

Multithreading for Visual Effects

CRC Press is an imprint of the

Taylor & Francis Group, an informa business

Boca Raton London New York

Multithreading for Visual Effects
Martin Watt • Erwin Coumans • George ElKoura • Ronald Henderson

Manuel Kraemer • Jeff Lait • James Reinders

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20140618

International Standard Book Number-13: 978-1-4822-4356-7 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

Multithreading applications is hard, but for today’s performance—critical codes,

an absolute necessity. This book shows how the latest parallel-programming tech-

nology can simplify the daunting challenge of producing fast and reliable software

for multicore processors. Although the instructive case studies are drawn from

visual effects applications, the authors cover the gamut of issues that developers

face when parallelizing legacy applications from any domain.

Charles Leiserson, MIT Computer Science

and Artificial Intelligence Laboratory

Multithreading graphics algorithms is a new and exciting area of research. It is

crucial to computer graphics. This book will prove invaluable to researchers and

practitioners alike. Indeed, it will have a strong impact on movie visual effects

and games.

Jos Stam, Senior Principal Research Scientist, Autodesk, Inc.

Visual effects programming is undergoing a renaissance as high-end video game

effects technology approaches the state-of-the-art defined by blockbuster Holly-

wood movies, empowered by the capabilities of multi-Teraflop GPU hardware.

A wealth of graphics algorithms are now graduating into the realm of real-time

rendering, yet today’s programmers face a formidable challenge in structuring

these algorithms to take full advantage of today’s multicore CPU architectures

and deliver on their potential.

This book, the collaborative result of many industry luminaries, wonderfully

bridges the gap between the theory of multithreading and the practice of multi-

threading in advanced graphical applications. Join them on this journey to bring

real-time visual effects technology to the next level!

Tim Sweeney, CEO and Founder of Epic Games

Contents

Preface xiii

Acknowledgments xv

Authors xvii

List of Figures xix

List of Tables xxiii

1 Introduction and Overview 1
James Reinders
1.1 Introduction . 1
1.2 Overview of Case Studies . 2
1.3 Motivation . 3

1.3.1 Quickly Increasing Clock Speeds Ended by 2005 3
1.3.2 The Move to Multicore . 4
1.3.3 SIMD Is Parallelism Too . 6
1.3.4 Highly Threaded Hardware . 7

1.4 Program in Tasks, Not Threads . 7
1.5 Value of Abstraction . 8
1.6 Scaling and Vectorization . 9
1.7 Advancing Programming Languages for Parallel Programming 10

1.7.1 Abstraction . 10
1.7.2 Parallel Programming Needs . 10
1.7.3 Relaxed Sequential Semantics . 11

1.8 Parallel Programming in C and C++ . 11
1.8.1 Brief Survey of Key Parallelism Options 12

1.8.1.1 TBB . 12
1.8.1.2 Cilk Plus . 12
1.8.1.3 OpenMP . 12
1.8.1.4 OpenCL . 13
1.8.1.5 GPU Specific Models . 13

1.8.2 More on TBB: Intel Threading Building Blocks 13
1.8.2.1 Parallel for: parallel for(...) 14
1.8.2.2 Parallel Reductions: parallel reduce 15
1.8.2.3 Parallel Invocation of Functions: parallel invoke 16
1.8.2.4 Learning More about TBB 16

1.9 Data Movement and Layout . 16
1.10 Summary . 17
1.11 Additional Reading . 18

vii

viii Contents

2 Houdini: Multithreading Existing Software 19

Jeff Lait
2.1 What Is Houdini? . 19
2.2 Rewrite or Refactor . 21

2.2.1 Cleaning Statics . 22
2.2.2 Threading the Simple Cases . 27

2.3 Patterns . 30
2.3.1 Always Be Reentrant . 30
2.3.2 Never Lock . 31
2.3.3 Atomics Are Slow . 31
2.3.4 Never Blindly Thread . 32
2.3.5 Command Line Control . 33
2.3.6 Constant Memory versus Number of Cores 33
2.3.7 Memory Allocation . 34

2.4 Copy on Write . 34
2.4.1 Const Correctness . 35
2.4.2 Reader/Writer Locks . 35
2.4.3 Ownership Is Important . 36
2.4.4 Sole Ownership Is a Writer Lock . 37
2.4.5 Failure Modes of This System . 38

2.5 Dependencies . 40
2.5.1 Task Locks . 41
2.5.2 Mantra . 43

2.6 OpenCL . 44

3 The Presto Execution System: Designing for Multithreading 47

George ElKoura
3.1 Introduction . 48

3.1.1 A Note about Interactivity . 48
3.2 Presto . 49

3.2.1 Presto Objects . 50
3.2.2 Rigging in Presto . 51
3.2.3 Animation in Presto . 52

3.3 Presto’s Execution System . 52
3.3.1 Phases of Execution . 53

3.3.1.1 Compilation . 53
3.3.1.2 Scheduling . 54
3.3.1.3 Evaluation . 54

3.3.2 Engine Architecture . 54
3.3.2.1 Network . 55
3.3.2.2 Schedulers . 55
3.3.2.3 Data Managers . 56
3.3.2.4 Executors . 56
3.3.2.5 Engine Architecture and Multithreading 56

3.4 User Extensions . 57
3.4.1 Dependencies Declared a Priori . 57
3.4.2 Client Callbacks Are Static Functions 57
3.4.3 Presto Singletons Are Protected . 58
3.4.4 Iterators . 58
3.4.5 And Then There’s Python . 58

3.4.5.1 Global Interpreter Lock . 58

Contents ix

3.4.5.2 Performance . 59
3.5 Memory Access Patterns . 59
3.6 Flexibility to Experiment . 60

3.6.1 Modular Design . 60
3.6.2 Targeting Other Platforms . 60

3.7 Multithreading Strategies . 61
3.7.1 Per-Node Multithreading . 61
3.7.2 Per-Branch Multithreading . 62
3.7.3 Per-Model Multithreading . 62
3.7.4 Per-Frame Multithreading . 64

3.8 Background Execution . 64
3.8.1 User Interaction . 65
3.8.2 Frame Scheduling . 65
3.8.3 Interruption . 66
3.8.4 Constant Data . 67
3.8.5 Problematic Data Structures . 67

3.9 Other Multithreading Strategies . 69
3.9.1 Strip Mining . 69
3.9.2 Predictive Computations . 70

3.10 Debugging and Profiling Tools . 70
3.11 Summary . 71

4 LibEE: Parallel Evaluation of Character Rigs 73

Martin Watt
4.1 Introduction . 74
4.2 Motivation . 76
4.3 Specific Requirements for Character Animation 76

4.3.1 Animation Graph Goals . 77
4.3.2 Animation Graph Features . 77

4.3.2.1 Few Unique Traversed Paths through Graph 77
4.3.2.2 Animation Rigs Have Implicit Parallelism 78
4.3.2.3 Expensive Nodes Which Can Be Internally Parallel 78

4.3.3 Animation Graph Constraints . 78
4.3.3.1 No Graph Editing . 78
4.3.3.2 No Scripting Languages in Operators 78

4.4 Graph . 79
4.4.1 Threading Engine . 79
4.4.2 Graph Evaluation Mechanism . 80

4.5 Threadsafety . 80
4.5.1 Node Threadsafety . 81

4.5.1.1 API Layer . 81
4.5.1.2 Parallel Unit Tests . 81
4.5.1.3 Threading Checker Tools 82
4.5.1.4 Compiler Flags . 82
4.5.1.5 LD PRELOAD . 83
4.5.1.6 The Kill Switch . 84

4.5.2 Graph Threadsafety . 84
4.6 Scalability: Software Considerations . 85

4.6.1 Authoring Parallel Loops . 86
4.6.2 Overthreading . 87
4.6.3 Threading Fatigue . 87

x Contents

4.6.4 Thread-Friendly Memory Allocators 88
4.6.5 Oversubscription Due to Multiple Threading Models 88
4.6.6 Cache Reuse—Chains of Nodes . 89
4.6.7 Cache Reuse—Scheduling Nodes to Maximize Sharing 89
4.6.8 Task Priorities . 89
4.6.9 Graph Partitioning . 89
4.6.10 Other Processes Running on System 91
4.6.11 The Memory Wall . 91
4.6.12 Failed Approaches Discussion . 91

4.7 Scalability: Hardware Considerations . 92
4.7.1 CPU Power Modes . 92
4.7.2 Turbo Clock . 92
4.7.3 NUMA . 92
4.7.4 Hyperthreading . 93
4.7.5 CPU Affinity . 94
4.7.6 Many-Core Architectures . 94

4.8 Production Considerations . 95
4.8.1 Character Systems Restructure . 96
4.8.2 No More Scripted Nodes . 96
4.8.3 Optimizing for Maximum Parallelism 96

4.9 Threading Visualization Tool . 97
4.10 Rig Optimization Case Studies . 100

4.10.1 Case Study 1: Quadruped Critical Path Optimization 100
4.10.2 Case Study 2: Hair Solver . 100
4.10.3 Case Study 3: Free Clothes! . 100

4.11 Overall Performance Results . 104
4.12 Limits of Scalability . 104
4.13 Summary . 106

5 Fluids: Simulation on the CPU 111
Ronald Henderson
5.1 Motivation . 111
5.2 Programming Models . 112

5.2.1 Everything You Need to Get Started 114
5.2.2 Example: Over . 114
5.2.3 Example: Dot Product . 115
5.2.4 Example: Maximum Absolute Value 117
5.2.5 Platform Considerations . 118
5.2.6 Performance . 119

5.3 Fluid Simulation . 120
5.3.1 Data Structures . 120
5.3.2 Smoke, Fire, and Explosions . 122

5.3.2.1 Advection Solvers . 124
5.3.2.2 Elliptic Solvers . 126

5.3.3 Liquids . 128
5.3.3.1 Parallel Point Rasterization 132

5.4 Summary . 136

Contents xi

6 Bullet Physics: Simulation with OpenCL 137

Erwin Coumans
6.1 Introduction . 138

6.1.1 Rigid Body Dynamics Simulation . 138
6.1.2 Refactoring before the Full Rewrite 139

6.2 Rewriting from Scratch Using OpenCL . 140
6.2.1 Brief OpenCL Introduction . 140
6.2.2 Exploiting the GPU . 142
6.2.3 Dealing with Branchy Code/Thread Divergence 143
6.2.4 Serializing Data to Contiguous Memory 144
6.2.5 Sharing CPU and GPU Code . 144
6.2.6 Precompiled Kernel Caching . 145

6.3 GPU Spatial Acceleration Structures . 145
6.3.1 Reference All Pairs Overlap Test . 146
6.3.2 Uniform Grid . 147
6.3.3 Parallel 1-Axis Sort and Sweep . 148
6.3.4 Parallel 3-Axis Sweep and Prune . 149
6.3.5 Hybrid Approaches . 150
6.3.6 Static Local Space AABB Tree . 150

6.4 GPU Contact Point Generation . 151
6.4.1 Collision Shape Representation . 151
6.4.2 Convex 3D Height Field Using Cube Maps 152
6.4.3 Separating Axis Test . 153
6.4.4 Sutherland Hodgeman Clipping . 153
6.4.5 Minkowski Portal Refinement . 154
6.4.6 Contact Reduction . 154

6.5 GPU Constraint Solving . 155
6.5.1 Equations of Motion . 155
6.5.2 Contact and Friction Constraint Setup 155
6.5.3 Parallel Projected Gauss-Seidel Method 156
6.5.4 Batch Creation and Two-Stage Batching 157
6.5.5 Non-Contact Constraints . 159
6.5.6 GPU Deterministic Simulation . 159
6.5.7 Conclusion and Future Work . 159

7 OpenSubdiv: Interoperating GPU Compute and Drawing 163

Manuel Kraemer
7.1 Representing Shapes . 164

7.1.1 Why Fast Subdivision? . 165
7.1.2 Legacy . 165
7.1.3 OpenSubdiv . 166

7.2 The Control Cage . 166
7.2.1 Patches and Arbitrary Topology . 166
7.2.2 Topological Data Structures . 167
7.2.3 Manifold Surfaces . 167
7.2.4 The Limit Surface . 168

7.3 Uniform Subdivision . 169
7.3.1 Implementing Subdivision Schemata 169

7.4 Serializing the Mesh Representation . 170
7.4.1 Case Study: Subdividing a Pyramid 170
7.4.2 Generating Indexing Tables . 170

xii Contents

7.4.3 Preparing for Parallel Execution . 172
7.5 Transition from Multicores to Many-Cores. 173

7.5.1 Streaming Multiprocessors and SIMT 173
7.5.2 Practical Implementation with OpenCL 174

7.6 Reducing Branching Divergence . 175
7.6.1 Sorting Vertices by Type . 176
7.6.2 Further Vertex Sorting . 176

7.7 Optimization Trade-Offs . 179
7.7.1 Alternative Strategy: NVIDIA Dynamic Parallelism 179
7.7.2 Alternative Strategy: Vertex Stencils 180
7.7.3 Memory Bottlenecks . 181

7.8 Evaluating Our Progress . 182
7.9 Fundamental Limitations of Uniform Subdivision 183

7.9.1 Exponential Growth . 184
7.9.2 Geometric Fidelity . 184
7.9.3 Animating Subdivision Surfaces . 185
7.9.4 Better, Faster, Different . 185

7.10 Feature-Adaptive Subdivision . 186
7.10.1 GPU Hardware Tessellation . 186
7.10.2 Catmull-Clark Terminology . 187
7.10.3 Bi-Cubic Patch Representation . 188
7.10.4 Feature-Adaptive Subdivision . 189

7.11 Implementing the GPU Rendering Engine 190
7.11.1 Bi-Cubic Bspline Patches with GLSL 191

7.11.1.1 Handling Surface Boundaries 192
7.11.1.2 Handling Patch Transitions 193
7.11.1.3 “End” Patches . 194

7.11.2 Mitigating Drawing Overheads . 196
7.12 Texturing . 197

7.12.1 Displacement Mapping . 198
7.13 Conclusion . 199

Bibliography 203

Index 209

Preface

In 2013, Martin Watt assembled us together, a group of software engineers and researchers,
to give a SIGGRAPH course on the use of multithreading techniques in the visual effects
industry. The course was first presented at the 2013 SIGGRAPH conference in Anaheim,
California. We were all excited to share our experience of writing and optimizing high
performance software for a computationally demanding field. We discovered that there was
a lot we could learn from each other and from others. We wanted to continue sharing our
experiences: the pitfalls we ran into, the solutions we adopted, and our successes and failures.
This book was born out of this desire.

As the “free lunch” of faster software was ending and as hardware manufacturers turned
to increasing the number of cores from increasing their speed, the computational power
required by the visual effects community kept growing. We wanted faster and richer renders,
faster and more accurate simulations, faster and higher fidelity iterations on our work. How
do you harness the power of the new architectures to squeeze more seconds out of your
simulation? Or more milliseconds out of your interactive 3D application? These are some
of the questions we struggle with.

The approach we have taken in this book is to present case studies that describe how we
have used multithreading techniques to achieve better performance. We each present the
problems we ran into and how we solved them. Some of the case studies target solutions for
shaving milliseconds, while others are aimed at optimizing longer running tasks. Some of
the case studies concentrate on multithreading techniques for modern CPU architectures,
while others focus on massive parallelism using GPUs. Some of the case studies are of open
source projects, so you can download and try out these techniques for yourself and see how
well they work. The breadth of topics and approaches should give you an idea of the diverse
solutions that currently exist for solving the performance problems we face.

We have not attempted exhaustive coverage of all the different threading technologies,
or all possible areas of visual effects, since that would result in an unmanageably large book.
Thus, the fact that a specific threading approach is not covered in this book should not be
taken as an indication that we consider it less useful, merely that it was not the approach
chosen by the specific authors to solve the specific problems they faced. We hope that the
descriptions of the problem areas and approaches taken in this series of case studies should
be sufficient to allow the reader to map the ideas presented onto their specific combination
of problem domain and preferred threading technology. Multithreading is challenging and
difficult to get right, and we hope that by sharing both our successes and our failures in
the messy real-world application area of production software, we can inspire and encourage
others to follow a similar path.

There is a Web site at http://www.multithreadingandvfx.org, which was created for
the original SIGGRAPH 2013 course, and remains live. We will post material relevant to
this book on that site, and would also welcome feedback, opinions, and dialog with others.

xiii

xiv Preface

We hope we can all learn from our diverse experiences as we tackle the difficult but necessary
challenges of parallel programming for our industry.

Martin Watt
Erwin Coumans
George ElKoura
Ron Henderson

Manuel Kraemer
Jeff Lait

James Reinders

Acknowledgments

Martin Watt wishes to thank Lincoln Wallen and Jeff Wike for support for the ambitious
project of reworking our character evaluation system, the entire Rigging and Animation
RnD team at DreamWorks Animation, and the invaluable contributions from Intel engi-
neers including in particular Mark Hampton and Alex Wells.

Erwin Coumans wishes to thank Takahiro Harada for his research and discussions about
GPU and physics simulation, Raja Koduri and Jason Yang at AMD, and Dominic Mallinson
and Yoshimichi Kitaya at Sony for supporting open source, and all contributors and users
of the Bullet Physics SDK.

George ElKoura wishes to thank Ed Catmull, Steve May, Guido Quaroni, Adam Wood-
bury, Dirk Van Gelder, Florian Sauer, Aaron Luk, Andrew Butts, Florian Zitzelsberger,
Pixar’s entire Software R&D group, and all the Pixar artists who always inspire us to build
better tools.

Ron Henderson wishes to thank Ken Museth, Nafees Bin Zafar, Mihai Alden, David Hill,
Peter Cucka, and the many FX artists at DreamWorks Animation who have contributed
feedback, testing, advice, and inspiring imagery during the development of our simulation
tools. Thanks also to DreamWorks studio management for their continuing support of re-
search and development.

Manuel Kraemer wishes to thank Charles Loop, Matthias Nießner, Tony DeRose, and
Mark Meyer: OpenSubdiv would not exist without your pioneering research; Dirk Van
Gelder, David Yu, Takahito Tejima, and Julian Fong, the Pixar engineers who have con-
tributed to the implementation, and Bill Polson, Guido Quaroni, Steve May, and Ed Catmull
for supporting our first steps along the arduous open-source path.

Jeff Lait wishes to thank Edward Lam for leading the way in our multithreading of Hou-
dini; and all the developers at Side Effects Software who have contributed to this quest over
the decade.

James Reinders wishes to thank the numerous customers who have provided feedback
and inspiration for Intel products, in particular Martin Watt and the DreamWorks team,
the team at Pixar, all the Intel engineers working on Intel tools and libraries, and those
working on the Intel MIC architecture products. Reinders is especially grateful for the sup-
port and encouragement received from Susan Meredith, Andrew Reinders, Kim Colosimo,
Kunjan Raval, Charles Winstead, Jim Jeffers, David Mackay, Michael McCool, Joe Curley,
Herb Hinstroff, Arch Robison, and Greg Stoner.

All the authors wish to thank the publisher (Rick Adams, executive editor; Linda Leggio,
our project editor; and Joselyn Banks-Kyle, our project coordinator of Taylor & Francis).

xv

Authors

Martin Watt is a principal engineer at DreamWorks Animation where he has spent 5
years working on a ground-up replacement for the existing in-house animation tool. Prior
to that he worked at Autodesk and Alias in Toronto, Canada, as a senior developer and
software architect on Maya, working initially on modeling tools, then focusing on perfor-
mance optimization and multithreading across the codebase. He has a PhD in astrophysics
from the University of Birmingham in the United Kingdom.

Erwin Coumans is a principal engineer at AMD, where he is responsible for real-time
physics simulation research and development for film and game productions. His work is
used by game companies such as Disney Interactive Studios and Rockstar Games, and film
studios such as Sony Pictures Imageworks and DreamWorks Animation. After his study of
computer science at Eindhoven University, he has been involved in collision detection and
physics simulation research for Guerrilla Games in the Netherlands, Havok in Ireland, and
Sony Computer Entertainment U.S. R&D. Coumans is the main author of the open source
Bullet Physics library at http://bulletphysics.org.

George ElKoura is a lead engineer at Pixar Animation Studios. He has 14 years of anima-
tion industry experience, first as an engineer at Side Effects Software, working on Houdini,
and later joining Pixar where he has been for the past 7 years. At Pixar, his current respon-
sibilities include leading a small team of engineers to deliver high performance proprietary
animation software to artists.

Ron Henderson is a director of R&D at DreamWorks Animation where he is responsible
for developing visual effects, simulation, and rendering tools. In 2014, he received a Technical
Achievement Academy Award for Flux, a general purpose fluid simulation system used for
effects such as dust, smoke, fire, and explosions in recent films such as Rise of the Guardians,
Puss in Boots, Megamind, and The Croods. Prior to joining DreamWorks in 2002, he was
a senior scientist at Caltech working on efficient techniques for simulating fluid turbulence
on massively parallel computers. He has a PhD in mechanical and aerospace engineering
from Princeton University, where he wrote his first distributed simulation framework for
the Intel i860 Hypercube.

Manuel Kraemer is a graphics software engineer at Pixar Animation Studios. Prior to
that he worked as a technical director at Disney Feature Animation, Double Negative, and
the BBC. He is currently working on OpenSubdiv, the open source subdivision surface API.

Jeff Lait is a senior mathematician at Side Effects Software where he has worked on Hou-
dini since version 1.0. He has contributed to geometry processing, rigid body solvers, and
fluid simulations. He has also had the “joy” of working with many architectures over the
years: SGI, Alpha, x86, Itanium, PS2, and PS3; and is still waiting for the system that
solves more problems than it causes.

xvii

xviii Authors

James Reinders is a director at Intel and their parallel programming evangelist. Reinders
is currently involved in multiple efforts at Intel to bring parallel programming models to
the industry including for the Intel MIC architecture. He is a senior engineer who joined
Intel Corporation in 1989 and has contributed to projects including the world’s first Ter-
aFLOP/s supercomputer (ASCI Red) and the world’s first TeraFLOP/s microprocessor
(Intel® Xeon Phi™ Coprocessor, code named Knights Corner). Reinders is an author of
books on VTune™ (Intel® Press, 2005), Threading Building Blocks (O’Reilly Media, 2007),
Structured Parallel Programming (Morgan Kaufmann, 2012), and Intel Xeon Phi Coproces-
sor High Performance Programming (Morgan Kaufmann, 2013).

List of Figures

1.1 Growth of processor clock rates over time (plotted on a log scale). 4
1.2 Moore’s Law continues! (plotted on a log scale). 5
1.3 Cores and hardware threads per processor (plotted on a log scale). 6
1.4 Width of largest data (plotted on a log scale). 7
1.5 Highly scalable coprocessor versus a standard high-end processor. 8
1.6 AoS versus SoA. 17

2.1 Screenshot of a simulation running in Houdini. 20

3.1 Screenshot of a session in Presto, Pixar’s proprietary animation system.
Presto provides an integrated environment that supports rigging and ani-
mation workflows, among others. The editors shown here (the spline editor
and the spreadsheet editor) are commonly used for animation. This chap-
ter describes Presto’s execution system, which is responsible for posing the
characters and other such computations at interactive rates. 49

3.2 High-level view of where the execution system libraries fit in the overall
system. 50

3.3 Objects used to build a scene graph in Presto. 51
3.4 The components of the execution system’s architecture. 55
3.5 Per-node multithreading. 62
3.6 Per-branch multithreading. 63
3.7 Per-model multithreading. 63
3.8 Per-frame multithreading. 64

4.1 Animator working interactively on a character in Premo. 74
4.2 Detail from a still frame from the DreamWorks movie How to Train Your

Dragon 2. 75
4.3 A typical hero character graph. 77
4.4 Tasks plotted against processor ID for a 12 core system. 90
4.5 Scalability dropoff with four socket systems compared with two socket sys-

tems for a single hero character workload. 93
4.6 Hyperthreading performance impact. 94
4.7 Evaluation of a character graph over a range of frames on four cores. . . . 95
4.8 The threading visualization tool enables riggers to investigate bottlenecks

within the graph. 98
4.9 Mode to compare two profiles to check benefits of optimizations. 99
4.10 Example showing the process for optimizing a quadruped character. 101
4.11 The top profile shows the initial hair system implementation. 102
4.12 The top graph shows a character with motion and deformation systems, the

bottom graph shows the addition of rigged clothing. 103
4.13 A demonstration of different levels of parallelism in a graph evaluation on

a 12 core machine. 105

xix

xx List of Figures

4.14 Evaluation of a single frame of animation for eight independent hero char-
acters on a 32 core machine. 107

4.15 Multiple graph evaluations for 100 frames of playback. 108
4.16 Multiple graph evaluation for six different hero characters. 109

5.1 (Top) Schematic of the OpenVDB data structure for sparse volumes and
(bottom) a typical cloud model stored as a sparse volume. 121

5.2 Volume rendering of a large dust cloud simulated with a resolution of N =
1200× 195× 500 along with a final frame from the movie Megamind. . . . 122

5.3 (Top) Simulated torch fire and (bottom) high-resolution pyroclastic dust
and destruction from The Croods. 123

5.4 Speedup curve for scalar advection on a grid with N = 5123 grid points
using the BFECC advection kernel. 127

5.5 Comparison of solve times for the Poisson equation with N total grid points
using MG and FFT solution techniques. 129

5.6 Parallel speedup for the FFT-based Poisson solver (top) and MG Poisson
solver (bottom) for various grid resolutions. 130

5.7 (Top) Surface details of a simulated liquid integrated with a surrounding
procedural ocean surface, and (bottom) production shot from The Croods
with character integration and final lighting. 131

5.8 Schematic of the data structure used for liquid simulations. 132
5.9 Schematic of parallel point rasterization into separate grids for threads T0

and T1, and then a final reduction to combine the results. 134
5.10 Speedup curve for velocity rasterization from N = 446 million points into

a N = 8363 (effective resolution) sparse grid using a high-order (MP4) and
low-order (BSP2) kernel. 136

6.1 Destruction simulation. 138
6.2 Rigid body pipeline. 139
6.3 Obsolete CPU performance benchmarks. 140
6.4 Host and OpenCL device. 140
6.5 Typical GPU architecture. 142
6.6 Axis aligned bounding box. 146
6.7 Uniform grid. 148
6.8 Projected AABB intervals. 148
6.9 Sequential incremental 3-axis sweep and prune. 149
6.10 Parallel 3-axis sweep and prune. 149
6.11 Binary AABB tree. 150
6.12 Node array with skip indices. 151
6.13 Convex shapes. 151
6.14 Convex decomposition. 152
6.15 Concave triangle mesh geometry. 152
6.16 Dual representation: Surface points and cube map. 153
6.17 Generating contact area by clipping faces. 153
6.18 Single contact point collision impulse. 155
6.19 Multiple contact constraints. 156
6.20 Uniform grid to split batches. 158
6.21 Bullet Physics rigid body benchmark, 112k box stack on a GPU simulated

in 70 ms/frame. 160
6.22 Bullet Physics GPU rigid body benchmark, 64k boxes colliding with a con-

cave trimesh, simulated in 100 ms/frame. 160

List of Figures xxi

6.23 AMD CodeXL tool used to debug an OpenCL kernel under Linux. 161
6.24 AMD CodeXL tool used to profile an OpenCL kernel under Windows in

Microsoft Visual Studio. 161

7.1 Recursive subdivision of a polyhedron. 164
7.2 Wireframe of Geri’s head. 165
7.3 Half-edges data structure. 167
7.4 Non-manifold fan. 167
7.5 Successive subdivision iterations. 168
7.6 Two iterations of uniform subdivision. 169
7.7 One subdivision iteration applied on a pyramid. 170
7.8 The child vertices created from a regular quad face. 171
7.9 Subdivision tables for the pyramid of Figure 7.7: (A) is the vertex buffer, (B)

contains topology information, (C) provides the edge and vertex sharpness,
and (D) are indices which point into the vertex buffer. 171

7.10 Comparison of CPU and GPU architectures. 173
7.11 Streaming multiprocessors with multiple processing cores. 174
7.12 Several kernels executing in sequence. 176
7.13 Combinations of subdivision rules. 177
7.14 Vertex ranking matrix. 177
7.15 Final execution sequence. 179
7.16 Execution sequence without and with Dynamic Parallelism. 180
7.17 Coalesced global memory access. 181
7.18 Kernel compute times for six uniform subdivision levels of a simple mesh. 182
7.19 Geometric progression of subdivided polygons. 184
7.20 Comparison of off-line and interactive assets. 185
7.21 Discrete and fractional tessellation patterns. 186
7.22 A regular and extraordinary vertex. 187
7.23 Subdivision of regular and extraordinary faces. 187
7.24 Bi-cubic patches around an extraordinary vertex. 188
7.25 Adaptive topological feature isolation. The color coding illustrates how the

different types of patches are used to isolate boundaries or extraordinary
vertices. 189

7.26 Feature-adaptive display pipeline. 190
7.27 GPU shader stages pipeline. 191
7.28 Wireframe showing the triangles generated by the GPU tessellation unit. . 194
7.29 Boundary patch and corner patch with mirrored vertices. 195
7.30 Matching tessellation across isolation levels. 195
7.31 All five possible transition patterns. 195
7.32 Comparing an example transition pattern drawn with sub-patches against

our proposed extension. 197
7.33 Interactive render using GPU hardware tessellation and Ptex displacement

textures showing the extremely high density of geometric detail. 199
7.34 Mudbox sculpture showing analytical displacement with GPU hardware

tessellation for interactive animation. 200

List of Tables

3.1 Deadlock due to improper use of the GIL. 59

5.1 Hardware used for production computing at DreamWorks Animation from
2008–2013. Note that the processor speed has been flat or decreasing while
the processor counts go steadily up. 112

5.2 Asymptotic complexity for several common methods used to solve the dis-
crete Poisson problem. 127

xxiii

Chapter 1

Introduction and Overview

James Reinders

Intel Corporation

1.1 Introduction . 1
1.2 Overview of Case Studies . 2
1.3 Motivation . 3

1.3.1 Quickly Increasing Clock Speeds Ended by 2005 . 3
1.3.2 The Move to Multicore . 4
1.3.3 SIMD Is Parallelism Too . 6
1.3.4 Highly Threaded Hardware . 7

1.4 Program in Tasks, Not Threads . 7
1.5 Value of Abstraction . 8
1.6 Scaling and Vectorization . 9
1.7 Advancing Programming Languages for Parallel Programming 10

1.7.1 Abstraction . 10
1.7.2 Parallel Programming Needs . 10
1.7.3 Relaxed Sequential Semantics . 11

1.8 Parallel Programming in C and C++ . 11
1.8.1 Brief Survey of Key Parallelism Options . 12

1.8.1.1 TBB . 12
1.8.1.2 Cilk Plus . 12
1.8.1.3 OpenMP . 12
1.8.1.4 OpenCL . 13
1.8.1.5 GPU Specific Models . 13

1.8.2 More on TBB: Intel Threading Building Blocks . 13
1.8.2.1 Parallel for: parallel for(...) . 14
1.8.2.2 Parallel Reductions: parallel reduce . 15
1.8.2.3 Parallel Invocation of Functions: parallel invoke 16
1.8.2.4 Learning More about TBB . 16

1.9 Data Movement and Layout . 16
1.10 Summary . 17
1.11 Additional Reading . 18

1.1 Introduction

We begin with an overview of the current state of parallel programming; this chapter
provides a common basis of information and terminology before the following chapters dive
into the various domains and parallel programming experiences. Parallel programming is
how we program modern computers anytime we want to reach their full potential. As we will
explain, this is because computers themselves have universally become parallel computers.

1

2 Multithreading for Visual Effects

Parallel programs are comprised of multiple tasks that may be executed in parallel. These
programs are designed for concurrency purposefully to utilize parallel computers; we refer
to them as parallel programs instead of concurrent programs because we are interested in
the benefits of parallelism. Concurrency is the property of having multiple tasks that are
active at that same time but not necessarily doing work simultaneously; parallel computers
add the ability for concurrent work to be simultaneously making progress.

Parallel programming allows an application to either get more work done in a given
amount of time, or allows work to get done more quickly by doing pieces of it (tasks) in
parallel. Using parallelism to get more work done in the same time is said to give us in-
creased throughput. Using parallelism to get a given amount of work done more quickly is
said to give us reduced latency. Parallel programs often do both, but understanding which
is most valuable in a particular situation can be very important. Tools that help anima-
tors do their detailed work interactively, in a highly fluid and detailed fashion, is generally a
quest to decrease latency. Server farms that seek to render a complete movie in a reasonable
amount of time are likely to be most concerned with throughput. While both are parallel
programming methods, the approaches are different enough to deserve consideration at the
outset of a project.

1.2 Overview of Case Studies

Using parallelism in your application is almost never something you can stick in at
the last minute in a program with effective results. We are best off when we think about
everything in terms of how to do it in parallel as cleanly as possible and then implement to
match our clean thinking about parallelism. The more we are constrained to not modify code
or data structures within an application, the less likely we are to take the best advantage of
parallel computing. Of course, we almost always find ourselves working to add parallelism
to existing applications instead of starting completely from scratch.

Often we do not have the luxury from starting from scratch. We will see in Chapter 2
(Houdini: Multithreading Existing Software) how multithreading can effectively be added to
an existing mature application, as was done in Houdini. We will also cover how DreamWorks
and Pixar implemented their applications with multithreading in mind from the beginning,
when we talk about Presto in Chapter 3 and LibEE in Chapter 4.

The most popular solutions such as Intel Threading Building Blocks (TBB) [57] are
designed with this in mind with features like “relaxed sequential consistency” and concurrent
replacements for memory allocation routines and STL containers to adapt programs with
sequential origins for effective use of parallelism. TBB is the preferred method of parallelism
in several chapters of this book.

The case study in Chapter 5 discusses both OpenMP and TBB while offering insights
into the relationships between hardware, algorithms, and data structures while simulating
fluids.

Of course, if you can rewrite you may consider getting close to the hardware to extract
maximum performance from specific hardware using OpenCL. The Bullet Physics case
study, in Chapter 6, shows a full rewrite of a rigid body simulator running the entire pipeline
on the GPU using OpenCL. All the data structures and algorithms have been chosen to
exploit the fine grain massive parallelism of GPUs. Although tuned for GPU, the OpenCL
kernels also run surprisingly well on an OpenCL CPU platform.

In Chapter 7 (OpenSubdiv: Interoperating GPU Compute and Drawing), the OpenSub-
div case study is confined to the narrower problem space of manipulating high-level geometry

Introduction and Overview 3

within an interactive application. However, the engineering methods introduced in this chap-
ter break some new ground showing how to interoperate GPU and many-core parallelism
with cutting-edge GPU drawing techniques from the latest graphics APIs and hardware.
Beyond the optimization of a complex problem, we detail how a complete paradigm shift
yielded not only significant performance gains, but also brought to the interactive domain
several critical shading features once exclusive to off-line image renderers.

In several of the case study chapters we have chosen to highlight multithreading
“gems.” These are brief notes that encapsulate what we feel are key points and valu-
able lessons that we have learned in our own work that we would like to share with
our readers. These gems are displayed in the same format as this current paragraph.

By discussing successful work in parallel programming, this book offers multiple learning
opportunities. This chapter covers the motivation and foundation for the rest of this book.

1.3 Motivation

All computers are now parallel. All modern computers support parallelism in hard-
ware through at least one parallel feature such as vector instructions, multithreaded cores,
multicore processors, multiple processors, graphics engines, and parallel coprocessors. This
applies to supercomputers as well as the lowest-power modern processors such as those
found in phones.

It is necessary to use explicit parallel programming to get the most out of such processors.
Approaches that attempt to automatically parallelize serial code simply cannot deal with
the fundamental shifts in algorithms required for effective parallelization.

The goal of a programmer in a modern computing environment is not just to take advan-
tage of processors with two or four cores. Instead, we must strive to write scalable applica-
tions that can take advantage of any amount of parallel hardware: all 4 cores on a quad-core
processor, all 8 cores on octo-core processors, 32 cores in a multiprocessor machine, more
than 60 cores on many-core processors, and beyond. The quest for scaling requires attention
to many factors, including the minimization of data movement, and sequential bottlenecks
(including locking), and other forms of overhead.

1.3.1 Quickly Increasing Clock Speeds Ended by 2005

Parallel computers have been around for a long time, but several recent trends have led
to increased parallelism in all computers.

Around 2005, a dramatic halt to the rise in clocking speeds of new microprocessors
occurred, which gave rise to an equally dramatic shift to parallel designs. For decades,
computer designs utilized a rise in the switching speed of transistors to drive a dramatic
increase in the performance of computers. Figure 1.1 shows this steady growth until 2005 by
plotting the actual clock rates of every major Intel processor. Note that in this, and future
trends graphs, we plot Intel processors only. The trends are essentially the same across
all manufacturers. Plotting Intel architecture alone gives us a consistent multi-decade view
of trends while reducing the varying elements of architecture, manufacturer, or process
technologies. An increase in clock rate, when the instruction set remains the same as has
mostly been the case for the Intel architecture, translates roughly into an increase in the rate
at which instructions are completed and therefore an increase in computational performance.

4 Multithreading for Visual Effects

FIGURE 1.1: Growth of processor clock rates over time (plotted on
a log scale).

1.3.2 The Move to Multicore

From 1973 to 2003, clock rates increased by three orders of magnitude (1000×), from
about 1 MHz in 1973 to 1 GHz in 2003. However, as is clear from Figure 1.1, clock rates have
now ceased to grow, and now generally top out around 3 GHz. By 2005, the convergence of
three factors served to limit the growth in performance of single cores through rising clock
rates, and shift new processor designs to the use of parallel computing instead. Understand-
ing that this was from the convergence of three factors helps us understand that this shift
from rising clock rates was inevitable and not the result of a single missing breakthrough.
The three factors were unacceptable power utilization, limits in instruction level parallelism
(ILP), and the high discrepancy of processor speeds relative to memory speeds. We can
refer to these as the Power Wall, the ILP Wall, and the Memory Wall. In order to achieve
increasing performance over time for each new processor generation, we cannot depend on
rising clock rates, due to the Power Wall. We also cannot depend on automatic mechanisms
to find (more) parallelism in naive serial code, due to the ILP Wall. To achieve higher per-
formance, we must write explicit parallel programs. This is especially true if we want to
see performance scale over time on new processors. The Memory Wall means that we also
have to seriously consider communication and memory access costs, and may have to use
additional parallelism to hide latency. Instead of using the growing number of transistors
predicted by Moore’s Law for ways to maintain the “serial processor illusion,” architects
of modern processor designs now provide multiple mechanisms for explicit parallelism. As
programmers, these are our opportunities to exploit what parallel processor designs offer
for parallel programming.

The trend shown in Figure 1.2, known as Moore’s Law, demonstrates exponential growth
in the total number of transistors in a processor from 1970 to the present. In 1965, Gordon
Moore observed that the number of transistors that could be integrated on silicon chips
were doubling about every 2 years, an observation that has become known as Moore’s Law.

Two rough data points at the extremes of Figure 1.2 are 0.001 million transistors in
1971 and 1000 million transistors in 2011. The gain of 6 orders of magnitude over 40 years
represents an average growth rate of 0.15 orders of magnitude every year. This works out

Introduction and Overview 5

FIGURE 1.2: Moore’s Law continues! (plotted on a log scale).

to be 1.41× per year, or 1.995× every 2 years. The data shows that a prediction of 2× per
year is amazingly accurate.

This exponential growth has created opportunities for more and more complex designs
for microprocessors. The resulting trend in hardware is clear: more and more parallelism at
a hardware level will become available for any application that is written to utilize it.

This greatly favors programmers over time, as the increased complexity of design will al-
low for innovations to increase programmability. The “free lunch” [62] of automatically faster
serial applications through faster microprocessors has ended. The “new free lunch” requires
scalable parallel programming. The good news is that if you design a program for scalable
parallelism, it will continue to scale as processors with more parallelism become available.

Figure 1.3 shows that the number of cores and hardware threads per processor was one
until around 2004, when growth in hardware threads emerged as the trend instead of growth
in clock rate. The concept of multiple hardware threads per core started earlier, in the case
of Intel with hyperthreading this happened a few years prior to multicore taking off. Today,
you may find one, two, or four hardware threads per core depending on the processor.

Multicore and many-core devices use independent cores that are essentially duplicates
of each other, hooked together, to get work done with separate software threads running on
each core.

The distinction between “multicore” versus “many-core” is not strictly defined, but in
2014, multicore is used to refer to products under 32 cores, and many-core devices start
at 57 cores per device. The difference will likely blur over time, but for now the design of
many-core devices is heavily biased to scaling and not individual core performance while a
multicore device is designed with more emphasis on single core performance.

Hyperthreaded cores reuse the same core design to execute multiple software threads
at a time efficiently. Unlike adding additional cores for more parallelism, which duplicate
the design 100% to add support for an additional software thread, hyperthreading adds
single digit (maybe 3%) die area to get support for an additional software thread. The
100% duplication in the case of an additional core can yield 100% performance boost with
a second thread, while hyperthreading generally adds only a 5 to 20% performance boost
from an additional thread. The added efficiency of hyperthreading is obvious when the small
amount of die area that is added is considered.

6 Multithreading for Visual Effects

FIGURE 1.3: Cores and hardware threads per processor (plotted on
a log scale).

1.3.3 SIMD Is Parallelism Too

In addition to adding more cores to use in parallel, and more hardware threads per core
to use in parallel, we can offer each hardware thread the ability to operate on more data
in parallel. Figure 1.4 shows the trend of increasing the size of data operations. Until 1995,
most mathematical operations in Intel processors utilized single values at a time. In other
words, an addition C = A + B would have a single value A added to a single value B giving
a single answer C. The introduction of MMX allowed for 64 bit operands that were actually
made up of multiple smaller data items that would be operated on in parallel. Byte (8-bit)
operations would fit eight per 64-bit word, so that a Single-Instruction could operate on
Multiple-Data using what are referred to as SIMD instructions. In MMX, eight bytes at a
time could be operands into a SIMD addition that could be expressed as C[0:7] = A[0:7] +
B[0:7]. SSE expanded to be 128 bits wide and include floating point (FP) number operations
in addition to the integer arithmetic of MMX. Since floating point numbers are either 32-bits
wide (single precision FP) or 64-bits wide (double precision FP), an SSE instruction could
do four single precision or two double precision computations in parallel. Figure 1.4 shows
that data widths have doubled twice more since SSE, with AVX (256-bits wide) followed by
512-bits wide SIMD capabilities. With the 512-bit operations, we have SIMD instructions
that can do 16 single precision math operations in parallel per instruction.

Since SIMD instructions are operating on vectors of data, the programming to use SIMD
operations is called vector arithmetic. The activity to change an algorithm to use vectors
is frequently referred to as vectorization. Just like other forms of parallelism, expressing
vector arithmetic was not provided for in programming languages originally. Efforts to have
compiler assisted vectorization, even attempts to make “auto-vectorization,” are extremely
limited when programs are not written to use this type of parallelism. Just like other forms
of parallelism, vector parallelism is best used when a program is designed with vector
arithmetic in mind.

Introduction and Overview 7

FIGURE 1.4: Width of largest data (plotted on a log scale).

1.3.4 Highly Threaded Hardware

The emergence of “highly parallel” devices, including GPUs and many-core processors,
are only interesting to use if a program can harness all these forms of parallelism. Figure 1.5
comes from teaching programming for the highly parallel Intel Xeon Phi Coprocessor [36].
This Intel coprocessor has up to 61 processor cores (x86) each with four hardware threads
and 512-bit with SIMD instructions. That means a program that can scale to use 244
hardware threads and use 512-bit vectors effectively will do much better than a program that
tries to use few threads or vectors. The key to Figure 1.5 is that scaling is essentially required
for such devices because the performance of a single core, or a non-SIMD instruction, is
much less for a many-core processor (or GPU) than it is for a multicore processor. For
small numbers of threads, or little vector usage, a multicore processor has a much higher
performance than a many-core processor or GPU. It is only when a program scales to high
levels of parallelism that an advantage can be had. The good news for programmers is that
efforts to add parallelism can increase performance regardless of the target if programming
models are abstract enough. The highly parallel devices offer an additional upside for the
applications that can show the highest levels of parallelism.

1.4 Program in Tasks, Not Threads

A programmer should always think and program in terms of tasks, not threads. This is
incredibly important. This means that a programmer’s role is to identify a large number
of tasks (work) to do. A runtime engine can map tasks onto threads at runtime to match

8 Multithreading for Visual Effects

FIGURE 1.5: Highly scalable coprocessor versus a standard high-end
processor.

the hardware and the runtime attributes of the application. This works much better than
having a programmer’s role being to both find and map parallelism.

We are guilty in this book of talking about multithreading while we are actually encour-
aging programming with multiple tasks. The confusion arises because the program is truly
multithreaded to utilize the parallel computing available, but that the programming mindset
really should focus on programming in terms of multiple tasks. The Massachusetts Institute
of Technology (MIT) Cilk project, which started in the mid-1990s, was key to helping spur
this important evolution of programming. The most popular and widely used implementa-
tion of these concepts is the open source project Intel Threading Building Blocks (TBB). In
retrospect, many on the team responsible for developing TBB would select the name “Task-
ing Building Blocks” if given the chance again. The TBB library emphasizes having program-
mers reason and program in terms of tasks while the library maps the programmer’s intent
onto software threading presented by the operating system and the hardware threading
available in the processors. Later in this chapter, there is a brief introduction to TBB since
it is so often referred to in the other chapters. On the general topic of not programming to
threads, we recommend a paper titled “The Problem with Threads” by Edward A. Lee [41].

1.5 Value of Abstraction

The concept of programming to an abstraction is not new in general but it is relatively
new for parallel programming. Fortran was introduced as an abstraction in 1957 to move
programmers to a more productive abstraction than using assembly language directly. Pro-
grammers were skeptical as they worried about efficiency but were soon won over to the
benefits of good abstractions. Little has changed! Many programming abstractions have

Introduction and Overview 9

come along since Fortran. Moving to abstractions for parallel programming creates similar
debates about efficiency of the produced code and the benefits that should be expected.
Three key motivations to move to an abstraction that we see are: (1) desire to have porta-
bility, (2) desire to utilize nested parallelism, and (3) desire to benefit from multiple types
of parallelism. The desire to be portable includes wishing for portability across operating
systems and platforms, wishing to be “future ready” to run well on future machines, and
wanting “performance portability” where code runs reasonably well everywhere without
recoding for each platform.

Portability of functionality and performance are both compromised when programming
close to the hardware. The more hardware specific an application is coded, the less portable
it is. Programs that are coded to use 128-bit vectors using intrinsics designed specifically
for 128-bit (SSE) vectors are much less portable than a program that can use general vector
arithmetic and allow a library or compiler to use width vector instructions to match the
hardware. OpenCL is designed to give high degrees of programmer control over heteroge-
neous computing. Since that is a key reason to consider OpenCL, code written in OpenCL
is generally not as portable as more abstract methods. This may be possible to overcome
by programming style with additional effort. It is fair to blame portability challenges of
OpenCL on programming which exercises tight control over heterogeneous programming
by encouraging specialized versions for different hardware (CPU or GPU or coprocessor,
etc.) rather than a single solution aimed at running everywhere. Undoubtably, in such an
environment portability is going to rest strongly on the algorithm design and the program-
ming style. As such, OpenCL is not a wise choice for applications in general but may be the
perfect solution for a critical algorithm or for tools themselves to target when compiling a
higher level abstraction.

Nested parallelism comes in many ways including instances where the caller to a sub-
routine may not know if the subroutine will have tasks sufficient to offer work in parallel,
and the subroutine does not know if it was called from a serial portion of the program
or a parallel portion. A good abstract will make it so it does not matter. TBB and Cilk
Plus handle this automatically for us. Unfortunately, OpenMP solves the problem by not
exploiting nested parallelism by default and in general cannot exploit nested parallelism.

Finally, the use of cores, hardware threads, and vectors are all forms of parallelism an
abstraction may help manage. While all three of these forms of parallelism could be utilized
through explicit coding in every application, it is better to define a higher-level interface for
the programmer, an abstraction, and have every application use that abstraction. Not only is
the application simplified, but the implementation of the abstraction can be refined, ported,
advanced independently, and potentially benefit all applications with future updates. Such
has been the experience with the likes of OpenMP, TBB, and Cilk Plus.

1.6 Scaling and Vectorization

Scaling, the use of cores and hardware threads, is well supported by abstractions today
and there is no reason to not be coding in tasks instead of threads to take advantage of these
excellent abstractions. Vectorization remains more of a black art, although the #pragma
simd capabilities of Cilk Plus and OpenMP 4.0 are instances of advances that are helping
create better abstractions for vector programming. Without using an abstraction, a “hard
coded” application will advance to new techniques or new hardware support only with effort
to modify that application itself.

10 Multithreading for Visual Effects

1.7 Advancing Programming Languages for Parallel Programming

None of the most popular programming languages in use today were designed as parallel
programming languages. Despite there being programming languages designed specifically
for expressing concurrency or parallelism, widespread adoption of parallel programming will
occur using the already popular programming languages.

Programming languages have been extended or modified in some manner to assist in their
use for parallel programming. This is an ongoing process; the language standards bodies are
examining what additional official changes should be embraced to further support parallel
programming.

1.7.1 Abstraction

We can consider language changes from several angles, but regardless of the angle the
objective is to support a programming abstraction that divides the effort between the pro-
grammer and the language implementation. Ideally, the result is a more productive program-
mer, portability of functionality, performance portability, and continued high performance.
Some flexibility reduction in exchange for ease of understanding can be quite desirable. The
battle to stop the use of “GOTO statements” [18] in favor of structured programming is
now considered normal; although at the time it was debated as some decried the loss of flex-
ibility of the GOTO statement. Today, a similar quest for structured parallel programming
evokes similar debates about loss of flexibility.

It would seem inevitable based on history that additional structure with an appropriate
reduction in flexibility will advance the state of the art in programming. Programming to
tasks instead of threads is clearly one such trend that has resonated well in the programming
community. However, the use of strong typing to eliminate deadlock or race conditions have
not found adoption probably because they conflict with the less strict traditions of popular
programming languages.

1.7.2 Parallel Programming Needs

A number of features seem desirable in a language to support parallel programming.
These would include abstractly expressing task and data parallelism, providing hints for
efficiency, avoiding parallel programming errors, and assisting with determinism in the re-
sulting programming. Parallel programming extensions generally tackle a portion of these
features leaving us to choose how to solve our particular needs.

An aspect of debate to accompany all these extensions is whether the language should
be extended with new keywords, libraries, or directives. New keywords offer the tightest
integration with compilers but are generally discouraged because they complicate the core
language and potentially change existing programs that were designed prior to a particular
word being a reserved keyword. The Cilk Plus project [15], derived from the Cilk work
at MIT, defines new keywords for parallel programming. Libraries are generally preferred
unless compiler assistance is compelling. Intel Threading Building Blocks is an example
of a template library that extends C++ for parallel programming. Directives are a com-
promise between keywords and libraries because they invoke compiler support but are de-
fined to be hints rather than required elements in a program. In other words, directives
should not change the semantics of the program. OpenMP defines a popular set of direc-
tives for C, C++, and Fortran that are nearly universally supported extensions for parallel
programming.

Introduction and Overview 11

1.7.3 Relaxed Sequential Semantics

We can imagine writing a parallel program in such a way that it cannot be executed
without a parallel processor. In general, this is not what we would advise. The obvious
disadvantage is that such a program would not be as portable. The less obvious problem
is that such a program is harder for most people to understand. In fact, we have found
that parallel programming is considered easier to understand, and easier to debug, if the
program semantics stay the same with or without the “parallel” portion of the programming
considered. We have also seen the bonus that such programs are more efficient on sequential
machines and better at supporting nested parallelism.

Having sequential semantics means that a (parallel) program can be executed using a
single thread of control as an ordinary sequential program without changing the seman-
tics of the program. Parallel programming with sequential semantics has many advantages
over programming in a manner that precludes serial execution. Sequential semantics casts
parallelism as a way to accelerate execution and not as mandatory for correctness. With
sequential semantics we do not need to fully understand the way parallelism will proceed in
order to understand a program with sequential semantics. To contrast with that, examples
of mandatory parallelism include producer-consumer relationships with bounded buffers
(hence the producer cannot necessarily be completely executed before the consumer be-
cause the producer can become blocked) and message passing (for example, MPI) programs
with cyclic message passing. Due to timing, precision, and other sources of inexactness the
results of a sequential execution may differ from the concurrent invocation of the same pro-
gram. Sequential semantics only means that any such variation is not due to the semantics
of the program. The term “relaxed sequential semantics” is sometimes used to explicitly
acknowledge the variations possible due to non-semantic differences in serial versus concur-
rent executions. OpenMP, TBB, and Cilk Plus all offer relaxed sequential semantics. For
instance, OpenMP directives can be ignored, a TBB parallel for can be comprehended as a
regular for loop, and the Cilk Plus keyword “cilk for” can be comprehended as a “for.”

1.8 Parallel Programming in C and C++

The C++11 standard contains a number of additions for parallel programming, perhaps
the most important of them being a defined memory model in the face of concurrency. A
memory model explains what order things become visible, for instance if a thread changes
the value of variables A, B, and C in code in that order must they be seen as changing in
that order by all other threads that may be able to see the same variables? If a program
has a=b=c=0; a=1; b=2; c=3; can b=2 while a=0? We know that in the thread doing
the assignment the answer is no, but the answer for other threads in the same program
is maybe. This seemingly mundane detail turns out to be critical in establishing reliable
portability of parallel programs. In practice, portability was often achieved before C++11
because implementations of C++ had already addressed the problem at least partially. The
whole topic of a defined memory model seems to largely go unnoticed, in part because many
people assume it was already solved.

The more visible issues for programmers are dealing with expressing tasks and helping
with vectorization. The C++ community has embraced Intel Threading Building Blocks
(TBB) for tasking, while vectorization standards remain more elusive.

In the following sections, we touch on TBB, Cilk Plus, OpenMP, and OpenCL to give a
flavor of their purpose in extending C/C++ for parallel programming.

12 Multithreading for Visual Effects

1.8.1 Brief Survey of Key Parallelism Options

1.8.1.1 TBB

TBB matters for C++ because it has been ported to virtually every platform, and
is available in open source ensuring its long-term availability while also benefiting from
commercial support by Intel as an. TBB is more popular with C++ programmers than
any other parallel programming extensions. TBB is designed to work without any compiler
changes, and thus be easily ported to new platforms. As a result, TBB has been ported
to a multitude of key operating systems and processors, and code written with TBB can
likewise be easily ported. As a consequence of avoiding any need for compiler support, TBB
does not have direct support for vector parallelism. However, TBB combined with array
notation or #pragma simd from OpenMP or Cilk Plus, or auto-vectorization can be an
effective tool for exploiting both thread and vector parallelism. More information on TBB
can be found at http://threadingbuildingblocks.org. TBB is covered in a little more
depth in Section 1.8.2, and is used in multiple chapter case studies in this book.

1.8.1.2 Cilk Plus

TBB is fundamentally a C++ template library and therefore has not been popular for use
with C programs. Intel, inspired by work at MIT, created another open source effort called
Cilk Plus [15] to address C, offer direct compiler support for C and C++, and extend support
to vectorization. Intel briefly considered calling Cilk Plus simply “compiled TBB.” While
this conveyed the desire to extend TBB for the objectives mentioned, it proved complicated
to explain the name so the name Cilk Plus was introduced. The full interoperability between
TBB and Cilk Plus increases the number of options for software developers without adding
complications. Like TBB, Intel has open sourced Cilk Plus to help encourage adoption and
contribution to the project. TBB and Cilk Plus are sister projects at Intel.

Cilk Plus matters because it reflects efforts to prove benefits of tighter integration of
parallelism into the language and compiler technologies. Cilk Plus is not widely adopted
by programmers today. Cilk Plus is an open source project from Intel to define parallelism
extensions for C and C++ that involve the compiler. The simple tasking keywords of Cilk
Plus offer a simple tasking interface that the compiler understands. While not as rich as
TBB, the tasking interfaces are equally approachable in C and C++. Cilk Plus also adds
support for vectorization with #pragma simd, which was recently adopted as part of the
OpenMP 4.0 specification. Cilk Plus requires compiler changes and therefore is slower to be
supported. Intel compilers have supported Cilk Plus for a few years, and gcc support begins
with version 4.9. More information on Cilk Plus can be found at http://cilkplus.org.

1.8.1.3 OpenMP

OpenMP [54] matters because it has widespread usage in high performance computing
(HPC) and support by virtually all compilers. OpenMP is less popular with C++ users,
and most popular with C and Fortran programmers. OpenMP is an approach to adding
parallelism to C, C++, and Fortran using directives. The OpenMP specification consists
of directives and environment variable definitions that are supported by most compilers.
OpenMP has traditionally focused on task parallelism since the very first specification in
1997. The latest OpenMP 4.0, finalized in 2013, expands to offer some directives for vector-
ization and for offloading computation to attached devices. More information on OpenMP
can be found at http://openmp.org.

Introduction and Overview 13

1.8.1.4 OpenCL

OpenCL [28] matters because it gives standard interfaces to control heterogeneous sys-
tems and is becoming widely supported. The hope of OpenCL is to displace vendor specific
efforts to provide proprietary interfaces to their own hardware. OpenCL implementations
are still emerging and it is fair to characterize OpenCL as less mature today in many ways
versus other longer standing options. OpenCL is not abstract enough to see widespread
usage in applications, but is more suited for implementing critical libraries or routines,
such as we may find key for visual effects, or being the target of tools where the ability to
manage hardware precisely may be useful. OpenCL is purposefully designed to encourage
programmers to utilize all the functionality of the hardware by being able to tailor code to
specific hardware. This nature of OpenCL programming generally means that it will not of-
fer the portability or performance portability of a higher-level abstraction such as TBB, Cilk
Plus, or OpenMP. OpenCL extends C and C++. The Bullet Physics case study, in Chapter
6, rewrites an application using OpenCL specifically to use GPUs but showing results on
CPUs as well. The case study helps highlight that some algorithms or programming styles
in OpenCL can offer both portability and performance. Like other abstractions, OpenCL
encourages programmers to expose parallelism and the results depend most heavily on the
programmer’s skill at exposing it (in this case by creating Work Items and Work Groups).
More information on OpenCL can be found at http://www.khronos.org/opencl.

1.8.1.5 GPU Specific Models

There are other programming models which are specific to GPUs which we have not used
as heavily in this book. Notably, the very popular NVIDIA® CUDA, which offers vendor
specific support for computing on NVIDIA graphics processors. The OpenSubdiv case study
utilizies CUDA and notes some efficiencies in CUDA over current OpenCL implementations.
The Bullet case study chose a more vendor neutral approach by using OpenCL. We also
do not use GPU-only solutions like OpenGL compute, DirectCompute, or the C++ AMP,
which feeds into DirectCompute. The Bullet case study chose a route which demonstrated
portability to the CPU as well.

1.8.2 More on TBB: Intel Threading Building Blocks

Threading Building Blocks (TBB) is an open source project that has grown to be the
most popular extension for parallel programming in C++. Chapter 4 (LibEE: Parallel Eval-
uation of Character Rigs) discusses the use of TBB to address graph parallelism for an inter-
active animation system designed to handle production level film character animation. The
nested parallelism, natural mapping of graph nodes onto TBB tasks, and variable nature of
the workloads makes TBB a good fit for this kind of problem.

Initially released by Intel in 2006, TBB gained widespread usage and community support
after Intel created an open source project around it in 2007 and O’Reilly released a book, in
their Nutshell series, titled Intel Threading Building Blocks: Outfitting C++ for Multi-Core
Processor Parallelism [57].

It provided a much-needed comprehensive answer to the question, “What must be fixed
or added to C++ for parallel programming?” Key programming abstractions for paral-
lelism, in TBB, focused on the logical specification of parallelism via algorithm templates.
This included a rich set of algorithm primitives implemented by a task-stealing scheduler
and augmented by a thread-aware memory allocator, concurrent containers, portable mu-
texes, portable atomics, and global timestamps. TBB interoperates with other solutions
for vectorization assistance but does not directly try to address vectorization. The first
release was primarily focused on strict fork—join or loop-type data parallelism. TBB has

14 Multithreading for Visual Effects

grown through community contributions and additional investments from Intel. New fea-
tures include affinity hints, graph scheduling, oversubscription threads, and a wide variety
of ports.

TBB has been ported to a wide variety of processors and operating systems. TBB is
available open source (GPL v2 with class path exception), and also in a GPL-free binary-
only release from Intel. Intel actively supports and maintains both. The GPL licensing used
by Intel was identical to the licensing of the Gnu C++ runtime library being used in 2007.
To the relief of some, TBB has remained with GPL v2 and not moved to GPL v3. Both the
GPL and non-GPL versions have remained identical in features over time, with the only
difference being the GPL-free binary-only license option for users who choose to avoid using
GPL projects. New features have appeared in a community (GPL) version first as “preview”
features. This dual licensing echoes the approach that helped fuel the widespread adoption
of MySQL.

Through the involvement of customers and community, TBB has grown to be the most
feature-rich and comprehensive solution for parallel application development available today.
It has also become the most popular.

TBB implements a highly scalable and industrial strength work stealing scheduler to
underlay every algorithm that TBB offers. Work stealing is an important concept, invented
by the Cilk project at MIT in the 1990s. A work stealing scheduler distributes the queue of
work to be done so that there is no global bottleneck involved in the distribution of tasks
to the worker threads. The cache behavior of this is also excellent.

Although TBB works fine with older C++ versions, it is simpler to use with C++11. In
particular, C++11 introduces lambda expressions and auto declarations that simplify the
use of TBB and other template libraries. We strongly recommend using them to teach, learn,
and use TBB, because once you get past the novelty, they make TBB code easier to write
and easier to read. Additionally, TBB implements a significant subset of the C++11 stan-
dard’s thread support, including platform-independent mutexes and condition variables, in
a manner that allows them to be used with older C++ compilers, thus giving an immediate
migration path for taking advantage of these features even before they are implemented by
C++ compilers. This path is further simplified by the way that TBB’s injection of these
features into namespace std is optional.

1.8.2.1 Parallel for: parallel for(...)

A key element of TBB is the license to ignore unnecessary parallelism that in turn
enables the TBB task scheduler to use parallelism efficiently.

The function template parallel for maps a functor across a range of values.
The template takes several forms. The simplest is:

tbb::parallel_for(first,last,func)

where func is a functor.
It evaluates the expression func(i) in parallel for all i in the half-open interval (first,last).
It is a parallel equivalent of:

for (auto i=first; i< last; ++i) func(i);

A slight variation specifies a stride:

tbb::parallel_for(first,last,stride,func)

Introduction and Overview 15

This form is a parallel equivalent of:

for (auto i=first; i< last; i+=stride) func(i);

Another form of parallel for takes two arguments:

tbb::parallel_for(range,func)

It decomposes range into subranges and applies func to each subrange, in parallel.
Hence, the programmer has the opportunity to optimize func to operate on an entire

subrange instead of a single index. This form of parallel for also generalizes the parallel
map pattern beyond one-dimensional ranges. The argument range can be any recursively
splittable range type.

The most commonly used recursive range is tbb::blocked range. It is typically used
with integral types or random-access iterator types. For example, blocked range<int>(0,8)
represents the index range 0,1,2,3,4,5,6,7. An optional third argument called the grain size
specifies the minimum size for splitting. It defaults to 1. For example, the following snippet
splits a range of size 30 with grain size 20 into two indivisible subranges of size 15.

// Construct half-open interval [0,30) with grain size of 20

blocked_range<int> r(0,30,20);

assert(r.is_divisible());

// Call splitting constructor

blocked_range<int> s(r);

// Now r=[0,15) and s=[15,30) and both have a grain size 20

// inherited from the original value of r.

assert(!r.is_divisible());

assert(!s.is_divisible());

The partitioning of some algorithms, including parallel for, allows the partitioning to
be controlled explicitly by a parameter. By default, the auto partitioner is selected, which
uses heuristics to limit subdivision to only the amount needed for effective load balancing.
The simple partitioner subdivides as much as possible even when the heuristic for load
balancing does not view this as profitable. In practice, this partitioner is a legacy feature
that can be ignored. The newest partitioner, affinity partitioner, encourages mapping of
tasks in multiple algorithms to be biased to be similar in order to reuse caches. Because this
partitioner helps with the reuse of data in cache, it is only interesting if instantiating parallel
algorithms more than once with the same data. In such cases, the resulting performance
benefits can be substantial. The first use of affinity partitioner uses a parameter to hold
state information for replaying the assignment of subranges to threads.

1.8.2.2 Parallel Reductions: parallel reduce

Function template parallel reduce performs a reduction over a recursive range. A reduc-
tion is a fundamental and important operation for combining results from operations that
can be subdivided but ultimately aim for a single result. For instance, summing numbers in
a vector can be subdivided into a task of summing sub-vectors. Since each task of summing
a sub-vector results in a partial sum, computing the whole sum requires summing the par-
tial sums. The task of summing sub-vectors and then the partial sums in parallel is called
a reduction operation (in this case, addition).

16 Multithreading for Visual Effects

A parallel reduce operation has several forms. The most used form is:

result =

tbb::parallel_reduce(range,

identity,

subrange_reduction,

combine);

The scheduled order for a reduction is not necessarily consistent from instance to in-
stance. While that offers the highest performance, it does create challenges in debugging
and validating an application. With that in mind, a deterministic reduction operation was
a common request among the TBB community.

The template function parallel deterministic reduce is a variant of parallel reduce that
is deterministic even when the reduction operation is non-associative. The result is not
necessarily the same as left-to-right serial reduction, even when executed with a single
worker, because the template uses a fixed tree-like reduction order for a given input.

1.8.2.3 Parallel Invocation of Functions: parallel invoke

Template function parallel invoke evaluates a fixed set of functors in parallel.
For example: tbb::parallel invoke(afunc,bfunc,cfunc); may evaluate the expressions

afunc(), bfunc(), and cfunc() in parallel. TBB has templates to support up to 10 func-
tors, beyond that the task group facility or parallel for should be used. Because it depends
on the parallelism available at the time of evaluation, we say “may” (evaluate in parallel)
and not “will.” It is important for us not to care about the order that the functors are
evaluated. Nevertheless, the goal should be to benefit from them operating in parallel.

1.8.2.4 Learning More about TBB

We have only touched on a few of the many features of TBB here. A good introduction
is available in the O’Reilly Nutshell book Intel Threading Building Blocks: Outfitting C++
for Multi-Core Processor Parallelism [57], which covers the essentials of TBB. The book
was published in 2007 when TBB version 2.0 appeared, so some newer features are not
covered, including the affinity partitioner, oversubscription threads, and graph scheduling.
It is nevertheless a solid introduction to TBB. For a more complete guide, see the TBB
Reference, Tutorial, and Design Patterns documents, which can be downloaded from http:

//threadingbuildingblocks.org/.

1.9 Data Movement and Layout

We would be remiss if we did not say a few words about data movement and the
importance of data layout. As computational capabilities have soared in modern computers
the challenge of feeding data in and out of the computations has grown. Computers are
generally optimized to stream data from contiguous memory better than access patterns
that randomly hop around in the memory. Computations on vectors of data definitely benefit
from good data layout; good data layout enables the use of SIMD (vector) instructions such
as MMX, SSE, AVX, or AVX-512 through a process called vectorization.

Programs that can minimize data movement win in both higher performance and lower
power utilization. In general, programs do best to arrange data linearly in memory to

Introduction and Overview 17

FIGURE 1.6: AoS versus SoA.

correspond to the order that data would be used in a sequential (not parallel) program. A
simple example of data layout is the Array of Structures (AoS) versus Structures of Arrays
(SoA) as illustrated in Figure 1.6.

Despite the substantial gains available from good data layout and vectorization, the cases
highlighted in the chapters of this book did not generally invest heavily in vectorization work
nor precise data layout to enable it. This is not to say that they are terrible at it, just to
say it was not the primary focus in optimization done for increasing performance. The
performance gains from vectorization range from 2–4× with SSE to 8–16× with AVX-512.
While that may seem illogical to not pursue, it is important to note that work done to run
an application in parallel by scaling to multiple cores and multiple processors has much
more upside available than the 16× maximum for AVX-512 with single precision floating
point. For that reason, we encourage that the first focus for speed-up through parallelism is
multithreading an application (using lots of tasks). Hence, the title and focus of this book.
None of this is to belittle the benefits of vectorization, but rather to encourage threading
(through tasks) as the first step for optimizing codes in this modern world. Once a program
is scaling through task parallelism, with abstractions such as TBB, then vectorization would
be a logical next step to pursue. A good place to start learning more is a three part blog
[13].

1.10 Summary

Choice is good. At first the multiple options for parallel programming can seem con-
fusing. The choices are generally easy to pick from when you know what you need. We
advocate using an abstraction like TBB or OpenMP as much as possible, and use OpenCL
when more control will yield performance benefits for key portions of an application. The

18 Multithreading for Visual Effects

loss of portability alone most often encourages other choices. That said, less abstract or less
portable interfaces have a place in the world when abstractions fail to offer or allow all the
performance or functionality required. For most application developers today, avoiding less
abstract programming is likely to be the right answer.

When choosing an abstraction, C++ programmers should start with TBB. C++ pro-
grammers will need to explore solutions for vectorization, which will lead them to Cilk Plus
or OpenMP to assist with vectorization if libraries do not contain the functionality needed
with vector support already. C and Fortran programmers will have to consider OpenMP or
Cilk Plus. HPC programmers are most likely to find OpenMP preferable, and others will
be more likely to want to examine Cilk Plus.

Regardless of the programming abstraction chosen, the right design in an application
is our best weapon in winning with parallelism. While tools and models can help integrate
into existing programs, the key to using hardware parallelism is having a good idea of how
your application can use parallelism. This almost always means we fall short if we jam
parallelism into a program as an afterthought. Nevertheless, with great effort and smart
engineering one may be able to show good results, as we will see next in Chapter 2.

The remaining chapters help illustrate successes we have had to help inspire you by
sharing ideas and techniques we have found to work.

1.11 Additional Reading

Structured Parallel Programming is designed to teach the key concepts for parallel pro-
gramming for C/C++ without teaching it via computer architecture. The approach is to
teach parallel programming as a programming skill, and show code, and discuss the stan-
dard solutions (like map, reduce, stencils, etc.) to solve parallel programming problems.
This structured approach to parallel programming techniques supports the objective of
architecting parallelism into a program by helping understand known techniques that work.

Chapter 2

Houdini: Multithreading Existing Software

Jeff Lait

Side Effects Software, Inc.

2.1 What Is Houdini? . 19
2.2 Rewrite or Refactor . 21

2.2.1 Cleaning Statics . 22
2.2.2 Threading the Simple Cases . 27

2.3 Patterns . 30
2.3.1 Always Be Reentrant . 30
2.3.2 Never Lock . 31
2.3.3 Atomics Are Slow . 31
2.3.4 Never Blindly Thread . 32
2.3.5 Command Line Control . 33
2.3.6 Constant Memory versus Number of Cores . 33
2.3.7 Memory Allocation . 34

2.4 Copy on Write . 34
2.4.1 Const Correctness . 35
2.4.2 Reader/Writer Locks . 35
2.4.3 Ownership Is Important . 36
2.4.4 Sole Ownership Is a Writer Lock . 37
2.4.5 Failure Modes of This System . 38

2.5 Dependencies . 40
2.5.1 Task Locks . 41
2.5.2 Mantra . 43

2.6 OpenCL . 44

2.1 What Is Houdini?

In this chapter we share the experiences and pitfalls of our ongoing quest to make
Houdini fully multithreaded. We will attempt to make the examples as context-agnostic
as possible, but we will no doubt still fall into some specialized jargon. In this section we
provide the missing context.

Houdini is the flagship package of Side Effects Software, http://www.sidefx.com. Fig-
ure 2.1 shows a screenshot of a simulation inside Houdini. It is a complete 3D animation
and effects package and is well known for its extremely procedural approach to art cre-
ation. Our focus on proceduralism stems from our goal to create tools for artists to express
themselves with computers. Computer generated art is distinct from prior mediums in its
proceduralism: computers excel at repeating rote tasks. Unfortunately, the act of instruct-
ing computers is considered a highly technical task, and often seen as divorced from the act

19

2
0

M
u
ltith

rea
d
in
g
fo
r
V
isu

a
l
E
ff
ec
ts

FIGURE 2.1: Screenshot of a simulation running in Houdini. (See Color Insert.)

Houdini: Multithreading Existing Software 21

of creating art. Procedural art tools, such as Houdini, are an attempt to bridge this gap, to
ensure that the full potential of computers can be harnessed by artists.

A non-commercial version of Houdini is available for free at the Side Effects Soft-
ware Web site. This also includes the Houdini Development Kit (HDK), which thanks
to the nature of C++, contains header files showing our approach to many threading prob-
lems. Of interest to the reader may be UT/UT ThreadedAlgorithm.h, UT/UT Lock.h, and
UT/UT ParallelUtil.h.

Central to the Houdini interface is the network editor. The network consists of many
nodes (also called operators or OPs) which are wired together. Logically, the data flows
down these graphs from the top to the bottom. There are also many different types of
networks that reflect the different kinds of data that can be processed.

Terms unique or different to Houdini are covered by this glossary:
OPs, Nodes: The vertices of the network graph. Each one has a type, which determines

what computation it represents. Each one also has a page of parameters (based on the type)
which act as extra inputs to its computation.

Attributes: Geometry can define extra named data that is attached to all points, ver-
tices, or primitives. Position, color, normal, and texture UVs are all examples of attributes.
Note that all points in a geometry have to have the same set of attributes. The meaning of
an attribute is decided by naming conventions: N for normal, uv for textures, and so forth.

Mantra: Mantra is a production-proven renderer designed to work with Houdini. It
supports micropolygon, raytracing, and physically based rendering (PBR) approaches to
solving the rendering equation.

VEX: Our Vector Expression (VEX) language is a shading language similar to the Ren-
derman Shading Language (RSL). It is an interpreted language, so provides the flexibility
and extensibility of scripting. However, it also has an implicit Single Instruction, Multiple
Data (SIMD) implementation that amortizes most of the overhead of interpretation. We
have evolved VEX far beyond its shading roots, however. We now use it for simulation,
geometry, and image manipulation. For most computations we can even compile directly to
native code. However, the scripting ancestry leads to some problems that we will address
in Section 2.5 when we discuss dependencies.

2.2 Rewrite or Refactor

With the release of the Intel Core Duo platform in 2005, we realized that we were no
longer going to see a steady increase of single threaded processing power. The multicore,
multithreaded world that we had long been warned about was finally upon us. We were
faced with a choice. We could start a project to rewrite Houdini in a new, thread-aware
manner. Or we could try and change and adapt Houdini to become thread-aware. This type
of choice is a common one for programmers to face. Whether it is a new threading paradigm
or a new UI programming model, we must choose between rewriting or refactoring. Often
we feel the choice is clear—rewriting has so many obvious benefits. We can take what we
learned in the first attempt, and bring in the new technology we have learned since, to
build something truly next generational. Unfortunately, there are some corresponding costs
to rewriting.

First, we do not actually bring what we learned into the new version. We can’t. For any
nontrivial project, it is too big for anyone to fully understand every detail that went into

22 Multithreading for Visual Effects

its construction. There are thousands of subtle choices that were made to address the needs
of users that we don’t see when we just look at the code as a whole.

More importantly, while building a new version we are not actually moving forward. We
are running as fast as we can in the hopes of staying in the same place. While hopefully the
new system will let us move faster after it is built, the longer the rewrite, the greater this
speed up had better be!

We must realize the shift to multithreading is not the last time we will see a paradigm
shift. There will be future shifts that we have not yet predicted. Our new rewrite will
find itself in a similar position as our current code within a few years. It behooves
us, therefore, to be able to refactor and adapt rather than always having to start from
the beginning.

When we analyzed our needs for multithreading, we decided that refactoring would be
the best course for us. There are considerable problems we have because of this, most notably
addressed in the discussion on dependencies in Section 2.5. Our incremental approach,
however, has allowed us to acquire a lot of the low hanging fruit of multithreading without
having to stop our forward progress.

Our refactoring consists of two steps which, suitably enough, we can perform in parallel.
We convert our legacy code to be threadsafe while we ensure anything that is embarrassingly
parallel is actually executed in parallel.

2.2.1 Cleaning Statics

One disadvantage of working with an old codebase is that little of the code was written
with multithreading in mind. Even when we did consider multithreading, our approaches
tended to be lock-heavy and lacked the modern understanding of what allows code to scale
across multiple cores. Before we worry about having too many locks, however, we have to
worry about code having too few.

Global variables are a bad idea for many reasons, but never so much so as when we try
to multithread libraries. Finding them can be a challenge, however. We do not want to only
fix them when we happen upon a memory corruption or a crash, we want to preemptively
eliminate them from our libraries.

We could try grepping our source for the static keyword, but this will not find all of
them. It will also falsely report constant statics and static functions, both of which are
safe. Instead, we can inspect the generated library files to see what was put into the data
segment. Under Linux we can use the nm command.

nm libGEO.so | c++filt | grep -i ’^[0-9a-F]* [bcdgs]’

This will report all the writeable symbols in the given library, nicely avoiding anything
marked const. However, it will leave us with a lot of false positives. We will have our own
legitimate statics, including locks and anything stored behind locks. Further, the compiler
itself generates a slew of statics. We can use a chain of greps to eliminate our known issues,
leaving us with a short list to inspect.

Using the Intel Compiler we could take advantage of the -ww1711 option to warn about
any write to a static variable. This avoids having to prefix read-only statics with const
(though we find that diligent application of the const keyword does have benefits for read-
ability).

Houdini: Multithreading Existing Software 23

When we do want to write to a static we can use a macro, such as this:

#define THREADSAFE_STATIC_WRITE(code) \

__pragma(warning(disable:1711)); \

CODE; \

__pragma(warning(default:1711))

When we have verified that a write to a static variable is properly locked, we can wrap
it within this macro, thereby suppressing the warning for that write.

When we sweep our code to remove all global variables, we must exercise care. While
some cases of global variable usage are entirely spurious, often there is a good reason the
original author decided to use a global. After all, global variables have been recognized as a
bad thing for decades now! We found several common patterns for global variable use, and
thus also found some common solutions to fix them with minimal impact on the rest of the
code. We do not want to spend time debugging algorithms that have already stood the test
of time.

Often, when we write a function, we may have potential invalid parameters or undefined
values to guard against. The calling code, however, may be intolerant of errors, and expect
to always get a valid result. Consider the conversion between a hue-saturation-value (HSV)
color and a red-green-blue (RGB) color. If the saturation is zero, the resulting red, green,
and blue channels are independent of hue. Conversely, if the red, green, and blue channels
are identical, the hue is undefined. Someone with good intentions may write:

static float prev_h = 0;

static void

HSVtoRGB(float h, float s, float v, float *r, float *g, float *b)

{

prev_h = h;

// code to set r, g, b from h, s, v

}

static void

RGBtoHSV(float r, float g, float b, float *h, float *s, float *v)

{

if (r == g && g == b)

{ /* achromatic case */

*s = 0.0F;

h = prev_h; / *h is undefined in the achromatic case */

*v = r;

}

else

{

// code to set hsv from rgb

}

}

The intent of this code is noble. Instead of choosing a default hue, it reuses the last hue
it saw. A conversion from HSV to RGB and back to HSV will thus preserve the original
hue value even when the saturation is zero. In practice, however, this will rarely work, even

24 Multithreading for Visual Effects

without taking multithreading into account. When we batch-convert HSV to RGB, we will
have the last hue become the default hue value for the entire reverse conversion. We found
that the best solution in this example was return a standard default value and accept the
potential loss of information in round-trip conversions. For hue we use the standard default
of zero.

There were some cases, however, where we could not properly understand the code to
confidently pick a new default. With these functions, which were often found in our NURBS
(Nobody Understands Rational B-Splines) library, we wanted to preserve the functionality
of the old code precisely, and so found it expedient to add an extra reference parameter
storing the fallback value.

static void

HSVtoRGB(float h, float s, float v, float *r, float *g, float *b, float &prev_h);

static void

RGBtoHSV(float r, float g, float b, float *h, float *s, float *v, float &prev_h);

Augmenting the function signatures with a mandatory parameter storing the fallback
value forces the tracking of the fallback value to be explicit in the calling code, ensuring
both threadsafety and no accidental loss of value when a later programmer rearranges code.

Sometimes it is not just a float that is shared between functions, but an entire set of
variables. It is tempting to make these variables thread local storage, but we tried to do
this only as a last resort. It is much better if we can make the interrelationship between the
functions explicit. At the same time we desire an easy, mechanical fix to the problem. It is
imperative we keep our changes simple and error free.

Creating an ad hoc struct forms an easy and mechanical solution to most parameter
problems:

float knotspace, knotaccuracy, tolerance;

float setup(float a)

{

knotspace = a;

tolerance = 0.01;

knotaccuracy = a / tolerance;

}

float apply(float a)

{

if (a < tolerance)

return a * knotspace;

return knotaccuracy;

}

transforms into:

struct ApplyParms

{

float knotspace, knotaccuracy, tolerance;

};

float setup(float a, ApplyParms &parms)

Houdini: Multithreading Existing Software 25

{

parms.knotspace = a;

parms.tolerance = 0.01;

parms.knotaccuracy = a / parms.tolerance;

}

float apply(float a, ApplyParms &parms)

{

if (a < parms.tolerance)

return a * parms.knotspace;

return parms.knotaccuracy;

}

We can build ApplyParms on the stack prior to the first invocation of setup and add it
to the calls to apply.

Callback functions are a particularly painful example of functions sharing state. Ideally,
these functions take a void * or similar, allowing additional state to piggyback into the
callback. Unfortunately, it is all too common to find cases where this was omitted. Chang-
ing it, however, would often trigger considerable cascading changes. We therefore found
ourselves resorting to thread local storage.

Even when we have a void * on a callback, we are not out of the woods. A common
pattern is to pass this into the callback. All the extra parameters are then stored as
member data in this. Beyond the obvious problems of polluting our object with temporary
parameter data, this stops working when our callback is a const method. In those cases
where programmers were wise enough to not cast away const, they may still fall into the
trap of creating a global variable instead:

static float glb_parm;

static void callback(void *vdata)

{

const MyClass *data = (const MyClass *)vdata;

data->callback(glb_parm);

}

void program(const MyClass *data, float parm)

{

glb_parm = parm;

runalgorithm(callback, data);

}

Thankfully the transformation is simple: we realize we do not have to pass the class
as void *! We instead create an ad hoc struct to hold both our parameters and the this

pointer, initialize it on the stack, and pass that into our callback.

26 Multithreading for Visual Effects

struct CallbackParms

{

float parm;

const MyClass *data;

}

static void callback(void *vdata)

{

CallbackParms *parms = (CallbackParms *)vdata;

parms->data->callback(parms->parm);

}

void program(const MyClass *data, float parm)

{

CallbackParms parms;

parms.parm = parm;

parms.data = data;

runalgorithm(callback, &parms);

}

Premature optimization leads to the final pattern of global variables we will look at.
We all naturally understand that memory allocation is something to avoid in innermost
functions. So, sometimes we decide to cache our allocated memory for future use:

void

munge_array(float *data, int len)

{

static float *temp;

static int templen;

if (!temp || templen < len)

{

if (temp) free(temp);

temp = (float *) malloc(len * sizeof(float));

templen = len;

}

// Munge data using temp for temporary

}

We should first identify if this optimization is even needed. While allocation is expensive,
it is not that expensive. We usually found that the cost of allocation was not an issue; the
operation that we were applying to the data dominated the cost.

If speed is an issue, we can take advantage of alloca. alloca allocates variable data
on the stack. Unfortunately, our stack is limited, so we must switch between alloca and
malloc depending on size. If the allocation is large, the computation on it will amortize the
allocation cost, justifying this switch.

Houdini: Multithreading Existing Software 27

We created the UT StackBuffer class to handle switching between allocation modes. It
uses its own member data as the buffer if below a threshold, and allocates otherwise. Our
code then becomes much simpler:

void

munge_array(float *data, int len)

{

UT_StackBuffer<float> temp(len);

// Munge data using temp.array() for temporary

}

We found the sweep for globals a very rewarding exercise. Even without considering the
improvement to threadsafety, the transformed code is almost universally easier to under-
stand and in some cases shorter.

2.2.2 Threading the Simple Cases

When we describe an algorithm as embarrassingly parallel, we are saying two things.
First, that it is embarrassingly easy to parallelize it—the data splits cleanly into many
threads with no dependencies. Second, that it is very embarrassing if we leave it single
threaded. Despite this, it is not at all uncommon to come across code that operates inde-
pendently over millions of elements but stubbornly stays on one core. We have some excuse
for historical code—with no real benefit to threading, code was left in a single threaded
state. Now, however, we want to transform that old code into multithreaded code. To avoid
creating new errors, we want to minimize the changes required to turn an old single threaded
loop into a multithreaded loop. Interestingly, we found that making such tools had benefits
beyond porting old code. It also helps multithread new code. We can write, debug, and
optimize our algorithms in a traditional single threaded manner and then, as a final step,
port them to a multithreaded version.

We had the misfortune of beginning our modern attempt to multithread Houdini prior
to the release of Intel’s Threading Building Blocks (TBB). This gave us the joy of developing
a lot of our own threading primitives. However, what we built was remarkably similar to
what TBB provides. We were able to switch over to TBB by wrapping TBB with our own
abstraction layer.

While our model was similar to TBB, it was not equivalent. There are two approaches
to threading an algorithm. Consider the following sample function:

class UT_Vector

{

void addScaledVec(float s, const UT_Vector &v);

};

void

UT_Vector::addScaledVec(float s, const UT_Vector &v)

{

int i, end;

end = length();

for (i = 0; i < end; i++)

myVector[i] += s * v.myVector[i];

}

28 Multithreading for Visual Effects

This is representative of the hundreds of functions that we had to multithread. In par-
ticular, we have a (debatably wise) convention of most operations being methods on their
respective classes. We should also note that the shown code is not optimized for the single
threaded case. Threading should not be a solution to hide slow code! It can be tempting to
see the six times increase we get by multithreading and call our job done, leaving another
factor of two unrealized!

Our original solution to this problem was thread pools. We would allocate a fixed pool
of worker threads. When we wanted to multithread an algorithm, we would use a macro
to create the proper boiler plate to marshal its parameters and pass them to the worker
threads. Each invocation of the thread-specific functions receive a UT JobInfo, which tells
them how many threads are running and which thread they are. For convenience, we also
include an atomic integer in the UT JobInfo; allowing load balancing to be implemented by
requesting next task numbers.

The transformed code then looks like this:

class UT_Vector

{

bool shouldMultiThread() const

{ return length() > 5000; }

THREADED_METHOD2(UT_Vector, shouldMultiThread(),

addScaledVec,

float, s,

const UT_Vector &, v);

void addScaledVecPartial(float s, const UT_Vector &v,

const UT_JobInfo &info);

};

void

UT_Vector::addScaledVecPartial(float s, const UT_Vector &v,

const UT_JobInfo &info)

{

int i, end;

info.divideWork(length(), i, end);

for (; i < end; i++)

myVector[i] += s * v.myVector[i];

}

The shouldMultiThread method is often shared across all methods in the class. It acts
as a gate on the minimum work size to ensure we do not attempt to thread small tasks.
With a generic class like UT Vector, this is vital, because it may contain 6 items or 6 million.
When it contains six items, it is imperative that the overhead is as close to zero as possible.
The THREADED METHOD2 macro handles defining an addScaledVec method to perform these
tests and either call addScaledVecPartial directly if threading is not desired, or pass it
to the worker threads if it is desired. It also defines an addScaledVecNoThread method
at the same time. This version will never multithread. This is very useful for debugging:
if we suspect some code is not threadsafe, we can selectively turn off threading to see if
the problem still occurs. Similarly, sometimes we only know at runtime if the behavior
of a function will be threadsafe. It may, for example, have a callback whose threadsafety
depends on its parameters. In these cases, we can switch between the two implementations
easily.

Houdini: Multithreading Existing Software 29

While we currently implement our thread pool on top of TBB, it is important to recog-
nize it does form a subtly different paradigm. TBB approaches the parallel for problem
by having the caller divide the dataset into many small tasks using a partitioner. Each task
must be big enough to avoid excessive task switching overhead, but small enough to allow
all the threads to be active. We do not, however, know how many tasks will be created or
on which threads they will be run. By contrast, the thread pool approach places the work
of dividing the dataset on the callee. Because the thread pool works with a fixed set of
threads, it can provide the callee with the number of threads that will be run.

Working with a thread pool paradigm has some nice advantages, especially when it
comes to converting old code. Often a function will have considerable setup before the big
for loop. The thread pool approach provides an upper bound on how many times we have
to repeat that setup, allowing us to consider it amortized for large datasets. A task-based
method, however, may divide large datasets into a similarly large number of tasks, forcing
us to pay more attention to the prequel code. If we want to pull the prequel code out of the
task, however, we must perform considerably more code surgery. Newer C++ features, such
as lambdas, ease this problem, but we are limited in how quickly we can raise our minimum
compiler requirements. Thread pools have a similar advantage with map-reduce functions.
Because we know the maximum number of slots ahead of time, we can preallocate an array
of outputs, one for each thread. Each invocation can use this array and its job number to
write to its own output.

There are, however, very good reasons why TBB does not use this model. The chief
problem of thread pools is that they are not composable. Thread pools work well if our
program has only a single level of threading. However, it is very easy to find ourselves with
multiple levels. The addScaledVec may be called from within a blocked matrix algorithm,
which itself has been multithreaded across the blocks. We cannot split the addScaledVec

call across the thread pools because they are all busy. We also do not want to create a new
thread pool, both because this would oversubscribe and because thread creation is expensive.
We are thus forced to devolve to single threaded behavior for the nested call. However, if the
top block-based algorithm did not use all the threadslots, or if some of the worker threads
finish much earlier than others, we cannot take advantage of those extra cycles. TBB solves
this problem by placing both the block operations, and the addScaledVec operations, on
the same task list, allowing worker threads to balance between all active processes.

By breaking the data up into a thread-independent number of tasks, TBB also solves
the load balancing problem. In a thread pool the simplest approach is to split the task
equally, as shown in the earlier example. If the work units take a variable amount of time,
however, this can leave idle threads when it comes to synchronization. For example, our
volume format breaks a volume into 16 cubed tiles. If one of these tiles has a constant
value, it is compressed to a single value. When we process a constant tile, we can often do
so very quickly if all we have to do is update the constant value, leading to a factor of a
thousand difference in processing time between constant and varying tiles. To balance the
thread pool, we make use of the atomic integer stored in the UT JobInfo. Each thread will
repeatedly request and increment the shared integer and use it as the linear tile number to
process. While this solves the load balancing problem, we have effectively reproduced the
TBB paradigm of turning each tile into a task!

Our favorite way of writing multithreaded code is to eschew either TBB or the thread
pool approach. Instead, we write the algorithm directly in VEX, our vector expression lan-
guage. VEX code is written as an inner body of a for-loop, much like kernels in OpenCL,
so it is multithreaded by default. Unlike OpenCL kernels, however, we have the full flex-
ibility of a general purpose computer and can invoke all the domain specific functions we
have implemented for visual effects programming. We are often surprised that rewriting an
algorithm in VEX results in a 10 times speed increase over the same algorithm in C++.

30 Multithreading for Visual Effects

Of course, when we investigate, we find the C++ algorithm was not optimized. However,
neither was the VEX code! Naturally fully optimized C++ code will beat VEX once more in
speed, but this requires attention to multithreading, vectorization, and caching; all of which
were ignored in the VEX version. For a lot of code, however, it is more important for it to
be flexible and readable so we can improve it and debug it. For these tasks, VEX shines,
as being an interpreted language, we can change it directly in the application with no need
to restart. Increasingly, we now turn to VEX first to solve any problem that smacks of an
embarrassingly parallel nature, and we often find it produces sufficiently scalable results
that, much as we rarely go below C++ to assembly, we rarely must go below VEX to C++.

2.3 Patterns

Over the many years of multithreading Houdini we have made many mistakes. We hope
that by describing them we can help others avoid the same mistakes. Some of these mistakes
predate the modern push for multithreading, for this is not our first foray into the world of
threads.

2.3.1 Always Be Reentrant

When we create a lock on a resource, we are often given a choice of whether that lock
should be reentrant or not. Reentrant locks, also known as recursive locks, allow the same
thread to reacquire the lock. A non-reentrant lock will block, creating a deadlock. There
are advantages to non-reentrant locks—we do not need to track the owner, so may be able
to process them faster or use less memory. However, it requires more care on our part.

class foo

{

public:

void interface1()

{

UT_Lock::Scope scope(ourlock);

// Do computation.

}

void interface2()

{

UT_Lock::Scope scope(ourlock);

// Reuse interface1

interface1()

}

};

Adding the call to interface1 inside of the lock in interface2 creates a deadlock. We
could argue the programmer is at fault: they have broken the rule that interface functions
should be separated from internal functions. However, why did we create such a dangerous
rule? The real crime of the hapless author was trying to reuse code. Reusing code should
be one of the greatest virtues, but we have managed to turn it into a sin!

It certainly does not help that, during the dark early days of our lock code, we had
different policies on different platforms. Irix locks were reentrant, while Windows locks were

Houdini: Multithreading Existing Software 31

non-reentrant. Thus some developers would execute that code without hassle, and others
would face a deadlock. The message we learned from this experience was to make all locks
reentrant by default. There must be a good and clear reason to do otherwise! Efficiency is
not one of them: if you are locking, you have already given up on speed.

2.3.2 Never Lock

The hardest lesson we learned? If you lock, you are not multithreading.

This does not match what we had learned in our studies. We would build clever diagrams
to prove our system would work well, and see nice effects on single threaded machines. Any
attempt to scale, however, would see our CPU monitors hit 100% in kernel times, not in pro-
cess times. Lock-based algorithms are predicated on an assumption that we know something
about the machine we are running on. Perhaps if we actually had separate CPUs for each of
our threads that would sync in step our locks would work efficiently. But our threads do not
remain on one CPU. They live in a complex ecosystem of mp3 players, YouTube windows,
background renders, and other cycle-suckers. In our system monitor, we configure the CPU
graph to color kernel times a bright red versus a soft blue for normal tasks. Algorithms
that lock then bleed across the graph, giving a quick visual indicator that we had better
investigate closer. Once, when running a simple VEX expression on a 100 million voxels,
we noticed the CPU graph turn red. Intrigued, we brought out our profiler (Intel VTune
Amplifier XE in this case) and swiftly found that calls to UT Interrupt::opStart were
triggering a lock. These calls are used with our cooperative interrupt system. Algorithms
are expected to periodically check to see if the user has requested an interrupt and stop
execution if so. Normally, the VEX workload for a block of voxels would be high enough to
mask the cost of this check, but for this lightweight operation the lock became contentious
and slowed the entire operation by a factor of two! We learned from these sorts of encounters
that non-contentious locks do not necessarily remain that way. Just because our current use
case, or our current number of cores, does not make the lock contentious, does not mean
some future use or future machine might not invert our assumptions.

Of course, we still use a lot of locks in our code. The admonition “Never Lock” ap-
plies anywhere where we expect multithreading to gain a speed advantage. There remain
many non-speed related thread synchronization problems for which locks are a natural
solution.

2.3.3 Atomics Are Slow

When we realized locks could not be relied upon, we naturally turned to the next best
thing: atomics. A lot of traditional locking algorithms can be replaced by the judicious use of
a few atomic variables. While nothing like a lock in cost, we must still exercise caution when
using these. Any atomic must, by definition, be synchronized across CPUs. In particular,
this means that it often cannot remain cached locally. The cost of an atomic should be
treated like that of a guaranteed uncached memory fetch. Which is to say: very expensive.

class FOO_Array

{

public:

shared_ptr<float> getData() const

{ return myData; }

private:

32 Multithreading for Visual Effects

shared_ptr<float> myData;

};

float

sum_array(const FOO_Array &foo)

{

float total = 0;

for (int i = 0; i < foo.length(); i++)

total += foo.getData()[i];

}

As longtime users of C++, we are very excited by shared ptr. It provides a way to
abdicate responsibility for tracking ownership of data. The FOO Array does not have to
worry if the caller destroys it after fetching its data—the fetched data will still be valid. We
will have more to say about the danger of this abdication in Section 2.4 when we discuss
copy on write.

There is a hidden cost to shared ptr, however. Because shared ptr is threadsafe,
it must do some form of atomic operation to track its uniqueness. Every time we
invoke getData it must increment and decrement this shared resource. When we
invoke sum array on a single thread the overhead is there, but perhaps hidden by
the cost of accessing the actual data of the array. When we decide to multithread
sum array, however, things change drastically. The shared resource can no longer be
cached and performance will plummet, rather than seeing our summation run faster;
we will see it slow down!

2.3.4 Never Blindly Thread

In any discussion of TBB’s parallel for there will be a discussion of the importance
of grain size. This cannot be stressed enough. We go even farther and insist that it must
be considered if any multithreading should be attempted at all. While the per-task over-
head is made as small as possible, it is still there. We can often have data structures,
like vectors, that may store anything from 1 to 1 billion elements. Overheads that we
can ignore when processing even 100 elements can be crippling when processing a single
element!

When using our thread pool interface we do not have to worry about grain size. We
implicitly set a maximum number of tasks to be the size of our worker pool. We still,
however, have to worry about whether to thread or not. We make it a mandatory part of
our interface for that reason. We do not want, in a fit of laziness, to cripple simple code.

For TBB we wrapped the tbb::parallel for in two versions:
UTparallelForLightItems and UTparallelForHeavyItems. These implicitly set a
grain size of 1024 and 1, respectively. Both version chain down to UTparallelFor

which further tests if only a single task will be created. In this case, it does not
actually enter the TBB scheduler at all, instead just directly invoking the body.

Despite the best efforts, it is still possible to forget to consider grain size. We noticed
when duplicating geometry we were able to duplicate different attributes independently, so

Houdini: Multithreading Existing Software 33

thus tried to multithread it if there were sufficient number of attributes. However, some
cases may have hundreds of attributes but only a few points in the geometry, causing the
overhead of threading to dominate. We had to choose to thread based not just on the number
of attributes, but also on the number of elements in each attribute. In this case, a final
version of our wrapper became very useful: UTserialFor. This variant merely executes the
body directly. The chief advantage is that it has the same signature as the parallel variants,
making it trivial to write code that switches between the parallel and serial versions.

2.3.5 Command Line Control

We believe that all stand-alone applications should have command-line options to set
their maximum thread count. We use -j, where the j stands for jobs. Our choice was
inspired by make and provides a consistent way for people to create scripts that limit
their thread usage.

A good selfish reason for this is debugging. When we get a troublesome file, we can easily
run both with and without threading and determine the locus of the fault. If the problem
still shows up with -j 1 we breathe a sigh of relief—it is not a threading bug, just a garden
variety normal bug.

A practical reason is speed. Multithreading is less efficient than single threading. If we
have the memory and bandwidth, it is more efficient (in terms of throughput) to single
thread multiple copies of our program than run a single copy multithreaded. After all, we
do not have just one job to do. On a render farm we will have thousands of frames to
process, so it will be faster to run six frames at once, each single threaded, than try to
balance one frame across six cores. Naturally, there are exceptions and trade-offs. We must
balance memory use, network bandwidth, and the importance of fast artist turnaround
time. The choice of this balance, however, lies with the render wranglers that know their
machines, their common scenes, and their deadlines. By providing a command line thread
control we make it very straightforward for anyone to adjust our program’s behavior to
what they have found works best for their farm and their shots.

2.3.6 Constant Memory versus Number of Cores

We often want to write to the same object from multiple tasks. A common example in
visual effects is stamping points into a volume. With single threaded code this is easy: loop
over all particles and for each one write to the voxels it overlaps. But if we multithread this
across particles, many particles will try to write to the same voxel at the same time.

One solution we can immediately discard is the idea of acquiring a write lock on the
volume, or even on a subset of the volume. Locks are simply too expensive and do not scale.

If we cannot lock, perhaps we can just ensure no conflicts occur. In our volume format,
we break the volume into 16 cubed tiles. While two threads cannot safely write to the
same tile at once, it is threadsafe for two threads to write to different tiles at once. Thus,
we could assign each thread a subset of tiles. Then each thread could process all of the
particles, but only perform writes to the tiles they owned. We have, however, incurred the
cost of recomputing the bounds of every particle for every thread.

Another approach, which motivates the title of this section, is to create a separate
destination object for each thread. We could create an empty volume for each thread and
composite them together into a single version at the end. We can optimize this by either
using a thread pool approach or using thread-local storage to ensure we only create one

34 Multithreading for Visual Effects

temporary volume per thread, not per task. However, even then we may be in for a surprise.
What works well on a 12 thread machine may not be so pleasant when run on a four-socket,
10 core machine with hyperthreading. We will see 80 copies of the volume, for an 80 times
increase in peak memory! We may ameliorate this somewhat by using sparse volumes. Either
with constant tiles or with a hierarchical structure such as VDB, we can ensure that the
memory cost of empty space is kept small. Unfortunately, if we apply the particles in a
first-come manner, probabilistically we are still looking at an 80 times memory peak. The
particles we get from artists do not tend to be ordered spatially, instead they are intermixed
and scattered throughout the volume. We therefore still must perform a prepass on the
particles, bucketing them into separate regions to ensure that the per-thread volumes have
minimum overlap. At this point, we may note, we could use the same bucketed particles to
speed up the threadsafe write pattern.

2.3.7 Memory Allocation

Traditional memory allocators lock. As such, malloc and new are not things we want to
see in the innermost loops of our threaded algorithms. Thankfully, this is a rather general
principle that applies to non-threaded code as well, so usually is not a problem.

But what if we really need to allocate memory? What do we do when alloca does not
suffice? Traditionally, the answer was to write our own small object allocator. And we have
written a few. More recently, tbb::scalable malloc provides a ready-made solution for
highly contentious allocations. Unfortunately, with memory allocation we face not just the
threat of slow performance; memory fragmentation is a very serious problem that can easily
halve our effective working set.

Thankfully, we have found an easy solution for Linux. We continue to use malloc

and new as normal, but we link against jemalloc. jemalloc replaces our standard
allocator with one that does all the proper tricks of small object lists and thread local
caches, but it does it in a way which aggressively avoids fragmentation. On platforms
where linking to jemalloc is not practical, we resort to tbb::malloc proxy. The
cost of fragmentation is balanced by the significant performance improvements.

2.4 Copy on Write

As we analyzed most of our embarrassingly parallel algorithms, we commonly found
we had random overlapping reads from shared data structures and sequential independent
writes to another data structure. From this, we identified two usage scenarios that we must
deal with to make data structures threadsafe. First, we must ensure that the structures
are threadsafe for reading—it should be clear when and how it is safe for multiple threads
to read from the data structure, and, as importantly, what operations constitute reads in
the first place. Second, we must have the ability to define a safe write operation. Usually,
there are constraints on what sort of writing can be performed in parallel. With our volume
data structure, for example, it is possible to write to different tiles of the structure simul-
taneously, but not to the same tile from two different threads. We expose these guarantees
and requirements so we do not have to lock on the write—locking, after all, will defeat
our performance goals. These rules can suffice when a single algorithm wishes to spawn

Houdini: Multithreading Existing Software 35

multiple threads to write to an object, but they are untenable if separate algorithms wish
to update the same data structure. Thus, we need to separate these cases so we can provide
raw access for writing with known threads without having to worry about foreign threads
playing havoc with our data in the meantime.

2.4.1 Const Correctness

We are very fortunate with Houdini that two historical accidents work in our favor:
our code is written in C++ and we have maintained const correctness. When it comes to
determining read-safety of code, it is the second accident that aids us. const is one of our
favorite keywords in C++. It exemplifies what the language does right: allowing us to build
contracts that the compiler will enforce. Our original motivation for const correctness was
a mistaken belief that future compilers would be able to use this information to better
optimize the code. While this may have never come to pass, the rewards we have reaped in
code maintenance have easily justified our continued use of the practice.

In the single threaded context, the const keyword is a contract to the caller that the
invoked code is side-effect free. This knowledge leaves one less thing for us to worry about
when we encounter the function in someone else’s code. It is essential that the compiler
enforces this relationship. Unlike comments or names of functions, this particular contract
cannot easily drift. While there are still const cast, mutable, and C-casts to worry about,
in practice, we have found these to be remarkably rare exceptions. We can understand why
when we remember what causes function names and comments to drift from the truth. It
is usually a harried programmer eager to get something done that adds a small change to
a function and fails to update all of the boilerplate. We have found that when we (for we
are all at some point that harried programmer) are in that state, our solution is to merely
not use the const keyword at all. The const keyword is instead usually introduced in a
bottom-up fashion when we are carefully performing code-hygiene. We have found it to be
a remarkably trustworthy indicator of the nature of the function.

As the use of multithreading spreads through our codebase, the const keyword has
now become an essential tool. Not only can it be used to imply the code is side-effect
free, it can also be used to imply the code supports many readers. Again, care must be
taken due to the risk of mutable caches or global variables, but still it allows the easy
validation of large swathes of code. Further, by ensuring we send const structures to
the multiple threads, we can have the compiler enforce that we do not accidentally
call an unsafe function.

2.4.2 Reader/Writer Locks

When a single algorithm invokes multiple threaded tasks to write to a data structure,
we can assume the author of the algorithm is able to reason about the write pattern and
generate a lock-free method of changing the data. However, often data will not belong
to a single data structure, but be shared across the session to provide both speed and
memory optimizations. For example, a large piece of geometry with 10 million points may
have a three-float color attribute for each point. This 192 megabyte array does not need
to be copied every time the geometry is copied. If a deformation operation is performed
the color is unchanged, so the deformed geometry can share its color attribute with the
original. When we do choose to update the color values, however, we wish to ensure any
simultaneous readers do not see an inconsistent state. A traditional solution to this problem

36 Multithreading for Visual Effects

is to create a reader/writer lock. This special type of lock can allow many readers into the
data structure at once, but only allow a single writer, and only if no readers are present.
Such a lock would have quite an unacceptable performance cost—we would lose even the
lock-free ability to read the geometry from multiple threads. In the following sections we
will present our solution to this problem, which avoids the need for locking.

2.4.3 Ownership Is Important

A misunderstood feature of C++ is its lack of garbage collection. Critics deride this
decision as a foolish choice based on antiquated notions of efficiency. They claim memory
leaks and dead pointers abound in C++ code, leading to crashing programs and inefficient
software. While we acknowledge some truth to these objections, we believe there is a silver
lining to this cloud. Lacking the safety net of a garbage collector, C++ programmers have
developed practices to track ownership of objects. We use techniques like Resource Acqui-
sition Is Initialization (RAII) to solve many of the pitfalls of manual memory management
and maintain a strong sense of object ownership.

Our clear understanding of both object ownership and object lifetimes solves a lot of
problems. A common example is disk files—who should write to them and when they should
be closed is straightforward in an ownership based model. We also contend that this sort of
thinking can help solve multithreading problems in a way that minimizes locks.

Unlike Java, where every reference to an object is considered an owner of that object,
C++ encourages us to keep ownership simple. In particular, the shared ptr device, while
incredibly useful, should be kept to a minimum. Consider again our simple array class:

class FOO_Array

{

public:

shared_ptr<float> getData() const

{ return myData; }

private:

shared_ptr<float> myData;

};

We saw earlier how this can result in problems with multithreading; but this implementa-
tion also has an important conceptual problem. Who owns myData? Why does someone who
merely wants to inspect myData have to acquire ownership? Usually, shared ptr aficionados
argue that the caller of getData does not know the lifetime of the FOO Array. Acquiring
a shared ptr will insulate us from the FOO Array suddenly vanishing. However, the caller
does know the lifetime! We must already hold a reference to the enclosing FOO Array, or it
would not have been possible to invoke the getData function in the first place. It is only
if we are planning on keeping the returned pointer after we have released ownership of
the containing FOO Array that we would require a shared ptr. But, in this case, we are
conceptually caching the result of the call, so we should not be surprised that we have to
explicitly signal this by taking ownership.

class FOO_Array

{

public:

float *getData() const

{ return myData.get(); }

Houdini: Multithreading Existing Software 37

shared_ptr<float> copyData() const

{ return myData; }

private:

shared_ptr<float> myData;

};

We have made this transformation explicit in this version: we invoke copyData if we
want to maintain the data beyond FOO Array’s lifetime, and getData if we merely want to
inspect it locally. As an added bonus, we will avoid any performance surprises when we do
multithread our accesses.

2.4.4 Sole Ownership Is a Writer Lock

We make lock-free the case of many readers and no writers by ensuring all functions
used by the readers are threadsafe. We use the const keyword so the compiler validates this
requirement. But what happens when we want to write to data?

A reader/writer model needs a way to keep track of the active readers. It is not safe
to start writing if there are any active readers. We want to avoid that overhead, however,
since we want reads to be lock-free. Our solution is to cheat and redefine our problem. We
solve a slightly less general problem, and gain an efficient solution that avoids any locking
on the part of the readers.

When we design multithreaded algorithms that write to shared data structures, there
are two types of readers we must worry about. The first are the reads our own algorithm
will generate. We can reason about these and create solutions for our planned read pattern.
We do not need special reader/writer locks, we instead just need safe access patterns. The
second, and more troubling, are the reads generated by other concurrent algorithms. We
find these reads a scary proposition since we cannot reason about them or predict them.

How then do we detect if there are any external readers? If we are not tracking individual
read requests, we can only detect if there is the possibility of an external reader. For an
external algorithm to be able to read from a data structure, it must have a reference to that
data structure. Our concept of data ownership can now provide a solution: for an external
thread to be able to unexpectedly read from our structure, that thread must also have
ownership of it. After all, if they have not acquired ownership, they have no guarantee on
the lifetime of the object, so should not be reading from it at all!

Our write-lock problem is hence simplified. Before we can write to a potentially shared
data structure, we must first ensure that we have sole ownership. Provided we are the
only owner, we know that no other system can gain ownership—after all, we have the only
reference! Provided we have ensured all caches properly own the object, we have no fear of
surprisingly increasing our ownership count because, again, there must be no references to
our object outside of our algorithm.

So, what do we do if we want to write to an object and discover its ownership is shared?
We simply copy it. In almost all of our use cases, the share is due to a cache, in which case a
copy is the right thing to do; it is unexpected for a cached version to be updated. Even if we
do want to update the shared object, however, it is still semantically correct to work on a
copy. This means that other threads will see the old version until the new version is posted,
which is almost always advantageous since we then eliminate the risk of inconsistent states
being exposed mid-algorithm. Further, we can always imagine that all the would-be readers
just happened to block until the algorithm was complete, making this instant posting of
the result something the overall system should be able to handle.

38 Multithreading for Visual Effects

This approach is equivalent to copy on write, a technique often used to share memory.
We have found, however, it is also an effective way to manage multithreaded access to shared
structures. Again, let us look at the FOO Array built in this fashion.

class FOO_Array

{

public:

const float *readData() const

{ return myData.get(); }

float *writeData()

{ makeUnique(); return myData.get(); }

shared_ptr<const float> copyData() const

{ return myData; }

private:

void makeUnique()

{

if (myData.unique()) return;

shared_ptr<float> copy(new float*[size];);

memcpy(copy.get(), myData.get(), sizeof(float)*size);

myData = copy;

}

shared_ptr<float> myData;

};

We have made the readData function const correct. It returns a const float *, which
makes it more difficult for us to accidentally write to shared data when we have a const
FOO Array. If we do want to write to the data inside the FOO Array, we have to instead use
the non-const writeData. It guards all access with a makeUnique invocation to ensure that
the caller is the only owner of the underlying data. Our claim is that after the makeUnique
call we will be the only owner of the underlying data.

We must stress that this uniqueness is not guaranteed by the code! A malicious caller
can easily stash a pointer to the FOO Array else-thread and call copyData, violating this
assumption. However, provided the ownership model is respected, the guarantee will hold.
We already use this sort of contract to avoid memory leaks, and we have found the same
sort of coding practices can be used to ensure there are no surprising behaviors.

While our ownership contract ensures there can be no surprising increases to the unique
count of myData, it says nothing about surprising decreases. As such, after the unique call
and until the assignment to myData, it is possible another thread will decide it is done with
its own copy of the data and leave this as the only copy. In that case, however, the only
penalty we face is making an extra copy. Further, the extra copy is something that, but for
the timing of threads, may have been otherwise required.

2.4.5 Failure Modes of This System

While we have successfully used copy on write to solve our reader/writer problem, we
have found that it does have its own set of pitfalls. As expected from a system that requires
a contract with the programmer, a violation of the contract can cause things to fail.

Houdini: Multithreading Existing Software 39

The main problem we encounter is being too liberal in acquiring ownership. It is tempting
when using shared ptr to fall into a Java-style model of programming in which everything
is owned by everyone. Not only does this result in a lot of unnecessary atomic operations,
with copy on write it can cause writes to disappear into the ether.

For example, consider this multithreaded code:

void applyPartial(FOO_Array foo, RANGE partialrange)

{

float *dst = foo.writeData();

for (i in partialrange)

{

dst[i] *= 2;

}

}

FOO_Array bar;

invoke_parallel(applyPartial, bar);

We have treated FOO Array as a lightweight container, so we have passed it by value
to our threaded tasks. In the original definition, where FOO Array was a wrapper of a
shared ptr to myData, this would work, but now with copy on write the result is different.
Each of the tasks will build their own copy of the array, write to that, and then delete
the copy. When we return at last to the caller, it will find its copy in bar unchanged. The
solution is to ensure none of the threads gain ownership of the FOO Array, but we leave that
ownership in the caller:

void applyPartial(float *dst, RANGE partialrange)

{

for (i in partialrange)

{

dst[i] *= 2;

}

}

FOO_Array bar;

invoke_parallel(applyPartial, bar.writeData());

Because the lifetimes of the subtasks are contained by the invoker, it is correct to use
raw pointers and not give them ownership.

Another nasty situation we found if proper care is not taken is:

void apply(float *dst, const float *src)

{

for (i = 0; i < size; i++)

{

dst[i] = src[i] * 2;

40 Multithreading for Visual Effects

}

}

void process(FOO_Array &foo)

{

const float *src = foo.readData();

float *dst = foo.writeData();

apply(dst, src);

};

This contrived example of pointer aliasing creates a few problems. First, whether src
== dst depends on the share count of the incoming foo reference. If foo is already unique,
the readData and writeData will report the same pointer and we will get the expected
aliasing. However, if it were shared, writeData will cause dst to have a duplicate copy,
leaving us with two independent blocks of memory. This is not the most serious problem,
however. Consider if foo was shared during the invocation, but the other copy was re-
leased after the readData and before the writeData. After the writeData completes its
copy it will free the original data as it now is unshared, leaving src pointing to freed
memory.

Using copy on write to solve the reader/writer problem is not a silver bullet. We have
found it requires some additional care and code hygiene. However, we do not believe these
requirements are much more onerous than what is already posed by C++’s lack of garbage
collection, making the technique familiar and accessible.

2.5 Dependencies

Each parameter or input to an algorithm is a dependency for that algorithm. When we
wish to scatter points into a volume, for example, we have a dependency on computing the
point positions. We also have a dependency on knowing the parameters for the scatter—
things such as filter kernels or density prescales. Evaluating these dependencies can become
arbitrarily complicated. The filter kernel, for example, could be an expression, and this
expression’s value could require the computing of still other geometry in the scene. Tradi-
tionally, dependencies are always evaluated in a just-in-time manner. This allows natural
efficiencies if some parameters imply that other parameters do not need to be evaluated.
A switch-geometry operation, for example, selects one of several geometries to be its out-
put. It would not just be inefficient to evaluate all of the possible inputs when only one is
needed, quite often the unselected inputs are actually invalid and would trigger an error if
evaluated.

TBB provides support for dependencies. When we create tasks we can create a task-
graph making the dependency explicit. We may then evaluate our tasks blindly, relying on
the scheduler to ensure our explicit dependencies will be computed prior to our own eval-
uation. We are, however, required to explicitly prebuild this dependency graph, a difficult
job when faced with code written with ad hoc dependency invocation.

Our problems go beyond explicit dependencies, however. We have a rich set of expressions
to query live, upstream geometry. The actual shape of the dependency graph can be a
function of what is being processed. Further, these expressions are not rare exceptions,

Houdini: Multithreading Existing Software 41

but form a core of a lot of procedural workflows. It is quite common, for example, to
inspect upstream geometry for certain attributes and invoke a separate chain of initialization
operations if they are missing. We cannot, therefore, simply break into a two-pass system
that first builds a full dependency tree, and then evaluates it. Instead, we would have to
build a recursive system where we alternate between building dependencies and evaluating
operations.

Even with such a system, however, we would still encounter the problem of some de-
pendencies being only discoverable partway through performing an operation. Our VEX
programming language allows the inspection of live geometry elsewhere in Houdini. This
inspection can then require the computation of that geometry. The geometry to be requested
is not known to the higher level operation. It merely is aware of a block of VEX code that
it must execute, it cannot predict the implications of that text without executing it. This
Turing trap means we must always be able to handle the case of dependencies that are
being discovered during execution.

2.5.1 Task Locks

How, then, do we handle the case where we have this delayed realization of dependencies?
A simple solution is to treat the dependency as a lock. We can acquire a lock on the object
we need to evaluate, thereby ensuring only one of the tasks dependent on the value will
evaluate it. With the case of VEX, we perform this by acquiring a lock on the geometry
engine.

Our geometry lock, however, serves multiple purposes. It is not just to keep separate
VEX threads from computing geometry at the same time, but is also used to keep the
Python thread and the main thread from both computing geometry at the same time.
Thus, when a VEX task wishes to acquire this lock, it will already be acquired by the
VEX task’s parent thread—which if it is a worker thread, will be a separate thread id. Any
attempt to get the geometry lock from a VEX task scheduled on a different thread than
the parent thread will hence deadlock.

To solve this we created a task lock, a more general form of the reentrant lock. When we
create tasks we store their parent task group. Then, when we try to acquire a task lock, we
will successfully acquire it not if the thread-id matches, but if the task’s parent matches the
owner of the lock. The acquiring task is then pushed as the new holder of the lock, ensuring
sibling tasks will properly block.

There are two major problems we have found with this approach. The first is efficiency.
We effectively devolve to single threaded performance during the task lock. In the common
case, if one of the VEX tasks requests this lock, all the tasks will. Thus, each TBB worker-
thread will become blocked on the task lock, excepting the single thread that acquired the
lock. The second problem is more insidious: as described, it can lead to deadlocks.

Not only are locks a bad idea for obvious performance reasons, the task-stealing na-
ture of TBB can lead to unexpected deadlocks when they are used. The fundamental
principle that must be obeyed is that the TBB scheduler must never be entered while
a lock is held. Let us take a closer look at why this is a problem.

Consider a system with two worker threads, W1 and W2. We decide to execute a VEX
operation that creates three tasks, T1, T2, and T3. Each of these tasks will require external
data D. The best approach is to first compute D, and then compute the VEX operation in

42 Multithreading for Visual Effects

a lock-free manner. However, we may be unable to discover that we need D without first
executing the tasks. In this case, we can create a lock, L, to guard our computation of D.

An example execution order is this: Threads W1 and W2 execute T1 and T2. T1 dis-
covers it needs D, so acquires lock L. T2 likewise needs D and so blocks on the lock L. We
complete D with a single thread active, and when done, T1 and T2 can complete. T3 will
be executed by the first of W1 and W2 to finish, and our job is finished.

However, what happens if we decide to speed up the computation of D by multithreading
it? The first problem is that it will not actually multithread. No matter how many tasks
we create, only W1 is free to execute as W2 is blocked on L. If this were the only problem,
we could leave it as an optimization exercise for the artist to make the dependency on
D explicit. However, when we return to the TBB scheduler, it does not know about the
dependency on D either. Thus, it is free to select from any available task, not just the ones
enqueued by D. In particular, it could decide to assign T3 to W1. T3 will then try to acquire
the lock on D but be blocked because it is a sibling to the current owner, T1.

One solution is to embrace the single threaded option. Because we have wrapped our
TBB invocations, we are able to set a thread-local flag to disable all further calls into the
scheduler. UTparallelFor will devolve to UTserialFor and we will avoid the deadlocks.
This does not, however, help us with third-party code. Third-party code will often directly
invoke TBB rather than use our wrappers because it is often designed to be platform
agnostic.

Newer versions of TBB provide a better solution: the task arena feature. Task arenas
provide a way to create a logically disjointed subset of worker threads. They will share the
main thread pool, but will not steal work from it. Whenever we create a task lock, we are
already committing ourselves to an expensive operation. Thus, we can justify creating a
new task arena for it. By putting our computation of D into its own arena, any attempts
it makes at threading will stay in its own scheduler, preventing T3 from being enqueued.
While this often will still result in single threaded performance, there is some hope that if
the other tasks did not actually depend on D, those worker threads can still migrate to D’s
arena.

We show a concrete example of the potential deadlock with this simple function to
update a global cache. Normally, a lock suffices to protect a cache. If the compute method
calls into buildCache we need a reentrant lock. But if the compute method multithreads,
and those child threads wish to invoke buildCache, we both need a task lock and need to
guard against the described deadlock.

static UT_TaskLock glb_lock;

static CACHE *glb_cache;

void *

buildCache(...)

{

// To access glb_cache we need to lock. Because we

// can be re-entrant, it must be a re-entrant lock.

// However, we could be re-entering from a child

// thread of the original processor, thus a Task Lock.

UT_TaskLock::Scope scope(glb_lock);

if (glb_cache->hasItem(...))

return glb_cache->getItem(...);

// This call to compute may:

Houdini: Multithreading Existing Software 43

// a) thread

// b) call buildCache from a sub-thread

void *item = compute(...);

glb_cache->addItem(item);

return item;

}

We can fix this by ensuring that the compute method is invoked as a new task inside a
task arena:

#define TBB_PREVIEW_TASK_ARENA 1

static UT_TaskLock glb_lock;

static CACHE *glb_cache;

struct compute_Delegate

{

compute_Delegate(...)

{ /* Localize Parameters */ }

void operator()()

{

myResult = compute(...);

}

void *myResult;

};

void *

buildCache(...)

{

UT_TaskLock::Scope scope(glb_lock);

if (glb_cache->hasItem(...))

return glb_cache->getItem(...);

// Build a task arena for our computation

tbb::task_arena arena();

compute_Delegate computer(...);

arena->execute(computer);

void *item = computer.myResult;

glb_cache->addItem(item);

return item;

}

2.5.2 Mantra

Threading a renderer is supposed to be easy. Especially in raytracing mode, the problem
seems embarrassingly parallel. Divide the image into small tiles, make each tile a task, and

44 Multithreading for Visual Effects

send it to a parallel for. However, much like the case of executing VEX, it is very hard
to know when you start a tile just what things that tile will depend on.

When we wish to trace a complicated model we will first build an acceleration structure
for that model. We do not want to prebuild these, however, since not all models will show up
in the scene. They may be totally obscured, or totally obscured for the set of tiles assigned
to this particular render pass. We thus delay building acceleration structures until a ray
risks hitting a model. If one task’s tile triggers a hit, the other tasks will likely do otherwise,
leading to many worker threads wanting to build the acceleration structure simultaneously.
Somewhat reluctantly, we throw a lock around the construction. And everything seems fine.

As models become larger, however, constructing this data structure becomes more expen-
sive. We find ourselves waiting minutes for the first tile to complete as Mantra laboriously
builds the acceleration structure. We look at our CPU graph, see but a single process work-
ing, and grumble that we should multithread the building process. After much sweat and
tears, we build a nice multithreaded construction algorithm. But our CPU graph? It stays
locked at a single process. After all, all the other potential threads are locked waiting for
this structure, so are unable to contribute to the job.

Our ideal situation would be to have a yield(LOCK) method which returned a worker
thread to the task scheduler until the given lock becomes free. However, this is not possible
in TBB. Task arenas come close to a solution. If the wait until empty method can be
supported, we could use a task lock to guard the building operation. We would first do
a try-lock and, if the lock fails, find the arena created for the task lock and invoke its
wait until empty, thereby donating our thread to the cause.

Another solution we considered was cancelling the tile when we found we had a block
on a dependency. We could abandon our computation of the current tile, re-enqueue it
on the scheduler with a dependency, and return to the scheduler. Unfortunately, this may
waste considerable work prior to hitting the dependency. Further, we may spend our time
attempting a series of partial tiles until we happen to be assigned a task that actually
contributes to finishing the building task.

Our current solution relies on the simplicity of the top level of multithreading. Splitting
tiles among a thread pool is a simple form of scheduling that requires none of the subtleties
of TBB. Thus, we create a pool of threads separate from TBB’s worker pool. This primary
pool of threads performs all of the normal tile rendering, but when we need to invoke TBB
we can rely on it having its own full contingent of worker threads, even if all of our tile
threads are blocked. Unfortunately, this can result in oversubscription—in theory we could
use twice the active threads as was requested on the command line. However, in practice, if
one tile blocks the successive tiles will also block, so we remain close to the requested active
thread count.

2.6 OpenCL

The CPU is only half of the power of the modern desktop machine. The other half lies
in the GPU. When we are not drawing to the viewport, we would like to bring it into
the mix to speed up our computations. This is especially tempting with large simulations.
We may have a considerable delay between frames in any case, so the graphics card would
otherwise be unused while we are computing the next frame of the simulation. We have
watched with interest many of the excellent results that have been achieved using GPUs.
They can, however, be hard to properly compare with an equivalent CPU algorithm. All

Houdini: Multithreading Existing Software 45

too often we see an algorithm described as ten times faster, but 10 times faster than a single
threaded CPU implementation!

Nonetheless, there are cases where GPUs are able to significantly outperform CPUs,
and we would like to be able to take advantage of these cases. We have added support for
OpenCL to our simulation environment. We chose OpenCL for its device agnostic nature. In
particular, the existence of Intel’s CPU drivers mean that a simulation created for the GPU
can still be sent to a farm of headless machines. With the maximum memory on video cards
often still in the single-digit gigabytes, very large simulations simply must be processed on
the CPU regardless of their comparative speed. We are very happy we can use the same
kernels for both the low-resolution GPU-driven desktop version and the high-resolution
CPU-driven farm version. We were also concerned that using any GPU mechanism leaves
us at the mercy of the quality of the drivers. To ameliorate this risk, we restricted our use
to the basic OpenCL 1.0 specification. Further, we maintained pure CPU versions of all our
code, providing both a baseline comparison and a fallback when drivers are not available.

We do, however, run into some of the limitations of working with a GPU. A core problem
we face is the lack of unified memory. Since the GPU and the CPU have separate memory
spaces, any time data has to transfer between the two there is a huge cost. This often
completely eradicates the gains of using the GPU, leading to cases where even if the GPU
took zero time, the algorithm would still be faster if it ran solely on the CPU. The usual
solution to this problem is to put the entire system on the GPU. Ideally, we could use
the actual screen images as our final output, leaving all operations to live on the GPU.
The output of our simulations, however, tends to be the dense data. If we have a smoke
simulation, we intend to render it in Mantra, so will require the full 3D volume data. We
also run into the problem of VEX. Because we have provided this language for manipulating
simulations, it has been commonly used for just that purpose. It, however, cannot be simply
ported to the GPU. Its scripting roots, particularly its ability to inspect arbitrary geometry
elsewhere in Houdini, mean that only a fraction of its features would be sensible on the
GPU side of the bus. Further complicating things, our simulation itself is not fixed in order.
We can, within Houdini, rewire the simulation, reordering operations and injecting new
operations in between old ones. The operation order itself may be determined by the results
of the simulation, preventing any static analysis of the data flow between the CPU and the
GPU.

Our solution to the bandwidth problem is to keep both CPU and GPU backed versions
of each volume. We lazily update each one on demand, so if the CPU does not require the
output of a GPU computation, it will never retrieve the resulting volume from the GPU.
We take advantage of the const keyword to differentiate writes to a volume from reads. If
a CPU operation only reads from a volume, we know that any GPU backed version must
still be valid so we do not have to update it.

We handle this logic in SIM RawField, key methods of which are listed below:

/// Fetches a read-only CPU field.

const UT_VoxelArrayF *field() const

{

if (myFieldOutOfDate) { updateFieldFromGrid(); }

return myField;

}

/// Fetches a writeable CPU field.

UT_VoxelArrayF *fieldNC() const

{

if (myGrid) { clearGrid(); }

46 Multithreading for Visual Effects

return myField;

}

/// Fetches the GPU grid, returns 0 if not present.

CE_Grid *grid() const;

/// Fetches the GPU grid, creating if not present.

CE_Grid *requireGrid() const;

/// Mark the GPU grid as out of date, but only if we have a valid grid.

void markGridAsChanged()

{

if (myGrid) myFieldOutOfDate = true;

}

/// Copies GPU grid to CPU if CPU out of date and frees

/// the GPU grid

void clearGrid() const;

We distinguish the terms field and grid for the volume stored in the CPU and the one
stored in the GPU, respectively. Note in particular that we do not name the non-const
accessor for the CPU field the same as the const accessor. Because the non-const accessor
has such significantly different behavior, we felt it important to make it clear which version
was being used. Because GPU memory is very precious, we are very quick to evict the grid
version of the field. Whenever the CPU version is about to go out of sync, as determined by
a fieldNC call, we will immediately clear any corresponding GPU version. In the converse
case, we believe it is reasonable to leave the old CPU grid in memory. This also allows us to
store some of our metadata, such as resolution, in the CPU version of the volume. We use a
flag, myFieldOutOfDate, to track if the grid has changed. This is a manual process because
we do not know what the OpenCL kernel plans to do with the volume, so we require the
kernel implementer to call markGridAsChanged if they have a result to post back.

Our simulations are cached in memory by default. As described, the cached versions of
the volumes will retain their GPU-backed grids, swiftly exhausting GPU memory. We had to
resort to a small bit of hackery: when we copy a volume out of a cache, we give ownership of
the GPU-backed grid to the new copy, not the cached copy. Even with this being accounted
for, caching causes every volume that is modified on the GPU to be retrieved, so we often
disable it for OpenCL simulations.

We are very happy with the flexibility we have gained by our hybrid approach. We have
been able to slowly grow the amount of GPU-based code in our simulations without having
to fully convert our pipeline.

Chapter 3

The Presto Execution System: Designing for

Multithreading

George ElKoura

Pixar Animation Studios

3.1 Introduction . 48
3.1.1 A Note about Interactivity . 48

3.2 Presto . 49
3.2.1 Presto Objects . 50
3.2.2 Rigging in Presto . 51
3.2.3 Animation in Presto . 52

3.3 Presto’s Execution System . 52
3.3.1 Phases of Execution . 53

3.3.1.1 Compilation . 53
3.3.1.2 Scheduling . 54
3.3.1.3 Evaluation . 54

3.3.2 Engine Architecture . 54
3.3.2.1 Network . 55
3.3.2.2 Schedulers . 55
3.3.2.3 Data Managers . 56
3.3.2.4 Executors . 56
3.3.2.5 Engine Architecture and Multithreading 56

3.4 User Extensions . 57
3.4.1 Dependencies Declared a Priori . 57
3.4.2 Client Callbacks Are Static Functions . 57
3.4.3 Presto Singletons Are Protected . 58
3.4.4 Iterators . 58
3.4.5 And Then There’s Python . 58

3.4.5.1 Global Interpreter Lock . 58
3.4.5.2 Performance . 59

3.5 Memory Access Patterns . 59
3.6 Flexibility to Experiment . 60

3.6.1 Modular Design . 60
3.6.2 Targeting Other Platforms . 60

3.7 Multithreading Strategies . 61
3.7.1 Per-Node Multithreading . 61
3.7.2 Per-Branch Multithreading . 62
3.7.3 Per-Model Multithreading . 62
3.7.4 Per-Frame Multithreading . 64

3.8 Background Execution . 64
3.8.1 User Interaction . 65
3.8.2 Frame Scheduling . 65

47

48 Multithreading for Visual Effects

3.8.3 Interruption . 66
3.8.4 Constant Data . 67
3.8.5 Problematic Data Structures . 67

3.9 Other Multithreading Strategies . 69
3.9.1 Strip Mining . 69
3.9.2 Predictive Computations . 70

3.10 Debugging and Profiling Tools . 70
3.11 Summary . 71

3.1 Introduction

In this chapter, we present an asynchronous computation engine suitable for use in an
animation package. In particular, we describe how this engine is used in Pixar’s proprietary
animation system, Presto.

We will start by describing what Presto is and concentrate on how it is used in two dif-
ferent disciplines, rigging and animation. We will then dive into Presto’s execution system,
its phases and the structures that make up its architecture. We then describe how several
different multithreading strategies can be implemented using the architecture. We focus on
Background Execution, a feature that allows users to keep working while soon-to-be-needed
computations are performed in the background. We discuss the requirements and consid-
erations from a user interaction perspective. We then end by briefly discussing debugging
and profiling tools necessary for such a system.

3.1.1 A Note about Interactivity

Multithreading can be used effectively to speed up many different kinds of computations
often used in the visual effects industry. Before we choose multithreading as the answer to
our performance problems, we must at least consider our target performance characteristics.
Some computations take hours or days, others can take milliseconds. The most appropriate
approach varies with the scale of the computation we are trying to optimize. For example,
if you are targeting a day-long task, you probably would not be too concerned with the cost
of starting up the threads. Whereas for interactive rates, this overhead would be of great
importance to you.

In this chapter we concentrate on interactive-rate computations. In Presto, our targets
are generally computations that are performed in under 0.1 second. One tenth of a second
is an important threshold. Even regular human conversation over the telephone starts to
breakdown when the latency exceeds this limit [14]. The three important limits for response
times that have been established in the usability community are 0.1 second, 1 second, and 10
seconds [50]. At or below 0.1 second, the user feels that the application is responsive and no
lag is perceptible. Between 0.1 and 1 second, users typically will not lose their concentration
or lose their focus on the task at hand. Go too far above 1 second and the user’s focus will
shift elsewhere. If the delay is over 10 seconds, the user will likely switch tasks.

We found that 0.1 second (100 ms), is a bare minimum for interactive rates, and users
actually start to feel comfortable around 65 ms. We have set 42 ms as our target rate for
frequent animation-related interactions. This allows us to hit an important playback rate
of 24 fps, for example. Higher frame rates are often requested, however, and being asked to
hit rates of 60 fps is becoming more common.

The Presto Execution System: Designing for Multithreading 49

Other factors that force us to hit high frame rates include the use of input devices such
as camera trackers. When Presto is used with these kinds of input devices, ensuring that we
can keep up with the input stream that these devices generate often requires higher than
24 fps frame rates.

3.2 Presto

Presto is Pixar’s proprietary, fully featured, animation package. In addition to the main
interactive application, many other interactive and batch-mode tools are built on top of the
same set of reusable libraries that are used by Presto.

The application supports integrated workflows for a variety of feature film departments
including rigging, layout, animation, and simulation. It also provides built-in media playback
and asset management tools. Figure 3.1 shows a screenshot of a sample session in Presto.

For the purposes of this chapter, we will mainly discuss Presto’s execution system. We
will use two common disciplines, rigging and animation, to illustrate how the system works.
Much of what will be discussed applies to other disciplines as well. Though we will mainly
talk about computations used for posing points, the execution engine itself is generic and
is used for other kinds of computations as well.

Figure 3.2 roughly shows how the execution system libraries fit in with the libraries
around them. In this case, the figure is showing just one client, the viewport, but of course

FIGURE 3.1: Screenshot of a session in Presto, Pixar’s proprietary
animation system. Presto provides an integrated environment that
supports rigging and animation workflows, among others. The edi-
tors shown here (the spline editor and the spreadsheet editor) are
commonly used for animation. This chapter describes Presto’s ex-
ecution system, which is responsible for posing the characters and
other such computations at interactive rates. (See Color Insert.)

50 Multithreading for Visual Effects

FIGURE 3.2: High-level view of where the execution system libraries
fit in the overall system.

many other clients exist in the actual system. Also note that the execution system itself is a
client of the libraries providing the scene graph, which we will discuss a little later, as well
as some lower-level libraries.

One of the challenges in Presto is its integrated architecture. In a single session, the user
may wish to animate, do some rigging, run a simulation or all three without an explicit
context switch. Some of these tasks do not lend themselves well to multithreading, and yet
must coexist seamlessly with all features of the application.

Before we begin let’s go through a quick overview of the types of objects in Presto that
play an important role in execution. We will then dive into a description of the disciplines of
interest and some of the workflows they use. Then we will be ready to get into the details.

3.2.1 Presto Objects

We do not want to get too bogged down in the details of Presto’s object model, so we
will define only a few terms and concepts. These concepts should map roughly to concepts
that exist in other visual effects packages with which the reader may be familiar.

The objects that can hold values are called “attributes.” Attributes are used to represent
both inputs and outputs. Attributes can be assigned values by the user, and can also be
used to extract computed values. The radius of a sphere, for example, would be represented
by an attribute. The radius of the sphere can be explicitly set by the user, and it can also be
affected by computations that are specified by the user. The two are not mutually exclusive
in Presto, meaning that the value entered by the user may be used by the computations to
produce the computed value for the same attribute.

Attributes may send and receive traditional data flow values through “connections.”
These are objects in the scene that describe data flowing from one attribute to another.
Nearly all 3D applications provide a mechanism that allows you to do the same thing.

Attributes are owned by “prims.” These are high-level objects that contain, among other
things, collections of attributes. One would represent a Subdivision Surface, for example,
using a prim. Prims are typically classified by their behavior. For example, geometric prims
are called gprims. Prims that provide behavior to modify point positions are called deform-
ers, and so on. Lights, cameras, bones, and widgets are all examples of prims.

The Presto Execution System: Designing for Multithreading 51

FIGURE 3.3: Objects used to build a scene graph in Presto.

In addition to attributes, prims can also own “relationships.” Like connections, rela-
tionships allow users to express associations between objects. While connections can only
associate one attribute to one or more other attributes, relationships can associate prims to
attributes, to other prims, or to other relationships. Also, while a majority of relationships
serve to express powerful computation behavior, they do not necessarily imply any—they
simply express associativity. How a particular prim’s behavior interprets that association is
up to the prim.

These are some of the “scene objects” that are used to express a scene graph in Presto.
Figure 3.3 shows three prims: Prim A, Prim B, and Prim C. They each have an attribute

and Prim A has a relationship. The relationship on Prim A targets Prim C in this case.
Prim A’s attribute has a connection to Prim B’s attribute, meaning that Prim B’s attribute
value is retrieved from Prim A’s attribute.

A typical rig is made up of at least two different kinds of prims: gprims and deformers.
Gprims describe the geometry of the model; and deformers describe how the geometry
changes under a given set of parameter values. There is a third type of prim that is frequently
used called a weight object. Weight objects, in their simplest form, merely assign weights
(scalars) to the points. These weights can be used in a variety of ways by deformers, for
example, to attenuate the deformations. There are many other kinds of prims used by the
system, and users invent new ones every day, however, we have enough background now to
delve in and learn how these concepts are applied.

3.2.2 Rigging in Presto

Rigging is the process of modeling the posing behavior of the characters and props for
a show. Riggers describe how, given a set of inputs, a character poses. They use what is
effectively a visual programming language to describe the structure and behavior of their
models. From a rigger’s point of view, the structure consists of the human-readable objects
we described earlier: the prims, attributes, connections, and relationships. These objects
are transformed into a different representation before we execute them.

Later in the chapter, we will discuss in more detail the different phases of execution and
what purpose this transformation serves. For now, it is sufficient to know that before a final
result can be delivered, the system produces a data flow network from the objects that users

52 Multithreading for Visual Effects

create. The execution structures are designed specifically for efficient computation. Ideally,
riggers never have to know that a transformation is taking place between the objects they
directly author and the objects used by the execution system. In practice, it helps to be
aware of this process and how it works, especially when optimizing rigs.

Typical rigging workflows often involve making topological changes to the execution
network. For example, changing a connection between two attributes, or changing the order
of deformers, all result in a topological change to the network that must be applied before
additional values are computed by the system. Making this fast is an important part of
making sure that the abstraction does not get in the way of a rigger’s work. If we blew
away and regenerated the execution structures every time a rigger changed topology, for
example, the system would be far too slow for riggers to work comfortably. We therefore
have to update the execution structures incrementally as the rigger is working.

Geometry topology also changes during character rigging, but is fixed once the rig is
finalized. In other words, the character rig itself does not modify the topology of the geome-
try. Some kinds of rigs do modify geometric topology, though we generally try to avoid such
behaviors in character rigs because our system is able to take advantage of fixed topology
for faster computation.

3.2.3 Animation in Presto

Animation is responsible for bringing characters to life. Animators supply input values
to the rig in order to hit desired character poses.

The topology of the character’s geometry does not change during the course of typical
animation workflows. Network topology may change, but does so infrequently. We said
earlier that Presto is a fully integrated application. This means that animators are free to
change the rigging of the character in their shot, in whichever way they please. However, this
is generally discouraged since it could lead to hard-to-debug problems as well as continuity
issues. Riggers set aside an area in the rig that can be used for animation rigging. Restricting
this extra shot rigging to a well known location allows riggers to better understand and
control how it may interact with the rest of the character’s rigging.

Common examples of per-shot animation rigging include adding lattice deformations and
post-deformation sculpts. Animators add these lattices and sculpts using the same underly-
ing architecture that riggers use. So the speed up we mentioned earlier for faster incremental
updating of the execution network applies equally well to some animation workflows.

Another, much more common, way in which the network topology is changed by ani-
mators is through the addition of constraints. Adding constraints imposes new structure on
the data flow network. New dependencies need to be established, for example. This, too,
invokes the incremental network update process, and must be performed at interactive rates
in order to avoid interrupting the animator’s concentration.

3.3 Presto’s Execution System

Presto’s execution system is a general-purpose computation engine. Given a set of inputs
(e.g., animation splines) and an execution network (e.g., derived from a rig), the job of
the execution system is to provide the computed result (e.g., point positions) as quickly as
possible. Common computations include posing points, calculating scalar fields, determining
object visibility, and so on.

The Presto Execution System: Designing for Multithreading 53

Like many other similar systems, at its core, the execution engine in Presto evaluates a
data flow network. Presto’s data flow network is vectorized, meaning that many uniquely
identifiable elements may flow along a single connection. We do not need to get into the
details of this aspect of the system to talk about multithreading, but it is worth noting as it
will come up now and again. Note that we use the term “vectorization” much in the same
way as it is used when talking about CPU SIMD instructions. However, the two are not the
same thing and can, in fact, be combined. More on that later in the chapter.

In the following sections we will explore the architecture of the execution system, how
the parts fit together, and how they lead to a framework that is amenable to multithreaded
computation.

3.3.1 Phases of Execution

The purpose of the execution system is to produce computation results to clients as
efficiently as possible. It accomplishes this work in three phases:

• Compilation

• Scheduling

• Evaluation

We will see why that is beneficial as we describe the phases in more detail, but the
biggest benefit is that each phase amortizes costs for the next phase. The phases are listed
in the order that they run, also in the order of least-frequently run to most frequently run
and from most to least expensive, in terms of runtime costs.

3.3.1.1 Compilation

As we said earlier, riggers author scene objects using a rich, high-level, visual language.
This allows riggers to work efficiently. By abstracting away details of the execution system,
we allow riggers to concentrate on building the rigs. However, the paradigms that enable a
fast rigging process may not always lend themselves to fast rig evaluation. Compilation is
the phase of execution that converts the human-readable scene objects into optimized data
structures that can be used for fast, repeated evaluations of the rig (e.g., during animation).

The result of compilation is a network of nodes and connections between them. While
riggers deal in various concepts like connections, deformers, weight objects, and so on, once
compilation is done, the execution system sees only a network consisting of homogeneous
execution nodes.

Full network compilation typically happens only when a character is first loaded in a
session. Rigging workflows invoke an incremental recompilation code path that builds or
rebuilds the network in pieces as the rig is developed. This is important to keep the system
responsive for rigging activities.

As we mentioned, our main motivation for the compilation phase is to produce data
structures that are fast to evaluate repeatedly. In addition, compilation provides a layer of
abstraction that allows us to keep the representation of the assets separate from the data
structures required by our system. Assets are time-consuming and expensive to author, and
we would like them to be independent from the implementation of the execution system.
That is to say, if we decide to change how the execution system’s data structures are
organized, we could do so without having to also modify the assets.

Compilation also provides a convenient place to perform optimizations at the network
level. Constant folding, node fusion, and no-op elision are examples of the kinds of opti-
mizations that are most conveniently done at compilation time. Constant folding is the

54 Multithreading for Visual Effects

analysis performed on the network to determine sets of nodes that will always produce the
same answer and to replace them with a single node that produces the constant value. Node
fusion can be an arbitrarily complex analysis that determines which set of nodes can be
combined into fewer nodes that produce the same answer. No-op elision is a simple opti-
mization where the system removes nodes that are known to have no effect on the output.
These are, of course, a few examples; the main point is that the system provides a phase
for implementing and experimenting with these kinds of algorithms.

Since the network-level optimizations we just described are destructive to the network,
and thus difficult to incrementally recompile, we perform them only for animation workflows,
that is, when we know that the intent is to no longer modify the internals of the rig.
Edits made by animators that modify the network topology outside the rig must still be
incrementally recompiled, of course.

For animators, we can also avoid the cost of full network compilation by serializing the
results of compilation during a preprocessing step for each model.

3.3.1.2 Scheduling

Given a set of desired outputs (e.g., the posed point positions of a character), which
we call a “request,” scheduling serves to amortize dependency analysis costs that would
otherwise have to be incurred during each network evaluation. The specifics of the analysis
performed during scheduling is up to the implementation. For example, this typically in-
cludes the set of nodes that need to run in order to satisfy the request. It may be beneficial
for certain schemes that scheduling determine the partial ordering in which the nodes run,
and for others, it might be more efficient if scheduling only determines what nodes need to
run, and the ordering is left to the evaluation phase. Scheduling occurs every time a client
(e.g., the viewport, a simulation, etc.) requests a new set of outputs to evaluate.

Scheduling is performed more often than compilation, but not as often as evaluation.
For requests that have already been scheduled, scheduling must be performed again after
network topology changes caused by incremental recompilation, and therefore occurs more
often during rigging workflows, and relatively rarely during animation workflows. Animation
workflows may cause scheduling, for example, when adding a new constraint or creating new
deformers.

3.3.1.3 Evaluation

Evaluation is the most frequently run phase of execution. Its job is to run the nodes
in the network as determined by the schedule in order to produce computed values for the
requested outputs. Evaluation is run every time an input value changes, or a new output is
requested, and the results are pulled on (e.g., to satisfy a viewport update).

3.3.2 Engine Architecture

The execution engine is made up of several components: Networks, Schedulers, Data
Managers, and Executors, which we will now describe in more detail. The relationship
between these components is shown in Figure 3.4.

As we describe these components, keep in mind that the driving principle behind this
architecture is to facilitate efficient multithreaded execution. For example, we will see how
splitting up the network from the data storage in data managers can help us avoid synchro-
nizing between threads.

The Presto Execution System: Designing for Multithreading 55

FIGURE 3.4: The components of the execution system’s architecture.

3.3.2.1 Network

The network is generated from user-authored scene objects and is a static representation
of computations and the dependencies among them. A network is made up of nodes and
connections. A node is made up of zero or more inputs and zero or more outputs (a leaf
node with zero outputs is only used for tracking and broadcasting dependencies to external
systems and is never run). Client code requests computed values by specifying desired node
outputs.

As we mentioned earlier, this network is similar to the data flow networks that are
commonly found in systems such as ours. The main difference is that connections in our
networks may represent multiple data elements. Masks on the connections are used to
track fine-grained dependencies and to index each element individually. Much like SIMD
instructions on modern CPUs, this kind of vectorization in our network allows us to process
elements more efficiently in big batches. Point posing, for example, is a great candidate for
this kind of optimization because one operation is usually performed on multiple points at
once.

Also, the vectorization we set up in our networks make it easy to use the CPU SIMD
instructions to operate on the data. Nodes in our network can take advantage of the data’s
layout in memory to make SIMD calls to speed up their work.

Finally, it is important to note that no state is stored in the network, it embodies only
the computation’s static structure.

3.3.2.2 Schedulers

Schedulers are responsible for the scheduling phase of execution and produce schedules
that are used by the executors for repeated evaluations. Clients (e.g., the viewport) hold on
to schedules through an opaque object that is returned to them when they make a request.
They then pass that object back to the system when they request a value evaluation.

Beyond providing a list of nodes to run, schedulers can also perform extra analysis that
can be taken advantage of by executors. Schedulers give us a convenient place to perform
this kind of expensive analysis and cache the result. When we find the executors performing
an expensive operation, we often ask ourselves, “can this work be done, instead, by the
scheduler?” When the answer is “yes,” we get a boost to the runtime efficiency of the
system, for a relatively small cost to scheduling. The kind of analysis that cannot be moved

56 Multithreading for Visual Effects

to scheduling is that which depends on the dynamic content of the executors. For example,
knowing what nodes ran and what nodes did not is only available to the executor that ran
(or did not run) the nodes—this information is not available at scheduling time. Schedulers
can also be specialized for different kinds of multithreading schemes.

3.3.2.3 Data Managers

Data managers are simply data containers for nodes in the network. They are used by
the executors to store the computed data. Each executor uses one data manager to store
the data for the whole network. The simplest data manager stores a map from output to
computed value. You would specialize a data manager if you wanted to provide a faster
implementation or if you wanted to change where the data was stored (e.g., a VRAM data
manager). The abstraction data managers provide, that is: not storing data in the nodes
themselves, is an important architectural feature of our network.

Data managers store computed data as well as validity masks, which keep track of the
dirty state of the outputs, and other per-node or per-output data that is required by the
executor.

3.3.2.4 Executors

Executors are the workhorses of the execution system. Executors orchestrate evaluation
using the compiled network, a schedule, and a data manager. They run the inner loop and
need to do so as efficiently as possible.

Executors can be arranged in a hierarchy, where the child is allowed to read from (and
sometimes even write to) the parent in order to avoid redundant computations. This feature
is put to use in a few different ways in the system, but for the purposes of multithreading
we will discuss specifically how it is used for Background Execution a little later in this
chapter.

Executors can be specialized to use different algorithms to run the network. You might
want to specialize an executor to implement different multithreading techniques, for ex-
ample, or to target a different hardware platform. Later, when we discuss different multi-
threading strategies, we will see that they are primarily implemented by writing different
kinds of executors.

3.3.2.5 Engine Architecture and Multithreading

Now that we have seen all the components, let’s see how they can be put together to
enable efficient multithreading algorithms.

The network is a static representation of the overall computation to be evaluated. It
contains no state and does not get modified during evaluation. This means that the network
can be used from multiple threads without locking.

The same applies to schedules. They contain the results of static analysis and can be
reused during evaluation without modification. Again, multiple threads can use the same
schedule without locking.

Finally, an executor directly embodies a multithreading scheme. Background Execution,
for example, uses one executor per thread. Since the executors each use their own data
manager to store the stateful data for the network, they are all free to run independently
of one another without locking. More multithreading schemes are discussed later in this
chapter.

The Presto Execution System: Designing for Multithreading 57

3.4 User Extensions

One of the problems that often complicates multithreading is having to call out to plugin
code. Not knowing what the clients are going to do, and what resources they might acquire,
makes it difficult to create a resilient and robust system, let alone one with predictable per-
formance characteristics. Our system is no different, but we do take a few extra precautions
in order to minimize the chance that a user will accidentally shoot themselves in the foot.
Dogged determination to shoot oneself in the foot, on the other hand, is impossible to guard
against.

Since we have always intended for our system to be run in a multithreaded environment,
we needed to carefully consider the responsibilities we impose on clients of the system. One
of our goals was to make it as safe as possible for users to write plugin code without requiring
them to worry about multithreading in most cases. The structure of the system described
here helps avoid common multithreading pitfalls for users in the following ways:

• Dependencies are declared a priori

• Client callbacks are static functions

• Key singletons are protected

• Data access is through provided iterators

3.4.1 Dependencies Declared a Priori

The system is set up in such a way that users declare, ahead of time, the inputs that their
node computations will consume. They can make certain dependencies optional (meaning
that if they are not available, the node can still produce a reasonable answer), but they
cannot add more dependencies at runtime. The static structure of the network is fixed and
is built based on the dependencies that the user declares.

3.4.2 Client Callbacks Are Static Functions

All client callbacks of the execution system are expected to be static functions (i.e., not
class methods) that are passed a single argument. They take the following form:

static void MyCallback(const Context &context) {

...

}

The callbacks are disallowed from being methods on objects by structuring the code in
such a way as to force the binding of the callback before the user can have access to any
of the specific instances of the objects in question. This is accomplished by providing a
type-based registry where users declare the callback based on the type of their object. This
is the same registry that clients use to declare their dependencies. When declaring these
callbacks and dependencies, users only have access to the type of their object.

Clients must read inputs and write to outputs using only the API provided by the
passed-in context. This structure discourages users from storing any state for a node that
is not known to the execution system. Users are not intended to derive new node types.

58 Multithreading for Visual Effects

3.4.3 Presto Singletons Are Protected

Some of Presto’s libraries provide APIs that allow client code to access system func-
tionality through singleton objects. Some of these libraries are not threadsafe and are not
allowed to be called from user-code running inside of execution. As a safety measure for
client-code, we detect and prevent the use of such singletons while running execution plugin
callbacks. Users are, of course, still free to create their own singletons and access static data,
but doing so adds the burden on them to make sure that their code remains threadsafe.

3.4.4 Iterators

Access to large, vectorized, data (e.g., points) is provided through iterators that are
easy to use and hide from the user the details of where in memory the data is stored, or
what subset of the data their callback is dealing with. This allows us to modify memory
allocation and access patterns, as well as our multithreading strategies, without changing
client code. As we will see later in this chapter, this also allows for more efficient single-
threaded execution.

3.4.5 And Then There’s Python

Python is Presto’s main scripting language—it is used extensively by users to automate
repetitive tasks. However, it is famously known for not playing well within a multithreaded
system. For this reason, we initially disallowed the use of Python for writing execution
system callbacks. However, there are some clear advantages to supporting Python:

1. Python allows for quicker prototyping and iteration.

2. Python is accessible to a wider range of users than C++.

3. Python has a rich set of packages (e.g., numpy) that users would like to leverage.

These benefits make it difficult to adopt alternatives (e.g., a different existing language
or a custom-written language).

3.4.5.1 Global Interpreter Lock

The Python interpreter is not threadsafe—it cannot be run from multiple threads simul-
taneously. Python provides a global lock, the Global Interpreter Lock (GIL), that clients can
use to make sure that they do not enter the interpreter from multiple threads simultaneously
[3]. A thread that needs to use Python must wait for its turn to use the interpreter.

Getting the locking right is tricky; it is easy to find yourself in classic deadlock situations.
Consider the following user callback (though this code should be discouraged due to its use
of locking to begin with, it nevertheless happens):

static void MyCallback(const Context &context) {

Auto<Lock> lock(GetMyMutexFromContext(context));

...

EvalMyPythonString(str); // A function that takes the GIL

...

}

Now consider the sequence of events in the threads which result in a deadlock, shown
in Table 3.1.

The Presto Execution System: Designing for Multithreading 59

TABLE 3.1: Deadlock due to improper use of the GIL.

MAIN THREAD OTHER THREAD
Python command acquires GIL Work started
Computation requested MyCallback runs and acquires MyMutex

MyCallback now waits for GIL
MyCallback runs and waits for MyMutex (waiting for GIL)

One thing to note about this situation is that if, in the main thread, the call was
made from C++, then there would be no need to hold the GIL in the main thread, and
everything would be fine. If, however, it is called from Python, we get the hang. Moreover,
neither subsystem knows about the other: the locks are taken in client code. The client code
could be smarter about the order in which the locks are acquired, but that is not always a
viable solution. In this case, the client is calling out to a function in a library, and may be
unaware about it taking the GIL to begin with.

One solution in this case is that, in the main thread, we no longer need to be holding
the GIL once we make a computation request in C++. Ideally, you would structure your
bindings to always release the GIL upon reentry. However, there is a small cost to acquiring
and releasing the GIL, so we need to be careful to not introduce undue overhead in following
this policy.

This is a good example of why global, system-wide locks are a bad idea. Use lock hi-
erarchies [63] to avoid the common deadlock patterns if you must have wide-reaching
locks. Better still, prefer locks that have local, easy to reason about scope if you must
lock at all.

3.4.5.2 Performance

Anything running in Python is the only thing running in Python. This means that if
your execution callbacks are all implemented in Python, you lose much of the efficiency gains
of a multithreaded system. However, Python can still be effective for writing the control
logic and have the heavy lifting be performed in C++ (with the GIL released).

3.5 Memory Access Patterns

Although we tried to construct the system in as flexible a way as we could, we did
not want to sacrifice performance. Therefore, a major guiding principle was to make sure
that we paid attention to memory access patterns. How memory is accessed is extremely
important for performance, and we wanted to make sure that our desire for a flexible system
did not impose any detrimental patterns for memory access.

Optimizing memory access patterns is one of the most important ways to improve
performance. An algorithm with poor memory access characteristics will tend to scale
poorly when multithreaded. In general, it is best to make sure that your algorithm is
optimized for the single-threaded case to get the biggest gains from multithreading—
and paying attention to memory access is one of the most important optimizations.

60 Multithreading for Visual Effects

It is important that bulk data is processed in a way that is compatible with the proces-
sor’s prefetcher [1]. Luckily, modern processors are clever and do a good job at prefetching
memory—but you still need to be careful to remain within the patterns that the processor
can detect and prefetch. Hardware prefetchers typically work best with ascending access
order. Though more complicated patterns, such as descending and uniform strides, may be
detected, it is always best to check your hardware specifications for your target platforms.
Arranging your data in a structure-of-arrays rather than an array-of-structures often helps
the prefetchers improve your application’s performance.

Locality is important for performance. Most common multicore platforms available today
use non-uniform memory access, meaning that the location of the data in memory relative
to the processor affects the time it takes to access it [55]. Therefore, keeping memory and
code access local to each core will improve the scalability of a multithreaded system. Using
the right memory allocator can help achieve this goal. Using an allocator written with this
sort of scalability in mind, like jemalloc [24], is preferable to a multithreading-unaware
allocator.

It is important to always measure the performance of your system and monitor how
changes to the code affect it. Modern hardware architectures are sufficiently compli-
cated that intuition and educated guesses often fail to predict performance. Always
measure performance.

3.6 Flexibility to Experiment

3.6.1 Modular Design

We designed the system with two main unknowns:

1. We did not know exactly what architecture it was going to run on.

2. We did not know how the user requirements were going to evolve.

We did not want to base our architecture on the current state of hardware and user
desires. We attempted to build in as much flexibility as we could.

For example, we have written a variety of different executors to satisfy different mul-
tithreading strategies. As our hardware’s capabilities and requirements change, we expect
to only update our executor code, which is relatively small. Schedulers are not often spe-
cialized, though they may be in order to add acceleration data for use with specialized
executors.

Another example is if user requirements change such that the objects they deal with
need to be rethought or redesigned, only compilation would need to be rewritten—the rest
of the execution system can remain untouched. This would actually involve rewriting a lot
of code. In practice, a total rewrite is unlikely, but this separation has allowed the user
model to evolve over time while the execution system’s internals remained isolated.

3.6.2 Targeting Other Platforms

As we mentioned, the structure of the system allows us to experiment with other plat-
forms. The factoring into phases of execution described earlier gives us an opportunity to
write different kinds of executors and compilers.

The Presto Execution System: Designing for Multithreading 61

For example, to run all or part of our rigs on the GPU, we would need to at least write
a new GPU executor and a VRAM data manager. We would also likely want to change
certain parts of compilation to produce different kinds of networks that are more suitable
for running on the GPU.

Similarly, our architecture can be adapted to take advantage of hardware platforms that
provide large numbers of cores, such as the Intel Xeon Phi coprocessor. Getting the best
utilization from any platform is challenging, it is therefore important that we can adapt
quickly.

3.7 Multithreading Strategies

Finding the right granularity for the tasks to run in parallel is critical for getting the
most performance from the hardware. Too many small tasks cause too much time
to be spent in context switching and other thread management overhead. On the flip
side, tasks that are too large can lead to poor utilization.

One of the factors we have to keep in mind while choosing a granularity for our specific
domain is that we have a fairly small time budget for evaluating the network. We would
like to aim for running the rig and drawing the character at 24 fps or better. Even if we
ignore the costs of drawing the character, that gives us less than 42 ms to run approximately
30,000 nodes (e.g., for a light character). We therefore have to choose a granularity for the
units of work that is compatible with this target time budget.

We have found the architecture described above allows for easy experimentation with
various multithreading strategies in order to find the right granularity for the greatest
performance. In this section we will explore only a few of the possibilities. Note that these
strategies are not mutually exclusive—they can be combined.

3.7.1 Per-Node Multithreading

By per-node multithreading, we mean that each node runs its own computation in a
multithreaded fashion. So long as the algorithm in the node is efficiently parallelizable, this
might be a viable way to get a performance boost from multithreading.

A node does not typically need to synchronize or inform the system in any way that it
intends to run its algorithm in multiple threads. It is also free to use any multithreading
infrastructure that is deemed appropriate, for example Intel TBB or OpenMP, or through
an abstraction API that is provided by the system. The advantage of using the system’s
API is that it can coordinate the total number of threads in flight and can help avoid
oversubscription.

This approach works very well for slow nodes. We saw improved performance from
multithreading the slow nodes in our system in this way. Unfortunately, this scheme does
not work very well for nodes that execute quickly. For fast nodes, the threading overhead
overcomes the cost of running the node’s computation and we end up with the same, or
worse, performance than the single-threaded version. The granularity of the work for these
kinds of nodes is too small. Since most of the nodes in our system execute very quickly, we
need to find a larger granularity of work to achieve bigger performance improvements from
multithreading.

62 Multithreading for Visual Effects

FIGURE 3.5: Per-node multithreading.

3.7.2 Per-Branch Multithreading

Another strategy is to launch a thread per branch in the network. Once the executor
reaches a node that needs multiple inputs to be satisfied, each input branch can be launched
in its own thread and can execute in parallel.

In order to implement this scheme, the executor must be specialized as well as the
scheduler.

The amount of work that can be done in each thread here is much greater than the
per-node scheme, and we can therefore get a bigger speed up from multithreading, provided
that your network has enough branches relative to the number of available cores and that
they each have a significant amount of work to do. This assumption does not typically hold
in our networks, and we find that often the largest amount of work is along a linear spine,
and the branches are relatively cheap in comparison.

3.7.3 Per-Model Multithreading

An even larger level of granularity is to run each model in its own thread. This is fairly
straightforward to implement. The scheduler first finds all the disconnected subgraphs in
the network, and the executor launches a thread per subgraph.

This is a special case of the per-branch scheme, providing a larger amount of work to
do per-thread. It generally works well but does run into a couple of hurdles.

The first is that animators, when they can, often choose to work with a small number
of characters loaded at any one time, often smaller than the typical number of cores found
in modern hardware. This means that some cores can sit idle, which is not desirable.

The Presto Execution System: Designing for Multithreading 63

FIGURE 3.6: Per-branch multithreading.

FIGURE 3.7: Per-model multithreading.

64 Multithreading for Visual Effects

FIGURE 3.8: Per-frame multithreading.

Second, characters are often dependent on one another—outputs from one model feed
into inputs on another. These constraints limit the available parallelism, decreasing the
system’s potential performance.

3.7.4 Per-Frame Multithreading

Until now, the strategies we have discussed do not take advantage of any domain-specific
knowledge. We could employ these techniques for the evaluation of any data flow network.
If we consider that our software’s primary goal is animation, we find a whole new dimension
along which to parallelize: time.

By allowing the system to compute multiple frames concurrently, we can significantly
boost the performance of very common workflows. This approach lets us design a system
where thread synchronization is not necessary while the concurrent tasks are running, and
only needed when storing the final results. This approach also introduces its own set of
challenges that are due to its asynchronous nature.

We call this feature of our system Background Execution, and that is the multithreading
strategy that we found to be most successful.

3.8 Background Execution

Background Execution is the ability of our system to schedule frames, one per time
sample, to be computed in asynchronous background threads, allowing users to continue
working while frames are computed. When the user changes to a frame that has been

The Presto Execution System: Designing for Multithreading 65

computed in the background (e.g., during playback) the system can use the results of the
computation right away without having to wait for the potentially expensive computation
to complete in the main thread.

The system architecture allows for easy implementation of the feature in its most naive
incarnation: collect the frames that you need to compute in parallel, create an executor for
each thread that you have available, and start doling out frames as tasks for the executors.
This approach leads to several practical issues that need to be considered when embedding
in an interactive application.

3.8.1 User Interaction

A typical use case is that a user will change an attribute value and then scrub or play
back on the timeline to see the effect the change has had on the animation. We would like to
use the Background Execution feature to make sure that the computations of neighboring
frames have completed by the time the user scrubs to them. So as soon as the user stops
modifying the value, background threads are kicked off to compute the frames that have
become invalid due to the modification. How these frames are scheduled is discussed below.
By the time the user scrubs over to the new frames, the idea is that the system would get
cache hits for the frames and be able to return much quicker than it would have if it had
to perform the full evaluation.

We kick off as many background threads as we have cores available, except for one that
we save for the main thread. Ideally, the main thread would spend most of its time drawing
frames and handling the user’s interactions, and not executing the computations that can
be run in the background. Occasionally, the main thread requires results that have not
finished executing in the background. In that case, we go ahead and compute those results
in the main thread rather than wait. When that happens, the system briefly appears slower
until the background threads catch up and overcome the main thread.

While the background threads are actively computing, the user is free to modify attribute
values again, possibly invalidating the in-flight computations. The user’s work should not
be delayed by what the system is doing in the background. We also do not want to wait
for the background threads to finish before allowing the user to interact with the system.
Therefore, being able to quickly interrupt the background threads is critical. We will discuss
interruption policies a little later.

It is unacceptable for the system to pause or hitch at random times due to work
that was not explicitly initiated by the user and that the user is not expecting: Avoid
performance surprises.

Along the same lines, providing users with feedback that work is happening in the
background can inform them of what to expect in terms of performance. For example,
providing visual feedback when a frame has been computed in the background helps the
user predict that moving to a filled-in frame will be faster than moving to a frame that has
not yet been computed. This feedback is also valuable for those trying to debug the system.

3.8.2 Frame Scheduling

In order to perfectly schedule the next frames to be computed, you would need to be
able to accurately predict what the user will do next. For example, if the user wants to play
the frames in order after making a modification, then you would want to schedule them in
ascending order. If, on the other hand, the user will scrub back and forth around the dirtied

66 Multithreading for Visual Effects

frame, then you will want to schedule the frames to bloom out from the dirtied frame. But
we do not know ahead of time which the user will do. We would prefer not to make this
an option to the user because the user is only in a marginally better position to make this
decision. The choice is not necessarily known to the user a priori either.

Some of the possible approaches are:

1. Pick a scheme and stick to it (e.g., always ascending, or always bloom out).

2. Base the decision on how the frames were dirtied. For example, if the user is dropping
in key poses in a spreadsheet editor, then use the ascending order scheme; if refining
a tangent in a spline editor, then bloom out. The task that causes the frames to be
dirtied can be a clue as to what the user will likely do next.

3. Keep a record of the user frame changes and match the dirty frame schedule to the
pattern observed in past frame changes.

4. Combine #2 and #3: record the user’s actions and the frame change patterns and use
that information to predict which frames to schedule.

In our system, we currently always schedule in ascending order. That captures the most
common use cases and is the simplest to implement.

3.8.3 Interruption

The user is free to modify the state of the application while background tasks are
in flight. In particular, the user is free to modify the state in such a way as to make
the currently scheduled tasks invalid, meaning their results are no longer useful. One of
the major problems we therefore need to deal with is interruption of these invalid tasks.
It is critical during common animator workflows (e.g., changing spline values or playing
back) that background tasks do not interfere with foreground work. Any hitch or delay
can immediately be detected by the users and may annoy them or, worse, can contribute
to repetitive strain injury. These kinds of hitches are particularly irritating because users
cannot predict when they will occur or how long they will last. Therefore, we cannot block
the user while waiting for invalid in-flight threads to finish.

The first thing we do is find any opportunity we can to avoid interruption altogether.
We structured the system such that common animator tasks (e.g., changing spline values)
can take place without having to interrupt at all. We will discuss how we take advantage
of that a little later in this section. There is a second class of user actions (e.g., setting
constraints) that alter the topology of the network for which we have to interrupt, since the
network is shared among threads.

When we must interrupt, we have to do so as quickly as possible. We do not explicitly
kill threads (e.g., through pthread cancel or pthread kill) because that is a problematic
approach [64]. For starters, most of our code is not exception-safe. We also felt that tracking
down resource cleanup problems that resulted from abrupt interruption of threads would
be time-consuming and a constant source of bugs. So we decided to avoid it altogether.

We also did not want to burden clients by requiring them to check for an interruption
flag. That approach is problematic as well, as some clients may either perform the checks
too often or not enough.

The system therefore completely controls interruption and checks for interruption after
each node has completed. Since our nodes are typically fast, that granularity seems appro-
priate. Unfortunately, we occasionally have nodes that do take longer to run and waiting for

The Presto Execution System: Designing for Multithreading 67

those nodes to complete before interruption is unacceptable for some workflows. Although
we may want to support a cooperative scheme in the future, our experience so far has been
that it is always better to avoid the long running computation altogether, for example,
by splitting it up into smaller sub-computations. No one node can be allowed a very long
runtime if we expect to stay within our 42 ms budget.

While animators are adjusting spline values, adjusting tangents, inserting and deleting
knots, and so on, we cannot afford to wait for interruption at all. Animators can change
values several dozens of times per second, and cannot be interrupted. These common, high
frequency, edits do not change the topology of the network, and, as mentioned earlier, we do
not have to wait for background tasks to complete before responding to the edits. We take
advantage of this fact by not interrupting at all during these workflows. Instead, we remove
any pending tasks and set a flag telling in-flight threads to throw away their results once
the next node is done computing. This means that the main thread does not block at all. It
only pays for setting a flag, which is significantly faster than waiting for the nodes to finish.
This approach lessens the negative effects of having many background threads running for
animators.

3.8.4 Constant Data

Since we would like to avoid synchronization among threads while the computations are
in flight, each thread manages its own network data. We quickly noticed that there can po-
tentially be a lot of redundant computations performed by different threads. In particular,
time-independent computations will yield the same results in all threads. These computa-
tions also tend to be slow and memory intensive—for example, the kinds of computations
that set up large projection caches or acceleration structures that do not change with time.
Launching many threads to compute the same data at the same time saturates the bus and
decreases the system’s throughput. We would like to avoid running computations redun-
dantly, and yet avoid introducing locks to the execution engine.

Our solution is to first launch a single thread, which we call the starter thread. The
starter thread’s job is to compute all the constant data in the network and make it available
to the other threads that compute the time-varying data. The starter thread uses a starter
executor to compute the constant data, then schedules the background frames and kicks
off the concurrent threads. For each concurrent thread, we create a new executor that
is allowed to read from the starter executor. This multiple-reader scenario is supported
without needing to lock since the starter executor’s data is read-only while the other frames
are being computed. Since it lets us share the expensive-to-compute, and often memory-
intensive, data, this scheme reduces our memory consumption and lets us scale much better
with the number of available cores.

The starter thread allows the main thread to remain free to respond to user interaction
while the expensive data is being computed in the background. It also runs infrequently:
once at load time and again only when time-independent data is invalidated. We further
decrease the amount of time this thread needs to execute by allowing it to also locklessly
read constant data (i.e., data that cannot be invalidated through the model’s animation
interface) that is computed only once per model.

3.8.5 Problematic Data Structures

Sometimes we encounter data structures that cause trouble in our multithreading
scheme. Consider the following pseudocode:

68 Multithreading for Visual Effects

class MeshAlgorithm {

public:

// Constructs a MeshAlgorithm object with a fixed topology

// for the lifetime of this object.

MeshAlgorithm(Topology *meshTopology);

// Sets the point positions to be used for subsequent calls to

// Compute().

SetPoints(Sec3 *points);

// Uses the topology passed in at construction, and the

// point positions passed into SetPoints(), and performs

// algorithm and returns the result. It is an error to call

// this method without first having called SetPoints().

Result Compute();

};

Typically, with these kinds of classes, users create a MeshAlgorithm object that does
something expensive with the mesh topology and is then passed on to the computation that
performs the points-dependent, usually cheaper, operation. That goes something like this:

void ProcessMeshForAllTime(mesh, timeRange) {

MeshAlgorithm ma(mesh.GetTopology());

foreach(t, timeRange) {

ma.SetPoints(mesh.ComputePoints(t));

Result r = ma.Compute();

// do something with r;

}

}

The assumption is that the construction of the MeshAlgorithm object is very expensive
and that computation is reused later to make the Compute() call with the different sets of
point positions much faster than they would otherwise be.

Now consider a simple multithreading approach to ProcessMeshForAllTime that you
might like to implement. The for loop seems like a reasonable loop to multithread, except
that, unfortunately, the pattern used for MeshAlgorithm forces the Compute() calls to all
run serially. Since the calls to Compute() must be preceded by a call to SetPoints(), the
data structure relies on stateful behavior which is problematic for multithreading.

Using this data structure, unmodified, in our system is equally problematic. We detect
that the construction of MeshAlgorithm is not time dependent and we compute it once, we
then launch multiple threads to perform the inner body of the loop. Used in this way, and
without locking, the system would crash or exhibit other unspecified behavior and hard to
track bugs.

To make this pattern more multithreading friendly, we can reorganize the code to look
like this:

class MeshTopologyResult {

public:

// Constructs a MeshTopologyResult object that performs any

// necessary pre-computations on the topology that will speed up

// subsequent calls to ComputeMeshAlgorithm.

MeshTopologyResult(Topology *meshTopology);

The Presto Execution System: Designing for Multithreading 69

};

// Performs the MeshAlogrithm computation using the passed-in point

// positions and the pre-computed topological information in a

// previously constructed MeshTopologyResult object. This function is

// re-entrant and threadsafe.

Result

ComputeMeshAlgorithm(Vec3 *points, const MeshTopologyResult &mtr);

And our processing function would be modified like this:

void ProcessMeshForAllTime(mesh, timeRange) {

MeshTopologyResult mtr(mesh.GetTopology());

foreach(t, timeRange) {

Result r = ComputeMeshAlgorithm(mesh.ComputePoints(t), mtr);

// do something with r

}

}

In this case, we have broken up the expensive computation that used to be performed
inside the construction of MeshAlgorithm into its own class, MeshTopologyResult. And
we have made it so that the ComputeMeshAlgorithm call does not depend on any state in
MeshAlgorithm itself, it instead gets the acceleration structures from MeshTopologyResult

that is also passed-in. With this setup, the multithreading can be done without needing to
lock.

3.9 Other Multithreading Strategies

There are many other multithreading strategies for executing computations. Though our
system was designed to support these strategies, as of this writing, these features have not
yet been exploited.

3.9.1 Strip Mining

As we alluded to earlier, our data flow graph is different than a traditional one in that
each edge can flow multiple elements, each tracked independently for dependency analysis.
We provide a simple, public iteration API for users to access these elements, which abstracts
the underlying representation. The users, therefore, do not need to be concerned with where
the data is coming from.

One of the benefits of the iteration API that we have mentioned before is how it allows
us to provide fast memory access patterns to users. Another benefit of this structure is that
it allows us another form of multithreading strategy called strip mining. With strip mining,
all the requested elements are processed in parallel, in equal chunks among the available
number of cores.

This strategy complements Background Execution and we believe it would be useful in
improving the speed of single frame evaluations where Background Execution does not help.
We think this approach has the potential to scale well with the increasing number of cores
available on user desktops.

70 Multithreading for Visual Effects

3.9.2 Predictive Computations

In an interactive animation package, knowing the previous few input values to a compu-
tation can give us the ability to guess at the next few input values. For example, if a user
entered rotation values 30, followed by 30.5 and then 31, it is reasonable to assume that
they will next ask for 31.5, 32, and so on.

In other words, while a user is continuously changing a value on an input, we can
schedule computations for input values that the system predicts the user will ask for next,
and run those computations in parallel. The results would then be available much sooner
when the user eventually gets to them. This would require only a small modification to our
Background Execution infrastructure.

One of the challenges of this approach is that it may introduce inconsistencies in the
user’s interaction rates. The application will be more responsive when the user enters values
that have been predicted, and less responsive if the inputs have never been computed before.
If there are enough mispredicted values, this inconsistency can lead to a frustrating user
experience.

3.10 Debugging and Profiling Tools

As programmers, we appreciate good debuggers and profilers for the software we write.
Similarly, it is also important to provide these kinds of tools to the users of our software.
As we said earlier, riggers use our software like a visual programming language, so we need
to make sure that we provide them with tools to help debug and profile their rigs.

Since our system does not strictly enforce a one-to-one mapping between user-facing
objects and objects used by the execution system, one important step in making sure that
these tools are useful is to be able to provide a mapping from the execution objects back
to the objects in the scene that the users are familiar with. We do this by maintaining a
mapping during the compilation step. The profiling and debugging happens at the node
level and then we map that back to the user objects in generated reports and interactive
tools.

At a bare-minimum, we needed a profiler that can tell users how much time is being
spent in each computation in their rig. They need to be able to see and sort the objects (e.g.,
deformers) they created and reason about their costs. We additionally show the number of
elements processed by each computation and the amount of memory allocated. The former
is useful in finding computations that were unintentionally processing many more elements
than expected, and the latter can help identify and eliminate memory hogs.

In addition to the tools provided to riggers, other users also need help debugging their
work. For animators, layout artists, and other users not interested in the rigging details, we
provide a tool that identifies areas of slowness in their session. For example, the tool may
identify expensive hardware shaders in a shot, or meshes with a high number of points, or
that the user has turned off caching. The tool is plugin-based and is designed such that
our QA department can add more scenarios and criteria as they are discovered (during a
production) by writing small Python scripts. This tool also gives users the opportunity to
fix the identified problem immediately, if the particular plugin provides such a capability
(e.g., by turning on the cache settings).

We have also developed in-house tools to help us measure and optimize our code. The
heart of our optimization toolset is an extensive performance test suite. The test suite
tracks the speed of the software, provides us with reports, and allows us to quickly identify

The Presto Execution System: Designing for Multithreading 71

regressions and improvements. This is the single most important tool we have for improving
the speed of our software and making sure that we do not cause it to regress.

The profiling tool we rely on most was also developed in-house and consists of a small
library of functions and macros used to instrument our code. We find the fine control we have
over this profiler, and its integration into our application, to be of benefit to us. In particular,
being able to precisely define which functions are profiled and reported, and which are not,
lets us generate succinct reports that are simple to reason about. We complement this tool
with a sampling profiler (also built in-house).

3.11 Summary

In this chapter we outlined the architecture of our animation system’s computation en-
gine. The purpose of this engine is to enable users to work at interactive rates. A modern
high-performance engine must take advantage of the increasing number of cores available
on users’ desktops. We described how this architecture is flexible enough to accommo-
date several kinds of multithreading strategies. We discussed the advantages and pitfalls of
supporting background computation and how they can be used to significantly speed up
common animation workflows.

Writing multithreading code is challenging and available hardware is evolving quickly.
By appreciating that there will be better algorithms and better hardware in the future, and
by designing for multithreading from the start, along with a little modularity, we will be
better able to overcome the challenges of multithreading, and maybe even have fun doing
it.

Chapter 4

LibEE: Parallel Evaluation of Character Rigs

Martin Watt

DreamWorks Animation

4.1 Introduction . 74
4.2 Motivation . 76
4.3 Specific Requirements for Character Animation . 76

4.3.1 Animation Graph Goals . 77
4.3.2 Animation Graph Features . 77

4.3.2.1 Few Unique Traversed Paths through Graph 77
4.3.2.2 Animation Rigs Have Implicit Parallelism 78
4.3.2.3 Expensive Nodes Which Can Be Internally Parallel 78

4.3.3 Animation Graph Constraints . 78
4.3.3.1 No Graph Editing . 78
4.3.3.2 No Scripting Languages in Operators 78

4.4 Graph . 79
4.4.1 Threading Engine . 79
4.4.2 Graph Evaluation Mechanism . 80

4.5 Threadsafety . 80
4.5.1 Node Threadsafety . 81

4.5.1.1 API Layer . 81
4.5.1.2 Parallel Unit Tests . 81
4.5.1.3 Threading Checker Tools . 82
4.5.1.4 Compiler Flags . 82
4.5.1.5 LD PRELOAD . 83
4.5.1.6 The Kill Switch . 84

4.5.2 Graph Threadsafety . 84
4.6 Scalability: Software Considerations . 85

4.6.1 Authoring Parallel Loops . 86
4.6.2 Overthreading . 87
4.6.3 Threading Fatigue . 87
4.6.4 Thread-Friendly Memory Allocators . 88
4.6.5 Oversubscription Due to Multiple Threading Models 88
4.6.6 Cache Reuse—Chains of Nodes . 89
4.6.7 Cache Reuse—Scheduling Nodes to Maximize Sharing 89
4.6.8 Task Priorities . 89
4.6.9 Graph Partitioning . 89
4.6.10 Other Processes Running on System . 91
4.6.11 The Memory Wall . 91
4.6.12 Failed Approaches Discussion . 91

4.7 Scalability: Hardware Considerations . 92
4.7.1 CPU Power Modes . 92
4.7.2 Turbo Clock . 92

73

74 Multithreading for Visual Effects

4.7.3 NUMA . 92
4.7.4 Hyperthreading . 93
4.7.5 CPU Affinity . 94
4.7.6 Many-Core Architectures . 94

4.8 Production Considerations . 95
4.8.1 Character Systems Restructure . 96
4.8.2 No More Scripted Nodes . 96
4.8.3 Optimizing for Maximum Parallelism . 96

4.9 Threading Visualization Tool . 97
4.10 Rig Optimization Case Studies . 100

4.10.1 Case Study 1: Quadruped Critical Path Optimization 100
4.10.2 Case Study 2: Hair Solver . 100
4.10.3 Case Study 3: Free Clothes! . 100

4.11 Overall Performance Results . 104
4.12 Limits of Scalability . 104
4.13 Summary . 106

4.1 Introduction

Computer-generated characters are central to an animated feature film and need to
deliver appealing, believable on-screen performances. As such, character rigs continue to
expand in complexity (for example, higher fidelity skin, clothing, and hair). This leads
to growing computational demands as animators wish to interact with complex rigs at
interactive frame rates. Since single threaded CPU performance is no longer increasing at
previous rates, it is necessary to find alternative means to improve rig performance.

This chapter focuses on the multithreaded graph evaluation engine called LibEE, which
is at the heart of the new DreamWorks Animation tool called Premo (Figure 4.1), which

FIGURE 4.1: Animator working interactively on a character in
Premo. (See Color Insert.)

LibEE: Parallel Evaluation of Character Rigs 75

FIGURE 4.2: Detail from a still frame from the DreamWorks movie
How to Train Your Dragon 2, showing character animation generated
by using the parallel dependency graph engine LibEE running in
Premo. This is the first movie to be released that was animated
using this engine. (See Color Insert.)

was first used in the movie How to Train Your Dragon 2 (Figure 4.2). The chapter also
describes changes to the character rig setups that were made to take maximum advantage
of this parallel evaluation system.

A heavily multithreaded graph requires not just that individual expensive nodes in the
graph are internally threaded, but that nodes in the graph can evaluate concurrently. This
raises numerous concerns, for example, how do we ensure that the cores are used most
effectively, how do we handle non-threadsafe code, and how do we provide profiling tools
for riggers to ensure character graphs are optimized for parallel evaluation?

This chapter discusses the motivation, design choices, and implementation of the graph
engine itself, developer considerations for writing high performance threaded code, including
ways to optimize scalability and find and avoid common threading problems, and finally
covers important production adoption considerations.

76 Multithreading for Visual Effects

4.2 Motivation

The previous generation in-house animation tool at DreamWorks Animation has been
in use for many years. With each animated film, the filmmakers raise the bar in terms of the
characters’ on-screen performances and therefore in terms of the computational complexity
of the character rigs. More expensive evaluation has partially been addressed over the years
by taking advantage of the “free lunch” associated with the increased performance delivered
by each generation of processors. However, for the past few years, processor architectures
have been constrained by basic physics and can no longer provide significant increases in
core clock speed nor from increasing instructions per clock. CPU performance improvements
are now being delivered by offering CPUs with multiple cores.

Given the relentlessly single threaded nature of the existing animation tool, it was not
possible to take advantage of multicore architectures. We had reached the point where the
execution performance of the animation tool was no longer accelerating due to hardware
gains, while show demands, of course, continued to increase with each film. In short, our ap-
petite was pushing us beyond the limit of what could be delivered in the existing animation
environment, and we had to change.

To retrofit multithreading into the core architecture of the existing animation tool would
have been extremely difficult. Instead we embarked on a studio initiative to write a new
animation tool from the ground up. A key component of this new tool is a highly scalable
multithreaded graph evaluation engine called LibEE.

The primary benefits of the new system are:

• A framework to deliver significant graph level parallelism for complex character rigs
which can run concurrently with internal node threading. The graph engine is opti-
mized for the specific requirements of character animation. In contrast, typical anima-
tion applications today achieve character rig threading scalability primarily through
internal node concurrency.

• The system scales to meet the demands of feature film production. We provide details
of many of the challenges encountered and solutions delivered.

• We built a parallelism visualization tool to enable riggers to optimize character setups
for maximum performance. We found this tool to be an essential aid for the creation
of scalable character rigs.

This chapter first presents the graph engine architecture and design choices for character
animation. We then explore the implementation details including the threading engine,
graph evaluation, threadsafety, and implementation challenges. We finish with a discussion
of production considerations and results.

4.3 Specific Requirements for Character Animation

The core engine for the animation tool is a dependency graph (DG), a commonly used
approach for animation systems, also implemented in commercial packages such as Maya.
The basic building block of the graph is a node, which is a stand-alone Compute Unit that
takes in data via one or more input attributes, and produces data via one or more output

LibEE: Parallel Evaluation of Character Rigs 77

FIGURE 4.3: A typical hero character graph. The leftmost panel is
the full graph. Each panel to the right is a zoomed-in region showing
a small part of the graph view to the left of it. This graph has over
100k nodes. (See Color Insert.)

attributes. A dependency graph is constructed by binding output attributes on individual
nodes to input attributes on other nodes. The dependency graph is evaluated to obtain the
required outputs for display, usually geometry, when driven by changing inputs, typically
animation curves. Although the principle is well known, we have made a number of design
choices given the target workload of animation posing and playback.

The following sections describe the goals of the system, the specific features of animation
systems that were used to guide the design, and some deliberate restrictions that were placed
on the implementation to constrain the problems.

4.3.1 Animation Graph Goals

The graph for a hero character can have 50k–150k nodes (see Figure 4.3). Although
not all nodes will evaluate every frame, there are still typically thousands of nodes that
need to be evaluated in a frame. The goal is to provide consistent interactivity within the
animation environment. We have set a benchmark of at least 15 fps for executing a single
full-fidelity character. Since the graphs can contain thousands of nodes, all of which need to
be scheduled and run in this time interval, we need a very low overhead scheduling system.

Note that there was no expectation to hit these performance levels when running a
character-based simulation that must evaluate the graph multiple times through a range of
frames.

4.3.2 Animation Graph Features

Our goal was to deliver a high performance evaluation engine specifically for character
animation, not a general multithreading evaluation system. As a result, the design is driven
by the unique requirements of a feature animation pipeline. Listed below are some of the
distinctive characteristics of character animation evaluation that were used to inform design
choices for the specific implementation adopted.

4.3.2.1 Few Unique Traversed Paths through Graph

Although the graph may contain a very large number of nodes, the number of unique
evaluation paths traversed through the graph during a session is relatively limited. Typi-
cally, there may be a hundred or so controls that an animator interacts with, and the output

78 Multithreading for Visual Effects

is typically a handful of geometric objects. Posing workflows involve manipulating the same
sets of controls repeatedly for a series of graph recomputes. As a result it becomes feasible to
cache a task list of nodes that require evaluation for a given user-edit to the graph. Walking
dependency graphs to propagate dirty state and track dependencies can be expensive, and
is not highly parallelizable, so avoiding this step offers significant performance and scala-
bility benefits. Of course, if there are a large number of controls available to the user the
application will still perform well, though cache sizes for these task lists might need to be
increased, or we take the extra hit of walking the graph for some evaluations.

4.3.2.2 Animation Rigs Have Implicit Parallelism

Characters usually have components that can be computed in parallel at multiple levels.
As an example the limbs of a character can often be computed in parallel, and within
each limb the fingers can similarly usually be evaluated concurrently. Such concurrency will
vary from character to character. We have suggested that our filmmakers explore storylines
involving herds of millipedes to demonstrate the full potential of the tool, but even with
conventional biped characters we are able to extract significant levels of parallelism. A
very important aspect of this, however, is that the rig must be created in a way that
expresses this parallelism in the graph itself. No matter how well the engine can run tasks
concurrently, if the rig expresses serial dependencies in its construction, those dependencies
must be respected. We cannot outguess the riggers. This was a very challenging area, and
is discussed in more detail later.

4.3.2.3 Expensive Nodes Which Can Be Internally Parallel

Nodes such as deformers, tessellators and solvers are expensive, but can in many cases be
threaded internally to operate on data components in parallel. We want to take advantage
of this internal concurrency potential while also allowing such nodes to evaluate in parallel
with other nodes in the graph. As a result we require a system that offers composability, that
is, nested threading is supported by making full use of the cores without oversubscribing
the system.

4.3.3 Animation Graph Constraints

The following are constraints applied to the system to limit the implementation chal-
lenges.

4.3.3.1 No Graph Editing

We developed an evaluation-only dependency graph for the animation environment,
which does not need to account for editing the characters. This enables us to take advantage
of a graph topology that is relatively fixed. We do not need to build an extensive editing
infrastructure, and can strip out from the graph any functionality that would be required
to easily modify the topology. This reduces the size of nodes and connections, leading to
better cache locality behavior.

4.3.3.2 No Scripting Languages in Operators

One controversial restriction placed on node authors was that they could not use any
authoring language that is known to be low performance or inherently non-threadsafe or
non-scalable. This means we do not allow authors to write nodes in our in-house scripting
language, which is not threadsafe, nor do we allow Python which, while threadsafe, is not
able to run truly concurrently due to the Global Interpreter Lock. Python is also significantly

LibEE: Parallel Evaluation of Character Rigs 79

slower than C++. This limitation caused concern among riggers, who author nodes for
specific show requirements, since scripted nodes are typically easier to write than their
C++ equivalents. We discuss this in more depth later.

Try to constrain application functionality if it makes the threading challenges more
manageable. Threading is hard enough already without trying to handle every case
that a user may wish to have available to them. Future work may allow relaxation of
some restrictions once a solid reliable framework has been built.

4.4 Graph

4.4.1 Threading Engine

There was a requirement to build or adopt a threading engine to manage the scheduling
of the graph. There are several upfront requirements for this engine:

• The graphs can have up to 150k nodes for a single hero character, which we wish to
evaluate at close to 24 fps, so the engine needs to have very low per-node runtime
overhead.

• The threading engine needs to deliver good scalability since our animator workstations
have between 16 and 20 cores already, a number which will only increase in future,
and we wanted to make effective use of these current and future hardware resources.

• We require a system that supports composability, i.e., nested threading, since we
intend for some nodes to be internally threaded as well as the entire graph running
in parallel, and want the two levels of threading to interoperate seamlessly.

We considered writing our own engine from the ground up, but that would be a very
major effort in which we did not have specific domain expertise, so we decided to focus
resources on the higher level architecture rather than devote effort to building the low-
level components. We chose to adopt Intel’s Threading Building Blocks (TBB) as the
core threading library. This library offers composability, high performance, and ease of
use, as well as being industry proven, being used in commercial tools such as Maya and
Houdini.

Explore existing threading libraries before deciding to roll your own, or there is a
danger you may spend a lot of time in maintenance of this library rather than the
code that runs on top of it.

TBB has a component called a task scheduler. This assigns user-defined tasks to available
cores, ensuring that all cores are kept busy while avoiding oversubscription. By mapping
the nodes in the graph onto TBB tasks, we can use the TBB dependency mechanism to
allow the graph to evaluate by having the TBB scheduler assign each node to a core once
all its upstream inputs have been computed.

Since we have threading at the graph and node level, and node authors can potentially
call any code in the studio, we needed to ensure that all this threaded code worked well
together. As a result we made a studio-wide decision to adopt TBB as the threading model

80 Multithreading for Visual Effects

globally for all new code we write. We also retrofitted existing code to use TBB where
possible. This ensures node authors can safely invoke other studio code from their nodes
and have the threading interact well with the graph level parallelism.

4.4.2 Graph Evaluation Mechanism

DGs are typically implemented as two-pass systems. In the first pass, input attributes
to the graph are modified and marked dirty. This dirty state propagates through the graph
based on static dirty rules which define the dependency relationship between attributes
within a node. Then a second pass occurs for evaluation, where the application requests
certain outputs from the graph, such as geometry. If the node that outputs the geometry has
the relevant attribute marked dirty, it will recompute itself. If the node has inputs that are
dirty it will recursively reevaluate those input nodes, potentially triggering large sections of
the graph to recompute.

The second evaluation step is a challenge for threading since recursive node evaluation
limits potential scalability. We have chosen to modify this evaluation model. In the eval-
uation pass we traverse the graph upstream to decide what to compute but, rather than
computing the nodes right away, we instead add them to a “task list” along with the de-
pendencies between the tasks. Then we add a third pass where those tasks are evaluated
by the core engine, extracting all potential parallelism given the dependencies in the list.

Although this approach provides good concurrency, it does mean that we can potentially
overcompute, since some nodes may only know the required inputs once they are inside their
compute routine. In our case we will compute all inputs that could potentially affect the
given dirty output given the static dirty rules, even if the inputs are not actually required
based on a dynamic analysis of the node state during evaluation. This can be a problem
for “switch” nodes that can select between, for example, low and high resolution geometry
based on an index control. To address this problem, we do an additional one or more passes
over the graph to evaluate the inputs to such nodes. If the switch index changes, we prune
out the unwanted code path before doing the main evaluation pass. Since switch indices
rarely change during an animation session, the pruning pass has minimal overhead in graph
evaluation.

4.5 Threadsafety

Threadsafety is one of the biggest challenges of building this system. Unlike regular data
level parallelism, a parallel graph involves running potentially dozens of different algorithms
concurrently with each other in ways that can change every frame depending on which parts
of the rig are being computed. Thus, we need to worry not only about regular threadsafety
within a node, but safety at the much broader graph level, to ensure all nodes can run
concurrently with each other.

When this project was started, threadsafety was one of the largest areas of concern.
There was a risk that the project might fail because of the level of threadsafety required
and potential for a continuous stream of hard-to-find threading bugs and regressions. As
a result we preemptively worked on approaches to make and keep the code threadsafe.
There is no single solution to ensuring threadsafe code, so we adopt a variety of different
approaches to try to minimize potential problems, while allowing exceptions for cases where
we know we cannot guarantee threadsafety, as discussed in the items below.

LibEE: Parallel Evaluation of Character Rigs 81

4.5.1 Node Threadsafety

The studio has a large existing codebase dating back 20 years, and significant parts of
the codebase are not threadsafe. Since node authors can potentially call anything in the
studio codebase, pulling in non-threadsafe code is a concern. In addition, any new code can
introduce threadsafety issues.

This section discusses the approaches taken to ensuring threadsafety within individual
nodes.

4.5.1.1 API Layer

We wrote an API for the studio code that provided one layer of insulation from direct
access to the studio code. This is partly to ensure that users do not get hold of raw memory
since the design of the graph requires the graph itself to do memory management. However,
this API layer can also be used to block access to classes and methods that are known to
be non-threadsafe. We endeavor to keep this API complete enough that developers would
not need to bypass it and obtain raw access to external data structures, although in some
cases that is still required.

4.5.1.2 Parallel Unit Tests

There is a mandate for developers to write unit tests for each node. Since threading
problems can manifest intermittently, one brute-force technique to catch a class of threading
bugs is to create parallel unit tests by wrapping these unit tests in a framework that will
run them concurrently using code similar to that below, so invoking multiple instances of
the original unit test that will run in parallel. The optional runId parameter supplied to the
main test can be used to avoid conflicts between the parallel instances, for example, if the
test writes a file to disk it can use the runId to generate a unique filename for each instance
of the test.

// regular unit test

void TestXformNode::test(int runId) {

[...]

}

// parallel unit test

void TestXformNode::testParallel()

{

// OpenMP parallel loop

#pragma omp parallel for

for(int i=0; i<numParallelIterations(); ++i) {

test(i);

}

}

A test plan was set up to run these parallel tests continuously to look for such inter-
mittent failures. The thread count was specified via the OpenMP environment variable
OMP NUM THREADS to be a non-integral multiplier of the core count to try to force
more unpredictability, and the number of iterations was set to be as large as possible while
keeping the entire test suite runtime to within an hour or so.

Over time the number of failures in these tests has dropped, although it has not reached
zero. Instead it has reached a low level where background noise, that is, hardware problems

82 Multithreading for Visual Effects

and resource issues such as full disks, cause as many crashes as threading bugs. Because
threading bugs are almost by definition hard to reproduce, remaining bugs are the ones
that happen very rarely and so are the most difficult ones to track down.

It is highly likely that threading bugs still persist in the code, and new node authoring
means there is likely to be introduction of new threading problems, but they are now at a
level that crashes from threading are fewer than crashes from other parts of the application,
and are not a major productivity drain. This is usually the best that can be hoped for—
guaranteeing that an application is fully threadsafe is generally impossible.

In addition to the parallel stress test, crash logs were also tracked using Google’s Break-
pad to look for repeating patterns of failure that might indicate a threadsafety issue.

4.5.1.3 Threading Checker Tools

Intel’s Parallel Inspector tool was used to check for race conditions. This tool can be
useful in catching threading problems, but runs on large complex codebases can result in
many false positives, which makes tracking down the genuine race conditions challenging.

It is possible to generate suppression files to suppress false positives from Inspector.
We looked into using this with our parallel unit tests to have a test plan that would run
Inspector on the parallel test regularly looking for any new race conditions that might
have been introduced. However, this proved unsuccessful since the code evolved rapidly
enough that it required constant maintenance and updates of the suppression files. As
a result, the approach was abandoned. The concept is still appealing though, and it is
hoped that Inspector or similar tools will evolve over time to become more usable in this
regard.

4.5.1.4 Compiler Flags

There are some very useful compiler settings with the Intel compiler that can warn for
access to static variables, which is a common source of race conditions. The warnings, with
example code, are as follows:

static int x=0;

if(x>1) //warning #1710: reference to statically allocated variable

x = 1; //warning #1711: assignment to statically allocated variable

int* p=&x; //warning #1712: address taken of statically allocated variable

Warning 1712 currently triggers in a lot of system-level code that cannot easily be
avoided. Warning 1710 triggers for stream access like std::cout calls, which are also relatively
common in the code. As a result, we choose to use only the 1711 warning, which is also the
most useful of these warnings. Example:

int x = 0;

int main()

{

x++;

}

>icc -c -ww1711 test.cc

test.cc(8): warning #1711: assignment to statically allocated variable "x"

x++;

^

LibEE: Parallel Evaluation of Character Rigs 83

We enable this warning in the build environment, and add macros that allow a user to
disable the warning if it is considered harmless. So:

#define DWA_START_THREADSAFE_STATIC_WRITE __pragma(warning(disable:1711))

#define DWA_FINISH_THREADSAFE_STATIC_WRITE __pragma(warning(default:1711))

#define DWA_THREADSAFE_STATIC_WRITE(CODE) __pragma(warning(disable:1711));\

CODE; __pragma(warning(default:1711))

and example usage:

static int x = 0;

DWA_THREADSAFE_STATIC_WRITE(x = 1;) // safe as code called only once

or:

static int x = 0;

DWA_START_THREADSAFE_STATIC_WRITE

x = 1; // safe since code is called only once

DWA_FINISH_THREADSAFE_STATIC_WRITE

Ultimately, we hope to turn this warning into a global error setting so any new usage
will cause builds to fail. However, we are not yet at the point where existing warnings have
been fixed, so this warning-as-error is enabled on a per-library basis as libraries are cleaned
up, rather than globally.

Note that this flag is only available with the Intel compiler, which is used for production
releases. We also build with gcc as a validation build, and for that compiler the above
macros are redefined to be no-ops. We found this flag useful enough to recommend using
the Intel compiler as a validation tool just for this purpose, even if the final executables are
not built with this compiler.

There is no single technique to assure threadsafety in code, so use as many methods
as possible to reduce threading problems in code, with the knowledge that you will not
catch them all.

4.5.1.5 LD PRELOAD

LD PRELOAD is a way on Linux to override functions with user-defined alternatives.
We can use it to track calls to known non-threadsafe functions. If we are not sure whether
code is making calls to such functions, we can redefine those functions, build them into a
library, and preload that library. The redefined function can (for example) print a message
to indicate an unsafe function has been called, and dump the stack trace to show where
the call originated from. We used this to track calls to a specific function in LAPACK that
was known to be non-threadsafe, so we could run our test workloads and verify whether
this function was being called or not. It would even be possible to have the preloaded
method create a lock before calling down into the original function, thereby rendering it
threadsafe.

84 Multithreading for Visual Effects

4.5.1.6 The Kill Switch

The one saving grace for threading bugs is that they can be “fixed” by disabling threading
in the application. If the problem can be narrowed down to a specific node that is not
threadsafe when run concurrently with other nodes of the same type, for example, it works
with static data, we can tag that node to be non-threadsafe. This option, described later,
forces the graph to run the node while no other nodes are evaluating concurrently, thus
ensuring that the threading problem is not encountered. Of course, we would expect the
developer to fix their node so it is threadsafe, this is intended as a temporary solution to
get the user up and running quickly.

In the extreme case where the problem is hard to diagnose, or affects multiple nodes,
the user has a runtime option to simply disable all graph threading. This will of course
severely affect performance, but the animator will at least be able to continue working.
Such a control is also useful for developers to determine if problems in the application
are threading-related. If a bug persists after threading is disabled, it is clearly not just a
threading bug.

It is highly recommended that all parallel applications feature a global “kill” switch,
which allows all threading to be disabled, since you will never catch all threading
bugs, and this allows a user to keep working even in the presence of such a bug, and
a developer to test code in serial mode.

Such a switch is not just a way to enable an application to run in an emergency, but it
can also be used as a self-defense mechanism for multithreading authors. As any intrepid
multithreading developer will know, as soon as threading is introduced into an application,
all bugs instantly become threading bugs. Having the global kill switch allows a developer
to fend off such attacks, as in the following (slightly) fictional account:

Developer 1 (assertively): My code is crashing. I believe it is your multithreaded code
that is to blame, since my code appears to be flawless.

Developer 2: Did you test by turning off all threading in the app using the kill switch
we told everyone about?

Developer 1 (more quietly): No. Let me try that.
[pause] Developer 1 (meekly): The problem is still there. I guess it is a bug in my

code after all.

4.5.2 Graph Threadsafety

This section discusses the approaches taken to ensuring threadsafety at a higher level
than within individual nodes, by addressing graph level threadsafety concerns.

Given graph level parallelism, a new challenge is that every developer needs awareness
of threading even if they are not explicitly writing threaded code themselves, since the code
they author can be running concurrently with any of the other code in other nodes in the
graph. For example, accessing a third-party library that is not threadsafe can work within
one node, but if a different node is accessing the same library at the same time, it will be
a problem. This is a real challenge given the varying level of expertise among node authors
and given that node development spans both R&D and production departments.

Ideally, all nodes in the graph would be fully threadsafe and we could simply allow the
scheduling engine to assign tasks to cores as it sees fit. In practice, there is always the need
to allow for the possibility of non-threadsafe nodes, as in the following examples:

LibEE: Parallel Evaluation of Character Rigs 85

• An author wishes to prototype an operator for testing and does not want to worry
about making the code threadsafe right away.

• The author is not sure if the code they are calling is threadsafe, and wishes to err on
the side of caution until it can be fully validated.

• The code calls a library or methods known for sure to be non-threadsafe.

For these cases, a mechanism is provided to allow the author to declare that specific nodes
are not fully threadsafe. The evaluation mechanism can then take appropriate precautions in
the way it evaluates such nodes. The following potential levels of threadsafety are possible:

Reentrant: The node can be evaluated concurrently with any other node in the graph
and also the same instance of the node can be evaluated by more than one thread concur-
rently.

Threadsafe: The node can be evaluated concurrently with any other node in the graph
but the same instance of the node cannot be evaluated by more than one thread concurrently.

Type Unsafe: The node cannot be evaluated concurrently with other instances of the
same node type (e.g., a node that works with internal static data) but can be evaluated
concurrently with instances of different node types.

Group Unsafe: The node cannot be evaluated concurrently with any of a group of
node types (e.g., nodes that deal with the same global static data or the same third-party
closed source library).

Globally Unsafe: The node cannot be evaluated concurrently with any other node in
the graph (i.e., calls unknown code, or user is just being very cautious).

In practice, the only categories needed in production are Threadsafe, Type Unsafe, and
Globally Unsafe. The graph evaluation implementation does not allow the same instance to
be evaluated concurrently, so the Reentrant category is not required, and the Group Unsafe
category was considered too difficult to maintain. For the latter case we simply default to
Globally Unsafe.

If the scheduler sees a node is in a category other than Threadsafe it will ensure that the
node is run in such a way that it will not encounter potential problems by using an appropri-
ate lock. A Type Unsafe node will not run concurrently with another node of the same type
by using a lock specific to that node type, and a Globally Unsafe node will not run concur-
rently with any other node by using a global lock. Of course, these latter states can severely
limit graph scaling. The goal is to have as few nodes as possible that are not threadsafe.

In production rigs it has been possible so far to run characters where almost every node
is marked as Threadsafe with just one or two exceptions over which we have no control.
One example of such a node is an FBX™ reader node, since the FBX library itself is written
by a third party and is not yet (as of 2014) threadsafe. Thus, it is marked as Type Unsafe
since it cannot run concurrently with other FBX reader nodes, but can run concurrently
with other types of nodes in the graph.

Provide an option that allows authors to write non-threadsafe code by protecting it
so it will still run safely in a multithreaded environment.

4.6 Scalability: Software Considerations

In this section, we discuss approaches that were taken to attempt to extract maximum
performance from the system. We discuss both successes and failures, on the assumption

86 Multithreading for Visual Effects

that the latter is often at least as interesting as the former when deciding what approaches
to adopt for other application areas.

4.6.1 Authoring Parallel Loops

The standard TBB parallel for loop is somewhat complex to author. Newer versions of
TBB support a simpler interface using lambda functions, however, the syntax of a lambda
can still be intimidating, particularly to less experienced developers who we want to en-
courage to write parallel code. We adopted some simple macros to allow easier threading of
parallel loops. An example macro is shown below:

#include <tbb/parallel_for.h>

#define DWA_PARALLEL_FOR_BEGIN(VARTYPE, VARIABLE, MINVAR, MAXVAR) \

tbb::parallel_for(MINVAR, MAXVAR, [&] (VARTYPE VARIABLE)

#define DWA_PARALLEL_FOR_END \

);

Then the developer can express their parallel loop as follows:

// transform all positions in array by xform

DWA_PARALLEL_FOR_BEGIN(int, vertexId, 0, numVertices) {

outPositions[vertexId] = inPositions[vertexId] * xform;

}

DWA_PARALLEL_FOR_END

One benefit of using a macro like this is that it is possible to disable threading by simply
redefining the macro to implement a regular for loop. Another benefit is that alternative
behavior can be implemented, for example, timing information can be recorded as shown
below by adding code to the macro to have each parallel loop print out a report showing
the execution time and line number:

#define DWA_PARALLEL_FOR_BEGIN_TIMING(VARTYPE, VAR, MINVAR, MAXVAR) \

{ \

int tbb_loop_trip_count = (MAXVAR - MINVAR); \

START_TBB_TIMER \

tbb::parallel_for(MINVAR, MAXVAR, [&] (VARTYPE VARIABLE)

#define DWA_PARALLEL_FOR_END_TIMING \

); \

STOP_TBB_TIMER(__FILE__, __LINE__, tbb_loop_trip_count) \

}

We can use code like this to decide on a threshold above which parallelism is worthwhile
by running the loops with and without threading enabled and comparing runtimes of each
loop.

We have other versions of this macro that support the TBB grain size concept, which is
the smallest piece into which the problem range will be decomposed. Allowing the problem
to be subdivided too finely can cause excessive work for the scheduler, so it is important to
choose a grain size that still allows significant concurrency while maintaining a reasonable

LibEE: Parallel Evaluation of Character Rigs 87

amount of work. The timer code can be used to decide on a good grain size to choose for
each loop by tweaking the grain size and rerunning the tests.

Unfortunately, TBB (as of version 4.1) does not have a version of the parallel for lambda
function that works with grain size, so currently it is somewhat cumbersome to code this
case.

4.6.2 Overthreading

Any new discovery initially leads to overuse before a happy medium is found. We encoun-
tered the same with multithreading. Once developers learned about it, some were keen to
use it wherever possible, and even code like the following was in some cases being expressed
as a parallel loop:

for (int i=0; i<4; i++) x[i] = 0;

Clearly, in this case the overhead of threading the loop vastly outweighs the benefits
achieved. The rule of thumb is that invoking a parallel region costs 10k clock cycles, so
unless the work in the loop is significantly greater than this, the benefits of threading are
not there. It can be hard to apply that threshold to real code—we recommend timing the
loop with and without threading at different trip counts to decide if it is worthwhile to
parallelize it.

Another aspect that might be considered overthreading is to attempt to extract paral-
lelism from short-running algorithms, since it may impede larger performance gains available
from longer-running tasks. Imagine a small parallel computation that spawns parallel tasks,
which consume all the machine cores. An instant later, a large expensive parallel algorithm
begins evaluation. The work is broken into multiple chunks, but no cores are available, so
that the tasks wait, and then perhaps just run one at a time. This is where a good grain size
selection for TBB is important, so that the tasks are small enough to be able to expand to
use additional machine resources as they become available. We have found that even though
there are benefits from threading small nodes when tested in isolation, those benefits often
turn to disadvantages once a large graph is running, and we have in some cases removed
threading from such nodes.

4.6.3 Threading Fatigue

The initial excitement of a large speedup from parallelizing a loop can quickly pall
when the inevitable threading bugs are encountered and production deadlines loom, as the
following e-mail from the rigging trenches attests to:

This whole foray into DWA PARALLEL FOR has been a pretty miserable experience.
There’s just nowhere near enough people or docs in support of it, and it’s just a bit too
bloody complex a task when I can’t stay concentrated on it due to production demands.

—Anonymous Rigger
Clearly, if we are to ask developers to author parallel code, we need to provide and

maintain a support system for them.

Expect developers to struggle with threading, not just in implementation but also in
optimization and future proofing, and be prepared to provide guidance.

88 Multithreading for Visual Effects

4.6.4 Thread-Friendly Memory Allocators

There are a number of thread-friendly allocators which hold per-thread memory so that
malloc calls do not go to the global heap and therefore contend with each other. We have
chosen to use TBB’s allocator as it has delivered very good performance for our needs, giving
us a 20% performance boost over regular malloc. Note that there is no requirement to use
the TBB allocator in conjunction with TBB, nor do the versions need to be in sync. We
are using TBB 4 with the TBB allocator from TBB 3, since it delivers better performance
for our specific use case with the older allocator. We also evaluated jemalloc and found the
TBB allocator to deliver better performance for our workloads, but other authors in this
book have found the opposite for their workloads, so testing the various candidates is highly
recommended to find what works best for any specific application.

Note that a thread-aware allocator will in general consume more memory than regular
malloc as it holds onto large blocks of memory per thread to avoid going to the global heap
where possible. We find the TBB allocator increases memory footprint by around 20% over
usage of regular malloc, a trade-off that we consider acceptable.

Ideally, all required memory would be allocated upfront during initialization, and there
would be no allocation at all during regular graph evaluation. In such a situation there would
be no benefit to a threaded memory allocator, and we could just use regular malloc. This
would be preferable since the extra allocator introduces complexity, build dependencies,
and memory usage. However, we are not at the point where this is feasible yet, although
ongoing efforts to avoid allocation at runtime are leading to reduced benefits from the TBB
allocator over time. We do hope at some point to get to the point where no heap allocation
happens during regular graph evaluation. Tracking down such cases should be as simple
as running a profiler on the running application after startup initialization and looking for
calls to malloc.

Use a thread-aware memory allocator if you are allocating memory during parallel
evaluation.

4.6.5 Oversubscription Due to Multiple Threading Models

If all parallel code is written using a library like TBB there are no concerns about
oversubscription. However, in some cases other libraries may be used, which can lead to
oversubscription. An example is the Intel Math Kernel Library (MKL) which internally uses
OpenMP to parallelize loops in some methods. This library is optimized for heavy compute
so prefers OpenMP to TBB due to the slight performance benefits. However, calling into a
parallel MKL routine from a TBB task now runs the risk of oversubscription. We have been
able to generate synthetic test scenes where multiple nodes running in parallel each call into
an MKL parallel solver and exhibit such performance degradation. However, in practice,
this has not been a significant problem in our production rigs. It is, however, something to
be aware of, particularly if heavy simulations are running in the rig, which may spend a lot
of time in MKL or similar routines. As a rule of thumb, we find oversubscription by a factor
of 2 is not significantly detrimental to performance. Any more than this though does start
to show significant problems.

Try to use a single consistent threading implementation across a shared memory
application for best performance.

LibEE: Parallel Evaluation of Character Rigs 89

4.6.6 Cache Reuse—Chains of Nodes

In general, the scheduling system treats each node as a separate task to be scheduled by
the TBB task scheduler. This ensures we get maximum possible scaling by extracting all the
potential parallelism from the graph. One exception to this is that the scheduling system
treats chains of nodes (nodes with a single input and output, all connected together) as a
single task for scheduling purposes, since there is no potential scalability benefit to treating
each node as a separate task for the scheduler (see Figure 4.4). This reduces the number
of tasks, reducing scheduling overhead. For our graphs the reduction in task count was
typically 4× since there were a lot of chains in the graphs. Since TBB tasks are assigned
to cores, this also has the benefit of ensuring chains of nodes all run on the same core,
improving cache reuse.

Note that it is possible for the OS to migrate a task between cores during evaluation.
In practice, we found that tasks are short running enough that this very rarely happens. In
a graph with 10k nodes, we found at most one or two tasks that were moved to a different
processor core to the one they started on.

We investigated treating “hammocks”—where there is a fan-out from one node to several
chains and then a fan-in again to a single node—as a special case, but found the relative
benefit to be far smaller than for chains, and the management complexity significantly
larger, so we did not pursue this further.

4.6.7 Cache Reuse—Scheduling Nodes to Maximize Sharing

Related to the previous section, it might be asked whether it is worth scheduling more
general node patterns than just chains in a way that maximizes cache reuse by having
downstream nodes run on the same core as upstream nodes which use the same memory.
We built a test system where we tracked every memory access of every node, then attempted
to statically schedule the nodes such that those with the most common memory accesses
were placed on the same core. This was a large amount of work, and data collection needed
to be run offline. On analysis it was found that there was very little benefit to scheduling
tasks this way rather than just letting TBB schedule the nodes itself. This was actually a
huge relief, as the extra processing and bookkeeping would have been a considerable amount
of work. However, it is worth pointing out that with 75% of the nodes in chains and already
scheduled on the same core to maximize cache reuse, most of the benefits of this approach
to cache reuse have already been obtained with the simple chained scheduler approach.

4.6.8 Task Priorities

We explored various schemes for assigning priorities, for example, giving graph-level
tasks priority over node-level tasks, or giving specific nodes higher priority. None of these
approaches proved significantly better than the default of giving all tasks equal weight. In
some cases there were minor gains, but most actually hurt performance. Again this could be
considered good news, since the simple approach of letting TBB schedule the tasks proved
almost as good or even better than any such more complex mechanism.

4.6.9 Graph Partitioning

We investigated statically partitioning the graph in various ways, for example, grouping
all the nodes related to the right arm together and scheduling them as one task. This did
not work well for several reasons. First, it requires very consistent naming conventions,
which is not always something we can guarantee. Second, the levels of hierarchy available

9
0

M
u
ltith

rea
d
in
g
fo
r
V
isu

a
l
E
ff
ects

FIGURE 4.4: Tasks plotted against processor ID for a 12 core system. Note the two chains of nodes on cores 3 and 4, respectively,
between 0.016s and 0.04s. These nodes have a consistent color along each chain, indicating they are from the same part of the
character, and closer inspection shows that they are serially dependent. Because of this dependency they are explicitly treated
as a single TBB task and so scheduled on the same processor core, thereby maximizing cache reuse along the chain. (See Color
Insert.)

LibEE: Parallel Evaluation of Character Rigs 91

are somewhat crude (finger, hand, arm) and do not necessarily map well onto the available
number of cores. Attempting a more refined dynamic partitioning based on the topology
of the graph each frame proved too time consuming. As a result this approach was not
pursued, and again TBB was allowed to do its own scheduling.

4.6.10 Other Processes Running on System

Since the application is an animation tool which is primarily running live rather than
in batch mode, and which has the artist’s primary attention, we have found that users do
not often run multiple concurrent animation sessions. However, it is common for artists to
be running other applications on their systems, for example, a Web browser playing videos.
This can make heavy use of one or two cores. Since TBB assumes it has the full machine
at its disposal, this could potentially lead to choppy behavior as the machine cores are
oversubscribed.

In testing so far we have not found this to be a serious problem. However, we may not
be so lucky in the future, so we have added a control over the total thread count being used
in the application by TBB, so we can in principle dial back the number of threads used by
the graph if the machine is being overloaded. As core counts increase, the relative loss of
one or two cores becomes less and less significant.

4.6.11 The Memory Wall

One of the key nodes in the graph is a tessellator that smoothes the final output character
mesh. This algorithm appeared to scale very well, giving 8× speedup with 8 cores. However,
an optimization pass resulted in greater performance, but scaling dropped to 5×, to the
initial disappointment of some who had focused on the impressive scaling number. This was
a useful lesson that the highest scalability number is not the ultimate goal.

What was more interesting was to understand why scalability dropped. It turns out
that the algorithm for tessellation is very memory bound since vertex values queried to
compute the finer resolution position are widely scattered in memory, leading to cache
misses. When the algorithm was optimized, compute time dropped and this main memory
access bandwidth became the new bottleneck which limited performance, so beyond 5 cores
we found we saturated the memory bus and additional cores just ended up waiting on
memory. The TBB scheduler still creates many tasks to run the algorithm, and the task
manager will schedule them all as long as there are idle cores, but in this case the extra
tasks just spend their time waiting on memory.

Ideally, we might want a way to limit the number of tasks running the tessellator at this
stage to free up resources for other parts of the graph, but it is not possible to explicitly ask
a particular loop to use a smaller number of cores with TBB. This is one of the downsides of
using a system like TBB, although in this case it is a relatively small one since tessellation
happens at the end of the graph when little else is happening that might be blocked by the
tessellator. However, it is an interesting example of a pattern to be aware of.

4.6.12 Failed Approaches Discussion

The fact that many attempts to outsmart the default scheduling proved unsuccessful was
in some ways welcome news. It meant that we could use the default TBB scheduling and
know we were getting good performance. This is not to say that everything we attempted
failed. Some approaches did indeed offer speed improvements, but they were generally small
enough (<10%) that the extra cost of the additional code and bookkeeping was not worth

92 Multithreading for Visual Effects

the benefit. We continue to investigate possible optimizations like these, and may revisit
some in future if we can find more compelling approaches.

4.7 Scalability: Hardware Considerations

4.7.1 CPU Power Modes

The workloads on any particular core during parallel graph execution are very spiky
(see Figure 4.4). This causes individual cores to switch between busy and idle states very
frequently at sub-millisecond intervals. We found the power saving modes in Sandy Bridge
processors to switch too slowly into high performance mode for our needs, which meant
that the processor was often in a low clock speed mode for a significant portion of the
time it was doing heavy compute. Because of this we chose to enable the BIOS settings for
performance rather than power-saving modes on our systems to keep the processors running
at their full clock speeds all the time. This provided a very significant 20% performance
boost over power saving mode, with the obvious downside of greater power consumption
when the machine is idle. It is to be hoped that future revisions of processor hardware can
enable faster transitions between power savings and full speed modes. (Note that enabling
full performance mode is not necessarily trivial as there are OS as well as BIOS settings
that need to be coordinated for maximum performance to be achieved.)

4.7.2 Turbo Clock

While power saving modes can downclock cores, turbo clock settings allow cores to
temporarily overclock above their nominal frequency if they have thermal headroom. This
means looking at the default clock speed of a CPU is not always a good indicator of actual
performance. In addition, headroom is greater when fewer cores are running, since the
overall power consumption of the processor is lower. This means that a single task running
on a single core can potentially run faster as the number of tasks running on the other
cores is reduced. This becomes interesting in the case where threading gains are marginal.
For example, if an algorithm scales poorly, it may be better to run it on fewer cores, which
thereby run at higher clock speeds rather than spread the work across more cores that
will then run at lower speeds. Clock speed is controlled at the hardware level, so taking
advantage of and measuring this behavior is challenging.

4.7.3 NUMA

The workstations provided to animators are dual socket systems, therefore, NUMA is an
area of concern. Currently, we do not actively allocate memory on the banks nearest to the
cores doing the work, as TBB can assign work to arbitrary cores. We have not yet found this
to be a significant performance issue, although it is something we are monitoring closely.
However, experiments with four socket systems have shown that this becomes a real issue on
such topologies, since memory can be multiple hops away from the cores where the compute
is being done (see Figure 4.5). At this time, deployed systems for animators are two socket
systems, so this has not yet been a problem. As core counts per sockets continue to rise, it
seems likely that two socket systems will remain the sweet spot for price/performance for
some time.

LibEE: Parallel Evaluation of Character Rigs 93

FIGURE 4.5: Scalability dropoff with four socket systems compared
with two socket systems for a single hero character workload. The
first set of bars track performance on a system with four 8 core pro-
cessors. The second set of bars indicate performance on a system with
two 8 core processors. Per-core performance of the four socket sys-
tems is slightly lower so the lower performance at low thread counts
is expected. However, as the thread count increases, the power of the
additional cores on the four socket system is not effectively harnessed
due to NUMA effects, and indeed performance degrades significantly.

4.7.4 Hyperthreading

Hyperthreading (HT) enables a single physical core to be exposed to the operating sys-
tem as more than one logical core, so work can be scheduled to take advantage of otherwise
idle execution resources on that core. It is usually enabled via a BIOS setting since it does
not always benefit performance. The user should test their application to determine if they
get a benefit or not.

In our case we found an interesting pattern. If we ran a regular workload across all the
cores, we found that enabling HT typically reduced performance by ∼15%. As a result, we
chose to disable HT on all artist workstations. However, when we later ran some scalability
tests that limited the workload to run on a smaller number of cores, we found the situation
reversed, with HT providing up to a 20% performance boost (see Figure 4.6). This can
be explained by the fact that a typical workload does not heavily stress all the cores,
so hyperthreads can cause unbalanced system loads with lighter workloads, while with a
heavier compute load all the core resources can be used effectively.

Since hyperthreading is a BIOS setting, it is nontrivial and time consuming to toggle its
state. Animators switch between lighter and heavier scenes frequently enough that rebooting
constantly to change it is not a realistic option. We currently choose to leave it disabled,
but this is an area of ongoing monitoring.

One last point—enabling hyperthreading will cause a threaded application to use more
memory. This is because additional threads will be running on the extra logical cores,

94 Multithreading for Visual Effects

FIGURE 4.6: Hyperthreading performance impact. The first set of
bars show performance for the walk cycle of a character with hyper-
threading disabled, the second set of bars show the same workload
with hyperthreading enabled.

and so per-thread memory such as thread-local storage and stacks will increase the overall
footprint. In addition, using the TBB allocator will increase memory overhead due to its
use of per-thread memory pools to avoid accessing the global heap.

4.7.5 CPU Affinity

Although we found affinity was not useful in binding individual nodes to cores within
the graph, at the application level it is a different story. If we wish to limit the number of
cores being used by the graph, we have found it beneficial to set CPU affinity to bind the
process to particular cores. TBB itself is affinity-unaware, so on Linux we need to use the
taskset command to bind the task to a subset of cores. Figure 4.7 shows a graph running
with four threads with and without CPU affinity set. The reason this is beneficial is that it
ensures that the threads can be assigned to the same socket thus maximizing both per-core
cache and per-socket cache reuse and leading to both higher and more consistent frame
rates, both good things for the animator experience.

4.7.6 Many-Core Architectures

The question arises whether an application like this will run well on a processor with
more cores, such as Xeon Phi. Xeon Phi in particular is appealing because the porting effort
is relatively low. However, optimization for the architecture requires not just high scalability,
but also extensive vectorization, which is a separate massive effort that has so far not been
attempted with the animation codebase. Running multiple jobs on the Xeon Phi to take
fuller advantage of all the cores runs into memory constraints due to the limited amount of
onboard RAM. As the hardware evolves over time, and code optimization continues, this
may in future become a more interesting target architecture.

LibEE: Parallel Evaluation of Character Rigs 95

FIGURE 4.7: Evaluation of a character graph over a range of frames
on four cores. The lower set of four runs show the frame rate over
time without an affinity set, while the upper four runs show the per-
formance with an affinity set. Note that not only is the overall frame
rate ∼10% higher with an affinity set, the frame rate is also much
more consistent over the frame range, leading to a better animator
experience.

Carefully test on different hardware platforms and explore system settings for maxi-

mum performance.

4.8 Production Considerations

The previous sections relate primarily to the R&D work of building a parallel engine.
Equally important are the production considerations that relate to the use of this engine.
Integrating the new dependency graph engine into a feature animation pipeline required a
number of significant changes to the character rigging process, namely:

• The character rigs needed to be rearchitected to integrate into the new animation tool
and the engine.

• All custom nodes had to be written in C++ instead of in scripting languages like
Python.

• Character systems needed to be optimized for parallel computation.

We discuss the challenges and efforts surrounding these three production changes in the
following sections.

96 Multithreading for Visual Effects

4.8.1 Character Systems Restructure

We realized that our underlying character systems needed to be rearchitected to work
in the new interactive animation environment built on top of the graph engine. Most of the
graph nodes used to construct our character setups had to be rewritten to be threadsafe and
to integrate with the engine interfaces. In revamping the character systems, many existing
nodes were discarded and new ones with different requirements were written in their place.
Given that the codebase has been written over a span of many years, such a rewrite is a
major undertaking.

4.8.2 No More Scripted Nodes

Riggers often write custom graph nodes to handle unique rigging challenges. Typically,
custom nodes were written in a proprietary scripting language or in Python for ease of
authoring. These nodes are relatively simple to write and integrate nicely into the production
codebase. However, as mentioned earlier, the new graph evaluation engine requires all nodes
to be written in C++ for optimum performance. This transition has been difficult for
production, although clearly necessary.

We provided training programs for riggers to transition from writing script-based nodes
to building C++ equivalents. We also developed a training curriculum to spread knowledge
of writing threaded and threadsafe code for all potential node authors.

4.8.3 Optimizing for Maximum Parallelism

One of the interesting transitions required, which was in hindsight obvious but not
considered initially, was that riggers had to become familiar with multithreading not just
at a coding level, but also when it comes to building the rigs themselves. Dependencies
between nodes in the graph need to be expressed in a way that allows as much of the graph
as possible to run in parallel. No matter how well the engine itself scales, it can only extract
from a graph the parallelism that the graph authors, that is, the riggers, have put into the
system.

Previously, to optimize character setups, riggers used profiling tools to identify bottle-
necks in individual graph nodes and then worked to address performance issues in these
nodes. This approach is still necessary, but is no longer sufficient with a highly multithreaded
graph since the ordering and dependency between nodes becomes a very large factor in the
overall performance. There were new concepts that needed to be considered, in particular,
the concept of the critical path.

The critical path is the most expensive serial chain of nodes in the graph. The overall
runtime of the graph is limited by the critical path runtime. A goal for optimization therefore
is to try to reduce the cost of the critical path, either by removing nodes from the path or
by optimizing nodes along it. A corollary to this is that there is less benefit to optimizing
nodes that are not on the critical path since, to first approximation, those nodes do not
directly affect the graph runtime (although of course those nodes do consume compute
resources that might otherwise be used to speed evaluation of nodes along the critical
path).

Since riggers have limited time to spend on optimization, it is important that this time
be used effectively. There was significant frustration early on when optimization efforts did
not seem to yield the expected speedups. This turned out to be due to optimizations being
applied to expensive nodes that were not on the critical path. As a result, it became apparent
that we needed a tool which could provide relevant information on the graph performance
characteristics, including the critical path, to the riggers.

LibEE: Parallel Evaluation of Character Rigs 97

This was a requirement that is readily apparent in hindsight, but which we did not
anticipate, so the tool was developed and delivered to riggers relatively late, at a point
where many of the characters for the first production show had already been substantially
built and were thus no longer open to significant changes. This meant that characters on
the first show were not as fully optimized as they could have been, but it also means that
we expect future shows to have increasingly optimized characters. Expressing parallelism in
rigs is a new and very important skill for riggers, one that we expect them to become more
skilled at over the years.

4.9 Threading Visualization Tool

In this section, we describe the tool that was built to show the parallelism in the graph.
We discuss this tool in some depth because this was and continues to be an extremely
important part of the optimization process (and also because it allows us to show some
pretty pictures which have been sadly lacking up to this point).

The tool is designed to allow riggers to visualize data flow and node evaluation in the
graph. Riggers can identify which components of their character are running in parallel,
where graph serialization bottlenecks occur, and where unexpected dependencies exist be-
tween parts of the rig. The tool also highlights the critical path. This is the most time
consuming chain of serially dependent nodes in the graph, and so determines the best pos-
sible runtime of the graph when it is running in parallel (Figure 4.8).

The average concurrency metric is a very useful value as it gives a simple easily un-
derstood metric to indicate the parallelism in a rig. When comparing similar characters we
expect similar levels of concurrency, and outliers attract special attention to detect potential
problems in the rigs that limit scalability.

Over time we are learning how to build scalable characters in this new environment, but
this is an ongoing process. Here are some of the strategies we have developed to optimize
multithreaded character rigs:

• Focus primarily on nodes along the critical path.

• Identify expensive nodes that are bottlenecks and internally optimize these nodes as
well as move their execution to a more parallel location within the graph.

• Identify a section of the graph that is serial and work to parallelize this area of the
rig.

• Identify groups of nodes that are used repeatedly in the graph and rewrite them as a
single custom node. This reduces the overall number of nodes in the graph and there-
fore minimizes thread scheduling overhead relative to time spent in node evaluation
itself.

We are able to collect before/after statistics and compare them in the visualizer to
give immediate feedback to the author on the benefits of their optimizations to the overall
character runtime profile, as in Figure 4.9.

We have utilized a combination of the above described optimization approaches to suc-
cessfully improve performance of character setups. The following section describes some
real-world production examples that highlight the optimization process in action.

9
8

M
u
ltith

rea
d
in
g
fo
r
V
isu

a
l
E
ff
ects

FIGURE 4.8: The threading visualization tool enables riggers to investigate bottlenecks within the graph. The vertical axis
shows concurrent nodes in flight for various parts of the characters. The horizontal axis is time. Each block is a single node in
the graph. Nodes with internal parallelism are displayed with a horizontal bar through them. Different components are drawn in
different colors (e.g., body, face, wardrobe, and hair—see the Color Insert for actual colors). The average concurrency reported
only represents graph parallelism and does not include node parallelism. The bottom row of nodes are the nodes on the critical
path. This character is running on a 16 core machine. (See Color Insert.)

L
ibE

E
:
P
a
ra
llel

E
va
lu
a
tio

n
o
f
C
h
a
ra
cter

R
igs

99

FIGURE 4.9: Mode to compare two profiles to check benefits of optimizations.

100 Multithreading for Visual Effects

4.10 Rig Optimization Case Studies

This section reviews real-world optimization performed on character rigs to illustrate
the process of tuning a character for optimum performance.

4.10.1 Case Study 1: Quadruped Critical Path Optimization

In this case we show the graph visualizations used to identify and fix bottlenecks within
a quadruped character (Figure 4.10). We first identify a problematic chain of serial nodes
along the critical path (the long chain of nodes up to 0.02 seconds in the figure). This
represents the character’s motion system for 12 claws (three claws per foot). Upon closer
inspection, a node that concatenates joint hierarchies was used extensively in this chain but
was not efficiently coded.

The second figure represents the rig after R&D had optimized the hierarchy concate-
nation code. Note that the serial path has been shortened but there is no change in the
graph structure or parallelism. Next we look at the claw deformation system, identified by
the lighter colored nodes. We note that the graph here shows a small degree of parallelism.
Riggers rewired the claw system so that the claws deformed more concurrently. Riggers
had separately noticed one very expensive node, displayed at the top of the middle graph,
and had optimized it (before having access to this tool, which was at that point still under
development).

The third figure shows the results of these two optimizations. The lighter colored claw
deformation code path has shrunk due to the extra parallelism. However, note that the
second change, to optimize the expensive node, which seemed like an obvious optimization
candidate, did not improve the overall runtime at all. This is because that particular node
was not on the critical path. This demonstrates the importance of focusing efforts on the
critical path of the graph, and the value of having such a tool available to riggers so they
can make informed choices about where best to focus their limited optimization efforts.

4.10.2 Case Study 2: Hair Solver

In this example (Figure 4.11), the riggers took an initial chain of nodes that implemented
the hair system in a mostly serial manner and reworked the dependencies to allow different
parts of the hair system to run in parallel. The same amount of work is performed, but in
a much shorter overall runtime. Since the hair system computes at the end of the graph
when nothing else is evaluating, the serial dependencies in the system greatly limit potential
performance, and parallelism is a large win.

4.10.3 Case Study 3: Free Clothes!

Figure 4.12 shows the moment when for many of us the benefits of the threaded graph
evaluation system finally became dramatically real. The top graph shows the motion and
deformation system for a character. The bottom graph shows the same character with the
addition of rigged clothing. This clothing is an expensive part of the overall character,
nearly 25% of the total graph evaluation cost, but because it was attached to the torso
it was able to compute in parallel with the limbs of the character. Since the critical path
ran through the character body rather than the clothing, this meant that effectively the
clothing evaluation was almost free when running the character by itself, only 3% slower
than the same character without clothing.

L
ibE

E
:
P
a
ra
llel

E
va
lu
a
tio

n
o
f
C
h
a
ra
cter

R
igs

101

FIGURE 4.10: Example showing the process for optimizing a quadruped character. Note that the overall time for evaluation
of the frame is reduced at each stage. Also note the relatively poor overall scaling. This profile is from an early stage in rig
parallelism work from the rigging department. As optimization proceeded the parallelism of the character improved significantly,
as can be seen in other profiles in this chapter.

1
0
2

M
u
ltith

rea
d
in
g
fo
r
V
isu

a
l
E
ff
ects

FIGURE 4.11: The top profile shows the initial hair system implementation, the bottom shows the same workload with
dependencies expressed between nodes in a way that allows more parallel execution. The hair nodes are the nodes at the end
of the graph, as indicated in the embedded legend.

L
ibE

E
:
P
a
ra
llel

E
va
lu
a
tio

n
o
f
C
h
a
ra
cter

R
igs

103

FIGURE 4.12: The top graph shows a character with motion and deformation systems, the bottom graph shows the addition
of rigged clothing. Note that the overall runtime increases only marginally although there is a significant amount of extra work
being performed in the rig. The evaluation is running on a 12 core machine.

104 Multithreading for Visual Effects

We have been happy to see that this tool is now often open on a rigger’s workstation as
they are working on their rigs, the ultimate compliment showing that they now consider it
an invaluable part of their character development process.

Provide tools to production users to allow them to visualize performance bottlenecks
in the systems they create. This can reduce dependency of production on R&D by
allowing production to take ownership of the optimization process.

4.11 Overall Performance Results

As of early 2014, we were able to hit performance benchmarks of 15–24 fps for interactive
posing of complete full-fidelity hero characters in the animation tool on HP Z820 16 core
Sandy Bridge workstations with 3.1 GHz clock speeds, which are the standard deployment
systems for animators. The fps benchmarks represent the execution of a single character
rig without simulations running live (which would evaluate the character graph repeatedly
through a range of frames).

One question is how much benefit is obtained from node threading versus graph thread-
ing. Figure ?? shows the performance of a rig with either node or graph threading disabled,
and shows that most of the performance benefits come from graph level threading rather
than node level threading, proving the value of the threaded graph implementation over sim-
ply threading individual nodes. In addition, once graph threading is enabled the benefits
of node threading are diminished further since threads that would have evaluated a single
node in parallel are now often dedicated to evaluating other nodes in the graph, leading to
lower scaling for individual nodes.

The above results have since improved, and hero characters are now typically showing
an overall scaling of 7–8× from a combination of node and graph-level parallelism, with a
couple of outliers still languishing at ∼5.5×, while one best case hero character has reached
10× speedup on the 16 core systems. Preliminary testing with 20 core Ivy Bridge machines
shows this same character achieving a 12× speedup, from 1.9 fps to 23 fps.

Further improvements to graph-level scaling are expected on future productions as rig-
gers continue to gain expertise in parallel optimizations.

4.12 Limits of Scalability

Considerable effort was spent in optimizing both the rigs and the nodes themselves to
attempt to improve scalability. As indicated in the previous section, we are approaching 8×
scaling on 16 core machines, which is a good result, but one has to ask if it is possible to
do better. Core counts will only continue to increase, and a simple application of Amdahl’s
law tells us that 8× on a 16 core machine will only give us 10× on a 32 core machine.

We investigated possible hardware limitations, for example, memory bandwidth, but this
does not appear to be a factor with our rigs. Instead it appears that the scalability limits at
this point are simply due to the amount of parallelism inherent in the characters themselves.
We do expect to improve rig parallelism as riggers gain expertise, but fundamentally there

L
ibE

E
:
P
a
ra
llel

E
va
lu
a
tio

n
o
f
C
h
a
ra
cter

R
igs

105

FIGURE 4.13: A demonstration of different levels of parallelism in a graph evaluation on a 12 core machine. The top run has
both node and graph threading disabled. The middle run has node threading enabled but graph threading disabled. There is a
1.35× speedup for this case. The bottom run has both node and graph threading enabled. There is an additional 4.2× scaling
in this case, for an overall 5.7× total speedup with a hero biped character. Note that all 12 cores are being used for parts of
the evaluation, indicating further scaling potential with additional cores.

106 Multithreading for Visual Effects

is a limit as to how much parallelism is possible to achieve in a human or simple animal rig,
and we appear to be close to those limits.

Figure 4.14 shows one way to improve scaling, which is to have multiple characters in
a scene. This is a common occurrence in real shots, and we are finding that overall scaling
is indeed improved as the complexity of the scene increases. Of course, the overall runtime
of the scene can still be slow, but at least the extra benefits of parallelism become more
effective in such cases.

A second approach is to evaluate multiple graphs in parallel. The main use case for this
would be computing multiple frames concurrently. For animation without simulations, where
frames are independent, we have tested workflows where frame N and N+1 are triggered as
independent concurrent graph evaluations. What we find is that overall throughput increases
significantly although, as expected, the latency for any particular frame to compute is
increased as it has to compete against evaluation of other graphs (Figure 4.15). Although
this may not be ideal during user interactivity, since computation of adjacent frames will
slow down the frame the artist is viewing, this approach is a good one for batch evaluation
of frame ranges where the goal is to process as many frames as possible in the shortest time.
Furthermore, the total scaling is very close to the machine limits, over 14× in some cases
on a 16 core machine (Figure 4.16). This means not only is current hardware being utilized
to its fullest extent, without hitting memory bandwidth limits, but there is hope for further
scaling with future machines that have higher core counts. Indeed, we have seen with 20
core Ivy Bridge systems that scaling has continued as expected based on an extrapolation
of the 16 core Sandy Bridge results.

An obvious downside to this approach is the increased memory consumption due to stor-
age of multiple independent graph states. This is a significant problem with large complex
rigs.

4.13 Summary

The new evaluation engine delivered well over an order of magnitude speedup in com-
parison to the existing in-house animation tool, and also offers performance higher than
third-party commercial tools can currently deliver. This allows productions to significantly
increase the level of complexity and realism in upcoming productions, while simultaneously
enabling a fluidity of workflow for animators by giving them much more interactivity even
for heavy production character rigs.

Implementing the parallel graph evaluation engine was a significant effort (the project
took 4 years) but the final results are proving to be worthwhile to animators, and we expect
the tool to continue to scale in performance as rigs increase in complexity and hardware
core counts rise, which was the long-term goal of the project.

One of the unanticipated requirements of parallel graph evaluation is that riggers need
to develop significant new skills to be able to build and optimize character rigs in such an
environment, which is a long-term learning process. Providing high-quality tools to enable
them to do this is a critical requirement for success.

L
ibE

E
:
P
a
ra
llel

E
va
lu
a
tio

n
o
f
C
h
a
ra
cter

R
igs

107

FIGURE 4.14: Evaluation of a single frame of animation for eight independent hero characters on a 32 core machine. The various
shades represent different characters. All the characters evaluate concurrently, exhibiting an additional layer of parallelism in
scene evaluation above node and character graph threading. (See Color Insert.)

1
0
8

M
u
ltith

rea
d
in
g
fo
r
V
isu

a
l
E
ff
ects

FIGURE 4.15: Multiple graph evaluations for 100 frames of playback. The top view shows each frame being evaluated consecu-
tively, each box is one frame. The lower panels show two, four, and eight concurrent graphs, respectively. Note that the overall
throughput improves, but the latency for each individual frame increases.

LibEE: Parallel Evaluation of Character Rigs 109

FIGURE 4.16: Multiple graph evaluation for six different hero char-
acters. The lower bars show regular scaling from node and graph
threading, the upper bars show the additional scaling from comput-
ing multiple graphs concurrently. Overall scaling is ∼12–14× on a
16 core machine. Note that the graph needs to be read carefully.
Although the upper and lower bars are similar sizes, the lower bars
(graph threading) show on average a 7× speedup while the upper
bars (multiple graphs) give a ∼2× additional speedup.

Chapter 5

Fluids: Simulation on the CPU

Ronald Henderson

DreamWorks Animation

5.1 Motivation . 111
5.2 Programming Models . 112

5.2.1 Everything You Need to Get Started . 114
5.2.2 Example: Over . 114
5.2.3 Example: Dot Product . 115
5.2.4 Example: Maximum Absolute Value . 117
5.2.5 Platform Considerations . 118
5.2.6 Performance . 119

5.3 Fluid Simulation . 120
5.3.1 Data Structures . 120
5.3.2 Smoke, Fire, and Explosions . 122

5.3.2.1 Advection Solvers . 124
5.3.2.2 Elliptic Solvers . 126

5.3.3 Liquids . 128
5.3.3.1 Parallel Point Rasterization . 132

5.4 Summary . 136

In this section, we look at the practical issues involved in introducing parallel computing
for tool development in a studio environment with a focus on fluid simulation. We talk
about the hardware models that programmers must now target for tool delivery, common
visual effects platforms, libraries, and other tools that developers should be familiar with
in order to be more productive, and considerations for key algorithms and how those relate
to important application areas.

5.1 Motivation

Parallel computing is a requirement. Since microprocessor clock rates have stopped in-
creasing, the only way to improve performance (outside of regular optimization or algorith-
mic improvements) is by exploiting parallelism. The good news is that parallel computing
can offer dramatic speedups over existing serial code, and with modern programming models
and a little practice you can quickly see impressive results.

The two dominant hardware platforms for deploying parallel programs at the moment are
shared memory multicore CPUs and massively parallel GPUs. Table 5.1 shows the hardware
in use at DreamWorks Animation (DWA) for our production tools over the past several
years. This reflects the industry trends of increasing parallelism, increasing memory capacity,

111

112 Multithreading for Visual Effects

Model Deployed Cores RAM Speed Video Card VRAM
HP 9300 2005 4 4 GB 2.2 GHz NVIDIA FX 3450 512 MB
HP 9400 2006 4 4/8 GB 2.6 GHz NVIDIA FX 3500 512 MB
HP 8600 2008 8 8 GB 3.2 GHz NVIDIA FX 5600 1.5 GB
HP z800 (white) 2009 8 8 GB 2.93 GHz NVIDIA FX 4800 1.5 GB
HP z800+ (gold) 2010 12 12 GB 2.93 GHz NVIDIA FX 4800 1.5 GB
HP z800+ (red) 2011 12 24 GB 2.93 GHz NVIDIA FX 5000 2.5 GB
HP z820 2012 16 32 GB 3.10 GHz NVIDIA FX 5000 2.5 GB

TABLE 5.1: Hardware used for production computing at Dream-
Works Animation from 2008–2013. Note that the processor speed
has been flat or decreasing while the processor counts go steadily up.

and flat or decreasing processor clock rates. These numbers are for desktop hardware, but
the hardware deployed in our data centers for batch simulation and rendering has followed a
similar evolution. In addition, we maintain special clusters of machines with up to 32 cores
and 96 GB memory as part of our simulation farm dedicated to running parallel jobs.

When developing software tools for film production, obviously we have to consider the
hardware available to run those tools. By raw count, CPU cores represent 98% of the
available compute capacity at the studio, and GPUs about 2%. For this reason, along
with the flexibility to write tools that perform well across a wide variety of problem sizes,
shared memory multiprocessors are by far the dominant hardware platform for internal
development.

This chapter is organized as follows. First, we look at programming models for writing
parallel programs, focusing on OpenMP and Threading Building Blocks (TBB). Next, we
look at issues around understanding and measuring performance. And finally, we look at
case studies for the most common algorithms used for fluid simulation.

5.2 Programming Models

Two programming models have dominated development at DWA since we started push-
ing parallel programming into a much wider portion of the toolset: OpenMP and TBB.

The first wave of software changes in the areas of simulation and volume processing
used OpenMP, a tasking model that supports execution by a team of threads. OpenMP is
easy to incorporate into an existing codebase with minimal effort and disruption, making it
attractive for legacy applications and libraries. It requires compiler support, but is currently
available for most modern compilers and even multiple languages (C, C++, and Fortran). As
we developed more complex applications and incorporated more complex data structures,
the limitations of OpenMP became more problematic and we moved to TBB. TBB is a C++
library that supports both regular and irregular parallelism. TBB has several advantages,
in particular superior support for dynamic load balancing and nested parallelism. It should
work with any modern C++ compiler and does not require any special language support,
but requires a more intrusive change for an existing codebase.

Here is a quick summary of these two programming models from McCool, Robison, and
Reinders [46]:

Fluids: Simulation on the CPU 113

OpenMP

• Creation of teams of threads that jointly execute a block of code

• Support for parallel loops with a simple annotation syntax

• Support for atomic operations and locks

• Support for reductions with a predefined set of operations (but others are easy to
program)

Threading Building Blocks (TBB)

• Template library supporting both regular and irregular parallelism

• Support for a variety of parallel patterns (map, fork-join, task graphs, reduction, scan,
and pipelines)

• Efficient work-stealing load balancing

• Collection of threadsafe data structures

• Efficient low-level primitives for atomic operations and memory allocation

Early versions of TBB required writing functors and specialized classes in order to sched-
ule work with the TBB task model. However, with the addition of lambda expressions in the
C++11 standard, the syntax for writing such expressions is much easier and dramatically
simplifies the task of incorporating TBB into an application or library.

We also make extensive use of the Intel Math Kernel Library (MKL) [34], a collection
of high-performance kernels for linear algebra, partial differential equations, fast Fourier
transforms (FFTs), and vector math. Note that MKL uses OpenMP as its internal threading
model and has basic support for controlling the number of threads used by its internal
functions.

In general, there are no major problems mixing these programming models in the same
library or even the same application as long as you avoid nested parallelism that might lead
to oversubscription. Because of the growing need to compose parallel algorithms in both
third-party and proprietary applications, we have adopted TBB as our standard parallel
programming model. Although you can mix these models, there may be platform-specific
performance considerations. For example, OpenMP uses a spin-wait for worker threads that
finish a parallel region early in order to reduce the latency of restarting threads between
fine-grained parallel regions. The default time can be as long as 200 ms. If you mix TBB
and OpenMP in the same application, this can show up as a significant overhead when an
OpenMP parallel region finishes. You can control this in the Intel implementation using
kmp set blocktime() and should consider setting the block time to zero before entering a
parallel region if you know there will be no additional work for OpenMP threads.

If you need to mix threading models in the same application, pay close attention to any
performance issues at the boundaries. Some threading runtimes (such as OpenMP)
implement strategies to reduce runtime latency that backfire when switching execution
models.

114 Multithreading for Visual Effects

5.2.1 Everything You Need to Get Started

The vast majority of changes required to introduce parallelism using OpenMP are cov-
ered by the following pragmas:

#pragma omp parallel_for

#pragma omp parallel reduction(op : variable)

#pragma omp critical

#pragma omp flush

The first two are for specifying parallel loops and reductions, and the second two are
for handling critical sections and reductions that are not covered by one of the built-in
operators. A critical section will be executed by at most one thread at a time and is useful
for avoiding race conditions. A flush forces synchronization of a thread-local variable across
all threads and can be useful before a critical section that requires updates between thread-
local and shared variables.

The most common usage patterns in TBB also involve parallel loops and reductions. One
of the nice benefits of writing algorithms with TBB is that the need for critical sections
and atomic variables largely disappears, even for complex production code, but support is
provided just in case. The roughly analogous functions in TBB are the following:

tbb::parallel_for

tbb::parallel_reduce

The syntax for calling these functions can be a little odd if you have not used them before,
but is easily explained with a few examples. TBB also offers hooks for critical sections and
synchronization using:

tbb::mutex

tbb::atomic

If you are a good parallel programmer with TBB you probably will not need these.

5.2.2 Example: Over

Our first example is for a simple parallel loop to compute a linear combination of two
vectors with an alpha channel for blending. This is a common operation in image and volume
processing given by:

u← (1− α)u+ αv

Here is an implementation in OpenMP:

inline void

omp_over(const size_t n, float* u,

const float* v, const float* alpha)

{

#pragma omp parallel_for

for (size_t i = 0; i < n; ++i) {

u[i] = (1.f - alpha[i]) * u[i] + alpha[i] * v[i];

}

}

Fluids: Simulation on the CPU 115

It is easy to read the serial implementation and all we added was the pragma to specify the
loop to execute in parallel. OpenMP will split this loop and execute each subrange using a
team of threads.

Here is the same function implemented in TBB:

inline void

tbb_over(const size_t n, float* u,

const float* v, const float* alpha)

{

tbb::parallel_for(

tbb::blocked_range<size_t>(0, n),

[=](const tbb::blocked_range<size_t>& r)

{

for (size_t i = r.begin(); i < r.end(); ++i) {

u[i] = (1.f - alpha[i]) * u[i] + alpha[i] * v[i];

}

}

);

}

This is a little more complicated but still quite readable. This form of tbb::parallel for

takes a range of work to be scheduled and a function representing the task to be executed. We
are using a lambda expression to keep the syntax compact, but you could also use a function
pointer. These two implementations should have similar if not identical performance.

5.2.3 Example: Dot Product

The next example is for a simple reduction common to linear algebra and iterative
methods like conjugate gradient iteration. The dot product is defined as:

u · v =
n−1
∑

i=0

uivi

The implementation in OpenMP can be written using one of the built-in reduction
operators:

inline float

omp_dot(const size_t n, const float* u, const float* v)

{

float result(0.f);

#pragma omp parallel reduction(+: result)

{

#pragma omp for

for (size_t i = 0; i < n; ++i) {

result += u[i] * v[i];

}

}

return result;

}

116 Multithreading for Visual Effects

In this example, a private copy of result is created for each thread. After all the threads
execute they will add their value to the copy of result owned by the master thread. There
is a relatively small number of built-in reduction operators, but we will look at how to code
around any missing built-in reduction operators in the last example below.

Here is the equivalent function in TBB:

inline float

tbb_dot(const size_t n, const float* u, const float* v)

{

return tbb::parallel_reduce(

tbb::blocked_range<size_t>(0, n),

0.f,

[=](tbb::blocked_range<size_t>& r, float sum)->float

{

for (size_t i = r.begin(); i < r.end(); ++i) {

sum += x[i] * y[i];

}

return sum;

},

std::plus<float>()

);

}

Note that tbb::parallel reduce requires two functors: one for the task to be executed and
a binary reducer function that combines results to create a final value. TBB can execute
using a binary tree to reduce each subrange and then combine results, or it can chain
subranges if one task picks up additional work and combines it with intermediate results.
The initial value of sum in the functor executed by each task could be zero or could be the
result from reducing another subrange, but you cannot assume it is zero! Failing to handle
this correctly is a common bug in TBB applications.

The task functor supplied to tbb::parallel reduce takes a second argument, which
is the initial value of the reduction for the current subrange. Pay close attention to
handling this argument correctly.

TBB combines the results of each subrange depending on the order that threads
complete. For operations like the dot product that are sensitive to accumulated round-
off error this can lead to non-deterministic results. In this case, you can accumu-
late the sum in double precision (which might help). TBB also includes an alternative
tbb::parallel deterministic reduce function that always combines subranges using a
binary tree. It may have a slightly lower performance, but guarantees that the order of
operations in the reduction is identical for a given number of threads.

Ideally, a parallel algorithm will be deterministic for any number of worker threads.
If this is not possible because of machine or algorithm limitations, for example, sen-
sitivity to roundoff error or order of operations, then try to be deterministic for a
fixed number of workers.

Fluids: Simulation on the CPU 117

5.2.4 Example: Maximum Absolute Value

Let’s look at one final example of a reduction that cannot be implemented with an
OpenMP built-in operator: the maximum absolute value of all elements in an array. Note
that this calculation should be fully deterministic and the results are independent of the
order of operations in carrying out the individual comparisons.

Here is one possible implementation in OpenMP:

inline float

omp_absmax(const size_t n, const float* u)

{

float vmax(0.f);

#pragma omp parallel

{

float tmax(0.f);

#pragma omp for

for (size_t i = 0; i < n; ++i) {

const float value = std::abs(u[i]);

if (value > tmax) tmax = value;

}

#pragma omp flush(vmax)

#pragma omp critical

{

if (tmax > vmax) vmax = tmax;

}

}

return vmax;

}

Here we have a thread-local variable (tmax) that is used to compute the maximum value
for each thread, and a global maximum (vmax) that is updated inside a critical section. The
pragma flush(vmax) forces a synchronization before the start of the final reduction.

You might be tempted to write this using a shared array where each thread stores its
result in a unique element of the array and the main thread does a final calculation of the
max once all worker threads complete. To set this up you need to know the number of
threads to allocate the array and an ID for each thread to know what index you should
use to store the thread-local result. Avoid patterns like this. Anything requiring a call
to omp get num threads() or omp get thread id() can almost certainly be written more
efficiently. TBB does not even offer such a feature.

Avoid implementations that make explicit reference to the number of worker threads
or a specific thread ID. Such implementations are fragile when running in different
environments and might not be portable across different threading models.

The implementation of a maximum absolute value in TBB is essentially the same as
the dot product example but with the specific methods for the reduction and combiner
functions:

118 Multithreading for Visual Effects

inline float

tbb_absmax(const size_t n, const float* u)

{

return tbb::parallel_reduce(

tbb::blocked_range<size_t>(0, n)

0.f,

[=](tbb::blocked_range<size_t>& r, float vmax)->float

{

for (size_t i = r.begin(); i < r.end(); ++i) {

const float value = std::abs(u[i]);

if (value > vmax) vmax = value;

}

return vmax;

},

[](float x, float y)->float { return x < y ? y : x; }

);

}

We can take advantage in the combiner of the fact that all intermediate results are guar-
anteed to be greater than or equal to zero, so there is no need for a further check of the
absolute value. In general, this method will have better scaling than the OpenMP version
because it avoids the synchronization.

5.2.5 Platform Considerations

Tools used within the visual effects industry rarely run as stand-alone systems. Instead
they are generally integrated into one or more extensible Digital Content Creation (DCC)
platforms where they run in conjunction with other tools for animation, model generation,
texture painting, compositing, simulation, and rendering. Software developers need to be
aware of the difference between writing a stand-alone application that controls all memory
and threading behavior, and writing a plugin for a larger environment.

Two common commercial platforms used at DWA are Houdini (Side Effects Software)
and Maya (Autodesk). The good news is that generally speaking there is no problem writing
plugins for either system that take advantage of threading using either of the programming
models discussed above. In fact, both Maya and Houdini use TBB internally for threading
and so this programming model integrates particularly well.

Houdini 12 introduced a number of convenience functions that wrap TBB to make
parallel programming directly using the Houdini Development Kit (HDK) more developer
friendly. SideFX also reorganized their geometry library to be more parallel and SIMD-
friendly, with the result that parallel programming with the HDK can be quite efficient. For
more details see Chapter 2, Houdini: Multithreading Existing Software.

In general, we structure code into libraries that are independent of any particular DCC
application and plugins that isolate application-specific changes. Library code should never
impose specific decisions about the number of threads to execute. We had problems with
early library development using TBB where the scheduler was being reinitialized to a dif-
ferent thread pool size inside library functions. Since the scheduler is shared, this had the
unintended side effect of changing performance of other unrelated code. It might be reason-
able to introduce library code that switches to a serial implementation below some problem
size where threading is not expected to produce any benefit, but any finer grained control
of threading behavior inside a library function will be problematic when used in different
applications.

Fluids: Simulation on the CPU 119

Keep library code independent of thread count and leave the control of resources to
the hosting application.

5.2.6 Performance

There are a few important concepts related to measuring and understanding performance
for parallel applications.

Speedup compares the execution time of solving a problem with one “worker” versus
P workers:

speedup = Sp = T1/Tp, (5.1)

where T1 is the execution time with a single worker.
Efficiency is the speedup divided by the number of workers:

efficiency =
Sp

P
=

T1

PTp

. (5.2)

Ideal efficiency would be 1 and we would get the full impact of adding more workers to a
problem. With real problems this is never the case, and people often vastly overestimate
parallel efficiency. Efficiency is a way to quantify and talk about the diminishing returns of
using additional hardware for a given problem size.

Amdahl’s Law relates the theoretical maximum speedup for a problem where a given
fraction, f , of the work is inherently serial and cannot be parallelized, placing an upper
bound on the possible speedup:

SP ≤
1

f + (1− f)/P
. (5.3)

In real applications this can be severely limiting since it implies that the maximum speedup
possible is 1/f . For example, an application with f = 0.1 (90% of the work is perfectly
parallel) has a maximum speedup of only 10. Practical considerations like I/O can often be
crippling to performance unless they can be handled asynchronously. To get good parallel
efficiency we try to reduce f to the smallest value possible.

Gustafson-Barsis’ Law is the related observation that large speedups are still possible
as long as problem sizes grow as computers become more powerful, and the serial fraction
is only a weak function of problem size. In other words, f is not only a function of the
algorithm or implementation, but also the problem size N . Scalability often improves with
larger problems because the serial fraction of execution time gets smaller, that is, f(N)→ 0
as N →∞. This is often the case, and in visual effects it is not uncommon to solve problems
that are 1000× larger than what was considered practical just 5 years ago.

Asymptotic complexity is an approach to estimating how both memory and execution
time vary with problem size. This is a key technique for comparing how various algorithms
are expected to perform independent of any specific hardware.

Arithmetic intensity is a measure of the ratio of computation to communication
(memory access) for a given algorithm. Memory continues to be a source of performance
limitations for hardware and so algorithms with low arithmetic intensity will exhibit poor
speedup even if they are perfectly parallel. The examples shown earlier of dot products and
simple vector operations all have low arithmetic intensity, while algorithms like FFTs and
dense matrix operations tend to have higher arithmetic intensity.

Try to start any algorithm development with expectations for asymptotic complexity
and parallel efficiency, and then measure your performance on real hardware to make
sure your implementation matches expectations.

120 Multithreading for Visual Effects

5.3 Fluid Simulation

For the remainder of this chapter we will look at case studies for two simulation problems:
algorithms for simulating smoke, fire, and explosions; and algorithms for simulation liquids.
These are closely related but use different data structures and present different challenges
for scalability.

5.3.1 Data Structures

Data structures can have a big impact on the complexity and scalability of a given
algorithm. For the case studies in this chapter there are three data structures of particular
importance: particles, volumes, and sparse grids.

Particles are one of the most general ways to represent spatial information. In general,
particles will have common physical properties such as position and velocity, but they are
often used to carry a large number of additional attributes around for bookkeeping. Houdini
12 provides a flexible API for managing general point attributes organized into a paged
data structure for each attribute type. It is a great implementation to study as a balance
of flexibility and performance.

Volumes represent an organization of data into a contiguous N = Nx×Ny×Nz segment
of memory. Data is stored in volume elements or voxels. Data can be read and written to
the volume at an arbitrary (i, j, k)-coordinate as long as the indices are in bounds. Volumes
can be implemented using simple data structures in C++ or using common libraries such
as boost::multiarray. Normally, a volume will have a spatial transform associated with
it to place the voxels into world space, allowing the world space position of any voxel to be
computed without explicitly storing any position data. For dense data, the elimination of
explicit positions is where the storage efficiency comes from relative to particles. If memory
is allocated contiguously then operations on a volume can take place in an (i, j, k)-index
space or by treating the voxel data like a single array of length N . Volumes support a simple
form of data decomposition by partitioning work along any dimension (i, j, or k) or the
entire index range N .

Dense volumes can cause problems with data locality since points close in index space
may be far apart in physical memory, but this is often still the most convenient memory
layout for simple problems.

Sparse Grids are a hybrid of particles and volumes. A sparse grid is a data structure
that can store information at an arbitrary (i, j, k)-coordinate but only consumes memory
proportional to the number of stored values. In order to achieve this a sparse grid might be
organized into tiles that are allocated on demand, typically tracked with some other data
structure like an octree, B-tree, or hash table. Houdini volumes are organized in this way,
and the open source Field3D library provides both tiled and sparse volumes [66].

In this chapter, we will use OpenVDB [49] as a reference sparse grid data structure,
shown schematically in Figure 5.1. OpenVDB uses a B+tree to encode the structure of the
grid. This is a shallow binary tree with a large fan-out factor between levels. Voxel data
is stored in leaf nodes organized into 83 tiles with a bit mask indicating which voxels have
been set. Internal nodes store bit masks to indicate whether any of their children contain
filled values. The root node can grow as large as memory requires in order to accommodate
an effectively infinite index space. Data in an OpenVDB grid is spatially coherent, meaning
that neighbors in index space are generally stored close together in physical memory simply
because of the organization into tiles. See Museth [48] for more details on the advantages
of this data structure.

Fluids: Simulation on the CPU 121

FIGURE 5.1: (Top) Schematic of the OpenVDB data structure for
sparse volumes [48] and (bottom) a typical cloud model stored as a
sparse volume. The data structure consists of a tree starting with
a root node, one or more internal nodes, and finally leaf nodes that
store the volume data, for example, density. Existing values can be
accessed in parallel, but inserting new values is not threadsafe. How-
ever, OpenVDB supports a number of important parallel algorithms.
(See Color Insert.)

Sparse grids are important for achieving the memory savings required for high-resolution
simulations and volumetric models. The cloud model shown in Figure 5.1 has an equivalent
dense volume of N = 16384 × 2048 × 1024, or about N ≈ 35 billion voxels. Models at
this resolution would be impractical to store with dense volumes. However, sparse volume
data structures present some interesting challenges and opportunities for parallel comput-
ing. Writes to an OpenVDB grid are inherently not threadsafe since each write requires
(potentially) allocating tiles and updating bit masks for tracking. In practice, we can im-
plement many parallel operations either by preallocating result grids on a single thread or
by writing results into a separate grid per thread and then merging the final results using a
parallel reduction. This is more efficient than it sounds because often entire branches of the
B+tree can be moved from one grid to another during a reduction with simple pointer copies
(as opposed to data copies). If branches of the tree do collide then a traversal is triggered
that ultimately may result in merging individual leaf nodes. Reads from an OpenVDB grid
are always threadsafe and parallel computations can be scheduled by iterating over active

122 Multithreading for Visual Effects

FIGURE 5.2: Volume rendering of a large dust cloud simulated with
a resolution of N = 1200× 195 × 500 along with a final frame from
the movie Megamind [65]. (See Color Insert.)

voxels or active tiles. The latter is generally most efficient since each tile represents up to
512 voxels. Optimized implementations of these operations are supported in the OpenVDB
library along with many examples of basic kernels for simulation and volumetric processing.

5.3.2 Smoke, Fire, and Explosions

Fluid simulation is an important category of effect, representing as much as 23–35% of
the shot work in feature films at DWA from 2008–2013. Figure 5.2 shows an example of
a large-scale destruction shot from the movie Megamind, and Figure 5.3 shows additional
examples of a simulated torch fire and pyroclastic dust from The Croods. These effects are
produced by Flux, our general purpose fluid simulation framework [32]. Flux uses adap-
tively resized dense grids to store simulation variables such as velocity, force fields, and
active scalars representing smoke, temperature, and so forth, and incorporates a number of
algorithms that are of general use for simulated transport problems.

Motion in the system is determined by solving a modified form of the incompressible
Navier-Stokes equations:

∇ · ~u = D (5.4)

Fluids: Simulation on the CPU 123

FIGURE 5.3: (Top) Simulated torch fire and (bottom) high-
resolution pyroclastic dust and destruction from The Croods. (See
Color Insert.)

∂~u

∂t
+ (~u · ∇)~u = −

1

ρ
∇p+ ν∇2~u− γ~u+ ~F (5.5)

where ~u is the fluid velocity, ρ is the fluid density, p is the pressure, ν is the kinematic vis-
cosity, and γ is a momentum dissipation rate per unit mass. The field D(~x, t) is a divergence

control term used to create local sources and sinks of velocity. The field ~F (~x, t) represents
an arbitrary force per unit mass. We simultaneously solve for some number of scalar fields
φi using the general transport system given by:

∂φi

∂t
+ (~u · ∇)φi = µi∇

2φi − γiφi + Ei (5.6)

where the constants γi and µi describe the dissipation and diffusion of φi, respectively,
and may be defined separately for any scalar field. The field Ei(~x, t) controls emission or
absorption of φi.

The scalar fields φi may represent smoke, temperature, fuel, color components, or any
other quantity that an artist wishes to animate, and the framework allows an arbitrary

124 Multithreading for Visual Effects

number of such fields to be animated simultaneously. The values of these fields animated
over time are the primary output of the system.

We integrate the fluid equations in the following stages:

~u(0) = advect(~un,∆t, ~un) + ∆t ~Fn (5.7)

~u(1) = compose(~u(0), ~Ucoll, αcoll) (5.8)

~u(2) = ~u(1) −∆t
1

ρ
∇p (5.9)

~un+1 = ~u(2) + ν∆t∇2~un+1 − γ∆t~un+1 (5.10)

Taking the divergence of Equation (5.9) and requiring that ~u(2) satisfy the divergence spec-
ified in Equation (5.4) gives the following Poisson equation for the pressure:

∇2p =
ρ

∆t

[

∇ · ~u(1) −D
]

(5.11)

In the case of D = 0, this is a variant of the method of fractional steps with the diffusion
and dissipation handled in the last stage [40, 38]. Diffusion requires the solution of a similar
elliptic problem:

(∇2 −
1 + γ∆t

ν∆t
)~un+1 = −

1

ν∆t
~u(2) (5.12)

Once the velocity field ~un+1 is known, we can solve the transport equations for each
scalar field using a similar integration scheme:

φ
(0)
i = advect(φn

i ,∆t, ~un+1) + ∆tEi (5.13)

φ
(1)
i = compose(φ

(0)
i , Si, αi) (5.14)

φn+1
i = φ

(1)
i + µi∆t∇2φn+1

i − γi∆tφn+1
i (5.15)

The transport system is integrated independently for each scalar field φi. Note that the
algorithms for integrating the fluid velocity and scalar transport are identical with the
exception of Equation (5.9). This symmetry is deliberate and emphasizes that the fluid and
transport algorithms are built from the same set of basic solvers.

The function advect(φ,∆t, ~u) must implement some algorithm to integrate the homoge-
neous advection equation:

∂φ

∂t
+ (~u · ∇)φ = 0 (5.16)

over a time step ∆t. Possible choices for this implementation are described below.
The function compose (u, v, α) provides an important form of artistic control as it al-

lows direct modification of the simulation state during each time step. Common operations
include methods like “over,” which are covered in Section 5.2.1, but others are possible. For
simplicity, the integration scheme above is written for a single set of input volumes, but this
is trivially extended to multiple input volumes.

5.3.2.1 Advection Solvers

We implement advect(q,∆t, ~u) using a family of semi-Lagrangian advection schemes.
These methods have the common characteristic that they can be made unconditionally
stable with respect to the time step ∆t either by construction or through the application
of an appropriate limiting technique.

We provide support for first order semi-Lagrangian [61], semi-Lagrangian with 2-stage
and 3-stage Runge-Kutta schemes for path tracing, a modified MacCormack scheme with

Fluids: Simulation on the CPU 125

a local minmax limiter [59], and Back and Forth Error Compensation and Correction
(BFECC) [20, 39]. All of these methods have linear complexity in the number of grid points,
but may differ in overall cost by a factor of two to five depending on the number of inter-
polations required. They are easily parallelizable and show linear speedup with increasing
numbers of workers for sufficiently high resolution. Methods like BFECC are attractive for
fluid simulation because they are unconditionally stable and simple to implement.

Here is a straightforward implementation of BFECC using OpenMP. We start with a
method that implements first-order semi-Lagrangian advection:

void advectSL(const float dt,

const VectorVolume& v,

const ScalarVolume& phiN,

ScalarVolume& phiN1)

{

const Vec3i res = v.resolution();

// phi_n+1 = L phi_n

#pragma omp parallel_for

for (size_t x = 0; x < res.x(); ++x) {

for (size_t y = 0; y < res.y(); ++y) {

for size_t z = 0; z < res.z(); ++z) {

const Vec3i coord(x, y, z);

const Vec3s velocity = v.getValue(coord);

const Vec3s pos = Vec3s(coord) - dt * velocity;

phiN1.setValue(coord, sample(phiN, pos));

}

}

}

}

We interpolate values from one grid and write them to another. Clearly, there is no con-
tention on writes and we can thread over the grid dimension that varies slowest in memory.
BFECC is then built from three applications of this function:

void advectBFECC(const float dt,

const VectorVolume& v,

const ScalarVolume& phiN,

ScalarVolume& phiN1,

ScalarVolume& work1,

ScalarVolume& work2)

{

// Local notation

ScalarVolume& phiHatN1 = work1;

ScalarVolume& phiHatN = work2;

ScalarVolume& phiBarN = work2;

// phi^_n+1 = L phi_n

advectSL(dt, v, phiN, phiHatN1);

// phi^_n = L^R phi^_n+1

advectSL(-dt, v, phiHatN1, phiHatN);

126 Multithreading for Visual Effects

// phiBar_n = (3 phi_n - phi^n) / 2

#pragma omp parallel_for

for(size_t i=0; i< phiN.size(); ++i) {

phiBarN.setValue(i, 1.5f*phiN.getValue(i) -

0.5f*phiHatN.getValue(i)));

}

// phi_n+1 = L phiBar_n

advectSL(dt, v, phiBarN, phiN1);

// Apply limiter

limit(v, phiN, phiN1);

}

The function limit() applies some rule to deal with any newly created extrema in the
advected scalar in order to guarantee that all new values are bounded by values at the
previous time step. The middle step can treat the grids like flat arrays since the operation
is independent of position.

In Figure 5.4, we show speedup measurements for solving the linear advection equa-
tion (5.16). We advect an initial scalar field in the shape of a smoothed sphere through a
velocity field computed from curl noise [7]. Most of the work is in the sample() method, and
here we just use trilinear interpolation. The equivalent implementation in TBB is straight-
forward, and in this figure we compare the speedup behavior of the two programming models
to confirm that for large problems they have essentially identical performance. From this set
of measurements we can also determine that this implementation performs like an equiva-
lent ideal implementation with f = 0.025, which allows us to predict the maximum speedup
and parallel efficiency for different configurations. This serial fraction is higher than you
might expect from looking at the implementation. It reveals what might be a hidden frag-
ment of serial code inside the limit() function or simply the overhead of the threading
runtime.

5.3.2.2 Elliptic Solvers

Note that Equations (5.10), (5.11), and (5.15) can all be written in the form:

(∇2 − λ2)φ = f (5.17)

where λ2 is a constant. In general, we need to solve this with either Dirichlet (φ = g) or
Neumann (~n · ∇φ = h) boundary conditions applied to grid points on the external faces of
the domain. For λ > 0, this is referred to as the Helmholtz equation, and for λ = 0 the
Poisson equation. Solving this equation for a discrete volume amounts to solving a large,
sparse linear system, and selecting the method to use for this step has a critical impact on
performance of the overall framework.

The solution techniques most commonly invoked in the computer graphics literature are
the conjugate gradient method (CG) and multigrid (MG). Both are iterative techniques
that require no explicit representation of the matrix. For constant-coefficient problems like
the ones required here, we can also consider techniques based on the FFT. This is a direct
method that takes advantage of the fact that the Helmholtz equation can be solved inde-
pendently for each Fourier mode. A common misconception about FFT-based methods is

Fluids: Simulation on the CPU 127

FIGURE 5.4: Speedup curve for scalar advection on a grid with N =
5123 grid points using the BFECC advection kernel. The dashed line
shows the theoretical speedup for an algorithm with a serial fraction
of f = 0.025. Performance was measured on a desktop system with
dual Intel Xeon Processors E5-2687W (20M Cache, 3.10 GHz) using
up to 16 computational threads.

Algorithm Type Serial Time PRAM Time

SOR Iterative N3/2 N1/2

CG Iterative N3/2 N1/2 logN
Multigrid Iterative N (logN)2

FFT Direct N logN logN
Lower Bound N logN

TABLE 5.2: Asymptotic complexity for several common methods
used to solve the discrete Poisson problem [16].

that they are restricted to problems with periodic boundary conditions, but by using appro-
priate sine or cosine expansions they can be used to solve problems with general boundary
conditions. A good overview of all three methods is available in the scientific computing
literature [56], with additional details on MG available from Briggs et al. [8].

No serial method can be faster than O(N) since it must visit each grid point at least
once. MG is the only serial method that achieves this scaling. On an idealized machine with
P = N processors, scaling depends on the amount of parallelism that can be exploited in
the algorithm. The lower bound is O(logN) because this is the minimal time to propagate
information across the domain via parallel reduction. The FFT-based solver is the only
method that achieves this scaling. CG is slower than the best method by a factor of N1/2 in

128 Multithreading for Visual Effects

both cases and will not be considered further. The key observation is this: for large problems
the optimal serial algorithm is MG, while the optimal parallel algorithm is an FFT-based
solver.

However, these estimates are only for the overall scaling. Actual performance will depend
on the details of the hardware platform. As a benchmark problem we compute the solution
to the Poisson problem with zero Dirichlet boundary conditions on the unit cube. Times
are measured on a workstation with dual Intel Processors X5670 (12M cache, 2.93 GHz),
which support up to 12 hardware threads.

The MG solver is compiled using the Intel 12 vectorizing Fortran compiler with opti-
mization level 3. The MG solver uses a W(2,1) cycle with a vectorized Gauss-Sidel iteration
for residual relaxation at each grid level [2]. MG iterations are limited to five complete cy-
cles, which is enough to reduce the relative change between fine grid iterations to less than
1× 10−5 in all cases reported. Fine grid resolution is restricted to powers-of-two multiples
of a fixed coarse grid resolution. FFT-based solution timings use the Helmholtz solver in-
terface in the Intel Math Kernel Library [34]. This interface provides a “black box” solver
for the Helmholtz equation on grids with arbitrary resolutions using prime factorization,
but is most efficient for power-of-two grid points. This is a direct technique that produces
the solution to machine precision in a fixed number of operations independent of the right-
hand side and therefore has no iteration parameters. Both implementations use OpenMP
for shared memory parallelism [53].

In Figure 5.5, we show the measured solve times for the above benchmark case for
problem sizes from N = 163 to N = 10243, which covers the problem sizes of practical
interest for visual effects production. Both methods scale as expected with problem size,
but the FFT-based solver is almost an order of magnitude faster for a given number of
grid points. In fact, the FFT-based solver produces a solution to machine precision in less
time than a single MG cycle. Figure 5.6 shows the parallel speedup for both solvers, and
as expected the FFT-based solver also has much better parallel efficiency. Note that the
MG solve times and parallel efficiencies reported here are consistent with the recent work
of McAdams et al. [45] for similar problem sizes and hardware.

These measurements confirm that even for a relatively small number of processing cores
there is a significant performance advantage to using the FFT-based solver over MG. Al-
though the MG solver can be applied to a much more general class of elliptic problems, it
is an order of magnitude more expensive. They also confirm that the FFT-based technique
has better parallel scaling and efficiency, as expected. Since all of the elliptic solves required
in this framework are by design suitable for the use of FFT-based techniques, this is the
method used exclusively. This includes the solution to the pressure Poisson problem, and
the implicit diffusion step for both fluid velocity and scalar transport. This is the single
most important choice affecting performance of the fluid integration algorithm.

Measure performance over a range of problem sizes in order to estimate parallel
scalability and identify any bottlenecks that appear at large or small N .

5.3.3 Liquids

Liquid simulation is closely related to the techniques that we use for smoke and fire,
but with the additional complication of free surface boundary conditions and the need to
explicitly track a surface. In most cases the objective of a liquid simulation is to produce
a highly detailed surface representation, with little or no regard for the bulk flow above
or beneath the surface. Figure 5.7 shows a close-up of a detailed liquid surface and a full

Fluids: Simulation on the CPU 129

FIGURE 5.5: Comparison of solve times for the Poisson equation
with N total grid points using MG and FFT solution techniques. The
solid curves confirm the expected asymptotic scaling. Runtimes are
measured on a workstation with dual Intel Xeon Processors X5670
using 12 computational threads.

production render from The Croods to illustrate the basic challenge. This focus on the thin
region marking the interface means that the data structures and algorithms used for liquid
simulation can be quite different from the techniques discussed in Section 5.3.2.

Multiple approaches are possible, but the most popular is to use a hybrid particle and
grid-based method. These are generally variants of the marker-in-cell or particle-in-cell
(PIC) approaches that originated in the early work on compressible flow [31, 30]. These
methods were adapted for some of the first systems used in computer graphics for animation
and film production [25, 26]. One of the more recent algorithmic changes to find its way into
computer graphics is the Fluid Implicit Particle (FLIP) method, introduced to overcome
some of the problems with numerical dissipation observed in simpler advection algorithms [5,
67, 6].

The data model in these approaches is as follows. Particles are used to represent the
liquid, and a sparse grid is used as an intermediate data structure to perform operations
such as pressure projection or viscous diffusion that run more efficiently on the grid. This
is shown schematically in Figure 5.8. Sparse grids are important because the grid data
representing a liquid typically covers a highly irregular or highly localized region of space.
In addition to the algorithms discussed above that must run efficiently on a grid (diffusion,
pressure projection), we also need to consider efficient methods for transferring information
between the particle and grid representations of fields like velocity.

130 Multithreading for Visual Effects

FIGURE 5.6: Parallel speedup for the FFT-based Poisson solver
(top) and MG Poisson solver (bottom) for various grid resolutions.

Fluids: Simulation on the CPU 131

FIGURE 5.7: (Top) Surface details of a simulated liquid integrated
with a surrounding procedural ocean surface, and (bottom) produc-
tion shot from The Croods with character integration and final light-
ing [9]. (See Color Insert.)

The mathematical model for liquids is identical to the equations of motion given in
Equations (5.4)–(5.5), but the time integration algorithm is quite different. We start with a
set of particles with known positions and velocities (xp, ~up) representing the current state
of the liquid. We then compute the corresponding values on a grid:

~um =
N
∑

p=1

W (xm − xp)~up, (5.18)

where W is a smoothing kernel. In practice, W will be compact so each particle will only
influence a small set of neighboring grid points, and is often implicitly tied to the voxel size
h of the grid. We then run similar stages as above except for velocity advection:

~u(0) = ~um, (5.19)

~u(1) = ~u(0) +∆t ~Fn, (5.20)

~u(2) = ~u(1) −∆t
1

ρ
∇p, (5.21)

132 Multithreading for Visual Effects

FIGURE 5.8: Schematic of the data structure used for liquid simula-
tions. We maintain a hybrid data structure using both particle data
(xp, �up) and sparse grid data (xm, �um), where h is a fixed voxel size.

�u(3) = �u(2) + ν∆t∇2�u(3)
− γ∆t�u(3). (5.22)

Finally, we add the interpolated velocity difference ∆U = �u(3)
− �u(0) to the velocity at

each particle position and use an ordinary differential equation solver to get new particle
positions, taking into account any collisions or other desired particle behaviors.

In the above time integration algorithm we still need to solve elliptic equations for the
pressure and viscous diffusion steps. However, these will now need to be solved on a highly
irregular domain with more complex boundary conditions than we considered before. In our
internal implementation we use CG iteration with an Incomplete Cholesky preconditioner
for these elliptic systems [6]. This has limited parallelism, but for moderate resolution this
is not the bottleneck for performance. In our internal implementation with systems having
a grid resolution of N = O(106) particles, pressure projection only represents about 15%
of the total simulation time. For higher resolution this may not be the case, and other
techniques based on CG or MG preconditioning may be preferred [45].

5.3.3.1 Parallel Point Rasterization

Evaluating Equation (5.18) turns out to be the performance bottleneck in our liquid
solver, representing about 40% of the overall simulation time. We refer to this problem as
point rasterization or point splatting. The general problem is to compute the interpolation
of some field value φp defined at irregular particle locations xp onto the regular grid points
xm:

φm =
N∑

p=1

W (xm − xp)φp.

We can implement this method in two ways, which we will refer to as gather or scatter based
on the pattern of data access.

The gather approach is to iterate over the grid points, find the overlapping particles
based on the specific choice of W , and then sum their contributions exactly as written
above. We gather the value of several particle locations into a single grid point. If we know

Fluids: Simulation on the CPU 133

the location of each grid point then we should be able to compute the field value φm

in parallel with no locking. There are a few challenges with this approach. If the grid is
sparse and created dynamically from the current set of particles, then we may not know the
necessary grid points in advance. Even if we know the grid points, we need a fast method to
locate all nearby particles. This can be implemented using an acceleration structure such as
a k-dimensional tree, but we need to either construct or update this acceleration structure at
the beginning of each time step. We can write the pseudocode for this operation as follows:

for each grid point m:

for each particle i in neighborhood(x_grid[m]):

phi_grid[m] += W(x_grid[m] - x_pa[i]) * phi_pa[i]

The scatter approach is to iterate over the particles, find the overlapping grid points, and
then sum the contribution of the particle into each grid point. We scatter the contribution of
each particle onto all overlapping grid points. This has several advantages. Computing the
location of the overlapping grid points is trivial, usually some fixed number of grid points
along each axis depending on W . We do not need to construct or maintain an acceleration
data structure. However, many nearby particles can contribute to the same grid points, so
we need some strategy for either separating particles to prevent overlap or locking access
to the grid values to prevent overwriting previous results. We can write the pseudocode for
this operation as follows:

for each particle i:

for each grid point m in neighborhood(x_pa[i]):

phi_grid[m] += W(x_grid[m] - x_pa[i]) * phi_pa[i]

The inner loop in these two approaches is the same, but the order of the outer loops
is reversed and the implications for good parallel performance are dramatically different.
Because they can be implemented with minimal locking, implementation patterns based on
gather are generally preferred for parallel computing [46]. However, in this case we have an
elegant implementation of the scatter approach using TBB and OpenVDB.

The basic strategy is to create a separate sparse grid for each thread and rasterize a
subrange of particle velocities into that grid, then use a binary reduction to combine results
from each subrange into a single output. This is shown schematically in Figure 5.9, where
we illustrate rasterizing a subrange of particles on two independent threads. As mentioned
above, OpenVDB supports fast operations to combine grids that take advantage of its tree
structure. The reduction can be performed with minimal work in areas of the grids that
do not overlap, and areas that do overlap the reductions can still be processed pair-wise
in parallel. The OpenVDB library provides optimized implementations of various reduction
kernels to support these types of operations.

We can express the entire operation using a simple TBB reduction. Here is the parallel
implementation of the point rasterization algorithm for particle velocities:

class PaToGrid

{

const PaList& mPa; // Input locations and velocities

VectorGrid& mV; // Output grid velocities

public:

PaToGrid(const PaList& pa, VectorGrid& v)

: mPa(pa), mV(v) {}

PaToGrid(const PaToGrid& other, tbb::split)

134 Multithreading for Visual Effects

: mPa(other.mPa), mV(other.mV.copy()) {}

// Rasterize particle velocities into grid v

void operator()(const tbb::blocked_range<size_t>& r)

{

for (size_t i = r.begin(); i < r.end(); ++i) {

const Vec3s pos = mPa.getPos(i);

const Vec3s vel = mPa.getVel(i);

scatter(mV, pos, vel);

}

}

// Merge grids from separate threads

void join(const PaToGrid& other) {

openvdb::tools::compSum(mV, other.mV);

}

};

// Execute particle rasterization

PaToGrid op(pa, v);

tbb::parallel_reduce

(tbb::blocked_range<size_t>(0, pa.size()), op);

Note that we have hidden the inner rasterization loop (the loop over grid points) in the func-
tion scatter(). The implementation details are not important to understand the parallel
implementation. The function openvdb::tools::compSum() is a built-in reduction method

FIGURE 5.9: Schematic of parallel point rasterization into separate
grids for threads T0 and T1, and then a final reduction to combine
the results. In OpenVDB, areas with no overlap on separate threads
can be combined without any data copies, but even overlapping areas
can be processed pair-wise in parallel.

Fluids: Simulation on the CPU 135

that combines two grids by summing the values of any overlapping grid points. The above
approach allows the rasterization to execute without the need for any locks.

Performance will also be affected by the choice of the smoothing kernel W . We will
consider two of the common smoothing kernels defined in the literature: a low-order B-
spline (BSP2) and the M ′

4 function (MP4) [47]. The BSP2 kernel is defined as

B2 =

{

0 if r > 1
1− r if 1 ≥ r

where r = |xm−xp|/h is the normalized distance from the particle to the grid point. Using
this kernel, a particle only affects only the neighboring 2× 2× 2 = 8 grid points. The MP4
kernel is defined as

M ′

4 =

0 if r > 2
1
2 (2− r2)(1− r) if 1 ≤ r ≤ 2
1− 5

2r
2 + 3

2r
3 if 1 ≥ r

.

Using this kernel, a particle affects 4×4×4 = 64 grid points and each kernel weight is more
expensive to compute. These kernels provide different levels of accuracy for interpolating
particle data onto the grid. In general, more accurate kernels require spreading particle
contributions over a wider set of grid points. These kernels are interesting to compare
because of the differences in arithmetic complexity associated with processing each particle.

Figure 5.10 shows speedups for a benchmark problem with N = 446 million points
rasterized into a grid with a final effective resolution of more than 8003. The particle posi-
tions are randomly distributed within a spherical region with an average overlap of about
10 particles per voxel, similar to the target density used for liquid simulations. Note that
the scaling for the MP4 kernel is significantly better (f = 0.04) than the simpler BSP2
kernel (f = 0.18), a result of the higher arithmetic complexity associated with this kernel.
The BSP2 kernel is limited by memory bandwidth and only achieves a maximum speedup
of S ≈ 5, which is also about the maximum speedup we observe for our internal liquid
simulation framework using BSP2. Scalability can impact the choice of which approach is
ultimately more efficient. For example, at P = 1 the simpler BSP2 kernel runs 10× faster
than MP4, but at P = 32 they practically break even.

Parallel scalability may determine the optimal method to use for simulation algo-
rithms. Serial algorithms that seem impractical because of higher arithmetic com-
plexity may have better scalability and ultimately be the best choice for multicore
systems.

The above benchmark, with points scattered randomly, is a worst case for this algorithm
because it maximizes the amount of overlap in the independent grids created on each thread.
It should be possible to improve performance by ordering particles to minimize overlap, but
the overhead of maintaining particle order must be balanced against any improvement in
parallel scalability. Exploring these options as well as comparing to equivalent gather-type
implementations is a subject of future work.

136 Multithreading for Visual Effects

FIGURE 5.10: Speedup curve for velocity rasterization from N =
446 million points into a N = 8363 (effective resolution) sparse grid
using a high-order (MP4) and low-order (BSP2) kernel. Runtimes
are measured on a workstation with dual Intel Xeon Processors E5-
2687W (20M Cache, 3.10 GHz) using up to 16 computational threads.

5.4 Summary

We have reviewed some of the history and current hardware choices driving algorithm
and tool development at DreamWorks Animation. We presented case studies of compu-
tational kernels for fluid simulation to illustrate the relationship between hardware, algo-
rithms, and data structures.

Chapter 6

Bullet Physics: Simulation with OpenCL

Erwin Coumans

Bullet Physics

6.1 Introduction . 138
6.1.1 Rigid Body Dynamics Simulation . 138
6.1.2 Refactoring before the Full Rewrite . 139

6.2 Rewriting from Scratch Using OpenCL . 140
6.2.1 Brief OpenCL Introduction . 140
6.2.2 Exploiting the GPU . 142
6.2.3 Dealing with Branchy Code/Thread Divergence . 143
6.2.4 Serializing Data to Contiguous Memory . 144
6.2.5 Sharing CPU and GPU Code . 144
6.2.6 Precompiled Kernel Caching . 145

6.3 GPU Spatial Acceleration Structures . 145
6.3.1 Reference All Pairs Overlap Test . 146
6.3.2 Uniform Grid . 147
6.3.3 Parallel 1-Axis Sort and Sweep . 148
6.3.4 Parallel 3-Axis Sweep and Prune . 149
6.3.5 Hybrid Approaches . 150
6.3.6 Static Local Space AABB Tree . 150

6.4 GPU Contact Point Generation . 151
6.4.1 Collision Shape Representation . 151
6.4.2 Convex 3D Height Field Using Cube Maps . 152
6.4.3 Separating Axis Test . 153
6.4.4 Sutherland Hodgeman Clipping . 153
6.4.5 Minkowski Portal Refinement . 154
6.4.6 Contact Reduction . 154

6.5 GPU Constraint Solving . 155
6.5.1 Equations of Motion . 155
6.5.2 Contact and Friction Constraint Setup . 155
6.5.3 Parallel Projected Gauss-Seidel Method . 156
6.5.4 Batch Creation and Two-Stage Batching . 157
6.5.5 Non-Contact Constraints . 158
6.5.6 GPU Deterministic Simulation . 159
6.5.7 Conclusion and Future Work . 159

137

138 Multithreading for Visual Effects

6.1 Introduction

Bullet Physics is an open source real-time 3D collision detection and multi-physics li-
brary, in particular, for rigid body simulation. Bullet is being used by game developers and
movie studios, and is being integrated into 3D modeling and authoring tools such as Maya,
Blender, Cinema 4D Houdini, and many others. In the visual effects industry it is common
to use large-scale rigid body simulation especially in destruction scenes, such as in Figure
6.1.

Bullet 3.x includes a rigid body simulator that is written from scratch to execute entirely
on the GPU using OpenCL. This chapter discusses the efforts to make the simulator suitable
for massively multithreaded systems such as GPUs. It is also possible to execute certain
stages on a CPU and other stages on an OpenCL GPU.

Although OpenCL is used, most of it can be applied to projects using other GPU
compute languages, such as NVIDIA CUDA and Microsoft DirectX11 Direct Compute. As
seen in Figure 6.21 (see Color Insert), a high-end desktop GPU can simulate a hundred
thousand stacked rigid bodies at interactive rates of 10 to 30 frames per second. The full
source code is available as open source at http://github.com/erwincoumans/bullet3.

Before this rewrite, we have been optimizing the single threaded performance of Bullet
2.x and refactoring the existing code toward multithreading for multicore CPU. We will
briefly discuss those efforts, before going into detail about the rewrite from scratch.

6.1.1 Rigid Body Dynamics Simulation

The dynamics of rigid bodies can be simulated by computing the velocities and positions
according to several laws of physics. In this chapter we focus on moving objects in the range
of a few millimeters to a few meters, where the Newton laws are applicable as described
in 6.5.1. The simulation of rigid bodies is trivial for the special case of a few bodies freely
floating in space without object interaction and external forces: we would just update the
world transform for each object in parallel. In general, we are interested in object interaction,
such as resting and colliding contacts between bodies. Figure 6.2 shows some stages that a
rigid body simulator executes.

Aside from the update of object transforms, each stage has its own challenges moving
from single threaded execution to parallel execution. A naive approach could compute all
O(n2) potential object-object interactions, but only a few of those interactions lead to
actual contact points. To determine the potential number of overlapping pairs of objects
we make use of spatial acceleration structures as discussed in Section 6.3. For each pair

FIGURE 6.1: Destruction simulation.

Bullet Physics: Simulation with OpenCL 139

FIGURE 6.2: Rigid body pipeline.

of potential overlapping objects we determine if the objects are actually overlapping and
generate contact points. Section 6.4 discusses how we deal with multithreaded contact point
generation on the GPU. Finally, Section 6.5 deals with the handling of contacts through
contact constraints, as well as joint constraints between objects on the GPU.

6.1.2 Refactoring before the Full Rewrite

Bullet 2.x is written in modular C++ and its API was primarily designed to be flexible
and extendible, rather than optimized for performance. The C++ API allows users to derive
their own classes and to select or replace individual modules that are used for the simulation.
A lot of refactoring work has been done to optimize its single-threaded performance, without
changing the API and public data structures.

• Reduce the amount of dynamic memory (de)allocations, for example, using memory
pools

• Use efficient acceleration structures to avoid expensive computations
• Incrementally update data structures instead of computing from scratch
• Precompute and cache data so that results can be reused
• Optimize the inner loops using SSE and align data along cache lines

Around 2006, we started optimizing Bullet 2.x for Playstation 3 Cell and its SPU pro-
cessors. This required some refactoring and we reused some of this effort toward a basic
multithreaded version that was cross-platform using pthreads and Win32 Threads.

We created several tests to benchmark the performance of CPU, multithreaded CPU,
and Cell SPUs. Each of the tests highlights the performance of different parts of the rigid
body simulator.

Three thousand falling boxes test the performance of the box-box collision detection and
the contact constraint solver. One thousand stacked boxes test contact quality in collision
detection and constraint solver, as well as optimizations for near-resting situations. One

140 Multithreading for Visual Effects

FIGURE 6.3: Obsolete CPU performance benchmarks.

hundred and thirty-six ragdolls test the constraint stability and performance, as well as
capsule primitive collision detection. One thousand convex hulls test the convex polyhedra.
Unlike primitives, such as box and sphere, convex hulls are harder to optimize. One thousand
convex hulls against a concave triangle mesh: concave triangle meshes are usually used for
3D world environments, buildings, bridges, and so forth.

Those older benchmarks are not well suited for the OpenCL GPU rigid body pipeline:
there is not enough work to keep all the GPU threads busy and the overhead of the OpenCL
launch will negate the benefits. Therefore, we created larger-scale benchmarks, two of them
are shown in Figures 6.21 and 6.22 (see Color Inserts for both).

6.2 Rewriting from Scratch Using OpenCL

Once we figured out that the API, algorithms, and data structures were not suitable for
GPU we started a pure OpenCL implementation from scratch.

6.2.1 Brief OpenCL Introduction

With OpenCL, we can target not only devices such as GPUs, but CPUs as well. The
OpenCL device is initialized from a host, using the CPU and main memory running the
operating system as shown in Figure 6.4.

The OpenCL code that runs on the device is called a kernel. OpenCL kernel code looks
very similar to regular C code. Such kernel code needs to be compiled using a special
compiler, that is usually provided by the device vendor. This is similar to graphics shader
compilation, such as GLSL, HLSL, and Cg.

FIGURE 6.4: Host and OpenCL device.

Bullet Physics: Simulation with OpenCL 141

To get access to OpenCL we need at minimum the OpenCL header files, and some way
to link against the OpenCL implementation. Various vendors such as AMD, Intel, NVIDIA,
and Apple provide an OpenCL software development kit, which provides those header files
and a library to link against. As an alternative, we also added the option to dynamically
load the OpenCL dynamic library and import its symbols at runtime. This way, the program
can continue to run without using OpenCL in case the OpenCL driver is missing.

Let’s start with a very simple example (Listing 6.1) that shows the conversion of some
simple code fragment into an OpenCL kernel.

typedef struct
{

float4 m_pos;
float4 m_linVel;
float4 m_angVel;
int m_collidableIdx;
float m_invMass;

} Body;

void integrateTransforms (Body* bodies , int numBodies , float timeStep)
{

for (int nodeID = 0;nodeID <numBodies;nodeID ++)
{

if(bodies[nodeID]. m_invMass != 0.f)
{

bodies[nodeID]. m_pos += bodies[nodeID]. m_linVel * timeStep;
}

}
}

Listing 6.1: C99 code snippet for integrateTransforms.

When we convert this code into an OpenCL kernel it looks like Listing 6.2:

__kernel void integrateTransformsKernel(__global Body* bodies ,
const int numBodies , float timeStep)
{

int nodeID = get_global_id (0);
if(nodeID < numBodies && (bodies[nodeID]. m_invMass != 0.f))
{

bodies[nodeID]. m_pos += bodies[nodeID]. m_linVel * timeStep;
}

}

Listing 6.2: OpenCL kernel for integrateTransforms.

We need to write some host code in order to execute this OpenCL kernel. Here are
typical steps for this host code:

• Initialize OpenCL context and choose the target device
• Compile your OpenCL kernel program
• Create/allocate OpenCL device memory buffers
• Copy the Host memory buffer to the device buffer
• Execute the OpenCL kernel
• Copy the results back to Host memory

The OpenCL API is very low level, so we created a simple wrapper to match our coding
style and to make it easier to use. This was a good learning experience. We also added
additional features for debugging, profiling, and unit testing in the wrapper. This wrapper
does not hide the OpenCL API, so at any stage we can use plain OpenCL.

142 Multithreading for Visual Effects

FIGURE 6.5: Typical GPU architecture.

6.2.2 Exploiting the GPU

The basic integrateTransforms OpenCL kernel in Listing 6.2 is embarrassingly parallel:
there are no data dependencies between the bodies. Many of the algorithms in Bullet 2.x
have some data dependencies so they cannot be trivially parallelized.

A high-end desktop GPU has thousands of cores that can execute in parallel, so you
need to make an effort to keep all those cores busy. Those cores are grouped into Compute
Units with typically 32 or 64 cores each. The cores inside a single Compute Unit execute
the same kernel code in lock-step: they are all executing the same instruction, like a wide
SIMD unit. The work that is performed by executing a kernel on a single core is called a
Work Item in OpenCL. To make sure that multiple work items are executed on the same
Compute Unit, you can group them into a Work Group. The hardware is free to map Work
Groups to Compute Units, and this makes OpenCL scalable: if you add more Compute
Units, the same program will run faster. The drawback is that there is no synchronization
between Compute Units, so you need to design your algorithm around this. The host can
wait until all Work Groups are finished before starting new work.

A typical GPU device contains multiple Compute Units, where each Compute Unit can
execute many threads, or work items, in parallel. For an AMD GPU there are usually 64
threads executed in parallel for each Compute Unit, we call this a wavefront. On NVIDIA
GPUs there are usually 32 threads or work items executed in parallel for each Compute
Unit, they call this parallel group of 32 threads a warp.

Each thread, or work item, has private memory. Private Memory on an AMD Radeon
HD7970 GPU is a 64kb register file pool, each work item gets some registers allocated.
Each Compute Unit has shared local memory, that can be accessed by all threads in the
Compute Unit. Shared Local Memory, or LDS in AMD terminology, is 64kb on an AMD
Radeon HD7970. Local atomics can synchronize operations between threads in a Compute
Unit on shared local memory.

The Global Device Memory, which is usually onboard GDDR5 memory, can be accessed
by all Compute Units. You can use global atomic operations on Global Device Memory.

Shared Local Memory is usually an order of magnitude faster than global device memory,
so it is important to make use of this for an efficient GPU implementation.

Bullet Physics: Simulation with OpenCL 143

The programmer will distribute work into work groups, and the GPU has the respon-
sibility to map the Work Groups to Compute Units. This is useful to make the solution
scalable: we can process our work groups on small devices such as cell phones with just a
single or few Compute Units, or we can execute the same program on a high-end discrete
GPU with many Compute Units.

When implementing software for GPU, a lot of algorithms can benefit from parallel
implementations of sort, count, and sum operations.

6.2.3 Dealing with Branchy Code/Thread Divergence

Because all work items in a Compute Unit execute in lock step, this means that code
that has a lot of conditional statements can become very slow and inefficient.

__kernel void branchyKernel (. . .)
{

if (conditionA)
{

someCodeA (. . .);
} else
{

someCodeNotA (. . .);
}

}

Listing 6.3: Conditionals leading to thread divergence.

If not all the work items in a Compute Unit have the same value for conditionalA then
they have to wait for each other to finish executing someCodeA and someCodeB.

On the other hand, if all work items in the Compute Unit have the same value for
conditionA, then only one of the two someCode* sections will be executed, and there is no
performance penalty for the if-statement.

If we know the conditionalA before executing the OpenCL kernel, we can sort the work
items based on this conditionalA. This way, it is more likely that all the work items with a
similar conditionalA will be processed in the same Compute Unit. In Bullet 3 we could use
two parallel radix sorts on the overlapping pair array, based on each collision shape type
(shapeTypeA and shapeTypeB) in a pair:

__kernel void primitiveContactsKernel(__global int2 pairs ,
_global b3RigidBody* rigidBodies , __global b3Collidable* collidables ,
const int numPairs)

{
int nodeID = get_global_id (0);
if (nodeID >= numBodies)

return;
int bodyIndexA = pairs[i].x;
int bodyIndexB = pairs[i].y;
int collidableIndexA = rigidBodies[bodyIndexA]. m_collidableIdx;
int collidableIndexB = rigidBodies[bodyIndexB]. m_collidableIdx;
int shapeTypeA = collidables[collidableIndexA]. m_shapeType;
int shapeTypeB = collidables[collidableIndexB]. m_shapeType;
if (shapeTypeA == SHAPE_PLANE && shapeTypeB == SHAPE_SPHERE)

return contactPlaneSphere (. . .);
if (shapeTypeA == SHAPE_SPHERE && shapeTypeB == SHAPE_SPHERE)

return contactSphereSphere (. . .);
. . .

}

Listing 6.4: Primitive contact computation kernel.

In some algorithms, we only know the value of the conditional during the kernel exe-
cution. One example is the following algorithm, computing the contacts between a pair of
convexcollision shapes:

144 Multithreading for Visual Effects

bool hasSeparatingAxis = findSeparatingAxis(objectA ,objectB)
if (hasSeparatingAxis)
{

clipContacts(objectA ,objectB);
}

Listing 6.5: Separating axis and contact clipping.

In this case, we can break up the algorithm into two stages, and first execute the find-
SeparatingAxis stage for all objects. Then we execute the clipContacts stage, only for the
objects that have a separating axis. The output of the first stage could be some array of
Boolean values. We would like to discard all the work items that have a negative value.
Such stream compaction can be done using a parallel prefix scan. Essentially, this shrinks
the array and only leaves the positive elements. Then we can use this array as input for the
next stage of the pipeline.

6.2.4 Serializing Data to Contiguous Memory

In the Bullet 2.x API, the user is responsible for allocating objects, such as collision
shapes, rigid bodies, and rigid constraints. Users can create objects on the stack or on the
heap, using their own memory allocator. You can even derive your own subclass, changing
the data size. This means that objects are not stored in contiguous memory, which makes
it hard or even impossible to transfer to the GPU. In the new API, object allocation and
deallocation is handled internally by the system.

6.2.5 Sharing CPU and GPU Code

When implementing code for GPU, it is easiest to first create a working CPU prototype
and then port this code to an OpenCL kernel. Once this is done, it is useful to validate the
OpenCL kernel with the CPU reference version, making sure that the output is the same.
Often the host prototype of the code works fine, while there are issues with the OpenCL
kernel. It helps to make it easier to track down the issues by sharing as much code between
the prototype and the OpenCL kernel.

Sharing code between regular CPU and OpenCL kernels becomes easier once most or all
of the data structures are shared. Rigid body simulation and collision detection involves a
lot of linear algebra operations on 3D vectors, quaternions, and matrices. This means that
many data structures rely on such vector math classes. OpenCL has some built-in support
for this including the float4, data type and operators such as the dot, cross product on
float4, and many others. It helps to implement equivalent vector types such as float4 and
its operators in your CPU math library so that the same code can run on the GPU: it allows
development and debugging of the same implementation on the CPU.

Our CPU simulator is largely written in C++ using classes. In order to share data
structures between CPU and OpenCL, we use shared C struct definitions. Those shared
struct’s all exist in header files that exist in separate shared folders. Code that we want to
share between OpenCL kernels and CPU will be written in the same header files that can
be included from both the CPU and OpenCL. For simplicity, atomic operations are moved
out of the shared code wherever possible.

Sharing most of the data structures and implementation is very helpful to track down
issues, because debugging OpenCL kernels on GPU is not well supported or not supported at
all on many OpenCL platforms. The AMD CodeXL tool suite allows kernel level debugging
and profiling on GPU, see the screenshots in Figures 6.23 and 6.24 (see Color Inserts for

Bullet Physics: Simulation with OpenCL 145

both). The NVIDIA NSight™ tool has no OpenCL debugging but it can perform OpenCL
profiling on GPU. Intel provides an OpenCL debugger and profiler for CPU and GPU as
well. Some complex kernels with atomic operations, loops, and access to local data store can
cause problems for OpenCL debuggers. We found it very convenient to debug the shared
kernel code on CPU using the regular (non-OpenCL) Microsoft Visual Studio debugger.

6.2.6 Precompiled Kernel Caching

OpenCL kernel compilation happens at runtime, after the main program that uses the
kernel is launched. There are several drawbacks: it takes a considerable amount of time
to perform the compilation, and the compilation may fail. It is important to reduce the
runtime kernel compilation time, both for the developer and for the end user who uses the
program. In our case, we have almost 100 OpenCL kernels, and recompiling them all takes
from seconds to minutes, which is dependent on the OpenCL platform.

OpenCL provides a mechanism that allows to get access to the compiled binary program
and reuse the binary program next time to avoid compilation time. The precompiled binary
program is only valid on the OpenCL platform and device on which it is was compiled. Even
an OpenCL driver update may break compatibility with the precompiled binaries. We store
the name of the platform, device, and driver version as part of the cached binary program
name. This also enables caching of precompiled binary programs of different devices and
platforms on the same machine.

If the original kernel is modified, we need a mechanism to detect that the precompiled
binary program is out-of-date. The file date of the original OpenCL kernel is compared with
the cached precompiled binary, and if it is out-of-date, the kernel is recompiled.

We do have the option to embed the OpenCL kernel source code as ascii strings in the
main executable. This makes it easier to embed the library in another application: there is
no need to worry where the search path is for the kernels. OpenCL kernels can include other
header files, such as our shared data structures and implementation. If the kernel source is
embedded in an executable, we need to deal with the include directives. Our build system
includes a simplified C++ parser that recursively traverses the include files and embeds all
code in a single kernel file.

It often happens that an OpenCL kernel compiles and runs fine on one OpenCL platform
and device, while it fails to compile or run on another one. This adds a lot of time to test and
fix the OpenCL kernel for each new combination of OpenCL platform, device, and driver
version. We do not have a solution for this at the moment, but there is ongoing work toward
compiling the OpenCL kernels in intermediate byte code that can be processed by various
OpenCL runtimes. This work is documented as part of the Standard Portable Intermediate
Representation (SPIR) specification [27]. SPIR is a portable, non-source representation for
devices programs. It enables application developers to avoid shipping kernel source and
to manage the proliferation of devices and drivers from multiple vendors. Future OpenCL
runtimes could load this SPIR byte code and avoid such kernel compilation issues.

6.3 GPU Spatial Acceleration Structures

Collision detection and computing contact information between objects can be very
computationally expensive. We can use a cheaper bounding volume overlap test to avoid
doing the expensive test. If the bounding volumes of objects are not overlapping, there is no

146 Multithreading for Visual Effects

FIGURE 6.6: Axis aligned bounding box.

contact between those objects. The axis aligned bounding box, or AABB, provides a good
trade-off between performance, memory use, and bounding volume fit as shown in Figure 6.6.

Computing the world space AABB for an object involves taking the maximum and
minimum extents of the object in the X, Y, and Z directions. Computing such maximum
and minimum extents is a common operation in collision detection: the support map. For
basic collision shapes, such as sphere or box, there are constant time closed form analytical
solutions. For convex shapes and concave triangle meshes, we can iterate over all vertices
to compute the minimum and maximum projection. This can become an expensive compu-
tation, so instead of iterating over all vertices, we can derive the world space AABB from
a precomputed local space AABB and the world transform. The CPU code and OpenCL
kernel to compute the world space AABB is embarrassingly parallel.

Given the updated world space AABBs and object identifiers, we need to compute the
potential overlapping pairs of objects. Before going into details about spatial acceleration
structures to speed up this search of potential overlapping pairs, it is useful to discuss a
brute-force solution.

6.3.1 Reference All Pairs Overlap Test

A brute-force algorithm can simply iterate over all pairs of AABBs and perform an
AABB overlap test in world space. It is useful to implement such a test as a reference
implementation to test other algorithms, both for performance and for correctness.

void computePairsCpuBruteForce(const btAabbCL* aabbs , int4* pairsOut ,
int* pairCount , int numObjects , int maxPairs)

{
*pairCount = 0;
for (int i=0;i<numObjects;i++)
{

for (int j=i+1;j<numObjects;j++)
{

if (testAabbAgainstAabb (&aabbs[i],&aabbs[j]))
{

int2 newpair;
newpair = i;
newpair = j;
if (* pairCount < maxPairs)
{

pairsOut [* pairCount ++] = newpair;
}

}
}

}

Listing 6.6: Compute pairs on CPU, brute force.

We can easily convert this brute-force test to an OpenCL kernel by removing the outer
loop iteration. Multiple work items can try to append a new pair to the global array of over-
lapping pairs, so we need to take care of synchronization. For this reference implementation

Bullet Physics: Simulation with OpenCL 147

we use global OpenCL atomic operations. In general, it is best to reduce the use of global
atomic operations: it can become a bottleneck. In Section 6.3.3 the sort and sweep broad
phase, we show how to use local memory and local atomic operations instead.

__kernel void computePairsBruteForceKernel(__global const btAabbCL* aabbs ,
volatile __global int4* pairsOut , volatile __global int* pairCount ,
int numObjects , int axis , int maxPairs)
{

int i = get_global_id (0);
if (i>= numObjects)

return;
for (int j=i+1;j<numObjects;j++)
{

if (testAabbAgainstAabb (&aabbs[i],&aabbs[j]))
{

int2 myPair;
myPair.x = aabbs[i]. m_minIndices [3];
myPair.y = aabbs[j]. m_minIndices [3];
int curPair = atomic_inc (pairCount);
if (curPair <maxPairs)
{

pairsOut[curPair] = myPair;
}

}
}

}

Listing 6.7: Compute pairs OpenCL kernel, brute force.

Moving the single-core sequential CPU implementation to an OpenCL kernel that is
processed on GPU using many threads shows a large performance gain. We created a bench-
mark that measures the performance of the pair tests. This is useful to compare various
algorithms. The benchmark is also useful to see the impact of certain aspects of the pair
tests:

• The total number of objects
• The difference in object sizes
• The percentage of moving objects versus non-moving objects
• The kind of motion of moving objects: coherent or incoherent motion
• The speed/velocity of moving objects
• Impact of adding or removing objects
• Memory usage
• Computation from scratch versus tracking of changes of pairs

The simplicity of the brute-force algorithm reduces the impact of those conditions: the
worst case is close to the best case. Ultimately, every algorithm will have a worst case of
O(n2) for n objects, if all objects are overlapping, but this case is very unlikely in practice.

In addition to the pair test, it can be important if the acceleration structure can support
other queries such as a ray test or swept volume overlap test.

6.3.2 Uniform Grid

The uniform grid is a spatial acceleration structure that is very suitable for GPU. World
space is subdivided into cells of equal size, and objects are stored in the cell that contains
its center position. As long as the size of collision shapes is not larger than the cell size, we
only need to test against other objects in the same cell, as well as neighboring cells.

The idea is to perform the following operations for each object in parallel:

• Assign its cell index
• Perform an AABB test against objects in its own and neighboring cells

148 Multithreading for Visual Effects

FIGURE 6.7: Uniform grid.

Some work is involved in making it efficient to iterate over objects in its own cell and
neighboring cells. Once each object has its cell index assigned, we can sort all objects based
on the cell index. We can use a parallel radix sort for this sort. Each cell will store an index
to the first object in its cell and the number of objects. This information can be gathered
using a prefix scan on the sorted object array. All operations to build and use the uniform
grid are embarrassingly parallel so the performance is very good on GPU. We can use it as
a reference for other algorithms. The main limitations of the uniform grid is that it cannot
deal with objects that are larger than the cell size.

6.3.3 Parallel 1-Axis Sort and Sweep

To overcome the object size limitation of the uniform grid, it is possible to use a different
spatial sort. One way is to project the AABB begin- and end-points onto a single world
space axis. Each object can search for an AABB overlap in an interval that overlaps its own
begin- and end-points as shown in Figure 6.8.

The actual implementation of the 1 axis sort and sweep is similar to the brute-force
one described in detail in the book, Real-Time Collision Detection [23]. Instead of sweeping
along the entire axis, we can terminate once we encounter a begin- or end-point that is larger
than our own extents on this axis. We have made various improvements, also documented
in more detail by Liu et al. [42]. All work items in a work group access similar data, so
we can cache it in local memory. Every time a new pair is added, we need to use a global
atomic to append it to the global array of potential overlapping pairs. We can reduce the
amount of global atomic operations by caching all new pairs within a work group in local
memory, and appending them to global memory in a batch.

FIGURE 6.8: Projected AABB intervals.

Bullet Physics: Simulation with OpenCL 149

FIGURE 6.9: Sequential incremental 3-axis sweep and prune.

6.3.4 Parallel 3-Axis Sweep and Prune

The sequential 3-axis sweep and prune broad phase pair search algorithms incrementally
updates the sorted AABBs for each of the 3 world axes in 3D as shown in Figure 6.9. We sort
the begin and end-points for each AABB to their new position, one object at a time, using
swap operations. We incrementally add or remove pairs during those swap operations. This
exploits spatial and temporal coherency: in many cases objects do not move a lot between
frames. This algorithm is difficult to parallelize due to data dependencies: globally changing
data structure would require locking.

We modify the 3D axis sweep and prune algorithm to make it more suitable for GPU,
while keeping the benefits of the incremental pair search during the swaps. Instead of per-
forming the incremental sort and swap together, we perform the sorting in parallel as one
stage, and perform the swaps in a separate stage using read-only operations.

We maintain the previous sorted axis and compare it with the updated sorted axis.
Each object can perform the swaps by traversing the previous and current sorted elements,
without modifying the data as shown in Figure 6.10.

Although unusual, we can detect rare degenerate cases that would lead to too many
swaps in the 3-axis sweep and prune (SAP) algorithm, and do a fallback to another broad
phase. Such fallback is not necessary in most practical simulations. Still, generally it can

FIGURE 6.10: Parallel 3-axis sweep and prune.

150 Multithreading for Visual Effects

FIGURE 6.11: Binary AABB tree.

0

1

2 3

4

5 6

7

8

9 10

11 12

be a good idea to mix multiple broad phase algorithms to exploit the best properties out
of each broad phase.

6.3.5 Hybrid Approaches

While the 1-axis and 3-axis sort and sweep acceleration structures deal well with various
sized objects, the uniform grid has better performance. It is possible to use a hybrid of
multiple acceleration structures, and assign small objects to the uniform grid and large
objects to another suitable acceleration structure. In addition, overlap tests between static
non-moving objects is typically not required, so we can keep the static non-moving objects
separate in order to avoid the static versus static tests.

The GPU is very suitable for the uniform grid, while the CPU can deal better with
complex and branchy algorithms. In one of the earlier GPU rigid body prototypes we
implemented such a hybrid CPU-GPU algorithm. Work was partitioned in small and large
objects based on object size using a user-defined threshold. Overlap involving only small
objects was processed on GPU using a uniform grid, while overlap involving large objects
was processed on CPU using a dynamic AABB tree acceleration structure.

It is also possible to combine the uniform grid on GPU with the parallel 1-axis sort and
sweep, as in the paper “gSap: Real-Time Collision Culling of a Million Bodies on Graphics
Processing Units” [42]. In this work, the space is subdivided in a uniform grid with large
grid cells.

6.3.6 Static Local Space AABB Tree

So far, we have performed a single AABB overlap test between pairs of objects. This
works well if the objects have simple collision shapes such as convex hulls or basic primitives
like spheres, boxes, and capsules. When concave triangle mesh shapes or compound shapes
with many child shapes are involved, there is still room for further testing for individual
triangle or child shape overlap.

When a convex or compound shape collides against a concave triangle mesh, we perform
a bounding volume hierarchy (BVH) query using the world space AABB of the convex or
compound shape, against the precomputed AABB tree of the triangle mesh.

We optimized the AABB tree traversal to make it GPU-friendly. Instead of recursion,
we iteratively traverse over an array of nodes, by converting the tree in Figure 6.11 into a
flat array as shown in Figure 6.12.

We divide the BVH tree into smaller subtrees that fit in shared local memory, so they
can be processed by multiple threads in a work group. In order to fit more nodes in local
shared memory, we reduced the size of the nodes by quantization: converting the floating
point values into short indices. This reduced the size of a node to 16 bytes.

Bullet Physics: Simulation with OpenCL 151

FIGURE 6.12: Node array with skip indices.

struct b3QuantizedBvhNodeData
{

unsigned short int m_quantizedAabbMin [3];
unsigned short int m_quantizedAabbMax [3];
int m_escapeIndexOrTriangleIndex;

};

Listing 6.8: Quantized node structure.

Each leaf node in the tree represents a triangle in the concave triangle mesh. All over-
lapping pairs between a convex shape against a triangle are accumulated in an overlapping
pair array. The overlapping pair array is then processed the same way as the convex-convex
pairs from the broad phase, generating contact points.

6.4 GPU Contact Point Generation

6.4.1 Collision Shape Representation

The choice of collision shape representation has a big impact on performance, memory
use, and the ease of authoring. Therefore, it is important to pick the right collision shape
for each purpose. Convex shapes, such as sphere and box primitives or a convex hull of
points as shown in Figure 6.13, are a good choice when runtime performance is important.
Efficient algorithms exist for various collision queries such as closest distance computation
and contact point generation.

In cases where single convex shapes do not approximate the shape of an object well
enough, it is possible to use multiple convex shapes. Decomposing a complex shape into
multiple convex shapes is called convex decomposition. The decomposition of concave ge-
ometry into convex shapes is often performed manually, for example, by an artist using
a 3D authoring tool. Although automatic convex decomposition is an NP hard problem,
there are some software libraries that can perform approximate convex decomposition, for
example, the HACD library [37] as shown in Figure 6.14, which is included with the Bullet
Physics library.

Concave triangle meshes are often used to represent static world environment geometry
as shown in Figure 6.15.

FIGURE 6.13: Convex shapes.

O

152 Multithreading for Visual Effects

FIGURE 6.14: Convex decomposition.

FIGURE 6.15: Concave triangle mesh geometry.

There exist many different algorithms to check for overlap between convex shapes, some
of them apply to general convex shapes such as implicit spheres, capsules, and cylinders,
while other algorithms only apply to convex polyhedra.

6.4.2 Convex 3D Height Field Using Cube Maps

As modern GPUs have dedicated cube mapping hardware for fast queries, it can be
attractive to use this hardware for collision detection queries. In case the cube mapping
hardware is not exposed as an API to the developer, it is possible to efficiently implement
the query using OpenCL. We can compute contact points by using a dual representation
as shown in Figure 6.16, and then performing a query for each surface point on one object
against the cube map of the other object. This is also discussed in more detail in the chapter
“Collision Detection Shader Using Cube-Maps” in ShaderX5 [21].

An important benefit is that each query can be performed in parallel by the threads in
a work group. Furthermore, the cube map can be stored in shared local memory so that
all threads can perform fast read-only access. In order to be able to compute the contact
normal, we store the surface normal of the object in an additional cube map.

The performance of this algorithm is attractive especially because even complex ge-
ometry is automatically approximated. We can trade-off accuracy versus performance by
changing the resolution of the cube map and the number of surface points. A drawback of

Bullet Physics: Simulation with OpenCL 153

FIGURE 6.16: Dual representation: Surface points and cube map.

this algorithm is that artifacts due to the approximations can be noticeable, so we investi-
gated other convex-convex algorithms.

6.4.3 Separating Axis Test

Testing all possible separating axes is suitable for GPU: tests of individual axes can be
performed in parallel, and those tests are very similar. The directions to test are the face
normals of each object, as well as the cross-product between edge pairs of each object.

As long as the number of edges in each object is small, the test is very fast on GPU. If
the convex shape has a large number of edges, it can be impractical and too slow to perform
the SAT test for every edge-edge combination. Instead of performing the separating axis
test for all edge-edge combinations, we can approximate the tests by using a fixed number
of normal directions, evenly distributed over a unit sphere. Alternatively, we can compute
the separating normal using a different algorthm, such as GJK, EPA, or Minkowski Portal
Refinement (MPR) as we will show.

6.4.4 Sutherland Hodgeman Clipping

Once we determined that the objects are actually overlapping, the separating axis test
provides the maximum penetrating distance and the separating axis. We need to compute
the overlapping contact area. A Boolean operation would be an accurate way to compute the
overlapping volume, but it would suffer from low performance. One heuristic is to find two
suitable faces, one on each object, and perform a clipping operation to generate a contact
area as shown in Figure 6.17.

The OpenCL kernel for contact clipping ended up too large and complex for most
OpenCL devices to perform well. We had to split the clipping algorithm into stages where

FIGURE 6.17: Generating contact area by clipping faces.

154 Multithreading for Visual Effects

each stage executes its own kernel. The splitting introduced temporary data that is output
of the previous stage and input of the next stage. As we preallocated this temporary data,
we needed to make some estimate on the size, introducing some artificial limitations.

The heuristic of using a single clipping face from each object works well for low-polygon
shapes such as tetrahedra, cubes, and pyramids. In certain cases, such as nearly co-planar
faces, small, or degenerate faces, the heuristic can fail to generate contact points. It is
possible to use more than a single clipping face from each object, as described in the book,
Game Physics Pearls [4]. Instead, we implemented an additional algorithm called Minkowski
Portal Refinement.

6.4.5 Minkowski Portal Refinement

The Minkowski Portal Refinement algorithm [35] can compute the separating axis, pen-
etration depth, and deepest contact point more efficiently for complex convex hulls. Porting
the basic implementation to OpenCL ended up being trivial. The OpenCL kernel is still
more complex than most OpenCL devices can process, so we had to split up the algorithm
into multiple stages.

The Minkowski Portal Refinement algorithm provides a single contact point, penetration
depth and contact normal. A single contact point is often not sufficient to maintain a stable
resting pose.

One way to collect multiple points is using a contact cache. The idea is to maintain a
contact point cache for each overlapping pair of objects over multiple simulation frames.
Whenever we find a new contact point, we check if the point is already in the cache and
replace it or add the new point. Also, we need to make sure to remove points from the
cache that are not suitable anymore. To maintain a persistent contact cache, we keep a
contact cache index for each overlapping pair. Depending on the algorithm used to find the
overlapping pairs, we need to keep track of this index.

Another way of collecting multiple points is by combining MPR with contact clipping.
The performance of MPR is very attractive, in particular for complex convex shapes with
many vertices, faces, and edges.We can use MPR to compute the separating normal, instead
of using SAT, and then use the contact clipping algorithm. We found that in some cases
the contact normal generated by MPR is not the best separating normal. This becomes a
problem when using this normal for the contact clipping algorithm: when we pick the wrong
candidate faces to perform clipping, the contact points can have very deep penetration,
causing instability.

6.4.6 Contact Reduction

The contact clipping algorithm can generate a lot of contact points. For better perfor-
mance, we reduce the number of contacts between two convex polyhedra to a maximum
of four points. We always keep the contact point with the deepest penetration, to make
sure the simulation gets rid of penetrations. We keep three other contact points with maxi-
mum or minimum projections along two orthogonal axes in the contact plane. When using
the cube map approach, it is common to generate many contact points, so it is useful to
optimize the contact reduction for the GPU SIMD architecture within a Compute Unit
using local shared memory. The 2D convex hull approximation computes the maximum and
minimum extends in a few directions, involving a dot product over all vertices. We can
perform this dot product in parallel using all threads in a Compute Unit, and then compute
the maximum and minimum using the built-in atomic max and min operator of OpenCL.
When using the incremental contact cache or contact clipping algorithm there are usually
not enough contact points to benefit from using such SIMD optimization.

Bullet Physics: Simulation with OpenCL 155

6.5 GPU Constraint Solving

6.5.1 Equations of Motion

The dynamics of rigid bodies can be simulated by computing the velocities and positions
according to the three Newton laws of motion:

1. The velocity of a body remains unchanged unless acted upon by a force.
2. The rate of change of momentum of a body is equal to the applied force.
3. For every force there is an equal and opposite force.

For a rigid body where all mass is located at a single point at its center of mass, also
known as particle or point mass, the equation of motion is obtained by applying Newton’s
second law:

F = ma (6.1)

where F is the force, m is the mass and a is the acceleration. If the mass is not centered in a
single point, but distributed in space, we can use the Euler extension that adds a rotational
component to Newton’s second law:

τ = I�̇ω + �ω × I�ω (6.2)

where τ is the torque and I is the 3-by-3 inertia matrix and × represents the vector cross
product.

6.5.2 Contact and Friction Constraint Setup

When a pair of objects collide, we need to satisfy the non-penetration constraints. We
can apply forces or impulses to change the velocity of the objects so that the objects will not
interpenetrate. For a single contact point we need to apply an impulse so that the projection
(dot product) of the relative velocity onto the contact normal is non-negative (v.n >= 0)
as shown in Figure 6.18. For a particle with all the mass at the center, the relationship
between impulse, change in velocity, and mass is imp = m ∗∆v.

FIGURE 6.18: Single contact point collision impulse.

Normal

Relative
velocity

Resulting
velocity

Applied impulse (change in
velocity)

156 Multithreading for Visual Effects

FIGURE 6.19: Multiple contact constraints.

!"

#"

$"

A

1

2 3

4

The constraint impulses or forces for multiple contact points can be computed simul-
taneously using a constraint solver using a numerical method to solve this linear comple-
mentarity problem. A popular numerical method for this purpose is the iterative projected
Gauss-Seidel algorithm.

for (i = 0; i <numRows; i++)
{

delta = 0.0f;
for (j = 0; j <i; j++)

delta += A(i,j) * x[j];
for (j = i+1; j<numRows; j++)

delta += A(i,j) * x[j];
x [i] = (b [i] - delta) / A(i,i);

}

Listing 6.9: Gauss-Seidel solver inner loop.

6.5.3 Parallel Projected Gauss-Seidel Method

If we look at the projected Gauss-Seidel algorithm we can see that the individual con-
straint rows can access the same elements in the x vector because the contact constraints
1, 2, 3, and 4 shown in Figure 6.19, are shared by bodies A, B, C, and D.

To avoid the read/write conflict to the same memory address from different threads, we
could use synchronization but that would become a performance bottleneck. Instead, con-
straint rows can be processed in parallel if they do not share the same body. A preparation
step called batching will fill the batches of the constraint rows, so that all the constraint
rows in the same batch do not share the same body. That way we can solve all the constraint
rows in a batch in parallel. The host will enqueue the solveSingleContact kernel from Listing
6.10 once for each batch, and repeat this for each Gauss-Seidel iteration. If the number of
batches is large, say 20 to 30 batches, and we have a large number of Gauss-Seidel iterations,
say 20 iterations, we end up with 400 to 600 kernel enqueue operations. This kernel enqueue
launch overhead can become a bottleneck for certain problem sizes and GPUs. To reduce
the number of kernel enqueue operations, we created a way to deal with the synchroniza-
tion between the batches within the solver kernel as shown in Listing 6.11. The main idea
is that all the threads within a Compute Unit are processing constraint rows with the same
batch index. Using a barrier we can guarantee that all the threads are finished processing
the constraint rows in the current batch. At that stage the first thread in the work group
will increment the batch index and all the threads will repeat this until all the batches are
processed.

Bullet Physics: Simulation with OpenCL 157

__kernel void solveSingleContactKernel(__global Body* gBodies ,
__global Shape* gShapes ,
__global Constraint4* gConstraints ,
int cellIdx ,
int batchOffset ,
int numConstraintsInBatch

)
{

int index = get_global_id (0);
if (index < numConstraintsInBatch)
{

int idx=batchOffset+index;
solveContactConstraint(gBodies , gShapes , &gConstraints[idx]);

}
}

Listing 6.10: Solve a single contact kernel.

void batchSolveKernelContact(__global Body* gBodies ,
__global Shape* gShapes ,
__global Constraint4* gConstraints ,
__global int* gN ,
__global int* gOffsets ,
int maxBatch ,
int cellBatch ,
int4 nSplit

)
{

// left out some initialization for clarity
. . .

barrier(CLK_LOCAL_MEM_FENCE);

int idx=ldsStart+lIdx;
while (ldsCurBatch < maxBatch)
{

for(; idx <end;)
{

if (gConstraints[idx]. m_batchIdx == ldsCurBatch)
{

solveContactConstraint(gBodies ,
gShapes ,
&gConstraints[idx]);

idx +=64;
} else
{

break;
}

}
barrier(CLK_LOCAL_MEM_FENCE);

if(lIdx == 0)
{

ldsCurBatch ++;
}
barrier(CLK_LOCAL_MEM_FENCE);

}
}

Listing 6.11: Solve all the batches contact kernel.

6.5.4 Batch Creation and Two-Stage Batching

The flood fill algorithm to fill batches with constraint rows so that they do not share a
body is sequential. In many cases, it is suitable to perform this batch creation on the host
CPU as shown in Listing 6.12.

158 Multithreading for Visual Effects

while(nIdxSrc) {
nIdxDst = 0; int nCurrentBatch = 0;
for(int i=0; i<N_FLG /32; i++) flg[i] = 0; // clear flag
for(int i=0; i<nIdxSrc; i++) {

int idx = idxSrc[i];
assert(idx < n);
// check if it can go
int aIdx = cs[idx]. m_bodyAPtr & FLG_MASK;
int bIdx = cs[idx]. m_bodyBPtr & FLG_MASK;
unsigned int aUnavailable = flg[aIdx /32] & (1<<(aIdx &31));
unsigned int bUnavailable = flg[bIdx /32] & (1<<(bIdx &31));
if(aUnavailable ==0 && bUnavailable ==0) {

flg[aIdx /32] |= (1<<(aIdx &31));
flg[bIdx /32] |= (1<<(bIdx &31));
cs[idx]. getBatchIdx () = batchIdx;
sortData[idx].m_key = batchIdx;
sortData[idx]. m_value = idx;
nCurrentBatch ++;
if(nCurrentBatch == simdWidth) {

nCurrentBatch = 0;
for(int i=0; i<N_FLG /32; i++) flg[i] = 0;

}
}
else {

idxDst[nIdxDst ++] = idx;
}

}
swap(idxSrc , idxDst); swap(nIdxSrc , nIdxDst);
batchIdx ++;

}

Listing 6.12: Sequential batch creation on the host CPU.

The batch creation itself is a sequential process and it requires additional effort to
parallelize the batch creation into multiple Compute Units. It is possible to parallelize
the process across the threads in a single Compute Unit using synchronization within the
Compute Unit. In order to use more than one Compute Unit, we can add a first coarse-
grain splitting that allows us to safely distribute constraint rows among multiple Compute
Units. A uniform grid can provide such splitting based on spatial distribution: as long as
objects are smaller than the grid cell size, we can process non-neighboring cells in parallel on
different Compute Units. In other words, the cells with the same letter as shown in Figure
6.20 can be processed in parallel on different Compute Units. More details are available in
a SIGGRAPH 2011 sketch [29] and in the chapter “Two-Level Constraint Solver” of the
GPU Pro 5 book [22].

FIGURE 6.20: Uniform grid to split batches.

Bullet Physics: Simulation with OpenCL 159

6.5.5 Non-Contact Constraints

Aside from contact constraints, it is possible to attach two bodies using joints that
restrict the degrees of freedom between the two attached bodies. For each degree of freedom
that is removed by the joint, a separate constraint row needs to be solved by the constraint
solver. For example, a fixed joint would remove all 6 degrees of freedom between the two
attached bodies. A hinge joint removes 5 degrees of freedom, and a ball-socket joint removes
3 degrees of freedom. In order to allocate the right amount of temporary memory such as
the constraint rows, we split the constraint setup in two stages.

First, each constraint reports the required number of constraint rows. Using the parallel
prefix sum we can accumulate this data so that we can preallocate all constraint rows and
the offset for each constraint. In the second stage, all joints can initialize their own constraint
rows in parallel.

It is common for constraints to be the same over multiple simulation frames. This means
that the batching is the same as well, so we can cache the constraint row batches from the
previous frame, unless there is a change in constraints.

6.5.6 GPU Deterministic Simulation

The work items and Compute Units in a GPU are executed in parallel, and the order
in which work items are executed can be different each time. This non-determinism, or lack
of consistency, can affect the results. For instance, if the pair search appends pairs using an
atomic increment operation, there is no guarantee that pairs are inserted in the same order.

If we have a different order of overlapping pairs and contact points, we may also have
a different order of contact constraints. The projected Gauss-Seidel algorithm produces
slightly different results, if the constraint rows are solved in a different order. Those small
differences accumulate over time and result in totally different results. If we want exactly
the same results each time we run the simulation (on the same hardware/compiler) we need
to make sure that the order is always the same.

We can sort the overlapping pairs, or contact points, using a parallel radix sort. In a
similar way, we need to sort the output that is generated during parallel tree traversals for
complex concave collision shapes.

6.5.7 Conclusion and Future Work

The results of the OpenCL rigid body pipeline of Bullet Physics are encouraging for
further OpenCL GPU work. There are still many features in the original Bullet 2 version
that need to be implemented in OpenCL, such as

• Hybrid CPU and GPU simulation
• Object (de)activation
• Continuous collision detection
• Continuous physics response
• User callbacks
• Ray intersection testing
• Two-way interaction with cloth, fluid, and other simulation methods, and so on

The software is all open source and can be built on Windows, Linux, and Mac OSX. It
will work well on a high-end desktop GPU, such as AMD Radeon HD7970 or NVIDIA 680
GTX. The download location is http://github.com/erwincoumans/bullet3.

160 Multithreading for Visual Effects

FIGURE 6.21: Bullet Physics rigid body benchmark, 112k box stack
on a GPU simulated in 70 ms/frame. (See Color Insert.)

FIGURE 6.22: Bullet Physics GPU rigid body benchmark, 64k boxes
colliding with a concave trimesh, simulated in 100 ms/frame. (See
Color Insert.)

Bullet Physics: Simulation with OpenCL 161

FIGURE 6.23: AMD CodeXL tool used to debug an OpenCL ker-
nel under Linux. It enables the inspection of variables, adding of
breakpoints, and stepping through a kernel. You can select any of
the active work items. (See Color Insert.)

FIGURE 6.24: AMD CodeXL tool used to profile an OpenCL kernel
under Windows in Microsoft Visual Studio. (See Color Insert.)

Chapter 7

OpenSubdiv: Interoperating GPU Compute

and Drawing

Manuel Kraemer

Pixar Animation Studios

7.1 Representing Shapes . 164
7.1.1 Why Fast Subdivision? . 165
7.1.2 Legacy . 165
7.1.3 OpenSubdiv . 166

7.2 The Control Cage . 166
7.2.1 Patches and Arbitrary Topology . 166
7.2.2 Topological Data Structures . 167
7.2.3 Manifold Surfaces . 167
7.2.4 The Limit Surface . 168

7.3 Uniform Subdivision . 169
7.3.1 Implementing Subdivision Schemata . 169

7.4 Serializing the Mesh Representation . 170
7.4.1 Case Study: Subdividing a Pyramid . 170
7.4.2 Generating Indexing Tables . 170
7.4.3 Preparing for Parallel Execution . 172

7.5 Transition from Multicores to Many-Cores. 173
7.5.1 Streaming Multiprocessors and SIMT . 173
7.5.2 Practical Implementation with OpenCL . 174

7.6 Reducing Branching Divergence . 175
7.6.1 Sorting Vertices by Type . 176
7.6.2 Further Vertex Sorting . 176

7.7 Optimization Trade-Offs . 179
7.7.1 Alternative Strategy: NVIDIA Dynamic Parallelism 179
7.7.2 Alternative Strategy: Vertex Stencils . 180
7.7.3 Memory Bottlenecks . 181

7.8 Evaluating Our Progress . 182
7.9 Fundamental Limitations of Uniform Subdivision . 183

7.9.1 Exponential Growth . 184
7.9.2 Geometric Fidelity . 184
7.9.3 Animating Subdivision Surfaces . 185
7.9.4 Better, Faster, Different . 185

7.10 Feature-Adaptive Subdivision . 186
7.10.1 GPU Hardware Tessellation . 186
7.10.2 Catmull-Clark Terminology . 187
7.10.3 Bi-Cubic Patch Representation . 188
7.10.4 Feature-Adaptive Subdivision . 189

7.11 Implementing the GPU Rendering Engine . 190

163

164 Multithreading for Visual Effects

7.11.1 Bi-Cubic Bspline Patches with GLSL . 191
7.11.1.1 Handling Surface Boundaries . 192
7.11.1.2 Handling Patch Transitions . 193
7.11.1.3 “End” Patches . 194

7.11.2 Mitigating Drawing Overheads . 196
7.12 Texturing . 197

7.12.1 Displacement Mapping . 198
7.13 Conclusion . 199

7.1 Representing Shapes

The geometric representation of surfaces and closed volumes is one of the cornerstones
of computer graphics. The oldest, and still ubiquitous, modeling method is the polygonal
mesh. Polygons, however, are very poor at representing smooth surfaces, where many faces
are required in order to approximate the desired shape.

The advent of modern industrial manufacturing processes has exacerbated the need for
a reliable representation of smoothed curves. This eventually led automobile engineer Pierre
Bézier to replace his unreliable mechanical spline drafting tools with a mathematical tool:
a set of polynomial interpolation equations.

Bézier surfaces are far superior to polygon meshes in many ways: they are more compact,
easier to manipulate, and have much better continuity properties. They can also easily ap-
proximate the common parametric surfaces such as spheres and cylinders. Bézier’s piecewise
polynomial patches were eventually generalized with the introduction of the non-uniform
rational B-splines (NURBS).

However, despite all these advantages, patch surfaces still remain difficult to work with.
Because their topology is limited to rectangles, modeling simple everyday life organic shapes
becomes a challenge. This changed with the introduction of recursive subdivision refinement
algorithms such as the Catmull-Clark scheme depicted in Figure 7.1.

Unlike polygon meshes, the mathematics of subdivision meshes guarantee the smooth
continuity of curved surfaces, but without the topological limitations of NURBS and other
patch representations. This gives modelers the flexibility they need to represent a wide
range of both organic and manufactured shapes. These key advantages, coupled with the
fact that existing polygonal modeling tools can be used to create the control cage meshes,
have ensured a ubiquitous adoption of subdivision surfaces in the graphics pipelines of the
visual effects and animation industries.

FIGURE 7.1: Recursive subdivision of a polyhedron.

OpenSubdiv: Interoperating GPU Compute and Drawing 165

7.1.1 Why Fast Subdivision?

Despite being ubiquitous, the manipulation of subdivision surfaces in interactive appli-
cations is still challenging though. One common problem is that the surface is typically not
fully drawn because of limited computational performance. As a consequence, the polygonal
control hull that is represented to the user is only an approximation, and it is offset from
the actual smooth surface.

This geometric approximation makes it difficult to see exact contact, like fingers thread-
ing a needle, or hands touching a cheek. It also makes it difficult to see poke-throughs in
cloth simulation, if both the character’s body and clothing are only approximations. Fur-
ther, these problems can be amplified, when one character is much larger than another,
for instance, or when unequally subdivided faces cause approximation errors to be magni-
fied. All these limitations hinder the creative processes and turn what should be fluid and
intuitive interactions into exercises in frustration.

In practice, digital content creation software such as Maya or Pixar’s proprietary Presto
animation system can take up to 100 milliseconds to subdivide a character of 30,000 polygons
to the second level of subdivision (creating about half-a-million polygons). Being able to
perform the subdivision refinement operations in less than 5 milliseconds would allow the
user to interact with the smooth, accurate limit surface at all times.

7.1.2 Legacy

Pixar’s original Marionette animation software has been instrumental in pioneering many
of the subdivision research landmarks in a lineage that started with Ed Catmull [12] in the
late 1970s. The first practical implementation to be used in production was developed for Jan
Pinkava’s Geri’s Game in 1997 [17]. Figure 7.2 shows the original wireframe control mesh
that gave Geri his very distinctive look. The Catmull-Clark subdivision surface primitive
was eventually added to the commercial release of PhotoRealistic Renderman in version 3.8
in 1998.

FIGURE 7.2: Wireframe of Geri’s head.

166 Multithreading for Visual Effects

Each generation of the software since then has seen complete rewrites, and has built upon
new experiences gleaned in the process of making animated feature films. This includes the
addition of new features as well as numerous optimizations.

However, until recently, implementations have been mostly single threaded and the com-
plex subdivision algorithms have been executed exclusively on the CPU. The recent emer-
gence of programmable GPU architectures spurred new research and saw Pixar partnering
with Microsoft in order to produce the first full implementation of the Catmull-Clark sub-
division algorithm on GPU [52]. This feature-adaptive subdivision algorithm has become
the backbone of the OpenSubdiv project.

7.1.3 OpenSubdiv

The OpenSubdiv initiative represents the fifth iteration of subdivision code deployed
within Pixar’s proprietary software tools. Unlike previous generations of closed-source ef-
forts, for the first time in its history, the studio has made the code publicly available as
a set of open-source libraries. Our latest source has been released under the Apache 2.0
license and all of the OpenSubdiv project development is managed under GitHub.com revi-
sion control. The entire community can access the latest features and bug fixes at the same
time as they are rolled out to Pixar’s own animation productions. In addition, Pixar is also
licensing the use of its subdivision patents.

Our API implements high performance subdivision surface evaluation on massively par-
allel CPU or GPU architectures. We have optimized our code paths for drawing deforming
surfaces with static topology at interactive frame rates. The resulting limit surfaces are
intended to fully match Pixar’s Renderman specification, with allowances made for the
inherent constraints of IEEE floating-point arithmetic precision.

OpenSubdiv is only an API: it does not directly provide any tools that can be used to
author digital assets. However, we do hope that the availability of quality display code will
facilitate its integration into many third-party applications, and into digital content creation
tools in particular. Our goal is to enable a fully featured and reliable authoring end-to-end
toolchain in order to facilitate the use of subdivision primitives in graphics pipelines.

7.2 The Control Cage

Subdivision surfaces are controlled by specifying a coarser piecewise linear polygon mesh.
This mesh is often also referred to as the control mesh or the control cage. A very large
part of the difficulties behind efficiently evaluating smooth surfaces lies in the topological
properties of the control mesh.

Each stage involved in the creation of a digital asset imposes a different set of constraints.
The interactive editing requirements of a modeling application are somewhat different from
a motion editing tool or an off-line image renderer. Therefore, the data structures we use
to represent the mesh are critical to the efficiency of the smooth surface calculations.

7.2.1 Patches and Arbitrary Topology

Bi-cubic patch surfaces are very powerful because they offer the guarantee of a constant
smoothness across the shape they describe. However, we run into some very hard problems
when we try to apply them on to models of arbitrary topology: geometric primitives as

OpenSubdiv: Interoperating GPU Compute and Drawing 167

FIGURE 7.3: Half-edges data structure.

simple as a mug with a handle are difficult to describe with a single non-degenerate B-
Spline patch. Unfortunately, these types of free-form surfaces are extremely common in
everyday life, a trend which is unsurprisingly mirrored within our virtual worlds.

This particular geometric limitation is eventually what motivated animators to migrate
from Bézier and NURBS tools to subdivision surfaces. However, in order to represent these
free-form shapes, we need to carefully pick a data structure that can accommodate a wider
topological range than the two-dimensional set that parametric patches are constrained to.

7.2.2 Topological Data Structures

Many topological representations have been developed over the years, giving us several
candidates to choose from. In its current implementation, OpenSubdiv uses a modified
half-edge data structure (see Figure 7.3): the Hbr namespace layer stands for “hierarchical
boundary representation.” This set of topology classes can represent connectivity between
faces, edges, and vertices across multiple levels of subdivision, which is the “hierarchical”
part of the name. The “boundary” part of the representation stems from the way Hbr
attempts to optimize the storage of discontinuous vertex data, such as unwrapped texture
coordinates with seams (what we call “face-varying primitive variable data”).

Half-edge data structures are a reasonable compromise between memory usage and
speed. Quad-edges would allow for better traversal performance, but they generally re-
quire significantly more storage space, which can very quickly become a major hurdle when
implementing an off-line renderer, for instance.

7.2.3 Manifold Surfaces

However, both half-edge and quad-edge representations are limited to manifold topol-
ogy. Excluding non-manifold features means that we need to eliminate certain geometric
configurations, such as an edge that is being shared by more than two faces (see Figure
7.4). In practice, this should be a reasonable limitation, since the vast majority of volumes
and surfaces used in production should indeed be manifold.

FIGURE 7.4: Non-manifold fan.

168 Multithreading for Visual Effects

There is, however, a legitimate case to be made for also supporting non-manifold geom-
etry in some special cases. While winged-edges data structures would be able to accommo-
date any manifold, they require even more storage space than quad-edges. As a potential
solution, we are investigating a new simplicial complex “edge-bundles” data structure as a
replacement for our current half-edge based Hbr. This new representation would be able to
accommodate non-manifold topology, but also allow for easier node traversals and compa-
rable memory requirement.

This is certainly a very ambitious feature list, but OpenSubdiv gives us an ideal sandbox
to experiment with such blue-sky research. This particular project will likely require the
formulation of an intermediate topological representation, which has several indirect ben-
efits. For instance, it would give us the flexibility to allow client-code to easily substitute
their own custom high-level topological representations, which could reduce the difficulty of
transitioning from a legacy codebase. It would also allow us to optimize our internal data
structures to take advantage of the property that refinement of a face can only produce
quad sub-faces (or triangles). While it is an open problem on our roadmap, we have already
begun to take the incremental steps necessary to deploy a comprehensive solution.

7.2.4 The Limit Surface

The limit surface is the continuous surface produced by iteratively applying an infinite
number of times the subdivision refinement process to the control mesh. Figure 7.5 shows
the gradual convergence of a coarse control mesh toward the ideal limit curve. In practice
though, using legacy single-threaded software, we can only realistically subdivide a surface
two or three times before the process becomes unwieldy.

From a mathematical standpoint, evaluating the limit of subdivision surfaces can be
equivalent to analytically evaluating spline patches, with some consideration for singularities
around extraordinary vertices. It can be shown that the Catmull-Clark limit surfaces are C2

continuous everywhere, except at the parametric location of extraordinary vertices, where
they are at least C1 continuous. Compared to NURBS surfaces, the parametric continuity
of subdivision surfaces is much more limited, and is often insufficient for the more rigorous
needs of the manufacturing and engineering industries. The “less than perfect” smoothness
of subdivision limit surfaces, however, appears to be sufficient for all practical applications
within the gaming and visual effects fields.

Although we are introducing it early in this chapter, the concept of a limit surface is
pivotal to the manipulation of parametric topological representations. While we are going
to focus on an approach that produces a discretized approximation first, we will eventually
show later how using the analytical expression of the limit surfaces allows us to break from
the restrictions of this first approach.

FIGURE 7.5: Successive subdivision iterations.

OpenSubdiv: Interoperating GPU Compute and Drawing 169

FIGURE 7.6: Two iterations of uniform subdivision.

7.3 Uniform Subdivision

It is fairly easy to visualize how we can discretely approximate a smooth surface by
recursively evaluating the subdivision algorithm over each polygonal face of the control
mesh (see Figure 7.6). With each iteration the generated quads or triangles converge closer
to the smooth limit surface. The number of levels of subdivision necessary to achieve an
acceptable surface will depend both on the topology and the precision requirements of the
application. In this section, we are going to explore how subdivision rules are applied and
find properties that we can take advantage of for a parallel implementation.

7.3.1 Implementing Subdivision Schemata

Several subdivision schemas have been developed over the years but the bulk of modern
animation work is performed using the Catmull-Clark schema [12]. The other schema that
sees some use in production was developed by Charles Loop [11] and is optimized for meshes
made of triangular faces only. At Pixar, Loop subdivision is often seen applied to geometry
that requires heavy procedural animation or physical simulation, such as character garments.

The Hbr code layer in OpenSubdiv supports both schemas, and their implementation
is very similar. We have abstracted the differences by inheriting classes from a common
HbrSubdivision ancestor (Listing 7.1).

template <class T> class HbrSubdivision {
...
virtual HbrVertex <T>* Subdivide(HbrMesh <T>* mesh , HbrFace <T>* face)=0;
virtual HbrVertex <T>* Subdivide(HbrMesh <T>* mesh , HbrHalfedge <T>* edge)=0;
virtual HbrVertex <T>* Subdivide(HbrMesh <T>* mesh , HbrVertex <T>* vertex)=0;
...

};

Listing 7.1: HbrSubdivision class.

The “Subdivide” virtual methods generate new HbrVertex vertices. The vertices are
then connected into half-edge cycles through the HbrHalfedge and HbrFace classes, which
allows for easy navigation of neighboring topology.

Furthermore, in Hbr, we also connect child and parent vertices to each other, as well
as faces and sub-faces. These connections allow us to implement vertical traversals of sub-
components by using indexed paths. We use this path indexing system to implement a
variety of local hierarchical editing features.

While this highly interconnected data structure is very elegant and allows for easy
traversals with a single thread, it presents many challenges. In a parallel environment, each
thread would have to protect every vertex, face, and half-edge node in order to maintain

170 Multithreading for Visual Effects

the coherence of the data structure under parallel modification. Such an algorithm would
obviously scale very poorly, so we have to find a solution to reduce the inter-dependency of
our data structures.

7.4 Serializing the Mesh Representation

While relatively straightforward on a CPU, a GPU implementation requires the ability
to manipulate topological neighborhood information from a large number of threads with
absolutely no concurrency. Fortunately, we can take advantage of the fact that most typical
meshes are animated using articulation techniques that keep their topology invariant (and so
do semi-sharp creases and most other authored edits). Once we have refined the topology of
the mesh to a given level, we can then serialize our interconnected half-edge data structures
into precomputed tables that will guide a set of simpler computation kernels.

7.4.1 Case Study: Subdividing a Pyramid

Let’s look at an example: Figure 7.7 shows a four-sided pyramid mesh and the vertices
from the first level of subdivision.

With the Catmull-Clark schema, a subdivided vertex can be one of three types: the child
of a face, an edge, or another vertex as show in Figure 7.8. The data dependency of the sub-
division scheme dictates that the face-vertices must be computed first, then edge-vertices,
and last vertex-vertices. However, within each category, the blending computations do not
rely on any inter-dependent data, so we can safely execute these computations in parallel.

7.4.2 Generating Indexing Tables

In the paper “Feature-Adaptive GPU Rendering of Catmull-Clark Subdivision Surfaces”
[52], Nießner et al. propose the serialization scheme reproduced in Figure 7.9. While they
use this scheme to refine the mesh adaptively, we can also use it to refine meshes uniformly.

FIGURE 7.7: One subdivision iteration applied on a pyramid.

OpenSubdiv: Interoperating GPU Compute and Drawing 171

FIGURE 7.8: The child vertices created from a regular quad face.

Face

Edge

Vertex

We keep the primitive vertex data in a single linear buffer shown in column (A) of
Figure 7.9. The vertex data assigned from the coarse vertices is located at the front, and the
successive refinement iterations keep pushing back the interpolated elements from children
vertices. Even though this buffer sustains both read and write operations, there should be
no contention or broken dependencies because the vertices are sorted by type in the buffer.

The bulk of the tabular data describes vertex neighborhood topological information and
the indices of the vertices connected to the vertex being subdivided. This information is

FIGURE 7.9: Subdivision tables for the pyramid of Figure 7.7: (A)
is the vertex buffer, (B) contains topology information, (C) provides
the edge and vertex sharpness, and (D) are indices which point into
the vertex buffer.

172 Multithreading for Visual Effects

held in columns (B) and (D) of Figure 7.9. These items are supplemented with sub-tables
that contain crease sharpnesses (column (C)) or hierarchical edits (not shown in figure).

This serialization of our topological data allows us to interpolate the vertex data buffer
without execution dependencies, thus enabling many parallel threads to work concurrently.

7.4.3 Preparing for Parallel Execution

With both the topology tables and vertex data ready, we now turn to the details of the
implementation of our compute kernels. We will use the face-vertex subdivision rule as a
narrower case-study. Although face-vertices are specific to the Catmull-Clark scheme, this
rule is the easiest to implement: the kernel is reduced to simply averaging the data from all
the vertices from the parent face. We do not have to concern ourselves with logic accounting
for boundaries or semi-sharp creases here.

template <class U> void
FarCatmarkSubdivisionTables <U>:: computeFacePoints(

int offset , int tableOffset , int start , int end , void * clientdata) const {

assert(this ->_mesh);

U * vsrc = &this ->_mesh ->GetVertices ().at(0),
* vdst = vsrc + offset + start;

for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst) {

vdst ->Clear(clientdata);

int h = this ->_F_ITa [2*i],
n = this ->_F_ITa [2*i+1];

float weight = 1.0f/n;

for (int j=0; j<n; ++j) {
vdst ->AddWithWeight(vsrc[this ->_F_IT[h+j]], weight , clientdata);
vdst ->AddVaryingWithWeight(vsrc[this ->_F_IT[h+j]], weight , clientdata);

}
}

}

Listing 7.2: Face-points CPU compute kernel.

Listing 7.2 shows a single-thread C++ implementation of the OpenSubdiv face-point
compute kernel (note that the templated class is an abstract vertex class). In our serializa-
tion prepass, we saved the following tabular data:

• The indices of the points in the face: the (D) column in Figure 7.9, which corresponds
to the F IT member of the table structure in Listing 7.2.

• The topology of the face: the (B) column in Figure 7.9, which corresponds to the
F ITa element of the table structure in Listing 7.2. The only topological element
required in this case is the valence of the parent face.

However, since these kernels will be executed in many-core environments, we also store
offsets to the vertex indices of the F IT table, to avoid having to share an incremental
counter across cores or threads.

• Finally, in order to support semi-sharp creases, the edge and vertex kernels also need
access to the sharpness tag data, which is accounted for in column (C) of Figure 7.9.

Converting the kernel from Listing 7.2 to any given multithreaded environment is now
much simpler: all we have to do is distribute the “for” loop over the processing cores. All the
data inter-dependencies have been removed, in both the scattering and gathering directions.

OpenSubdiv: Interoperating GPU Compute and Drawing 173

7.5 Transition from Multicores to Many-Cores.

Before jumping directly into the GPU code implementation of our kernel, we should
take a quick look at some of the broad strokes of our intended target micro-architecture. By
design, CPU and GPUs are optimizing for very different configurations of code execution
and energy efficiency.

Figure 7.10 shows a rough characterization of the amount of real estate apportioned
between processing, execution flow control, and data access patterns between a typical
CPU and GPU. This comparison reveals some fundamental differences in their approach to
data processing.

The first obvious difference is the amount of available Arithmetic Logic Units (ALU):
where a CPU typically has a small number of physical cores, the GPU has thousands.
Conversely, where the GPU only dedicates a small portion to L2 caching, the CPU adds
proportionately very large amounts of cache. Finally, CPUs tend to have very complex
control logic circuitry.

Consequently, we expect CPU architectures to be optimized for the execution of a rela-
tively lower number of threads, obviating memory latency through larger data caches. CPUs
also use complex embedded logic in an effort to preempt conditional branches and attempt
to execute instructions out-of-order as much as possible.

On the other hand, GPU architectures optimize for high computational throughput
instead, dedicating most of their resources to simpler ALUs, but at the cost of being much
more sensitive to memory latency. Rather than minimizing latency, we try to “hide” it
instead, mostly by switching computations from other execution threads. Ultimately, the
many-core model has the highest theoretical throughput as well as the best energy efficiency.

However, depending on the application, leveraging this optimal throughput is not always
possible without a radical paradigm shift. We will show why subdivision surface algorithms
fall in the latter category and how we were able to partially overcome these limitations.

7.5.1 Streaming Multiprocessors and SIMT

From our coarse comparison of CPUs and GPUs, we still need to break down the core ar-
chitecture of GPUs a little further and describe stream processing. This concept relies on the
implementation of SIMT kernel execution: single instruction, multiple threads (very similar
to SIMD). SIMT kernels only exploit a limited form of parallel execution, where multiple
ALUs execute an instruction in parallel, but without direct allocation, synchronization, or

FIGURE 7.10: Comparison of CPU and GPU architectures.

174 Multithreading for Visual Effects

FIGURE 7.11: Streaming multiprocessors with multiple processing
cores.

communication between each ALU. Given a stream of data, a given kernel instruction is
applied to each element by a different core.

Reflecting this paradigm, modern GPU architectures group ALU cores into discrete
blocks of streaming multiprocessors (Figure 7.11). The language varies slightly between
hardware vendors: NVIDIA literature labels the Streaming Multiprocessor (“SM”) units
accessed through CUDA “Warps,” while AMD groups its Compute Units (“CU”) within
“Wavefronts” of threads. Specifications are similarly different, with an NVIDIA Fermi SM
containing 32 cores, while the equivalent ATI chip usually has more CUs, but with fewer
cores each (16).

Despite these fine-grain differences, the overall constraints imposed by the SIMT archi-
tecture paradigm are fundamentally similar:

• Instructions are issued per Warp.

• Data dependent instructions stall the entire Warp.

• The execution context can switch quickly between stalled Warps: an SM can have
many active Warps.

• We should try to hide memory latency by increasing the number of active threads
until the memory bus is saturated.

7.5.2 Practical Implementation with OpenCL

We can now look at the OpenCL implementation of the kernel in Listing 7.3 as an
illustration of the portability of our algorithm. Beyond the language syntactical differences,
we can identify how the code maps fairly naturally to SIMT execution:

• In this CL compute kernel we do not have the luxury of a templated vertex class
that can specialize the implementation of the AddWithWeight() and its AddVarying-
WithWeight() blending methods. We had to translate these from an object oriented
programming style to a functional one, because our compute kernels work exclusively
on linear buffers of interleaved vertex data.

OpenSubdiv: Interoperating GPU Compute and Drawing 175

__kernel void computeFace(__global struct Vertex *vertex ,
__global struct Varying *varying ,
__global int *F_IT ,
__global int *F_ITa ,
int vertexOffset , int tableOffset ,
int start , int end) {

int i = start + get_global_id (0) + tableOffset;
int vid = start + get_global_id (0) + vertexOffset;

struct Vertex dst;
struct Varying dstVarying;
clearVertex (&dst);
clearVarying (& dstVarying);

int h = F_ITa [2*i];
int n = F_ITa [2*i+1];

float weight = 1.0f/n;

for (int j=0; j<n; ++j) {

int index = F_IT[h+j];
AddWithWeight (&dst , &vertex[index], weight);

if(varying) {
AddVaryingWithWeight (&dstVarying , &varying[index], weight);

}
}
vertex[vid] = dst;
if (varying) {

varying[vid] = dstVarying;
}

}

Listing 7.3: Face-points OpenCL compute kernel.

• Another noticeable difference is that we allocated local variables to accumulate the
weighted data (“dst” and “dstvarying”). At the end of the kernel these variables are
copied back into the destination buffer. This strategy allows the compiler to use the
faster local registries of a given compute core during the blending iteration loop. This
reduces the need to write the data back to its final destination in GPU’s main memory
into a single operation. This pattern helps tremendously in hiding the inherent latency
of memory accesses in GPU architectures, where a very large number of cores are all
competing for scarce memory bus bandwidth.

7.6 Reducing Branching Divergence

Because each thread block is executed in the SIMT mode described above, all threads
within a block execute the same instruction of the kernel at the same time. Branching
divergence is when one or more threads in a given Warp are dynamically branching into a
different code path as the result of a data-dependent condition. The Warp will execute each
code branch in sequence, with only a subset of the threads active. The threads that are on
a different code branch are temporarily deactivated, and will reconverge once all the paths
have been completed. Branching divergence can substantially slow down the execution of our
subdivision kernels and should obviously be mitigated as much as possible. In practice, we
need to reduce dynamic conditions in our kernel code to an absolute minimum. The following
sections detail the strategies that we implemented in the various OsdCompute kernels.

176 Multithreading for Visual Effects

FIGURE 7.12: Several kernels executing in sequence.

7.6.1 Sorting Vertices by Type

In Section 7.4.1 we showed how subdivided vertices can be sorted based on their pro-
genitor (face, edge, or vertex). Each of these three categories requires the blending of vertex
data from a different number of parent vertices using different weights.

If we implemented all the subdivision rules in a single kernel and used conditional branch-
ing to select the correct rules, we would be executing distinct vertex interpolations from
over 30 different possibilities, depending on the local topology of the vertex. The problem
in this case stems from SIMD execution in Warps locking all the cores until all the code
paths have been executed: statistically, the average child vertex is the result of interpolat-
ing somewhere between 7 or 8 parent vertices. However, the odds of traversing many of
the topological configurations in a large Warp of 32 vertices are significant enough that
we would regularly be immobilizing threads for hundreds of instructions, waiting for each
conditional sub-part of the kernel to be executed.

By reducing branching divergence, we can increase the efficiency of our computations,
particularly when processing large batches of child vertices, as is the case in uniform sub-
division. The simple solution is to split our algorithm in a subset of kernels and try to take
advantage of the subdivision algorithm where possible.

The table in Figure 7.9 shows us an obvious classification based on the parent of the
vertex being processed (face, edge, or vertex). We can start splitting our computations into
a matching face-vertex kernel, edge-vertex kernel, and vertex-vertex kernel. If we presort
the vertex data in the source buffer, we can then queue the execution of our sub-kernels
into batches as shown in Figure 7.12.

7.6.2 Further Vertex Sorting

Looking at the vertex-vertices subdivision rules, the addition of semi-sharp creases in-
troduces a fair amount of complexity. This kernel has to selectively apply one of four rules:
Smooth, Dart, Crease, and Corner (for details, see DeRose [17]). These rules are evaluated
and cached as a mask with each HbrVertex during the subdivision process. However, with
the introduction of semi-sharp creases, the rules may also require to blend vertices from both
the current and the parent subdivision level. This introduces the need for a second iteration
of the kernel over the subset of vertices in the batch that have a fractional sharpness.

Figure 7.13 shows the combinations of masks and passes that are possible with the
Catmull-Clark subdivision schema. This table shows that we can take advantage of the
fact that several combinations can never occur in a mesh. Furthermore, both the Dart and

OpenSubdiv: Interoperating GPU Compute and Drawing 177

FIGURE 7.13: Combinations of subdivision rules.

Smooth rules are equivalent from an interpolation standpoint. Based on these premises, we
have decided to split our vertex-vertex kernel into two sub-kernels (creatively named “A”
and “B”):

• Kernel A: Implements the Crease and Corner rules.
• Kernel B: Implements the Smooth and Dart rules.

Since the results of each execution pass are linearly interpolated, the order of execution is
commutative. Figure 7.13 shows that by sorting our vertices based on interpolation rules, we
can reduce the number of vertex compute batches that have to be launched to a worst-case
maximum of 3:

1. Apply kernel B to the first 7 vertex ranks
2. Apply kernel A to ranks 3 to 7
3. Apply kernel A again to ranks 7 to 9

This vertex ranking system can be represented in a two-dimensional matrix (Figure 7.14)
where the rows describe the rule “mask” of the parent vertex and the columns describe the
rule “mask” of the child vertex. This matrix allows us to select the appropriate rank of
our vertex-vertices, which in turn makes sorting their order of execution in the subdivision
tables a fairly trivial step.

The results of this kernel reorganization can be seen in Listings 7.4 and 7.5. The
Smooth/Dart rules kernel B is completely free of conditionals, while the Crease/Corner
kernel A is reduced to a single remaining condition. With this arrangement, in the worst
case scenario, a Warp can be held at most for the duration of the interpolation of the data
of three vertices: specifically, in the case of a k Crease mask, where we have to call the func-
tion “AddWithWeight()” three times, in order to interpolate three vertices. This represents
a very significant improvement over the previous worst case scenario, where a Warp or a
Wavefront could often be held up for the interpolation of tens of vertices on average.

FIGURE 7.14: Vertex ranking matrix.

M
a
s
k

Mask

178 Multithreading for Visual Effects

// multi -pass kernel handling k_Crease and k_Corner rules

template <class U> void

FarCatmarkSubdivisionTables <U>:: computeVertexPointsA(

int offset , bool pass , int tableOffset , int start , int end , void * clientdata) const {

assert(this ->_mesh);

U * vsrc = &this ->_mesh ->GetVertices ().at(0),

* vdst = vsrc + offset + start;

for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst) {

if (not pass)

vdst ->Clear(clientdata);

int n=this ->_V_ITa [5*i+1], // number of vertices in the _VO_IT array (valence)

p=this ->_V_ITa [5*i+2], // index of the parent vertex

eidx0=this ->_V_ITa [5*i+3], // index of the first crease rule edge

eidx1=this ->_V_ITa [5*i+4]; // index of the second crease rule edge

float weight = pass ? this ->_V_W[i] : 1.0f - this ->_V_W[i];

// In the case of fractional weight , the weight must be inverted since

// the value is shared with the k_Smooth kernel (statistically the

// k_Smooth kernel runs much more often than this one)

if (weight >0.0f and weight <1.0f and n>0)

weight =1.0f-weight;

// In the case of a k_Corner / k_Crease combination , the edge indices

// won ’t be null , so we use a -1 valence to detect that particular case

if (eidx0==-1 or (pass== false and (n==-1))) {

// k_Corner case

vdst ->AddWithWeight(vsrc[p], weight , clientdata);

} else {

// k_Crease case

vdst ->AddWithWeight(vsrc[p], weight * 0.75f, clientdata);

vdst ->AddWithWeight(vsrc[eidx0], weight * 0.125f, clientdata);

vdst ->AddWithWeight(vsrc[eidx1], weight * 0.125f, clientdata);

}

vdst ->AddVaryingWithWeight(vsrc[p], 1.0f, clientdata);

}

}

Listing 7.4: Vertex-points compute kernel A.

// multi -pass kernel handling k_Dart and k_Smooth rules

template <class U> void

FarCatmarkSubdivisionTables <U>:: computeVertexPointsB(

int offset , int tableOffset , int start , int end , void * clientdata) const {

assert(this ->_mesh);

U * vsrc = &this ->_mesh ->GetVertices ().at(0),

* vdst = vsrc + offset + start;

for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst) {

vdst ->Clear(clientdata);

int h = this ->_V_ITa [5*i], // offset of the vertices in the _V0_IT array

n = this ->_V_ITa [5*i+1], // number of vertices in the _VO_IT array (valence)

p = this ->_V_ITa [5*i+2]; // index of the parent vertex

float weight = this ->_V_W[i],

wp = 1.0f/(n*n),

wv = (n-2.0f)*n*wp;

vdst ->AddWithWeight(vsrc[p], weight * wv, clientdata);

for (int j=0; j<n; ++j) {

vdst ->AddWithWeight(vsrc[this ->_V_IT[h+j*2]], weight * wp , clientdata);

vdst ->AddWithWeight(vsrc[this ->_V_IT[h+j*2+1]] , weight * wp, clientdata);

}

vdst ->AddVaryingWithWeight(vsrc[p], 1.0f, clientdata);

}

}

Listing 7.5: Vertex-points compute kernel B.

OpenSubdiv: Interoperating GPU Compute and Drawing 179

FIGURE 7.15: Final execution sequence.

7.7 Optimization Trade-Offs

One major drawback of the methods we just described above is that, while we did
optimize branching divergence, we did so at the cost of multiplying the number of compute
kernel launches. Figure 7.15 shows the final execution sequence, using all the branching
optimizations. Depending on the mesh topology, we are queuing up at least three times as
many computation sequences for each level of subdivision. The worst-case scenario, when
using semi-sharp creases, can trigger as many as five kernel launches for a given level.

Depending on the target platform and API, both CPU thread and GPU kernel queu-
ing launches can incur varying level of penalties. Our choice of retaining one condition in
the vertex-vertex kernel “A” is therefore a compromise that attempts to balance kernel
execution time against launch overheads.

From our limited experimentations, it seems that we can dispatch up to about a hundred
CUDA kernels on desktop hardware without serious degradation. By contrast, we have
reports of OpenCL drivers on certain mobile platforms incurring tens of millisecond’s worth
of overhead for a single launch (the latter case was eventually attributed to some likely
teething issues with the driver software, rather than hardware limitations). With this much
variability between platforms, we are probably going to adapt our framework to allow the
seamless integration of multiple computation strategies to best address the challenges of a
given hardware or driver configuration.

7.7.1 Alternative Strategy: NVIDIA Dynamic Parallelism

For instance, with the recent release of the Kepler GK110 GPU architecture, NVIDIA in-
troduced several new features, including one that could help address our particular problem
of CUDA kernel execution overheads. NVIDIA calls the new feature “Dynamic Parallelism,”
and it adds the capability for the GPU to generate and synchronize its own work queues.
Figure 7.16 illustrates how a CUDA compute context could be taking advantage of this new
feature.

In our current implementation, all the compute kernel launches are performed by a
CPU-based thread. This thread has to wait for each CUDA kernel to complete until it
synchronizes with the GPU and launches the next kernel.

180 Multithreading for Visual Effects

FIGURE 7.16: Execution sequence without and with Dynamic Par-
allelism.

GPU as a Coprocessor

With Dynamic Parallelism instead, we would be able to set up a CUDA dispatcher thread
that would launch and synchronize the execution of all our vertex compute kernels. Since
those are dependent upon the completion of the previous kernel in the execution queue,
we would not be gaining any additional execution parallelism. However, we might see some
gains from the elimination of overheads due to frequent synchronization through software
drivers. We have not quantified these gains yet, as we currently have no implementation that
takes advantage of this new CUDA 5.0 feature. This strategy targets a very specific set of
proprietary architectures and would not be extendable outside of the subset of compatible
devices though.

7.7.2 Alternative Strategy: Vertex Stencils

Ultimately, the trade-offs between conditional branching and kernel launches are a lim-
itation of the subdivision tables representation that we are using. Our serialization of the
vertex neighborhood information is probably close to optimal from the point of view of
memory size, but at the cost of retaining some data dependency.

Computing platforms with outlying performance envelopes will likely require more radi-
cal solutions. To meet this demand, we have added to the OpenSubdiv API a set of factories
that can generate sets of precomputed vertex stencils, as an alternative to the serialized sub-
division tables scheme. Stencils require slightly more memory and computations, but only
require a single kernel launch with absolutely no conditional branching. Listing 7.6 shows
the extreme simplicity of the stencil kernel.

We have begun the implementation of the FarStencilTables in the hope that it would
give our API more flexibility in adapting our solution to these particular situations where
overheads represent a relatively disproportionate portion of the computation sequences. Our
preliminary parallel implementations with Intel’s Threading Building Blocks (TBB) shows
a lot of promise with the ability to process more than 5 million limit stencils per second
on a hyperthreaded 16 cores CPU. We are expecting a future GPU counterpart to scale
similarly well, although we are assuming that the same memory latency bottlenecks that
are hindering the execution of our subdivision kernels will be even more apparent with the
stencils kernel.

OpenSubdiv: Interoperating GPU Compute and Drawing 181

template <class T> void
FarStencilTables :: _computeVertexStencil(T const *controlValues ,

float const * weights ,
T *values ,
int stride) const {

int const * index = &_indices.at(0);

for (int i=0; i<GetNumStencils (); ++i) {

// Zero out the result accumulators
values[i]. Clear ();

// For each element in the array , add the coefs contribution
for (int j=0; j<_sizes[i]; ++j, ++index , ++ weights) {

values[i]. AddWithWeight(controlValues [*index], *weights);
}

}
}

Listing 7.6: Stencil compute kernels.

Under the right circumstances, we anticipate that vertex stencils can be a very useful
alternative to serialized subdivision tables. However, the stencils kernel does not really offer
any intrinsic improvement over how the interpolations are performed by our more specialized
kernels. We will have to look elsewhere to uncover more substantial gains.

7.7.3 Memory Bottlenecks

By reordering the vertex interpolations, we have reduced branching divergence, and man-
aged to dramatically improve the efficiency of SIMD execution in Warps (or Wavefronts).
These optimizations have brought up general core occupancy from 10% to a rough average
around 30% on Fermi and Kepler hardware, where we were able to measure it. These num-
bers may seem low, but they are somewhat in line with the expectations of applications
where the computational bandwidth is limited by large numbers of heterogenous data ac-
cesses: the vertex data is gathered in mostly semi-random patterns, which cause significant
memory access latency.

This suggests that we should be able to achieve some further gains by reordering the
vertex data accessed by our compute kernels to improve memory coalescing, as shown in
Figure 7.17. We would want to organize the vertex data in a more optimal pattern, whereby
vertices that are topologically close should be closely clustered in memory.

A variety of mesh striping techniques have been published that could be used [33]. Similar
optimizations have more recently been seen in association with finite elements simulations

FIGURE 7.17: Coalesced global memory access.

Global memory

1 read

Coalesced: good Strided: not so good Random: bad

2 read

Thread blocks

182 Multithreading for Visual Effects

FIGURE 7.18: Kernel compute times for six uniform subdivision lev-
els of a simple mesh.

NVIDIA NVIDIA

used in engineering CAD. We would expect the performance gains from such strategies to
be very dependent on the specific hardware architectures. Because they are fairly complex
to engineer and not very portable, our team has not invested any resources yet into pursuing
these avenues.

7.8 Evaluating Our Progress

Because our goal is to integrate OpenSubdiv into as many applications as possible, we
did not just open-source our software, we also had to make it portable. Cross-platform
support has been a critical part of our design choices from the beginning. Fortunately, the
reduction of the subdivision rules into a set of very simple compute kernels has helped us
tremendously in porting our code to a very large collection of APIs.

As of this writing, client-code that uses our “OsdCompute” module can select to deploy
the execution through any of the following standards: OpenMP, TBB, GCD, OpenCL,
CUDA, GLSL, and HLSL. This wide selection of APIs gives us access to most micro-
architectures, as well as most operating systems.

Ease of portability, however, does not necessarily imply ease of optimization. While
we did spend some time profiling our CUDA implementation with NVIDIA’s Nsight tool
for instance, most of the low-level optimizations have been provided by outside expert
contributors, several of them being employed by hardware providers. Despite the fact that
not all of our kernels have been optimized to an equal level, we are going to attempt to
provide an objective benchmark.

Figure 7.18 shows a performance comparison between APIs where we apply the subdivi-
sion tables to an animated mesh. The refined geometry displayed consists of approximately

OpenSubdiv: Interoperating GPU Compute and Drawing 183

6 million refined vertices. We logged the runtime execution of our kernel batches as well
as the total time of a displayed frame. Obviously, this scenario is somewhat subjective, as
the topology of the selected mesh is far from offering a representative subset of real-world
applications. With these caveats in mind, we can note the following trends:

• As expected, in single-thread mode, clock frequency prevails: a 3.5 Ghz Haswell out-
performs a 2.7 Ghz IvyBridge almost linearly.

• Intel hyperthreaded strategies for core over-subscription appear to degrade perfor-
mance slightly with TBB (unfortunately, we could not test the same with OpenMP).

• Comparing GPU to CPU compute time, a 16 cores Intel IvyBridge configuration
almost keeps up with an NVIDIA Fermi generation GPU. This result is somewhat
accidental though, as tests using larger batches of vertices give the GPU an increasing
advantage. We attribute this trend to better amortization of GPU driver overheads.

• Some APIs perform slightly better than others: CUDA is slightly faster than OpenCL
on an NVIDIA GPU, while TBB appears to scale slightly better than OpenMP with
our code. However, these differences appear to be mostly marginal within a given class
of API and hardware. The upside is that this allows other considerations to play a
role in the decision process.

• When looking at total frame execution time though, a different picture emerges: we
notice a very clear advantage to relocating the subdivision kernel computations to the
GPU. Even when the CPU cores can match kernel execution time, the frame rates are
nearly tripled when using CUDA instead of TBB. This severe disparity highlights the
very high costs of streaming large amounts of data from main memory to a separate
pool on board of a discrete compute device. Our CPU implementations have to move
the entire buffer of subdivided vertices, while the GPU implementations only have to
update the vertices of the control mesh. Bandwidth between main memory and GPU
memory appears to be an extremely valuable commodity.

If the destination of the subdivision process is interactive display, interpolating the
vertex data on the GPU becomes a fairly obvious choice. On the other hand, if the results
are intended for general computing processes, the choice between CPU and GPU is far from
being so clear-cut. The flexibility to easily switch from one to the other could eventually
prove to be an extremely powerful advantage.

However, we did learn that regardless of API and languages, writing kernels that are
well optimized to a particular micro-architecture requires expert knowledge, good profil-
ing tools, and time. These resources being in general short supply, we would like to call
out the generous contributions from domain experts within the open-source community.
Their efforts allowed us to focus our attention on addressing some of the more fundamental
limitations of our algorithms.

7.9 Fundamental Limitations of Uniform Subdivision

As we have been hinting above, it seems that despite multiple levels of optimizations,
the performance of our subdivision tables scales somewhat poorly with the thousands of
cores found in modern GPUs. The core occupancy readings from our profilers indicate that
the root cause is memory coalescing. While occupancy is not a very reliable measure of the
efficiency with which our code leverages the computational power of the hardware, it does

184 Multithreading for Visual Effects

FIGURE 7.19: Geometric progression of subdivided polygons.

hint that there is a better solution to be found yet. Addressing this fundamental problem
should allow us to make some substantial improvements in performance and unlock the
full potential of the thousands of cores in our GPUs. Let’s start by identifying some of the
obstacles that still remain in our way.

7.9.1 Exponential Growth

The most obvious problem with uniform subdivision is the exponential growth incurred
for each iteration. Both the Catmull-Clark and Loop subdivision schemes quadruple the
number of faces generated with each iteration. Figure 7.19 shows the number of sub-faces
generated for a single face across multiple levels of subdivision. Approximating the limit
surface by successive iterations of the subdivision algorithm is very much a brute-force
approach.

Because this exponential growth is applied to both processing speed and memory con-
sumption, few interactive applications to date have been able to manipulate or, even simply
display, more than the first or second level of subdivision. Depending on the control cage,
this can be a very coarse approximation indeed.

7.9.2 Geometric Fidelity

Because uniform subdivision of meshes is unable to scale beyond the first few iterations,
it can only offer very limited fidelity with regard to the approximation of the limit surface
it intends to describe.

By definition, we are subdividing the entire shape with the same density everywhere.
However, in order to get a good approximation, the density of the mesh should be high
enough to correctly smooth even the areas of high curvature.

Few practical shapes have a uniform complexity, so we are left with a compromise of
either wasting a lot of geometry in relatively flat areas, or we have to sacrifice the quality
of the surface in the areas with a lot of detail. Not surprisingly, these areas are often the
most critical ones in the shape: fingers, facial features for characters, grips or handles for
tools, and so on.

Furthermore, because the geometry being generated is composed of bilinear quads or
triangles, it is not differentiable. Because of this, we cannot derive analytical tangents,
resulting in unreliable surface normals, particularly in the area along edges with semi-sharp
creases. The absence of reliable normal vectors imposes significant restrictions on shading:
for instance, we cannot apply crack-free displacement maps under deformation, and we also
have to contend with rendering artifacts appearing in specular and diffuse reflections.

OpenSubdiv: Interoperating GPU Compute and Drawing 185

FIGURE 7.20: Comparison of off-line and interactive assets.

7.9.3 Animating Subdivision Surfaces

Our ambition is to allow artists to interact with a high-fidelity rendition of the limit
surface, including advanced shading and lighting techniques.

As a practical exercise, Figure 7.20 compares several criteria in order to evaluate the
overall complexity found in a typical production asset. In particular, this comparison em-
phasizes the differences of scale found between interactives and an off-line display system.
The figures quoted in the off-line case are typical for a regular CG character or creature ren-
dered and composited in any recent visual-effect movie. We compare the same elementary
animation and rendering attributes to those of a high-quality avatar found in a MMORPG
or first-person shooter running on current generation hardware. While not directly com-
parable, we expect both the complexity of the topology and the render time to differ by
several orders of magnitude.

The important distinction between the two models, however, is that most interactive
game engines perform animation tasks exclusively through bone articulation, which allows
for direct GPU-based execution.

By contrast, typical feature film characters require much more fine-grained articulation
controls, especially where subtle facial expressions are concerned. This requirement currently
dictates the use of blend shapes and higher-order deformers to be layered over the simpler
kinematic bone structures. As a direct consequence, as we have seen in other chapters,
articulation computations are typically derived from complex dependency graphs, imposing
data dependencies that currently limits evaluation to a much smaller pool of cores than is
typically found on a GPU.

From these figures, it is obvious that we can only afford to apply complex and expensive
articulation algorithms to the vertices of a coarser-control mesh. We propose instead to rely
on the subdivision process in order to locally amplify the surface data displayed.

7.9.4 Better, Faster, Different

While we have shown that traditional uniform subdivision schemes can be executed
concurrently on many-core architectures, unfortunately our implementation simply does not
scale well enough to meet the ambitious requirements imposed by our goals for a smoother
user experience. We need a solution that yields an accurate sampling of the surface limit,
not just an approximation, and does it several orders of magnitudes faster still.

186 Multithreading for Visual Effects

FIGURE 7.21: Discrete and fractional tessellation patterns.

Level 5 Level 5.4 Level 6.6

7.10 Feature-Adaptive Subdivision

In order to move beyond the limitations of uniform subdivision, we are going to have to
abandon the iterative refinement process that we have been using to converge toward the
surface limit. Ideally, we also want to overcome the memory latency bottlenecks described
earlier: we need to make a better use of the massively parallel architecture of modern GPUs
if we are to achieve our target refresh rates. In addition, we have to retain all the features and
extensions to the original definition of Catmull-Clark surfaces, exactly as they are currently
supported in off-line rendering software such as Photorealistic Renderman (PRMan). Once
again, we will turn to the intricacies of GPU micro-architectures.

7.10.1 GPU Hardware Tessellation

Despite the prevalence of subdivision surfaces use for digital content creation, real-time
applications, and games in particular, still use almost exclusively triangle representations
for their geometry. However, given the ubiquity of subdivision algorithms on the authoring
side, graphics hardware vendors have recently started to add dedicated tessellation units to
GPU architectures, with attending standardized APIs both in OpenGL and DirectX.

The new hardware tessellation units take parametric patches as input and execute pro-
grammable shaders to generate a triangulated mesh. The triangulation process is controlled
by tessellation factors, which specify the number of vertices created on each edge of the
patch. Tessellation factors can be fractional, which allows for smooth transition between
discrete levels of tessellation, without popping artifacts between levels. Figure 7.21 shows
the resulting tessellation patterns of several ratios on a triangular and square patch.

The main advantage of tessellation units is the ability to take a very compact para-
metric representation and generate very high densities of triangulated geometry directly on
the chip. The triangles generated are also sent directly to the rasterizer. This configuration
contributes to drastically reducing GPU memory I/O, thus maximizing the use of the com-
putational capabilities of the parallel cores. Tessellation is possibly one of the best ways to
leverage the strengths and energy efficiency of hybrid GPU architectures [58].

Being able to leverage the tessellation pipeline also gives us the control and flexibility to
render continuous surfaces with a varying level of detail, for elements both close and distant

OpenSubdiv: Interoperating GPU Compute and Drawing 187

FIGURE 7.22: A regular and extraordinary vertex.

Regular vertex Extraordinary vertex

FIGURE 7.23: Subdivision of regular and extraordinary faces.

Regular face Extraordinary face

from the view point. View-dependent level of detail allows us to decouple the tessellation
from the iterative subdivision process.

However, this requires that we now find a way to express the topology of our meshes
into a collection of parametric patches.

7.10.2 Catmull-Clark Terminology

Before diving into the details of the feature-adaptive algorithm, we will introduce some
terminology specific to the Catmull-Clark subdivision scheme.

• The valence of a vertex is the number of incident edges to a vertex.

• A regular vertex is a vertex of valence 4, otherwise it is an extraordinary vertex (Figure
7.22).

• A regular face is a face with four regular vertices (Figure 7.23).

188 Multithreading for Visual Effects

FIGURE 7.24: Bi-cubic patches around an extraordinary vertex.

7.10.3 Bi-Cubic Patch Representation

As early as 1998, Jos Stam developed an algorithm to directly evaluate the limit of
the parametric form of Catmull-Clark surfaces [60]. However, his method requires meshes
comprising quad faces exclusively, with at most one extraordinary vertex each. Stam’s tech-
nique also requires the evaluation of a heavily data-driven eigen space transform during the
tessellation process, which makes the GPU implementation very impractical. The full direct
analytical evaluation of the limit of a subdivision surface has remained an open problem
until recently.

Fortunately, there is a property that we can leverage: by design, the limit surface of a
Catmull-Clark subdivision can be described with an infinite collection of bi-cubic polynomial
patches [19]. More specifically: the limit of a regular Catmull-Clark face can be represented
with a single bi-cubic patch, while the area around extraordinary vertices requires the
nesting of an infinity of patches. Figure 7.24 illustrates the recursive arrangement of nested
patches isolating an extraordinary vertex.

We can also use adaptive feature isolation to handle other discontinuous topological
features: we can isolate semi-sharp creases by nesting patches along creased edges. The
number of subdivision steps required to isolate a semi-sharp crease is equal to the ceiling
of its scalar sharpness value. Topological hierarchical edits are handled in a similar fashion,
by iteratively generating patches around the edit location. The Color Insert for Figure
7.25 uses color coding to illustrate how the feature isolation patches are arranged around
extraordinary features and boundaries.

While infinite patching would be a problem, the technique of adaptively patching around
extraordinary vertices has been made practical with the application of several approxima-
tion schemes: Loop and Schaefer [43] first proposed “Approximate Catmull-Clark (ACC)
Patches,” and then introduced the use of Gregory patches [44] as a way of reducing the
number of control vertices, while still retaining the continuity of the surface.

This research led to the implementation of the first feature-adaptive algorithm able to
fully conform to the Renderman specification, as described by Nießner et al. [52].

OpenSubdiv: Interoperating GPU Compute and Drawing 189

FIGURE 7.25: Adaptive topological feature isolation. The color cod-
ing illustrates how the different types of patches are used to isolate
boundaries or extraordinary vertices. (See Color Insert.)

7.10.4 Feature-Adaptive Subdivision

We can implement feature-adaptive GPU tessellation entirely as an extension of our
existing uniform refinement code. The main difference is that instead of indiscriminately
subdividing every face in the control cage mesh, we only seek faces with features that
break surface continuity: extraordinary vertices, creases, or hierarchical edit tags. Using
our CPU implementation of the Catmull-Clark subdivision scheme, we are going to isolate
extraordinary locations with smaller and smaller sub-faces.

Once we have achieved the required level of isolation for each extraordinary feature, we
traverse the resulting collection of faces and generate a list of patches. At the same time,
we also gather the index of the vertices within the 1-ring that will constitute the control
vertices of our bi-cubic patches. OpenSubdiv stores this information in a series of serialized
“Patch Tables,” which can be found within its “Far” API layer.

Finally, we still need to generate subdivision tables, which we will use to recompute
the position of all the patch control vertices every time the control mesh is deformed. The
method is identical to that described previously for uniform subdivision, with the exception
of the sparse set of points and patches.

The overall flow of the feature-adaptive algorithm is summarized in Figure 7.26. While
the somewhat complex geometry analysis phase of topological feature isolation is executed
entirely on the CPU, this cost is only incurred once and the resulting data can easily be
cached. Once the subdivision and patch tables have been generated, the entire rendering
process is executed on the GPU. The only bandwidth required between the devices is being
used to update the small buffer containing the vertex data from the coarse control mesh.

190 Multithreading for Visual Effects

FIGURE 7.26: Feature-adaptive display pipeline.

7.11 Implementing the GPU Rendering Engine

Unlike our table driven subdivision algorithm that relies on the flexibility of “General
Purpose” computing platforms (GP-GPU), such as CUDA or OpenCL, to execute on a
discrete device, tessellation can be implemented directly in the display system, using native
rendering interfaces.

Modern GPUs break down shading operations into an assembly pipeline composed of
multiple programmable shading stages. Figure 7.27 shows the shading pipelines for OpenGL
and Microsoft’s D3D APIs.

The naming conventions differ slightly in the literature, but fundamentally, the principles
are the same: each shading stage corresponds to a frequency of execution of computations:

• The Vertex Shader is executed first and once for each vertex of the mesh.

• The Geometry Shader is executed once for each primitive drawn (triangle, quad, or
patch).

• The Fragment Shader is executed at the very end on every pixel rendered and is
executed most intensively.

With the advent of hardware tessellation, users have been given access to a new pro-
grammable primitive generator with the addition of two new stages: the tessellation control
and tessellation evaluation stages with OpenGL 4.1, and the hull and domain shaders for
D3D 11.

On the OpenGL side, the new shading stages are enabled with a new GL PATCHES
primitive mode that can be invoked with the draw calls from Listing 7.7.

glPatchParameteri(GL_PATCH_VERTICES , 16);
glDrawElements(GL_PATCHES , buffer_len , GL_UNSIGNED_INT , 0);

Listing 7.7: Application control.

OpenSubdiv: Interoperating GPU Compute and Drawing 191

FIGURE 7.27: GPU shader stages pipeline.

7.11.1 Bi-Cubic Bspline Patches with GLSL

We now have to implement the bi-cubic patch interpolation within this new shading
pipeline. Listings 7.8 and 7.9 show a simplified version of our tessellation control and eval-
uation shaders corresponding to “regular” bi-cubic patches.

Notice how at the end of the tessellation control stage, the shader specifies the number
of vertices generated on the inner and outer rings by setting the gl TessEvalInner and
gl TessEvalOuter GLSL variables. This mechanism allows us to control dynamically the
number of sub-triangles generated by the Primitive Generator for each individual frame: the
“GetTessLevel()” function implements a screen-space metric based on the distance between
the control vertices. While this feature is extremely powerful when integrated into a level-
of-detail strategy, we will see that it can still be improved upon.

Both Listings 7.8 and 7.9 show nested loops where control vertices are being interpo-
lated. These are not redundant computations: we apply a basis conversion in the tessellation
control stage, where the control vertices are transformed into a Bézier form. The tessellation
evaluation stage then interpolates these intermediate control vertices with Bézier polyno-
mials (hidden in the Univar4x4() function).

We incur a small up-front cost for the basis conversion, but as the tessellation rate
increases, the more compact Bézier interpolation allows us to amortize it by saving compu-
tations in the higher-frequency tessellation evaluation stage. This optimization technique is
originally described by Loop and Schaefer [43].

The real-time render in Figure 7.28 (see Color Insert) displays the fractional patterns
of triangles generated by the hardware tessellation engine with a yellow wireframe. In this
image, the rate of tessellation is driven by the length of the edges of the patches projected in
screen-space. We can adjust this metric to produce triangles with a generally consistent area
of rendered screen pixels. If the metric is small enough, we can guarantee that the surface
displayed is always sufficiently sampled to retain its smoothness, even under extreme close-
ups. Conversely, because the sampling rate is related to the distance to the viewpoint,
distant objects are automatically adjusted to a very sparse sampling rate, and become very
cheap to render. In some ways, this method is similar to the screen-space dicing heuristics
that the REYES rendering algorithm uses to generate micro-polygons.

We have now fleshed out the general structure of our hardware tessellation driven im-
plementation, but there are still many details to attend to.

192 Multithreading for Visual Effects

// Regular patch tess -control stage
uniform mat4 Q = mat4(

1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f,
0.f, 4.f/6.f, 2.f/6.f, 0.f,
0.f, 2.f/6.f, 4.f/6.f, 0.f,
0.f, 1.f/6.f, 4.f/6.f, 1.f/6.f

);

void main() {

int i = gl_InvocationID %4;
int j = gl_InvocationID /4;

vec3 H[4];
for (int l=0; l<4; ++l) {

H[l] = vec3 (0,0,0);
for (int k=0; k<4; ++k) {

H[l] += Q[i][k] * inpt[l*4 + k].v.position.xyz;
}

}

vec3 pos = vec3 (0,0,0);
for (int k=0; k<4; ++k) {

pos += Q[j][k]*H[k];
}

output[gl_InvocationID].v.position = vec4(pos , 1.0);

gl_TessLevelInner [0] = GetTessLevel(patchLevel);
gl_TessLevelInner [1] = GetTessLevel(patchLevel);
gl_TessLevelOuter [0] = GetTessLevel(patchLevel);
gl_TessLevelOuter [1] = GetTessLevel(patchLevel);
gl_TessLevelOuter [2] = GetTessLevel(patchLevel);
gl_TessLevelOuter [3] = GetTessLevel(patchLevel);

}

Listing 7.8: Tessellation control stage for regular patches.

7.11.1.1 Handling Surface Boundaries

Most surface models tend to represent enclosed volumes, but their topology is rarely
simple enough that regular patches alone can be used. One of the topological features that
we need to account for is the existence of surface boundaries. An edge with only a single
incident face is a “boundary edge,” and a face with two consecutive boundary edges is a
“corner.” All the boundaries around a surface can eventually be expressed with just these
two types, although we may have to subdivide some faces to reduce the number of corners
(ex: a single quad face).

By selecting preset boundary interpolation rules, users can control whether corner ver-
tices and boundary edges are to be either smoothed or kept sharp. We apply these rulesets
during the adaptive feature isolation stage of our topological analysis, but the process gen-
erates special boundary and corner patches. These patches require dedicated tessellation
shader programs.

Figure 7.29 shows that the main difference between a regular and a boundary patch
is that four control vertices from the 1-ring are undefined, being on the other side of the
boundary. These vertices can be very easily obtained though, simply by mirroring the control
vertex that is inside the boundary against the control vertex that straddles the boundary.
Similarly, a corner patch mirrors six vertices along its edges, then mirrors the diagonal
vertex. The interpolation of boundary patches is the same as that of regular patches, but
we can account for the “mirroring” simply by modifying the coefficients of the interpolation
matrix, which saves some cycles.

OpenSubdiv: Interoperating GPU Compute and Drawing 193

// Regular patch tess -eval stage
void main() {

vec2 UV = gl_TessCoord.xy;

float B[4], D[4];
vec3 BUCP[4], DUCP [4];
Univar4x4(UV.x, B, D);

for (int i=0; i<4; ++i) {
BUCP[i] = vec3 (0);
DUCP[i] = vec3 (0);
for (int j=0; j<4; ++j) {

vec3 A = inpt [4*i + j].v.position.xyz;
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];

}
}

vec3 WorldPos = vec3 (0);
vec3 Tangent = vec3 (0);
vec3 BiTangent = vec3 (0);

Univar4x4(UV.y, B, D);

for (int k=0; k<4; ++k) {
WorldPos += B[k] * BUCP[k];
Tangent += B[k] * DUCP[k];
BiTangent += D[k] * BUCP[k];

}
int level = int(inpt [0].v.ptexInfo.z);
Tangent *= 3 * level;
BiTangent *= 3 * level;

vec3 normal = normalize(cross(Tangent , BiTangent));

outpt.v.position = vec4(WorldPos , 1.0f);
outpt.v.normal = normal;

gl_Position = (OsdProjectionMatrix () * vec4(WorldPos , 1.0f));
}

Listing 7.9: Tessellation evaluation stage for regular patches.

There is one additional problem: we have to rotate the control vertices of the patch so
that the boundary or the corner is lined up with the mirroring encoded in the matrix. This
correction is applied early on during the feature analysis stage, thus fully amortizing the
cost of the rotation.

7.11.1.2 Handling Patch Transitions

Aside from surface boundaries, we also have to manage a problem that is a by-product
of our patch nesting strategy: we need to prevent “cracks” from forming at the boundaries
between patches.

Figure 7.30 shows a typical patch nesting pattern around an isolated extraordinary ver-
tex. The darker patches in this figure indicate that at least one edge of the patch is bordered
by two adjacent patches from a higher level of isolation. In Listing 7.8, we have seen that
the hardware primitive generator only accommodates a single scalar (gl tessLevelOuter) to
describe the number of vertices that need to be generated along a given edge of the patch.

In order to be able to match a fractional rate of tessellation along the outer edge, we
need to split these patches so that we can transition the rates of tessellation with vertices
matching on each side of the boundary.

194 Multithreading for Visual Effects

FIGURE 7.28: Wireframe showing the triangles generated by the
GPU tessellation unit. Fractional patch tessellation allows for a
continuous screen-space level of detail without cracks at the patch
boundaries. (See Color Insert.)

Figure 7.31 shows the five transition constellation patterns connecting patches and
sub-patches. The central square patch is split into triangular sub-patches, the corners of
which are matched with the “T” junctions. Each constellation is also associated a rotation
component, in order to describe all the possible topological configurations. We also have to
apply these constellation patterns to the boundary and corner patches. Between the special
types of patches and transition patterns, we are indeed generating a growing number of
combinations that each require dedicated shader codes, and so on.

7.11.1.3 “End” Patches

One aspect of feature-adaptive isolation that we have put aside until now is what happens
in the close neighborhood of an extraordinary vertex. Since we cannot afford to nest a literal
infinity of patches, eventually we are going to have to approximate the limit surface around
that area.

One possible solution is to use Gregory patches, as described in by Loop et al. [44].
If we set an arbitrary limit level to our feature isolation algorithm, we can use these bi-
cubic patches to fill the remaining gaps in the surface. The patches provide a very close

OpenSubdiv: Interoperating GPU Compute and Drawing 195

FIGURE 7.29: Boundary patch and corner patch with mirrored ver-
tices.

B C

FIGURE 7.30: Matching tessellation across isolation levels.

FIGURE 7.31: All five possible transition patterns.

approximation to the limit surface and with tessellation, they hold up fairly well, even in
extreme close-ups. The downside, however, is that the mathematics are significantly more
complex, require more computations as well as dedicated data tables. For many applica-
tions though, the high precision afforded by Gregory patches is unlikely to justify these
hefty trade-offs.

196 Multithreading for Visual Effects

Another possible solution is to simply use bilinear quads as “end patches.” Assuming
that we can make sure that the area they cover is either very close to flat or tiny in
screen-space, this would be a much more lightweight solution. We could isolate extraordinary
features to a very high level during our precomputation pass, but we do not necessarily have
to use all these levels when displaying a given frame. We could dynamically switch the level
of isolation based on the distance of the object to the camera. Bilinear quads are a very crude
approximation of the limit surface, but they are much cheaper than Gregory patches. Within
a dynamic isolation system, we believe that they can offer a more attractive compromise
between precision and performance.

7.11.2 Mitigating Drawing Overheads

While the various bi-cubic types of patches are relatively simple to implement within the
programmable tessellation control and evaluation shaders, an efficient implementation of the
feature-adaptive scheme still presents some challenges. With our goal of fully representing
the limit surface, we have created a fairly large collection of distinct combinations of patches
that each require separate shading programs.

Unfortunately, with the current generation of graphics APIs (OpenGL 4.1), each shading
program can only be switched by launching separate individual draw instructions; one for
each sequence of patches of each type. Even though we are sorting all the patches to be
drawn by type, we are still incurring a substantially large number of driver state changes,
along with the attending execution launches. In practice, while a typical mesh only contains
a fraction of all the possible patterns, we are still queuing many driver calls from the CPU.
Moreover, as the number of surfaces to be drawn increases, this eventually leads to very
noticeable performance overheads. We are investigating several avenues to help mitigate
this problem:

• Our first approach has been the implementation of a batching system in OpenSub-
div: we provide factory classes that can combine the arrays of patches from several
meshes. Considering that a typical feature film character is often composed of a cou-
ple hundred distinct primitives (eyeballs, teeth, nails), this technique can considerably
mitigate driver overheads. It does, however, add some complexity when access to in-
dividual primitives is required (e.g., highlighting a selected eyeball on selection), so
this approach is not entirely satisfactory.

• We can also try to address the fragmentation of patch types more directly by sim-
plifying transition patch patterns. Currently, the outer tessellation rate can only be
specified with a single fractional value along a given edge. This situation is forcing
our implementation to resort to multiple draw calls in order to render each of the five
transition patterns with several triangular sub-patches (see Figure 7.32). Even though
this limitation is embedded within the hardware tessellation unit of the current gen-
eration of GPUs, we are proposing an extension to the existing tessellation standard
for future generations of chips.

In order to achieve crack-free tessellation, the outer tessellation levels of adjacent
patches must generate the same vertex locations along the edge. The proposed exten-
sion would give us the flexibility of drawing transition patches within a single draw
call, by allowing the tessellation of an outer edge to be first split in half exactly at
the 0.5 domain location, and then use two fractional tessellation rates: one for each
half of the edge. This extension would greatly simplify not only the tessellation shader
code required for crack-free transition patches, but also the host application’s drawing
code.

OpenSubdiv: Interoperating GPU Compute and Drawing 197

FIGURE 7.32: Comparing an example transition pattern drawn with
sub-patches against our proposed extension.

T T

7.12 Texturing

Thus far, this chapter has been focusing on limit surface representation, at the cost of
neglecting texturing tasks, which are equally critical in producing compelling imagery. Since
subdivision surfaces are controlled by a coarse polygonal mesh, most of the usual mapping
and painting techniques can be applied successfully.

However, since our underlying representation is a bi-cubic patch, we are not constrained
to a bilinear interpolation of the texture coordinates. Instead, we can opt to use a smoother
bi-cubic texture coordinate interpolation scheme, although this comes at a hefty cost both
for performance and code complexity. A more detailed description of face-varying interpo-
lation falls, unfortunately, beyond the scope of this book.

There is, however, another texturing technique that has been developed specifically
for subdivision surfaces: Ptex [10]. Originally developed by Walt Disney Studios for their
own feature production rendering, this particular texturing system has since been open-
sourced, and support for its file format has been incorporated into most of the leading DCC
applications. The key feature of Ptex is that the system assigns a unique texture to each
face of a given mesh, thereby alleviating the need for labor intensive UV assignments. The
file format is very efficient and can store hundred of thousands of textures in a single file.
A topological adjacency table is also stored in the file, which allows filters to blend texels
across face boundaries.

Although direct graphics hardware support for Ptex is still a work in progress, Open-
Subdiv does offer an interactive GPU implementation. Upon reading the file, an optimizing
algorithm packs each face texture, including mip-maps, into a 3D texture bank. The shader
code then simply uses the parameterization of each bi-cubic patch as an implicit coordinate
frame to access each texel. By comparison, a UV layout would require mapping coordi-
nates to be associated with each vertex of the mesh, and the shaders would then need to
interpolate these coordinates to locate the texels.

198 Multithreading for Visual Effects

Unlike off-line renderers that can use the built-in adjacency table, interactive filtering
across patch boundaries is achieved by guttering the face textures with a single row of redun-
dant texels. Using a single row of texels is a compromise that allows us to render seamless
textures, but prevents us from using the higher quality hardware-backed anisotropic tex-
ture filters. Anisotropic filtering would require each texture to be guttered with at least half
the number of texels of the filter size (eight usually), which would cause an unreasonable
increase of the texture size in GPU memory. This opens up some high-frequency aliasing
problems that we have yet to address in OpenSubdiv, but we should be able to borrow from
the many techniques already implemented in off-line rendering software.

7.12.1 Displacement Mapping

One of the benefits of using a geometrically continuous surface over polygons is that
we can use differential calculus to integrate gradient functions. Practically, this allows us
to establish robust local tangent spaces and smooth surface normals. By extension, we
can also analytically integrate arbitrary surface displacement functions, which produces
displaced normals (see Nießner and Loop [51]) that remain continuous under deformation.

In conjunction with the ability of tessellating meshes with very high densities of trian-
gles, we have all the ingredients necessary to render high-quality articulated surfaces with
displacement mapping in real time. Displacement mapping is becoming particularly rele-
vant with the emergence of digital sculpting tools such as Autodesk’s Mudbox or Pixologic’s
ZBrush. These tools empower artists to produce extremely detailed sculptures and manip-
ulate interactive shapes that use upward of a billion quad faces. Obviously, the computing
power required to pose and articulate this kind of geometry in real time is prohibitive, which
is why digital sculpting has been limited to static artwork so far.

However, it is fairly easy to extract a displacement texture by differencing the high
resolution sculpture and a much lower resolution smooth skin shape. The low resolution
mesh can be posed and articulated, but it also retains all the visual quality and detail of
the original sculpture thanks to the application of displacement mapping. With adaptive
fractional tessellation we can effectively decouple the visual complexity of a model from the
amount of static geometry required to produce an image on screen: using simple screen-space
metrics, we can smoothly reduce the tessellation rate on regions that are far from the point
of view. By comparison, applying similar geometry culling techniques to polygonal meshes
produce very complex algorithms that are prone to “popping” and “cracking” artifacts.

Figure 7.33 shows a sculpture from artist Jesse Sandifer (www.chickwalker.com), orig-
inally executed in Autodesk’s Mudbox. The full resolution model uses over half-a-billion
quads. Once converted to Ptex textures though, the entire set of geometric and shading
information fits within the texture memory of a $300 GPU, and his Turtle Barbarian char-
acter can be posed in real time. The tessellation metric applied to produce these figures (also
see the Color Insert for Figure 7.34) generates between 5 and 10 million triangles for each
frame, at a consistent 30 Hz. This allows us to interact with a visualization of the model
rendered with nearly sub-pixel shading rate, at full-screen resolution. This is the level of
visual feedback that our animators require in order to make informed creative decisions that
will not be invalidated later against the “ground truth” produced by the off-line renderer.

OpenSubdiv: Interoperating GPU Compute and Drawing 199

FIGURE 7.33: Interactive render using GPU hardware tessellation
and Ptex displacement textures showing the extremely high density
of geometric detail.

7.13 Conclusion

With subdivision surfaces we have tackled a problem that has been extremely resistant
to parallel execution. We were eventually able to break from the constraints imposed by
the exponential growth of the subdivision algorithm through leveraging the bi-cubic patch
nature of the surface. This paradigm shift has resulted in the implementation of our feature-
adaptive algorithm.

This fortunate turn of the situation opens up several powerful avenues to exploit many-
core parallelism. During the refinement step, we can use either CPU or GP-GPU methods
to apply the subdivision scheme to the vertices of the coarse mesh. If the data is intended
for interactive display, we can then feed our patch control vertices to the built-in hardware
tessellation generator, which can render up to half-a-billion vertices per second (Kepler
generation hardware). While not all problems will be amenable to such fortuitous solutions,
in this particular case, we were able to achieve an overall speed-up of about four orders of
magnitude, compared to the legacy CPU-based implementations.

200 Multithreading for Visual Effects

FIGURE 7.34: Mudbox sculpture showing analytical displacement
with GPU hardware tessellation for interactive animation. Color and
displacement textures are stored in the Ptex format. (See Color
Insert.)

The massive performance gain is only one of several equally important benefits though:
switching to a bi-cubic patch representation means that all the sampled vertices are now
situated immediately on the limit surface instead of being discrete approximations. The
resulting surfaces are watertight, with robust analytical normals, from which we derive the
ability to apply displacements that remain consistent under deformation. The geometrically
continuous normals also contribute to improved illumination, with smoother specular reflec-
tions. Finally, by applying fractional tessellation factors derived from screen-space metrics,
we can dynamically adjust the amount of geometry that the GPU needs to sample for each
individual frame, thus decoupling the computational load from the geometric density of the
shape.

OpenSubdiv: Interoperating GPU Compute and Drawing 201

By efficiently leveraging all the features of the GPU architecture, we are now able to
achieve interactive sub-pixel sampling densities that can rival the micro-polygon shading
rates applied in off-line renders. We believe that the benefits from our implementation will
prove to be a vital step toward increasing the realism and visual quality of interactive
computer generated imagery.

Bibliography

[1] Intel® 64 and IA-32 Architectures Optimization Reference Manual. Intel Cor-
poration, April 2012. URL: http://www.intel.com/content/dam/doc/manual/

64-ia-32-architectures-optimization-manual.pdf.

[2] John C. Adams. MUDPACK: Multigrid software for elliptic partial differential equa-
tions. NCAR, 1999. Version 5.0.1.

[3] David Beazley. Python GIL, presented at PyCON 2010. 2010. URL: http://www.
dabeaz.com/python/UnderstandingGIL.pdf.

[4] G. Bergen and D. Gregorius. Game Physics Pearls. A.K. Peters, 2010. URL: http:
//books.google.com/books?id=8vIpAQAAMAAJ.

[5] J. U. Brackbill and H. M. Ruppel. FLIP: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions. J. Comput. Phys., 65(2):314–343, August
1986. URL: http://dx.doi.org/10.1016/0021-9991(86)90211-1, http://dx.doi.
org/10.1016/0021-9991(86)90211-1 doi:10.1016/0021-9991(86)90211-1.

[6] Robert Bridson. Fluid Simulation for Computer Graphics. A. K. Peters, Wellesley,
MA, 2008.

[7] Robert Bridson, Jim Houriham, and Marcus Nordenstam. Curl-noise for procedural
fluid flow. ACM Trans. Graph., 26, 2007. http://dx.doi.org/10.1145/1276377.

1276435 doi:10.1145/1276377.1276435.

[8] William L. Briggs, Van Emden Henson, and S. F. McCormick. A multigrid tutorial.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2nd edition, 2000.

[9] J. Budsberg, M. Losure, K. Museth, and M. Baer. Liquids in The Croods. In ACM
Digital Production Symposium (DigiPro 2013), 2013.

[10] Brent Burley and Dylan Lacewell. Ptex: Per-face texture mapping for pro-
duction rendering. In Proceedings of the 19th Eurographics Conference on
Rendering, EGSR’08, pages 1155–1164, Aire-la-Ville, Switzerland, 2008. Euro-
graphics Association. URL: http://dx.doi.org/10.1111/j.1467-8659.2008.

01253.x, http://dx.doi.org/10.1111/j.1467-8659.2008.01253.x doi:10.1111/

j.1467-8659.2008.01253.x.

[11] C. Loop Smooth subdivision surfaces based on triangles. Master’s thesis, University
of Utah, 1987.

[12] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topo-
logical meshes. Computer-Aided Design, 10(6):350–355, November 1978.

[13] Shannon Cepeda. Vectorization — Find out What It Is, Find out More! In-
tel Corp., 2013. URL: http://software.intel.com/en-us/blogs/2012/01/31/

vectorization-find-out-what-it-is-find-out-more.

203

204 Bibliography

[14] Stuart Cheshire. Latency and the quest for interactivity. November 1996. URL:
http://www.stuartcheshire.org/papers/LatencyQuest.html.

[15] Intel Corp. Intel Cilk Plus Language Extension Specification Version 1.2. Intel Corp.,
2013. URL: http://cilkplus.org.

[16] J. Demmel. Applications of parallel computers. Retrieved from U.C. Berkeley CS267
Web site: http://www.cs.berkeley.edu/ demmel/cs267/, 1996.

[17] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in character ani-
mation. In SIGGRAPH, pages 85–94, 1998.

[18] E. Dijkstra. Go To statement considered harmful. Communications of the ACM,
11(3):147–148, March 1968.

[19] D. Doo and M. Sabin. Behavior of recursive division surfaces near extraordinary points.
Computer-Aided Design, 10(6):356–360, 1978.

[20] T. F. Dupont and Y. Liu. Back and forth error compensation and correction methods
for removing errors induced by uneven gradients of the level set function. J. Comput.
Phys., 190(1):311–324, 2003.

[21] W. F. Engel. ShaderX5: Advanced Rendering Techniques. ShaderX series. Charles
River Media, 2007. URL: http://books.google.com/books?id=isu_QgAACAAJ.

[22] Wolfgang Engel. GPU Pro 5. A. K. Peters/CRC Press, 2014. URL: http://www.
crcpress.com/product/isbn/9781482208634.

[23] Christer Ericson. Real-Time Collision Detection. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 2004.

[24] Jason Evans. Scalable memory allocation using jemalloc. January
2011. URL: https://www.facebook.com/notes/facebook-engineering/

scalable-memory-allocation-using-jemalloc/480222803919.

[25] N. Foster and D. Metaxas. Realistic animation of liquids. Graph. Models and Image
Processing, 58:471–483, 1996.

[26] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Proceedings of
the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’01, pages 23–30, New York, NY, 2001. ACM. URL: http://doi.acm.

org/10.1145/383259.383261, http://dx.doi.org/10.1145/383259.383261 doi:

10.1145/383259.383261.

[27] Khronos OpenCL Working Group. SPIR: The standard portable intermediate repre-
sentation for device programs, 2014. URL: https://www.khronos.org/spir.

[28] Kronos Group. The OpenCL 2.0 Specification. Kronos Group, 2013. URL: https:
//www.khronos.org/opencl.

[29] Takahiro Harada. A parallel constraint solver for a rigid body simulation. In
SIGGRAPH Asia 2011 Sketches, SA ’11, pages 22:1–22:2, New York, NY, 2011.
ACM. URL: http://doi.acm.org/10.1145/2077378.2077406, http://dx.doi.org/
10.1145/2077378.2077406 doi:10.1145/2077378.2077406.

[30] F. Harlow and J. Welch. Numerical calculations of time-dependent viscous incompress-
ible flow of fluid with free surface. Phys. Fluids, pages 2182–2189, 1965.

Bibliography 205

[31] F. H. Harlow. The particle-in-cell method for numerical solution of problems in fluid
dynamics. Experimental arithmetic, high-speed computations and mathematics, 1963.

[32] R. D. Henderson. Scalable fluid simulation in linear time on shared memory multipro-
cessors. In ACM SIGGRAPH Digital Production Symposium (DigiPro 2012), 2012.

[33] Hugues Hoppe. Optimization of mesh locality for transparent vertex caching. In Pro-
ceedings of the 26th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’99, pages 269–276, New York, NY, 1999. ACM Press/Addison-
Wesley Publishing Co. URL: http://dx.doi.org/10.1145/311535.311565, http:
//dx.doi.org/10.1145/311535.311565 doi:10.1145/311535.311565.

[34] Intel. Intel Math Kernal Library Reference Manual. Intel Coproration, 2011. Document
number 630813-041US.

[35] S. Jacobs. Game Programming Gems Seven. Charles River Media/Course Technology,
2008. URL: http://books.google.com/books?id=5mDwGgAACAAJ.

[36] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High Performance Programming,
1st edition. Morgan Kaufmann, Waltham, MA, 2013.

[37] F. Ghorbel and K. Mamou. A simple and efficient approach for 3D mesh approximate
convex decomposition, 2009. URL: http://sourceforge.net/projects/hacd.

[38] George Em Karniadakis, Moshe Israeli, and Steven A Orszag. High-order split-
ting methods for the incompressible Navier-Stokes equations. J. Comput. Phys.,
97(2):414–443, 1991. http://dx.doi.org/10.1016/0021-9991(91)90007-8 doi:10.

1016/0021-9991(91)90007-8.

[39] B. Kim, Y. Liu, I. Llamas, and J. Rossignac. Flowfixer: Using BFECC for fluid simu-
lation. In Eurographics Workshop on Natural Phenomena, 2005.

[40] J. Kim and P. Moin. Application of a fractional step method to incompressible Navier-
Stokes equations. J. Comput. Phys., 59:308–323, 1985.

[41] E. A. Lee. The problem with threads. Technical Report UCB/EECS-2006-1, EECS
Department, University of California, Berkeley, January 2006. A published version
of this paper is in IEEE Computer 39(5):33-42, May 2006. URL: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html.

[42] Fuchang Liu, Takahiro Harada, Youngeun Lee, and Young J. Kim. GSAP: Real-
time collision culling of a million bodies on graphics processing units. In ACM SIG-
GRAPH Asia 2010 Papers, SIGGRAPH ASIA ’10, pages 154:1–154:8, New York,
NY, 2010. ACM. URL: http://graphics.ewha.ac.kr/gSaP, http://dx.doi.org/
10.1145/1866158.1866180 doi:10.1145/1866158.1866180.

[43] Charles Loop and Scott Schaefer. Approximating Catmull-Clark subdivision
surfaces with bicubic patches. ACM Trans. Graph., 27(1):8:1–8:11, March
2008. URL: http://doi.acm.org/10.1145/1330511.1330519, http://dx.doi.org/
10.1145/1330511.1330519 doi:10.1145/1330511.1330519.

[44] Charles T. Loop, Scott Schaefer, Tianyun Ni, and Ignacio Castaño. Approximating sub-
division surfaces with Gregory patches for hardware tessellation. ACM Trans. Graph.,
28(5), 2009.

206 Bibliography

[45] A. McAdams, E. Sifakis, and J. Teran. A parallel multigrid Poisson solver for fluids
simulation on large grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’10, pages 65–74, Aire-la-Ville, Switzerland,
Switzerland, 2010. Eurographics Association.

[46] M. McCool, A. Robison, and J. Reinders. Structured Parallel Programming. Morgan
Kaufmann, 2012.

[47] J. J. Monaghan. Extrapolating B-splines for interpolation. J. Comput. Phys.,
60(2):253–262, 1985.

[48] Ken Museth. VDB: High-resolution sparse volumes with dynamic topology. ACM
Trans. Graph., 32(3):27:1–27:22, July 2013. URL: http://doi.acm.org/10.1145/
2487228.2487235, http://dx.doi.org/10.1145/2487228.2487235 doi:10.1145/

2487228.2487235.

[49] Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden,
Peter Cucka, and David Hill. OpenVDB: An open-source data structure and toolkit
for high-resolution volumes. In ACM SIGGRAPH 2013 Courses, SIGGRAPH ’13,
pages 19:1–19:1, New York, NY, 2013. ACM. URL: http://doi.acm.org/10.1145/
2504435.2504454, http://dx.doi.org/10.1145/2504435.2504454 doi:10.1145/

2504435.2504454.

[50] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, 1993.

[51] M. Nießner and C. Loop. Analytic displacement mapping using hardware tessellation.
ACM Transactions on Graphics (TOG), 32(3):26, 2013.

[52] M. Nießner, C. Loop, M. Meyer, and T. DeRose. Feature-adaptive GPU rendering of
Catmull-Clark subdivision surfaces. ACM Transactions on Graphics (TOG), 31(1):6,
2012.

[53] OpenMP. The OpenMP API Specification for Parallel Programming. OpenMP, 2011.
Version 3.1.

[54] OpenMP. OpenMP 4.0 Specifications. OpenMP, 2013. URL: http://openmp.org.

[55] David Ott. Optimizing applications for NUMA. Intel Corporation, 2011. URL: http:
//software.intel.com/en-us/articles/optimizing-applications-for-numa.

[56] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C: The
Art of Scientific Computing, 2nd edition. Cambridge University Press, 1996.

[57] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor
Parallelism, 1st edition. O’Reilly & Associates, Inc., Sebastopol, CA, 2007.

[58] Steve Scott. No free lunch for Intel MIC (or GPU’s). URL: http://blogs.nvidia.
com/blog/2012/04/03/no-free-lunch-for-intel-mic-or-gpus/, April 2012.

[59] Andrew Selle, Ronald Fedkiw, ByungMoon Kim, Yingjie Liu, and Jarek Rossignac.
An unconditionally stable MacCormack method. J. Sci. Comput., 35:350–
371, 2008. URL: http://dx.doi.org/10.1007/s10915-007-9166-4 doi:10.1007/

s10915-007-9166-4.

Bibliography 207

[60] Jos Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary pa-
rameter values. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’98, pages 395–404, New York, NY, 1998.
ACM. URL: http://doi.acm.org/10.1145/280814.280945, http://dx.doi.org/
10.1145/280814.280945 doi:10.1145/280814.280945.

[61] Jos Stam. Stable fluids. In Proceedings of the 26th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’99, pages 121–128, New York,
NY, 1999. ACM Press/Addison-Wesley Publishing Co. URL: http://dx.doi.org/10.
1145/311535.311548 doi:10.1145/311535.311548.

[62] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobbs Journal, 30(3):202–210, 2005. URL: http://www.gotw.ca/

publications/concurrency-ddj.htm.

[63] Herb Sutter. Use lock hierarchies to avoid deadlock. Dr. Dobb’s Journal, 2007. URL:
http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/

204801163.

[64] Herb Sutter. Interrupt politely. Dr. Dobb’s Journal, 2008. URL: http://www.drdobbs.
com/parallel/interrupt-politely/207100682.

[65] Koen Vroeijenstijn and Ronald D. Henderson. Simulating massive dust in Megamind.
In ACM SIGGRAPH 2011 Talks, SIGGRAPH ’11, New York, NY, 2011. ACM. URL:
http://dx.doi.org/10.1145/2037826.2037915 doi:10.1145/2037826.2037915.

[66] M. Wrenninge. Production Volume Rendering: Design and Implementation. CRC Press,
Boca Raton, FL, 2013.

[67] Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM Trans. Graph.,
24(3):965–972, July 2005. URL: http://doi.acm.org/10.1145/1073204.1073298,
http://dx.doi.org/10.1145/1073204.1073298 doi:10.1145/1073204.1073298.

Index

A
ACC Patches; See Approximate

Catmull-Clark Patches
Advection solvers, 124–126
Aliasing

high-frequency, 198
pointer, 40

Amdahl’s law, 104, 119
AMD CodeXL tool, 144, 161
Approximate Catmull-Clark (ACC)

Patches, 188
Arithmetic Logic Units (ALU), 173
Array of Structures (AoS), 17
Autodesk’s Mudbox, 198

B
Back and Forth Error Compensation and

Correction (BFECC), 145
Background Execution, 64–69

constant data, 67
memory consumption, 67
multiple-reader scenario, 67
starter thread, 67

frame scheduling, 65–66
interruption, 66–67
common edits, 67
constant source of bugs, 66
in-flight threads, 67
repetitive strain injury, 66
resource cleanup problems, 66

problematic data structures, 67–69
assumption, 68
code reorganization, 68
pseudocode, 67

user interaction, 65
debugging, 65
feedback, 65
performance surprises, 65

Bézier interpolation, 191
BFECC; See Back and Forth Error

Compensation and Correction

Bounding volume hierarchy (BVH) query,
150

Bspline patches with GLSL (bi-cubic),
191–196

Bézier interpolation, 191
boundary edge, 192
corner, 192
crack prevention, 193
end patches, 194–196
Gregory patches, 194
handling patch transitions, 193–194
handling surface boundaries, 192–193
hardware tessellation engine, 191
mirroring, 193
real-time render, 191, 194
REYES rendering algorithm, 191
up-front cost, 191

Bullet Physics (simulation with OpenCL),
137–161

GPU constraint solving, 155–181
batch creation and two-stage

batching, 157–158
contact and friction constraint setup,

155–156
equations of motion, 155
Euler extension, 155
flood fill algorithm, 157
future work, 159
GPU deterministic simulation, 159
kernel enqueue operations, 156
Newton’s second law, 155
non-contact constraints, 158–159
parallel projected Gauss-Seidel

method, 156–157
projected Gauss-Seidel algorithm,

159
GPU contact point generation, 151–154
collision detection queries, 152
collision shape representation,
151–152

contact clipping algorithm, 154

209

210 Index

contact reduction, 154
convex decomposition, 151
convex 3D height field using cube
maps, 152–153

HACD library, 151, 152
Minkowski Portal Refinement, 154
NP hard problem, 151
separating axis test, 153
Sutherland Hodgeman clipping,
153–154

GPU spatial acceleration structures,
145–151

bottleneck, 147
bounding volume hierarchy query,
150

brute-force algorithm, 146
hybrid approaches, 150
parallel 1-axis sort and sweep, 148
parallel 3-axis sweep and prune,
149–150

reference all pairs overlap test,
146–147

static local space AABB tree,
150–151

Sweep and Prune algorithm, 149
uniform grid, 147–148
workgroup, 148

refactoring before the full rewrite,
139–140

benchmark tests, 139
single-threaded performance, 139

rewriting from scratch using OpenCL,
140–145

algorithms, 143
AMD CodeXL tool suite, 144
AMD terminology, 142
brief OpenCL introduction, 140–141
clipContacts stage, 144
code conversion, 141
Compute Units, 142, 143
CPU math library, 144
dealing with branchy code/thread
divergence, 143–144

debugging, 141, 144
exploiting the GPU, 142–143
Global Device Memory, 142
kernel, 141
OpenCL kernel source code, 145
precompiled kernel caching, 145
Private Memory, 142

serializing data to contiguous
memory, 144

sharing CPU and GPU code,
144–145

Standard Portable Intermediate
Representation specification, 145

wavefront, 142
Work Groups, 142
Work Item, 142
wrapper, 141

rigid body dynamics simulation,
138–139

Newton laws, 138
object–object interactions, 138

Visual Effects industry, 138
BVH query; See Bounding volume hierarchy

query

C
Catmull-Clark terminology, 187

regular face, 187
regular vertex, 187
surfaces, 168
valence, 187

Character rigs; See LibEE (parallel
evaluation of character rigs)

Cilk Plus (Intel), 10, 12
Collision detection queries, 152
Convex decomposition, 151
Critical path, 96
CUDA kernel execution overheads,

179
Cycle-suckers, 31

D
DCC platforms; See Digital Content

Creation platforms
Debugging, 16

Background Execution, 65
Houdini, 23
OpenCL, 141, 144
Presto, 52, 70–71
TBB, 16

Dependency graph, 76
Designing for multithreading; See Presto

execution system
Digital Content Creation (DCC) platforms,

118
Displacement mapping, 198
DreamWorks Animation (DWA), 2, 74, 75,

111, 136

Index 211

E
Eigen space transform, 188
Elliptic solvers, 126–128
End patches, 194–196
Equations of motion, 155
Euler extension, 155
Existing software, multithreading of; See

Houdini
External readers, 37

F
Face-varying primitive variable data,

167
Fast Fourier Transforms (FFTs), 113
Floating point (FP) number operations, 6
Flood fill algorithm, 157
Fluid Implicit Particle (FLIP), 129
Fluids (simulation on the CPU), 111–136

data structures, 120–122
particles, 120
root node, 120
sparse grids, 120
volumes, 120

fluid simulation, 120–136
data structures, 120–122
liquids, 128–136
smoke, fire, and explosions, 122–128

liquids, 128–136
benchmark problem, 135, 136
built-in reduction method, 135–136
Fluid Implicit Particle, 129
Incomplete Cholesky preconditioner,
132

memory bandwidth, 135
parallel point rasterization, 132–136
parallel scalability, 135
particle-in-cell approaches, 129
pseudocode, 133
scatter approach, 133
smoothing kernel, 131
sparse grids, 129

motivation, 111–112
performance, 119
Amdahl’s law, 119
arithmetic intensity, 119
asymptotic complexity, 119
efficiency, 119
Gustafson-Barsis’ law, 119
speedup, 119

programming models, 112–119
binary tree, 116

Digital Content Creation platforms,
118

dynamic load balancing, 112
everything you need to get started,

114
example (dot product), 115–116
example (maximum absolute value),

117–118
example (over), 114–115
Fast Fourier Transforms, 113
Houdini Development Kit, 118
Intel Math Kernel Library, 113
library code, 118
nested parallelism, 112
OpenMP, 113
performance, 119
platform considerations, 118
Threading Building Blocks, 113

smoke, fire, and explosions, 122–128
advection solvers, 124–126
Back and Forth Error Compensation

and Correction, 125
benchmark problem, 128
diffusion, 124
Dirichlet boundary conditions, 128
divergence control term, 123
elliptic solvers, 126–128
FFT-based solver, 128
Helmholtz equation, 126
Navier-Stokes equations, 122
Poisson equation, 124
scalar fields, 123
speedup measurements, 126

Fork–join data parallelism, 13
Fortran, 12, 128
FP number operations; See Floating point

number operations

G
Gauss-Seidel algorithm, 156–157
Global Device Memory, 142
Global Interpreter Lock (GIL), 58–59, 78
GOTO statements, 10
GPU compute and drawing; See

OpenSubdiv (interoperating GPU
compute and drawing)

GPU constraint solving, 155–181
batch creation and two-stage batching,

157–158
contact and friction constraint setup,

155–156

212 Index

equations of motion, 155
Euler extension, 155
flood fill algorithm, 157
future work, 159
GPU deterministic simulation, 159
kernel enqueue operations, 156
Newton’s second law, 155
non-contact constraints, 158–159
parallel projected Gauss-Seidel

method, 156–157
projected Gauss-Seidel algorithm, 159

GPU contact point generation, 151–154
collision detection queries, 152
collision shape representation,

151–152
contact clipping algorithm, 154
contact reduction, 154
convex decomposition, 151
convex 3D height field using cube

maps, 152–153
HACD library, 151, 152
Minkowski Portal Refinement, 154
NP hard problem, 151
separating axis test, 153
Sutherland Hodgeman clipping,

153–154
GPU exploitation (OpenCL), 142–143

AMD terminology, 142
Compute Units, 142
Global Device Memory, 142
Private Memory, 142
wavefront, 142
Work Groups, 142
Work Item, 142

GPU rendering engine, 190–196
assembly pipeline, 190, 191
bi-cubic Bspline patches with GLSL,

191–196
Fragment Shader, 190
Geometry Shader, 190
mitigating drawing overheads, 196–197
Vertex Shader, 190

GPU spatial acceleration structures,
145–151

bottleneck, 147
bounding volume hierarchy query, 150
brute-force algorithm, 146
hybrid approaches, 150
parallel 1-axis sort and sweep, 148
parallel 3-axis sweep and prune,

149–150

reference all pairs overlap test, 146–147
static local space AABB tree, 150–151
Sweep and Prune algorithm, 149
uniform grid, 147–148
workgroup, 148

Gregory patches, 188, 194
Gustafson-Barsis’ law, 119

H
HACD library, 151, 152
HbrVertex vertices, 169
Helmholtz equation, 126
Hierarchical Boundary Representation, 167
High performance computing (HPC), 12
Houdini (multithreading existing software),

19–46
cleaning statics, 22–27
callback functions, 25
debugging, 23
function signatures, 24
global variables, 22
hue-saturation-value color, 23
member data, 25
NURBS library, 24
parameter problems, 24
premature optimization, 26
red-green-blue color, 23
static keyword, 22

copy on write, 34–40
const correctness, 35
external readers, 37
failure modes of this system, 38–40
Java, 36, 39
memory leaks, 38
ownership contract, 38
ownership is important, 36–37
pitfalls, 38
pointer aliasing, 40
reader/writer locks, 35–36
Resource Acquisition Is

Initialization, 36
safe write operation, 34
sole ownership is a writer lock, 37–38
usage scenarios, 34

dependencies, 40–44
Mantra, 43–44
task locks, 41–43
upstream geometry, 40
VEX programming language, 41

description, 19–21
computer generated art, 19

Index 213

Houdini Development Kit, 21
physically based rendering, 21
Renderman Shading Language, 21
screenshot, 20
Single Instruction, Multiple Data
implementation, 21

Vector Expression language, 21
OpenCL, 44–46
bandwidth problem, 45
unified memory, 45

patterns, 30–34
admonition, 31
always be reentrant, 30–31
atomics are slow, 31–32
bucketed particles, 34
command line control, 33
constant memory versus number of
cores, 33–34

cycle-suckers, 31
debugging, 33
destination object, 33
lock-based algorithms, 31
locks, 33
memory allocation, 34
never blindly thread, 32–33
never lock, 31
recursive locks, 30

rewrite or refactor, 21–30
cleaning statics, 22–27
threading the simple cases, 27–30

task locks, 41–43
deadlocks, 41
efficiency, 41

threading the simple cases, 27–30
blocked matrix algorithm, 29
debugging, 28
embarrassingly parallel algorithm, 27
lambdas, 29
load balancing problem, 29
synchronization, 29
thread pool paradigm, advantages,
29

VEX code, 29
Houdini Development Kit, 21, 118
HPC; See High performance computing
Hue-saturation-value (HSV) color, 23
Hyperthreading (HT), 93–95

I
Incomplete Cholesky preconditioner, 132
In-flight threads, 67

Instruction level parallelism (ILP), 4
Intel

Cilk Plus, 12
Compiler, 22
Core Duo platform, 21
IvyBridge configuration, 183
Math Kernel Library, 88, 113
Parallel Inspector tool, 82
Threading Building Blocks, 13–16
algorithm templates, 13
allocator, 88
binary tree, 116
case studies, 2
C++ programming, 11, 13
debugging, 16
fork–join data parallelism, 13
GPL licensing, 14
grain size, 15
learning more about TBB, 16
MySQL, 14
parallel for, 14–15
parallel invoke, 16
parallel reduce, 15–16
recursive range, 15
reduction operation, 15
simple cases, 27
sub-vectors, 15
team responsible for developing, 8
threading engine, 79
vertex stencils, 180

VTune Amplifier XE, 31
Xeon Phi Coprocessor, 7, 61
Xeon Processors E5-2687W, 127, 136
Xeon Processors X5670, 128, 129

Ivy Bridge machines, 104

J
Java, 36, 39

K
Kill switch (threadsafety), 84

L
Lambdas, 29
Lattice deformations, 52
LibEE (parallel evaluation of character

rigs), 73–109
graph, 79–80
graph evaluation mechanism, 80
switch nodes, 80
task list, 80

214 Index

TBB task scheduler, 79
threading engine, 79–80

graph threadsafety, 84–85
Globally Unsafe node, 85
Group Unsafe node, 85
reentrant, 85
threadsafe, 85
Type Unsafe node, 85

heavily multithreaded graph, 75
limits of scalability, 104–106
Amdahl’s law, 104
hardware limitations, 104
memory bandwidth, 106
multiple graphs, evaluation of in
parallel, 106

motivation, 76
benefits, 76
parallelism visualization tool, 76
retrofitting, 76

overall performance results, 104, 105
fps benchmarks, 104
Ivy Bridge machines, 104

production considerations, 95–97
character systems restructure, 96
critical path, 96
no more scripted nodes, 96
optimizing for maximum parallelism,
96–97

rig optimization case studies,
100–104

case study (free clothes), 100, 103
case study (hair solver), 100, 102
case study (quadruped critical path
optimization), 100, 101

claw deformation system, 100
performance bottlenecks, 104

scalability (hardware considerations),
92–95

CPU affinity, 94
CPU power modes, 92
hyperthreading, 93–95
many-core architectures, 94–95
NUMA, 92
turbo clock, 92
vectorization, 94

scalability (software considerations),
85–92

authoring parallel loops, 86–87
cache reuse (chains of nodes), 89
cache reuse (scheduling nodes to
maximize sharing), 89

failed approaches discussion, 91–92
graph partitioning, 89–91
Intel Math Kernel Library, 88
memory wall, 91
other processes running on system,

91
oversubscription due to multiple

threading models, 88
overthreading, 87
task priorities, 89
TBB grain size concept, 86
thread-friendly memory allocators,

88
threading fatigue, 87

specific requirements for character
animation, 76–79

animation graph constraints, 78–79
animation graph features, 77–78
animation graph goals, 77
animation rigs have implicit

parallelism, 78
dependency graph, 76
expensive nodes which can be

internally parallel, 78
few unique traversed paths through

graph, 77–78
Global Interpreter Lock, 78
no graph editing, 78
no scripting languages in operators,

78–79
Python, 78

threading visualization tool, 97–99
concurrency metric, 97
optimization approaches, 97
statistics, 97
strategies, 97

threadsafety, 80–85
API layer, 81
compiler flags, 82–83
graph threadsafety, 84–85
Inspector, 82
kill switch, 84
LD PRELOAD, 83
node threadsafety, 81–84
OpenMP environment, 81
parallel unit tests, 81–82
threading bugs, 82
threading checker tools, 82

Linux, 22, 34, 83, 161
Lock-based algorithms, 31

Index 215

M
Mantra, 43–44
Math Kernel Library (MKL), 88, 113
Maya, 76, 79, 118, 165
Memory

access patterns (Presto), 59–60
command line control, 33
consumption (Background Execution),

67
fragmentation, 34
leaks, 38
unified, 45

Memory Wall, 4
Microsoft

D3D APIs, 190
DirectX11 Direct Compute, 138
partnership with Pixar, 166
Visual Studio, 145, 161

Minkowski Portal Refinement (MPR), 153,
154

MKL; See Math Kernel Library
Moore’s Law, 4
Mudbox (Autodesk), 198
Multithreading; See Houdini

(multithreading existing software);
Presto execution system
(designing for multithreading)

Multithreading, introduction and overview,
1–18

advancing programming languages for
parallel programming, 10–11

abstraction, 10
Cilk Plus project, 10
GOTO statements, 10
new keywords, 10
parallel programming needs, 10
relaxed sequential semantics, 11
template library, 10

data movement and layout, 16–17
Array of Structures, 17
Structures of Arrays, 17
vectorization, 16

Intel Threading Building Blocks, 13–16
algorithm templates, 13
debugging, 16
fork–join data parallelism, 13
GPL licensing, 14
grain size, 15
learning more about TBB, 16
MySQL, 14

parallel for, 14–15
parallel invoke, 16
parallel reduce, 15–16
recursive range, 15
reduction operation, 15
sub-vectors, 15

motivation, 3–7
auto-vectorization, 6
floating point number operations, 6
free lunch, 5
highly threaded hardware, 7, 8
hyperthreaded cores, 5
instruction level parallelism, 4
Memory Wall, 4
Moore’s Law, 4
move to multicore, 4–6
Power Wall, 4
quickly increasing clock speeds ended

by 2005, 3
serial processor illusion, 4
SIMD is parallelism too, 6–7
vector arithmetic, 6
vectorization, 6

overview of case studies, 2–3
memory allocation routines, 2
paradigm shift, 3

parallel programming in C and C++,
11–16

brief survey of key parallelism
options, 12–13

Bullet Physics, 13
Cilk Plus, 12
GPU specific models, 13
high performance computing, 12
Intel Threading Building Blocks,
13–16

NVIDIA graphics processors, 13
OpenCL, 13
OpenMP, 12
TBB, 12

program in tasks, not threads, 7–8
Cilk project, 8
multiple tasks, 8
programmer’s role, 7
TBB library, 8

scaling and vectorization, 9
value of abstraction, 8–9
algorithm design, 9
forms of parallelism, 9
motivations, 9

216 Index

nested parallelism, 9
portability of functionality, 9

MySQL, 14

N
Nested parallelism, 9, 112
Newton laws of motion, 138, 155
Non-uniform rational B-splines (NURBS),

164
library, 24
tools, 167

No-op elision, 54
NUMA (LibEE), 92
NVIDIA

Dynamic Parallelism, 179–180
graphics processors, 13

O
OpenCL, rewriting from scratch using,

140–145
branchy code/thread divergence,

143–144
algorithms, 143
clipContacts stage, 144
Compute Unit, 143

brief OpenCL introduction, 140–141
code conversion, 141
debugging, 141
kernel, 141
wrapper, 141

exploiting the GPU, 142–143
AMD terminology, 142
Compute Units, 142
Global Device Memory, 142
Private Memory, 142
wavefront, 142
Work Groups, 142
Work Item, 142

precompiled kernel caching, 145
OpenCL kernel source code, 145
Standard Portable Intermediate
Representation specification, 145

serializing data to contiguous memory,
144

sharing CPU and GPU code, 144–145
AMD CodeXL tool suite, 144
CPU math library, 144
debugging, 144

OpenMP, 12
OpenSubdiv (interoperating GPU compute

and drawing), 163–201

bi-cubic Bspline patches with GLSL,
191–196

Bézier interpolation, 191
boundary edge, 192
corner, 192
crack prevention, 193
end patches, 194–196
Gregory patches, 194
handling patch transitions, 193–194
handling surface boundaries,

192–193
hardware tessellation engine, 191
mirroring, 193
real-time render, 191, 194
REYES rendering algorithm, 191
up-front cost, 191

control cage, 166–168
Catmull-Clark limit surfaces, 168
face-varying primitive variable data,

167
Hierarchical Boundary

Representation, 167
limit surface, 168
manifold surfaces, 167–168
NURBS tools, 167
patches and arbitrary topology,

166–167
topological data structures, 167

evaluating our progress, 182–183
clock frequency, 183
core over-subscription, 183
cross-platform support, 182
ease of portability, 182
interactive display, 183
performance comparison, 182
total frame execution time, 183

feature adaptive subdivision, 186–190
adaptive feature isolation, 188
adaptive topological feature

isolation, 188, 189
Approximate Catmull-Clark Patches,

188
bi-cubic patch representation, 188
Catmull-Clark terminology, 187
discontinuous topological features,

188
eigen space transform, 188
feature-adaptive subdivision,

189–190
GPU hardware tessellation, 186–187
Gregory patches, 188

Index 217

regular face, 187
regular vertex, 187
tessellation units, advantage of, 186
topological hierarchical edits, 188
triangulaton process, 186
valence, 187

fundamental limitations of uniform
subdivision, 183–185

animating subdivision surfaces, 185
better, faster, different, 185
comparison of off-line and interactive
assets, 185

core occupancy readings, 183
exponential growth, 184
feature film characters, 185
geometric fidelity, 184
geometric progression of subdivided
polygons, 184

MMORPG, 185
unreliable surface normals, 184

implementing the GPU rendering
engine, 190–196

assembly pipeline, 190, 191
bi-cubic Bspline patches with GLSL,
191–196

Fragment Shader, 190
Geometry Shader, 190
mitigating drawing overheads,
196–197

Vertex Shader, 190
mitigating drawing overheads, 196–197
batching system, 196
crack-free tessellation, 196
fragmentation of patch types, 196
sub-patches, 197

optimization trade-offs, 179–182
alternative strategy (NVIDIA
Dynamic Parallelism), 179–180

alternative strategy (vertex stencils),
180–181

coalesced global memory access, 181
CUDA kernel execution overheads,
179

memory bottlenecks, 181–182
mesh striping techniques, 181
set of factories, 180
worst case scenario, 179

reducing branching divergence,
175–178

Catmull-Clark subdivision schema,
176, 177

further vertex sorting, 176–178
HbrVertex, 176
OsdCompute kernels, 175
SIMD execution, 176
sorting vertices by type, 176
vertex ranking system, 177
Warp, 175
worst case scenario, 177

representing shapes, 164–166
Catmull-Clark scheme, 164
fast subdivision, 165
feature-adaptive subdivision

algorithm, 166
flexibility, 164
legacy, 165–166
non-uniform rational B-splines, 164
OpenSubdiv, 166
subdivision meshes, 164

serializing the mesh representation,
170–172

case study (subdividing a pyramid),
170

face-vertices, 172
generating indexing tables, 170–172
preparing for parallel execution, 172
subdivision tables, 171

texturing, 197–200
displacement mapping, 198
ground truth, 198
high-frequency aliasing problems,

198
Ptex, 197, 199

transition from multicores to
many-cores, 173–175

arithmetic and logic units, 173
comparison of CPU and GPU
architecture, 173

object oriented programming, 174
practical implementation with
OpenCL, 174–175

streaming multiprocessors and
SIMT, 173–174

weighted data, 175
uniform subdivision, 169–170
HbrVertex vertices, 169
implementing subdivision schemata,
169–170

P
Particle-in-cell (PIC) approaches, 129
PhotoRealistic Renderman, 165, 186

218 Index

Physically based rendering (PBR), 21
Pixar, 2, 49, 165; See also Presto execution

system (designing for
multithreading)

Pixologic’s ZBrush, 198
Plugin code, 57
Pointer aliasing, 40
Power Wall, 4
Presto execution system (designing for

multithreading), 47–71, 165
Background Execution, 64–69
assumption, 68
code reorganization, 68
common edits, 67
constant data, 67
constant source of bugs, 66
debugging, 65
feedback, 65
frame scheduling, 65–66
in-flight threads, 67
interruption, 66–67
memory consumption, 67
multiple-reader scenario, 67
performance surprises, 65
problematic data structures, 67–69
pseudocode, 67
repetitive strain injury, 66
resource cleanup problems, 66
starter thread, 67
user interaction, 65

debugging and profiling tools, 70–71
flexibility to experiment, 60–61
example, 60
modular design, 60
targeting other platforms, 60–61
VRAM data manager, 61

interactivity, 48–49
approach, 48
bare minimum, 48
playback rate, 48

memory access patterns, 59–60
bulk data, 60
hardware prefetchers, 60
major guiding principle, 59
optimizing memory access patterns,
59

structure-of-arrays, 60
multithreading strategies, 61–64
fast nodes, 61
per-branch multithreading, 62, 63
per-frame multithreading, 64

per-model multithreading, 62–64
per-node multithreading, 61
slow nodes, 61
time budget, 61

predictive computations, 70
Presto, 49–52
animation, 52
attributes, 50
connections, 50
constraints, 52
examples, 52
execution structures, 52
geometry topology, 52
hard-to-debug problems, 52
human-readable objects, 51
lattice deformations, 52
objects, 50–51
prims, 50
rigging, 51–52
scene objects, 51
screenshot, 49
weight object, 51

Presto’s execution system, 52–56
abstraction data managers, 56
animation workflows, 54
Background Execution, 56
client code, 55
common computations, 52
compilation, 53–54
data managers, 56
engine architecture, 54–56
evaluation, 54
execution engine components, 54
executors, 56
expensive operation, 55
hierarchy, 56
network, 55
no-op elision, 54
phases of execution, 53–54
point posing, 55
request, 54
schedulers, 55–56
scheduling, 54
simplest data manager, 56
vectorization, 53, 55

strip mining, 69–70
user extensions, 57–59
client callbacks are static functions,

57
dependencies declared a priori, 57
Global Interpreter Lock, 58–59

Index 219

iterators, 58
plugin code, 57
Presto singletons are protected, 58
Python, 58–59

Projected Gauss-Seidel algorithm, 159
Ptex, 197, 199
Python, 58–59, 78

Global Interpreter Lock, 58–59
performance, 59

R
Recursive locks, 30
Red-green-blue (RGB) color, 23
Reentrant locks, 30
Reference all pairs overlap test, 146–147
Relaxed sequential semantics, 11
Renderman Shading Language (RSL), 21
Repetitive strain injury, 66
Resource Acquisition Is Initialization

(RAII), 36
REYES rendering algorithm, 191

S
SAP algorithm; See Sweep and Prune

algorithm
Side Effects Software, 19; See also Houdini

(multithreading existing software)
Single Instruction, Multiple Data (SIMD),

21
Standard Portable Intermediate

Representation (SPIR)
specification, 145

Strip mining, 69–70
Structures of Arrays (SoA), 17
Sutherland Hodgeman clipping, 153–154
Sweep and Prune (SAP) algorithm, 149
Switch nodes, 80

V
Vector Expression (VEX) language, 21, 41,

29
Vectorization, 6, 16

auto-, 12
C++ programming, 11
data layout, 16
data movement and layout, 16
many-core architectures, 94
network, 55
Presto, 53
scaling and, 9
SIMD, 6
TBB, 13

Vertex stencils, 180–181
Vertex-vertex kernel, 176
VEX language; See Vector Expression

language
Voxels, 120
VRAM data manager, 61
VTune Amplifier XE (Intel), 31

W
Walt Disney Studios, 197
Weighted data, 175
Work Groups, 142
Worst case scenario (OpenSubdiv), 177, 179

X
Xeon (Intel)

Phi Coprocessor, 7, 61, 94
Processors E5-2687W, 127
Processors X5670, 128, 129

Y
YouTube windows, 31

Z
ZBrush (Pixologic), 198

