Structure Common Principles of
PTinCipleS Syl‘l‘t’r‘lﬁls Method (FDS) Complex]ty Scmggg
e TPaa.
) Ty o ol

Self-organized Concept Sunamics Svetem| [F————————
System omplexity System Dynamics System| | » yaptable System
. [X

Fig. 4.3 The five elements of FDS and their relationships

FDS is used for software system development after the paradigm shift is completed,
at least the extended “Synthesis Design” and the “Incremental Integration” principles
should also be applied to the items shown on the ‘“Phases” axis.

It is recommended to handle a complex system design or engineering in two
major steps: the first one is to complete the paradigm shift by the organization
performing the tasks or a tool vendor, then the second one is to handle the detailed
tasks by applying the corresponding new paradigm established in the first step.

4.6 The Major Features of FDS

The major features of FDS are as follows:

1. Based on complexity science — The essential principles of complexity science
become the requirements to be satisfied for the establishment of a new revolu-
tionary paradigm in an industry.

2. General — It is innovated for the paradigm shift in many different industries
where the existing paradigm is based on linear process, reductionism, and the
superposition principle. FDS does not follow an individual school of thought but
follows the common essential principles of complexity science.

3. Operational — FDS has been used to complete the paradigm shift of the software
industry.

4. Adaptive — It is recommended to make necessary changes to FDS to meet the
needs for different applications. For instance, the Environment part can be quite
different in different applications.

4.7 Applications of FDS 99

5. Useful for both — The paradigm shift of an industry and the framework for
solving an individual complex system after the completeness of the paradigm
shift in the corresponding industry.

4.7 Applications of FDS

Sampling is a good approach for human beings to work with. As pointed out by
Alistair A. R. Cockburn, “Working from examples. Some cognitive psychologists
convincingly argue that our deductive mechanisms are built around constructing
specific examples of problems. CRC cards and use cases are two software development
mechanisms centered on examples, and are repeatedly cited by practitioners as
effective. ‘Instance diagrams’ are often preferred by newcomers to object-oriented
design, and still are used by experienced designers” [Coc99] — so that as an application
example of the FDS method innovated, the paradigm shift for the software industry
(engineering) is chosen.

The reason to choose the software industry as an application example of FDS is
because

(a) Software has become an indispensable technology and a driving force for business,
science, and engineering in the twenty-first century.

(b) Software affects almost every aspect of our lives and has become deeply perva-
sive in our commerce, our culture, and our everyday activities.

(c) But unfortunately, low productivity, high cost, and poor quality are the major
problems existing with software industry for the past 50 years. Until today, the
project success rate in software industry is only about 30%.

(d) Software product is a typical complex nonlinear system where the “Butterfly
Effect” (a phrase which encapsulates the more technical notion of sensitive
dependence on initial conditions in chaos theory) is a common occurrence.

(e) The paradigm shift for the software industry is very hard to perform.

As pointed out by Franco Zambonelli and H. Van Dyke Parunak in their paper
titled “Signs of a Revolution in Computer Science and Software Engineering”
[ZamO3] that “We are on the edge of a revolutionary shift of paradigm. The change
in the modeling and understanding of complex software systems will also impact
how such systems are designed, maintained, and tested.”

In the application example, the entire paradigm has been shifted in almost all
major aspects in software engineering, including the following:

(a) The process models — from linear waterfall models or one-way iteration
“micro-waterfall” models to a nonlinear two-way iteration model, the NSE
model supported with facilities for automated and bidirectional traceability
among all artifacts (including requirement specifications, design documents,
project development plans, test cases, manuals, test results, QA reports, and
the source code), so that the tasks can be done globally rather than locally to
prevent the “Butterfly Effect” (side-effect propagation) in the implementation
of software change.

100

(b)

©

(d)

(e)

®)

4 Prediction and Practices: A New Round of Industrial Revolution

The software development methodology — from test-driven approaches to defect
prevention and traceability driven approach, the NSE methodology, in the view-
point of quality assurance. NSE methodology complies with the principles of
complexity science, including the “Synthesis Design” and “Incremental
Integration” principles with the “intention” to respond to requirement changes
inreal time. The new software development methodology is based on Generative
holism rather than Constructive holism (see Chap. 10).

The software testing system — from a Black-box approach (which can be used
only in the case that the system has been completely coded so that to an input there
is a corresponding output to be able to check whether the output is the same as
what is expected) to a transparent-box approach, which can be dynamically used
in the entire lifecycle of a software product development and maintenance, includ-
ing the requirement development phase and the primary design phase, because to
each input the NSE test system not only verifies whether the output (if any, can be
none) is the same as what is expected but also verifies whether the specified exe-
cution path is covered with the execution of the corresponding test case, and
whether some modules and/or branches that are prohibited to hit, have been hit
with the execution of the test case, plus the capability to establish automated bidi-
rectional traceability between the source code and the test case (can be expanded
for all related documents) for identifying and removing inconsistent defects.

The software maintenance process and system — from the old approach of
blindly and locally responding to requirement change and code modification to
a visible, systematic, disciplined, and quantifiable approach to respond to
requirement changes and code modifications globally, with defect prevention
capabilities through automated bidirectional traceability.

The quality assurance system — from a testing and correction approach to defect
prevention and defect propagation prevention (“An ounce of prevention is worth a
pound of cure!” [Fra]) plus a deep and broad testing approach, the NSE SQA
system.

The visual technologies, tools, and their applications — from the technology and
tools without traceability and used in modeling only to the interactive and
traceable 3J graphics (J-Chart, J-Diagram, and J-Flow) defined and implemented
by me which can be used in the entire lifecycle of a software development (see
Chap. 6).

4.8 Bringing Feedback to the Research and Development

of Complexity Science

How can we make more contributions to push the research and development of
complexity science? The best way is to apply it in handling complex nonlinear
systems in the real world, and then get feedback to drive the development of
complexity science.

FDS is designed as a bridge between complexity science and its applications.

References 101

4.9 Summary

FDS is designed as a general framework for paradigm shift in an industry from the
old-established paradigm based on linear thinking (linear process), reductionism,
and superposition principle to a new one based on nonlinear thinking (nonlinear
process) and complexity science by complying with the essential principles of com-
plexity science, particularly the Nonlinearity principle and the Holism principle.

There are five axes with FDS: the “Principles of Complexity Science” axis, the
“Environment” axis, the “People/Logic” axis, the “New Paradigm” axis, and the
“Phases (Workflows)” axis.

As an application example, FDS has been successfully used to complete the
paradigm shift of software engineering — the establishment of NSE nonlinear
software engineering paradigm.

4.10 Points and Questions to Ponder

(a) What are the major differences between Hall’s framework and FDS?

(b) Why is it recommended to apply complexity science to solve the problems of
a complex system in an industry through two major steps (the first one is to com-
plete the paradigm shift by the organization performing the tasks or a tool vendor,
then the second one is to handle the detailed tasks by applying the corresponding
new paradigm established in the first step)?

4.11 Further Reading and Information Source

(a) Abran A, Moore JW, Bourque P, Dupuis R (eds) (2004) Guide to the software
engineering body of knowledge — 2004 Version. IEEE Computer Society. p. 1-1.
ISBN 0-7695-2330-7.

(b) Bolton D. About.com Guide, Definition of Framework. http://cplus.about.com/
od/glossarl/g/frameworkdefn.htm

References

[Bro95] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading

[Coc99] Cockburn AAR (1999) Characterizing people as non-linear, first-order components in
software development. HaT Technical Report 1999.03, Oct 21

[Fra] Franklin B (1736) An ounce of prevention is worth a pound of cure. Philadelphia’s
1706-1790

[Gha04] Gharajedaghi J (2004) Systems methodology: a holistic language of interaction and
design seeing through chaos and understanding complexities, http://www.acasa.
upenn.edu/JGsystems.pdf

http://cplus.about.com/od/glossar1/g/frameworkdefn.htm
http://cplus.about.com/od/glossar1/g/frameworkdefn.htm
http://cplus.about.com/od/glossar1/g/frameworkdefn.htm
http://cplus.about.com/od/glossar1/g/frameworkdefn.htm

102

[Hal62]
[Hal69]

[Jon06]

[Kuh62]
[LimO5]
[Mck99]

[War96]

[ZamO03]

4 Prediction and Practices: A New Round of Industrial Revolution

Hall AD (1962) A methodology for systems engineering. Van Nostrand, Princeton
Hall AD (1969) Three-dimensional morphology of systems engineering. IEEE Trans
Syst Sci Cybern SSC-5(2):156-160

Jones C (2006) Social and technical reasons for software project failures. CrossTalk,
June Issue

Kuhn T (1962) The structure of scientific revolutions. University of Chicago press,
Chicago

Lindberg C (2005) Complexity, the science of relationships. Nursing, the profession
of relationships. Plexus Institute, Allentown

McKelvey B (1999) Complexity theory in organization science: seizing the promise
or becoming a fad? Emergence 1(1):5-32

Warfield JN (1996) Five schools of thought about complexity. In: Proceedings of the
Society for Design and Process Science: integrated design and process technology,
vol 2. SDPS, Austin

Zambonelli F, Van Dyke Parunak H (2003) Signs of a revolution in computer science
and software engineering. Springer, Berlin, http://www.newvectors.net/staff/
parunakv/ZambonelliParunak AOSEOQ2.pdf

http://www.newvectors.net/staff/parunakv/ZambonelliParunakAOSE02.pdf
http://www.newvectors.net/staff/parunakv/ZambonelliParunakAOSE02.pdf

Chapter 5
Outline of the NSE Paradigm

The whole is more than the sum of its parts.

A.1, Aristotle

This chapter will briefly introduce the NSE paradigm, including the development
objectives, the basic idea, the technical route to achieve its development objectives,
the structure, the components, and the major features and characteristics of the NSE
paradigm.

5.1 A Tree Will Not Fall at One Blow: The Difficulty
in Software Engineering Revolution

The software engineering paradigm itself is a very complex system consisting of
many parts including the engineering process models, the software development
methodology, the software testing paradigm, the quality assurance paradigm, the
software visualization paradigm, the software documentation paradigm, the software
maintenance paradigm, the software project management paradigm, the applied
technologies, the used algorithms, the support tools, the support platforms, and more.

Unfortunately, as described in Chap. 2 of this book, almost all parts of the existing
software engineering paradigm are established/created/designed based on linear
thinking, reductionism, and the superposition principle — it means that almost all of
the parts of the existing software engineering paradigm are outdated:

* The existing engineering process models are outdated because they are linear
ones without upstream movement at all, where almost all software engineering
tasks/activities are performed linearly, partially, and locally, making the defects
introduced into a software product easy to propagate into the maintenance phase
and making the defect removal cost increase tenfold many times.

e The existing software development methods are outdated because they are linear
ones complying with the superposition principle to complete the components of a
software product first, then “Assemble the product from the product components,

J. Xiong, New Software Engineering Paradigm Based on Complexity Science: 103
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_5,
© Springer Science+Business Media, LLC 2011

104 5 Outline of the NSE Paradigm

ensure the product, as integrated, functions properly and deliver the product.”
[CMMIL1.1] It seems that those methods handles a software product as a linear
system like a machine which can be assembled. But based on the Generative
Holism principle of complexity science, the whole of a complex system should
exist first as an embryo, then it “grows up” with its components. From the quality
assurance view, the existing software development methods are test-driven, but the
testing is performed after production which has been proven impossible to ensure
high quality of a software product as reported by NIST (National Institute of
Standards and Technology) (“Requiring Software Independence in VVSG 2007:
STS Recommendations for the TGDC,” November 2006, http://vote.nist.gov/
DraftWhitePaperOnSIinVVSG2007-20061120.pdf).

* The existing software testing paradigm is outdated — it separates functional testing
and structural testing and can be dynamically used only after production.

e The existing software quality assurance paradigm is outdated — it depends on
testing after coding and inspection rather than defect prevention.

e The existing software visualization paradigm is outdated — it offers partial,
untraceable capability for software diagramming.

* The existing software documentation paradigm is outdated — it makes the software
documents separate from the source code without bidirectional traceability.

* The existing software maintenance paradigm is outdated — it offers linear, blind,
partial, and local approaches for software maintenance without the capability to
prevent the side effects for the implementation of requirement changes or code
modifications, making software maintenance take 75% or more of the total effort
and total cost in software product development.

* The existing software project management paradigm is outdated — it separates
the project management process and the software product development process.
The documents for project management are not directly traceable to the require-
ment implementation and source code.

* Most of the existing software development techniques and tools are outdated —
they are all working with the linear process models complying with reductionism
and the superposition principle.

e The definition of “Software” is outdated too — it includes the program, the data
used, and the documents separate from the source code, and ignores the history
of the static and dynamic measurement of the program, with no efficient tools to
help maintainers to handle the complexity, changeability, invisibility, conformity,
traceability, and maintainability.

The improvement of only one or two parts of the existing software engineering
paradigm will not work well for the whole.

Some models mainly focus on software process improvement (SPI) and project
management improvement. Why is the success rate of the implementation of those
models still as low as about 30% [Ngw03], [Nia06]? The root causes are as follows:

1. According to the Holism principle of complexity science, the behavior and char-
acteristics of the whole of the software engineering paradigm cannot be inferred

5.2 The Objectives for Establishing NSE 105

from one or some of its parts, but emerge from the interaction of all of its parts —
not only the process and the management. It means that without bringing revo-
lutionary changes to the outdated software testing paradigm, the outdated
software quality assurance paradigm, the outdated software documentation
paradigm, the outdated software visualization paradigm, and the outdated soft-
ware maintenance paradigm, it is impossible to efficiently improve the whole of
the engineering paradigm to solve the critical issues existing with today’s soft-
ware development. For instance, no matter how good the process has been
improved, if the outdated test paradigm has not been changed revolutionarily, the
quality assurance still mainly depends on functional testing using the Black-box
method after production; there is no efficient way to prevent and remove the
defects introduced into a software product in the requirement development
phase, the design phase, and the coding phase. Even if later on, a requirement
defect or design defect is removed through testing, the cost for the removal of the
defect will increase tenfold many times. Even if all the other parts of the existing
software engineering paradigm have been changed revolutionarily except the
software maintenance paradigm which is still performed blindly, partially, and
locally so that each time when a defect is removed there is a chance of 20-50%
to introduce a new defect into the software system, the software product will
become unstable day by day.

. Some popular models focus on SPI but ignore the most important process

improvement — the life cycle models themselves: those popular models require
software organizations to select one of the existing life cycle model such as the
waterfall model, the iteration model, or the incremental model (which is ‘“a series
of Waterfalls”[GSAMO3]) for their projects. It is questionable that if the life cycle
model selected by a software organization for its projects is unsuitable, how can
those popular models help the organization to improve the process? In this case it
is possible that the better the process is improved, the worse the result obtained!

It is clear that the establishment of a new revolutionary software engineering

paradigm based on complexity science itself is a big engineering project — only the
support platform will consist of more than 10,000 function points with about one
million lines of source code, and more than 100 new algorithms to be innovated for
the establishment of the new revolutionary paradigm and the development of the
support platforms.

It is why the establishment of NSE takes several years to complete.

5.2 The Objectives for Establishing NSE

The objectives for establishing NSE include

Efficiently handling the essential issues with software and software engineering —
the complexity, invisibility, changeability, and conformity, as defined by Brooks
[Bro95-p182].

106 5 Outline of the NSE Paradigm

* Making it possible to help software development organizations double their
productivity, halve their cost, while removing 99-99.99% of defects in
their software products developed with NSE.

» Making it possible for software organizations to double their project success rate.

* Being candidates of the silver bullet to slay the software werewolf — missed
schedules, blown budgets, and flawed products [Bro95-p181].

* Making a software product much easier to read, understand, test, and maintain
in both the product development site and the product maintenance site.

* Helping software engineers relax from their daily hard work.

5.3 The Strategy to Achieve the Objectives of NSE

According to complexity science, the property of a complex system is determined
by both the whole and its parts, so that the strategy to achieve the objectives of NSE
is as follows:

1. The first thing is to bring revolutionary changes to all parts of software engineer-
ing by complying with the essential principles of complexity science, particu-
larly the Nonlinearity principle and the Holism principle to innovate all required
techniques and develop the related tools.

2. But only this is not good enough, so the second thing is to make all parts work
together closely to change the behaviors and characteristics of the whole to what
we desire, such as developing the support platform to integrate all the related
tools together to share a tiny database using the unique data format, and making
the documents produced by third party tools traceable with the implementation
of requirements and the source code using batch files, etc.

3. The third thing is to apply the new software engineering paradigm in real soft-
ware product development to see whether it works as what we expected, and
then get the feedback from the users to improve the entire software engineering
paradigm.

5.4 The Establishment of NSE

NSE is established as an application example of the FDS (Five-Dimension
Synthesis Method) paradigm-shift framework as shown in Fig. 5.1.

As shown in Fig. 5.1, each part of the NSE paradigm is developed/created by
complying with the essential principles of complexity science, particularly the
Nonlinearity principle and the Holism principle, so that with NSE almost all soft-
ware engineering tasks/activities are performed holistically and globally.

The FDS framework can also be used for an individual software product devel-
opment after the establishment of NSE.

5.6 The Components of NSE 107

Bi-directional Traceability <> €
£ E
5 §Egs 5
5 5 ESSE £
= $§ £5. S§zE£5 g 2
£ 8§ o o el = g
E c xE =0 c Cu é c o |
o ® £ w o e u w]
H §26)| oEss 2
= EBsE EIF x]
’ gs5g| E S¢S @
L W b
NSE Maintenanc 038 & EDa Implementation
paradigm ae? gi% < Decision Making
NSE SQA paradig 2 'E EQ Optimization
NSE Test paradigm S § Computer Simulation
NSE Support Technology B 3 System Synthesis

NSE Methodology
NSE Process Model

Value System Design
Problem Definition
Nonlinearity
Holism

namics
Self-organization
Self-Adaptation
_.Openness

Principles of complexity science (with extended principles)

NSE: Nonlinear Software
Engineering Paradigm

Fig. 5.1 The FDS (the Five-Dimensional Structure Synthesis) paradigm-shift framework

5.5 The Structure of NSE

The structure of NSE is shown in Fig. 5.2.

As shown in Fig. 5.1, NSE consists of ten parts, including (1) NSE process
model, (2) NSE software development methodology, (3) NSE diagramming (visu-
alization) paradigm, (4) NSE testing paradigm, (5) NSE quality assurance para-
digm, (6) NSE documentation paradigm, (7) NSE maintenance paradigm, (8) NSE
project management paradigm, (9) NSE support techniques, and (10) NSE support
tools and platforms. They all work together closely.

The NSE paradigm has been implemented and supported by Panorama++ and
SilverBullet platforms.

5.6 The Components of NSE

1. The NSE process model — It is the core part of NSE, a roadmap of the Nonlinear
Software Engineering paradigm. The NSE process model is nonlinear, through
two way iteration with multiple tracks (see Chap. 8) supported by automated and
self-maintainable traceabilities (see Chap. 9).

2. The NSE software development methodology — It is based on Generative
Holism and driven by defect prevention and traceability, different from the

108 5 Outline of the NSE Paradigm

NSE
Methodology

Nonlinear
Tesing N
Parndign Engineering

Documentation
Paradigm

NSE
Support Tools
& Platforms

NSE Project
Management
Paradigm

Fig. 5.2 The NSE structure

existing software development methodology based on Constructive Holism
and driven by testing (see Chap. 10).

3. The NSE diagramming (visualization) paradigm — It makes the entire soft-
ware engineering process visible from the first step down to the maintenance
phase using interactive and traceable 3J graphics by generating the overall charts/
diagrams for the entire software system and detailed logic diagrams and control
flow diagrams for each file/class/function, with the capability to highlight
untested conditions and branches when working with the MC/DC test coverage
measurement tools integrated into the NSE support platforms (see Chap. 7).

4. The NSE testing paradigm — It is based on the Transparent-box testing method
which combines functional testing and structural testing together seamlessly; to
each test case it not only checks whether the output (if any, can be none) is the
same as what is expected, but it also helps users to check whether the real execu-
tion path covers the expected one specified in control flow diagram, and then it
automatically establishes bidirectional traceability among the related documents
and test cases and the source code through the use of bookmarks and Time Tags
inserted into both the test case description and the test coverage database for
mapping the test cases and the tested source code together, so that it can be used
dynamically in the entire software development and maintenance process,
including the requirement development phase and the design phase, to greatly
reduce the amount of defects introduced into a software product developed with
NSE (see Chap. 16).

5.7

5.

10.

The Major Feature and Characteristics of NSE 109

The NSE quality Assurance paradigm — It is based on defect prevention and
defect propagation prevention from the first step down to the maintenance phase
(see Chap. 17).

. The NSE documentation paradigm — It makes the documents traceable to and

from the source code to keep consistency with the source code at all times. The
generated documents exist virtually to greatly reduce the required space and to
speed up the display much faster (see Chap. 19).

. The NSE maintenance paradigm — It helps users perform software mainte-

nance holistically and globally with side-effect prevention for the implementa-
tion of requirement changes or code modification supported by various
traceabilities to ensure the product quality and greatly reduce the cost through
the use of test case minimization and intelligent test case selection in regression
testing after code modification (see Chap. 18).

. The NSE project management paradigm — It combines the software development

process and project management process together, making the project management
documents (such as the schedule chart, the project development plan, the cost
estimation tables) traceable with the implementation of requirements and the source
code for finding and fixing the management problems in time (see Chap. 20).

. The NSE support techniques — They are the driving force for the establish-

ment of NSE: 14 advanced techniques are innovated and applied into NSE and
the support platforms (see Chap. 6).

The NSE support tools and support platforms — They help software organi-
zations to apply NSE in their software product development easily, no matter if
it is used for new software development, or to test or maintain an existing soft-
ware product (see Chap. 22).

5.7 The Major Feature and Characteristics of NSE

It is based on a solid foundation — complexity science: The entire NSE para-
digm is established by complying with the essential principles of complexity
science, particularly the Nonlinearity principle and the Holism principle.

It is complete — NSE itself is complete, including its own process model, soft-
ware development methodology, visualization paradigm, testing paradigm, QA
paradigm, documentation paradigm, maintenance paradigm, management para-
digm, etc.

It brings revolutionary changes to almost all aspects in software engineering —
It makes them change from the old one based on linear processes and the super-
position principle, to the new one based on nonlinear processes and complexity
science.

It offers both ‘““what to do”” and “how to do” — Different from some popular
models which only offer “what to do” but ignore “how to do,” NSE offers both.
With it almost all software engineering tasks/activities are performed
holistically and globally — With NSE, from requirement development down to

110 5 Outline of the NSE Paradigm

maintenance, all tasks/activities are performed holistically and globally with
defect prevention including side-effect prevention for the implementation of
requirement changes and code modification.

e It combines the software development process and software maintenance
process together closely — With NSE, requirement changes are welcome and
implemented with side-effect prevention though various bidirectional trace-
abilities (see Chaps. 8 and 18).

e It combines the software development process and software management
process together closely — It makes all documents including the management
documents such the schedule chart and the cost reports traceable to the imple-
mentation of requirements and the source code to control a software project
better and to find and fix the related issues in time (see Chaps. 8 and 20).

» It ensues software product quality from the first step to the final step through
defect prevention and dynamic testing using the Transparent-box testing
method — NSE offers many means to prevent defects introduced into a software
product by people (the customers and the developers) with dynamic testing using
the Transparent-box testing method which combines functional testing and
structural testing seamlessly, can be dynamically used in the cases where there is
no real output from the software system such as a dummy system with dummy
modules only without detailed program logic (see Chaps. 11, 17, and 18).

¢ With NSE, the design becomes precoding (top-down), and the coding becomes
further design (bottom-up) — With NSE, in most cases the design through
dummy programming using dummy modules becomes precoding, and the coding
becomes further design through reverse engineering (see Chaps. 12 and 13).

» It makes software documents traceable to and from source code — With NSE
all related documents and test cases and the source code are traceable forwards
or backwards though automated and self-maintainable traceabilities.

e It supports real-time communication through traceable Web pages and
traceable technical forum - With NSE, the bidirectional traceability is
extended to include Web pages and BBS for real-time communication.

¢ It makes the entire software development process visible from the first step
down to the final step — The NSE visualization paradigm is capable of making
the entire software development process visible through dummy programming
and reverse engineering.

¢ It makes a software product much easier to read, understand, test, and
maintain — With NSE, a software is represented graphically and shown in both
the overall structure of the entire product and the detailed logic diagram and
control flow diagram with various traceabilities and where the untested condi-
tions and branches are highlighted.

¢ It can be applied at any time in any stage for a software product development
using any original method — NSE can be added onto a software product being
developed using any other approach by adding bookmarks in the related docu-
ments and modifying the test cases to use some key words to indicate the format
of a document and the file path plus the bookmark, then the other work can be
performed by the NSE support platform automatically.

5.7 The Major Feature and Characteristics of NSE 111

e It requires much less time, resources, and manpower to apply compared
with other existing approaches — One just needs to reorganize the document
hierarchy using bookmarks and modifying the test case description using some
simple rules; all of the other work can be performed automatically by the NSE
support platform with many automated and intelligent tools integrated together,
including the creation of huge amounts of traceable and virtual documents based
on static and dynamic measurement of the software, the diagramming of the
entire software product to generate holistic and detailed system call graphs and
class inheritance charts, the holistic and detailed test coverage measurement
results shown in J-Chart and J-Diagram or J-Flow diagram with untested condi-
tions and branches highlighted, the holistic and detailed quality measurement
results shown in Kiviat diagram for the entire software product and each class or
function, the holistic and detailed performance measurement results shown in
J-Chart and bar chart with branch execution frequency measurement result
shown in J-Diagram or J-Flow diagram to locate the performance bottleneck
better, the software logic analysis results shown in J-Diagram with various kinds
of traceability for semiautomated code inspection and walk through, the soft-
ware control flow analysis results shown in J-Flow with untested conditions and
branches highlighted, the GUI test operation capture and selective playback for
regression testing after code modification, the test case efficiency analysis and
test case minimization to form a minimized set of test cases to replace all the test
cases to speed up the regression testing process and greatly save the required
time and resources, the establishment of bidirectional traceability among all
related documents and the test cases and the source code, the generation of
more than 100 reports based on the static and dynamic measurement of the
software which can be stored in HTML format for being used on the internet,
the Cyclomatic complexity measurement results shown in J-Chart and J-Flow
diagram for performing refactoring on the over complicated modules to reduce
possible defects, and more.

e It is possible for NSE to help software organizations double their produc-
tivity, halve their cost, and reduce 99-99.99% defects in their software
products — With NSE, the quality of a software product is ensured from the
first step through defect prevention and defect propagation prevention rather
than testing after coding, so that the amount of defects introduced into a soft-
ware product is greatly reduced, and the defects propagating to the mainte-
nance phase are also greatly reduced; software maintenance is performed
holistically and globally with side-effect prevention; the regression testing
after software modification is performed using a minimized test case set and
some test cases selected through backward traceability from the modified
modules and branches; software testing is performed in the entire software
development process dynamically using the Transparent-method which com-
bines functional testing and structural testing together seamlessly, and can be
dynamically used in the case that there is no real output in running some test
cases, when it is used in the requirement development phase and the software
design phase.

112 5 Outline of the NSE Paradigm

5.8 Summary

The old-established software engineering paradigm is entirely outdated because it
is based on linear thinking, reductionism, and the superposition principle that the
whole of a complex system is the sum of its parts, so that almost all tasks/
activities in software engineering are performed linearly, partially and locally — it
is the root cause why many software projects fail.

The NSE paradigm is established with the FDS (Five-Dimension Synthesis
Method) paradigm-shift framework by complying with the essential principles of
complexity science, particularly the Nonlinearity principle and the Holism principle
that the behavior and characteristics of the whole of the software engineering
paradigm cannot be inferred from its parts, but emerge from the interaction
of all its parts, so that with NSE almost all tasks/activities in software engineering
are performed holistically and globally.

The NSE paradigm consists of ten major parts including the (1) NSE process
model, (2) NSE software development methodology, (3) NSE diagramming
(visualization) paradigm, (4) NSE testing paradigm, (5) NSE quality Assurance
paradigm, (6) NSE documentation paradigm, (7) NSE maintenance paradigm,
(8) NSE project management paradigm, (9) NSE support techniques, and (10) NSE
support tools and platforms. They all work together closely.

5.9 Points and Questions to Ponder

(a) What are the major problems existing with today’s software development? Why
are those problems so hard to solve?

(b) Why does today’s software maintenance take 75% or more of the total effort
and total cost in software product development?

(c) Whatis NSE?

5.10 Further Reading and Information Source

(a) Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading

(b) DevTopics Software Development Topics, 20 Famous Software Disasters
(http://www.devtopics.com/20-famous-software-disasters/)

(c) Xiong J, Xiong J (2009) A complete revolution in software engineering based
on complexity science. In: WORLDCOMP’09 — SERP (Software Engineering
Research and Practice 2009), pp 109-115

http://www.newvectors.net/staff/parunakv/ZambonelliParunakAOSE02.pdf

References 113
References

[Bro95-p181] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 181

[Bro95-p182] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 1282

[CMMI1.1] Phillips M (2002) CMMI Program Manager, CMMI V1.1 and Appraisal Tutorial,
http://www.sei.cmu.edu/cmmi/

[GSAMO3] USAF Software Technology Support Center (2003) Condensed GSAM
Handbook, Chap 2, CrossTalk

[NgwO03] Ngwenyama O, Nielsen PA (2003) Competing values in software process
improvement: an assumption analysis of CMM from an organizational culture
perspective. IEEE Trans Eng Manag 50(1):100-112. doi:10.1109/
TEM.2002.808267

[Nia06] Niazi M (2009) Keele University, Software process improvement implementa-
tion: avoiding critical barriers. CrossTalk, Jan Issue

http://www.newvectors.net/staff/parunakv/ZambonelliParunakAOSE02.pdf

Chapter 6
The Techniques Innovated to Support NSE

The road ahead for software engineering is driven by software
technologies.

Roger S. Pressman, “SOFTWARE ENGINEERING: A
Practitioner’s Approach”

There are a set of unique techniques innovated to support the NSE process model
and the entire NSE software engineering paradigm for efficiently solving the essential
problems in software development: the complexity, changeability, conformity, and
invisibility described by Frederick P. Brooks Jr. in his book, “The Mythical Man-
Month” [Bro95-p182], plus testability, reliability, traceability, and maintainability.
This set of unique techniques are innovated by me and implemented by me and my
colleagues through the Paradigm-shift framework, FDS, also innovated by me
(see Chap. 4), as shown in Fig. 6.1.

The related techniques innovated for the establishment of NSE is shown in
Fig. 6.2.

6.1 Definitions

There are some definitions to be described first.

Dummy Module: a source code module having an empty body or a simple body
with some function call statements only without real program logic.

Dummy System: a software system consisting of dummy modules, and can be
compiled, executed, and tested without producing any real output.

Dummy Programming (Bone Programming): the process for designing and
coding a dummy software system.

Time Tag: a time mark automatically inserted into a test case description in a test
case script file and the corresponding test coverage database, to indicate the date and
time when a test case is executed and where the corresponding test coverage result is
located in the database. It is used for mapping a test case and the corresponding source
code tested by the test case to establish bidirectional traceability. When a test case is

J. Xiong, New Software Engineering Paradigm Based on Complexity Science: 115
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_6,
© Springer Science+Business Media, LLC 2011

116 6 The Techniques Innovated to Support NSE

Bi-directional Traceability <
» 2%
; § 5% 2
£ o E § =g ®
o o £ 3Eco o
& @ = 6 C CE2ELSE ¢ -
o & e E2 oM ISE B =
g G e S SSER e £
& £6¢c OE EEQ o &
= W= 0 EEhﬂ"ﬁo 2
o EEsE sEd 2 g
= i T [~ EEO S
&%Ed %Eoo uﬂ‘
‘T P13 &
ee? ESa
3 23
aoc a >
& © Market Environment
o o

Application Environment
Testing/Validation Environment
Learning/Training Environment
Nonlinearity

Holism

namics
Self-Organization
Self-Adaptation
Openness

Principles of complexity science (with extended principles)

Fig. 6.1 Technology development complying with the principles of complexity science

Technology

(1

Holistic, Actor-Action and Event-Response Driven,
Traceable, Visual, and Executable Approach for
Functional Requirement Decomposition |\

Holistic and Traceable Diagram Generation

Virtual and Traceable Documentation Technique | Y-y | Complexity
Comprehensive Software Testing Technique | \Q‘Lﬁ.‘, Conformity
Defect-Prevention Driven Quality Assurance AN AR, ‘:‘ Changeability

Holistic and Dynamic Traceability Establishment <, ST

Invisibility

AN

Holistic and Intelligent Version Comparison

Test Case Efficiency Analysis and Test Case
Minimization Technique

Reliability
Synthesis Design and Incremental N .
Implementation/iteration/integration Technigue \| Traceability

e
Refactoring Technique With Defect Prevention /A Maintainability

MC/DC Test Coverage Analysis and Graphical
Representation Technigue §&

Assist Test Case Design Technique
Intelligent Regression Test Case Selection

Holistic, Global, and Side-Effect-Prevention Based
Software Maintenance

Testability

Fig. 6.2 Techniques innovated for the establishment

6.2 Holistic, Virtual, and Traceable Diagram Generation Technique 117

modified or the corresponding source code is modified, after rerunning the test case
script, a new Time Tag will be inserted to replace the old one — so the bidirectional
traceability can be automatically maintained without manual modification.

3J Graphics (J-Chart, J-Diagram, and J-Flow): new types of charts, logic dia-
grams, and control flow diagrams innovated by me which are interactive and
traceable; used for making the entire software development lifecycle visible and
the software product much easier to understand, test, and maintain.

Transparent-box Testing Method: a new software testing method innovated and
implemented by me which combines functional testing and structural testing
together seamlessly — to each test case a test tool developed with this method will
check whether the output (if any, can be none — when applied in the requirement
development phase and the preliminary design phase, there is no real output at all)
is the same as what is expected, but also help users to check whether the real execu-
tion path covers the expected path specified using J-Flow diagram, and whether the
execution hits some modules or some branches prohibited for the execution of the
test case; after the execution of the test case, the tool will also build a bidirectional
traceability facility to help users check the consistency among all of the related
artifacts (including the source code too) through forward tracing and backward
tracing. Different from traditional Black-box testing method which can be used
after coding to find functional defects only, the Transparent-box testing method
can be used to find functional defects, structural defects, and inconsistency defects
among all of the artifacts in all phases of the software development life cycle,
because having an output is no longer a condition for the use of the Transparent-
box method dynamically. Chapter 16 will discuss this method in detail.

6.2 Holistic, Virtual, and Traceable Diagram Generation
Technique

The Holistic, Virtual, and Traceable Diagram Generation technique is a new software
diagram generation technique innovated by me and implemented by me and my col-
leagues which uses interactive and traceable 3J graphics to diagram the whole of a
software system and its parts to solve the invisibility issue — making the entire software
development process and the program structure/logic/control flow of an entire soft-
ware product visible in all levels. The generated charts, logic diagrams, and control
flows are traceable between a source file and the included files, a program tree and the
related modules, a function definition body and the corresponding function call state-
ments, a class and the inherited classes, an object and the class definition and the
constructor, a module in a call graph and the corresponding logic diagram or control
flow diagram of the module, or a module and all related modules calling and called by
it, and so on. This technique provides an ideal solution to solve the critical problems
faced with traditional software diagram generation techniques: software systems
become more and more complex, so that using a big call graph to show the whole of
a software system with many connection lines will make it very hard to view as shown
in Fig. 6.3, but using many small call graphics to show the different parts of the entire

118 6 The Techniques Innovated to Support NSE

£3 (Function Call Graph)

finalize free_null getopt_lo|
conf licts able ng_only

reduce _gr

read_decl ugeless_n build_re
arations ontermina ations

parse_tok

new_state save_row

Fig. 6.3 An entire call graph of a complex software system generated with Virtual and Holistic
Diagramming technique

software product separately with many connection arrows will not be able to show the
big picture of the software system clearly, and often causes confusion. How can the
Holistic, Virtual, and Traceable Diagram Generation technique and the corresponding
tools solve this problem? The answer is that the generated charts/diagrams are trace-
able as shown in Fig. 6.4 when a user traces a module on the generated call graph
shown in J-Chart notation, all the related modules calling and called by it are high-
lighted while the unrelated connection lines are invisible. A user can also select any
module as a new root to let the corresponding tools to generate a subset of the system
and show it in a new window. In addition, a bar chart can be attached on a module in
the generated J-Chart to show the related information. All charts and diagrams are
generated virtually from some simple hash tables without storing a hard copy in the
hard disk or the memory of a computer to greatly save the required space and greatly
reducing the time for displaying and monitoring the charts and diagram (see Sect. 6.3).
Sample traceability of a J-Diagram is shown in Fig. 6.5.

6.3 Virtual and Traceable Documentation Technique 119

§4 (Function Call Graph)

finalize cli_prese getopt_lo
conflicts nt ng_only

reduce_gr
anmar

inaccessa E_n build_rel
ble_symbo arations ontermina ations
1z ls

parse_typ token_act
e_decl ions

copy_acti save_rov
on

Fig. 6.4 A module and the related modules (calling and called by it) traced and highlighted

The generated charts and diagrams are virtually existing without storing any
hard copy in disk or memory — they are generated dynamically from several hash
tables from the database. This technique greatly reduces the requirement space
(only needs about 1/100 of the space required by traditional approaches), and makes
the display speed about 1,000 times faster (compared with the old versions of our
own tools). Chapter 7 will discuss this technique in detail.

6.3 Virtual and Traceable Documentation Technique

The Virtual and Traceable Documentation technique is a new software documenta-
tion technique innovated by me and implemented by me and my colleagues. The
corresponding tools developed from this technique automatically generate a great
amount of documents/diagrams (the size is about 100 times bigger than the size of

120 6 The Techniques Innovated to Support NSE

& J-Diagram

& J-Diagram

Fig. 6.5 Traceable J-Diagram (logic diagram) automatically generated

the source code) directly from the source code to document the overall measure-
ment result for the whole system and the detailed result for each component of the
software system through system structure analysis, program logic analysis, pro-
gram control flow analysis, test coverage analysis, performance analysis, function
cross reference analysis, global and static variable analysis, version comparison
and quality measurement — with NSE, all graphics and diagrams are also virtually
generated (including J-Charts, J-Diagrams, and J-Flow diagrams), but the size of
the space needed for the documents/diagrams in memory and hard disk is about
the same as the size of the source code, because the generated documents/dia-
grams are virtually existing without any hard copy to be stored in hard disks or the
computer memory (unless the users require it) — each time, the document/diagram
is generated from the corresponding database dynamically with the size being the
same as the opened window for showing the document/diagram; when there is a
need to trace an element to the related elements, for instance from a function call
statement located in block 10 of the entire logic diagram to the called function
body located in block 100,000 of the diagram of an entire complex software prod-
uct, there is no real diagram movement performed from block 10 to block 100,000,
but a new logic diagram is dynamically generated from the corresponding data-
base and displayed from block 100,000. In this way, the users will see the graphi-
cal representation result as if all the documents/diagrams exist in the memory or
hard disk, but the required space can be reduced to about 1/100 (compared
with the traditional approaches), and the time required to display the generated

6.4 Holistic and Intelligent Version Comparison Technique 121

documents/diagrams or operate them can be reduced to about 1/1,000. Chapter 19
will discuss this technique and its applications in details. A virtually generated
quality measurement result for an entire software product and any individual class
or function is shown in Fig. 6.6 — it is easy to imagine that if the graphical repre-
sentation of the entire product and any class or function is not generated virtually,
a huge amount of disk space and memory space will be required. But with NSE
they are generated virtually from the corresponding database consisting of only
several hash tables, and the total required space is almost the same as the size of
storing the program source code.

6.4 Holistic and Intelligent Version Comparison Technique

The Holistic and Intelligent Version Comparison technique is a new software
version comparison technique innovated by me and implemented by me and my
colleagues which compares any two versions of an entire software system in
system level, file level, and module/statement level using a virtual and holistic
diagramming technique as shown in Fig. 6.7 in Black-white but the original one
shown on the screen is colorful-blue is used for showing unchanged modules, red
for changed ones, brown for deleted ones, and green for added ones. A new ver-
sion of a module with more space characters in some lines will not be treated as
modified — the tool developed using this technology is, in fact, an expert system
which understands the grammar of the target language.

| File Type Select Standard

ot b s , T —
Rasponss Far o Class 1 "] 2
Marbar of MathodeiTless 1 o 2 Classesm Selected classes
) "
Rucber of Bathod oars/Tlacs 1] 2 i = e =
Lisas of Codw Reuted/Tlass 1 b a drvide =
T st Code Roned Tlass 1] 3 £
I o
| lmus = .
§branch Dupth B8 Inhar itanceit 2 branch Dot 88 InbaritanceTlass
Rarbar of DNl Rt f Oh| LTl

£ condit m bt iatid £ conditon bath _‘ . g ki
= X/_ ;Q -
I condit om falas \/)/ & o 1 condition falos v il
~/ \\

" Wonbar of Bathedi/Tlasy
X

P
y Wt 64 Rathosd UspraiTlass
% \H\""‘(
T condition 1rom .l{f sl T condit ion tree Lims of Code Boumed Thass
N .
-‘_‘—lll T ol Code ResedTlass
T Jocowram \ T Jroemirsg Size b Line
— .
Bt < B
S 1 oode
Fpnemsp——)\ i " hegunts wscuted tattel ?/\ .
. . sl T comumts & dhite spaciog
A /\ N, Cyelonatic conplexity luilh cased
T sagramts wwuted ol x{r\ \ o T segrunits woncited lacl) \ Dyclomat . complemity luithosdt casel
Igorple J-corplenityld
T sagrunts wsscuted |ochl p— T eugin s smwcuted (ocll F-cerp ity
J-complenitg? Jecongbanityls Trcomplenityd Trconglenityle

Fig. 6.6 A virtually generated quality measurement result for an entire software product and an
individual class

122 6 The Techniques Innovated to Support NSE

{#: Code_Diff (Function Call Graph) Version A o | @] 8 Version B o 5
Topv—— [t =m
asa7 - || 649 #
2528 = | eese s
2589 2651
@518 2652

% 9511 /x read in a #type decla BES3 /% read in a ¥type declara
2 Be54 |

512 void B6SS void
—— @514 ?arse,type_,de:l) 665'6} p(»arse_tvpe_decl (9]

P 0516 reglster int k; 2658 register int k;

@517 reagister char Xname; 8659 register char xname;

" 0518 /2 register int start_ 2660

o 0519 @661 if (lex() '= TYPENAME)

if (lex() '= TYPENAME) 8662 { |

fatal("ill-formed zt 0663 warn("Xtype declar‘at
2654 skip_to_char('x');
fi_bu BEES return;
NEWZ(k + 1, cha 666 b

strcpy[name token_buf Be6T
668 k = strlen(token_buffer)
start_lineno = line @669 name = NEWZ2(k + 1, char)
V678 strcpy(name, token_buffe

for (;;) 0671
{ Be72 for (;;)
register int t; 673
2674 register int t;
iflungetclskip_whi 8675 |
return; o676 if(ungetciskip_white

- fes77 return; -

bt B IR <) « [ii ,

Fig. 6.7 An application example of the Holistic and Virtual Version Comparison Technique
6.5 Holistic and Dynamic Traceability Technique

The Holistic and Dynamic Traceability technique is a new software traceability
establishment technique innovated by me and implemented by me and my col-
leagues, which is used to establish a self-maintainable facility offering auto-
mated and bidirectional traceability among all artifacts (including all related
documents, test case scripts, test results, and the source code) of an entire soft-
ware product (see Chap. 9), with the capability to selectively and dynamically
play back the captured GUI operations of a traced or selected test case, and show
the test coverage results graphically at the same time. This technique and the
corresponding tools are particularly useful for defect prevention in the entire
software development lifecycle (including the side-effect prevention in software
maintenance for implementing software changes), and realizing full automation
of software acceptance testing though mouse clicks only. Even if the GUI opera-
tion capture is performed for an entire test case script file with many test cases
being executed together, a tool developed with this technique still can selectively
play the captured GUI operations of only one test case back through Time Tags
for data mapping. An application example is shown in Fig. 6.8.

6.6 Comprehensive Software Testing Technique Mainly
Based on the Transparent-Box Method

The Comprehensive Software Testing technique is mainly based on the Transparent-
box testing method to combine functional and structural testing together seamlessly,
with the capability to establish automated and bidirectional traceability among all

6.7 Defect Prevention Driven Quality Assurance Technique 123

L4 The Nonlinear Software Engineering Paradigm [NSE) support platform, Panoramas + for CIC++ | c:Visa_ex-1englis-1...

3 Openedf

v b\ 2ortdeno\re_run. bat 00003
tdeno

b _esanp les'\anslyzed tor _re
‘e

nline C5inpleExcept lon::"CEinpleException (10
AREEREREERRRR RN RANR RN R R RN R RN RR R NRRE R
LLLLLLUIL L UL UL LTI L LD RL LRI LTI LT

inline CHenoryExcept ion::CHenoryException () & (5

€ » < >

-

Fig. 6.8 Selective playback: click on a test case to automatically play the captured GUI
operations back with the source code tested being highlighted

related documents and the source code. To each set of inputs, the tools developed with
this kind of testing approach not only check whether the output (if any, can be none)
is the same as what is expected, but also check whether the execution path covers the
expected path.

Beside the Transparent-box testing, the Comprehensive Software Testing
Technique also offers the capability for memory leak and memory usage violation
analysis, performance analysis with program branch execution frequency measure-
ment (for locating performance bottlenecks better), run-time error execution path
analysis, incremental unit testing and integration testing, embedded software
system testing, and GUI operation capture and playback.

6.7 Defect Prevention Driven Quality Assurance Technique

Traditional software quality assurance techniques are mainly based on software
testing using the Black-box method and the structural testing method. But both
methods are used after production (coding) — it violates Dr. W. Edwards Deming’s
principles for product quality control, “Cease dependence on inspection to achieve
quality. Eliminate the need for inspection on a mass basis by building quality into

124 6 The Techniques Innovated to Support NSE

the product in the first place.” The proposed Defect Prevention Based Quality
Assurance technique is used in the entire software engineering process to prevent
defects through automated traceabilities and many other ways, including dynamic
testing using the Transparent-box testing approach. Chapter 17 will describe the
details. An application example of preventing inconsistency defects in module inter-
faces (between a module definition and the corresponding function call statements)
in the coding process is shown in Fig. 6.9. It is done through incremental coding
based on an assigned coding and unit testing order on the call graph obtained in
the design phase. When writing a function call statement, the engineer can view the
source code of the called function to prevent inconsistency defects because according
to the assigned coding order, the called function must be completed and tested
already. This Defect Prevention Driven Quality Assurance Technique is particularly

| int nexta

| if (e (++pos)){ if(tno_empty) blank_line++; re
pa| (i< = (-}02‘); %
en = 0;

if(col==1){vhile(col <?){if(*pos != “\n") { if

0s)) { if(tno_empty)

[C-100); 3 _— s

3| with viewing the code of a function' ‘332 e |

| called by a function being coded, *pos == ‘§° ||

4| the user can write a function call }fa'f D?:gg';;sz [&

statement correctly without misusing " P75~ PR

= tpos++; the types and the number Vi nnfoulss
[] of the parameters. else errout(1,pass);

blank_line++; return
|
|

void errout(index,flag)™
int index.flag:

ifi{flag==0) switch({inde
case 1:
f

e
case 2:

Fig. 6.9 Coding with defect prevention

6.8 Test Case Efficiency Analysis and Test Case Minimization Technique 125

useful in software maintenance when a requirement is modified, a forward tracing
from the requirement to its implementation is performed to determine what modules
need to be modified, and then a backward tracing is performed from the modules to
the related requirements (which may be more than one) and documents as well as
the modules calling and called by a module to be modified to prevent side effects —
see Chap. 18 for the detailed description.

6.8 Test Case Efficiency Analysis and Test Case
Minimization Technique

For testing a large and complex software product, a huge amount of test cases are
designed and used. But within them the major parts are often useless which just repeat
what have been tested by other test cases. With the old-established software engineering
paradigm the functional testing and structural testing are performed separately, so that
it is difficult to know what test cases are useful or useless. With NSE, the Transparent-
box testing approach is used which combines functional testing and structural testing
together seamlessly with the capability to measure the source code test coverage, so
that it is easy to obtain the test efficiency for each test case by measuring the test
coverage contribution as shown in the left side of Fig. 6.10. With the information of
the test efficiency for each test case, the corresponding tool developed with NSE can

E‘?, Efficiency Analysis Result MP«., MII’III‘I‘MZET.IOn Result L“E!m
File Tag ' File Tag
i Bi\iza e henglis Tanalyz Thcalbcal.bed
5 fon fag 17 23:43:40 2009 bl 11 0 ¥ =
Test coversge of each test cate |= 0| | B Hon Ry 17 23:45:24 2009 =
Hunbar of total test cases (9] | | B Wunber of test cases before mininizing: 9 e
: (Clazs scope: progrand ® Hunber of test cases after mininizing: 3 (33330
]
.tdbs nane: c2hisa_ex” Thenglis”Danslyz”Tcalical. tdb # Total test covaraga of nininized test case set:
® hei nanes ciisa_ex DanglizThanalyz Thcalical.hei r Funct ion [Class scope: progrant: 86,961 (207231
]
R Hininized test cose stz
Caze Fumct ion 0 fon] o
FER TS 47,661 .62 47,181 B laze
17423 (15141078 16671330 (67/142) BC:AISR EXT 1mt5'1\nm.v¢' TVEALVCAL et
(7 Sun Hay 04 18:44:47 2002
4,357 180 .01 2.8 B To test & D05 omqﬂan whare execul lon will flush the windou (it is nonall.
e 121071 141331 a4z} " 8 This is a saple script file for requirenent validation and bug prevention
B C# in code nodif ication to be done through foruard and backusrd tracesbility
3 78.261 S1.401 54,141 £1.41% B anong requirenint spacificat lon, test cate, design document, sourco code,
(18231 (5571071 (721331 (730142} B and the test result. The rules for uriting this kind of script file are:
B (1) R "R charactar ot the first colunn of any Line is & comnent.
4 73010 47,661 620 42,1810 B It iz recommended to have comment lines to indicate the expected value and
1231 (5141070 (66/133) (6741420 * # the wxpected wxecution path (should hit uhat functions and chat segnents, ¢
C B ot hit ehat funchions sed uhat segnants sccording 1o the J-Flou disgran.
5 78,268 51,407 54, 141 51,411 B Within & comnent ling, you can use three special keywords folloued
1187230 (554107} 17241331 (731421 ® by full file nane to specify the related requivenent specification or de
R N ~ B docunent in HTHL or WORD o B;!Lh!u format (see belou examplel.
] 7301 7,661 9,620 42,181 B (2] One or nora enply !m« are used o separate lest cames.
112423) 15141071 (667133} (67271421 B (30 The first active line of a test case is the directory to run i1;
B (4) The second active lire is the real test command [can be more lines!
7 78,060 S1.400 54141 51,411 | B Exanple :
(18/23) 195/1071 17241330 (7371421 * B OHTHLE Cx'isa_ewanplus'Erglish_axanpleshanalyzed for_reviedcal'VEnglish_req
| 8 QUORDR (C:\isa_exanples\English zxanpltn\anal.ya&d for_revieatcalides ign_docu
8 21041 11,211 12781 11912 5 Tost case 1, fo test the Gl function of & calcubofor:
157231 (127107} (17/133) (174142} B Hit: werishlozenal)130), funct ion:add mr«lorln«k‘ mde‘ charl{s,24),
B Nt hit: funct ion: m Wrodi® char) (31,32,
g 78,261 50,608 1,651 53,451 B Eipected result:
(18/23) 162/107) 123 153/142) A ;:se warole; ¢ Ilsh_mles\wiuzed_for_r@vm\cci
| kel "iyizivy
Total 26,961 67,200 69,421 64,790 [-
) (20723 (727100 19171331 1927142} = 2
v R b
< el * ¥ 2

Fig. 6.10 An example of test case efficiency analysis and test case minimization

126 6 The Techniques Innovated to Support NSE

further perform test case minimization to select a minimized set of test cases which
can be used to get the same test coverage result in regression testing after code
modification. The corresponding algorithm for test case minimization will be intro-
duced in Chap. 21. The key point is that whether a test case will be selected or not is
not dependent on its single contribution in code test coverage, but the accumulated
contribution with all the selected test cases. Usually a test case which has found a
defect will be selected into the minimized set of test cases because the execution path
of that test case is different from other test cases. If a test case covered one branch
which has not been covered by all of other test cases, it will be selected into the
minimized set of test cases. Usually the more test cases are used for testing a software
product, the less the percentage the minimized set of test cases occupy. An application
example is shown in the right of Fig. 6.10.

6.9 Refactoring Technique with Defect Prevention

The Refactoring technique with Defect Prevention is a program improvement
approach by restructuring the program to remove duplication, improve communica-
tion, simplify the program, or add flexibility to the program without changing its
behavior, which is performed with defect prevention to avoid the side effects of the
modification. With NSE this approach is mainly used in those modules where: (1)
the Cyclomatic complexity (the number of branch statements such as “if,” “for,”
etc.) of the module is too big (over 30, for instance, as shown in Fig. 6.11), because
often 80% of the defects exist in about 20% of the more complex modules; (2) it is a

B Rowsg)
oo strel Do corclaniny faa Mithou CHSE ‘File Option Tag Path

Fig. 6.11 An example of Cyclomatic complexity analysis and the control flow diagram of a
complex program module

6.10 Holistic MC/DC Test Coverage Analysis and Graphical Representation Technique 127

1B J-Flowis) =

Frmmtmiyinas 11 Bote R Time Pertinmnts Date File Option Tag Path
ai B e, | Banarirs 3

by [e
2 5 1
=

Timelmant s

Execution

Atrmel thar b
= / frequency
1 A s
o Sl b =) 18

Fig. 6.12 An example of a performance bottleneck and the branch execution frequency analysis

performance bottleneck as shown in Fig. 6.12. Somehow, refactoring can be consid-
ered as a backward iteration. After refactoring, there is a need to modify the related
design documents in the upper phases. Of course, refactoring can also be done
through a forward approach by modifying the design and the corresponding docu-
ments first before the code modification. After refactoring, the program should be
fully retested, including functional testing and structural testing with performance
analysis, test coverage analysis, memory leak and usage violation analysis, vari-
able analysis, and more, to ensure the quality of the modified program.

6.10 Holistic MC/DC Test Coverage Analysis and Graphical
Representation Technique

According to the RTCA/DO-178B standards (Joseph Wlad, Product Marketing
Manager Wind River, Alameda, CA, DO-178B and Safety-Critical Software
Technical Overview, http://www.opengroup.org/rtforum/jul2001/slides/wlad.pdf),
MC/DC (Modified Condition/Decision Coverage) is required for top quality software
testing. The difficulty includes not only how to perform the MC/DC test coverage
analysis but also how to visually show the test coverage results. The Holistic MC/DC
Test Coverage Analysis and Graphical Representation technique innovated by me
can be used to not only perform MC/DC test coverage for an entire software product
and its parts but can also be used to show the test coverage results in interactive and
traceable J-Chart, J-Diagram, and J-Flow diagrams with the capability to clearly
highlight the untested branches and conditions using small black boxes in the
generated J-Diagram and J-Flow diagrams as shown in Fig. 6.13.

128 6 The Techniques Innovated to Support NSE

B I-Diagram =1
Option Tag Path

17 | class statedipublic stated ———————————————M%
i s

50 | pablic: |
i}
int
trans it iontuns igned char ch) ——————————————— 454

B| alsa i pplgrlpchon "R Sgpehde 21 igplpchos "a "y
whie'z 1)

HE

AHE; &3 126)
i | retemn 3

5 alse If 7ol mwchie "D Wngche="0")

Fig. 6.13 Call graph shown in J-Chart notations with the MC/DC test coverage analysis result for
the whole and its parts of a software system (here, untested conditions and branches are high-
lighted in small black boxes)

6.11 Assisted Test Case Design Technique

At the beginning of software testing for a software product, it seems easy to design
test cases, but later on when the test coverage result reaches 50% or more, the test
case design will become more and more difficult if we want to design a new test
case which will cover code branches or conditions which have not been covered by
the previous test case execution. The proposed Assisted Test Case Design technique
works with the path and test coverage analysis to automatically compare all
untested paths and select one with the most untested branches, then it automatically
extracts the test conditions of the selected path to help users design the corresponding
test case which could be better than ten test cases randomly designed. An applica-
tion example is shown in Fig. 6.14.

6.12 Intelligent Regression Test Case Selection Technique

With the old-established software engineering paradigm, even if only one source
module or only a few branches of the module have been modified, all test cases
should be used for regression testing because without automatic and bidirectional

6.12 Intelligent Regression Test Case Selection Technique 129

Tag Help
L5 return [.\
000321/ 476 L while_inv.seq? s4(2) (2] -
000323 428 || int 405 <5 (2]
478 || funct ion::validichar *expr) 497 uhile Tf(muas&muim (241
49 if gpls == 1)
0p3eS/ 480 | <1 (21 500 56 (01
000326/ 493 nlu]e flchi=":") 120
000327/ 4% 6 S else if gels == 21 (2]
[s ||f =7 @
in uhile_inv.segl s3(1) [0
509 else if ls == 31 (2]
1| shile_inv.seq2 s4(2) (2] 510)
000330/ 495 | <5 12) 514 alse If Tfs = 4 [12]
000331/ 497 [y uhile Tplvps!=88yps!=10) 515 9 121
000332/ 497 if gfls == 1) [22]
000333/ 500 || | » 56 10 519 else If gels == §) [10)
LVl s10 [0)
000334/ 504 alse if mils ==2) [22]
000335/ 505 s 57 (0] s2q else If gfls == 6] [10]
528 s11 (0]
000336/ 509 alse if Tfls == 31 [22)
000337/ 510 8 1100 529 else if 1als == 70 [10)
530 s12 (40
000333/ 514 alsa if Tfls == 4) [12]
000333/ 515 9 2] 53 alse if puls == 9) 10
535 s13 (0
000340/ 519 else if gilz == 5) [10))
000341¢ 520 « 510 (0] if _inv.seq s14(3) (D) A special path
000342/ 524 Ise if gpls == 61 [10] 2
000343 525 ||| L (0} while_im.seql s15(4) (01 traced with more
000344/ 529 else if als = 7) (10) il while_inv.seq? s1665) [2) untested branches
000345/ 530 12 (10 .
ngsssf S41 [if wfls == 1) (2] and condition
000346/ 534 else if wuls ==9) (0] 354/ 542 [s17 (0 2 :
000347/ 535 513 (0] return combinations
s if_inv.seg 514031 (0] segnent List:
e 1 3 5§ o1 16
F- uhile_inv.seql s15(4) (01 |D0032S/ 480 51 (2]
I 4931 Fuhile Tplch!=":") (20]
i| while_inv.seq? £16(5) [2] » while_inv.seql s301) (0]
495 55 (2]
000353¢ 541 if wrls == 10) (2] 497 Tuhile n(yrs'zsa&ns =100 [24)
000354¢ 542 | = 517 (0} 497 F it gels == 1)
L5 raturn S04 F else if wils == 2I 1221 The conditions
09 F else if Tels == 3) [22]
000355/ 54319 else 514 F else if s == 4) [12] extracted for a
na - D4 T et Mem8 o acsign O
> return else if gpls == test case =
000358/ 547 ot e 1615 [2)
uhi B inv. s 1
gg i .;[3 bt R to execute this
L] 51
|=|ofa[=]<] . fetur P [
B ~l

Fig. 6.14 An application example of Assisted Test Case Design

traceability, it is almost impossible to know what test cases can be used to retest the
modified product. It is very clear that a complex software product is a nonlinear
system where a small change may ultimately cause great changes in the entire
system — the Butterfly Effect. The proposed Intelligent Regression Test Case
Selection technique is mainly used to solve this kind of problem — when only a few
modules or only a few source program branches are modified, the maintainers can
easily perform backward tracing from a modified module or a modified branch to
find out all related test cases which can be used to retest the modified product, using
the NSE support platform. An application example is shown in Fig. 6.15 where for
the modified branch S3 (Segment 3), only one test case was found which can be

130 6 The Techniques Innovated to Support NSE

FoamT
;: IS B INEREL 15 1VNRLYT AR bk = File Tag
’?Mﬂiugﬁ? it 11 11 bt il =
o test & DOS progrism whore excut ion uill flush the wisdou 114 15 nemall, - g i —
B kbt 4 8 grgrias o we 'W“‘.:MI u:lmr mlw bu;n:nm\r B poeozo inl nain Lind arge,char ®sargel | 191
: lnnodﬂnwlhuhm to bo dora through forasrd and backused traceability boooso @ 191
anong requinineed specification, 1ot cate, detign doounind, seurce code, : = o .
B and the IM vesult, The rules for writing thiz Kind of script file are: Dsgsig I_i l”‘“ﬁ] et Dl
B 110 & "8 chavactar at the first colum ol ang ling b5 2 comment = 4
& It it vecomnended to hawe conmnt links to indiceto the wpected valu and 06021 f f il ds3000 19
B thw wapected wwecut ion path fzhould hit chat funct isns and what segeents, should P g e
1 nat Bit uhat fusct lons and ubat segets accordieg to the J-Flou diagran). bosaz .., l.l. tee = [chars) malloct1000] == 0 18]
£ Uithin & conment Line, gou cam e theen spuclol bmpords fol Lo o802 [101
Aby & full hu e lo voc the related requiremint specitical bon or dusign
¥ decuwent in HTHL or 06D 1 file fornst vew balow wanplel, boco2? r it_invd dsdEn) (91
® (21 Gna or nore wly lms are wed to separate test cases. |.|
® 131 The first active line of & test case is the directory fo run it; bocos7 W= BT c,3; 191
: 4 T};a shcond sctive Line s tha real test conmard [oan b nove Linez) po0goa? | a3
¥ Evarple @ = "
AR e 1 st o sl L 06034 S 1 ™ 1. Click to trace
C1hizs tamplos d_tor t.doc brnane S035 g
B Test cane 1, 1o tent Ilw'gmh funct ton of a caliulator: s ‘ Yot HER1E)
B Hit: variablezzanal (11501, funct fonzzadd |_ogratorlmded, r-odo' (harllll‘.,ﬂ.": hutnas 181
2 ucl Im: Imcni n:demamrlm:\do‘ nidet,charlis), <83, ‘D0603s J—| nfe\’uc < mun_var+dl 171
F =4 b a axaw]e '.L-qll h_eang les'ana lyzed_for_revieucal 2 gggg:g ._) "hm,, 1
‘il 2. Only this test case st e
I]
§ (e 2 traced !
£ fun My 04 15:40:52 2008 K D00044 | SRR m.dmrn 17
B BHTHLD Cxhita er\English sarples\analyzed for_revisuealiEnglish cequirentnt RnSERRIE P804S l"iovlml w03 1 ¢ nen_varg dee) (271
BEACELE C2\isa_enarpled ~El>, ish escmlﬁwm;:ef" for_vevieshcal\English_desion_error_bandling.xl: D048 | a6 201
FEP caze 2 to test the "EM ality 3 4
tod: u A .
F\J 4 eww]t?h]h h wearg s banalyzed_for_revieuical X Sl MY, Al
al [] for_invd is2t0 (71
L
f Conn 3 Boos B suitchingn varl (7]
:Su;ﬂv 04 18:48:57 2008 poos: B cazed: (0T
ot cat BEEEE i_llbs? o
L Jus\English wanglesunalyzed_for_reviautcal PO I b
3 s iei) 28T 306 45401 s EEN T
- = o
(B cozel:
,s.,.a.,.nmam:ma 0505 WEEMEL
0G0 H— bresk
B Fily nam: English_req b test.tcs 0806 (B cased: (00
SO C:\iss «nln\fmlun m]a hanslyzed for_reviedical\Engl ish,_requiranent hinSSUB “bocos 18 510 1
BRD0 (25 sseanp Lea\English_sscang Lesamalzed_for_reviescal\det ign_Sucwsnt doc bensme SUB o bocos [brask
EEATE C:\iza mhs‘wnpm\wﬂlrm bat pOR0s: catebs (1)
st an for "8 0505 il BT
Xl posge: Y~ brask
<hiza, mlee-{nchd' _oanpleshanalyzed_for_reviaitcal a0 | cazeb: (01
kal "iijaie) el 1% ol

Fig. 6.15 An application example of the Intelligent Regression Test Case Selection

used to retest branch S3; the other test cases do not go through S3, so they are
useless in retesting the branch S3. Of course, sometimes we need to add some new
test cases to retest the modified product better.

6.13 Holistic, Actor—Action and Event—Response Driven,
Traceable, Visual, and Executable Technique
for Requirement Development

The Holistic, Actor-Action and Event-Response Driven, Traceable, Visual, and
Executable technique is a new requirement development technique innovated
and implemented by me for capturing customers’ requirements through top-
down dummy programming for making the requirements much easier to review
and understand. The technique supports Holistic, Actor-Action and Event—
Response driven, Traceable, Visual, and Executable requirement development,
including the decomposition of functional requirements, and the nonfunctional
requirements. About the applications of this technique, see step 1 of the main
process of the NSE process model to be described in Chap. 8. It is innovated
mainly for improving the Use Case approach which is not holistic, not suitable
for event—response applications, and the obtained result is not really traceable
for inspection and review, not easy to map to the product design, and not directly
executable for finding and removing defects.

6.14 Synthesis Design and Incremental Growing Up 131

6.14 Synthesis Design and Incremental Growing Up
(Implementation and Integration) Technique

The Synthesis Design and Incremental Growing Up (Implementation and
Integration) technique is a new technique for software development innovated and
implemented by me to efficiently develop a software product and solve the issue of
software complexity. As pointed out by Frederick P. Brooks Jr., “The complexity of
software is an essential property, not an accidental one. ... many classical problems
of developing software products derive from this essential complexity and its non-
linearity increases with size.... Much of the complexity in a software construct is,
however, not due to conformity to the external world but rather to the implementa-
tion itself — its data structures, its algorithms, its connectivity.” He then suggested
an approach to efficiently handle the complexity issue:

* “Hierarchically, by layered modules or objects
* Incrementally, so that the system always works” [Bro95-p212]

But, it is not good enough for solving the complexity issues, because there are
several different complexities to be handled, including the following:

1. Apparent complexity: appears complicated but simple patterns lie underneath
the surface
2. Detail complexity: has great number of different parts
. Dynamic complexity: has a great number of possible interconnections between parts
. Inherent complexity: extremely complex with great number of different parts
that have a great number of possible interconnections and feedback loops (http://
www.businessdictionary.com/definition/types-of-complexity.html), or

W

Formulaic complexity:
Description complexity
Generative complexity
Computational complexity

Compositional complexity
Constitutional complexity
Taxonomical complexity

Structural complexity
Organizational complexity
Hierarchical complexity

Functional complexity
Operational complexity
Normic complexity

So we need much more advanced techniques and tools to solve the complexity issue.
Here, “Synthesis Design’ means the following activities:

1. Collect the information and data related to the requirements, including the
solution method comparison reports, prototype design and risk analysis reports,

132 6 The Techniques Innovated to Support NSE

DN =

test results, customer evaluation results, and the documents of the algorithms
used, etc.

. Perform functional requirement decomposition and defect removal through

dynamic testing using the Transparent-box approach.

. According to the functional requirement decomposition results plus nonfunc-

tional requirements, design an executable dummy system (the preliminary archi-
tecture) through dummy programming.

. Remove the defects introduced into the designed dummy system through visual

diagramming and inspection, particularly dynamic testing using the Transparent-
box approach.

. Perform optimization of the designed dummy system to reduce the coupling

degree.

. Design the preliminary data structures (class structures) according to the

collected information and data.

. Compile and execute the designed dummy system mapping to the functional

requirement decomposition plus the nonfunctional requirements.

. Further decompose the system, as detailed as possible.
. Work with the Incremental Implementation and Integration of requirements to

make the system grow up with new versions of the system executable.

Here, Incremental growing up means the following activities:

. Select one or a set of requirements according to the requirement priority assigned.
. From the corresponding call graph (shown in J-Chart notation) of the designed

system, highlight the critical module with all modules calling and called by
modules for the selected requirement(s), assign a bottom-up design and coding
order on the automatically generated system hierarchy.

. Perform incremental unit coding according to the assigned order to prevent

inconsistency defects between the interfaces of the calling modules and the
called modules (see Fig. 6.9).

. Carry out unit testing and integration testing to remove possible defects through com-

prehensive testing (including functional testing, structural testing, memory leak and
usage violation checking, quality measurement, and performance analysis, etc.).

. Recompile the entire program to establish a new version of the program, and

then run the program again dynamically.

. Different from traditional incremental iteration approaches which complete the

subsystem design and coding for the selected requirement(s) first then carry
out integration, with NSE the incremental implementation and iteration is done
with integration at the same time — each time only one module of the subsystem
for the selected requirements will be coded, tested, and integrated to establish
a new version of the executable program, so that if something wrong is found,
the problems often come from the one added module only rather than the entire
subsystem implemented for the selected requirement(s). An application exam-
ple of the Incremental Implementation, Iteration, and Integration tech-
nique is shown with step 1 of the main process described in Chap. 8.

6.16 Summary 133

7. Combine the processes of software development, testing, and maintenance
together closely through many automated and bidirectional traceabilities for
defect prevention in the entire software product development lifecycle.

8. If some critical problems are found in any phase, go back to the upper phases to
solve the problem — it is possible to give up the previously selected solution method
such as in the case where the performance is very bad because of the misuse of the
virtual memory — it is a nonlinear way for requirement implementation.

6.15 Holistic, Global, and Side-Effect-Prevention Based
Software Maintenance Technique

The Holistic, Global, and Side-Effect-Prevention Based Software Maintenance tech-
nique is a new software maintenance technique innovated by me and implemented
by me and my colleagues which is also a Systematic, Disciplined, and Quantifiable
approach for software maintenance. The key part of this technique is the various
traceabilities that are established through Transparent-box testing and the Holistic
and Traceable Diagram Generation technique. It is the most important technique
of NSE for greatly reducing the cost and the effort spent in software system develop-
ment. This technique and its applications will be described in detail in Chap. 18.

6.16 Summary

Fourteen unique software engineering techniques are innovated to support NSE.
Those techniques are developed through the FDS framework by complying with the
essential principles of complexity science, particularly the nonlinearity principle
and the holism principle.

Those techniques include the HAETVE for Requirement Development used to
replace the Use Case approach which is not holistic and the results obtained are not
traceable and not directly executable for removing defects; the Holistic, Virtual
and Traceable Diagram Generation technique for generating interactive and
traceable charts/diagrams to make an entire software development process visible;
the Holistic and Dynamic Traceability technique to establish automated and self-
maintainable traceability among documents and test cases and source code for
defect prevention and defect propagation prevention; the Comprehensive Software
Testing technique mainly based on the Transparent-box method combining
functional testing and structural testing together seamlessly with the capability to
establish bidirectional traceability to find functional defects, logic defects, and
inconsistency defects dynamically in the entire software development lifecycle; the
MC/DC Test Coverage Analysis and Graphical Representation technique for
highest quality software product development; the Defect Prevention Driven
Quality Assurance technique, which is the key technique to ensure the quality of

134 6 The Techniques Innovated to Support NSE

a software product; the Refactoring technique with Defect Prevention for further
reducing the defects introduced to a software product because often the 20% most
complex modules will have about 80% of the total defects; the Intelligent
Regression Test Case Selection technique and the Test Case Efficiency Analysis
and Test Case Minimization technique to greatly reduce the cost for regression
testing after software modification; the Virtual and Traceable Documentation
technique which makes the documents traceable to and from the source code to
keep consistency; the Holistic, Global, and Side-Effect-Prevention Based
Software Maintenance technique which is the key technique making it possible
to help software organizations double their productivity and halve their software
development cost; and the Holistic and Intelligent Version Comparison
technique for version control and quick location of new defects after code modifi-
cation. With those techniques and the corresponding tools, NSE with its support
platform can efficiently handle the issue of software complexity, changeability,
invisibility, and conformity, and efficiently solve the critical problems with today’s
software development: the low productivity and quality, and high cost and risk.

6.17 Points and Questions to Ponder

(a) What are the driving forces for the establishment of NSE (Nonlinear Software
Engineering paradigm)? Describe them in as much detail as possible.
(b) Which principles do the techniques introduced in this chapter comply with? Why?

6.18 Further Reading and Information Source

Pressman RS (2005) Software engineering: a practitioner’s approach. McGraw-Hill,
New York

Jones C (2002) Software quality in 2002: a survey of the state of the art, Six
Lincoln Knoll Lane, Burlington, MA. http://www.SPR.com July 23, 2002

Kannenberg A et al (2009) Why Software Requirements Traceability Remains a
Challenge. CrossTalk, Jul/Aug Issue

Xiong J, Xiong J, A complete revolution in software engineering based on
complexity science. In. WORLDCOMP’09 — SERP (Software Engineering
Research and Practice 2009), p 109-115

References

[Bro95-p182] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 182
[Bro95-p212] Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, p 212

Chapter 7
NSE Software Engineering Visualization
Paradigm

“One Picture is Worth Ten Thousand Words.”

Chinese Idioms

This chapter introduces the NSE software visualization paradigm which is holistic,
and the generated charts and diagrams are interactive, colorful, and traceable; it is
to be used in the entire software development lifecycle to make all the processes
and the obtained work products visible.

“One Picture Is Worth Ten Thousand Words” — a holistic, interactive, colorful,
and traceable chart/diagram will be more useful in the description of a complex
software product.

The NSE software visualization paradigm is established through the FDS para-
digm-shift framework by complying with the essential principles of complexity
science as shown in Fig. 7.1, particularly the Nonlinearity principle and the Holism
principle.

7.1 The Old-Established Software Engineering Visualization
Paradigm Is Outdated

The old-established software engineering visualization paradigm is outdated
because it is

1. Based on linear thinking, reductionism, and the superposition principle
The traditional software engineering visualization techniques and tools are
based on linear thinking, reductionism, and the superposition principle that the
whole of a system is the sum of its parts, so that almost all diagramming tasks
are performed locally and partially.

2. Not Holistic
They are not holistic and global diagramming techniques and tools. The applica-
tion results obtained consist of many small pieces without a complete chart/
diagram to show an entire software product.

J. Xiong, New Software Engineering Paradigm Based on Complexity Science: 135
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_7,
© Springer Science+Business Media, LLC 2011

136

7 NSE Software Engineering Visualization Paradigm
Bi-directional Traceability 3
b D=
= e £5
c o - o
) 2 §5
@ = . S §F 9
= 2 £ cwm26528 J
s £ ®© s oz E=L8o 2 -
R I P
. £5c cOESEZ a -
o =0 c
; Eso:| 2eai3 5
2 S8 S EE8C-EO =
=% B >
% E- L 4 "'6 g‘ @ =] lfl
e o a3 "
.22 £S5Sa
E =0
£ 8 B a >
| s @ Market Environment
Visualizati }1 Paradigm o o

Application Environment
Testing/Validation Environment
Learning/Training Environment
Nonlinearity

Holism

~ Dynamics
Self-Organization
Self-Adaptation
Openness

Principles of complexity science (with extended principles)

(1)

Fig. 7.1 The essential principles applied to the innovation of the NSE visualization (diagram-
ming) paradigm through the paradigm-shift framework FDS

. Not automatable in most cases

Most charts/diagrams are created using graphic editors, and are not automati-
cally generated.

. Not interactive

Most charts/diagrams generated using the old-established software visualization
paradigm are not interactive, making it hard to manipulate.

. Not traceable

Even if a complete chart/diagram for an entire software product can be obtained
by using a few diagramming tools, it is still useless because without traceability
and the capability to highlight an element with all of the related elements, there
are too many connection lines, making the chart/diagram hard to view and hard
to understand.

. Not accurate

Often when the source code is modified, the generated charts and diagrams can-
not be automatically updated to keep consistency with the source code.

. Not precise

For instance, when a logic diagram is used to show the result of program test
coverage measurement, it cannot show whether an invisible “else” part (an “if”
statement without an explicit “else” part) is tested or not. Almost all existing
visualization tools cannot graphically show whether a condition in a decision
statement is tested or not when applied to show the result of MC/DC (Modified
Condition/Decision Coverage) test coverage measurement.

7.2 The Revolutionary Solution Offered by NSE 137

8. Often not consistent with the source code
The charts/diagrams are often not consistent with the source code after soft-
ware modification.
9. Not consistent among all related charts and diagrams
Often they are generated with different formats using different information,
making it hard to keep consistency among them.
10. Not virtual
The generated charts and diagrams are stored in hard copies or XML or post-
script format in the memory or hard disk, requiring much more disk space and
long loading times.
11. Not complete
The traditional software engineering visualization techniques and tools are not
integrated together to completely support the following areas:

(a) Visualization of the entire software engineering lifecycle
(b) Visualization for requirements engineering
(c) Visualization for design engineering
(d) Visualization for coding engineering
(e) Visualization for software inspection
(f) Visualization for software testing
(g) Visualization for software maintenance
(h) Visualization for software architectures
(i) Visualization for the source code of an entire software product
(j) Visualization for software debugging
(k) Visualization for reverse engineering
(1) Dynamic program behavior visualization
(m) Integration of visualization tools in the software engineering tool
chain
(n) Visualization for software debugging

7.2 The Revolutionary Solution Offered by NSE

The revolutionary solution offered by NSE will be described in detail in this
chapter, including Sect. 7.8 about the major features of the NSE visualization para-
digm. Here is the outline of the solution:

Based on nonlinear thinking and complexity science

Holistic

Automatic

Interactive

Traceable

Accurate

Precise

Consistent among all related charts and diagrams

Linkable automatically between different charts and diagrams
Virtual

SO AL =

—_—

138 7 NSE Software Engineering Visualization Paradigm

11. UML are supported indirectly
When there is a need to generate some UML charts or diagrams using graphic
editors, a freeware product, Fujaba (http://www.fujaba.de/), is used with the
NSE visualization paradigm.

12. Complete in software engineering visualization, including

(a) Visualization of the entire software engineering lifecycle
(b) Visualization for requirements engineering
(c) Visualization for design engineering
(d) Visualization for coding engineering
(e) Visualization for software inspection
(f) Visualization for software testing
(g) Visualization for software maintenance
(h) Visualization for software verification/validation
(i) Visualization for software architectures
(j) Visualization for the source code of an entire software product
(k) Visualization for reverse engineering
(I) Dynamic program behavior visualization
(m) Integration of visualization tools in the software engineering tool
chain
(n) Visualization for software debugging

7.3 The 3J graphics (J-Chart, J-Diagram, and J-Flow)

The 3] graphics (J-Chart — a new type call graph, J-Diagram — a new type of logic
diagram, and J-Flow — a new type of control flow diagram) are innovated by me and
implemented by me and my colleagues. J-Chart/J-Diagram/J-Flow is a trinity: an
Object-Oriented and structured chart/logic diagram/control flow diagram, the chart/
diagram generator which is always running when the chart/diagram is shown, and
the interface (using the chart/diagram itself) between the generator and the user for
controlling the chart/diagram dynamically with a multiway online traceability/cross
reference facility through which the users can view the related objects easily.

7.4 J-Chart

J-Chart not only can be used to represent the class inheritance relationship, the
function call graph, and the class—function coupling structure graphically but can
also be used to display incremental unit test order or the related test coverage and
quality data in bar graphics overlaid on each object-box to help users view the
overall results of testing and quality measurement. J-Chart is useful in system
understanding, inspection, test planning, test result display, and reengineering. The
J-Chart notations are shown in Fig. 7.2.

http://www.fujaba.de/

7.4 J-Chart

A comparison between J-Chart and the most traditional call graphs

139

Traditional
J-Chart call graph
Is it holistic for directly showing a very complex software product? Yes No
Is it interactive for highlighting a path or getting related information? Yes No
Is it traceable such as to highlight a module with all the related Yes No*
modules?
Is it supported to use a module as the root to generate a subchart? Yes No
Can a bar chart be added to a module box to show related information? Yes No
Can the source code be directly edited from a module box? Yes No
Can the logic diagram be linked from a module box? Yes No
Can the control flow diagram be linked from a module box? Yes No
Can bottom-up coding orders be assigned to the modules? Yes No
When used for software version comparison, can different colors be Yes No

”

used to show “unchanged modules,” “changed modules,” “deleted
modules,” and “added new modules” separately?

*Some tools claim that they can provide dynamic function call graphs, but I have not seen their

application examples.

Fig. 7.2 J-Chart notations

Non-member function
Function
Press the right mouse button to pop up a function menu.
o Member function
Function] | Press the right mouse bottorn to pop up a member function menu.
"""""" Macro function
Macro
Press the right mouse button to pop up a function menu.
Overloading non-member function
Press the right mouse button to pop up an overloading menu.
s Overloading member function and virtual function
& Press the right mouse button to pop up a function menu.
e | |CF erloading member function
Function | Press the right mouse button to pop up a function menu
T | [Virtual function
Fi :
TP Press the right mouse button to pop up a function menu
e Class
Class
Press the right mouse button to pop up a class menu.
¥ Template Class
Class
Press the right mouse button to pop up a class menu.

140 7 NSE Software Engineering Visualization Paradigm

i

Fig. 7.3 An example of the traditional call graph. (http://www.aisee.com/graph_of_the_month/
perlsm.gif)

For easy comparison, two traditional call graphs are shown in Figs. 7.3 and 7.4.

An example of J-Chart is shown in Fig. 7.5 — a call graph showing the result of
the Cyclomatic complexity measurement (the number of branch statements such as
“if,” “for,” etc.) with automated and self-maintainable traceability to highlight a
module and all of the related modules calling and called by it. When the source
code is modified, after rebuilding the database automatically, all the related trace-
abilities will be automatically updated. The automated and self-maintainable trace-
ability is an important feature to make J-Chart much more useful than the
old-established software visualization techniques and tools. Particularly, when a
module needs to be modified, the traceability can be used to highlight all the related
modules which may also need to be modified to keep consistency.

7.5 J-Diagram

J-Diagram not only can be automatically generated from source code in all levels
including the class hierarchy tree, class structure diagram, and the class member
function logic diagram with unexecuted class/function/segments/condition outcomes
highlighted but also can be automatically linked together for an entire software

http://www.fujaba.de/
http://www.fujaba.de/

7.5 J-Diagram 141

Fig. 7.4 Another example of the traditional call graph. (http://gilliganscorner.files.wordpress.
com/2009/07/healthcare_flow_chart.jpg)

http://www.fujaba.de/
http://www.fujaba.de/

142 7 NSE Software Engineering Visualization Paradigm

E3 (Function Call Graph

Ext

MODULE §1ZE:[88+ Complexity Data With CASE
conpLERITY ([30+

u a5
- NN
2 .
= =
u 267 .
I -
ﬂ__ n ﬂ
o W

MODULE S1ZE:[____§8@s Complexity Data With CASE

Fig. 7.5 A complex call graph shown with Cyclomatic complexity in J-Chart with the capability
to highlight a module with all the modules calling and called by it

The major differences between J-Diagram and most Flow Charts

J-Diagram Flow Charts
Is it structured? Yes No
Can it show a very complex entire software product? Yes No
Is it unique? Yes No (arbitrary)
Is the location of the program logic indicated? Yes No
Can it show the result of test coverage measurement? Yes No
Can it show the branch execution frequency? Yes No
Does it offer traceability between related elements? Yes No
Can it be converted to a control flow diagram? Yes No
Does it exist virtually without huge storage space? Yes No

7.5 J-Diagram

143

friend friend.item

type J-Diagram
high
level class.father
func/
class
class.son.l
class.son.11
class.son.2
struct
struct head
{
i | body
I
class

class classname

body

h=} ~
)
.
<
[V}
Pad
©

body

public : |

body

inline func

func body

o

¥
function
head ext. block
func. head
[]
local bloc.
function
end ¥
type J-Diagram
if
else if if
else
body
)
1| else if
i body
|
1] else
i body
L
for(; ;)
while(l) for/while

|

Fig. 7.6 J-Diagram notations

144 7 NSE Software Engineering Visualization Paradigm

body if(D
do >
while(1) do ody
o] :
body switch
o
default
case
if
else if if body
;
body i| case
! ;
t| else if b | Pody
; bod | case
- LN
tinv. seg. i
U i body
I
for :
while for/uhile : default
body i | body
I !
ilinv. segl e
F
tlinv. seg2 -
u switch
do
case
bod
0 body
I
tlinv. seg.
u 9
inv. seg2
1abel
L1: sl
L2: s2

Fig. 7.6 (continued)

7.5 J-Diagram 145

The major differences between J-Flow and traditional control flow diagram

J-Flow Traditional control flow

Is it structured? Yes No
Can it show a very complex entire software product? Yes No
Is it unique? Yes No (arbitrary)
Is the source code locations of the control flow indicated? Yes No
Can it show the result of test coverage measurement? Yes No
Can it show the branch execution frequency? Yes No
Can it be automatically converted to a logic diagram? Yes No
Can it highlight a path with most untested elements? Yes No
Does it exist virtually without huge storage space? Yes No

GUNAXIN

farch Madness Flow Chart

Ty and
F oty of Mar.
[T

Ottt D |
m ——

Fig. 7.7 A sample Flow Chart. (http://images.dailyradar.com/media/uploads/ballhype/story_
large/2009/03/19/march_madness_flow_chart.png)

product to make the diagrammed code traceable in all levels. J-Diagram can be
automatically converted into J-Flow diagram. J-Diagram is particularly useful in
Object-Oriented software understanding, inspections, walkthroughs, and testing.

J-Diagram notations are shown in Fig. 7.6.

For easy comparison, two flow charts are shown in Figs. 7.7 and 7.8
separately.

Two sample J-Diagrams are shown in Figs. 7.9 and 7.10.

Another application example of J-Diagram representing a complex source mod-
ule is shown in Fig. 7.11.

146 7 NSE Software Engineering Visualization Paradigm

ZHEJING HUANGYAN MEIDUO MOULD FACTORY
2 MOULD DEVELOPING FLOW CHART
) =

oo Dot Hesd
e =
Vi Dues Lo VD Cifice Head

LR AT LT

[osee

LT R——,
AP DL AL e

SRR AT TR L6 s

e

T

Fig. 7.8 Another sample Flow Chart. (http://www.mdmould.com/images/flow%?20chart-english.jpg)

7.5 J-Diagram 147

e Option Tag
poosis 2
5 | statel:zivamit ionlmsigad char chi i3
poos13

»

= iligrich = ="} I

- Untested branch

Execution times

g poss11 4
_ 3 iin teeprassiond mdeec]ss” "1 I

* ooz wel (0]
F P

V| bida_imv.sugl 53010 M

;‘ whila_pw.segl A1) 0
Global block number __ b

5 ()
Local line number —> " | ol |
PacE 16
P iin 1

Fig. 7.9 A J-Diagram shown with the detailed information

148 7 NSE Software Engineering Visualization Paradigm

1 J-Diagram Lo B 1 J-Diagram =k

Fﬂ'e? Option Tag Path Help ||| File Option Tag Fath Help

1 100397 = == ca

7 | wid | 2 | wid
% | funct ion:zbuild trsal char 45 | 004 42 | synbol_tables:add varisblalchar ch) f—————————0002R2

0] 5[0 '

5 1111

- L] 5
g (Iﬂr\\:;:r‘:ﬂwif 0,1, 2, 5405 | reltable_indencs]
32 | irt ewmaral_index = 0; o001 62 151
J %: {i‘w:r:t’g]ﬁ te sym tab & | | tableltable_indexes).var_nane = ch I

Poozs0 w oz |
k-3 __.d?uh Tilslindix] 1= ':'I. 4 'ﬁil_ej"
i 3 -
385 | | of veiyrlinded] 3= "2 Srplinde) ¢ 2" | m‘ﬁ: b ool
a8 | ant kaSs .
pogess 52 18] h 1, . u
o syn_tab, o8 varishlel slinds) 13 000307 = 4 g: E{FEI:]MM have nere than 6 varishles, eror Wiz 1 :
i E sl |) .
EL if_inv.seq 53011 4 H =
peazss €191 Mﬁh 1
s ndaeey !
L L pooa — =5

R g5 | float
I3 chite_imv.seg1 5512 0 5% I .w_-hl:ubh::aﬂ:__vflwlm\ indest) |

1| hite_invesoqe st 1 % 3
Pos, Tl b

induxsw {7 Position just pass "3" charactar - E———— L
fog: 1
3 | if ralvalidizld wslg 3

?
£
4
i

poogss o8 1l
| [t !
35 | | char o « stindeal; q

poozan | ¢ b+
37 | || while prich = N0 1

pooe71 un
£

if gpich == * "

poge7
a0

Fig. 7.10 A sample J-Diagram shown with the traceability

Interactive and traceable J-Diagram not only makes a software product much
easier to read, understand, test, and maintain but also makes the code inspection and
walk through much easier to perform in a semiautomated way.

7.6 J-Flow

Most traditional control flow diagrams are unstructured. They often use the same
notation to represent different program logic and cannot display the logic conditions
and the source code locations. The J-Flow diagram, on the other hand, is Object-
Oriented and structured, uses different notations to represent different logic with
the capability to show logic execution conditions and the corresponding source
code locations. J-Flow is particularly useful in logic debugging, path analysis, test
case and code correspondence analysis, and class/function-level test coverage result
display with unexecuted elements (path, segments, and unexecuted condition out-
comes) highlighted.
The notations of J-Flow diagram are shown in Fig. 7.12.

149

7.6 J-Flow

JInsar sIsATeu. A3BI9A09 1591 D/DIN YPIM umoys [npowr werdold xodwos e jo wesderp o1301 oy, [1°L "SI

~ |
¥ !
L o £5k (9)5T% Besaun™)1 .L LABHEE.
60ST00y 2% *paddrys fipsnotiead suorjdo-uou jo abues syl puayse pue | 1| | ook
fo Tk suof jdo-uou euot j1ppe five diyg «/ | |1 | SOk
(|59 e 98ETO0 sputdo = ydowou jsaty | (1] | €Ok
Y kil - § e i
1 M |
B [puride =j jdouoi” jse] Bl 1| 2o
£ (EE)1588 Das aur™yr |1 (] |
4 o5 d
AEERERERR AR AR
SOETOT (AR (e 2040 BbuRYINR 10r
Lk [N 2| ESEN
put jdo S6E
Lkk Jdouou™ jseMlgy Jdouou” jse] = :_css__a.: t-L- 66
Lk 6 258
[€] bg®
_ (2LHE3d == BurapaoyiL 166
I Skk 6 TSE
[++put pdojabue = bueydo (1" e Skk
o " jusnbae 699 Ko/ || bbb (0N == sepyoullil (gie p1ov)) == deyajeeull il T6E
38 J[0-fgH Ixeu Burye) ueyn urebe)1 JumblIur 99— 6 DSET
faouo purjdo, pejuswaadul fipeadle o «/ e
9 (T)gs Besmaur™yr |1
+
- { 66E
fo TWRU | | 8BE
Hedboid 3y} .E_aﬁ_ ueds Juogwf _ i = punydo B6E
62EF00— f(butajsydo) azrjeryrurjdojab = Gurajsyde | | Bf
¥ | %8E
™ ey it a0 1£) 28 LhET
*5uot jdo Ik
. Dy 1eroeds 8y «/ bIb (0 == puridopd SBE
| 3 2 9E
Jdouou” jse]
STIN = Buepdo | goe
ShET
2Bt
01 1ase Jres
n e
.35-93_ T8
w (3, == [0)6urdysidoymm E?.._. v || ggg
[wewnnnnnnnsssnRRR R R R R RS 1] 38?5.7 uol jdo | = £
-...---- T.C—m«ﬁl S0 | Be
199 1
L6kT00 | J?.w (T
& j_ (figuo ?SH SeE
0 (281605 Bas A~ yr ‘purbuo] ‘sydobue] ‘Gurijside ‘abue ‘3bue) peusauT _a.:as SiE
Bt
v _.i o suorido poueu-tuor | 365
dEH ey uondo a4 Bey uogdo amd

wesBeig-r @ esdeg-r @i wesdeiq-r &l _.U. .|._ weiSeiq-r B

P

150 7 NSE Software Engineering Visualization Paradigm

stmt-type J-Control Flow Graph Comments

class
class classname
{

public :

'
i
! inline func
'
i

! | inline func body

[N

class end

¥
module

(type_specifiers)
head funct_name(arg.list)

(arg.decl)
seq.stnt |
segment
function 1
end
if if
else

else

if if

(inv.seg.)

t[if_inv.seg

Fig. 7.12 J-Flow notations

7.6 J-Flow

if if
else if
else
H else if
H else
if if
else if
(inv.seg.)
H else if
t| if_inv.seg
ifC) I; if
switch switch
case-break case
case-nobreak |1i case
I}
case-break H case
default H default
switch switch
case-break case
default- H default
nobreak H
case case

Fig. 7.12 (continued)

151

switch switch
case-nobreak case
default- default
break

case-break case
switch switch
case case
(inv.seg.) i| sw_inv.seg
while while

while_inv.segl

while_inv.seg2
for for

for_inv.segl

for_inv.seg2
do-while do

while
{| do_inv.seg2
while(1) E while
for(;;) M for
do-while(1) do
while

label : |<- 1abel or <~ label
goto L goto
break 444 break
continue L continue
return L return
unreachable X
segment
breaking X
line

Fig. 7.12 (continued)

7.7 Entire Software Life Cycle Visualization with NSE 153

- x
/ ,". \
/ . / \
Fi . P B
v ,/ \
o ' o
Proces Proces Proces
5 s s
l ‘ |
if if
!_,-’ ‘\. _.".
/ -
'.' Proces
8
,—’ \
./.. h\
Proces Protes
T s
it
Vi
f’ \-.
o by
Proces Proces
s 3

S Flowchart4VB.NET) Sobution Evplocer | T Class Vi

Fig. 7.13 Sample traditional control flow diagrams (http://www.codeswat.com/cswat/fc4vb/
images/highexit.jpg)

For easy comparison, some traditional control flow diagrams are shown in
Figs. 7.13 and 7.14.

Two sample J-Flow diagrams are shown in Figs. 7.15 and 7.16.

Another application example representing the control flow of a complex
program model is shown in Fig. 7.17.

Interactive and traceable are the important features of the J-Flow diagram that
are particularly useful for software testing.

7.7 Entire Software Life Cycle Visualization with NSE

With NSE the entire development process of a software product is visible from the
first step in the software requirement development phase down to the final step in
the software maintenance phase as shown in Fig. 7.18.

http://www.fujaba.de/
http://www.fujaba.de/

154 7 NSE Software Engineering Visualization Paradigm

W @ 5okution Expiorer | Proportes QS FlowchartdCt S Sokstan Euphorer | APF opertes

Fig. 7.14 Another traditional control flow diagram. (http://www.codeswat.com/cswat/fcdcs/
images/highexit.jpg)

7.8 Rich Options for Generating 3J Graphics 155

i# J Diagram]
Fe Option Tag Path Help
1 = ol [§1] A
Hiams I o\ i g les [---qh ic-a-n o5 sy 308
_tur_rovisiical Funct ion.cpp 101 378 | funct ionz:baild_tresl char %)
pooo:? i W a1
funct jonz sbusbd_tree /* c:)ina_sanplos\English_aanp les' 3 Tpislindexl b= "7 (100
analyzed tor_reviesical \Funct ion.cpp Line 378 o 256 vriymlindan) = s’ Syplings] <= 2" 10
2 18l
Lt E
funct ion: tparenthisis /* c:\ise_ssanplosh i i i seg 23100 (4)
English_ssanpluc\amelyzed_tor_riesaucal\Funct jon.cop s
Line 517w 00125 LU ST w19
po0a:9 5 1o ahvile_i.segl o521 (0]
synbol_table::gut_index / ¢ s les
l'l>q|l’l‘ -w.mle analipzed_for_rew mn cal ‘zﬂ:u N 1] ahide_imw.oeg? o613 121
e 3 o
wlaim
poooan 3§ o wybwalidiell 11
funct jonz sl 1% c2\ise_swimg los English swanp bus’ EIE N
analyzed_for_reviestcal Funct lon.cpp Line 37 o 07 ¥ Tch = 8" 12
3 | T ot gfieho= * "1 1230
a1 o L3
syrbo | _table: :add_warsable /* c:hise eeenlesh
Fuﬂhhnxwl(« e lyzed_for_revienical gmbel., amn TErech = a’ Syph ¢ 2" 101
lis w 0l s 15
biooga: 1 s A el pfiparenthesizichl | [6]
Banci tonz:"funct son /% c:\iza_swanp les'Engl ioh_swanp les'\ o W 1
analyzed_for_rev e’ rahFuhI wn.cpp Line 10 106
poETY AW WY ik = 161
poco4: 2 4
wyrbol_tablescclear / co'ine eempiss\English_momplesh Ty 4
analyad_for_revimical\Bybol.cop line 30 371
PO A%
pooo-d & T 0 shnl index] 121
funct jon: 88 leta_function /® c:\is ,.x-«w Lty A |
wiarp lasanalyzed_for_revisscal Frmu cpp Lina Posesl/ 420
000111
' uhile_ime.seql 24040 101
oo, 2
yrbo | _table:iclear /# ci\isa sanplos\Engl ith_aanp les' while_ive.sogl 18181 111
analyzed for_revissical iynbol. ’u line 19 & LLUEE]
pooeay 421 1 1
poog4s n
funct jon::8d_sperands /* ci\isa, rrﬂ]‘f\[‘lzh sh_aeanp b’
analyzed_for_revim, cal VFunc! on. po ling 130 o 1% o uhile_pwe.seql 17061 [0
T » -

Fig. 7.15 A sample J-Flow diagram shown with the program tree and the test coverage analysis
result

The charts/diagrams are generated in two ways: (a) in the requirement develop-
ment phase and the design phase through dummy programming using dummy
modules, each one of which may have an empty body or only some function call
statements without detailed logic — so that the dummy programs are very easy to
write for any programmer without extra training; (b) in lower software development
phases, the charts/diagrams are generated from the source code through forward or
reverse engineering.

7.8 Rich Options for Generating 3] Graphics

There are rich options for generating 3J graphics.

7.8.1 For J-Chart Generation

The interface of a J-Chart generator (Panorama++ OO-Browser) is shown in
Fig. 7.19 with options for selecting the type of J-Chart and the related information
to be shown together such as the Cyclomatic complexity with or without counting

156 7 NSE Software Engineering Visualization Paradigm

% Current Path

by 4% |
4 | bt ionzsvalidi char sewpr] i
B | funct son: eal idl char Sepr]
oS/ Jﬂf'.l 141
poooe 4u3 o ppichis"s") 1821
TR _J o 168l Current path — tested segremts 3 / total segnants 6 « SOLDOT
K whila_inv.cegl 53110 100 gt/ (1]
. i -Jprh"':' 1821
| ahiile_imv.cog 4121 (141 oz ekl
5 [14 Xy 54l | gfls = 100 [14]
Lo yptye =y 101 124) ¢ s 117
ol Jf"’f%;
| 396]
el o Nists
o] 331/ ¢ e
[g
o oo,
™ m
o (40 e
i o0 3¢,
el Tz = 41 1300
o 12 L
00337,
[o { gl == 51 (281
ol 0 100333,
- o
il = i1} i
f&1 01 poasag; 2 i 1
. T - ile_iw.segf s16(5) [14)
e =0 B0 o Tl 14
oz (2] e
i TCE
lon o guiz =91 01
oeld 0 o344/ b
! o034 >
» it _i.seg 3030 100
e
o347
® while_inv.seql 18041 101
|| ohvila_imv, cugl 216050 [34)
L
pusy sa afis = 100 (4] while_inv.seql 51540 [0)
poosa 5 | « ol 1M
i W whibe_inv.owgl 36050 [14]
poasss; sap poossy G4 gfls = 100 (24)
booxss: sl | 12 e TTET 17101
poose; 547 »
< < >

Fig.7.16 A sample J-Flow diagram showing a special path with the most untested elements being
highlighted and its execution conditions being extracted for semiautomated test case design

the “case” statement, the accumulated or last-run test coverage measurement result,
the incremental coding/unit-testing order, etc.

Within a J-Chart, there is a detailed menu to provide more options for users to
select as shown in Fig. 7.20.

From each module box, there is a pull-down menu for choosing the related
operations as shown in Fig. 7.21.

Figure 7.22 shows the chart printing options — in general, there is no hard copy of a
J-Chart being stored in the hard disk or the computer memory, because it virtually exists
for greatly saving space, unless users want to save it or print it out for documentation,
Web page design, or project presentation without using the NSE support platforms.

A sample output of a J-Chart showing the call graph of the cal example with test
coverage measurement result is shown in Fig. 7.23 (where the size of the original
output cal.ps in postscript format is about 19.9 KB, the size of the cps.pdf trans-
ferred by Adobe tool is about 13.1 KB with two pages — a big software may consists
of hundred or more pages for making the output visible, the size of Fig. 7.23 after
merging the two pages to one TIFF file is about 99.9 KB).

157

7.8 Rich Options for Generating 3J Graphics

weISerp Mo[J- ur umoys synpouwr weiSoxd xordwos € Jo mofy [onuod Yy, LI'L “SL

< > b ¥ >
i bos 1™ 41 T_ 1_me ¥ /00610 (01 (915]% Bas-awr™y1 wt
Ble e 05T
ﬁwm" kw1 mA - (0] (douou” jse] == _9.._2_..»..:16_ WW ____mwmn
’ J
o A|_qx__._ 055 S6ET0 s e T
R — A el R (0) 0 w06 =} Jdouoi 151 > s
austrn ¥ :_._ aes | | oz o0
i ([y= 6k
. wm /p6ETOn) 161 (PuTIdo}aBaR) duddisidigy dBuR = pur :Eutu _._ 6fb /59T
[- fradi 5 P 0] (SITFs Gos aur™yr .m
€] _MM 1585 Bag st~ L ﬁmm _‘Nmm.ﬁ_u
! /5100 b wooe | || m seeerd
FLSeTO0 0f5 -
(€] bo* e FUSHT0N 8 powe | €] (h)6s g0as aura{Tyn
S5 5
1E] g8 899 b =" 191 (€18S Toes au o Ty
— " = e - & o sel
AUty wi o a) 928 == [[)(put 1dojabund®i a0 u
10 2. 509 o f._._ w2 sowing 9 % - - émsna: Pt ado nbundd dbig 20ue > put ydadpdt % e 8l /BSET
; n as~aur 1 |1
] : !
. I) mmwd_._ a5 it : lt €] (2)9s Bas-pur™ 1
[-t W .t ¥) JSSEN
100 (3, == (016uras)doymms 200 /8GbTO0RwT 41 o oo || vz oo o b2s e | | vse ssserog R £
10 oge . 199 /i6kToq h T _.__ (6] (purydo = ydouou” jseq)d b JSED
L] el
0] (IE)6Ls Dos-wur™ F05pT E— Gm_ bew mﬁ JESED
. " 1= A mMuw 05k /PEETI [61 ¥ ydouos” gm.,_ = ,_95.. jedr i S6¢ /2S¢
e s M o M I b /ESETD 16 34 o= Bt apiomt i /15
0 w1 : 9] bk [0
el gkl oo PatE L bk /28STOM (6] |, == deyainelLy | (Q(x pron)) == Es,a.._rk Ly 165 J0SET
F5b 100 I RPN
Sepe L0 .|»ov—w.__ pac AT |7 Tm 9] (T)E® Bas* wan i L
0 o e 20 ALwio Q_ i . Nmn b e
- o £ 02% It /GLETON 6] (0 == pur .SL_M_ b wM ____Mwmmm
(0] 69 » S5LpT00 -
m __uw.rsu.m__.:«onaeol,. k00 T al g ..sr.a_.“_..o.u. ._ -
[0] (448 JELETOME STeki00 2
& == WM (Dlx pros)) == duaBy® s2ipiog mm uwﬁmm“ 8y ﬁﬂ mmw uﬁmwm, Buogs 1 | m.m
10 16)gge Saehat o sennof W S, bty ooy 0 | 4
191 ¢9¢8 T wﬂ"mm_ el Lo H tabue B
== ! fifuo Buoy ‘purbuoy | if
191 (0, == seyoiwouy L 01 ALERTO a4 " s Sk o B |
- 19] 908 | S09 /LoeTON . %66 /10vT00 [0) 975 L L3 J2Lerod [sydobuo] ‘Gurajsido “abue “36ue) [eusautidojed | WMM
3 JeErRton 11 s6b
diEH yed Bey uogdo o uondo opd wondo apy | Wed BeL uondo el ea Dol wondo ond
m&“_l.:._ = Mo| -1 M) - Mmo) 41 B9 L ER | Mo §-r i

158

J-Diagram

7 NSE Software Engineering Visualization Paradigm

Testing
NSE
Visualization Deployment
Paradigm
Maintenance
and Testing

Note: With NSE, software testing is performed in the entire software
product development life cycle dynamically using the Transparent-Box
method combining functional testing and structual testing together.

Fig. 7.18 Entire Software Life Cycle Visualization with NSE

PANORAMA OO_Browser =
Chart Mode- 1
(® Function Call Graph
(" Class Inheritance Tree
(" Class-Function Coupling Graph
|| [ChostOption —\With ordering -
@ Chart Only (" Botton to top
(" With Function Size (" Topto bottom
-With complexity ~With test coverage -
(" Complexity with CASE (" Accumulation SCO
(" Complexity without CASE (" Accumulation SC1
 1SA's JCO (" Lastrun SCO [
(" 1SA's JC1 (" Lastrun SC1
conc |

Fig. 7.19 The interface of J-Chart generator

7.8 Rich Options for Generating 3J Graphics

Find

About chart

Function size
Complexity v
Performance

Test coverage b Accumulation Run

Ordering Last Run

Clear data

View Size .
PS Print
Print

Hfunct lon

Darenthes

Select Editor

Previous subtree

159

SCO

SC1

SCl+

Cond True
Cond Faise
Cond Both
Cond Branch

Table of Comtants

000

153 sl g ish_guarg)

Edit

About function
Highlight subtree
Eolate subtree

Diagram] J_Diagram
J_Flow
ActicnPlus

Int g char *8angel

slows o indepandent var lhle
Hkbar of pisaible indigendsed variablas |

tor_revimical\Bpreat.

=1 191

iFiLstr o Tehar®) nalloci20001) »= MALLY

4t of namary fin®

= lchar®] palboct 120810« MALY

Fig. 7.21 A pull-down menu with each module box and the usability

L)

160 7 NSE Software Engineering Visualization Paradigm

Find

Abaut chan PS Print ﬁ

Function size

Complexity E Printing o

Performance @ Fie =T
Test coverage Li |
Crdering PaperSue: & BSx118 ¢ 1M0x170
Clear data COIT0x220 C220x340

View Size L i 340x440
PS Print
Print

Select Editor I ok I Cancal

Previous subtree !

scales 3 -

Fig. 7.22 The chart printing options
7.8.2 For J-Diagram and J-Flow Generation

The interface of a J-Diagram and J-Flow generator (Panorama++ OO-Diagrammer)
is shown in Fig. 7.24 with options for selecting the type of diagram and the related
information to be shown together such as the accumulated or last-run test coverage
measurement result, the holistic program tree for the entire software product
(function cross references), class cross references, system-level and module-level
test coverage summary, Cyclomatic complexity summary, etc.

There are more pull-down menus for selecting related information to show with
the generated diagrams (see Fig. 7.25).

Figure 7.26 shows the “file” part for object search and diagram printing options
(users may select to print the entire diagram or only a part of the diagram high-
lighted by the users).

Figure 7.27 shows the associated click-to-jump facility.

Figure 7.28 shows the associated facility for manually setting the locations for
jumping.

Figure 7.29 shows the associated facility for semiautomatic test case design.

7.9 The Major Features of NSE Software
Visualization Paradigm

The major features of 3J graphics and NSE software visualization paradigm (which
not only can generate 3] graphics but also can generate other software graphics
such as bar charts and ActionPlus diagrams) include

161

=
\t&\\ 113

Ly

T

waed 2wy

wared e

R

03303

BIep 93BI0A00 159 iim Jrdwrexa [eo oy jo ydeas [[eo oy Suimoys yreyd)-[jo ndino ojdwes v €7°L 814

7.9 The Major Features of NSE Software Visualization Paradigm

Ll LI T &0
r
2w Rl 0T IFSURL 3 vorpsuRsy BOFIISYRLY w1318V 0 IR 1318y O1IISERS 3 BOILEURL Y aa3nis Lt
193W38 T3m3z] sinas /] v /) .wﬁslﬂ 33038 paavis /] r33m38 59303
// o v I 5
(113
S1ARIITe TODE 2 e e ed HE xapuy3ab
Sqey 1o oy g/ voy 0y /] & 1w romepe|
/m/ L 3
TiIT nT T
L Lo #2137prieg W
oESJQ\iﬁ_ !:d-_\ S1a83°1
68 Lid T TiT T T Tr §7%
L)
TORE T AL aavapacard {1203mrado {1ro3uzado (120 ezado {20 3paada ()20 3p2ado (Jzo3ezado W 13E] Vg IRED
LR P !:uudm LAEE w vy /] ¥o1 Ry 1013¥] ¥oypmg /] w388y /] WL
/ il
T T T Ll T T T
! e L
'] '
' . _ _ ' o - ~
' (1°%] ‘" 1083 (L 1qRy (oquis steeedo” (0w 01T~ 20 3ezade "poR] tag | ' e | ea” R0
ik adoata i | EEEEERAL pmmmsahe T r} L r1
! ‘ i
4 ; = ’ 4 o
N VA 0L P . LILL) sﬁ.u.mn L) B2 e Ll LEHEE w s 7] HI . CNSCAOR (2 1003 omgg)
or 3 8 33 L Fij L] 3 or

162 7 NSE Software Engineering Visualization Paradigm

1. Based on nonlinear thinking and complexity science
The NSE software visualization paradigm complies with the essential principles of
complexity science, particularly the nonlinearity principle and the holism principle.
2. Holistic
The NSE software visualization paradigm generates entire charts/diagrams of a
software product to show both the overview of the structure of the product and
the detailed logic or control flow for an entire product and each file/class/func-
tion, including

(a) The function call graph of the entire software system

(b) The class inheritance chart of the entire software system

(c) The class and independent function relation chart of the entire software system

(d) The program tree of the entire software system

(e) The overall MC/DC test coverage measurement result of the entire software
system

(f) The overall quality measurement result shown in Kiviat diagram

(g) The overall performance measurement result of the entire software system

(h) The overall Cyclomatic complexity measurement result of the entire software
system

(1) The logic diagram of the entire software system

(j) The control flow diagram of the entire software system

(k) The overall version comparison result shown in J-Chart with unchanged
modules shown in blue, changed modules in red, deleted modules in brown,
and added modules in green (originally on screen in color and not black and
white).

Panorama Diagram Menu “

~Diagram Mode
& J-Diagram JFlow (Action Plus

With 1 Test Coverage
[¥ Function High Level @ ‘\Without
[Class High Level € LastRun
[~ Project Summa
J i (" Accumulated
[~ File Summary
[¥ Condition

[~ Function/Class Summary

conce_|

Fig. 7.24 The interface of a J-Diagram generator

7.9 The Major Features of NSE Software Visualization Paradigm

-

Diagram

163

File |Option | Tag Path

Switch
Summary

Test Coverage
Without Condition

E=RRo N
Help
J-Diagram -
J-Flow
Action Plus
3

15t
funct ionszoperator() (float u,float v,float w) |——— 00086

0300 :

439 Switch » l—{![l{m? i
440 | :

441 Summary » Project Summary
“i?é Test Coverage . File-level Stfmmary

443 || TToat”

=
Help

0300 2 A
PE Switch O 174

440 ——————— {00382

441 Summary »

o Test Coverage v Without

0303 Without Condition Last

443 |l TToat) Accmulated

443 || funct ion:zoperator() (float u,float w,fl¢

0304 | Refresh

449 | 1

[|

0305 s1 (3]

445 | syn_tab.add_value(0,u); {00362

446 | syn_tab.add_valuel(l,v); {00362

447 | sun_tab.add_value(2,u); {00382

448 | veturn root->evall);

0306

w9 1]

Fig. 7.25 More options to be chosen for showing the related information with the diagram

164

7 NSE Software Engineering Visualization Paradigm

Atk 1" e 4]
"";':-2 L Untested condition

Bil - -_.;ﬂd‘:?_:-’l;f:'lm <= T ingfyich =

o 5 121

5 [

= wll.gut_charl 13
8. .;.lmnludml:

00331]
L g B 10

.n--ll|z:-—adu:iﬁelm
. w'

t

th = whgat _charll; — S

; =l branzit ionlchl; w3
.

% = Execution times

gk charl)y el

C| frusssnnannrannanunnnnnann:io (0
t .

oh o« w5.get_charll; —oon—50
: 3 g o o e—eeeeeeeeeee K 16
.

Fig. 7.27 Associated click-to-jump facility

7.9 The Major Features of NSE Software Visualization Paradigm 165

J-Diagrarn
LFiIe Option [Tag]| Path
00055 ——— : x
% ;fglci;braicg Jump |
fFile expy
9 | Binclude < Set
S || #include <1 : .
6 || #include <4 Clear . |I 3 Ir
7 || #include " Panorama++ Diagram
9 | int | Clear All
9 || nainlint a
EMN o N 000055
00057

11 | char *str, *strre; | OK | |
13 | float wI6); /7 values of indepe

14 | int mun_var; /7 NUnber of possi

00058
16 | if((str = (char*) nalloc(2000)) == HULL) ‘

=
00059
17 {
18 | | printf ("Out of nenory!\n");
19 exit 3
2)
| g
i if _inv.seq
0062
21 | iftlstrr = (char*) nalloc(1001) == HULL)
po00s3
2 {
23 printf ("ut of menory!wn"l;
24 exit 3
% }

Fig. 7.28 Associated facility for manually setting the locations for jumping

3. Automatic
With the NSE software visualization paradigm all system-level, file-level, and
module-level charts and diagrams are generated automatically from the dummy
programming source code (using dummy modules with empty bodies or only
some function call statements) or the regular program source code.

4. Structured without size limitation
All the 3] graphics generated are structured without size limitation, and can be
used to graphically represent very big software products.

5. Easy to update
After the dummy programs or the regular programs are modified, the NSE visu-
alization paradigm will rebuild the database to automatically update the 3J
graphics.

6. Shown with detailed information
The generated 3J graphics can be shown with detailed information such as the
code test coverage analysis result.

166 7 NSE Software Engineering Visualization Paradigm

[@M Cuneanalh ERENEES

Tag Help
S04 ||l else if wis == 21 [70) -
505 || 7 01

IFiIe Option Tag _
oy s | o | DimPath
| 4 H

Jnclihed Path Type

4 :
00326/ 493 B while pold Path Information
PooRy 44 | | 2 l6h

503 [l etse it prts == 31 100
510]ss 10
535

519 | (4 else if gpis == 51 (281
50 H 10 10

514 alse il ppls »= 4) [30)
1. Back Path(s) Info.] @

v while_inv.s
H |
| \J dhile .z 2. Current Path Info.
poozigr 495 | <5 (14
B 97§ uhile pit| 3. Fore Path(s) Info.
ooz 497 | i gpls ey
Dog3y S00 | [w6 (01

33 S else if gz == 21 1200
w7 10

524 [l etee 1t arte e 61 1281
| T

! =)
52 (I atse it mafe == 71 1280
& |]3)2 oo™

0S5 ||| s 534 else f mis == 9) [0)

| &35 s13 10

Dﬂﬂ%g EQ‘J wé!v ;I}]ni‘: =3 10

fm 10 #® | b 1t _imv,seg 514130 10) path execution
3 S alsa it prlz == 4) 1300 G
339 515 89 121 while_imv.zeqd 535041 101 conditions

pooza/ 519 lse if grls == §) 1281 I 3 113

ey oo (1 e hile_inv.ze? <I68] 4} axtracted for

Doozez/ 524 1se if qrls == 6) (28] R R T ffici test
elie it gpls == 0Ol i 5!
A T | I et smcea tas
Doy 529 alsa if etz e 7 1281 seqrent 1lst: case design
ponsss/ 530 12 (2 1 a3 5 a3 15 a7
Dogses/ 53 15t if guls == 91 101 40 1 M
Do 3% o‘la o™ 43 F chile Teichle's") [82]
* chile_imv.geql 23010 [0
o i _levoseg 34030 (00 05 51

#7 Tuhile Trlns‘!-mr[;EE-JIJI (241
1

i F gz 1) [

v while_lmv.segl 2156040 101 S04 F alse if gels =21 (W)

I 509 F alee if rpeis == 31 (W)

o while_inv.segl s316150 (141 SI4 F el f etz == 4) [30)
| 519 F glse If gris == 51 (28] L
Doosy 541 M wpls = 100 1541 524 F alse i gis =€) [28) E
poo3s4s 542 | e 17 10 529 F alee if mis==7) [28) -

Ly raturn SH T alse if iz =91 [0]
| 535%e 313 (0]
Doos/ 543 else uhile inv.segd 516050 [14)
poo3sss 544 o138 1141 541 T if gz == 100 (14}
Y vaturn LT R T] -

Fig. 7.29 The associated facility for semiautomatic test case design

7. Independent from the source code writing style
Let us consider the following two different writing styles a and style b:
The corresponding J-Diagrams show the same logic for writing style a and writ-
ing style b (see Fig. 7.30).

8. Interactive
The generated charts and diagrams are interactive — the charts and diagrams
themselves become the interfaces to accept users’ commands. Figure 7.31
shows how a user can select a module as the new root to get the sub call
graph.

9. Traceable
The generated charts and diagrams are traceable from a module to trace
the related modules calling and called by it, or from a module box to trace the
detailed logic diagram or control flow diagram, or from a function call state-
ment to the called function body, or from a class to the base classes, or from a
#include statement to the included source file, etc., to support semiautomated
software inspection and review. An application example is shown in Fig. 7.32.

7.9 The Major Features of NSE Software Visualization Paradigm 167

Style a:

void function::add operator(node *p, node *n, char ch)

if(n == 0)
{
switch(ch)
{
case '+':
root = new plus;
root->info = '+';
break;
case '*!
}
Style b:

void function::add_operator(node *p, node *n, char ch)

{

10.

11.

12.

13.

if(n == 0){switch(ch){case '+":root = new plus;root->info = '+'; break;
case "*':

Accurate — consistent with the source code

“To keep documentation maintained, it is crucial that it be incorporated in the
source program, rather than kept as a separate document” [Bro95-p249]. The
generated charts and diagrams are accurate to the source code — when the source
code is modified, all charts and diagrams can be automatically updated after
rebuilding the database automatically.

Precise

The NSE software visualization paradigm generates charts and diagrams pre-
cisely, such that when a logic diagram is used to show the result of test coverage
measurement of the source code, the generated logic diagram can highlight
each untested branch and each untested condition combination precisely as
shown in Fig. 7.33.

Consistent among all related charts and diagrams

All charts and diagrams are generated from the same simple databases with
several Hash tables only to keep consistency among them even if the formats
are different.

Linkable automatically

A module box in a generated call graph or a node of the generated program tree
can be automatically linked to the detailed logic diagram or control flow diagram.

168 7 NSE Software Engineering Visualization Paradigm
fooooos
% | int
M | skip_white_spacel) skip_white_spacel)
r — At the =
{
LA same line || @ ||
T a—— T T E—
81 |register int ¢; register int 3
82 |register it inside; register il inside;
84 |c = getclfinput); | ¢ = getcifinput);
£ s A‘!; A\ Prer——
8] for G3) | different l" G3) |
10 ~lines
8?7 |: I« cplus_coment; |
] inLACplus_pdnnenty
—— —— —ad —_—
1] i witch () |
90" Jsuipd (c) 4 J—'
—_— ——
12 | o ——]{ |
914' I{ y | " A
son JI"s 4+
3 i le = gatelf input); |
93 | |Ac = getelfinput); | —_—
P —]
"
14 4 Jif (c b= "t b= /") |
0] | 14t tc 1o W a1 7 i] i
* " 1
15 I - - —— = 1 | | fatals(“unespected "/Ic” found",c); |

Fig. 7.30 Source code writing style-independent logic diagramming

An application example linking a module box in a call graph to the logic dia-
gram is shown in Fig. 7.34 with the test coverage analysis result.

14. Convertible — See Fig. 7.35 to convert a J-Diagram to a J-Flow or ActionPlus
diagram.

15. Useful for software visualization and the support of incremental software
development — see Fig. 7.36.

16. Virtual
The holistic charts and diagrams are generated dynamically from the database
and shown within a Window no more or less, when a chart or diagram is
needed to move, a new one will be regenerated dynamically without really
moving the chart or diagram, so that the required time for tracing a diagram
from block 10 to block 10,000 will be the same as that for tracing it from block
10 to block 20, but the user will still feel that the entire chart/diagram exists.
In fact, with NSE there is no real holistic chart or diagram stored in the mem-
ory or the hard disk — they are dynamically generated virtually to greatly
reduce the required space (only needing about 1/100 of the space required by
a traditional approach with hard copies stored in memory or hard disk), and
speed up the graphic display in about 1,000 times faster compared with the
old version of the Panorama product with which hard copies of the charts or
diagrams are stored in a disk or the memory of a computer. As shown in

Edit
About function

Highlight subtree
Isolate subtree

Diagram

funct Lon

Fig. 7.31 An interaction example for getting a sub call graph

};; + statelpublic stated 0 % q =
I File Option Tag HElp
. =1 [14] -
180 .
—rE%
Tooeso | ¢ = 28 — T
181 int AE%
bt:i | trans it tonluns igned char chl 00345 L
| - . 000614
Do0es] ———o02?
i | [«] : |
. - — T
pooes3 poevn K slonoprl; Heprestion n stateh
| 384 | | of wrlch == L") 52 | char ch « l.get charl); L
ooss4 poo3s ®
186 000437 - - J
187 00037 --—————-—]:E‘ [62]
183 a4 | | ch = wlh.ger_charl); 200503
& ! 4
i [w | T dhile_in.seqt 5310 0
35 || statel:rtrancit ionluns igned char chl :4&5‘0!?1] | uhite_imv.seq2 s4i2) 14
130 |5 [}
495 | ch = xl.qut_charl); [00508
4% | int = = ¥l.transitlonlch); 00051
o =
7| uhile plpps =By t=10] =
nR | n
o7 if gz == 11
13 Prvssananananansnnnnnnnnnnst [0
500 (.
1) ch = x1.gt_charl); 00S0E
502 3 » wl.dramsit ionlch); 00053
503] .
s i [« .
506 11| | ch o= x2.get_char(l; 00508
SO7 Rl | & = w2.0ransit jonlch); 000558
| so8 f
I Peessssssnassssnanssnnnnnn
Fxm‘ ?‘ﬁ n
e Uil aleo if =rle e 31

Fig. 7.32 Various traceabilities established with J-Diagram for semiautomated inspection

170

7 NSE Software Engineering Visualization Paradigm

0602
130

00603
13

00604
13

2
Tlrch=="+"1 grch=="-"1 igfch=="/"| i pych=="+") [

s4 (2] i
% | Untested conditions Essonting kinen

I

K-

0
mich == *.") s =—ntested branch

Fig. 7.33 Precise test coverage analysis and the result display graphically

EXECUTED Ma. :[__ 88+ Accunulated Segment Test Data With Condition Tr
TESTED !n_wm'P-: Total: 53z €245 of -li‘r! Tested>
\ J . 8 : £

I Pt on.com

K

L] — 1]
] TR TMOL-3inte o "+ {iynel-binto p
% el = e L]

1

201 o L4
&
F

wy j

.w::_.L-.- o
- D

oo

-
£ >

Fig. 7.34 An application example linking a module box in a call graph to the logic diagram
shown with MC/DC test coverage analysis result.

Fig. 7.37, a GNU bison program version 1.24 is used for comparing the space
needed in regular approach and the virtual approach: there are 10,932 lines of
the source code with 34 files, and the size of the source code is 349 KB, but the
size of the built database is only 143 KB, less than 2 of the size of the source

code.

But as shown in Fig. 7.38, with the small database, a call graph showing the
Cyclomatic complexity measurement result with 169 functions can be dynami-
cally generated virtually.

For storing the call graph in postscript format using traditional approach, it
requires 795 KB space as shown in Fig. 7.39.

7.9 The Major Features of NSE Software Visualization Paradigm 171

(el B -Flow [~

File [Option| Tag Path Help -

| Switch v J-Diagram File Optlon Tag Path Help
1 - (1l
i Summary * J-Flow ST | T
L1 | . £ -.uqu::‘rmul fonlunzigned char ch)
Action Plus s I
li Test Coverage LA) " g la .
ety Without Condition | i od 3 o et Unpech="0") 1141
o Ly return
4
T 1| lie if grigtich = "«')igpich = "1} [14)
sied char ch) [f————————— 00220 e B ~ 5
st | | U ™ untested branch
k] 2 2| olse il prich == '.") [14]
ZAAE |] e
st - — F: Swun untested condition
g If afieh=0" tigpches"s")
! D007/ 331f olse i olaflptch > 8 ARh <o 2Nk (34
[[y — 1 5o 'a Hderglch <o 211}
7| [t s <« untested branch i fmﬂ?i
}_l
sz "] I::em I alth == 't 10 =
B olss 11 mrlatlch == "+*)|lnlch == '-‘||J W 4[] ol E
L return

T | ST
m ActionPlus Elim

File Option Tag Fath Help
18 E in 141 -
B starellzstrans it ionluns igned char ch) [14]—————— 000330

{
1/ 3?[if wilmuche "D Ligpehts'9") [14]
2/ %;tl IN urn l‘i‘ ‘bh "

alte If g .rlc == ")} igplch == *

= /== return 5:
= 3] | olee if gplch ==

i mpntestea condition
30 vaturn G o
__%:f |t oebse if :’!.rn.l:h e "W Iadgplch <= 2700 Hrnlmelch 3= "a"ibk

i E‘. l“wm ek ws "1 10}

e wlee If =%

7R B =
] inc_parent1; o) 0047 =
% return 1; sl m
41— o

{ J1f 48] |else
L inc_parent I3 0047 o It 3?4:: g\l-‘ return 10; o= -

Fig. 7.35 An example of converting a J-Diagram to a J-Flow diagram

O [

FO!.I.!.'. Mﬂ' VSISIOI‘B

- H u 1“"!”‘““11? . E u

aud =xecuted

., Ll =
>

Fig. 7.36 Assigning bottom-up order for incremental software development, including incremen-
tal unit coding and unit testing

172 7 NSE Software Engineering Visualization Paradigm

So storing the following listed charts and diagrams in postscript format will need

the space more than 100 times of the size of the source code:
The system-level charts/diagrams

(a) The function call graph of the entire software system

(b) The class inheritance chart of the entire software system
(c) The class and independent function relation chart of the entire software system

(d) The program tree of the entire software system

[El 00-Analyzer(Report)

ESHEORC X

File Tag ,
1. Source File Sunnary Table AOD004
Motal Files: 34
Motal Lines: 10932
T
File Mane ‘ Last Hodif inition [?;ze]
ines
-+
c:hisa_ex"1henglis"Ianalyz"1\] Wed Har 03 22:39:00 2004 492
bison.124%alloca.c
c:hisa_ex " 1henglis " Thanalyz"1 1 Hed Har 03 22:39:00 2004 64
bisen.124\allocate.c |
4
c:hisa_ex Thenglis " Thanalyz"1h l Hed Har 03 22:39:00 2004 13
bizon.124\bisonl124.c)
+
c:hisa_ex"1henglis " Ihanalyz"1N ‘ Wed Har 03 22:39:00 2004 351
| bison.124\closure.c |
LI
c:hisa_ex"1henglis"Thanalyz"1N Wed Har 03 22:39:00 2004 769
bizon.124\confli"1.c |
LI
c:hisa_ex " Thenglis " Thanalyz"1h Hed Har 03 22:39:00 2004 118
bison.124\derives.c |
+
c:Visa_ex"1henglis"Ihanalyz"1N ‘ Wed Har 03 22:39:00 2004 402
bison.124\files.c)
+
c:hisa_ex"1henglis™Ihanalyz"1\ Wed Har 03 22:39:00 2004 52
bison.124\f iles.h |
LI
c:hvisa_ex " Thenglis " Thanalyz"1h Wed Har 03 22:39:00 2004 145
bison.124\getargs.c |
L
c:hvisa_ex " Thenglis " Thanalyz"1h ‘ Wed Har 03 22:39:00 2004 162
bison.124\getopt.c
LI
c:hisa_ex"Ihenglis Ihanalyz™1N ‘ Hed Har 03 22:39:00 2004 129
bison.124\getopt.h
c:hisa_ex"1henglis"1hanalyz"1N] Hed Har 03 22:39:00 2004 180
bison.124\getoptl.c |
+
c:hisa_ex " Thenglis " Thanalyz"1h J Hed Har 03 22:39:00 2004 58
bigon.124\qran.c)
+
c:MVisa_ex"1henglis"1Nanalyz™1\ J Wed Har 03 22:39:00 2004 120
bison.124\gran.h J
L
c:hisa_ex"1englis"1hanalyz"1h ‘ Hed Har 03 22:39:00 2004 170
bison,124\1alr.c

Fig. 7.37 The size comparison between the source code and the built database

7.9 The Major Features of NSE Software Visualization Paradigm

| . source_code Properties ‘

General | Sharing | Security | Customize |

)

source_code

Type: File Folder
Location: Ci\isa_examples\English_examples\analyzed_for_revii
Size: 243 KB (255,440 bytes)
Size ondisk: 320 KB (327,680 bytes)
Contains: 34 Files, 0 Folders
Created: Today. February 21, 2010. 1 minute ago
Attributes: Read-only (Only applies to files in folder)
Hidden | Advanced.. |
[ok][cancel || Appy

Fig. 7.37 (continued)

173

174

7 NSE Software Engineering Visualization Paradigm

~ bison124.dbs Properties -

General | Security | Details|

5

Dbison124.dbs

Type offile: DBS File (.dbs)

Opens with: 4 Windows Shell Common [Change...] I
Location: C:\isa_examples\English_examples\analyzed_for_revi

Size: 143 KB (146.920 bytes)

Size ondisk: 144 KB (147.456 bytes)

Created: Monday. January 04, 2010, 6:29:44 PM

Modified: Sunday, May 04, 2008, 3:04:47 AM

Accessed: Monday. January 04. 2010, 6:29:44 PM

Attributes: [IRead-only Hidden

OK][Cancel] Apply

Fig. 7.37 (continued)

7.9 The Major Features of NSE Software Visualization Par:

C
L = I

-

adigm

175

| Madmnam width:

Mumiber of nodes per layer:

Layer O 13
Layer 1: 12
Layer 2 53
Lasyer 3: 43
Layer 4: 23
Lawyer 5 12
Layerb: 7
Layer : 4
Layer8: 1
Layer % 1
Figpure:
Root number: 13

Fig. 7.38 The call graph of bison V1.24 with Cyclomatic complexity measurement result

T TR

General | Security | Details

%‘ bison124

Typeoffle: PostScript 3 ¥ (ps)

Size on disk 796 KB (815.104 bytes)

Created: Today. February 21,2010, 2 ho

Accessed: Today. February 21,2010, 2 ho

urs ago

Modified: Today. February 21, 2010, 7.07.04 PM

urs ago

Opens with: . Acrobat Distiller
Location: Cisa_examples\English_examples\analyzed_for_revi
Size: 795 KB (814,681 bytes)

Atributes: [TRead-only []Hidden
ok || cancel Apply

Fig. 7.39 The size of the chart stored in postscript format

176 7 NSE Software Engineering Visualization Paradigm

Bl Command Prompt kcei=) ,-bﬂg I

trouble (x)
int x;
{
int i, t=1;
char ¢ =NULL,ch[10] ,*p=NULL , »e=NULL ;
if((e=ma))== rintf("Out of memory,x=%s" ,x), exit(-1);
for(i T G : pré&ch[i++])
if(i % 2 I
: Ol
« seq. fault when x > 8 =/

while (i » && i J{/=dead loop if x=7 or x=3x/
switch ()
case - s : ; break;

)i fx seg. fault if x

g. fault when x = 4 »/
Arith. excep. when 2 %/

P=NULL) strepy(p,"OK");

B Microsoft Windows

| trouble.exe has stopped working
A problem caused the program to stop working correctly.

Windows will close the program and notify you if a solution is
available.

| Df-_‘t}ug_]. Close program

Fig. 7.41 An error message given by the system without showing the error location

(e) The overall MC/DC test coverage measurement result of the entire software
system

(f) The overall quality measurement result shown in Kiviat diagram

(g) The overall performance measurement result of the entire software system

(h) The overall Cyclomatic complexity measurement result of the entire soft-
ware system

(i) The logic diagram of the entire software system

(G) The control flow diagram of the entire software system

7.9 The Major Features of NSE Software Visualization Paradigm 177

@ trouble - Microsoft Visual C++ [run] - [Disassembly]

@Eiie Edit View Insert Project Debug Tools Window Help

B HE | B | DR %]Javaparser_log _-_] -n'
[| - Sl fle e
> TTB4TDFE int 3
TTEHTDFF ret Microsoft Visual C++ [

TTB4TEDD push

TTBHTEDT moy

7764 7 EBS mow Unhandled exception in trouble.exe: 0xC0000005: Access
TTE4TEDY mou Violation

TTBY4TEGF mou :

TTBY4TET2 or

TTGHTETY je

T764TE16 or - | oK
TTBYTE19 xor |

TTBY4TEIB repne scasi

TTGHTETID not ecx

TTBHTEIF cmp ecx ,OFFFFh

TTBYTE2S jbe TTEHTE2C

Fig. 7.42 The system debugger can only show the location of the object code which is not very
useful

_examples\try_examples\trouble>trouble &
nal SIGSEGU is caught in a /try_ex"1/trouble/trouble.c line 133

C:\isa_examples\try_examples\trouble>

Fig. 7.43 When it is executed under NSE, an error message is given with the detailed source code
location (line 133)

(k) The static and dynamic analysis result of the entire software system

(1) The overall version comparison result shown in J-Chart with unchanged
modules shown in blue, changed modules in red, deleted modules in brown,
and added modules in green.

Plus the file-level charts/diagrams, and the module-level charts/diagrams.
17. Complete
NSE software engineering visualization paradigm completely support:

(a) Visualization of the entire software engineering lifecycle

* Visualization for requirements engineering — See Fig. 7.43 for an
application example of functional decomposition of functional require-
ments in the first step.

* Visualization for design engineering — See Fig. 7.44 for an applica-
tion example of a top-down software system design.

* Visualization for coding engineering — See Fig. 7.34 for an applica-
tion example to assign bottom-up incremental coding orders.

178 7 NSE Software Engineering Visualization Paradigm

* Visualization for software inspection — See Fig. 7.30 for an application
example to establish various traceabilities for code inspection.

* Visualization for software testing — See Fig. 7.47 for an application
example of MC/DC test coverage analysis.

* Visualization for software maintenance — See Figs. 7.47 and 7.48 for
safe implementation of requirement changes or code modifications.

(b) Visualization of software architectures — See Fig. 7.5 for a program
structure (function call graph), Fig. 7.15 for the program tree, and Fig. 7.41
for the data (class) structure of a program.

J T T =="TIT -
B s-riow || Fina string foscer 15 | ekl o
[File| Option Tag Path ze/ 1 1 (0
&w' 17 B emalloci4ileHAL) 131
Find] File ey 17 [v a2 181
Print Function/Class | [it_imieeg 13000 110
Exit Sting FTC D0y 188 [y farti o xg 3 G0 0803 pelehlisel (3]
= mRsy 18 JLIESE & 0 U H
| T W
Funct jom High-Low] Disgran b S
1] e wg o852
ponoos; .
1 nain /% exhisa o luritry s lesit o lalesin.c Tine I
o 1 for_ime.ceg] 18430 101
pnosy . | 1 tor et smar 131
eamr % ceuisa s leriny ponples rochlehaain.g Tind L i
b L
| 123y shile 12 <2 B LD 8 120
pooncs 4 witch Cu+z | L)
174 ehi i it i
gontrol 4 c:\ita sirplasy. ouurp s\ reblelnainc » troublel o 18]
" laooes braak
] arvor £+ ci\isa_swanp las\ r_amirg e b bmain,c 8 x o com 2101
o 10 o/ . Direction: I
o bk
- pooaan 1u_isve, pog £1151
{ divita /1 cr\iza_sanpleshivy sl ¥
I L 61 47 oK wraon
pood1t
1 Y 7% ¢1\iz4 awarplasi vy Lot robbatnain,c o I b i _inv.ieg 112061 100
i 55 o/]
{poonsz [} 1o shile_bsv.oogt ST 100
o g % o1 da s ler g ssanp e\t rocbbanadn.g @
Lina 8 o — s 1] weg? fSIEE 11
\boooy] (o 125 e ot Lxc S)1
] bl /% e\t Loy _sxampdes'tronblamaint Line » | R
giw 0000 i
i-m’ . i 18k, ceg 517000 100
14
| divite 1% 2\iza_wnrplas\iny_wisples\troblalmain.c Line » m B xc) W
6o 00001 oy 12 1
=1 [l
booas 1 il | 90100 18
] troubla /% £:\irs sxmplasitry_srg e\ trobletreut e, o e P
Tine 182 o/ 4 A E 15-—=2EKIT -
= - (e 137§ iipnalleci2EHALE (91 =3
| oAy 10] a1 10} =

Fig.7.44 Visually locating the error location in the control flow of the source code module where
an “EXIT” string has been added to indicate the unexpected program termination location in the
source code

/* The dummy source code */ Exit
#¢include <stdio.h>
void first action() {}
Void customer ()

(

customer () ;
first_action();

)

For Help, press F1 « (i R

Fig. 7.45 An application example for requirement elicitation/gathering

7.9 The Major Features of NSE Software Visualization Paradigm 179

(©)

(d)

(e)

®

(o)

Visualization of source code — See Fig. 7.11 for the detailed logic diagram
of a source code module (shown with untested branches and conditions
highlighted), and Fig. 7.15 for the control flow diagram of a source code
module (shown with the untested branches and conditions highlighted).
Visualization in reverse engineering — See Fig. 7.29 for the call graph
and sub call graph in reverse engineering, and Fig. 7.28 for the logic dia-
gram of a source code module shown with a source code writing style-
independent way.

Dynamic program behavior visualization — See Fig. 7.32 for overall
MC/DC test coverage measurement result and the detailed test coverage
result of a source code module with the untested branches and conditions
highlighted, and Fig. 7.45 in Sect. 7.9 for the overall performance mea-
surement result with the branch execution frequency of a module indicated
in J-Flow diagram.

Integration of visualization tools in the software engineering tool chain
The NSE software engineering paradigm is integrated into the NSE soft-
ware engineering paradigm and the support platform, Panorama++.
Visualization for software debugging — see Figs. 7.40-7.44:

After compilation and execution of the program directly without using
NSE tools, the system shows an error message without detailed informa-
tion (see Fig. 7.41):

Hierarchical System Design Supported by NSE

£3 (Functien Call Graph)

€ »

Fig. 7.46 A top-down system design process shown graphically through dummy programming
and virtual diagramming

180 7 NSE Software Engineering Visualization Paradigm

A sample J-Chart Panorama C/C
generated by

Panorama Lebt 2 gF

main

/home/show/cal2/function.cc

292 | void
292 | function::add_operator

2584
296
298
299

302
303

306
307

310

void symbol_tabl
£
forlint i=0; 1<6;i++)
{

tablelil.var_name =
tablelil.var_value =0,
3

table_index = 0:

3

void symbol_table::add_val
£

tablelindex].var_val

Fig. 7.47 An example of J-Chart shown with some related information

Debugging can also be performed visually with the NSE software engi-
neering paradigm as shown in Fig. 7.44.

7.10 Applications

The NSE Software Visualization Paradigm can be applied in the entire software
development process to make the software product much easier to understand, test,
and maintain:

7.10 Applications 181

Eﬁ (Class Inheritance Tree) li'gﬂ

Exit

EXECUTED Mo. ::lw Recuru Lated Segment Test Data With SCi+ Level=1

TESTED PM:EIM Total: 53% (108 of 188 Tested)
al2

Fig. 7.48 Class test coverage analysis result

= | lecaallE]
B (Function Call Graph) =4 I)-Diegram _\EI__m
F-Exit | File Option Tag Path Help
oo ez p———————v =
. : | 68| int |
BECUTED Mo, al___liess Last fun Sesnent Test Dava Uita Condition True o fict s procsdocsinode o, chr 2) | i

TESTED Pmnm-lm Tatali 68 (233 of 462 Tested)

0 1 17
0| it tlag=1y

it rlopd => paren < total paven)

2 V Untested Branch

7 €= Execution Times

o i grlopl => paren > total paren)
o

Untested Condition

/

5]

Fig. 7.49 The MC/DC test coverage measurement result shown in J-Chart and J-Diagram

(a) Making the entire software development process visible — See Fig. 7.5 for
an overview of the structure of a complex software product shown with the
Cyclomatic complexity measurement result, Fig. 7.9 for viewing the detailed
program logic of a complex module and the related information, Fig. 7.20 for
getting many overall program measurement results including the performance

182

(b)

(©)

(d)

(e)

()
(€9)

()
@

7 NSE Software Engineering Visualization Paradigm

measurement, the Cyclomatic complexity measurement, the test coverage
measurement, the module size, etc., Fig. 7.31 for viewing various sub call
graphs using any module box as the root, Fig. 7.36 for getting the information
about how the software product is organized, Fig. 7.45 shows the application in
the first step for requirement elicitation/gathering using the innovated HAETVE
technique through dummy programming and J-Chart generation — this example
shows the first Actor’s first action, and Fig. 7.46 for a top-down system
design.

Making a complex software product much easier to understand — See
Fig. 7.15 for viewing the overall program tree and the detailed control flow of
each module, Fig. 7.21 for viewing a call graph and the associated pull-down
menu to view interesting information, Fig 7.30 for viewing the detailed pro-
gram logic of a module diagrammed in a way independent from the source code
writing style for easily understanding the module written by others, and
Fig. 7.47 for getting more information from a call graph.

Making the diagrammed source code traceable for semiautomated code
inspection, review, and walk though — See Fig. 7.10 for tracing a function call
statement to the called function body, Fig. 7.15 for tracing a module from the
related program tree to the control flow diagram of the module, Fig. 7.21 for
tracing a module from a call graph to its logic diagram, Fig. 7.27 to tracing a
function with all the locations of the function call statements, and Fig. 7.34 for
tracing a module with the test coverage measurement result to view the detailed
logic diagram where untested branches and conditions are highlighted in small
black boxes.

Making a software product much easier to test — See Fig. 7.5 for test plan-
ning, Fig. 7.15 for test coverage analysis result, Fig. 7.16 for efficient test case
design, and Fig. 7.48 for getting the class test coverage analysis result (note: a
class cannot be directly executed, so that the test coverage analysis result is
obtained from its instances), and Fig. 7.49 for overall and detailed MC/DC test
coverage analysis result.

Making a software product much easier to maintain — See Fig. 7.50 to trace
a module to be modified to find how many requirements are related (in this
example, two requirements are related so that the modification should satisfy
both), and Fig. 7.51 to trace the module to find what other modules may be
affected to prevent the side effects for the modification.

Locating the performance bottleneck easily — see Fig. 7.52.

Finding logic defects better — Programs written in textual format are hard to
read and understand. A logic defect is not easy to find because a program with
logic defects may run without providing an error message, but the results are
often incorrect. With the NSE visualization paradigm, logic defects can be
found through program logic analysis and diagramming to compare to the pro-
gram algorithm. An application example is shown from Figs. 7.53-7.55.
Determining runtime error locations visually — see Figs. 7.40-7.44.

Used for multilevel version comparison — The NSE visualization paradigm can
be used to compare two versions of an entire program holistically in system level,
file level, module level, and statement level as shown from Figs. 7.56—7.60.

7.10 Applications 183

“Part 1 of the Basic calculator design ADDTION

1. ADDITION calculation i
operation -

Detailed requirements:

1. Summay
According fo the e Lator should be able to do the caleula

ber A toadd an r B, the number A and B can be an

]

k.
\ @

s S0
 Socurant doc brres A0

7% cthprogra Dt 9 Ve inc ludeinil lec b &/

biract another pumber B, the number A and B can be an integer,

baosod f—dtruck _baapints | 4 1
— Soadica Psckises 15 hand Fereok £ thel
| . 2o that we use overloading functions 1o handle different type of the

2. The sub-system decompasition design is as follows

|—~ . | - g
00230 F—tuanid geba] tablersadd_valus Lint indes,tleat vl - - . - . . - . .
]

SUBTRACTION calculation

T i (3)

low the use of a negative mumber
98, TS &

Fig. 7.50 Tracing a module to be modified to see how many requirements are related (in this
example, two requirements are related which should all be satisfied in the module modification)

(j) Used to efficiently handle the issues of complexity — NSE software visualiza-
tion paradigm can be used to efficiently handle the complexity issue because
the “Complexity is levels” [Bro95-p211].

According to complexity science, a software system complexity includes:

* Formulaic complexity:

— Description complexity — The NSE software visualization paradigm
makes it possible to graphically describe a software system with the
source code, including the program structure (see Fig. 7.5), the program
logic of an entire software product (see Figs. 7.9-7.11), and the control
flow of an entire software product (see Figs. 7.15 and 7.17) with various
traceabilities established automatically.

— Generative complexity — working with the NSE HAETVE requirement
development support technique, the NSE software visualization para-
digm supports the NSE software development methodology based on
Generative Holism to form and display the whole of a software system
first through dummy programming, then assigns incremental coding and
unit-testing order to support the system growing up incrementally (see
Figs. 7.36, 7.38, 7.45, and 7.46).

— Computational complexity — The NSE software visualization paradigm
makes the program algorithms much easier to understand through path
analysis and logic diagram and control flow diagram generation as
shown in Figs. 7.53-7.55.

184 7 NSE Software Engineering Visualization Paradigm

:=' e | - i " -
=] (Function Call Graph) L__lﬂ‘:’ o
Exit
-~
EXECUTED HNo. 8:130*- Last Run Segment Test Data With Condition True dedefislise —
TESTED PERCENT:_IGBX Total: 46% (13 of 28 Tested)
X
Aunct ion Aunction Aunct ion *6 mbol_ta " minus
e
add_opera Tfunction add_opera symbol_ta
tor nds bfe
[e g e
?oerator(?peratori ?perator(
: - ar
Aunct ion fumbol_ta
ble
build_tre add_value|
e
272
Aunct ion Aunct ion
parenthes
is
A stated L/ stated / statel
Transitio 1 t Lo tra 0 Transitio transitio transitio
n n n n n n
-~
4 11 [

Fig. 7.51 Tracing a module to be modified to the related modules

7.10 Applications

Frequencytnaxd:[____188+ Run Time Performance Data
Tinetnaxy: q Total: B.02045065(sec.>
1 7 11

funct ion M unct jon

function add_opera
d

185

- o004

Erg lush Abprtat

it o wsnluat jon driver progran

1
s of indapendent varishle
ettt o1 por: ibls indepndent W ik le

1] it _inv.seg 53601 9
o

i _inw.veg #5021 9

weprass inn” num_of wsr valual,

Fig. 7.52 A J-Chart showing the performance analysis result with a J-Flow diagram showing the
branch execution frequency for locating the performance bottleneck easily

Two source files written in textual format
[one of them has a logic error)

1" int m=0;
12 for(; i¢=n; i++);/* N < 100 */

13 if(n»0)
14 mo+= i
15 else

16

m-= i
17 printf("m=%d\n",m);
8 }

i cmdtool - /bin/csh ~ cmdtool ~ /bin/csh
1 /* class.cc */] 1 /% classt.cc ¥/]
2 #include <stdio.h> § #include <stdio.h>
3
4 class A { 4 class A {

5 public: 5 public: _

[void func{int, int); g void func{int, int);

T H

8 8 o

9 woid A::func(int i, int n) 9 wvoid A::func(int i, int n)
10 { 10 {

Can you find the difference? which one is wrong?

1 int m=0;
12 for(; i<=n; i++)/* N < 100 */

13 ifn>0)

14 I o+= 7]

15 else

16 m-=1;

17 printf("n=%d\n",m);
18 }

A debugger cannot be used to find a logic bug because a program with logic bugs
may run well but the result produced will be wrong.

Fig. 7.53 Two similar versions of a program module with one having a logic defect

186

7 NSE Software Engineering Visualization Paradigm

Two J-Flow diagrams generated by Panorama [showing the difference clearly)

00014/

00016/
00017/
goolg/

00022/
00023/

00024/
00025/

00026/
0po2?7/

9 || void
9 | A::funcCint i, int n)
11 | si
12 for(; i<z=n; 1+4)
12 ‘EE No decision within
r the Ioolp
I}_ for_inv.segl s3(1)
i_ for_inv.seg2 s4(2)
13 1f(n>0)
14 s5
15 else
16 s6
17 | s7
18

void
A::funcdint i, int n)

11
12
13
14

15
16

ey |

[

17

18 +

sl
for(; i<zn; i++)
if(n>@)
52 Thereis a
decision within

else the loop
53

for_inv.segl s4(1)
for_inv.seg2 s5(2)
36

Fig. 7.54 The control flow diagrams shown in J-Flow are different clearly

7.10 Applications 187

Two J-Diagrams generated by Panorama for logic debugging
(clearly showing the difference between the two programs)

9 || void 9 || void
9 || A::funcCint 1, int n) A::funcdint i, int n)
00015
10 | £ {
00016
11 | int m=0; int m=0;
oopL?
12 || for(; i<=n; i++) for(; i<=n; i++)
=
oopLs

12 /% N o< 100 %/ /% N < 100 #/ ‘
1f(n>0)
L | S Does nothing in the

b —N A decision
i| for_inv.segl loop body o
m+= i}
i| for_inv.seg2
L = = 4 ™~ Does something in
00022 | the loop body
13 | 1f(n>@) i| else
0oo23 goopzl ||
14 m+= i; 16 |1 m-=1i;
@
00024} 1 j—
15| else i| for_inv.segl
0068251 i| for_inv.seqg2
16} m-= i L
i 000025
L 17 | printf("m=Zd\n",m);
00026
17 | printf("m=Zd\n" ,m); 000026
18 | ¥
oop27
18 | ¥

Fig. 7.55 The logic diagrams shown in J-Diagram can be used to find the logic defect easily

188 7 NSE Software Engineering Visualization Paradigm

Fig. 7.56 The system-level version comparison result for a GNU bison program (V1.24 and
V1.25)

* Compositional complexity:

— Constitutional complexity — The NSE software visualization paradigm
helps users to handle constitutional complexity in many ways. For
instance, to a class, the NSE software visualization paradigm performs
the structure analysis, the logic analysis, the data member analysis, the
function member analysis, the control flow analysis, etc., and graphically
represents the analysis results as shown in Fig. 7.61.

— Taxonomical complexity — working with NSE static and dynamic pro-
gram measurement tools, the NSE visualization paradigm graphically
shows the measurement results as shown in Figs 7.62-7.64.

e Structural complexity:

— Organizational complexity — The NSE software visualization paradigm
helps users understand how a software product organized including the
structure analysis, the file system analysis, the data (variable) analysis,
the program logic analysis, and the control flow analysis.

— Hierarchical complexity — The NSE software visualization paradigm
helps users to understand the system hierarchy by generating the
system interactive and traceable call graph, class inheritance chart,
program tree, etc.

7.10 Applications 189

Exit
~
I EE
Shared UA only UB only Changed
(118/183) (4/183) (14/183) (47/183)
__,_.--_'_—i i
—— N ——— — o —— M
< >

Fig.7.57 T

he Modules deleted from version A to version B

e Functional complexity:

Operational complexity — NSE software visualization paradigm makes
the Operation process visible, recordable, and easy to playback through
backward traceability from the system control diagram shown in J-Flow
diagram notation, including dynamically running a third-party compli-
cated program using a batch file as shown in Fig. 7.63.

Function and rule complexity — Working with HAETVE requirement
development technique, the NSE software visualization paradigm helps
users to decompose the function of the functional requirements and make

190 7 NSE Software Engineering Visualization Paradigm

Exit

Shared Uf only UB only Changed
(118/183) (4/183) (14/183) 47/183)

binson
125

About chart

Normal
Dimn A version -
Dim B version
A version only

Maodified units only

1

Funiction size
Complexity »

| Cleardata e e

Change Size »

PS Print
Print

Previous subtree

Fig. 7.58 The new modules added to version B

the decomposition visible as shown in Figs. 7.45 and 7.46 and represents
function cross relationships graphically by generating the function call
graph shown in J-Chart notations.

(k) Used to efficiently handle the issue of software invisibility — The NSE soft-
ware visualization paradigm makes the entire software development process
and the entire system visible from the first step (as shown in Figs. 7.45 and 7.46)
down to the maintenance process (as shown in Figs. 7.50, 7.51, 7.56-7.60). The
NSE software visualization paradigm represents software information graphi-
cally in many ways as shown in Fig. 7.64.

7.11 Self-Documenting 191

£3 Code_Diff (Function Call Graph)
Exit

I I T .
Shared UA only UB only Changed
(118/183) 4/183) (14/183) (47/183)

Fig. 7.59 The modules modified in version B

7.11 Self-Documenting

For easy maintenance, many kinds of documents can be merged into the source
code such as the cross references. Sometimes, when there is a need to use some-
thing like the Sequence Diagram to expose time ordering of events/messages, we
can describe the same thing within a program comment such as the use of a
formatted table shown in C/C++ as follows:

192 7 NSE Software Engineering Visualization Paradigm

? ode Dt (Function Call Graph) =i |\.

5 only U8 enly
ras1aRy (1dsma

‘Shared
(iR R

/% parse what comes
For xtoken, what_is
For “nterm, the argu

void
A435 parse_toki parse_token_decl (wh
int [@485 { int what_is, wh

P438 /% regi @487 register int toker
0439 registe @488 register char *tyg
P440 registe|@489 register struct bu
registe@490@ int k;

int k; @491

0492 for (;;)

stap 0493 {
0494 if (ungetc(skif
for (;;|@495 return;
{ 10496 token = lex();
if (j@497 if (token == C
return|

{
99 symbol = MNULL;
cont inue;

if (token ==
k = strlen(toke,

Fig. 7.60 The detailed difference between a modified module

Diagram . 1_Diagram i Ay
Lhow S 7 o
AcrionPlus\ g a—p—— -
) e g ol Pt 181 L g ot
J-Chart ‘

Fig. 7.61 Class analysis and the analysis result display shown in several ways

7.11 Self-Documenting

Wbt o DhyHremiTlacs
Congplig Batuwin Bject ol lass
Piigonin Far 3 Class
Porbar ol RatbodeClass
Worbeer of Method BoursiClen
Linws of Code ReavedClass
1ot Code Rewned T hace

T condit ien both

T condif jon falie

1 condit iom trom

T drcomrion

T saguenty eswouted faclsl

T ragnents wcuted (acl]

Coupling Betusen 0B pect % bass
Besporas For o Clase

2 condit o akis S Wb o BethednsTlans

L condid lon trm
T J-covaran Sigw in link

T e

T cegmats emscuted (2c]el

© Cyebmatie complunity tuith
T tagrants amicot ol 1acll

Horbar of Bathed BearsfCles
Liks of Cod RinstediTlazs

1ot (ode Funwd/Clans

T comnts & il macing

Cyclomatic coplamity lusthot case!

Classesin Sefected clnsses
- Frnus -
=
=
. '
Tk e i
Surtar of OhilérenTLane
T condifion both

ol

¥ sigrints waited (s} Epl ¥ it Ircomplaxityd)
TAENRE: ~conp b gt s wvecuted 381 i
S lanitgd T'MbeNIb'“ Lo Fromplewitgd l'ww;:?:lh i
Fig. 7.62 The results of program static and dynamic measurement
Fle Tag
- 010 [mhlJibh:lMoI_ubln] |I81 ~
, r =
JFO3 MO03 ADI MO3 |
| ¥ T 1
s 1017243 101724517 [1e2t2ms 12naat
= = Customer meeting = r -~
4 H
® tunchionral notebook * i
b i
Techrical noteback * 1
“ i
4
R
.
*
*
.
La ? - t
1 : p 6%
: Al %Wf‘mjmlﬁj
H or, I‘m 4
:‘lmuuhum |h\§u o ility - &} Studies TN
L = = Developement » 4
W} Dot Base
b et intertace:
W} Wteraction Web-DB —i
¥ Final develoooement =l i
-y
_,L’ raturn index-1
woid synbol_teble::add_varisble [char chl i[ﬂl
anpty_seg 0 (271
. 1S 1 Chicked
1l
. 3 Executed 3w
'] - - . a -
< > 3

Fig. 7.63 Directly running a third-party program through backward traceability from a code

branch shown in J-Flow diagram

7 NSE Software Engineering Visualization Paradigm

194

(soxoq yoe[q [ews ur payy3iySiy are sopnpow paysoyun) dax wersoid e () ‘sa[y 90Inos Jo 9[qe) 11odal JuswINSLaUW 9Z1s A} (I) ‘suonouny Jo
SASSE[O JO 1Ieyd J[nsaI sisA[eue Ayrxo[dwoos (1) ‘O[npow [enpIAIpul yoea o 1onpoid 21mu? ue jo juowarnseaw Ajifenb o) weiderp jeiary () ‘suonipuod 1s93 Ay}
s pay31ysy yied paysajun e (J) (019 ‘SisATeur 958I0A0D 1591 SUIMOYS 10 pasn 1Ieyd Ieq (3) ‘(*019 ‘sisA[eur 9ynqLnje sse[o Joj pasn) weiserp snjquondy (p)
‘(s1sAJeue mo[J [onuod pue sisAfeue K)xo[dwod 10} pasn) wWeISeIp Mmo[J [01uod () (03 Sul[[ed pue Aq PI[[BI) IIUAIJAI SSOIO [IAJ[-JUSWAILIS [PIM WEISeIp
2130] (q) ey diysuoneyal [2A9]-9[npowt () — sorydeis ur jonpoid arem)jos e Jo uoneuLiojut [[e jsowe sjuasdidar wsipered uoneziensia SN U, +9°L ‘814

MK R KMNEDNERDNI]D AEEEEREEEE RN

e o [8] rm g
o |y A T | A L

bl
3 o) e o ol

Hln_ o 9) sy | |
o S U0 S [

T ———
e Rl et i i o
— ey T ol

=T o [y] O ey
o e pucky e 191 o | | |

0 LA e s,

MR SREBEOERR)

9 | I 1
' +

/ERI0Ng

500g

7.12 Summary 195

7.12 Summary

“One Picture Is Worth Ten Thousand Words.” — a holistic, interactive, colorful, and
traceable chart/diagram is more useful in the description of a complex software
product. But unfortunately, the traditional software visualization paradigm works
with linear process models complying with the superposition principle that the
whole of a system is the sum of its parts, so that almost all visualization tasks/

/* Time-Event table:

| Timing tl t2 £3 t4

|

| Events Eventl

|

| event2

|

| event3

}

| event4
|

| Timing t5 t6 t7 t8

|

| Events Event5

|

| eventé

|

| event?7

}

| event8
|

*/

activities are performed linearly, partially, and locally, mainly only making the
modeling process visible with graphic editors to produce many small pieces of
charts or diagrams which are not interactive and not traceable in most cases, rather
than complete, interactive, and traceable ones for graphically representing an entire
software product. Even if a complete chart/diagram can be obtained by using a few
diagramming tools, it is still useless because without automated and self-maintain-
able traceability and the capability to highlight an element with all of the related
elements, there are too many connection lines making the chart/diagram hard to
view and hard to understand.

The NSE software visualization paradigm is based on complexity science, com-
plying with the Nonlinearity principle and the Holism principle, so that almost all
visualization tasks/activities are performed holistically and globally to automati-
cally generate virtual, interactive, and traceable 3J graphics (J-Chart, J-Diagram,
and J-Flow) innovated to make the entire software development process visible.
The NSE software visualization paradigm makes a software product much easier to
understand, test, and maintain.

196 7 NSE Software Engineering Visualization Paradigm

7.13 Points and Questions to Ponder

(a) What are the major differences between the NSE software visualization para-
digm and the traditional software visualization paradigm?

(b) What are the major benefits of virtually existing charts and diagrams without
storing hard copies in the hard disk and the memory of a computer?

(c) Point out the reasons why a system-level call graph or diagram should be made
interactive and traceable.

(d) Write three small programs for generating the following three charts separately
through dummy programming, then compile them and run the executable pro-
grams to correct possible defects.

7.14 Further Reading and Information Source

Brooks FP Jr (1995) The mythical man-month. Addison-Wesley, Reading, Chap 10.
Xiong J (2009) Tutorial. A complete revolution in software engineering based on
complexity science. In: WORLDCOMP’09, Las Vegas, July 13-17, 2009.

1) Main

Main
(2)

Sub1 Sub2 | | Sub3

(3) Main

Sub1 Sub2 | | Sub3

Funcéd | | Func2 | | Func1 | | Func3 | | Funcd

References 197
Xiong J, Xiong J (2009) A complete revolution in software engineering based on

complexity science. In:. WORLDCOMP’09 — SERP (Software Engineering
Research and Practice 2009), pp 109-115.

References

[Bro95-p211] Brooks FP Jr (1995) The mythical man-month. Addison Wesley, Reading, p 211
[Bro95-p249] Brooks FP Jr (1995) The mythical man-month. Addison Wesley, Reading, p 249

Chapter 8
NSE Process Model

There has to be upstream movement... experience and ideas
from each downstream part of the construction process must
leap upstream, sometimes more than one stage, and affect the
upstream activity.

Frederick P. Brooks, Jr.

This chapter describes an important component of the NSE (Nonlinear Software
Engineering) paradigm — the NSE process model.

Software process is a road map for software managers and engineers to follow.
A software process model defines a distinct set of activities, actions, tasks, mile-
stones, and work products for developing and maintaining a software product.

The NSE Process Model is different from the old-established ones based on
linear thinking and simplistic science. It is nonlinear, created through a paradigm-
shift framework, the Five-Dimension Synthesis Method (FDS) proposed by me as
shown in Fig. 8.1.

As shown in Fig. 8.1, the new process model is created by complying with the
essential principles of complexity science, particularly the Nonlinearity principle
and the Holism principle. Of course, a waterfall-like process model will not be created
because it does not comply with the Nonlinearity principle and the Holism principle
of complexity science.

8.1 Some Experts’ Expectations

Many software engineering experts not only point out the problems existing with
the old-established software engineering paradigm but also clearly express their
expectations in software engineering innovation.

Professor Roger S. Pressman, the author of the book, “Software Engineering
A Practitioner’s Approach”:

Originally... software engineering was approached as a linear activity in which a series of
sequential steps were applied in order to solve problems. Yet, linear approaches to software
development run counter to the way in which most systems are actually built. In reality,

J. Xiong, New Software Engineering Paradigm Based on Complexity Science: 199
An Introduction to NSE, DOI 10.1007/978-1-4419-7326-9_8,
© Springer Science+Business Media, LLC 2011

200 8 NSE Process Model

Bi-directional Traceability 3
o —-
e i c £8§
5 o =2 &
L] — MO
£ @ E & =g g
2 @ 2 3Eco o
3 8 58s 52ES53 3 &
5 a.x Es »owE2E & §
= 229N 9
-~ £5c gn','_:ggg a E
H Sx2:| =2E@3E g
Z =~ S o E2 e EO =
BEY 5228 &
f2o 292
n'gg Eson
8% 3
c
E g Market Environment

Application Environment
Testing/Validation Environment
Learning/Training Environment
Nonlinearity
Holism

namics
Self-Organization
Self-Adaptation
Openness
Principles of complexity science (with extended principles)

)\ Process Model
My

Fig. 8.1 Redefining the software process model by complying with the essential principles of
complexity science through the proposed paradigm-shift framework, FDS

complex systems evolve iteratively, even incrementally. It is for this reason that a large
segment of the software engineering community is moving toward evolutionary models of
software development. [Pre05-p864]

Frederick P. Brooks Jr., the author of the book, ‘“‘The Mythical Man-Month’’:
There has to be upstream movement... experience and ideas from each downstream part
of the construction process must leap upstream, sometimes more than one stage, and
affect the upstream activity. Designing the implementation will show that some architec-
tures cripple performance; so the architecture has to be reworked. Coding the realization
will show some functions to balloon space requirements; so there may have to be
changes to architecture and implementation. One may well, therefore, iterate through
two or more architecture-implementation design cycles before realizing anything as
code. [Bro95-p122]

After all, software engineering, like chemical engineering, is concerned with the nonlinear
problems of scaling up into industrial-scale process, and like industrial engineering, it is
permanently confounded by the complexities of human behavior. [Bro95-p288]

The fundamental problem with program maintenance is that fixing a defect has a substantial
(20-50 percent) chance of introducing another. So the whole process is two steps forward
and one step back... Clearly, methods of designing programs so as to eliminate or at least
illuminate side effects can have an immense payoff in maintenance costs. So can methods
of implementing designs with fewer people, fewer interface, and hence fewer bugs.
[Bro95-p122]

8.2 All of the Existing Software Engineering Process Models Are Outdated 201

Franco Zambonelli, H. Van Dyke Parunak, the authors of the paper ‘“Signs of a
Revolution in Computer Science and Software Engineering”:

We are on the edge of a revolutionary shift of paradigm, pioneered by the multiagent
systems community, and likely to change our very attitudes in software systems modeling
and engineering. [Zam08]

8.2 All of the Existing Software Engineering Process
Models Are Outdated

As described in Sect. 2.5, the existing software engineering process models are out
of date, no matter if they are waterfall style models, incremental development mod-
els, iterative development models, or a new one recommended by Alistair Cockburn
to combine both incremental and iterative development together [Coc08],
because they are linear models with only one track forward in one direction without
upstream movement at all, like one way traffic with only one track as shown in
Fig. 8.2, but what we really need is a process model incrementally supporting
bidirectional iteration with multiple tracks through various traceabilities, like
two-way traffic with multiple tracks as shown in Fig. 8.3.

In fact, those existing process models themselves are outcomes of linear
thinking, reductionism, and the superposition principle. It is clear that those
process models handle a software product as a linear system like a machine
which can be assembled to comply with the superposition principle that the
whole of a software system is the sum of its parts. But it violates the Holism
principle of complexity science that the whole of a complex system is greater
than the sum of its parts — the characteristics and behavior emerge from the
interaction of its parts. Based on the Generative Holism principle of

e

e

— f—y A=
——

S
e M
|
=4

g
|

Fig. 8.2 One Way Traffic with only one track

202

Fig.

8 NSE Process Model

8.3 Two Way Traffic with multiple tracks

complexity science, the whole of a complex system should exist first as an
embryo, then it “grows up” with its components as shown in Fig. 1.63 and

Fig.

1.64 shown in Chap. 1.

8.3 Outline of the Revolutionary Solution Offered with NSE

With NSE, a revolutionary solution is offered — the NSE process model:

(2)

(b)

The NSE process model is based on complexity science, complying with the
essential principles of complexity science, particularly the Nonlinearity principle
and the Holism principle.

The NSE process model is supported by many new software engineering
techniques.

(c) The NSE software process model has been commercially implemented with the

(d)

support platform Panorama++ — it not only indicates what needs to be done but
also provides models/techniques and tools to help users solve the issue of how
to do it better.

The NSE process model not only supports new software product development
but also supports software product maintenance which often takes 75% of the
total effort and total cost for product development with the old-established
software engineering paradigm.

(e) Almost all of the tools developed to support the NSE process model are dummy

ones, easy to understand and use.

(f) The NSE process model is established with the goal to solve all essential

problems (complexity, changeability, invisibility, and conformity) and all criti-
cal problems (low quality and productivity, and high cost and risk) existing
with today’s software development.

8.4 The Driving Forces and The Support Techniques 203

8.4 The Driving Forces and The Support Techniques

The driving force for NSE and its process model is complexity science, applied to
solve the essential software engineering difficulties defined by Brooks — complexity,
conformity, changeability, and invisibility, plus testability, reliability, traceability,
and maintainability which we added.

It is established by complying with the essential principles of complexity science
described in Chap. 4, including the Nonlinearity principle, the Holism principle (that
a whole is greater than the sum of its parts), the Dynamics principle, the Self-
organization principle, the Self-adaptation principle, the Openness principle,
the Initial Condition Sensitivity principle, the Sensitivity to Change principle, the
Complexity Arises From Simple Rules principle, etc. to develop the required new
techniques and tools to efficiently slay Fred Brooks’ software engineering werewolf
as shown in Table 8.1. A corresponding mapping between the innovated techniques
described in Chap. 6 and the targeted Issues is shown in Fig. 8.4.

Table 8.1 Issues and the solution technique mapping

Issue Solution Techniques

Complexity 1. Synthesis Design and Incremental Implementation/Iteration/Integration
2. Holistic, Actor—Action and Event-Response driven, Traceable, Visual,

and Executable Approach for Functional Requirement Decomposition

. Holistic and Dynamic Traceability Technique

. Holistic and Traceable Diagram Generation Technique

. Virtual and Traceable Documentation Technique

. Refactoring Technique with Defect Prevention

. Holistic and Dynamic Traceability Technique

. Virtual and Traceable Documentation Technique

. Holistic and Traceable Diagram Generation Technique

. Holistic, Actor—Action and Event-Response driven, Traceable, Visual,
and Executable Approach for Functional Requirement Decomposition

. Holistic and Dynamic Traceability Technique

Comprehensive Software Testing Technique

Defect Prevention-Based Quality Assurance Technique

. Holistic and Traceable Diagram Generation Technique

. Virtual and Traceable Documentation Technique

. Holistic and Virtual Version Comparison Technique

. Holistic and Traceable Diagram Generation Technique

. Virtual and Traceable Documentation Technique

. Holistic and Dynamic Traceability Technique

Comprehensive Software Testing Technique

. Holistic and Traceable Diagram Generation Technique

. Virtual and Traceable Documentation Technique

MC/DC Test Coverage Analysis and Graphical Representation

Assisted Test Case Design

. Intelligent Regression Test Case Selection Technique

Comprehensive Software Testing Technique

. Defect Prevention-Based Quality Assurance Technique

. MC/DC Test Coverage Analysis and Graphical Representation

Conformity

_ W N = N R W

Changeability

Invisibility

Testability

Reliability

W~ AU ARWN— W= N0 R W

(continued)

204

8 NSE Process Model

Table 8.1 (continued)

Issue Solution Techniques
Traceability 1. Holistic and Dynamic Traceability Technique

. Holistic and Traceable Diagram Generation Technique

. Virtual and Traceable documentation technique
Maintainability Holistic and Dynamic Traceability Establishment Technique

. Holistic and Traceable Diagram Generation Technique
. Virtual and Traceable Documentation Technique
. Holistic, Actor—Action and Event-Response driven, Traceable, Visual,
and Executable Approach for Functional Requirement Decomposition
Comprehensive Software Testing Technique
. Holistic and Dynamic Traceability Technique
. Defect Prevention-Based Quality Assurance Technique
. MC/DC Test Coverage Analysis and Graphical Representation
9. Refactoring Technique with Defect Prevention
10. Assisted Test Case Design
11. Test Case Efficiency Analysis and Test Case Minimization
12. Intelligent Regression Test Case Selection Technique
13. Holistic, Global, and Side-Effect-Prevention Based Software
Maintenance Technique

ALDE LN

© oL

Holistic, Actor-Action and Event-Response Driven,
Traceable, Visual, and Executable Approach for g
Functional Requirement Decomposition |\

Holistic and Traceable Diagram Generation g
Virtual and Traceable Documentation Technigue
Comprehensive Software Testing Technique
Defect-Prevention Driven Quality Assurance
Holistic and Dynamic Traceability Establishment
Holistic and Intelligent Version Comparison

Test Case Efficiency Analysis and Test Case
Minimization Technique

Synthesis Design and Incremental
Implementation/Iteration/Integration Technique

Refactoring Technique With Defect Prevention

MC/DC Test Coverage Analysis and Graphical
Representation Technigue

Assist Test Case Design Technique
Intelligent Regression Test Case Selection

Holistic, Global, and Side-Effect-Prevention Based
Software Maintenance

Fig. 8.4 Techniques and the targeted issues

8.5 The Graphical Representation of the NSE Process Model

The proposed NSE process model (Fig. 8.5) consists of the preprocess part and the
main process part which is supported by a facility for automated and bidirectional
traceability (see Fig. 8.6). Both parts are not really separated but combined together

8.5 The Graphical Representation of the NSE Process Model 205

~

Ordering according
to importance

New requirements

LN M by customers mainly

: 1 : Done by development team
“Bone system”: each module has an empty
body or only a set of function call statements

Solution ¥ rototyping |-, Customer
review and testing evaluation
i
- e 10
- Pass?
: - 12
= es e es
.| Requirement lﬂﬂud to modlfyg -
modification e requiremen
“]/no/ﬂ/

Use standard templates for the requirement
specification, assign the name and bookmarks
for the related documents, perform requirement
decomposition, and build the “bone system”

The Pre-process of NSE Mode!l Go to the main process 1
Project planning, JAccording to the order, select one or a set of sub-| |
control and management requirements to implement visually 1
6
| $ 1 t1 12 L.tn | Forward traceability for validation & consistent :
e w2 ! 1 implementation of requirement changes 1
| b] i i i i [=
gl 2 ! ¢
@ e
ol w- | |2 pesignireuse) Jl-- - F - -+ - - - - —— - —- [
-S-— ! 11 o 3\ l ;
'5" ’ "B ; M o o e fo - - - - - -
E R 8 Ry e Tmmt Critical issue
1 found, back to
5 ' _4 \ 3 L prototype desig
= P — S —————
3 ,,____________ﬁmm ===
l 4
1 = k 1 !l'[n
> AT, | Customer r
& i -+ Evaluation|!8

testing dynamically and virtual diagramming
l; Improvement The Main Process of NSE Process Model

' .
K (Backward traceabilty for modification _ 1, prorscrwebaiie @ BES Tor
1 : Defect prevention with Transparent-box reporting, bug tracing. ete. _?

Fig. 8.5 NSE Process Model

206 8 NSE Process Model

-~ Part2 , Part1

\j i 8,\\ e Using time /
§’ i / I L tags for data|._
5” surersaend CITTIY _— I mapping

t
23 r2d1 ; /
- T
85| :
gé‘ —~ o~ Based on -
/ J\ f\ \f\ Test case N
U \ execution |/

Requirement Design Other

Test script Source modules
speclfig\atlorl document documents] (testcases) or code branches
v J \I\ £
r1 : I —
sessssesete— B “r2d1t1 Modified|
2 rid]

e *One or more
test cases

) lwees |

Fig. 8.6 The self-maintainable facility for bidirectional traceability

Bujoely
piemyoeg

\

e e e e e e e e

as shown in Fig. 8.5. If a critical problem is found in the main process for the
implementation of a requirement using the solution method selected in the pre-
process, the work flow may go back to the preprocess for the prototyping design
and testing of a new solution method, and so on.

8.5.1 The Objectives of the Preprocess

The objectives of the preprocess are as follows:

(a) Working closely with the customer to assign priority to the requirements for
better control of the development schedule and the budget.

(b) Performing prototyping design and evaluation for some unfamiliar require-
ments to reduce project development risk.

(c) Performing functional decomposition of the functional requirements using the
Holistic, Actor—Action and Event—Response driven, Traceable, Visual, and
Executable technique described in Chap. 7 (see the step 1 of the main process
model for the application examples).

(d) Working closely with the customer to make a primary version of the require-
ment specification document using standard templates or the NSE requirement

8.5 The Graphical Representation of the NSE Process Model 207

specification template (see Appendix A) provided to prevent defects of missing
something.

(e) Carrying out Synthesis Design of the system using the “Dummy Programming”

technique (through the use of dummy modules) or reverse engineering from an
old software system to complete a dummy system. According to the Generative
Holism Theory of complexity science, the whole of a complex system may not
be “built” from its components but exists (like a human embryo) earlier than its
parts, then “grows up” with its parts (like human eyes). Some real application
examples will be provided in Chap. 10.

(f) Performing cost estimation based on the necessary prototype design and test

and review, and the functional decomposition of the functional requirements,
and the dummy “whole” system designed.

8.5.2 The Objectives of the Main Process

The objectives of the main process are as follows:

(a)
(b)

(c)

(d)
(e)

()
(2)

(h)

Implementing the requirements incrementally to make the software system
“grow up” gradually.

Combining the product development process and the maintenance process
together through bidirectional traceabilities and defect prevention to greatly
reduce the cost and effort spent in software maintenance through side-effect
prevention.

Combining project management and product development together by
making the project plan and schedule charts and cost charts traceable with
the requirement implementation to avoid budget overuse and schedule
delay.

Responding to requirement changes in real time with defect prevention through
traceabilities among all artifacts.

Supporting real-time communication among team members through traceable
project Web sites for distributing development and speeding up the problem-
solving process.

Making the design documents and the source code traceable to each other.
Performing dynamic testing in the entire software development lifecycle
(including the requirement development phase and the design phase too) to
prevent defects using the proposed Transparent-box method, which seamlessly
combines functional testing and structural testing together.

Assure the quality of the product being developed from the first step to the end
through defect prevention and defect propagation prevention with various
bidirectional traceabilities.

(i) Making it possible to help software organizations double their productivity,

halve their cost, and remove 99-99.99% of the defects in their products.

208 8 NSE Process Model

8.5.3 The Objective of the Support Facility for Automated
and Bidirectional Traceability

The objectives of the support facility for automated and bidirectional traceability
are as follows:

(a) Helping software developers to prevent side effects in the implementation of
software changes.

(b) Solving the conformity issue to make the documents and the source code
traceable to each other.

(c) Removing the problems existing with a man-made Requirement-Traceability
Matrix, which is inaccurate, time consuming, and almost unmaintainable.

This automated traceability facility is self-maintainable: no matter whether the
contents of the documents are changed, or the test cases are changed, or the source
code is changed, after regression testing, the bidirectional traceability will be auto-
matically updated without manual work. For instance, when the source code is
modified, after rerunning the test cases, new Time Tags will be inserted into the test
case scripts and the test coverage database to map them together correspondingly.

8.6 The Major Steps of the Preprocess

The Major Steps of the preprocess are as follows:

Step 1. Start.

Step2. Work with the customers to sort the initial requirements into several
different classes such as “Critical,” “Essential,” “Needed,” “Better to have,”
“Optional,” and so on, and assign them corresponding priorities to control
the product development plan and the schedule as well as the budget better.
Usually the number of the initial requirements is about half of the final number
of the requirements. With NSE, requirement changes or new requirements
coming from the customers are welcome and responded to in real time to
enhance the customers’ market competition power and catch the best time
for the customers’ product to be available on the market. If necessary, some
noncritical and nonessential functions may be temporarily given up.

Step 3. According to the assigned priorities, take one or a set of requirements to
perform the preprocess (see the following steps).

Step 4. Check whether the requirement(s) are new to the development team to
determine whether risk analysis and prototype design, testing, and evalua-
tion for the requirement(s) are needed. If there is no need to do so, go to
step 14; otherwise go to step 5.

Step 5. Compare different solution methods, then select the best one according to
the development team’s knowledge.

Step 6. Perform technology review and risk analysis for the selected solution method.

Step 7. If the selected solution method passes the technology review and risk
analysis, go to step 8; otherwise return to step 5.

8.6 The Major Steps of the Preprocess 209

Step 8.

Step 9.

Step 10.
Step 11.

Step 12.

Step 13.

Step 14.

Step 15.

Table 8.2

Perform the prototype design and testing or reuse a suitable prototype and
the test cases for the selected solution method.

Provide all of the related material including the prototype design docu-
ments, the source code, and the test cases, as well as the test result to the
customers for them to review.

If the customers are satisfied with the prototype and the test result for the
selected solution method, go to step 11; otherwise go to step 12.

Save all of the information and make them ready to use for the implemen-
tation of the requirement(s) in the main process; then go to step 14.

Get the customers’ decision whether they want to modify the requirement(s) —
if they want to modify the requirement(s), go to step 13; otherwise return to
step 5.

Perform the requirement modification by the customers, then go to step 5.
Check whether all of the requirements have been handled — if so, go to
step 15; otherwise go to step 3.

After all of the requirements have been handled for the preprocess treat-
ment, work closely with the customer to complete a preliminary version of
the requirement specification using a standard template provided inter-
nally or the NSE requirement specification template (see Appendix A) to
prevent something missing (more detailed requirement specifications
should be completed incrementally in the main process); organize the
requirement specifications and the related documents hierarchically (even
if some documents have not been really designed) with inherited book-
marks as shown in Table 8.2 or meaningful bookmarks (so that when a

Sample document hierarchy with inherited bookmarks

Document Hierarchy

Project Name I Project Code

Project Description,

The full path name of the
Project feasibility report number

Version

The full path name of the
requirement specification number

Version

Requirement 1 Bookmark ‘ rl ‘

Description

The full path name of the related design document

Description Bookmark | ridl

The full path name of the related test specification

Description Bookmark | r1dit1

Requirement 2 Bookmark I r2 I

210 8 NSE Process Model

document is traced, the document will be shown from the position indicated
by the corresponding bookmark), or organize the document directories as
shown in Fig. 8.7 with a “Bookmark Information List” file in each directory
to indicate three elements in each line, including (1) the bookmark name;
(2) the corresponding document name; and (3) the file type (the source

a Fral XRD
e Reenl
ir

Frojust§ Gegnivati Fequirane Fanual Space 1 Schdule b jrctive
pucificat on_Char ¢ w scation .

e
e
el I 3 I (2
e e a—— s

e
— S

- = ﬂ = SO
it Pis I s I rios v
o }f — =

==

b Fraj B8_D
e Beat I

Preject § Ll i
pecificat #
ien

Fig. 8.7 Document directory hierarchy design through dummy programming: (a) An application
example; (b) the document subdirectories of requirement r3 highlighted

8.6 The Major Steps of the Preprocess

211

code of the dummy program is listed in Appendix A), then perform the
decomposition of the functional requirements and the required functions
for nonfunctional requirements and defect removal through dummy
programming (see Fig. 8.8) using the HAETVE technique introduced in
Chap. 11 and the tools; perform top-down system decomposition as shown
in Fig. 8.9, and complete the dummy system hierarchy and defect removal
(through dummy programming too) according to the prototype design

a
void a_sub(); /* +

void b_sub(); /*

void m_sub(); /***/ d_sub(); }

void d_sub(); /* /
void func_11(); /*
void func_12() {}
void func_13() {}
void func_21() {}
void func_22() ;
void func_23() ;
void func_31() {}
void func_32() ;
void func_33(){}
void func_41() {}
b

Void func_42() ; void void func_22() { func_11();

+ %/ func_43(){} void cal() func_32(); }
_wp 1% {assub();) ‘
: b sub() m_sub(); ;L?r'fc _f;;(c)_ff() { func_33();

void func_42() { func_23(); }

- B "in - ' .

*/ void a_sub()
{Func 11(); func_12();
func_13(), ¥

void b_sub()
{ func_21(); func_22();
func_23(); }

void m_sub()
{ func_31(); func_22();
func_13(); }
void d_sub()

{ func_41(); func_32();
func_43(); }

void fune_11()
{ func_22(); func_23(); }

Modified:

- 4 -H“

ll
WA
1

Conpling

void d_SUbO Modified:

{ . B

func_41(); void d_sub()

func_32(); - B

func 43(); —> func_41(); -

} func_32(); /5;’
func_42();

_____ ;unc_43(); ‘VH H H .

void func_22() .

{ void func_22()

func 11(); =—b g 2 10 /

func_32(); UG £e i

}””c— O func_32(); H .
¥

Fig. 8.8 Decomposition of functional requirements of a sample project (a) and defect removal
through dummy programming (b)

212 8 NSE Process Model

Fig. 8.9 Software system hierarchy design through dummy programming

System decomposition design (using “Bone™
programming too) and error correction

Ao)

e

R
o m—y o

!‘

ii

H geratteco

g T 32":'-»:-_::- o i e i i

;!,!gé.fﬁ«f % Q s s
5

Fig. 8.10 Sample dummy system design and defect removal through dummy programming according
to the result of prototyping and the result of the functional decomposition of the requirements

8.7 The Major Steps of the Main Process 213

result and the result of the functional decomposition of the requirements
as shown in Fig. 8.10; finally make a corresponding project development
plan and cost estimation table, and complete the Project Feasibility Report.

8.7 The Major Steps of the Main Process

The major steps of the main process are as follows:

Step 1:

According to the project development plan, the priority assigned to the
requirements, and the “whole” dummy system designed in the preprocess,
take one or a set of requirements to implement visually. It is recom-
mended to select the critical and essential requirements (about 20% of the
initial requirements) first to implement and form an essential version of
the software product (which should be executable) through incremental
integration development which is different from traditional
incremental development as shown in Figs. 1.2 and 1.3. Incremental
integration development means making a software system grow up
incrementally — each time only a new module will be coded and tested to
form a new executable version as shown in Fig. 1.4.

The NSE process model supports the defect prevention and traceability
driven software development method (see Chap. 10 for details) through the
following activities to be performed by the development team working
closely with the customers:

1. Update the requirement specification to prevent the defects of some-
thing missing.

2. Design the document hierarchy (as shown in Table 8.2) including the
test specification documents and the test case scripts to prevent the
defects of untestable requirements.

3. Check and improve the result of the functional decomposition of the
functional requirements performed initially in the preprocess to further
remove the defects in the functional decomposition of the functional
requirements using the Holistic, Actor—Action and Event—-Response
driven, Traceable, Visual, and Executable approach (see Chap. 11).

4. Use all of the documents related to the prototype design and testing
performed in the preprocess phase to implement the corresponding
requirement(s) according to the approved solution method; if there is a
need to use a new solution method, the new solution method must pass
the preprocess treatment with prototype design and testing and evalua-
tion to prevent the defects coming from unrealizable requirements.

5. Ifitis possible, reuse approved documents and test cases (test script files)
suitable for the corresponding requirements to reduce the defect rate.

6. If there is a need for the customers to add new requirements after some
partially completed working versions have been delivered to the customers
for review, respond in real time by going back to the preprocess through

214

Step 2:

8 NSE Process Model

the new solution method selection and inspection, prototype design and
testing, customers’ review, and so on if necessary, to prevent the
defects of unrealizable new requirements.

7. If there is a need for the customers to modify some requirements in the

main process phase, respond to it in real time too by implementing
the modified requirements through bidirectional traceability to prevent
the defects coming from the side effects of the modification. If it is
necessary to use a new solution method, go back to the preprocess phase.

8. Realize visual development in the entire software development lifecy-

cle (not only in modeling) to greatly increase the defect removal
rate: according to complexity science, the characteristics and behavior
of a complex system are determined by both the whole and its parts, so
it is needed to use Holistic and Traceable Diagram Generation tech-
nique (see Chap. 7) and mainly the interactive and traceable 3J graph-
ics (J-Chart, J-Diagram, and J-Flow) proposed and implemented by me
to make the entire software development process visible.

9. Perform dynamic testing plus formal inspection and review in the entire

software development lifecycle using traceable documents and traceable
source code to prevent various kinds of defects; even if only the first
one of the requirements is being handled before the beginning of the cor-
responding program design and coding, we should already have a set of
related documents to be checked for consistency, including the objectives
document, the project development plan/schedule, the requirement speci-
fication, the test requirement specification, the prototype design and test
result and the inspection and review reports, and so on, so that we should
design a virtual “main” program and the corresponding test script files
first, then dynamically execute the program with the test scripts using the
Transparent-box testing method (proposed and implemented by me, see
Chap. 16) — It is a very important feature of NSE for ensuring the quality
of a software product in the requirement development phase before the
corresponding program design and coding using Transparent-box testing
tools dynamically.

Apply the Synthesis Design and Incremental Growing up
(Implementation, Iteration, and Integration) Technique with the
Holistic and Traceable Diagram Generation Technique to further per-
form preliminary design for the selected requirement(s) according to the
detailed requirement specification to improve the corresponding part of
the dummy system obtained in the preprocess phase, then perform formal
inspection and review using traceable documents, and design the corre-
sponding test cases to dynamically test the result of the preliminary
design using the Transparent-box method to prevent inconsistency defects
through bidirectional traceability that is established automatically. After
that, perform detailed design for the selected requirement(s) according to
the result of the preliminary design with formal inspection and review
using traceable documents, and dynamic testing like what was done in the

8.7 The Major Steps of the Main Process 215

Step 3:

ArraySort L 3 EHainWind CPause
11| d

ArraySort Percolate CHainWind CPause

ArraySort ArraySort ! ArraySort
d ed d ed

RenderBar InitBars

ArraySort 3 r ArraySort
d d

SetNewCol DrawBar DrawT ime
ors

preliminary design process. For a detailed description on software design
engineering under NSE, see Chap. 12.

Apply the Synthesis Design and Incremental Growing up (Imple-
mentation, Iteration, and Integration) Technique to perform incremental
coding: on the generated system decomposition chart (a call graph), highlight
the corresponding key module(s) and the related modules for the selected
requirement(s), then assign an incremental bottom-up coding order to the
modules as shown in Fig. 8.11.

As shown in Fig. 8.12, when we are writing a function call statement to a
called module which has been coded, we can read the diagrammed source
code in another window to know how many parameters are needed, their
types, and their sequence to prevent inconsistency defects between the
module interfaces.

Usually, a logic defect is hard to detect because the program source code
is written in text format, and a program with a logic defect can be executed
without providing error messages but the result is incorrect. For solving
this kind of problem, users may use Panorama++ to generate the control
flow diagram in J-Flow notation, or the logic diagram in J-Diagram

- [o]%]

ow

oW

o GetRandom

Fig. 8.11 An example of bottom-up ordering for incremental coding

216

1 Functioncpp

8 NSE Process Model

-{

woid function::build_tree{ char *s)

intvar_num; /#/0.1,2,3,40r5

char numeral[20]; | =

int numeral_index =

// Add variables To sym_tab

int index = 0;

while(s[index] t=""})
if(s[index] >= 'a' && s[index] <= ‘z')
Index++;

index++; // Position just pass ' charncter

if(valid(s))

{

char ch = s[index];

while(ch 1= "0")
{

j B 1-Disgramisy E=.i L'_‘E
| 2 mm was e wm |

Fo Begin ¢3ine_marg der En ok s to b _walyreicaliSyrbel oo %

el

sym_tab.add_variable{ s[index]);

if(ch == ") _ L

Fig. 8.12 Incremental coding with defect prevention

Step 4:

notation, to graphically represent the program for finding the logic defects
better. An application example is shown in Fig. 8.13.

If something critical is found in the coding process, go to the upper
phases through backward tracing, or if the solution method does not sat-
isfy the requirement(s), go back to the preprocess again.

Perform incremental unit testing with integration testing, and finally system
testing, mainly using the Transparent-box approach to combine functional
and structural testing together with the capability to establish automated
and bidirectional traceability among all documents and the source code for
helping users to remove the inconsistency defects. At the same time, per-
form MC/DC test coverage analysis, performance analysis, memory leak
analysis, and memory usage violation check. According to the incremental
coding and testing order, when we code a module, all modules called by it
must have been coded already so that there is no need to design and use a
stub module to replace a called module — in this way the unit testing also
becomes integration testing with all modules being called together. When a
module being called needs to return some special values, two applicable
approaches are provided in the Appendix C.

If something critical is found in the testing process, treat the situation
as some critical issues found in the coding process.

With the NSE support platform, Panorama++, unit testing can be per-
formed in a semiautomated way through a tool called Panounit whose
features include the following:

1. Semiautomatically designs the corresponding driver program — the
main() function.

2. Automatically put the driver, the program unit being tested, and all
modules called by the program unit together.

8.7 The Major Steps of the Main Process

217

Two source files written in textual format
[one of them has a logic error)

[F-R-- RN R N

10

00014/

00016/
00017/
goolg/

goo22/
00023/

00024/
00025/

00026/
0p027/

/* class.cc %/
#include <stdio.h>

class A {

void func(int, int);

\Em'd A::funclint i, int n)

public:

int m=0;
for(; 1<=n; i++);/% N < 100 */
if(n>0)
B = i
else

m-= i;
printf("m=%d\n",m);

] \{roid A::func(int i, int n)

f_‘ c1‘ass1.cc "'f. U
#include <stdio.h>

class A {
public:
A void func(int, int);

int m=0;
for(; i<=n; i++)/* N ¢ 100 */
if(n>0)
no+= i
else

m-=1;
printf(Cm=%d\n",m);

Can you find the difference? which one is wrong?
A debugger cannot be used to find a logic bug because a program with logic bugs
may run well but the result produced will be wrong.

9 || void
9 || A::funcCint i, int n)

ib L sl

12I] for(; icz=n; i+4)

12 352 No decision within
-

r _the loop
L for_inv.segl s$3(1)
i| for_inv.seg2 s4(2)
(o

13 if(n>0)

14 $5

15 else

16 56

17 | s7

18

b Two J-Flow diagrams generated by Panorama (showing the difference clearly)

A

9 || void

9 || Az:funcCint i, int n)
11 | s1
12 for(; i<zn; i++)
13 ifin>0)
14 <2 Thereis a

decision within

15 else the loop
16 s3

I

i_ for_inv.segl s4(1)

i_ for_inv.seg2 s5(2)
17 | s6
18 +

Fig. 8.13 Finding out logic defects through graphical representation of the source code

3.

b

If it is retesting for an existing product, Panounit will search all

locations where a value is assigned to a global variable or a static
variable, and lists those values for users to choose.

Supports assertion setting and verifying the value in any valid location.
Supports semiautomated test case design.
Performs MC/DC test coverage analysis and test result display using J-Chart,

J-Diagram, and J-Flow with untested branches and conditions highlighted.

. Automatically determines the test result — pass or fail.

218 8 NSE Process Model

c Two J-Diagrams generated by Panorama for logic debugging
[clearly showing the difference between the two programs)

9 || void 9 || void
9 || A::funcCint 1, int n) 9 | A::funcCint i1, int n)
00015
10 | £ 10 | {
0016
11 int m=0; 11 int m=0;
ooeL?
12 || for(; i<=n; i++) 12 || for(; i<=n; i++)

00018
12 /% N o< 100 %/ 12 /% N < 100 »/
13 if(n>0)
L | S Does nothing in the

) <. A decision

| for_inv.segl loop body
14 m o4z i
| for_inv.seg2
L £ 4 ™~ Does something in
00022 | the loop body
13 | if(n>0) 15 [|i| else
0oo23 goopzl !
14 m+= i; 16 (! m-=i;
S
00024! rj—
151| else i| for_inv.segl
000258 i| for_inv.seqg2
16} m-= i3 L
i 000025
e 17 | printf("m=%d\n",m);
0oe26
17 | printf("m=Zd\n",m); 000026
16:| >
0oe27
18 | ¥

Fig. 8.13 (continued)

The GUI of Panounit is shown in Fig. 8.14.

In the system testing process, Panorama++ also offers the capability to
capture users’ GUI operations, and plays them back automatically for
regression testing, and the capability for MC/DC test coverage analysis for
the entire product, plus performance analysis, test case efficiency analysis

8.7 The Major Steps of the Main Process 219

test case editing wandow the date of the test case generated the source code of the progrsm unit

1 A fvaid hill_vert int w) ~

108 arge, shares wgvd |

| 2. 5 interger
3. #ll sarting
4. with Assertion

@ | sk | Miegw|pre-compilel ro-joad

Fig. 8.14 The GUI of Panounit tool for unit and integration testing

Step 5:

and test case minimization for efficient regression testing after code modi-
fication. With system testing, an automated and bidirectional traceability
among all artifacts including the source code will be established for defect
prevention.

Chapters 14 and 15 will discuss the software testing support in detail.

Perform systematic, disciplined, and quantifiable software maintenance
using the Holistic, Global, and Side-Effect-Prevention Based Software
Maintenance technique:

1. Respond to requirement changes and new requirements or code modifi-
cations in real-time to implement them holistically and globally with
side-effect prevention.

2. Bring great savings to regression testing after requirement changes or
code modification through test case efficiency analysis and test case
minimization, plus intelligent test case selection through backward
traceability between test cases and the source code.

3. Make it possible to reduce the cost and effort spent in software mainte-
nance from more than 75% of the total with the old-established para-
digm to about 25% of the total with NSE, so that it is possible for NSE
to help software organizations to double their productivity and halve
their cost — with NSE there is no essential difference between the soft-
ware development process and the software maintenance process — in
both processes, software changes are supported in real time with side
effects prevented through various kinds of bidirectional traceabilities
(see Chap. 18). An application example of software maintenance

Tgg Googles|] © seath = » Hortn et Secrty > @8+ (RSP ORET hm

A 1. ADDITION caleulation —u}@ 1
o cxgrogra” Vvmial 97 1vwcBBy inc ludelatdio. b o
Detailed requirements: (1) tobe changed F—dstruct tpost '
! sub-requirement g ! -
(1) It can count integer mumber integer nunber B within 7% cx\panorama\panoramabanglis"Thanalyz Ticalreynbol.
32 bit precision —_——
Exasple. 34567 + 98768 7t S
% co\panoramahpanoranatenglis™Tanalyz Ticaltayr
(2) It can count & Float rumber A plus a“float number B within ---in: ek l,.;,]
32 lnt precision »]
;' crvprogra”limiad 9¢ 1hee 8B\ inc ludetnalloc b o
: b Fumct son ;add_operatori e W’hxfl oll, 4, | I_h;m tz‘ tn he S d
s m it: fenct ion: aaﬂuwlalo | e e, char || £ Donoo4 # maodule
§ Expected vesult: 34
c-‘l-c«rn\uyrm Engl it _eosanp lea an lyped_tor_revisical | S 4 o h
cal "L jris :
8 Casa 2 3 T it s
:h ht‘ﬂ? 174615 2008 |
e mm ith Lish_rgui st
8 GERCELE (2 \Pamiron u.lga uigu % pe b | 1 able: :ad
= it the itk h"“ﬁ?‘ = o ‘
B Expactod: ussge nas
:L?mmlm”hudwu e fhcal . 4 ot 4
s 3
L E:h 07 17:45:20 2005 I
Tt a3 -
e aas hn... iecal
£ ﬁr:m yzwd_tor_reviica ‘ i
8 Cane 4
§ Son fiog 07 17:45:40 !
B File mama. Frdish ran b tart tes bt n#
</ 2 el >

A\DDITION ¢aleulation 112 s File Class,_Function

Detailed requirements: Part 1 of the Basic calculator design — ADDTION
(1) It can count integer numl operation
integer number B within 32 bi|l. Sununary:
fprecision. According to the sequiremea, th calculator should be able to do the calculation for |
wample: 34567 + 98765 a number A to add another number B, the number A and B can be an integer, or
(2) It can count a float num]lﬂam number., so that we use overloading functions to handle different type of th

float number B within 32 b [aeuton

- A Thnmlb-symiuoupoﬂnolldoﬂ'pi!u{olows
Example: 3.34567 + 98. 765 3. Opened| 1o j—fl.m funct lonzzualid (ehar *axpr] | B

S

k:hisa e Thengl is " Tiamalyz"Thcal\egnbol. cop]

I cxhprogra”1vmiaf 84" 1wedB\includehatdioh

e
000003 F—fstruct _iobuf !
-

2: SUBTRACTION calculation] ™ 7+ €\ ina_ox Thanglis T\analyz Tical\sgnbal.h of
Detailed requirements: Part 2 of the Basic calculator design —

(1) It can count integer SUBTRACTION operation

ubtracting integer number | 1. Sunumarv: E

it precision. A ding to the requi the calcul should be able to do the calculation from
wample: 36 - 78 anumber A to subtract another number B, the number A and B can be an integer, ora
float number, so that we use overloading functions to handle different type of the
(2) Tt should allow the U] aicuiation

2. The sub-system dwomposllinn design is as follows:

Teuan s L

<—32. Traced

wd synbol_tableczclear 11 L Ci‘ icked

: «— 9. Traced TR I—mud synbo | _table::add_value Lint index,|lost vl.
< >

-

Fig. 8.15 Defect prevention for requirement changes performed by the NSE support platform,
Panorama++: (a) Performs forward tracing for a requirement change (through the corresponding
test cases) to determine what modules should be modified. (b) Performs backward tracing to
check related requirements of the modules to be modified for preventing requirement conflicts (in
this example, two requirements are related). (¢) Checks what other modules may also need to be
changed with the modification. (d) After modification, check all related call statements for defect

£4 (Function Call Graph)

function

“function

function

function

operator(
>

function

add_opera
nds

(function

operator(
b

gymbol_ta
le

symbol_ta

function

.operator(
>

|function

operator(
>

operatord
b

symbol_ta function
ble

clear build_tre
e

gymbol_ta function gymbol_ta
ble ble
get_index parenthes add_varia
is ble
<
7 Mnagram
S s i
mquj
n
poay ¢

3 il |
e TR e EE—

MWz::::::::::::]
31 | tablel inden] . var_value = 1}

il
cin)

T T

- abd_va b
it vl

B L e —]

prm ot eal (7

Eign]
5[0

Fig. 8.15 (continued) prevention. (e) Efficient regression testing through related test case selec-
tion based on backward traceability. (f) Performs backward tracing to find and modify inconsistent
documents after code modification

222 8 NSE Process Model

+4 Tast Coverags Analysis 3| B Segment Level Correspondance o=l

Case 1
P e o e e int main [int arge,char *sargel | 18] o
To test a DS shesa wencut ion ulll Flush the ulndou (it iz nomall. ol 9]
This is & acript {ile for vequirenint validation and beg prevent iom B ifistr « (chare) nalloci208011 == 01 [91
in code nodif ical ion N!h dona Mhm# forusrd MMIM iwﬁu d-! 1 I
and lh“?:l Mﬂ?‘*lia rubes for writ mn?uu nl ccrht tile are: i W_invl jsdl0) 18]
A mmm the first colum n ‘i
bave conmant Lines 1o Indicate Ih odn!u and ifllster » [char®) malloct1000) »= 0} 191
it Rt
=
i H_invl 1) 18]
i'ﬂl lilanr-ﬂ] m
& Lol = L, Clicked to select
4 ad
mﬁw lﬂ'ﬂl\hl i i u_inel iedi2) 181
sh, iremant
ieRDe C I;uf_J fo i : au':'.'}-s.du S 10 o
Tt cae 1y L&l I"wr. < nun_var+d) 17
Hitz m‘l‘.dw}lﬂ sl 39
Mot hit: o, ch nn.;.a. '—>nlml
&nui o+
.' bk ml-w for_rawishcal I W_ined B33 171
s . validlzte)) (71
Harlinl L= 0; & ¢ nun_var; is+] 271
6 120
J for_invl istld) 0]
? u for_invd w2000 171
- 50 saitchingn var) (21
2. Only this test case was traced [35
0045: ak
caseds 13)
Juthan imihcal < lls]
e,
34855 4, sﬁ‘.’".ﬂ“ (03:3: (k3]
o 13
e
casud: 10)
B 10 0
mane: English_req b test.fca 00065 braak
isa_guanplosE Iﬁmhww for. mmh&nlhh mlmﬂ MM cazab: (1]
Thisa h d_for Aoc brane 18 ;ul 111
'w g coseb: (0]
t11.2 I
awitch_invl ied(5) 100
-
>

Fig. 8.15 (continued)

support is shown in Fig. 8.15 — defect prevention for requirement
changes performed by the NSE support platform, Panorama++.

4. If there is still something wrong after the implementation of a
requirement change or code modification, perform intelligent version
comparison to locate the defects.

8.7 The Major Steps of the Main Process 223

Step 6: Closely combine the project management process and the product devel-
opment process together, making the project plan, schedule charts, and
cost estimation reports traceable with the requirement implementation
and the source code, for better control of the cost and project development
schedule. An application example to trace the project plan/schedule with
the requirement implementation is shown in Fig. 8.16.

Step 7: Establish a project Web site and the related technical forum for real-time
communication and technical discussion among team members to report
the progress of the project, and to open technical discussions for brain-
storming and report a variety of related events, error handling processes
and results, and especially unexpected events in order to discuss the
response, which can all be traced back through the bidirectional and auto-
matic traceability mechanism to update them in real time. It goes without
saying, setting up the project Web site and the project forums is not dif-
ficult. It allows the content of Web sites and forums or topics to be trace-
able with the corresponding requirements, design documents, test cases, and
source code automatically for opening them and achieving real-time
updates, which is its real value. An application example to trace a corre-
sponding Web page from a test case is shown in Fig. 8.17.

Step 8: Frequently deliver working products to the customer for review and
evaluation from the beginning to the end of the software development
lifecycle, even if there is no real output for a dummy system designed in

- [OX| 3= File Clans, Function

- -
u | - ‘-2
e oo sop 6 p:0n00 g 1. Clicked > Trmnd
-
HTHLE £2 v ch_canpls'analigzed_tor_reviswcal Er] ish,_vequiréms !
LT Span ﬁ;e:;m:ll-.m dor_raviecal'des ign_docunest .4 E:hiza_ex"Danglis“Panalyz™vealviunct ion.cpp |
- w1 ro ugant L prod . bal ¥
1 Tor 58" 3. Executed /% cx\progra™1vmiat 34" hvedi\includerstdlib.h
! Engl ish sxanpls\maljaed_tor_reviaiical 000002 F—fetruct _div_t
pal “loiziei 2 0 = SSb S e e E
b Jreb0z Mar03 A3 May 03 i
5 p o fr e o fr ke brp w1 ks o je e
... » ~
iz s " s |
Ry @ Questions *
b tase 6 ® tunclionnal notetook - 3
i Hon Sep 06 09:00:19 ® User rterface *
f o ® Technical notebock *
C:'\ iz _enamplas\EnglL '
kal “iyjzij" 2 M 9. bR 1
@ Felesse verson - |
Case 7
 Hon Sep 06 09:00:24) = ~ Team meeting
Erias ® 1stmeetng
£ isa_evarpleshEngl L * Ind mesting
feal ", kzivjk" 3 & 3
Case 8
ton Sep 06 09:00:29 S Ao
e § - = Elaborat...
arror y
:\isa_swargles\Engl F Studes FN
el “iduk, Lumn,0,0 W} Specit Ly
1 e 9 O Studies TN
. E:‘ ity = = Developement
An arror
:\isa_svangles Engli b
ical "io bk Loz ks W} Web interface
< L} Interaction Web-DB -
W} Final developpement ﬂ

Fig. 8.16 An example of tracing a requirement to the project development schedule

224 8 NSE

Process Model

P in code nodif icat lon te be done throegh forusrd and backasrd tracesbility
reguirenest spec il loat son, lext case, d@.;r docunent, seurce code,

P = Ih tost result, The rulis Tor uriting this kind of script file ave:

P (1) & '8 chavacter ot the first colum a::]lll! is & cormnd .

¢ || i rucwnlnM to have conmemt Lines Yo indicatu the expected valus and

P ihe mpeched wxecud bon path [sheuld hit uhat lunchions and uhel segmants, sheald

oot hit uhat functioms and chat segeents according te the J-Flou dlagranl.

P Uithin a comment 1ine, you o s three spacial kegsords followed

P by & full {ile mane to specily the related reguiresent specifical lon or design

b Ghcumnt o I o 1D o EMEL 111 formt s bato ool

12) Dew o7 move y linet ave wted o saparate fust cames.

13 The first nlin Lina of & tesd case is the divectory to ren it

4 The secend act v line is the real test comand lcen be more lines)

[int_main i
l‘ I,“‘
= f{lste

8
I 1 0 """’Uﬂ

'11 :

L | & ||.u%r..:| (131

L,d 3

relurn 1

arge

Hilster =

2 0
d_imil sl 1

Ing/brouss |hw|mm1r:sfmn B Thlean
\omm\omm\owin\umnum design_doc_ald.rt
b Teat case 1, to test the 38004 funct ion of a calculator:
b Hit: varisble: senal0)], Fumct don: :add_sparatorinode®, mode® char] (o o405
P ot hit: fonct ise: :add_aperator|nodet, pchardiel, e, 53¢

<— Click to select (blue)

M_imvl 42312 136)

1 (161

o lehar®l nalloc(20001) ==

char®) willoc(100)) == 0F [59]

<« Branches

=3 l 119
o 1y
tested

X

traced
{red)

H
T 400 0] htap: /i groups. google. confgroup/ software-testing/browss_thread/th £Ef b
Bl il it B Ivmsool - i - v O mm- U jrRwE - e BesEss §ae 2
im’ﬁm‘?ﬁ“ jayxiong@sohu.com |
'j}:’:" Mol G O()Sle Web Images Groups News Froogle Local more»
:ms;:s;mn:mm Search Preferances
';5;;; — Topic in Software Testing
fal "o ksisis” 2289?3 < Start s - =
o rofile - Start a new topic - Unsubscribe or change membership - About
) My starred ¥ topics Test cases created in a directory except
< | My recent groups default are not geting opened or executed on
- some oher machine

Fig. 8.17 An application example to trace a test case to a related Web page

the requirement development phase. Get the customer’s

feedback to

improve the product development process and the corresponding result.
Each time when a working version of the product is delivered to the
customer, the related test case scripts should also be delivered so that
the customer can easily duplicate the process and view the results directly.
Finally, when the product is completed and delivered to the customer, not
only should the entire product with the program, data and documents be
delivered, but also the database built through static and dynamic program
measurement plus a set of Assisted Online Agents (automated and intel-
ligent tools — if the database is built using the NSE platform, those
Assisted Online Agents can be distributed without charge) should be
delivered to the customer to efficiently handle the issues of complexity,
invisibility, conformity, changeability, reliability, and traceability, so that
the acceptance testing can be done in a fully automated way and the deliv-

ered product can be easily maintained on the customer side.

8.8 The Support Facility for Automated and Bidirectional

Traceability

As shown in Fig. 8.6, the main facility for bidirectional traceability consists of two

parts:

8.9 The Manifestation of the Essential Principles of Complexity Science 225

1. Part L.
Part I of the facility is related to the traceability between test cases and the
corresponding source code executed by running the test cases. It is done with
the use of Time Tags which are automatically inserted into both the test case
descriptions and the corresponding test coverage database. For instance, if test
case 1 is executed at 09:00 aM on September 2, 2009, and test case 2 is executed
at 10:00 Am on the same day, and test case 3 is executed at 11:00 AM on the same
day, then the three different Time Tags will be inserted into the three test cases
and the corresponding test coverage database separately. So, when test case 2 is
selected for forward tracing, the Time tag of 10:00 AM on September 2, 2009
will be taken from the test case description to search the test coverage data with
the same time tag, so the corresponding test coverage data will be read and
displayed on the corresponding control flow diagram shown in J-Flow notation.
On the other hand, when a module or code segment shown on the J-Flow diagram
is selected, the related time tags (which can be more than one) used to indicate
what time the module or segment was executed will be taken to search the test
case descriptions to see how many test cases there are with the mapping time
tags through backward tracing, then it will highlight all test cases mapped on the
window showing the test case script.
2. PartIL.

Part II of the facility is to extend the bidirectional traceability from test cases and
the source code to include all related documents, the test cases, and the source
code. It is done using some key words (written into the comment part of the
description of the test case) such as @ WORD@, @HTML @, @BAT@, @PDF@,
and @EXCEL@ followed with the corresponding file path and a bookmark to
indicate the format of the document, the full path name of the file, and the corre-
sponding bookmark, so that when a test case is selected for forward tracing, or a
module or segment is selected for backward tracing, the corresponding document
will be opened and shown from the location indicated by the bookmark.

This facility is self-maintainable without manual rework — when the docu-
ment is modified or the test case parameter is modified or the source code is
modified, after rerunning the test case script, new Time Tags will be inserted into
both the test case description and the test coverage data to update the facility
automatically.

Chapter 9 will discuss this facility in more detail.

8.9 The Manifestation of the Essential Principles
of Complexity Science in the NSE Process Model

The major essential principles of system science and complexity science are
applied within the creation of the NSE process model as shown in Fig. 8.18, par-
ticularly the Holism principle which is not only applied in the preprocess but also

226 8 NSE Process Model

Ordering according 1
to the importancs MNew requirements

; K by custamers mainly
Meed t
“b-ﬂorm Risk anoaly'i. and — K&y P“ﬂciﬂ’ t By developmant taamm

P tym . . bBody orﬁenly o set of i:.l"n‘:‘lll:c': :: me
| Optimization principle T

= |13 i ves . - e
'::e:;lflomton o
|] Hoiistlcpnnciple .] Le
Ta — i

FPreprocess

Go to the maln prooce:

e e s g ol o o, . St >
Preject planni According to the order select one or a set of sub- '
ntrel and mana 1ent requirements to Implement H
. Forward traceability fo tent
. : '
1 implementation of req wmh%
] - o i— o —
§ [: =
Ll 2 D e s e o v i skt ane -l e ime - A SbE
o e = b x =
Bl
. T Rl = — { Tervicar ioee —
i‘— v — — —
L)
-| Relevance principle F]
1 1
1 1

_________________ bsite & BBS for |_ ;
+ s Defact prevention The Main Process R g, bug tracing, ete.
4 i improvement of the NSE Model

Fig. 8.18 The manifestation of the essential principles of complexity science

applied in the main process of the NSE process model, including holistic
requirement development, holistic system design, holistic diagramming, holistic
documentation, holistic testing, holistic quality assurance, holistic maintenance,
and holistic version comparison.

Why is the Holism principle applied into all phases and so many activities?
Because software is not a linear system but a nonlinear complex system, where small
changes made locally will affect the entire system through the “Butterfly Effect.” For
instance, when the implementation of a requirement change or code modification is
performed locally and blindly with the old-established software engineering para-
digm without bidirectional traceabilities to prevent side effects, the entire system
may be affected with inconsistency defects, so that the quality of the product will
become unreliable. But with the NSE process model, the modification is performed
holistically and globally with side effects prevented to avoid inconsistency defects.

8.10 The Major Features and Characteristics
of the NSE Process Model

The major features and characteristics of the NSE process model include the
following:

8.10 The Major Features and Characteristics of the NSE Process Model 227

1. Dual-process: NSE model consists of the preprocess and the main process.

They are different but also closely linked together. The objectives of the prepro-
cess and the main process are different as described in Sect. 8.3.

. Nonlinear: The NSE model is established on complexity science and supported
by facilities for two-way multilevel automated traceabilities to avoid a series of
shortcomings existing with the linear process models under the old-established
software development paradigm. Unlike the linear model which assumes that the
upper processes are correct so that the only need is to continue to carry out
the lower-level processes — it makes the existing defects easy to propagate from
the upper phases to the lower phases and the cost for removing the defects increase
10 to 100 times or more — the NSE process model always assumes that there may
be defects introduced in the upper phases so that there is a need to check and
remove the defects in the upper phases through dynamic testing using the
Transparent-box method and backward traceability that is established automati-
cally. Similarly, changes made in the upper phases may affect the work products
obtained in lower-level phases, so that there is also a need to check and remove
the inconsistency defects in lower-level phases through forward traceability.

. Parallel with Multiple tracks: “Much of software architecture, implementa-
tion, and realization can proceed in parallel” [Bro95-p233]. For reducing
waiting time and speeding up software development processes, the NSE pro-
cess model supports tasks being performed in parallel with multiple tracks
through bidirectional traceability. Some application examples are shown in
Figs. 8.19-8.21.

. Real time: “Timely updating is of critical importance” [Bro95-p235]. The NSE
process model supports real-time updating of the system — even if only one new
module is completed and integrated, a new version of the entire executable

Requirement Validation Through
Forward Traceability

'Requirement

Design

Coding

Testing

Maintenance

Fig. 8.19 Supporting parallel work for requirement validation through forward traceability

228 8 NSE Process Model

Consistent Code Modification with Defect
Prevention through Backward Traceability

=

Fig. 8.20 Supporting parallel work for consistent code modification through backward traceability

Consistent Implementation of Requirement

Changes through Bi-directional Traceability
(1) Finding out the related documents and
the modules to be modified through

a1t

(2) Finding out whether there are oth
requirements related to the modules to be
meodified through backward traceability

Fig. 8.21 Supporting parallel work for consistent implementation of requirement changes

8.10 The Major Features and Characteristics of the NSE Process Model 229

system will be updated to check the progress and effects. The NSE process
model also supports requirement changes in real time to implement the changes
with defect prevention through bidirectional traceabilities for increasing the
customer’s market competition power.

5. Incremental development with two-way iteration: The NSE process model
supports incremental development with two-way iteration, including refactor-
ing to handle highly complex modules and performance bottlenecks with side-
effect prevention through various traceabilities. When a critical issue is found
in the main process, the work flow may go back to the preprocess for selecting
a better solution method, and so on.

6. The software development process and software maintenance process are
combined together seamlessly: With the NSE process model, there is no big
difference between the software development process and software maintenance
process — according to SPR’s report[Jon02], “Requirements sometimes grow at
>2% per month,” so a 2-year product may double the requirements at the end — it
means that the development process also needs to handle requirement changes.
The NSE process model support safe software changes through various auto-
mated traceabilities to prevent side effects in the implementation of the changes,
whether in the software development process or the maintenance process.
Particularly, with the NSE paradigm, a software product will be delivered to the
customer with the computer program, the data used, all related traceable docu-
ments, plus the database built through static and dynamic measurement of the
product, and a set of Assisted Online Agents (automated and intelligent tools) to
support testability, reliability, and efficiently handle the issues of complexity,
changeability, conformity, and invisibility to make the product maintainable at
the customer site with the same conditions as in the development site.

7. The software development process and the project management process
are combined together closely: With the NSE process model, all documents
including the project management documents such as the project development
plan, the schedule chart, the cost estimation report are traceable with the
requirement implementation and the source code for better control of the prod-
uct development. NSE process model also supports the critical requirements
and most important requirements being implemented early with the assigned
priority to avoid budget overuse — if necessary, some optional requirements and
not so important requirements can be ignored temporarily.

8. Reusable Component-Based Software Development support: The NSE pro-
cess model supports component reuse in all phases if the reusable components
are qualified as “Broken Limbs” rather than “Artificial Limbs” — based on com-
plexity science, a complexity system is not built from its parts but is growing
up with its parts, so that a reusable component must be qualified as a Broken
limb with self-adaptive capability — at least no negative effects on the system
quality, no overuse of the system memory, no memory leaks, no negative effects
on the performance, fully tested with test cases for verification, and fully fulfills
the functionality required.

9. Adaptation focused rather than predictability focused: The entire world is
always changing, so the NSE process model is adaptation focused rather than

230

10.

11.

12.

8 NSE Process Model

predictability focused — it supports requirement changes, code modifications,
data modifications, and document modifications to make them consistent and
updated with side-effect prevention in the implementation of the changes.
Defect prevention driven: The NSE process model is defect prevention driven
in the entire software development lifecycle through various kinds of traceabili-
ties and the use of Transparent-box testing, plus inspection and review using
traceable documents and traceable and diagrammed source code.

People are considered as the first-order driver for software development —
One of Manifestos for Agile Software Development is “Individual and interac-
tion over processes and tools.” In the paper, “Characterizing people as
non-linear, first-order components in software development,” Alistair A.R.
Cockburn stated that “I now consider the characteristics of people as ‘the domi-
nant, first-order’ project driver,” and “People tend to inconsistency.” When
people like Alistair A.R. Cockburn consider “people as the first-order” to software
development, they focus on how to trust and support people better for their jobs
but ignore the other side of people’s effect on software development — almost all
defects introduced into software products are made by people, the developers,
and the customers. So NSE supports people in two ways: one is to support them
with better methodology, technology, and tools; another one is to prevent the
possible defects to be introduced into the software products by people — it is
done mainly through various automated and bidirectional traceabilities.

Better support for people: The NSE process model with its support platform
Panorama++ provides better support for the software development team mem-
bers and the customers:

(a) Empowered customers: With the NSE process model, customers assign
priority to the requirements, review the solution methods and the prototype
design as well as the test results, have all working versions delivered to
them for review from the dummy system to the final products, make
requirement changes or add new requirements without worrying about the
side effects because the implementation of requirement changes is done
with defect prevention through various automated traceabilities, particu-
larly the outsourcing products developed with the use of the NSE paradigm
are now truly maintainable because the products are delivered to them
with the programs, the data used, the documents, and the database built
in the static and dynamic measurement of the product, plus a set of
Assisted Online Agents to make the product visible, testable, reliable,
and maintainable.

(b) Confident Project Manager: Most software projects fail because of
missed schedules, blown budgets, and flawed products. But with NSE,
the requirements are assigned priorities according to their importance for
better control of the development schedule and budget. With the applica-
tion of the Holistic, Global, and Side-Effect-Prevention Based Software
Maintenance technique, the effort and cost spent in software maintenance
can be greatly reduced. The product quality is assured through defect

8.10 The Major Features and Characteristics of the NSE Process Model 231

(©)

(d)

(e)

prevention performed in the entire software development lifecycle though
dynamic testing using the Transparent-box approach, and inspection using
traceable documents and traceable source code. Now the project managers
do not need to worry about requirement changes because the implementation
of requirement changes will be done with side-effect prevention through
various traceabilities. The NSE process model also supports rapid
prototyping and customer reviews, frequent delivery of working products
to the customers, incremental integration, and traceabilities among docu-
ments and project management materials, plus traceable project Web sites
and technical discussion forums for efficient problem solving. The project
managers do not need to worry about whether the original designers of the
project have left the development team, because the related documents and
the source code are linked together and traceable with each other, the static
and dynamic measurement results can be duplicated with the corresponding
database and a set of Assisted Online Agents is used to make the project
much easier to maintain and i