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Preface

The last book I wrote was Game Physics, 2nd Edition, which shipped in the
Spring of 2010. At that time I decided to take a break from Geometric Tools
and book writing and return to industry to work for Microsoft Corporation,
in a moderately sized technology group that was part of the research branch
of the company. Initially, I worked on a team developing real-time graphics
technology using Direct3D 11, but my intended role was to provide a real-
time physics engine. A year and one reorganization later, I had not been fully
immersed in the engine development and I had not had a chance to improve
my graphics education past the Direct3D 9 level. The original team moved to a
different part of the company, I stayed with the current technology group, and
I found myself involved with a computer vision project that just happened to
need a graphics engine with capabilities that only Direct3D 11 could provide.
I had a great opportunity to build a new engine—and in a short period of
time. After all, anyone working for a large company knows that the deadline
for delivery was yesterday. Didn’t you get the memo?

Fortunately, I had help from a friend and colleague, Alan McIntyre, who
also assisted with the physics engine. We were able to produce a reasonable
first pass, and I was delighted to see how well thought out Direct3D 11 was
compared to Direct3D 9. Several months and yet another reorganization later,
the team who owned us was acquired by an even larger team to work on
similar computer vision topics but with a hardware component. The graphics
engine was soon to get a major facelift—we got the opportunity to learn about
GPGPU and compute shaders. The engine evolved over the next year and got
a lot of test driving, both from team members and from our own algorithm
development.

The current project grew in scope, as did the team size. I discovered that
at Microsoft a common mantra is reorganize early, reorganize often. As much
as I enjoyed working on the advanced technology, the focus of the company
was changing enough and the reorganizations, both local and company-wide,
were sufficient for me to question whether I had the energy to continue on at
Microsoft. In Fall of 2013, the major changes occurring at the leadership level
finally trickled down and affected our technology group. Although I had the
opportunity to move to other parts of the company and continue working on
similar projects, I decided that retirement was a more attractive offer. In my
last year, I had once again gotten the urge to write books and do contract
work at a small scale, something I prefer because I like to see the fruits of my
labor used and I like being held directly accountable for what I do.
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xxvi Preface

So here we go. As my first project, I have written this book on general pur-
pose GPU programming using Direct3D 11. As with all my books, there is a
significant source code base that accompanies it. I call this theGeometric Tools
Engine, which will be the replacement for the Wild Magic source code I have
been maintaining for the past 14 years. Much of the book references the source
code, which you can download from our site http:\\www.geometrictools.com.
The focus of the new engine is robust and accurate source code with im-
plementations on the CPU, using SIMD when that makes sense, and with
implementations on the GPU when possible. Although the first pass of the
engine uses Direct3D 11 on Microsoft Windows computers, I will soon be
writing an OpenGL-based version to support Linux and Macintosh. And like
Wild Magic, I will post code updates for the Geometric Tools Engine as I
finish them. No one ever said retirement would be easy!

Thanks go to the reviewers of the book proposal: Alan McIntyre, Jason
Zink, and Dinesh Manocha; their insights were quite useful. Thanks to Dennis
Wenzel, a very long-time friend and colleague who has a knack for poking
holes in my ideas and helped me to improve the engine design. Big thanks
go to Justin Hunt, a friend in the United Kingdom, who agreed to redraw all
my figures for the book. I created them with Windows Paint. He made them
look beautiful—and vectorized! And finally, thanks to my editor Rick Adams
for his patience while I was behind schedule and to the production team at
Taylor & Francis and CRC Press for a great job of finalizing the book.
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Chapter 1

Introduction

I have been a professional software engineer on many projects, whether as a
contractor working for my own company or as a full-time employee for other
companies. These projects have involved computer graphics, image analysis
and computer vision, and—perhaps most visibly—real-time 3D game engines
and games. Although they all have relied heavily on mathematics, geometry,
and physics algorithm development, these projects have several requirements
that are in the realm of practical computer science and software engineering:

• requirements for robustness,

• requirements for accuracy,

• requirements for speed, and

• requirements for quality source code, ease of maintenance, reusability,
and readability.

The main goal of this book is to demonstrate how to achieve some (or
all) of these goals for practical problems. With sequential programming, the
requirements are not always mutually satisfiable. For example, robustness and
accuracy generally come at some cost in additional computing cycles, so it
might not be possible to achieve the desired speed. With parallel programming,
it might very well be possible to have the desired speed, robustness, and
accuracy.

Although the book includes material relevant to programming on a central
processing unit (CPU), whether single core or multiple cores, the majority of
the book is about programming on a graphics processing unit (GPU). The
evolution of GPUs was driven initially by the video game industry to achieve
realistic 3D environments in real time. Recognizing the usefulness of massively
parallel processors for other fields, GPUs and the associated shader languages
have evolved to meet the need. This is referred to as general purpose GPU
(GPGPU) programming. I will discuss many of the concepts, including several
practical examples relevant to game programming and scientific programming.

The numerical concepts for CPUs apply equally as well to GPUs, so it is
only natural to include Chapter 2, a discussion about numerical issues when
computing with floating-point arithmetic. Choosing a balance among robust-
ness, accuracy, and speed is invariably the focus when building a software
product. Making trade-offs is an important part of computer science. The real
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number system and floating-point number system are not the same. It pays to
know the similarities and differences, because you will get into trouble quickly
if you were to develop an algorithm or solve a numerical problem as if the
computer is using real numbers. This chapter contains a discussion about ba-
sic portions of the IEEE 754-2008 Standard for Floating-Point Arithmetic.
Even with this amount of coverage, I will not have touched on many of the
important features of the standard. The chapter finishes with several examples
involving floating-point arithmetic for which the results might be unexpected
if you were thinking instead about real arithmetic.

Low-level parallelism for 3D mathematics comes in the way of single in-
struction multiple data (SIMD) extensions to the CPU. This is the topic of
Chapter 3. Effectively, you have 128-bit registers to work with, each storing
a 4-tuple of 32-bit floating-point numbers. You can perform arithmetic oper-
ations and logical comparisons in parallel, four components at a time. With
some clever thinking, you can make the SIMD instructions handle more com-
plicated problems. The focus of the book is on the GPU, but GPUs themselves
use SIMD, so it helps to understand how SIMD works on CPUs. Moreover,
modern GPUs now support 64-bit floating-point numbers, but the instruc-
tion sets are limited, not providing for much more than basic arithmetic and
comparisons. If you are used to having available on the CPU some of the
basic mathematics library functions such as square root, sine, cosine, expo-
nential, and logarithm functions, these are not available natively on the GPU.
You must implement accurate approximations yourself, which is not a trivial
task. The first part of the chapter is about basic SIMD support. The last
part provides a large collection of approximations for standard mathematics
functions.

Chapter 4 is the heart of the book, containing a lengthy discussion of
the GPU from the perspective of Direct3D 11 (D3D11) and the High Level
Shading Language (HLSL). Most game developers have been exposed to a
real-time graphics system for drawing. The chapter begins with a summary
of drawing 3D objects, including the various matrices that must be computed
in order to transform geometric primitives so that they can be projected onto
a view plane and rasterized. The various shader types are covered next with
several examples of HLSL programs, how they are compiled, and how one
obtains information from D3D11 about the shaders in order that they can
be set up for execution at runtime. This book covers only vertex, geometry,
pixel, and compute shaders. Domain and hull shaders used in conjunction with
hardware-based tessellation are not discussed. GPGPU for non-game-related
fields are usually heavy on compute shaders.

The chapter continues with details about creating various D3D11 objects
to support drawing and computing. Input and output resources for shaders
must be created properly. Resource creation for each type of resource with
desired runtime characteristics can be daunting at first. Section 4.4 covers
nearly every type of resource you can use in D3D11. You will also see how to
create global states for blending, depth-stencil buffer manipulation, and ras-
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terization parameters such as culling and solid or wireframe drawing. Shader
creation is simple enough but I also provide examples of how to draw using
a combination of vertex, geometry, and pixel shaders and how to execute a
compute shader.

Copying data between CPU and GPU is almost always a bottleneck in
real-time applications. Section 4.7 shows you how to copy data and provides
some guidance about parallelizing data transfer when possible.

If you have two or more GPUs in your computer, you can configure them
to act as one GPU. You can also configure them to run independently, at
least from a programmer’s perspective. Section 4.8 shows how to work with
multiple GPUs regarding D3D11 adapter enumeration and device creation.

The last section of Chapter 4 discusses the IEEE floating-point support
on a GPU. It is important to read this, especially when you are planning on
writing compute shaders that require knowledge of how subnormal floating-
point numbers are handled.

Chapter 5 is on practical matters when programming a GPU. The amount
of low-level D3D11 code needed to accomplish the simplest tasks can be sig-
nificant. You certainly want to think about wrapping much of the behavior
in classes to allow code sharing among applications. Section 5.1 contains a
discussion about a simple application built using only the Microsoft Windows
and D3D11 APIs to give an idea of how much work is involved. I then dis-
cuss how I chose to encapsulate the behavior in the Geometric Tools Engine
(GTEngine). The design and architecture of this engine have been tested in
a commercial environment, albeit in a less evolved form. It has proved useful,
especially for rapid prototyping of advanced real-time algorithms.

The remaining sections of Chapter 5 are about performing basic tasks on
the GPU that you are used to doing on the CPU. These include debugging
applications using shaders, debugging shaders themselves, measuring perfor-
mance using a CPU profiler and a GPU profiler, and code testing and code
coverage. These topics are more in the realm of software engineering than
GPGPU algorithm development, but in a commercial environment they are
useful and necessary.

The sample applications in this book are heavy on the mathematics. The
Geometric Tools Engine has mathematics support—basic and advanced—for
the CPU and for SIMD on the CPU. I doubt I could write a book without
mathematics, so I included Chapter 6 about vector and matrix algebra, ro-
tations and quaternions, and coordinate systems. There is always a need to
understand coordinate systems and how to convert among them.

Finally, Chapter 7 has several sample GPGPU applications on relatively
advanced topics. I point out some of the concepts you should pay attention
to regarding performance in hopes that when you develop similar algorithms
and implementations, you can try the same concepts yourself. In addition to
these advanced samples, the source code distribution has a collection of basic
samples to show how to use the engine and the resource types in D3D11.





Chapter 2

CPU Computing

2.1 Numerical Computing

The projects I have worked on have a common theme: numerical computing
using floating-point arithmetic. It is quite easy to compute numerically using
the hardware-supported float and double data types. The process is simple.
Study the mathematics for the problem at hand, develop an abstract algorithm
for the solution, code up a few equations, and then compile, link, and execute—
the results are at your finger tips. Does the algorithm require computing the
roots to a quadratic equation? No problem, just use the quadratic formula.
Do you need to compute the distance between two line segments? Again, no
problem. Formulate an algorithm to compute the desired distance, code it,
and ship it. If it were only that easy!

At times the algorithm development can be complicated, requiring depth of
knowledge in many fields. Once you get to the implementation stage, though,
numerical computing is quite easy. Right? Of course it is, except for those
frequent moments when you find yourself screaming and pulling out your
hair because you have once again discovered The Curse of Floating-Point
Arithmetic. My memorable moments are when I receive yet another bug report
about one of my implementations for a geometric algorithm that has failed on
some data set. I then painstakingly debug the code to find that once again,
floating-point roundoff errors have led to failure in producing an acceptable
result.

2.1.1 The Curse: An Example from Games

Although The Curse manifests itself in many ways, one of the most com-
mon in geometric applications, especially games, is particularly annoying.
Consider the problem of collision detection and response of two circles, one
stationary with infinite mass and one moving with constant linear velocity
and finite mass. We want to determine the time of first contact, when the
moving circle collides with the stationary circle. We also want to compute the
contact point, which is the point of intersection at the time of first contact.
At the instant of contact, the two circles intersect tangentially—there is no
interpenetration of the objects. Finally, we want the moving circle to bounce

5



6 GPGPU Programming for Games and Science

away from the stationary circle with no loss of energy; that is, the circle’s
velocity changes direction but not magnitude.

Mathematically, this is a problem whose solution is relatively easy to for-
mulate. To simplify the analysis, let the first circle have radius r0 and center
C0. Let the second circle have radius r1 and center C1(t) = P + tV, where
V is a unit-length velocity vector and where P is the starting location of the
circle. Assuming the circles are separated initially, the time of first contact
(if any) occurs when the distance between centers is equal to the sum of the
radii. Using squared distances, the mathematical equation of interest is

F (t) = |∆ + tV|2 − (r0 + r1)
2 = 0 (2.1)

where ∆ = P−C0. The circles intersect tangentially whenever F (t) = 0. The
function F (t) is quadratic in time, F (t) = a2t

2+2a1t+a0, where a2 = |V|2 =
1, a1 = V · ∆, and a0 = |∆|2 − (r0 + r1)

2. We may now use the quadratic
formula to compute the smallest positive root T of F ; that is, F (t) > 0 for
0 ≤ t < T and F (T ) = 0. At time T , the circles are in tangential contact, so
in fact T must be a repeated root of F ; thus, T = −a1 and the discriminant
of the equation is a21 − a0 = 0.

If it were possible to compute using exact arithmetic (real-valued, infinite
precision, no errors), we would expect the behavior shown in Figure 2.1 when
the second circle is moving toward the first. Figure 2.1(a) shows the moving
circle approaching the stationary circle. As mentioned previously, the first
time of contact is T = −a1, a repeated root of F (t) = 0. At this time,
the moving circle touches the stationary circle at the point K, as shown in
Figure 2.1(b). The contact point is on the line segment connecting centers
C0 and C1 = P + TV, so we may write K = C0 + s(C1 − C0) for some
s ∈ (0, 1). Because K is on the stationary circle, r0 = |K −C0| = sL, where
L = |C1 −C0|. Because K is on the moving circle, r1 = |K−C1| = (1− s)L.
Thus, r0/r1 = s/(1−s), which has solution s = r0/(r0+r1); the contact point
is

K =
r1

r0 + r1
C0 +

r0
r0 + r1

(P+ TV) (2.2)

The unit-length, outer-pointing normal vector at the time of contact is the
normalized vector difference of the circle centers,

N =
∆+ TV

|∆+ TV| (2.3)

The velocity of the moving circle is reflected through the normal to obtain a
new velocity

V′ = V− 2(V ·N)N (2.4)

Figure 2.1(c) shows the moving circle traveling in its new direction, away
from the stationary circle. The time T ′ shown in the figure is the incremental
change in time after the contact time T . The center of the circle after T + T ′

units of time is also shown in the figure.
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FIGURE 2.1: (a) A circle moving toward the stationary circle. (b) The
moving circle’s velocity is reflected through the normal vector at the contact
point. (c) The circle moves away from the stationary circle in the direction of
reflected velocity.
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FIGURE 2.2: Numerical roundoff errors cause the circles to interpenetrate
by a small amount.

Simple enough? Unfortunately not. When computing using floating-point
numbers, you generally cannot compute the exact value of T as a real-valued
number with infinite precision. In theory, the discriminant is exactly zero, so
there is no reason to compute it numerically—just set T = −a1 = −V ·∆. In
practice, roundoff errors may produce the floating-point number Tǫ = T + ǫ
for a small error ǫ. If ǫ > 0, you move the circle centers through time Tǫ after
which the circles have a small amount of interpenetration, as illustrated in
Figure 2.2.

The point P + TV is the theoretical location of the center of the moving
circle, but P + TǫV is the numerically computed center. The point K is the
theoretical contact point, but the numerically computed contact point is

Kǫ =
r1

r0 + r1
C0 +

r0
r0 + r1

(P+ TǫV) (2.5)

which is a weighted average of the circle centers. Because the circles are not in
tangential contact due to roundoff errors, the computed contact point is not
necessarily on either circle, as shown in Figure 2.2. The computed normal to
be used in the collision response is

Nǫ =
∆+ TǫV

|∆+ TǫV| (2.6)
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The new velocity vector for the moving circle is the reflection of V through
this normal,

V′
ǫ = V− 2(V ·Nǫ)Nǫ (2.7)

As Figure 2.2 demonstrates, the moving circle will travel in a direction that
is consistent with our expectations for the theoretical case shown in Figure
2.1. So far, so good—the roundoff errors have not caused us any significant
problems. Now that the velocity vector is updated, the collision detection
system may start anew.

In the theoretical case, define Q = P + TV − C0, where P + TV is the
new starting center for the moving circle. Define W = V′, which is the new
constant linear velocity for the moving circle and is also a unit-length vector,
because reflection through the normal does not change the length of the vector.
The difference of squared distances is

G(t) = |Q + tW|2 − (r0 + r1)
2 = t2 + 2b1t+ b0 (2.8)

with G(0) = 0 because the circles are in tangential contact. However, G(t) > 0
for all times t > 0 because the moving circle travels away from the stationary
circle. They never again intersect.

In the practical case, define Q = P+ TǫV−C0 and W = Vǫ. The differ-
ence of squared distances is still represented by G(t). However, the roundoff
errors led to interpenetration, so G(0) = |Q|2 − (r0 + r1)

2 < 0. There is a
time τ > 0 for which G(t) < 0 for 0 ≤ t < τ and G(τ) = 0. Without paying
attention to potential problems due to floating-point arithmetic, the collision
detection system repeats its algorithm by computing the time of first contact
τ = −b1. The problem is that τ is really the time of last contact. The moving
circle is moved through that time, as shown in Figure 2.3. The contact point
at time τ is K′ and the normal vector at the point is N′. The collision system
must now generate a response, which is to compute the new velocity vector
V′′ by reflecting V′

ǫ through the normal. As the figure demonstrates, this will
cause the moving circle to re-penetrate the stationary one. It is conceivable—
and has happened to the dismay of many physics programmers—that the
two circles play tug-of-war trying to un-penetrate and then re-penetrate
until the floating-point arithmetic is kind enough to allow them finally to
separate.

Building a robust collision detection system is not trivial. In this simple
example, the collision detection must be implemented knowing that floating-
point roundoff errors can cause problems. The system must recognize that
G(t) < 0 for t < τ , in which case τ cannot be a time of first contact and
collision response is not applied.

The brief lesson of this example is that the most important configuration
of a collision detection system is when two objects are in tangential contact.
But this is exactly when floating-point arithmetic fails you the most.
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FIGURE 2.3: The moving circle is in contact with the stationary circle, but
at the last time of contact.

2.1.2 The Curse: An Example from Science

As I mentioned previously, The Curse strikes regularly in my geometric
code. In particular, this can happen in the incremental construction of a con-
vex hull of points whereby the hull triangle faces are updated for each point
one at a time. At the core of the construction are visibility tests. Given a point
and the current hull, if the point is inside the hull, the point is discarded and
the hull remains the same. If the point is outside the hull, it can see some
faces of the hull but not other faces. This is akin to an observer on Earth who
can see the portion of the Moon facing the Earth but the observer cannot see
the dark side of the Moon.

When a point is outside the hull, the faces that are visible to the point are
removed from the hull. This collection of faces forms a triangle mesh that is
topologically equivalent to a disk, so the mesh boundary is a closed polyline.
New faces are added to the hull by inserting triangles, each formed by the
point and an edge of the polyline. After each update, the resulting set is a
convex hull.

The visibility tests are equivalent to computing the signs of determinants.
A point and a triangular face give rise to a determinant ∆. If ∆ > 0, the face
is visible to the point. If ∆ < 0, the face is not visible to the point. If ∆ = 0,
the face and point are coplanar. The current point is inside the hull when all
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(a) (b)

FIGURE 2.4: Updating the convex hull (in theory). (a) The visible hull
edges are drawn in light gray. The invisible hull edges are drawn in black.
The topmost invisible edge is nearly colinear with the current point. (b) The
visible hull edges were removed and new edges inserted (drawn in dark gray).

determinants are nonpositive, in which case the point is discarded. If at least
one determinant is positive, the hull must be updated. The aforementioned
triangle mesh consists of those faces whose corresponding determinants are
positive. In theory, one may choose either to include faces whose determinants
are zero or to exclude such faces. In practice, determinants that are nearly
zero can cause problems due to misclassification of the signs.

The visibility testing is similar for 2D convex hulls. Figure 2.4 illustrates
the update of a convex hull when the current point is outside the hull. In the-
ory, exact computation of the determinants ensures that the updated object
is a convex hull. In practice, floating-point roundoff errors can cause misclas-
sification of signs, particularly when the theoretical value is very small. If the
theoretical value of a determinant is a small positive number, the correspond-
ing edge is visible to the point. The numerically computed value might involve
enough roundoff errors that it is a small negative number, causing the program
to identify the edge as not visible. Figure 2.5 illustrates the update of a convex
hull where an edge nearly colinear with the current point is misclassified as
invisible. Once a misclassification occurs, the problems can be compounded
because you might now have edges or faces that participate in visibility tests
when theoretically those edges or faces should not exist. Conversely, edges
or faces might be discarded and do not participate in visibility tests when
theoretically those edges or faces do exist and should participate.

The pattern of having to compute signs of numbers without misclassifica-
tions is common to geometric computing, so you have plenty of opportunities
to see The Curse.

2.1.3 The Need to Understand Floating-Point Systems

The examples discussed here show that you are ill advised to code math-
ematical equations without concern for the underlying system of numerical
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(a) (b)

FIGURE 2.5: Updating the convex hull (in practice). (a) The visible hull
edges are drawn in light gray. The invisible hull edges are drawn in black. The
topmost visible edge is nearly colinear with the current point, but misclassified
as invisible. (b) The visible hull edges were removed and new edges inserted
(drawn in dark gray). Observe that the resulting polygon is not convex.

computation. We all sometimes make the mistake of thinking of numerical
computing as real-valued arithmetic with numerical errors that are inconse-
quential. Floating-point arithmetic is a decent model of numerical computa-
tion. It has many similarities to real-valued arithmetic, but it also has some
significant differences that can bite you when you least suspect.

One of my favorite examples of unintuitive floating-point behavior is com-
puting roots of quadratic polynomials f(t) = a2t

2 + a1t+ a0. It is possible to
choose 32-bit floating-point coefficients such that a computed root is r with
f(r) orders of magnitude larger than zero when the polynomial is evaluated
as f(r) = a0 + r(a1 + ra2).

Choose a0 = 1.3852034e-27, a1 = 0.00013351663, and a2 = 3.0170867e-38.
Using the quadratic formula, the computed root is r = -4.4253494e+33, which
is a very large magnitude number, and the polynomial value is f(r) =
-2.0068245e+22, which is not close to zero by anyone’s imagination. Let rp
be the largest 32-bit floating-point number that is smaller than r (the previ-
ous number); that is, rp < r and there are no 32-bit floating-point numbers
in the interval (rp, r). In the example, rp = -4.4253497e+33. Let rn be the
smallest 32-bit floating-point number that is larger than r (the next number);
that is, rn > r and there are no 32-bit floating-point numbers in the interval
(r, rn). In the example, rn = -4.4253491e+33. Evaluations at these numbers
produce f(rp) = +2.1253151e+22 and f(rn) = -6.1389634e+22. Observe that
f(rp)f(rn) < 0, |f(r)| < |f(rp)|, and |f(r)| < |f(rn)|, so rp and rn bound
the infinite-precision root r̂ for which r is a 32-bit floating-point approxima-
tion. Thus, r is the best approximation to the root using 32-bit floating-point
numbers.

Without the analysis of the polynomial at the floating-point neighbors of
r, you might think your program has a bug. I assure you that your program
is not buggy and that this is the best that you can do. In fact, the problem in
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this example has nothing to do with floating-point roundoff errors; rather, it
is the problem of the nonuniform distribution of the floating-point numbers.
For large-magnitude numbers such as r, there simply are not enough 32-bit
floating-point numbers of that magnitude to produce an accurate result.

In the example mentioned here, you can switch to 64-bit floating-point
numbers and obtain a more accurate result because there is a very large quan-
tity of 64-bit floating-point numbers near the 32-bit floating-point number r.
If r′ is the 64-bit approximation to the root of f , you will find that f(r′) =
1.3852034457886450e-027. You will also find that f(r′p) and f(r′n) are opposite
in sign but very large in magnitude. The switch to 64-bit numbers saves the
day, but now it is possible to choose 64-bit floating-point coefficients for the
quadratic polynomial so that the same problem happens again—the polyno-
mial at the estimated root is orders of magnitude larger than zero.

The bottom line is that you must think about the potential consequences,
good or bad, when using floating-point systems, and you must understand the
parameters in your mathematical equations and the inputs for those equations
to assess whether the numerically computed results will be reasonable. There
is no magical solution to all your problems requiring floating-point computa-
tions, so it is essential to be detailed in your (error) analysis of your algorithms
and their implementations.

I mentioned that you must understand the parameters for your equations.
Just when you think that even simple situations are without problems, con-
sider Listing 2.1.

// So l ve n ume r i c a l l y f o r x i n the equa t i on c1∗x − c0 = 0 .
f l o a t c0 = 0 .01 f ;
f l o a t c1 = 1 .0 f ;
f l o a t x = c0/c1 ; // Reported by debugger as 0 . 0099999998 .

LISTING 2.1: Inexact representation of floating-point inputs.

Just a moment. The answer should be 0.01, right? Sorry, no. The number
0.01 cannot be exactly represented as a 32-bit floating-point number, even
though you can type it exactly as a numeric constant in the source code.
In fact, c0/c1 is computed exactly using floating-point arithmetic, but the
result x is only an approximation to the infinite-precision result because you
cannot exactly represent the parameter c0 in the equation. If the parameters
and inputs to your equations and algorithms already have errors in them, any
amount of exact arithmetic cannot change this. Exact arithmetic applied to
approximate inputs will lead to approximate outputs.

It is equally important to understand the strengths and limitations of
floating-point number systems. For an interesting and entertaining diatribe
about floating-point in the Java language, see [19]. In fact, William Kahan was
the primary architect of the IEE 754-1985 standard for floating-point compu-
tation, so his criticisms are well justified. I found this article while working
on a contract that required computing intersections of ellipses and intersec-
tions of ellipsoids. As an approximation, I used convex polygons to represent



14 GPGPU Programming for Games and Science

the ellipses and convex polyhedra to represent the ellipsoids. Java was the
required programming language, but I first implemented and tested the algo-
rithms in C++ using 32-bit floating-point arithmetic. The tests showed that
the code was working correctly, so I ported to Java, still using 32-bit floating-
point arithmetic, but did not re-test (oops). After delivering the source code,
some time later the client reported a bug for two ellipses that were slightly
overlapping, as shown in a graphical display of the objects but the code was
reporting no intersection. When I tested this in Java, I was able to reproduce
the problem. This is when I learned that, by design (at that time), Java was
not using high-precision registers for intermediate floating-point calculations
whereas the C++ runtime was. Roundoff errors were significant. Fortunately,
the quick-and-dirty solution was to switch to 64-bit floating-point numbers.
Lesson learned—test on all relevant platforms and understand the numerical
systems of those platforms.

2.2 Balancing Robustness, Accuracy, and Speed

Three important aspects of numerical computing are robustness, accuracy,
and speed. These are typically not mutually satisfiable, requiring you to weigh
the trade-offs for each option.

2.2.1 Robustness

Researchers have formulated definitions for robustness of geometric algo-
rithms that are typically encountered in the field of computational geometry.
The book [20] contains a chapter about robustness and degeneracy that pro-
vides a history of the topic, including references to many seminal research
papers. The chapter also includes some discussion about floating-point arith-
metic, about alternatives, and about how those relate to geometric algorithms.
Generally, the book is focused on the theoretical details of geometric problems
that one might encounter in applications, and the authors refer the reader to
commercial implementations of packages for robust geometric and numerical
computing.

2.2.1.1 Formal Definitions

The definitions of [20] are quite formal mathematically. A geometric prob-
lem is defined to be a function P : X → Y , where X = IRnd is the input
space and Y = C × IRm is the output space.1 The set of real numbers is IR,

1The definition includes the concept of topology, assigning the standard Euclidean topol-
ogy to X and discrete topology to C. For the purpose of the brief summary of the definitions,
it is not necessary to know what a topology is.
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the set of k-tuples of real numbers is IRk, n and d are positive integers, m is
a nonnegative integer (if zero, then Y = C), and C is a discrete space that is
referred to as the combinatorial portion of the output.

A typical example is the problem of computing the convex hull of a finite
set of points in two dimensions. In the definition, d = 2, which is the dimension
of the space containing the points, n is the number of points in the set, and
m = 0. The input points are indexed with integers 1 through n, and C is the
set of all ordered subsets of {1, . . . , n}. The output of the convex hull algorithm
is an element of C, say, {i1, . . . , iq}, which represents the ordered vertices of
the convex polygon that is the convex hull boundary; mathematically, the hull
is the solid polygon that includes points inside as well as on the boundary. If
you additionally want the algorithm to compute the area α of the convex hull,
you can set m = 1 so that the output is a pair ({i1, . . . , iq}, α) ∈ C × IR.

Another example is the problem of computing the points of intersection of
pairs of line segments in the plane. We may choose n to be the number of line
segments. Each line segment has two endpoints for a total of four real values,
so d = 4. The combinatorial output is a set of 2-tuples of integers, each of
the form (i1, i2) indicating that segments i1 and i2 intersect. Two segments
intersect either in a single point or for an entire interval of points. We may
choose always to store a pair of points with the convention that if the two
points are equal, there is a single intersection. Thus, we may choose m = 4
because a pair of points is represented by four real-valued numbers.

Although the mathematical definition and framework support proving gen-
eral results about geometric problems, it is not always immediately clear how
to formulate a problem according to the definition. Also, the formulation as a
geometric problem according to the mathematical definition gives no indica-
tion how you would attempt to solve the problem itself. Consider the geometric
problem of computing the convex hull for a set of planar disks. At first you
might think of this as a problem with an infinite number of inputs—all the
points in all the disks. It is not clear how you choose n and d. It is not correct
to choose d = 2 and n = ∞, because the cardinality of the integers is not the
same as the cardinality of the reals. The disks have infinitely many points,
but that infinity is not the same as the number of positive integers. You may
instead think of the inputs as n disks, each disk defined by a center and a ra-
dius, so d = 3 with each 3-tuple listing the center coordinates and the radius.
The output will consist of line segments and arcs of circles whose union is the
boundary of the convex hull. The IRm term in the output space must represent
the endpoints of the circular arcs and the combinatorial portion must reflect
how the endpoints are ordered as you traverse the boundary.

A geometric problem can be selective or constructive. The former term
says that the output is generated from a selection of elements of the input.
For example, the 2D convex hull algorithm for a finite set of points selects
points from the input and identifies them as the vertices of the hull. The latter
term says that new objects are constructed by the algorithm. For example,



16 GPGPU Programming for Games and Science

the problem of all-pairs intersection of line segments requires construction of
points of intersection.

A geometric algorithm is a function A that is applied to an input x ∈ X
of a geometric problem and produces an output A(x) ∈ Y . The algorithm
exactly computes P for x when A(x) = P (x). Of course our goal in practice
is to design an algorithm that exactly computes P . However, floating-point
arithmetic and other factors such as speed requirements might cause us to
design an algorithm for which A(x) �= P (x) for some inputs x. If this happens,
how far off are we from the correct result? The following definitions from [20]
attempt to quantify this concept.

A robust geometric algorithm A is one such that for each x ∈ X , there is
an x′ ∈ X such that A(x) = P (x′); that is, the output A(x) of the algorithm
is actually the solution to the problem for a different input x′. Additionally,
a robust geometric algorithm is said to be stable if x′ is near to x, which says
that the output A(x) is the solution to the problem for a different x′ and that
input x′ is a (small) perturbation of x. The measure of nearness is formulated
in the following definition. Let |x| denote the maximum norm of x, which
is the largest absolute value of the components of x. Let O(h(N)) denote
the big-oh notation for bounds on a function h(N) as integer N increases
without bound. For specified values N > 0 and ε > 0, the stable algorithm
A has relative error E(N, ε) if for each x ∈ X with |x| ∈ O(N), there is an
x′ ∈ X for which |x − x′|/|x| ≤ E(N, ε). The number N is a measure of how
large the inputs are and the number ε is a measure of the accuracy of the
underlying numerical representation used in the computations. Naturally, we
want algorithms for which E(N, ε) is as small as possible.

To illustrate, consider the incremental algorithm mentioned previously for
the construction of the convex hull of a finite set of 2D points. Suppose that the
computations are performed with floating-point arithmetic and that x is the
input set that led to the incorrect sign classification illustrated in Figure 2.5.
Intuitively, we should be able to perturb slightly the input points x to obtain a
new set of input points x′ for which the sign classifications are correct. In the
figure, the offending point would be perturbed so that its vertical component
is reduced enough to avoid the misclassification. The incremental algorithm
would then correctly compute the convex hull for x′, so you would conclude
that the algorithm is robust.

2.2.1.2 Algorithms and Implementations

Unfortunately, the formal definition for robustness is not constructive be-
cause it tells you nothing about how to avoid problems in the first place. The
previous example for incremental convex hull construction illustrated the con-
cept of robustness, but the definition does not help you understand and avoid
the misclassification of signs of determinants. Knowing that the algorithm
performs correctly on perturbed inputs does not help you generate a correct
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output for the original data set, and it is not clear how you can prove that an
algorithm is robust for all inputs.

The formal definitions also do not explicitly emphasize the distinction be-
tween two terms: algorithms and implementations. A geometric problem is
defined as a function whose domain is IRnd, the set of nd-tuples whose com-
ponents are real numbers. A geometric algorithm is a function with the same
domain. The standard incremental algorithm for computing the convex hull of
a finite set of 2D points with real-valued components is provably correct when
using real-valued arithmetic (exact arithmetic). However, if this algorithm is
implemented on a computer using floating-point arithmetic, the implementa-
tion does not necessarily produce a theoretically correct output for each input
data set. A fundamental principle for numerical computing is that there are
algorithms and implementations of algorithms, and the two terms cannot be
used interchangeably. The domain for a geometric algorithm is IRnd, and the
arithmetic operations used in the geometric algorithm are those for tuples of
real numbers. However, the domain for an implementation of a geometric algo-
rithm is typically a set of tuples of floating-point numbers, and the arithmetic
operations used in the implementation are those for tuples of floating-point
numbers. The theoretical correctness of an algorithm does not immediately
carry over to a practical implementation, although you would like to create
an implementation for which it does.

I do not intend this discussion to belittle the attempts by the theoreti-
cians to quantify the problems inherent in numerical solutions to geometric
problems—it is important in the long term to advance the frontier of the the-
ory of computation. However, as practicing software engineers, we are tasked
with producing software that solves the problems at hand and that performs
according to a set of requirements. Rather than tackling the numerical prob-
lems from the perspective of the theory of computation, my goal is to explore
the numerical problems on a case-by-case basis, illustrating what goes wrong
and then providing analyses, alternate approaches, and perhaps principles and
a mind-set that can help avoid these problems or at least reduce the impact
on the application when they do arise.

2.2.1.3 Practical Definitions

For the purpose of this book, a nonscientific definition for robustness is
used when solving geometric or numerical problems. An algorithm that solves
a problem is one that works correctly with exact arithmetic, whether real-
valued, rational-valued, or integer-valued. A robust implementation of the
algorithm is one that produces reasonable results when using inexact arith-
metic (floating-point) for an input domain that makes sense for the practical
problem. You, the application developer, get to decide what reasonable means
and what the input domain should be. For example, the geometric problem of
computing the distance d between two-dimensional points (x0, y0) and (x1, y1)
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is solved by the algorithm d =
√

(x1 − x0)2 + (y1 − y0)2. An implementation
is shown in Listing 2.2.

f l o a t Di s tance ( f l o a t x0 , f l o a t y0 , f l o a t x1 , f l o a t y1 )
{

f l o a t dx = x1 − x0 , dy = y1 − y0 ;
r e tu r n s q r t ( dx∗dx + dy∗dy ) ;

}

LISTING 2.2: Simple implementation for computing distance between two
points.

The algorithm works correctly for all real-valued inputs, because we are
assuming exact arithmetic (real-valued) and exact computation of the square
root function. The implementation uses 32-bit floating-point arithmetic, so the
arithmetic operations potentially have some roundoff errors and the square
root function will generally produce only an approximation to the theoretical
value. However, as long as the value returned from the function is reasonable
for the inputs you expect in your application, then for all practical purposes
the implementation is robust.

That said, the Listing 2.3 shows that you have to think carefully about
your inputs.

i n t i 1 = (1 << 30 ) ;
f l o a t x1 = s t a t i c c a s t<f l o a t >( i 1 ) ;
f l o a t d1 = Di s tance ( 0 . 0 f , 0 . 0 f , x1 , 0 .0 f ) ;
i n t i 2 = i 1 + 64 ;
f l o a t x2 = s t a t i c c a s t<f l o a t >( i 2 ) ;
f l o a t d2 = Di s tance ( 0 . 0 f , 0 . 0 f , x2 , 0 .0 f ) ;
f l o a t d d i f f = d2 − d1 ; // 0 .0 f
i n t i d i f f = i 2 − i 0 ; // 64

LISTING 2.3: Incorrect distance computation due to input problems.

The input points are all on the x-axis. The distance from (x1, 0) to (0, 0) is
theoretically 230, the distance from (x2, 0) to (0, 0) is theoretically 230+64, and
so the distance from (x1, 0) to (x2, 0) is theoretically 64. The implementation
believes the difference of distances is zero, which is incorrect. The problem is
that 230 is exactly represented as a 32-bit floating-point number, but 230 +
64 cannot be exactly represented. The IEEE 754-2008 Standard requires the
integer 230+64 to be represented by the closest floating-point number, which
is 230. A consequence is that x1 and x2 are the same floating-point number,
as are d1 and d2, thus explaining why ddiff is zero. If you know that your
application will produce inputs to Distance with bounded components, say,
with absolute values in the interval [10−8, 108], then for all practical purposes
the implementation Distance is robust. On the other hand, if your application
must produce integer-valued inputs that cannot be represented exactly as
floating-point numbers, the implementation Distance is not robust and you
must come up with a different implementation of the algorithm that satisfies
your requirements.

In the example for incremental construction of the convex hull of 2D points,
the algorithm uses signs of determinants to determine how to update the cur-
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rent convex hull, identifying faces visible to the current input point, removing
those faces, and creating new ones that share the current input point and the
terminator polyline from the removed faces. An implementation of the algo-
rithm that misclassifies the signs of determinants is not robust. Equivalently,
the implementation is robust when it correctly computes the signs of determi-
nants for the inputs the application expects. There are several approaches to
correct classification of the signs, one of those using exact rational arithmetic
because a floating-point number represents (exactly) a rational numbers.

2.2.2 Accuracy

The term accuracy refers to how close a measurement xmeas of a quantity
is to its true value xtrue. The closeness can be computed in terms of absolute
error, |xmeas−xtrue|. Closeness also can be measured in terms of relative error,
|xmeas − xtrue|/|xtrue|, assuming that the true quantity is not zero.

In the context of numerical computing, the term precision refers to the
number of significant digits or bits that can be represented by a numerical
format. As we will see later, 32-bit floating-point numbers (float) have twenty-
four bits of precision and 64-bit floating-point numbers (double) have fifty-three
bits of precision.

The terms accuracy and precision are not the same concept, although
sometimes people incorrectly use them interchangeably in a scientific context.
It is possible to have measurements that are accurate and precise, accurate
and not precise, precise and not accurate, and neither accurate nor precise.
Typically, statements involving accuracy and precision include reference to
number of digits (or bits) and/or comparisons (more accurate than, less pre-
cise than). As a simple example, consider measurements to approximate the
value of x = 1/7 = 0.142857, where the overline indicates that the block of
digits repeats ad infinitum. The number x0 = 0.142857142857 is an estimate
that is accurate and precise to twelve digits. The number x1 = 0.142857 is
accurate to six digits but is not as precise an estimate as x0. The number
x2 = 0.111111111111 is precise to twelve digits but not accurate. The number
x3 = 0.01 is neither precise (only two digits) nor accurate.

Accuracy and precision are indirectly related, though. Usually, the accu-
racy of an estimate is related to how precise the number system is. The more
accurate you want the measurement, the more precise your number system
must be. Of course this is not always a correct relationship. A quantity might
be measured using an algorithm that is ill conditioned, whereby the output of
the algorithm varies greatly with small changes in its inputs. A typical exam-
ple is in the numerical solution of a linear system whose coefficient matrix is
nearly singular. Increasing the precision of the underlying numerical system
might help improve the accuracy of the solution for a limited set of inputs,
but generally an increase in precision cannot overcome the ill conditioning.
The latter is a mathematical issue, and it is quite possible that you might be
able to construct an alternate algorithm that is well conditioned.
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Naturally, it is desirable to design algorithms and implement them to ob-
tain accurate results in a robust manner. Doing so in a timely and efficient
manner may not be easy or even possible.

2.2.3 Speed

Robustness and accuracy do not always come for free. In my computa-
tional geometry code, I provide the ability to compute using exact rational
arithmetic, treating the input floating-point numbers as rational numbers. The
rational arithmetic is based on exact integer arithmetic for integers that have
more bits than supported by standard CPUs. This means that the numerical
computations are performed in software and are quite slow. This is a prob-
lem for a real-time application that must compute convex hulls at runtime.
However, it is usually not a problem for a tool that runs offline to produce
data to be used in a real-time application. For example, a portalizing tool
can compute convex hulls to be used for visibility graphs in a real-time 3D
game. All the game needs is to load the hulls for use in visibility tests. Load-
ing costs are a one-time expense—during level loading—but the point-in-hull
tests are very fast. The convex hull construction is very slow, but the hulls
are computed offline and shipped with the game. The cost of construction is
completely divorced from the runtime execution.

2.2.4 Computer Science Is a Study of Trade-offs

Developing algorithms and implementations that are simultaneously ro-
bust, accurate, and fast is a serious challenge. In practice, you may select any
two of the three and have a chance of meeting those requirements. At the
University of North Carolina, I recall hearing many times from Professor Fred
Brooks: “Computer science is a study of trade-offs.” This has been a dominant
theme in all my practical endeavors, sometimes more so than I would like, es-
pecially when a potential client wants software that is robust, accurate, and
fast. As part of my contract proposals, I try to explain the trade-offs involved
in terms of what you gain and lose by each decision.

Generally, my clients want speed. No problem, just let me know how much
accuracy you are willing to give up or how limited your input data sets must
be to obtain that speed. Assuming the classical model of computing that
involves sequential execution on a single processor, the speed-versus-whatever
trade-offs play a significant role in the development. The most common trade-
off is space-time. If you want to compute something quickly, use memory to
store precomputed data or to store temporary results to avoid recomputation.
If memory is limited, then you are relegated to slower computation time.
On a desktop computer, memory is inexpensive and you have lots of it, so
exchanging space for faster execution time is a popular choice. But even this
choice has consequences to consider, especially when it comes to memory
caches. As you increase memory usage for storing precomputed data, you
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have to be careful in how you access that memory. Data cache misses can be
quite costly on modern architectures.

Computer hardware has evolved significantly over the years. These days we
have several options to consider. Modern CPUs have SIMD support for vector
mathematics; specifically, the CPUs have 128-bit registers that allow us to
load four 32-bit floating-point numbers. These registers support fast vector
and matrix mathematics. For physics-heavy real-time games, SIMD support
is essential because of the extremely large number of vector-matrix operations
performed by the physics engine.

Modern CPUs also have multiple cores, each core acting as a separate pro-
cessor yet sharing main memory. In fact, some dual processor machines allow
you to partition the main memory between the processors. This provides us
with the ability to develop algorithms with components that may be computed
in parallel. Sequential programming is straightforward and is the model of pro-
gramming that most are used to. Programming on multiple cores requires a
different mind-set, because now you have to manage communications between
processors, develop parallel algorithms that can be distributed across threads,
synchronize threads, and prevent concurrent access. Although nonsequential
programming is more difficult to master, it is here to stay. The introduction
of formal concurrency support in C++11 makes it easier to program con-
currently because it has encapsulated some of the more difficult constructs,
making them easier to work with. If you want faster execution of applications,
especially to maintain real-time rates, you need multiple processors. The phys-
ical limitations of chips have been met—a single CPU can have only so many
transistors.

Graphics hardware has also evolved quite rapidly, and GPUs are not just
for graphics anymore. With a reasonably priced graphics card, you have at
your disposal a massively parallel processing system. General-purpose GPU
programming is quite popular. A common use in my contracting involves
GPU-based image processing. It is relatively easy to implement GPU-based
image filters that significantly outperform their counterparts executed on a
single-core CPU. Related to this is the solution of nonlinear partial differ-
ential equations. For example, implementing a real-time numerical solver for
the Navier–Stokes equations of a 3D fluid is a tractable though nontrivial
task.

With all this hardware available, the speed-versus-whatever trade-offs be-
come more interesting. You can use SIMD support for vector-matrix opera-
tions. However, you can also queue up a set of operations and perform them
in parallel on multiple cores or on a GPU. Part of your algorithm develop-
ment is now influenced by what hardware platforms you plan to target. Even
more importantly these days with smart phones, tablet computers, and other
embedded devices, we must now consider trade-offs among computation time,
memory usage, and power consumption.

Although robustness-accuracy versus speed is a major player in the busi-
ness of trade-offs, other trade-offs are perhaps as important. One that I men-
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tion to people that causes them to ponder for an instant is development time
versus suboptimal algorithm. Sometimes we programmers decide we need an
optimal algorithm to solve a problem just because that is what we are trained
to do. In an industrial environment, however, that is not always the best
choice. For example, suppose you need an algorithm to triangulate simple
polygons with large numbers of vertices. The theoretically optimal algorithm
in time is linear [5]; that is, for n vertices the computation time is O(n). To my
knowledge, no public implementation of this algorithm is available—for that
matter, perhaps no implementation is. Linear average-time algorithms are de-
scribed in [53]. In practice, a randomized linear algorithm might be used [51],
which is O(n log∗ n), where log∗ n is the iterated logarithm function. It is a
very slowly growing function that for all practical n is a constant, making the
algorithm effectively linear. But even this algorithm is difficult to implement.
Implementing these algorithms may require a very large amount of develop-
ment time. A more commonly used algorithm involves ear clipping [26, 11].
With careful implementation, the basic algorithm in [26] runs in O(n2), and
coding a robust implementation requires on the order of a few days. If the per-
formance of an ear-clipping algorithm is acceptable for your applications, then
it is worthwhile not spending a large amount of development time on some-
thing much more complicated that provides only a moderate improvement to
performance.

2.3 IEEE Floating Point Standard

It is natural to expect a programming language to have built-in support
for floating-point numbers and arithmetic, especially when the floating-point
system has a hardware implementation as is the case on modern CPUs and
GPUs. For sake of introducing yet another acronym, the hardware is referred
to as a floating-point unit (FPU). Less powerful processors such as those on
some embedded devices might not have hardware floating-point support, so
you have to rely on a software implementation for floating-point arithmetic.
Nothing prevents you from rolling your own, especially if you want to support
only what your applications need. That said, writing a general-purpose system
for floating-point arithmetic is not trivial. If you plan on your applications
having the same floating-point behavior on multiple platforms, some with
floating-point hardware and some without, you most likely want your software
implementation to follow a standard.

The most common floating-point systems follow the IEEE Standard for
Floating-Point Arithmetic. As of the time of writing of this book, the most
recent version is the IEEE 754-2008 Standard, a seventy-page copyrighted
PDF document that is available for purchase online from the IEEE Computer
Society. Although a formidable task, it would be useful to see a reference imple-
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mentation of the standard to which we can compare our own implementations,
even if the reference implementation is abstract because it uses a hypothetical
programming language. It is possible to infer some of the standard’s require-
ments by writing test programs in a specific runtime environment. Of course,
this assumes that the hardware and runtime libraries have an IEEE-compliant
implementation of floating-point arithmetic. You also need to be careful, be-
cause sometimes you are given control over the behavior of the arithmetic.
In Microsoft Visual Studio, you are given control over precision using the
compiler option /fp. The default (/fp:precise) allows the 80-bit floating-point
registers to be used to store intermediate computations. The final results can
be much different from those that use only the number of bits provided by
the floating-point type (32-bit or 64-bit). There are also potential issues to
be aware of because the ANSI programming language standards are not nec-
essarily disjoint from floating-point standards; for example, register usage in
compiled code might involve different size floating-point registers, which makes
it difficult to understand the runtime behavior of the code. There is also the
potential that, even on the same platform, another compiler will generate
floating-point code that behaves differently. Microsoft Visual Studio runtime
libraries also provide platform-dependent functions clearfp and statusfp that
allow you to determine which floating-point exceptions have occurred (if any).
This leads to greater understanding of a floating-point number system—you
have to understand the underlying model of numerical computation in order
to write robust software.

In the sample applications, I will mention whether there are any floating-
point concerns and refer to the IEEE 754-2008 Standard document if neces-
sary. Emphasis will be on computing when all expected intermediate compu-
tations involve only finite floating-point numbers. A key aspect of the IEEE
754-2008 Standard that is of concern: an implementation of an IEEE-required
function must produce a result as if it were computed with infinite precision
but then rounded accordingly to a floating-point number. In the vernacular,
do the best you can do with the specified precision. The example provided
previously about unexpected behavior when computing quadratic roots has
this flavor. The computed estimate of a root was the best you could do—the
algorithm produced the 32-bit floating-point number nearest to the infinite
precision root and with smallest-magnitude function value. If the best you
can do is not good enough, you will need to consider other numerical systems
or different formulations of your problem that allow more suitable solutions.

2.4 Binary Scientific Notation

Before we investigate the IEEE floating-point numbers, this section will
motivate most of the ideas behind them, namely, manipulating binary repre-
sentations of numbers.
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A positive real number r may be written exactly in base-two scientific
notation, which I refer to as binary scientific notation,

r =

(

1 +
∞
∑

i=0

ci 2
−(i+1)

)

2p = 1.c ∗ 2p (2.9)

where ci are the bits, each having a value either zero or one and where 1.c is
a shorthand notation for one plus the infinite summation.

Allowing an infinite sum, the representation for a rational number is not
unique. For example, the number one has a representation 1.0∗20, which means
the power is p = 0 and coefficients are ci = 0 for all i. Another representation
is 1.1

∞ ∗ 2−1 = 0.111 . . ., where the power is p = −1 and coefficients are
ci = 1 for all i. The notation 1

∞
indicates that the number 1 is repeated

an infinite number of times. We obtain uniqueness in one of two ways, either
choosing a finite sum (if there is one) or choosing the representation with the
smallest power p. Not all numbers have finite representations; for example,
1/3 = 1.01

∞ ∗ 2−2, where 01
∞

indicates that the number pair 01 is repeated
ad infinitum. Consequently, one-third is an irrational number base 2.

For computing, we will restrict our attention to finite sums,

r =

(

1 +

n
∑

i=0

ci 2
−(i+1)

)

2p = 1.c ∗ 2p (2.10)

where n ≥ 0. All such finite sums, positive or negative and including zero,
are referred to as binary scientific numbers. These numbers are necessarily
rational. GTEngine provides support for these; see class BSNumber. More detail
about binary scientific numbers are provided next.

2.4.1 Conversion from Rational to Binary Scientific

Numbers

Consider the rational number r = n/d, where n and d are positive integers.
The numerator is of the form

n = 2ℓn +

ℓn−1
∑

i=0

ni 2
i (2.11)

where the high-order 1-bit occurs at index ℓn ≥ 0. The coefficients ni are the
remaining bits of the number. If r = 1, then ℓn = 0 and the upper limit of
the summation in Equation (2.11) is −1. Our convention is that a summation
is zero when the upper limit is smaller than the lower limit. Similarly, the
denominator is of the form

d = 2ℓd +

ℓd−1
∑

i=0

di 2
i (2.12)
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where the high-order 1-bit occurs at index ℓd ≥ 0. The coefficients di are the
remaining bits of the number, if any.

We may write r as

r = n
d =

2ℓn+
∑ℓn−1

i=0
ni 2

i

2ℓd+
∑ℓd−1

i=0
di 2i

=
1+

∑ℓn−1

i=0
ni 2

i−ℓn

1+
∑ℓd−1

i=0
di 2i−ℓd

2ℓn−ℓd = 1+α
1+β 2ℓn−ℓd

(2.13)

where α and β are defined by the last equality and both numbers are neces-
sarily in the interval [0, 1).

When α ≥ β, (1 + α)/(1 + β) ∈ [1, 2) and

1 + α

1 + β
= 1 +

∞
∑

i=0

ci 2
−(i+1) = 1.c (2.14)

When α < β, (1 + α)/(1 + β) ∈ (0, 1), which implies 2(1 + α)/(1 + β) ∈ (1, 2)
and

2(1 + α)

1 + β
= 1 +

∞
∑

i=0

ci 2
−(i+1) = 1.c (2.15)

Equations (2.14) and (2.15) may be combined to produce the representation

r = 1.c ∗ 2ℓn−ℓd−ω = 1.c ∗ 2p (2.16)

where ω is defined by

ω =

{

0, 2ℓd−ℓnr ≥ 1
1, 2ℓd−ℓnr < 1

(2.17)

and the power p in Equation (2.9) is

p = ℓn − ℓd − ω (2.18)

Now consider the rational number

s = 2−pr = 1 +

∞
∑

i=0

ci 2
−(i+1) = 1.c0c1c2 · · · (2.19)

We construct the bits ci using an iterative algorithm. Define s0 = 2(s− 1) =
c0.c1c2 · · · , so c0 is the integer part of s0, and define s1 = 2(s0 − c0) =
c1.c2 · · · , so c1 is the integer part of s1. The process is repeated ad infinitum,
si+1 = 2(si − ci) = ci+1.ci+2 · · · . When using a computer, we will stop the
construction after a specified number of bits has been reached. If k bits are
requested, then the representation of s is

s = 1.c0c1 · · · ck−1 + εt (2.20)
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where εt is the truncation error. Observe that the truncation error is bounded
by the difference between two consecutive k-bit quantities,

εt =

∞
∑

i=k

ci
2i+1

∈
[

0, 2−k
]

(2.21)

We may also choose to round to the nearest k-bit quantity, using a tie-
breaking rule when s is equidistant from two such quantities,

s = 1.c0c1 · · · ck−1 +
γ

2k
+ εr (2.22)

where γ is either 0 or 1 and where εr is the rounding error. Define ρ =
0.ckck+1 · · · ∈ [0, 1]; then

γ =

{

0, (ρ < 1/2) or (ρ = 1/2 and ck−1 = 0)
1, (ρ > 1/2) or (ρ = 1/2 and ck−1 = 1)

(2.23)

The difference of two consecutive k-bit quantities is 2−k, so the rounding error
is bounded by

εr ∈
[

−2−(k+1), 2−(k+1)
]

(2.24)

The tie-breaking rule is referred to as ties to even. Consider the binary number
1c0 · · · ck−1.ckck+1 = i.ρ. If ρ = 1/2, the number is equidistant from i and i+1.
Rounding is to whichever of i or i+ 1 is even.

Listing 2.4 has pseudocode for handling the conversion of rational num-
bers to binary scientific numbers. The input rational number is assumed to
be positive. The input last index specifies when to terminate the conversion
when the rational number base 10 is irrational base 2, in which case the out-
put is only an approximation to the input. The pseudocode uses truncation
and, for simplicity of the illustration, assumes that arbitrary-precision integer
arithmetic is used; the data type is denoted Integer.

vo id ConvertRationalToBSN ( Ra t i o n a l r , i n t l a s t I n d e x , i n t& p , i n t& c b i t s )
{

// Get the numerator and denominator , both p o s i t i v e numbers .
I n t e g e r n = r . Numerator ( ) ;
I n t e g e r d = r . Denominator ( ) ;

// Get the p o s i t i o n s o f the l e a d i n g b i t s f o r the numerator and
// denominator .
i n t leadN = GetLead i ngB i t ( n ) ;
i n t leadD = GetLead i ngB i t ( d ) ;

// The f i r s t gues s at the power .
p = leadN − leadD ;

// I n d i r e c t l y compute s = 2ˆ{−p}∗ r by s h i f t i n g e i t h e r the numerator
// or denominator a c c o r d i n g l y .
i f ( p > 0)
{

d <<= p ;
}
e l s e
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{
n <<= −p ;

}

// I f s < 1 , we need to mu l t i p l y by 2 to ob t a i n 1 < s < 2 .
i f ( n < d )
{

n <<= 1 ;
−−p ;

}
// s = n/d i s i n the i n t e r v a l [ 1 , 2 ) .

I n t e g e r c = 1 ;
f o r ( I n t e g e r mask = (1 << l a s t I n d e x ) ; mask > 0 ; mask >>= 1)
{

// I n d i r e c t l y compute s = 2∗( s − c ) ; a vo i d the s u b t r a c t i o n
// when c i s z e ro .
i f ( c == 1)
{

n −= d ; // s = s − c ;
}
n <<= 1 ; // s = 2∗ s
i f ( n >= d) // s >= 1
{

c = 1 ;
c b i t s |= mask ;

}
e l s e

{
c = 0 ;

}
}

}

LISTING 2.4: Conversion of rational numbers to binary scientific numbers.

Exercise 2.1 Modify ConvertRationalToBSN to use round-to-nearest rather
than truncation.

2.4.2 Arithmetic Properties of Binary Scientific Numbers

Let B be the set of binary scientific numbers, which consists of numbers
of the form in Equation (2.10), both positive and negative and including zero.
We may add, subtract, and multiply elements of B, the results also in B.
In all cases, the algorithm for performing the arithmetic operation involves
modifying the binary scientific notation to obtain a number that is a product
of an integers and a power of two.

Specifically, consider x = 1.u ∗ 2p. If 1.u = 1, define û = 1. If 1.u > 0
and u has n bits, then the last bit is a 1-bit. Define û = 1u0 . . . un−1, where
un−1 = 1. In either case, û is an (n + 1)-bit odd integer with n ≥ 0 and we
may write x = û ∗ 2p−n. The GTEngine class BSNumber represents x as the
pair (û, p− n). In the discussion of binary operations, we will use variables x
and y for the inputs, and z for the output. Represent y = 1.v ∗ 2q using pair
(v̂, q −m) and z = 1.w ∗ 2r using pair (ŵ, r − ℓ).
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2.4.2.1 Addition of Binary Scientific Numbers

Using the previously defined notation, given operands x and y, we need to
determine the values of w and r for the sum z = x+ y. The sum is

x+ y = 1.u ∗ 2p + 1.v ∗ 2q = û ∗ 2p−n + v̂ ∗ 2q−m (2.25)

If p− n ≥ q −m,

û ∗ 2p−n + v̂ ∗ 2q−m =
(

û ∗ 2(p−n)−(q−m) + v̂
)

∗ 2q−m = w̃ ∗ 2q−m (2.26)

where the last equality defines w̃, a positive integer. Let the first 1-bit of w̃
occur at index f and the trailing 1-bit occur at index t.

Observe that w̃ is odd when p− n > q −m. In this case t = 0 and ŵ = w̃
with ℓ = f and r = ℓ + q − m. When p − n = q − m, w̃ is even. We may
shift right the bits of w̃ by t places to obtain ŵ, an (ℓ + 1)-bit number with
ℓ = f − t. In fact, the construction applies to the previous case when t = 0,
in which case there is no shift and ℓ = f . Thus,

x+ y = w̃ ∗ 2q−m = ŵ ∗ 2q−m+t = 1.w ∗ 2q−m+t+ℓ = 1.w ∗ 2q−m+f (2.27)

which implies r = q −m+ f .
If p − n < q − m, a similar construction is applied. We compute w̃ =

û + v̂ ∗ 2(q−m)−(p−n), find the first 1-bit index f of w̃ and the trailing 1-bit
index t, shift right w̃ by t bits to obtain ŵ, set ℓ = f − t, and finally obtain
z = 1.w ∗ 2r where r = p− n+ f .

2.4.2.2 Subtraction of Binary Scientific Numbers

The difference x − y is computed similarly to the sum x + y except that
the w̃ integer is a difference of positive integers rather than a sum and is
potentially negative. The BSNumber class also stores a sign in {−1, 0,+1}, so
when w̃ is negative, the sign member is set to −1.

2.4.2.3 Multiplication of Binary Scientific Numbers

The product of x = 1.u ∗ 2p and y = 1.v ∗ 2q is z = 1.w ∗ 2r, where we
need to determine the values of w and r. Both 1.u and 1.v are in the half-
open interval [1, 2), so their product is in the half-open interval [1, 4); that is,
1.u ∗ 1.v = b1b0.f where b1b0 ∈ 1, 2, 3 and 0.f is the fractional part in [0, 1).
If b1 = 0, then b0 = 1, 0.w = 0.f , and r = p + q. If b1 = 1, then 0.w = 0.b0f
and r = p+ q + 1.

If u = 0, then xy = 1.v ∗ 2p+q. If v = 0, then xy = 1.u ∗ 2p+q; otherwise,
u > 0 and v > 0, so at least one bit of u is nonzero and at least one bit of v is
not zero. Using the notation introduced previously, the product xy is written
as

xy = 1.u ∗ 2p ∗ 1.v ∗ 2q = û ∗ v̂ ∗ 2p−n+q−m = ŵ ∗ 2p+q−n−m (2.28)
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where ŵ = û ∗ v̂ is the product of integers. The product of an (n+ 1)-bit odd
integer and an (m+1)-bit odd integer is an odd integer with either n+m+1
or n + m + 2 bits. For example, consider the case n = 4 and m = 3. The
product of the two smallest odd integers with the specified number of bits
is (in binary) 10001 ∗ 1001 = 10011001, which has n + m + 1 = 8 bits. The
product of the two largest odd integers with the specified number of bits is
11111 ∗ 1111 = 111010001, which has n+m+ 2 = 9 bits.

We need to convert the right-hand side of Equation (2.28) back to standard
form. Define c = 0 when the leading bit of ŵ is at index n+m or c = 1 when the
leading bit is at index n+m+1, and define ℓ = n+m+c. Thus, ŵ is an (ℓ+1)-
bit odd integer of the form ŵ = 1w0 . . . wℓ−1 = 1.w0 . . . wℓ−1 ∗ 2ℓ = 1.w ∗ 2ℓ,
where wℓ−1 = 1 and the last equality defines w. The product xy is therefore

xy = 1.w ∗ 2p+q−n−m+ℓ = 1.w ∗ 2p+q+c = 1.w ∗ 2r (2.29)

The implementation of multiplication in the GTEngine class BSNumber is to
multipy ŵ = û ∗ v̂, set c by examining the location of the leading bit of ŵ,
say, ℓ, and computing r = p + q + c, finally representing z = xy as the pair
(ŵ, r − ℓ).

2.4.2.4 Division of Binary Scientific Numbers

Although we can define division x/y = 1.u ∗ 2p/1.v ∗ q2, we would need to
apply the algorithm of Section 2.4.1 to obtain the bits of 1.w = 1.u/1.v. As
noted, the sequence of bits can be infinite, so for a computer implementation,
we would have to select a maximum number of bits and then round the result.
The goal of implementing class BSNumber is to support exact arithmetic, so I
chose not to implement division. Instead, we can take advantage of abstract
algebra and define formal ratios of binary scientific numbers that play the
same role as rational numbers do for the integers. For example, the rational
number 1/3 is meaningful and can be manipulated algebraically without ever
having to compute a decimal representation 1/3 = 0.3333 . . .. The same holds
true for ratios of binary scientific numbers, which is useful for exact arithmetic
in computation geometry. Only at the very end of a geometric algorithm will
you potentially need approximations if you decide you need 32-bit or 64-bit
floating-point results to report.

Let x ∈ B and y ∈ B, where B is the set of binary scientific numbers as
defined previously. We can define ratios of numbers in B as x/y where y �= 0.
Although this suggests division, it is not intended to be that way. The ratios
may be defined as the set of 2-tuples R = {(x, y) : x ∈ B, y ∈ B \ {0}}.
The fancy set notation says that y is in the set B but cannot be the element
0. Just as with rational numbers, a single abstract ratio can have multiple
representations. For example, 1/3 and 2/6 represent the same number. Also,
0/1 and 0/2 are both representations for zero.

Given ratios r0 = (x0, y0) ∈ R and r1 = (x1, y1) ∈ R, addition is defined
as

r0 + r1 = (x0 ∗ y1 + x1 ∗ y0, y0 ∗ y1) (2.30)
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You are more familiar with the notation using fractions,

r0 + r1 =
x0

y0
+

x1

y1
=

x0y1 + x1y0
y0y1

(2.31)

where the sum is computed by constructing the common denominator of the
two fractions. Observe that the components of the 2-tuple are computed us-
ing multiplication and addition of binary scientific numbers, something we
already know how to do with a computer implementation (class BSNumber).
Subtraction is defined similarly:

r0 − r1 = (x0 ∗ y1 − x1 ∗ y0, y0 ∗ y1) (2.32)

Multiplication of two ratios is defined as

r0 ∗ r1 = (x0 ∗ x1, y0 ∗ y1) (2.33)

where in fraction notation,

r0r1 =
x0

y0

x1

y1
=

x0x1

y0y1
(2.34)

Division is similarly defined as long as the denominator is not zero,

r0/r1 = (x0 ∗ y1, x1 ∗ y0) (2.35)

where in fraction notation,

r0
r1

=

x0

y0

x1

y1

=
x0y1
x1y0

(2.36)

As with rational numbers, common factors may be removed from numera-
tor and denominator; that is, for nonzero f , (f ∗ x, f ∗ y) and (x, y) represent
the same abstract ratio of R.

The 2-tuple notation is how you represent ratios of binary scientific num-
bers in a computer program. The GTEngine class BSRational is an implemen-
tation of such ratios and the arithmetic that applies to them.

2.4.3 Algebraic Properties of Binary Scientific Numbers

The binary scientific numbers B have abstract algebraic properties of in-
terest. By abstract, I mean in the sense you learn in an undergraduate abstract
algebra class about groups, rings, and fields. The set B, together with addition
and multiplication, is a commutative ring with unity.

1. Closure under addition: If x, y ∈ B, then x+ y ∈ B.

2. Associativity of addition: For x, y, z inB, (x + y) + z = x+ (y + z).

3. Commutativity of addition: For x, y ∈ B, x+ y = y + x.
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4. Additive identity: The number 0 ∈ B has the property x+ 0 = x for all
x ∈ B.

5. Additive inverses: If x ∈ B, there is an element y ∈ B for which x+y = 0;
y is said to be the additive inverse of x. Our notation for the inverse is
the unary negation, y = −x.

6. Closure under multiplication: If x, y ∈ B, then x ∗ y ∈ B.

7. Associativity of multiplication: For x, y, z ∈ B, (x ∗ y) ∗ z = x ∗ (y ∗ z).

8. Commutativity of multiplication: For x, y ∈ B, x ∗ y = x ∗ y.

9. Multiplicative identity: The number 1 ∈ B has the property x ∗ 1 = x
for all x ∈ B.

10. Distributivity: For x, y, z ∈ B, x ∗ (y + z) = x ∗ y + x ∗ z.

Elements of B do not necessarily have multiplicative inverses. Recall that we
are restricting B to elements 1.u ∗ 2p for which u has a finite number of bits.
The number 3 = 1.1 ∗ 21 is in B but does not have a multiplicative inverse
in B. If it did, it would have to be the number 1/3, but this number has
representation 1/3 = 1.0̄1

∞ ∗ 2−2, where the bit pairs 01 repeat ad infinitum;
there is no representation with a finite number of bits.

The ratios of binary scientific numbers also have abstract algebraic prop-
erties of interest. The set R together with addition and multiplication form a
field. Such an entity is a commutative ring with unity and each nonzero r ∈ R
has a multiplicative inverse. In our 2-tuple notation, if r = (x, y) with x and
y both nonzero elements of B, then the multiplicative inverse is 1/r = (y, x).
From the definition of Equation (2.33), the product is r ∗ 1/r = (x ∗ y, x ∗ y).
Removing the common multiple gives us (1, 1) which is a representation of the
multiplicative identity 1.

What do the abstract algebraic properties mean in practice? As long as
you have implemented the addition, subtraction, and multiplication opera-
tors correctly, you are guaranteed that the implementation will produce exact
arithmetic results. As long as two expressions theoretically produce the same
number, the implementation will compute the same number.

2.5 Floating-Point Arithmetic

The common floating-point representations for computing are specified
in the IEEE 754-2008 Standard for Floating-Point Arithmetic. The native
type float has thirty-two bits of storage and is referred to in the standard
as binary32. Such numbers are said to provide single precision. The native
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type double has sixty-four bits of storage and is referred to in the standard
as binary64. Such numbers are said to provide double precision. This chapter
provides an overview of IEEE 754-2008 floating-point numbers for the binary
encodings but not for the decimal encodings. For significantly more detail, see
[14] and [49].

2.5.1 Binary Encodings

The IEEE 754-2008 Standard defines binary interchange formats for
floating-point numbers. In each format, a floating-point number has a unique
encoding. The formats supported by most hardware are 32-bit (C++ type
float), referred to as binary32, and 64-bit (C++ type double), referred to as
binary64. Also of interest is binary16, because many graphics processors support
16-bit floating-point as a way of reducing memory for vertex buffers and/or
reducing the computational load for the arithmetic logic unit.

The first encoding presented here is for 8-bit floating-point numbers, which
is not particularly useful on powerful hardware but is helpful to illustrate
the general concepts for binary encodings. The other sections contain brief
descriptions of the binary encodings for 16-bit, 32-bit, and 64-bit formats.
Generally, n-bit encodings are allowed for n ≥ 128 as long as n is a multiple
of thirty-two.

In the discussions, I will use the type name binaryN to represent the N -bit
floating-point number. The type will be treated as a C or C++ union; see
Listing 2.5.

typede f un ion
{

UIntegerN encod i ng ; // the N−b i t encod i ng
FloatN number ; // the f l o a t i n g−po i n t number

}
b inaryN ;

LISTING 2.5: A union is used to allow accessing a floating-point number or
manipulating its bits via an unsigned integer.

This is for convenience of notation by not always having to declare explic-
itly a union type in the pseudocode that manipulates both the number and
its encoding.

The encoding for binaryN has signed zeros, +0 and −0. At first glance, hav-
ing two representations for zero might be considered unnecessary, but there
are numerical applications where it is important to support this. The encoding
also has signed infinities, +∞ and −∞. Infinities have special rules applied to
them during arithmetic operations. Finally, the encoding has special values,
each called Not-a-Number (NaN). Some of these are called quiet NaNs that
are used to provide diagnostic information when unexpected conditions occur
during floating-point computations. The others are called signaling NaNs and
also may provide diagnostic information but might also be used to support
the needs of specialized applications. A NaN has an associated payload whose
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FIGURE 2.6: The layout of an 8-bit floating-point number.

meaning is at the discretion of the implementer. The IEEE 754-2008 Stan-
dard has many requirements regarding the handling of NaNs in numerical
computations.

2.5.1.1 8-bit Floating-Point Numbers

The layout of a binary8 number is shown in Figure 2.6. The IEEE 754-
2008 Standard does not explicitly mention such an encoding, so I have chosen
the encoding that I believe best illustrates the ideas for general encodings.
The sign of the number is stored in bit seven. A 0-valued bit is used for a
nonnegative number and a 1-valued bit is used for a negative number. The
exponent is stored in bits four through six but is represented using a bias. If
the biased exponent stored in the three bits is e, then the actual exponent is
e − 3. The trailing significand is stored in bits zero through three. A normal

number has an additional 1-valued bit prepended to the trailing significand to
form the significand of the number; this bit is considered to be hidden in the
sense it is not explicitly stored in the 8-bit encoding. A subnormal number has
an additional 0-valued bit prepended to the trailing significand. To be precise,
the 8-bit quantity is interpreted as follows. Let s be the 1-bit sign, let e be
the 3-bit biased exponent, and let t be the 4-bit trailing significand. Listing
2.6 shows how to decode the 8-bit pattern.

b i n a r y8 x = <some 8−b i t f l o a t i n g−po i n t number>;
u i n t 8 t s = (0 x80 & x . encod i ng ) >> 7 ; // s i g n
u i n t 8 t e = (0 x70 & x . encod i ng ) >> 4 ; // b i a s ed exponent
u i n t 8 t t = (0 x0 f & x . encod ing ) ; // t r a i l i n g s i g n i f i c a n d

i f ( e == 0)
{

i f ( t == 0) // z e r o s
{

// x = (−1)ˆ s ∗ 0 [ a l l ow s f o r +0 and −0]
}
e l s e // subnormal numbers
{

// x = (−1)ˆ s ∗ 0 . t ∗ 2ˆ{−2}
}

}
e l s e i f ( e < 7) // normal numbers
{

// x = (−1)ˆ s ∗ 1 . t ∗ 2ˆ{e−3}
}
e l s e // s p e c i a l numbers
{

i f ( t == 0)
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{
// x = (−1)ˆ s ∗ i n f i n i t y

}
e l s e

{
// Not−a−Number (NaN)
i f ( t & 0x08 )
{

// x = q u i e t NaN
}
e l s e

{
// x = s i g n a l i n g NaN

}
// pay l oad = t & 0x07

}
}

LISTING 2.6: Decoding an 8-bit floating-point number.

The maximum (unbiased) exponent is emax = 3. The minimum (unbiased)
exponent is emin = 1 − emax = −2. The relationship between the minimum
and maximum exponents is required by the IEEE 754-2008 Standard. The
number of bits in the significand is p = 5, which includes the four bits of
the trailing significand and the leading 1-valued bit for normal numbers. The
subnormal numbers have a leading 0-valued bit, so the number of significant
bits for subnormals is always smaller than p.

The encoding has signed zeros, +0 (hex encoding 0x00) and −0 (hex en-
coding 0x80), and signed infinities, +∞ (hex encoding 0x70) and −∞ (hex
encoding 0xf0).

The smallest positive subnormal number is 0.0001 ∗ 2−2 = 2emin+1−p =
2−6 = 1/64 = 0.015625. All finite floating-point numbers are integral multiples
of this number. The largest positive subnormal number is 0.1111 ∗ 2−2 =
2emin(1 − 21−p) = 15/64 = 0.234375. The smallest positive normal number is
1.0000 ∗ 2−2 = 2emin = 16/64 = 0.25. The largest positive normal number is
1.1111 ∗ 23 = 2emax(2− 21−p) = 992/64 = 15.5.

The binary encodings and their meanings are listed in Table 2.1 for the
128 numbers with a 0-valued sign bit. The hex column lists the encoding of
the 8-bit numbers in hexadecimal format. The multiples of 1/64 (the smallest
positive subnormal) for each number is simply the floating-point value times
sixty-four. The signaling NaNs are labeled sNaN and the quiet NaNs are labeled
qNaN, both with payload values listed.

The finite binary8 numbers live in the real-valued interval (−16, 16). It is
important to observe that the distribution of the numbers is not uniform.
Figure 2.7 shows hash marks at the locations of the binary8 numbers. The sub-
normals are in the interval (0.0, 0.25). Zero, the subnormals, and the normals
in [0.0, 0.5] are uniformly distributed. The normals in [0.5, 1.0] are uniformly
distributed but at half the frequency for the numbers in [0.0, 0.5]. The nor-
mals in [1.0, 2.0] are also uniformly distributed but at half the frequency for
the numbers in [0.5, 1.0]. The pattern repeats: for each unbiased exponent
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TABLE 2.1: The binary encodings for 8-bit floating-point numbers
hex bsn value hex bsn value hex bsn value

00 +0 0.000000 30 1.0000 ∗ 2+0 1.0000 60 1.0000 ∗ 2+3 8.0
01 0.0001 ∗ 2−2 0.015625 31 1.0001 ∗ 2+0 1.0625 61 1.0001 ∗ 2+3 8.5
02 0.0010 ∗ 2−2 0.031250 32 1.0010 ∗ 2+0 1.1250 62 1.0010 ∗ 2+3 9.0
03 0.0011 ∗ 2−2 0.046875 33 1.0010 ∗ 2+0 1.1875 63 1.0011 ∗ 2+3 9.5
04 0.0100 ∗ 2−2 0.062500 34 1.0100 ∗ 2+0 1.2500 64 1.0100 ∗ 2+3 10.0
05 0.0101 ∗ 2−2 0.078125 35 1.0101 ∗ 2+0 1.3125 65 1.0101 ∗ 2+3 10.5
06 0.0110 ∗ 2−2 0.093750 36 1.0110 ∗ 2+0 1.3750 66 1.0110 ∗ 2+3 11.0
07 0.0111 ∗ 2−2 0.109375 37 1.0111 ∗ 2+0 1.4375 67 1.0111 ∗ 2+3 11.5
08 0.1000 ∗ 2−2 0.125000 38 1.1000 ∗ 2+0 1.5000 68 1.1000 ∗ 2+3 12.0
09 0.1001 ∗ 2−2 0.140625 39 1.1001 ∗ 2+0 1.5625 69 1.1001 ∗ 2+3 12.5
0A 0.1010 ∗ 2−2 0.156250 3A 1.1010 ∗ 2+0 1.6250 6A 1.1010 ∗ 2+3 13.0
0B 0.1011 ∗ 2−2 0.171875 3B 1.1011 ∗ 2+0 1.6875 6B 1.1011 ∗ 2+3 13.5
0C 0.1100 ∗ 2−2 0.187500 3C 1.1100 ∗ 2+0 1.7500 6C 1.1100 ∗ 2+3 14.0
0D 0.1101 ∗ 2−2 0.203125 3D 1.1101 ∗ 2+0 1.8125 6D 1.1101 ∗ 2+3 14.5
0E 0.1110 ∗ 2−2 0.218750 3E 1.1110 ∗ 2+0 1.8750 6E 1.1110 ∗ 2+3 15.0
0F 0.1111 ∗ 2−2 0.234375 3F 1.1111 ∗ 2+0 1.9375 6F 1.1111 ∗ 2+3 15.5

10 1.0000 ∗ 2−2 0.250000 40 1.0000 ∗ 2+1 2.000 70 +∞
11 1.0001 ∗ 2−2 0.265625 41 1.0001 ∗ 2+1 2.125 71 sNaN, payload 001
12 1.0010 ∗ 2−2 0.281250 42 1.0010 ∗ 2+1 2.250 72 sNaN, payload 010
13 1.0011 ∗ 2−2 0.296875 43 1.0011 ∗ 2+1 2.375 73 sNaN, payload 011
14 1.0100 ∗ 2−2 0.312500 44 1.0100 ∗ 2+1 2.500 74 sNaN, payload 100
15 1.0101 ∗ 2−2 0.328125 45 1.0101 ∗ 2+1 2.625 75 sNaN, payload 101
16 1.0110 ∗ 2−2 0.343750 46 1.0110 ∗ 2+1 2.750 76 sNaN, payload 110
17 1.0111 ∗ 2−2 0.359375 47 1.0111 ∗ 2+1 2.875 77 sNaN, payload 111
18 1.1000 ∗ 2−2 0.375000 48 1.1000 ∗ 2+1 3.000 78 qNaN, payload 000
19 1.1001 ∗ 2−2 0.390625 49 1.1001 ∗ 2+1 3.125 79 qNaN, payload 001
1A 1.1010 ∗ 2−2 0.406250 4A 1.1010 ∗ 2+1 3.250 7A qNaN, payload 010
1B 1.1011 ∗ 2−2 0.421875 4B 1.1011 ∗ 2+1 3.375 7B qNaN, payload 011
1C 1.1100 ∗ 2−2 0.437500 4C 1.1100 ∗ 2+1 3.500 7C qNaN, payload 100
1D 1.1101 ∗ 2−2 0.453125 4D 1.1101 ∗ 2+1 3.625 7D qNaN, payload 101
1E 1.1110 ∗ 2−2 0.468750 4E 1.1110 ∗ 2+1 3.750 7E qNaN, payload 110
1F 1.1111 ∗ 2−2 0.484375 4F 1.1111 ∗ 2+1 3.875 7F qNaN, payload 111

20 1.0000 ∗ 2−1 0.50000 50 1.0000 ∗ 2+2 4.00
21 1.0001 ∗ 2−1 0.53125 51 1.0001 ∗ 2+2 4.25
22 1.0010 ∗ 2−1 0.56250 52 1.0010 ∗ 2+2 4.50
23 1.0011 ∗ 2−1 0.59375 53 1.0011 ∗ 2+2 4.75
24 1.0100 ∗ 2−1 0.62500 54 1.0100 ∗ 2+2 5.00
25 1.0101 ∗ 2−1 0.65625 55 1.0101 ∗ 2+2 5.25
26 1.0110 ∗ 2−1 0.68750 56 1.0110 ∗ 2+2 5.50
27 1.0111 ∗ 2−1 0.71875 57 1.0111 ∗ 2+2 5.75
28 1.1000 ∗ 2−1 0.75000 58 1.1000 ∗ 2+2 6.00
29 1.1001 ∗ 2−1 0.78125 59 1.1001 ∗ 2+2 6.25
2A 1.1010 ∗ 2−1 0.81250 5A 1.1010 ∗ 2+2 6.50
2B 1.1011 ∗ 2−1 0.84375 5B 1.1011 ∗ 2+2 6.75
2C 1.1100 ∗ 2−1 0.87500 5C 1.1100 ∗ 2+2 7.00
2D 1.1101 ∗ 2−1 0.90625 5D 1.1101 ∗ 2+2 7.25
2E 1.1110 ∗ 2−1 0.93750 5E 1.1110 ∗ 2+2 7.50
2F 1.1111 ∗ 2−1 0.96875 5F 1.1111 ∗ 2+2 7.75
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FIGURE 2.7: The distribution of the nonnegative binary8 numbers. The fif-
teen subnormal numbers are shown with gray hash marks. The normal num-
bers are shown with black hash marks.

TABLE 2.2: Quantities of interest for binary8
name value name value

F8 NUM ENCODING BITS 8 F8 MAX TRAILING 0x0f
F8 NUM EXPONENT BITS 3 F8 SUP TRAILING 0x10
F8 NUM SIGNIFICAND BITS 5 F8 POS ZERO 0x00
F8 NUM TRAILING BITS 4 F8 NEG ZERO 0x80
F8 EXPONENT BIAS 3 F8 MIN SUBNORMAL 0x01
F8 MAX BIASED EXPONENT 7 F8 MAX SUBNORMAL 0x0f
F8 SIGN MASK 0x80 F8 MIN NORMAL 0x10
F8 NOT SIGN MASK 0x7f F8 MAX NORMAL 0x6f
F8 BIASED EXPONENT MASK 0x70 F8 INFINITY 0x70
F8 TRAILING MASK 0x0f
F8 NAN QUIET MASK 0x08
F8 NAN PAYLOAD MASK 0x07

λ, the numbers with that exponent are uniformly distributed in the interval
[2λ, 2λ+1] but at half the frequency for the numbers in the interval [2λ−1, 2λ].

When implementing floating-point arithmetic in software, it is convenient
to define some quantities of interest as listed in Table 2.2. Similar quanti-
ties will be defined for other binary encodings. The enumerate F8 INFINITY

is assigned to a number that corresponds to the encoding 24, but this is not
to be considered the value of +∞. Infinities are handled differently from fi-
nite floating-point numbers. The enumerate is for bit-pattern testing in the
software implementation.

As we explore the properties and arithmetic of floating-point numbers
with binary encodings of more bits, it is sometimes instructive to refer back
to binary8 as motivation because it is easy to wrap your head around a floating-
point number system with so few numbers.

2.5.1.2 16-Bit Floating-Point Numbers

The layout of a binary16 number is shown in Figure 2.8. The sign of the
number is stored in bit fifteen. A 0-valued bit is used for a nonnegative number
and a 1-valued bit is used for a negative number. The exponent is stored
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FIGURE 2.8: The layout of a 16-bit floating-point number.

in bits ten through fourteen, but is represented using a bias. If the biased

exponent stored in the five bits is e, then the actual exponent is e − 15. The
trailing significand is stored in bits zero through nine. A normal number has
an additional 1-valued bit prepended to the trailing significand to form the
significand of the number; this bit is considered to be hidden in the sense it
is not explicitly stored in the 16-bit encoding. A subnormal number has an
additional 0-valued bit prepended to the trailing significand. To be precise,
the 16-bit quantity is interpreted as follows. Let s be the 1-bit sign, let e be
the 5-bit biased exponent, and let t be the 10-bit trailing significand. Listing
2.7 shows how to decode the 16-bit pattern.

b i n a r y1 6 x = <some 16− b i t f l o a t i n g−po i n t number>;
u i n t 1 6 t s = (0 x8000 & x . encod i ng ) >> 15 ; // s i g n
u i n t 1 6 t e = (0 x7c00 & x . encod i ng ) >> 10 ; // b i a s ed exponent
u i n t 1 6 t t = (0 x 0 3 f f & x . encod i ng ) ; // t r a i l i n g s i g n i f i c a n d

i f ( e == 0)
{

i f ( t == 0) // z e r o s
{

// x = (−1)ˆ s ∗ 0 [ a l l ow s f o r +0 and −0]
}
e l s e // subnormal numbers
{

// x = (−1)ˆ s ∗ 0 . t ∗ 2ˆ{−14}
}

}
e l s e i f ( e < 31) // normal numbers
{

// x = (−1)ˆ s ∗ 1 . t ∗ 2ˆ{e−15}
}
e l s e // s p e c i a l numbers
{

i f ( t == 0)
{

// x = (−1)ˆ s ∗ i n f i n i t y
}
e l s e
{

// Not−a−Number (NaN)
i f ( t & 0x0200 )
{

// x = q u i e t NaN
}
e l s e
{

// x = s i g n a l i n g NaN
}
// pay l oad = t & 0 x 0 1 f f

}
}

LISTING 2.7: Decoding a 16-bit floating-point number.
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TABLE 2.3: Quantities of interest for binary16
name value name value

F16 NUM ENCODING BITS 16 F16 MAX TRAILING 0x03ff
F16 NUM EXPONENT BITS 5 F16 SUP TRAILING 0x0400
F16 NUM SIGNIFICAND BITS 11 F16 POS ZERO 0x0000
F16 NUM TRAILING BITS 10 F16 NEG ZERO 0x8000
F16 EXPONENT BIAS 15 F16 MIN SUBNORMAL 0x0001
F16 MAX BIASED EXPONENT 31 F16 MAX SUBNORMAL 0x03ff
F16 SIGN MASK 0x8000 F16 MIN NORMAL 0x0400
F16 NOT SIGN MASK 0x7fff F16 MAX NORMAL 0x7bff
F16 BIASED EXPONENT MASK 0x7c00 F16 INFINITY 0x7c00
F16 TRAILING MASK 0x03ff
F16 NAN QUIET MASK 0x0200
F16 NAN PAYLOAD MASK 0x01ff

The maximum (unbiased) exponent is emax = 15. The minimum (unbiased)
exponent is emin = 1 − emax = −14. The relationship between the minimum
and maximum exponents is required by the IEEE 754-2008 Standard. The
number of bits in the significand is p = 11, which includes the ten bits of
the trailing significand and the leading 1-valued bit for normal numbers. The
subnormal numbers have a leading 0-valued bit, so the number of significant
bits for subnormals is always smaller than p.

The encoding has signed zeros, +0 (hex encoding 0x0000) and −0 (hex
encoding 0x8000), and signed infinities, +∞ (hex encoding 0x7c00) and −∞
(hex encoding 0xfc00).

The smallest positive subnormal number occurs when e = 0 and t =
1, which is 2emin+1−p = 2−24. All finite floating-point numbers are integral
multiples of this number. The largest positive subnormal number occurs when
e = 0 and t has all 1-valued bits, which is 2emin(1 − 21−p) = 2−14(1 − 2−10).
The smallest positive normal number occurs when e = 1 and t = 0, which is
2emin = 2−14. The largest positive normal number occurs when e = 30 and t
has all 1-valued bits, which is 2emax(2− 21−p) = 215(2− 2−10).

The subnormals are in the interval (0, 2−14). Zero, the subnormals, and the
normals in [0, 2−13] are uniformly distributed. Just as for the 8-bit floating-
point numbers, for each unbiased exponent λ > 1, the numbers with that
exponent are uniformly distributed in the interval [2λ, 2λ+1] but at half the
frequency for the numbers in the interval [2λ−1, 2λ].

When implementing floating-point arithmetic in software, it is convenient
to define some quantities of interest as listed in Table 2.3. Similar quantities
will be defined for other binary encodings. The enumerate F16 INFINITY is
assigned to a number that corresponds to the encoding 216, but this is not
to be considered the value of +∞. Infinities are handled differently from fi-
nite floating-point numbers. The enumerate is for bit-pattern testing in the
software implementation.
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FIGURE 2.9: The layout of a 32-bit floating-point number.

2.5.1.3 32-Bit Floating-Point Numbers

The layout of a binary32 number is shown in Figure 2.9. The sign of the
number is stored in bit thirty-one. A 0-valued bit is used for a nonnegative
number and a 1-valued bit is used for a negative number. The exponent is
stored in bits twenty-three through thirty, but is represented using a bias. If
the biased exponent stored in the eight bits is e, then the actual exponent
is e − 127. The trailing significand is stored in bits zero through twenty-two.
A normal number has an additional 1-valued bit prepended to the trailing
significand to form the significand of the number; this bit is considered to
be hidden in the sense it is not explicitly stored in the 32-bit encoding. A
subnormal number has an additional 0-valued bit prepended to the trailing
significand. To be precise, the 32-bit quantity is interpreted as follows. Let s
be the 1-bit sign, let e be the 8-bit biased exponent, and let t be the 23-bit
trailing significand. Listing 2.8 shows how to decode the 32-bit pattern.

b i n a r y3 2 x = <some 32− b i t f l o a t i n g−po i n t number>;
u i n t 3 2 t s = (0 x80000000 & x . encod i ng ) >> 31 ; // s i g n
u i n t 3 2 t e = (0 x7f800000 & x . encod i ng ) >> 23 ; // b i a s ed exponent
u i n t 3 2 t t = (0 x 0 0 7 f f f f f & x . encod i ng ) ; // t r a i l i n g s i g n i f i c a n d

i f ( e == 0)
{

i f ( t == 0) // z e r o s
{

// x = (−1)ˆ s ∗ 0 [ a l l ow s f o r +0 and −0]
}
e l s e // subnormal numbers
{

// x = (−1)ˆ s ∗ 0 . t ∗ 2ˆ{−126}
}

}
e l s e i f ( e < 255) // normal numbers
{

// x = (−1)ˆ s ∗ 1 . t ∗ 2ˆ{e−127}
}
e l s e // s p e c i a l numbers
{

i f ( t == 0)
{

// x = (−1)ˆ s ∗ i n f i n i t y
}
e l s e

{
// Not−a−Number
i f ( t & 0x00400000 )
{

// x = q u i e t NaN
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}
e l s e

{
// x = s i g n a l i n g NaN

}
// pay l oad = t & 0 x 0 0 3 f f f f f

}
}

LISTING 2.8: Decoding a 32-bit floating-point number.

The maximum (unbiased) exponent is emax = 127. The minimum (unbi-
ased) exponent is emin = 1 − emax = −126. The relationship between the
minimum and maximum exponents is required by the IEEE 754-2008 Stan-
dard. The number of bits in the significand is p = 24, which includes the
twenty-three bits of the trailing significand and the leading 1-valued bit for
normal numbers. The subnormal numbers have a leading 0-valued bit, so the
number of significant bits for subnormals is always smaller than p.

The encoding has signed zeros, +0 (hex encoding 0x00000000) and −0 (hex
encoding 0x80000000), and signed infinities, +∞ (hex encoding 0x7f800000) and
−∞ (hex encoding 0xff800000).

The smallest positive subnormal number occurs when e = 0 and t = 1,
which is 2emin+1−p = 2−149. All finite floating-point numbers are integral
multiples of this number. The largest positive subnormal number occurs when
e = 0 and t has all 1-valued bits, which is 2emin(1− 21−p) = 2−126(1− 2−23).
The smallest positive normal number occurs when e = 1 and t = 0, which is
2emin = 2−126. The largest positive normal number occurs when e = 254 and
t has all 1-valued bits, which is 2emax(2− 21−p) = 2127(2− 2−23).

The subnormals are in the interval (0, 2−126). Zero, the subnormals, and
the normals in [0, 2−125] are uniformly distributed. Just as for the 8-bit
floating-point numbers, for each unbiased exponent λ > 1, the numbers with
that exponent are uniformly distributed in the interval [2λ, 2λ+1] but at half
the frequency for the numbers in the interval [2λ−1, 2λ].

When implementing floating-point arithmetic in software, it is convenient
to define some quantities of interest as listed in Table 2.4. Similar quantities
will be defined for other binary encodings. The enumerate F32 INFINITY is

TABLE 2.4: Quantities of interest for binary32
name value name value

F32 NUM ENCODING BITS 32 F32 MAX TRAILING 0x007fffff
F32 NUM EXPONENT BITS 8 F32 SUP TRAILING 0x00800000
F32 NUM SIGNIFICAND BITS 24 F32 POS ZERO 0x00000000
F32 NUM TRAILING BITS 23 F32 NEG ZERO 0x80000000
F32 EXPONENT BIAS 127 F32 MIN SUBNORMAL 0x00000001
F32 MAX BIASED EXPONENT 255 F32 MAX SUBNORMAL 0x007fffff
F32 SIGN MASK 0x80000000 F32 MIN NORMAL 0x00800000
F32 NOT SIGN MASK 0x7fffffff F32 MAX NORMAL 0x7f7fffff
F32 BIASED EXPONENT MASK 0x7f800000 F32 INFINITY 0x7f800000
F32 TRAILING MASK 0x007fffff
F32 NAN QUIET MASK 0x00400000
F32 NAN PAYLOAD MASK 0x003fffff
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FIGURE 2.10: The layout of a 64-bit floating-point number.

assigned to a number that corresponds to the encoding 2128, but this is not
to be considered the value of +∞. Infinities are handled differently from fi-
nite floating-point numbers. The enumerate is for bit-pattern testing in the
software implementation.

2.5.1.4 64-Bit Floating-Point Numbers

The layout of a binary64 number is shown in Figure 2.10. The sign of the
number is stored in bit sixty-three. A 0-valued bit is used for a nonnegative
number and a 1-valued bit is used for a negative number. The exponent is
stored in bits fifty-two through sixty-two, but is represented using a bias. If
the biased exponent stored in the eleven bits is e, then the actual exponent
is e − 1023. The trailing significand is stored in bits zero through fifty-one.
A normal number has an additional 1-valued bit prepended to the trailing
significand to form the significand of the number; this bit is considered to
be hidden in the sense it is not explicitly stored in the 32-bit encoding. A
subnormal number has an additional 0-valued bit prepended to the trailing
significand. To be precise, the 64-bit quantity is interpreted as follows. Let s
be the 1-bit sign, let e be the 11-bit biased exponent, and let t be the 52-bit
trailing significand. Listing 2.9 shows how to decode the 64-bit pattern.

b i n a r y6 4 x = <some 64− b i t f l o a t i n g−po i n t number>;
u i n t 6 4 t s = (0 x8000000000000000 & x . encod i ng ) >> 63 ; // s i g n
u i n t 6 4 t e = (0 x7f f0000000000000 & x . encod i ng ) >> 52 ; // b i a s ed exponent
u i n t 6 4 t t = (0 x 0 0 0 f f f f f f f f f f f f f & x . encod i ng ) ; // t r a i l i n g s i g n i f i c a n d

i f ( e == 0)
{

i f ( t == 0) // z e r o s
{

// x = (−1)ˆ s ∗ 0 [ a l l ow s f o r +0 and −0]
}
e l s e // subnormal numbers
{

// x = (−1)ˆ s ∗ 0 . t ∗ 2ˆ{−1022}
}

}
e l s e i f ( e < 2047) // normal numbers
{

// x = (−1)ˆ s ∗ 1 . t ∗ 2ˆ{e−1023}
}
e l s e // s p e c i a l numbers
{

i f ( t == 0)
{

// x = (−1)ˆ s ∗ i n f i n i t y



42 GPGPU Programming for Games and Science

}
e l s e

{
i f ( t & 0x0008000000000000 )
{

// x = q u i e t NaN
}
e l s e
{

// x = s i g n a l i n g NaN
}
// pay l oad = t & 0 x 0 0 0 7 f f f f f f f f f f f f

}
}

LISTING 2.9: Decoding a 64-bit floating-point number.

The maximum (unbiased) exponent is emax = 1023. The minimum (un-
biased) exponent is emin = 1 − emax = −1022. The relationship between the
minimum and maximum exponents is required by the IEEE 754-2008 Stan-
dard. The number of bits in the significand is p = 53, which includes the
fifty-two bits of the trailing significand and the leading 1-valued bit for nor-
mal numbers. The subnormal numbers have a leading 0-valued bit, so the
number of significant bits for subnormals is always smaller than p.

The encoding has signed zeros, +0 (hex encoding 0x0000000000000000) and
−0 (hex encoding 0x8000000000000000), and signed infinities, +∞ (hex encod-
ing 0x7ff0000000000000) and −∞ (hex encoding 0xfff0000000000000).

The smallest positive subnormal number occurs when e = 0 and t = 1,
which is 2emin+1−p = 2−1074. All finite floating-point numbers are integral
multiples of this number. The largest positive subnormal number occurs when
e = 0 and t has all 1-valued bits, which is 2emin(1− 21−p) = 2−1022(1− 2−52).
The smallest positive normal number occurs when e = 1 and t = 0, which
is 2emin = 2−1022. The largest positive normal number occurs when e = 2046
and t has all 1-valued bits, which is 2emax(2− 21−p) = 21023(2− 2−52).

The subnormals are in the interval (0, 2−1022). Zero, the subnormals, and
the normals in [0, 2−1021] are uniformly distributed. Just as for the 8-bit
floating-point numbers, for each unbiased exponent λ > 1, the numbers with
that exponent are uniformly distributed in the interval [2λ, 2λ+1] but at half
the frequency for the numbers in the interval [2λ−1, 2λ].

When implementing floating-point arithmetic in software, it is convenient
to define some quantities of interest as listed in Table 2.5. Similar quantities
will be defined for other binary encodings. The enumerate F64 INFINITY is
assigned to a number that corresponds to the encoding 21024, but this is
not to be considered the value of +∞. Infinities are handled differently from
finite floating-point numbers. The enumerate is for bit-pattern testing in the
software implementation.

2.5.1.5 n-Bit Floating-Point Numbers

The IEEE 754-2008 Standard specifies the requirements for binary encod-
ings of n-bit numbers for n ≥ 128 a multiple of thirty-two bits. The sign bit
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TABLE 2.5: Quantities of interest for binary64
name value
F64 NUM ENCODING BITS 64
F64 NUM EXPONENT BITS 11
F64 NUM SIGNIFICAND BITS 53
F64 NUM TRAILING BITS 52
F64 EXPONENT BIAS 1023
F64 MAX BIASED EXPONENT 2047
F64 SIGN MASK 0x8000000000000000
F64 NOT SIGN MASK 0x7fffffffffffffff
F64 BIASED EXPONENT MASK 0x7ff0000000000000
F64 TRAILING MASK 0x000fffffffffffff
F64 NAN QUIET MASK 0x0008000000000000
F64 NAN PAYLOAD MASK 0x0007ffffffffffff
F64 MAX TRAILING 0x000fffffffffffff
F64 SUP TRAILING 0x0010000000000000
F64 POS ZERO 0x0000000000000000
F64 NEG ZERO 0x8000000000000000
F64 MIN SUBNORMAL 0x0000000000000001
F64 MAX SUBNORMAL 0x000fffffffffffff
F64 MIN NORMAL 0x0010000000000000
F64 MAX NORMAL 0x7fefffffffffffff
F64 INFINITY 0x7ff0000000000000

is the high-order bit, followed by w = round(4 log2(k)) − 13 exponent bits,
where the rounding function is to the nearest integer. The exponent bits are
followed by t = n − w − 1 trailing significand bits. The precision (in bits) is
p = t+1. The maximum (unbiased) exponent is emax = 2n−p−1 − 1, the min-
imum (unbiased) exponent is emin = 1− emax, the exponent bias is β = emax,
and if e is a biased exponent, the unbiased exponent is e− β. The number of
exponent bits for binary128 is fifteen and the number of trailing significand bits
is 112. The number of exponent bits for binary256 is nineteen and the number
of trailing significand bits is 236.

The smallest positive subnormal number occurs when e = 0 and t = 1,
which is 2emin+1−p. All finite floating-point numbers are integral multiples of
this number. The largest positive subnormal number occurs when e = 0 and
t has all 1-valued bits, which is 2emin(1− 21−p). The smallest positive normal
number occurs when e = 1 and t = 0, which is 2emin . The largest positive
normal number occurs when e = emax and t has all 1-valued bits, which is
2emax(2− 21−p).

The subnormals are in the interval (0, 2−emin). Zero, the subnormals, and
the normals in [0, 21−emin] are uniformly distributed. Just as for the 8-bit
floating-point numbers, for each unbiased exponent λ > 1, the numbers with
that exponent are uniformly distributed in the interval [2λ, 2λ+1] but at half
the frequency for the numbers in the interval [2λ−1, 2λ].

When implementing floating-point arithmetic in software, it is convenient
to define some quantities of interest, as shown in Listing 2.10. The data types
Integer (signed integer) and UInteger (unsigned integer) are assumed to use n
bits.



44 GPGPU Programming for Games and Science

I n t e g e r NUM ENCODING BITS = <number o f b i t s i n the encod ing >;
I n t e g e r NUM EXPONENT BITS = Round(4∗ l o g2 (NUM ENCODING BITS) − 13 ) ;
I n t e g e r NUM SIGNIFICAND BITS = NUM ENCODING BITS − NUM EXPONENT BITS ;
I n t e g e r NUM TRAILING BITS = NUM SIGNIFICAND BITS − 1 ;
I n t e g e r EXPONENT BIAS = (1 << (NUM EXPONENT BITS − 1) ) − 1 ;
I n t e g e r MAX BIASED EXPONENT = 2∗EXPONENT BIAS ;
UIn tege r SIGN MASK = (1 << (NUM ENCODING BITS − 1 ) ) ;
U In tege r NOT SIGN MASK = ˜SIGN MASK ;
UIn tege r SUP TRAILING = (1 << NUM TRAILING BITS ) ;
U In tege r BIASED EXPONENT MASK = SIGN MASK − SUP TRAILING ;
UIn tege r TRAILING MASK = SUP TRAILING − 1 ;
U In tege r MAX TRAILING = TRAILING MASK ;
UIn tege r NAN QUIET MASK = (1 << (NUM TRAILING BITS − 1 ) ) ;
U In tege r NAN PAYLOAD MASK = NAN QUIET MASK − 1 ;
U In tege r POS ZERO = 0 ;
UIn tege r NEG ZERO = SIGN MASK ;
UIn tege r MIN SUBNORMAL = 1 ;
UIn tege r MAX SUBNORMAL = TRAILING MASK ;
UIn tege r MIN NORMAL = SUP TRAILING ;
UIn tege r MAX NORMAL = BIASED EXPONENT MASK − 1 + MAX TRAILING ;
UIn tege r INFINITY = BIASED EXPONENT MASK ;

LISTING 2.10: Integer and unsigned integer quantities that are useful for
encoding and decoding floating-point numbers.

The enumerate INFINITY is assigned to a number that corresponds to the
encoding 2w−1, but this is not to be considered the value of +∞. Infinities
are handled differently from finite floating-point numbers. The enumerate is
for bit-pattern testing in the software implementation.

The general decoding of floating-point numbers is shown in Listing 2.11
and is similar to the pseudocode provided for 8-bit, 16-bit, 32-bit, and 64-bit
floating-point numbers.

b inaryN x = <some n−b i t f l o a t i n g−po i n t number>;
U In tege r s = (SIGN MASK & x . encod i ng ) >> (NUM ENCODING BITS − 1 ) ;
U In tege r e = (BIASED EXPONENT MASK & x . encod i ng ) >> NUM TRAILING BITS ;
UIn tege r t = (TRAILING MASK & x . encod i ng ) ;

i f ( e == 0)
{

i f ( t == 0) // z e r o s
{

// x = (−1)ˆ s ∗ 0 [ a l l ow s f o r +0 and −0]
}
e l s e // subnormal numbers
{

// x = (−1)ˆ s ∗ 0 . t ∗ 2ˆ{1 − EXPONENT BIAS}
}

}
e l s e i f ( e < MAX BIASED EXPONENT) // normal numbers
{

// x = (−1)ˆ s ∗ 1 . t ∗ 2ˆ{e − EXPONENT BIAS}
}
e l s e // s p e c i a l numbers
{

i f ( t == 0)
{

// x = (−1)ˆ s ∗ i n f i n i t y
}
e l s e

{
i f ( t & NAN QUIET MASK)
{
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// x = q u i e t NaN
}
e l s e
{

// x = s i g n a l i n g NaN
}
// pay l oad = t & NAN PAYLOAD MASK

}
}

LISTING 2.11: The general decoding of floating-point numbers.

The pseudocode that extracts the sign, biased exponent, and trailing sig-
nificand may be encapsulated, as shown in Listing 2.12. The combination of
parts into a number may also be encapsulated. There is no reason to shift the
sign bit into the lowest-order bit.

vo id GetEncod ing ( b inaryN x , U In tege r& s i gn , U In tege r& b i a s ed ,
U In tege r& t r a i l i n g )

{
s i g n = ( x . encod i ng & SIGN MASK ) ;
b i a s ed = ( x . encod i ng & BIASED EXPONENT MASK) >> NUM TRAILING BITS ;
t r a i l i n g = ( x . encod i ng & TRAILING MASK ) ;

}

b inaryN SetEncod ing ( UIn tege r s i gn , U In tege r b i a s ed , U In tege r t r a i l i n g )
{

b inaryN x ;
x . encod i ng = s i g n | ( b i a s ed << NUM TRAILING BITS) | t r a i l i n g ;
r e tu r n x ;

}

LISTING 2.12: Convenient wrappers for processing encodings of floating-
point numbers.

2.5.1.6 Classifications of Floating-Point Numbers

This section contains information about classifying floating-point numbers
based on various properties.

Queries for Type of Floating-Point Number. The IEEE 754-2008 Standard
requires queries to determine the type of a specified floating-point number.
Firstly, an enumeration is required for the various types. Listing 2.13 shows
pseudocode that satisfies the requirement.

enum C l a s s i f i c a t i o n
{

CLASS NEG INFINITY ,
CLASS NEG SUBNORMAL,
CLASS NEG NORMAL,
CLASS NEG ZERO ,
CLASS POS ZERO ,
CLASS POS SUBNORMAL ,
CLASS POS NORMAL ,
CLASS POS INFINITY ,
CLASS QUIET NAN ,
CLASS SIGNALING NAN

} ;

C l a s s i f i c a t i o n G e t C l a s s i f i c a t i o n ( b inaryN x )
{

UIn tege r s i gn , b i a s ed , t r a i l i n g ;
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GetEncod ing ( x , s i gn , b i a s ed , t r a i l i n g ) ;

i f ( b i a s ed == 0)
{

i f ( t r a i l i n g == 0)
{

r e tu r n ( s i g n != 0 ? CLASS NEG ZERO : CLASS POS ZERO ) ;
}
e l s e

{
r e tu r n ( s i g n != 0 ? CLASS NEG SUBNORMAL : CLASS POS SUBNORMAL ) ;

}
}
e l s e i f ( b i a s ed < MAX BIASED EXPONENT)
{

r e tu r n ( s i g n != 0 ? CLASS NEG NORMAL : CLASS POS NORMAL ) ;
}
e l s e i f ( t r a i l i n g == 0)
{

r e tu r n ( s i g n != 0 ? CLASS NEG INFINITY : CLASS POS INFINITY ) ;
}
e l s e i f ( t r a i l i n g & NAN QUIET MASK)
{

r e tu r n CLASS QUIET NAN ;
}
e l s e
{

r e tu r n CLASS SIGNALING NAN ;
}

}

LISTING 2.13: Classification of floating-point numbers.

Secondly, queries are required for whether the number is finite or infinite,
is normal or subnormal, is zero, is a NaN or a signaling NaN, or whether
the sign bit is set to one. The queries are trivial to implement using the
binary encodings, as shown in Listing 2.14. The enumerates were defined in
the sections on binary encodings.

// Query whether x i s a z e ro .
bool I s Z e r o ( b inaryN x )
{

r e tu r n x . encod i ng == POS ZERO | | x . encod i ng == NEG ZERO ;
}

// Query whether the s i g n b i t o f x i s s e t to 1 .
bool I s S i gnMinus ( b inaryN x )
{

r e tu r n ( x . encod i ng & SIGN MASK) != POS ZERO ;
}

// Query whether x i s a subnormal number .
bool I s Subno rma l ( b inaryN x )
{

UIn tege r b = ( x . encod i ng & BIASED EXPONENT MASK) >> NUM TRAILING BITS ;
UIn tege r t = ( x . encod i ng & TRAILING MASK ) ;
r e tu r n b == POS ZERO && t > POS ZERO ;

}

// Query whether x i s a normal number .
bool I sNorma l ( b inaryN x )
{

UIn tege r b = ( x . encod i ng & BIASED EXPONENT MASK) >> NUM TRAILING BITS ;
r e tu r n POS ZERO < b && b < MAX BIASED EXPONENT;

}
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// Query whether x i s a f i n i t e number .
bool I s F i n i t e ( b inaryN x )
{

UIn tege r b = ( x . encod i ng & BIASED EXPONENT MASK) >> NUM TRAILING BITS ;
r e tu r n b < MAX BIASED EXPONENT;

}

// Query whether x i s an i n f i n i t e number .
bool I s I n f i n i t e ( b inaryN x )
{

UIn tege r b = ( x . encod i ng & BIASED EXPONENT MASK) >> NUM TRAILING BITS ;
UIn tege r t = ( x . encod i ng & TRAILING MASK ) ;
r e tu r n b == MAX BIASED EXPONENT && t == POS ZERO ;

}

// Query whether x i s Not−a−Number ( q u i e t or s i g n a l i n g ) .
bool IsNaN ( b inaryN x )
{

UIn tege r b = ( x . encod i ng & BIASED EXPONENT MASK) >> NUM TRAILING BITS ;
UIn tege r t = ( x . encod i ng & TRAILING MASK ) ;
r e tu r n b == MAX BIASED EXPONENT && t != POS ZERO ;

}

// Query whether x i s a s i g n a l i n g Not−a−Number .
bool I s S i gna l i ngNaN ( b inaryN x )
{

UIn tege r b = ( x . encod i ng & BIASED EXPONENT MASK) >> NUM TRAILING BITS ;
UIn tege r t = ( x . encod i ng & TRAILING MASK ) ;
r e tu r n b == MAX BIASED EXPONENT

&& ( t & NAN QUIET MASK) == POS ZERO
&& ( t & NAN PAYLOAD MASK) != POS ZERO ;

}

LISTING 2.14: Queries about floating-point numbers.

Determining Adjacent Floating-Point Numbers. When computing numer-
ically, the classic mind-set is one of coding mathematical equations and im-
plementing algorithms that are formulated at a high level, ignoring or paying
little attention to the fact that the underlying numerical system uses floating-
point numbers. There is a good chance that you rarely (if ever) write code that
requires computing the floating-point numbers that are immediately adjacent
to a specified floating-point number.

I had provided an example in the introduction chapter regarding the com-
putation of the roots of a quadratic polynomial. In that example, I mentioned
that the computed root appeared to be wrong, but by analyzing the poly-
nomial values at the floating-point numbers adjacent to the computed root,
the result was the best we could do. This example shows that validating the
results of your calculations might very well require working directly with the
floating-point number system rather than relying on yet another high-level
mathematical framework that ignores floating-point issues.

The IEEE 754-2008 Standard recognizes that an implementation provide
queries to obtain the floating-point values immediately adjacent to a specified
floating-point number. The smaller adjacent neighbor is referred to as the
next-down number and the larger adjacent neighbor is referred to as the next-
up number.
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Let nextUp(x) be the function that computes the next-up value for x. For
finite and nonzero x, the next-up value is the obvious choice—the smallest
floating-point number that is larger than x. The edge cases are as follows. Let
fmin be the smallest positive subnormal number and let fmax be the largest
positive normal number; then

nextUp(−∞) = −fmax, nextUp(−fmin) = −0,
nextUp(−0) = fmin, nextUp(+0) = fmin,
nextUp(fmax) = +∞, nextUp(+∞) = +∞

(2.37)

If x is a quiet NaN, then nextUp(x) returns x and does not signal an exception.
If x is a signaling NaN, then nextUp(x) also returns x but signals an invalid
operation exception. An implementation is provided by Listing 2.15, where a
return of a UInteger implies an implicit conversion to a binaryN.

b inaryN GetNextUp ( b inaryN x )
{

UIn tege r s i gn , b i a s ed , t r a i l i n g ;
GetEncod ing ( x , s i gn , b i a s ed , t r a i l i n g ) ;

i f ( b i a s ed == 0)
{

i f ( t r a i l i n g == 0)
{

// The next−up f o r both −0 and +0 i s MIN SUBNORMAL.
r e tu r n MIN SUBNORMAL;

}
e l s e

{
i f ( s i g n != 0)
{

// When t r a i l i n g i s 1 , x i s −MIN SUBNORMAL and next−up
// i s −0.
−− t r a i l i n g ;
r e tu r n SIGN MASK | t r a i l i n g ;

}
e l s e

{
// When t r a i l i n g i s MAX TRAILING , x i s MAX SUBNORMAL and
// next−up i s MIN NORMAL.
++t r a i l i n g ;
r e tu r n t r a i l i n g ;

}
}

}
e l s e i f ( b i a s ed < MAX BIASED EXPONENT)
{

UIn tege r nonnega t i ve = ( x . encod ing & NOT SIGN MASK ) ;
i f ( s i g n != 0)
{

−−nonnega t i ve ;
r e tu r n SIGN MASK | nonnega t i ve ;

}
e l s e

{
++nonnega t i ve ;
r e tu r n nonnega t i ve ;

}
}
e l s e i f ( t r a i l i n g == 0)
{
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i f ( s i g n != 0)
{

// The next−up o f −INFINITY i s −MAX NORMAL.
r e tu r n SIGN MASK | MAX NORMAL;

}
e l s e

{
// The next−up o f +INFINITY i s +INFINITY .
r e tu r n INFINITY ;

}
}
e l s e i f ( t r a i l i n g & NAN QUIET MASK)
{

// x i s a q u i e t NaN; r e t u r n i t ( p r e s e r v i n g i t s pay l oad ) .
r e tu r n x ;

}
e l s e
{

// x i s a s i g n a l i n g NaN; s i g n a l an i n v a l i d o p e r a t i o n and r e t u r n
// i t ( p r e s e r v i n g i t s pay l oad ) .
S i g n a l E x c ep t i o n ( INVALID OPERATION ) ;
r e tu r n x ;

}
}

LISTING 2.15: An implementation of the nextUp(x) function.

The nextDown(x) function is similar. For finite and nonzero x, the next-
down value is the obvious choice—the largest floating-point number that is
smaller than x. The edge cases are

nextDown(−∞) = −∞, nextDown(−fmax) = −∞,
nextDown(−0) = −fmin, nextDown(+0) = −fmin,
nextDown(fmin) = +0, nextDown(+∞) = fmax

(2.38)

If x is a quiet NaN, then nextDown(x) returns x and does not signal an
exception. If x is a signaling NaN, then nextDown(x) also returns x but signals
an invalid operation exception. An implementation is provided by Listing 2.16,
where a return of a UInteger implies an implicit conversion to a binaryN.

b inaryN GetNextDown ( b inaryN x )
{

UIn tege r s i gn , b i a s ed , t r a i l i n g ;
GetEncod ing ( x , s i gn , b i a s ed , t r a i l i n g ) ;

i f ( b i a s ed == 0)
{

i f ( t r a i l i n g == 0)
{

// The next−down f o r both −0 and +0 i s −MIN SUBNORMAL.
r e tu r n SIGN MASK | MIN SUBNORMAL;

}
e l s e

{
i f ( s i g n == 0)
{

// When t r a i l i n g i s 1 , x i s MIN SUBNORMAL and next−down
// i s +0.
−− t r a i l i n g ;
r e tu r n t r a i l i n g ;

}
e l s e
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{
// When t r a i l i n g i s MAX TRAILING , x i s −MAX SUBNORMAL and
// next−down i s −MIN NORMAL.
++t r a i l i n g ;
r e tu r n SIGN MASK | t r a i l i n g ;

}
}

}
e l s e i f ( b i a s ed < MAX BIASED EXPONENT)
{

UIn tege r nonnega t i ve = ( x . encod ing & NOT SIGN MASK ) ;
i f ( s i g n == 0)
{

−−nonnega t i ve ;
r e tu r n nonnega t i ve ;

}
e l s e
{

++nonnega t i ve ;
r e tu r n SIGN MASK | nonnega t i ve ;

}
}
e l s e i f ( t r a i l i n g == 0)
{

i f ( s i g n == 0)
{

// The next−down o f +INFINITY i s +MAX NORMAL.
r e tu r n MAX NORMAL;

}
e l s e

{
// The next−down o f −INFINITY i s −INFINITY .
r e tu r n SIGN MASK | INFINITY ;

}
}
e l s e i f ( t r a i l i n g & NAN QUIET MASK)
{

// x i s a q u i e t NaN; r e t u r n i t ( p r e s e r v i n g i t s pay l oad ) .
r e tu r n x ;

}
e l s e
{

// x i s a s i g n a l i n g NaN; s i g n a l an i n v a l i d o p e r a t i o n and r e t u r n
// i t ( p r e s e r v i n g i t s pay l oad ) .
S i g n a l E x c ep t i o n ( INVALID OPERATION ) ;
r e tu r n x ;

}
}

LISTING 2.16: An implementation of the nextDown(x) function.

2.5.2 Rounding and Conversions

One of the important aspects of floating-point arithmetic is rounding. Most
likely you think about rounding when using arithmetic operations such as ad-
dition, subtraction, multiplication, and division. Rounding is also of concern
when computing mathematical functions. An IEEE 754-2008 Standard re-
quirement that is pervasive throughout floating-point systems is the concept
of producing a correctly rounded result. For example, addition of two n-bit
floating-point numbers should produce an n-bit floating-point number that
is closest to the infinitely precise sum. The square root function of an n-bit
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FIGURE 2.11: An illustration of rounding with ties-to-even.

floating-point number should produce an n-bit floating-point number that is
closest to the infinitely precise square root.

The concept of closest is controllable by programmers in that they may
specify a rounding mode. The IEEE 754-2008 Standard specifies five different
rounding modes: rounding with ties-to-even (default), rounding with ties-to-
away, rounding toward zero, rounding toward positive, and rounding toward
negative. These are defined next with application to a number of the form
σd.r, where σ is +1 or −1 (the sign of the number), where d is a nonnegative
integer (the integer part of the number), and where r is a nonnegative integer
(the fractional part of the number). Although the discussion and figures refer
to integers, they are a simplification of the actual situation. The rounding
occurs based on the bits that theoretically occur after the trailing significand,
so in fact you can think of the discussion and figures applying to floating-point
numbers with the appropriate shifting of bits (based on some power of two).

After the discussion on rounding, we will consider conversion between num-
bers in various formats, which will involve rounding. In particular, we will look
at converting between n-bit and m-bit floating-point formats using rounding
with ties-to-even. If n < m, then the m-bit format is said to be wider than
the n-bit format. Equivalently, the n-bit format is said to be narrower than
the m-bit format.

2.5.2.1 Rounding with Ties-to-Even

This rounding mode is the default and what you are normally taught early
in life when rounding numbers. If the fractional part is smaller than half, you
round down, and if the fractional part is larger than half, you round up.
When the fractional part is exactly half, to avoid bias you round down or
up according to whether the integer part is even or odd, respectively. The
mathematical summary is

rounde(σd.r) =

{

σd, 0.r < 1/2 or (0.r = 1/2 and d is even)

σ(d+ 1), 0.r > 1/2 or (0.r = 1/2 and d is odd)
(2.39)

Figure 2.11 illustrates this on the number line for several intervals. The
use of parentheses and brackets in the figure is consistent with their use in
interval notation: a parenthesis excludes the point and a bracket includes
the point. Examples are rounde(1.1) = 1, rounde(1.9) = 2, rounde(1.5) =
2, rounde(2.5) = 2, rounde(−1.1) = −1, rounde(−1.5) = −2, and
rounde(−2.5) = −2.
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FIGURE 2.12: An illustration of rounding with ties-to-away.

FIGURE 2.13: An illustration of rounding toward zero.

2.5.2.2 Rounding with Ties-to-Away

The rounding mode is similar to ties-to-even in that fractions not equal to
half are rounded down or up accordingly. When the fraction is half, the round-
ing is away from zero, meaning that the rounding is to the largest magnitude
integer neighbor. The mathematical summary is

rounda(σd.r) =

{

σd, 0.r < 1/2
σ(d+ 1), 0.r ≥ 1/2

(2.40)

Figure 2.12 illustrates this on the number line for several intervals. Examples
are rounda(1.1) = 1, rounda(1.9) = 2, rounda(1.5) = 2, rounda(2.5) = 3,
rounda(−1.1) = −1, rounda(−1.5) = −2, and rounda(−2.5) = −3.

2.5.2.3 Rounding toward Zero

The number is rounded toward zero; that is, it is rounded to the inte-
ger neighbor that is smallest in magnitude. You should recognize this as the
familiar truncation mode. The mathematical summary is

roundz(σd.r) = σd (2.41)

Figure 2.13 illustrates this on the number line for several intervals. Some exam-
ples are roundz(1) = 1, roundz(1.1) = 1, roundz(−1.1) = −1, roundz(−2) =
−2, roundz(0.1) = +0, and roundz(−0.1) = −0. The last two examples em-
phasize that in floating-point arithmetic, the rounding can produce a signed
zero.

2.5.2.4 Rounding toward Positive

When a number is not exactly an integer, the rounding is in the direction
of the positive axis. If i is an integer and x ∈ (i, i + 1), the rounded value
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FIGURE 2.14: An illustration of rounding toward positive.

FIGURE 2.15: An illustration of rounding toward negative.

is roundp(x) = i + 1. The equation is more complicated when the number is
formulated as x = σi.f , but this is necessary to understand the implemen-
tation for floating-point numbers. In this mode, the rounded value is d in all
cases but one: the number is positive, the fractional part is positive, and the
rounded value is d+ 1. The mathematical summary is

roundp(σi.f) =

{

σd, r = 0 or (r > 0 and σ < 0)
σd+ 1, r > 0 and σ > 0

(2.42)

Figure 2.14 illustrates this on the number line for several intervals. Some exam-
ples are roundp(1) = 1, roundp(1.1) = 2, roundp(−1.1) = −1, roundp(−2) =
−2, and roundp(−0.7) = −0. The last example emphasizes that in floating-
point arithmetic, the rounding can produce negative zero.

2.5.2.5 Rounding toward Negative

Rounding in the negative direction is similar to that of rounding in the
positive direction. If i is an integer and x ∈ (i, i + 1), the rounded value is
roundn(x) = i. In terms of x = σi.f for floating-point rounding, the rounded
value is d in all cases but one: the number is negative, the fractional part is
positive, and the rounded value is d− 1. The mathematical summary is

roundn(σd.r) =

{

σd, r = 0 or (r > 0 and σ > 0)
σd− 1, r > 0 and σ < 0

(2.43)

Figure 2.15 illustrates this on the number line for several intervals. Some exam-
ples are roundn(1) = 1, roundn(1.1) = 1, roundn(−1.1) = −2, roundn(−2) =
−2, and roundn(0.7) = +0. The last example emphasizes that in floating-point
arithmetic, the rounding can produce positive zero.
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2.5.2.6 Rounding from Floating-Point to Integral Floating-Point

The five rounding modes are illustrated in this section for rounding a
floating-point number to a representable integer, itself a floating-point num-
ber. In all cases, round(+0) = +0, round(−0) = −0, round(+∞) = +∞, and
round(−∞) = −∞; that is, the sign bits are preserved for the signed zeros
and signed infinities. The function names in this section all start with prefix
RoundToIntegral and have a suffix that corresponds to the rounding mode.

According to the IEEE 754-2008 Standard, quiet NaNs are mapped to
themselves. The invalid operation is signaled when the input is a signaling
NaN, and the output is the quieted value for that NaN. No signals are gener-
ated for inexact results. The maximum finite floating-point values are already
integers, so it is not possible for a rounded result to be infinite (no overflow
exception). The IEEE 754-2008 Standard also specifies that an implementa-
tion must provide a function RoundToIntegralExact that rounds according to
the currently active rounding mode. However, this function does signal the
inexact exception. In the pseudocode, I have comments indicating where the
signaling occurs, each signal raised via a RaiseFlags function.

Rounding with Ties-To-Even. Consider nonnegative values for x. Similar
arguments are made when x is negative. If 0 ≤ x < 1/2, then rounde(x) = +0.
The remaining numbers are finite floating-point numbers for which x ≥ 1/2.
These numbers are necessarily normal, so x = 1.t ∗ 2e, where t is the trailing
significand and e ≥ −1 is the unbiased power.

If e = −1 and t = 0, then x = 1/2 and rounde(x) = +0. We round down
because x is midway between zero and one, and zero is the closest even integer.
If e = −1 and t > 0, then x ∈ (1/2, 1) and the closest integer is rounde(x) = 1.

When e = 0, the number is x = 1.t ∈ [1, 2). If 0.t < 1/2, then x is rounded
down to one. If 0.t ≥ 1/2, then x is rounded up to two. When 0.t = 1/2, the
rounding rule says to round to the even integer, which is why 1.5 is rounded
to two.

Let 0 < e < n, where n is the number of bits in the trailing significand.
The number x is

x = 1tn−1 · · · tn−e.tn−e−1 · · · t0 = d.r (2.44)

where the last equality defines positive integer d and nonnegative integer r.
The number of bits of x is n + 1, the number of bits of d is e + 1, and the
number of bits of r is n − e. If 0.r < 1/2, then x is rounded down to d. If
0.r > 1/2, then x is rounded up to d+1. If 0.r = 1/2, then x is rounded down
to d when d is even or x is rounded up to d + 1 when d + 1 is even. In the
source code, it turns out that we may combine the last two cases and process
all e for which 0 ≤ e < n.

If e ≥ n, then
x = 1.t ∗ 2n ∗ 2e−n = d ∗ 2e−n (2.45)

where d is a positive integer. As a binary number, the leading bits of d are
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a 1-bit followed by the trailing significand bits and then followed by zero or
more 0-bits. Therefore, x is an integer and rounde(x) = x.

Pseudocode for the rounding is presented next. The generic types Integer

and UInteger represent signed and unsigned integers, respectively, with the
same number of bits as the binary encoding for the floating-point number.

Listing 2.17 is an implementation of the default rounding mode: rounding
with ties-to-even.

b inaryN RoundToIntegra lT iesToEven ( b inaryN x )
{

UIn tege r s i gn , b i a s ed , t r a i l i n g ;
GetEncod ing ( x , s i gn , b i a s ed , t r a i l i n g ) ;
I n t e g e r exponent = b i a s ed − b inaryN : : EXPONENT BIAS ;

i f ( exponent < −1)
{

// | x | < 1/2 , round to +0 or −0.
// Enab le f o r RoundTo In teg ra lExact :
// i f ( ! I s Z e r o ( x ) ) { Ra i s eF l a g s ( SIGNAL INEXACT ) ; }
r e tu r n s i g n ;

}

i f ( exponent == −1)
{

// | x | i n [ 1 / 2 , 1 )
// Enab le f o r RoundTo In teg ra lExact :
// Ra i s eF l a g s (SIGNAL INEXACT ) ;
i f ( t r a i l i n g == 0)
{

// | x | = 1/2 , round to +0 or −0.
r e tu r n s i g n ;

}
e l s e
{

// | x | i n (1/2 ,1 ) , round to +1 or −1.
r e tu r n s i g n | b inaryN : :ONE;

}
}

i f ( exponent < b inaryN : : NUM TRAILING BITS)
{

// Proces s the b i a s ed exponent and t r a i l i n g s im u l t a n e o u s l y .
UIn tege r nonnega t i ve = abs ( x ) ; // abs ( x ) s e t s s i g n b i t to z e ro

// Ex t r a c t d .
I n t e g e r d s h i f t = binaryN : : NUM TRAILING BITS − exponent ;
U In tege r d = ( nonnega t i ve >> d s h i f t ) ;

// Ex t r a c t r .
I n t e g e r r s h i f t = binaryN : : NUM ENCODING BITS − d s h i f t ;
U In tege r r = ( nonnega t i ve << r s h i f t ) ;
// Enab le f o r RoundTo In teg ra lExact :
// i f ( r > 0) { Ra i s eF l a g s (SIGNAL INEXACT ) ; }

// Round up to d+1 a cco r d i n g to the t i e s−to−even r u l e .
// SIGN MASK i s the e q u i v a l e n t o f ” h a l f ” f o r r i n i t s c u r r e n t
// format , so HALF PROXY = SIGN MASK .
i f ( r > b inaryN : : HALF PROXY // 0 . r > 1/2
| | ( r == binaryN : : HALF PROXY && ( d & 1 ) ) ) // 0 . r = 1/2 and d odd
{

// In the even t the t r a i l i n g s i g n i f i c a n d has a l l 1−b i t s , the
// a d d i t i o n o f 1 to d l e a d s to a ca r r y−o v e r f l ow ; tha t i s , the
// b i t a t i ndex b inaryN : : NUM TRAILING BITS becomes a 1 .
// There f o r e , the rounded r e s u l t must be no rma l i z ed ( s e t
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// t r a i l i n g s i g n i f i c a n d to zero , i n c r ement b i a s ed exponent ) .
// However , t h i s i s hand led a u t oma t i c a l l y by the s imp l e l o g i c
// shown her e .
++d ;

}
nonnega t i ve = (d << d s h i f t ) ;
r e tu r n s i g n | nonnega t i ve ;

}

i f ( ! I sS i gna l i ngNaN ( x ) )
{

// F i n i t e f l o a t i n g−po i n t numbers wi th
// exponent >= binaryN : : NUM TRAILING BITS
// a re t h ems e l v e s i n t e g e r s . I n f i n i t i e s and q u i e t NaNs a r e mapped
// to t h ems e l v e s .
r e tu r n x ;

}

// Quiet a s i g n a l i n g NaN on i n v a l i d o p e r a t i o n .
Ra i s eF l a g s (SIGNAL INVALID OPERATION ) ;
r e tu r n x | b inaryN : : NAN QUIET MASK ;

}

LISTING 2.17: An implementation of rounding with ties-to-even.

Rounding with Ties-to-Away. The rounding is nearly identical to that with
ties-to-even. The discussion of the previous section applies to this case with
two exceptions. Firstly, one-half is rounded to one instead of zero. Secondly,
when 0.r = 1/2, the floating-point value is rounded up. Listing 2.18 is an
implementation.

b inaryN RoundToIntegra lTiesToAway ( b inaryN x )
{

UIn tege r s i gn , b i a s ed , t r a i l i n g ;
GetEncod ing ( x , s i gn , b i a s ed , t r a i l i n g ) ;
I n t e g e r exponent = b i a s ed − b inaryN : : EXPONENT BIAS ;

i f ( exponent < −1)
{

// | x | < 1/2 , round to +0 or −0.
// Enab le f o r RoundTo In teg ra lExact :
// i f ( ! I s Z e r o ( x ) ) { Ra i s eF l a g s ( SIGNAL INEXACT ) ; }
r e tu r n s i g n ;

}

i f ( exponent == −1)
{

// | x | i n [ 1 / 2 , 1 ) , round to +1 or −1.
// Enab le f o r RoundTo In teg ra lExact :
// Ra i s eF l a g s (SIGNAL INEXACT ) ;
r e tu r n s i g n | b inaryN : :ONE;

}

i f ( exponent < b inaryN : : NUM TRAILING BITS)
{

// Proces s the b i a s ed exponent and t r a i l i n g s im u l t a n e o u s l y .
UIn tege r nonnega t i ve = abs ( x ) ; // abs ( x ) s e t s s i g n b i t to z e ro .

// Ex t r a c t d .
I n t e g e r d s h i f t = binaryN : : NUM TRAILING BITS − exponent ;
U In tege r d = ( nonnega t i ve >> d s h i f t ) ;

// Ex t r a c t r .
I n t e g e r r s h i f t = binaryN : : NUM ENCODING BITS − d s h i f t ;
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UIn tege r r = ( nonnega t i ve << r s h i f t ) ;
// Enab le f o r RoundTo In teg ra lExact :
// i f ( r > 0) { Ra i s eF l a g s (SIGNAL INEXACT ) ; }

// Round up to d+1 a cco r d i n g to the t i e s−to−away r u l e .
// SIGN MASK i s the e q u i v a l e n t o f ” h a l f ” f o r r i n i t s c u r r e n t
// format , so HALF PROXY = SIGN MASK .
i f ( r >= binaryN : : HALF PROXY) // 0 . r >= 1/2
{

++d ;
}
nonnega t i ve = (d << d s h i f t ) ;
r e tu r n s i g n | nonnega t i ve ;

}

i f ( ! I sS i gna l i ngNaN ( x ) )
{

// F i n i t e f l o a t i n g−po i n t numbers wi th
// exponent >= binaryN : : NUM TRAILING BITS
// a re t h ems e l v e s i n t e g e r s . I n f i n i t i e s and q u i e t NaNs a r e mapped
// to t h ems e l v e s .
r e tu r n x ;

}

// Quiet a s i g n a l i n g NaN on i n v a l i d o p e r a t i o n .
Ra i s eF l a g s (SIGNAL INVALID OPERATION ) ;
r e tu r n x | b inaryN : : NAN QUIET MASK ;

}

LISTING 2.18: An implementation of rounding with ties-to-away.

Rounding toward Zero. The pseudocode for this mode is slightly simpler
than that for rounding with ties-to-even or ties-to-away. Listing 2.19 is an
implementation.

b inaryN RoundToIntegra lTowardZero ( b inaryN x )
{

UIn tege r s i gn , b i a s ed , t r a i l i n g ;
GetEncod ing ( x , s i gn , b i a s ed , t r a i l i n g ) ;
I n t e g e r exponent = b i a s ed − b inaryN : : EXPONENT BIAS ;

i f ( exponent <= −1)
{

// | x | < 1 , round to +0 or −0.
// Enab le f o r RoundTo In teg ra lExact :
// i f ( ! I s Z e r o ( x ) ) { Ra i s eF l a g s ( SIGNAL INEXACT ) ; }
r e tu r n s i g n ;

}

i f ( exponent < b inaryN : : NUM TRAILING BITS)
{

// Proces s the b i a s ed exponent and t r a i l i n g s im u l t a n e o u s l y .
UIn tege r nonnega t i ve = abs ( x ) ; // abs ( x ) s e t s s i g n b i t to z e ro .

// Ex t r a c t d .
I n t e g e r d s h i f t = binaryN : : NUM TRAILING BITS − exponent ;
U In tege r d = ( nonnega t i ve >> d s h i f t ) ;

// Ex t r a c t r . S h i f t i n g d t r u n c a t e s the r ema inde r r , which i s
// e f f e c t i v e l y round ing toward zero , so t h e r e i s no need to
// e x t r a c t r o t h e r than f o r s i g n a l i n g .
I n t e g e r r s h i f t = binaryN : : NUM ENCODING BITS − d s h i f t ;
U In tege r r = ( nonnega t i ve << r s h i f t ) ;
// Enab le f o r RoundTo In teg ra lExact :
// i f ( r > 0) { Ra i s eF l a g s (SIGNAL INEXACT ) ; }
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nonnega t i ve = (d << d s h i f t ) ;
r e tu r n s i g n | nonnega t i ve ;

}

i f ( ! I sS i gna l i ngNaN ( x ) )
{

// F i n i t e f l o a t i n g−po i n t numbers wi th
// exponent >= binaryN : : NUM TRAILING BITS
// a re t h ems e l v e s i n t e g e r s . I n f i n i t i e s and q u i e t NaNs a r e mapped
// to t h ems e l v e s .
r e tu r n x ;

}

// Quiet a s i g n a l i n g NaN on i n v a l i d o p e r a t i o n .
Ra i s eF l a g s (SIGNAL INVALID OPERATION ) ;
r e tu r n x | b inaryN : : NAN QUIET MASK ;

}

LISTING 2.19: An implementation of rounding toward zero.

Rounding toward Positive. The pseudocode is once again similar to that of
previous rounding modes. Despite the seemingly complicated Equation (2.42),
the pseudocode is not that complicated. Listing 2.20 is an implementation.

b inaryN RoundTo In teg ra lTowa rdPos i t i ve ( b inaryN x )
{

UIn tege r s i gn , b i a s ed , t r a i l i n g ;
GetEncod ing ( x , s i gn , b i a s ed , t r a i l i n g ) ;
I n t e g e r exponent = b i a s ed − b inaryN : : EXPONENT BIAS ;

i f ( I s Z e r o ( x ) )
{

// | x | = 0 , round to +0 or −0.
r e tu r n x ;

}

i f ( exponent < 0)
{

// x i n (−1 ,1)
// Enab le f o r RoundTo In teg ra lExact :
// Ra i s eF l a g s (SIGNAL INEXACT ) ;
i f ( s i g n == 0)
{

// x i n (+0 ,1) , round to 1 .
r e tu r n b inaryN : :ONE;

}
e l s e

{
// x i n (−1,−0) , round to −0.
r e tu r n b inaryN : : SIGN MASK | b inaryN : : ZERO;

}
}

i f ( exponent < b inaryN : : NUM TRAILING BITS)
{

// Proces s the b i a s ed exponent and t r a i l i n g s im u l t a n e o u s l y .
UIn tege r nonnega t i ve = abs ( x ) ; // abs ( x ) s e t s s i g n b i t to z e ro .

// Ex t r a c t d .
I n t e g e r d s h i f t = binaryN : : NUM TRAILING BITS − exponent ;
U In tege r d = ( nonnega t i ve >> d s h i f t ) ;

// Ex t r a c t r .
I n t e g e r r s h i f t = binaryN : : NUM ENCODING BITS − d s h i f t ;
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u i n t 3 2 t r = ( nonnega t i ve << r s h i f t ) ;
// Enab le f o r RoundTo In teg ra lExact :
// i f ( r > 0) { Ra i s eF l a g s (SIGNAL INEXACT ) ; }

// Round toward p o s i t i v e . I f the ” e l s e ” c l a u s e were p r e s en t ,
// i t would s imp l y t r u n ca t e x , which means d may be used as i s ,
// so the c l a u s e i s not n e c e s s a r y .
i f ( r > 0 && s i g n == 0)
{

++d ;
}

nonnega t i ve = (d << d s h i f t ) ;
r e tu r n s i g n | nonnega t i ve ;

}

i f ( ! I sS i gna l i ngNaN ( x ) )
{

// F i n i t e f l o a t i n g−po i n t numbers wi th
// exponent >= binaryN : : NUM TRAILING BITS
// a re t h ems e l v e s i n t e g e r s . I n f i n i t i e s and q u i e t NaNs a r e mapped
// to t h ems e l v e s .
r e tu r n x ;

}

// Quiet a s i g n a l i n g NaN on i n v a l i d o p e r a t i o n .
Ra i s eF l a g s (SIGNAL INVALID OPERATION ) ;
r e tu r n x | b inaryN : : NAN QUIET MASK ;

}

LISTING 2.20: An implementation of rounding toward positive.

Rounding toward Negative. The pseudocode is similar to that for rounding
toward positive. In the only case where d changes, the result is σd − 1 =
−d− 1 = σ(d + 1), so the pseudocode correctly increments d. Listing 2.21 is
an implementation.

b inaryN RoundToIntegra lTowardNegat ive ( b inaryN x )
{

UIn tege r s i gn , b i a s ed , t r a i l i n g ;
GetEncod ing ( x , s i gn , b i a s ed , t r a i l i n g ) ;
I n t e g e r exponent = b i a s ed − b inaryN : : EXPONENT BIAS ;

i f ( I s Z e r o ( x ) )
{

// | x | = 0 , round to +0 or −0.
r e tu r n x ;

}

i f ( exponent < 0)
{

// x i n (−1 ,1)
// Enab le f o r RoundTo In teg ra lExact :
// Ra i s eF l a g s (SIGNAL INEXACT ) ;
i f ( s i g n != 0)
{

// x i n (−1,−0) , round to −1.
r e tu r n b inaryN : : SIGN MASK | b inaryN : :ONE;

}
e l s e

{
// x i n (+0 ,1) , round to +0.
r e tu r n b i n a r y3 2 : : ZERO;

}
}
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i f ( exponent < b inaryN : : NUM TRAILING BITS)
{

// Proces s the b i a s ed exponent and t r a i l i n g s im u l t a n e o u s l y .
UIn tege r nonnega t i ve = abs ( x ) ; // abs ( x ) s e t s s i g n b i t to z e ro .

// Ex t r a c t d .
I n t e g e r d s h i f t = binaryN : : NUM TRAILING BITS − exponent ;
U In tege r d = ( nonnega t i ve >> d s h i f t ) ;

// Ex t r a c t r .
I n t e g e r r s h i f t = binaryN : : NUM ENCODING BITS − d s h i f t ;
U In tege r r = ( nonnega t i ve << r s h i f t ) ;
// Enab le f o r RoundTo In teg ra lExact :
// i f ( r > 0) { Ra i s eF l a g s (SIGNAL INEXACT ) ; }

// Round toward n eg a t i v e . I f the ” e l s e ” c l a u s e were p r e s en t ,
// i t would s imp l y t r u n ca t e x , which means d may be used as i s ,
// so the c l a u s e i s not n e c e s s a r y .
i f ( r > 0 && s i g n != 0)
{

++d ;
}

nonnega t i ve = (d << d s h i f t ) ;
r e tu r n s i g n | nonnega t i ve ;

}

i f ( ! I sS i gna l i ngNaN ( x ) )
{

// F i n i t e f l o a t i n g−po i n t numbers wi th
// exponent >= binaryN : : NUM TRAILING BITS
// a re t h ems e l v e s i n t e g e r s . I n f i n i t i e s and q u i e t NaNs a r e mapped
// to t h ems e l v e s .
r e tu r n x ;

}

// Quiet a s i g n a l i n g NaN on i n v a l i d o p e r a t i o n .
Ra i s eF l a g s (SIGNAL INVALID OPERATION ) ;
r e tu r n x | b inaryN : : NAN QUIET MASK ;

}

LISTING 2.21: An implementation of rounding toward negative.

The modes for rounding toward positive and rounding toward negative are
useful for interval arithmetic.

2.5.2.7 Conversion from Integer to Floating-Point

Conversions from integers to floating-point numbers are common in appli-
cations. It is not always possible to represent an n-bit integer exactly as an
n-bit floating-point number. This is easily seen with binary8. The 8-bit nonneg-
ative integers represented by two’s complement2 are {−128, . . . , 127}. The set
of 8-bit integers exactly representable by binary8 are {−15, . . . , 15}. The other
8-bit integers are converted to the corresponding signed infinities, in which
case an invalid operation exception is generated.

The representable integers for binary8 are contiguous. The representable
integers for floating-point types with more than eight bits are not necessar-

2The two’s complement of an N-bit number is that number subtracted from 2N .
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ily contiguous, although there is always a subset that contains contiguous
integers. In fact, the analysis in the previous section showed that when the
exponent is at least equal to the number of bits of the trailing significand, all
such floating-point numbers are integers.

For example, consider the type binary16. The trailing significand has ten
bits. The integers i such that |i| ≤ 211 are representable as binary16 numbers.
For all exponents e ≥ 11, all binary16 numbers are integers. Specifically, let
0 ≤ e < 10. The representable integers with exponent e are 2e, . . . , 2e+1 − 1.
The union over all such e is a contiguous set. When e = 11, the representable
integers are 211 + 2k for 0 ≤ k < 1024. Notice that 211 (when k = 0) is
adjacent to the largest element of the contiguous representable integers (e <
11). However, the next largest representable integer is 211 + 2, which means
that 211+1 is not representable. Thus, gaps occur in the integers when trying
to represent integers. The gap becomes larger as e increases. Generally, for
e ≥ 11, the representable integers are 2e + 2e−10k for 0 ≤ k < 1024.

Be careful when interpreting statements such as: “The largest repre-
sentable integer in 32-bit floating-point is 224 = 16,777,216.” What program-
mers mean is that this is the largest of a contiguous set of integers that are
all exactly representable by 32-bit floating-point numbers. All 32-bit floating-
point numbers larger than 224 exactly represent integers, including FLT MAX;
some of them are representable as 32-bit integers and some of them are not.
For example, FLT MAX is the number 2127(2 − 2−23) = 2128 − 2104, which is
an integer; however, it cannot be stored as a 32-bit integer.

Exercise 2.2 The largest positive 16-bit signed integer is 215 − 1 = 32,767.
Show that the largest positive 16-bit signed integer representable by a binary16

number is 32,752.

Exercise 2.3 The largest positive 32-bit signed integer is 231 − 1 =
2,147,483,647. What is the largest positive 32-bit signed integer representable
by a binary32 number?

Exercise 2.4 Derive a formula for the largest positive signed 2n-bit integer
that is representable by a 2n-bit floating-point number.

The IEEE 754-2008 Standard specifies that an implementation must
have functions to convert from all supported signed and unsigned inte-
ger formats to all supported arithmetic formats. The generic signature is:
destinationFormat ConvertFromInt (sourceFormat), where the source format is a
signed or unsigned integer and the destination format is an arithmetic format.
The standard programming languages handle the cases when the arithmetic
format is integral, but the floating-point system must handle the cases when
the arithmetic format is a binaryN.

Let us derive the algorithm for converting a 32-bit signed integer to a
binary32 number. As mentioned previously, the conversion is not always ex-
act, so some rounding algorithm must be applied. The range of integers is
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−2147483648 = 0x80000000 to 2147483647 = 0x7fffffff. The pseudocode han-
dles 0 and −2147483648 separately. For other inputs, it suffices to analyze the
conversion for nonnegative integers and deal with the sign bit separately.

The integer i = 0 is mapped to +0, the positive zero of binary32 (an IEEE
requirement). The integer i = −2147483648 = −231 is mapped to the binary
encoding 0xcf000000; the sign bit is set and the biased exponent is 158 =
31 + 127.

Now consider i > 0. Let ℓ be the index of the leading bit of i, so 0 ≤ ℓ ≤ 30.
If ℓ < 23, then

i = 2ℓ + tℓ−12
ℓ−1 + · · ·+ t0

= 2ℓ
(

1 + tℓ−12
−1 + · · ·+ t02

−ℓ + 0 2−ℓ−1 + · · ·+ 0 2−23
)

= 1.t ∗ 2ℓ
(2.46)

where the leading ℓ bits of t are the ℓ trailing bits of i, and the remaining bits
of t are zero. The binary scientific notation for i is exactly representable as
a binary32. The biased exponent is ē = ℓ + 127 and the trailing significand is
t = tℓ−1 · · · t00 · · · 0. If ℓ = 23, then i = 1.t ∗ 223, where ē = 23 + 127 = 150
and t = t22 · · · t0.

If ℓ ≥ 24, then i is not always exactly representable by a binary32, as we
saw in a previous discussion. In this case,

i = 2ℓ + tℓ−12
ℓ−1 + · · ·+ tℓ−232

ℓ−23 + · · ·+ t0
= 2ℓ

(

1 + tℓ−12
−1 + · · ·+ tℓ−232

−23 + · · ·+ t02
−ℓ
)

= 2ℓ1.t
= 2ℓ−23

(

223 + tℓ−12
22 + · · ·+ tℓ−23 + · · ·+ t02

−ℓ+23
)

= 2ℓ−23d.r

(2.47)

The trailing significand t has ℓ ≥ 24 bits, which is too many to store in
a binary32. Thus, we must round the result to twenty-three bits. The IEEE
754-2008 Standard requires the rounding to be according to the currently
active rounding mode. To formulate this in terms of the material presented
previously, i has been written as a power of two times d.r, where d is a positive
integer and r is a nonnegative integer. Our rounding modes were stated as
functions roundc(σd.r), where c ∈ {e, a, z, p, n} is the current mode. If you
have such supporting functions, you may call them for the rounding or you
may simply hard-code the processing of t. Source code for the conversion that
rounds to nearest with ties-to-even is shown in Listing 2.22.

b i n a r y3 2 ConvertFromInt ( i n t 3 2 t i )
{

i f ( i == 0)
{

// Return +0.
r e tu r n 0u ;

}

i f ( i == INT MIN )
{

// Return −2ˆ{31} , s i gn−b i t 1 , b i a s ed exponent 158 = 31+127.
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r e tu r n 0 xcf000000 ;
}

u i n t 3 2 t s i g n ;
i f ( i >= 0)
{

s i g n = 0u ;
}
e l s e

{
i = − i ;
s i g n = b i n a r y3 2 : : SIGN MASK ;

}

i n t 3 2 t l e a d i n g = GetLead i ngB i t ( i ) ;
u i n t 3 2 t b i a s ed = ( u i n t 3 2 t ) ( ( l e a d i n g + b i n a r y3 2 : : EXPONENT BIAS)

<< b i n a r y3 2 : : NUM TRAILING BITS ) ;
u i n t 3 2 t nonnega t i ve = ( u i n t 3 2 t ) i ;
i f ( l e a d i n g <= b i n a r y3 2 : : NUM TRAILING BITS)
{

i n t 3 2 t s h i f t = b i n a r y3 2 : : NUM TRAILING BITS − l e a d i n g ;
nonnega t i ve = ( nonnega t i ve << s h i f t ) & b i n a r y3 2 : : TRAILING MASK ;

}
e l s e
{

// Ex t r a c t d .
i n t 3 2 t d s h i f t = l e a d i n g − b i n a r y3 2 : : NUM TRAILING BITS ;
u i n t 3 2 t d = ( nonnega t i ve >> d s h i f t ) & b i n a r y3 2 : : TRAILING MASK ;

// Ex t r a c t r .
i n t 3 2 t r s h i f t = b i n a r y3 2 : : NUM ENCODING BITS − d s h i f t ;
u i n t 3 2 t r = ( nonnega t i ve << r s h i f t ) ;
i f ( r > 0)
{

Ra i s eF l a g s (SIGNAL INEXACT ) ;
}

// Round to n ea r e s t wi th t i e s−to−even .
i f ( r > b i n a r y3 2 : : HALF PROXY // 0 . r > 1/2
| | ( r == b i n a r y3 2 : : HALF PROXY && (d & 1 ) ) ) // 0 . r = 1/2 and d odd
{

++d ;
}

nonnega t i ve = d ;
}

r e tu r n s i g n | ( b i a s ed + nonnega t i ve ) ;
}

LISTING 2.22: Conversion of a 32-bit signed integer to a 32-bit floating-
point number.

Exercise 2.5 Implement variations of ConvertFromInt that use the following
rounding modes: round to nearest with ties-to-away, round toward zero, round
toward positive, and round toward negative. Test your code for correctness.
The mode for rounding to nearest with ties-to-away is not required by the IEEE
754-2008 Standard for binary formats, and in fact this mode is not supported
by Intel floating-point hardware. Microsoft Visual Studio allows you to set
the rounding mode via controlfp, where the mask is MCW RC and the mode
is one of RC NEAR (default, round to nearest with ties-to-even), RC CHOP

(round toward zero), RC UP (round toward positive), or RC DOWN (round
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toward negative). Devise an experiment that verifies your implementation for
rounding to nearest with ties-to-away is correct.

Exercise 2.6 Implement a function that converts a 16-bit signed integer
(int16 t) to binary32. Include code that raises flags when exceptions occur.

Exercise 2.7 Implement a function that converts a 32-bit unsigned integer
(uint32 t) to binary32. Include code that raises flags when exceptions occur.

Exercise 2.8 Implement a function that converts a 64-bit signed integer
(int64 t) to binary32. Include code that raises flags when exceptions occur.

Exercise 2.9 Let int256 t represent 256-bit signed integers. Write pseudocode
for a function that converts int256 t to binary32. This requires slightly more
logic than converting smaller integer types, because now there is the potential
for overflow—the input integer might be larger than the binary32 infinity.

Exercise 2.10 Given an arbitrary precision integer, say, class Integer, write
pseudocode for a function that converts Integer to binary32.

2.5.2.8 Conversion from Floating-Point to Rational

When computing using exact rational arithmetic, say, using a class Rational,
the floating-point inputs first must be converted to Rational numbers. Assum-
ing arbitrary precision rationals, the conversions are always exact—no round-
ing is necessary. If class Rational uses a fixed-size integer, then conversions
are either exact or they overflow when the floating-point input is larger than
the maximum rational represented by the class. The common conversions are
presented here for binary32 and binary64.

Conversion from binary32 to Rational. Positive normal numbers are of the
form

r = 2ē−127

(

1 +

22
∑

i=0

ti 2
i−23

)

= 2ē−150
(

223 + t
)

(2.48)

where ē is the biased exponent in {1, . . . , 254} and where t is an integer in
the set {0, . . . , 223− 1}. The rational number r is a product of the sum with a
nonnegative power of two when ē ≥ 150 or a ratio of the sum with a positive
power of two when ē < 150. Positive subnormal numbers are of the form

r = 2−126
22
∑

i=0

ti 2
i−23 = 2−149t (2.49)

where t is an integer in the set {1, . . . , 223 − 1}. Listing 2.23 is an implemen-
tation of the conversion.
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Ra t i o n a l ConvertFrom ( b i n a r y3 2 x )
{

u i n t 3 2 t s i gn , b i a s ed , t r a i l i n g ;
GetEncod ing ( x , s i gn , b i a s ed , t r a i l i n g ) ;
I n t e g e r numer , denom ;

i f ( b i a s ed == 0)
{

i f ( t r a i l i n g == 0)
{

// x i s +0 or −0.
numer = 0 ;
denom = 1 ;

}
e l s e
{

// x i s subnormal .
numer = t r a i l i n g ;
denom = (1 << 149 ) ;

}
}
e l s e i f ( b i a s ed <= 254)
{

// x i s normal .
numer = (1 << 23) + t r a i l i n g ;
denom = 1 ;
power = b i a s ed − 150 ;
i f ( power > 0)
{

numer <<= power ;
}
e l s e i f ( power < 0)
{

denom <<= −power ;
}

}
e l s e // b i a s ed == 255 .
{

i f ( t r a i l i n g == 0)
{

// x i s + i n f i n i t y or − i n f i n i t y .
Ra i s eF l a g s (SIGNAL OVERFLOW) ;

}
e l s e
{

// x i s a NaN.
Ra i s eF l a g s (SIGNAL INVALID OPERATION ) ;

}

// The number i s i n f i n i t e , a q u i e t NaN, or a s i g n a l i n g NaN.
// In a l l ca s e s , r e t u r n the maximum normal b i n a r y3 2 .
numer = ((1 << 24) − 1) << 104 ;
denom = 1 ;

}

i f ( s i g n ! 0)
{

numer = −numer ;
}

r e tu r n Ra t i o n a l ( numer , denom ) ;
}

LISTING 2.23: Conversion from a 32-bit floating-point number to a rational
number.
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Conversion from binary64 to Rational. Positive normal numbers are of the
form

r = 2ē−1023

(

1 +

51
∑

i=0

ti 2
i−52

)

= 2ē−1075
(

252 + t
)

(2.50)

where ē is the biased exponent in {1, . . . , 2046} and where t is an integer in
the set {0, . . . , 252− 1}. The rational number r is a product of the sum with a
nonnegative power of two when ē ≥ 1075 or a ratio of the sum with a positive
power of two when ē < 1075. Positive subnormal numbers are of the form

r = 2−1022
51
∑

i=0

bi 2
i−52 = 2−1074t (2.51)

where t is an integer in the set {1, . . . , 252 − 1}. Listing 2.24 is an implemen-
tation of the conversion.

Ra t i o n a l ConvertFrom ( b i n a r y6 4 x )
{

u i n t 6 4 t s i gn , b i a s ed , t r a i l i n g ;
GetEncod ing ( x , s i gn , b i a s ed , t r a i l i n g ) ;
I n t e g e r numer , denom ;

i f ( b i a s ed == 0)
{

i f ( t r a i l i n g == 0)
{

// x i s +0 or −0.
numer = 0 ;
denom = 1 ;

}
e l s e
{

// x i s subnormal .
numer = t r a i l i n g ;
denom = (1 << 1074) ;

}
}
e l s e i f ( b i a s ed <= 2046)
{

// x i s normal .
numer = (1 << 52) + t r a i l i n g ;
denom = 1 ;
power = b i a s ed − 1075;
i f ( power > 0)
{

numer <<= power ;
}
e l s e i f ( power < 0)
{

denom <<= −power ;
}

}
e l s e // b i a s ed == 2047.
{

i f ( t r a i l i n g == 0)
{

// x i s + i n f i n i t y or − i n f i n i t y .
Ra i s eF l a g s (SIGNAL OVERFLOW) ;

}
e l s e
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{
// x i s a NaN.
Ra i s eF l a g s (SIGNAL INVALID OPERATION ) ;

}

// The number i s i n f i n i t e , a q u i e t NaN, or a s i g n a l i n g NaN.
// In a l l ca s e s , r e t u r n the maximum normal b i n a r y6 4 .
numer = ((1 << 53) − 1) << 971 ;
denom = 1 ;

}

i f ( s i g n ! 0)
{

numer = −numer ;
}

r e tu r n Ra t i o n a l ( numer , denom ) ;
}

LISTING 2.24: Conversion from a 64-bit floating-point number to a rational
number.

Exercise 2.11 Write pseudocode that converts a binaryN number to a Rational

number.

2.5.2.9 Conversion from Rational to Floating-Point

When computing using exact rational arithmetic, the rational output must
be converted to floating-point numbers. The conversion from a rational num-
ber to a floating-point number is not always exact. For example, as a binary
number, 1/3 = 0.01

∞
, indicating the bit pattern 01 repeats ad infinitum. That

is 1/3 = 1/4+ 1/16+ · · · 1/4p + · · · . To verify, let S = 1/4+ 1/16+ · · · ; then
4S = 1 + 1/4 + · · · . Subtracting, 3S = 4S − S = 1, which implies S = 1/3.
Because the bit pattern is infinitely repeating, conversion to a floating-point
number with finite precision requires rounding. Another example is when the
rational number is larger than the maximum floating-point number. The con-
version is deemed to be the floating-point infinity, which is tagged as overflow
and an inexact conversion. The common conversions are presented here for
binary32 and binary64.

Conversion from Rational to binary32. Let rs be a positive subnormal
floating-point number and let rn be a positive normal floating-point number.
We know that

0 <
rsmin

2 < rsmin ≤ rs ≤ rsmax <
rsmax+rnmin

2
< rnmin ≤ rn ≤ rnmax < rnmax+r∞

2 < r∞
(2.52)

where rsmin = 0.0̄221 ∗ 2−126, rsmax = 0.1̄23 ∗ 2−126, rnmin = 1.0̄23 ∗ 2−126,
rnmax = 1.1̄23 ∗ 2127, and r∞ = 2128. The numbers of the form 0.t and 1.t are
written in binary. The notation b̄n indicates a block of n consecutive b-valued
bits. Because rationals are not always representable exactly by binary32, we
need to choose a rounding mode. To illustrate, the default mode of rounding
with ties-to-even is chosen. The averages in Equation (2.52) are listed because
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they are the midpoints at which ties occur. Specifically, rsmin/2 = 2−150,
(rsmax + rnmin)/2 = 0.1̄24 ∗ 2−126, and (rnmax + r∞)/2 = 1.1̄24 ∗ 2127.

Listing 2.25 shows the conversion. The power handling and much of the
bit manipulations are motivated by the discussion in Section 2.4. Note that
in production code, you must handle the case when the denominator of input
r is zero. The example here does not do so.

b i n a r y3 2 ConvertTo ( Ra t i o n a l r )
{

i f ( r == Ra t i o n a l ( 0 ) )
{

// Return +0.
r e tu r n b i n a r y3 2 : : ZERO;

}

// Proces s the s i g n s .
I n t e g e r n = r . Numerator ( ) , d = r . Denominator ( ) ;
i n t nSign = (n >= 0 ? 1 : −1);
i n t dSign = (d >= 0 ? 1 : −1);
i n t r S i g n = nSign∗dSign ;
u i n t 3 2 t s i g n = ( rS i g n < 0 ? b i n a r y3 2 : : SIGN MASK : b i n a r y3 2 : : ZERO) ;

// Work wi th the p o s i t i v e r a t i o n a l number . The comments r e f e r
// to the man i p u l a t i o n o f the p o s i t i v e number , but the s i g n i s
// hand led i n the r e t u r n s ta tement .
n = nSign∗n ;
d = dSign∗d ;

i n t l ead i ngN = GetLead i ngB i t ( n ) ;
i n t l ead i ngD = GetLead i ngB i t ( d ) ;
i n t p = l ead i ngN − l ead i ngD ;
i f ( p > 0) { d <<= p ; } e l s e i f ( p < 0) { n <<= −p ; }
i f ( n < d ) { n <<= 1 ; −−p ; }

i f ( p < −150) // 0 < r < 2ˆ{−150}
{

// Round to +0.
Ra i s eF l a g s (SIGNAL INEXACT ) ;
r e tu r n s i g n | b i n a r y3 2 : : ZERO;

}

i f ( p == −150) // r = (n/d)∗2ˆ{−150}
{

Ra i s eF l a g s (SIGNAL INEXACT ) ;
i f ( n == d)
{

// r = 2ˆ{−150} , round to +0 based on t i e s−to−even .
r e tu r n s i g n | b i n a r y3 2 : : ZERO;

}
e l s e //
{

// 2ˆ{−150} < r < 2ˆ{−149} , round to minimum subnormal .
r e tu r n s i g n | b i n a r y3 2 : : MIN SUBNORMAL;

}
}

i f ( p >= 128) // r >= i n f i n i t y .
{

Ra i s eF l a g s (SIGNAL OVERFLOW | SIGNAL INEXACT ) ;
r e tu r n s i g n | b i n a r y3 2 : : INFINITY ;

}

// 0.1ˆ{23} ∗ 2ˆ{−126} <= r < 2ˆ{128} . Compute the t r a i l i n g
// s i g n i f i c a n d to 23 b i t s and compute the r ema inde r to dete rm ine
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// how to round .
u i n t 3 2 t b i a s ed ;
i n t 3 2 t c , r s h i f t ;
i f ( p < −126)
{

// 2ˆ{−149} <= r < 2ˆ{−126} ( subnormal ) ; use r = 0 . c ∗ 2ˆ{−126}.
b i a s ed = 0 ; // Number i s subnormal .
c = 0 ; // Lead ing b i t i s 0 .
d <<= 1 ; // Prepa r e f o r 0 . c fo rmat .
r s h i f t = −(p + 127 ) ; // Right−s h i f t o f t r a i l i n g s i g n i f i c a n d .

}
e l s e
{

// 2ˆ{−126} <= r < 2ˆ{128} ( normal ) ; use r = 1 . c ∗ 2ˆ{−126}.
b i a s ed = p + 127 ; // Number i s normal .
c = 1 ; // Lead ing b i t i s 1 .
r s h i f t = 0 ; // No r i g h t−s h i f t o f t r a i l i n g s i g n i f i c a n d .

}

u i n t 3 2 t t r a i l i n g = 0u ;
f o r ( u i n t 3 2 t mask = ((1 << 22) >> r s h i f t ) ; mask > 0 ; mask >>= 1)
{

i f ( c == 1)
{

n −= d ; // s = s − c ;
}
n <<= 1 ; // s = 2∗ s
i f ( n >= d) // s >= 1
{

c = 1 ;
t r a i l i n g |= mask ;

}
e l s e

{
c = 0 ;

}
}

i f ( c == 1)
{

n −= d ;
}
// n/d = 0 . r [ 0 ] r [ 1 ] . . .

i f ( n != 0)
{

Ra i s eF l a g s (SIGNAL INEXACT ) ;
}

// Round up when n/d > 1/2 or ( n/d = 1/2 and t r a i l i n g i s odd ) .
I n t e g e r t e s t = 2∗n − d ;
i f ( t e s t > 0 | | ( t e s t == 0 && ( t r a i l i n g & 1 ) ) )
{

++t r a i l i n g ;
}

r e tu r n s i g n | ( ( b i a s ed << 23) + t r a i l i n g ) ;
}

LISTING 2.25: Conversion from a rational number to a 32-bit floating-point
number.

Exercise 2.12 Modify the pseudocode of Listing 2.25 to use the other round-
ing modes: round with ties-to-away, round toward zero, round toward positive,
and round toward negative.
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Exercise 2.13 The pseudocode of Listing 2.25 does not handle an input ra-
tional with zero denominator. Modify the pseudocode to handle such a rational
input.

Conversion from Rational to binary64. In Equation (2.52), rsmin = 0.0̄511 ∗
2−1022, rsmax = 0.1̄52 ∗ 2−1022, rnmin = 1.0̄52 ∗ 2−1022, rnmax = 1.1̄52 ∗ 21023,
r∞ = 21024, rsmin/2 = 2−1075, (rsmax+rnmin)/2 = 0.1̄53 ∗2−1022, and (rnmax+
r∞)/2 = 1.1̄53 ∗ 21023.

The pseudocode for the conversion is a trivial modification of that for the
conversion to binary32. Replace binary32 with binary64, uint32 t with uint64 t,
int32 t with int64 t, −150 with −1075, −149 with −1074, −126 with −1022,
22 with 51, 23 with 52, 127 with 1023, and 128 with 1024.

Exercise 2.14 Modify the pseudocode for converting a rational to a binary64

to use the other rounding modes: round with ties-to-away, round toward zero,
round toward positive, and round toward negative.

Exercise 2.15 Write pseudocode that converts Rational to binaryN where N is
a multiple of thirty-two and larger than sixty-four.

2.5.2.10 Conversion to Wider Format

To illustrate, consider the conversion from binary8 to binary16. The conver-
sion is exact for finite numbers. We consider it to be exact for all encodings
in the sense that the 8-bit infinities are mapped to the corresponding 16-bit
infinities. An 8-bit NaN with payload is mapped to a 16-bit NaN by copying
the 8-bit payload to the most significant bits of the 16-bit payload, and the
quiet bit is copied when set.

Normal 8-bit numbers are converted to normal 16-bit numbers in a trivial
manner. The biased exponent for the 8-bit number is adjusted to become a
biased exponent for the 16-bit number. The trailing bits for the 8-bit number
are copied to the correct location in the trailing bits for the 16-bit number.

Subnormal 8-bit numbers are also converted to normal 16-bit numbers.
The conversion is the following:

0.t ∗ 2−2 = 0.t3 · · · t0 ∗ 2−2 = 1.t̄9 · · · t̄0 ∗ 2ē−15 = 1.t̄ ∗ 2ē−15 (2.53)

Let ℓ be the index of the leading 1-bit of the integer t. It is necessary that
0 ≤ ℓ ≤ 3, because a subnormal number has t �= 0. Consequently,

0.t3 · · · t0 ∗ 2−2 = 1.tℓ−1 · · · t0 ∗ 2ℓ−6 = 1.tℓ−1 · · · t0 ∗ 2((ℓ−6)+15)−15 (2.54)

which implies
t̄ = (t << (10− ℓ)), ē = ℓ+ 9 (2.55)

Listing 2.26 has source code for the conversion, where the input is the
encoding for binary8 and the output is the encoding for binary16.
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u i n t 1 6 t Convert ( u i n t 8 t encod i ng )
{

// Ex t r a c t the ch ann e l s f o r the b i n a r y8 number .
u i n t 8 t s i g n 8 = ( encod i ng & 0x80 ) ;
u i n t 8 t b i a s ed 8 = ( ( encod ing & 0x70 ) >> 4 ) ;
u i n t 8 t t r a i l i n g 8 = ( encod i ng & 0 x0 f ) ;

// Genera te the ch ann e l s f o r the b i n a r y1 6 number .
u i n t 1 6 t s i gn16 = ( s i g n 8 << 8 ) ;
u i n t 1 6 t b i a s ed16 , t r a i l i n g 1 6 ;

i f ( b i a s ed 8 == 0)
{

i f ( t r a i l i n g 8 == 0)
{

// The number i s 8−ze ro . Convert to 16−ze ro .
r e tu r n s i gn16 ;

}
e l s e
{

// The number i s 8−subnormal . Conver t to 16−normal .
i n t 3 2 t l e a d i n g = GetLead i ngB i t ( t r a i l i n g 1 6 ) ;
i n t 3 2 t s h i f t = 10 − l e a d i n g ;
b i a s ed16 = l e a d i n g + 9 ;
t r a i l i n g 1 6 = ( t r a i l i n g 8 << s h i f t ) & 0 x 0 3 f f ;
r e tu r n s i gn16 | ( b i a s ed16 << 10) | t r a i l i n g 1 6 ;

}
}

i f ( b i a s ed 8 < 7)
{

// The number i s 8−normal . Convert to 16−normal .
b i a s ed16 = b i a s ed 8 + 12 ;
t r a i l i n g 1 6 = ( t r a i l i n g 8 << 6 ) ;
r e tu r n s i gn16 | ( b i a s ed16 << 10) | t r a i l i n g 1 6 ;

}

i f ( t r a i l i n g 8 == 0)
{

// The number i s 8− i n f i n i t e . Convert to 16− i n f i n i t e .
r e tu r n s i gn16 | 0 x7c00 ;

}

// The number i s 8−NaN. Convert to 16−NaN with 8−pay l oad embedded i n
// the high−o r d e r b i t s o f the 16−pay l oad . The code a l s o co p i e s the
// 8−quietNaN mask b i t .
u i n t 1 6 t maskPayload = ( ( t r a i l i n g 8 & 0 x0 f ) << 6 ) ;
r e tu r n s i gn16 | 0 x7c00 | maskPayload ;

}

LISTING 2.26: Conversion of an 8-bit floating-point number to a 16-bit
floating-point number.

Exercise 2.16 Write a program that implements the conversion from 8-bit
encodings to 16-bit encodings. Write a test function to print to a file the con-
versions for all 256 inputs. By inspecting and testing several cases, verify that
the conversions are correct.

The pattern is general for conversion to a wider format. Let the narrow
format have n0 trailing bits and exponent bias β0. Let the wide format have
n1 trailing bits and exponent bias β1. The conversion from narrow subnormal
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to wide normal is

0.t ∗ 21−β0 = 0.tn0−1 · · · t0 ∗ 21−β0 = 1.t̄n1−1 · · · t̄0 ∗ 2ē−β1 = 1.t̄ ∗ 2ē−β1 (2.56)

Let ℓ be the index of the leading 1-bit of the integer t. It is necessary that
0 ≤ ℓ ≤ n0 − 1, because a subnormal number has t �= 0. Consequently,

0.tn0−1 · · · t0 ∗ 21−β0 = 1.tℓ−1 · · · t0 ∗ 21−β0−n0+ℓ

= 1.tℓ−1 · · · t0 ∗ 2(1−β0−n0+ℓ+β1)−β1
(2.57)

which implies

t̄ = (t << (n1 − ℓ)), ē = 1− β0 − n0 + ℓ+ β1 (2.58)

Listing 2.27 shows the general conversion, where NAR refers to the narrow
format and WID refers to the wide format.

UIn tege r ConvertNarrowToWide ( UIn tege r encod i ng )
{

// Ex t r a c t the ch a nn e l s f o r the narrow−fo rmat number .
UIn tege r signNAR = ( encod i ng & NAR SIGN MASK ) ;
U In tege r biasedNAR =

( ( encod i ng & NAR BIASED EXPONENT MASK) >> NAR NUM TRAILING BITS ) ;
U In tege r t r a i l i n gNAR = ( encod i ng & NAR TRAILING MASK ) ;

// Genera te the ch ann e l s f o r the wide−fo rmat number .
UIn tege r signWID =

( signNAR << (WID NUM ENCODING BITS − NAR NUM ENCODING BITS ) ) ;
U In tege r biasedWID , t r a i l i n gWID ;

i f ( biasedNAR == 0)
{

i f ( t r a i l i n gNAR == 0)
{

// The number i s NAR−ze ro . Convert to WID−ze ro .
r e tu r n signWID ;

}
e l s e
{

// The number i s NAR−subnormal . Conver t to WID−normal .
I n t e g e r l e a d i n g = GetLead i ngB i t ( t r a i l i n gNAR ) ;
biasedWID = l e a d i n g + 1 + WID EXPONENT BIAS −

NAR EXPONENT BIAS − NAR NUM TRAILING BITS ;
t r a i l i n gWID = ( t r a i l i n gNAR << (WID NUM TRAILING BITS −

l e a d i n g ) ) & NAR TRAILING MASK ;
r e tu r n signWID | ( biasedWID << WID NUM TRAILING BITS) |

t r a i l i n gWID ;
}

}

i f ( biasedNAR < NAR MAX BIASED EXPONENT)
{

// The number i s NAR−normal . Convert to WID−normal .
biasedWID = biasedNAR + WID EXPONENT BIAS − NAR EXPONENT BIAS ;
t r a i l i n gWID = ( t r a i l i n gNAR << (WID NUM TRAILING BITS −

NAR NUM TRAILING BITS ) ) ;
r e tu r n signWID | ( biasedWID << WID NUM TRAILING BITS) |

t r a i l i n gWID ;
}

i f ( t r a i l i n gNAR == 0)
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{
// The number i s NAR− i n f i n i t e . Convert to WID− i n f i n i t e .
r e tu r n signWID | WID BIASED EXPONENT MASK ;

}

// The number i s NAR−NaN. Convert to WID−NaN with NAR−pay l oad
// embedded i n the high−o r d e r b i t s o f the WID−pay l oad . The code
// a l s o co p i e s the NAR−quietNaN mask b i t .
UIn tege r maskPayload = ( ( t r a i l i n gNAR & NAR TRAILING MASK)

<< (WID NUM TRAILING BITS − NAR NUM TRAILING BITS ) ) ;
r e tu r n signWID | WID BIASED EXPONENT MASK | maskPayload ;

}

LISTING 2.27: Conversion of a narrow floating-point format to a wide
floating-point format.

2.5.2.11 Conversion to Narrower Format

The conversions from a wide format to a narrow format are not always
exact for finite numbers, so rounding must be used. Round-to-nearest is used
with ties-to-even. A wide-format NaN is mapped to a narrow-format NaN,
but if the wide-format payload has more 1-valued bits than can be stored in
the narrow-format payload, there will be a loss of information. The IEEE 754-
2008 Standard requires the result to be a quiet NaN with (optional) diagnostic
information in the payload.

Figure 2.16 illustrates two floating-point formats on the nonnegative num-
ber line with important values marked. The mapping from wider to nar-
rower format is illustrated with grayscale bars and text indicating how
to round. All labeled values are exactly representable in the wide format,
but some are not exactly representable in the narrow format. For example,
nar-avr-min-normal-zero is the average of nar-zero and nar-min-subnormal. Even
though the two inputs are exactly representable in the narrow format, the
average is not. This is not a problem, because the comparisons made during
conversion are all in the wide-format number system.

Using encodings in the wide-format number system, let xzero be the posi-
tive zero for the narrow format and let xsub0 be the minimum subnormal for
the narrow format. The average of the two numbers is α0 = xsub0/2. The
half-open interval of numbers [xzero, α0) is nearest xzero, so any wide-format
number in this interval is converted to xzero. All such conversions are inexact
except for zero itself. The half-open interval of numbers (α0, xsub0] is nearest
xsub0, so any wide-format number in this interval is converted to xsub0. Again,
all such conversion are inexact except for xsub0 itself. The midpoint α0 is con-
verted to xzero because of the ties-to-even rule: the last bit of the encoding for
zero is 0 (even) and the last bit of the encoding for the minimum subnormal
is 1 (odd), so the rounding is to the number with the even bit.

Similarly, let xnor1 be the maximum normal for the narrow format. Let xinf

be the positive infinity for the narrow format, but for the purpose of computing
the average of the two numbers, the encoding of xinf is treated as if it were
for a finite number. The average of the numbers is α1 = (xnor1 + xinf)/2. The
half-open interval [xnor1, α1) is nearest xnor0, so any wide-format number in
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FIGURE 2.16: Two floating-point formats on the nonnegative number line.
The labels with prefix wid are for the wider format and the labels with prefix
nar are for the narrow format.

this interval is converted to xnor0. All such conversions are inexact except for
xnor1 itself. Let winf be the positive infinity for the wide format. The half-open
interval (α1, winf] is nearest to xinf, so any wide-format number in this interval
is converted to xinf. The conversions are all inexact.

The wide-format numbers in the open interval (xsub0, xnor1) are converted
to narrow-format numbers using round-to-nearest with ties-to-even. Many of
the conversions are inexact, but some are exact. The algorithm for round-
ing a number to its nearest floating-point neighbor (Figure 2.16) depends on
whether the nearest number is subnormal or normal. In the ensuing discus-
sion, define xnor0 to be the wide-format number that represents the minimum
normal for the narrow format.

Once again for illustration, consider the conversion from binary16 to
binary8, in which case xsub0 = 2−6 and xnor0 = 2−2. The open interval in
terms of wide-format numbers written as subnormals is the closed interval
[0.00010000000001∗ 2−2, 0.11111111111∗ 2−2]. If 0.s13 · · · s0 is the significand
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to a number in this interval, the corresponding narrow subnormal number is
0.s13s12s11s10 + ε, where ε is zero or one based on rounding. Define integers
i and f by i.f = s13 · · · s10.s9 · · · s0. Using round-to-nearest with ties-to-even,
the value ε is one when 0.f > 1/2 or when 0.f = 1/2 and i is odd. If i = 15
(all s-bits are 1), then ε = 1 and the addition causes a carry out of s13. The
result is i = 16. When using bit-manipulation methods in the source code, the
addition is to the trailing significand. The carry-out is to the low-order bit
of the biased exponent. In the current case, the (left-shifted) biased exponent
is zero (the target is a narrow subnormal), so OR-ing the trailing significand
into the final encoding amounts to increasing the exponent by one. This is the
correct behavior, because the trailing significand becomes zero, the exponent
increases by one, and the output is the narrow maximum normal.

Regarding an implementation, it is convenient to generate i and f in a
canonical format. If t is the trailing significand for the input wide-format
number, then the significand is 1.t. The integer 1t represents the t with a
prepended 1, the result containing eleven bits. We may shift right to eliminate
the fractional bits; that is, i = (1t >> σ). The significand corresponding to the
minimum of the subnormal interval is 1.0000000001 and has the corresponding
exponent −6 and biased exponent ē = 9 = −6 + 15. The 11-bit integer is
10000000001, which when shifted right by σ = 10 produces binary i = 0001.
The significand corresponding to the maximum of the subnormal interval is
1.1111111111 and has corresponding exponent −3 and biased exponent ē =
12 = −3+ 15. The 11-bit integer is 11111111111, which when shifted right by
σ = 7 produces binary i = 1111. The right shift is σ = 10− (ē− 9) = 19− ē.

The generation of f is similar, using a left shift so that the first fraction
bit occurs in the high-order bit of a 16-bit number. The full 16-bit encoding
for the minimum interval endpoint is 000001000000001 = 0x0401. A left shift
by six produces binary f̄ = 0000000001000000 = 0x0040. The encoding for
the maximum interval endpoint is 0000011111111111 = 0x07ff. A left shift
by twelve produces binary f̄ = 1111111000000000 = 0xfe00. The operation is
f̄ = 1t << σ, where σ = ē − 3. The comparison of 0.f to one-half requires
identifying which bit index contains the first bit of f and building a mask
to represent one-half. In the modified formulation, the comparison is now
between f̄ and 0x8000.

The next case is when the input is in the half-open interval [xnor0, xnor1),
where xnor1 = 1.1111 ∗ 23. The input is 1.t ∗ 2e = 1.t9 · · · t0 ∗ 2e and the
output is 1.s ∗ 2e = 1.s3 · · · s0 ∗ 2e. Let β1 be the exponent bias for the wide
format and let β0 be the exponent bias for the narrow format. The biased
exponent for the input is ē1 = e+ β1 and the biased exponent for the output
is ē0 = e + β0 = ē1 − β1 + β0. Both input and output are in normal form,
so there is no need to prepend one to t. Using the canonical form described
in the previous two paragraphs, i = (t >> 6) and f̄ = (t << 10). The same
issue arises about a carry-out to the exponent when rounding. In this case,
the (left-shifted) biased exponent is not necessarily zero, so we must add the
incremented trailing significand to the biased exponent rather than OR-ing it.
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Listing 2.28 has source code for the conversion, where the input is the
encoding for binary16 and the output is the encoding for binary8.

u i n t 8 t Convert ( u i n t 1 6 t encod i ng )
{

// Ex t r a c t the ch ann e l s f o r the b i n a r y1 6 number .
u i n t 1 6 t s i gn16 = ( encod i ng & 0x8000 ) ;
u i n t 1 6 t b i a s ed16 = ( ( encod i ng & 0x7c00 ) >> 10 ) ;
u i n t 1 6 t t r a i l i n g 1 6 = ( encod i ng & 0 x 0 3 f f ) ;
u i n t 1 6 t nonneg16 = ( encod i ng & 0 x 7 f f f ) ;

// Genera te the ch ann e l s f o r the b i n a r y8 number .
u i n t 8 t s i g n 8 = ( s i gn16 >> 8 ) ;
u i n t 8 t b i a s ed8 , t r a i l i n g 8 ;
u i n t 1 6 t f r c p a r t ;

i f ( b i a s ed16 == 0)
{

// noneg16 i s 16−ze ro or 16−subnormal ; n e a r e s t i s 8−ze ro .
r e tu r n s i g n 8 ;

}

i f ( b i a s ed16 < 31)
{

// nonneg16 i s 16−normal .
i f ( nonneg16 <= 0x2000 ) // <= nar−avrminsubnormal−ze ro = 2ˆ{−7}
{

// nonneg16 <= 2ˆ{−7}; n e a r e s t i s 8−ze ro .
r e tu r n s i g n 8 ;

}

i f ( nonneg16 <= 0x2400 ) // <= nar−minsubnormal = 2ˆ{−6}
{

// 2ˆ{−7} < nonneg16 <= 2ˆ{−6}; n e a r e s t i s 8−min−subnormal .
r e tu r n s i g n 8 | 0 x01 ; // r e p r e s e n t s nar−min−subnormal

}

i f ( nonneg16 < 0 x3400 ) // < nar−minnormal = 2ˆ{−2}
{

// 2ˆ{−6} < nonneg16 < 2ˆ{−2}; round to n ea r e s t 8−subnormal
// wi th t i e s−to−even . Note tha t the b i a s ed 8 va l u e i s
// i m p l i c i t l y z e ro .
t r a i l i n g 1 6 |= 0x0400 ;
t r a i l i n g 8 = ( t r a i l i n g 1 6 >> (19 − b i a s ed16 ) ) ;
f r c p a r t = ( t r a i l i n g 1 6 << ( b i a s ed16 − 3 ) ) ;
i f ( f r c p a r t > 0 x8000
| | ( f r c p a r t == 0x8000 && ( t r a i l i n g 8 & 1 ) ) )
{

// I f t h e r e i s a c a r r y i n t o the exponent , the n ea r e s t i s
// a c t u a l l y 8−min−normal 1.0∗2ˆ{−6} , so the high−o r d e r
// b i t o f t r a i l i n g 8 makes b i a s ed 8 equa l to 1 and the
// r e s u l t i s c o r r e c t .
++t r a i l i n g 8 ;

}
r e tu r n s i g n 8 | t r a i l i n g 8 ;

}

i f ( nonneg16 < 0 x4be0 ) // < nar−maxnormal = 1.1111∗2ˆ{3}
{

// 2ˆ{−2} <= nonneg16 < 1.1111∗2ˆ{3} ; round to n ea r e s t
// 8−normal wi th t i e s to even .
b i a s ed 8 = ( ( b i a s ed16 − 15 + 3) << 4 ) ;
t r a i l i n g 8 = ( t r a i l i n g 1 6 >> 6 ) ;
f r c p a r t = ( t r a i l i n g 1 6 << 10 ) ;
i f ( f r c p a r t > 0 x8000
| | ( f r c p a r t == 0x8000 && ( t r a i l i n g 8 & 1 ) ) )
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{
// I f t h e r e i s a c a r r y i n t o the exponent , the a d d i t i o n
// o f t r a i l i n g 8 to b i a s ed 8 ( r a t h e r than OR−i n g ) p roduces
// the c o r r e c t r e s u l t .
++t r a i l i n g 8 ;

}
r e tu r n s i g n 8 | ( b i a s ed 8 + t r a i l i n g 8 ) ;

}

i f ( nonneg16 < 0 x4bf0 ) // < nar−avrmaxnor−i n f = 1.11111∗2ˆ{3}
{

// 1.1111∗2ˆ{3} <= nonneg16 < 1.11111∗2ˆ{3} ; the number i s
// c l o s e s t to 8−max−normal .
r e tu r n s i g n 8 | 0 x6 f ; // r e p r e s e n t s nar−max−normal

}

// nonneg16 >= 1.11111∗2ˆ{3} ; c o n v e r t to 8− i n f i n i t e .
r e tu r n s i g n 8 | 0x70 ; // r e p r e s e n t s nar− i n f i n i t y

}

i f ( t r a i l i n g 1 6 == 0)
{

// The number i s 16− i n f i n i t e . Convert to 8− i n f i n i t e .
r e tu r n s i g n 8 | 0x70 ; // r e p r e s e n t s nar− i n f i n i t y

}

// The number i s 16−NaN. Convert to 8−NaN with 8−pay l oad the
// high−o r d e r 3 b i t s o f the 16−pay l oad . The code a l s o g r ab s the
// 16−quietNaN mask b i t .
i f ( ( t r a i l i n g 1 6 & 0 x003 f ) == 0)
{

// The 16−pay l oad has on l y i t s f i r s t 3 b i t s s e t , so i t can be
// r ep r e s en t e d as an 8−pay l oad w i thou t l o s s o f i n f o rma t i o n .
u i n t 8 t maskPayload = ( u i n t 8 t ) ( ( t r a i l i n g 1 6 & 0 x 0 3 f f ) >> 6 ) ;
r e tu r n s i g n 8 | 0x70 | maskPayload ;

}

// The 16−pay l oad cannot be r ep r e s en t e d as an 8−pay l oad w i thou t
// l o s s o f i n f o rma t i o n . Make the NaN q u i e t ( as r e q u i r e d ) and s e t
// the low−o r d e r b i t to 1 ( user−d e f i n ed d i a g n o s t i c i n f o rma t i o n ) .
r e tu r n s i g n 8 | 0x79 ;

}

LISTING 2.28: Conversion from a wide floating-point format to a narrow
floating-point format.

Exercise 2.17 Write a program that implements the conversion from 16-bit
encodings to 8-bit encodings. Write a test function to print to a file the con-
versions for all 65,536 inputs. By inspecting and testing several cases, verify
that the conversions are correct.

Exercise 2.18 Suppose that your floating-point system has a status word
whose bits represent the IEEE exceptions that can occur: inexact operation,
underflow, overflow, division by zero, and invalid operation. Modify the source
code for conversion from 16-bit encodings to 8-bit encodings by inserting state-
ments that set the appropriate bits of the status words when exceptions occur.
In particular, the inexact-operation bit must be set when a 16-bit number can-
not be exactly represented as an 8-bit number.
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Exercise 2.19 In the source code, when the 16-payload does not map exactly
to the 8-payload, the returned value is a quiet NaN. The arbitrary choice was
made to set the 8-payload to 1. You cannot rely on a 1-valued low-order pay-
load bit to indicate the inexact payload conversion, because a 16-bit payload
of 001000000 will map to an 8-bit payload of 001, and the 1-bit in the 16-
bit payload does not correspond to an inexact payload conversion from 32-bit
to 16-bit. In your floating-point system, let the low-order payload bit always
correspond to the inexact representation of NaN payload during conversion.
Modify the source code to support this choice.

The pattern is general for conversion to a narrower format. Let the number
of trailing significand bits be n0 for the narrow format and n1 for the wide
format. Let the exponent biases be β0 for the narrow format and β1 for the
wide format.

Consider the case when the output is in the narrow subnormal range,

(

0.0̄n0−11 ∗ 21−β0 , 0.1̄n0 ∗ 21−β0
)

(2.59)

where b̄p denotes the bit-value b repeated p times. The open interval in terms
of wide-format numbers written as subnormals is the closed interval

[

0.0̄n0−110̄n1−11 ∗ 21−β0 , 0. ¯n1 + 1 ∗ 21−β0
]

(2.60)

The significand to a number in this interval requires at most n0+n1 bits, say,

0.sn0+n1−1 · · · sn1
· · · sn1−1 · · · s0 (2.61)

The corresponding narrow subnormal number is 0.sn0+n1−1 · · · sn1
+ ε, where

ε is zero or one based on rounding. As in the example for converting a 16-bit
encoding to an 8-bit encoding, we may defined integers i and f such that
i.f = sn1−1 · · · sn1

.sn1−1 · · · s0.
If the input is 1.t ∗ 2e1 , the integer 1t contains n1 + 1 bits. We may shift

right to eliminate the fractional bits, i = (1t >> σr), where

σr = (n1 − n0) + (β1 − β0) + 1− ē1 (2.62)

where ē1 = e1 + β1 is the biased exponent for the input. The reason for the
right shift equation is motivated by the example provided previously. The
minimum for the subnormal interval is

0.0̄n0−110̄n1−11 ∗ 21−β0 = 1.0̄n1−1 ∗ 21−β0−n0 (2.63)

and the biased exponent is ē1 = 1−β0−n0+β1. The right shift is exactly n1,
so if the general formula is σr = n1− (ē1− v), we need v = 1−β0−n0+β1 to
ensure the formula is correct at the interval minimum. Let f̄ be the left-shifted
value of f such that the high-order bit of f is in the high-order bit of the k1-bit
integer that stores the wide format. Think of of 1t embedded in a large set of
bits so that shifting does not lose any bits. When you right shift the integer
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1t by σr, the fractional part is located just to the right of a block of k1 bits
whose low-order bit contains the least significant bit of (1t >> σr). The right
shift that moves the fractional part to the high-order bit of the k1-bit block
must be k1. The total left shifting is therefore

σℓ = k1 − σr (2.64)

To verify using the previous example, k1 = 16, σr = 19− ē1, and σℓ = ē1 − 3.
Consider the case when the input and output are both normal numbers.

The wide input is 1.t ∗ 2e and the narrow output is 1.s ∗ 2e. The biased
exponent for the input is ē1 = e+ β1 and the biased exponent for the output
is ē0 = e + β0 = ē1 − β1 + β0. Both input and output are in normal form, so
there is no need to prepend one to t. The integer part is i = (t >> σr), where

σr = n1 − n0 (2.65)

and the fractional part is f̄ = (t << σℓ), where

σℓ = k1 − (n1 − n0) (2.66)

As before, if the rounding causes a carry-out into the biased exponent, we han-
dle this by adding the trailing significand to the (left-shifted) biased exponent
rather than OR-ing it.

The pseudocode is shown in Listing 2.29, where WID refers to the wide
format and NAR refers to the narrow format. When the prefix WID NAR is
used, this indicates that the identifier represents the narrow-format num-
ber as a wide-format number. The mask WID HALF PROXY is the same as
WID SIGN MASK, which is a k1-bit unsigned integer with all zero bits except
for the high-order bit.

UIn tege r ConvertWideToNarrow ( UIn tege r encod i ng )
{

// Ex t r a c t the ch a nn e l s f o r the wide number .
UIn tege r signWID = ( encod i ng & WID SIGN MASK ) ;
U In tege r biasedWID =

( ( encod i ng & WID EXPONENT MASK) >> WID NUM TRAILING BITS ) ;
U In tege r t r a i l i n gWID = ( encod i ng & WID TRAILING MASK ) ;
UIn tege r nonnegWID = ( encod i ng & WID NOT SIGN MASK ) ;

// Genera te the ch ann e l s f o r the nar row number .
UIn tege r signNAR =

( signWID >> (WID NUM ENCODING BITS − NAR NUM ENCODING BITS ) ) ;
U In tege r biasedNAR , t r a i l i n gNAR ;
UIn tege r r s h i f t , l s h i f t , f r c p a r t ;

i f ( biasedWID == 0)
{

// nonnegWID i s WID−ze ro or WID−subnormal ; n e a r e s t i s NAR−ze ro .
r e tu r n signNAR ;

}

i f ( biasedWID < WID MAX BIASED EXPONENT)
{

// nonnegWID i s WID−normal .
i f ( nonnegWID <= WID NAR AVR MIN SUBNORMAL ZERO)
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{
// Nea re s t i s NAR−ze ro .
r e tu r n signNAR ;

}

i f ( nonnegWID <= WID NAR MIN SUBNORMAL)
{

// Nea re s t i s NAR−min−subnormal .
r e tu r n signNAR | NAR MIN SUBNORMAL ;

}

i f ( nonnegWID < WID NAR MIN NORMAL)
{

// Round to n ea r e s t NAR−subnormal wi th t i e s−to−even . Note
// tha t biasedNAR i s i m p l i c i t l y z e ro .
t r a i l i n gWID |= WID SUP TRAILING MASK ;
r s h i f t = WID NUM TRAILING BITS − NAR NUM TRAILING BITS +

WID EXPONENT BIAS − NAR EXPONENT BIAS + 1 − biasedWID ;
t r a i l i n gNAR = ( t r a i l i n gWID >> r s h i f t ) ;
l s h i f t = WID NUM ENCODING BITS − r s h i f t ;
f r c p a r t = ( t r a i l i n gWID << l s h i f t ) ;
i f ( f r c p a r t > WID HALF PROXY
| | ( f r c p a r t == WID HALF PROXY && ( t r a i l i n gNAR & 1 ) ) )
{

// I f t h e r e i s a c a r r y i n t o the exponent , the high−o r d e r
// b i t o f t r a i l i n gNAR makes biasedNAR equa l to 1 and the
// r e s u l t i s c o r r e c t .
++t r a i l i n gNAR ;

}
r e tu r n signNAR | t r a i l i n gNAR ;

}

i f ( nonnegWID < WID NAR MAX NORMAL)
{

// Round to n ea r e s t NAR−normal wi th t i e s−to−even .
biasedNAR = ( ( biasedWID − WID EXPONENT BIAS + NAR EXPONENT BIAS)

<< NAR NUM TRAILING BITS ) ;
r s h i f t = WID NUM TRAILING BITS − NAR NUM TRAILING BITS ;
t r a i l i n gNAR = ( t r a i l i n gWID >> r s h i f t ) ;
l s h i f t = WID NUM ENCODING BITS − r s h i f t ;
f r c p a r t = ( t r a i l i n gWID << l s h i f t ) ;
i f ( f r c p a r t > WID HALF PROXY
| | ( f r c p a r t == WID HALF PROXY && ( t r a i l i n gNAR & 1 ) ) )
{

// I f t h e r e i s a c a r r y i n t o the exponent , the a d d i t i o n o f
// t r a i l i n gNAR to biasedNAR ( r a t h e r than OR−i n g ) p roduces
// the c o r r e c t r e s u l t .
++t r a i l i n g 8 ;

}
r e tu r n signNAR | ( biasedNAR + t r a i l i n gNAR ) ;

}

i f ( nonnegWID < WID NAR AVR MAX NORMAL INFINITY)
{

// nonneg16 i s c l o s e s t to NAR−max−normal .
r e tu r n signNAR | NAR MAX NORMAL;

}

// nonnegWID >= WID NAR AVR MAX NORMAL INFINITY; con v e r t to
// NAR− i n f i n i t e .
r e tu r n signNAR | NAR INFINITY ;

}

i f ( t r a i l i n gWID == 0)
{

// The number i s WID− i n f i n i t e . Convert to NAR− i n f i n i t e .
r e tu r n signNAR | NAR BIASED EXPONENT MASK ;
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}

// The number i s WID−NaN. Convert to NAR−NaN with NAR−pay l oad the
// high−o r d e r $n 0−1$ b i t s o f the WID−pay l oad . The code a l s o g r ab s
// the WID6−quietNaN mask b i t .
i f ( ( t r a i l i n gWID & WID PAYLOAD EXCESS) == 0)
{

// The WID−pay l oad has on l y i t s f i r s t WID NUM TRAILING BITS−1
// b i t s s e t , so i t can be r ep r e s en t e d as a NAR−pay l oad w i thou t
// l o s s o f i n f o rma t i o n .
r s h i f t = WID NUM TRAILING BITS − NAR NUM TRAILING BITS ;
UIn tege r maskPayload = ( ( t r a i l i n gWID & WID TRAILING MASK)

>> r s h i f t ) ;
r e tu r n signNAR | NAR BIASED EXPONENT MASK | maskPayload ;

}

// The WID−pay l oad cannot be r ep r e s en t e d as a NAR−pay l oad w i thou t
// l o s s o f i n f o rma t i o n . Make the NaN q u i e t ( as r e q u i r e d ) and s e t
// the low−o r d e r b i t to 1 ( user−d e f i n ed d i a g n o s t i c i n f o rma t i o n ) .
r e tu r n signNAR | NAR BIASED EXPONENT MASK | NAR QUIET MASK | 1 ;

}

LISTING 2.29: The conversion of a wide-format number to a narrower for-
mat.

The mask WID PAYLOAD EXCESS locates the bits of the wide payload that
cannot be mapped to bits of the narrow payload. The trailing significand for
the narrow number is qpn0−1 · · · p0, where q is the bit to set for a quiet NaN.
The trailing significand is q̄p̄n1−2 · · · p̄n1−n0

p̄n1−n0−1 · · · p̄0 for the wide num-
ber, where q̄ is the bit to set for a quiet NaN. The first n0 bits q̄p̄n1−2 · · · p̄n1−n0

are shifted to occupy qpn0−1 · · · p0. The other bits are lost. The payload-excess
mask has 1-valued bits at the indices 0 through n1 − n0 − 1 and zeros at all
other indices.

Exercise 2.20 Using the pseudocode as a guide, write a program that (1)
converts 16-bit encodings to 32-bit encodings and (2) converts 32-bit encodings
to 16-bit encodings. Write a test program with a sufficient number of examples
to verify that your implementations are correct. (Hint: Think about this in
terms of code coverage.)

2.5.3 Arithmetic Operations

The arithmetic operations of addition, subtraction, and multiplication are
as described in Section 2.4.2, although the implementation in hardware will
not look like the software algorithms I discussed. Division can be implemented
as described previously, using a straightforward division of binary numbers
similar to what you do for long division of integers. The floating-point hard-
ware uses barrel shifters in the implementation.

Other division approaches are possible. To compute a reciprocal 1/x for
a specified positive number x, we can use Newton’s method to compute the
root y of f(y) = 1/y − x for a suitably chosen initial guess y0. The iterates
are

yi+1 = yi − f(yi)/f
′(yi) = yi(2− xyi), i ≥ 0 (2.67)
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Using binary scientific notation, we can factor out a power of two so that
the number for which we actually compute the reciprocal is x ∈ [1/2, 1).
Using a minimax algorithm (see Section 3.3), we can fit 1/x on [1/2, 1) with
a linear polynomial c0 + c1x to minimize the maximum absolute value of the
error |E(x)| where E(x) = x(c0 + c1x) − 1. The local minimum on [1/2, 1]
occurs when E′(x) = 0, in which case x = −c0/(2c1). To balance the error
according to the Chebyshev equioscillation theorem, we need E(1/2) = E(1) =
−E(−c0/2c1), which leads to two equations in the two unknowns c0 and c1.
The solution is c0 = 48/17 and c1 = −32/17, and the maximum fitted error
is approximately 0.0588235. The inital guess is chosen as y0 = (48− 32x)/17.

A more interesting implementation of division in hardware uses multiplica-
tive division [15]. To compute the division x/y observe that

x

y
=

xf0f1 . . . fn−1

yf0f1 . . . fn−1
(2.68)

for any positive factors fi. With carefully chosen factors, we can itera-
tively drive the denominator yf0 . . . fn−1 to 1, in which case the numerator
xf0 . . . fn−1 is the result of the division. Factoring out powers of two for x and
y so that x ∈ [0, 1/2) and y ∈ (1/2, 1], we can choose initial values x0 = x,

y0 = y, and factors fi = 1 + x2i . The iterates are

xi+1

yi+1
=

xifi
yifi

, i ≥ 0 (2.69)

After n iterations, the result has minimum precision of 2n bits.

2.5.4 Mathematical Functions

The IEEE 754-2008 Standard has requirements about various operations
and mathematical functions to support correctly rounded results. With the
default mode of round-to-nearest, a function such as y = sqrt(x) for a (nonneg-
ative) 32-bit floating-point input x must return a 32-bit floating-point input
y that is the closest floating-point number to the theoretical square root. For
example, Listing 2.30 shows the correctly rounded result for a square root
operation.

f l o a t x = 1 .25 f ; // x . b i n a r y3 2 = 0 x3fa00000 ( exac t r e p r e s e n t a t i o n )
f l o a t y = s q r t ( x ) ; // y . b i n a r y3 2 = 0 x3 f8 f 1bbd

// y . b i n a r y6 4 = 0 x3 f f 1 e377a0000000
// y . b i n a r y = 1 .1 e377a

yTh e o r e t i c a l . b i n a r y = 1 .1 e3779b9 + rema inde r ;
y = RoundToNeares tF loat ( yTh e o r e t i c a l ) ;

LISTING 2.30: Correctly rounded result for square root.

The exact value is irrational but may be expanded to as many binary places
as is shown. The closest 32-bit floating-point value to the theoretical answer is
obtained in this case by rounding up. If the rounding mode of the FPU were
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set to round toward zero, the sqrt function would be required to return the
32-bit floating-point number with encoding 0x3ff1e377b.

Generally, deriving mathematical approximations to functions with correct
rounding is a technical challenge. FPU hardware can provide fast computation
by using registers with higher precision than that of the inputs to the func-
tions. If the floating-point arithmetic were to be implemented in software, you
might not obtain as fast a computation as you would like. However, you may
consider trading accuracy for speed. This is a typical trade-off for computing
with SIMD registers; see Chapter 3.

The standard mathematics library that ships with Microsoft Visual Studio
has several functions supported by an FPU, shown in Listing 2.31. Variations
are provided for float and double.

acos ( x ) // i n v e r s e co s i n e
a s i n ( x ) // i n v e r s e s i n e
atan ( x ) // i n v e r s e tangen t
atan2 ( y , x ) // i n v e r s e tangen t wi th quadrant s e l e c t i o n
c e i l ( x ) // round up to i n t e g e r v a l u e
cos ( x ) // co s i n e
cosh ( x ) // h y p e r b o l i c c o s i n e
exp ( x ) // e x p o n e n t i a l base e
f a b s ( x ) // ab s o l u t e v a l u e
f l o o r ( x ) // round down to i n t e g e r
fmod ( x , y ) // r ema inde r o f x/y
f r e x p ( x , y ) // get t r a i l i n g s i g n i f i c a n d and exponent o f a number
l d exp ( x , y ) // compute number from t r a i l i n g s i g n i f i c a n d and exponent
l o g ( x ) // l o g a r i t hm base e
l o g10 ( x ) // l o g a r i t hm base 10
modf ( f , i ) // s p l i t f i n t o f r a c t i o n a l and i n t e g e r p a r t s
pow( x , y ) // r a i s e x to power y
s i n ( x ) // s i n e
s i n h ( x ) // h y p e r b o l i c s i n e
s q r t ( x ) // squa r e r o o t
tan ( x ) // tangen t
tanh ( x ) // h y p e r b o l i c tangen t

LISTING 2.31: The standard mathematics library functions.

2.5.5 Floating-Point Oddities

This section contains a small collection of problems whose solutions are
unexpected.

2.5.5.1 Where Have My Digits Gone?

Compute the roots of a quadratic equation a2x
2 + a1x + a0 = 0. The

standard formula is

x =
−a1 ±

√

a21 − 4a0a2
2a2

(2.70)

where the discriminant is ∆ = a21 − 4a0a2. The equation has no real-valued
roots when ∆ < 0, one repeated real-value root when ∆ = 0, and two distinct
real-valued roots when ∆ > 0.

For the case ∆ > 0, when a2 is nearly zero and a1 > 0, the numerator
for the larger root is −a1 +

√

a21 − 4a0a2. The argument of the square root
function is approximately a21, so the square root is approximately a1, in which
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case you have a difference of two numbers of similar magnitude. This can
lead to cancellation of many significant digits, producing a numerator that
is nearly zero and effectively noise. The division by the nearly zero a2 then
magnifies the result. The recommended way to avoid this problem is to modify
the equation,

−a1+
√

a2
1
−4a0a2

2a2
=

−a1+
√

a2
1
−4a0a2

2a2
· −a1−

√
a2
1
−4a0a2

−a1−
√

a2
1
−4a0a2

=
a2
1−(a2

1−4a0a2)

−2a2(a1+
√

a2
1
−4a0a2)

= a0

(a1+
√

a2
1
−4a0a2)/2

(2.71)

The new formula is mathematically equivalent to the old formula, but now the
denominator has a sum of nearly equal values, which avoids the cancellation.

The basic illustration of subtractive cancellation is shown in Listing 2.32.

f l o a t a0 = −0.01 f ; // 0 xbc23d70a
f l o a t a1 = 0.001 f ; // 0 x3a83126f
f l o a t a2 = 0.000001 f ; // 0 x358637bd
f l o a t d i s c r im i n a n t = a1∗a1 − 4 .0 f∗a0∗a2 ; // i s p o s i t i v e
f l o a t r o o tD i s c r i m i n a n t = s q r t f ( d i s c r i m i n a n t ) ;
f l o a t r o o t [ 2 ] , r oo tPrev [ 2 ] , r oo tNext [ 2 ] ;
f l o a t po l y [ 2 ] , po l yPrev [ 2 ] , po l yNext [ 2 ] ;
// Va lue ( a0 , a1 , a2 , r ) = a0 + r ∗( a1 + r∗a2 )

// O r i g i n a l f o rmu l a .
f l o a t invTwoA2 = 0 .5 f /a2 ;
r o o t [ 0 ] = (−a1 − r o o tD i s c r im i n a n t )∗ invTwoA2 ;
r o o t [ 1 ] = (−a1 + r o o tD i s c r im i n a n t )∗ invTwoA2 ;
po l y [ 0 ] = a0 + roo t [ 0 ]∗ ( a1 + r oo t [ 0 ]∗ a2 ) ;
po l y [ 1 ] = a0 + roo t [ 1 ]∗ ( a1 + r oo t [ 1 ]∗ a2 ) ;

r oo tPrev [ 0 ] = NextDown ( r o o t [ 0 ] ) ; // −1009.9020 (0 xc47c79bb )
r o o tCu r r [ 0 ] = r o o t [ 0 ] ; // −1009.9020 (0 xc47c79ba )
r oo tNext [ 0 ] = NextUp ( r o o t [ 0 ] ) ; // −1009.9019 (0 xc47c79b9 )
po l yPrev [ 0 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 0 ] ) ; // +3.8622883 e−8 (0 x3325e24f )
po l yCu r r [ 0 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 0 ] ) ; // −2.3621011e−8 (0 xb2cae727 )
po l yNext [ 0 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 0 ] ) ; // −8.5864897e−8 (0 xb3b864ba )

r oo tPrev [ 1 ] = NextDown ( r o o t [ 1 ] ) ; // +9.9019375 (0 x411e6e56 )
r o o tCu r r [ 1 ] = r o o t [ 1 ] ; // +9.9019384 (0 x411e6e57 )
r oo tNext [ 1 ] = NextUp ( r o o t [ 1 ] ) ; // +9.9019394 (0 x411e6e58 )
po l yPrev [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 1 ] ) ; // −1.3455720e−8 (0 xb2672ae2 )
po l yCu r r [ 1 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 1 ] ) ; // −1.2483159e−8 (0 xb2567584 )
po l yNext [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 1 ] ) ; // −1.1510599e−8 (0 xb245c026 )

// Mod i f i ed f o rmu l a .
f l o a t temp = −0.5 f ∗( a1 + r o o tD i s c r im i n a n t ) ;
r o o t [ 0 ] = temp/a2 ;
r o o t [ 1 ] = a0/temp ;
po l y [ 0 ] = a0 + roo t [ 0 ]∗ ( a1 + r oo t [ 0 ]∗ a2 ) ;
po l y [ 1 ] = a0 + roo t [ 1 ]∗ ( a1 + r oo t [ 1 ]∗ a2 ) ;

// 0− i ndexed va l u e s same as f o r o r i g i n a l f o rmu l a .

r oo tPrev [ 1 ] = NextDown ( r o o t [ 1 ] ) ; // +9.9019499 (0 x411e6e63 )
r o o tCu r r [ 1 ] = r o o t [ 1 ] ; // +9.9019508 (0 x411e6e64 )
r oo tNext [ 1 ] = NextUp ( r o o t [ 1 ] ) ; // +9.9019518 (0 x411e6e65 )
po l yPrev [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 1 ] ) ; // −8.1242973e−10 (0 xb05f51a9 )
po l yCu r r [ 1 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 1 ] ) ; // +1.6013110 e−10 (0 x2f3010e6 )
po l yNext [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 1 ] ) ; // +1.1326919 e−09 (0 x309bad0e )

LISTING 2.32: Subtractive cancellation in floating-point arithmetic.
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The 0-index roots are the same for the two methods but the 1-index roots
differ. In fact, the roots have trailing significands that differ by seven, which
amounts to a floating-point difference of 1/221+1/222+1/223

.
= 8.34465e−7.

The pseudocode shows the two floating-point neighbors of the 0-index
root, namely, rootPrev[0] and rootNext[0]. Observe that the polynomial values
at those points have opposite signs, which means that zero lies between them
(in terms of infinite precision). The polynomial value at the computed root is
nearly zero and has a magnitude smaller than that of the polynomial value
at the root’s next-up neighbor. Thus, the floating-point value computed for
the root is the best that you can do in terms of 32-bit float and polynomial
evaluation defined as it is.

The pseudocode also shows the two floating-point neighbors of the 1-index
root computed using the original quadratic formula. Observe that the polyno-
mial value at that root is nearly zero. However, the two floating-point neigh-
bors of the root have polynomial values of the same sign as that of the root,
so the next-down and next-up values do not bound a root (in terms of infinite
precision). The modified formula does lead to a floating-point approxima-
tion to the root whose next-down and next-up values do bound the infinite
precision root. This is clear by observing that the polynomial values at the
neighbors have opposite signs and the magnitude of the polynomial value at
the estimated root is smaller than the magnitudes of the polynomial values at
the neighbors.

Notice that the original formula uses one division but the modified formula
uses two divisions. Thus, the modified formula is more expensive to compute,
but it gives a better estimate of the root. If you polish the root from the
original formula using one iteration of Newton’s method, you obtain the root
produced by the modified method.

// r o o t [ 1 ] = +9.9019384 (0 x411e6e57 )
// po l y [ 1 ] = −1.2483159e−008
r o o t [ 1 ] −= po l y [ 1 ] / ( a1 + roo t [ 1 ]∗ ( 2 . 0 f∗a2 ) ) ;
po l y [ 1 ] = a0 + roo t [ 1 ]∗ ( a1 + r oo t [ 1 ]∗ a2 ) ;
// r o o t [ 1 ] = +9.9019508 (0 x411e6e64 )
// po l y [ 1 ] = +1.6013110 e−010

The root polishing involves a second division, so in effect the original for-
mula plus one Newton iteration gets you to the same place. Here are sev-
eral questions for investigation. The assumption is that the quadratic coeffi-
cients are chosen so that the root estimates involve only finite floating-point
numbers—that is, NaNs and infinities are not generated.

Exercise 2.21 Let r0 be a root estimate from the original formula. Let f(r) =
a0+ r(a1 + ra2) be the floating-point expression used to evaluate the quadratic
polynomial. Let r1 = r0 − f(r0)/(a1 + r0(2a2)). Let r2 be an estimate for the
same root using the modified formula. Is it always true that r1 = r2?

Exercise 2.22 If the answer to the previous question is false, what is the
maximum number of Newton iterations that leads to the root estimate of the
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modified formula? Is it ever possible for the Newton iterates to cycle, thus
preventing convergence to an estimated root?

Exercise 2.23 Let r be a root estimate from the modified formula. Let rd
be the next-down neighbor of r and let ru be the next-up neighbor of r. Let
f(r) = a0 + r(a1 + ra2) be the floating-point expression used to evaluate the
quadratic polynomial. Is it always true that f(rd)f(ru) ≤ 0 and |f(r)| =
min{|f(rd)|, |f(r)|, |f(ru)|}?

The leading coefficient is chosen to be very small. Listing 2.33 shows how
bad the subtractive cancellation can be.

f l o a t a0 = −0.01 f ; // 0 xbc23d70a
f l o a t a1 = 0.001 f ; // 0 x3a83126f
f l o a t a2 = 10 .0 f∗FLT MIN ; // 1.1754944 e−37 (0 x02200000 )
f l o a t d i s c r im i n a n t = a1∗a1 − 4 .0 f∗a0∗a2 ; // i s p o s i t i v e
f l o a t r o o tD i s c r i m i n a n t = s q r t f ( d i s c r i m i n a n t ) ;
f l o a t r o o t [ 2 ] , r oo tPrev [ 2 ] , r oo tNext [ 2 ] ;
f l o a t po l y [ 2 ] , po l yPrev [ 2 ] , po l yNext [ 2 ] ;
// Va lue ( a0 , a1 , a2 , r ) = a0 + r ∗( a1 + r∗a2 )

// O r i g i n a l f o rmu l a .
f l o a t invTwoA2 = 0 .5 f /a2 ;
r o o t [ 0 ] = (−a1 − r o o tD i s c r im i n a n t )∗ invTwoA2 ;
r o o t [ 1 ] = (−a1 + r o o tD i s c r im i n a n t )∗ invTwoA2 ;
po l y [ 0 ] = a0 + roo t [ 0 ]∗ ( a1 + r oo t [ 0 ]∗ a2 ) ;
po l y [ 1 ] = a0 + roo t [ 1 ]∗ ( a1 + r oo t [ 1 ]∗ a2 ) ;

r oo tPrev [ 0 ] = NextDown ( r o o t [ 0 ] ) ; // −8.5070602e+33 (0 xf7d1b719 )
r o o tCu r r [ 0 ] = r o o t [ 0 ] ; // −8.5070596e+33 (0 xf7d1b718 )
r oo tNext [ 0 ] = NextUp ( r o o t [ 0 ] ) ; // −8.5070590e+33 (0 xf7d1b717 )
po l yPrev [ 0 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 0 ] ) ; // +6.1897012 e+23 (0 x67031270 )
po l yCu r r [ 0 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 0 ] ) ; // −0.0099999998 (0 xbc23d70a )
po l yNext [ 0 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 0 ] ) ; // −6.1896998e+23 (0 xe703126e )

r oo tPrev [ 1 ] = NextDown ( r o o t [ 1 ] ) ; // −1.401e−45#DEN (0 x80000001 )
r o o tCu r r [ 1 ] = r o o t [ 1 ] ; // 0.00000000 (0 x00000000 )
r oo tNext [ 1 ] = NextUp ( r o o t [ 1 ] ) ; // +1.401e−45#DEN (0 x00000001 )
po l yPrev [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 1 ] ) ; // −0.0099999998 (0 xbc23d70a )
po l yCu r r [ 1 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 1 ] ) ; // −0.0099999998 (0 xbc23d70a )
po l yNext [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 1 ] ) ; // −0.0099999998 (0 xbc23d70a )

// Mod i f i ed f o rmu l a .
f l o a t temp = −0.5 f ∗( a1 + r o o tD i s c r im i n a n t ) ;
r o o t [ 0 ] = temp/a2 ;
r o o t [ 1 ] = a0/temp ;
po l y [ 0 ] = a0 + roo t [ 0 ]∗ ( a1 + r oo t [ 0 ]∗ a2 ) ;
po l y [ 1 ] = a0 + roo t [ 1 ]∗ ( a1 + r oo t [ 1 ]∗ a2 ) ;

// 0− i ndexed va l u e s same as f o r o r i g i n a l f o rmu l a .

r oo tPrev [ 1 ] = NextDown ( r o o t [ 1 ] ) ; // +9.9999981 (0 x 4 1 1 f f f f e )
r o o tCu r r [ 1 ] = r o o t [ 1 ] ; // +9.9999990 (0 x 4 1 1 f f f f f )
r oo tNext [ 1 ] = NextUp ( r o o t [ 1 ] ) ; // +10.000000 (0 x41200000 )
po l yPrev [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 1 ] ) ; // −1.2088568e−09 (0 xb0a624de )
po l yCu r r [ 1 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 1 ] ) ; // −2.5518243e−10 (0 xa f8c49bc )
po l yNext [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 1 ] ) ; // +6.9849193 e−10 (0 x30400000 )

LISTING 2.33: Another example of subtractive cancellation and how bad
it can be.



CPU Computing 87

The original formula estimates a root of 0.0 with corresponding polynomial
value−0.0099999998. The coefficient a0 = 0.001 cannot be exactly represented
in floating point, so the polynomial value is a0 as represented in floating point.
The modified formula estimates a root of 9.9999990, which is much different
from 0.0. The corresponding polynomial value is −2.5518243e−010, which is
closer to zero than the polynomial value for the estimated root obtained by
the original formula.

Once again observe that the next-down and next-up values for the esti-
mated root using the modified formula produce polynomial values of opposite
sign. Moreover, the magnitude of the polynomial value at the estimate root is
smaller than the magnitudes of the polynomial values at the neighbors. The
modified formula is the best you can do for estimating the root using 32-bit
floats.

The estimated root from the original formula appears to be quite bad. How
bad is it? Well, try polishing the root with one iteration of Newton’s method.

// r o o t [ 1 ] = 0.00000000 (0 x00000000 )
// po l y [ 1 ] = −0.0099999998 (0 xbc23d70a )
r o o t [ 1 ] −= po l y [ 1 ] / ( a1 + roo t [ 1 ]∗ ( 2 . 0 f∗a2 ) ) ;
po l y [ 1 ] = a0 + roo t [ 1 ]∗ ( a1 + r oo t [ 1 ]∗ a2 ) ;
// r o o t [ 1 ] = +9.9999990 (0 x 4 1 1 f f f f f )
// po l y [ 1 ] = −2.5518243e−010 (0 xa f8c49bc )

Once again we have obtained the estimated root of the modified formula
with only a single iteration. Perhaps the estimated root of the original formula
appeared to be inaccurate, but the root polishing appears to indicate that it
was close enough to quickly refine it to a good estimate.

An issue to be aware of for the modified formula is when a1 = 0. The
quadratic equation is a2x

2 + a0 = 0. When there are real-valued roots, they
must be x = ±

√

−a0/a2. One root is the negative of the other (when a0 �= 0).
The modified formula, however, will estimate two roots that are not negatives
of each other, as shown in Listing 2.34.

f l o a t a0 = −0.01 f ; // 0 xbc23d70a
f l o a t a1 = 0 .0 f ; // 0x00000000
f l o a t a2 = 0.001 f ; // 0 x3a83126f
f l o a t d i s c r im i n a n t = a1∗a1 − 4 .0 f∗a0∗a2 ; // i s p o s i t i v e
f l o a t r o o tD i s c r i m i n a n t = s q r t f ( d i s c r i m i n a n t ) ;
f l o a t r o o t [ 2 ] , r oo tPrev [ 2 ] , r oo tNext [ 2 ] ;
f l o a t po l y [ 2 ] , po l yPrev [ 2 ] , po l yNext [ 2 ] ;
// Va lue ( a0 , a1 , a2 , r ) = a0 + r ∗( a1 + r∗a2 )

// O r i g i n a l f o rmu l a .
f l o a t invTwoA2 = 0 .5 f /a2 ;
r o o t [ 0 ] = (−a1 − r o o tD i s c r im i n a n t )∗ invTwoA2 ;
r o o t [ 1 ] = (−a1 + r o o tD i s c r im i n a n t )∗ invTwoA2 ;
po l y [ 0 ] = a0 + roo t [ 0 ]∗ ( a1 + r oo t [ 0 ]∗ a2 ) ;
po l y [ 1 ] = a0 + roo t [ 1 ]∗ ( a1 + r oo t [ 1 ]∗ a2 ) ;

r oo tPrev [ 0 ] = NextDown ( r o o t [ 0 ] ) ; // −3.1622779 (0 xc04a62c3 )
r o o tCu r r [ 0 ] = r o o t [ 0 ] ; // −3.1622777 (0 xc04a62c2 )
r oo tNext [ 0 ] = NextUp ( r o o t [ 0 ] ) ; // −3.1622775 (0 xc04a62c1 )
po l yPrev [ 0 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 0 ] ) ; // +2.4489206 e−09 (0 x312849de )
po l yCu r r [ 0 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 0 ] ) ; // +9.4102892 e−10 (0 x30815583 )
po l yNext [ 0 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 0 ] ) ; // −5.6686256e−10 (0 xb01bd168 )
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r oo tPrev [ 1 ] = NextDown ( r o o t [ 1 ] ) ; // +3.1622775 (0 x404a62c1 )
r o o tCu r r [ 1 ] = r o o t [ 1 ] ; // +3.1622777 (0 x404a62c2 )
r oo tNext [ 1 ] = NextUp ( r o o t [ 1 ] ) ; // +3.1622779 (0 x404a62c3 )
po l yPrev [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 1 ] ) ; // −5.6686256e−10 (0 xb01bd168 )
po l yCu r r [ 1 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 1 ] ) ; // +9.4102892 e−10 (0 x30815583 )
po l yNext [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 1 ] ) ; // +2.4489206 e−09 (0 x312849de )

// Mod i f i ed f o rmu l a .
f l o a t temp = −0.5 f ∗( a1 + r o o tD i s c r im i n a n t ) ;
r o o t [ 0 ] = temp/a2 ;
r o o t [ 1 ] = a0/temp ;
po l y [ 0 ] = a0 + roo t [ 0 ]∗ ( a1 + r oo t [ 0 ]∗ a2 ) ;
po l y [ 1 ] = a0 + roo t [ 1 ]∗ ( a1 + r oo t [ 1 ]∗ a2 ) ;

// 0− i ndexed va l u e s same as f o r o r i g i n a l f o rmu l a .

r oo tPrev [ 1 ] = NextDown ( r o o t [ 1 ] ) ; // +3.1622772 (0 x404a62c0 )
r o o tCu r r [ 1 ] = r o o t [ 1 ] ; // +3.1622775 (0 x404a62c1 )
r oo tNext [ 1 ] = NextUp ( r o o t [ 1 ] ) ; // +3.1622777 (0 x404a62c2 )
po l yPrev [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 1 ] ) ; // −2.0747539e−09 (0 xb10e9375 )
po l yCu r r [ 1 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 1 ] ) ; // −5.6686256e−10 (0 xb01bd168 )
po l yNext [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 1 ] ) ; // +9.4102892 e−10 (0 x30815583 )

LISTING 2.34: Numerically incorrect quadratic roots when using the mod-
ified quadratic formula.

The original formula estimates two roots, one the negative of the other.
Notice that the next-down and next-up values for the 0-index root have op-
posite sign polynomial values, so next-down and next-up bound the root (as
an infinite precision value). However, the magnitude of the polynomial value
at the estimated root is larger than the magnitude of the polynomial value at
the next-up neighbor.

The modified formula estimates two roots, one not the negative of the
other, but they are sufficiently close in magnitude. The next-down and next-
up values for the 1-index root have opposite-sign polynomial values and the
magnitude of the polynomial value at the estimated root is smaller than the
magnitudes of the polynomial values at the neighbors. But as in the other
examples, one Newton iterate applied to the 1-index estimated root from the
original formula will polish the root to be the 1-index estimated root from the
modified formula.

One Newton iterate to polish the 0-index root produces an estimated root
of −3.162775. The polished roots are negatives of each other.

2.5.5.2 Have a Nice Stay!

In the previous section, root polishing was used for the estimated roots
obtained from the original formula. In each of the two examples, a single
Newton iterate was sufficient to produce the estimated root obtained from
the modified formula.

Generally, you might be tempted to polish roots regardless of the formula
used. Naturally, you want an estimate for which the polynomial value is close
to zero. Be very careful here. Suppose you chose a small threshold ε > 0 for
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which you want the estimated root r to satisfy |f(r)| < ε. Being mathematical,
this is a natural thing to try.

f l o a t a0 = <something >, a1 = <something >, a2 = <something >;
f l o a t r o o t = <e s t ima ted us i ng o r i g i n a l or mod i f i e d formula >;
f l o a t po l y = a0 + roo t ∗( a1 + r oo t∗a2 ) ;
const f l o a t myPo l yEps i l on = 1e−06 f ;
wh i l e ( f a b s f ( po l y ) > myPo l yEps i l on )
{

f l o a t p o l y D e r i v a t i v e = a1 + roo t ∗ (2 .0 f ∗a2 ) ;
r o o t −= po l y / p o l yD e r i v a t i v e ;
po l y = a0 + roo t ∗( a1 + r oo t∗a2 ) ;

}

In many cases, you will be waiting a very long time for your program to
terminate—a very long time, as this is an infinite loop. It is better to limit the
number of iterations by a user-specified loop maximum. Even better, use a
std::set to store the visited root candidates. When a candidate already exists in
the set, you have a cycle of numbers, in which case you can terminate the root
finding and report the number whose corresponding function value is closest
to zero.

2.5.5.3 The Best I Can Do Is That Bad?

Listing 2.35 is an example that shows the best you can do in finding roots
but where one of the roots looks to be absolutely wrong.

f l o a t a0 = 1.3852034 e−27 f ; // 0x12db7e87
f l o a t a1 = 0.00013351663 f ; // 0 x390c0099
f l o a t a2 = 3.0170867 e−38 f ; // 0x0124440d
f l o a t d i s c r im i n a n t = a1∗a1 − 4 .0 f∗a0∗a2 ; // i s p o s i t i v e
f l o a t r o o tD i s c r i m i n a n t = s q r t f ( d i s c r i m i n a n t ) ;
f l o a t r o o t [ 2 ] , r oo tPrev [ 2 ] , r oo tNext [ 2 ] ;
f l o a t po l y [ 2 ] , po l yPrev [ 2 ] , po l yNext [ 2 ] ;
// Va lue ( a0 , a1 , a2 , r ) = a0 + r ∗( a1 + r∗a2 )

// Mod i f i ed f o rmu l a .
f l o a t temp = −0.5 f ∗( a1 + r o o tD i s c r im i n a n t ) ;
r o o t [ 0 ] = temp/a2 ;
r o o t [ 1 ] = a0/temp ;
po l y [ 0 ] = a0 + roo t [ 0 ]∗ ( a1 + r oo t [ 0 ]∗ a2 ) ;
po l y [ 1 ] = a0 + roo t [ 1 ]∗ ( a1 + r oo t [ 1 ]∗ a2 ) ;

r oo tPrev [ 0 ] = NextDown ( r o o t [ 0 ] ) ; // −4.4253497e+33 (0 x f 7 5 a 2 f c 4 )
r o o tCu r r [ 0 ] = r o o t [ 0 ] ; // −4.4253494e+33 (0 x f 7 5 a 2 f c 3 )
r oo tNext [ 0 ] = NextUp ( r o o t [ 0 ] ) ; // −4.4253491e+33 (0 x f 7 5 a 2 f c 2 )
po l yPrev [ 0 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 0 ] ) ; // +2.1253151 e+22 (0 x64900457 )
po l yCu r r [ 0 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 0 ] ) ; // −2.0068245e+22 (0 xe487fcdb )
po l yNext [ 0 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 0 ] ) ; // −6.1389634e+22 (0 x e 5 4 f f f 0 5 )

r oo tPrev [ 1 ] = NextDown ( r o o t [ 1 ] ) ; // −1.0374764e−23 (0 x9948ad58 )
r o o tCu r r [ 1 ] = r o o t [ 1 ] ; // −1.0374763e−23 (0 x9948ad57 )
r oo tNext [ 1 ] = NextUp ( r o o t [ 1 ] ) ; // −1.0374763e−23 (0 x9948ad56 )
po l yPrev [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 1 ] ) ; // −2.0747539e−09 (0 x870f9998 )
po l yCu r r [ 1 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 1 ] ) ; // −5.6686256e−10 (0 x84663fc0 )
po l yNext [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 1 ] ) ; // +9.4102892 e−10 (0 x0708679a )

LISTING 2.35: An example of correct root finding, although at first glance
they look incorrect.
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The 0-index root estimate is −4.4253494e + 33, which is quite large in
magnitude, and the polynomial value at the root is −2.0068245e+22, which is
also quite large in magnitude. When you first see the result, you will probably
tell yourself that there is a bug somewhere in your code. However, observe that
the next-down and next-up values for the estimated root have opposite-sign
polynomial values, so the infinite-precision root is bounded by next-up and
next-down. Moreover, the magnitude of the polynomial value at the estimated
root is smaller than the magnitudes of the polynomial values at the neighbors.
This is the best you can do.

This example just emphasizes how sparse the floating-point numbers are
on the real line when those numbers are large in magnitude.

If you repeat the experiment using 64-bit doubles, the results are more
what you expect. The coefficients are the exact 64-bit representations of the
32-bit values of the last code block. Listing 2.36 shows the results.

doub le a0 = 1.3852034457886450e−27;
doub le a1 = 0.00013351663073990494;
doub le a2 = 3.0170866780915123e−38;
doub le d i s c r im i n a n t = a1∗a1 − 4.0∗ a0∗a2 ; // i s p o s i t i v e
doub le r o o tD i s c r im i n a n t = s q r t ( d i s c r i m i n a n t ) ;
doub le r o o t [ 2 ] , r oo tPrev [ 2 ] , r oo tNext [ 2 ] ;
doub le po l y [ 2 ] , po l yPrev [ 2 ] , po l yNext [ 2 ] ;
// Va lue ( a0 , a1 , a2 , r ) = a0 + r ∗( a1 + r∗a2 )

// Mod i f i ed f o rmu l a .
doub le temp = −0.5∗( a1 + r o o tD i s c r im i n a n t ) ;
r o o t [ 0 ] = temp/a2 ;
r o o t [ 1 ] = a0/temp ;
po l y [ 0 ] = a0 + roo t [ 0 ]∗ ( a1 + r oo t [ 0 ]∗ a2 ) ;
po l y [ 1 ] = a0 + roo t [ 1 ]∗ ( a1 + r oo t [ 1 ]∗ a2 ) ;

r oo tPrev [ 0 ] = NextDown ( r o o t [ 0 ] ) ; // −4.4253495171163665 e+33
r o o tCu r r [ 0 ] = r o o t [ 0 ] ; // −4.4253495171163659 e+33
r oo tNext [ 0 ] = NextUp ( r o o t [ 0 ] ) ; // −4.4253495171163653 e+33
po l yPrev [ 0 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 0 ] ) ; // 119949339011631.06
po l yCu r r [ 0 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 0 ] ) ; // 1.3852034457886450e−27
po l yNext [ 0 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 0 ] ) ; // −119949339011631.03

r oo tPrev [ 1 ] = NextDown ( r o o t [ 1 ] ) ; // −1.0374763339310665 e−23
r o o tCu r r [ 1 ] = r o o t [ 1 ] ; // −1.0374763339310664 e−23
r oo tNext [ 1 ] = NextUp ( r o o t [ 1 ] ) ; // −1.0374763339310662 e−23
po l yPrev [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tPrev [ 1 ] ) ; // −1.7936620343357659 e−43
po l yCu r r [ 1 ] = Va lue ( a0 , a1 , a2 , r o o tCu r r [ 1 ] ) ; // 0.00000000000000000
po l yNext [ 1 ] = Va lue ( a0 , a1 , a2 , r oo tNext [ 1 ] ) ; // 1.7936620343357659e−43

LISTING 2.36: The example of Listing 2.35 but computed using double-
precision numbers. The hexadecimal encodings are omitted here.

This shows that having a very large number of 64-bit floating-point
numbers between the 32-bit floating-point next-down and next-up of the
previous code block allows you to produce a precise estimate of the 0-
index root (−4.4253495171163659e+33) with a polynomial value nearly zero
(1.3852034457886450e−27).
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2.5.5.4 You Have Been More Than Helpful

There is a tendency to think that you can help the compiler in its optimiza-
tion by factoring out subexpressions, thus avoiding redundant computations.
You do this by computing the subexpressions and storing in temporary local
variables. For example,

f l o a t x = <something >, y = <something >, z = <something >;

// O r i g i n a l e x p r e s s i o n s . F i ve a r i t hm e t i c o p e r a t i o n s (when unop t im i z ed ) .
f l o a t e x p r e s s i o n 1 = x∗y∗z ;
f l o a t e x p r e s s i o n 2 = x∗y∗( z + 1 .0 f ) ;

// Try i ng to be h e l p f u l to the comp i l e r . Three a r i t hm e t i c o p e r a t i o n s ( hand
// op t im i z ed ) .
f l o a t xyProduct = x∗y ;
f l o a t e x p r e s s i o n 1 = xyProduct ∗z ;
f l o a t e x p r e s s i o n 2 = e x p r e s s i o n 1 + xyProduct ;

Be careful! If x and y are very large numbers, explicitly computing xyProduct

can lead to problems, as the following example illustrates.

f l o a t l a r g e 1 = 1 .1 e+24 f ; // 0 x6768 e f 1 f
f l o a t l a r g e 2 = 2 .2 e+24 f ; // 0 x67 e8 e f 1 f
f l o a t sma l l = 1e−12 f ; // 0 x2b8cbccc

// I n t e r n a l l y , r i g h t−hand s i d e i s computed u s i n g 64−b i t doub le , a vo i d i n g the
// 32−b i t f l o a t o v e r f l ow i n the p roduct l a r g e 1∗ l a r g e 2 . The r e s u l t i s
// i n the normal range f o r 32−b i t f l o a t . The f l o a t i n g−po i n t p r o c e s s o r
// s i g n a l s ” i n e x a c t ” because the 64−b i t r e s u l t i s not e x a c t l y
// r e p r e s e n t a b l e as a 32−b i t number , so round ing−to−n ea r e s t i s a p p l i e d .
f l o a t p roduct1 = l a r g e 1∗ l a r g e 2∗ sma l l ; // 2.4200001 e+36 (0 x7be9099c )

// I n t e r n a l l y , r i g h t−hand s i d e i s computed u s i n g 64−b i t doub le , a vo i d i n g the
// 32−b i t f l o a t o v e r f l ow . However , the 64− b i t r e s u l t i s l a r g e r than
// 32−b i t i n f i n i t y , so the con v e r s i o n back to 32−b i t f l o a t f a i l s . The
// f l o a t i n g−po i n t p r o c e s s o r s i g n a l s ” o v e r f l ow ” and ” i n e x a c t ” and a s s i g n s
// i n f i n i t y to temp .
f l o a t temp = l a r g e 1∗ l a r g e 2 ; // 1.#INF000 (0 x7f800000 )

// Too l a t e . temp i s i n f i n i t y and the p roduct on the r i g h t−hand s i d e
// r ema in s i n f i n i t y ( no s i g n a l g ene ra ted by the f l o a t i n g−po i n t p r o c e s s o r ) .
// Mathemat i ca l l y , p r oduct1 and p roduct2 a r e the ”same” but the
// f l o a t i n g−po i n t c a l c u l a t i o n s l e a d to d i f f e r e n t v a l u e s .
f l o a t p roduct2 = temp∗ sma l l ; // 1.#INF000 (0 x7f800000 )

// The r i g h t−hand s i d e f o r computing p roduct1 i n 64−b i t .
doub le d l a r g e1 = ( doub le ) l a r g e 1 ;
doub le d l a r g e2 = ( doub le ) l a r g e 2 ;
doub le dsma l l = ( doub le ) sma l l ;
doub le dproduct1 = d l a r g e1 ∗ d l a r g e2 ∗ sma l l ;
// 2.4200001207672320e+036
// 0 x477d21337c642a3d
// f = 2ˆ{120} ∗ 1.11010010000100110011100
// d = 2ˆ{120} ∗ 1.110100100001001101111100011001000010101000111101
// ˆ
// f i r s t mismatch
// Rounding e r r o r i s a p p r o x ima t e l y 2ˆ{120}∗2ˆ{−21} = 2ˆ{99} .

The last part of the code shows that the rounding error in computing
product1 is very large, but this is most likely preferable to having an indeter-
minate result of infinity.
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2.5.5.5 Hardware and Optimizing Compiler Issues

Optimizing compilers can generate a different order of operations than
what you might have specified (without parentheses), which can affect the
final result. The optimizer interferes with carefully written code that deals
with rounding and overflow. If you have carefully designed expressions to be
evaluated in a certain order, use parentheses to force that order.

Subnormals can cause a switch from hardware to microcode, leading to
slow execution.

As shown in the example for GPU root finding, the hardware/drivers might
not be compliant with the IEEE 754-2008 standard.

Intermediate calculations in 80-bit registers might be temporary stored in
a 32-bit register for later use. The programmer cannot control this because
the compiler generates the code and (usually) does not provide the ability
to give hints about what you want to happen. Until language groups agree
on providing explicit control to programmers, such as /fp:precise for Microsoft
Visual Studio regarding compiled code, you might have to resort to assembly
instructions or platform- and compiler-specific solutions.

Attempts to compute functions such as fast inverse sqrt on CPUs such as
the PowerPC might not work as you see on Intel CPUs. For example, fast
invsqrt on the PowerPC has load-hit-store penalties when trying to access
a union—the value is manipulated as an unsigned int but then as a float, so
different registers must be read and written. This is particularly a problem on
game consoles, so you might as well skip the fast method and use hardware-
provided alternatives.



Chapter 3

SIMD Computing

3.1 Intel Streaming SIMD Extensions

Current CPUs have small-scale parallel support for 3D mathematics com-
putations using single-instruction-multiple-data (SIMD) computing. The pro-
cessors provide 128-bit registers, each register storing four 32-bit float values.
The fundamental concepts are

• to provide addition and multiplication of four numbers simultaneously
(a single instruction applied to multiple data) and

• to allow shuffling, sometimes called swizzling, of the four components.

Of course, such hardware has support for more than just these operations.
In this section I will briefly summarize the SIMD support for Intel CPUs,

discuss a wrapper class that GTEngine has, and cover several approximations
to standard mathematics functions. The latter topic is necessary because many
SIMD implementations do not provide instructions for the standard functions.
This is true for Intel’s SIMD, and it is true for Direct3D 11 GPU hardware.
You might very well find that you have to implement approximations for both
the GPU and SIMD on the CPU.

The original SIMD support on Intel CPUs is called Intel Streaming SIMD
Extensions (SSE). New features were added over the years, and with each
the version number was appended to the acronym. Nearly everything I do
with GTEngine requires the second version, SSE2. To access the support for
programming, you simply need to include two header files,

#in c l u d e <xmmintr in . h>
#in c l u d e <emmintr in . h>

These give you access to data types for the registers and compiler intrinsics
that allow you to use SIMD instructions within your C++ programs.

The main data type is the union m128 whose definition is found in
xmmintrin.h. It has a special declaration so that it is 16-byte aligned, a re-
quirement to use SSE2 instructions. If you require dynamic allocation to cre-
ate items of this type, you can use Microsoft’s aligned malloc and aligned free.
SSE2 provides also its own wrappers for aligned allocations, mm malloc and
mm free.
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The online MSDN documentation has many pages about the intrinsics
available to you. I will not list them all here, but I will talk about the ones I
use to illustrate the basic concepts. The instructions are prefixed with mm.
For example, to load two 128-bit registers and add them as 4-tuples,

m128 v0 = mm set ps ( 3 . 0 f , 2 . 0 f , 1 . 0 f , 0 . 0 f ) ; // v0 = (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f )
m128 v1 = mm set ps1 ( 4 . 0 f ) ; // v1 = (4 . 0 f , 4 . 0 f , 4 . 0 f , 4 . 0 f )
m128 sum = mm add ps ( v0 , v1 ) ; // sum = (4 . 0 f , 5 . 0 f , 6 . 0 f , 7 . 0 f )

Notice that the order of the numbers in the loading of v0 is reversed from
what you are used to. You will need to be careful about this reversal when
looking at a m128 object in a debugger watch window. If you want to load
them using the reversed order, you can use the mm setr ps instruction.

3.1.1 Shuffling Components

Shuffling of components of mm128 is supported by the instruction
mm shuffle ps and the MM SHUFFLE macro,

#de f i n e MM SHUFFLE( i3 , i2 , i 1 , i 0 )\
( i 0 ) | ( ( i 1 ) << 2) | ( ( i 2 ) << 4) | ( ( i 3 ) << 6)

m128 a ; // ( a [ 0 ] , a [ 1 ] , a [ 2 ] , a [ 3 ] ) = mm set ps ( a [ 3 ] , a [ 2 ] , a [ 1 ] , a [ 0 ] )
m128 b ; // ( b [ 0 ] , b [ 1 ] , b [ 2 ] , b [ 3 ] ) = mm set ps ( b [ 3 ] , b [ 2 ] , b [ 1 ] , b [ 0 ] )
m128 r e s u l t = mm shu f f l e p s ( v0 , v1 , MM SHUFFLE ( i3 , i2 , i 1 , i 0 ) ) ;

// = ( a [ i 0 ] , a [ i 1 ] , b [ i 2 ] , b [ i 3 ] ) = mm set ps ( b [ i 3 ] , b [ i 2 ] , a [ i 1 ] , a [ i 0 ] )

The MM SHUFFLE is defined in xmmintrin.h for convenience. Each input to the
macro is a number from zero to three, so you need only two bits per number.
The macro hides the shifting and OR-ing that builds a single 8-bit number
that represents your selection.

Shuffling can be used to compute a dot product of 4-tuples, as shown in
Listing 3.1.

m128 Dot ( m128 const v0 , m128 const v1 )
{

// v0 = ( x0 , y0 , z0 , w0)
// v1 = ( x1 , y1 , z1 , w1)
// dot ( v0 , v1 ) = x0∗x1 + y0∗y1 + z0∗z1 + w0∗w1

// ( x0∗x1 , y0∗y1 , z0∗z1 , w0∗w1)
m128 t0 = mm mul ps ( v0 , v1 ) ;

// ( y0∗y1 , x0∗x1 , w0∗w1 , z0∗z1 )
m128 t1 = mm shu f f l e p s ( t0 , t0 , MM SHUFFLE (2 , 3 , 0 , 1 ) ) ;

// ( x0∗x1 + y0∗y1 , x0∗x1 + y0∗y1 , z0∗z1 + w0∗w1 , z0∗z1 + w0∗w1)
m128 t2 = mm add ps ( t0 , t1 ) ;

// ( z0∗z1 + w0∗w1 , z0∗z1 + w0∗w1 , x0∗x1 + y0∗y1 , x0∗x1 + y0∗y1 )
m128 t3 = mm shu f f l e p s ( t2 , t2 , MM SHUFFLE (0 , 0 , 2 , 2 ) ) ;

// ( dot , dot , dot , dot )
m128 do tSp l a t = mm add ps ( t2 , t3 ) ;

r e tu r n do tSp l a t ;
}

LISTING 3.1: Computing a dot product of 4-tuples using SSE2.



SIMD Computing 95

The parallel multiplication is the obvious first step to compute. The technical
problem is to sum the components after the multiplication. To do so, you
must shuffle the components and perform additions. The use of the word splat
indicates that each channel of a 4-tuple is set to the same number. The dot
product, which is a scalar, is splatted across all four components of the result.

Notice that the final result is itself stored in a 128-bit register. If you need
to consume the scalar value of the dot product, you must extract it from the
register,

m128 do tSp l a t = Dot ( v0 , v1 ) ;
f l o a t dot = do tSp l a t . m128 f32 [ 0 ] ;

The dot-product calculations are all performed in 128-bit registers. As soon
as you extract a component, you break the SIMD pipeline, so to speak. This is
a performance loss if you were to continue processing the data in the 128-bit
registers for your final results. I discuss this concept later in the section.

3.1.2 Single-Component versus All-Component Access

In the dot-product code of Listing 3.1, the instructions worked in parallel
on all four components. For example, mm add ps adds two 4-tuples and returns
a 4-tuple. The suffix ps indicates that the operation applies to all components.
It is possible to execute on the first component without extracting that single
component to a CPU register. The instructions supporting this have suffix ss.
For example,

m128 v0 ; // ( x0 , y0 , z0 , w0)
m128 v1 ; // ( x1 , y1 , z1 , w1)
m128 sumFi r s tKeepOthe r s = mm add ss ( v0 , v1 ) ; // ( x0 + x1 , y0 , z0 , w0)

The single-component instructions used with shuffling can lead to computa-
tions that have a heterogeneous flavor about them; that is, you can compute
in the first channel, shuffle it to the fourth channel, compute in the first chan-
nel, shuffle it to the third channel, and so on until you have four channels
filled with your desired computations. For example, you might build a 4-tuple
(f0(x), f1(x), f2(x), f3(x)) in this manner for four different functions fi(x).

3.1.3 Load and Store Instructions

We already saw the initialization functions mm set ps and mm setr ps that
set the four channels of a m128 object. And we saw mm set ps1 that sets the
channels to the same scalar. You might need to load the channels of a m128

from values in an array. You might also want to store the channels to an array.

// Load from CPU to m128 . DO NOT USE THIS CODE.
f l o a t numbers [ 4 ] = { 0 .0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f } ;
m128 v = mm load ps ( numbers ) ; // v = (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f )
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// Save from m128 to CPU . DO NOT USE THIS CODE.
v = mm shu f f l e p s ( v , v , MM SHUFFLE ( 0 , 1 , 2 , 3 ) ) ; // Reve r s e component o r d e r .
f l o a t otherNumbers [ 4 ] ;
mm s to r e p s ( otherNumbers , v ) ; // otherNumbers = {3.0 f , 2 . 0 f , 1 . 0 f , 0 . 0 f }

I added comments about not using these code blocks for loading and stor-
ing. The problem is that both the load and store instructions require their
arguments to be 16-byte aligned. With the compiler default settings for align-
ment, numbers or otherNumbers are guaranteed to be 4-byte aligned but not
16-byte aligned. If you execute the code in the debugger and, say, numbers is
not 16-byte aligned, you will crash with an access violation. On my machine
the messages in the output window were

First-chance exception at 0x009DFA4C in LoadStoreTest.exe: 0xC0000005: Access violation reading
location 0xFFFFFFFF.
Unhandled exception at 0x009DFA4C in LoadStoreTest.exe: 0xC0000005: Access violation reading
location 0xFFFFFFFF.

With no other information, a crash due to misalignment is difficult to diagnose.
To avoid the alignment problem it is not enough to typecast, say,

// Typeca s t i ng does not a f f e c t the byte a l i gnment o f ”numbers . ”
f l o a t numbers [ 4 ] = { 0 .0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f } ;
m128 va l u e = ∗( m128∗) numbers ;

Instead, you must use instructions that are designed to handle unaligned in-
puts, namely, mm loadu ps and mm storeu ps. The corrected examples for load
and store are

// Load from CPU to m128 . USE THIS CODE.
f l o a t numbers [ 4 ] = { 0 .0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f } ;
m128 v = mm loadu ps ( numbers ) ; // v = (0 . 0 f , 1 . 0 f , 2 . 0 f , 3 . 0 f )

// Save from m128 to CPU . USE THIS CODE.
v = mm shu f f l e p s ( v , v , MM SHUFFLE ( 0 , 1 , 2 , 3 ) ) ; // r e v e r s e component o r d e r
f l o a t otherNumbers [ 4 ] ;
mm storeu ps ( otherNumbers , v ) ; // otherNumbers = {3.0 f , 2 . 0 f , 1 . 0 f , 0 . 0 f}

The unaligned loads and stores can be a performance issue if they occur
often. If you use the alignment macros provided by the runtime library to align
your own data, you can avoid using the unaligned load and store instructions
altogether. The compiler will generate code to load and store using the aligned
instructions, so you will not pay the performance hit for the unaligned accesses.

Choosing aligned data has some additional details you must pay attention
to. For example, consider the code

s t r u c t MyTuple4
{

MyTuple4 ( ) {}
MyTuple4 ( f l o a t x , f l o a t y , f l o a t z , f l o a t w)
{

number [ 0 ] = x ;
number [ 1 ] = y ;
number [ 2 ] = z ;
number [ 3 ] = w;

}
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MyTuple4 ope ra to r+(MyTuple const& v ) const
{

MyTuple4 sum ;
f o r ( i n t i = 0 ; i < 4 ; ++i )
{

sum . number [ 0 ] = number [ 0 ] + v . number [ 0 ] ;
}
r e tu r n sum ;

}

f l o a t number [ 4 ] ;
} ;

MyTuple4 v0 ( 1 . 0 f , 2 . 0 f , 3 . 0 f , 4 . 0 f ) ;
MyTuple4 v1 ( 5 . 0 f , 6 . 0 f , 7 . 0 f , 8 . 0 f ) ;
MyTuple4 sum = v0 + v1 ;

To gain some performance by using SSE2, you might instead implement your
addition operator as

MyTuple4 MyTuple4 : : ope ra to r+(MyTuple4 const& v )
{

MyTuple4 sum ;
m128 sseV0 = mm loadu ps(&v0 [ 0 ] ) ;
m128 sseV1 = mm loadu ps(&v1 [ 0 ] ) ;
m128 sseSum = mm add ps ( sseV0 , sseV1 ) ;
mm storeu ps (&sum [ 0 ] , sseSum ) ;
r e tu r n sum ;

} ;

As mentioned, the unaligned loads and stores can be a performance hit. An
alternative to avoid the unaligned instructions is to align the struct itself,

s t r u c t d e c l s p e c ( a l i g n ( 1 6 ) ) MyTuple4
{

// Same body as b e f o r e .
} ;

MyTuple4 MyTuple4 : : ope ra to r+(MyCPUTuple4 const& v )
{

MyTuple4 sum ;
m128 sseV0 = mm load ps(&v0 [ 0 ] ) ;
m128 sseV1 = mm load ps(&v1 [ 0 ] ) ;
m128 sseSum = mm add ps ( sseV0 , sseV1 ) ;
mm sto r e p s (&sum [ 0 ] , sseSum ) ;
r e tu r n sum ;

} ;

Yet another alternative is to declare the class as

s t r u c t MyTuple4
{

MyTuple4 ( ) {}
MyTuple4 ( f l o a t x , f l o a t y , f l o a t z , f l o a t w)
{

number = mm set r p s ( x , y , z , w ) ;
}

MyTuple4 ope ra to r+(MyTuple4 const& v ) const
{

MyTuple4 sum ;
sum . number = mm add ps ( number , v . number ) ;
r e tu r n sum ;
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}

m128 number ;
} ;

The general rule for alignment of a struct is that it is equal to the largest
alignment of its components. In this case, m128 is 16-byte aligned which
guarantees that MyTuple4 is 16-byte aligned.

The alignment of the struct is based on stack location. In the MyTuple4

version with m128 number, a MyTuple4 object declared on the stack is 16-
byte aligned; that is, its address is a multiple of 16 bytes. However, if you
were to dynamically allocate the object using new or malloc, the address is not
guaranteed to be 16-byte aligned. Fortunately with Microsoft Visual Studio
2013, warnings are generated when this is possible. Compiling for Win32, a
32-bit configuration,

// With the 16−byte a l i g n e d v e r s i o n s o f MyTuple4 , t h i s l i n e o f code . . .
MyTuple4∗ v = new MyTuple4 ( 1 . 0 f , 2 . 0 f , 3 . 0 f , 4 . 0 f ) ;
// . . g en e r a t e s the warn ing .
// Warning C4316 : ‘MyTuple4 ’ : o b j e c t a l l o c a t e d on the heap may not
// be a l i g n e d 16 .

The warning does not appear for x64, the 64-bit configuration. Memory al-
locations on x64 are guaranteed to be 8-byte aligned on 32-bit Windows and
16-byte aligned on 64-bit Windows. If you plan to support only 64-bit Win-
dows, you need not worry about the heap alignment for data to be loaded
directly to 128-bit registers. However, stack alignment on either 32-bit or 64-
bit Windows by default is 8-byte, so you still need the special declaration for
the struct.

Mixing C++ member function calls and SSE2 instructions can also be a
performance issue. The problem is that the compiler will generate instruc-
tions for CPU registers that handle the implicit this pointer that is present
in nonstatic member functions. When you look at the assembly instructions,
you will see interleaved instructions for the CPU and for SSE2. This inter-
leaving is part of breaking the SIMD pipeline. Although an object-oriented
purist might like everything to be hidden behind a class interface, when it
comes to performance sometimes it is better not to hide the complexity. This
means making it clear that you are executing a contiguous sequence of SSE2
instructions, at most using an inline C-style function to wrap the sequence.

3.1.4 Logical Instructions

SSE2 instructions for logical operations of two bit patterns include
mm and ps for AND, mm or ps for OR, and mm xor ps for XOR. The NOT
operation is achieved using XOR,

m128 FFFF = mm set ps1 (0 xFFFFFFFF ) ; // A mask o f a l l 1−b i t s .
m128 va l u e ; // A 4− t u p l e o f un s i gned i n t .
m128 notVa lue = mm xor ps (FFFF , v a l u e ) ; // F l i p the b i t s i n v a l u e .
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TABLE 3.1: SIMD comparison operators

comparisions negated comparisons

eq for equal neq for not-equal
lt for less-than nlt for not-less-than
le for less-than-or-equal nle for not-less-than-or-equal
gt for greater-than ngt for not-greater-than
ge for greater-than-or-equal nge for not-greater-than-or-equal

SSE2 also has the instruction mm andnot ps(x,y) that flips the bits of x then
ANDs the result with y,

m128 v0 , v1 ; // Two 4− t u p l e s o f un s i gned i n t .
m128 r e s u l t = mm andnot ps ( v0 , v1 ) ; // ˜v0 & v1
m128 sameResu l t = mm and ps ( mm xor ps (FFFF , v0 ) , v1 ) ;

3.1.5 Comparison Instructions

A full suite of comparisons are available and shown in Table 3.1. The single-
channel instructions are of the form mm cmp<operator> ss and the all-channel
types are of the form mm cmp<operator> ps. These are not your typical com-
parisons! SSE2 neither has if-then and if-then-else branching constructs nor
loop constructs. Instead, each comparison instruction has two inputs, each a
4-tuple of float. The return value is a 4-tuple of unsigned int. If two correspond-
ing channels satisfy the comparison query, the returned channel for that pair
is 0xFFFFFFFF; otherwise, the returned channel is 0x00000000. For example,

m128 v0 = mm set r p s ( 1 . 0 f , 3 . 0 f , 5 . 0 f , 6 . 0 f ) ;
m128 v1 = mm set r p s ( 2 . 0 f , 1 . 0 f , 5 . 0 f , 7 . 0 f ) ;
m128 c0 = mm cmplt ps ( v0 , v1 ) ;

// c0 = (0 xFFFFFFFF , 0x00000000 , 0x00000000 , 0xFFFFFFFF )
m128 c1 = mm cmpnlt ps ( v0 , v1 ) ;

// c1 = (0 x00000000 , 0xFFFFFFFF , 0xFFFFFFFF , 0 x00000000 )
m128 c2 = mm cmpeq ps ( v0 , v1 ) ;

// c2 = (0 x00000000 , 0x00000000 , 0xFFFFFFFF , 0 x00000000 )

Branching is an expensive thing to do on a processor, so SSE2 does not
support it. In basic numerical computations using SIMD, it may be faster to
compute the results of both branches and then select the result from those.
The return value of the comparison instructions can be used for the selection.
Consider computing the minimum components of two 4-tuples,

m128 v0 = mm set r p s ( 1 . 0 f , 3 . 0 f , 5 . 0 f , 6 . 0 f ) ;
m128 v1 = mm set r p s ( 2 . 0 f , 1 . 0 f , 5 . 0 f , 7 . 0 f ) ;
m128 c = mm cmplt ps ( v0 , v1 ) ;

// c = (0xFFFFFFFF , 0x00000000 , 0x00000000 , 0xFFFFFFFF )
m128 minV0V1 = mm or ps ( mm and ps ( c , v0 ) , mm andnot ps ( c , v1 ) ) ;

// minV0V1 = (1 . 0 f , 1 . 0 f , 5 . 0 f , 6 . 0 f )

SSE2 actually has instructions for minimum ( mm min ps) and maximum
( mm max ps), but the example is a good illustration of how you select rather
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TABLE 3.2: SIMD arithmetic operators

operation operation

add for addition sqrt for the square root function
sub for subtraction rcp for the reciprocal of a number
mul for multiplication rsqrt for the reciprocal of a square root
div for division

than branch. More examples of selection are provided later in the section on
flattening branches.

3.1.6 Arithmetic Instructions

The basic arithmetic instructions are shown in Table 3.2. The single-
channel instructions are of the form mm <operator> ss and the all-channel
types are of the form mm <operator> ps.

3.1.7 Matrix Multiplication and Transpose

A motivator for SSE was vector and matrix algebra in computer graph-
ics. The 4-tuples can represent vectors (last component zero) or points (last
component one), both examples of homogeneous points in affine algebra. Ho-
mogeneous matrices are of size 4 × 4 and can represent linear, affine, and
projective transformations. SSE2 can support matrices as a 4-tuple of m128

objects. However, you will have to choose whether the objects are the rows
of the matrix or the columns of the matrix. And you will have to implement
either matrix-vector products, vector-matrix products, or both. I discuss these
conventions in Section 6.2. GTEngine allows you to select the conventions us-
ing conditional compilation; the default is row-major order with matrix-vector
as the natural order for a product.

Matrix-vector products are interesting in SSE2. The abstract formulation
of the product is

MV =

⎡

⎢

⎢

⎣

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

v0
v1
v2
v3

⎤

⎥

⎥

⎦

(3.1)

On a CPU, your instinct is to compute the matrix-vector product as four dot
products, each a dot of a matrix row and the vector:

MV =

⎡

⎢

⎢

⎣

R0 ·V
R1 ·V
R2 ·V
R3 ·V

⎤

⎥

⎥

⎦

(3.2)

where as a 4-tuple,Ri = (mi0,mi1,mi2,mi3). This appears to have good cache
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coherence, although on a Windows machine the cache line size is sixty-four
bytes, which is enough to store a 4× 4 matrix of float. An alternative view of
matrix-vector multiplication is

MV = v0C0 + v1C1 + v2C2 + v3C3 (3.3)

which is a linear combination of the columns of the matrix. As a 4-tuple,
Cj = (m0j ,m1j ,m2j ,m3j).

Listing 3.2 shows how to compute Equation (3.2) using the SSE2 dot
product of Listing 3.1.

m128 M[ 4 ] ; // mat r i x M s t o r ed as rows
m128 V; // the v e c t o r V
m128 Product ; // M∗V
m128 t0 , t1 , t2 , t3 ; // temporary r e g i s t e r s

// dot p roduct o f row 0 and ve c t o r
t0 = mm mul ps (M[ 0 ] , V ) ;
t1 = mm shu f f l e p s ( t0 , t0 , MM SHUFFLE (2 , 3 , 0 , 1 ) ) ;
t2 = mm add ps ( t0 , t1 ) ;
t3 = mm shu f f l e p s ( t2 , t2 , MM SHUFFLE (0 , 0 , 2 , 2 ) ) ;
m128 p0 s p l a t = mm add ps ( t2 , t3 ) ;

// dot p roduct o f row 1 and ve c t o r
t0 = mm mul ps (M[ 1 ] , V ) ;
t1 = mm shu f f l e p s ( t0 , t0 , MM SHUFFLE (2 , 3 , 0 , 1 ) ) ;
t2 = mm add ps ( t0 , t1 ) ;
t3 = mm shu f f l e p s ( t2 , t2 , MM SHUFFLE (0 , 0 , 2 , 2 ) ) ;
m128 p1 s p l a t = mm add ps ( t2 , t3 ) ;

// dot p roduct o f row 2 and ve c t o r
t0 = mm mul ps (M[ 2 ] , V ) ;
t1 = mm shu f f l e p s ( t0 , t0 , MM SHUFFLE (2 , 3 , 0 , 1 ) ) ;
t2 = mm add ps ( t0 , t1 ) ;
t3 = mm shu f f l e p s ( t2 , t2 , MM SHUFFLE (0 , 0 , 2 , 2 ) ) ;
m128 p2 s p l a t = mm add ps ( t2 , t3 ) ;

// dot p roduct o f row 3 and ve c t o r
t0 = mm mul ps (M[ 3 ] , V ) ;
t1 = mm shu f f l e p s ( t0 , t0 , MM SHUFFLE (2 , 3 , 0 , 1 ) ) ;
t2 = mm add ps ( t0 , t1 ) ;
t3 = mm shu f f l e p s ( t2 , t2 , MM SHUFFLE (0 , 0 , 2 , 2 ) ) ;
m128 p3 s p l a t = mm add ps ( t2 , t3 ) ;

// S h u f f l e to o b t a i n P = (p0 , p1 , p2 , p3 ) .
t0 = mm shu f f l e p s ( p0 sp l a t , p1 sp l a t , MM SHUFFLE (0 , 1 , 0 , 0 ) ) ;
t1 = mm shu f f l e p s ( p2 sp l a t , p3 sp l a t , MM SHUFFLE (0 , 1 , 0 , 0 ) ) ;
Product = mm shu f f l e p s ( t0 , t1 , MM SHUFFLE (2 , 0 , 2 , 0 ) ) ;

LISTING 3.2: Computing the matrix-vector product as four row-vector dot
products in SSE2.

On the other hand, Equation (3.3) is computed as shown in Listing 3.3.

m128 M[ 4 ] ; // mat r i x M s t o r ed as columns
m128 V; // the v e c t o r V
m128 Product ; // M∗V
m128 t0 , t1 , t2 , t3 ; // temporary r e g i s t e r s

// Sp l a t the c o e f f i c i e n t s V [ i ] f o r the mat r i x columns , s e t t i n g up f o r
// p a r a l l e l m u l t i p l y .
m128 v 0 s p l a t = mm shu f f l e p s (V , V , MM SHUFFLE (0 , 0 , 0 , 0 ) ) ;
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m128 v 1 s p l a t = mm shu f f l e p s (V , V , MM SHUFFLE (1 , 1 , 1 , 1 ) ) ;
m128 v 2 s p l a t = mm shu f f l e p s (V , V , MM SHUFFLE (2 , 2 , 2 , 2 ) ) ;
m128 v 3 s p l a t = mm shu f f l e p s (V , V , MM SHUFFLE (3 , 3 , 3 , 3 ) ) ;

t0 = mm mul ps (M[ 0 ] , t0 ) ; // (m00∗v0 , m10∗v0 , m20∗v0 , m30∗v0 )
t1 = mm mul ps (M[ 1 ] , t1 ) ; // (m01∗v1 , m11∗v1 , m21∗v1 , m31∗v1 )
t2 = mm mul ps (M[ 2 ] , t2 ) ; // (m02∗v2 , m12∗v2 , m22∗v2 , m32∗v2 )
t3 = mm mul ps (M[ 3 ] , t3 ) ; // (m03∗v3 , m13∗v3 , m23∗v3 , m33∗v3 )
t0 = mm add ps ( t0 , t1 ) ;
// t0 = (m00∗v0+m01∗v1 , m10∗v0+m11∗v1 , m20∗v0+m21∗v1 , m30∗v0+m31∗v1 )
t2 = mm add ps ( t2 , t3 ) ;
// t2 = (m02∗v2+m03∗v3 , m12∗v2+m13∗v3 , m22∗v2+m23∗v3 , m32∗v2+m33∗v3 )

Product = mm add ps ( t0 , t2 ) ;

LISTING 3.3: Computing the matrix-vector product as a linear combination
of columns in SSE2.

The lesson appears to be that to support matrix-vector products MV,
the matrix should be stored in column-major order rather than row-major
order. The conclusion is based on the dot product requiring several instruc-
tions to implement, which is due to the use of SSE2. In fact, more SIMD
features have been added over the years. SSE4.1 added a dot-product intrin-
sic, mm dp ps(a,b,mask), where a and b are 4-tuples of floats. The mask is an
integer whose low-order 8 bits have meaning. Bits four through seven indicate
which components of the inputs should be multiplied: a 1-bit means multiply
and a 0-bit means use a zero in the sum. Bits zero through three indicate
which components of the output should be written. Listing 3.2 can then be
modified to the code of Listing 3.4.

m128 M[ 4 ] ; // mat r i x M s t o r ed as rows
m128 V; // the v e c t o r V
m128 p0 = mm dp ps (M[ 0 ] , V, 0x0F1 ) ; // ( p0 , 0 , 0 , 0)
m128 p1 = mm dp ps (M[ 1 ] , V, 0x0F2 ) ; // (0 , p1 , 0 , 0)
m128 p2 = mm dp ps (M[ 2 ] , V, 0x0F4 ) ; // (0 , 0 , p2 , 0)
m128 p3 = mm dp ps (M[ 3 ] , V, 0x0F8 ) ; // (0 , 0 , 0 , p3 )
m128 Product = mm or ps ( mm or ps ( p0 , p1 ) , mm or ps ( p2 , p3 ) ) ;

LISTING 3.4: Computing the matrix-vector product as four row-vector dot
products in SSE4.1.

With direct hardware support for dot product, now the row-major order stor-
age forM is acceptable when computing MV. On the GPU, hardware support
is provided for dot products, so you will find that a GPU-based matrix-vector
is compiled to assembly code similar to that of Listing 3.4.

Transposing a matrix is another common operation in linear algebra. For
4 × 4 matrices, the transpose is computed by shuffling components. The file
xmmintrin.h defines a macro, MM TRANSPOSE4 PS, that takes as input the
four rows (or columns) of a matrix, computes the transpose by shuffling, and
stores the result in the original four rows. If you do not want an in-place
transpose, you can easily implement your own function, as shown in Listing
3.5. This code works whether you have stored the matrix as rows or as columns.
The comments indicate what the registers store after the operations following
them, rows for row-major storage or cols for column-major storage.
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vo id Transpose ( m128 const ∗ mat , m128∗ t r n )
{

// rows : ( m00 , m01 , m10 , m11 ) , c o l s : ( m00 , m10 , m01 , m11)
m128 s0 = mm shu f f l e p s (mat [ 0 ] , mat [ 1 ] , MM SHUFFLE (1 , 0 , 1 , 0 ) ) ;

// rows : ( m20 , m21 , m30 , m31 ) , c o l s : ( m02 , m12 , m03 , m13)
m128 s1 = mm shu f f l e p s (mat [ 2 ] , mat [ 3 ] , MM SHUFFLE (1 , 0 , 1 , 0 ) ) ;

// rows : ( m02 , m03 , m12 , m13 ) , c o l s : ( m20 , m30 , m21 , m31)
m128 s2 = mm shu f f l e p s (mat [ 0 ] , mat [ 1 ] , MM SHUFFLE (3 , 2 , 3 , 2 ) ) ;

// rows : ( m22 , m23 , m32 , m33 ) , c o l s : ( m22 , m32 , m23 , m33)
m128 s3 = mm shu f f l e p s (mat [ 2 ] , mat [ 3 ] , MM SHUFFLE (3 , 2 , 3 , 2 ) ) ;

// rows : ( m00 , m10 , m20 , m30 ) , c o l s : ( m00 , m01 , m02 , m03)
t r n [ 0 ] = mm shu f f l e p s ( s0 , s1 , MM SHUFFLE (2 , 0 , 2 , 0 ) ) ;
// rows : ( m01 , m11 , m21 , m31 ) , c o l s : ( m10 , m11 , m12 , m13)
t r n [ 1 ] = mm shu f f l e p s ( s0 , s1 , MM SHUFFLE (3 , 1 , 3 , 1 ) ) ;
// rows : ( m02 , m12 , m22 , m32 ) , c o l s : ( m20 , m21 , m22 , m23)
t r n [ 2 ] = mm shu f f l e p s ( s2 , s3 , MM SHUFFLE (2 , 0 , 2 , 0 ) ) ;
// rows : ( m03 , m13 , m23 , m33 ) , c o l s : ( m30 , m31 , m32 , m33)
t r n [ 3 ] = mm shu f f l e p s ( s2 , s3 , MM SHUFFLE (3 , 1 , 3 , 1 ) ) ;

}

LISTING 3.5: Transpose of a 4× 4 matrix using shuffling.

3.1.8 IEEE Floating-Point Support

Intel SSE provides the ability to control floating-point behavior by ma-
nipulating the control register for the SIMD floating-point hardware. You
can set the register using mm setcsr or get the register using mm getcsr. File
xmmintrin.h has several flags that can be used to control the exceptions that
are raised, to control the rounding mode for arithmetic operations, and to
decide whether or not to flush subnormals to the same-sign zero.

3.1.9 Keep the Pipeline Running

You should avoid breaking the pipeline during your sequence of instruc-
tions. Sometimes this leads to code that, at first glance, seems unnecessary or
cryptic. For example, consider normalizing a 4-tuple vector. You might try to
write SIMD code as shown in Listing 3.6.

m128 Normal i zeWithBreak ( m128 const v )
{

// ( sqrLength , sqrLength , sqrLength , s q rLeng th )
m128 sq rLeng th = Dot ( v , v ) ;

// ( l eng th , l eng th , l eng th , l e n g t h )
m128 l en g t h = mm sqrt ps ( sq rLeng th ) ;

i f ( l e n g t h . m128 f32 [ 0 ] > 0 .0 f )
{

// D i v i d e by the l e n g t h to n o rma l i z e .
m128 no rma l i z ed = mm div ps ( v , l e n g t h ) ;

r e tu r n no rma l i z ed ;
}
e l s e
{

// I f l e n g t h i s zero , v = (0 , 0 , 0 , 0 ) .
r e tu r n v ;

}
}

LISTING 3.6: Normalizing a vector using SSE2 with a break in the pipeline.
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The problem is that the SIMD register which stores length must have a com-
ponent extracted and copied to a CPU register, and then the comparison is
computed on the CPU. Transfers between CPU and SIMD registers will slow
you down.

The code shown in Listing 3.7 is a better choice because it avoids the break
in the pipeline.

m128 Norma l i z e ( m128 const v )
{

// ( sqrLength , sqrLength , sqrLength , s q rLeng th )
m128 sq rLeng th = Dot ( v , v ) ;

// ( l eng th , l eng th , l eng th , l e n g t h )
m128 l en g t h = mm sqrt ps ( sq rLeng th ) ;

// D i v i d e by l e n g t h to n o rma l i z e ; p o t e n t i a l l y p roduces a d i v i d e by ze ro .
m128 no rma l i z ed = mm div ps ( v , l e n g t h ) ;

// Set to z e ro when the o r i g i n a l l e n g t h i s z e ro .
m128 ze ro = mm setz e ro p s ( ) ; // = (0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f )
m128 mask = mm cmpneq ps ( zero , l e n g t h ) ;

no rma l i z ed = mm and ps (mask , no rma l i z ed ) ;
r e tu r n no rma l i z ed ;

}

LISTING 3.7: Normalizing a vector using SSE2 without a break in the
pipeline.

Where did the if-else branch go in Listing 3.6? You will notice in Listing 3.7
the instruction mm cmpneq ps. If length has positive components, the mask

has components 0xFFFFFFFF. When you AND the mask with normalized, you
obtain normalized, which is the desired output. If length has zero components,
the comparisons are false and mask has zero components. When the mask is
AND-ed with normalized, you obtain zero, which is the desired output. The
code implements the selection mechanism mentioned previously. In the next
section we will look at several possibilities for dealing with nested branching.

3.1.10 Flattening of Branches

Let us look at comparisons and how to write branchless code. Using the
selection mechanism mentioned previously, Listing 3.8 defines a function for
simplicity of presentation,

m128 S e l e c t ( m128 cmp , m128 v0 , m128 v1 )
{

r e tu r n mm or ps ( mm and ps (cmp , v0 ) , mm andnot ps (cmp , v1 ) ) ;
}

LISTING 3.8: The definition of the Select function for flattening branches.

where cmp is intended to be a result from a comparison, and v0 and v1 are
the inputs whose components are to be selected. In most cases, cmp has com-
ponents that are either 0xFFFFFFFF or 0x00000000, but the function is more
general in that cmp can have any bit patterns of interest.
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The term flatten means to replace branching code (if-then or if-then-else)
with branchless code that evaluates both of the original branches and selects
the correct result. The simplest form of flattening is shown in Listing 3.9. CPU
code illustrates the original branching using single floating-point numbers, and
the SIMD version is shown afterward using 4-tuples.

f l o a t v0 , v1 , v2 , v3 , r ;
i f ( v0 > v1 )
{

r = v2 ;
}
e l s e
{

r = v3 ;
}

m128 sv0 , sv1 , sv2 , sv3 , s r ;
s r = S e l e c t ( mm gt ps ( sv0 , sv1 ) , sv2 , sv3 ) ;

LISTING 3.9: Flattening a single branch.

Listing 3.10 shows nested branching where only the outer-then clause con-
tains a branch.

f l o a t v0 , v1 , v2 , v3 , v4 , v5 , v6 , r ;
i f ( v0 > v1 )
{

i f ( v2 > v3 )
{

r = v4 ;
}
e l s e

{
r = v5 ;

}
}
e l s e

{
r = v6 ;

}

m128 sv0 , sv1 , sv2 , sv3 , sv4 , sv5 , sv6 , s r ;
m128 th enRe s u l t = S e l e c t ( mm gt ps ( sv2 , sv3 ) , sv4 , sv5 ) ;

s r = S e l e c t ( mm gt ps ( sv0 , sv1 ) , th enResu l t , v6 ) ;

LISTING 3.10: Flattening a two-level branch where the outer-then clause
has a nested branch.

Listing 3.11 shows nested branching where only the outer-else clause contains
a branch.

f l o a t v0 , v1 , v2 , v3 , v4 , v5 , v6 , r ;
i f ( v0 > v1 )
{

r = v4 ;
}
e l s e
{

i f ( v2 > v3 )
{

r = v5 ;
}
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e l s e
{

r = v6 ;
}

}

m128 sv0 , sv1 , sv2 , sv3 , sv4 , sv5 , sv6 , s r ;
m128 e l s e R e s u l t = S e l e c t ( mm gt ps ( sv2 , sv3 ) , sv5 , sv6 ) ;

s r = S e l e c t ( mm gt ps ( sv0 , sv1 ) , sv4 , e l s e R e s u l t ) ;

LISTING 3.11: Flattening a two-level branch where the outer-else clause
has a nested branch.

Listing 3.12 shows nested branching where both outer clauses contain
branches.

f l o a t v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , v9 , r ;
i f ( v0 > v1 )
{

i f ( v2 > v3 )
{

r = v6 ;
}
e l s e

{
r = v7 ;

}
}
e l s e

{
i f ( v4 > v5 )
{

r = v8 ;
}
e l s e
{

r = v9 ;
}

}

m128 sv0 , sv1 , sv2 , sv3 , sv4 , sv5 , sv6 , sv7 , sv8 , sv9 , s r ;
m128 th enRe s u l t = S e l e c t ( mm gt ps ( sv2 , sv3 ) , sv6 , sv7 ) ;
m128 e l s e R e s u l t = S e l e c t ( mm gt ps ( sv4 , sv5 ) , sv8 , sv9 ) ;

s r = S e l e c t ( mm gt ps ( v0 , v1 ) , th enResu l t , e l s e R e s u l t ) ;

LISTING 3.12: Flattening a two-level branch where the outer clauses have
nested branches.

3.2 SIMD Wrappers

The SSE code can become quite lengthy for complicated operations. The
dot-product code of Listing 3.1 was short, consisting of five instructions plus
comments. The GTEngine SIMD code for computing the inverse of a 4 × 4
matrix is on the order of 330 lines of comments and code! Naturally, you will
want to encapsulate many of your common operations with inline function
wrappers.
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Microsoft has SIMD wrappers now referred to as DirectX Math. You can
find the top-level header files in the Windows Kits folder,

C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXMath.h
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXMathConvert.inl
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXMathMatrix.inl
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXMathMisc.inl
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXMathVector.inl
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXPackedVector.h
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXPackedVector.inl
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXCollision.h
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXCollision.inl

You will find support for Intel SSE2, Microsoft Xbox 360 (VMX128), and
Microsoft Xbox One (ARM-Neon). An online blog is maintained about topics
related to DirectX and DirectX Math [56].

The GTEngine source code contains an implementation of various mathe-
matical concepts using SSE2. I will be updating this to SSE4 over time. The
current code is quite extensive and has conditional compilation to support
row-major order (the m128 array stores rows) or column-major order (the
m128 array stores columns). You can find the code at

GeometricTools/GTEngine/Source/Mathematics/SIMD/GteIntelSSE.{h,inl,cpp}

Generally, you want the SIMD instructions to be inlined, so the implementa-
tion is contained in the *.inl file. The reason for the existence of the *.cpp is
to define SIMD constants that are useful throughout the code.

Many of the algorithms are simple, but some have significant mathematics
behind them. The algorithms are discussed in Chapter 6.

3.3 Function Approximations

Several approximations to standard mathematics library functions are de-
scribed in this section. These involve trading accuracy to obtain speed. These
may be used in CPU, GPU, or SIMD code. Some of the approximations take
advantage of binary representations of 32-bit IEEE floating-point numbers.
Other approximations are mathematical in nature, usually applying mini-
max algorithms to obtain polynomial or rational function appproximations,
whether 32-bit or 64-bit floating-point arithmetic is used.

The approximations are presented for floating-point on the CPU. It is
straightforward to implement SSE2 versions.

3.3.1 Minimax Approximations

Many approximation problems tend to be formulated as least-squares prob-
lems. If p(x) =

∑d
i=0 pix

i, which is a polynomial of degree d with coefficients
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p0 through pd, the least-squares approximation is obtained by minimizing

E(p0, . . . , pd) =

∫ b

a

|f(x)− p(x)|2 dx (3.4)

The coefficients of the polynomial are determined by setting the first-order
partial derivatives of E to zero,

0 =
∂E

∂pj
= −2

∫ b

a

(f(x)− p(x)))xj dx (3.5)

which simplifies to
∫ b

a

xjp(x) dx =

∫ b

a

xjf(x) dx (3.6)

and then to

d
∑

i=0

(

bi+j+1 − ai+j+1

i+ j + 1

)

pi =

∫ b

a

xjf(x) dx = cj (3.7)

where the last equality defines the values cj . This is a linear system of d + 1
equations in d + 1 unknowns that may be solved numerically for the pi. It
is necessary to integrate xjf(x), either in closed form or through numerical
quadrature methods, to obtain cj .

The approximation error is
√

E(p0, . . . , pd)/(b− a), a root-mean-squared
error that measures the average error over the domain [a, b] of the function.
When computing numerically, such an error is typically of little use. What
we usually want to know is the maximum error between p(x) and f(x) for
all inputs x. This leads us to a formulation of the approximation in the L∞

sense (maximum absolute error for any input) rather than in the L2 sense
(root-mean-square error over an interval).

Unfortunately, the L∞ formulation is rarely taught in undergraduate
mathematics programs, because the proofs and constructions require math-
ematical machinery that is deeper than what the curriculum supports. In
the following sections, the polynomials that approximate the function are
constructed to minimize the maximum error for a polynomial of a specified
degree. The proofs of why the polynomials attain the minimum are not pro-
vided here. However, a practicing computer scientist may easily understand
the algorithms and implement or modify them accordingly.

Given a function f(x) on an interval [a, b], our goal is to construct a poly-
nomial p(x) of degree d that approximates f(x) and minimizes the maximum
absolute error between f(x) and p(x) on [a, b]. Such a polynomial generates
the smallest minimax error

εd = min

{

max
x∈[a,b]

|f(x)− p(x)| : p is a polynomial of degree d

}

(3.8)
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The choice of degree depends on your application’s constraints. Generally,
the larger the degree, the more time is required to evaluate p(x). On the
other hand, as the degree increases, we expect the error to decrease. This is a
classical trade-off in computer science: Greater accuracy comes at the cost of
increased computational time.

When I first started investigating fast function approximations to stan-
dard mathematics functions, I looked at formulas in [1]. As advertised, this
is a handbook and unfortunately contains no mathematical derivations. Some
of the approximations were credited to a technical report from Los Alamos
Laboratory in 1955 [3]; I managed to obtain a PDF of a scanned, typewritten
document. The Abramowitz book and the Carlson report both reference work
by Hastings, and I managed to obtain a used copy [4]. All of these works were
not satisfying in that the mathematical details are sketchy. In the end, though,
I managed to piece together the concepts and algorithms and wrote code for
many of the standard mathematics functions. The underlying principle is the
Chebyshev equioscillation theorem, which states that the polynomial p(x) of
degree d that best fits f(x) in the sense of Equation (3.8) has the property
that there exist at least d + 2 values of x for which |f(x) − p(x)| = εd. The
differences equioscillate: if xi and xi+1 are two consecutive values for which
|f(x)− p(x)| = εd, then [f(xi+1)− p(xi+1)] = −[f(xi)− p(xi)]. Also, p is the
unique polynomial with degree(p) ≤ d for which this equioscillation occurs.
The set {xi} is referred to as an alternating set.

To read a detailed description of the mathematics and some algorithms to
construct the polynomials, see [25]. The Remez algorithm I discuss here is de-
scribed in [50, Section 17.6]. Let ε represent the minimax error (or the negative
of the minimax error) and let p0 through pd be the polynomial coefficients.

1. Start with an alternating set S0 = {xi}d+1
i=0 of points on the interval

[a, b], where x0 = a and xd+1 = b.

2. Solve the equations p(xi) + (−1)iε = f(xi), a linear system of d + 2
equations in d+ 2 unknowns p0 through pd and ε.

3. Compute the set S1 of x-values for which |f(x)− p(x)| attains its local
maxima. One always keeps a and b in the set, so we need compute only
the interior local maximum points.

4. If the local maxima have equal values and the (f(x) − p(x)) values al-
ternate in sign, then p(x) is the best-fit polynomial; otherwise replace
S0 with S1 and repeat steps 2, 3, and 4.

In step 1, you need to choose S0. Sources suggest choosing roots of Cheby-
shev polynomials; for example, see [50, Chapter 17] on Functional Approxi-
mation. For the functions to which I applied the minimax algorithm, I instead
chose p(x) equal to f(x) on a uniformly spaced set of interior points of [a, b].
This gives you an initial polynomial approximation for which f(x)− p(x) has
oscillatory behavior.



110 GPGPU Programming for Games and Science

In step 3, you may solve for the roots of g(x) = f ′(x) − p′(x) using a
numerical method of your choice. Some sources of information state that
you may start with x ∈ S0 and use a Newton-Raphson iterate to obtain
x̄ = x − G(x)/G′(x) that is (hopefully) close to a root of G(x), and then
insert x̄ in S1. The key word here is hopefully; the idea might work in some
cases, but it is possible in other cases that x̄ is farther from a local maximum
point than is x. When I tried this algorithm to approximate sin(x) on [0, π/2]
with a degree-5 polynomial, the single-iterate approach failed. My goal is to
compute polynomial coefficients that will be used in a hard-coded function.
The computational time required to accurately find the roots of G(x) is unim-
portant, so I used bisection for root finding. Each pair of consecutive roots of
g(x) are used as a bounding interval for roots of g′(x). Some of the functions
have double roots at the endpoints of the domain of approximation, so I choose
bounding interval endpoints slightly different from the domain endpoints.

As you increase the degree of the polynomial, the linear system solver
for computing the initial polynomial coefficients can have enough numerical
roundoff error that the polynomial is numerically suspect. If you need higher-
degree approximations, you will have to resort to high-precision arithmetic to
solve the system.

3.3.2 Inverse Square Root Function Using Root Finding

A fast inverse square root has been a popular topic for many years. Its
history and discussion is found on the Wikipedia page entitled “Fast inverse
square root.” You can also read about it via the online document [21]. The
algorithm described there is effectively Newton’s method for root finding and
includes a magic number whose origin spurred a lot of the discussion. I present
the algorithm here but later provide an alternative using minimax approxi-
mations.

The root-finding algorithm uses Newton’s method to estimate a root of
f(y) = 1/y2 − x. The iterates are

yi+1 = yi − f(yi)/f
′(yi) = yi(3 − xy2i )/2, i ≥ 0 (3.9)

for an initial estimate y0. The algorithm is shown in Listing 3.13.

f l o a t F a s t I n v e r s e S q r t ( f l o a t x )
{

un ion Bina ry32 { f l o a t number ; u i n t 3 2 t encod i ng ; } ;
f l o a t x h a l f = 0 .5 f ∗x ;
B i na ry32 y ;
y . number = x ;
y . encod ing = 0 x5 f3759d f − ( y . encod i ng >> 1 ) ;
y . number = y . number ∗ (1 .5 f − x h a l f ∗y . number∗y . number ) ; // Newton s t ep
r e tu r n y . number ;

}

LISTING 3.13: A fast approximation to 1/sqrt(x) for 32-bit floating-point.

The accuracy is reasonable as long as x is not too small (i.e., not a sub-
normal). To increase accuracy, you can repeat the Newton step one or more
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TABLE 3.3: Inverse square root accuracy and performance

iterates max rel error max abs error speed up over 1/sqrt(x)
1 1.75238e-03 1.56142e+16 4.30
2 4.76837e-06 4.06819e+13 2.29
3 2.38419e-07 2.19902e+12 1.52
4 2.38419e-07 1.64927e+12 1.11

time. Table 3.3 shows the maximum relative and absolute errors for normal
floating-point inputs for one through four Newton steps. It also shows the
speedups when using the approximation. The accuracy is reported only for
normal numbers. The accuracy for subnormals is not good. Although the ab-
solute error looks atrocious, those values are for extremely small floating-point
inputs. For numbers on the order of one, the absolute error is about 1e-03. As
the numbers increase in magnitude, the absolute error decreases. For numbers
on the order of the maximum normal, the absolute error is approximately
1e-22.

Listing 3.14 has a double-precision version of the approximation. This can
be used on the GPU, because as of D3D11.1, there is no double-precision
square root instruction available for HLSL.

doub le F a s t I n v e r s e S q r t ( doub le x )
{

un ion Bina ry64 { doub le number ; u i n t 6 4 t encod i ng ; } ;
doub le x h a l f = 0.5∗ x ;
B i na ry64 y ;
y . number = x ;
y . encod i ng = 0x5fe6ec85e7de30daULL − ( y . encod i ng >> 1 ) ;
y . number = y . number ∗ (1 .5 − x h a l f ∗y . number∗y . number ) ;
r e tu r n y . number ;

}

LISTING 3.14: A fast approximation to 1/sqrt(x) for 64-bit floating-point.

3.3.3 Square Root Function

One fast approximation uses the fast inverse square root function; that is,
you can use FastSqrt(x) = x * FastInvSqrt(x). Apply as many Newton steps as
needed for the desired accuracy.

A range reduction and a polynomial approximation together lead to a fast
approximation. In binary scientific notation, let x = 1.t ∗ 2p where t is the
trailing significand and p is the unbiased exponent. Thinking of t as a fraction
in [0, 1), we can write x = (1+t)∗2p. If p is even, then y =

√
x =

√
1 + t∗2p/2.

If p is odd, then y =
√
x =

√
2
√
1 + t∗2(p−1)/2. You may extract t and p from

the floating-point encoding, so the approximation we need is for
√
1 + t for

t ∈ [0, 1). The logic for float numbers is

f l o a t const s q r t 2 = sq r t ( 2 . 0 f ) ; // Precomputed cons tan t .
// Get t i n [ 0 , 1 ) .
i n t p ;
f l o a t m = f r e x p ( x , &p ) ; // m i n [ 1 / 2 , 1 )
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FIGURE 3.1: The plot of g(x) =
√
1 + x − p(x) for the initial polynomial

of degree 3.

f l o a t t = 2 .0 f∗m − 1 .0 f ; // t i n [ 0 , 1 )
−−p ;
// S e l e c t s q r t (2 ) or 1 ; a vo i d b ranch i ng f o r speed .
f l o a t a d j u s t = (1 & p)∗ s q r t 2 + (1 & ˜p )∗1 .0 f ;
i n t ha l fP = (p − 1) / 2 ;
f l o a t sq rtT = Po l ynomia l ( t ) ; // app rox ima t i on f o r s q r t (1 + t ) , t i n [ 0 , 1 )
f l o a t y = ad j u s t ∗ l d exp ( sqrtT , ha l fP ) ; // app rox ima t i on f o r s q r t ( x )

The function to approximate is f(x) =
√
1 + x and the approximating

polynomial is p(x) =
∑d

i=0 pix
i of degree d ≥ 1. I required that p(0) = f(0) =

1 and p(1) = f(1) =
√
2, so we need to compute coefficients pi for 1 ≤ i ≤ d−1.

An initial guess for p(x) is p(i/d) = f(i/d) for 1 ≤ i ≤ d − 1, in which case
g(x) = f(x)− p(x) is oscillatory. For degree 3, the conditions are p(0) = f(0),
p(1/3) = f(1/3), p(2/3) = f(2/3), and p(1) = f(1), which lead to the initial
polynomial p(x) = 1+0.497043x− 0.106823x2+0.023993x3. The plot of g(x)
is shown in Figure 3.1. You can see that the roots of g(x) are {0, 1/3, 2/3, 1}.
Also, the function is oscillatory but the maximum and minimum values do not
have the same magnitude; that is, the initial polynomial is not the minimax
approximation.

The three local extrema are located using bisection applied to double-
precision domain values. Listing 3.15 shows one step of the Remez iteration.

doub le r oo t0 [ d + 1 ] ; // The r o o t s o f g ( x ) ; d i s the deg r ee o f p ( x ) .
doub le r oo t1 [ d ] ; // The r o o t s o f g ’ ( x ) .
f o r ( i n t i = 0 , j = 0 ; i < d ; ++i )
{

// The bound ing i n t e r v a l f o r a r o o t o f g ’ ( x ) i s [ x0 , x1 ] .
doub le x0 = roo t0 [ i ] , x1 = roo t0 [ i + 1 ] ;

// B i s e c t based on s i g n o f g ’ ( x ) , s i g n s i n {−1 ,0 ,1}. Problem i s
// con f i g u r ed so tha t s0∗ s1 < 0 .
i n t s0 = Sign ( g ’ ( x0 ) ) ;
i n t s1 = Sign ( g ’ ( x1 ) ) ;
f o r ( ; ; )
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{
doub le xmid = 0 .5∗ ( x0 + x1 ) ;
i n t smid = Sign ( g ’ ( xmid ) ) ;
i f ( x0 == xmid | | x1 == xmid | | smid == 0)

{ r oo t1 [ j++] = xmid ; b r eak ; }
i f ( smid == s0 ) { x0 = xmid ; } e l s e { x1 = xmid ; }

}
}

// Compute g ( x ) at the l o c a l extrema . In theo ry , the minimax po l yn om i a l
// cau s es t h e s e v a l u e s to have same magnitude but o s c i l l a t e i n s i g n .
// You can use t h e s e to dete rm ine when to t e rm i n a t e Remez i t e r a t i o n s .
doub l e e r r o r [ d ] ;
f o r ( i n t i = 0 ; i < d ; ++i )
{

e r r o r [ i ] = g ( roo t1 [ i ] ) ;
}
// STOP when you have met your c r i t e r i a f o r conve rgence .

// So l ve p ( roo t1 [ i ] ) + (−1)ˆ{ i }∗e = f ( roo t1 [ i ] ) f o r e and c o e f f i c i e n t s
// o f p , a t o t a l o f d+2 unknowns . We know p [ 0 ] = 1 , so we need on l y
// s o l v e a l i n e a r sys tem o f d+1 equa t i o n s .
Matr i x<d+1,d+1, doub le> A; // ( d+1)−by−(d+1) mat r i x
Vector<d+1, doub le> B; // ( d+1)−by−1 v e c t o r
doub l e s i g n = 1 . 0 ;
f o r ( i n t r = 0 ; r < d ; ++r , s i g n = −s i g n )
{

A( r , 0) = roo t1 [ r ] ;
f o r ( i n t c = 1 ; c < d ; ++c ) { A( r , c ) = roo t1 [ r ] ∗ A( r , c − 1 ) ; }
A( r , d ) = s i g n ;
B [ r ] = f ( roo t1 [ r ] ) − 1 . 0 ;

}
f o r ( i n t c = 0 ; c < d ; ++c ) { A(d , c ) = 1 . 0 ; }
A(d , d ) = 0 . 0 ;
B [ d ] = f ( 1 . 0 ) − 1 . 0 ;

Vector<d+1, doub le> s o l u t i o n = I n v e r s e (A)∗B;
f o r ( i n t i = 0 ; i < d ; ++i ) { p [ i + 1 ] = s o l u t i o n [ i ] ; }
// A f t e r s e v e r a l i t e r a t i o n s , e i s the common magnitude o f e r r o r [ ] .
doub l e e = s o l u t i o n [ deg r ee ] ;

// Compute the r o o t s o f g ( x ) f o r the next Remez i t e r a t i o n .
f o r ( i n t i = 0 , j = 0 ; i < d − 1 ; ++i )
{

// The bound ing i n t e r v a l f o r a r o o t o f g ( x ) i s [ x0 , x1 ] , which i s
// r e a s o n a b l e f o r a good i n i t i a l gues s f o r p ( x ) .
doub l e x0 = roo t1 [ i ] , x1 = roo t1 [ i + 1 ] ;

// B i s e c t based on s i g n o f g ( x ) , s i g n s i n {−1 ,0 ,1}. Problem i s
// con f i g u r ed so tha t s0∗ s1 < 0 .
i n t s0 = Sign ( g ( x0 ) ) ;
i n t s1 = Sign ( g ( x1 ) ) ;
f o r ( ; ; )
{

doub l e xmid = 0 .5∗ ( x0 + x1 ) ;
i n t smid = Sign ( g ( xmid ) ) ;
i f ( x0 == xmid | | x1 == xmid | | smid == 0)

{ r oo t0 [ j++] = xmid ; b r eak ; }
i f ( smid == s0 ) { x0 = xmid ; } e l s e { x1 = xmid ; }

}
}

LISTING 3.15: One Remez iteration for updating the locations of the local
extrema.
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FIGURE 3.2: The plot of g(x) =
√
1 + x − p(x) for the final polynomial of

degree 3.

Figure 3.2 shows the plot of g(x) for degree 3 after several Remez iterations.
The figure makes it clear that the values of g(x) at the local extrema have the
same magnitude and alternate in sign.

Table 3.4 shows the coefficients of the minimax polynomials of degrees one
through seven for f(x) =

√
1 + x for x ∈ [0, 1). The numbers are the coeffi-

cients pi for the polynomial p(x). The table shows the maximum error for the
approximation. The tool GeometricTools/GTEngine/Tools/GenerateApproximations

generated Table 3.4 using files FitSqrt.h and FitSqrt.inl.

3.3.4 Inverse Square Root Using a Minimax Algorithm

The application of the minimax algorithm is nearly identical to that for
the square root function. In binary scientific notation, let x = 1.t ∗ 2p where
t is the trailing significand and p is the unbiased exponent. Thinking of t as
a fraction in [0, 1), we can write x = (1 + t) ∗ 2p. If p is even, then 1/

√
x =

(1/
√
1 + t) ∗ 2−p/2. If p is odd, then 1/

√
x = (1/(

√
2
√
1 + t)) ∗ 2−(p−1)/2. You

may extract t and p from the floating-point encoding, so the approximation
we need is for 1/

√
1 + t for t ∈ [0, 1).

The tool GeometricTools/GTEngine/Tools/GenerateApproximations has the min-
imax implementation in FitInvSqrt.h and FitInvSqrt.inl and is nearly identical to
the code used for the square root function. This code generates Table 3.5,
showing the coefficients of the minimax polynomials of degrees one through
seven for f(x) = 1/

√
1 + x for x ∈ [0, 1). The numbers are the coefficients pi

for the polynomial p(x). The table shows the maximum error for the approx-
imation.
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TABLE 3.4: Minimax polynomial approximations to
√
1 + x

d coefficients d coefficients

1 p0 = +1 2 p0 = +1
p1 = +4.1421356237309505 ∗ 10−1 p1 = +4.8563183076125260 ∗ 10−1

e = +1.7766952966368793 ∗ 10−2 p2 = −7.1418268388157458 ∗ 10−2

e = +1.1795695163108744 ∗ 10−3

3 p0 = +1 4 p0 = +1
p1 = +4.9750045320242231 ∗ 10−1 p1 = +4.9955939832918816 ∗ 10−1

p2 = −1.0787308044477850 ∗ 10−1 p2 = −1.2024066151943025 ∗ 10−1

p3 = +2.4586189615451115 ∗ 10−2 p3 = +4.5461507257698486 ∗ 10−2

e = +1.1309620116468910 ∗ 10−4 p4 = −1.0566681694362146 ∗ 10−2

e = +1.2741170151556180 ∗ 10−5

5 p0 = +1 6 p0 = +1
p1 = +4.9992197660031912 ∗ 10−1 p1 = +4.9998616695784914 ∗ 10−1

p2 = −1.2378506719245053 ∗ 10−1 p2 = −1.2470733323278438 ∗ 10−1

p3 = +5.6122776972699739 ∗ 10−2 p3 = +6.0388587356982271 ∗ 10−2

p4 = −2.3128836281145482 ∗ 10−2 p4 = −3.1692053551807930 ∗ 10−2

p5 = +5.0827122737047148 ∗ 10−3 p5 = +1.2856590305148075 ∗ 10−2

e = +1.5725568940708201 ∗ 10−6 p6 = −2.6183954624343642 ∗ 10−3

e = +2.0584155535630089 ∗ 10−7

7 p0 = +1 8 p0 = +1
p1 = +4.9999754817809228 ∗ 10−1 p1 = +4.9999956583056759 ∗ 10−1

p2 = −1.2493243476353655 ∗ 10−1 p2 = −1.2498490369914350 ∗ 10−1

p3 = +6.1859954146370910 ∗ 10−2 p3 = +6.2318494667579216 ∗ 10−2

p4 = −3.6091595023208356 ∗ 10−2 p4 = −3.7982961896432244 ∗ 10−2

p5 = +1.9483946523450868 ∗ 10−2 p5 = +2.3642612312869460 ∗ 10−2

p6 = −7.5166134568007692 ∗ 10−3 p6 = −1.2529377587270574 ∗ 10−2

p7 = +1.4127567687864939 ∗ 10−3 p7 = +4.5382426960713929 ∗ 10−3

e = +2.8072302919734948 ∗ 10−8 p8 = −7.8810995273670414 ∗ 10−4

e = +3.9460605685825989 ∗ 10−9

TABLE 3.5: Minimax polynomial approximations to f(x) = 1/
√
1 + x

d coefficients d coefficients

1 p0 = +1 2 p0 = +1
p1 = −2.9289321881345254 ∗ 10−1 p1 = −4.4539812104566801 ∗ 10−1

e = +3.7814314552701983 ∗ 10−2 p2 = +1.5250490223221547 ∗ 10−1

e = +4.1953446330581234 ∗ 10−3

3 p0 = +1 4 p0 = +1
p1 = −4.8703230993068791 ∗ 10−1 p1 = −4.9710061558048779 ∗ 10−1

p2 = +2.8163710486669835 ∗ 10−1 p2 = +3.4266247597676802 ∗ 10−1

p3 = −8.7498013749463421 ∗ 10−2 p3 = −1.9106356536293490 ∗ 10−1

e = +5.6307702007266786 ∗ 10−4 p4 = +5.2608486153198797 ∗ 10−2

e = +8.1513919987605266 ∗ 10−5

5 p0 = +1 6 p0 = +1
p1 = −4.9937760586004143 ∗ 10−1 p1 = −4.9987029229547453 ∗ 10−1

p2 = +3.6508741295133973 ∗ 10−1 p2 = +3.7220923604495226 ∗ 10−1

p3 = −2.5884890281853501 ∗ 10−1 p3 = −2.9193067713256937 ∗ 10−1

p4 = +1.3275782221320753 ∗ 10−1 p4 = +1.9937605991094642 ∗ 10−1

p5 = −3.2511945299404488 ∗ 10−2 p5 = −9.3135712130901993 ∗ 10−2

e = +1.2289367475583346 ∗ 10−5 p6 = +2.0458166789566690 ∗ 10−2

e = +1.9001451223750465 ∗ 10−6

7 p0 = +1 8 p0 = +1
p1 = −4.9997357250704977 ∗ 10−1 p1 = −4.9999471066120371 ∗ 10−1

p2 = +3.7426216884998809 ∗ 10−1 p2 = +3.7481415745794067 ∗ 10−1

p3 = −3.0539882498248971 ∗ 10−1 p3 = −3.1023804387422160 ∗ 10−1

p4 = +2.3976005607005391 ∗ 10−1 p4 = +2.5977002682930106 ∗ 10−1

p5 = −1.5410326351684489 ∗ 10−1 p5 = −1.9818790717727097 ∗ 10−1

p6 = +6.5598809723041995 ∗ 10−2 p6 = +1.1882414252613671 ∗ 10−1

p7 = −1.3038592450470787 ∗ 10−2 p7 = −4.6270038088550791 ∗ 10−2

e = +2.9887724993168940 ∗ 10−7 p8 = +8.3891541755747312 ∗ 10−3

e = +4.7596926146947771 ∗ 10−8
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3.3.5 Sine Function

To approximate the function sin(x), the Chebyshev equioscillation theorem
may be used with or without additional constraints on the function. Without
constraints, the sine function can be approximated on the interval [0, π/2] with
a polynomial having only odd-power terms, p(x) =

∑n
i=0 pix

2i+1 of degree
d = 2n + 1. Choosing degree 5 and using the initial alternating set S0 =
{π/6, π/3, 1}, four Remez iterations led to

p(x) = 0.999698− 0.165674x+ 0.0075147x3 (3.10)

with a global error bound 6.7277003513603606 ∗ 10−5.
However, the slope of the polynomial at x = 0 is not one, which is the

slope of the sine function at zero. Instead, I prefer approximations whose first
term is x, say,

f(x) = sin(x)
.
= x+

n
∑

i=1

pix
2i+1 = p(x) (3.11)

of degree d = 2n+ 1. The first constraint is that p′(0) = f ′(0) = cos(0) = 1.
I also impose the second constraint that the approximation should match the
function at the other endpoint; that is, p(π/2) = f(π/2) = sin(π/2) = 1.
This constrained problem can be solved similar to how I fitted the square root
function. The interval for the approximation is [0, π/2].

The sine function is odd, sin(−x) = − sin(x), in which case you auto-
matically have an approximation on the interval [−π/2, π/2]. To compute an
approximation for any real-valued input, you must use range reduction by
applying trigonometric identities and appealing to the periodicity of the func-
tion. For example, if you want to estimate sin(x) for x ∈ [π/2, π], observe that
sin(x) = sin(π − x). If x ∈ [π/2, π], then π − x ∈ [0, π/2]. For x ∈ [π, 2π],
sin(x) = − sin(x− π) where x− π ∈ [0, π]. Finally, for x > 2π, we can reduce
to a value in [0, 2π] and use the periodicity sin(x + 2πk) = sin(x) for any
integer k.

The tool GeometricTools/GTEngine/Tools/GenerateApproximations has the min-
imax implementation in FitSin.h and FitSin.inl. The implementation is slightly
different from that of the square root function because we want only the
odd-power terms. The code generates Table 3.6 for f(x) = sin(x) with
x ∈ [−π/2, π/2]. The fitted polynomial is p(x) = x

∑n
i=0 pix

2i.

3.3.6 Cosine Function

The tool GeometricTools/GTEngine/Tools/GenerateApproximations has the min-
imax implementation in FitCos.h and FitCos.inl. The implementation is similar
to that of the sine function except that we want only the even-power terms.
The code generates Table 3.7 for f(x) = cos(x) with x ∈ [−π/2, π/2]. The
fitted polynomial is p(x) =

∑n
i=0 pix

2i.
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TABLE 3.6: Minimax polynomial approximations to f(x) = sin(x)
d coefficients d coefficients

3 p0 = +1 5 p0 = +1
p1 = −1.4727245910375519 ∗ 10−1 p1 = −1.6600599923812209 ∗ 10−1

e = +1.3481903639145865 ∗ 10−2 p2 = +7.5924178409012000 ∗ 10−3

e = +1.4001209384639779 ∗ 10−4

7 p0 = +1 9 p0 = +1
p1 = −1.6665578084732124 ∗ 10−1 p1 = −1.6666656235308897 ∗ 10−1

p2 = +8.3109378830028557 ∗ 10−3 p2 = +8.3329962509886002 ∗ 10−3

p3 = −1.8447486103462252 ∗ 10−4 p3 = −1.9805100675274190 ∗ 10−4

e = +1.0205878936686563 ∗ 10−6 p4 = +2.5967200279475300 ∗ 10−6

e = +5.2010746265374053 ∗ 10−9

11 p0 = +1
p1 = −1.6666666601721269 ∗ 10−1

p2 = +8.3333303183525942 ∗ 10−3

p3 = −1.9840782426250314 ∗ 10−4

p4 = +2.7521557770526783 ∗ 10−6

p5 = −2.3828544692960918 ∗ 10−8

e = +1.9295870457014530 ∗ 10−11

TABLE 3.7: Minimax polynomial approximations to f(x) = cos(x)
d coefficients d coefficients

2 p0 = +1 4 p0 = +1
p1 = −4.0528473456935105 ∗ 10−1 p1 = −4.9607181958647262 ∗ 10−1

e = +5.4870946878404048 ∗ 10−2 p2 = +3.6794619653489236 ∗ 10−2

e = +9.1879932449712154 ∗ 10−4

6 p0 = +1 8 p0 = +1
p1 = −4.9992746217057404 ∗ 10−1 p1 = −4.9999925121358291 ∗ 10−1

p2 = +4.1493920348353308 ∗ 10−2 p2 = +4.1663780117805693 ∗ 10−2

p3 = −1.2712435011987822 ∗ 10−3 p3 = −1.3854239405310942 ∗ 10−3

e = +9.2028470133065365 ∗ 10−6 p4 = +2.3154171575501259 ∗ 10−5

e = +5.9804533020235695 ∗ 10−8

10 p0 = +1
p1 = −4.9999999508695869 ∗ 10−1

p2 = +4.1666638865338612 ∗ 10−2

p3 = −1.3888377661039897 ∗ 10−3

p4 = +2.4760495088926859 ∗ 10−5

p5 = −2.6051615464872668 ∗ 10−7

e = +2.7006769043325107 ∗ 10−10

3.3.7 Tangent Function

The tool GeometricTools/GTEngine/Tools/GenerateApproximations has the min-
imax implementation in FitTan.h and FitTan.inl. The implementation is similar
to that of the sine function. The code generates Table 3.8 for f(x) = tan(x)
with x ∈ [−π/4, π/4]. The fitted polynomial is p(x) =

∑n
i=0 pix

2i+1.

3.3.8 Inverse Sine Function

The inverse of the sine function is not easily approximated with a poly-
nomial. If the algorithm applied to the sine function is also applied to the
inverse sine function, say, asin(x)

.
=
∑n

i=0 pix
2i+1 for x ∈ [0, 1], the coeffi-

cients and errors bounds produced by the algorithm are shown in Table 3.9.
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TABLE 3.8: Minimax polynomial approximations to f(x) = tan(x)
d coefficients d coefficients

3 p0 = 1 5 p0 = 1
p1 = 4.4295926544736286 ∗ 10−1 p1 = 3.1401320403542421 ∗ 10−1

e = 1.1661892256204731 ∗ 10−2 p2 = 2.0903948109240345 ∗ 10−1

e = 5.8431854390143118 ∗ 10−4

7 p0 = 1 9 p0 = 1
p1 = 3.3607213284422555 ∗ 10−1 p1 = 3.3299232843941784 ∗ 10−1

p2 = 1.1261037305184907 ∗ 10−1 p2 = 1.3747843432474838 ∗ 10−1

p3 = 9.8352099470524479 ∗ 10−2 p3 = 3.7696344813028304 ∗ 10−2

e = 3.5418688397723108 ∗ 10−5 p4 = 4.6097377279281204 ∗ 10−2

e = 2.2988173242199927 ∗ 10−6

11 p0 = 1 13 p0 = 1
p1 = 3.3337224456224224 ∗ 10−1 p1 = 3.3332916426394554 ∗ 10−1

p2 = 1.3264516053824593 ∗ 10−1 p2 = 1.3343404625112498 ∗ 10−1

p3 = 5.8145237645931047 ∗ 10−2 p3 = 5.3104565343119248 ∗ 10−2

p4 = 1.0732193237572574 ∗ 10−2 p4 = 2.5355038312682154 ∗ 10−2

p5 = 2.1558456793513869 ∗ 10−2 p5 = 1.8253255966556026 ∗ 10−3

e = 1.5426257940140409 ∗ 10−7 p6 = 1.0069407176615641 ∗ 10−2

TABLE 3.9: Minimax polynomial approximations to f(x) = asin(x)
d coefficients d coefficients

3 p0 = +1 5 p0 = +1
p1 = +5.7079632679489661 ∗ 10−1 p1 = −6.8255938822453732 ∗ 10−1

e = +1.9685342444004972 ∗ 10−2 p2 = +1.2533557150194339
e = +1.0028055316328449 ∗ 10−1

7 p0 = +1 9 p0 = +1
p1 = +1.6842448305091242 p1 = −2.2428186249120721
p2 = −4.7058687958517496 p2 = +1.3291181223980431 ∗ 10+1

p3 = +3.5924202921375237 p3 = −2.1822323710205467 ∗ 10+1

e = +6.8107317352554375 ∗ 10−2 p4 = +1.1344757437932010 ∗ 10+1

e = +5.1836906475086431 ∗ 10−2

The coefficients increase significantly in magnitude and the global error bound
does not decrease much. Plots of the error f(x) − p(x) showed me that the
equioscillatory behavior is present, but to reduce the error to a small value
will lead to such large coefficients that the polynomial is simply not practical
in numerical computations.

The problem with the coefficients has to do with the behavior of the deriva-
tive of asin(x) at x = 1; that is, limx→1− asin′(x) = limx→1− 1/

√
1− x2 =

+∞. We can remove the derivative singularity by consider instead the func-
tion f(x) and its derivative f ′(x),

f(x) =
π/2− asin(x)√

1− x
, f ′(x) =

−1/
√
1 + x+ f(x)/2

1− x
(3.12)

It may be shown using L’Hôpital’s rule that f(1) = limx→1− f(x) =
√
2

and f ′(1) = limx→1− f ′(x) = −2−3/2/3
.
= −0.117851. We can approximate

f(x)
.
= p(x) where p(x) =

∑d
i=0 pix

i, thereby obtaining

asin(x)
.
= π/2−

√
1− x p(x) (3.13)
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TABLE 3.10: Minimax polynomial approximations to f(x) = (π/2 −
asin(x))/

√
1− x

d coefficients d coefficients

1 p0 = +1.5707963267948966 2 p0 = +1.5707963267948966
p1 = −1.5658276442180141 ∗ 10−1 p1 = −2.0347053865798365 ∗ 10−1

e = +1.1659002803738105 ∗ 10−2 p2 = +4.6887774236182234 ∗ 10−2

e = +9.0311602490029258 ∗ 10−4

3 p0 = +1.5707963267948966 4 p0 = +1.5707963267948966
p1 = −2.1253291899190285 ∗ 10−1 p1 = −2.1422258835275865 ∗ 10−1

p2 = +7.4773789639484223 ∗ 10−2 p2 = +8.4936675142844198 ∗ 10−2

p3 = −1.8823635069382449 ∗ 10−2 p3 = −3.5991475120957794 ∗ 10−2

e = +9.3066396954288172 ∗ 10−5 p4 = +8.6946239090712751 ∗ 10−3

e = +1.0930595804481413 ∗ 10−5

5 p0 = +1.5707963267948966 6 p0 = +1.5707963267948966
p1 = −2.1453292139805524 ∗ 10−1 p1 = −2.1458939285677325 ∗ 10−1

p2 = +8.7973089282889383 ∗ 10−2 p2 = +8.8784960563641491 ∗ 10−2

p3 = −4.5130266382166440 ∗ 10−2 p3 = −4.8887131453156485 ∗ 10−2

p4 = +1.9467466687281387 ∗ 10−2 p4 = +2.7011519960012720 ∗ 10−2

p5 = −4.3601326117634898 ∗ 10−3 p5 = −1.1210537323478320 ∗ 10−2

e = +1.3861070257241426 ∗ 10−6 p6 = +2.3078166879102469 ∗ 10−3

e = +1.8491291330427484 ∗ 10−7

7 p0 = +1.5707963267948966 8 p0 = +1.5707963267948966
p1 = −2.1459960076929829 ∗ 10−1 p1 = −2.1460143648688035 ∗ 10−1

p2 = +8.8986946573346160 ∗ 10−2 p2 = +8.9034700107934128 ∗ 10−2

p3 = −5.0207843052845647 ∗ 10−2 p3 = −5.0625279962389413 ∗ 10−2

p4 = +3.0961594977611639 ∗ 10−2 p4 = +3.2683762943179318 ∗ 10−2

p5 = −1.7162031184398074 ∗ 10−2 p5 = −2.0949278766238422 ∗ 10−2

p6 = +6.7072304676685235 ∗ 10−3 p6 = +1.1272900916992512 ∗ 10−2

p7 = −1.2690614339589956 ∗ 10−3 p7 = −4.1160981058965262 ∗ 10−3

e = +2.5574620927948377 ∗ 10−8 p8 = +7.1796493341480527 ∗ 10−4

e = +3.6340015129032732 ∗ 10−9

Evaluating at x = 0, we obtain p(0) = π/2. The remainder of the coeffi-
cients are determined by the minimax algorithm. The tool GeometricTools/

GTEngine/Tools/GenerateApproximations generated Table 3.10 using files FitASin.h
and FitASin.inl.

3.3.9 Inverse Cosine Function

The same problems with the inverse sine function occur with the inverse
cosine function acos(x). Although a minimax algorithm can be applied to
acos(x)/

√
1− x similar to that for the inverse sine function, a simple trigono-

metric identity suffices: acos(x) + asin(x) = π/2. Thus, the approximation is
acos(x) = π/2−asin(x)

.
=

√
1− x p(x) where p(x) is a polynomial constructed

for the inverse sine approximation.

3.3.10 Inverse Tangent Function

The tool GeometricTools/GTEngine/Tools/GenerateApproximations has the min-
imax implementation in FitATan.h and FitATan.inl. The implementation is sim-
ilar to that of the sine function. The code generates Table 3.11 for f(x) =
atan(x) for x ∈ [−1, 1]. The fitted polynomial is p(x) =

∑n
i=0 pix

2i+1.
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TABLE 3.11: Minimax polynomial approximations to f(x) = atan(x)
d coefficients d coefficients

3 p0 = +1 5 p0 = +1
p1 = −2.1460183660255172 ∗ 10−1 p1 = −3.0189478312144946 ∗ 10−1

e = +1.5970326392614240 ∗ 10−2 p2 = +8.7292946518897740 ∗ 10−2

e = +1.3509832247372636 ∗ 10−3

7 p0 = +1 9 p0 = +1
p1 = −3.2570157599356531 ∗ 10−1 p1 = −3.3157878236439586 ∗ 10−1

p2 = +1.5342994884206673 ∗ 10−1 p2 = +1.8383034738018011 ∗ 10−1

p3 = −4.2330209451053591 ∗ 10−2 p3 = −8.9253037587244677 ∗ 10−2

e = +1.5051227215514412 ∗ 10−4 p4 = +2.2399635968909593 ∗ 10−2

e = +1.8921598624582064 ∗ 10−5

11 p0 = +1 13 p0 = +1
p1 = −3.3294527685374087 ∗ 10−1 p1 = −3.3324998579202170 ∗ 10−1

p2 = +1.9498657165383548 ∗ 10−1 p2 = +1.9856563505717162 ∗ 10−1

p3 = −1.1921576270475498 ∗ 10−1 p3 = −1.3374657325451267 ∗ 10−1

p4 = +5.5063351366968050 ∗ 10−2 p4 = +8.1675882859940430 ∗ 10−2

p5 = −1.2490720064867844 ∗ 10−2 p5 = −3.5059680836411644 ∗ 10−2

e = +2.5477724974187765 ∗ 10−6 p6 = +7.2128853633444123 ∗ 10−3

e = +3.5859104691865484 ∗ 10−7

3.3.11 Exponential Functions

Given a floating-point input y, we wish to compute 2y. Range reduction
is obtained by choosing y = i+ x, where i = ⌊y⌋ is the largest integer smaller
than y and where x ∈ [0, 1) is the fractional part. We can easily compute 2i,
so the problem reduces to computing f(x) = 2x for x ∈ [0, 1). Once again a

minimax polynomial approximation may be used, 2x
.
=
∑d

i=0 pix
i. The tool

GeometricTools/GTEngine/Tools/GenerateApproximations has the minimax imple-
mentation in FitExp2.h and FitExp2.inl. The implementation is similar to that
of the square root function. The code generates Table 3.12 for f(x) = 2x for
x ∈ [0, 1]. The fitted polynomial is p(x) =

∑n
i=0 pix

i.
To compute the natural exponential ex, use the identity 2y = ex where

y = x log2(e) and then apply the minimax approximation for 2y.

3.3.12 Logarithmic Functions

Range reduction may be used for an input x to f(x) = log2(x); that is,
x = (1 + t) ∗ 2p for some integer power p and for t ∈ [0, 1). Of course, this
information may be obtained from the binary representation for a floating-
point number. Applying the logarithm, we obtain log2(x) = log2(1 + t) + p.
We may focus our attention on computing log2(1 + t) for t ∈ [0, 1), a prob-
lem similar to that for the square root function. The minimax approximation
is log2(1 + x)

.
=
∑d

i=1 pix
i. Observe that the constant term of the polyno-

mial is zero. The tool GeometricTools/GTEngine/Tools/GenerateApproximations has
the minimax implementation in FitLog2.h and FitLog2.inl. The code generates
Table 3.13 for f(x) = log2(1 + x) for x ∈ [0, 1]. The fitted polynomial is
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TABLE 3.12: Minimax polynomial approximations to f(x) = 2x

d coefficients d coefficients

1 p0 = 1 2 p0 = 1
p1 = 1 p1 = 6.5571332605741528 ∗ 10−1

e = 8.6071332055934313 ∗ 10−2 p2 = 3.4428667394258472 ∗ 10−1

e = 3.8132476831060358 ∗ 10−3

3 p0 = 1 4 p0 = 1
p1 = 6.9589012084456225 ∗ 10−1 p1 = 6.9300392358459195 ∗ 10−1

p2 = 2.2486494900110188 ∗ 10−1 p2 = 2.4154981722455560 ∗ 10−1

p3 = 7.9244930154334980 ∗ 10−2 p3 = 5.1744260331489045 ∗ 10−2

e = 1.4694877755186408 ∗ 10−4 p4 = 1.3701998859367848 ∗ 10−2

e = 4.7617792624521371 ∗ 10−6

5 p0 = 1 6 p0 = 1
p1 = 6.9315298010274962 ∗ 10−1 p1 = 6.9314698914837525 ∗ 10−1

p2 = 2.4014712313022102 ∗ 10−1 p2 = 2.4023013440952923 ∗ 10−1

p3 = 5.5855296413199085 ∗ 10−2 p3 = 5.5481276898206033 ∗ 10−2

p4 = 8.9477503096873079 ∗ 10−3 p4 = 9.6838443037086108 ∗ 10−3

p5 = 1.8968500441332026 ∗ 10−3 p5 = 1.2388324048515642 ∗ 10−3

e = 1.3162098333463490 ∗ 10−7 p6 = 2.1892283501756538 ∗ 10−4

e = 3.1589168225654163 ∗ 10−9

7 p0 = 1
p1 = 6.9314718588750690 ∗ 10−1

p2 = 2.4022637363165700 ∗ 10−1

p3 = 5.5505235570535660 ∗ 10−2

p4 = 9.6136265387940512 ∗ 10−3

p5 = 1.3429234504656051 ∗ 10−3

p6 = 1.4299202757683815 ∗ 10−4

p7 = 2.1662892777385423 ∗ 10−5

e = 6.6864513925679603 ∗ 10−11

TABLE 3.13: Minimax polynomial approximations to f(x) = log2(1 + x)
d coefficients d coefficients

1 p1 = +1 2 p1 = +1.3465553856377803
e = +8.6071332055934202 ∗ 10−2 p2 = −3.4655538563778032 ∗ 10−1

e = +7.6362868906658110 ∗ 10−3

3 p1 = +1.4228653756681227 4 p1 = +1.4387257478171547
p2 = −5.8208556916449616 ∗ 10−1 p2 = −6.7778401359918661 ∗ 10−1

p3 = +1.5922019349637218 ∗ 10−1 p3 = +3.2118898377713379 ∗ 10−1

e = +8.7902902652883808 ∗ 10−4 p4 = −8.2130717995088531 ∗ 10−2

e = +1.1318551355360418 ∗ 10−4

5 p1 = +1.4419170408633741 6 p1 = +1.4425449435950917
p2 = −7.0909645927612530 ∗ 10−1 p2 = −7.1814525675038965 ∗ 10−1

p3 = +4.1560609399164150 ∗ 10−1 p3 = +4.5754919692564044 ∗ 10−1

p4 = −1.9357573729558908 ∗ 10−1 p4 = −2.7790534462849337 ∗ 10−1

p5 = +4.5149061716699634 ∗ 10−2 p5 = +1.2179791068763279 ∗ 10−1

e = +1.5521274478735858 ∗ 10−5 p6 = −2.5841449829670182 ∗ 10−2

e = +2.2162051216689793 ∗ 10−6

7 p1 = +1.4426664401536078 8 p1 = +1.4426896453621882
p2 = −7.2055423726162360 ∗ 10−1 p2 = −7.2115893912535967 ∗ 10−1

p3 = +4.7332419162501083 ∗ 10−1 p3 = +4.7861716616785088 ∗ 10−1

p4 = −3.2514018752954144 ∗ 10−1 p4 = −3.4699935395019565 ∗ 10−1

p5 = +1.9302965529095673 ∗ 10−1 p5 = +2.4114048765477492 ∗ 10−1

p6 = −7.8534970641157997 ∗ 10−2 p6 = −1.3657398692885181 ∗ 10−1

p7 = +1.5209108363023915 ∗ 10−2 p7 = +5.1421382871922106 ∗ 10−2

e = +3.2546531700261561 ∗ 10−7 p8 = −9.1364020499895560 ∗ 10−3

e = +4.8796219218050219 ∗ 10−8
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p(x) =
∑n

i=1 pix
i. To compute the natural logarithm log(x), use the identity

log(x) = log2(x)/ log2(e) where e
.
= 2.7182818 is the natural base and then

apply the minimax approximation for log2(x).



Chapter 4

GPU Computing

4.1 Drawing a 3D Object

The classical use of shader programming on GPUs involves drawing 3D
geometric primitives within a 2D window using perspective projection. In
order to motivate the parallelism that a GPU provides, let us review all the
steps involved in drawing a 3D geometric object. The parallelism comes in two
forms. The first form is the partitioning of the work due to the large number of
pixels that can be processed independently—this is massive parallelism due to
a large number of cores on the GPU. The second form is the vectorized work
per vertex and per pixel—this is SIMD parallelism available on each core. A
detailed discussion of the components of a shader-based rendering engine may
be found in [8].

4.1.1 Model Space

Consider a 3D geometric object composed of vertices and triangles that
connect the vertices. The vertices are defined in model space. In games, such
objects are sometimes referred to as models, and artists usually create them
with a modeling package. The model space is whatever coordinate system the
artist chose to use when creating the objects.

4.1.2 World Space

The 3D game itself is given a coordinate system called world space, the
name suggesting that the geometric objects live in a consistent world. Points
in the world are located as 3-tuple Cartesian coordinates. An origin must be
chosen as a common reference point for all objects; usually the origin is the
3-tuple (0, 0, 0). A set of three orthogonal direction vectors are chosen as the
Cartesian frame; usually these are chosen as the 3-tuples (1, 0, 0), (0, 1, 0), and
(0, 0, 1). Which of these is the up-vector is your choice.

A geometric object must be placed somewhere in the world. The object was
created in a model space, so we must transform its vertices to world space.
Let W be the model-to-world transformation that accomplishes this. As is
typical in computer graphics with perspective cameras, the vertices are stored
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as homogeneous points that are 4-tuples of the form (x, y, z, 1). The x-, y-, and
z-values represent the distances from the origin along each of the Cartesian
direction vectors, and the combination of the three numbers is the location
of that point in the world. The last component is an algebraic convenience
to allow us to handle affine and perspective transformations within the same
mathematical framework. Let Pmodel be the 3× 1 column vector whose rows
are the components of (x, y, z). A 4×4 homogeneous matrix Hworld represents
an affine transformation consisting of translation and rotation; however, an
artist might also intend for some objects to be scaled, whether uniformly or
nonuniformly. Generally, the matrix is of the block form

Hworld =

[

M T

0T 1

]

(4.1)

where T is the 3×1 translation and M represents rotations, scalings, shearing,
or other linear-algebraic operations. The 3×1 zero vector is 0. The lower-right
element is the scalar 1. The world-space location of the model-space point is

[

Pworld

1

]

= Hworld

[

Pmodel

1

]

=

[

MPmodel +T

1

]

(4.2)

As shown, the matrix has last row (0, 0, 0, 1) to represent an affine transforma-
tion. GTEngine allows you to choose different conventions for matrix storage
and multiplication; see Chapter 6.

4.1.3 View Space

Observers in the world have their own coordinate systems by which they
can specify object locations. Although we naturally use stereo vision, for sim-
plicity the assumption of monocular vision is used. Objects are observed from
a location called the eyepoint, say, E. Assuming the observer is standing, the
body axis is the natural up direction, say, U. Looking straight ahead, we have
the direction of view, say, D. We may choose a third direction to be to the
right, say, R. Abstractly, these quantites are part of a camera and the coordi-
nate system is {E;D,U,R} where the first point is the origin. The last three
vectors are ordered and form a right-handed orthonormal basis; that is, the
vectors are unit length, mutually perpendicular, and R = D × U. The last
vector in the ordered set is the cross product of the first two vectors. The ori-
gin and vectors in the coordinate system are specified in world coordinates; as
3-tuples, the components are measured in the Cartesian directions mentioned
in the previous paragraph.

A 3-tuple may be used to describe the location of a point relative to the
camera, say, (d, u, r), which corresponds to the world point Pworld = E +
dD+uU+rR. In the standard transformation pipeline of computer graphics,
the convention has been to list the order of measurements as (r, u, d). The
ordered set of vectors {R,U,D} is a left-handed orthonormal basis, where
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D = −R × U. Once again using homogeneous points, we may compute the
view space (or camera space) point Pview whose rows are the components of
(r, u, d). Let Q = [R U D] be the matrix whose columns are the camera
directions considered as 3× 1 vectors. The homogeneous transformation from
world space to view space is of the block form

Hview =

[

QT −QTE

0T 1

]

(4.3)

The view-space location of the world-space point is

[

Pview

1

]

= Hview

[

Pworld

1

]

=

[

QT(Pworld −E)
1

]

(4.4)

In your code, you should be clear about the relationship between the geometry
you have in mind for the camera directions and the algebra associated with it.
GTEngine has a class Camera that stores the eyepoint and camera coordinate
vectors. The interface allows you to write these individually, but you may only
read the view matrix.

4.1.4 Projection Space

Let us consider a perspective camera, although it is simple to allow an or-
thographic camera when drawing 3D objects. A view plane is chosen in front
of the eyepoint and perpendicular to the direction of view. The 3D objects are
projected onto this plane by intersecting the plane with rays from the eyepoint
through the object points. For the simplified geometric primitives that repre-
sent the boundaries of objects and that consist of vertices and triangles, the
vertices are projected onto the plane. Points on the boundaries and inside the
triangles do not have to be explicitly projected—the perspective projections
are obtained by interpolation of the vertex projections.

The view plane has normal vector −D so that it is perpendicular to the
direction of view. The plane is positioned dmin > 0 units in front of the
eyepoint; that is, a point on the plane is E+ dminD. Therefore, the equation
of the view plane is

0 = −D · [X− (E+ dminD)] = −D · (X−E) + dmin (4.5)

The points X satisfying this equation are on the plane. For each vertex Pworld,
a ray is parameterized by X(t) = E+t(Pworld−E) for t > 0. The constraint on
t says that we care only about points in front of the eyepoint. Substituting this
into the plane equation, we may solve for the t-value, say, t̄ = dmin/(Pworld −
E). If Vworld = X(t̄) is the projection point, some algebraic steps lead to

Vworld =
(EDT + dminI)(Pworld −E)

DT(Pworld −E)
=

N

δ
(4.6)
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where I is the 3 × 3 identity matrix and where the last equality defines the
numerator and denominator of the computation. We may compute the nu-
merator and denominator separately using homogeneous points and matrices,

[

N

δ

]

=

[

EDT + dminI −(EDT + dminI)E

DT −DTE

] [

Pworld

1

]

(4.7)

where the left-hand side is defined by the product on the right-hand side.
It is more convenient to formulate the projection in view space itself. The

final result is a homogeneous point said to be in projection space or clip space:

Pproj =

[

N′

δ′

]

=

[

QT −QT
E

0T 1

]

[

N

δ

]

=

[

QT −QTE

0T 1

] [

ED
T + dminI −(ED

T + dminI)E

D
T −D

T
E

]

[

Pworld
1

]

=

[

QT −QTE

0
T 1

][

ED
T + dminI −(ED

T + dminI)E

D
T −D

T
E

][

Q E

0T 1

]

[

Pview
1

]

=

[

dminI 0

D
TQ 0

]

[

Pview
1

]

=

[

dminPview

D
TQ

]

=

⎡

⎣

dmin





r

u

d





d

⎤

⎦ (4.8)

The projected point itself requires the perspective divide. The numerator is
a 3-tuple and must be divided by the denominator d, leading to the view-
plane point (rdmin/d, udmin/d, dmin). As expected, the last component is the
distance from the eyepoint to the view plane.

At first glance it appears that the homogeneous projection matrix we
should use is

Ĥproj =

[

dminI 0

DTQ 0

]

(4.9)

in which case the transformation pipeline from model space to projection space
is

Pproj = ĤprojHviewHworld

[

Pmodel

1

]

(4.10)

where the final result is a 4× 1 homogeneous point. As a tuple, this point is
Pproj = (N′, δ′) and the projected point on the view plane (in view coordi-
nates) is Vproj = N′/δ′ = (rdmin/d, udmin/d, dmin). However, the world is a
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FIGURE 4.1: An eyepoint E and a view frustum. The point X in the view
frustum is projected to the point Y on the view plane.

large place, so we can draw objects in only a small part of it, called the view
frustum, a 6-sided convex polyhedron that is the frustum of a pyramid for
perspective projection or a cube for an orthographic projection. The standard
computer graphics transformation pipelines map the frustum into a cube. The
D3D11 cube is [−1, 1]2 × [0, 1] . The actual homogeneous projection matrix
used to obtain Pproj incorporates the view frustum bounds.

The view frustum is defined by selecting extreme values for the components
of (r, u, d), say, rmin ≤ r ≤ rmax, umin ≤ u ≤ umax, and dmin ≤ d ≤ dmax.
Figure 4.1 is a 3D rendering of the frustum as a wireframe. A symmetric view
frustum has the property rmin = −rmax and umin = −umax. Figure 4.2 shows a
symmetric view frustum with its faces labeled. The horizontal field of view has
half-angle θr that satisfies the equation tan(θr) = rmax/dmin and the vertical
field of view has half-angle θu that satisfies the equation tan(θu) = umax/dmin.

In the general case, the ru-coordinates of points in the view frustum are
mapped to [−1, 1]2 by

r′ =
2

rmax − rmin

(

dminr −
rmin + rmax

2
d

)

u′ =
2

umax − umin

(

dminu− umin + umax

2
d

) (4.11)

The perspective mapping of the interval [dmin, dmax] to a target interval [t0, t1]
is of the form t = a+ b/d = (ad+ b)/d = d′/d, where the last equality defines
the numerator d′. The coefficients a and b are determined from the linear
system a+ b/dmin = t0 and a+ b/dmax = t1. The target interval for D3D11 is
[0, 1] and the numerator of the mapping is

d′ =
dmax(d− dmin)

dmax − dmin
(4.12)
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FIGURE 4.2: (a) A 3D drawing of the symmetric view frustum. The left,
right, bottom, top, near, and far planes are labeled, as are the eight vertices
of the frustum. (b) A 2D drawing of the frustum as seen from the top side.
(c) A 2D drawing of the frustum as seen from the right side.

The corresponding homogeneous projection matrix is

Hproj =

⎡

⎢

⎢

⎢

⎣

2dmin

rmax−rmin
0 − rmax+rmin

rmax−rmin
0

0 2dmin

umax−umin
− umax+umin

umax−umin
0

0 0 dmax

dmax−dmin
− dmaxdmin

dmax−dmin

0 0 1 0

⎤

⎥

⎥

⎥

⎦

(4.13)

The matrix of Equation (4.13) is indeed different from that in Equation
(4.9). The projection-space point is not that of Equation (4.10); rather, it is

Pproj = HprojHviewHworld

[

Pmodel

1

]

=

⎡

⎢

⎢

⎣

r′

u′

d′

d

⎤

⎥

⎥

⎦

(4.14)

where r′, u′, and d′ are defined in Equations (4.11) and (4.12). The view
frustum is defined by the constraints |r′| ≤ d, |u′| ≤ d, 0 ≤ d′ ≤ dmax, and
dmin ≤ d ≤ dmax.
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4.1.5 Window Space

The perspective divide is performed on the 4-tuples (r′, u′, d′, d) to obtain

(r′′, u′′, d′′) = (r′/d, u′/d, d′/d), (4.15)

called normalized device coordinates. They satisfy the constraints |r′′| ≤ 1,
|u′′| ≤ 1, and 0 ≤ d′′ ≤ 1. The 2-tuples (r′′, u′′) are mapped to real-valued
window space 2-tuples (x, y) in a window of width W and height H where
0 ≤ x < W and 0 ≤ y < H . The (r′′, u′′) tuples are right handed but display
windows are left handed, so the mapping involves a reflection. Specifically, the
mapping is

x =
W (1 + r′′)

2
, y =

H(1− u′′)

2
(4.16)

Observe that the computations are real valued. The actual integer-valued
pixels drawn are based on rules about real-valued pixel containment within
triangles. The right edge r′′ = 1 maps to x = W and the bottom edge u′′ = −1
maps to y = H . Both indices are out of range, but the containment rules lead
to rejection of the corresponding pixels; see the next section on rasterization.

The mapping from (r′′, u′′) to (x, y) is based on using the entire window
for drawing the objects. It is possible to draw the objects to a subrectangle of
the window. This subrectangle is referred to as the viewport. In D3D11, the
concept of viewport includes a subinterval of depth, so in fact the viewport is
a subcube of the cube [0,W )× [0, H)× [0, 1].

Viewport handling is definitely specific to the graphics API. Moreover, now
that machines can have multiple monitors with extended displays, a window
can occupy screen real estate on two monitors. The pixel indexing scheme
in this case must support windows for which a dimension is larger than that
of any single monitor. And it must support negative positions, especially if
the secondary monitor is configured to be to the left of the primary mon-
itor. The viewport APIs must allow for this. Even using only Direct3D on
a Microsoft Windows computer, be aware that the viewport handling varies
between D3D9, D3D10, and D3D11.

Let the viewport have upper-left corner (x0, y0), width w0 > 0, and height
h0 > 0. The depth may be constrained to [z0, z1] ⊆ [0, 1]. The mapping from
normalized device coordinates to the viewport is then

x = x0 +
w0(1 + r′′)

2
, y = y0 +

h0(1− u′′)

2
, z = z0 + (z1 − z0)d

′′ (4.17)

If Pndc is the 3 × 1 column vector whose rows are the normalized device
coordinates (r′′, u′′, d′′) and Pwindow is the 3 × 1 column vector whose rows
are the window coordinates (x, y, z), then

[

Pwindow

1

]

⎡

⎢

⎢

⎣

w0/2 0 0 x0 + w0/2
0 −h0/2 0 y0 + h0/2
0 0 z1 − z0 z0
0 0 0 1

⎤

⎥

⎥

⎦

[

Pndc

1

]

(4.18)
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TABLE 4.1: The transformation pipeline

point transform name matrix equation

Pmodel
↓ world matrix, Hworld, (4.1)
Pworld
↓ view matrix, Hview, (4.3)
Pview
↓ projection matrix, Hproj, (4.13)
Pproj
↓ perspective divide, (4.15)
Pndc
↓ window matrix, Hwindow, (4.19)
Pwindow

The final homogeneous matrix in the transformation pipeline is

Hwindow =

⎡

⎢

⎢

⎣

w0/2 0 0 x0 + w0/2
0 −h0/2 0 y0 + h0/2
0 0 z1 − z0 z0
0 0 0 1

⎤

⎥

⎥

⎦

(4.19)

4.1.6 Summary of the Transformations

The previous sections show how to transform a point in a 3D model space
to a point in window space. The sequence of steps is shown in Table 4.1.
Software renderers implement the entire pipeline, both for vertices of the tri-
angles and the interpolated points during rasterization of the triangles. When
hardware-accelerated graphics for consumer machines first arrived, the appli-
cation was still responsible for computing and multiplying the world, view,
and projection matrices. The perspective divisions and mapping to window
coordinates were performed in graphics hardware (hardware rasterization).
On later graphics hardware, the entire transformation pipeline was handled
by the hardware including computing texture coordinates and lighting data
at vertices (hardware texturing and lighting). However, control of per-pixel
attributes during rasterization was indirect and somewhat cryptic (the fixed-
function pipeline). Finally, the graphics hardware evolved to allow detailed
control over vertex and pixel attributes (shader programming).

The composition of the world, view, and projection homogeneous matrices
is of importance to shader programs,

Hpvw = HprojHviewHworld (4.20)

Although each individual matrix may be used by shader programs, for stan-
dard drawing of 3D objects use the composition. It is convenient for the ap-
plication to compute this matrix product and provide it to the shader.



GPU Computing 131

4.1.7 Rasterization

We now get to the stage of drawing a 3D object that allows massive par-
allelism. Consider a 3D triangle that is fully in the view frustum and that is
fully visible to the observer (the camera eyepoint). Let the model-space ver-
tices be Vi for 0 ≤ i ≤ 2. Each vertex has a set of attributes such as color,
texture coordinate, or normal vector for lighting. Refer to these collectively
as Ai for vertex i. The vertices are transformed from model space to window
space, leading to three real-valued pixels (xi, yi) for 0 ≤ i ≤ 2. The vertex is
assigned a color through some sequence of computations involving the vertex
attributes. The triangle contains other pixels that we wish to assign colors.
The standard approach is to rasterize the triangle into the pixel grid and
perspectively interpolate the vertex attributes for the pixel colors.

Let V be a point in the triangle. We may write this point as a linear
combination of the vertices: V = b0V0 + b1V1 + b2V2, where bi ≥ 0 and
b0 + b1 + b2 = 1. The coefficients bi are called barycentric coordinates of V
relative to the vertices. They are preserved by affine tranformations. We may
interpolate the attributes A at V using barycentric coordinates and then
applying the perspective divide. Let the projection-space coordinates of the
vertices be (r′i, u

′
i, d

′
i, di). The perspectively interpolated attributes are

A =
b0A0 + b1A1 + b2A2

b0d0 + b1d1 + b2d2
(4.21)

The standard approach to rasterization is to use the top-left rule. This
is the extension of the one-dimensional concept of half-open intervals. The
interval (x0, x1) consists of numbers x for which x0 < x < x1. Note that the
endpoints are not included in the interval. In calculus, the interval is said to
be open. The interval [x0, x1] consists of numbers x for which x0 ≤ x ≤ x1. In
this case, the endpoints are included in the interval and the interval is said to
be closed. Define [x0, x1) to be the set of numbers x for which x0 ≤ x < x1.
The interval is said to be half open in the sense that the number x1 is not
included in the set; however, x0 is in the set. The interval is also said to be
half closed.

Consider the set of real-valued numbers visualized as a line. Consider an
ordered set of n real-valued numbers xi for 0 ≤ i < n and where xi < xi+1.
Assign to each xi a color ci. We wish to assign colors to each integer in
[x0, x1) using linear interpolation of the colors at the xi that bound the integer.
Although we could iterate over the integers j in [x0, x1), query for the interval
[xi, xi+1] that contains j, and interpolate a color c = ci + (j − xi)/(xi+1 −
xi)(ci+1 − ci), this is akin to the drawing objects in 2D by iterating over all
the pixels and querying which geometric primitive contains it. However, in 2D
we iterate over the geometric primitives and determine the pixels contained
by each primitive. The natural specialization to 1D is to iterate over the
intervals [xi, xi+1] and determine which integers are contained by the interval.
Moreover, we wish to “visit” each integer only once. This raises the question
of ownership of integers by the intervals, something that can be determined
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FIGURE 4.3: A one-dimensional illustration of pixel ownership using half-
open intervals.

y

x

FIGURE 4.4: A set that is the Cartesian product of half-open intervals. The
top and left edges of the rectangle are included in the set (drawn as solid black
lines) but the right and bottom edges are not included (drawn as dotted black
lines).

by using half-open intervals [xi, xi+1) to avoid the problem when an xi+1

is already an integer and shared by the intervals [xi, xi+1] and [xi+1, xi+2].
Figure 4.3 illustrates the ownership for the 1D problem. Figure 4.3 shows a
set of numbers x0 through x5 and integer points on the real line. The pixel
ownerships are listed next.

• [x0, x1) owns 1, 2, and 3.

• [x1, x2) owns only 4 because x2 = 5 and the right endpoint of the interval
is excluded.

• [x2, x3) owns 5 and 6.

• [x3, x4) owns 7, 8, and 9.

• [x4, x5) does not own any integers because x5 = 10 and the right end-
point of the interval is excluded.

An extension of half-open intervals to 2D uses Cartesian products of 1D
intervals. The rectangle [x0, x1)× [y0, y1) is the set of 2-tuples (x, y) for which
x0 ≤ x < x1 and y0 ≤ y < y1. Figure 4.4 shows such a set drawn in a
left-handed coordinate system with x increasing rightward and y increasing
downward.
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FIGURE 4.5: A two-dimensional illustration of pixel ownership using the
top-left rasterization rule.

The concept of half-open interval may be extended to triangles in 2D.
Edges are either horizontal (y is constant) or not horizontal. If a triangle edge
is horizontal and all triangle points are on or below that edge, the edge is said
to be a top edge. If a triangle edge is not horizontal and all triangle points in
the rows spanned by the edge are on or right of that edge, the edge is said to be
a left edge. A triangle has one or two left edges but does not necessarily have
a top edge. Similar to the 1D rasterization shown in Figure 4.3, a 2D triangle
with real-valued vertices may be drawn in the plane and covers various pixels
(integer-valued points).

Top-Left Rasterization Rule A pixel is owned by the triangle if it is

• strictly inside the triangle,

• on a top edge but not the rightmost point of that edge, or

• on a left edge but not the bottommost point of that edge.

The rule guarantees a partitioning of the to-be-drawn pixels into disjoint
sets of pixels, each set owned by a triangle. Figure 4.5 shows a triangle and
its pixel ownership. The pixels are drawn as squares and the pixel centers are
drawn as plus signs. The gray-colored pixels are those owned by the triangle.
The pixels at (1, 4) and (3, 6) are exactly on left edges of the triangle, so they
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are owned by the triangle. The pixel at (7, 7), although exactly a vertex, is
not strictly inside the triangle and not on a top or left edge, so the triangle
does not own it.

The disjoint partitioning of the pixels not only is relevant to guaranteeing
a pixel is drawn once, it allows the pixel processing to be efficiently distributed
across multiple cores, whether CPU cores in software rendering or GPU cores
in hardware rendering. The partitioning of a rectangular array is a key obser-
vation to GPGPU computing, as we will see in the next section.

4.2 High Level Shading Language (HLSL)

In this section I will discuss shader programming using the D3D11 high
level shading language (HLSL). Various shader types are examined without
regard to how you actually hook up inputs, outputs, and execute them using
a D3D11 engine.

4.2.1 Vertex and Pixel Shaders

Let us look at some simple shaders used for drawing. The discussion here
builds on top of the presentation in Section 4.1. The first example involves
vertex color attributes only. The sample application is

GeometricTools/GTEngine/Samples/Basics/VertexColoring

Listing 4.1 contains a vertex shader and a pixel shader. The shader uses the
vector-on-the-right multiplication convention, although GTEngine has condi-
tional compilation to support the vector-on-the-left convention.

c b u f f e r PVWMatrix
{

f l o a t 4 x 4 pvwMatrix ;
} ;

s t r u c t VS INPUT
{

f l o a t 3 mod e lPo s i t i o n : POSITION ;
f l o a t 4 modelCo lor : COLOR0 ;

} ;

s t r u c t VS OUTPUT
{

f l o a t 4 v e r t e xCo l o r : COLOR0 ;
f l o a t 4 c l i p P o s i t i o n : SV POSITION ;

} ;

VS OUTPUT VSMain (VS INPUT i npu t )
{

VS OUTPUT output ;
output . v e r t e x c o l o r = i n pu t . modelCo lor ;
output . c l i p P o s i t i o n = mul ( pvwMatrix , f l o a t 4 ( mode lPo s i t i on , 1 .0 f ) ) ;
r e tu r n output ;

}
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s t r u c t PS INPUT
{

f l o a t 4 v e r t e xCo l o r : COLOR0 ;
} ;

s t r u c t PS OUTPUT
{

f l o a t 4 p i x e l C o l o r 0 : SV TARGET0 ;
} ;

PS OUTPUT PSMain(PS INPUT i npu t )
{

PS OUTPUT output ;
output . p i x e l C o l o r 0 = i n pu t . v e r t e xCo l o r ;
r e tu r n output ;

} ;

LISTING 4.1: A vertex shader and a pixel shader for simple vertex coloring
of geometric primitives.

The vertex shader is the function named VSMain. The input to each invo-
cation of the function is of type VS INPUT, which has the model-space position
of the vertex as a 3-tuple (modelPosition) and the color attribute (modelColor),
which represents an RGBA color whose channels are floating-point numbers
in the interval [0, 1]. The output of the function is of type VS OUTPUT and
simply passes through the model color as vertexColor. The other output param-
eter, clipPosition, is required and contains the projection-space coordinates of
the incoming model-space position. The multiplication involves the constant
buffer named PVWMatrix; specifically, the member pvwMatrix stores the matrix
of Equation (4.20). If you choose the vector-on-the-left convention, the param-
eters in the mul operator are reversed; see the GteVertexColorEffect.cpp file to
see how either convention is supported using conditional compilation within
the HLSL shader itself. Constant buffers provide a mechanism for sharing
parameters that are common to all invocations of a shader.

The pixel shader is the function PSMain. The input to each invocation of the
function is of type PS INPUT, which stores the color value that is perspectively
interpolated by the rasterizer for the target pixel. The output of the function is
of type PS OUTPUT and simply passes through the interpolated color obtained
from the rasterizer.

HLSL uses semantics to convey information about the use of input and
output parameters. When rolling your own effects system, the vertex shader
input semantics are not necessarily meaningful. The semantic name and the
actual meaning of the data can be quite different; for example, you might
pass in physical parameters through a TEXCOORD semantic even though the
parameters are not used for texture lookups. However, the semantics are nec-
essary to associate vertex shader outputs with pixel shader inputs.

Two of the semantics are prefixed with SV . These are called system value
semantics. The vertex shader must output the projection-space position using
the semantic SV POSITION, thereby letting the rasterizer know that clipPosition
must be used to generate the window-space positions and for interpolation. A
pixel shader input can also be labeled with the SV POSITION semantic. This
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input stores the pixel center with a one-half offset in the xy components of
that input member.

The pixel shader uses the semantic SV TARGET0, indicating which output
color buffer is written. In D3D11, the maximum number of such buffers is
eight. In our example, we are writing to buffer zero. It is possible to write to
multiple render targets. To do so, you add more members to PS OUTPUT and
label them with the semantics indicating which targets you want. The pixel
shader then assigns values to each of the members.

Vertex and pixel shaders for basic 2D texturing of a square formed of two
triangles are shown in Listing 4.2. The shader uses the vector-on-the-right
multiplication convention, although GTEngine has conditional compilation to
support the vector-on-the-left convention.

c b u f f e r PVWMatrix
{

f l o a t 4 x 4 pvwMatrix ;
} ;

s t r u c t VS INPUT
{

f l o a t 3 mod e lPo s i t i o n : POSITION ;
f l o a t 2 modelTCoord : TEXCOORD0;

} ;

s t r u c t VS OUTPUT
{

f l o a t 2 vertexTCoord : TEXCOORD0;
f l o a t 4 c l i p P o s i t i o n : SV POSITION ;

} ;

VS OUTPUT VSMain (VS INPUT i npu t )
{

VS OUTPUT output ;
output . ver texTCoord = i n pu t . modelTCoord ;
output . c l i p P o s i t i o n = mul ( pvwMatrix , f l o a t 4 ( mode lPo s i t i on , 1 .0 f ) ) ;
r e tu r n output ;

}

s t r u c t PS INPUT
{

f l o a t 2 vertexTCoord : TEXCOORD0;
} ;

s t r u c t PS OUTPUT
{

f l o a t 4 p i x e l C o l o r 0 : SV TARGET0 ;
} ;

Texture2D ba s eTextu r e ;
Samp l e rS ta te baseSampler ;

PS OUTPUT PSMain(PS INPUT i npu t )
{

PS OUTPUT output ;
output . p i x e l C o l o r 0 = bas eTextu r e . Sample ( baseSampler , i n p u t . ver texTCoord ) ;
r e tu r n output ;

} ;

LISTING 4.2: A vertex shader and a pixel shader for simple texturing of
geometric primitives.
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FIGURE 4.6: (a) A rendering of a vertex-colored triangle. (b) A rendering
of a textured square.

Sample applications to demonstrate vertex coloring of a single triangle and
texturing of a square are

GeometricTools/GTEngine/Samples/Basics/VertexColoring
GeometricTools/GTEngine/Samples/Basics/Texturing

Figure 4.6 shows grayscale renderings. The application renderings are in color.
The shader programs are relatively easy to read without extensive knowl-

edge of HLSL or D3D11. However, it is necessary to compile the shaders,
whether offline or at runtime. At runtime, the shader inputs and outputs
must be hooked up for execution. In the preceding examples, an application
must create a constant buffer to store the 4× 4 world-view-projection matrix
of Equation (4.20). This buffer is hooked up to the shader at runtime using
D3D11 API calls, and the name PVWMatrix is a convenience for identifying the
input to hook up to. Although a programmer may look at an assembly listing
of the compiled shader to determine the constant-buffer register assigned to
PVWMatrix, shader reflection may be used to obtain that information, thus
establishing a map of constant buffer names to registers.

The vertex shader is executed for vertices obtained from a user-constructed
vertex buffer. This is a chunk of memory that you must let D3D11 know how
it is to be interpreted. Moreover, you need to create an input layout object

that establishes the relationship between members of the vertex buffer and
the input format defined by VS INPUT.

D3D11 will execute the vertex shader as needed, but it needs to know
the type of geometric primitive you want drawn. The primitive topology is
specified by the user: triangle mesh, triangle strip, line mesh, line strip, points,
etc. The vertices are used in the order provided by the vertex buffer—an
indexless primitive—or in an order specified by an index buffer. This buffer



138 GPGPU Programming for Games and Science

stores integer indices (16-bit or 32-bit) into the vertex buffer interpreted as
an array of structures. When the corresponding D3D11 draw call is made, the
vertices are processed by calls to VSMain. When an entire primitive is ready,
say, the three vertices of a triangle have been processed by the vertex shader
calls, the rasterizer identifies the pixels owned by the triangle and calls PSMain

for each owned pixel.
In the texturing example, the model-space texture coordinates are passed

through by the vertex shader. The rasterizer then interpolates these coordi-
nates and passes them to the pixel shader so that the 2D texture can be sam-
pled to obtain a color. The baseTexture object is a read-only texture that the
programmer needs to create and hook up to the shader. The texture must be
sampled. The standard methods are nearest neighbor or linear interpolation,
and the programmer may specify these by creating baseSampler and hooking
it up to the shader. The texture might also be created for mipmapping.

All in all, there are a lot of steps required to get D3D11 ready to draw
something as simple as a vertex-colored or textured object! After I briefly
discuss geometry shaders and compute shaders, the remainder of Section 4.2
is a discussion of the key steps, including how to create a D3D11 device and
immediate context for drawing and how to create the aforementioned buffers.
The daunting details of the self-contained low-level D3D11 commands in a
single main program are discussed in Section 5.1. The source code for drawing
a triangle that is both vertex colored and textured is provided using only low-
level D3D11 commands. I guarantee that you do not want to keep repeating
such low-level code for your applications. In that section, my intent is to
motivate building a D3D11 engine that encapsulates as much of the work as
possible. Consider GTEngine as a case study; you may find a brief discussion
about its design and architecture in Section 5.1.

4.2.2 Geometry Shaders

One of the features introduced in Shader Model 4 (D3D10) that was not
in Shader Model 3 (D3D9) is geometry shaders. These shaders give you the
ability to generate geometric primitives from other primitives.

The prototypical example is generation of billboards that always face the
camera. In particular, given a center point C in camera coordinates and a size
s > 0, the four corners of the billboard are (r, u, d) = C± s(1, 0, 0)± s(0, 1, 0).
In D3D9, you can generate billboards as an array of two-triangle quads, so for
n billboards you need 4n vertices in the vertex buffer, each vertex position a
3-tuple. Thus, the vertex buffer has 12n floating-point values for the corner
positions. However, we have only four degrees of freedom, three for the center
point and one for the size. It would be convenient to have a vertex buffer
for which the 12n floating-point positions are replaced by 4n floating-point
values, three for center and one for size per vertex. Geometry shaders provide
support to allow you to generate the corners on the GPU rather than on the
CPU.
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The sample application is

GeometricTools/GTEngine/Samples/Basics/GeometryShaders

Listing 4.3 contains the HLSL code for drawing square billboards that are
axis aligned in window space. The vertex buffer is an array of structures, each
structure containing the model-space location of the center of the billboard,
a color for the billboard, and a size parameter that controls how large each
square is. The geometry shader uses the vector-on-the-right multiplication
convention, although GTEngine has conditional compilation to support the
vector-on-the-left convention.

s t r u c t VS STRUCT
{

f l o a t 3 p o s i t i o n : POSITION ;
f l o a t 3 c o l o r : COLOR0 ;
f l o a t s i z e : TEXCOORD0;

} ;

VS STRUCT VSMain (VS STRUCT i npu t )
{

r e tu r n i n p u t ;
}

s t r u c t GS OUTPUT
{

f l o a t 3 c o l o r : COLOR0 ;
f l o a t 4 c l i p P o s i t i o n : SV POSITION ;

} ;

c b u f f e r Mat r i ce s
{

f l o a t 4 x 4 vwMatrix ;
f l o a t 4 x 4 pMatr i x ;

} ;

s t a t i c f l o a t 4 o f f s e t [ 4 ] =
{

f l o a t 4 (−1.0 f , −1.0 f , 0 . 0 f , 0 . 0 f ) ,
f l o a t 4 (+1.0 f , −1.0 f , 0 . 0 f , 0 . 0 f ) ,
f l o a t 4 (−1.0 f , +1.0 f , 0 . 0 f , 0 . 0 f ) ,
f l o a t 4 (+1.0 f , +1.0 f , 0 . 0 f , 0 . 0 f )

} ;

[ maxvertexcount ( 6 ) ]
vo id GSMain ( p o i n t VS STRUCT i npu t [ 1 ] , i n o u t Tr i ang l eSt r eam<GS OUTPUT> s t ream )
{

GS OUTPUT output [ 4 ] ;
f l o a t 4 v i ewPo s i t i o n = mul ( vwMatrix , f l o a t 4 ( p a r t i c l e . p o s i t i o n , 1 .0 f ) ) ;
f o r ( i n t i = 0 ; i < 4 ; ++i )
{

f l o a t 4 co r n e r = v i ewPo s i t i o n + i n pu t [ 0 ] . s i z e ∗ o f f s e t [ i ] ;
output [ i ] . c l i p P o s i t i o n = mul ( pMatr ix , c o r n e r ) ;
output [ i ] . c o l o r = i n pu t [ 0 ] . c o l o r ;

}

s t ream . Append ( output [ 0 ] ) ;
s t ream . Append ( output [ 1 ] ) ;
s t ream . Append ( output [ 3 ] ) ;
s t ream . R e s t a r t S t r i p ( ) ;

s t ream . Append ( output [ 0 ] ) ;
s t ream . Append ( output [ 3 ] ) ;
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s t ream . Append ( output [ 2 ] ) ;
s t ream . R e s t a r t S t r i p ( ) ;

}

s t r u c t PS OUTPUT
{

f l o a t 4 p i x e l C o l o r 0 : SV TARGET0 ;
} ;

PS OUTPUT PSMain(GS OUTPUT i npu t )
{

PS OUTPUT output ;
output . p i x e l C o l o r 0 = f l o a t 4 ( i n p u t . c o l o r , 1 . 0 f ) ;
r e tu r n output ;

}

LISTING 4.3: HLSL code to draw square billboards.

The vertex shader VSMain simply passes through its input, allowing the
geometry shader to generate the billboards. The vertices are tagged by the
application to be point primitives. The geometry shader GSMain is consistent
with this, because its first parameter is labeled as point and is given a single
vertex shader output structure. The incoming point is in model-space coordi-
nates. It is transformed to view space using the product of the view matrix
and the world matrix. The geometry shader generates the four corners of the
billboard in view-space coordinates. Those corners are then transformed into
projection space by application of the projection matrix. As with the previ-
ous vertex shader examples, the clip position must be returned so that the
rasterizer can generate the pixels corresponding to the billboard squares. The
billboard color is simply passed through.

The second parameter of the geometry shader specifies that the output of
the shader is a list of triangles. These must be generated using the topology
of a triangle strip. The stream.Append calls occur three at a time, placing a
triangle into output stream. The indexing of the output[] array is that for a
triangle strip. The call to RestartStrip indicates that an output primitive is
complete. You have to specify the maximum number of output vertices—in
this example, it is six.

The pixel shader now takes an input that is generated by the rasterizer
when it processes the billboard triangles. The sample application uses a single
color per billboard, so the billboard color value is the final result for the pixel.

Notice that offset[] is declared as a static array. The elements of the array
are not accessible to the application code. The [unroll] directive in the geometry
shader causes the loop to be unrolled. The assembly output listing verifies this;
see Section 4.2.4 about generating the listing. The offset[] values are inlined
accordingly. If the static keyword is omitted, a global constant buffer is created
(called $Global) but the array values are still inlined.

Figure 4.7 shows grayscale renderings of the billboards for two different
orientations of the virtual trackball. The application draws the billboards
using color.

Geometry shaders have more sophisticated uses. The Marching Cubes sur-
face extraction example uses geometry shaders to generate triangles within
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FIGURE 4.7: Renderings of billboards generated by geometry shaders.

a voxel based on a table lookup of information. Geometry shaders are also
useful for splatting point primitives; see [17].

4.2.3 Compute Shaders

To motivate compute shaders, let us look at small-scale Gaussian blurring
of a 2D color image, a convolution of an image with a 3 × 3 kernel whose
weights are nonnegative and sum to one. The sample application is

GeometricTools/GTEngine/Samples/Basics/GaussianBlurring

Listing 4.4 shows the HLSL file.

Texture2D<f l o a t 4> i n p u t ;
RWTexture2D<f l o a t 4> output ;

s t a t i c f l o a t we igh t [ 3 ] [ 3 ] =
{

{ 1 .0 f / 16 .0 f , 2 . 0 f / 16 .0 f , 1 . 0 f / 16 .0 f } ,
{ 2 .0 f / 16 .0 f , 4 . 0 f / 16 .0 f , 2 . 0 f / 16 .0 f } ,
{ 1 .0 f / 16 .0 f , 2 . 0 f / 16 .0 f , 1 . 0 f / 16 .0 f }

} ;

s t a t i c i n t 2 o f f s e t [ 3 ] [ 3 ] =
{

{ i n t 2 (−1, −1) , i n t 2 (0 , −1) , i n t 2 (+1 , −1) } ,
{ i n t 2 (−1, 0 ) , i n t 2 (0 , 0 ) , i n t 2 (+1 , 0) } ,
{ i n t 2 (−1, +1) , i n t 2 (0 , +1) , i n t 2 (+1 , +1) }

} ;

[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain( i n t 2 t : SV DispatchThread ID)
{

f l o a t 4 r e s u l t = 0 .0 f ;
f o r ( i n t r = 0 ; r < 3 ; ++r )
{

f o r ( i n t c = 0 ; c < 3 ; ++c )
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{
r e s u l t += we igh t [ r ] [ c ] ∗ i n p u t [ t + o f f s e t [ r ] [ c ] ] ;

}
}
output [ t ] = f l o a t 4 ( r e s u l t . rgb , 1 .0 f ) ;

}

LISTING 4.4: A compute shader that implements small-scale Gaussian blur-
ring.

The input and output images are 2D textures, each having 32-bit floating-
point channels for red, green, blue, and alpha. For this example, the alpha
channels are all one. The output at a pixel (x, y) is computed as the weighted
average of the nine pixels in the 3×3 neighborhood of the input pixel at (x, y).
By the way, the assignment of the scalar zero to a 4-tuple result appears to be
an error. As it turns out, the HLSL compiler allows this, replicating (splatting)
the scalar in all channels; thus, the initial value of result is (0, 0, 0, 0).

A key difference between compute shaders and the other shaders we have
looked at is that you need to handle the domain decomposition for the inputs.
To be clear, for a single triangle the vertex shader is called by the graphics
driver three times, once per vertex. Based on the output clip positions, the
rasterizer identifies the pixels covered by the triangle, perspectively interpo-
lates the vertex attributes at those pixels, and then calls the pixel shader for
each pixel. You can access the (x, y) location of the pixel in the pixel shader
using an input tagged as SV POSITION.

On the other hand, a compute shader is responsible for processing a group
of threads. These are provided via the attribute numthreads. Imagine the GPU
threads partitioned into a 3D grid of dimensions Nx, Ny, and Nz with one
thread per grid cell. Each cell is indexed by (x, y, z) with 0 ≤ x < Nx, 0 ≤
y < Ny, and 0 ≤ z < Nz. The grid can be partition into a lower-resolution
3D grid of groups of dimensions Gx, Gy, and Gz with each group having Tx

threads in the x-dimension, Ty threads in the y-dimension, and Tz threads
in the z-dimension. Tx, Ty, and Tz are the parameters used in the numthreads

attribute. In our example, Tx is NUM X THREADS, Ty is NUM Y THREADS,
and Tz is 1. The counts are passed as macros to the compiler. In the sample
application they are Tx = 8, Ty = 8, and Tz = 1. In normal usage, Nx =
GxTx, Ny = GyTy, and Nz = GzTz. In the sample application, the image to
be blurred has dimensions 1024 × 768, so Nx = 1024, Ny = 768, Nz = 1,
Gx = 1024/8 = 128, Gy = 768/8 = 96, and Gz = 1. The group counts are
passed to a function, ID3D11DeviceContext::Dispatch, that is called to execute
the compute shader.

Observe that numthreads allows you to specify the T -counts; you need to
specify the G-counts in your application code. But then how do you know
which thread your program is actually using? This is the job of the system
value semantic SV DispatchThreadID passed to CSMain. Generally, you can pass
in the ID t as an int3 or uint3; it is the tuple (x, y, z) for the grid cell (thread)
that is calling CSMain. In the application, I know I am processing a 2D image
and I partitioned the threads in a 2D manner, so I took the liberty to pass in
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FIGURE 4.8: An illustration of Equation (4.22) that relates the dispatch
thread ID to the group ID and the group thread ID.

t as an int2 for convenience. Notice that output is a 2D texture. This compute
shader has no need for texture sampling, so we can look up the texture values
directly without sampling. The operator[] provides the direct lookup and it
expects a 2-tuple for the index. Because t is already a 2-tuple, I can use it as
is. However, if I had declared int3 t, then I would need to perform the lookup
as output[t.xy].

The indexing of cells is quite general and does not always have to be as
simple as that shown in the sample application. Other system value semantics
are supported for indexing: SV GroupThreadID, SV GroupID, and SV GroupIndex.
A detailed example with diagrams is presented at the MSDN page [38]. A
group thread ID is a 3-tuple (tx, ty, tz) with 0 ≤ tx < Tx, 0 ≤ ty < Ty, and
0 ≤ tz < Tz; that is, the group thread ID gives you indexing relative to the
group of threads that are currently executing and calling CSMain. A group ID
is a 3-tuple (gx, gy, gz) with 0 ≤ gx < Gx, 0 ≤ gy < Gy, and 0 ≤ gz < Gz ; that
is, the group ID gives you indexing into the lower-resolution grid of groups of
threads. The dispatch thread ID is the tuple

(dx, dy, dz) = (Txgx + tx, Tygy + ty, Tzgz + tz) (4.22)

Figure 4.8 shows a 2D illustration of the dispatch thread ID.
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FIGURE 4.9: Upper left: the original image. Upper right: 100 blurring
passes. Lower left: 1000 blurring passes. Lower right: 10,000 blurring passes.

The sample application creates a compute shader whose input is a color
image and whose output is a blurred image of the same size. The roles of
input and output are then swapped; as such, the input and output are called
ping-pong buffers. The blurred image becomes the input and the output is a
blur of the blurred image. Figure 4.9 shows the original image and several
blurred copies. The borders of the blurred image become dark, nearly black,
as the number of passes increases. This is the usual problem that occurs when
filtering an image—how do you handle the pixels at the boundary? On the
CPU, typically you handle the boundary pixels separately to avoid out-of-
range accesses to the image pixels. The HLSL code in Listing 4.4 does not
have explicit logic for handling the boundary. Instead, I rely on the out-of-
range accesses to produce predictable values. Specifically, any access to the
input[] that is out of range will return a 4-tuple with zero components. I will
come back to this topic later when I discuss compiling the compute shader.

4.2.4 Compiling HLSL Shaders

Shader programs may be compiled using the command-line compiler FXC

or they may be compiled at runtime using the D3DCompiler system. The MSDN
documentation for the latter is available online, and the FXC compiler options
are similar to those described for D3DCompile.
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We will first look at FXC. Support for D3D11.0 is provided by Windows 8.0
in the Windows Kits folder, and support for D3D11.1 is provided by Windows
8.1 in the Windows Kits folder. I use Windows 8.1 on 64-bit machines; the
FXC compiler path is

C:/Program Files (x86)/Windows Kits/8.1/bin/x64/fxc.exe

Assuming you have the containing folder in your environment path, you can
run FXC from a command window. The list of options may be viewed by typing
"fxc /?" in the window (without the quotes),

Microsoft (R) Direct3D Shader Compiler 6.3.9600.16384

Copyright (C) 2013 Microsoft. All rights reserved.

Usage: fxc <options> <files>

/?, /help print this message

/T <profile> target profile

/E <name> entrypoint name
/I <include> additional include path
/Vi display details about the include process

/Od disable optimizations

/Op disable preshaders
/O{0,1,2,3} optimization level; 1 is default
/WX treat warnings as errors

/Vd disable validation
/Zi enable debugging information

/Zpr pack matrices in row-major order
/Zpc pack matrices in column-major order

/Gpp force partial precision
/Gfa avoid flow control constructs

/Gfp prefer flow control constructs
/Gdp disable effect performance mode

/Ges enable strict mode
/Gec enable backwards compatibility mode
/Gis force IEEE strictness

/Gch compile as a child effect for FX 4.x targets

/Fo <file> output object file
/Fl <file> output a library

/Fc <file> output assembly code listing file
/Fx <file> output assembly code and hex listing file
/Fh <file> output header file containing object code

/Fe <file> output warnings and errors to a specific file
/Fd <file> extract shader PDB and write to given file

/Vn <name> use <name> as variable name in header file
/Cc output color coded assembly listings
/Ni output instruction numbers in assembly listings

/No output instruction byte offset in assembly listings
/Lx output hexadecimal literals

/P <file> preprocess to file (must be used alone)

@<file> options response file
/dumpbin load a binary file rather than compiling

/Qstrip_reflect strip reflection data from 4_0+ shader bytecode
/Qstrip_debug strip debug information from 4_0+ shader bytecode

/Qstrip_priv strip private data from 4_0+ shader bytecode

/compress compress DX10 shader bytecode from files
/decompress decompress bytecode from first file, output files should

be listed in the order they were in during compression
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/shtemplate <file> template shader file for merging/matching resources
/mergeUAVs merge UAV slots of template shader and current shader

/matchUAVs match template shader UAV slots in current shader
/res_may_alias assume that UAVs/SRVs may alias for cs_5_0+

/setprivate <file> private data to add to compiled shader blob

/getprivate <file> save private data from shader blob

/D <id>=<text> define macro

/nologo suppress copyright message

<profile>: cs_4_0 cs_4_1 cs_5_0 ds_5_0 gs_4_0 gs_4_1 gs_5_0 hs_5_0 lib_4_0
lib_4_1 lib_4_0_level_9_1 lib_4_0_level_9_3 lib_5_0 ps_2_0 ps_2_a ps_2_b
ps_2_sw ps_3_0 ps_3_sw ps_4_0 ps_4_0_level_9_1 ps_4_0_level_9_3

ps_4_0_level_9_0 ps_4_1 ps_5_0 tx_1_0 vs_1_1 vs_2_0 vs_2_a vs_2_sw
vs_3_0 vs_3_sw vs_4_0 vs_4_0_level_9_1 vs_4_0_level_9_3 vs_4_0_level_9_0

vs_4_1 vs_5_0

The options are extensive, but I will discuss the ones that I use most often.

• /T <profile>. The supported profiles are listed at the end of the
command-line text. I use only Shader Model 5 on my machines, and
this book does not discuss tessellation features. Thus, the only profiles
I use in GTEngine are vs 5 0 (vertex shaders), ps 5 0 (pixel shaders),
gs 5 0 (geometry shaders), and cs 5 0 (compute shaders).

• /E <name>. You can have multiple programs defined in a single HLSL
file, so you must specify the name (entry point) of the shader program to
be compiled. I tend to be consistent and use program names of the form
XSMain, where X is one of V, P, G, or C, but at times it is convenient to
group together related shaders and use names of a different format; see
the Fluids2D shader EnforceStateBoundary.hlsl, for instance.

• /Fc <file>. I use FXC to ensure shaders compile before loading them in
applications to be (re)compiled at runtime. Sometimes I want to see
how constant buffers are laid out in memory or what bind points are
associated with resources. This option allows you to write the assembly
listing and other information to a text file.

• /Zi. Sometimes you want to look at the assembly output to understand
whether your high-level code is inefficient and possibly needs rewriting.
By default, the output is only a sequence of assembly instructions. This
option requests that additional information be embedded in the output;
for example, line numbers are printed followed by the corresponding
blocks of assembly instructions.

• /Gis. This option forces strict compliance with IEEE standards for
floating-point arithmetic. For 3D rendering, IEEE strictness is usually
not necessary, but most likely you will want this for accurate (and pred-
icatable) results using compute shaders.

• /Zpr and /Zpc. These specify the storage format for matrices; the default
is column major. GTEngine is designed so that the default packing of
matrices is consistent with your choice of packing on the CPU: row major
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if you have exposed the preprocessor symbol GTE USE ROW MAJOR in
the GTEngineDEF.h file or column major if you have hidden this symbol.

• /D <id>=<text>. You can define preprocessor symbols that are used by
the shader programs.

Be aware that the option names are case sensitive! Let us look at the output
of several experiments using FXC.

4.2.4.1 Compiling the Vertex Coloring Shaders

Copy Listing 4.1 to a file named VertexColoring.hlsl. Open a command win-
dow in the folder that contains this file. You can do so from Windows Explorer
by navigating to that folder and selecting it using shift-right-click, which
launches a pop-up dialog. One of the options is “Open command window
here.”

To compile the vertex shader, use

fxc /T vs 5 0 /E VSMain /Zpr /Fc VertexColoringR.vs5.txt VertexColoring.hlsl

I have selected row-major ordering for the matrices, so the application must
attach a constant buffer with the pvwMatrix stored in row-major order. The
contents of the output text file are shown in Listing 4.5.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
// Bu f f e r D e f i n i t i o n s :
//
// c b u f f e r PVWMatrix
// {
//
// row major f l o a t 4 x 4 pvwMatrix ; // O f f s e t : 0 S i z e : 64
//
// }
//
//
// Resource B ind i ng s :
//
// Name Type Format Dim S l o t E lements
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−
// PVWMatrix c b u f f e r NA NA 0 1
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// POSITION 0 xyz 0 NONE f l o a t xyz
// COLOR 0 xyzw 1 NONE f l o a t xyzw
//
//
// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// COLOR 0 xyzw 0 NONE f l o a t xyzw
// SV POSITION 0 xyzw 1 POS f l o a t xyzw
//
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v s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l c o n s t a n t b u f f e r cb0 [ 4 ] , immed i a te Indexed
d c l i n p u t v0 . xyz
d c l i n p u t v1 . xyzw
d c l o u t p u t o0 . xyzw
d c l o u t p u t s i v o1 . xyzw , p o s i t i o n
dc l t emps 1
mov o0 . xyzw , v1 . xyzw
mov r0 . xyz , v0 . xyzx
mov r0 .w, l ( 1 . 000000)
dp4 o1 . x , cb0 [ 0 ] . xyzw , r0 . xyzw
dp4 o1 . y , cb0 [ 1 ] . xyzw , r0 . xyzw
dp4 o1 . z , cb0 [ 2 ] . xyzw , r0 . xyzw
dp4 o1 .w, cb0 [ 3 ] . xyzw , r0 . xyzw
r e t
// App rox ima te l y 8 i n s t r u c t i o n s l o t s used

LISTING 4.5: The output assembly listing for the vertex shader of
VertexColoring.hlsl for row-major matrix storage.

The constant buffer information is displayed first. The default matrix stor-
age for HLSL is column major, so when you select row major, the matrix
member is tagged with row major. The type is float4x4, denoting a 4 × 4 ma-
trix. The offset is measured in bytes from the beginning of the buffer memory.
In this case, the constant buffer has only one member, making it first in the
memory with offset zero. The size sixty-four is the total number of bytes used
by the buffer. The resource binding stores the buffer name (not the member
name) and indicates that the buffer is associated with slot zero and has one
element. This information is related to assigning constant buffer registers to
hold the matrix values; see the discussion later in this section.

The signatures have the semantic names and the indices associated with
them. The HLSL file declares the modelPosition member of VS INPUT to be
semantic POSITION, where the absence of a numeric suffix is assumed to mean
zero; that is, the semantic is interpreted as POSITION0. The modelColor is
tagged with COLOR0, indicating it is semantic COLOR at index zero. The
masks indicate the total number of vector channels available. The member
modelPosition is declared as float3, so only three channels are available as indi-
cated by the mask xyz. The member modelColor is declared as float4, so all four
channels are available. The last column of the table indicates which of these
channels are actually used. In the current example, all available channels are
used. The format specifies the scalar type, which is float for all channels of the
inputs. It is possible for applications to specify vertex input members using
other scalar types such as integers.

The register numbers refer to the input and output registers for the shader.
The assembly statement dcl input v0.xyz declares the input register v0 and that
three channels are used. In the input signature comment, POSITION0 shows its
register number to be zero, which indicates the position 3-tuple will be stored
in register v0. The COLOR0 input uses register one; dcl input v1.xyzw declares
that register v1 will store the color. The SysValue column of the table indicates
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whether the semantic is a regular one or a system value one. The member
vertexColor of VS OUTPUT has regular semantic and is stored in register o0.
The member clipPosition uses a system value semantic and is stored in register
o1.

The initial comments are followed by a block of HLSL assembly instruc-
tions. These will be provided to the graphics driver at runtime, and the driver
will make an additional pass, compiling to byte code for optimization. For all
practical purposes, the optimization pass is a black box and invariably pro-
prietary information. The first assembly line contains the shader profile, in
our case vs 5 0. The instructions prefixed with dcl are declarations. I already
mentioned that the input and output registers are declared. The statement
with dcl constantbuffer cb0[4] declares an array of four constant buffer regis-
ters with array name cb0. Each register holds a 4-tuple of 32-bit numbers,
so cb0[4] stores the rows of pvwMatrix. In the resource bindings, the constant
buffer named PVWMatrix is assigned to slot zero; the zero refers to cb0. The
dcl temps 1 instruction declares that one temporary register is used in the as-
sembly, namely, register r0.

The instruction mov o0.xyzw, v1.xyzw copies the input modelColor to
the output vertexColor. The instruction mov r0.xyz, v0.xyzx copies the input
modelPosition to the temporary register r0. A 4-tuple is required for the right-
most argument of mov. Because v0 is declared as a 3-tuple, the compiler has
swizzled the channels by replicating the x-channel into the w-channel. This
w-channel is not used, so it does not matter which channel is swizzled into
it. The w-channel of r0 is assigned using mov r0.w, l(1.000000). This instruc-
tion copies the literal constant 1 into that channel, after which r0 contains
float4(modelPosition,1.0f).

The next four instructions dp4 are dot products of the rows of pvwMatrix

with r0. This is equivalent to the matrix-vector product

⎡

⎢

⎢

⎣
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⎤

⎥

⎥

⎦

(4.23)

If you compile the vertex shader for column-major matrix storage,

fxc /T vs 5 0 /E VSMain /Zpc /Fc VertexColoringR.vs5.txt VertexColoring.hlsl

the matrix-vector assembly instructions are different, as shown in Listing 4.6.
You may also omit /Zpc, because the FXC default is column-major storage.
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mul r0 . xyzw , v0 . yyyy , cb0 [ 1 ] . xyzw
mad r0 . xyzw , cb0 [ 0 ] . xyzw , v0 . xxxx , r0 . xyzw
mad r0 . xyzw , cb0 [ 2 ] . xyzw , v0 . zzzz , r0 . xyzw
add o1 . xyzw , r0 . xyzw , cb0 [ 3 ] . xyzw

LISTING 4.6: The output assembly listing for the matrix-vector product of
the vertex shader of VertexColoring.hlsl for column-major matrix storage.

This is equivalent to the matrix-vector product
⎡

⎢

⎢

⎣

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33
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⎥

⎥

⎦

⎡

⎢

⎢

⎣

v0
v1
v2
1

⎤

⎥

⎥

⎦

=
[

C0 C1 C2 C3

]

V

= v0C0 + v1C1 + v2C2 +C3

(4.24)

In the row-major format, the number of instructions is eight. In the
column-major format, the number of instructions is six. You might be tempted
to conclude that the column-major format with vector-on-the-right multiplica-
tion convention is faster. This is not the case for my AMD 7970 graphics card
based on profiling experiments. The row-major code runs 1.5 times faster than
the column-major code. See Section 5.3 for more details about the profiling.

Compile the pixel shader using

fxc /T ps 5 0 /E PSMain /Fc VertexColoringR.ps5.txt VertexColoring.hlsl

to obtain the output in Listing 4.7. No matrix multiplications are used in the
pixel shader, so it does not matter what you specify for the matrix storage
convention.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// COLOR 0 xyzw 0 NONE f l o a t xyzw
//
//
// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// SV TARGET 0 xyzw 0 TARGET f l o a t xyzw
//
p s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l i n p u t p s l i n e a r v0 . xyzw
d c l o u t p u t o0 . xyzw
mov o0 . xyzw , v0 . xyzw
r e t
// App rox ima te l y 2 i n s t r u c t i o n s l o t s used

LISTING 4.7: The output assembly listing for the pixel shader of
VertexColoring.hlsl.
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The assembly instructions are trivial, because the pixel shader is a pass
through for the incoming color.

4.2.4.2 Compiling the Texturing Shaders

Copy Listing 4.2 to a file named Texturing.hlsl. The sample application is

GeometricTools/GTEngine/Samples/Basics/Texturing

Open a command window in the folder and compile the vertex shader. The
only difference between the output listing for this shader and for the vertex
color shader is that the vertex input has a 2-tuple texture coordinate rather
than a 4-tuple color. The semantic is TEXCOORD0. When you compile the pixel
shader, you get the output shown in Listing 4.8. The indexable command was
manually split so that the listing fits within the width of the book.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
// Resource B ind i ng s :
//
// Name Type Format Dim S l o t E lements
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−
// baseSampler s amp l e r NA NA 0 1
// baseTextu r e t e x t u r e f l o a t 4 2d 0 1
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// TEXCOORD 0 xy 0 NONE f l o a t xy
//
//
// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// SV TARGET 0 xyzw 0 TARGET f l o a t xyzw
//
p s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l s amp l e r s0 , mode de f au l t
d c l r e s o u r c e t e x t u r e 2 d ( f l o a t , f l o a t , f l o a t , f l o a t ) t0
d c l i n p u t p s l i n e a r v0 . xy
d c l o u t p u t o0 . xyzw
s amp l e i n d e xa b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t )

o0 . xyzw , v0 . xyxx , t0 . xyzw , s0
r e t
// App rox ima te l y 2 i n s t r u c t i o n s l o t s used

LISTING 4.8: The output assembly listing for the pixel shader of
Texturing.hlsl.

This shows two new register types, a sampler register s0 and a texture regis-
ter t0. The sampler is tagged mode default, which means that you can use it
as inputs to texture-object methods Sample (the function will select the ap-
propriate mipmap level when the attached texture has mipmaps), SampleLevel
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(the function will use the specified mipmap level), and SampleGrad (the func-
tion uses a gradient to affect the sample location). The assembly instruction
sample indexable has four arguments. From right to left, these are the sampler
state, the texture to sample (all four channels are requested), the texture co-
ordinate (only the first two channels matter; the rest are swizzled), and the
register for the output. The output in this case is an output register for the
pixel shader. If you instead swizzled the sampling call, say,

output . p i x e l C o l o r 0 =
bas eTextu r e . Sample ( baseSample , i n p u t . ver texTCoord ) . xxxx ;

the assembly instructions are

s amp l e i n d e xa b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t )
r0 . x , v0 . xyxx , t0 . xyzw , s0

mov o0 . xyzw , r0 . xxxx

The sampled value is written to a temporary register and then that register
is swizzled and assigned to the shader output register.

4.2.4.3 Compiling the Billboard Shaders

Copy Listing 4.3 to a file named Billboards.hlsl. Open a command window
in the folder and compile the vertex shader. Because the vertex shader is just
a pass-through of inputs, it does not matter which matrix storage option is
specified. The output is shown in Listing 4.9.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// POSITION 0 xyz 0 NONE f l o a t xyz
// COLOR 0 xyz 1 NONE f l o a t xyz
// TEXCOORD 0 x 2 NONE f l o a t x
//
//
// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// POSITION 0 xyz 0 NONE f l o a t xyz
// TEXCOORD 0 w 0 NONE f l o a t w
// COLOR 0 xyz 1 NONE f l o a t xyz
//
v s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l i n p u t v0 . xyz
d c l i n p u t v1 . xyz
d c l i n p u t v2 . x
d c l o u t p u t o0 . xyz
d c l o u t p u t o0 .w
d c l o u t p u t o1 . xyz
mov o0 . xyz , v0 . xyzx
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mov o0 .w, v2 . x
mov o1 . xyz , v1 . xyzx
r e t
// App rox ima te l y 4 i n s t r u c t i o n s l o t s used

LISTING 4.9: The output assembly listing for the vertex shader of
Billboards.hlsl.

The input and output signatures are similar to what we have seen before,
except that the HLSL compiler has taken the liberty to optimize the output.
The POSITION0 and TEXCOORD0 outputs are stored in the same register,
the position in the first three components (xyz) and the billboard size in the
last component (w). When the geometry shader consumes the vertex shader
output, only two registers per vertex are fetched rather than three if the
compiler had decided not to optimize.

Compile the geometry shader now. This shader does access the matrix of
the constant buffer, so it matters about matrix storage. For this example, I
have selected option /Zpc for column-major storage. The output is shown in
Listing 4.10. Some of the instructions were manually split to fit within the
width of the book.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
// Bu f f e r D e f i n i t i o n s :
//
// c b u f f e r Mat r i ce s
// {
//
// f l o a t 4 x 4 vwMatrix ; // O f f s e t : 0 S i z e : 64
// f l o a t 4 x 4 pMatr i x ; // O f f s e t : 64 S i z e : 64
//
// }
//
//
// Resource B ind i ng s :
//
// Name Type Format Dim S l o t E lements
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−
// Mat r i ce s c b u f f e r NA NA 0 1
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// POSITION 0 xyz 0 NONE f l o a t xyz
// TEXCOORD 0 w 0 NONE f l o a t w
// COLOR 0 xyz 1 NONE f l o a t xyz
//
//
// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// COLOR 0 xyz 0 NONE f l o a t xyz
// SV POSITION 0 xyzw 1 POS f l o a t xyzw
//
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g s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l c o n s t a n t b u f f e r cb0 [ 8 ] , immed i a te Indexed
d c l i n p u t v [ 1 ] [ 0 ] . xyz
d c l i n p u t v [ 1 ] [ 0 ] . w
d c l i n p u t v [ 1 ] [ 1 ] . xyz
dc l t emps 4
d c l i n p u t p r i m i t i v e p o i n t
d c l s t r e am m0
dc l o u t p u t t o p o l o g y t r i a n g l e s t r i p
d c l o u t p u t o0 . xyz
d c l o u t p u t s i v o1 . xyzw , p o s i t i o n
dc l maxout 6
mov o0 . xyz , v [ 0 ] [ 1 ] . xyzx
mul r0 . xyzw , cb0 [ 1 ] . xyzw , v [ 0 ] [ 0 ] . yyyy
mad r0 . xyzw , cb0 [ 0 ] . xyzw , v [ 0 ] [ 0 ] . xxxx , r0 . xyzw
mad r0 . xyzw , cb0 [ 2 ] . xyzw , v [ 0 ] [ 0 ] . zzzz , r0 . xyzw
add r0 . xyzw , r0 . xyzw , cb0 [ 3 ] . xyzw
mad r1 . xyzw , v [ 0 ] [ 0 ] . wwww, l (−1.000000 , −1.000000 , 0 .000000 , 0 . 000000) ,

r0 . xyzw
mul r2 . xyzw , r1 . yyyy , cb0 [ 5 ] . xyzw
mad r2 . xyzw , cb0 [ 4 ] . xyzw , r1 . xxxx , r2 . xyzw
mad r2 . xyzw , cb0 [ 6 ] . xyzw , r1 . zzzz , r2 . xyzw
mad r1 . xyzw , cb0 [ 7 ] . xyzw , r1 .wwww, r2 . xyzw
mov o1 . xyzw , r1 . xyzw
emi t s t r eam m0
mov o0 . xyz , v [ 0 ] [ 1 ] . xyzx
mad r2 . xyzw , v [ 0 ] [ 0 ] . wwww, l (1 .000000 , −1.000000 , 0 .000000 , 0 . 000000) ,

r0 . xyzw
mul r3 . xyzw , r2 . yyyy , cb0 [ 5 ] . xyzw
mad r3 . xyzw , cb0 [ 4 ] . xyzw , r2 . xxxx , r3 . xyzw
mad r3 . xyzw , cb0 [ 6 ] . xyzw , r2 . zzzz , r3 . xyzw
mad r2 . xyzw , cb0 [ 7 ] . xyzw , r2 .wwww, r3 . xyzw
mov o1 . xyzw , r2 . xyzw
emi t s t r eam m0
mov o0 . xyz , v [ 0 ] [ 1 ] . xyzx
mad r2 . xyzw , v [ 0 ] [ 0 ] . wwww, l (1 .000000 , 1 . 000000 , 0 . 000000 , 0 . 000000) ,

r0 . xyzw
mad r0 . xyzw , v [ 0 ] [ 0 ] . wwww, l (−1.000000 , 1 .000000 , 0 . 000000 , 0 . 000000) ,

r0 . xyzw
mul r3 . xyzw , r2 . yyyy , cb0 [ 5 ] . xyzw
mad r3 . xyzw , cb0 [ 4 ] . xyzw , r2 . xxxx , r3 . xyzw
mad r3 . xyzw , cb0 [ 6 ] . xyzw , r2 . zzzz , r3 . xyzw
mad r2 . xyzw , cb0 [ 7 ] . xyzw , r2 .wwww, r3 . xyzw
mov o1 . xyzw , r2 . xyzw
emi t s t r eam m0
cu t s t r eam m0
mov o0 . xyz , v [ 0 ] [ 1 ] . xyzx
mov o1 . xyzw , r1 . xyzw
emi t s t r eam m0
mov o0 . xyz , v [ 0 ] [ 1 ] . xyzx
mov o1 . xyzw , r2 . xyzw
emi t s t r eam m0
mov o0 . xyz , v [ 0 ] [ 1 ] . xyzx
mul r1 . xyzw , r0 . yyyy , cb0 [ 5 ] . xyzw
mad r1 . xyzw , cb0 [ 4 ] . xyzw , r0 . xxxx , r1 . xyzw
mad r1 . xyzw , cb0 [ 6 ] . xyzw , r0 . zzzz , r1 . xyzw
mad r0 . xyzw , cb0 [ 7 ] . xyzw , r0 .wwww, r1 . xyzw
mov o1 . xyzw , r0 . xyzw
emi t s t r eam m0
cu t s t r eam m0
r e t
// App rox ima te l y 45 i n s t r u c t i o n s l o t s used

LISTING 4.10: The output assembly listing for the geometry shader of
Billboards.hlsl.
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The dcl instructions indicate that the constant buffer is stored as an ar-
ray of registers, cb0[8], which is sufficient to store the two 4 × 4 matrices.
The input registers are doubly indexed, which is different from what we saw
in the previous examples. The first index n of V[n][i] represents the number
of inputs to the geometry shader, which in our example is one because the
input is a point. Generally, the input can also be line VS STRUCT input[2] or
triangle VS STRUCT input[3]. The second index i represents the register num-
ber. The declarations indicate that register V[0][0] stores the position (xyz)
and size (w), and register V[0][1] stores the color (xyz). Four temporary reg-
isters are used, r0 through r3. The input primitive is a point and the output
topology is a triangle. The maximum number of vertices generated by the
geometry shader is six. The output stream of triangles is managed by register
m0. The color is returned in output register o0 and the clip position is returned
in output register o1.

The mov and mad instructions are what we saw in the previous examples
to compute the matrix-vector products when using column-major storage for
the matrix and vector-on-the-right multiplication convention. The emit stream

instruction corresponds to the Append calls and the cut stream instruction cor-
responds to the RestartStrip calls.

Compile the pixel shader to obtain the output shown in Listing 4.11.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// COLOR 0 xyz 0 NONE f l o a t xyz
// SV POSITION 0 xyzw 1 POS f l o a t
//
//
// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// SV TARGET 0 xyzw 0 TARGET f l o a t xyzw
//
p s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l i n p u t p s l i n e a r v0 . xyz
d c l o u t p u t o0 . xyzw
mov o0 . xyz , v0 . xyzx
mov o0 .w, l ( 1 . 000000)
r e t
// App rox ima te l y 3 i n s t r u c t i o n s l o t s used

LISTING 4.11: The output assembly listing for the pixel shader of
Billboards.hlsl.

There are no surprises here. The shader input is a 3-tuple color and the shader
output is the same color (xyz) with an alpha channel (w) set to one. The swizzle
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channels are named xyzw in the assembly listings, but in your HLSL code you
may use rgba as alternate names.

4.2.4.4 Compiling the Gaussian Blurring Shaders

Copy Listing 4.4 to a file named GaussianBlurring.hlsl. The sample applica-
tion is

GeometricTools/GTEngine/Samples/Basics/GaussianBlurring

Compile the compute shader using the command line

fxc /T cs 5 0 /E CSMain /D NUM X THREADS=8 /D NUM Y THREADS=8
/Fc GaussianBlurring.txt GaussianBlurring.hlsl

to obtain the output shown in Listing 4.12. The indexable instruction was
manually split to fit within the width of the book.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
// Resource B ind i ng s :
//
// Name Type Format Dim S l o t E lements
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−
// i n pu t t e x t u r e f l o a t 4 2d 0 1
// output UAV f l o a t 4 2d 0 1
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Inpu t
//
// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Output
c s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l r e s o u r c e t e x t u r e 2 d ( f l o a t , f l o a t , f l o a t , f l o a t ) t0
d c l u a v t y p e d t e x t u r e 2 d ( f l o a t , f l o a t , f l o a t , f l o a t ) u0
d c l i n p u t vThreadID . xy
dc l t emps 3
dc l i ndexab l eTemp x0 [ 9 ] , 4
dc l i ndexab l eTemp x1 [ 9 ] , 4
d c l t h r e a d g r o u p 8 , 8 , 1
mov x0 [ 0 ] . x , l ( 0 . 062500)
mov x0 [ 1 ] . x , l ( 0 . 125000)
mov x0 [ 2 ] . x , l ( 0 . 062500)
mov x0 [ 3 ] . x , l ( 0 . 125000)
mov x0 [ 4 ] . x , l ( 0 . 250000)
mov x0 [ 5 ] . x , l ( 0 . 125000)
mov x0 [ 6 ] . x , l ( 0 . 062500)
mov x0 [ 7 ] . x , l ( 0 . 125000)
mov x0 [ 8 ] . x , l ( 0 . 062500)
mov x1 [ 0 ] . xy , l (−1 ,−1 ,0 ,0)
mov x1 [ 1 ] . xy , l (0 ,−1 ,0 ,0)
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mov x1 [ 2 ] . xy , l (1 ,−1 ,0 ,0)
mov x1 [ 3 ] . xy , l (−1 ,0 ,0 ,0)
mov x1 [ 4 ] . xy , l ( 0 ,0 ,0 ,0 )
mov x1 [ 5 ] . xy , l ( 1 ,0 ,0 ,0 )
mov x1 [ 6 ] . xy , l (−1 ,1 ,0 ,0)
mov x1 [ 7 ] . xy , l ( 0 ,1 ,0 ,0 )
mov x1 [ 8 ] . xy , l ( 1 ,1 ,0 ,0 )
mov r0 . zw , l (0 , 0 , 0 , 0 )
mov r1 . xy , l ( 0 , 0 , 0 , 0 )
l oop

i g e r1 . z , r1 . y , l ( 3 )
b r eakc nz r1 . z
mov r1 . z , r1 . x
mov r1 .w, l ( 0 )
l oop

i g e r2 . x , r1 .w, l ( 3 )
b r eakc nz r2 . x
imad r2 . x , r1 . y , l ( 3 ) , r1 .w
mov r2 . y , x0 [ r2 . x + 0 ] . x
mov r2 . xz , x1 [ r2 . x + 0 ] . xxyx
i add r0 . xy , r2 . xzxx , vThreadID . xyxx
l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t )

r0 . x , r0 . xyzw , t0 . xyzw
mad r1 . z , r2 . y , r0 . x , r1 . z
i add r1 .w, r1 .w, l ( 1 )

end loop
mov r1 . x , r1 . z
i add r1 . y , r1 . y , l ( 1 )

end loop
s t o r e u a v t y p e d u0 . xyzw , vThreadID . xyyy , r1 . xxxx
r e t
// App rox ima te l y 41 i n s t r u c t i o n s l o t s used

LISTING 4.12: The output assembly listing for the compute shader of
GaussianBlurring.hlsl.

This listing shows several register types we have not seen yet. Firstly, the
input texture is declared as Texture2D<float4> and is assigned to register t0,
which makes it a read-only texture. The input is processed in the application
by attaching a shader resource view (SRV). The output texture is declared as
RWTexture2D<float4>, which makes it writable and is assigned to register u0.
The output is processed in the application by attaching an unordered access
view (UAV). Although the RW prefix indicates read-write access, there are
some restrictions on the data type for performing both reads and writes to a
resource in the same call of the compute shader.

Secondly, there are registers named x0 and x1. These are referred to as
temporary indexable registers. Their purpose is so we can index into the static
arrays weight[][] and offset[][] when in the inner loop of the shader. The array
values are loaded into the temporary indexable registers first, then the dou-
ble loop is executed. You can see the nontrivial indexing x0[r2.x + 0].x and
x1[r2.x + 0].xxyx inside the inner loop of the assembly code. Excessive use of
temporary indexable registers can lead to a performance degradation because
of the large number of mov instructions that are used to load the registers.

Looping itself can be a performance problem. Shader programs are most
efficient when no branching is present. This a rule of thumb, but as always
you need to profile to be sure. HLSL allows you to provide a hint that a loop
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should be unrolled by the compiler.. Modify the compute shader as shown
next:

[ u n r o l l ]
f o r ( i n t r = 0 ; r < 3 ; ++r )
{

[ u n r o l l ]
f o r ( i n t c = 0 ; c < 3 ; ++c )
{

r e s u l t += we igh t [ r ] [ c ] ∗ i n p u t [ t + o f f s e t [ r ] [ c ] ] ;
}

}

which tells the compiler to unroll both loops, if possible. In this case, the
number of loop iterations is known at compile time, and we expect to obtain
nine occurrences of the inner-loop body, say,

r e s u l t += 0.0625 f ∗ i n p u t [ i n t 2 ( t . x − 1 , t . y − 1 ) ] ;
r e s u l t += 0.1250 f ∗ i n p u t [ i n t 2 ( t . x , t . y − 1 ) ] ;
r e s u l t += 0.0625 f ∗ i n p u t [ i n t 2 ( t . x + 1 , t . y − 1 ) ] ;
r e s u l t += 0.1250 f ∗ i n p u t [ i n t 2 ( t . x − 1 , t . y ) ] ;
r e s u l t += 0.2500 f ∗ i n p u t [ i n t 2 ( t . x , t . y ) ] ;
r e s u l t += 0.1250 f ∗ i n p u t [ i n t 2 ( t . x + 1 , t . y ) ] ;
r e s u l t += 0.0625 f ∗ i n p u t [ i n t 2 ( t . x − 1 , t . y + 1 ) ] ;
r e s u l t += 0.1250 f ∗ i n p u t [ i n t 2 ( t . x , t . y + 1 ) ] ;
r e s u l t += 0.0625 f ∗ i n p u t [ i n t 2 ( t . x + 1 , t . y + 1 ) ] ;

When you now compile the shader, you get the output of Listing 4.13.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
// Resource B ind i ng s :
//
// Name Type Format Dim S l o t E lements
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−
// i n pu t t e x t u r e f l o a t 4 2d 0 1
// output UAV f l o a t 4 2d 0 1
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Inpu t
//
// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Output
c s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l r e s o u r c e t e x t u r e 2 d ( f l o a t , f l o a t , f l o a t , f l o a t ) t0
d c l u a v t y p e d t e x t u r e 2 d ( f l o a t , f l o a t , f l o a t , f l o a t ) u0
d c l i n p u t vThreadID . xy
dc l t emps 3
d c l t h r e a d g r o u p 8 , 8 , 1
mov r0 . zw , l (0 , 0 , 0 , 0 )
i add r1 . xyzw , vThreadID . xyxy , l (−1, −1, 0 , −1)
mov r0 . xy , r1 . zwzz



GPU Computing 159

l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r0 . xyz , r0 . xyzw , t0 . xyzw
mul r0 . xyz , r0 . xyzx , l ( 0 . 125000 , 0 . 125000 , 0 . 125000 , 0 . 000000)
mov r1 . zw , l (0 , 0 , 0 , 0 )
l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r1 . xyz , r1 . xyzw , t0 . xyzw
mad r0 . xyz , r1 . xyzx , l ( 0 . 062500 , 0 . 062500 , 0 . 062500 , 0 . 000000) , r0 . xyzx
mov r1 . zw , l (0 , 0 , 0 , 0 )
i add r2 . xyzw , vThreadID . xyxy , l (−1, 0 , 1 , −1)
mov r1 . xy , r2 . zwzz
l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r1 . xyz , r1 . xyzw , t0 . xyzw
mad r0 . xyz , r1 . xyzx , l ( 0 . 062500 , 0 . 062500 , 0 . 062500 , 0 . 000000) , r0 . xyzx
mov r2 . zw , l (0 , 0 , 0 , 0 )
l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r1 . xyz , r2 . xyzw , t0 . xyzw
mad r0 . xyz , r1 . xyzx , l ( 0 . 125000 , 0 . 125000 , 0 . 125000 , 0 . 000000) , r0 . xyzx
mov r1 . xy , vThreadID . xyxx
mov r1 . zw , l (0 , 0 , 0 , 0 )
l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r1 . xyz , r1 . xyzw , t0 . xyzw
mad r0 . xyz , r1 . xyzx , l ( 0 . 250000 , 0 . 250000 , 0 . 250000 , 0 . 000000) , r0 . xyzx
mov r1 . zw , l (0 , 0 , 0 , 0 )
i add r2 . xyzw , vThreadID . xyxy , l (−1, 1 , 1 , 0)
mov r1 . xy , r2 . zwzz
l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r1 . xyz , r1 . xyzw , t0 . xyzw
mad r0 . xyz , r1 . xyzx , l ( 0 . 125000 , 0 . 125000 , 0 . 125000 , 0 . 000000) , r0 . xyzx
mov r2 . zw , l (0 , 0 , 0 , 0 )
l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r1 . xyz , r2 . xyzw , t0 . xyzw
mad r0 . xyz , r1 . xyzx , l ( 0 . 062500 , 0 . 062500 , 0 . 062500 , 0 . 000000) , r0 . xyzx
mov r1 . zw , l (0 , 0 , 0 , 0 )
i add r2 . xyzw , vThreadID . xyxy , l ( 1 , 1 , 0 , 1)
mov r1 . xy , r2 . zwzz
l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r1 . xyz , r1 . xyzw , t0 . xyzw
mad r0 . xyz , r1 . xyzx , l ( 0 . 125000 , 0 . 125000 , 0 . 125000 , 0 . 000000) , r0 . xyzx
mov r2 . zw , l (0 , 0 , 0 , 0 )
l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r1 . xyz , r2 . xyzw , t0 . xyzw
mad r0 . xyz , r1 . xyzx , l ( 0 . 062500 , 0 . 062500 , 0 . 062500 , 0 . 000000) , r0 . xyzx
mov r0 .w, l ( 1 . 000000)
s t o r e u a v t y p e d u0 . xyzw , vThreadID . xyyy , r0 . xyzw
r e t
// App rox ima te l y 39 i n s t r u c t i o n s l o t s used

LISTING 4.13: The output assembly listing for the compute shader of
GaussianBlurring.hlsl with loop unrolling.

The temporary indexable registers no longer occur. The static array values
are used in literal values in the mul and mad instructions. How much faster can
this be? On my AMD 7970, the sample application—without loop unrolling—
runs at approximately 2200 frames per second. With loop unrolling, the ap-
plication runs at approximately 3100 frames per second, which is a speedup
of 1.4!

By the way, about the black borders in the images of Figure 4.9, this is due
to out-of-range indexing in the compute shader when the pixel you process has
neighbors outside of the image. On a CPU, you would test for boundary pixels
and process accordingly. You can do the same on the GPU, either explicitly
or by using the HLSL Sample instruction if the resource is a texture; however,
you can also rely on the GPU to be consistent about fetching resources out of
range. In particular, the ld indexable instruction is guaranteed to return zero
components for out-of-range indices in certain circumstances. The information
is available through the online MSDN documentation, but there is no explicit
entry for ld indexable for either Shader Model 4 or Shader Model 5. You have
to look at the Shader Model 4 documentation for the ld instruction [44].
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4.2.5 Reflecting HLSL Shaders

So far the shader compiling has been illustrated using FXC; however, the
shaders can be compiled at runtime using the D3DCompile function. Its signa-
ture is shown in Listing 4.14.

HRESULT D3DCompile (
LPCVOID pSrcData , // HLSL code as a s t r i n g
SIZE T SrcDataSize , // l e n g t h o f the s t r i n g
LPCSTR pSourceName , // name f o r the s t r i n g ( o p t i o n a l )
CONST D3D SHADER MACRO∗ pDef i n e s , // p r e p r o c e s s o r (/D op t i o n s i n FXC)
ID3DInc lude ∗ p Inc l ude , // s p e c i f y an i n c l u d e f i l e h a nd l e r
LPCSTR pEnt r ypo in t , // f u n c t i o n to comp i l e ( the /E op t i o n i n FXC)
LPCSTR pTarget , // p r o f i l e to use ( the /T op t i o n i n FXC)
UINT Flags1 , // op t i o n s ( such as /Zpr and / G i s i n FXC)
UINT Flags2 , // op t i o n s f o r the DX11 e f f e c t sys tem
ID3DBlob∗∗ ppCode , // output : by te code and o th e r i n f o rma t i o n
ID3DBlob∗∗ ppErrorMsgs // output : b u f f e r o f e r r o r s / wa rn i ng s ( i f any )

) ;

LISTING 4.14: The signature for the D3DCompile function.

In previous versions of Direct3D, a compiler call was provided to compile
the code in a file. This no longer exists, so the simplest thing to do is to load the
file as text, build a string from the lines of text, and pass this to D3DCompile.
The ID3DInclude* parameter is for advanced use, but the default used by
GTEngine is D3D COMPILE STANDARD FILE INCLUDE. GTEngine also does
not use the D3D11 effect system, so zero is passed for this parameter.

Assuming the compilation succeeded, the ID3DBlob* object returned in
the next-to-last parameter stores the compiled code and information about
it. In particular, the blob has the information we have been discussing that
occurs in the text output from FXC. The blob may be queried for relevant
information needed to know structure and buffer packing, to attach resources,
and to execute the shaders at runtime. The query process is called shader
reflection. The reflection function signature is shown in Listing 4.15.

HRESULT D3DRef l ect (
LPCVOID pSrcData , // comp i l ed b l ob memory
SIZE T SrcDataSize , // number o f b y t e s i n comp i l ed b l ob memory
REFIID p I n t e r f a c e , // s e t to I ID ID3D11Shad e rRe f l e c t i on f o r GTEngine
vo id∗∗ ppRe f l e c t o r // output : r e f l e c t i o n i n t e r f a c e

) ;

LISTING 4.15: The signature for the D3DReflect function.

Listing 4.16 shows how to compile the shader and perform reflection for
some basic information. The reflection system has more features than are
discussed here. In the code presented next, all calls are assumed to succeed,
so the logic for handling HRESULT values is omitted for simplicity.

vo id Comp i l eAndRe f l ec t (
s td : : s t r i n g h l s l , // HLSL shade r as a s i n g l e s t r i n g
s td : : s t r i n g name , // s t r i n g f o r ea s e o f i d e n t i f i c a t i o n
D3D SHADER MACRO d e f i n e s [ ] , // macros p r o v i d ed by u s e r
ID3DINCLUDE∗ i n c l u d e , // D3D COMPILE STANDARD FILE INCLUDE
s td : : s t r i n g en t r y , // name o f f u n c t i o n ; f o r example , ”VSMain”
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s td : : s t r i n g t a r g e t , // one o f ” v s 5 0 ” , ” p s 5 0 ” , ” g s 5 0 ” , ” c s 5 0 ”
uns igned i n t comp i l eF l a g s // b i t f l a g s tha t mimic o p t i o n s such as /Zpr

)
{

// Compi le the HLSL shade r .
ID3DBlob∗ compi l edCode = n u l l p t r ;
ID3DBlob∗ e r r o r s = n u l l p t r ;
D3DCompile ( h l s l . c s t r ( ) , h l s l . l e n g t h ( ) , name . c s t r ( ) ,

d e f i n e s , i n c l u d e , e n t r y . c s t r ( ) , t a r g e t . c s t r ( ) , comp i l eF l ag s , 0 ,
&compi ledCode , &e r r o r s ) ;

// On succes s , ’ compi l edCode ’ i s not n u l l and ’ e r r o r s ’ i s n u l l .

// Crea te the shade r r e f l e c t i o n i n t e r f a c e .
ID3D11ShaderRe f l ec t i on∗ r e f l e c t o r = n u l l p t r ;
D3DRef l ect ( compi ledCode−>Ge tBu f f e rPo i n t e r ( ) ,

compi ledCode−>Ge tBu f f e r S i z e ( ) , I ID ID3D11ShaderRe f l ec t i on ,
( vo id∗∗)& r e f l e c t o r ) ;

// On succes s , ’ r e f l e c t o r ’ i s not n u l l .

// Get the top− l e v e l i n f o rma t i o n about the shade r .
D3D11 SHADER DESC shaderDesc ;
r e f l e c t o r −>GetDesc(& shaderDesc ) ;

// Get the shade r i n p u t s ( i f any ) .
f o r (UINT i = 0 ; i < shaderDesc . I npu tPa ramete r s ; ++i )
{

D3D11 SIGNATURE PARAMETER DESC inpu tDes c ;
r e f l e c t o r−>GetInputParamete rDesc ( i , &i npu tDes c ) ;

}

// Get the shade r ou tpu t s ( i f any ) .
f o r (UINT i = 0 ; i < shaderDesc . I npu tPa ramete r s ; ++i )
{

D3D11 SIGNATURE PARAMETER DESC outputDesc ;
r e f l e c t o r−>GetOutputParameterDesc ( i , &outputDesc ) ;

}

// Get the ” cons tan t b u f f e r s ” , which i n c l u d e s con s tan t b u f f e r s ,
// t e x t u r e b u f f e r s , s t r u c t s d e f i n ed i n shade r s , and i n t e r f a c e
// p o i n t e r s .
f o r (UINT i = 0 ; i < shaderDesc . Con s t a n tBu f f e r s ; ++i )
{

ID3D11ShaderRe f l e c t i o nCons t an tBu f f e r ∗ cb =
r e f l e c t o r −>GetCons tan tBu f f e rBy Index ( i ) ;

D3D11 SHADER BUFFER DESC cbDesc ;
cb−>GetDesc(&cbDesc ) ;
D3D11 SHADER INPUT BIND DESC rbDesc ;
r e f l e c t o r−>GetResourceBindingDescByName ( cbDesc .Name , &rbDesc ) ;
G e tVa r i a b l e s ( cb , cbDesc . V a r i a b l e s ) ;

}

// Get the r e s o u r c e s bound to the shade r .
f o r (UINT i = 0 ; i < shaderDesc . BoundResources ; ++i )
{

D3D11 SHADER INPUT BIND DESC rbDesc ;
r e f l e c t o r−>GetResou rceB ind i ngDesc ( i , &rbDesc ) ;
i f ( rbDesc . Type == D3D SIT CBUFFER
| | rbDesc . Type == D3D SIT TBUFFER)
{

// These were p r o c e s s ed i n the l a s t l oop .
}
e l s e i f ( rbDesc . Type == D3D SIT TEXTURE
| | rbDesc . Type == D3D SIT UAV RWTYPED)
{

// number o f ch a nn e l s [ 1 through 4 ] : 1 + ( rbDesc . uF l ag s >> 2)
// d imens i on s : d e te rm ined by D3D SRV DIMENSION ∗ va l u e s
// s i n g l e or a r r a y : de te rm ined by D3D SRV DIMENSION ∗ va l u e s
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// w r i t a b l e i n shade r : rbDesc . Type i s D3D SIT UAV RWTYPED
}
e l s e i f ( rbDesc . Type == D3D SIT SAMPLER)
{

// no s p e c i a l i z e d i n f o rma t i o n
}
e l s e // Other D3D SIT ∗ va l u e s a r e f o r s t r u c t u r e d b u f f e r t yp e s .
{

// w r i t a b l e i n shade r : rbDesc . Type has UAV i n i t s name
}

}
}

vo id Ge tVa r i a b l e s ( ID3D11ShaderRe f l e c t i onCons t an tBu f f e r ∗ cb ,
UINT numVar i ab l e s )

{
f o r (UINT i = 0 ; i < numVar i ab l e s ; ++i )
{

ID 3D11Shad e rR e f l e c t i o nVa r i a b l e∗ v = cb−>GetVa r i ab l eBy Ind ex ( i ) ;
ID3D11ShaderRef l ec t ionType ∗ vType = v−>GetType ( ) ;
D3D11 SHADER VARIABLE DESC vDesc ;
v−>GetDesc(&vDesc ) ;
D3D11 SHADER TYPE DESC vtDesc ;
vType−>GetDesc(&vtDesc ) ;
GetTypes ( vType , vtDesc . Members ) ; // Recu r s e on nes ted s t r u c t s .

}
}

vo id GetTypes ( ID3D11ShaderRe f l ec t ionType ∗ pType , uns igned i n t numChi ld ren )
{

f o r (UINT i = 0 ; i < numChi ld ren ; ++i )
{

ID3D11ShaderRef l ec t ionType ∗ cType = pType−>GetMemberTypeByIndex ( i ) ;
char const∗ cName = pType−>GetMemberTypeName( i ) ;
D3D11 SHADER TYPE DESC ctDesc ;
cType−>GetDesc(&ctDesc ) ;
GetTypes ( cType , ctDesc . Members ) ;

}
}

LISTING 4.16: Compile an HLSL program at runtime and start the shader
reflection system.

The HLSLFactory library that ships with GTEngine is a wrapper around
compilation and reflection. The error handling does exist in that code. The
tool does not currently support reflection of dynamic linkage (the constant
buffer case D3D CT INTERFACE POINTERS).

A contrived HLSL compute shader that shows how to obtain member
layouts for nested structures is provided in Listing 4.17. The point of the
example is that a struct can have different member layouts depending on
whether it is used in a constant buffer or as a structured buffer resource.

s t r u c t A { f l o a t f v a l u e [ 4 ] ; i n t 2 i 2 v a l u e ; } ;
s t r u c t B { i n t i v a l u e ; A a va l u e ; } ;
c b u f f e r MyCBuffer { B i npu t ; } ;
S t r u c t u r e dBu f f e r<B> s b u f f e r [ 2 ] ;
Texture2D<f l o a t 4> mytextu r e ;
RWTexture1D<f l o a t> output ;

[ numthreads (1 , 1 , 1 ) ]
vo id CSMain( i n t t : SV DispatchThread ID)
{
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f l o a t r e s u l t = ( f l o a t ) i n p u t . i v a l u e ;
f o r ( i n t i = 0 ; i < 4 ; ++i )
{

r e s u l t += i npu t . a v a l u e . f v a l u e [ i ] ;
}
r e s u l t += ( f l o a t ) i n p u t . a v a l u e . i 2 v a l u e . x ;
r e s u l t += ( f l o a t ) i n p u t . a v a l u e . i 2 v a l u e . y ;
f o r ( i n t j = 0 ; j < 2 ; ++j )
{

B mybvalue = s b u f f e r [ j ] [ 0 ] ;
r e s u l t += ( f l o a t ) mybvalue . i v a l u e ;
f o r ( i n t k = 0 ; k < 4 ; ++k )
{

r e s u l t += mybvalue . a v a l u e . f v a l u e [ k ] ;
}
r e s u l t += ( f l o a t ) mybvalue . a v a l u e . i 2 v a l u e . x ;
r e s u l t += ( f l o a t ) mybvalue . a v a l u e . i 2 v a l u e . y ;

}
r e s u l t += mytextu r e [ i n t 2 ( 0 , 0 ) ] . x ;
output [ 0 ] = r e s u l t ;

}

LISTING 4.17: An example of nested structs for which constant buffers have
one member layout but structured buffers have another member layout.

The output of FXC is shown in Listing 4.18. The generator comment was
removed, white space was removed, the sbuffer layouts are the same for the
two array members, the signatures were removed, and the ld structured indexable

commands were split across multiple lines to fit in the width of the page.

// c b u f f e r MyCBuffer
// {
// s t r u c t B
// {
// i n t i v a l u e ; // O f f s e t : 0
// s t r u c t A
// {
// f l o a t f v a l u e [ 4 ] ; // O f f s e t : 16
// i n t 2 i 2 v a l u e ; // O f f s e t : 68
// } a va l u e ; // O f f s e t : 16
// } i n p u t ; // O f f s e t : 0 S i z e : 76
// }
//
// Resource b i nd i n f o f o r s b u f f e r [ 0 ] and s b u f f e r [ 1 ]
// {
// s t r u c t B
// {
// i n t i v a l u e ; // O f f s e t : 0
// s t r u c t A
// {
// f l o a t f v a l u e [ 4 ] ; // O f f s e t : 4
// i n t 2 i 2 v a l u e ; // O f f s e t : 20
// } a va l u e ; // O f f s e t : 4
// } $Element ; // O f f s e t : 0 S i z e : 28
// }
//
// Resource B ind i ng s :
//
// Name Type Format Dim S l o t E lements
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−
// s b u f f e r [ 0 ] t e x t u r e s t r u c t r /o 0 1
// s b u f f e r [ 1 ] t e x t u r e s t r u c t r /o 1 1
// mytex tu r e t e x t u r e f l o a t 4 2d 2 1
// output UAV f l o a t 1d 0 1
// MyCBuffer c b u f f e r NA NA 0 1
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c s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l c o n s t a n t b u f f e r cb0 [ 5 ] , immed i a te Indexed
d c l r e s o u r c e s t r u c t u r e d t0 , 28
d c l r e s o u r c e s t r u c t u r e d t1 , 28
d c l r e s o u r c e t e x t u r e 2 d ( f l o a t , f l o a t , f l o a t , f l o a t ) t2
d c l u a v t y p e d t e x t u r e 1 d ( f l o a t , f l o a t , f l o a t , f l o a t ) u0
dc l t emps 2
d c l t h r e a d g r o u p 1 , 1 , 1
i t o f r0 . x , cb0 [ 0 ] . x
add r0 . x , r0 . x , cb0 [ 1 ] . x
add r0 . x , r0 . x , cb0 [ 2 ] . x
add r0 . x , r0 . x , cb0 [ 3 ] . x
add r0 . x , r0 . x , cb0 [ 4 ] . x
i t o f r0 . yz , cb0 [ 4 ] . yyzy
add r0 . x , r0 . y , r0 . x
add r0 . x , r0 . z , r0 . x
l d s t r u c t u r e d i n d e x a b l e ( s t r u c t u r e d b u f f e r , s t r i d e =28)

(mixed , mixed , mixed , mixed ) r1 . xyzw , l ( 0 ) , l ( 0 ) , t0 . xyzw
i t o f r0 . y , r1 . x
add r0 . x , r0 . y , r0 . x
add r0 . x , r1 . y , r0 . x
add r0 . x , r1 . z , r0 . x
add r0 . x , r1 .w, r0 . x
l d s t r u c t u r e d i n d e x a b l e ( s t r u c t u r e d b u f f e r , s t r i d e =28)

(mixed , mixed , mixed , mixed ) r0 . yzw , l ( 0 ) , l ( 16 ) , t0 . xxyz
add r0 . x , r0 . y , r0 . x
i t o f r0 . yz , r0 . zzwz
add r0 . x , r0 . y , r0 . x
add r0 . x , r0 . z , r0 . x
l d s t r u c t u r e d i n d e x a b l e ( s t r u c t u r e d b u f f e r , s t r i d e =28)

(mixed , mixed , mixed , mixed ) r1 . xyzw , l ( 0 ) , l ( 0 ) , t1 . xyzw
i t o f r0 . y , r1 . x
add r0 . x , r0 . y , r0 . x
add r0 . x , r1 . y , r0 . x
add r0 . x , r1 . z , r0 . x
add r0 . x , r1 .w, r0 . x
l d s t r u c t u r e d i n d e x a b l e ( s t r u c t u r e d b u f f e r , s t r i d e =28)

(mixed , mixed , mixed , mixed ) r0 . yzw , l ( 0 ) , l ( 16 ) , t1 . xxyz
add r0 . x , r0 . y , r0 . x
i t o f r0 . yz , r0 . zzwz
add r0 . x , r0 . y , r0 . x
add r0 . x , r0 . z , r0 . x
l d i n d e x a b l e ( t e x t u r e 2 d ) ( f l o a t , f l o a t , f l o a t , f l o a t ) r0 . y , l ( 0 , 0 , 0 , 0 ) ,

t2 . yxzw
add r0 . x , r0 . y , r0 . x
s t o r e u a v t y p e d u0 . xyzw , l ( 0 , 0 , 0 , 0 ) , r0 . xxxx
r e t
// App rox ima te l y 34 i n s t r u c t i o n s l o t s used

LISTING 4.18: A modified listing of the FXC output from the compute
shader of Listing 4.17.

Notice that the constant buffer version of struct B uses 76 bytes but the
structured buffer version uses 28 bytes. The latter is what you expect in a
C-style struct that has seven members, each requiring 4 bytes. The constant
buffer version is adhering to the HLSL packing rules. What still caught my
attention, though, is the number 76. Given that each register uses 16 bytes,
why not 80 bytes? I also thought at first that the constant buffer would use
six registers requiring 96 bytes, because ivalue is stored in one register, each
of the four fvalue array elements is stored in a register, and i2value uses one
register. My thinking was incorrect. In fact, i2value is stored in the yz-channels
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of the register that stores fvalue[3] in its x-channel. This explains the size 76
rather than 80, because the 4-byte w-channel is unused. The layout is verified
by the assembly instructions. The last typecast of float to int is the instruction
itof r0.yz, cb0[4].yyzy that effectively copies the yz-channels of cb0[4] into the
yz-channels of temporary register r0.

The shader reflection system produces a description whose non-default-
value members are shown in Listing 4.19 with some comments added.

des c . Crea to r = ”M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384”
des c . V e r s i o n = 0x00050050 // v s 5 0
des c . F l ag s = 0x0000a908 // D3DCOMPILE ∗ f l a g s
des c . Con s t a n tBu f f e r s = 3 // MyCBuffer , s b u f f e r [ 0 , 1 ]
des c . BoundResources = 5 // MyCBuffer , s b u f f e r [ 0 , 1 ] , mytexture , output
des c . I n s t r u c t i o nCou n t = 34 // s t a r t i s f i r s t ’ i t o f ’ , f i n a l i s ’ r e t ’
des c . TempRegisterCount = 2 // ’ dc l t emps 2 ’ ’
des c . Tex t u r eL o a d I n s t r u c t i o n s = 5 // ’ l d ∗ ’ i n s t r u c t i o n s
des c . F l o a t I n s t r u c t i o nCo u n t = 21 // ’ add ’ i n s t r u c t i o n s
des c . S ta t i cF l owCont ro lCoun t = 1 // ’ r e t ’ i n s t r u c t i o n
des c . c T e x t u r e S t o r e I n s t r u c t i o n s = 1 // ’ s t o r e u a v t y p e d ’ i n s t r u c t i o n

LISTING 4.19: The non-default-value members of D3D11 SHADER DESC for
the compute shader of Listing 4.17.

The constant buffer loop produces the information shown in Listing 4.20.
The one- and two-letter prefixes are from the D3D description member names,
used here for the descriptions to fit the width of the page. The descriptions
for sbuffer[0] and sbuffer[1] are the same, so only one block is written here.

cbDesc [ 0 ] {n=”MyCBuffer ” , t=D3D CT CBUFFER , v=1, s=80, f=0}
rbDesc [ 0 ] {n=”MyCBuffer ” , t=D3D SIT CBUFFER , bp=0, bc=1, f =0, r t =0,

d=D3D SRV DIMENSION UNKNOWN, ns=0}
vDesc [ 0 ] {n=” i n pu t ” , o=0, s=76, f =2, dv=nu l l , s t e x=−1, t e x s =0, ssam=−1,

sams=0}
vtDesc [ 0 ] { c l=D3D SVC STRUCT , t=D3D SVT VOID , r =1, c=7, e=0, m=2, o=0,

n=”B”}
cName=” i v a l u e ”
ctDesc [ 0 ] { c l=D3D SVC SCALAR , t=D3D SVT INT , r =1, c=1, e=0, m=0, o=0,

n=” i n t ”}
cName=” a va l u e ”
ctDesc [ 1 ] { c l=D3D SVC STRUCT , t=D3D SVT VOID , r =1, c=6, e=0, m=2, o=16,

n=”A”}
ctDesc [ 0 ] { c l=D3D SVC SCALAR , t=D3D SVT FLOAT , r=1, c=1, e=4, m=0,

o=0, n=” f l o a t ”}
ctDesc [ 1 ] { c l=D3D SVC VECTOR, t=D3D SVT INT , r =1, c=2, e=0, m=0,

o=52, n=” i n t 2 ”}

cbDesc [ 1 , 2 ] {n=” s b u f f e r [ 0 ] ” , t=D3D CT RESOURCE BIND INFO , v=1, s=28, f=0}
rbDesc [ 1 , 2 ] {n=” s b u f f e r [ 0 ] ” , t=D3D SIT STRUCTURED , bp =[0 ,1 ] , bc=1, f =0,

r t=D3D RETURN TYPE MIXED, d=D3D SRV DIMENSION BUFFER , ns=28}
vDesc [ 0 ] {n=”$Element ” , o=0, s=28, f =2, dv=nu l l , s t e x=−1, t e x s =0,

ssam=−1, sams=0}
vtDesc [ 0 ] { c l=D3D SVC STRUCT , t=D3D SVT VOID , r =1, c=7, e=0, m=2, o=0,

n=”B”}
cName=” i v a l u e ”
ctDesc [ 0 ] { c l=D3D SVC SCALAR , t=D3D SVT INT , r =1, c=1, e=0, m=0, o=0,

n=” i n t ”}
cName=” a va l u e ”
ctDesc [ 1 ] { c l=D3D SVC STRUCT , t=D3D SVT VOID , r =1, c=6, e=0, m=2, o=4,

n=”A”}
cName=” f v a l u e ”
ctDesc [ 0 ] { c l=D3D SVC SCALAR , t=D3D SVT FLOAT , r=1, c=1, e=4, m=0,
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o=0, n=” f l o a t ”}
cName=” i 2 v a l u e ”
ctDesc [ 1 ] { c l=D3D SVC VECTOR, t=D3D SVT INT , r =1, c=2, e=0, m=0,

o=16, n=” i n t 2 ”}

LISTING 4.20: Descriptions about the constant buffers in the compute
shader of Listing 4.17.

The descriptions for MyCBuffer indicate that the size is 80 bytes, the bind
point is 0, and the bind count is 1. This information is needed by an application
to create a DX11 buffer and to attach the resource to the shader program for
execution. The variable and variable type descriptions provide the layout of
the constant buffer. The vDesc[0] item says the constant buffer name used
in the HLSL code is input and uses 76 of the 80 bytes of storage. The flag
value two comes from bit flags in D3D SHADER VARIABLE FLAGS, in this case
a single flag D3D SVF USED that indicates the constant buffers is used in the
shader.

The corresponding vtDesc[0] item describes the type of the variable. The
type has name B and is a struct type (D3D SVC STRUCT and D3D SVT VOID).
The r and c values are for rows and columns of a matrix type, but these are
filled even when the type is not of matrix form. You must also look at the e
value (number of elements). In the example at hand, e = 0, which indicates
that the type is not of matrix form; rather, it is viewed as a single row (r = 1)
of seven (c = 7) 4-byte quantities: ivalue (one 4-byte value), avalue.fvalue[0,1,2,3]
(four 4-byte quantities), and avalue.i2value (two 4-byte quantities). The offset
o = 0 is measured relative to the beginning of the constant buffer storage.
The number of members (or children) is m = 2, indicating that struct B has
two members: ivalue and avalue.

The recursive function GetTypes in Listing 4.16 produces the cName and
ctDesc items in Listing 4.20. The first visited child (of B) has name ivalue and
has type name int. Thus, it is a integer scalar type (D3D SVC SCALAR and
D3D SVT INT). It is not of matrix form, so e = 0. As a scalar, it is viewed as a
single row (r = 1) with one column (c = 1). Its offset is o = 0 and is measured
relative to the base address of its parent. The parent is MyCBuffer, and we saw
that input has offset zero. The absolute offset of ivalue is obtained by adding
its relative offset zero to the parent offset zero (of input), which is zero; that
is, ivalue fills the first four bytes of the constant buffer memory.

The second visited child of B has name avalue and has type name A. This
member is itself a struct (D3D SVC STRUCT and D3D SVT VOID). The number
of elements is e = 0, so A is not of matrix form but it is viewed as a single row
(r = 1) of six (c = 6) 4-byte values: fvalue[0,1,2,3] (four 4-byte quantities) and
i2value (two 4-byte quantities). The offset is o = 16, relative to the parent B,
so the absolute offset in the constant buffer is sixteen. The number is sixteen
because the packing rules for constant buffers requires ivalue to be stored in
a 16-byte register, in which case A is stored starting in the next available
register. The number of members is m = 2, indicating that struct A has two
members: fvalue and i2value.



GPU Computing 167

The first visited child of A has name fvalue and has type name float. It is
a float scalar type (D3D SVC SCALAR and D3D SVT FLOAT). The number of
elements is e = 4; because this number is not zero, this is of matrix form. The
number of rows is r = 1, so the matrix is really a one-dimensional array that
has e = 4 elements and each element has c = 1 columns. This is a fancy way
of saying that the fvalue is an array of four float values, but the bookkeeping
allows for handling general arrays of general elements. The relative offset from
the base address of A is o = 0, so the absolute address from the base address
of MyCBuffer is sixteen.

The second visited child of A has name i2value and has type name int2,
indicating it is a 2-tuple of integers. This is a vector type as compared to a
scalar type (D3D SVC VECTOR and D3D SVT INT). The number of elements is
zero, so it is not of matrix form. It has r = 1 rows and c = 2 columns, the
latter indicating that i2value is a 2-tuple. This member is not a struct so it has
no children (m = 0). The relative offset from the base address of A is o = 52.
As described previously, fvalue[3] is stored in the x-component of a register and
i2value is stored in the yz-components, which leads to the offset value of 52.
The absolute offset from the base address of MyCBuffer is 16 + 52 = 68. This
is the number displayed next to i2value in the MyCBuffer comments of Listing
4.18.

The descriptions of B for sbuffer[0] and sbuffer[1] are identical except for
the offset values. As a structured buffer type, B is packed just as you would
expect for a C-struct using 32-bit alignment, in this case seven 4-byte values
are packed into a 28-byte chunk of memory.

The loop over the resources bound to the shader leads to a visit of
MyCBuffer, which is ignored in this loop because it was processed in the previ-
ous loop, and visits to sbuffer[0,1], mytexture, and output. The resource binding
description for sbuffer[0] shows it is of type D3D SIT STRUCTURED (read-only
structured buffer) and has bind point zero. The bind point for sbuffer[1] is one.
The bind points must be known by the application for attaching the resources
to the shader for execution.

The resource binding description for mytexture shows it is of type
D3D SIT TEXTURE (read-only texture). The bind point is two, which is the
next available bind point for read-only inputs after the structured buffers
are assigned bind points; these are assigned in the order the resources occur
in the HLSL code. The return type is D3D RETURN TYPE FLOAT, which is
a consequence of using float4 in the template Texture2D<float4>. The num-
ber of components is obtained from the flags value f = 12 by the formula
4 = 1 + (f >> 2). Thus, the return type and the flags can be used to de-
termine the template type, something that might be useful for a tool that
generates C++ source code from an HLSL program in order to wrap all the
resource management of that program. The dimension of this texture is re-
ported as D3D SRV DIMENSION TEXTURE2D.

The resource binding description for output shows it is of type
D3D SIT UAV RWTYPED (read-write texture). The fact that it is an unordered
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access view (UAV) means that the shader writes to the resource. In some cases
you can read and write the resource, but this is limited to resources with a na-
tive 32-bit template type; for example, RWTexture2D<float>. The bind point is
zero, which is needed by the application for attaching the resource for shader
execution. The return type is also D3D RETURN TYPE FLOAT, but the flag’s
value is f = 0 which implies there is 1 = 1 + (f >> 2) component. Thus,
the reflection indicates that output was declared as RWTexture1D<float>. The
dimension is reported as D3D SRV DIMENSION TEXTURE1D.

4.3 Devices, Contexts, and Swap Chains

The top-level objects required for accessing the capabilities of a GPU are
devices and immediate contexts. The immediate context is used to queue up
GPU commands that are to be executed immediately (as soon as possible)
on the GPU. D3D11 also has the concept of a deferred context where GPU
command lists are inserted for execution at a later time. Deferred contexts
are useful for coarse-level management of the GPU in multithreaded applica-
tions. Although useful, this book does not contain a discussion about deferred
contexts. The GTEngine code is based on immediate contexts and takes ad-
vantage of the thread-safe device for creating resources to be used by the GPU
at the appropriate times.

Compute shaders may be executed using only the services of a device
and an immediate context. Drawing to a window using vertex, geometry, and
pixel shaders requires additional D3D11 objects. Specifically, you need a swap
chain and one or more pairs of color and depth-stencil buffers. The classical
case, designed for performance, is to have two pairs for double buffering. The
graphics system can draw to the back buffer while the front buffer is displayed
to the monitor. Once complete, the two buffers are swapped, which is the
responsibility of the swap chain object.

4.3.1 Creating a Device and an Immediate Context

A device and a corresponding immediate context are created by the D3D11
function

HRESULT D3D11CreateDevice (
IDXGIAdapter∗ pAdapter ,
D3D DRIVER TYPE Dr iverType ,
HMODULE Software ,
UINT Flags ,
CONST D3D FEATURE LEVEL∗ pFea t u r eL e v e l s ,
UINT Fea tu r eL e v e l s ,
UINT SDKVersion ,
ID3D11Device∗∗ ppDevice ,
D3D FEATURE LEVEL∗ pFea tu r eLeve l ,
ID3D11DeviceContext∗∗ ppImmediateContext ) ;
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where the last three parameters are the outputs of the creation. The standard
use of this call is to obtain access to hardware acceleration on a machine with
a single GPU. The function call is

UINT const numFea tu r eLeve l s = 7 ;
D3D FEATURE LEVEL const f e a t u r e L e v e l s [ numFea tu r eLeve l s ] =
{

D3D FEATURE LEVEL 11 1 ,
D3D FEATURE LEVEL 11 0 ,
D3D FEATURE LEVEL 10 1 ,
D3D FEATURE LEVEL 10 0 ,
D3D FEATURE LEVEL 9 3 ,
D3D FEATURE LEVEL 9 2 ,
D3D FEATURE LEVEL 9 1

} ;

ID3D11Device∗ d ev i c e ;
D3D FEATURE LEVEL s e l e c t e d F e a t u r e L e v e l
ID3D11DeviceContext∗ immedia teContext ;
HRESULT hr = D3D11CreateDevice ( n u l l p t r , D3D DRIVER TYPE HARDWARE ,

n u l l p t r , 0 , f e a t u r e L e v e l s , numFeatureLeve l s , D3D11 SDK VERSION ,
&dev i ce , &s e l e c t e d F e a t u r e L e v e l , &immediateContext ) ;

The featureLevels are listed in order of the feature set you want for the device.
If Direct3D 11.1 is available on the machine, that feature will be selected. If
it is not available but Direct3D 11.0 is available, that feature will be selected.
The output selectedFeatureLevel indicates which feature level the device is. On
success, hr is S OK and both device and immediateContext are not null.

When the adapter input is null, the default adapter is requested and is
the one associated with the GPU. If you have multiple GPUs, you can obtain
nonnull adapter pointers by enumeration; see Section 4.8 for details on how
to create devices and contexts when multiple GPUs are present.

The driver type is usually hardware, but other options are available. These
include the ability to use software rendering and to create a reference device.
The latter supports the D3D11 SDK in software and is mainly useful for
debugging. Drivers shipped by graphics card manufacturers can have bugs
in them. A comparison of outputs for the hardware-accelerated device and
reference device might lead to proof that a driver has a bug. The HMODULE

input must be null for hardware acceleration. If you happen to have written a
software rasterizer you want to test, you can do so in a DLL, load that DLL,
and use its module handle as the input to device creation. I do not discuss
this capability in the book.

The Flags input is typically zero; otherwise, it may be a combination of
D3D11 CREATE DEVICE FLAGS bit flags. Two bit flags that are useful for de-
bugging are

D3D11 CREATE DEVICE DEBUG, D3D11 CREATE DEVICE SINGLETHREADED

I use the debug flag regularly and add the application to the list of executables
monitored by the DirectX Control Panel; see Section 5.2 for details. The single-
threading flag is useful if you believe your multithreaded application might
have threading problems regarding the graphics system and you want to verify
by showing that the single-threaded version runs correctly.
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The feature levels of interest to you are provided via an array. You are not
required to list all available levels. For example, if you know you are running
on a machine with Direct3D 11.0 and want only a device of that type, you can
define a featureLevels array with the single element D3D FEATURE LEVEL 11 0.
The device creation does allow you to pass a null pointer, but at the present
time the call will not create a D3D11.1 device when on a machine with
D3D11.1.

The device and immediate context are reference counted, so when you are
finished with them you must call their Release() functions.

4.3.2 Creating Swap Chains

Assuming you have created a window with an associated handle and whose
client rectangle has a specified width and height, you can create a swap
chain for a device as shown in Listing 4.21. For simplicity of presentation,
no HRESULT error handling is included. The actual engine code does include
this.

vo id CreateSwapCha in (HWND hand le , UINT width , UINT he i gh t ,
ID3D11Device∗ dev i ce , IDXGISwapChain∗& swapChain )

{
// Get a DXGI d ev i c e and f a c t o r y tha t w i l l be used f o r c r e a t i n g the
// swap cha i n .
IDXGIDevice ∗ d xg iD ev i c e = n u l l p t r ;
d ev i ce−>Que r y I n t e r f a c e ( u u i d o f ( IDXGIDevice ) , ( vo id ∗∗)&dxg iD ev i c e ) ;
IDXGIAdapter∗ dxg iAdap te r = n u l l p t r ;
d xg iDev i ce−>GetAdapter(&dxg iAdap te r ) ;
IDXGIFactory1∗ d xg i Fa c t o r y = n u l l p t r ;
dxg iAdapter−>GetParent ( u u i d o f ( IDXGIFactory1 ) , ( vo id∗∗)& dxg i Fa c t o r y ) ;

// Crea te the swap cha i n .
DXGI SWAP CHAIN DESC des c ;
d es c . Bu f f e rDes c . Width = width ;
des c . Bu f f e rDes c . Height = he i g h t ;
d es c . Bu f f e rDes c . Re f r e shRa te . Numerator = 0 ;
des c . Bu f f e rDes c . Re f r e shRa te . Denominator = 1 ;
des c . Bu f f e rDes c . Format = DXGI FORMAT R8G8B8A8 UNORM ;
des c . Bu f f e rDes c . S ca n l i n eO rd e r i n g =

DXGI MODE SCANLINE ORDER UNSPECIFIED ;
des c . Bu f f e rDes c . S ca l i n g = DXGI MODE SCALING UNSPECIFIED ;
des c . SampleDesc . Count = 1 ;
des c . SampleDesc . Qua l i t y = 0 ;
des c . Bu f f e rUsage =

DXGI USAGE BACK BUFFER | DXGI USAGE RENDER TARGET OUTPUT ;
des c . Bu f f e rCoun t = 2 ;
des c . OutputWindow = hand l e ;
d es c . Windowed = TRUE ;
des c . SwapEf fect = DXGI SWAP EFFECT DISCARD ;
des c . F l ag s = 0 ;
IDXGISwapChain∗ swapChain = n u l l p t r ;
d xg iFacto r y−>CreateSwapChain ( dxg iDev i ce , &desc , &swapChain ) ;

// Clean up and r e t u r n .
dxg iFacto r y−>Re l e a s e ( ) ;
dxg iAdapter−>Re l e a s e ( ) ;
d xg iDev i ce−>Re l e a s e ( ) ;
r e tu r n swapChain ;

}

LISTING 4.21: Creating a swap chain for displaying graphics data to a
window.
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The refresh rate is specified as a rational number in units of hertz. The ra-
tional number 0/1 indicates that the default refresh rate of the monitor should
be used. The scanline ordering and scaling parameters are listed as unspeci-
fied, allowing the display system to use its defaults. The sample description is
for multisampling; the default values are specified (no multisampling).

The buffer usage flag DXGI USAGE RENDER TARGET indicates that you
intend to write to the back buffer for output. It is possible to use back buffers
as inputs to shaders and as unordered access views. The buffer count is two,
indicating that you want a back buffer and a front buffer.

For classical drawing, the color output format is 8-bit RGBA.
DXGI FORMAT R8G8B8A8 UNORM represents such a format; the UNORM prefix
indicates that floating-point color channel values in [0, 1] are interpreted as 8-
bit values in {0, . . . , 255}. It is possible to specify 16-bit RGBA or 10-10-10-2
RGBA format, which is useful when the back buffer is set up to be used as
an input to a shader.

A window can be created to be full screen, but the advice is to create
a windowed swap chain and use IDXGISwapChain::SetFullscreenState to toggle
between windowed mode and full-screen mode.

The swap effect parameter indicates that the back buffer contents are dis-
carded after the swap. Other parameters allow the back buffer contents to
persist. In particular, for a Window Store application the swap effect must be
DXGI SWAP EFFECT FLIP SEQUENTIAL. The creation of swap chains with ad-
vanced features is not described in this book. You can obtain more information
from the MSDN online documentation about such features.

Once you are finished using a swap chain, remember to call its Release()

function in order to decrement its reference count.
In GTEngine for the purpose of this book, swap chains are created as shown

in Listing 4.21. You are welcome to explore other choices for the parameters.
It is possible to create the device, the immediate context, and the swap chain
all in one interface call: D3D11CreateDeviceAndSwapChain. In GTEngine, I have
chosen to keep the creation calls separate.

In addition to a swap chain, you need to create a back buffer that consists
typically of a color buffer and a depth-stencil buffer. For drawing, you also need
various state information related to rasterization and blending operations. The
creation of these are discussed in Section 4.4.

4.3.3 Creating the Back Buffer

Once the swap chain has been created, we need to associate with it the
color and depth-stencil buffers that make up the back buffer. Listing 4.22
shows the creation, requiring both the device and its immediate context. For
simplicity of presentation, no HRESULT error handling is included. The actual
engine code does include the handling.

vo id Crea teBackBu f f e r (UINT width , UINT he i gh t , ID3D11Device∗ dev i ce ,
ID3D11DeviceContext∗ immed ia teContext , IDXGISwapChain∗ swapChain ,
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ID3D11Texture2D∗& co l o rBu f f e r , ID3D11RenderTargetView∗& co lo rV i ew ,
ID3D11Texture2D∗& dep thS t en c i l B u f f e r ,
ID3D11DepthStenc i lV iew∗& dep thS t en c i l V i ew )

{
// Crea te the c o l o r b u f f e r and c o l o r v i ew .
swapChain−>GetBu f f e r (0 , u u i d o f ( ID3D11Texture2D ) ,

( vo id∗∗)& c o l o r B u f f e r ) ;
d ev i ce−>CreateRenderTarge tView ( co l o rBu f f e r , n u l l p t r , &co l o rV i ew ) ;

// Crea te the depth−s t e n c i l b u f f e r and depth−s t e n c i l v i ew .
D3D11 TEXTURE2D DESC des c ;
d es c . Width = width ;
des c . Height = he i g h t ;
d es c . M ipLeve l s = 1 ;
des c . A r r a yS i z e = 1 ;
des c . Format = DXGI FORMAT D24 UNORM S8 UINT ;
des c . SampleDesc . Count = 1 ;
des c . SampleDesc . Qua l i t y = 0 ;
des c . Usage = D3D11 USAGE DEFAULT ;
des c . B indF l ag s = D3D11 BIND DEPTH STENCIL ;
des c . CPUAccessFlags = 0 ;
des c . M i s cF l ag s = 0 ;
dev i ce−>CreateTexture2D (&desc , n u l l p t r , &d e p t hS t e n c i l B u f f e r ) ;
d ev i ce−>Crea teDep thStenc i lV i ew ( d ep t hS t en c i l B u f f e r , n u l l p t r ,

&d ep thS t en c i l V i ew ) ;

// Set the v i ewpo r t to cove r the e n t i r e window and the e n t i r e
// depth range .
D3D11 VIEWPORT v i ewpo r t ;
v i ewpo r t . Width = s t a t i c c a s t<f l o a t >(width ) ;
v i ewpo r t . Height = s t a t i c c a s t<f l o a t >( h e i g h t ) ;
v i ewpo r t . TopLeftX = 0 .0 f ;
v i ewpo r t . TopLeftY = 0 .0 f ;
v i ewpo r t . MinDepth = 0 .0 f ;
v i ewpo r t . MaxDepth = 1 .0 f ;
immedia teContext−>RSSetViewports (1 , &v i ewpo r t ) ;

// Set the c o l o r v i ew and depth−s t e n c i l v i ew to be a c t i v e .
immedia teContext−>OMSetRenderTargets (1 , &co l o rV i ew , d ep t hS t en c i l V i ew ) ;

}

LISTING 4.22: Creating a back buffer.

At various times during execution, you might want to set the color buffer
or depth-stencil buffer to constant values via clearing. This can be done using
a context; for example,

// c l e a r c o l o r
f l o a t c l e a r C o l o r [ 4 ] = { 0 .0 f , 0 . 1 f , 0 . 5 f , 0 . 7 f } ; // RGBA
con tex t−>Cl ea rRende rTa rge tV i ew( co l o rV i ew , c l e a r C o l o r )

// c l e a r depth , s t e n c i l v a l u e i g n o r ed
f l o a t c l ea rDep th = 0 .5 f ;
con tex t−>C l e a rD ep thS t en c i l V i ew ( dep thStenc i lV i ew , D3D11 CLEAR DEPTH ,

c l ea rDep th , 0 ) ;

// c l e a r s t e n c i l , depth va l u e i g n o r ed
uns igned char c l e a r S t e n c i l = 16 ;
con tex t−>C l e a rD ep thS t en c i l V i ew ( dep thStenc i lV i ew , D3D11 CLEAR STENCIL , 0 .0 f ,

c l e a r S t e n c i l ) ;

// c l e a r depth and s t e n c i l
con tex t−>C l e a rD ep thS t en c i l V i ew ( dep thStenc i lV i ew ,

D3D11 CLEAR DEPTH | D3D11 CLEAR STENCIL , c l ea rDep th , c l e a r S t e n c i l ) ;
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The views determine which portions of the buffers are set to the constant
values. The color and depth-stencil views created for the back buffer have
views that cover the entire buffer, so all buffer values are set. It is possible
to have multiple views for a single buffer, so if you want to clear only a
subrectangle of a buffer, you must create a view of that size and pass that to
the clear calls.

Once you are finished using the color buffer, color view, depth-stencil
buffer, and depth-stencil view, remember to call their Release() functions so
that their reference counts are decremented. If you plan on resizing the win-
dow during runtime, you will need to destroy the current back buffer objects
and create new ones for the modified width and height. This is accomplished
using IDXGISwapChain::ResizeBuffers. You must release the old objects first, call
the ResizeBuffers function, and then create the new objects.

4.4 Resources

The HLSL shader programs discussed previously had various resources
that needed to be attached for input and output, explicitly declared as con-
stant buffers, structured buffers, textures, and sampler state. For drawing, we
also had the implicit occurrence of vertex buffers (input to vertex shaders)
and index buffers (geometric primitives that determine input to pixel shaders
during rasterization). Other types of resources are available for more advanced
computing and drawing.

D3D11 uses a hierarchy of COM interfaces with base IUnknown. The
ID3D11Device interface inherits from IUnknown and the ID3D11DeviceContext in-
terface inherits from ID3D11DeviceChild. A subhierarchy of interfaces related to
the resources that may be attached to shaders for execution is shown next:

ID3D11DeviceCh i ld
ID3D11Resource

ID3D11Buf fer
ID3D11Texture1D
ID3D11Texture2D
ID3D11Texture3D

ID3D11BlendState
ID3D11DepthStenc i l S ta te
ID3D11Ra s t e r i z e rS t a t e
ID3D11SamplerState
ID3D11VertexShader
ID3D11GeometryShader
ID3D11Pixe lShader
ID3D11ComputeShader

The number of flavors of resources is more than the four listed under
ID3D11Resource; for example, cube maps and texture-array resources are cre-
ated as part of the aforementioned interfaces. The desired resource is selected
via parameters to a description structure. For the purpose of object-oriented
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design using C++ virtual functions, it would have been convenient to have in-
terfaces such as ID3D11Texture, ID3D11State, and ID3D11Shader from which the
appropriate interfaces inherit. GTEngine deals with this by having a richer
hierarchy of C++ classes that are tied to D3D11 objects via the bridge pat-
tern but with some similarities to the adapter pattern [12]. See Section 5.1 for
the GTEngine hierarchy and how those classes avoid accessing D3D11-specific
information in order to hide the implementation details in the graphics en-
gine. This abstraction is necessary when the time comes to provide a graphics
engine for OpenGL and GLSL shader programming.

The main resource categories are buffers, textures, and texture arrays. The
D3D11 mechanism for creating textures allows you to specify a singleton or
an array, but the texture arrays require the concept of subresource to access
elements of the array. The idea of subresource also applies to mipmaps of
textures. In the presentation, I have separated out the texture-array resource
discussion in order to emphasize the slightly different creation semantics com-
pared to singleton textures.

Another category I call draw targets, which are containers that encapsulate
render targets and depth-stencil textures for drawing to offscreen memory.
The back buffer discussed in Section 4.3.3 is essentially a draw target that
encapsulates a render target and a depth-stencil texture for direct display to
the screen. Although a draw target is not a D3D11 construct, it is in GTEngine
and simplifies working with offscreen drawing.

4.4.1 Resource Usage and CPU Access

The various description structures used to create resources have a member
of type D3D11 USAGE and flags for CPU access related to copying,

enum D3D11 USAGE
{

D3D11 USAGE DEFAULT ,
D3D11 USAGE IMMUTABLE,
D3D11 USAGE DYNAMIC ,
D3D11 USAGE STAGING

} ;

enum D3D11 CPU ACCESS FLAG
{

D3D11 CPU ACCESS WRITE = 0x10000L ,
D3D11 CPU ACCESS READ = 0x20000L

} ;

The default usage flag indicates the resource requires both read and write ac-
cess by the GPU. The immutable usage flag indicates that the resource may
be read by the GPU but not written to by the GPU; such a resource must have
its memory initialized on creation. The dynamic usage flag declares that the
resource may be read by the GPU and written by the CPU. Typical examples
are constant buffers that store the transformations for positioning and orient-
ing 3D objects or vertex buffers for deformable geometry. A dynamic resource
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is modified frequently by mapping the memory and providing a pointer to the
data so the CPU can write to it. The staging usage is designed to support
the transfer of video memory from the GPU to the CPU, which I refer to as
read-back from the GPU, although the transfer can be in the other direction
as well; see Section 4.7 for the details of how staging buffers are used.

The usage and CPU access are not independent concepts. In all the de-
scription structures discussed later (except for staging resources), a descrip-
tion desc has members desc.Usage and desc.CPUAcessFlags. Assuming an ab-
stract input object that has requests input.wantImmutable, input.wantDynamic,
and input.wantShaderOutput, the description members are set as shown in List-
ing 4.23.

vo id SetUsageAccess ( desc , i n p u t )
{

i f ( i n p u t . wantImmutable )
{

des c . Usage = D3D11 USAGE IMMUTABLE;
des c . CPUAccessFlags = 0 ;

}
e l s e i f ( i n p u t . wantDynamic)
{

des c . Usage = D3D11 USAGE DYNAMIC ;
des c . CPUAccessFlags = D3D11 CPU ACCESS WRITE ;

}
e l s e // i n pu t . wantShaderOutput
{

des c . Usage = D3D11 USAGE DEFAULT ;
des c . CPUAccessFlags = 0 ;

}
}

LISTING 4.23: Common code for setting the usage and CPU access for a
description structure.

The usage and access might be modified additionally depending on the specific
resource at hand. In particular, if a resource is declared as a render target, the
usage must be D3D11 USAGE DEFAULT. Staging resources are handled sepa-
rately. The various code blocks will call this function and make it clear if usage
and access must be modified.

4.4.2 Resource Views

Resources are created, but they are not accessed directly during graphics
processing. Instead you need to create views of the resources. Think of an
analogy with databases. The resource is the database and you can have mul-
tiple views of that database. The two common categories are shader resource
views that are applied to shader inputs (read-only resources) and unordered
access views that are applied to shader outputs (read-write resources). You
can also create render-target views and depth-stencil views for working with
frame buffers. In fact, these were used in the creation of the back buffer; see
Section 4.3.3 for the details.
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Listing 4.24 shows the description structure for a shader resource view and
how to create such a view. Specific assignment of members of the description
for each resource type is discussed in later sections.

s t r u c t D3D11 SHADER RESOURCE VIEW DESC
{

DXGI FORMAT Format ;
D3D11 SRV DIMENSION ViewDimension ;
un ion {

D3D11 BUFFER SRV Bu f f e r ;
D3D11 TEX1D SRV Texture1D ;
D3D11 TEX1D ARRAY SRV Texture1DArray ;
D3D11 TEX2D SRV Texture2D ;
D3D11 TEX2D ARRAY SRV Texture2DArray ;
D3D11 TEX2DMS SRV Texture2DMS ;
D3D11 TEX2DMS ARRAY SRV Texture2DMSArray ;
D3D11 TEX3D SRV Texture3D ;
D3D11 TEXCUBE SRV TextureCube ;
D3D11 TEXCUBE ARRAY SRV TextureCubeArray ;
D3D11 BUFFEREX SRV Buf f e rEx ;

} ;
} ;

ID3D11Resource∗ r e s o u r c e = // The r e s o u r c e to be v iewed f o r r e a d i n g .
D3D11 SHADER RESOURCE VIEW DESC s rDes c ; // Set members as d e s i r e d .
ID3D11ShaderResourceView ∗ s rView ;
HRESULT hr = dev i ce−>Crea teShaderResou rceV iew ( r e s o u r c e , &s rDesc , &s rView ) ;

LISTING 4.24: The description for a shader resource view and the code to
create the view.

The ViewDimension member is set to a flag that indicates which of the union

cases the view represents. Each case has its own structure of values that must
be set according to the desired view capabilities.

Listing 4.25 shows the description structure for an unordered access view
and how to create such a view. Specific assignment of members of the descrip-
tion for each resource type is discussed in later sections.

s t r u c t D3D11 UNORDERED ACCESS VIEW DESC
{

DXGI FORMAT Format ;
D3D11 UAV DIMENSION ViewDimension ;
un ion {

D3D11 BUFFER UAV Bu f f e r ;
D3D11 TEX1D UAV Texture1D ;
D3D11 TEX1D ARRAY UAV Texture1DArray ;
D3D11 TEX2D UAV Texture2D ;
D3D11 TEX2D ARRAY UAV Texture2DArray ;
D3D11 TEX3D UAV Texture3D ;

} ;
} ;

ID3D11Resource∗ r e s o u r c e = // The r e s o u r c e to be v iewed f o r w r i t i n g .
D3D11 UNORDERED ACCESS VIEW DESC uaDesc ; // Set members as d e s i r e d .
ID3D11UnorderedAccessView ∗ uaView ;
HRESULT hr = dev i ce−>Crea teUno rde r edAcces sV i ew( r e s o u r c e , &uaDesc , &uaView ) ;

LISTING 4.25: The description for an unordered access view and the code
to create the view.
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The ViewDimension member is set to a flag that indicates which of the union

cases the view represents. Each case has its own structure of values that must
be set according to the desired view capabilities.

Although render targets and depth-stencils are created as 2D textures, they
need separate interfaces for creating views for writing. Listing 4.26 shows the
description structures for these objects and how to create views.

s t r u c t D3D11 RENDER TARGET VIEW DESC
{

DXGI FORMAT Format ;
D3D11 RTV DIMENSION ViewDimension ;
un ion {

D3D11 BUFFER RTV Bu f f e r ;
D3D11 TEX1D RTV Texture1D ;
D3D11 TEX1D ARRAY RTV Texture1DArray ;
D3D11 TEX2D RTV Texture2D ;
D3D11 TEX2D ARRAY RTV Texture2DArray ;
D3D11 TEX2DMS RTV Texture2DMS ;
D3D11 TEX2DMS ARRAY RTV Texture2DMSArray ;
D3D11 TEX3D RTV Texture3D ;

} ;
} ;

s t r u c t D3D11 DEPTH STENCIL VIEW DESC
{

DXGI FORMAT Format ;
D3D11 DSV DIMENSION ViewDimension ;
UINT F lag s ;
un ion {

D3D11 TEX1D DSV Texture1D ;
D3D11 TEX1D ARRAY DSV Texture1DArray ;
D3D11 TEX2D DSV Texture2D ;
D3D11 TEX2D ARRAY DSV Texture2DArray ;
D3D11 TEX2DMS DSV Texture2DMS ;
D3D11 TEX2DMS ARRAY DSV Texture2DMSArray ;

} ;
} ;

ID3D11Texture2D∗ r ende rTa rge t = // The r e s o u r c e to be v iewed f o r w r i t i n g .
D3D11 RENDER TARGET VIEW DESC r tDes c ; // Set members as d e s i r e d .
ID3D11RenderTargetView∗ r tV i ew ;
HRESULT hr = dev i ce−>Crea teUno rde r edAcces sV i ew( r ende rTa rge t , &rtDesc ,

&r tV i ew ) ;

ID3D11Texture2D∗ d e p t h S t e n c i l = // The r e s o u r c e to be v iewed f o r w r i t i n g .
D3D11 DEPTH STENCIL VIEW DESC dsDesc ; // Set members as d e s i r e d .
ID3D11DepthStenc i lV iew∗ dsView ;
HRESULT hr = dev i ce−>Crea teUno rde r edAcces sV i ew( d ep t hS t en c i l , &dsDesc ,

&dsView ) ;

LISTING 4.26: The descriptions for render target and depth-stencil views
and the code to create the views.

The ViewDimension member is set to a flag that indicates which of the union

cases the view represents. Each case has its own structure of values that must
be set according to the desired view capabilities. The depth-stencil Flags mem-
ber is used to specify read-only depth and/or stencil to allow multiple views
of the same resource.
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Subresource 0 (10 x 5)

Subresource 1 (5 x 2)

Subresource 2 (2 x 1)

Subresource 3 (1 x 1)

FIGURE 4.10: The mipmaps for a 10 × 5 texture, labeled with the subre-
source indices.

4.4.3 Subresources

You are likely familiar with textures and the mipmaps associated with
them. Classical mipmapping is about generating a pyramid of textures, the
original texture having the highest resolution and living at the base of the
pyramid, and the tip of the pyramid having the lowest resolution. It is pos-
sible to create a texture in D3D11 and declare that it should have mipmaps.
The texture and mipmaps are said to be subresources [48]. D3D11 has a num-
bering scheme for subresources that allows you to select them by an index.
The original texture is subresource zero. The first mipmap generated from
the texture is subresource one. If the texture has L mipmap levels, they are
identified with subresource indices from 0 through L− 1. For example, Figure
4.10 shows the abstraction of a sequence of mipmaps for a 10× 5 texture.

D3D11 has the concept of a texture-array resource. This is created as
a single resource. All textures in the array are of the same dimensions and
format, and each texture in the array is considered to be a subresource. If
the array has N textures, you will guess that the subresource indices vary
from 0 to N − 1. This is true when in fact the textures do not have mipmaps.
However, when mipmaps exist, the indexing is by mipmap level first and array
item second. For example, Figure 4.11 shows the abstraction of an array of
3 textures, each 10× 5, each having mipmaps. The subresource index sri is a
one-dimensional equivalent to the two-dimensional table location (item,level).
The relationships between subresource indices and the levels are

// Convert t a b l e l o c a t i o n ( item , l e v e l ) to a s u b r e s o u r c e i ndex . The
// t a b l e l o c a t i o n has c o n s t r a i n t s 0 <= item < numArrayItems and
// 0 <= l e v e l < numMipmapLevels .
s r i = numMipmapLevels ∗ i tem + l e v e l ;

// Convert a s u b r e s o u r c e i ndex to a t a b l e l o c a t i o n ( item , l e v e l ) . The i ndex
// has c o n s t r a i n t s 0 <= s r i < numArrayItems ∗numMipmapLevels .
i tem = s r i / numMipmapLevels ;
l e v e l = s r i % numMipmapLevels ;
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FIGURE 4.11: An array of three textures of size 10 × 5, each having
mipmaps. The subresources are organized as a two-dimensional table. The
subresource indices are listed inside the table entries.

The sizes of the mipmaps are according to the rules D3D11 imposes.
The following formulas are the rules for a 3D texture with dimensions
(width,height,depth), but they also apply to a 1D texture whose dimensions
may be thought of as (width,1,1) or a 2D texture whose dimensions may be
thought of as (width,height,1). Let ⌊t⌋ denote the largest integer smaller than t
(the floor function). If (Wℓ, Hℓ, Dℓ) are the dimensions of the mipmap at level
ℓ, then the dimensions of the next smallest mipmap at ℓ + 1 are

(Wℓ+1, Hℓ+1, Dℓ+1)

= (max (⌊Wℓ/2⌋, 1) ,max (⌊Hℓ/2⌋, 1) ,max (⌊Dℓ/2⌋, 1)) (4.25)

The number of mipmap levels is

L = 1 +max (⌊log2(W0)⌋, ⌊log2(H0)⌋, ⌊log2(D0)⌋) (4.26)

where log2(t) is the logarithm base 2 of t. In GTEngine code, L is computed
using only integer operations.

4.4.4 Buffers

The buffer types available are constant buffers, texture buffers, ver-
tex buffers, index buffers, structured buffers, append-consume buffers, byte-
address buffers, indirect-arguments buffers, and staging buffers. All are created
by filling in the members of the D3D11 BUFFER DESC, defined by

s t r u c t D3D11 BUFFER DESC
{

UINT ByteWidth ;
D3D11 USAGE Usage ;
UINT BindF l ag s ; // b i t f l a g s i n D3D11 BIND FLAG
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UINT CPUAccessFlags ; // b i t f l a g s i n D3D11 CPU ACCESS FLAG or 0
UINT Mi s cF l ag s ; // b i t f l a g s i n D3D11 RESOURCE MISC FLAG or 0
UINT S t r u c t u r eB y t e S t r i d e ;

} ;

ByteWidth is the number of bytes required to store the buffer. The Usage flags
were described previously. The BindFlags member specifies how the buffer is
bound to the graphics pipeline. The CPUAccessFlags member indicates how the
CPU can access the buffer memory (if at all). With the MiscFlags member, we
can select from the variations of structured buffers. It also supports advanced
features including automatic mipmap generation, texture sharing between de-
vices, and thread-safe access to shared resources. Staging buffers are used for
copying between the CPU and GPU, the topic of Section 4.7.

The members of the buffer description are not independent. For example,
if default usage is selected and the CPU-access is set for read, D3D11 will fail
the buffer creation call. The examples of buffer creation shown next are all
structured similarly in order to avoid (or at least minimize) the chances of an
invalid description. In GTEngine, the application programmer must specify
the usage for most buffer types, although some types require default usage.
For buffers other than staging, the CPU access is set for write only in the
dynamic usage case. The CPU access for read in GTEngine is restricted to
staging buffers.

In the buffer creation code, I assume an ID3D11Device* device is available.
I assume an input object that stores all the information necessary to create
the buffer. Such objects are part of the front end of GTEngine (base class
Buffer). I also assume an output object that stores the created D3D11 objects.
Such objects are part of the back end of GTEngine (classes prefixed as DX11*,
managed by class DX11Engine that encapsulates device). This design decouples
the application code from D3D11-specific details to allow porting to OpenGL.
For simplicity, the code listed here does not handle HRESULT errors, but the
GTEngine code does.

The set up and call to create an ID3D11Buffer object is common to all
buffers. The creation is conditional on whether or not you want to have the
buffer initialized from CPU memory. Listing 4.27 defines a helper function
that is used in all the sample creation code. It uses the abstract input object
described previously.

ID3D11Buf fer∗ CreateFrom ( desc , i n p u t )
{

ID3D11Buf fer∗ b u f f e r ;
i f ( i n p u t . data )
{

// Crea te the GPU v e r s i o n o f the b u f f e r and i n i t i a l i z e i t wi th
// CPU data . I n i t i a l i z a t i o n i s r e q u i r e d f o r D3D11 USAGE IMMUTABLE.
D3D11 SUBRESOURCE DATA data ;
data . pSysMem = i npu t . data ;
data . SysMemPitch = 0 ;
data . SysMemSl i cePi tch = 0 ;
dev i ce−>Cr ea t eBu f f e r (&desc , &data , &b u f f e r ) ;

}
e l s e
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{
// Crea te an u n i n i t i a l i z e d GPU v e r s i o n o f the b u f f e r . The c a l l
// w i l l f a i l i f you have chosen D3D11 USAGE IMMUTABLE.
dev i ce−>Cr ea t eBu f f e r (&desc , n u l l p t r , &b u f f e r ) ;

}
r e tu r n b u f f e r ;

}

LISTING 4.27: Common code for creating an ID3D11Buffer object.

4.4.4.1 Constant Buffers

A constant buffer is created as shown in Listing 4.28. See Listing 4.23
for information about SetUsageAccess and Listing 4.27 for information about
CreateFrom.

D3D11 BUFFER DESC des c ;
des c . ByteWidth = i npu t . numBytes ; // Must be a mu l t i p l e o f 16 .
des c . B indF l ag s = D3D11 BIND CONSTANT BUFFER ;
des c . M i s cF l ag s = 0 ;
des c . S t r u c t u r eB y t e S t r i d e = 0 ;
SetUsageAccess ( desc , i n p u t ) ;
output . b u f f e r = Crea te f r om ( desc , i n p u t ) ;

LISTING 4.28: Creating a constant buffer.

The bind flag indicates that a constant buffer should be created. If the constant
buffer does not change during runtime, it is created to be immutable and its
CPU access flag is set to zero. If you plan on modifying the constant buffer
at runtime via memory mapping, you declare it to be dynamic and the CPU
access flag must be set for writing. The miscelleaneous flags and the structure
size (StructureByteStride) are irrelevant for this resource, so they are set to zero.
The number of bytes can be determined from shader reflection.

4.4.4.2 Texture Buffers

Texture buffers were apparently designed to provide more efficient memory
access compared to constant buffers. The online MSDN documentation [47]
states that a texture buffer is a specialized resource that is accessed like a
texture and can have better performance. You can bind up to 128 texture
buffers per pipeline stage. I ran some experiments on my AMD 7970 graphics
card to determine what the difference in memory performance is. I did not see
an improvement, but perhaps there would be on a lower-end graphics card. As
always, you should profile before making a design decision about which to use.
If you choose to use a texture buffer, use the tbuffer declaration in the HLSL
code just as you would use a cbuffer declaration. Listing 4.29 shows how to
create a texture buffer. See Listing 4.23 for information about SetUsageAccess

and Listing 4.27 for information about CreateFrom.

D3D11 BUFFER DESC des c ;
des c . ByteWidth = i npu t . numBytes ;
d es c . B indF l ag s = D3D11 BIND SHADER RESOURCE ;
des c . M i s cF l ag s = 0 ;
des c . S t r u c t u r eB y t e S t r i d e = 0 ;
SetUsageAccess ( desc , i n p u t ) ;
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output . b u f f e r = CreateFrom ( desc , i n p u t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = i n pu t . s rvFormat ;
s rDes c . ViewDimension = D3D11 SRV DIMENSION BUFFER ;
s rDes c . Bu f f e r . F i r s tE l emen t = 0 ;
s rDes c . Bu f f e r . NumElements = i n pu t . numElements ;
d ev i ce−>Crea teShade rResou rceV i ew( output . b u f f e r , &srDesc , &output . s rView ) ;

LISTING 4.29: Creating a texture buffer.

Because the texture buffer is accessed like a texture, the bind flag must specify
the buffer is a shader resource so that you can create a shader resource view
for it. A texture buffer is not intended as a shader output, so there is no reason
to create an unordered access view for it.

4.4.4.3 Vertex Buffers

A vertex buffer is created as shown in Listing 4.30. See Listing 4.23
for information about SetUsageAccess and Listing 4.27 for information about
CreateFrom.

D3D11 BUFFER DESC des c ;
des c . ByteWidth = i npu t . numBytes ;
d es c . B indF l ag s = D3D11 BIND VERTEX BUFFER ;
des c . M i s cF l ag s = 0 ;
des c . S t r u c t u r eB y t e S t r i d e = 0 ;
SetUsageAccess ( desc , i n p u t ) ;
output . b u f f e r = CreateFrom ( desc , i n p u t ) ;
i f ( i n p u t . wantBindStreamOutput )
{

// Genera te v e r t i c e s i n geometry s h a d e r s .
des c . Usage = D3D11 USAGE DEFAULT ;
des c . B indF l ag s |= D3D11 BIND STREAM OUTPUT ;
des c . CPUAccessFlags = 0 ;

}

LISTING 4.30: Creating a vertex buffer.

The description members have no information for D3D11 about vertex
buffer organization regarding position, colors, texture coordinates, and so on.
This information is provided by the description structure,

s t r u c t D3D11 INPUT ELEMENT DESC
{

LPCSTR SemanticName ;
UINT Semant i c Index ;
DXGI FORMAT Format ;
UINT I n p u t S l o t ;
UINT A l i g n edBy t eO f f s e t ;
D3D11 INPUT CLASSIFICATION I n pu t S l o t C l a s s ;
UINT In s tanceDa taStepRa te ;

} ;

For an example, see Listing 4.31.

s t r u c t MyVertex { f l o a t p o s i t i o n [ 3 ] , c o l o r [ 4 ] , t coo rd0 [ 2 ] , t coo rd1 ; } ;

UINT const numElements = 4 ; // p o s i t i o n , c o l o r , tcoord0 , t coo rd1
D3D11 INPUT ELEMENT DESC des c [ numElements ] ;
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// HLSL semant i c i s POSITION0
des c [ 0 ] . SemanticName = ”POSITION” ;
des c [ 0 ] . Semant i c Index = 0 ;
des c [ 0 ] . Format = DXGI FORMAT R32G32B32 FLOAT ; // p o s i t i o n has 3 ch ann e l s
des c [ 0 ] . I n p u t S l o t = 0 ;
des c [ 0 ] . A l i g n edBy t eO f f s e t = 0 ;
des c [ 0 ] . I n p u t S l o t C l a s s = D3D11 INPUT PER VERTEX DATA ;
des c [ 0 ] . I n s tanceDa taStepRa te = 0 ;

// HLSL semant i c i s COLOR0
des c [ 1 ] . SemanticName = ”COLOR” ;
des c [ 1 ] . Semant i c Index = 0 ;
des c [ 1 ] . Format = DXGI FORMAT R32G32B32A32 FLOAT ; // c o l o r has 4 ch ann e l s
des c [ 1 ] . I n p u t S l o t = 0 ;
des c [ 1 ] . A l i g n edBy t eO f f s e t = 12 ; // o f f s e t a f t e r p o s i t i o n [ 3 ]
des c [ 1 ] . I n p u t S l o t C l a s s = D3D11 INPUT PER VERTEX DATA ;
des c [ 1 ] . I n s tanceDa taStepRa te = 0 ;

// HLSL semant i c i s TEXCOORD0
des c [ 2 ] . SemanticName = ”TEXCOORD” ;
des c [ 2 ] . Semant i c Index = 0 ;
des c [ 2 ] . Format = DXGI FORMAT R32G32 FLOAT ; // tcoo rd0 has 2 ch a nn e l s
des c [ 2 ] . I n p u t S l o t = 0 ;
des c [ 2 ] . A l i g n edBy t eO f f s e t = 28 ; // o f f s e t a f t e r c o l o r [ 4 ]
des c [ 2 ] . I n p u t S l o t C l a s s = D3D11 INPUT PER VERTEX DATA ;
des c [ 2 ] . I n s tanceDa taStepRa te = 0 ;

// HLSL semant i c i s TEXCOORD1
des c [ 3 ] . SemanticName = ”TEXCOORD” ;
des c [ 3 ] . Semant i c Index = 1 ;
des c [ 3 ] . Format = DXGI FORMAT R32 FLOAT ; // tcoo rd1 has 1 ch a nn e l s
des c [ 3 ] . I n p u t S l o t = 0 ;
des c [ 3 ] . A l i g n edBy t eO f f s e t = 36 ; // o f f s e t a f t e r t coo rd0 [ 2 ]
des c [ 3 ] . I n p u t S l o t C l a s s = D3D11 INPUT PER VERTEX DATA ;
des c [ 3 ] . I n s tanceDa taStepRa te = 0 ;

LISTING 4.31: Creating a vertex format via a D3D11 INPUT ELEMENT

DESC structure.

The element descriptions are needed to establish the connection be-
tween the vertex buffer data and the inputs required by a vertex shader;
the connection uses the semantic names and indices. The interface ob-
ject that does this is an input layout (ID3D11InputLayout) and the function
ID3D11Device::CreateInputLayout creates one using the element description, the
number of elements, a pointer to the CPU vertex buffer data, and the vertex
shader blob produced by the D3DCompile function.

This graphics subsystem is one of the more complicated to manage. In
GTEngine I have hidden the input layout management details by providing a
VertexFormat class that allows you to provide the input element description in
a manner independent of the D3D11 interfaces. In the previous example, the
front end will have the following, where the Bind function has inputs: semantic
name, component type, and semantic index.

VertexFormat v f ;
v f . Bind (VA POSITION , DF R32G32B32 FLOAT , 0 ) ; // f l o a t 3 p o s i t i o n : POSITION0
v f . Bind (VA COLOR, DF R32G32B3A322 FLOAT , 0 ) ; // f l o a t 4 c o l o r : COLOR0
v f . Bind (VA TEXCOORD, DF R32G32 FLOAT , 0 ) ; // f l o a t 2 tcoo rd0 : TEXCOORD0
v f . Bind (VA TEXCOORD, DF R32 FLOAT , 1 ) ; // f l o a t t coo rd1 : TEXCOORD1
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The assumption is that the order of the elements in the description is the
same as the order of the Bind calls. In the back end, the class DX11InputLayout

contains the D3D11-specific details for creation of an input layout.

4.4.4.4 Index Buffers

An index buffer is created as shown in Listing 4.32. See Listing 4.23
for information about SetUsageAccess and Listing 4.27 for information about
CreateFrom.

D3D11 BUFFER DESC des c ;
des c . ByteWidth = i npu t . numBytes ;
d es c . B indF l ag s = D3D11 BIND INDEX BUFFER ;
des c . M i s cF l ag s = 0 ;
des c . S t r u c t u r eB y t e S t r i d e = 0 ;
SetUsageAccess ( desc , i n p u t ) ;
output . b u f f e r = CreateFrom ( desc , i n p u t ) ;

LISTING 4.32: Creating an index buffer.

The type of primitive the index buffer represents is also not specified. This
information is provided to the drawing system via the input assembly function
ID3D11DeviceContext::IASetPrimitiveTopology. See Section 4.6.2 for details.

4.4.4.5 Structured Buffers

Creation of a structured buffer, declared in the HLSL code as
StructuredBuffer or RWStructuredBuffer, is more complicated than that for con-
stant, vertex, or index buffers. Listing 4.33 shows the details. See Listing 4.23
for information about SetUsageAccess and Listing 4.27 for information about
CreateFrom.

D3D11 BUFFER DESC des c ;
des c . ByteWidth = i npu t . numBytes ;
d es c . B indF l ag s = D3D11 SHADER RESOURCE ;
des c . M i s cF l ag s = D3D11 RESOURCE MISC BUFFER STRUCTURED ;
des c . S t r u c t u r eB y t e S t r i d e = i n pu t . numBytesPerStruct ;
SetUsageAccess ( desc , i n p u t ) ;
output . b u f f e r = CreateFrom ( desc , i n p u t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = DXGI FORMAT UNKNOWN;
s rDes c . ViewDimension = D3D11 SRV DIMENSION BUFFER ;
s rDes c . Bu f f e r . F i r s tE l emen t = 0 ;
s rDes c . Bu f f e r . NumElements = i n pu t . numElements ;
d ev i ce−>Crea teShade rResou rceV i ew( output . b u f f e r , &srDesc , &output . s rView ) ;
i f ( i n p u t . wantShaderOutput )
{

D3D11 UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = DXGI FORMAT UNKNOWN;
uaDesc . ViewDimension = D3D11 UAV DIMENSION BUFFER ;
uaDesc . Bu f f e r . F i r s tE l emen t = 0 ;
uaDesc . Bu f f e r . NumElements = i n pu t . numElements ;
uaDesc . Bu f f e r . F l ag s = i n pu t . s t r u c t u r edBu f f e rTyp e ;
dev i ce−>Crea teUno rde r edAcces sV iew( output . b u f f e r , &uaDesc ,

&output . uaView ) ;
}

LISTING 4.33: Creating a structured buffer.



GPU Computing 185

The ability to set a structured buffer to be writable in the shaders leads
to some constraints on how the description members are set. Initially, the
bind flag is set to D3D11 SHADER RESOURCE because the structured buffer
can be read by the shader. The miscellaneous flag is set to indicate that
the buffer is indeed a structured buffer. Texture formats are explicitly de-
fined in the D3D11 interface but structured buffer formats are defined by the
user; thus, we need to tell the graphics system how large a struct is via the
StructureByteStride member. If the structured buffer is an output of a shader,
declared as RWStructuredBuffer, then it must have an unordered access view.
Such a buffer must be declared with default usage.

A shader resource view must be created so that the structured buffer can be
used as an input to a shader. The structure format is unknown to D3D11 inter-
nally, so you must specify it as DXGI FORMAT UNKNOWN. The ViewDimension

parameter indicates the view is for a buffer type. The srDesc.Buffer.FirstElement

and srDesc.Buffer.NumElements are set to values that imply the entire buffer is
available in the view. However, it is possible to allow a view only for a subset
determined by the starting offset into the buffer (FirstElement) and how many
contiguous elements you want to allow access to (NumElements).

For a writable structured buffer that is declared in HLSL code as
RWStructuredBuffer, an unordered access view must be created. The descrip-
tion structure is similar to that for a shader resource view, except that the
ViewDimension parameter has UAV instead of SRV.

Structured buffers can have internal counters. The Buffer.Flags member is
specific to UAVs and has value zero when you want a structured buffer with-
out a counter. The other two choices are D3D11 BUFFER UAV FLAG APPEND

for an append-consume buffer or D3D11 BUFFER UAV FLAG COUNTER for a
structured buffer with counter. In Listing 4.33, input.structuredBufferType is one
of these UAV flags.

Append buffers, declared in HLSL as AppendStructuredBuffer, are useful for
compute shaders where an output occurs only under restricted conditions;
that is, the compute shader does not output a value for each thread calling
it. Output values are inserted into the append buffer as needed, and nothing
prevents a single compute shader call from appending more than one value.
Consume buffers, declared in HLSL as ConsumeStructuredBuffer, are also useful
for compute shaders as inputs that are used only under restricted conditions.
To create either type of buffer, create a structured buffer with an unordered
access view whose UAV flag is D3D11 BUFFER UAV FLAG APPEND.

A simple illustration is provided in the sample

GeometricTools/GTEngine/Samples/Basics/AppendConsumeBuffers

Listing 4.34 shows the HLSL file for this sample.

s t r u c t P a r t i c l e { i n t 2 l o c a t i o n ; } ;
ConsumeStructu redBuf fe r<P a r t i c l e> c u r r e n t S t a t e ;
AppendSt ruc tu r edBu f f e r<Pa r t i c l e> n ex tS t a t e ;
// The t e s t code u s es D i spa tch ( 1 , 1 , 1 ) , so ’ i d ’ i s ( x , 0 , 0 ) wi th 0 <= x < 32 .
[ numthreads (32 , 1 , 1 ) ]
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vo id CSMain( u i n t 3 i d : SV GroupThreadID )
{

// Append on l y h a l f the c u r r e n t s t a t e ( the even−i ndexed ones ) .
P a r t i c l e p = cu r r e n t S t a t e . Consume ( ) ;
i f ( ( p . l o c a t i o n [ 0 ] & 1) == 0)
{

n ex tS t a t e . Append ( p ) ;
}

}

LISTING 4.34: The HLSL file for the AppendConsumeBuffers sample applica-
tion.

The main pitfall in using append buffers is knowing how large a buffer you
need to create to store your results. A sample application where this is an issue
is with exhaustive GPU-based root-finding, where the solutions of F (x) = 0
are located by evaluating F at all finite 32-bit floating-point numbers. See

GeometricTools/GTEngine/Samples/Numerics/RootFinding

As roots are found, they are stored in an append buffer. Care must be taken to
ensure the append buffer has enough storage; otherwise, if the buffer becomes
full, roots are potentially not recorded.

I was curious what the behavior is for the HLSL Append call when the
buffer is full. The brief documentation [27] does not say anything about the
behavior. As I have learned, when the documentation is insufficient for a high-
level function, compile the shader, look at the assembly instructions generated
by the compiler, and then look at the documentation for the assembly. In this
case the Append call is compiled to imm atomic alloc and has documentation
[43]. The instruction is an atomic increment of the interal counter, returning
the previous value to be used for indexing (in our case, into the nextState

buffer). The online documentation states, “There is no clamping of the count,
so it wraps on overflow.” I thought I found what I was looking for. When you
create the D3D11 unordered access view for the append buffer, the maximum
number of elements is specified, so D3D11 therefore knows the maximum
number of elements in the buffer. If an attempt is made in the shader to append
past the maximum number, the counter will wrap around and the element at
index zero is overwritten. I performed an experiment to verify this, but the
results were not in agreement with my interpretation of the quote. GTEngine
maintains a staging buffer to which I can read back the value of the internal
counter using the function ID3D11DeviceContext::CopyStructureCount. I created
a consume buffer of four elements and an append buffer of two elements, and I
executed a shader that consumed each of the four inputs and appended all of
them to the output. After the read back, the internal counter was reported as
four. I tried to read back four elements from the append buffer, but fortunately
the Map call generated an error that the number of bytes requested exceeded
that maximum size of the buffer. I ignored the error and checked the staging
buffer’s memory contents to see that in fact only two elements were copied.
What this suggests is that when the internal counter is read back, it needs to be
clamped to the maximum number of elements. You can look at the difference
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between the counter and the maximum number to determine how many Append

calls were made during a full buffer (if this information is important to you).
Section 4.7 has the details of copying data between the CPU and GPU,

including how to read back the internal counter and the appended elements.
The buffer is typically not full, so you do not want to read back the entire
buffer just to access a small subset.

A structured buffer with counter is intended to be written in the HLSL
code, so you must create an unordered access view and the UAV flag must be
set to D3D11 BUFFER UAV FLAG COUNTER. You manage the counter yourself
in the shader code by using uint IncrementCounter() and uint DecrementCounter(),
which are atomic operations on the GPU.

4.4.4.6 Raw Buffers

Raw buffers, also called byte-address buffers, are supported by D3D11. The
buffer is effectively an array of 4-byte values that can be read from and/or
written to in the HLSL shader, but the data is presented as unsigned integers.
You must reinterpret these bits according to how you designed the data layout
of the raw buffers. A simple illustration is provided in the sample

GeometricTools/GTEngine/Samples/Basics/RawBuffers

Listing 4.35 shows the HLSL file for this sample.

// 16 b y t e s packed as : ’ a ’ , p i<doub le>, p i<f l o a t >, −1, ’ b ’
ByteAdd res sBu f f e r i n p u t ;

// 16 b y t e s r epackaged as : p i<doub le>, p i<f l o a t >, −1, ’ a ’ , ’ b ’
RWByteAddressBuf fer output ;

[ numthreads (1 , 1 , 1 ) ]
vo id CSMain( i n t 3 t : SV DispatchThread ID)
{

u i n t 4 i nVa l ue = i n pu t . Load4 ( 0 ) ;

// Ex t r a c t c h a r a c t e r ’ a ’ .
u i n t a = inVa lue . x & 0x000000FF ;

// Ex t r a c t doub le−p r e c i s i o n p i .
u i n t p idLoEncod ing =

( i nVa lue . x >> 8) | ( ( i nVa l ue . y & 0x000000FF ) << 24 ) ;
u i n t p i dH iEncod ing =

( i nVa lue . y >> 8) | ( ( i nVa l ue . z & 0x000000FF ) << 24 ) ;
doub le p id = asdoub l e ( p idLoEncod ing , p i dH iEncod i ng ) ;

// Ex t r a c t s i n g l e−p r e c i s i o n p i .
u i n t p i f E n cod i n g =

( i nVa lue . z >> 8) | ( ( i nVa l ue .w & 0x000000FF ) << 24 ) ;
f l o a t p i f = a s f l o a t ( p i f E n cod i n g ) ;

// Ex t r a c t s h o r t −1.
u i n t minusOneEncoding = ( i nVa l ue .w >> 8) & 0x0000FFFF ;
i n t minusOne = a s i n t ( minusOneEncoding ) >> 16 ;

// Ex t r a c t c h a r a c t e r ’ b ’ .
u i n t b = ( i nVa l ue .w >> 24 ) ;
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// Return the r epackaged i n pu t . Al though we a l r e a d y know the u i n t
// va l u e s a r e the same as e x t r a c t ed , t h i s code shows how to
// r e i n t e r p r e t ’ f l o a t ’ and ’ doub l e ’ v a l u e s .
a s u i n t ( p id , p idLoEncod ing , p i dH iEncod i ng ) ;
p i f E n cod i n g = a s u i n t ( p i f ) ;
u i n t 4 outVa lue ;
outVa lue . x = pidLoEncod ing ;
outVa lue . y = p idH iEncod i ng ;
outVa lue . z = p i f En cod i n g ;
outVa lue .w = minusOneEncoding | ( a << 16) | ( b << 24 ) ;

output . S to r e4 (0 , outVa lue ) ;
}

LISTING 4.35: The HLSL file for the RawBuffers sample application.

The byte-address buffer HLSL objects have Load* functions to read data
from the buffer. The Load4(i) function call returns four 4-byte quantities start-
ing at byte address i. This address must be a multiple of four. From exper-
iments, it appears that if you pass in an index not a multiple of four, the
largest multiple of four smaller than i is used instead. The writable byte-
address buffer HLSL object also has Store* functions to write data to the
buffer. The Store4(i,value) call stores four 4-byte quantities at byte address i.
The address restrictions are the same as for Load.

Creation of a raw buffer is shown in Listing 4.36. See Listing 4.23 for
information about SetUsageAccess and Listing 4.27 for information about
CreateFrom.

D3D11 BUFFER DESC des c ;
des c . ByteWidth = i npu t . numBytes ;
d es c . B indF l ag s = D3D11 BIND SHADER RESOURCE ;
des c . M i s cF l ag s = D3D11 RESOURCE MISC BUFFER ALLOW RAW VIEWS ;
des c . S t r u c t u r eB y t e S t r i d e = 0 ;
SetUsageAccess ( desc , i n p u t ) ;
output . b u f f e r = CreateFrom ( desc , i n p u t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = DXGI FORMAT R32 TYPELESS ;
s rDes c . ViewDimension = D3D11 SRV DIMENSION BUFFEREX ;
s rDes c . Bu f f e rEx . F i r s tE l emen t = 0 ;
s rDes c . Bu f f e rEx . NumElements = i n pu t . numElements ;
s rDes c . Bu f f e rEx . F l ag s = D3D11 BUFFEREX SRV FLAG RAW;
dev i ce−>Crea teShade rResou rceV i ew( output . b u f f e r , &srDesc , &output . s rView ) ;
i f ( i n p u t . wantShaderOutput )
{

D3D11 UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = DXGI FORMAT R32 TYPELESS ;
uaDesc . ViewDimension = D3D11 UAV DIMENSION BUFFER ;
uaDesc . Bu f f e r . F i r s tE l emen t = 0 ;
uaDesc . Bu f f e r . NumElements = i n pu t . numElements ;
uaDesc . Bu f f e r . F l ag s = D3D11 BUFFER UAV FLAG RAW ;
hr = dev i ce−>Crea teUno rde r edAcces sV iew ( output . b u f f e r , &uaDesc ,

&output . uaView ) ;
}

LISTING 4.36: Creation of a raw buffer.

Observe that the buffer description has a miscellaneous flag different from
that of a structured buffer, so byte-address buffers are not consider structured.
Also observe that the formats for the views are typeless, indicating that the
byte layout is unknown to D3D11 internals other than the memory comes in
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32-bit chunks (the R32 part of the flag). It is the programmer’s responsibility
to interpret the data as needed. The shader resource view description also
needs to use the BufferEx variation in order to specify a raw buffer.

4.4.4.7 Indirect-Argument Buffers

The last type of buffer involves drawing instances of geometry. A vertex
buffer may be used to provide per-vertex data for use by the vertex shader,
but D3D11 also allows you to provide per-instance data when you want to
have a world populated with lots of similar objects but each with minor
variations compared to the others. The D3D11 functions DrawInstanced and
DrawIndexedInstance are used for drawing instances, the first using the vertex
ordering as it naturally occurs and the second using an index buffer to control
the vertex ordering. Each of these functions has input parameters that are
specified programatically; that is, the parameters are stored in variables that
are reference in the code. D3D11 provides functions DrawInstancedIndirect and
DrawIndexedInstanceIndirect that take indirect-argument buffers. The input pa-
rameters are stored in this buffer. This gives you a lot of flexibility to control
drawing via the GPU rather than by CPU code.

Creation of an indirect-arguments buffer is shown in Listing 4.37. See List-
ing 4.23 for information about SetUsageAccess and Listing 4.27 for information
about CreateFrom.

D3D11 BUFFER DESC des c ;
d es c . ByteWidth = // number o f b y t e s i n the i n d i r e c t−arguments b u f f e r
des c . Usage = D3D11 USAGE DEFAULT ;
des c . B indF l ag s = 0 ;
des c . CPUAccessFlags = 0 ;
des c . M i s cF l ag s = D3D11 RESOURCE MISC DRAWINDIRECT ARGS ;
des c . S t r u c t u r eB y t e S t r i d e = 0 ;
SetUsageAccess ( desc , i n p u t ) ;
output . b u f f e r = CreateFrom ( desc , i n p u t ) ;

LISTING 4.37: Creation of an indirect-arguments buffer.

The description’s miscellaneous flag has a special value that must be set.
None of the samples in this book use instancing. For more details on how

to use instancing, directly or indirectly, see [57].

4.4.5 Textures

Unlike buffers where one description structure fits all, the description struc-
tures for textures are partitioned by dimension. The 1D and 2D descriptions
support texture array resources in that you can specify the number of elements
in the array. I will discuss these separately, because an array of textures in an
HLSL program and a texture array are not the same thing. Suppose you have
N 2D textures that you want accessed by the program, all the same size and
format. Your options for accessing them are

// Shader r e f l e c t i o n w i l l show tha t t h e s e g en e r a t e N b ind po i n t s ,
// one pe r t e x t u r e , wi th names ” a r r a yO fTex t u r e s [ 0 ] ” through
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// ” a r r a yO fTex t u r e s [N−1]”.
Texture2D<f l o a t 4> a r r a yO fTex t u r e s [N ] ;

// Shader r e f l e c t i o n w i l l show tha t t h i s g en e r a t e s one b i nd po i n t .
Texture2DArray<f l o a t 4> t e x t u r eA r r a y ;

The form you choose might simply be a matter of taste when the total number
of resources for the shader is small. The limit on input resource bind points is
128 [46], so you might be hard pressed to reach that limit if you use an array
of textures.

The texture creations are set up so that mipmaps can be generated auto-
matically if the application programmer so desires. This is acceptable when
textures are used for drawing and the artists are content with the standard
filtering algorithms used to generate the mipmap levels. If you want to gen-
erate the mipmaps procedurally, the mipmap parameters in creation must be
set differently. For GPGPU computing, the mipmap levels might have nothing
to do with the science of texturing, and switching among them can be tied
to some algorithmic behavior that you have invented. For the purpose of this
book, GTEngine currently uses mipmapping only for drawing.

In the texture creation code as in the buffer creation code, I assume there
is an input object with all the information necessary to create the texture, and
there is an output object to store the results. And I assume the existence of
an ID3D11Device* device to handle the creation.

The setup and call to create an ID3D11Texture<N>D object is common
to all textures of dimension N . The creation is conditional on whether or
not you want to have the texture initialized from CPU memory. Listing 4.38
defines helper functions that are used in all the sample creation code, one for
each dimension one, two, or three. It uses the abstract input object described
previously. Also, the automatic mipmap settings are common to all texture
types, so we have a helper function for the setting.

ID3D11Texture1D∗ Create1From ( desc , i n p u t )
{

ID3D11Texture1D∗ t e x t u r e ;
i f ( i n p u t . data )
{

// Crea te the GPU v e r s i o n o f the t e x t u r e and i n i t i a l i z e i t wi th
// CPU data . I n i t i a l i z a t i o n i s r e q u i r e d f o r D3D11 USAGE IMMUTABLE.
D3D11 SUBRESOURCE DATA∗ data =

new D3D11 SUBRESOURCE DATA [ i n pu t . numSubresources ] ;
f o r ( s r i = 0 ; s r i < numSubresources ; ++s r i )
{

data [ s r i ] . pSysMem = inpu t . s u b r e s o u r c e ( s r i ) . data ;
data [ s r i ] . SysMemPitch = 0 ;
data [ s r i ] . SysMemSl i cePi tch = 0 ;

}
dev i ce−>CreateTexture1D (&desc , data , &t e x t u r e ) ;
de l e t e [ ] data ;

}
e l s e
{

// Crea te an u n i n i t i a l i z e d GPU v e r s i o n o f the t e x t u r e . The c a l l
// w i l l f a i l i f you have chosen D3D11 USAGE IMMUTABLE.
dev i ce−>CreateTexture1D (&desc , n u l l p t r , &t e x t u r e ) ;

}
r e tu r n t e x t u r e ;

}
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ID3D11Texture2D∗ Create2From ( desc , i n p u t )
{

ID3D11Texture2D∗ t e x t u r e ;
i f ( i n p u t . data )
{

// Crea te the GPU v e r s i o n o f the t e x t u r e and i n i t i a l i z e i t wi th
// CPU data . I n i t i a l i z a t i o n i s r e q u i r e d f o r D3D11 USAGE IMMUTABLE.
D3D11 SUBRESOURCE DATA∗ data =

new D3D11 SUBRESOURCE DATA [ i n pu t . numSubresources ] ;
f o r ( s r i = 0 ; s r i < numSubresources ; ++s r i )
{

data [ s r i ] . pSysMem = inpu t . s u b r e s o u r c e ( s r i ) . data ;
data [ s r i ] . SysMemPitch = i npu t . s u b r e s o u r c e ( s r i ) . rowPi tch ;
data [ s r i ] . SysMemSl i cePi tch = 0 ;

}
dev i ce−>CreateTexture2D (&desc , data , &t e x t u r e ) ;
de l e t e [ ] data ;

}
e l s e
{

// Crea te an u n i n i t i a l i z e d GPU v e r s i o n o f the t e x t u r e . The c a l l
// w i l l f a i l i f you have chosen D3D11 USAGE IMMUTABLE.
dev i ce−>CreateTexture2D (&desc , n u l l p t r , &t e x t u r e ) ;

}
r e tu r n t e x t u r e ;

}

ID3D11Texture3D∗ Create3From ( desc , i n p u t )
{

ID3D11Texture3D∗ t e x t u r e ;
i f ( i n p u t . data )
{

// Crea te the GPU v e r s i o n o f the t e x t u r e and i n i t i a l i z e i t wi th
// CPU data . I n i t i a l i z a t i o n i s r e q u i r e d f o r D3D11 USAGE IMMUTABLE.
D3D11 SUBRESOURCE DATA∗ data =

new D3D11 SUBRESOURCE DATA [ i n pu t . numSubresources ] ;
f o r ( s r i = 0 ; s r i < numSubresources ; ++s r i )
{

data [ s r i ] . pSysMem = inpu t . s u b r e s o u r c e ( s r i ) . data ;
data [ s r i ] . SysMemPitch = i npu t . s u b r e s o u r c e ( s r i ) . rowPi tch ;
data [ s r i ] . SysMemSl i cePi tch = i npu t . s u b r e s o u r c e ( s r i ) . s l i c e P i t c h ;

}
dev i ce−>CreateTexture3D (&desc , data , &t e x t u r e ) ;
de l e t e [ ] data ;

}
e l s e

{
// Crea te an u n i n i t i a l i z e d GPU v e r s i o n o f the t e x t u r e . The c a l l
// w i l l f a i l i f you have chosen D3D11 USAGE IMMUTABLE.
dev i ce−>CreateTexture3D (&desc , n u l l p t r , &t e x t u r e ) ;

}
r e tu r n t e x t u r e ;

}

vo id SetAutogenerateMipmaps( desc , i n p u t )
{

i f ( i n p u t . wantAutogeneratedMipmaps && ! i n pu t . wantShar ing )
{

des c . Usage = D3D11 USAGE DEFAULT ;
des c . B indF l ag s |= D3D11 BIND RENDER TARGET ;
des c . CPUAccessFlags = 0 ;
des c . M i s cF l ag s |= D3D11 RESOURCE MISC GENERATE MIPS ;

}
}

LISTING 4.38: Common code for creating an ID3D11Texture<N>D object.
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4.4.5.1 1D Textures

Listing 4.39 shows the creation of a 1D texture, including creation of views.
See Listing 4.23 for information about SetUsageAccess and Listing 4.38 for
information about Create1From and SetAutogenerateMipmaps.

D3D11 TEXTURE1D DESC des c ;
des c . Width = i npu t . width ;
des c . M ipLeve l s = i n pu t . numMipmapLevels ;
d e s c . A r r a yS i z e = 1 ; // s i n g l e t e x t u r e , not a t e x t u r e a r r a y
des c . Format = i n pu t . fo rmat ; // c o n s t r a i n e d to DXGI FORMAT cho i c e s
des c . B indF l ag s = D3D11 BIND SHADER RESOURCE ;
des c . M i s cF l ag s = 0 ;
SetUsageAccess ( desc , i n p u t ) ;
SetAutogenerateMipmaps( desc , i n p u t ) ;
output . t e x t u r e = Create1From ( desc , i n p u t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = i n pu t . fo rmat ;
s rDes c . ViewDimension = D3D11 SRV DIMENSION TEXTURE1D;
s rDes c . Texture1D . MostDeta i l edMip = 0 ;
s rDes c . Texture1D . MipLeve l s = i n pu t . numMipmapLevels ;
d ev i ce−>Crea teShaderResou rceV i ew( output . t e x t u r e , &s rDesc , &output . s rView ) ;
i f ( i n p u t . wantShaderOutput )
{

D3D11 UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = des c . Format ;
uaDesc . ViewDimension = D3D11 UAV DIMENSION TEXTURE1D ;
uaDesc . Texture1D . M i pS l i c e = 0 ;
dev i ce−>Crea teUno rde r edAcces sV iew( output . t e x t u r e , &uaDesc ,

&output . uaView ) ;
}

LISTING 4.39: Creation of a 1D texture.

D3D11 expects that you have as many D3D11 SUBRESOURCE DATA objects
as there are subresources when you pass input.data to CreateTexture1D. If you
have fewer than expected, the call will crash due to a memory access exception.
Although the description guarantees that D3D11 can compute for itself the
number of subresources, it simply cannot know how much memory you have
allocated for input.data.

Automatic generation of mipmaps requires that the resource be a render
target. It does not have to be an unordered access view. The latter can be
specified additionally if you want to write to the render target textures in a
shader.

The request for automatic generation of mipmaps does not actually lead
to computation behind the scenes. You actually have to make a context call,
as shown in Listing 4.40.

// d ev i c e and a s s o c i a t e d immedia te co n t e x t
ID3D11Device∗ d ev i c e ;
ID3D11DeviceContext∗ con t e x t ;
MyTexture i n p u t ; // A l l i n f o rma t i o n i s s e t b e f o r e c a l l i n g next f u n c t i o n .
output = CreateMyDX11Texture ( dev i ce , i n p u t ) ;
i f ( i n p u t . wantAutogeneratedMipmaps )
{

con tex t−>GenerateMips ( output . s rView ) ;
}
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// Modify the l e v e l −0 mipmap o f output , e i t h e r by mapped w r i t e s or by
// s t a g i n g t e x t u r e s . Then make the next c a l l to have the o t h e r l e v e l s
// computed .
i f ( i n p u t . wantAutogeneratedMipmaps )
{

con tex t−>GenerateMips ( output . s rView ) ;
}

LISTING 4.40: Pseudocode for telling D3D11 to compute mipmap levels
after the level-0 mipmap is initialized or (later) modified.

Because the generation requires a context, you cannot have them computed
by the device (during the CreateMyDX11Texture) call. If you really want them
computed at texture creation time, you will need to do so on the CPU at run-
time or precomputed and loaded from disk, using your own code for mipmap
computations. The input.data must have all subresources computed ahead of
time in order to fill in all levels during the CreateTexture1D call. In GTEngine,
I use the context call immediately after creation.

4.4.5.2 2D Textures

The texture creation shown here is for HLSL objects of type Texture2D

and RWTexture2D. Creation for render targets and depth-stencil textures is
discussed later in the section on draw targets.

Listing 4.41 shows the creation of a 2D texture that does not use mul-
tisampling. However, if you wish to share this texture with another device
(from the same GPU), the construction allows this. The texture is created
without multisampling but does allow sharing. See Listing 4.23 for informa-
tion about SetUsageAccess and Listing 4.38 for information about Create2From

and SetAutogenerateMipmaps.

D3D11 TEXTURE2D DESC des c ;
des c . Width = i npu t . width ;
des c . Height = i n pu t . h e i g h t ;
d es c . M ipLeve l s = i n pu t . numMipmapLevels ;
d e s c . A r r a yS i z e = 1 ; // s i n g l e t e x t u r e , not a t e x t u r e a r r a y
des c . Format = i n pu t . fo rmat ; // c o n s t r a i n e d to DXGI FORMAT cho i c e s
des c . SampleDesc . Count = 1 ; // no mu l t i s amp l i n g
des c . SampleDesc . Qua l i t y = 0 ; // no mu l t i s amp l i n g
des c . B indF l ag s = D3D11 BIND SHADER RESOURCE ;
des c . M i s cF l ag s = ( i n pu t . wantShar ing ? D3D11 RESOURCE MISC SHARED : 0 ) ;
SetUsageAccess ( desc , i n p u t ) ;
SetAutogenerateMipmaps( desc , i n p u t ) ;
output . t e x t u r e = Create2From ( desc , i n p u t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = i n pu t . fo rmat ;
s rDes c . ViewDimension = D3D11 SRV DIMENSION TEXTURE2D;
s rDes c . Texture2D . MostDeta i l edMip = 0 ;
s rDes c . Texture2D . MipLeve l s = i n pu t . numMipmapLevels ;
d ev i ce−>Crea teShaderResou rceV i ew( output . t e x t u r e , &s rDesc , &output . s rView ) ;
i f ( i n p u t . wantShaderOutput )
{

D3D11 UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = i n pu t . fo rmat ;
uaDesc . ViewDimension = D3D11 UAV DIMENSION TEXTURE2D ;
uaDesc . Texture2D . M i pS l i c e = 0 ;
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hr = dev i ce−>Crea teUno rde r edAcces sV iew ( output . t e x t u r e , &uaDesc ,
&output . uaView ) ;

}

LISTING 4.41: Creation of a 2D texture for shader input and/or output
but not for render targets or depth-stencil textures.

See Listing 4.40 for generating mipmaps automatically.
If you requested that the 2D texture be shared by another device, you have

to do some COM programming to create the sharing ID3D11Texture2D object
and you have to create views to go with it. Listing 4.42 shows the details.
The HRESULT error handling is omitted for simplicity, but you really do need
this in case you have tried to share a texture that cannot be shared. The
GTEngine code handles the errors.

// a d ev i c e and a 2D t e x t u r e c r e a t ed wi th i t
ID3D11Device∗ ownerDevice = // some d ev i c e
ID3D11Texture2∗ owner t ex tu r e = // t e x t u r e c r e a t ed wi th ownerDevice
ID3D11Device∗ s h a r i n gDev i c e = // the d ev i c e tha t wants to s h a r e the t e x t u r e
ID3D11Texture2∗ sha r edTextu r e = // the t e x t u r e sha r ed wi th ownerDev ice

// Get a c c e s s to the DXGI r e s o u r c e f o r ownerTexture and ob t a i n a hand l e
// from i t to be used f o r s h a r i n g .
IDXGIResource ∗ ownerResource = n u l l p t r ;
owner t ex tu r e−>Que r y I n t e r f a c e ( u u i d o f ( IDXGIResource ) ,

( vo id∗∗)&ownerResource ) ;
HANDLE hand l e = n u l l p t r ;
ownerResource−>GetSharedHand le(&hand l e ) ;
ownerResource−>Re l e a s e ( ) ;

// Crea te the sha r ed t e x t u r e f o r the s h a r i n g d ev i c e .
s h a r i n gDev i c e−>OpenSharedResource( hand le , u u i d o f ( ID3D11Texture2D ) ,

( vo id∗∗)& sha r edTextu r e ) ;

LISTING 4.42: Code that shows how to share an ID3D11Texture2D object
created on one device with another device.

The sharing mechanism works as long as the two devices were created
by the same adapter; see Section 4.8 for a discussion about adapters. If you
have two devices, each created on a separate adapter, say, when you have two
independent GPUs working, you cannot share textures between them.

4.4.5.3 3D Textures

Listing 4.43 shows the creation of a 3D texture, including creation of views.
See Listing 4.23 for information about SetUsageAccess and Listing 4.38 for
information about Create3From and SetAutogenerateMipmaps.

D3D11 TEXTURE3D DESC des c ;
des c . Width = i npu t . width ;
des c . Height = i n pu t . h e i g h t ;
d es c . Depth = i npu t . depth ;
des c . M ipLeve l s = i n pu t . numMipmapLevels ;
d e s c . Format = i n pu t . fo rmat ;
d es c . B indF l ag s = D3D11 BIND SHADER RESOURCE ;
des c . M i s cF l ag s = 0 ;
SetUsageAccess ( desc , i n p u t ) ;
SetAutogenerateMipmaps( desc , i n p u t ) ;
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output . t e x t u r e = Create3From ( desc , i n p u t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = i n pu t . fo rmat ;
s rDes c . ViewDimension = D3D11 SRV DIMENSION TEXTURE3D;
s rDes c . Texture3D . MostDeta i l edMip = 0 ;
s rDes c . Texture3D . MipLeve l s = i n pu t . numMipmapLevels ;
d ev i ce−>Crea teShaderResou rceV i ew( output . t e x t u r e , &s rDesc , &output . s rView ) ;
i f ( i n p u t . wantShaderOutput )
{

D3D11 UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = i n pu t . fo rmat ;
uaDesc . ViewDimension = D3D11 UAV DIMENSION TEXTURE3D ;
uaDesc . Texture3D . M i pS l i c e = 0 ;
uaDesc . Texture3D . F i r s tWS l i c e = 0 ;
uaDesc . Texture3D . WSize = i n pu t . depth ;
dev i ce−>Crea teUno rde r edAcces sV iew( output . t e x t u r e , &uaDesc ,

&output . uaView ) ;
}

LISTING 4.43: Creation of a 3D texture.

See Listing 4.40 for generating mipmaps automatically.

4.4.6 Texture Arrays

As mentioned previously, HLSL supports texture-array resources that use a
single bind point in a shader. Such resources exist for arrays of 1D textures and
for arrays of 2D textures but not for arrays of 3D textures. A cube map, which
consists of six textures covering the faces of a cube, has been used classically
for environment mapping and then later as table lookups for normal vectors.
Although a cube map might be thought of as a single texture, it is represented
in D3D11 as a 2D texture array consisting of six items.

4.4.6.1 1D Texture Arrays

Listing 4.44 shows the creation of a 1D texture array, including creation of
views. See Listing 4.23 for information about SetUsageAccess and Listing 4.38
for information about Create1From and SetAutogenerateMipmaps.

D3D11 TEXTURE1D DESC des c ;
des c . Width = i npu t . width ;
des c . M ipLeve l s = i n pu t . numMipmapLevels ;
d e s c . A r r a yS i z e = i n pu t . numArrayItems ;
des c . Format = i n pu t . fo rmat ;
d es c . B indF l ag s = D3D11 BIND SHADER RESOURCE ;
des c . M i s cF l ag s = 0 ;
SetUsageAccess ( desc , i n p u t ) ;
SetAutogenerateMipmaps( desc , i n p u t ) ;
output . t e x t u r e = Create1From ( desc , i n p u t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = i n pu t . fo rmat ;
s rDes c . ViewDimension = D3D11 SRV DIMENSION TEXTURE1DARRAY ;
s rDes c . Texture1DArray . MostDeta i l edMip = 0 ;
s rDes c . Texture1DArray . M ipLeve l s = i n pu t . numMipmapLevels ;
s rDes c . Texture1DArray . F i r s t A r r a y S l i c e = 0 ;
s rDes c . Texture1DArray . A r r a yS i z e = i n pu t . numArrayItems ;
dev i ce−>Crea teShaderResou rceV i ew( output . t e x t u r e , &s rDesc , &output . s rView ) ;
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i f ( i n p u t . wantShaderOutput )
{

D3D11 UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = des c . Format ;
uaDesc . ViewDimension = D3D11 UAV DIMENSION TEXTURE1DARRAY;
uaDesc . Texture1DArray . M i pS l i c e = 0 ;
uaDesc . Texture1DArray . F i r s t A r r a y S l i c e = 0 ;
uaDesc . Texture1DArray . A r r a yS i z e = i n pu t . numArrayItems ;
dev i ce−>Crea teUno rde r edAcces sV iew( output . t e x t u r e , &uaDesc ,

&output . uaView ) ;
}

LISTING 4.44: Creation of a 1D texture array.

One difference between creation of 1D texture arrays and 1D textures (List-
ing 4.39) is that desc.ArraySize is set to a number presumably larger than one.
Another difference is that the abstract input object must know how many sub-
resources there are and must deliver the subresource data pointers and pitches
correctly to the D3D11 SUBRESOURCE DATA objects. The views, however, have
different ViewDimension values and additional members to set.

4.4.6.2 2D Texture Arrays

Listing 4.45 shows the creation of a 2D texture array, including creation of
views. See Listing 4.23 for information about SetUsageAccess and Listing 4.38
for information about Create2From and SetAutogenerateMipmaps.

D3D11 TEXTURE2D DESC des c ;
des c . Width = i npu t . width ;
des c . M ipLeve l s = i n pu t . numMipmapLevels ;
d e s c . A r r a yS i z e = i n pu t . numArrayItems ;
des c . Format = i n pu t . fo rmat ;
d es c . B indF l ag s = D3D11 BIND SHADER RESOURCE ;
des c . M i s cF l ag s = 0 ;
SetUsageAccess ( desc , i n p u t ) ;
SetAutogenerateMipmaps( desc , i n p u t ) ;
output . t e x t u r e = Create2From ( desc , i n p u t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = i n pu t . fo rmat ;
s rDes c . ViewDimension = D3D11 SRV DIMENSION TEXTURE2DARRAY ;
s rDes c . Texture2DArray . MostDeta i l edMip = 0 ;
s rDes c . Texture2DArray . M ipLeve l s = i n pu t . numMipmapLevels ;
s rDes c . Texture2DArray . F i r s t A r r a y S l i c e = 0 ;
s rDes c . Texture2DArray . A r r a yS i z e = i n pu t . numArrayItems ;
dev i ce−>Crea teShaderResou rceV i ew( output . t e x t u r e , &s rDesc , &output . s rView ) ;
i f ( i n p u t . wantShaderOutput )
{

D3D11 UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = des c . Format ;
uaDesc . ViewDimension = D3D11 UAV DIMENSION TEXTURE2DARRAY;
uaDesc . Texture2DArray . M i pS l i c e = 0 ;
uaDesc . Texture2DArray . F i r s t A r r a y S l i c e = 0 ;
uaDesc . Texture2DArray . A r r a yS i z e = i n pu t . numArrayItems ;
dev i ce−>Crea teUno rde r edAcces sV iew( output . t e x t u r e , &uaDesc ,

&output . uaView ) ;
}

LISTING 4.45: Creation of a 2D texture array.
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One difference between creation of 2D texture arrays and 2D textures (List-
ing 4.41) is that desc.ArraySize is set to a number presumably larger than one.
Another difference is that the abstract input object must know how many sub-
resources there are and must deliver the subresource data pointers and pitches
correctly to the D3D11 SUBRESOURCE DATA objects. The views, however, have
different ViewDimension values and additional members to set.

4.4.6.3 Cubemap Textures

Listing 4.46 shows the creation of a cubemap texture, including creation of
views. See Listing 4.23 for information about SetUsageAccess and Listing 4.38
for information about Create2From and SetAutogenerateMipmaps.

D3D11 TEXTURE2D DESC des c ;
des c . Width = i npu t . width ;
des c . M ipLeve l s = i n pu t . numMipmapLevels ;
d e s c . A r r a yS i z e = 6 ;
des c . Format = i n pu t . fo rmat ;
d es c . B indF l ag s = D3D11 BIND SHADER RESOURCE ;
des c . M i s cF l ag s = D3D11 RESOURCE MISC TEXTURECUBE ;
SetUsageAccess ( desc , i n p u t ) ;
SetAutogenerateMipmaps( desc , i n p u t ) ;
output . t e x t u r e = Create2From ( desc , i n p u t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = i n pu t . fo rmat ;
s rDes c . ViewDimension = D3D11 SRV DIMENSION TEXTURECUBE ;
s rDes c . TextureCube . MostDeta i l edMip = 0 ;
s rDes c . TextureCube . M ipLeve l s = i n pu t . numMipmapLevels ;
d ev i ce−>Crea teShaderResou rceV i ew( output . t e x t u r e , &s rDesc , &output . s rView ) ;
i f ( i n p u t . wantShaderOutput )
{

D3D11 UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = des c . Format ;
uaDesc . ViewDimension = D3D11 UAV DIMENSION TEXTURE2DARRAY;
uaDesc . Texture2DArray . M i pS l i c e = 0 ;
uaDesc . Texture2DArray . F i r s t A r r a y S l i c e = 0 ;
uaDesc . Texture2DArray . A r r a yS i z e = i n pu t . numArrayItems ;
dev i ce−>Crea teUno rde r edAcces sV iew( output . t e x t u r e , &uaDesc ,

&output . uaView ) ;
}

LISTING 4.46: Creation of a cubemap texture.

Two differences between creation of a texture cube and a 2D texture array
(Listing 4.45) are that desc.ArraySize is set explicitly to six and desc.MiscFlags

is set to D3D11 RESOURCE MISC TEXTURECUBE. Another difference is that
the abstract input object must know how many subresources there are and
must deliver the subresource data pointers and pitches correctly to the
D3D11 SUBRESOURCE DATA objects. The shader resource views have differ-
ent members but the unordered access views are the same; there is no UAV
dimension for cube maps.
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4.4.6.4 Cubemap Texture Arrays

Listing 4.47 shows the creation of a cubemap texture array, including cre-
ation of views. See Listing 4.23 for information about SetUsageAccess and List-
ing 4.38 for information about Create2From and SetAutogenerateMipmaps.

D3D11 TEXTURE2D DESC des c ;
des c . Width = i npu t . width ;
des c . M ipLeve l s = i n pu t . numMipmapLevels ;
d e s c . A r r a yS i z e = 6∗ i n p u t . numCubes ;
des c . Format = i n pu t . fo rmat ;
d es c . B indF l ag s = D3D11 BIND SHADER RESOURCE ;
des c . M i s cF l ag s = D3D11 RESOURCE MISC TEXTURECUBE ;
SetUsageAccess ( desc , i n p u t ) ;
SetAutogenerateMipmaps( desc , i n p u t ) ;
output . t e x t u r e = Create2From ( desc , i n p u t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = i n pu t . fo rmat ;
s rDes c . ViewDimension = D3D11 SRV DIMENSION TEXTURECUBEARRAY;
s rDes c . TextureCubeArray . MostDeta i l edMip = 0 ;
s rDes c . TextureCubeArray . M ipLeve l s = i n pu t . numMipmapLevels ;
s rDes c . TextureCubeArray . F i r s t2DAr rayFace = 0 ;
s rDes c . TextureCubeArray . NumCubes = i n pu t . numCubes ;
dev i ce−>Crea teShaderResou rceV i ew( output . t e x t u r e , &s rDesc , &output . s rView ) ;
i f ( i n p u t . wantShaderOutput )
{

D3D11 UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = des c . Format ;
uaDesc . ViewDimension = D3D11 UAV DIMENSION TEXTURE2DARRAY;
uaDesc . Texture2DArray . M i pS l i c e = 0 ;
uaDesc . Texture2DArray . F i r s t A r r a y S l i c e = 0 ;
uaDesc . Texture2DArray . A r r a yS i z e = i n pu t . numArrayItems ;
dev i ce−>Crea teUno rde r edAcces sV iew( output . t e x t u r e , &uaDesc ,

&output . uaView ) ;
}

LISTING 4.47: Creation of a cubemap texture array.

Two differences between creation of a texture cube array and a 2D texture ar-
ray (Listing 4.45) are that desc.ArraySize is set explicitly to six times the number
of cubes and desc.MiscFlags is set to D3D11 RESOURCE MISC TEXTURECUBE.
Another difference is that the abstract input object must know how many
subresources there are and must deliver the subresource data pointers and
pitches correctly to the D3D11 SUBRESOURCE DATA objects. The shader re-
source views have different members but the unordered access views are the
same; there is no UAV dimension for cube map arrays.

4.4.7 Draw Targets

Draw targets are a construct I use in GTEngine to encapsulate one or
more render targets and optionally a depth-stencil texture for the purpose of
offscreen rendering or computing within a pixel shader. In D3D11, all render
targets must be enabled at the same time, so the encapsulation makes sense.

Using the same pattern of creation as for single textures, Listing 4.48 shows
the creation of a render target, including creation of views. See Listing 4.38
for information about Create2From.
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D3D11 TEXTURE2D DESC des c ;
des c . Width = i npu t . width ;
des c . Height = i n pu t . h e i g h t ;
d es c . M ipLeve l s = i n pu t . numMipmapLevels ;
d e s c . A r r a yS i z e = 1 ;
des c . Format = i n pu t . fo rmat ;
des c . SampleDesc . Count = 1 ;
des c . SampleDesc . Qua l i t y = 0 ;
des c . Usage = D3D11 USAGE DEFAULT ;
des c . B indF l ag s = D3D11 BIND SHADER RESOURCE | D3D11 BIND RENDER TARGET ;
des c . CPUAccessFlags = D3D11 CPU ACCESS NONE;
des c . M i s cF l ag s = ( i n pu t . wantShared ?

D3D11 RESOURCE MISC SHARED : D3D11 RESOURCE MISC NONE ) ;
i f ( i n p u t . wantShaderOutput )
{

des c . B indF l ag s |= D3D11 BIND UNORDERED ACCESS ;
}
i f ( i n p u t . wantAutogeneratedMipmaps && ! i n pu t . wantShared )
{

des c . M i s cF l ag s |= D3D11 RESOURCE MISC GENERATE MIPS ;
}
output . t e x t u r e = Create2From ( i n pu t ) ;

D3D11 SHADER RESOURCE VIEW DESC s rDes c ;
s rDes c . Format = i n pu t . fo rmat ;
s rDes c . ViewDimension = D3D11 SRV DIMENSION TEXTURE2D;
s rDes c . Texture2D . MostDeta i l edMip = 0 ;
s rDes c . Texture2D . MipLeve l s = i n pu t . numMipmapLevels ;
d ev i ce−>Crea teShaderResou rceV i ew( output . t e x t u r e , &s rDesc , &output . s rView ) ;

D3D11 RENDER TARGET VIEW DESC r tDes c ;
r tDes c . Format = i n pu t . fo rmat ;
r tDes c . ViewDimension = D3D11 RTV DIMENSION TEXTURE2D ;
r tDes c . Texture2D . M i pS l i c e = 0 ;
dev i ce−>CreateRenderTarge tView ( output . t e x t u r e , &rtDesc , &output . r tV i ew ) ;

i f ( i n p u t . wantShaderOutput )
{

D3D11 UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = i n pu t . fo rmat ;
uaDesc . ViewDimension = D3D11 UAV DIMENSION TEXTURE2D ;
uaDesc . Texture2D . M i pS l i c e = 0 ;
hr = dev i ce−>Crea teUno rde r edAcces sV iew ( output . t e x t u r e , &uaDesc ,

&output . uaView ) ;
}

LISTING 4.48: Creation of a render target.

Listing 4.49 shows the creation of a depth-stencil texture, including cre-
ation of views. Such a texture cannot be a shader input; you cannot set the
D3D11 BIND SHADER RESOURCE flag. There is also no reason to initialize the
texture. You can initialize values to a constant using clearing, just as is done
for the depth-stencil texture of the back buffer. Mipmapping is not supported.
You cannot use this texture as a shader output.

D3D11 TEXTURE2D DESC des c ;
des c . Width = i npu t . width ;
des c . Height = i n pu t . h e i g h t ;
d es c . M ipLeve l s = 1 ;
des c . A r r a yS i z e = 1 ;
des c . Format = s t a t i c c a s t<DXGI FORMAT>( t e x t u r e−>GetFormat ( ) ) ;
d es c . SampleDesc . Count = 1 ;
des c . SampleDesc . Qua l i t y = 0 ;
des c . Usage = D3D11 USAGE DEFAULT ;
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des c . B indF l ag s = D3D11 BIND DEPTH STENCIL ;
des c . CPUAccessFlags = D3D11 CPU ACCESS NONE;
des c . M i s cF l ag s = ( i n pu t . wantShared ?

D3D11 RESOURCE MISC SHARED : D3D11 RESOURCE MISC NONE ) ;

dev i ce−>CreateTexture2D (&desc , n u l l p t r , &output . t e x t u r e ) ;

// Crea te a v iew o f the t e x t u r e .
CreateDSView ( dev i ce , d es c ) ;

LISTING 4.49: Creation of a depth-stencil texture.

The depth-stencil textures are quite restrictive. If you need to consume
depth output from a draw target, you can read it back from the GPU and
copy it to a 2D texture. Of course, you will need to interpret the depth-
stencil data when consuming it. For example, if the depth format is 24-bits
of depth and 8-bits of stencil, the 2D texture you copy to can be a 32-bit
unsigned integer. The 8 high-order bits contain the stencil and the 24 low-order
bits contain the depth. However, if you really want the depth information, it
is easier to pass the perspective depth as an output of the vertex shader
(clipPosition.z/clipPosition.w), set it as an input to the pixel shader, and write it
to a render target. The render-target texture can be either a shader input or
a shader output for another shader.

An example to demonstrate various features of draw targets is

GeometricTools/GTEngine/Samples/Basics/MultipleRenderTargets

A DrawTarget object is created with two render targets and a depth-stencil
texture. The application renders a textured square to the draw target. To make
it interesting, the first render target, say, renderTarget0, stores the pixel texture
color and the second render target, say, renderTarget1, stores the SV POSITION

value that is generated by the vertex shader. The xy-coordinates of this value
are the location of the pixel where the drawing is to occur, but with one-half
added to each. The vertex shader also has an output that is the perspective
depth, a value z ∈ [0, 1]. The pixel shader converts this to linearized depth
z′ ∈ [0, 1] using

z′ =
dminz

dmax(1 − z) + dminz

where dmin is the near distance of the view frustum and dmax is the far distance
of the view frustum. The linearized depth is written to the depth-stencil tex-
ture because the semantic of the output is SV DEPTH. This means your depth
buffer no longer stores information about perspective depth. However, only a
single square is in the scene, so there is no side effect regarding occlusion.

In half of the application window, the renderTarget0 is drawn to the screen,
so you see what appears to be the 3D rendering of the square. You can move
the camera and rotate the square via the virtual trackball.

After drawing the render target, the depth-stencil texture is read back from
the GPU and copied to a 32-bit single-channel float texture, say, linearDepth.
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The render targets are created with shader resource views, so they can
both be used as shader inputs. The first render target is created so that it is
a shader output—it has an unordered access view associated with it. This is
in addition to the texture being bound as a render target. The application has
another shader whose inputs are renderTarget0, renderTarget1, and linearDepth.
Moreover, renderTarget0 is a shader output. The shader draws to the other
half of the window grayscale values corresponding to the linearized depth,
not sampled from the incoming window location; rather, they are sampled
using the screen positions stored in renderTarget1 that were generated by the
3D rendering of the square. At the same time, the color values stored in
renderTarget0 are set to a constant color.

Finally, renderTarget0 is set for automatic mipmap generation. The applica-
tion has verification code that reads back level one of the mipmap and writes
it to a PNG file. The render target is 10242 and the PNG file has an image of
size 5122. After drawing to the window, the render target is read back again
to verify that the second shader has set it to a constant color. Level zero is
written to a PNG file to show it indeed is constant.

4.5 States

The state objects related to drawing are blending control (ID3D11BlendState),
depth-stencil control (ID3D11DepthStencilState), and rasterization control
(ID3D11RasterizerState). The sampler state has a similar creation interface, al-
though it probably should be thought of more as an object to be bound to a
shader rather than as a controller of global drawing state.

States are created similar to the buffer and texture resources: a description
structure is assigned the desired state values and passed to a creation function,
producing an interface pointer for the corresponding state. For example,

D3D11 BLEND DESC bDesc ; // F i l l i n the d e s c r i p t i o n f i e l d s .
ID3D11BlendState∗ bSta te ;
HRESULT hr = dev i ce−>Crea teB l endS ta t e (&bDesc , &bSta te ) ;

D3D11 DEPTH STENCIL DESC dsDesc ; // F i l l i n the d e s c r i p t i o n f i e l d s .
ID3D11DepthStenc i l S ta te∗ dsSta te ;
HRESULT hr = dev i ce−>Cr ea t eDep thS t en c i l S t a t e (&dsDesc , &dsSta te ) ;

D3D11 RASTERIZER DESC rDesc ; // F i l l i n the d e s c r i p t i o n f i e l d s .
ID 3D11Ra s t e r i z e r S t a t e∗ r S t a t e ;
HRESULT hr = dev i ce−>C r e a t e R a s t e r i z e r S t a t e (&rDesc , &rS t a t e ) ;

D3D11 SAMPLER DESC sDesc ; // F i l l i n the d e s c r i p t i o n f i e l d s .
ID3D11SamplerState∗ s S t a t e ;
HRESULT hr = dev i ce−>Crea teSamp l e rS ta te (&sDesc , &sS t a t e ) ;

The blend state description structure has an array of eight descriptor struc-
tures of type D3D11 RENDER TARGET BLEND DESC. A context may have up
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to eight render targets attached, each whose blending is controlled by one of
these descriptors.

Despite the usage differences between sampler state and the other states,
GTEngine groups together the four states as derived classes from a base class
named DX11DrawingState.

4.6 Shaders

The creation and basic use of vertex, geometry, pixel, and compute shaders
are presented in this section.

4.6.1 Creating Shaders

Section 4.2.4 contains an in-depth discussion about compiling HLSL code,
either offline using FXC or at runtime using the D3DCompile function. The
output of D3DCompile is an ID3DBlob* interface that effectively wraps a chunk
of memory that contains the compiled code and the information necessary for
shader reflection. Creation of shaders simply requires access to this blob, as
shown in Listing 4.50. The ID3D11ClassLinkage capabilities are not used here.

// The b l ob a s s o c i a t e d wi th comp i l i n g a shade r .
ID3DBlob∗ b l ob = <D3DCompile output >;
vo id const∗ b u f f e r = blob−>Ge tBu f f e rPo i n t e r ( ) ;
s i z e t numBytes = blob−>Ge tBu f f e r S i z e ( ) ;
HRESULT hr ;

ID3D11VertexShader∗ vshade r = n u l l p t r ;
h r = dev i ce−>Crea teVer t exShade r ( b u f f e r , numBytes , n u l l p t r , &vshade r ) ;

ID3D11GeometryShader∗ g shade r = n u l l p t r ;
h r = dev i ce−>CreateGeometryShader ( b u f f e r , numBytes , n u l l p t r , &gshade r ) ;

ID3D11Pixe lShader ∗ pshade r = n u l l p t r ;
h r = dev i ce−>Cr ea t eP i x e l Sh ad e r ( b u f f e r , numBytes , n u l l p t r , &pshade r ) ;

ID3D11ComputeShader∗ cshade r = n u l l p t r ;
h r = dev i ce−>CreateComputeShader ( b u f f e r , numBytes , n u l l p t r , &cshade r ) ;

LISTING 4.50: Creation of vertex, geometry, pixel, and compute shaders.

4.6.2 Vertex, Geometry, and Pixel Shader Execution

During application runtime, you will be executing various instructions
through the immediate context related to drawing. When finished, you need
to initiate the buffer swapping. Effectively, this tells the graphics system to
commit to executing whatever drawing commands have been queued up. For
real-time drawing in a single-threaded application, the drawing is performed
during application idle time. A typical loop is shown next in pseudocode:
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wh i l e ( a p p l i c a t i o n h a s i d l e t i m e )
{

c l e a r c o l o r a n d d e p t h s t e n c i l b u f f e r s ;
i s s u e d raw ing commands ;
swapChain−>Pres en t ( s y n c I n t e r v a l , f l a g s ) ; // Swap b u f f e r s .

}

The Present call is for D3D11.0. When the syncInterval is set to zero, the
buffers are presented to the display immediately without synchronization to
vertical blanking. A value of 1, 2, 3, or 4 allows you to wait for vertical blanking
the specified number of times. For example, if you have a 60 Hz monitor—
and assuming you can draw your scene at 60 Hz, a syncInterval value of 1 will
present the back buffer at 60 Hz. If the drawing takes less than 1/60 of a
second, the Present call will block until 1/60 of a second has elapsed (and the
display is ready for a refresh draw). A syncInterval of 2 will present the back
buffer at 30 Hz (2 times 1/60 of a second).

The flags parameter is a combination of bit flags of type DXGI PRESENT.
The common flag is 0, indicating that the current buffer should simply be pre-
sented. Other flags are used for advanced features including restricting output
(not all monitors display the results), stereo rendering, testing, and for allow-
ing custom presentation, among other options. The MSDN documentation
suggests that for D3D11.1 you use Present1 [42], which has an additional pa-
rameter of type DXGI PRESENT PARAMETERS. The parameter allows you to
work with dirty rectangles and scrolling, useful for limiting drawing on devices
for which you want to minimize power consumption.

To illustrate the basic sequence of drawing commands, consider a geomet-
ric primitive with a vertex buffer and optionally an index buffer. Suppose that
we have a vertex shader, optionally a geometry shader, and a pixel shader to
execute and that none of the shaders has UAV outputs. The pixel shader out-
put goes to the back buffer; that is, no draw targets are enabled. Listing 4.51
shows one way to draw the primitive. This is pseudocode to avoid repetition
of code that varies for each shader type only by the D3D11 interface names.
In GTEngine, a shader type and its various interfaces are encapsulated into a
class to hide the dependency of interface names on shader type.

// the D3D11 ob j e c t s r e q u i r e d f o r drawing the p r i m i t i v e
ID3D11DeviceContext∗ con t e x t ; // the a c t i v e immedia te co n t e x t
ID3D11Buf fer∗ v b u f f e r ; // v e r t e x b u f f e r
ID3D11Buf fer∗ i b u f f e r ; // index b u f f e r
ID3D11VertexShader∗ Vshader ;
ID3D11GeometryShader∗ Gshader ;
ID3D11Pixe lShader ∗ Pshader ;
ID3D11InputLayout∗ l a y o u t ; // connect s v b u f f e r e l emen t s and Vshader i n p u t s

// Enab le the v e r t e x b u f f e r .
UINT vb i n dpo i n t ; // get from shade r r e f l e c t i o n
UINT vb indcoun t = 1 ; // get from shade r r e f l e c t i o n , u s i n g 1 f o r s i m p l i c i t y
ID3D11Buf fer∗ v b u f f e r s [ vb i ndcoun t ] = { v b u f f e r } ;
UINT v s t r i d e s [ vb i ndcoun t ] = { s i z e o f v e r t e x } ;
UINT v o f f s e t s [ vb i ndcoun t ] = { s t a r t i n g o f f s e t i n v b u f f e r } ;
con tex t−>I ASe tVe r t e xBu f f e r s ( vb i ndpo i n t , vb indcount , v b u f f e r s , v s t r i d e s ,

v o f f s e t s ) ;
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// Enab le the i ndex b u f f e r .
DXGI FORMAT i f o rma t ; // DXGI FORMAT R32 UINT or DXGI FORMAT R16 UINT
UINT i o f f s e t = { s t a r t i n g o f f s e t i n i b u f f e r } ;
con tex t−>I ASe t I n d e xBu f f e r ( i b u f f e r , i f o rma t , i o f f s e t ) ;

// Enab le the i n p u t l a yo u t .
con tex t−>IASet Inpu tLayou t ( l a yo u t ) ;

// Enab le the s h ad e r s .
f o r ( each shade r type $ i n {V, G, P})
{

// Attach con s tan t b u f f e r s .
UINT cb i n dpo i n t ; // get from shade r r e f l e c t i o n
UINT cb indcoun t ; // get from shade r r e f l e c t i o n
ID3D11Buf fer∗ c b u f f e r s [ cb i ndcoun t ] ;
con tex t−>$SSetCons tan tBu f f e r s ( cb i ndpo i n t , cb indcount , c b u f f e r s ) ;

// Attach the i n pu t r e s o u r c e s .
UINT r b i n dp o i n t ; // get from shade r r e f l e c t i o n
UINT rb i n d coun t ; // get from shade r r e f l e c t i o n
ID3D11ShaderResourceView ∗ s rV i ews [ r b i n d coun t ] ;
con tex t−>$SSetShade rResou rces ( r b i n d po i n t , r b i ndcoun t , s rV i ews ) ;

// Attach the s amp l e r s ( i f any ) f o r use by t e x t u r e s .
UINT s b i n d p o i n t ; // get from shade r r e f l e c t i o n
UINT sb indcoun t ; // get from shade r r e f l e c t i o n
ID3D11SamplerState∗ s amp l e r S t a t e s [ s b i ndcoun t ] ;
con tex t−>$SSetSamplers ( s b i n d p o i n t , s b i ndcoun t , s amp l e r S t a t e s ) ;

// Enab le the shade r f o r e x e cu t i o n .
UINT numInstances ; // c u r r e n t l y not used i n GTEngine
ID3D11Cla s s I n s tance ∗ i n s t a n c e s [ numInstances ] ;
con tex t−>$SSetShader ( $shader , i n s t a n c e s , numInstances ) ;

}

// These a r e ob ta i n ed from the c l i e n t−s i d e v e r t e x b u f f e r and i ndex b u f f e r .
UINT v e r t e xO f f s e t ;
UINT numAct i ve Ind i c e s ;
UINT f i r s t I n d e x ;
D3D11 PRIMITIVE TOPOLOGY topo l ogy ; // what the i n d i c e s r e p r e s e n t
con tex t−>I ASe tP r im i t i v eTopo l o g y ( topo l ogy ) ;
con tex t−>DrawIndexed ( numAct i ve Ind i ce s , f i r s t I n d e x , v e r t e xO f f s e t ) ;

LISTING 4.51: Typical setup for executing vertex, geometry, and pixel
shaders.

If the vertex ordering in the buffer represents the primitives you want to
draw, you do not need an index buffer but you do need the topology informa-
tion. The enabling of the index buffer is therefore conditional. In GTEngine,
I designed a class IndexBuffer to store indices and topology. In the case that
the vertex buffer ordering does not require indices, IndexBuffer is still used but
it stores only the topology. The drawing call for the non-indexed case is

// These a r e ob ta i n ed from the c l i e n t−s i d e v e r t e x b u f f e r and i ndex b u f f e r .
UINT numAct i veVer t i c e s ;
UINT v e r t e xO f f s e t ;
D3D11 PRIMITIVE TOPOLOGY topo l ogy ; // what the v e r t i c e s r e p r e s e n t
con tex t−>I ASe tP r im i t i v eTopo l o g y ( topo l ogy ) ;
con tex t−>Draw( numAct i veVer t i c e s , v e r t e xO f f s e t ) ;

It is possible to query for the number of drawn pixels. This is sometimes
useful for debugging. Listing 4.52 shows the details.
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u i n t 6 4 t numPixelsDrawn = 0 ;
D3D11 QUERY DESC des c ;
des c . Query = D3D11 QUERY OCCLUSION ;
des c . M i s cF l ag s = D3D11 QUERY MISC NONE ;
ID3D11Query∗ query ;
dev i ce−>CreateQuery (&desc , &query ) ;
con tex t−>Beg in ( query ) ;

con tex t−>Draw ∗ ( . . . ) ;

con tex t−>End( query ) ;
wh i l e (S OK != con tex t−>GetData ( query ,&numPixelsDrawn , s i z e o f (UINT64 ) , 0 ) )
{

// Wait f o r end o f query .
}
query−>Re l e a s e ( ) ;

LISTING 4.52: Using a query to count the number of drawn pixels.

Compute shaders typically have unordered access views for shader output.
There is an interface call ID3D11DeviceContext::CSSetUnorderedAccessViews that
allows you to enable these before compute-shader execution. D3D11.0 allows
pixel shaders to use unordered access views. However, there is no interface
named ID3D11DeviceContext::PSSetUnorderedAccessViews. The output of pixel
shaders are normally render targets, and the render targets must be enabled so
you can write to them. If the pixel shader has unordered access views, the ren-
der targets and the unordered access views must be set simultaneously with a
single call to ID3D11DeviceContext::OMSetRenderTargetsAndUnorderedAccessViews,
which is part of the output merger (OM) stage. The technical difficulty is that
you might already have bound render targets, even if only the back buffer.
To avoid the complicated flow of logic to have everything enabled and ready
to draw, the OMSet* call has a special parameter that tells D3D11 to keep
the currently bound render targets but to set the incoming unordered access
views. Specifically,

// the uno rde r ed a c c e s s v i ews o f a p i x e l s hade r output r e s o u r c e
UINT ub i n dpo i n t ; // get from shade r r e f l e c t i o n
UINT ub indcoun t ; // get from shade r r e f l e c t i o n
ID3D11UnorderedAccessView ∗ uav i ews [ ub i ndcoun t ] ;
UINT i n i t i a l C o u n t s [ ub i ndcoun t ] ; // used by b u f f e r s wi th co un t e r s
con tex t−>OMSetRenderTargetsAndUnorderedAccessViews (

D3D11 KEEP RENDER TARGETS AND DEPTH STENCIL , n u l l p t r , n u l l p t r ,
ub i ndpo in t , ub indcount , uav iews , i n i t i a l C o u n t s ) ;

D3D11.1 allows all the shader types to have unordered access views.

4.6.3 Compute Shader Execution

Setting up for the execution of a compute shader is relatively simple and
uses the consistent approach that was discussed for drawing in Section 4.6.2.
Resources are attached to the shader as constant buffers and as views: shader
resource views (SRVs) for inputs and unordered access views (UAVs) for out-
put. Listing 4.53 shows the typical set up and execution.
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// Attach con s tan t b u f f e r s .
UINT cb i n dpo i n t ; // get from shade r r e f l e c t i o n
UINT cb indcoun t ; // get from shade r r e f l e c t i o n
ID3D11Buf fer∗ c b u f f e r s [ cb i ndcoun t ] ;
con tex t−>CSSetCons tan tBu f f e r s ( cb i ndpo in t , cb indcount , c b u f f e r s ) ;

// Attach the i n pu t r e s o u r c e s .
UINT r b i n dp o i n t ; // get from shade r r e f l e c t i o n
UINT rb i n d coun t ; // get from shade r r e f l e c t i o n
ID3D11ShaderResourceView ∗ s rV i ews [ r b i n d coun t ] ;
con tex t−>CSSetShaderResou rces ( r b i n d po i n t , r b i ndcoun t , s rV i ews ) ;

// Attach the output r e s o u r c e s .
UINT ub i n dpo i n t ; // get from shade r r e f l e c t i o n
UINT ub indcoun t ; // get from shade r r e f l e c t i o n
ID3D11UnorderedAccessView ∗ uav i ews [ ub i ndcoun t ] ;
uns igned i n t i n i t i a l c o u n t s [ ub indCount ] ; // used by b u f f e r s wi th coun t e r s ;
con tex t−>CSSetUnorderedAccessViews ( ub indPo int , ub indcount , uav iews ,

i n i t i a l c o u n t s ) ;

// Attach the s amp l e r s ( i f any ) f o r use by t e x t u r e s .
UINT s b i n d p o i n t ; // get from shade r r e f l e c t i o n
UINT sb indcoun t ; // get from shade r r e f l e c t i o n
ID3D11SamplerState∗ s amp l e r S t a t e s [ s b i ndcoun t ] ;
con tex t−>CSSetSamplers ( s b i n d p o i n t , s b i ndcoun t , s amp l e r S t a t e s ) ;

// Enab le the compute shade r f o r e x e cu t i o n .
ID3D11ComputeShader∗ cshade r ; // compute shade r to execu te
UINT numInstances ; // c u r r e n t l y not used i n GTEngine
ID3D11Cla s s I n s tance∗ i n s t a n c e s [ numInstances ] ;
con tex t−>CSSetShader ( cshader , i n s t a n c e s , numInstances ) ;

// Execute the compute shade r .
con tex t−>Di spa tch ( numXGroups , numYGroups , numZGroups ) ;

LISTING 4.53: Typical setup for executing a compute shader.

The Dispatch call is not blocking, so it is asynchronous in the sense that
the GPU can execute the shader while the CPU continues to execute other
instructions. If you need to read back the shader output from GPU to CPU
immediately after the dispatch, a stall will occur because the CPU must wait
for the GPU to finish.

Sometimes you might want the GPU to finish anyway before continuing
CPU execution. In my experience, this was sometimes necessary because the
display driver would shut down and restart due to the GPU taking too long on
the queued command lists. In D3D11.0, the timeout when executing a GPU
packet is two seconds. D3D11.1 gives you the ability to disable the timeout, al-
though you should be cautious about doing so. See the MSDN documentation
on the device creation flag D3D11 CREATE DEVICE DISABLE GPU TIMEOUT

[28]. If you want to wait for the GPU to finish, you can launch a D3D11
query after the Dispatch call. The query is shown in Listing 4.54.

D3D11 QUERY DESC des c ;
des c . Query = D3D11 QUERY EVENT ;
des c . M i s cF l ag s = 0 ;
ID3D11Query∗ query = n u l l p t r ;
i f (SUCCEEDED( dev i ce−>CreateQuery (&desc , &query ) ) )
{

immedia teContext−>End( query ) ;
BOOL data = 0 ;
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wh i l e (S OK != immediateContext−>GetData ( query ,&data , s i z e o f ( data ) , 0 ) )
{

// Wait f o r the GPU to f i n i s h .
}
query−>Re l e a s e ( ) ;

}

LISTING 4.54: A query that causes the CPU to wait for the GPU to finish
executing its current command list.

4.7 Copying Data between CPU and GPU

As powerful as GPUs are for computing, you have to upload data from
the CPU to the GPU in order to compute. And you might have to download
computed results from the GPU to the CPU. For data-heavy processing, the
memory copies are a major bottleneck.

In this section, I will discuss several ways for copying data between the
CPU and GPU. These are all single-threaded operations, occurring on the
thread in which the device was created. Similar to the discussions in Section
4.4 on the creation of resources, this discussion assumes the existence of an
immediate context and a client-side input that stores all necessary information
for the copy to succeed.

Applications that generate a lot of texture data can be multithreaded for
performance regarding memory copies. The processing of the textures occurs
on the thread in which the device and immediate context were created. The
GPU resource creation depends only on the device, and the device calls are
thread safe, assuming you did not create the device to be single threaded. If
the texture processing is fast enough to exceed the rate of texture generation,
a producer-consumer model may be used to parallelize the creation and the
processing. See Section 7.1 about the sample application

GeometricTools/GTEngine/Samples/Graphics/VideoStreams

that implements this concept.
The various mechanisms to copy data between processors are shown in

Figure 4.12.

4.7.1 Mapped Writes for Dynamic Update

For resources that were created with the D3D11 USAGE DYNAMIC flag, the
mechanism to update the GPU memory uses memory mapping. Update of a
buffer resource is shown in Listing 4.55. The abstract input object stores an
offset into the data. The number of active bytes must be selected to ensure
that the copied block of memory is a subblock of input.data. The output.buffer

was created using the code of Section 4.4.
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FIGURE 4.12: Copying data between processors.

D3D11 MAPPED SUBRESOURCE sub ;
con tex t−>Map( output . b u f f e r , 0 , D3D11 MAP WRITE DISCARD , 0 , &sub ) ;
memcpy ( sub . pData , i n p u t . data + i n pu t . o f f s e t , i n p u t . numAct iveBytes ) ;
con tex t−>Unmap( output . b u f f e r , 0 ) ;

LISTING 4.55: Updating an ID3D11Buffer object using mapped writes.

The ID3D11DeviceContext::Map function [39] takes as input the buffer object,
the subresource index zero because buffers have only one subresource, a
D3D11 MAP value [29], and a D3D11 MAP FLAG value [30]; the function then
fills in a D3D11 MAPPED SUBRESOURCE subresource data structure [31]. The
returned HRESULT is not tested in the example for simplicity, but your code
should test it; the GTEngine code does. The memory is locked for exclusive
access while the mapping is in effect. This subresource structure has a pointer
sub.pData to the mapped memory. After you have written to it, you need to
unlock the memory with the ID3D11DeviceContext::Unmap function [40]. The
map flag D3D11 MAP WRITE DISCARD tells D3D11 that the previous buffer
contents can be discarded and are considered to be undefined.

Updating a texture resource using memory mapping requires more work.
In particular, 2D and 3D textures might not be stored in contiguous GPU
memory. When the textures are created and initialized, a row pitch for 2D and
3D textures and a slice pitch for 3D textures are provided for the source data
(your CPU data). The GPU versions might have to adhere to requirements
of byte alignment different from those on the CPU—this is akin to Intel SSE
data requiring 16-byte alignment when CPU data only needs 4-byte alignment.
When the D3D11 MAPPED SUBRESOURCE members are filled in, you have to
copy rows and slices one-by-one when the pitches do not match your CPU
version of the texture. Update of a texture resource is shown in Listing 4.56.
The output.texture was created using the code of Section 4.4.

uns igned i n t s r i ; // the i ndex f o r the s u b r e s o u r c e to be updated
D3D11 MAPPED SUBRESOURCE sub ;
con tex t−>Map( output . t e x t u r e , s r i , D3D11 MAP WRITE DISCARD , 0 , &sub ) ;

// the c l i e n t−s i d e s u b r e s o u r c e i n f o rma t i o n
Sub resou r ce csub = i npu t . s u b r e s o u r c e ( s r i ) ;
i f ( i n p u t . numDimensions == 1)
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{
// Mipmap l e v e l s f o r 1D t e x t u r e s and t e x t u r e a r r a y s a r e i n co n t i g u ou s
// memory .
memcpy ( sub . pData , csub . data , csub . GetNumBytesFor ( csub . l e v e l ) ) ;

}
e l s e i f ( i n p u t . numDimensions == 2)
{

uns igned i n t numRows = csub . GetNumRowsFor ( csub . l e v e l ) ;
CopyPi tched2 (numRows , csub . rowPitch , csub . data ,

sub . RowPitch , sub . pData ) ;
}
e l s e // i n pu t . numDimensions == 3
{

uns igned i n t numRows = csub . GetNumRowsFor ( csub . l e v e l ) ;
uns igned i n t numSl i ce s = csub . GetNumSl i cesFor ( csub . l e v e l ) ;
CopyPi tched3 (numRows , numSl i ces , csub . rowPitch , csub . s l i c e P i t c h ,

csub . data , sub . RowPitch , sub . DepthPitch , sub . pData ) ;
}
con tex t−>Unmap( t e x t u r e , s r i ) ;

LISTING 4.56: Updating an ID3D11Texture object using mapped writes.

The client-side subresource information includes the texture element format,
the number of texture array items, the number of mipmap levels, and mipmap
image sizes. The csub.Get* calls access that information. Again for simplicity,
the HRESULT value for the Map function is not handled but should be in real
code. The dimension-specific copies are shown in Listing 4.57.

vo id CopyPi tched2 (
uns igned i n t numRows ,
uns igned i n t s rcRowPitch , vo id const∗ s rcData ,
uns igned i n t trgRowPitch , vo id∗ t rgData )

{
i f ( s rcRowPitch == trgRowPitch )
{

// The memory i s c o n t i g u ou s .
memcpy ( trgData , s rcData , t rgRowPitch ∗numRows ) ;

}
e l s e
{

// Padding was added to each row o f the t e x t u r e , so we must
// copy a row at a t ime to compensate f o r d i f f e r i n g p i t c h e s .
uns igned i n t numRowBytes = s td : : min ( s rcRowPitch , t rgRowPitch ) ;
char const∗ srcRow = s t a t i c c a s t<char const∗>( s r cDa ta ) ;
char∗ trgRow = s t a t i c c a s t<char∗>( t rgData ) ;
f o r ( uns igned i n t row = 0 ; row < numRows ; ++row )
{

memcpy ( trgRow , srcRow , numRowBytes ) ;
srcRow += srcRowPitch ;
trgRow += trgRowPitch ;

}
}

}

vo id CopyPi tched3 ( uns igned i n t numRows , uns igned i n t numSl i ces ,
uns igned i n t s rcRowPitch , uns igned i n t s r c S l i c e P i t c h ,
vo id const∗ s rcData , uns igned i n t trgRowPitch ,
uns igned i n t t r g S l i c eP i t c h , vo id∗ t rgData )

{
i f ( s rcRowPitch == trgRowPitch && s r c S l i c e P i t c h == t r g S l i c e P i t c h )
{

// The memory i s c o n t i g u ou s .
memcpy ( trgData , s rcData , t r g S l i c e P i t c h ∗numSl i ce s ) ;

}
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e l s e
{

// Padding was added to each row and/ or s l i c e o f the t e x t u r e , so
// we must copy the data to compensate f o r d i f f e r i n g p i t c h e s .
uns igned i n t numRowBytes = s td : : min ( s rcRowPitch , t rgRowPitch ) ;
char const∗ s r c S l i c e = s t a t i c c a s t<char const∗>( s r cDa ta ) ;
char∗ t r g S l i c e = s t a t i c c a s t<char∗>( t rgData ) ;
f o r ( uns igned i n t s l i c e = 0 ; s l i c e < numSl i ce s ; ++s l i c e )
{

char const ∗ srcRow = s r c S l i c e ;
char∗ trgRow = t r g S l i c e ;
f o r ( uns igned i n t row = 0 ; row < numRows ; ++row )
{

memcpy ( trgRow , srcRow , numRowBytes ) ;
srcRow += srcRowPitch ;
trgRow += trgRowPitch ;

}
s r c S l i c e += s r c S l i c e P i t c h ;
t r g S l i c e += t r g S l i c e P i t c h ;

}
}

}

LISTING 4.57: Memory copies used by dynamic updates of textures.

D3D11 also has an update function, ID3D11DeviceContext::UpdateSubresource,
for copying CPU data to a subresource that was created in nonmappable mem-
ory [41].

4.7.2 Staging Resources

The dynamic writes using memory mapping are one way to copy CPU
data to the GPU resource. However, you cannot use memory-mapped reads
to copy GPU resource data directly to CPU memory. D3D11 requires copying
from the GPU to a staging resource first and then copying from the staging
resource to CPU memory. The double hop invariably makes copying from the
GPU to the CPU expensive.

Staging resources are created using the same description structures that
were used for the original resources. I will not present all the variations here;
you can look at the GTEngine source code. To illustrate one of these, List-
ing 4.58 shows the creation of a staging texture for a 2D texture without
multisampling.

D3D11 TEXTURE2D DESC des c ;
des c . Width = i npu t . width ;
des c . Height = i n pu t . h e i g h t ;
d es c . M ipLeve l s = i n pu t . numMipmapLevels ;
d e s c . A r r a yS i z e = i n pu t . numArrayItems ;
des c . Format = i n pu t . fo rmat ;
des c . SampleDesc . Count = 1 ;
des c . SampleDesc . Qua l i t y = 0 ;
des c . Usage = D3D11 USAGE STAGING ;
des c . B indF l ag s = 0 ;
des c . CPUAccessFlags = // D3D11 CPU ACCESS WRITE , D3D11 CPU ACCESS READ
des c . M i s cF l ag s = 0 ;
dev i ce−>CreateTexture2D (&desc , n u l l p t r , &output . s t a g i n g ) ;

LISTING 4.58: Creation of a 2D staging texture without multisampling.
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The desc.CPUAccessFlags is set for read or write or both. You can have bidirec-
tional support by OR-ing the two flags together. The output.staging object is
of type ID3D11Texture2D*.

4.7.3 Copy from CPU to GPU

The copy from CPU to GPU for a buffer resource is shown in Listing 4.59.
The abstract input object stores an offset into the data. The number of active
bytes must be selected to ensure that the copied block of memory is a subblock
of input.data. The output.buffer was created using the code of Section 4.4.

// Copy from CPU to s t a g i n g r e s o u r c e .
D3D11 MAPPED SUBRESOURCE sub ;
con tex t−>Map( output . s tag i ng , 0 , D3D11 MAP WRITE , 0 , &sub ) ;
memcpy ( sub . pData , i n p u t . data + i n pu t . o f f s e t , i n p u t . numAct iveBytes ) ;
con tex t−>Unmap( mStaging , 0 ) ;

// Copy from s t a g i n g r e s o u r c e to GPU memory .
D3D11 BOX box = { i n p u t . o f f s e t , 0 , 0 , i n p u t . numActiveBytes , 1 , 1 } ;
con tex t−>CopySubresourceReg ion ( output . b u f f e r , 0 , i n p u t . o f f s e t , 0 , 0 ,

output . s tag i ng , 0 , &box ) ;

LISTING 4.59: Copy from CPU to GPU for a buffer resource. The subre-
source index is zero because buffers have only one subresource.

The staging resource was created to have the same size as the buffer. The box

and the destination x, y, and z parameters to the copy call specify the source
and destination regions for the copy.

The copy from CPU to GPU for a texture resource is shown in Listing
4.60. The output.texture was created using the code of Section 4.4.

// Copy from CPU to s t a g i n g r e s o u r c e .
uns igned i n t s r i ; // the i ndex f o r the s u b r e s o u r c e to be cop i ed
D3D11 MAPPED SUBRESOURCE sub ;
con tex t−>Map( output . s tag i ng , s r i , D3D11 MAP WRITE , 0 , &sub ) ;

// Copy from CPU memory to s t a g i n g t e x t u r e . Th i s i s i d e n t i c a l to the
// dynamic update copy excep t tha t the d e s t i n a t i o n i s the s t a g i n g t e x t u r e .

// the c l i e n t−s i d e s u b r e s o u r c e i n f o rma t i o n
Sub resou r ce csub = i npu t . s u b r e s o u r c e ( s r i ) ;
i f ( i n p u t . numDimensions == 1)
{

// Mipmap l e v e l s f o r 1D t e x t u r e s and t e x t u r e a r r a y s a r e i n co n t i g u ou s
// memory .
memcpy ( sub . pData , csub . data , csub . GetNumBytesFor ( csub . l e v e l ) ) ;

}
e l s e i f ( i n p u t . numDimensions == 2)
{

uns igned i n t numRows = csub . GetNumRowsFor ( csub . l e v e l ) ;
CopyPi tched2 (numRows , csub . rowPitch , csub . data ,

sub . RowPitch , sub . pData ) ;
}
e l s e // i n pu t . numDimensions == 3
{

uns igned i n t numRows = csub . GetNumRowsFor ( csub . l e v e l ) ;
uns igned i n t numSl i ce s = csub . GetNumSl i cesFor ( csub . l e v e l ) ;
CopyPi tched3 (numRows , numSl i ces , csub . rowPitch , csub . s l i c e P i t c h ,

csub . data , sub . RowPitch , sub . DepthPitch , sub . pData ) ;
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}
con tex t−>Unmap( output . s tag i ng , s r i ) ;

// Copy from s t a g i n g t e x t u r e to GPU memory . The e n t i r e s u b r e s o u r c e i s
// cop i ed .
con tex t−>CopySubresourceReg ion ( output . t e x t u r e , s r i , 0 , 0 , 0 ,

output . s tag i ng , s r i , n u l l p t r ) ;

LISTING 4.60: Copy from CPU to GPU for a texture resource.

4.7.4 Copy from GPU to CPU

The copy from GPU to CPU for a buffer resource is shown in Listing 4.61.
The abstract input object stores an offset into the data. The number of active
bytes must be selected to ensure that the copied block of memory is a subblock
of input.data. The output.buffer was created using the code of Section 4.4.

// Copy from GPU to s t a g i n g r e s o u r c e .
D3D11 BOX box = { i n p u t . o f f s e t , 0 , 0 , i n p u t . numActiveBytes , 1 , 1 } ;
con tex t−>CopySubresourceReg ion ( output . s tag i ng , 0 , i n p u t . o f f s e t , 0 , 0 ,

output . b u f f e r , 0 , &box ) ;

// Copy from s t a g i n g r e s o u r c e to CPU .
D3D11 MAPPED SUBRESOURCE sub ;
con tex t−>Map( outupt . s tag i ng , 0 , D3D11 MAP READ, 0 , &sub ) ;
memcpy ( i n p u t . data + i n pu t . o f f s e t , sub . pData , i n p u t . numAct iveBytes ) ;
con tex t−>Unmap( mStaging , 0 ) ;

LISTING 4.61: Copy from GPU to CPU for a buffer resource. The subre-
source index is zero because buffers have only one subresource.

The staging resource was created to have the same size as the buffer. The box

and the destination x, y, and z parameters to the copy call specify the source
and destination regions for the copy.

The copy from GPU to CPU for a texture resource is shown in Listing
4.62. The output.texture was created using the code of Section 4.4.

// Copy from GPU to s t a g i n g r e s o u r c e .
ID3D11Resource∗ dxTexture = GetDXResource ( ) ;
con tex t−>CopySubresourceReg ion ( output . s tag i ng , s r i , 0 , 0 , 0 ,

output . Texture , s r i , n u l l p t r ) ;

// Copy from s t a g i n g t e x t u r e to CPU memory .
D3D11 MAPPED SUBRESOURCE sub ;
con tex t−>Map( output . s tag i ng , s r i , D3D11 MAP READ, 0 , &sub ) ;

// the c l i e n t−s i d e s u b r e s o u r c e i n f o rma t i o n
Sub resou r ce csub = i npu t . s u b r e s o u r c e ( s r i ) ;
i f ( i n p u t . numDimensions == 1)
{

memcpy ( s r . data , sub . pData , t e x t u r e−>GetNumBytesFor ( s r . l e v e l ) ) ;
}
e l s e i f ( i n p u t . numDimensions == 2)
{

uns igned i n t numRows = csub . GetNumRowsFor ( csub . l e v e l ) ;
CopyPi tched2 (numRows , sub . RowPitch , sub . pData ,

csub . rowPi tch , csub . data ) ;
}
e l s e // i n pu t . numDimensions == 3
{

uns igned i n t numRows = csub . GetNumRowsFor ( csub . l e v e l ) ;
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uns igned i n t numSl i ce s = csub . GetNumSl i cesFor ( csub . l e v e l ) ;
CopyPi tched3 (numRows , numSl i ces , sub . RowPitch , sub . DepthPitch ,

sub . pData , csub . rowPi tch , csub . s l i c e P i t c h , csub . data ) ;
}
con tex t−>Unmap( output . s tag i ng , s r i ) ;

LISTING 4.62: Copy from GPU to CPU for a texture resource.

4.7.5 Copy from GPU to GPU

D3D11 has functions for GPU-to-GPU copy via the ID3D11DeviceContext

interfaces, CopyResource [36] and CopySubresourceRegion [37]. The main technical
problem is that you cannot copy between arbitrary formats. I had mentioned
previously in Section 4.4.7 about trying to copy from a depth-stencil texture
with format DXGI FORMAT D24 UNORM S8 UINT to a regular texture with for-
mat DXGI R32 UINT. The textures are of the same dimensions and the texture
elements are 32-bit integers. An attempt to call CopyResource for these tex-
tures generates an error in the D3D11 debug layer. The function itself does
not have a returned HRESULT for you to detect the error and handle it accord-
ingly. This means you have to be careful when attempting to copy between
resources.

It is possible to use the copy functions already discussed to avoid the
formatting issues, assuming you are careful and know what you are doing will
work; for example,

C l i e n t I n p u t d e p t h S t e n c i l I n p u t ; // CPU v e r s i o n o f depth−s t e n c i l t e x t u r e
Cl i en tOutpu t d ep t hS t en c i lOu tpu t ; // GPU v e r s i o n o f depth−s t e n c i l t e x t u r e
C l i e n t I n p u t r e g u l a r I n p u t ; // CPU v e r s i o n o f R32 UINT 2D t e x t u r e
Cl i en tOutpu t r e g u l a rOu tpu t ; // GPU v e r s i o n o f R32 UINT 2D t e x t u r e
CopyGpuToCpu( d ep t hS t en c i lOu tpu t . t e x t u r e , d e p t hS t e n c i l I n p u t . t e x t u r e ) ;
memcpy ( d e p t h S t e n c i l I n p u t . t e x t u r e , r e g u l a r I n p u t . t e x t u r e ) ;
CopyCpuToGpu( r e g u l a r I n p u t . t e x t u r e , r e g u l a rOu tpu t . t e x t u r e ) ;

The problem with this approach is that there are four copies: GPU-to-
staging, staging-to-CPU, CPU-to-staging, and staging-to-GPU. The design of
CopyCpuToGpu and CopyGpuToCpu involves transferring the memory into and
out of the CPU-version of the resource. For a GPU-to-GPU copy, you can skip
this transferring.

C l i e n t I n p u t d e p t h S t e n c i l I n p u t ; // CPU v e r s i o n o f depth−s t e n c i l t e x t u r e
Cl i en tOutpu t d ep t hS t en c i lOu tpu t ; // GPU v e r s i o n o f depth−s t e n c i l t e x t u r e
C l i e n t I n p u t r e g u l a r I n p u t ; // CPU v e r s i o n o f R32 UINT 2D t e x t u r e
Cl i en tOutpu t r e g u l a rOu tpu t ; // GPU v e r s i o n o f R32 UINT 2D t e x t u r e
CopyGpuToStaging ( d ep thS t en c i lOu tpu t . t e x t u r e , d ep thS t en c i lOu tpu t . s t a g i n g ) ;
CopyStag ingToStag ing ( d ep t hS t en c i lOu tp u t . s tag i ng , r e g u l a rOu tpu t . s t a g i n g ) ;
CopyStagingToGpu ( r e g u l a rOu tpu t . s tag i ng , r e g u l a rOu tpu t . t e x t u r e ) ;

// The a c t u a l DX11 code :
ID3D11DeviceContext∗ co n t e x t ; // the a c t i v e immediate co n t e x t
uns igned i n t numBytes ; // t o t a l bytes , same f o r both t e x t u r e s
ID3D11Texture2∗ dsTextu r e ; // depth−s t e n c i l t e x t u r e
ID3D11Texture2∗ dsStag i ng ; // depth−s t e n c i l s t a g i n g
ID3D11Texture2∗ r gTextu r e ; // r e g u l a r t e x t u r e
ID3D11Texture2∗ r gS t a g i n g ; // r e g u l a r s t a g i n g
con tex t−>CopySubresourceReg ion ( d sStag i ng , 0 , 0 , 0 , 0 , dsTexture , 0 ,

n u l l p t r ) ;
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D3D11 MAPPED SUBRESOURCE dsSub , rgSub ;
con tex t−>Map( dsStag i ng , 0 , D3D11 MAP READ, 0 , &dsSub ) ;
con tex t−>Map( rgStag i ng , 0 , D3D11 MAP WRITE , 0 , &rgSub ) ;
memcpy ( rgSub . pData , dsSub . pData , numBytes ) ;
con tex t−>Unmap( d sStag i ng , 0 ) ;
con tex t−>Unmap( rgStag i ng , 0 ) ;
con tex t−>CopySubresourceReg ion ( rgTexture , 0 , 0 , 0 , 0 , r gStag i ng , 0 ,

n u l l p t r ) ;

We now have three copies: GPU-to-staging, staging-to-staging, and staging-to-
GPU. In exchange, the CPU memory of the regular texture no longer matches
that of the GPU memory. This would be an issue only if you have to consume
the CPU memory. Generally for real-time applications, one of your main per-
formance goals is to avoid having to copy from GPU all the way back to CPU
memory, so it is usually not necessary for CPU and GPU versions of memory
to match.

4.8 Multiple GPUs

Computers may have multiple graphics cards installed whose GPUs can
work together through a cable that connects them. AMD Radeon cards do
this through their CrossFireX technology. NVIDIA cards do this through their
SLI technology. In fact, it is possible to build a machine with more than two
graphics cards. The motherboards must support this, you need a hefty power
supply, and the operating system drivers must support this.

4.8.1 Enumerating the Adapters

The GPUs are referred to as adapters and D3D11 allows you to enumerate
them, as shown in Listing 4.63. Each graphics card can have monitors attached
to it; these are called outputs and also may be enumerated for each adapter.
For simplicity of presentation, the HRESULT error processing is omitted; you
should check the return values in real code.

IDXGIFactory1∗ f a c t o r y = n u l l p t r ;
CreateDXGIFactory1 ( u u i d o f ( IDXGIFactory1 ) , ( vo id∗∗)& f a c t o r y ) ;

s t r u c t Adap t e r I n f o { IDXGIAdapter1∗ adap te r ; DXGI ADAPTER DESC1 des c ; } ;
s td : : vec to r<Adapte r In f o> a iA r r a y ;
f o r ( uns igned i n t i = 0 ; /∗∗/ ; ++i )
{

Adap t e r I n f o a i ;
i f ( f a c t o r y−>EnumAdapters1 ( i , &a i . adap te r ) != DXGI ERROR NOT FOUND)
{

a i . adapter−>GetDesc1(& a i . d es c ) ;
a i A r r a y . push back ( a i ) ;

}
e l s e // A l l a d a p t e r s have been found .
{

break ;
}

}
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s t r u c t Outpu t In f o { IDXGIOutput∗ output ; DXGI OUTPUT DESC des c ; } ;
s t r u c t AOInfo { Adap t e r I n f o a i ; s td : : vec to r<Output In fo> o iA r r a y ; } ;
s td : : vec to r<AOInfo> aoArray ;
f o r ( auto const& a i : a i A r r a y )
{

AOInfo ao ;
ao . a i = a i ;
f o r ( uns igned i n t j = 0 ; /∗∗/ ; ++j )
{

Outpu t In f o o i ;
i f ( a i . adapter−>EnumOutputs ( j , &o i . output )

!= DXGI ERROR NOT FOUND)
{

o i . output−>GetDesc(& o i . d es c ) ;
ao . o i A r r a y . push back ( o i ) ;

}
e l s e // A l l ou tpu t s f o r t h i s adap te r have been found .
{

break ;
}

}
aoArray . push back ( ao ) ;

}

f a c t o r y−>Re l e a s e ( ) ;

LISTING 4.63: Enumeration of adapters and outputs attached to the
adapters.

When the application is finished using the adapters and outputs, they must
be released because the enumeration calls increased their internal reference
counts. GTEngine provides class wrappers to handle the reference counting
for you.

As discussed in Section 4.3, the first device creation is an IDXGIAdapter*

interface pointer. When null, the device is created for the default adapter,
which is a GPU if you have one attached. However, you can specify an adapter
that was produced by the enumeration. For dual-GPU machines, two scenarios
exist. If the GPUs are configured to use CrossFireX for AMD or SLI for
NVIDIA, the enumeration reports only one GPU adapter. If CrossFireX or
SLI are disabled, the enumeration reports two GPU adapters. You may create
a DX11Engine object for each adapter and use them independently.

On my Windows 8.1 machine with dual AMD 7970 machine and Cross-
FireX disabled, the enumeration reports three adapters. The first two are for
the GPUs. The first GPU adapter reports two outputs because I have two
monitors attached. The second GPU adapter reports no outputs (no monitors
attached). Starting with Windows 8, the enumeration reports another adapter
called the Microsoft Basic Render Driver. This is effectively a software ren-
derer that you can use. An overview of DXGI is found online [33]. This page
describes enumeration of adapters and how you can access the basic render
driver if so desired.

4.8.2 Copying Data between Multiple GPUs

Dual GPUs can be a double-edged sword. If you have independent com-
puting pipelines, you can get good parallelism from the two GPUs. However,
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if you have UAV outputs computed on one GPU that must be consumed by
the other GPU, you have to transfer the data between the GPUs. Unfortu-
nately, the mechanism for sharing textures between two devices works only
when those devices are created from a single adapter. Thus, you need to de-
sign carefully how the pipelines are laid out. Ideally, if you have to transfer
data from one GPU to another, you should try to do so without stalling both
GPUs. While you are reading back data on one GPU, you should do so by
copying it to a staging buffer. The other GPU should be kept busy computing
during this phase. When the read-back of the first GPU is complete and the
second GPU is ready, copy the memory from the staging buffer of the first
GPU to a staging buffer for the second GPU and then upload the results to
GPU memory.

Listing 4.64 shows a complete example of copying a one-dimensional tex-
ture from the video memory of one GPU to that of another. The HRESULT
error checking is omitted for simplicity.

// Enumerate the a d a p t e r s but not the ou tpu t s a t ta ched to the
// ad ap t e r s . The t e s t machine i s known to have two ad ap t e r s
// tha t a r e not co n f i g u r ed to work i n un i s on .
IDXGIFactory1∗ f a c t o r y = n u l l p t r ;
CreateDXGIFactory1 ( u u i d o f ( IDXGIFactory1 ) , ( vo id∗∗)& f a c t o r y ) ;
IDXGIAdapter1∗ adap te r [ 2 ] ;
f a c t o r y−>EnumAdapters1 (0 , &adap te r [ 0 ] ) ;
f a c t o r y−>EnumAdapters1 (1 , &adap te r [ 1 ] ) ;
f a c t o r y−>Re l e a s e ( ) ;

// Crea te D3D11. 0 d ev i c e s , one from each adap te r . The d r i v e r t ype must be
// D3D DRIVER TYPE UNKNOWN when you pa s s a non−n u l l p o i n t e r f o r adap te r .
D3D FEATURE LEVEL f e a t u r e L e v e l s [ 1 ] = { D3D FEATURE LEVEL 11 0 } ;
D3D FEATURE LEVEL f e a t u r e L e v e l ;

ID3D11Device∗ d ev i c e 0 = n u l l p t r ;
ID3D11DeviceContext∗ con tex t0 = n u l l p t r ;
D3D11CreateDevice ( adap te r [ 0 ] , D3D DRIVER TYPE UNKNOWN, n u l l p t r , 0 ,

f e a t u r e L e v e l s , 1 , D3D11 SDK VERSION , &dev i ce0 , &f e a t u r e L e v e l ,
&con tex t0 ) ;

ID3D11Device∗ d ev i c e 1 = n u l l p t r ;
ID3D11DeviceContext∗ con tex t1 = n u l l p t r ;
D3D11CreateDevice ( adap te r [ 1 ] , D3D DRIVER TYPE UNKNOWN, n u l l p t r , 0 ,

f e a t u r e L e v e l s , 1 , D3D11 SDK VERSION , &dev i ce1 , &f e a t u r e L e v e l ,
&con tex t1 ) ;

// Crea te t e x t u r e 0 on GPU0 and i n i t i a l i z e i t to { 0 , 1 , 2 , 3 } .
uns igned i n t const width = 4 ;
D3D11 TEXTURE1D DESC des c ;
d es c . Width = width ;
d es c . M ipLeve l s = 1 ;
des c . A r r a yS i z e = 1 ;
des c . Format = DXGI FORMAT R8G8B8A8 UNORM ;
des c . Usage = D3D11 USAGE DEFAULT ;
des c . B indF l ag s = 0 ;
des c . CPUAccessFlags = 0 ;
des c . M i s cF l ag s = 0 ;
uns igned char i n i t i a l 0 [ width ] = { 0 , 1 , 2 , 3 } ;
D3D11 SUBRESOURCE DATA srData ;
s rData . pSysMem = i n i t i a l 0 ;
s rData . SysMemPitch = 4∗width ;
s rData . SysMemSl i cePi tch = 0 ;
ID3D11Texture1D∗ t e x t u r e 0 = n u l l p t r ;

d ev i ce0−>CreateTexture1D (&desc , &srData , &t e x t u r e 0 ) ;
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// Crea te t e x t u r e 1 on GPU1 and i n i t i a l i z e i t to { 0 , 0 , 0 , 0 } .
uns igned char i n i t i a l 1 [ width ] = { 0 , 0 , 0 , 0 } ;
s rData . pSysMem = i n i t i a l 1 ;
ID3D11Texture1D∗ t e x t u r e 1 = n u l l p t r ;
d ev i ce1−>CreateTexture1D (&desc , &srData , &t e x t u r e 1 ) ;

// Crea te s t a g i n g 0 on GPU0 so tha t i t can be mapped f o r r e a d i n g .
des c . Usage = D3D11 USAGE STAGING ;
des c . CPUAccessFlags = D3D11 CPU ACCESS READ ;
ID3D11Texture1D∗ s t a g i n g 0 = n u l l p t r ;
d ev i ce0−>CreateTexture1D (&stDesc , n u l l p t r , &s t a g i n g 0 ) ;

// Crea te s t a g i n g 1 on GPU1 so tha t i t can be mapped f o r w r i t i n g and
// r e a d i n g . The l a t t e r i s r e q u i r e d so we can v e r i f y by a read−back
// tha t the v i d eo memory copy a c t u a l l y o c cu r r ed .
des c . CPUAccessFlags |= D3D11 CPU ACCESS WRITE ;
ID3D11Texture1D∗ s t a g i n g 1 = n u l l p t r ;
d ev i ce1−>CreateTexture1D (&desc , n u l l p t r , &s t a g i n g 1 ) ;

// Copy from GPU0 v i d eo memory to GPU0 s t a g i n g b u f f e r .
context0−>CopyResource ( s tag i ng0 , t e x t u r e 0 ) ;

// Map the GPU0 s t a g i n g b u f f e r f o r r e a d i n g .
D3D11 MAPPED SUBRESOURCE sub0 ;
context0−>Map( s tag i ng0 , 0 , D3D11 MAP READ, 0 , &sub0 ) ;

// Map the GPU1 s t a g i n g b u f f e r f o r w r i t i n g .
D3D11 MAPPED SUBRESOURCE sub1 ;
context1−>Map( s tag i ng1 , 0 , D3D11 MAP WRITE , 0 , &sub1 ) ;

// Copy from s t a g i n g b u f f e r o f GPU0 to s t a g i n g b u f f e r o f GPU1 .
memcpy ( sub1 . pData , sub0 . pData , 4∗width ) ;

// Unmap the s t a g i n g b u f f e r s .
context0−>Unmap( s tag i ng0 , 0 ) ;
context1−>Unmap( s tag i ng1 , 0 ) ;

// Copy from GPU1 s t a g i n g b u f f e r to GPU1 v i d eo memory .
context1−>CopyResource ( t ex tu r e1 , s t a g i n g 1 ) ;

// Read back from GPU1 v i d eo memory to v e r i f y the copy a c t u a l l y o c cu r r e d .
context1−>CopyResource ( s tag i ng1 , t e x t u r e 1 ) ;
context1−>Map( s tag i ng1 , 0 , D3D11 MAP READ, 0 , &sub1 ) ;
uns igned char∗ data = ( uns igned char ∗) sub1 . pData ; // data = { 0 , 1 , 2 , 3 }
context1−>Unmap( s tag i ng1 , 0 ) ;

// Des t roy a l l the D3D11. 0 o b j e c t s .
s tag i ng0−>Re l e a s e ( ) ; s tag i ng1−>Re l e a s e ( ) ;
t ex tu r e0 −>Re l e a s e ( ) ; t ex tu r e1−>Re l e a s e ( ) ;
context0−>Re l e a s e ( ) ; context1−>Re l e a s e ( ) ;
d ev i ce0−>Re l e a s e ( ) ; d ev i ce1−>Re l e a s e ( ) ;

LISTING 4.64: An example of copying a texture from the video memory of
one GPU to that of another.

4.9 IEEE Floating-Point on the GPU

D3D11 supports various floating-point formats, some of them with devia-
tions from the IEEE 754-2008 standard. A summary of the formats and rules
is found at [34].
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For 32-bit floating-point numbers, some of the deviations from the rules are
about the handling of quiet or signaling NaNs. Two variations that potentially
have more impact when comparing the results from the GPU and from an FPU
associated with the CPU are the following.

• The default rounding rule for IEEE 754-2008 is round-to-nearest ties-
to-even. This rule is discussed in Section 2.5.2.1. The idea is that a
floating-point operation produces the floating-point number nearest to
the theoretical result. When the theoretical result has a fractional part
that is one-half, you round down if the integer part is even or round
up if the integer part is odd. D3D11 does not require the hardware to
adhere to this rule; that is, the hardware can truncate the result rather
than rounding to nearest.

• Subnormal numbers are flushed to sign-preserved zero on input and
output of floating-point mathematical operations. If the numbers are
simply copied and not mathematically manipulated, the flushing does
not occur.

The hardware can support 64-bit floating-point numbers. According to
[34], the double precision hardware is compliant with the IEEE 754-2008
Standard. However, the standard has many requirements. Section 5.4.1 of
the Standard document is about arithmetic operations; it states that imple-
mentations shall provide a square root operation. As of D3D11.1, no such
operation exists.

Surprisingly, at least to me, is that 64-bit subnormals are not flushed to
zero during arithmetic operations. I would have expected the opposite to be
true—that single precision would not flush to zero and double precision does.
I tried an experiment to verify this,

GeometricTools/GTEngine/Samples/Basics/IEEEFloatingPoint

Listing 4.65 shows a compute shader for adding two float numbers read from an
input structured buffer with the result returned in an output structured buffer.
The application code is listed below the HLSL code; the application creates the
input structured buffer with two subnormal floating-point numbers. Reading
back the output buffer, the result is zero which shows that the 32-bit flush-
to-zero semantics were applied.

// code i n TestSubnormals . h l s l , macro REAL i s f l o a t or doub l e
S t r u c t u r e dBu f f e r<REAL> i n p u t ; // two subnormal numbers
RWStructuredBuf fer<REAL> output ; // sum o f i n p u t s tha t i s subnormal
[ numthreads ( 1 , 1 , 1 ) ]
vo id CSMain( i n t 3 t : SV DispatchThread ID)
{

output [ 0 ] = i n pu t [ 0 ] + i n pu t [ 1 ] ;
}

template <typename Real , typename Binary>
c l a s s TestSubnormals
{
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pub l i c :
TestSubnormals ( s td : : s t r i n g const& h l s l f i l e , s td : : s t r i n g const& rea lname ,

B ina ry& r e s u l t )
{

DX11Engine eng i ne ;

s td : : s h a r ed p t r<S t r u c t u r e dBu f f e r> i n p u tB u f f e r (
new S t r u c t u r e dBu f f e r (2 , s i z e o f ( Rea l ) ) ) ;

Rea l∗ i n p u t = i n pu tBu f f e r−>Get<Real >();
B i na ry v0 , v1 ;
v0 . encod i ng = 1 ;
v1 . encod i ng = 1 ;
i n p u t [ 0 ] = v0 . number ; // sma l l e s t p o s i t i v e subnormal
i n p u t [ 1 ] = v1 . number ; // same as v0

// Compute v0+v1 and s t o r e i n t h i s b u f f e r .
s td : : s h a r ed p t r<S t r u c t u r e dBu f f e r> ou tpu tBu f f e r (

new S t r u c t u r e dBu f f e r (1 , s i z e o f ( Rea l ) ) ) ;
ou tpu tBu f f e r−>SetUsage ( Resource : : SHADER OUTPUT ) ;
ou tpu tBu f f e r−>SetCopyType ( Resource : : COPY STAGING TO CPU ) ;
Rea l∗ output = outpu tBu f f e r−>Get<Real >();
output [ 0 ] = ( Rea l ) 0 ;

HLSLDef iner d e f i n e r ;
d e f i n e r . S e tS t r i n g ( ”REAL” , rea lname ) ;
s td : : s h a r ed p t r<ComputeShader> cshade r (

Shade rFac to r y : : CreateCompute ( h l s l f i l e , d e f i n e r ) ) ;
cshader−>Set ( ” i n pu t ” , i n p u tB u f f e r ) ;
cshader−>Set ( ” output ” , o u t p u tBu f f e r ) ;

eng i ne . Execute ( cshader , 1 , 1 , 1 ) ;
eng i n e . CopyGpuToCpu( ou t p u tBu f f e r ) ;

r e s u l t . number = output [ 0 ] ;

i n p u tB u f f e r = n u l l p t r ;
o u t p u tBu f f e r = n u l l p t r ;
c s hade r = n u l l p t r ;

}
} ;

vo id main ( )
{

un ion F l o a t
{

f l o a t number ;
u i n t 3 2 t encod i ng ;

} ;
F l o a t r e s u l t ;
TestSubnormals<f l o a t , F loat> t e s t ( ”TestSubnormals . h l s l ” , ” f l o a t ” ,

r e s u l t ) ;
// With IEEE 754−2008 b eh a v i o r tha t p r e s e r v e s subnormals , the output
// r e s u l t s hou l d have encod i ng 2 ( number i s 2ˆ{−148}). I n s t ead ,
// r e s u l t . encod i ng = 0 , which means tha t the GPU has f l u s h e d the
// subnormal r e s u l t to z e ro .

}

LISTING 4.65: Verification that float subnormals are flushed to zero when
used in arithmetic operations.

I ran the same experiment with 64-bit floating-point numbers. Listing 4.66
shows the application code.

vo id main ( )
{

un ion Double
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{
doub le number ;
u i n t 6 4 t encod i ng ;

} ;
Double r e s u l t ;
TestSubnormals<double , Double> d t e s t ( ”TestSubnormals . h l s l ” , ” doub l e ” ,

r e s u l t ) ;
// With IEEE 754−2008 b eh a v i o r tha t p r e s e r v e s subnormals , the output
// r e s u l t s hou l d have encod i ng 2 ( number i s 2ˆ{−1073}). Indeed ,
// d r e s u l t . encod i ng = 2 , so the subnormal r e s u l t was not f l u s h e d .

}

LISTING 4.66: Verification that double subnormals are not flushed to zero
when used in arithmetic operations.

What this argues is that if you need the full range of 32-bit floating-point
numbers, including subnormals, in your GPGPU computations, you can use
double precision instead—recall that all 32-bit subnormal numbers convert
to 64-bit normal numbers. You can do the conversion on the FPU associated
with the CPU and then upload those double-precision numbers to the GPU
for consumption.

The amount of work to compute with double instead of float might take
more effort. For example, the exhaustive float-based root finder

GeometricTools/GTEngine/Samples/Numerics/RootFinding

uses the dispatch thread ID to generate the 23-bit trailing significand em-
bedded in a 32-bit uint, loops over the biased exponents, and builds the float

values using asfloat to be used as the function inputs. The question is whether
a float-to-double conversion will produce the correct double-precison value.
On my AMD 7970, the answer is no. For example,

S t r u c t u r e dBu f f e r<f l o a t> i n p u t ; // subnormal 2ˆ{−149}
RWStructuredBuf fer<double> output ;
[ numthreads ( 1 , 1 , 1 ) ]
vo id CSMain( i n t 3 t : SV DispatchThread ID)
{

output [ 0 ] = ( doub le ) i n p u t [ 0 ] ;
}

I looked at the assembly output to see there was a ftod instruction for the
conversion of float to double. Reading back the output, the result was the
double-precision number 0.0, so the hardware flushed the subnormal float
to zero during the assignment. The MSDN documentation for the assembly
instruction ftod [35] states that implementations may either honor subnormals
or flush them to zero. This means you are not guaranteed that the hardware
will convert the 32-bit numbers properly. Instead, you need to implement in
HLSL the narrow-to-wide conversion code of Section 2.5.2.10, at least the case
when the narrow value is subnormal.

In terms of HLSL assembly instructions, D3D11.0 supports addition dadd;
multiplication dmul; comparisons deq, dge dlt, dne; extremes dmin, dmax; as-
signment dmov; and conversions between 32-bit and 64-bit floating-point dtof,
ftod. D3D11.1 additionally supports division ddiv, reciprocal drcp, and fused
multiply-add dfma.
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The assembly instructions do not include any common mathematical func-
tions such as square root, exponential and logarithm, or trigonometric func-
tions. If you need these, you will have to roll your own function approxima-
tions, much like what was done for Intel SSE2 in Section 3.3.





Chapter 5

Practical Matters

5.1 Engine Design and Architecture

I mentioned previously that the low-level D3D11 code for a simple appli-
cation can be enormous. You definitely want to wrap much of the execution
code that is common to applications. In this section, I discuss a simple appli-
cation that uses the Windows API for window creation, event handling, and
window destruction. The application also uses the DirectX API for D3D11 ob-
ject creation, handling, and destruction. The idea is to show how everything
fits together without hiding the internal mechanics. Although the argument
is for the encapsulation of the components in a graphics engine, this simple
application provides a test bed where everything is exposed. You can easily
modify this to experiment with D3D11 features that interest you.

5.1.1 A Simple Low-Level D3D11 Application

The sample application

GeometricTools/GTEngine/Samples/Basics/LowLevelD3D11

creates a window and a large collection of D3D11 objects in order to draw
a single triangle that is vertex colored and textured. Additionally, a virtual
trackball is provided so that you can left-click-and-drag the mouse in order
to rotate the triangle in real time. The total number of lines of source code
in Application.{h,cpp} files is approximately 1350. This is a significant amount
of code just to draw a single triangle! The file LowLevelD3D11.cpp contains a
simple main function that creates an application object, runs it, and then
deletes it:

vo id main ( )
{

TheApp l i ca t i on = new App l i c a t i o n ( ) ;
i f ( TheApp l i ca t i on−>Crea te (64 , 64 , 512 , 512 , D3D FEATURE LEVEL 11 1 ,

D3D11 CREATE DEVICE DEBUG) )
{

TheApp l i ca t i on−>Run ( ) ;
}
de l e t e TheApp l i ca t i on ;

}

223
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The Create function has inputs for the upper-left corner of the window, the
window width and height, the desired version of D3D11, and flags for device
creation.

Listing 5.1 shows the header file for the application class. The first three
header files are those for D3D11. The math header is used to access sqrt and
acos in the virtual trackball code. The file streaming header is used to load
compiled shaders from disk.

#in c l u d e <D3D11 . h>
#in c l u d e <D3Dcompi ler . h>
#in c l u d e <DXGI . h>
#in c l u d e <cmath>
#in c l u d e <f s t ream>

c l a s s App l i c a t i o n
{
pub l i c :

˜ A pp l i c a t i o n ( ) ;
A pp l i c a t i o n ( ) ;

bool Crea te ( i n t xOr i g i n , i n t yOr i g i n , i n t xS i z e , i n t yS i z e ,
D3D FEATURE LEVEL f e a t u r e L e v e l , UINT f l a g s ) ;

vo id Run ( ) ;

p r i v a t e :
s t a t i c LRESULT CALLBACK WindowProcedure (HWND hand le , UINT message ,

WPARAM wParam , LPARAM lParam ) ;

// suppo r t f o r c r e a t i o n
bool CreateAppWindow( i n t xOr i g i n , i n t yOr i g i n , i n t xS i z e , i n t yS i z e ) ;
bool Cr ea t eG r a ph i c s (D3D FEATURE LEVEL f e a t u r e L e v e l , UINT f l a g s ) ;
bool Crea teShade r s ( ) ;
ID3DBlob∗ LoadShaderBlob( s td : : w s t r i n g const& f i l e n ame ) ;
bool Cr ea t eVe r t e xBu f f e r ( ) ;
bool Crea te Inpu tLayou t ( ) ;
bool Cr ea t eCon s t a n tBu f f e r ( ) ;
bool Crea teTextu r e ( ) ;
bool Crea teShade rResou rceV i ew ( ) ;
bool Crea teB l endSt a te ( ) ;
bool Cr ea t eDep thS t en c i l S t a t e ( ) ;
bool C r e a t e R a s t e r i z e r S t a t e ( ) ;
bool Crea teSamp l e rS ta te ( ) ;

// suppo r t f o r drawing
vo id C l e a r B u f f e r s ( ) ;
vo id Draw ( ) ;
vo id SwapBuf fer s ( uns igned i n t s y n c I n t e r v a l ) ;

// suppo r t f o r v i r t u a l t r a c k b a l l
vo id OnLeftMouseDown( i n t x , i n t y ) ;
vo id OnLeftMouseDrag ( i n t x , i n t y ) ;
vo id OnLeftMouseUp ( i n t x , i n t y ) ;
vo id Ro t a t eT r a ckb a l l ( f l o a t x0 , f l o a t y0 , f l o a t x1 , f l o a t y1 ) ;
vo id ComputePro j ec t i onMat r i x ( ) ;
vo id ComputeViewMatr ix ( ) ;
vo id ComputeWorldMatr ix ( ) ;
vo id Upda teCons tan tBu f f e r ( ) ;

// window pa ramete r s
ATOM mAtom ;
HWND mHandle ;
i n t mXOrigin , mYOrigin , mXSize , mYSize ;
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// D3D11 ob j e c t s and pa ramete r s
ID3D11Device∗ mDevice ;
ID3D11DeviceContext∗ mImmediate ;
D3D FEATURE LEVEL mFea tu r eLeve l ;
IDXGISwapChain∗ mSwapChain ;
ID3D11Texture2D∗ mCo lo rBu f f e r ;
ID3D11RenderTargetView∗ mColorView ;
ID3D11Texture2D∗ mDepthStenc i lBu f f e r ;
ID3D11DepthStenc i lV iew∗ mDepthStenc i lV iew ;
D3D11 VIEWPORT mViewport ;

// a pp l i c a t i o n−s p e c i f i c D3D11 ob j e c t s
ID3D11VertexShader∗ mVertexShader ;
ID3DBlob∗ mVertexShaderBlob ;
ID3D11Pixe lShader ∗ mPixe lShader ;
ID3D11Buf fer∗ mVer texBu f f e r ;
ID3D11InputLayout∗ mInputLayout ;
ID3D11Buf fer∗ mConstantBuf fer ;
ID3D11Texture2D∗ mTexture ;
ID3D11ShaderResourceView ∗ mShaderResourceView ;
ID3D11SamplerState∗ mSamplerState ;
ID3D11BlendState∗ mBlendState ;
ID3D11DepthStenc i l S ta te∗ mDepthStenc i l S ta te ;
ID 3D11Ra s t e r i z e rS t a t e∗ mRa s t e r i z e r S t a t e ;

s t r u c t Ver tex
{

f l o a t p o s i t i o n [ 3 ] ;
f l o a t c o l o r [ 4 ] ;
f l o a t t coo rd [ 2 ] ;

} ;

i n t mNumVertices ;
i n t mVer texO f f s e t ;

// camera pa ramete r s
f l o a t mUpFOVDegrees ;
f l o a t mAspectRatio ;
f l o a t mDMin, mDMax, mUMin , mUMax, mRMin , mRMax ;
f l o a t mEye [ 3 ] , mDVector [ 3 ] , mUVector [ 3 ] , mRVector [ 3 ] ;
f l o a t mViewMatrix [ 4 ] [ 4 ] ;
f l o a t mPro jec t i onMat r i x [ 4 ] [ 4 ] ;
f l o a t mWorldMatrix [ 4 ] [ 4 ] ;

// data f o r a v i r t u a l t r a c k b a l l
f l o a t mTrackba l lMa t r i x [ 4 ] [ 4 ] ;
f l o a t mXTrack0 , mYTrack0 , mXTrack1 , mYTrack1 ;
f l o a t mSaveTrackba l lMa t r i x [ 4 ] [ 4 ] ;
bool mTrackBallDown ;

} ;

ex te rn App l i c a t i o n ∗ TheApp l i ca t i on ;

LISTING 5.1: The Application class header file.

As you can see, the Application class has a small public interface but the
private interface manages a lot of objects. The public Create function is a sim-
ple call to all the private creation functions. The CreateAppWindow function
uses the Windows API to create an application window that has a message
pump and function for processing the messages. The CreateGraphics function
creates the D3D11 device, the immediate context, the swap chain, the color
buffer and its shader resource view, and the depth-stencil buffer and its shader
resource view. The creation functions for blend state, depth-stencil state, and
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rasterization state are designed to give you the default states for most ap-
plications. Some applications have a need for multiple states, switching them
based on the current drawing needs. For example, some objects might require
alpha blending enabled to be drawn properly.

The remaining creation functions are related to the geometric primitive
to be drawn. The triangle is a non-indexed primitive, so no index buffer is
created. The constant buffer stores the world-view-projection matrix of Equa-
tion (4.20), which is needed to transform the triangle vertices into the view
frustum so that the rasterizer can project and draw the correct pixels. The
various D3D11 objects needed for drawing were discussed in Chapter 4, so the
source code will look familiar to you.

The application Run function contains the standard message pump for
a Windows application. The window is displayed and the message pump is
started. This is a loop that checks for pending events such as key presses
or mouse clicks and then calls the window’s event handler to process them.
When no events are pending, you have idle time to consume. The D3D11 code
for real-time rendering occurs here: updating the constant buffer, clearing the
color and depth-stencil buffers, drawing the geometric primitive, and swapping
the front and back buffers.

5.1.2 HLSL Compilation in Microsoft Visual Studio

The sample application also shows off a feature of Microsoft Visual Studio
2013 that is convenient for development. When you add HLSL files to your
project, they are automatically set up to be compiled by FXC. Initiating a
build, HLSL files are compiled first followed by CPP files. The compiled shader
output (*.cso) files are generated in the appropriate output folders (Debug
and Release). The format is binary and may be loaded as ID3DBlob* objects,
which is what you need to create D3D11 shader objects; for example, you
would load a compiled vertex shader output to an ID3DBlob* and pass it to
ID3D11Device::CreateVertexShader to create a ID3D11VertexShader object.

Although it is usually convenient to package together a vertex shader and
a pixel shader for a single effect, the automatic HLSL compilation cannot
process both shaders in a single HLSL build step. Therefore, the advice is to
keep separate HLSL files for the shaders. For each such file, you must set the
file properties accordingly. For example, in the sample application you can
launch the property page for SimpleVShader.hlsl. Under the General configura-
tion properties, you will see that the Item Type is HLSL Compiler. Under the
configuration properties, select the HLSL Compiler drop-down list. The dialog
pane on the right shows some properties that I set. The Entrypoint Name is set
to VSMain; the default name when you first include an HLSL file is main, so
I changed this to what I want. Optimizations are disabled for a Debug build
and debugging information is enabled. For a Release build, optimizations are
enabled and debugging information is disabled.
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The default ShaderType is blank, so I changed this to VertexShader /vs

using the provided drop-down list. The default shader model is the mini-
mum feature level Shader Model 4 Level 9 1 (/4 0 level 9 1), so I changed this to
Shader Model 5 (/5 0). If you have defines that need to be set, you can add
those to the Preprocessor Definitions section.

I selected the Advanced item on the left. The dialog pane on the right has
a field Additional Options. I added command-line options requesting row-major
storage for shader matrices (/Zpr) because that is how I set up matrices in
the sample; GTEngine uses row-major storage by default. I also requested to
enable strict mode (/Ges) and force IEEE strictness (/Gis).

Finally, select the Command Line item on the left. The dialog pane on the
right shows you the FXC command line that is generated by your choices. In
the case at hand, it is

/Zi /E"VSMain" /Od /Fo"<MyPath>\LowLevelD3D11\Debug\SimpleVShader.cso" /vs"_5_0" /nologo

If you want the compiled shader output embedded in your application, you
can instead compile to a header file that contains a character representation
of the ID3DBlob*. The header file is then included in your application and you
do not have to ship *.cso files separately.

I do not use the automatic compilation of HLSL in GTEngine applications,
preferring instead to keep the shaders bundled together. This also supports
my tool for generating C++ code from HLSL and using that tool in a custom
build step for the HLSL file.

5.1.3 Design Goals for the Geometric Tools Engine

I will describe briefly the high-level design goals for the Geometric Tools
engine, named GTEngine. A more detailed discussion of the design could be
a book on its own.

5.1.3.1 An HLSL Factory

The driving force for the engine design is the HLSL shader file. High-
performance algorithm development invariably involves thinking how you can
write shaders to accomplish your goals. Once those shaders are written and
correctly compile, an application needs to create corresponding objects at
runtime, to create input and output resources to attach to the shaders and
to execute the shaders. Consequently, I wrote the library HLSLFactory as a
stand-alone system that compiles HLSL shaders and uses the D3D11 reflection
system to obtain information about the various resources, such as the type of
resource and bind points. As a stand-alone system, you can use this within
your own engine code; that is, you do not have to use GTEngine at all if you
so choose.

The top-level class in the library is HLSLShaderFactory and has only two
public static functions: CreateFromFile and CreateFromString. The inputs for the



228 GPGPU Programming for Games and Science

former include the name of the HLSL file, the entry function name, the target
profile, an HLSLDefiner object that stores the preprocessor defines necessary
to compile the HLSL shader, and a bit flag for compiler options. The in-
puts for the latter are similar except that you provide a string for the shader
and a name that plays the role of the file name. The output of each call is
a HLSLShader object that stores all the information necessary to create and
manipulate D3D11 shaders at runtime. The subsystems in HLSLShaderFactory

were described in to some extent in Section 4.2.
The GTEngine interface to an HLSLShader object is provided by the class

ShaderFactory. This class also has only public static functions, creators with
names specific to the shader type. For example, there is a function CreateVertex

that passes its inputs to the HLSL factory system and takes the result-
ing HLSLShader object and produces a GTEngine VertexShader object. The
GTEngine shader classes such as VertexShader are shims to introduce runtime-
type information and are derived from class Shader. This base class is the
GTEngine analogy to HLSLShader and stores the relevant information need to
create and manipulate D3D11 objects at runtime.

5.1.3.2 Resource Bridges

The Geometric Tools source code named Wild Magic 5 has a large graph-
ics component that supports D3D9 and OpenGL on Microsoft Windows, and
supports OpenGL on Linux and Macintosh OS X. In order to hide the plat-
form dependencies, I use a bridge pattern [12] so I can manipulate graphics
objects in a platform-independent manner within the application code. The
back-end graphics objects specific to D3D9 or OpenGL have separate imple-
mentations that hide the platform dependencies. You can actually write an
application once, yet it compiles and runs for each supported platform. My
goal for GTEngine is similar, although for the purpose of this book I am ship-
ping only a D3D11 version first. Knowing that later I will support OpenGL
on Linux and Macintosh OS X, I chose once again to use a bridge pattern.

The relevant COM interface hierarchy for D3D11 resources is shown next.

ID3D11DeviceCh i ld
ID3D11Resource

ID3D11Buf fer
ID3D11Texture1D
ID3D11Texture2D
ID3D11Texture3D

ID3D11BlendState
ID3D11DepthStenc i l S ta te
ID3D11Ra s t e r i z e rS t a t e
ID3D11SamplerState
ID3D11VertexShader
ID3D11GeometryShader
ID3D11Pixe lShader
ID3D11ComputeShader

Although it would have been convenient for object-oriented wrappers
and factoring out common code, interfaces ID3D11Texture, ID3D11State, or
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ID3D11Shader do not exist. The ID3D11Buffer interface supports a variety
of types, including constant buffers, vertex buffers, index buffers, and so
on. I introduced a slightly richer hierarchy by wrapping these resources in
classes whose names are prefixed with DX11; for example, there is an ab-
stract class wrapper DX11Texture and a concrete class wrapper DX11Texture1.
I also have an abstract class wrapper DX11Buffer and a concrete class wrapper
DX11ConstantBuffer.

For the bridge pattern, I have similar classes for the platform-independent
front end whose names do not have the DX11 prefix. The hierarchy is shown
next for the front end. The back-end classes have the same name except with
the DX11 prefix.

Graph i c sOb jec t
Resource

Bu f f e r
Cons tan tBu f f e r
T ex t u r eBu f f e r
Ve r t e xBu f f e r
I n d e xBu f f e r
S t r u c t u r e dBu f f e r
TypedBuf fer
RawBuffer
I n d i r e c tA r g umen t sBu f f e r

Texture
Tex t u r eS i n g l e

Texture1
Texture2

TextureRT
TextureDS

Texture3
Textu r eAr ra y

Textu r e1Ar ra y
Textu r e2Ar ra y
TextureCube
TextureCubeArray

Shader
Ver t exShade r
GeometryShader
P i x e l Sh a d e r
ComputeShader

DrawingState
Samp l e rS ta te
B l endSta te
Dep thS t en c i l S t a t e
R a s t e r i z e r S t a t e

I have broken out the special types for buffers and for textures. The tex-
tures are factored further into TextureSingle and TextureArray. The former is
intended to represent a single texture (an array of one item) but the latter
is intended for an array of multiple textures. TextureRT represents render tar-
gets and TextureDS represents depth-stencil textures, both handled different
from regular textures used for geometric primitives. Although sampler state is
grouped together with the other global states, keep in mind that it is handled
as a resource to be attached to shaders.

The D3D11 back end has some additional classes that do not need exposure
on the front end. The class DX11InputLayout encapsulates the creation and



230 GPGPU Programming for Games and Science

manipulation of ID3D11InputLayout objects; however, these can be built from
a front-end vertex buffer and vertex shader without the front end having to
generate the layout. GPU adapter and output support is encapsulated in the
engine classes DXGIAdapter and DXGIOutput, both requiring only the lower-level
DXGI support provided by DirectX.

The workhorse of GTEngine graphics is the class DX11Engine. This class
is a manager of the creation, destruction, and manipulation of objects and
resources. You can think of DX11Engine as an encapulation of a device
(ID3D11Device*) and an immediate context (ID3D11DeviceContext*). The class
also acts as the bridge manager using member functions Bind and Unbind.
Given a front-end resource, say, Texture2, you can call Bind on that texture.
DX11Engine determines whether this is the first time it has seen that texture.
If so, it creates a back-end DX11Texture2 and stores the front-end and back-end
pair in a map container. Each time the Texture2 object is used in a graphics
operation, the engine has the responsibility for setting up the drawing or com-
puting pipeline accordingly. At any time you can call Unbind on a resource so
that its D3D11 equivalent is destroyed.

The front-end base class GraphicsObject has a listener system whose inter-
face is a nested class ListenerForDestruction. Any listener derived from this inter-
face is notified during a GraphicsObject destructor call that the object is about
to be destroyed. The listener can take action before the destruction occurs.
DX11Engine has a listener for such objects; for example, when the Texture2 ob-
ject is destroyed, the engine listener destroys the corresponding DX11Texture2

object via an Unbind call. You can explicitly call Unbind on a resource if you
want the D3D11 resource destroyed even though the front-end resource is not
being destroyed.

All bridges are handled in a thread-safe manner; that is, if you are creat-
ing and destroying resources in threads different from the one on which the
drawing or computing is occurring, the bridge maps are accessed using critical
sections.

5.1.3.3 Visual Effects

The front end has a class VisualEffect that is a container for a vertex shader,
a pixel shader, and an optional geometry shader. The class is convenient be-
cause typically you draw using a pair of vertex and pixel shaders with the
vertex shader optionally feeding a geometry shader.

Some common but simple effects are derived from VisualEffect and pro-
vided for your convenience: Texture2Effect and Texture3Effect support pixel
shaders that access a single 2D or 3D texture, VertexColorEffect supports
geometric primitives whose vertices are assigned RGBA vertex colors, and
ConstantColorEffect supports geometric primitives for which all vertices have
the same vertex color (constant diffuse material color).

TextEffect supports drawing text overlaid on the application window. I use
bitmapped fonts for this; in particular, I have a font class that stores the
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information, namely, FontArialW400H18. It is derived from a base class Font, so
you can have more than one font active in an application. The tool

GeometricTools/GTEngine/Tools/BitmapFontCreator

allows you to use the Windows API to process a font and generate the Font-
derived class. However, please be aware that some fonts are licensed, so you
should not ship such fonts even when converted to bitmaps using this tool. If
you must, you should contact the owners of the font and purchase a license.

The class OverlayEffect is not derived from VisualEffect, but it has the same
flavor. This class is used mainly for drawing 2D rectangular GUI widgets
overlaid on the application window. For example, if you want to write an
application with your own custom-designed buttons, sliders, and other controls
solely within the realm of the 3D graphics engine (i.e., no Windows API calls),
you can do so with an overlay. Of course you are responsible for processing
mouse clicks, key strokes, and any other GUI logic necessary to accomplish
your goals.

5.1.3.4 Visual Objects and Scene Graphs

The geometric primitives you plan on drawing require geometry, optional
indexing, and a visual effect. For convenience, the front end has a class Visual

that is a container for these. Additionally, 3D primitives are built so that you
need to use a transform from model space to world space, so I have factored
out a base class called Spatial that stores transforms. Even this class is fairly
general in that it supports a hierarchical data structure called a scene graph.
The leaf nodes of the hierarchy are Spatial objects; for this book, they are Visual
objects but you can also add sound-related objects, like Audial, that support
3D sound via emitters and listeners. The interior nodes of the hierarchy are
defined by class Node. The Spatial class stores a pointer to a unique parent; that
is, trees are supported but not directed acyclic graphs. The Node class stores
child pointers. The scene graph system has support for hierarchical transforms
and bounding spheres used for high-level object culling. Thus, the Spatial class
stores a local transform that determines how its represented object is posi-
tioned and oriented within the coordinate space of its parent. It also stores a
world transform that determines how its represented object is positioned and
oriented within the coordinate system of the world, which corresponds to the
root of the hierarchy. A goal of this book does not include discussing scene
graph management. For much more detail on this topic, see [8].

5.1.3.5 Cameras

The Camera class is really a transformation manager for drawing 3D primi-
tives. Section 4.1 has a detailed presentation of the various matrices involved.
The concept of a camera is convenient in most applications, so you will find in
the GTEngine Window class an instance of a camera. This camera is initialized
with the desired parameters and it is accessed and used to update constant
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buffers used by vertex shaders that require a world-view-projection matrix of
Equation (4.20) to transform model-space vertices to projection space for use
by the rasterizer.

5.2 Debugging

Debugging is an important part of the development process for GPGPU,
just as it is for CPU programming. CPU debuggers have evolved significantly
over the years; GPU debuggers are younger and still evolving. Regardless, the
art of debugging is more about your skills in formulating good hypotheses and
testing them than it is about having the appropriate tools available.

5.2.1 Debugging on the CPU

GPU debugging support within Microsoft Visual Studio 2013 comes in
the form of the DirectX Control Panel. You can access this by selecting the
Debug option on the menu bar. Select the second item on the menu, which
is labeled Graphics, and you will see a pop-up menu with an option labeled
DirectX Control Panel. You have to run this with administrator privileges, so
you will get the usual darkened screen and a dialog asking you whether you
want to run the tool.

A dialog box appears with the title DirectX Properties. I always choose the
Debug Layer radio button to be Force On. You must add executables you want
monitored via the Scope option by selecting the Edit List button and brows-
ing for the desired executables. In Message Settings, I checked the Info box. In
Break Settings I checked the Enable break on functionality box. I can then check
boxes in the Break on Severity part of the dialog. Of these I checked Corruption,
Error, and Warning. With these options and device creation flag chosen to be
D3D11 CREATE DEVICE DEBUG, DirectX will display messages in the output
window of Microsoft Visual Studio. If your code generates a DirectX cor-
ruption, error, or warning, the debugger will break—typically because of an
exception—and you will have access to a call stack. Moreover, the DirectX
debug output will usually have suggestions about what the problem is and
what you need to do to avoid it.

Various objects that are created, used, and destroyed have information
displayed in the output window, but the default is to use memory addresses
to identify them. This is not particularly helpful. You can, however, provide
names for such objects via the device context. Specifically, you can use

const char∗ myName = <some name>;
UINT l en g t h = s t r l e n (myName ) ;
HRESULT hr = con tex t−>SetPr i va teDa t a (WKPDID D3DDebugObjectName ,

l eng th , myName ) ;
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When an object with a name causes the DirectX debug layer to emit infor-
mation about the object, you will see the object’s name appear with that
information. I have wrapped the naming in GTEngine to allow you to condi-
tionally turn the names of objects on or off.

5.2.2 Debugging on the GPU

Microsoft Visual Studio 2013 allows you to debug HLSL shaders. You can
actually have HLSL shaders in your project files. If you drag an HLSL file
into the project, its file properties show that it will be built by the “HLSL
Compiler.” If you choose to use this mechanism, you must set compiler options
via the properties dialog. Currently, you must have one shader type per file,
because the custom build mechanism cannot be set up to compile two different
shaders from the same file.

I prefer not to use this mechanism, because in my production environment
I have custom build steps that generate C++ source code from HLSL using my
own tools that use the shader factory tool mentioned in Section 4.2. However,
I can still use the HLSL debugging capabilities that Microsoft Visual Studio
2013 provides, and I am not limited by the one-shader-per-file constraint.

For example, look at the sample application

GeometricTools/GTEngine/Samples/Graphics/BlendedTerrain

The file BlendedTerrain.hlsl file contains both a vertex shader and a pixel shader.
The source file BlendedTerrainEffect.cpp has the function

bool B l end edTe r r a i nE f f e c t : : LoadShader ( Envi ronment const& envi ronment ,
s td : : s t r i n g const& name)

The compiler flags include

D3DCOMPILE DEBUG and D3DCOMPILE SKIP OPTIMIZATION

in order to support the debugging from within Microsoft Visual Studio 2013.
Assuming the application compiles and runs, you can select from the menu

bar the Debug option, then Graphics, and then Start Diagnostics. The application
will launch and the screen will have text that asks you to capture a frame using
the Print Screen key. After doing so, you will see a new window in the IDE with
a captured frame. In this application, the frame is a colored rendering of a
mountain and sky. After capturing, you can terminate the application. The
HLSL debugger effectively runs as a simulation using the captured data. You
cannot toggle between CPU debugging and HLSL debugging.

Select a mountain pixel in the scene. You will see a new window displayed
entitled Graphics Pixel History. A tree control is available for the instruction
ID3D11DeviceContext::DrawIndexed. If you expand the tree control, expand the
item that says Triangle, you will see buttons to start debugging either the
vertex shader or the pixel shader. Pressing one of these, the BlendedTerrain.hlsl

file will appear in the IDE with the familiar debugger icon for the current line
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to be executed. Just as with the CPU debugger, you can step through the
lines of HLSL code and watch variables and registers.

Debugging compute shaders is similar, although you still have to capture
frames even though the compute shader is usually not frame based. For ex-
ample, look at the sample application

GeometricTools/GTEngine/Samples/Basics/GaussianBlurring

This application uses the compute shader GaussianBlurring.hlsl to blur an im-
age repeatedly. The resulting images are displayed on the screen, so you can
capture frames as described previously. The compute shader is compiled with
debugging information:

HLSLDef iner d e f i n e r ;
d e f i n e r . S e t I n t ( ”NUM X THREADS” , mNumXThreads ) ;
d e f i n e r . S e t I n t ( ”NUM Y THREADS” , mNumYThreads ) ;
path = env . GetPath ( ” Gaus s i anB lu r3x3 . h l s l ” ) ;
uns igned i n t f l a g s =

D3DCOMPILE ENABLE STRICTNESS |
D3DCOMPILE IEEE STRICTNESS |
D3DCOMPILE DEBUG |
D3DCOMPILE SKIP OPTIMIZATION ;

mGauss ianBlurShader . r e s e t ( Shade rFacto r y : : CreateCompute ( path , d e f i n e r ,
”CSMain” , ” c s 5 0 ” , f l a g s ) ) ;

Capture a frame and terminate the application. Select a pixel in the frame.
When the graphics debugger is active, a tool bar appears on the menu that
has an option Pipeline Stages. Select that option and a new window will appear
that has a thumbnail of the frame, information about the compute shader
Dispatch call, and a button that allows you to start debugging the compute
shader. Press the button and the HLSL file will appear in the IDE with the
usual debugging capabilities.

In some applications, you might not have frames to capture. You can try
mixing the compute shaders into the application so that during idle time, you
call the compute shader, draw a rectangle that covers the application window,
capture a frame, and then use the HLSL debugger. Alternatively, you can use
the old-fashioned printf debugging in GPU style. Include writable textures or
structured buffers in your compute shader that can store intermediate compu-
tations. You can read these back from GPU to CPU and analyze the results.
For example,

Texture2D<f l o a t> i n p u t ;
RWTexture2D<f l o a t> output ;
RWTexture2D<f l o a t 2> debug In f o ;
[ numthreads (NUMX, NUMY, 1 ) ]
vo id CSMain ( i n t 2 t : SV DispatchThread ID)
{

f l o a t temp0 = SomeFunction ( i n p u t [ t ] ) ;
f l o a t temp1 = SomeOtherFunction ( i n p u t [ t ] ) ;
output = temp0 + temp1 ;
debug In f o [ t ] = f l o a t 2 ( temp0 , temp1 ) ;

}
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After readback, you can examine the values of temp0 and temp1 in case they
appear not to be correct because the output appears not to be correct.

More detailed information about using graphics debugging and HLSL de-
bugging is available online [32].

5.2.3 Be Mindful of Your Surroundings

When writing complicated computer shaders, I occasionally came across
apparent bugs in the HLSL compiler; in the D3D11 runtime when executing
a shader; and in the graphics drivers, whether AMD or NVIDIA. These are
usually difficult to diagnose. I always assume first that I have made an error
or that I misunderstand something about the graphics system. In many cases
the assumption is correct. In other cases—well—all software has bugs.

When shaders do not behave the way you expect and you are certain the
problem is not of your doing, you have to be diligent in your investigations. You
have to formulate hypotheses and test them. I have lost count of the number of
times I have heard professional developers try guessing at the causes, whether
software failures or performance problems. If only you could be so lucky to
guess right. My rules of thumb for shader problems are the following:

1. Figure out what I did wrong.

2. Try to write a simple program that reproduces the problem.

3. If successful in Rule 2, try running the program using a different version
of the driver or using a different manufacturer’s graphics card or using
the D3D11 reference driver to see whether the problem persists.

4. Look at the HLSL assembly code to get some clues about the source of
error.

I have applied Rule 3 successfully in one such problem when using an AMD
graphics card. I was trying to build a pyramid of textures that was not a
standard mipmap of box averages. The textures were incorrect from a certain
level on. The reference driver produced the correct textures as did the same
shader program running on an NVIDIA graphics card. I have had problems on
NVIDIA cards where complicated shaders were not running correctly, acting
almost as if there were too many instructions for the driver to handle. In these
situations, I was able to run the shaders successfully on AMD cards. I have
also seen a deadlock in an NVIDIA driver, occurring when the texture resource
system was trying to delete a texture in one thread and create a texture in
another thread—a D3D11 device is supposedly thread-safe, so this deadlock
should not happen. After poring through call stacks on various threads and
looking at timelines with a concurrency visualizer, I decided the problem was
not of my doing. An upgrade to a newer NVIDIA driver fixed the problem.
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5.2.3.1 An Example of an HLSL Compiler Bug

As an example, consider the discussion of Section 4.2.4.1 regarding the
storage convention for matrices. The FXC output differs depending on whether
you use option /Zpr for row-major storage or /Zpc for column-major storage.
Although the standard way to pass the world-view-projection matrix of Equa-
tion (4.20) to a shader is via a constant buffer, I thought I would experiment
and pass the matrix to the shader via a structured buffer. The results were
unexpected. Consider the HLSL code in Listing 5.2, where I used a compute
shader for the experiment.

S t r u c t u r e dBu f f e r<f l o a t 4 x4> i n p u t ; // 1 element
RWTexture1D<f l o a t> output ; // 16 e l emen ts
[ numthreads ( 1 , 1 , 1 ) ]
vo id CSMain( i n t 3 t : SV DispatchThread ID)
{

f o r ( i n t j = 0 , k = 0 ; j < 4 ; ++j )
{

f o r ( i n t i = 0 ; i < 4 ; ++i , ++k )
{

output [ k ] = i n pu t [ 0 ] [ j ] [ i ] ;
}

}
}

LISTING 5.2: A compute shader program that fetches a matrix from a
structured buffer with native type float4x4.

The FXC output is shown in Listing 5.3 regardless of whether the option
is specified for row-major or column-major order! The ld structured indexable

instruction was manually split across lines to fit in the width of the page.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
// Bu f f e r D e f i n i t i o n s :
//
// Resource b i nd i n f o f o r i n p u t
// {
//
// f l o a t 4 x 4 $Element ; // O f f s e t : 0 S i z e : 64
//
// }
//
//
// Resource B ind i ng s :
//
// Name Type Format Dim S l o t E lements
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−
// i n pu t t e x t u r e s t r u c t r /o 0 1
// output UAV f l o a t 1d 0 1
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Inpu t
//
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// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Output
c s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l r e s o u r c e s t r u c t u r e d t0 , 64
d c l u a v t y p e d t e x t u r e 1 d ( f l o a t , f l o a t , f l o a t , f l o a t ) u0
dc l t emps 2
d c l t h r e a d g r o u p 1 , 1 , 1
mov r0 . xy , l ( 0 , 0 , 0 , 0 )
l oop

i g e r0 . z , r0 . x , l ( 4 )
b r eakc nz r0 . z
i s h l r0 . z , r0 . x , l ( 2 )
mov r1 . x , r0 . y
mov r1 . y , l ( 0 )
l oop

i g e r0 .w, r1 . y , l ( 4 )
b r eakc nz r0 .w
i s h l r0 .w, r1 . y , l ( 4 )
i add r0 .w, r0 .w, r0 . z
l d s t r u c t u r e d i n d e x a b l e ( s t r u c t u r e d b u f f e r , s t r i d e =64)

(mixed , mixed , mixed , mixed ) r0 .w, l ( 0 ) , r0 .w, t0 . xxxx
s t o r e u a v t y p e d u0 . xyzw , r1 . xxxx , r0 .wwww
iadd r1 . xy , r1 . xyxx , l ( 1 , 1 , 0 , 0)

end loop
mov r0 . y , r1 . x
i add r0 . x , r0 . x , l ( 1 )

end loop
r e t
// App rox ima te l y 20 i n s t r u c t i o n s l o t s used

LISTING 5.3: The FXC output from the compute shader of Listing 5.2 is
the same whether you use /Zpr or /Zpc.

I compiled with the two different options and ran Beyond Compare to view
the file differences—the files were identical. When using /Zpr, what caught my
attention was the absence of the row major tag on the float 4x4 $Element in the
resource binding information. The input matrix A was set to a known pattern
and the output array B is expected to be an increasing sequence, as shown in
Equation (5.1).

A =

⎡

⎢

⎢

⎣

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

⎤

⎥

⎥

⎦

B = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

(5.1)

However, when /Zpr is set, the input A is still interpreted as col-
umn major even though the test application passed the matrix through
the structured buffer in row-major order. The output was the incorrect
{0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15}.

As an experiment, I modified the HLSL file slightly as shown in Listing
5.4. This program should be equivalent to that of Listing 5.2.
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s t r u c t MyMatrix { f l o a t 4 x 4 A; } ;
S t r u c t u r e dBu f f e r<MyMatrix> i n p u t ; // 1 element
RWTexture1D<f l o a t> output ; // 16 e l emen ts
[ numthreads ( 1 , 1 , 1 ) ]
vo id CSMain( i n t 3 t : SV DispatchThread ID)
{

f o r ( i n t j = 0 , k = 0 ; j < 4 ; ++j )
{

f o r ( i n t i = 0 ; i < 4 ; ++i , ++k )
{

output [ k ] = i n pu t [ 0 ] . A[ j ] [ i ] ;
}

}
}

LISTING 5.4: A compute shader program that fetches a matrix from a
structured buffer with a struct that has a single member float4x4.

The output from FXC using /Zpr is shown in Listing 5.5. The ld structured indexable

instruction was manually split across lines to fit in the width of the page.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
// Bu f f e r D e f i n i t i o n s :
//
// Resource b i nd i n f o f o r i npu t1
// {
//
// s t r u c t MyMatrix
// {
//
// row major f l o a t 4 x 4 A; // O f f s e t : 0
//
// } $Element ; // O f f s e t : 0 S i z e : 64
//
// }
//
//
// Resource B ind i ng s :
//
// Name Type Format Dim S l o t E lements
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−
// inpu t1 t e x t u r e s t r u c t r /o 0 1
// output UAV f l o a t 1d 0 1
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Inpu t
//
// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Output
c s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l r e s o u r c e s t r u c t u r e d t0 , 64
d c l u a v t y p e d t e x t u r e 1 d ( f l o a t , f l o a t , f l o a t , f l o a t ) u0
dc l t emps 2
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d c l t h r e a d g r o u p 1 , 1 , 1
mov r0 . xy , l ( 0 , 0 , 0 , 0 )
l oop

i g e r0 . z , r0 . x , l ( 4 )
b r eakc nz r0 . z
i s h l r0 . z , r0 . x , l ( 4 )
mov r1 . x , r0 . y
mov r1 . y , l ( 0 )
l oop

i g e r0 .w, r1 . y , l ( 4 )
b r eakc nz r0 .w
i s h l r0 .w, r1 . y , l ( 2 )
i add r0 .w, r0 .w, r0 . z
l d s t r u c t u r e d i n d e x a b l e ( s t r u c t u r e d b u f f e r , s t r i d e =64)

(mixed , mixed , mixed , mixed ) r0 .w, l ( 0 ) , r0 .w, t0 . xxxx
s t o r e u a v t y p e d u0 . xyzw , r1 . xxxx , r0 .wwww
iadd r1 . xy , r1 . xyxx , l ( 1 , 1 , 0 , 0)

end loop
mov r0 . y , r1 . x
i add r0 . x , r0 . x , l ( 1 )

end loop
r e t
// App rox ima te l y 20 i n s t r u c t i o n s l o t s used

LISTING 5.5: The FXC output from the compute shader of Listing 5.4 using
/Zpr.

Now we see the row major tag on the matrix in the resource binding informa-
tion. The only other differences in output are the lines with the ishl instruc-
tions. This compute shader, whether compiled with /Zpr or /Zpc, produces the
same correct output.

5.2.3.2 An Example of a Programmer Bug

The compute shader program shown in Listing 5.6 is a greatly simplified
example of what I was actually working on, but it is sufficient to demonstrate
the problem.

c b u f f e r MyCBuffer { f l o a t i n p u t [ 4 ] ; } ;
RWTexture1D<f l o a t> output ; // f o u r e l emen t s
[ numthreads ( 1 , 1 , 1 ) ]
vo id CSMain( i n t t : SV DispatchThread ID)
{

f o r ( i n t i = 0 ; i < 4 ; ++i )
{

output [ i ] = i n pu t [ i ] ; // pa s s through the i n p u t v a l u e s
}

}

LISTING 5.6: An example of a programmer bug.

The constant buffer has four floating-point numbers, so I created a buffer
of 16 bytes and and initialized the values to {0, 1, 2, 3}. The output texture
values are {0, 0, 0, 0}, which is not what I expected. I modified the inputs to
{1, 2, 3, 4} and obtained the output values {1, 0, 0, 0}, which is still not what
I expected. Surely this is a bug in the HLSL compiler? I stuck to my rules of
thumb. In this case I posted a question on www.gamedev.net and mentioned
the problem. A responder provided the link [45]. The webpage mentions the
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HLSL packing rules for constant buffers. Arrays in constant buffers are not
packed by default. This avoids offset computations if you have four array
elements per register. If you want to incur the ALU overhead, you can always
pack the arrays yourself. The problem, though, is you cannot loop over the
array in your HLSL code, so that code must unpack manually. In the previous
code sample, the problem really was mine—my lack of understanding of the
HLSL packing rules. According to the rules, there should be four registers
assigned to MyCBuffer.

The output of FXC is shown in Listing 5.7.

//
// Generated by M i c r o s o f t (R) HLSL Shader Compi l er 6 . 3 . 9 6 0 0 . 1 6 384
//
//
// Bu f f e r D e f i n i t i o n s :
//
// c b u f f e r MyCBuffer
// {
//
// f l o a t i n p u t [ 4 ] ; // O f f s e t : 0 S i z e : 52
//
// }
//
//
// Resource B ind i ng s :
//
// Name Type Format Dim S l o t E lements
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−
// output UAV f l o a t 1d 0 1
// MyCBuffer c b u f f e r NA NA 0 1
//
//
//
// Inpu t s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Inpu t
//
// Output s i g n a t u r e :
//
// Name Index Mask R e g i s t e r SysVa lue Format Used
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Output
c s 5 0
d c l g l o b a l F l a g s r e f a c t o r i n gA l l o w e d
d c l c o n s t a n t b u f f e r cb0 [ 4 ] , dynamicIndexed
d c l u a v t y p e d t e x t u r e 1 d ( f l o a t , f l o a t , f l o a t , f l o a t ) u0
dc l t emps 1
d c l t h r e a d g r o u p 1 , 1 , 1
mov r0 . x , l ( 0 )
l oop

i g e r0 . y , r0 . x , l ( 4 )
b r eakc nz r0 . y
s t o r e u a v t y p e d u0 . xyzw , r0 . xxxx , cb0 [ r0 . x + 0 ] . xxxx
i add r0 . x , r0 . x , l ( 1 )

end loop
r e t
// App rox ima te l y 8 i n s t r u c t i o n s l o t s used

LISTING 5.7: The output of FXC applied to the code of Listing 5.6.
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The first hint the output provides is the size of 52 for the constant buffer.
If the packing had been as I assumed, the size should be 16. Even knowing
the packing rules, should the size be 64 (four registers at 16 bytes each)?
Yes, there are four registers assigned—you can see this in the instruction
dcl constantbuffer cb0[4]. However, the FXC compiler is reporting that you are
only “using” 52 of these bytes. This count includes the forty-eight bytes for
the first three registers, but the program uses only the first component of the
fourth register (4 more bytes). Well, be careful about interpreting the com-
ments in the human-readable output. In the shader reflection that GTEngine
uses to compile shaders at runtime, the number of bytes for MyCBuffer is
queried from a D3D11 SHADER BUFFER DESC and the size is reported as 64
bytes.

So in fact the problem is mine. I modified the constant buffer creation to
use a buffer of 64 bytes, typecast it as an array of four Vector4<float> objects,
and set the zeroth components of the vectors to be 0, 1, 2, and 3. The output
was then exactly these input values.

5.3 Performance

GPGPU is very much about high performance. Despite the availability of
embarrassingly parallel hardware, you have the responsibility of ensuring the
end-to-end performance of your applications. In turn, you must understand
what tools are available to you to accomplish your performance goals.

5.3.1 Performance on the CPU

On a CPU, the standard tool for measuring performance is a profiler.
Microsoft Visual Studio 2013 has a profiler you may use. This is accessible
throught the main menu by choosing the Analyze option. In the pop-up menu,
you then choose the Profiler option. For fastest access to the capabilities, you
can run an uninstrumented version of your application and attach a profiler
to it. You cannot profile an application with a debugger attached. Thus, you
should run your application from the menu option Debug and then select the
suboption Start Without Debugging. After the application launches, select menu
option Analyze, suboption Profiler, and then select the Attach/Detach item. You
need to run the tool in administrator mode to access the high-performance
counters, so the first time you run this during a Microsoft Visual Studio ses-
sion, you will be prompted with the usual dialog box about running as ad-
ministrator.

Once the tool starts up, you will see a dialog box containing a list of
applications that are running. Select the application you want to profile; that
is the one the profiler will be attached to. A window will appear in the IDE
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showing that the profiler is running. You can either terminate the application
or select an option that says to stop profiling. In either case, the profiler will
display output telling you that it is collecting the data. Finally, a window is
displayed with the results. A simple summary is displayed, but the most useful
is listed under Related Views, specifically the Functions link.

When you visit the functions link, you will see a list of functions and
DLLs, and you can sort by exclusive (count time in that function) or by
inclusive (count time in that function and in the functions it calls). For real-
time graphics, I prefer the inclusive view, because it gives me a quick idea
about where I am spending the time in the call stack. You can double-click a
function to display a window of the source code for that function with lines
highlighted that are taking the majority of the time to execute. Of course,
there are many other options you can explore. I suggest playing with this tool
for a while and explore the information available to you.

Another tool that is available as a plugin to Microsoft Visual Studio 2013
is the Concurrency Visualizer. You can obtain this for free through the IDE
by selecting the menu option

Tools | Extensions and Updates | Online | Visual Studio Gallery | Tools | Performance |
Concurrency Visualizer for Visual Studio 2013

An installation button is available. Once installed, the menu option Analyze

now has a new suboption Concurrency Visualizer. Just as with the profiler, start
your application without a debugger attached. Attach the Concurrency Vi-
sualizer to your application process. Once again you need to run this in ad-
ministrator mode, so you might be prompted with a dialog box. A window
appears in the IDE that tells you to terminate the application when desired,
or you can select a link that says to stop the data collection (but the applica-
tion continues to run). The amount of information this tool generates is quite
large, so you do not want to run it for long.

A window appears with a summary of information. The most important
link to select is the Threads link. You get a collection of timelines for threads.
A slider allows you to zoom in and see various color-coded blocks; the legend
for coloring is shown. Selecting the green blocks in the main thread, you can
see what code is being executed. Having the thread timelines adjacent to each
other can give you information, for example, when one thread is stalling an-
other. The tool itself can detect this and show you which thread’s callstack
is blocking your thread (and vice versa). The DirectX GPU threads are also
displayed; these are the DLL threads, not individual GPU compute shader
execution threads. Again, I suggest you play with this tool to see what infor-
mation is available.

If you want a larger suite of tools with more capabilities, but one that is not
free, I suggest Intel Parallel Studio XE 2013. The profiling tool is Intel VTune
Amplifier XE 2013. You can obtain profiling information at the assembly
level and customize what you want to measure. Filtering by thread is a nice
capability, and you can view timelines for the threads. The suite also comes
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with a tool called Intel Inspector XE 2013 that helps you track down memory
errors, leaks, and threading problems.

5.3.2 Performance on the GPU

Performance measurements on the GPU are possible at a high level us-
ing only D3D11 support. Firstly, you can always measure frame rate dur-
ing idle loop time to give you a coarse idea of how long something takes
to compute or how much faster something is after you have made shader
changes. The GTEngine sample applications show how to do this. Secondly,
the ID3D11Device interface allows queries related to timing. Listing 5.8 shows
the basic code. The HRESULT processing is omitted for simplicity, but the
GTEngine code handles the return values.

// −−− i n i t i a l i z a t i o n code
ID3D11Device∗ d ev i c e ; // the d ev i c e o f i n t e r e s t
ID3D11DeviceContext∗ immedia te ; // the a s s o c i a t e d con t e x t

D3D11 QUERY DATA TIMESTAMP DISJOINT timeStamp ;
ID3D11Query∗ f r equencyQuery ;
ID3D11Query∗ s ta r tTimeQuery ;
ID3D11Query∗ f i n a lT imeQuery ;

D3D11 QUERY DESC des c ;
des c . Query = D3D11 QUERY TIMESTAMP DISJOINT;
des c . M i s cF l ag s = D3D11 QUERY MISC NONE ;
dev i ce−>CreateQuery (&desc , &f r equencyQuery ) ;

d es c . Query = D3D11 QUERY TIMESTAMP ;
des c . M i s cF l ag s = D3D11 QUERY MISC NONE ;
dev i ce−>CreateQuery (&desc , &sta rtTimeQuery ) ;
d ev i ce−>CreateQuery (&desc , &f i na lT imeQuery ) ;

// −−− r un t ime code
// Beg in t imer .
immediate−>Beg in ( f r equencyQuery ) ;
immediate−>End( s ta r tTimeQuery ) ;
i n t 6 4 t s ta r tT ime ;
wh i l e (S OK != immediate−>GetData ( s ta r tTimeQuery , &sta rtTime ,

s i z e o f ( s ta r tT ime ) , 0 ) )
{

// Wait f o r end o f query .
}

// CPU code tha t c a l l s i n t o the GPU goes he r e .

// End t imer .
immediate−>End( f i na lT imeQuery ) ;
i n t 6 4 t f i n a lT ime ;
wh i l e (S OK != immediate−>GetData ( f i na lT imeQuery , &f i na lT ime ,

s i z e o f ( f i n a lT ime ) , 0 ) )
{

// Wait f o r end o f query .
}
immediate−>End( f r equencyQuery ) ;
wh i l e (S OK != immediate−>GetData ( f requencyQuery , &timeStamp ,

s i z e o f ( timeStamp ) , 0 ) )
{

// Wait f o r end o f query .
}



244 GPGPU Programming for Games and Science

// number o f t i c k s f o r GPU exe cu t i o n
i n t 6 4 t numTicks = f i n a lT ime − s ta r tT ime ;
// number o f s econds f o r GPU exe cu t i o n
doub le numSeconds = ( ( doub le ) numTicks ) / ( ( doub le ) timeStamp . Frequency ) ;

LISTING 5.8: D3D11 code to support timing of execution on the GPU.

GTEngine encapsulates this system in class DX11PerformanceCounter and the
engine functions DX11Engine::BeginTimer and DX11Engine::EndTimer. The typical
usage is

DX11Engine eng i ne ;
DX11PerformanceCounter pe r f o rmance ( eng i ne . GetDevice ( ) ) ;
eng i ne . BeginTimer ( pe r f o rmance ) ;
// CPU code tha t c a l l s i n t o the GPU goes he r e .
eng i ne . EndTimer ( pe r f o rmance ) ;
doub le s econds = per f o rmance . GetSeconds ( ) ;

The D3D11 timing query is at best a quick measurement of performance.
However, it says nothing about what is actually happening on the GPU re-
garding computation (arithmetic logic units, both scalar and vector) or mem-
ory bandwidth (cache behavior). Graphics chip manufacturers provide their
own performance tools. NVIDIA has its Nsight tool so you can work within
Microsoft Visual Studio; it is available for download from NVIDIA’s website.
You can debug shaders as well as profile with this tool.

AMD has performance tools you may download from their website. I have
had mixed success with the stand-alone tools. I have had better success with
their GPU Performance API that you can load dynamically loaded and use
directly within an application. The version I am using is 2.11.739.0. Although
I have a class wrapper that encapsulates their DLL, I cannot redistribute the
library. To use my class wrapper, you must download the API yourself and
agree to the license. I can, however, show you how the wrapper works. I have
installed the AMD GPU Performance API to the following folders:

GeometricTools/GTEngine/Tools/GPUPerfAPI-2.11.739.0/Bin
GeometricTools/GTEngine/Tools/GPUPerfAPI-2.11.739.0/Include
GeometricTools/GTEngine/Tools/GPUPerfAPI-2.11.739.0/Source

The Include and Source folders also contain my class-based wrapper
AMDPerformance. You can add the wrapper header and source file to any
project for which you want GPU profiling on an AMD graphics card. The
API is loaded dynamically, so the DLLs must be found at runtime. To sup-
port this in any Geometric Tools development, I have created folders

C:/Program Files (x86)/GeometricTools/x86
C:/Program Files (x86)/GeometricTools/x64

and copied the AMD performance DLLs to these folders. The same folders
will be used for DLL versions of GTEngine. Of course, you need administra-
tive privileges to do this, and you will need to do this manually because the
software does not come with an installer. I also have these folders as part of
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the system PATH environment variable, which is searched when an application
requires DLLs.

The AMD GPU Performance API has various counters it can measure de-
pending on the model of your graphics card. The API allows you to enumerate
these. For an AMD 7970, the enumeration shows 62 counters I can measure.
For example, there is a counter named GPUTime that I can request and have
the API report its value. A sample application shows how to use the counters,

GeometricTools/GTEngine/Basics/PerformanceAMD

The application draws 1024 triangles with random vertices in the cube [−1, 1]3

and with random texture coordinates in [0, 1]2. Back-face culling is disabled.
The texture for the triangles is loaded from the hard disk but each frame
is blurred using a compute shader. The PerformanceAMDWindow header file
declares

p r i v a t e :
s t a t i c vo id L i s t e n e r ( GPA Logging Type type , char const∗ message ) ;
AMDPerformance mPerformance ;

The Listener function is a callback provided to the performance library to be
called when events are generated by the library during the measurements. I
have these messages written to the output window of the IDE. The constructor
of the application window object is

PerformanceAMDWindow : : PerformanceAMDWindow ( Parameters& pa ramete r s )
:
Window( pa ramete r s ) ,
mTextColor ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f ) ,
mPerformance (mEngine−>GetDevice ( ) )

{
CreateCamera ( ) ;
Crea teText u r eGene r a to r ( ) ;
Cr ea teScene ( ) ;

// D i s a b l e back−f a c e c u l l i n g .
mNoCul l ingState . r e s e t (new Ra s t e r i z e r S t a t e ( ) ) ;
mNoCul l ingState−>cu l lMode = Ra s t e r i z e r S t a t e : : CULL NONE ;
mEngine−>S e tR a s t e r i z e r S t a t e ( mNoCul l ingState ) ;

mPerformance . SaveCoun te r In f o rma t i o n ( ”AMD7970Counters . t x t ” ) ;
mPerformance . R e g i s t e r ( L i s t e n e r ) ;
mPerformance . S e tA l l Coun t e r s ( ) ;

}

The mPerformance object is constructed by giving it the ID3D11Device object
associated with the window. At the end of the constructor, a description of
the counters is written to a file. You need do this only once for a specific
graphics card. The Listener callback is provided to the performance system
and all counters enumerated by the system are enabled for measurement.

The idle-time function for the real-time behavior is

vo id PerformanceAMDWindow : : On Id l e ( )
{

MeasureTime ( ) ;
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MoveCamera ( ) ;
UpdateConstants ( ) ;

mEngine−>C l e a r B u f f e r s ( ) ;

mPerformance . P r o f i l e ( [ t h i s ] ( )
{

mEngine−>Execute ( mGenerateTexture , mNumXGroups , mNumYGroups , 1 ) ;
mEngine−>Draw( mTr i ang l e s ) ;

} ) ;

// Compute the ave rage measurements . GetAverage a l l ow s you to a c c e s s
// the measurements d u r i n g a p p l i c a t i o n run t ime . SaveAverage c a l l s
// GetAverage and w r i t e s the r e s u l t s to a s p r e a d s h e e t .
s td : : vec to r<s td : : vec to r<AMDPerformance : : Measurement>> measurements ;
i f ( mPerformance . Ge tNumPro f i l eCa l l s ( ) == 16)
{

mPerformance . GetAverage ( measurements ) ;
mPerformance . SaveAverage ( ” P r o f i l e R e s u l t s . c s v ” ) ;

}

DrawFrameRate (8 , mYSize − 8 , mTextColor ) ;
mEngine−>D i s p l a yCo l o r B u f f e r ( 0 ) ;

UpdateFrameCount ( ) ;
}

The CPU-based frame rate counter is part of the GTEngine window class; it
is measured using MeasureTime and UpdateFrameCount, and the frame rate is
displayed (in frames per second) in the application window (lower-left corner).
The GPU operations I want to measure are bounded by the lambda function
passed to mPerformance.Profile. The capture clause specifies the variable this

because I need to access class members of PerformanceAMDWindow.
The sample is designed to measure the GPU performance during the first

sixteen calls of OnIdle, after which it computes the average of the measurements
and saves the results to a comma-separated-value file. This format allows you
to open the file with Microsoft Excel or other spreadsheet tool. At the highest
level, the counter GPUTime has a measurement of 0.49 milliseconds of execution
on the GPU. The counter GPUBusy was measured at 100 percent. Table 5.1
shows measurements related to the vertex and pixel shaders.

TABLE 5.1: Vertex and pixel shader performance measurements
counter measurement description

VSBusy 1.27 percentage of time the shader unit has
vertex shader work to do

VSVerticesIn 3072 number of vertices processed by vertex
shader

PSBusy 11.76 percentage of time the shader unit has
pixel shader work to do

PrimitivesIn 1024 number of primitives received by the
hardware

PSPixelsOut 258247 color buffer writes by the pixel shader
PSExportStalls 0.03 percentage of GPUBusy (positive means

bottleneck in late depth testing or in color
buffer)

TexUnitBusy 85.61 percentage of GPUTime the texture unit
is active

CBMemWritten 1228420 bytes written to the color buffer
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TABLE 5.2: Compute shader performance measurements
counter measurement description

CSThreadGroups 12288 number of thread groups
CSThreads 1048130 number of threads
CSWavefronts 12288 number of wavefronts
CSBusy 86.24 percentage time the shader unit has com-

pute shader work to do
CSMemUnitBusy 87.15 percentage of GPUTime the memory unit

is active
CSMemUnitStalled 0.47 percentage of GPUTime the memory unit

is stalled
CSFetchSize 5220.28 total kilobytes fetched from video memory
CSWriteSize 3072 kilobytes written to video memory
CSWriteUnitStalled 0.14 percentage of GPUTime the write unit is

stalled
CSCacheHit 67.23 percentage of instructions that hit the

data cache
CSSALUBusy 0.09 percentage of GPUTime scalar ALU in-

structions are processed
CSSALUInsts 0.32 average number of scalar ALU instruc-

tions per work item
CSSFetchInsts 0.09 average number of scalar fetch instruc-

tions from video memory executed per
work item

CSVALUBusy 4.16 percentage of GPUTime vector ALU in-
structions are processed

CSVALUInsts 28.48 average number of vector ALU instruc-
tions per work item

CSVFetchInsts 4.49 average number of vector fetch instruc-
tions from video memory executed per
work item

CSVWriteInsts 0.09 average number of vector write instruc-
tions to video memory executed per work
item

CSVALUUtilization 99.97 percentage of active vector ALU threads
in a wave

Table 5.2 shows the measurements related to the compute shader. The
first category of measurements involve thread counting. An AMD wavefront
consists of sixty-four threads. I chose the compute shader to use 8 × 8 × 1
threads, which is one wavefront per thread group. Thus, the reported num-
bers of thread groups and wavefronts are the same. The second category of
measurements are about memory accesses. The third category is about the
arithmetic logic units (ALUs), both scalar (single-channel operations) and
vector (multichannel operations in the SIMD sense).

Table 5.3 shows the measurements related to depth, stencil, and culling
state (including clipping). The application disabled back-face culling and all
triangles are visible during the performance testing, so culling primitives and
clipped primitives are both zero.

5.3.3 Performance Guidelines

Here is a brief list of guidelines to follow in order to obtain high perfor-
mance when writing GPGPU-based applications.

• Choose thread group sizes properly. On AMD hardware, a wavefront
consists of sixty-four GPU threads. On NVIDIA, a warp consists of
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TABLE 5.3: Depth, stencil, and culling state performance measurements
counter measurement description

PrimitiveAssemblyBusy 9.42 percentage of GPUTime that clipping and
culling is busy

CulledPrims 0 number of culled primitives
ClippedPrims 0 number of primitives requiring at least

one clipping operation
DepthStencilBusy 10.24 percentage of time GPU spent performing

depth and stencil tests
ZUnitStalled 0.10 percentage of GPUTime depth buffer

waits for color buffer to be ready for
writes

HiZQuadsCulled 95.93 percentage of quads not continuing in the
pipeline after HiZ test (written directly to
depth buffer or culled)

PostZQuads 1.74 percentage of quads for which pixel shader
will run and may be PostZ tested

PreZQuadsCulled 2.33 percentage of quads rejected based on de-
tailZ and earlyZ tests

PreZSamplesFailingZ 383368 number of samples tested for Z before
shading and failed Z test

PreZSamplesPassing 258247 number of samples tested for Z after shad-
ing and passed

PreZTilesDetailCulled 0.03 percentage of tiles rejected because the
primitive had no contributing area

thirty-two GPU threads. You should choose the numthreads parameters
to have a product that is a multiple of these numbers; otherwise, the
excess threads will be executed anyway yet their work is rejected. You
should prefer to keep all the threads busy doing work that is accepted.

• Prefer to avoid branching and the associated stalls whenever possible; if
necessary, use SIMD-style flattening, manually or via the flatten direc-
tive.

• Use group-shared memory to avoid redundant memory accesses when
computing in neighborhoods of a point and to store shared computations
that are expensive. Be sure to determine the break-even point for when
group-shared memory outperforms the naive look-up-everything-in-the-
neighborhood approach.

• Prefer loop unrolling via the unroll directive, but profile the shader be-
cause sometimes loop unrolling might lead to slower code. I had this
happen on occasion but not frequently.

• Avoid loops controlled by variables associated with unordered access
views. Such control is usually a performance problem. If your algorithm
requires this and you have designed this in a sequential manner, you
can analyze the algorithm to see whether you can make it a multipass
algorithm that avoids the UAV loop control. For example, I had to do
this when writing a GPU-based connected component labeler that used
a union-find algorithm.
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• Try to keep data on GPU; that is, avoid uploads to the GPU and read-
backs from the GPU in the middle of an end-to-end algorithm. The
memory transfer is a serious bottleneck.

• When creating a lot of D3D11 resources, try to do so in a thread that
is separate from the consumer of the resources. This takes advantage of
the thread safety of the ID3D11Device object. In the producer-consumer
model, you will have to thread the CPU code for the consumption.

• If you have a sequence of GPU stages that must be performed in order,
and if one of them performs worse than the CPU algorithm, that is not
a reason to avoid porting to the GPU. The goal is a speedup for the
entire sequence. It is not necessary to have each GPU stage outperform
the corresponding CPU stage.

• Use GPU performance counters for hardware information such as mem-
ory and texture cache misses; memory reads, write, and stalls; scalar
ALU usage; vector ALU usage; etc.

• Use multiple tools, because one alone is usually not sufficient to give
you enough information to diagnose. You should definitely use a CPU
profiler for end-to-end performance measurements, a GPU profiler to un-
derstand what is happening on the GPU, and a tool such as Microsoft’s
Concurrency Visualizer to see how the application threads are laid out
over time in order to determine where stalls are in the end-to-end exe-
cution.

• Do not follow the guidelines as if they are absolute rules. For example, if
you have branching and the profiler shows that branching is not a bottle-
neck, there is no reason to remove the branching—especially if it makes
the algorithm more complicated. As another example, just because you
access shader resources in a neighborhood of the location specified by the
dispatch thread ID does not mean you should immediately use group-
shared memory. Such sharing has some fixed costs associated with it. Try
writing the shaders both way, with and without group-shared memory,
and measure the performance in order to make your final decision.

5.4 Code Testing

In an industrial software engineering development environment, you invari-
ably have test teams to support what you do. One of those tasks is to verify
that (most of) your code has been exercised so that you have some assurance
that what you wrote is actually used during application runtime. This falls in
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the realm of code testing. To illustrate some of the testing topics, consider the
contrived function of Listing 5.9.

enum ErrorCode { INSERTED , NO MATCH, INVALID INPUT } ;

Er rorCode I n s e r t ( char const ∗ name , Database& db )
{

ErrorCode code = INSERTED ;
i f (name != n u l l p t r )
{

i f ( name [ 0 ] == ’A ’ )
{

db . In s e r tAReco r d (name ) ;
}
e l s e i f ( name [ 0 ] == ’B ’ && name [ 1 ] == ’ a ’ )
{

db . In s e r tBCReco rd (name ) ;
}
e l s e i f ( name [ 0 ] == ’D ’ )
{

db . I n s e r tEReco r d (name ) ;
}
e l s e
{

code = NOMATCH;
}

}
e l s e
{

code = INVALID INPUT ;
}
r e tu r n code ;

}

LISTING 5.9: A simple example to illustrate testing concepts.

5.4.1 Topics in Code Testing

Code testing is a large topic, and I do not plan on going into detail about
it in this book. But I do want to mention several topics because they should
be on your mind during development. Some high-level questions you must ask
yourself are:

1. Does the code do what it is designed to do?

2. Will the code perform robustly for the inputs it is intended to process?

3. What are the conditions under which the code will fail? If any, what
safeguards does the code have to prevent failure?

In the example at hand, I assume the existence of an object db that allows
you to insert character strings into a database. The code is designed to allow
insertion of strings starting with “A”, “Ba”, or “D”; other strings are not
inserted. Given this limited description, I would say that the code does what
it is designed to do. You can test the code with

ErrorCode code ;
code = I n s e r t ( ” A l l i g a t o r ” , db ) ; // code = INSERTED
code = I n s e r t ( ”Bat” , db ) ; // code = INSERTED
code = I n s e r t ( ”Dog” , db ) ; // code = INSERTED
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code = I n s e r t ( ”Cat” , db ) ; // code = NOMATCH
code = I n s e r t ( n u l l p t r , db ) ; // code = INVALID INPUT

However, without a formal requirements list, do you really know whether the
code does what it is designed to do? For example, is the name matching
supposed to be case sensitive?

code = Inser tName ( ”BAt” ) ; // code = NO MATCH, i s t h i s what you want ?

Checking your code against a requirements list is not something for which
tools are readily available. You will need to be diligent about this topic. In
my industrial experience, getting a well-written requirements list from your
clients or coworkers is as painful as pulling teeth.

Regarding robustness, the code at least tests whether the input pointer is
not null. However, the code is not as robust as it could be. For example,

char const∗ name0 = ”B” ;
code = Inser tName (name0 , db ) ; // code = NO MATCH, which i s okay
char const∗ name1 = new char [ 1 ] ;
name1 [ 0 ] = ’B ’ ;
// What shou l d the r e t u r n ed code be? De r e f e r e n c i n g name1 [ 1 ] i s a memory
// a c c e s s v i o l a t i o n .
code = Inser tName (name1 , db ) ;

Most likely the programmer intended the input name to be a null-terminated
string, but string handling is problematic, because you have no idea of the
length of the string and strlen measures the length by searching for a null
character. Thus, the caller of Insert has the responsibility for meeting the
precondition that name is a null-terminated string. A better design might be
to pass in the length:

ErrorCode I n s e r t A l t 1 ( uns igned i n t l eng th , char const∗ name , Database& db )
{

ErrorCode code = NOMATCH;
i f (name != n u l l p t r && l en g t h > 0)
{

i f ( l e n g t h >= 1)
{

i f ( name [ 0 ] == ’A ’ | | name [ 0 ] == ’D ’ )
{

db . In s e r tAReco rd ( name ) ;
code = INSERTED ;

}
}
e l s e i f ( l e n g t h >= 2)
{

i f ( name [ 0 ] == ’B ’ && name [ 1 ] == ’ a ’ )
{

db . In s e r tBCReco rd ( name ) ;
code = INSERTED ;

}
}

}
e l s e
{

code = INVALID MATCH ;
}
r e tu r n code ;

}
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However, there is no guarantee that the caller has ensured that the length
is correct for the specified name. Alternatively, you can use a different data
structure for the string:

ErrorCode I n s e r t A l t 2 ( s td : : s t r i n g const& name , Database& db )
{

ErrorCode code = NOMATCH;
i f (name != ”” )
{

i f ( name . l e n g t h ( ) >= 1)
{

i f ( name [ 0 ] == ’A ’ | | name [ 0 ] == ’D ’ )
{

db . In s e r tAReco rd ( name . c s t r ( ) ) ;
code = INSERTED ;

}
}
e l s e i f ( name . l e n g t h ( ) >= 2)
{

i f ( name [ 0 ] == ’B ’ && name [ 1 ] == ’ a ’ )
{

db . In s e r tBCReco rd ( name . c s t r ( ) ) ;
code = INSERTED ;

}
}

}
e l s e
{

code = INVALID MATCH ;
}
r e tu r n code ;

}

This alternative is attractive in that the caller must properly formulate the
name string, although an accidental memory overwrite can be painful. This
gives you fewer responsibilities. The db object is still expecting a native
pointer, but at least you are passing a pointer to a well-formed string, re-
lying on std::string to be implemented and tested properly.

Regardless of how you design the algorithm for insertion, it is your respon-
sibility to test the code, even before passing it off to a formal team of testers.
Concepts you should be familiar with are unit testing, regression testing, and
code coverage. Unit testing has two goals. The first goal is to verify that your
code correctly solves the problems you intended. Because you are most likely
not the only person working on the code base, others might change the code.
The code might have been deemed correct but later changes make it incorrect.
Unit tests tend to be executed on a regular basis in order to trap problems
introduced during code maintenance; thus, the second goal of unit testing is
to find regressions in behavior. As always, do not wait for a test team to find
any regressions or bugs you have introduced. The best time to diagnose and
find bugs is as soon as you have introduced them. If you wait, you might forget
what you were thinking when you made the code changes.

The unit tests should be designed to exercise as much of the code as
possible, including any error conditions that your code tries to trap. Code
coverage generally comes in a few flavors. You can measure which functions
in your code are entered during execution, which blocks of code are executed,
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or which lines of code are executed. Function coverage is useful mainly for
high-level measurements of what parts of your code base are actually being
used. Line coverage is, perhaps, too fine a measurement—if you have n lines
without branching, all lines will be executed.

In my experience at Microsoft, the automated code coverage tools used
block counting where the blocks are determined from the generated assembly
code. One block is a sequence of assembly instructions without branching. Al-
though this makes sense at a high level, there are some low-level consequences
that you must keep in mind. Firstly, the assembly code generated for debug
configurations and release configurations are different, especially when code is
inlined. Secondly, the tools will count function call entry and function call exit
blocks, and sometimes branching is handled in a manner you did not expect.
For example, a simple function of the form

bool I sDep thTextu r e ( Texture t e x t u r e )
{

r e tu r n t e x t u r e . t ype == DEPTH TEXTURE ENUMERATION;
}

Texture mytex tu r e ;
i f ( I sDep thTextu r e ( mytex tu r e ) )
{

DoSomething ;
}

shows up as four blocks. Two of those blocks are the call entry and call
exit handling, usually stack manipulation to push and pop input parame-
ters. Two other blocks are generated because of the implied branching due
to the operator== comparison. The small code stub most likely generates 75
percent code coverage, because the calling code does not have an else clause,
and the code coverage tool thinks you have not tested the case of the texture
not being a depth texture. The code coverage tools typically come with a user
interface that allows you to see coverage information at the source-code level,
even though the blocks are counted at the assembly level.

You should certainly strive for full code coverage, but in practice you
cannot expect to reach 100 percent because you invariably will have fault
conditions that are difficult to test. This is in the realm of fault injection,
which is difficult to implement. For example, if your code creates a D3D11
device and context, and that code works fine on your machine, you might not
have ever tested your code to see what happens if the device creation fails,
say, on a machine that has only D3D9 hardware. To test the failure, you could
step through with a debugger and set the return HRESULT to something other
than S OK, then let the program continue running to see whether it terminates
properly. Unfortunately, manual fault injection of this type is not suitable for
a production environment where you want to automate the testing.

Unit tests that lead to 100 percent code coverage do not necessarily guar-
antee that your code works correctly. If your algorithm is implemented incor-
rectly, no amount of code coverage measurement will help you. Thus, code
coverage is necessary for your development environment but it is not entirely
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sufficient for a quality product. And unit testing is not always enough. Such
tests tend to be for low-level components of your code. For an entire appli-
cation, you tend to have end-to-end testing. Each component might be unit
tested and deemed correct, but do the components all work together correctly
to produce the desired application results? End-to-end test design is specific
to the application at hand, so there are no general guidelines for how to do
this within your environment.

5.4.2 Code Coverage and Unit Testing on the GPU

Because of the highly parallel nature of a GPU, tool support that you
normally find for CPU computing is not as evolved for GPU computing. As
mentioned previously, you can copy intermediate computations into structured
buffers, read them back from GPU to CPU, and analyze them for any problems
in the shader code. The same idea applies to obtaining code coverage. You can
provide a structured buffer or texture that has unsigned integers used as bit
flags, set for each block of code in the shader. For example, consider Listing
5.10.

Texture2D<f l o a t 4> i n p u t ;
RWTexture2D<f l o a t 4> output ;
RWTexture2D<u in t> codeCoverage ; // i n i t i a l l y a l l z e ro va l u e s
[ numthreads (NUMX, NUMY, 1 ) ]
vo id CSMain ( i n t 2 t : SV DispatchThread ID)
{

i f ( i n p u t [ t ] . r > 0 .0 f )
{

output [ t ] = i n pu t [ t ] . r r r r ;
codeCoverage [ t ] |= 1 ;

}
e l s e i f ( i n p u t [ t ] . g > 0 .0 f )
{

output [ t ] = i n pu t [ t ] . gggg ;
codeCoverage [ t ] |= 2 ;

}
e l s e i f ( i n p u t [ t ] . b > 0 .0 f )
{

output [ t ] = i n pu t [ t ] . bbbb ;
codeCoverage [ t ] |= 4 ;

}
e l s e
{

output [ t ] = i n pu t [ t ] . aaaa ;
codeCoverage [ t ] |= 8 ;

}
}

LISTING 5.10: An example of measuring code coverage on the GPU.

The codeCoverage output sets a bit in the bit flag based on which block of code
is executed. Moreover, in this example you additionally get information about
the block for each thread with ID t.

If you care only about the generic block regardless of thread, you could
easily have a single-element 2D texture and set only bits of codeCoverage[0].
However, keep in mind that the current code guarantees no concurrent access
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to codeCoverage[t]. Using a single element, you want to guard against concur-
rent access. This is particularly true if you want to count how many times you
executed a block. For example, consider Listing 5.11.

Texture2D<f l o a t 4> i n p u t ;
RWTexture2D<f l o a t 4> output ;
RWStructuredBuf fer<u in t> codeCoverage ; // f o u r va l u es , a l l i n i t i a l l y z e ro
[ numthreads (8 , 8 , 1 ) ]
vo id CSMain ( i n t 2 t : SV DispatchThread ID)
{

i f ( i n p u t [ t ] . r > 0 .0 f )
{

output [ t ] = i n pu t [ t ] . r r r r ;
u i n t o l dVa l ue0 ;
I n t e r l o c k edAdd ( codeCoverage [ 0 ] , 1 , o l dVa l ue0 ) ;

}
e l s e i f ( i n p u t [ t ] . g > 0 .0 f )
{

output [ t ] = i n pu t [ t ] . gggg ;
u i n t o l dVa l ue1 ;
I n t e r l o c k edAdd ( codeCoverage [ 1 ] , 1 , o l dVa l ue1 ) ;

}
e l s e i f ( i n p u t [ t ] . b > 0 .0 f )
{

output [ t ] = i n pu t [ t ] . bbbb ;
u i n t o l dVa l ue2 ;
I n t e r l o c k edAdd ( codeCoverage [ 2 ] , 1 , o l dVa l ue2 ) ;

}
e l s e

{
output [ t ] = i n pu t [ t ] . aaaa ;
u i n t o l dVa l ue3 ;
I n t e r l o c k edAdd ( codeCoverage [ 3 ] , 1 , o l dVa l ue3 ) ;

}
}

LISTING 5.11: An example of code coverage on the GPU where you count
how many times each block is visited.

As always, a measurement taken during an experiment affects the exper-
iment itself. The HLSL compiler does a good job of optimizing code. If you
insert instructions for measuring code coverage, it is possible that the opti-
mizer cannot do what it did before the insertion. Thus, the code coverage
measurements change the actual code whose coverage you are trying to mea-
sure. Also, if the shader is extremely lengthy and complicated, you can spend
a lot of time adding the code coverage instructions. Moreover, if your shader is
bordering on the limit of number of instructions, the additional code coverage
instructions could push you over the limit and the shader will not compile.

One thing you should do if you plan on measuring the code coverage on a
regular basis—wrap the code coverage instructions with preprocessor macros
that you can turn on or off. Within GTEngine, you can do this using the
HLSLDefiner class.

Regarding unit testing, my general rule of thumb is to write C++ code
that is designed to do the same thing the HLSL code is designed to do. You can
read back the HLSL outputs and compare them to the C++ outputs. If the
outputs are dependent on the IEEE floating-point behavior, say, you expect
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some subnormals in the C++ code, your unit tests will have to account for
this and compare properly. If your shader output is from the image processing
domain, you can write unit tests and do regression testing by reading back
the image outputs and compare them to a database of images generated from
previous runs of the code.



Chapter 6

Linear and Affine Algebra

6.1 Vectors

Vectors and matrices are the most common entities manipulated in real-
time applications. I assume you are familiar with the algebra and geometry
of these. Although it is important to understand the abstract concepts one
normally encounters in courses on linear or affine algebra, the focus here is on
the concrete computational aspects and on the geometric relationships asso-
ciated with these entities. We will work only with real-valued computations,
so there is no need to have a data type or support for complex numbers.

In practice, vectors are represented as one-dimensional arrays of scalars;
typically, the data type is floating-point, either 32-bit float or 64-bit double.
GTEngine supports both by implementing its mathematics library using tem-
plates. Matrices are represented as two-dimensional arrays of scalars.

Mathematics engines for real-time applications provide vector implemen-
tations that support basic arithmetic: sum and difference of vectors, multipli-
cation of a vector by a scalar, dot product of vectors, and length of a vector.
Usually, support is included for normalizing a vector, where you compute a
unit-length vector in the same direction as the original, assuming it is not
zero. GTEngine does so and also includes support for computing extreme val-
ues from a set of vectors, the result an axis-aligned bounding box. The engine
provides geometric operations related to orthogonality, namely, computing or-
thogonal vectors or bases; cross products in 3D are part of this support. Affine
operations include computing barycentric coordinates and determining within
a user-specified tolerance the dimensionality of a set of vectors. Finally, com-
parison operators are provided to support standard C++ sorted containers.

GTEngine has a base template class Vector<int,Real> whose first param-
eter is the dimension (number of components) and whose second parame-
ter is the floating-point type (float or double). Derived classes Vector2<Real>,
Vector3<Real>, and Vector4<Real> provide additional dimension-specific con-
structors and operations.

257
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6.1.1 Robust Length and Normalization Computations

A common operation for vectors is computing the length. If V has com-
ponents xi for 0 ≤ i < n, the length is mathematically defined as

|V| =

√

√

√

√

n−1
∑

i=0

x2
i (6.1)

The most frequently encountered implementation is the obvious one, shown in
Listing 6.1, where components of the vector V can be accessed by the bracket
operator. The data type Real is either float or double.

Rea l Length ( Vector V)
{

Rea l l e n g t h = 0 ;
f o r ( i n t i = 0 ; i < n ; ++i )
{

l e n g t h += V[ i ]∗V[ i ] ;
}
l e n g t h = s q r t ( l e n g t h ) ;
r e tu r n l e n g t h ;

}

LISTING 6.1: Computing the length of a vector.

For small-magnitude components, this implementation is reasonable, but
if the components are large in magnitude, the floating-point computations for
the sum of squares can overflow, leading to a return value of floating-point
infinity. For example, let M be the maximum finite floating-point number for
Real. The vector V = (M/2,M/2,M/2) has theoretical length

√
3M/2, which

should have a finite floating-point number that approximates it. However, us-
ing floating-point arithmetic, the term V[0]*V[0] will overflow to become the
floating-point infinity. The same is true for the other squares, and accumu-
lating them will still produce floating-point infinity. The sqrt function returns
floating-point infinity when its input is infinite.

A mathematically equivalent algorithm that leads to a robust implementa-
tion is the following. Let j be the index for the vector’s component of largest
magnitude; thus, |xi| ≤ |xj | for all i. If xj = 0, then the vector is the zero
vector and its length is zero. If xj �= 0, factor the vector to V = |xj |(V/|xj |).
The vector W = V/|xj | has components all smaller or equal to one in magni-
tude, so the obvious length computation for it does not overflow. Listing 6.2
has pseudocode for this algorithm.

Rea l LengthRobust ( Vector V)
{

Rea l maxAbsComponent = |V [ 0 ] | ;
f o r ( i n t i = 1 ; i < n ; ++i )
{

Rea l absComponent = |V[ i ] | ;
i f ( absComponent > maxAbsComponent)
{

maxAbsComponent = absComponent ;
}
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}

Rea l l e n g t h ;
i f (maxAbsComponent > 0)
{

Vector W = V/maxAbsComponent ;
l e n g t h = maxAbsComponent∗ s q r t ( Length (W) ) ;

}
e l s e

{
l e n g t h = 0 ;

}
r e tu r n l e n g t h ;

}

LISTING 6.2: Computing the length of a vector robustly.

Normalization of a vector requires computing the length of the vector
and dividing the vector by it when not zero. The obvious implementation
suffers from the same numerical problems that length computations do. The
algorithm replaces the vector by its normalization and returns the computed
length. Listing 6.3 has pseudocode for the algorithm. The ampersand indicates
that the input V will be modified as a side effect of the function.

Rea l No rma l i z e ( Vector& V)
{

Rea l l e n g t h = Length (V ) ; // The computat ion can o v e r f l ow .
i f ( l e n g t h > 0)
{

V = V/ l en g t h ;
}
r e tu r n l e n g t h ;

}

LISTING 6.3: Normalizing a vector.

A robust implementation that uses the idea of factoring out the largest
magnitude component is shown in Listing 6.4.

Rea l Norma l i zeRobust ( Vector& V)
{

Rea l maxAbsComponent = |V [ 0 ] | ;
f o r ( i n t i = 1 ; i < n ; ++i )
{

Rea l absComponent = |V[ i ] | ;
i f ( absComponent > maxAbsComponent)
{

maxAbsComponent = absComponent ;
}

}

Rea l l e n g t h ;
i f (maxAbsComponent > 0)
{

V = V/maxAbsComponent ;
l e n g t h = Length (V ) ;
V = V/ l en g t h ;
l e n g t h ∗= maxAbsComponent ;

}
r e tu r n l e n g t h ;

}

LISTING 6.4: Normalizing a vector robustly.
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Sometimes the length of a vector might be computed from a dot prod-
uct that was previously computed: length = sqrt(Dot(V,V)). The dot product
itself can overflow, and there is no protection against that. If you expect
large-magnitude components in your computations, you will want to avoid
computing the length from a dot product.

The base class for vectors has the interface to support the various functions
described here, shown in Listing 6.5.

template < i n t N, typename Real>
Rea l Dot ( Vector<N, Real> const& v0 , Vector<N, Real> const& v1 ) ;

template < i n t N, typename Real>
Rea l Length ( Vector<N, Real> const& v ) ;

template < i n t N, typename Real>
Rea l LengthRobust ( Vector<N, Real> const& v ) ;

template < i n t N, typename Real>
Rea l No rma l i z e ( Vector<N, Real>& v ) ;

template < i n t N, typename Real>
Rea l Normal i zeRobust ( Vector<N, Real>& v ) ;

LISTING 6.5: The vector class interface for dot products, length, and nor-
malization.

6.1.2 Orthogonality

Two nonzero vectors U and V are said to be orthogonal or perpendicular
when their dot product is zero: U ·V = 0. Geometrically, the angle between
the vectors is 90 degrees.1 Observe that the vectors sU for nonzero scalars s
are also orthogonal to V.

6.1.2.1 Orthogonality in 2D

In 2D, it is easy to compute an orthogonal vector corresponding to a
nonzero vector V = (x0, y0), namely, V⊥ = (y0,−x0). The superscript sym-
bol on the orthogonal vector is standard mathematical notation for a vector
perpendicular to the one named in the expression. As mentioned, s(y0,−x0)
for nonzero s are all perpendicular to V. If V is unit length, there are exactly
two unit-length vectors perpendicular to it: (y0,−x0) and (−y0, x0).

GTEngine has functions to support orthogonality in 2D, as shown in List-
ing 6.6.

template <typename Real>
Vector2<Real> Perp ( Vector2<Real> const& v ) ;

template <typename Real>

1The concept of orthogonal is more general. The vectors are orthogonal with respect to
a positive definite matrix A when U

TAV = 0. The matrix is referred to as a metric and
the left-hand side of the equation is referred to as an inner product. When A is the identity
matrix, the test is UT

V = 0, where the left-hand side of the equation is the dot product of
vectors.
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Vector2<Real> Uni tPerp ( Vector2<Real> const& v ) ;

template <typename Real>
Rea l DotPerp ( Vector2<Real> const& v0 , Vector2<Real> const& v1 ) ;

LISTING 6.6: The 2D vector interface for perpendicular vectors and dot-
perp.

The function Perp computes (y0,−x0) for input (x0, y0). The components of
the input are swapped and the second one is negated. The choice for negating
the first component rather than the second component is based on generating
the perpendicular vector via a formal determinant,

det

[

E0 E1

x0 y0

]

= y0E0 − x0E1 (6.2)

where E0 = (1, 0) and E1 = (0, 1). The determinant idea is useful for comput-
ing perpendicular vectors in higher dimensions. The function UnitPerp com-
putes the unit-length vector (y0,−x0)/

√

x2
0 + y20 when the input is nonzero.

The zero vector is returned when the input is the zero vector. Sometimes 2D
geometric algorithms involve dot products of the form

(x0, y0) · (x1, y1)
⊥ = (x0, y0) · (y1,−x1)

= x0y1 − x1y0

= det

[

x0 y0
x1 y1

]

(6.3)

The computation is referred to as the dot-perp of the vectors. A useful identity
is U ·V⊥ = −V ·U⊥. The function DotPerp returns the dot-perp of the inputs.

6.1.2.2 Orthogonality in 3D

In 3D, an orthogonal vector V2 = (x2, y2, z2) may be computed corre-
sponding to two linearly independent vectors V0 = (x0, y0, z0) and V1 =
(x1, y1, z1) using the cross-product operator,

V2 = V0 ×V1 = det

⎡

⎣

E0 E1 E2

x0 y0 z0
x1 y1 z1

⎤

⎦

= (y0z1 − y1z0, z0x1 − x0z1, x0y1 − x1y0)

(6.4)

GTEngine has functions to support orthogonality in 3D, as shown in List-
ing 6.7. The functions have a template integer parameter N that should be
three or four. The latter case allows you to use the functions when you choose
to represent affine points and vectors with 4-tuples. The last component of
affine points is one and the last component of affine vectors is zero. The cross
product of two affine vector 4-tuples will produce an affine vector 4-tuple
whose last component is zero.
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template < i n t N, typename Real>
Vector<N, Real> Cro s s ( Vector<N, Real> const& v0 , Vector<N, Real> const& v1 ) ;

template < i n t N, typename Real>
Vector<N, Real> Un i tCro s s ( Vector<N, Real> const& v0 ,

Vector<N, Real> const& v1 ) ;

template < i n t N, typename Real>
Rea l DotCross ( Vector<N, Real> const& v0 , Vector<N, Real> const& v1 ,

Vector<N, Real> const& v2 ) ;

LISTING 6.7: The vector interface for cross products and dot-cross, where
N is three or four.

The function Cross computes the cross product of the inputs. If you require a
unit-length orthogonal vector, the cross product can be normalized, a result
returned by function UnitCross. If the cross product is zero, the function re-
turns the zero vector. Similar to the dot-perp operation in 2D, the dot-cross
operation is useful and is more commonly referred to as the triple scalar prod-
uct of three vectors defined by V0 ·V1 ×V2. The function DotCross computes
the triple scalar product.

V0 ·V1 ×V2 = det

⎡

⎣

x0 y0 z0
x1 y1 z1
x2 y2 z2

⎤

⎦

= x2(y0z1 − y1z0) + y2(z0x1 − x0z1) + z2(x0y1 − x1y0)

(6.5)

6.1.2.3 Orthogonality in 4D

In 4D, an orthogonal vector V3 = (x3, y3, z3, w3) may be computed
corresponding to three linearly independent vectors V0 = (x0, y0, z0, w0),
V1 = (x1, y1, z1, w1), and V2 = (x2, y2, z2, w2) using an extension of the
determinant idea to 4D. I call this the hypercross product:

V3 = Hypercross(V0,V1,V2)

= det

⎡

⎢

⎣

E0 E1 E2 E3

x0 y0 z0 w0

x1 y1 z1 w1

x2 y2 z2 w2

⎤

⎥

⎦

= det

⎡

⎣

y0 z0 w0

y1 z1 w1

y2 z2 w2

⎤

⎦E0 − det

⎡

⎣

x0 z0 w0

x1 z1 w1

x2 z2 w2

⎤

⎦E1

+ det

⎡

⎣

x0 y0 w0

x1 y1 w1

x2 y2 w2

⎤

⎦E2 − det

⎡

⎣

x0 y0 z0
x1 y1 z1
x2 y2 z2

⎤

⎦E3

(6.6)

GTEngine has functions to support orthogonality in 4D, as shown in List-
ing 6.8.

template <typename Real>
Vector4<Real> HyperCross ( Vector4<Real> const& v0 ,

Vector4<Real> const& v1 , Vector4<Real> const& v2 ) ;
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template <typename Real>
Vector4<Real> Un i tHyperCro s s ( Vector4<Real> const& v0 ,

Vector4<Real> const& v1 , Vector4<Real> const& v2 ) ;

template <typename Real>
Rea l DotHyperCross ( Vector4<Real> const& v0 , Vector4<Real> const& v1 ,

Vector4<Real> const& v2 , Vector4<Real> const& v3 ) ;

LISTING 6.8: The vector interface for hypercross products and dot-
hypercross.

The function HyperCross computes the hypercross product of the inputs. If
you require a unit-length orthogonal vector, the hypercross product can be
normalized, a result returned by function UnitHyperCross. If the hypercross
product is zero, the function returns the zero vector. Similar to the dot-cross
operation in 3D, the dot-hypercross operation is

DotHyperCross(V0,V1,V2,V3) = det

⎡

⎢

⎢

⎣

x0 y0 z0 w0

x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

⎤

⎥

⎥

⎦

(6.7)

6.1.2.4 Gram-Schmidt Orthonormalization

In d-dimensional space, let {Vi}n−1
i=0 be a linearly independent set of vec-

tors; necessarily n ≤ d. An algorithm for modifying these to construct a set
{Ui}n−1

i=0 whose elements are unit length and mutually perpendicular is called
Gram-Schmidt orthonormalization. The construction is iterative:

U0 =
V0

|V0|
; Ui =

Vi −
∑i−1

j=0(Uj ·Vi)Uj

|Vi −
∑i−1

j=0(Uj ·Vi)Uj |
, i ≥ 1 (6.8)

The idea is to compute the first vector U0 by normalizing V0. The second
vector U1 is obtained by projecting out the U0 component from V1 and then
normalizing. The resulting vector is necessarily orthogonal to the first. The
next vector is projected by removing components from the previous orthogonal
vectors, followed by normalization. Theoretically, this is a correct algorithm,
but in practice using floating-point arithmetic, when d is large, the numerical
roundoff errors can be problematic. Other numerical methods are typically
used to avoid this [16].

The resulting set of vectors is referred to as an orthonormal set of vectors, a
topic explored in the next section. GTEngine has a single templated function
for computing the algorithm as stated here. The interface is defined in the
base vector class; see Listing 6.9.

template < i n t N, typename Real>
Rea l O r thono rma l i z e ( i n t numElements , Vector<N, Real>∗ v ) ;

LISTING 6.9: The vector interface for Gram-Schmidt orthonormalization.

The number of elements is specified, and this must be no larger than the
parameter N. The vectors are orthonormalized in place, so v is an input-output
array.
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6.1.3 Orthonormal Sets

A frequently asked question in computer graphics is how, given a unit-
length vector N = (x, y, z), one computes two unit-length vectors U and V

so that the three vectors are mutually perpendicular. For example, N might
be a normal vector to a plane, and you want to define a coordinate system
in the plane, which requires computing U and V. There are many choices
for the vectors, but for numerical robustness, I have always recommended the
following algorithm.

Locate the component of maximum absolute value. To illustrate, suppose
that x is this value, so |x| ≥ |y| and |x| ≥ |z|. Swap the first two components,
changing the sign on the second, and set the third component to 0, obtaining
(y,−x, 0). Normalize this to obtain

U =
(y,−x, 0)
√

x2 + y2
(6.9)

Now compute a cross product to obtain the other vector,

V = N×U =
(xz, yz,−x2 − y2)
√

x2 + y2
(6.10)

As you can see, a division by
√

x2 + y2 is required, so it is necessary that
the divisor not be zero. In fact it is not, because of how we choose x. For a
unit-length vector (x, y, z) where |x| ≥ |y| and |x| ≥ |z|, it is necessary that

|x| ≥ 1/
√
3. The division by

√

x2 + y2 is therefore numerically robust—you
are not dividing by a number close to zero.

In linear algebra, we refer to the set {U,V,N} as an orthonormal set. By
definition, the vectors are unit length and mutually perpendicular. Let 〈N〉
denote the span of N. Formally, this is the set

〈N〉 = {tN : t ∈ IR} (6.11)

where IR is the set of real numbers. The span is the line that contains the
origin 0 with direction N. We may define the span of any number of vectors.
For example, the span of U and V is

〈U,V〉 = {sU+ tV : s ∈ IR, t ∈ IR} (6.12)

This is the plane that contains the origin and has unit-length normal N; that
is, any vector in 〈U,V〉 is perpendicular to N. The span of U and V is said to
be the orthogonal complement of the span of N. Equivalently, the span of N is
said to be the orthogonal complement of the span of U and V. The notation
for orthogonal complement is to add a superscript “perp” symbol. 〈N〉⊥ is
the orthogonal complement of the span of N and 〈U,V〉⊥ is the orthogonal
complement of the span of U and V. Moreover,

〈U,V〉⊥ = 〈N〉, 〈N〉⊥ = 〈U,V〉 (6.13)



Linear and Affine Algebra 265

6.1.3.1 Orthonormal Sets in 2D

The ideas in the introduction specialize to two dimensions. Given a unit-
length vector U0 = (x0, y0), a unit-length vector perpendicular to it is U1 =
(x1, y1) = (y0,−x0). The span of each vector is a line and the two lines are
perpendicular; therefore,

〈U0〉⊥ = 〈U1〉, 〈U1〉⊥ = 〈U0〉 (6.14)

The set {U0,U1} is an orthonormal set.
The set {U0,U1} is a left-handed orthonormal set. The vectors are unit

length and perpendicular, and the matrix M = [U0 U1] whose columns are
the two vectors is orthogonal with det(M) = −1. To obtain a right-handed
orthonormal set, negate the last vector: {U0,−U1}.

The Vector2<Real> interface for computing orthogonal complements is
shown in Listing 6.10.

template <typename Real>
Rea l ComputeOrthogonalComplement ( i n t numInputs , Vector2<Real>∗ v ) ;

LISTING 6.10: The 2D vector interface for computing orthogonal comple-
ments.

The return values of the functions is the minimum length of the unnormalized
vectors constructed during the Gram-Schmidt algorithm. It is possible the
inputs are nearly linearly dependent, in a numerical sense, in which case the
return value is nearly zero. The function provides a consistent signature across
dimensions. The numInputs must be one and v[] must have one vector.

6.1.3.2 Orthonormal Sets in 3D

The ideas in the preamble to the section on orthonormal sets were for 3D.
This subsection formalizes the ideas.

One Vector from Two Inputs. Given two vectors V0 and V1, the cross
product is obtained from Equation (6.4). If either of the input vectors is the
zero vector or if the input vectors are nonzero and parallel, the cross product
is the zero vector. If the input vectors are unit length and perpendicular, then
the cross product is guaranteed to be unit length and {V0,V1,V2} is an
orthonormal set.

If the input vectors are linearly independent, we may use Equation (6.8)
to obtain a pair of unit-length vectors, U0 and U1. We may then compute the
cross product to obtain another unit-length vector, U2 = U0 ×U1, which is
perpendicular to the input vectors; that is,

〈U2〉 = 〈U0,U1〉⊥ (6.15)

Two Vectors from One Input. If we start with only one unit-length vector
U2, we wish to find two unit-length vectorsU0 andU1 such that {U0,U1,U2}
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is an orthonormal set, in which case

〈U0,U1〉 = 〈U2〉⊥ (6.16)

But we have already seen how to do this—in the introduction section. Let
us be slightly more formal and use the symbolic determinant idea. This idea
allows us to generalize to four dimensions.

Let U2 = (x, y, z) be a unit-length vector. Suppose that x has the largest
absolute value of the three components. We may construct a determinant
whose last row is one of the basis vectors Ei that does not have a zero in its
first component—the one corresponding to the location of x. Let us choose
(0, 0, 1) as this vector; then

det

⎡

⎣

E0 E1 E2

x y z
0 0 1

⎤

⎦ = yE0 − xE1 + 0E2 = (y,−x, 0) (6.17)

which matches the construction in the introduction. This vector cannot be the
zero vector, because we know that x has largest absolute magnitude and so
cannot be zero because the initial vector is not the zero vector. Normalizing
the vector, we have U0 = (y,−x, 0)/

√

x2 + y2. We may then compute U1 =
U2 ×U0.

If y has the largest absolute magnitude, then the last row of the determi-
nant can be either (1, 0, 0) or (0, 0, 1); that is, we may not choose the Euclidean
basis vector with a one in the same component that corresponds to y. For ex-
ample,

det

⎡

⎣

E0 E1 E2

x y z
1 0 0

⎤

⎦ = 0E0 + zE1 − yE2 = (0, z,−y) (6.18)

Once again the result cannot be the zero vector, so we may robustly compute
U0 = (0, z,−y)/

√

y2 + z2 and U1 = U2 ×U0.
And finally, let z have the largest absolute magnitude. We may compute

det

⎡

⎣

E0 E1 E2

x y z
0 1 0

⎤

⎦ = −zE0 + 0E1 + xE2 = (−z, 0, x) (6.19)

which cannot be the zero vector. Thus, U0 = (−z, 0, x)/
√
x2 + z2 and U1 =

U2 ×U0. Of course, we could have also chosen the last row to be (1, 0, 0).
The set {U0,U1,U2} is a right-handed orthonormal set. The vectors are

unit length and mutually perpendicular, and the matrix M = [U0 U1 U2],
whose columns are the three vectors, is orthogonal with det(M) = +1. To
obtain a left-handed orthonormal set, negate the last vector: {U0,U1,−U2}.

The 3D interface for computing orthogonal complements is shown in List-
ing 6.11.
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template <typename Real>
Rea l ComputeOrthogonalComplement ( i n t numInputs , Vector3<Real>∗ v ) ;

LISTING 6.11: The 3D vector interface for computing orthogonal comple-
ments.

The return values of the functions is the minimum length of the unnormalized
vectors constructed during the Gram-Schmidt algorithm. It is possible the
inputs are nearly linearly dependent, in a numerical sense, in which case the
return value is nearly zero. The function provides a consistent signature across
dimensions. The numInputs must be one or two and v[] must have numInputs

vectors.

6.1.3.3 Orthonormal Sets in 4D

This section shows how the concepts in three dimensions extend to four
dimensions.

One Vector from Three Inputs. Consider three vectors Vi for i = 0, 1, 2
that are linearly independent. We may compute a fourth vector V3 that is
perpendicular to the three inputs using the hypercross formula in Equation
(6.6). Gram-Schmidt orthonormalization of Equation (6.8) may be applied to
the four vectors to obtain an orthonormal set.

Two Vectors from Two Inputs. Let us consider two unit-length and perpen-
dicular vectors Ui = (xi, yi, zi, wi) for i = 0, 1. If the inputs are only linearly
independent, we may use Gram-Schmidt orthonormalization to obtain the
unit-length and perpendicular vectors. The inputs have six associated 2 × 2
determinants: x0y1−x1y0, x0z1−x1z0, x0w1−x1w0, y0z1−y1z0, y0w1−y1w0,
and z0w1 − z1w0. It is guaranteed that not all of these determinants are zero
when the input vectors are linearly independent. We may search for the de-
terminant of largest absolute magnitude, which is equivalent to searching for
the largest absolute magnitude component in the three-dimensional setting.

For simplicity, assume that x0y1 − x1y0 has the largest absolute magni-
tude. The handling of other cases is similar. We may construct a symbolic
determinant whose last row is either (0, 0, 1, 0) or (0, 0, 0, 1). The idea is that
we need a Euclidean basis vector whose components corresponding to the x
and y locations are zero. We used a similar approach in three dimensions. To
illustrate, let us choose (0, 0, 0, 1). The determinant is

det

⎡

⎢

⎢

⎣

E0 E1 E2 E3

x0 y0 z0 w0

x1 y1 z1 w1

0 0 0 1

⎤

⎥

⎥

⎦

= (y0z1 − y1z0)E0 − (x0z1 − x1z0)E1 + (x0y1 − x1y0)E2 + 0E3

(6.20)

This vector cannot be the zero vector, because we know that x0y1 − x1y0 has
the largest absolute magnitude and is not zero. Moreover, we know that this
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vector is perpendicular to the first two row vectors in the determinant. We
can choose the unit-length vector

U2 = (x2, y2, z2, w2) =
(y0z1 − y1z0, x1z0 − x0z1, x0y1 − x1y0, 0)

|(y0z1 − y1z0, x1z0 − x0z1, x0y1 − x1y0, 0)|
(6.21)

Observe that (x2, y2, z2) is the normalized cross product of (x0, y0, z0) and
(x1, y1, z1), and w2 = 0.

We may now compute

U3 = det

⎡

⎢

⎢

⎣

E0 E1 E2 E3

x0 y0 z0 w0

x1 y1 z1 w1

x2 y2 z2 0

⎤

⎥

⎥

⎦

(6.22)

which is guaranteed to be unit length. Moreover,

〈U2,U3〉 = 〈U0,U1〉⊥ (6.23)

That is, the span of the output vectors is the orthogonal complement of the
span of the input vectors.

The same idea applies to each of the six cases that arise when locating the
maximum of the 2× 2 determinants.

Three Vectors from One Input. Let U0 = (x0, y0, z0, w0) be a unit-length
vector. Similar to the construction in three dimensions, search for the compo-
nent of largest absolute magnitude. For simplicity, assume it is x0. The other
cases are handled similarly.

Choose U1 = (y0,−x0, 0, 0)/
√

x2
0 + y20 , which is not the zero vector. U1

is unit length and perpendicular to U1. Now apply the construction of the
previous section to obtain U2 and U3.

The set {U0,U1,U2,U3} is a left-handed orthonormal set. The vec-
tors are unit length and mutually perpendicular, and the matrix M =
[U0 U1 U2 U3], whose columns are the four vectors, is orthogonal with
det(M) = −1. To obtain a right-handed orthonormal set, negate the last
vector: {U0,U1,U2,−U3}.

The Vector4<Real> interface for computing orthogonal complements is
shown in Listing 6.12.

template <typename Real>
Rea l ComputeOrthogonalComplement ( i n t numInputs , Vector4<Real>∗ v ) ;

LISTING 6.12: The 4D vector interface for computing orthogonal comple-
ments.

The return values of the functions is the minimum length of the unnormalized
vectors constructed during the Gram-Schmidt algorithm. It is possible the
inputs are nearly linearly dependent, in a numerical sense, in which case the
return value is nearly zero. The function provides a consistent signature across
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dimensions. The numInputs must be one, two, or three and inputs[] must have
numInputs vectors. The implementation was carefully written to ensure that if
the number of inputs is one or two and the inputs are 3D vectors written as
4D affine vectors (w = 0), the output is the same as if you had passed the 3D
vectors to the 3D version of the function with last component w = 0.

6.1.4 Barycentric Coordinates

Let P0, P1, and P2 be the vertices of a triangle in 2D. The triangle is
assumed to be nondegenerate; mathematically, the vectors P0 −P2 and P1 −
P2 must be linearly independent. Another point P can be represented as a
linear combination of the triangle vertices,

P = b0P0 + b1P1 + b2P2 (6.24)

where b0 + b1 + b2 = 1. The coefficients are referred to as the barycentric
coordinates of P relative to the triangle. The coordinates may be computed
as follows. Subtract P2 from the linear combination,

P−P2 = b0P0 + b1P1 + (b2 − 1)P2

= b0(P0 −P2) + b1(P1 −P2)
(6.25)

Dotting the equation with perpendicular vectors of point differences, we obtain

b0 = (P−P2) · (P1 −P2)
⊥/(P0 −P2) · (P1 −P2)

⊥

b1 = (P0 −P2) · (P−P2)
⊥/(P0 −P2) · (P1 −P2)

⊥

b2 = 1− b0 − b1

(6.26)

The formula for b1 was constructed using the identity U ·V⊥ = −V ·U⊥.
The Vector2<Real> class has the interface function shown in Listing 6.13.

template <typename Real>
bool ComputeBa rycen t r i c s ( Vector2<Real> const& p , Vector2<Real> const& v0 ,

Vector2<Real> const& v1 , Vector2<Real> const& v2 , Rea l bary [ 3 ] ,
Rea l e p s i l o n = ( Rea l ) 0 ) ;

LISTING 6.13: The 2D vector interface for barycentric coordinates.

The denominators for the b0 and b1 expressions can be nearly zero, which
might generate enough numerical error to be of concern. Geometrically, the
triangle is needlelike (nearly a line segment). The functions allow you to specify
a floating-point tolerance for which a denominator smaller than the tolerance
implies a degenerate triangle. The Boolean return is true if and only if the
denominators are larger than the tolerance. The barycentric coordinates are
considered to be valid only when the function returns true; they are actually
set to zero when the function returns false.

Let P0, P1, P2, and P3 be the vertices of a tetrahedron in 3D. The tetra-
hedron is assumed to be nondegenerate; mathematically, the vectors P0−P3,
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P1 −P3, and P2 −P3 must be linearly independent. Another point P can be
represented as a linear combination of the tetrahedron vertices,

P = b0P0 + b1P1 + b2P2 + b3P3 (6.27)

where b0 + b1 + b2 + b3 = 1. The coefficients are referred to as the barycentric
coordinates ofP relative to the tetrahedron. The coordinates may be computed
as follows. Subtract P3 from the linear combination,

P−P3 = b0P0 + b1P1 + b2P2 + (b3 − 1)P3

= b0(P0 −P3) + b1(P1 −P3) + b2(P2 −P3)
E = b0E0 + b1E1 + b2E2

(6.28)

where the last equation defines the vectors E and Ei for i = 0, 1, 2. Applying
cross products and dot products, we obtain

b0 = E · E1 ×E2/E0 · E1 ×E2

b1 = E · E2 ×E0/E0 · E1 ×E2

b2 = E · E0 ×E1/E0 · E1 ×E2

b3 = 1− b0 − b1 − b2

(6.29)

The Vector3<Real> class has the interface function shown in Listing 6.14.

template <typename Real>
bool ComputeBa rycen t r i c s ( Vector3<Real> const& p , Vector3<Real> const& v0 ,

Vector3<Real> const& v1 , Vector3<Real> const& v2 ,
Vector3<Real> const& v3 , Rea l bary [ 4 ] , Rea l e p s i l o n = ( Rea l ) 0 ) ;

LISTING 6.14: The 3D vector interface for barycentric coordinates.

The denominators for the b0, b1, and b2 expressions can be nearly zero, which
might generate enough numerical error to be of concern. Geometrically, the
tetrahedron is nearly flat or needlelike (nearly degenerate). The functions
allow you to specify a floating-point tolerance for which a denominator smaller
than the tolerance implies a degenerate triangle. The Boolean return is true if
and only if the denominators are larger than the tolerance. The barycentric
coordinates are considered to be valid only when the function returns true;
they are actually set to zero when the function returns false.

6.1.5 Intrinsic Dimensionality

In several applications it might be of use to know the intrinsic dimension-
ality of a collection of n-dimensional vectors. For example, if the collection
contains all the same vector, the intrinsic dimensionality is zero. If the vectors
all lie on the same line, the intrinsic dimensionality is one. It is possible the
vectors all lie in a k-dimensional subspace, in which case the intrinsic dimen-
sionality is k. The concept is more general. For example, if a collection of
3D vectors all lie on a sphere, the intrinsic dimensionality is two. However,
identifying a k-dimensional manifold that contains a collection of points in n
dimensions is a complicated problem; see the literature on generating surfaces
from unordered points.
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GTEngine provides support for determining numerically the intrinsic di-
mensionality in terms of points, lines, and planes as the approximating objects.
A typical application is computation of the convex hull of a set of 3D points.
Books describing convex hull algorithms for three dimensions assume that the
set of points is not degenerate; that is, the points are not all the same, do not
lie on a line, and do not line in a plane. In practice, you most likely do not have
this knowledge about your set of points. An implementation of convex hull for
3D points must decide when to switch to convex hull for 2D points (intrinsic
dimensionality is two) or to convex hull for 1D points (intrinsic dimensional-
ity is one). The implementation for determining intrinsic dimensionality uses
floating-point tolerances that are user controlled to decide whether the points
are sufficiently close to lying in a plane or sufficiently close to lying on a line.
The actual plane or line is computed, allowing you to project the points onto
the object to reduce the dimension and call a lower-dimension convex hull
finder.

The class for 2D intrinsic dimensionality is shown in Listing 6.15.

template <typename Real>
c l a s s I n t r i n s i c s V e c t o r 2
{
pub l i c :

I n t r i n s i c s V e c t o r 2 ( i n t numVectors , Vector2<Real> const∗ v ,
Rea l i n E p s i l o n ) ;

Rea l e p s i l o n ;
i n t d imens i on ;
Rea l min [ 2 ] , max [ 2 ] ;
Rea l maxRange ;
Vector2<Real> o r i g i n ;
Vector2<Real> d i r e c t i o n [ 2 ] ;
i n t extreme [ 3 ] ;
bool extremeCCW ;

} ;

LISTING 6.15: The 2D vector interface for intrinsic dimensionality.

All work is performed in the constructor, storing inEpsilon in class member
epsilon and computing the remaining class members according to the following
algorithm.

The axis-aligned bounding box of the input points is computed and stored
in min[] and max[]. The member maxRange stores the maximum difference of
max[0]-min[0] and max[1]-min[1]. The indices into v[] for the points that support
the bounding box in the direction of maximum range are stored in extreme[0]

and extreme[1]. The origin is chosen to be v[extreme[0]].
If the maximum range is less than or equal to epsilon, the point set is

assumed to degenerate to a single point, namely, origin. The equality to epsilon

allows the input tolerance to be exactly zero. The dimension is set to zero. The
member extremeCCW is not meaningful in this case.

If the maximum range is greater than epsilon, the length of the vector
connecting the two extreme points must have length greater than or equal
to epsilon. The member direction[0] is computed as the unit-length vector
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connecting the extreme points. The member direction[1] is a perpendicular unit-
length vector, computed using the negative of the function Vector2<Real>::Perp

so that direction[1] is a counterclockwise rotation of direction[0]. The idea is that
the points have intrinsic dimensionality of at least one with significant com-
ponents in the direction of the line origin+t*direction[0].

The maximum distance from the input points to the line origin+t*direction[0]

is computed, a quantity measured in the direction[1]. In fact, signed distances
are computed to support orientation information about the extreme set. We
know the point of maximum distance from the line and on which side of the
line it lives. The index into v[] for the point of maximum distance is stored in
extreme[2]. We are effectively building an oriented bounding box for the points
with axes direction[].

If the maximum distance is less than or equal to epsilon*maxRange, the
point set is assumed to degenerate to a line segment. The dimension is set
to one. The member extremeCCW is not meaningful in this case. The use of
epsilon*maxRange instead of epsilon alone is to be invariant to scaling; that is,
epsilon is a relative error tolerance rather than an absolute error tolerance.

If the maximum is larger than epsilon*maxRange, the dimension is set to
two and the points have full intrinsic dimensionality. The points indexed by
extreme[] form a triangle. The ordering of the extreme points is stored in
extremeCCW. Observe that knowing which side of the line v[extreme[2]] lives
on is essential to know ordering.

The geometric ideas for class IntrinsicsVector2 extend naturally to 3D. The
class for 3D intrinsic dimensionality is shown in Listing 6.16.

template <typename Real>
c l a s s I n t r i n s i c s V e c t o r 2
{
pub l i c :

I n t r i n s i c s V e c t o r 3 ( i n t numVectors , Vector3<Real> const∗ v ,
Rea l i n E p s i l o n ) ;

Rea l e p s i l o n ;
i n t d imens i on ;
Rea l min [ 3 ] , max [ 3 ] ;
Rea l maxRange ;
Vector3<Real> o r i g i n ;
Vector3<Real> d i r e c t i o n [ 3 ] ;
i n t extreme [ 4 ] ;
bool extremeCCW ;

} ;

LISTING 6.16: The 3D vector interface for intrinsic dimensionality.

All work is performed in the constructor, storing inEpsilon in class member
epsilon and computing the remaining class members according to the following
algorithm.

The axis-aligned bounding box of the input points is computed and stored
in min[] and max[]. The member maxRange stores the maximum difference of
the max[i]-min[i]. The indices into v[] for the points that support the bounding
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box in the direction of maximum range are stored in extreme[0] and extreme[1].
The origin is chosen to be v[extreme[0]].

If the maximum range is less than or equal to epsilon, the point set is
assumed to degenerate to a single point, namely, origin. The equality to epsilon

allows the input tolerance to be exactly zero. The dimension is set to zero. The
member extremeCCW is not meaningful in this case.

If the maximum range is greater than epsilon, the length of the vector con-
necting the two extreme points must have length greater than or equal to
epsilon. The member direction[0] is computed as the unit-length vector connect-
ing the extreme points.

The maximum distance from the input points to the line origin+t*direction[0]

is computed, a quantity measured in the orthogonal complement of direction[0].
We do not actually need to know a basis for the orthogonal complement, be-
cause we can project out the direction[0] component from v[i]-origin and measure
the length of the projection. The index into v[] for the point of maximum dis-
tance is stored in extreme[2].

If the maximum distance is less than or equal to epsilon*maxRange, the
point set is assumed to degenerate to a line segment. The dimension is set
to one. The member extremeCCW is not meaningful in this case. The use of
epsilon*maxRange instead of epsilon alone is to be invariant to scaling; that is,
epsilon is a relative error tolerance rather than an absolute error tolerance.

If the maximum is larger than epsilon*maxRange, we now know that
the intrinsic dimensionality is two or three. We compute the orthogonal
complement of direction[0] and store the basis vectors in direction[1] and
direction[2]. The maximum distance from the input points to the plane
origin+s*direction[0]+t*direction[1] is computed. We can do so by computing the
component in the direction[0] from v[i]-origin. The sign of the distance is impor-
tant for computing orientation, so that information is tracked. The index into
v[] of the point of maximum distance is stored in extreme[3].

If the maximum distance is less than or equal to epsilon*maxRange, the
point set is assumed to degenerate to a planar polygon. The dimension is set
to two. The member extremeCCW is not meaningful in this case.

If the maximum distance is larger than epsilon*maxRange, the dimension is set
to three and the points have full intrinsic dimensionality. The points indexed
by extreme[] form a tetrahedron. The ordering of the extreme points is stored
in extremeCCW. Observe that knowing which side of the plane v[extreme[3]] lives
on is essential to know ordering.

6.2 Matrices

Mathematics engines provide matrix implementations that are focused
on the tranformational aspects, namely, matrix-vector multiplication, matrix-



274 GPGPU Programming for Games and Science

matrix multiplication, transposes, determinants, and inverses. Rotation ma-
trices are a special classes of matrices that are also supported. The extent
of the support can vary and might include the ability to generate and con-
vert among many representations: axis-angle, Euler angles, and quaternions.
GTEngine provides a full suite of classes and functions for rotation support.
Although not used often in the applications, support exists for sums and dif-
ferences of matrices, for product of a matrix with a scalar, and for Lp norms
where p ∈ {1, 2,∞}. As with vectors, comparison operators are provided to
support sorted containers.

GTEngine has a base template class Matrix<int,int,Real> whose first param-
eter is the number of rows, second parameter is the number of columns, and
third parameter is the floating-point type. Derived classes Matrix2x2<Real>,
Matrix3x3<Real>, and Matrix4x4<Real> provide additional dimension-specific
constructors and operations for the commonly occurring square matrices of
low dimension.

6.2.1 Matrix Storage and Transfom Conventions

One source of pain when using mathematics engines, especially when you
already have your own code that duplicates functionality, is figuring out the
engines’ conventions and how they relate to yours. I doubt any of us have
been immune to dealing with interoperability concerns. Two major conven-
tions to deal with are the matrix storage convention and the matrix transform
convention.

The first convention refers to whether you store your matrices in row-major
order or column-major order. Effectively, this is a choice for mapping a two-
dimensional array into a one-dimensional array. Let A = [arc] be an n × m
matrix whose first index refers to row r with 0 ≤ r < n and whose second
index refers to column c with 0 ≤ c < m. We visualize this as a table, shown
next for n = 2 and m = 3:

A =

[

a00 a01 a02
a10 a11 a12

]

(6.30)

Row-major order stores the elements as (a00, a01, a02, a10, a11, a12), whereas
column-major order stores the elements as (a00, a10, a01, a11, a02, a12). Gener-
ally, the one-dimensional array is B = [bi] and has nm elements. For row-major
order, the index mapping from A to B is i = c + mr. The inverse mapping
is (c, r) = (i%m, i/m), where % is the integer modulo operator and / is in-
teger division. For column-major order, the index mapping from A to B is
i = r + nc. The inverse mapping is (c, r) = (i%n, i/n).

The second convention refers to which side of the matrix you envision a
vector when multiplying. If A is a square matrix and V is a vector of the
appropriate size, do you choose the product to be AV or VTA? I refer to the
former product as vector-on-the-right convention and the latter product as
vector-on-the-left convention. If A is not a square matrix, then the side of the
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matrix on which a vector lives depends solely on the dimensions of the matrix
and vector; that is, there is no ambiguity about the product.

GTEngine allows you to select these conventions by conditional compila-
tion of the libraries. The file

GeometricTools/GTEngine/Source/GTEngineDEF.h

contains preprocessor macros that you can enable or disable as you desire.
The macros enabled by default are GTE USE ROW MAJOR, indicating that
matrices are stored in row-major-order, and GTE USE MAT VEC, indicating
that vector-on-the-right is used. Flexibility on your part has its consequences.
Firstly, whenever algorithms in the engine depend on either convention, the
implementations have conditionally compiled code. This requires me to pro-
vide multiple versions of the implementation, and I need to ensure that the
sample applications do the same. Secondly, the HLSL compiler for D3D11 has
similar conventions, so you need to ensure that your shaders are set up prop-
erly to match your conventions. In the sample applications with shaders, I have
included conditional compilation in the HLSL files themselves—controlled by
the very same preprocessor macros in the C++ code. The HLSL compiler
provides the ability to enable or disable macros via arguments to the compiler
function call.

Other engine conventions related to coordinate system handling are neces-
sary. I will go into detail about those conventions in the section on coordinate
systems.

6.2.2 Base Class Matrix Operations

The base class is template <int NumRows, int NumCols, typename Real> Matrix,
which supports general matrices with user-specified sizes. The storage itself
is protected, because the details cannot be exposed to the public based on
the user-selectable convention for row-major or column-major storage. List-
ing 6.17 shows the data representation.

template < i n t NumRows , i n t NumCols , typename Real>
c l a s s Matr ix
{
p ro tected :

// The data s t r u c t u r e s take advantage o f the b u i l t−i n o p e r a t o r [ ] ,
// range check ing , and v i s u a l i z e r s i n MSVS.

c l a s s Table
{
pub l i c :

// op e r a t o r ( ) p r o v i d e s s to rage−o rde r−i ndependen t e l ement a c c e s s .
#i f d e f i n ed (GTE USE ROW MAJOR)

Rea l const& ope ra to r ( ) ( i n t r , i n t c ) const

{ r e tu r n mStorage [ r ] [ c ] ; }
Rea l& ope ra to r ( ) ( i n t r , i n t c ) { r e tu r n mStorage [ r ] [ c ] ; }
s td : : a r r a y<s td : : a r r a y<Real , NumCols>,NumRows> mStorage ;

#e l s e
Rea l const& ope ra to r ( ) ( i n t r , i n t c ) const

{ r e tu r n mStorage [ c ] [ r ] ; }
Rea l& ope ra to r ( ) ( i n t r , i n t c ) { r e tu r n mStorage [ c ] [ r ] ; }
s td : : a r r a y<s td : : a r r a y<Real ,NumRows>,NumCols> mStorage ;
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#end i f
} ;

un ion

{
// Access as a one−d imen s i o n a l a r r a y .
s td : : a r r a y<Real , NumRows∗NumCols> mTuple ;

// Access as a two−d imen s i o n a l a r r a y .
Table mTable ;

} ;
} ;

LISTING 6.17: Storage for the matrix class.

The data structures take advantage of the built-in operator[] for std::array, in-
cluding range checking and visualizers in Microsoft Visual Studio 2013. The
union allows internal manipulation of the matrix entries either as a one-
dimensional or two-dimensional array. As the comments indicate, access via
operator() hides the storage convention.

The class has the default constructor, a copy constructor, and an assign-
ment operator. Constructors that are dependent on dimension are declared in
derived classes.

Listing 6.18 shows the accessor interface for the class.

template < i n t NumRows , i n t NumCols , typename Real>
c l a s s Matr ix
{
pub l i c :

// The s t o r a g e r e p r e s e n t a t i o n f o r the members i s t r a n s p a r e n t to the
// u s e r . The mat r i x en t r y i n row r and column c i s A( r , c ) . The f i r s t
// op e r a t o r ( ) r e t u r n s a con s t r e f e r e n c e r a t h e r than a Rea l v a l u e .
// Thi s s u ppo r t s w r i t i n g v i a s tanda rd f i l e o p e r a t i o n s tha t r e q u i r e a
// cons t p o i n t e r to data .
i n l i n e Rea l const& ope ra to r ( ) ( i n t r , i n t c ) const ;
i n l i n e Rea l& ope ra to r ( ) ( i n t r , i n t c ) ;

// Member a c c e s s i s by rows or by columns .
vo id SetRow ( i n t r , Vector<NumCols , Real> const& vec ) ;
vo id SetCo l ( i n t c , Vector<NumRows , Real> const& vec ) ;
Vector<NumCols , Real> GetRow ( i n t r ) const ;
Vector<NumRows , Real> GetCol ( i n t c ) const ;

// Member a c c e s s i s by one−d imen s i o n a l i ndex . NOTE: These a c c e s s o r s
// a r e u s e f u l f o r the man i p u l a t i on o f ma t r i x e n t r i e s when i t does not
// matter whether s t o r a g e i s row−major or column−major . Do not use
// c o n s t r u c t s such as M( c+NumCols∗ r ) or M( r+NumRows∗c ) tha t expo s e
// the s t o r a g e conven t i on .
i n l i n e Rea l const& ope ra to r ( ) ( i n t i ) const ;
i n l i n e Rea l& ope ra to r ( ) ( i n t i ) ;

} ;

LISTING 6.18: Member accessors for the matrix class.

The first two functions allow you to access individual matrix entries by spec-
ifying the row and column. The next four functions allow you to access a row
or a column as a whole. The last two functions allow you to access the matrix
as a one-dimensional array, but the intent is to support simple operations such
as memory copying and streaming to and from disk.
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Finally, the class implements the standard six comparison operators to
support sorted container classes; see Listing 6.19.

template < i n t NumRows , i n t NumCols , typename Real>
c l a s s Matr ix
{
pub l i c :

// compa r i s on s f o r s o r t ed c o n t a i n e r s and geomet r i c o r d e r i n g
bool ope ra to r== ( Matr i x const& mat) const ;
bool ope ra to r != ( Matr i x const& mat) const ;
boo l operator< ( Matr i x const& mat) const ;
boo l operator<= ( Matr i x const& mat) const ;
boo l operator> ( Matr i x const& mat) const ;
boo l operator>= ( Matr i x const& mat) const ;

} ;

LISTING 6.19: Comparison operators for the matrix class.

A large number of functions are defined outside the class, a practice sug-
gested in [55, Rule 44]. Included are unary operators so that you can write
expressions +M and −M for matrices. Also included are the linear-algebraic
operations for matrix addition, subtraction, scalar multiplication and division,
and the usual arithemtic update operators such as operator+=.

Three Lp matrix norms are implemented, for p ∈ {1, 2,∞}. The L1 norm
is the sum of the absolute values of the matrix entries; see function L1Norm.
The L2 norm is the sum of the squared matrix entries, the most commonly
used matrix norm; see function L2Norm. The L∞ norm is the maximum of the
absolute values of the matrix entries; see function LInfinityNorm.

Inversion of square matrices is provided by the function Inverse. The al-
gorithm involves Gaussian elimination with full pivoting. When the inverse
does not exist as determined numerically, the zero matrix is returned. Inver-
sion for square matrices of sizes two, three, and four are specialized by the
derived classes for these sizes; the algorithms use cofactor expansions. If M is
an invertible matrix, M−1 denotes the inverse.

The matrix transpose is provided by the function Transpose. The transpose
is denoted by MT.

Two matrix-vector products are supported; see Listing 6.20 for the inter-
faces.

// M∗V
template < i n t NumRows , i n t NumCols , typename Real>
Vector<NumRows , Real>
ope ra to r∗ (

Matr i x<NumRows , NumCols , Real> const& M,
Vector<NumCols , Real> const& V) ;

// VˆT∗M
template < i n t NumRows , i n t NumCols , typename Real>
Vector<NumCols , Real>
ope ra to r∗ (

Vector<NumRows , Real> const& V,
Matr i x<NumRows , NumCols , Real> const& M) ;

LISTING 6.20: Matrix-vector products.
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The operators make it clear which product you get based on the order of the
inputs. The template declarations ensure at compile time the enforcement of
the rules for products. The product MV is defined only when the number
of columns of M is equal to the number of rows of V. The product VTM is
defined only when the number of rows of M is equal to the number of columns
of VT (equivalently, the number of rows of V).

A collection of matrix-matrix products are provided: AB, ABT, ATB, and
ATBT, where A and B are the appropriate size matrices. Once again, the tem-
plate declartions ensure that at compile time the row-column count equalities
are enforced. For a diagonal matrix D, there are functions to compute MD
and DM as long as the row-column sizes are valid. However, the diagonal
matrix is represented as a vector that stores the diagonal entries.

6.2.3 Square Matrix Operations in 2D

Square matrices of size two are built by derivation from the base class.
Listing 6.21 shows the minimal interface.

template <typename Real>
c l a s s Matr ix2x2 : pub l i c Matr ix <2 ,2 , Real>
{
pub l i c :

// Con s t r u c t i o n and d e s t r u c t i o n . The d e s t r u c t o r h i d e s the base−c l a s s
// d e s t r u c t o r , but the l a t t e r has no s i d e e f f e c t s . Matr i x2x2 i s
// d e s i g n ed to p r o v i d e s p e c i a l i z e d c o n s t r u c t o r s and geomet r i c
// o p e r a t i o n s . The d e f a u l t c o n s t r u c t o r does not i n i t i a l i z e i t s data .
˜Matr i x2x2 ( ) ;
Matr i x2x2 ( ) ;
Matr i x2x2 ( Matr i x2x2 const& mat ) ;
Matr i x2x2 ( Matr i x <2 ,2 , Real> const& mat ) ;
Matr i x2x2 ( Rea l m00 , Rea l m01 , Rea l m10 , Rea l m11 ) ;

// Crea te a d i a g o n a l ma t r i x . Pass z e r o s to c r e a t e the z e ro mat r i x .
// Pass ones to c r e a t e the i d e n t i t y ma t r i x .
Matr ix2x2 ( Rea l m00 , Rea l m11 ) ;

// Crea te a r o t a t i o n mat r i x from an ang l e ( i n r a d i a n s ) . The mat r i x i s
// [GTE USE MAT VEC ]
// R( t ) = {{c ,− s } ,{ s , c}}
// [GTE USE VEC MAT ]
// R( t ) = {{c , s},{−s , c}}
// where c = cos ( t ) , s = s i n ( t ) , and the i nne r−b race p a i r s a r e rows o f
// the mat r i x .
Matr ix2x2 ( Rea l ang l e ) ;

// Crea te s p e c i a l ma t r i c e s .
vo id MakeZero ( ) ;
vo id Make Iden t i t y ( ) ;
vo id MakeDiagonal ( Rea l m00 , Rea l m11 ) ;
vo id MakeRotation ( Rea l ang l e ) ;

// Get the ang l e ( r a d i a n s ) from a r o t a t i o n mat r i x . The c a l l e r i s
// r e s p o n s i b l e f o r en s u r i n g the mat r i x i s a r o t a t i o n .
vo id Get ( Rea l& ang l e ) const ;

// a s s i gnmen t
Matr ix2x2& ope ra to r= ( Matr i x2x2 const& mat ) ;
Matr i x2x2& ope ra to r= (Matr i x <2 ,2 , Real> const& mat ) ;
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// s p e c i a l ma t r i c e s
s t a t i c Matr ix2x2 Zero ( ) ;
s t a t i c Matr ix2x2 I d e n t i t y ( ) ;

} ;

LISTING 6.21: The class interface for 2× 2 matrices.

The constructors are for the specific size two. The constructor and assignment
operator for the base class are provided to allow implicit conversions. Static
functions are implemented to return the zero matrix and the identity matrix.
We use functions to avoid the standard template dilemma of declaring static
members that might be instantiated in multiple modules.

Geometric operations are implemented outside the class; see Listing 6.22.

template <typename Real>
Matr ix2x2<Real> I n v e r s e ( Matr i x2x2<Real> const& M) ;

template <typename Real>
Matr ix2x2<Real> Ad j o i n t ( Matr i x2x2<Real> const& M) ;

template <typename Real>
Rea l Determinant ( Matr i x2x2<Real> const& M) ;

template <typename Real>
Rea l Trace ( Matr i x2x2<Real> const& M) ;

LISTING 6.22: Geometric operations for 2× 2 matrices.

The matrix and the quantities these functions compute are shown next.

M =

[

m00 m01

m10 m11

]

, trace(M) = m00 +m11,

det(M) = m00m11 −m01m10, adjoint(M) =

[

m11 −m01

−m10 m00

]

,

M−1 = adjoint(M)/ det(M)

(6.31)

The inverse exists only when det(M) �= 0. As in the base class inversion, if
the matrix is not invertible, the Inverse function returns the zero matrix. The
adjoint matrix is the transpose of the matrix of cofactors for M .

In the implementations, you will notice that there is no conditional com-
pilation for code depending on the matrix storage convention. The base class
hides the conditional compilation, so derived classes can manipulate the ma-
trix entries via operator()(int,int) without regard to the storage convention.

6.2.4 Square Matrix Operations in 3D

Square matrices of size three are built by derivation from the base class.
Listing 6.23 shows the minimal interface.
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template <typename Real>
c l a s s Matr ix3x3 : pub l i c Matr ix <3 ,3 , Real>
{
pub l i c :

// Con s t r u c t i o n and d e s t r u c t i o n . The d e s t r u c t o r h i d e s the base−c l a s s
// d e s t r u c t o r , but the l a t t e r has no s i d e e f f e c t s . Matr i x3x3 i s
// d e s i g n ed to p r o v i d e s p e c i a l i z e d c o n s t r u c t o r s and geomet r i c
// o p e r a t i o n s . The d e f a u l t c o n s t r u c t o r does not i n i t i a l i z e i t s data .
˜Matr i x3x3 ( ) ;
Matr i x3x3 ( ) ;
Matr i x3x3 ( Matr i x3x3 const& mat ) ;
Matr i x3x3 ( Matr i x <3 ,3 , Real> const& mat ) ;
Matr i x3x3 (

Rea l m00 , Rea l m01 , Rea l m02 ,
Rea l m10 , Rea l m11 , Rea l m12 ,
Rea l m20 , Rea l m21 , Rea l m22 ) ;

// Crea te a d i a g o n a l ma t r i x . Pass z e r o s to c r e a t e the z e ro mat r i x .
// Pass ones to c r e a t e the i d e n t i t y ma t r i x .
Matr ix3x3 ( Rea l m00 , Rea l m11 , Rea l m22 ) ;

// Crea te s p e c i a l ma t r i c e s .
vo id MakeZero ( ) ;
vo id Make Iden t i t y ( ) ;
vo id MakeDiagonal ( Rea l m00 , Rea l m11 , Rea l m22 ) ;

// a s s i gnmen t
Matr ix3x3& ope ra to r= ( Matr i x3x3 const& mat ) ;
Matr i x3x3& ope ra to r= (Matr i x <3 ,3 , Real> const& mat ) ;

// s p e c i a l ma t r i c e s
s t a t i c Matr ix3x3 Zero ( ) ;
s t a t i c Matr ix3x3 I d e n t i t y ( ) ;

} ;

LISTING 6.23: The class interface for 3× 3 matrices.

The constructors are for the specific size three. The constructor and assign-
ment operator for the base class are provided to allow implicit conversions.
Static functions are implemented to return the zero matrix and the identity
matrix. We use functions to avoid the standard template dilemma of declaring
static members that might be instantiated in multiple modules.

Geometric operations are implemented outside the class; see Listing 6.24.

template <typename Real>
Matr ix3x3<Real> I n v e r s e ( Matr i x3x3<Real> const& M) ;

template <typename Real>
Matr ix3x3<Real> Ad j o i n t ( Matr i x3x3<Real> const& M) ;

template <typename Real>
Rea l Determinant ( Matr i x3x3<Real> const& M) ;

template <typename Real>
Rea l Trace ( Matr i x3x3<Real> const& M) ;

LISTING 6.24: Geometric operations for 3× 3 matrices.

The matrix and the quantities these functions compute are shown next.

M =





m00 m01 m02

m10 m11 m12

m20 m21 m22



 ,
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trace(M) = m00 +m11 +m22,

det(M) = m00(m11m22 −m12m21) +m01(m12m20 −m10m22)
+ m02(m10m21 −m11m20),

adjoint(M) =




m11m22 −m12m21 m02m21 −m01m22 m01m12 −m02m11

m12m20 −m10m22 m00m22 −m02m20 m02m10 −m00m12

m10m21 −m11m20 m01m20 −m00m21 m00m11 −m01m10



 ,

M−1 = adjoint(M)/ det(M)

(6.32)

The inverse exists only when det(M) �= 0. As in the base class inversion, if
the matrix is not invertible, the Inverse function returns the zero matrix. In
the implementations, you will notice that there is no conditional compilation
for code depending on the matrix storage convention. The base class hides the
conditional compilation, so derived classes can manipulate the matrix entries
via operator() without regard to the storage convention.

6.2.5 Square Matrix Operations in 4D

Square matrices of size four are built by derivation from the base class.
Listing 6.25 shows the minimal interface.

template <typename Real>
c l a s s Matr ix4x4 : pub l i c Matr ix <4 ,4 , Real>
{
pub l i c :

// Con s t r u c t i o n and d e s t r u c t i o n . The d e s t r u c t o r h i d e s the base−c l a s s
// d e s t r u c t o r , but the l a t t e r has no s i d e e f f e c t s . Matr i x4x4 i s
// d e s i g n ed to p r o v i d e s p e c i a l i z e d c o n s t r u c t o r s and geomet r i c
// o p e r a t i o n s . The d e f a u l t c o n s t r u c t o r does not i n i t i a l i z e i t s data .
˜Matr i x4x4 ( ) ;
Matr i x4x4 ( ) ;
Matr i x4x4 ( Matr i x4x4 const& mat ) ;
Matr i x4x4 ( Matr i x <4 ,4 , Real> const& mat ) ;
Matr i x4x4 (

Rea l m00 , Rea l m01 , Rea l m02 , Rea l m03 ,
Rea l m10 , Rea l m11 , Rea l m12 , Rea l m13 ,
Rea l m20 , Rea l m21 , Rea l m22 , Rea l m23 ,
Rea l m30 , Rea l m31 , Rea l m32 , Rea l m33 ) ;

// Crea te a d i a g o n a l ma t r i x . Pass z e r o s to c r e a t e the z e ro mat r i x .
// Pass ones to c r e a t e the i d e n t i t y ma t r i x .
Matr ix4x4 ( Rea l m00 , Rea l m11 , Rea l m22 , Rea l m33 ) ;

// Crea te s p e c i a l ma t r i c e s .
vo id MakeZero ( ) ;
vo id Make Iden t i t y ( ) ;
vo id MakeDiagonal ( Rea l m00 , Rea l m11 , Rea l m22 , Rea l m33 ) ;

// a s s i gnmen t
Matr ix4x4& ope ra to r= ( Matr i x4x4 const& mat ) ;
Matr i x4x4& ope ra to r= (Matr i x <4 ,4 , Real> const& mat ) ;
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// s p e c i a l ma t r i c e s
s t a t i c Matr ix4x4 Zero ( ) ;
s t a t i c Matr ix4x4 I d e n t i t y ( ) ;

} ;

LISTING 6.25: The class interface for 4× 4 matrices.

The constructors are for the specific size four. The constructor and assignment
operator for the base class are provided to allow implicit conversions. Static
functions are implemented to return the zero matrix and the identity matrix.
We use functions to avoid the standard template dilemma of declaring static
members that might be instantiated in multiple modules.

Geometric operations are implemented outside the class; see Listing 6.26.

template <typename Real>
Matr ix4x4<Real> I n v e r s e ( Matr i x4x4<Real> const& M) ;

template <typename Real>
Matr ix4x4<Real> Ad j o i n t ( Matr i x4x4<Real> const& M) ;

template <typename Real>
Rea l Determinant ( Matr i x4x4<Real> const& M) ;

template <typename Real>
Rea l Trace ( Matr i x4x4<Real> const& M) ;

LISTING 6.26: Geometric operations for 4× 4 matrices.

Let M = [mrc] be a 4 × 4 matrix. The trace of the matrix is trace(M) =
m00 + m11 +m22 + m33. The adjoint matrix, determinant, and inverse may
be computed in a manner similar to what was done for 3 × 3 matrices—
expansion across a row using cofactors. This is what is typically taught in a
linear algebra class. The expression for the determinant is a product of the
first row of M and the first column of adjoint(M). The column entries are
effectively 3 × 3 determinants. Construction of M−1 requires computing all
the adjoint entries, so you have twelve 3× 3 determinants to compute. These
in turn can be computed by cofactor expansions, a recursive process. As it
turns out, a more efficient procedure may be used to compute adjoint(M),
det(M), and M−1; it is discussed in the next section.

6.2.6 The Laplace Expansion Theorem

Let us revisit the computation of the determinant of a 3 × 3 matrix A =
[arc], where the row index satisfies 0 ≤ r ≤ 2 and the column index satisfies
0 ≤ c ≤ 2. The matrix is

A =

⎡

⎣

a00 a01 a02
a10 a11 a12
a20 a21 a22

⎤

⎦ (6.33)
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Expanding by the first row,

det(A) = +a00 · det
[

a11 a12
a21 a22

]

− a01 · det
[

a10 a12
a20 a22

]

+ a02 · det
[

a10 a11
a20 a21

]

= +a00(a11a22 − a12a21)− a01(a10a22 − a12a20)

+ a02(a10a21 − a11a20)

= +a00a11a22 + a01a12a20 + a02a10a21 − a00a12a21

− a01a10a22 − a02a11a20

(6.34)

Each term in the first line of Equation (6.34) involves a sign, an entry from
row 0 of A, and a determinant of a submatrix of A. If a0c is an entry in row
0, then the sign is (−1)0+c and the submatrix is obtained by removing row 0
and column c from A.

Five other expansions produce the same determinant formula: by row 1,
by row 2, by column 0, by column 1, or by column 2. In all six formulas, each
term involves a matrix entry arc, an associated sign (−1)r+c, and a submatrix
Mrc that is obtained from A by removing row r and column c. The cofactor
associated with the term is

γrc = (−1)r+c detMrc (6.35)

The matrix of cofactors is adjoint(A) = [γrc] for rows 0 ≤ r ≤ 2 and for
columns 0 ≤ c ≤ 2, specifically,

adjoint(A) =

⎡

⎣

+(a11a22 − a12a21) −(a01a22 − a02a21) +(a01a12 − a02a11)
−(a10a22 − a12a20) +(a00a22 − a02a20) −(a00a12 − a02a10)
+(a10a21 − a11a20) −(a00a21 − a01a20) +(a00a11 − a01a10)

⎤

⎦ (6.36)

The first line of Equation (6.34) may be written also as

det(A) = + det[a00] · det
[

a11 a12
a21 a22

]

− det[a01] · det
[

a10 a12
a20 a22

]

+ det[a02] · det
[

a10 a11
a20 a21

] (6.37)

which is a sum of the products of the determinants of the submatrices of A,
with alternating signs for the terms. A visual way to look at this is shown in
Figure 6.1. Each 3 × 3 grid represents the matrix entries. The dark-colored
cells represent the 1×1 submatrices in the determinant formula and the light-
colored cells represent the 2× 2 submatrices in the determinant formula.

In the left 3 × 3 grid of the figure, the dark-colored cell represents the
submatrix [a00] from the first term in the determinant formula. The light-
colored cells are the complementary submatrix of [a00], namely, the 2 × 2
submatrix that is part of the first term of the formula; the first row has a11
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FIGURE 6.1: A visualization of the determinant of a 3× 3 matrix.

and a12 and the second row has a21 and a22. The submatrix is obtained from
A by removing row 0 and column 0.

In the middle 3 × 3 grid of the figure, the dark-colored cell represents
the submatrix [a01] from the second term in the determinant formula. The
light-colored cells are the complementary submatrix of [a01], namely, the 2×2
submatrix that is part of the second term of the formula; the first row has a10
and a12 and the second row has a20 and a22. The submatrix is obtained from
A by removing row 0 and column 1.

In the right 3 × 3 grid of the figure, the dark-colored cell represents the
submatrix [a02] from the third term in the determinant formula. The light-
colored cells are the complementary submatrix of [a02], namely, the 2 × 2
matrix that is part of the third term of the formula; the first row has a10 and
a11 and the second row has a20 and a21. The submatrix is obtained from A
by removing row 0 and column 2.

The Laplace expansion theorem is a general formula for computing the
determinant of an n × n matrix A. Let r = (r1, r2, . . . , rk) be a list of k row
indices for A, where 1 ≤ k < n and 0 ≤ r1 < r2 < · · · < rk < n. Let
c = (c1, c2, . . . , ck) be a list of k column indices for A, where 1 ≤ k < n and
0 ≤ c1 < c2 < · · · < ck < n. The submatrix obtained by keeping the entries in
the intersection of any row and column that are in the lists is denoted

S(A; r, c) (6.38)

The submatrix obtained by removing the entries in the rows and columns that
are in the list is denoted

S′(A; r, c) (6.39)

and is the complementary submatrix for S(A; r, c). For example, let A be a
3× 3 matrix. Let r = (0) and c = (1). Then

S(A; r, c) = [a01], S′(A; r, c) =

[

a10 a12
a20 a22

]

(6.40)

In the middle 3× 3 grid of Figure 6.1, S(A; (0), (1)) is formed from the dark-
colored cell and S′(A; (0), (1)) is formed from the light-colored cells.

The Laplace expansion theorem is as follows. Let A be an n × n matrix.
Let r = (r1, r2, . . . , rk) be a list of k row indices, where 1 ≤ k < n and
0 ≤ r1 < r2 < · · · rk < n. The determinant of A is

det(A) = (−1)|r|
∑

c

(−1)|c| detS(A; r, c) detS′(A; r, c) (6.41)
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FIGURE 6.2: A visualization of the expansion by row zero of a 4× 4 matrix
in order to compute the determinant.

where |r| = r1 + r2 + · · ·+ rk, |c| = c1 + c2 + · · ·+ ck, and the summation is
over all k-tuples c = (c1, c2, . . . , ck) for which 1 ≤ c1 < c2 < · · · < ck < n.

For example, consider a 3 × 3 matrix with r = (0) (that is, k = 1). Then
|r| = 0, c = (c0), and the determinant is

det(A) =
∑2

c0=0(−1)c0 detS(A; (0), (c0)) detS
′(A; (0), (c0))

= (−1)0 detS(A; (0), (0)) detS′(A; (0), (0))
+ (−1)1 detS(A; (0), (1)) detS′(A; (0), (1))
+ (−1)2 detS(A; (0), (2)) detS′(A; (0), (2))

= +det[a00] · det
[

a11 a12
a21 a22

]

− det[a01] · det
[

a10 a12
a20 a22

]

+ det[a02] · det
[

a10 a11
a20 a21

]

(6.42)
which is Equation (6.37).

The Laplace expansion theorem may be applied to 4 × 4 matrices in a
couple of ways. The first way uses an expansion by a row or by a column,
which is the most common approach. The matrix is

A =

⎡

⎢

⎢

⎣

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎤

⎥

⎥

⎦

(6.43)

Using the visualization as motivated by Figure 6.1, an expansion by row zero
is visualized in Figure 6.2: The algebraic equivalent is

det(A) = +det[a00] · det





a11 a12 a13

a21 a22 a23

a31 a32 a33



− det[a01] · det





a10 a12 a13

a20 a22 a23

a30 a32 a33





+ det[a02] · det





a10 a11 a13

a20 a21 a23

a30 a31 a33



− det[a03] · det





a10 a11 a12

a20 a21 a22

a30 a31 a32





(6.44)
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It is possible, however, to use the Laplace expansion theorem in a different
manner. Choose r = (0, 1), an expansion by rows zero and one, so to speak;
then |r| = 0 + 1 = 1, c = (c0, c1), and

det(A) = −∑c(−1)c0+c1 detS(A; (0, 1), c) detS′(A; (0, 1), c)

= + detS(A; (0, 1), (0, 1)) detS′(A; (0, 1), (0, 1))
− detS(A; (0, 1), (0, 2)) detS′(A; (0, 1), (0, 2))
+ detS(A; (0, 1), (0, 3)) detS′(A; (0, 1), (0, 3))
+ detS(A; (0, 1), (1, 2)) detS′(A; (0, 1), (1, 2))
− detS(A; (0, 1), (1, 3)) detS′(A; (0, 1), (1, 3))
+ detS(A; (0, 1), (2, 3)) detS′(A; (0, 1), (2, 3))

= +det

[

a00 a01
a10 a11

]

det

[

a22 a23
a32 a33

]

− det

[

a00 a02
a10 a12

]

det

[

a21 a23
a31 a33

]

+det

[

a00 a03
a10 a13

]

det

[

a21 a22
a31 a32

]

+det

[

a01 a02
a11 a12

]

det

[

a20 a23
a30 a33

]

− det

[

a01 a03
a11 a13

]

det

[

a20 a22
a30 a32

]

+det

[

a02 a03
a12 a13

]

det

[

a20 a21
a30 a31

]

(6.45)

The visualization for this approach, similar to that of Figure 6.2, is shown
in Figure 6.3.

Computing the determinant of a 2 × 2 matrix requires one multiplication
and one addition (or subtraction). The operation count is listed as a 2-tuple,
the first component the number of multiplications and the second component
the number of additions: Θ2 = (2, 1). Computing the determinant of a 3 × 3
matrix, when expanded by the first row according to Equation (6.34), requires
the following number of operations: Θ3 = 3Θ2 + (3, 2) = (9, 5). Using the
row expansion of Equation (6.44) to compute the determinant of a 4 × 4
matrix, the operation count is Θ4 = 4Θ3 + (4, 3) = (40, 23). However, if
you use Equation (6.45) to compute the determinant, the operation count is
Θ′

4 = 12Θ2+(6, 5) = (30, 17). The total number of operations using Equation
(6.44) is sixty-three and the total number of operation using Equation (6.45)
is forty-seven, so the latter equation is more efficient in terms of operation
count.
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FIGURE 6.3: A visualization of the expansion by rows zero and one of a
4× 4 matrix in order to compute the determinant.

To compute the inverse of a 4 × 4 matrix A, first construct the adjoint
matrix. The cofactors involve 3 × 3 determinants. For example, the entry in
row zero and column zero of adjoint(A) is

+ det

⎡

⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ = +a11 · det
[

a22 a23
a32 a33

]

− a12 · det
[

a21 a23
a31 a33

]

+ a13 · det
[

a21 a22
a31 a32

]

(6.46)

This equation involves determinants of 2 × 2 submatrices that also occur in
the equation for the determinant of the 4×4 matrix. This suggests computing
all of the entries of adjoint(A) using only 2× 2 submatrices.

Specifically, define

s0 = det
[

a00 a01
a10 a11

]

, c5 = det
[

a22 a23
a32 a33

]

s1 = det
[

a00 a02
a10 a12

]

, c4 = det
[

a21 a23
a31 a33

]

s2 = det
[

a00 a03
a10 a13

]

, c3 = det
[

a21 a22
a31 a32

]

s3 = det
[

a01 a02
a11 a12

]

, c2 = det
[

a20 a23
a30 a33

]

s4 = det
[

a01 a03
a11 a13

]

, c1 = det
[

a20 a22
a30 a32

]

s5 = det
[

a02 a03
a12 a13

]

, c0 = det
[

a20 a21
a30 a31

]

(6.47)

then
det(A) = s0c5 − s1c4 + s2c3 + s3c2 − s4c1 + s5c0 (6.48)
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and adjoint(A) = [mij ] has the following entries:

m00 = +a11c5 − a12c4 + a13c3

m01 = −a01c5 + a02c4 − a03c3

m02 = +a31s5 − a32s4 + a33s3

m03 = −a21s5 + a22s4 − a23s3

m10 = −a10c5 + a12c2 − a13c1

m11 = +a00c5 − a02c2 + a03c1

m12 = −a30s5 + a32s2 − a33s1

m13 = +a20s5 − a22s2 + a23s1

m20 = +a10c4 − a11c2 + a13c0

m21 = −a00c4 + a01c2 − a03c0

m22 = +a30s4 − a31s2 + a33s0

m23 = −a20s4 + a21s2 − a23s0

m30 = −a10c3 + a11c1 − a12c0

m31 = +a00c3 − a01c1 + a02c0

m32 = −a30s3 + a31s1 − a32s0

m33 = +a20s3 − a21s1 + a22s0

(6.49)

If the determinant is not zero, then the inverse of A is computed using A−1 =
adjoint(A)/ det(A).

The implementations of adjoint, determinant, and inverse for the
Matrix4x4<Real> class uses this approach.

6.3 Rotations

Rotations are a common operation that occur in 3D applications. This
section describes the basic concepts and various representations of rotations,
namely, by matrix, by quaternion, by axis-angle, and by Euler angles.

6.3.1 Rotation in 2D

The rotation of the vector (x, y) about the origin by an angle θ > 0 is
the vector (x′, y′) specified by x′ = x cos θ − y sin θ and and y′ = x sin θ +
y cos θ. The formula is derived using a standard trigonometric construction.
The direction of rotation is counterclockwise about the origin. In vector-matrix
form the equation is

[

x′

y′

]

=

[

cos θ − sin θ
sin θ cos θ

] [

x
y

]

(6.50)
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FIGURE 6.4: {U0,U1,U2} is a right-handed orthonormal set. A rotation
is desired about U2 by the angle θ > 0.

6.3.2 Rotation in 3D

If we add a third dimension, the rotation of the vector (x, y, z) about the
z-axis by an angle θ > 0 is just a rotation of the (x, y) portion about the
origin in the xy-plane. The rotated vector (x′, y′, z′) is specified by

⎡

⎣

x′

y′

z′

⎤

⎦ =

⎡

⎣

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦

⎡

⎣

x
y
z

⎤

⎦ (6.51)

Setting V = [x y z]T, V′ = [x′ y′ z′]T, σ = sin θ, and γ = cos θ, the rotation is
V′ = R0V, where R0 is the rotation matrix,

R0 =

⎡

⎣

γ −σ 0
σ γ 0
0 0 1

⎤

⎦ (6.52)

The standard coordinate axis directions (standard basis), represented as 3×1
vectors, are E0 = [1 0 0]T, E1 = [0 1 0]T, and E2 = [0 0 1]T. Observe that

R0E0 = γE0 + σE1, R0E1 = −σE0 + γE1, R0E2 = E2 (6.53)

The vectors R0E0, R0E1, and R0E2 are the columns of R0. The vectors E
T
0R0,

ET
1R0, and ET

2R0 are the rows of R0.
The equation for rotation of a 3D vector V by an angle θ > 0 about an

axis with unit-length direction U2 is derived next. Let U0 and U1 be unit-
length and perpendicular vectors in the plane containing the origin and having
normal U2 = U0×U1; thus, {U0,U1,U2} is a right-handed orthonormal set.
Figure 6.4 is an illustration. The orthonormal set of vectors may be used as a
basis, both as domain and range of the rotational transformation. The matrix
R0 in Equation (6.52) represents the rotation in this basis. A matrix R1 that
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represents the rotation in the standard basis {E0,E1,E2} will transform U0,
U1, and U2 as

R1U0 = γU0 + σU1, R1U1 = −σU0 + γU1, R1U2 = U2 (6.54)

The similarity between Equation (6.54) and Equation (6.53) is no coincidence.
The equations in (6.53) may be collected into block-matrix form,

R1

[

U0 U1 U2

]

=
[

γU0 + σU1 −σU0 + γU1 U2

]

=
[

U0 U1 U2

]

⎡

⎣

γ −σ 0
σ γ 0
0 0 1

⎤

⎦

(6.55)

The matrix P = [U0U1 U2], whose columns are the specified vectors, is itself
a rotation matrix because {U0,U1,U2} is a right-handed orthonormal set;
its inverse is just its transpose. Equation (6.55) is R1P = PR0. Solving for
R1 = PR0P

T, we have

R1 =
[

U0 U1 U2

]

⎡

⎣

γ −σ 0
σ γ 0
0 0 1

⎤

⎦

[

U0 U1 U2

]T

=
[

U0 U1 U2

]

⎡

⎣

γ −σ 0
σ γ 0
0 0 1

⎤

⎦

⎡

⎢

⎣

UT
0

UT
1

UT
2

⎤

⎥

⎦

=
[

U0 U1 U2

]

⎡

⎢

⎣

γUT
0 − σUT

1

σUT
0 + γUT

1

UT
2

⎤

⎥

⎦

= U0

(

γUT
0 − σUT

1

)

+U1

(

σUT
0 + γUT

1

)

+U2U
T
2

= c
(

U0U
T
0 +U1U

T
1

)

+ s
(

U1U
T
0 −U0U

T
1

)

+U2U
T
2

(6.56)

Keep in mind thatU0U
T
0 is the product of a 3×1 matrix and a 1×3 matrix, the

result a 3×3 matrix. This is not the same asUT
0U0, a product of a 1×3 matrix

and a 3×1 matrix, the result a 1×1 matrix (a scalar). Similarly,U1U
T
1 ,U2U

T
2 ,

U1U
T
0 , and U0U

T
1 are 3× 3 matrices. From a computational perspective, R1

is easily computed from Equation (6.56), but requires selecting U0 and U1 for
the specified axis directionU2. Your intuition, though, should tell you that the
rotation about the axis is independent of which pair of orthonormal vectors
you choose in the plane. The following construction shows how to remove the
dependence.

The representation of V in the basis {U0,U1,U2} is

V = (U0 ·V)U0 + (U1 ·V)U1 + (U2 ·V)U2

= a0U0 + a1U1 + a2U2
(6.57)
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where the last equality defines a0, a1, and a2 as the dot products of the
basis vectors with V. This renaming is done for simplicity of notation in the
constructions. A couple of vector quantities of interest are

U2 ×V = U2 × (a0U0 + a1U1 + a2U2)
= a0U2 ×U0 + a1U2 ×U1 + a2U2 ×U2

= −a1U0 + a0U1

(6.58)

and
U2 × (U2 ×V)) = U2 × (a0U1 − a1U0)

= a0U2 ×U1 − a1U2 ×U0

= −a0U0 − a1U1

(6.59)

The cross product U2 ×V can be written as a matrix multiplied by a vector.
Let U2 = (s0, s1, s2) and V = (v0, v1, v2); then

U2 ×V =

⎡

⎣

s1v2 − s2v1
s2v0 − s0v2
s0v1 − s1v0

⎤

⎦

=

⎡

⎣

0 −s2 s1
s2 0 −s0

−s1 s0 0

⎤

⎦

⎡

⎣

v1
v2
v3

⎤

⎦

= SV

(6.60)

where the last equality defines the 3 × 3 matrix S. This matrix is skew-
symmetric because ST = −S. The cross product U2 × (U2 ×V) is written as
a matrix multiplied by a vector by applying Equation (6.60) twice:

U2 × (U2 ×V) = S(U2 ×V) = S(SV) = S2V (6.61)

We now look closer at the vectors V = IV, where I is the identity matrix;
U2 × V = SV; and U2 × (U2 ×V) = S2V to determine how U0, U1, and
their various products are related to the matrices I, S, and S2.

Firstly, observe that Equation (6.57) may be manipulated as

IV = V

= (U0 ·V)U0 + (U1 ·V)U1 + (U2 ·V)U2

= U0(U
T
0V) +U1(U

T
1V) +U2(U

T
2V)

= (U0U
T
0 +U1U

T
1 +U2U

T
2 )V

(6.62)

The equation is true for all vectors V, so

I = U0U
T
0 +U1U

T
1 +U2U

T
2 (6.63)
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Secondly, Equations (6.57), (6.58), and (6.60) imply

SV = U2 ×V

= a0U1 − a1U0

= (U0 ·V)U1 − (U1 ·V)U0

= U1(U
T
0V)−U0(U

T
1V)

= (U1U
T
0 −U0U

T
1 )V

(6.64)

This equation is true for all vectors V, so

S = U1U
T
0 −U0U

T
1 (6.65)

Thirdly, Equations (6.57), (6.59), and (6.61) imply the relationship

S2V = U2 × (U2 ×V)
= −a0U0 − a1U1

= (U2 ·V)U2 −V

= U2(U
T
2V)−V

= (U2U
T
2 − I)V

(6.66)

This equation is true for all vectors V, so

S2 = U2U
T
2 − I (6.67)

Combining these relationships with Equation (6.56),

R1 = γ(U0U
T
0 +U1U

T
1 ) + σ(U1U

T
0 −U0U

T
1 ) +U2U

T
2 Equation (6.56)

= γ(I −U2U
T
2 ) + σ(U1U

T
0 −U0U

T
1 ) +U2U

T
2 by Equation (6.63)

= γ(I −U2U
T
2 ) + σS +U2U

T
2 by Equation (6.65)

= I + σS + (1 − γ)(U2U
T
2 − I)

= I + (sin θ)S + (1− cos θ)S2
by Equation (6.67)

(6.68)
This equation provides the rotation matrix R1 in terms of the unit-length axis
direction U2 stored as the matrix S and the angle θ occurring in σ = sin θ
and γ = cos θ. The application of the rotation matrix to a vector is

R1V = (I + σS + (1− γ)S2)V
= IV+ σSV+ (1− γ)S2V

= V+ σU2 ×V+ (1− γ)U2 × (U2 ×V)
(6.69)

Make sure you understand the constructions used to obtain Equations (6.56)
and (6.68). The same idea is used later to motivate how a quaternion is related
to a rotation matrix in four dimensions.

6.3.3 Rotation in 4D

Equation (6.69) is referred to as the Rodrigues rotation formula. The for-
mula allows you to rotate a vector knowing the angle of rotation and unit-
length axis direction without explicitly constructing the rotation matrix. Com-
puting the rotation matrix via the skew-symmetric decomposition in Equation
(6.68) is standard in practice because it is not expensive computationally.
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Rotation matrices in 2D may be similarly decomposed,

R =

[

cos θ − sin θ
sin θ cos θ

]

= cos θ

[

1 0
0 1

]

+ sin θ

[

0 −1
1 0

]

= (cos θ)I + (sin θ)S

(6.70)

where the last equality defines the skew-symmetric matrix S. The matrix S
of Equation (6.68) has three distinctly labeled entries: s0, s1, and s2. In the
2D case, S has one distinctly labeled entry (the upper-right entry): s0 = −1.

Generally, rotation matrices R in n dimensions have skew-symmetric de-
compositions

R =
n−1
∑

k=0

ckθ
kSk (6.71)

that may be constructed by exponentiating the n × n skew-symmetric ma-
trix R = exp(θS). The power series for the exponential function is exp(x) =
∑∞

k=0 x
k/k!. Formally replacing the matrix S in the expression, we have

a power series of matrices. The series is actually finite, using the Cayley-
Hamilton theorem from linear algebra. The characteristic polynomial of S is
p(t) = det(tI − S), a polynomial of degree n. The theorem states that when
you substitute the matrix S formally into the polynomial, it must be that
p(S) = 0, where the right-hand side is the zero matrix. If the polynomial is
p(t) =

∑n
k=0 pkt

k, where pn = 1, then

p(S) =

n
∑

k=0

pkS
k = 0 (6.72)

which provides an expression for Sn in terms of lower-degree powers of S.
The power series exp(S) may be reduced modulo p(S) to produce a finite sum
whose largest-degree term is Sn−1.

The power series construction for 4D rotation matrices is tedious. The
details are not presented here but the summary is. Following the patterns for
S in 2D and 3D, define

S =

⎡

⎢

⎢

⎣

0 −s5 +s4 −s2
+s5 0 −s3 +s1
−s4 +s3 0 −s0
+s2 −s1 +s0 0

⎤

⎥

⎥

⎦

(6.73)

where s20+s21+s22+s23+s24+s25 = 1. Define d = s0s5−s1s4+s2s3, r =
√
1− 4d2,

ω0 =
√

(1− r)/2, and ω1 =
√

(1 + r)/2. The argument for the square root in
the definition for r can be shown to be nonnegative, so r is real-valued and
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in the interval [0, 1]. Consequently, 0 ≤ ω0 ≤ ω1 ≤ 1. The skew-symmetric
decomposition for R = exp(S) is listed next, where σi = sin(ωiθ) and γi =
cos(ωiθ),

R =

⎧

⎪

⎨

⎪

⎩

c0I + c1S + c2S
2 + c3S

3, 0 < r < 1

I + (sin θ)S + (1 − cos θ)S2, r = 1

cos(θ/
√
2)I +

√
2 sin(θ/

√
2)S, r = 0

(6.74)

where
c0 =

(

ω2
1γ0 − ω2

0γ1
)

/
(

ω2
1 − ω2

0

)

c1 =
(

ω2
1(σ0/ω0)− ω2

0(σ1/ω1)
)

/
(

ω2
1 − ω2

0

)

c2 = (γ0 − γ1) /
(

ω2
1 − ω2

0

)

c3 = ((σ0/ω0)− (σ1/ω1)) /
(

ω2
1 − ω2

0

)

(6.75)

The first case in Equation (6.74) is referred to as a double rotation and
corresponds to a rotation occurring in a two-dimensional plane and a rotation
occurring in the orthogonal complement (also a two-dimensional plane), each
rotation occurring with different angles.

The second case in Equation (6.74) is referred to as a simple rotation,
because it is the type of rotation in 3D that we are familiar with. The rotation
is within one two-dimensional plane in 4D. The decomposition can be derived
symbolically from the double-rotation case by setting ω0 = 0. The result has
an S3 term. The characteristic polynomial p(t) has degree 4, but the minimal
polynomial is m(t) = t3+ t and m(S) = S3+S = 0, which allows us to replace
S3 = −S.

The third case in Equation (6.74) is referred to as an equiangular ro-
tation, a double rotation but with both rotation angles the same. In fact,
ω0 = ω1 = 1/

√
2. The decomposition can be obtained symbolically from

the double-rotation case by taking a limit as ω1 approaches ω0 and using
l’Hôpital’s Rule. The result has S3 and S4 terms. The characteristic poly-
nomial has degree 4, but the minimal polynomial is m(t) = t2 + 1/2 and
m(S) = S2 + I/2, which allows us to replace S2 = −I/2 and S3 = −S/2.

6.3.4 Quaternions

A quaternion is specified by the abstract quantity q = xi + yj + zk + w,
where x, y, z, and w are real numbers. This quantity can be thought of as a
vector (x, y, z, w) ∈ IR4. A quaternion is unit length when x2+y2+z2+w2 = 1,
which is a point on a hypersphere in 4D with radius one. The unit-length
quaternions are related to rotations when an algebraic structure is imposed
on them, the topic of this section.

Practitioners sometimes use the term quaternion in place of unit-length
quaternion when dealing with rotations. It is important to keep in mind the
context. For example, in physical simulations orientation can be represented
by a unit-length quaternion but angular velocity is represented by a quaternion



Linear and Affine Algebra 295

that is not necessarily unit length. Another issue to be aware of is the ordering
of the components. Some programmers might implement quaternions with
order (w, x, y, z). In GTEngine, the order is (x, y, z, w).

6.3.4.1 Algebraic Operations

The symbols i, j, and k in q = xi + yj + zk + w can be endowed with
a product operation, i2 = j2 = k2 = ijk = −1. In abstract algebra, the
set {±1,±i,±j,±k} is a group with the specified operation. In fact, it is a
noncommutative group because the operation is not generally commutative.
For example, ij = k and ji = −1 · k = −k, so ij �= ji. Generally, ij = k,
jk = i, ki = j, ji = −k, kj = −i, and ik = −j.

The quaternion q allows formal linear combinations of 1, i, j, and k, where
the coefficients are real numbers. In abstract algebra, the set of all such com-
binations is a group algebra when it is endowed with addition and scalar mul-
tiplication and when it inherits the multiplication of the underlying group.

Addition of two quaternions is defined by

q0 + q1 = (x0i+ y0j + z0k + w0) + (x1i+ y1j + z1k + w1)
= (x0 + x1)i+ (y0 + y1)j + (z0 + z1)k + (w0 + w1)

(6.76)

Scalar multiplication of a quaternion by a real number c is defined by

cq = c(xi+ yj + zk + w) = (cx)i + (cy)j + (cz)k + (cw) (6.77)

The subtraction operation is defined as a consequence of these two definitions,
q0 − q1 = q0 + (−1)q1.

Multiplication is allowed for quaternions. The product of quaternions is
defined by allowing the distributive law to apply and by using the various
product formulas for the i, j, and k terms:

q0q1 = (x0i+ y0j + z0k + w0)(x1i+ y1j + z1k + w1)
= (w0x1 + w1x0 + y0z1 − z0y1)i +

(w0y1 + w1y0 + z0x1 − x0z1)j +
(w0z1 + w1z0 + x0y1 − y0x1)k +
(w0w1 − x0x1 − y0y1 − z0z1)

(6.78)

As noted, multiplication is not generally commutative. The product in the
other order obtained from Equation (6.78) by interchanging the zero and one
subscripts is

q1q0 = (x1i+ y1j + z1k + w1)(x0i+ y0j + z0k + w0)
= (w0x1 + w1x0 + y1z0 − y0z1)i +

(w0y1 + w1y0 + z1x0 − z0x1)j +
(w0z1 + w1z0 + x1y0 − x0y1)k +
(w0w1 − x0x1 − y0y1 − z0z1)

(6.79)
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The w-components of q0q1 and q1q0 are the same. On the other hand, the last
two terms in each of the i-, j-, and k-components in Equation 6.79 are opposite
in sign to their counterparts in Equation 6.78. Symbolically, Equations (6.78)
and (6.79) are different, but for some quaternions (but not all), it is possible
that q0q1 = q1q0 (the product commutes). For this to happen we need

(x0, y0, z0)× (x1, y1, z1) = (y0z1 − y1z0, z0x1 − z1x0, x0y1 − y0x1)
= (y1z0 − y0z1, z1x0 − z0x1, x1y0 − x0y1)
= (x1, y1, z1)× (x0, y0, z0)

(6.80)
which says that the cross product of two vectors is the same. The only way this
can happen is if the cross product is zero: (x0, y0, z0)× (x1, y1, z1) = (0, 0, 0).

The fact that squares of i, j, and k are −1 shows that there are some
similarities to the complex numbers. The complex number c = w+ ix has real
part w and imaginary part x. The conjugate of the numbers is c̄ = w− ix. The
norm of the complex number is N(c) = w2+x2 and the length is |c| =

√

N(c).
Observe that the squared length is |c|2 = cĉ = ĉc. If the length is not zero,
the inverse of the complex number is c−1 = c̄/N(c). The polar form of a
unit-length complex number is c = cosφ+ i sinφ.

Similar definitions may be formulated for quaternions. Define v̂ = xi +
yj+zk so that q = v̂+w. The w-component is referred to as the real part of q
and v̂ is referred to as the imaginary portion of q (not part because there are
multiple terms in the expression). The conjugate of q is denoted q∗ = −v̂+w;
for historical reasons, the conjugate notation uses a superscript asterisk rather
than an overline bar. Because quaternion multiplication is not commutative
but complex multiplication is, there is a difference between the two algebras
regarding conjugates. If p and q are quaternions, (pq)∗ = q∗p∗; that is, the
order is reversed after taking the conjugate. This has a similarity to transpose
of two matrices. The norm of q is N(q) = x2 + y2 + z2 + w2 and the length
is |q| =

√

N(q). The squared length is |q|2 = qq∗ = q∗q. If the length is not
zero, the inverse of the quaternion is q−1 = q∗/N(q). The polar form of a

unit-length quaternion is q = cosφ + d̂ sinφ, where d̂ = xi + yj + zk is the
unit-length portion; that is, x2 + y2+ z2 = 1. It is easily shown that d̂2 = −1.

The representation q = w + v̂ is a coordinate-free description. We may
identify v̂ = xi+ yj+ zk with the vector v = (x, y, z). This allows us to define
two operations on the imaginary portions based on how those operations apply
to vectors. The dot product of v̂0 and v̂1 is denoted v̂0 · v̂1 and defined to be the
real-valued vector dot product v0 ·v1. The cross product of v̂0 and v̂1 is denoted
v̂0 × v̂1, another quaternion with zero w component. Its x, y, and z values are
the components of the vector cross product v0 × v1. In this formulation, the
product of two quaternions is

(w0 + v̂0)(w1 + v̂1) = (w0w1 − v̂0 · v̂1) + w0v̂1 + w1v̂0 + v̂0 × v̂1 (6.81)

As we showed previously, the product commutes if and only if v̂0 × v̂1 = 0.
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A straightforward implementation of quaternions and the associated alge-
bra is provided by the interface shown in Listing 6.27. The Rotate and Slerp

functions are discussed later in this section.

template <typename Real>
c l a s s Quate rn i on : pub l i c Vector <4,Real>
{
pub l i c :

// The qua t e r n i o n s a r e o f the form q = x∗ i + y∗ j + z∗k + w. In t u p l e
// form , q = ( x , y , z ,w) .

// Con s t r u c t i o n and d e s t r u c t i o n . The d e f a u l t c o n s t r u c t o r does not
// i n i t i a l i z e the members .
˜Qua te rn i on ( ) ;
Qua te rn i on ( ) ;
Qua te rn i on ( Qua te rn i on const& q ) ;
Qua te rn i on ( Vector <4,Real> const& q ) ;
Qua te rn i on ( Rea l x , Rea l y , Rea l z , Rea l w) ;

// a s s i gnmen t
Quate rn i on& ope ra to r= ( Qua te rn i on const& q ) ;
Qua te rn i on& ope ra to r= ( Vector <4,Real> const& q ) ;

// s p e c i a l q u a t e r n i o n s
s t a t i c Quate rn i on Zero ( ) ; // z = 0∗ i + 0∗ j + 0∗k + 0
s t a t i c Quate rn i on I ( ) ; // i = 1∗ i + 0∗ j + 0∗k + 0
s t a t i c Quate rn i on J ( ) ; // j = 0∗ i + 1∗ j + 0∗k + 0
s t a t i c Quate rn i on K ( ) ; // k = 0∗ i + 0∗ j + 1∗k + 0
s t a t i c Quate rn i on I d e n t i t y ( ) ; // 1 = 0∗ i + 0∗ j + 0∗k + 1

} ;

template <typename Real>
Quatern ion<Real> ope ra to r∗ ( Quatern ion<Real> const& q0 ,

Quatern ion<Real> const& q1 ) ;

template <typename Real>
Quatern ion<Real> I n v e r s e ( Quatern ion<Real> const& q ) ;

template <typename Real>
Quatern ion<Real> Conjugate ( Quatern ion<Real> const& q ) ;

template <typename Real>
Vector <4,Real> Rotate ( Quatern ion<Real> const& q , Vector <4,Real> const& v ) ;

template <typename Real>
Quatern ion<Real> S l e r p ( Rea l t , Quatern ion<Real> const& q0 ,

Quatern ion<Real> const& q1 ) ;

LISTING 6.27: The Quaternion<Real> interface for the quaternions and al-
gebra associated with them.

6.3.4.2 Relationship of Quaternions to Rotations

Consider rotating a vector v about an axis with unit-length direction d by
an angle θ to obtain a vector u. The sense of the rotation is counterclockwise,
as shown in Figure 6.4.

The quaternions d̂, v̂, and û are those identified with the vectors d, v, and
u. Define the quaternion q = γ + σd̂, where γ = cos(θ/2) and σ = sin(θ/2).
The quaternion û = qv̂q∗ has a zero w-component; the left-hand side is written
as if there is no w-component, but we do need to verify this. The vector u
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turns out to be the rotation of v. The formal calculations are listed next:

qv̂q∗ = (γ + σd̂)(0 + v̂)(γ − σd̂)

= (−σd̂ · v̂ + γv̂ + σd̂× v̂)(γ − σd̂)

= [(−σd̂ · v̂)(γ)− (γv̂ + σd̂× v̂)(−σd̂)]+

(γ)(γv̂ + σd̂× v̂) + (−σd̂ · v̂)(−σd̂)+

(γv̂ + σd̂× v̂)× (−σd̂)

= γ2v̂ + σ2(d̂ · v̂)d̂+ 2σγd̂× v̂ + σ2d̂× (d̂× v̂)

(6.82)

The second equality uses Equation (6.81), the third equality uses Equation

(6.81), and the last equality uses the identities (d̂× v̂) · d̂ = 0, v̂× d̂ = −d̂× v̂

and d̂×(d̂× v̂) = −(d̂× v̂)× d̂, the same identities that the vector counterparts
d and v satisfy. Continuing with the calculations,

qv̂q∗ = (1− σ2)v̂ + 2σγd̂× v̂ + σ2[(d̂ · v̂)d̂+ d̂× (d̂× v̂)]

= v̂ + 2σγd̂× v̂ + σ2[(d̂ · v̂)d̂− v̂ + d̂× (d̂× v̂)]
(6.83)

An identity from vector algebra is d × (d × v) = (d · v)d − (d · d)v =
(d · v)d − v, the last equality a consequence of d being unit length. The
quaternion counterpart satisfies the same identity, so

qv̂q∗ = v̂ + 2σγd̂× v̂ + 2σ2d̂× (d̂× v̂) (6.84)

Recall also the trigonometric identities sin θ = 2 sin(θ/2) cos(θ/2) = 2σγ and
1− cos θ = 2 sin2(θ/2) = 2σ2, so we finally arrive at

qv̂q∗ = v̂ + (sin θ)d̂ × v̂ + (1− cos θ)d̂× (d̂× v̂) (6.85)

This is the quaternion counterpart of Equation (6.69), the general rotation of
v about an axis d by an angle θ. The vector u corresponding to û = qv̂q∗ is
therefore the rotation of v.

The GTEngine function that implements this operation is shown in Listing
6.28.

template <typename Real>
Vector <4,Real> Rotate ( Quatern ion<Real> const& q , Vector <4,Real> const& v )
{

Vector <4,Real> u = q∗Quatern ion<Real>(v )∗ Conjugate ( q ) ;
// Zero−out the w−component to avo i d nume r i c a l r o u ndo f f e r r o r .
u [ 3 ] = ( Rea l ) 0 ;
r e tu r n u ;

}

LISTING 6.28: Source code for the rotation of a vector directly by quater-
nion operations.

The rotation matrix R corresponding to the quaternion q may be obtained
by computing symbolically the right-hand side of û = qv̂q∗ and factoring the
coefficients of the i-, j-, and k-terms to obtain u = Rv, where

R =

⎡

⎣

1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx
2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2

⎤

⎦ (6.86)
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The GTEngine source code for this and other conversions is described later.
Take note that the rotation matrix here is for the vector-on-the-right multi-
plication convention.

Composition of rotations is stated easily in terms of quaternion algebra.
If p and q are unit-length quaternions that represent rotations, and if v̂ is
the quaternion identified with vector v, then the rotation represented by q is
accomplished by û = qv̂q∗ as shown earlier. The vector u identified with û is
further modified by the rotation represented by p:

pûp∗ = p(qv̂q∗)p∗

= (pq)v̂(q∗p∗) quaternion multiplication is associative

= (pq)v̂(pq)∗ property of conjugation

(6.87)

This equation shows that the composite rotation is represented by the quater-
nion product pq.

6.3.4.3 Spherical Linear Interpolation of Quaternions

As we have seen, unit-length quaternions represent rotations. Orientation
of an object is represented by a rotation matrix, where the columns (or rows)
of the matrix are the axes associated with the orientation. Keyframe anima-
tion is an application in which positions and orientations are chosen for an
object at specific times. The intermediate positions and orientations between
the specific times are computed via interpolation. The simplest algorithm for
handling positions is linear interpolation, sometimes reduced to the acronym
LERP. If P0 and P1 are positions at specified times s0 and s1, the in-between
positions are

P(s) =
(s1 − s)

s1 − s0
P0 +

s− s0
s1 − s0

P1 (6.88)

for s ∈ [s0, s1]. When s is normalized to t = (s − s0)/(s1 − s0) ∈ [0, 1], the
linear interpolation is

P(t) = (1− t)P0 + tP1 (6.89)

Uniform sampling of t ∈ [0, 1] leads to uniform spacing of points along the
line segment connecting P0 and P1. In mathematical terms, this property is
implied by the derivative of the parameterized curve having constant length.
For LERP the length of the derivative is |P′(t)| = |P1 − P0|, which is a
constant.

The quaternion counterpart for linear interpolation is referred to as spher-
ical linear interpolation or SLERP for short. This was made popular in com-
puter graphics by [52]. The motivation for the definition comes from unit-
length vectors in 2D, which live on a circle of radius one. Figure 6.5 illus-
trates the idea. On the unit hypersphere in 4D, we choose the great circle
arc connecting the two quaternions. We want an interpolation of the form
q(t) = c0(t)q0 + c1(t)q1 for to-be-determined coefficient functions c0(t) and
c1(t). The angle between q0 and q1 is θ ∈ [0, π), the angle between q0 and q(t)
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FIGURE 6.5: Interpolation of quaternions q0 and q1 on a circle of radius 1.
The parameter t is in [0, 1].

is tθ, and the angle between q1 and q(t) is (1− t)θ. The dot product of vectors
gives us the cosine of the angle between them,

cos(tθ) = q0 · q(t) = c0(t) + cos(θ)c1(t)

cos((1− t)θ) = q1 · q(t) = cos(θ)c0(t) + c1(t)
(6.90)

These are two equations in two unknowns; the solution is

c0(t) =
cos(tθ) − cos(θ) cos((1− t)θ)

1− cos2(θ)
=

sin((1− t)θ)

sin(θ)

(6.91)

c1(t) =
cos((1 − t)θ)− cos(θ) cos(tθ)

1− cos2(θ)
=

sin(tθ)

sin(θ)

Spherical linear interpolation is therefore

slerp(t; q0, q1)) = q(t) =
sin((1 − t)θ)q0 + sin(tθ)q1

sin(θ)
(6.92)

Uniform sampling of t ∈ [0, 1] leads to uniform spacing of quaternions along
the circular arc connection q0 and q1. The length of the derivative is

|q′(t)| =
∣

∣

∣

∣

−θ cos((1− t)θ)q0 + θ cos(tθ)q1
sin(θ)

∣

∣

∣

∣

= θ (6.93)

where the right-hand side is expanded as a dot product and the computations
use q0 · q0 = 1, q0 · q1 = cos(θ), q1 · q1 = 1, and some trigonometric identities
are applied. The derivative has constant length, so in fact the uniform spacing
is guaranteed for uniform t-samples. Observe that SLERP is not defined for
antipodal points q1 = −q0, because there are infinitely many great circle arcs
that connect them.
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An implementation of Equation (6.92) requires dealing with three issues.
Firstly, if the quaternions are equal, the angle between them is zero, in which
case SLERP has a divide by zero. The same divide-by-zero problem occurs
when the quaternions are antipodal, but this is not a problem because SLERP
is not defined for antipodal points. Secondly, quaternions represent rotations
but provide a double covering: q and −q represent the same rotation. An
implementation will avoid the antipodal points and the double-covering issue
by requiring the angle between the quaternions to be acute. If desired, this can
be accomplished by preprocessing the sequence of quaternions in an animation
sequence, negating quaternions in the sequence as needed to guarantee that
consecutive quaternions have a nonnegative dot product. Thirdly, the function
acos is applied to compute θ from q0 · q1 = cos θ. When using floating-point
arithmetic, roundoff errors can lead to a dot product slightly larger than
one. This condition must be trapped and handled, because the acos function
returns a quiet NaN for arguments larger than one. A typical implementation
of SLERP is shown in Listing 6.29

Quate rn i on S l e r p ( Rea l t , Qua te rn i on q0 , Qua te rn i on q1 )
{

Rea l cosTheta = Dot ( q0 , q1 ) ;
i f ( cosTheta < 0)
{

q1 = −q1 ;
cosTheta = −cosTheta ;

}

i f ( cosTheta < 1)
{

// Ang le t h e t a i s i n the i n t e r v a l (0 , p i / 2 ] .
Rea l t h e t a = acos ( cosTheta ) ;
Rea l i n vS i nTheta = 1/ s i n ( t h e t a ) ;
Rea l c0 = s i n ((1− t )∗ t h e t a )∗ i n vS i nTheta ;
Rea l c1 = s i n ( t∗ t h e t a )∗ i n vS i nTheta ;
r e tu r n c0∗q0 + c1∗q1 ;

}
e l s e
{

// Ang le t h e t a i s zero , so j u s t r e t u r n one o f the i n p u t s .
r e tu r n q0 ;

}
}

LISTING 6.29: A direct implementation of SLERP.

SLERP is an expensive function to compute because of one call to acos,
three calls to sin, and one division. Moreover, branching is potentially ex-
pensive, although on modern CPUs, branching tables for branch prediction
eliminate much of that expense. On SIMD hardware, the if-then-else process-
ing is replaced by selection, which adds some overhead cost, although the gain
from parallelism offsets this.

One way to avoid the expensive function calls is to approximate sin by a
polynomial and acos by a square root and a polynomial [1]. However, a sim-
ple observation about the coefficients used in SLERP and some basic ideas
from linear differential equations lead to a faster SLERP evaluation, one that
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uses only multiplications and additions and has no branching. For applica-
tions that make heavy use of SLERP, the approximation provides a decent
approximation with a significant speedup.

An alternative that is faster and more robust is presented in [10], which in-
volves a two-variable polynomial approximation. The algorithm uses only mul-
tiplication, addition, and subtraction and does not require division, branching,
or testing for special conditions. It is also friendly to SIMD.

The coefficient sin(tθ)/ sin(θ) in Equation (6.92) is evaluated for t ∈ [0, 1].
It has the same form as sin(nθ)/ sin(θ) for nonnegative integers n, an expres-
sion that is related to Chebyshev polynomials of the second kind, un(x), defined
for |x| ≤ 1; see [50, Section 7.6] on orthogonal polynomials. The polynomials
are defined recursively by u0(x) = 1, u1(x) = 2x, un(x) = 2xun−1(x)−un−2(x)
for n ≥ 2 and have the property un−1(cos(θ)) = sin(nθ)/ sin(θ). They are so-
lutions to the second-order linear differential equation

(

x2 − 1
)

u′′
n−1(x) + 3xu′

n−1(x) +
(

1− n2
)

un−1(x) = 0 (6.94)

where x = cos(θ) ∈ [0, 1] for angles θ ∈ [0, π/2]. Equation (6.94) allows for
a continuous variable t rather than the discrete variable n, so if we define
ut−1(cos(θ)) = sin(tθ)/ sin(θ) for real-valued t ∈ [0, 1], the SLERP equation
is rewritten as

slerp(t; q0, q1) = u−t(cos(θ)) q0 + ut−1(cos(θ)) q1 (6.95)

Equation (6.95) suggests that we can construct formulas for u−t and u1−t that
depend only on cos(θ) = q0 · q1, thereby avoiding the explicit computation of
θ and the calls to the sine function.

Define f(x; t) = ut−1(x), which is viewed as a function of x for a specified
real-valued parameter t. It is a solution to Equation (6.94) with n formally
replaced by t,

(

x2 − 1
)

f ′′(x; t) + 3xf ′(x; t) +
(

1− t2
)

f(x; t) = 0 (6.96)

The prime symbols denote differentiation with respect to x.
We may specify an initial value for f(1; t) at the endpoint x = 1. Obtain-

ing a unique solution to a linear second-order differential equation normally
requires specifying the derivative value at x = 1; however, the equation is
singular at x = 1, because the coefficient of f ′′ is 0 at x = 1. The uniqueness
is guaranteed by specifying only the value of f at the endpoint. When x is
one, θ is zero and evaluation of ut−1(0) is in the limiting sense,

ut−1(1) = lim
θ→0

ut−1(cos(θ)) = lim
θ→0

sin(tθ)

sin(θ)
= lim

θ→0

t cos(tθ)

cos(θ)
= t (6.97)

The next-to-last equality of Equation (6.97) uses an application of l’Hôpital’s
Rule. The initial condition is therefore f(1; t) = t.
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A standard undergraduate course on differential equations shows how to
solve the differential equation using power series [2]. Because we want an
expansion at x = 1, the powers are (x − 1)i. The next equation lists power
series for f and its first- and second-order derivatives with respect to x:

f =

∞
∑

i=0

ai(x−1)i, f ′ =

∞
∑

i=0

iai(x−1)i−1, f ′′ =

∞
∑

i=0

i(i−1)ai(x−1)i−2 (6.98)

The coefficients of the powers of (x − 1) are written to show their functional
dependence on t. Substituting these into Equation (6.96),

0 =
(

x2 − 1
)

f ′′ + 3xf ′ +
(

1− t2
)

f

=
[

(x − 1)2 + 2(x− 1)
]

f ′′ + 3 [(x− 1) + 1] f ′ +
(

1− t2
)

f

=
∑∞

i=0

[

(i+ 1)(2i+ 3)ai+1 + ((i + 1)2 − t2))ai
]

(x− 1)i

(6.99)

For the power series to be identically zero for all x, it is necessary that the
coefficients are all zero. The condition f(1; t) = t implies a0 = t. These lead
to a recurrence equation with initial condition,

a0 = t, ai =
t2 − i2

i(2i+ 1)
ai−1, i ≥ 1 (6.100)

It is apparent from Equation (6.100) that ai(t) is a polynomial in t with
degree 2i+ 1. Observe that a0(0) = 0, which implies ai(0) = 0 for i ≥ 0; this
is equivalent to f(x; 0) = 0. Similarly, a0(1) = 1 and a1(1) = 0, which implies
ai(1) = 0 for i ≥ 1; this is equivalent to f(x; 1) = 1.

We now have a power series for f(x; t) using powers of (x− 1) and whose
coefficients are polynomials in t that may be generated iteratively. The power
series may be truncated and given an error term,

f(x; t) =
∑n

i=0 ai(t)(x− 1)i +
∑∞

i=n+1 ai(t)(x − 1)i

=
∑n

i=0 ai(t)(x− 1)i + ε(x; t, n)
.
=

∑n
i=0 ai(t)(x− 1)i + µnan(t)(x− 1)n

= f̂(x; t)

(6.101)

where ε(x; t, n) is the error of truncation. The approximation is f̂(x; t), where
µn is a constant that is chosen to provide a global error bound. A large part
of [10] is about how to choose µ and delves into the Chebyshev equioscillation
theorem and the Remez algorithm; the details are skipped here. The global
error bound is |f(x; t)− f̂(x; t)| ≤ en. Table 6.1 summarizes the error bounds
and howmany terms are used in the approximation. You may select the desired
error bound en, look up the corresponding µ, and choose the n terms of the
polynomial to be evaluated. Equation (6.100) is evaluated as many times as
is required for the choice of n.
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TABLE 6.1: Error balancing for several n in the Remez algorithm
n µn en n µn en
1 0.62943436108234530 5.745259 ∗ 10−3 9 0.91015881189952352 5.277561 ∗ 10−7

2 0.73965850021313961 1.092666 ∗ 10−3 10 0.91767344933047190 2.110597 ∗ 10−7

3 0.79701067629566813 2.809387 ∗ 10−4 11 0.92401541194159076 8.600881 ∗ 10−8

4 0.83291820510335812 8.409177 ∗ 10−5 12 0.92944142668012797 3.560875 ∗ 10−8

5 0.85772477879039977 2.763477 ∗ 10−5 13 0.93413793373091059 1.494321 ∗ 10−8

6 0.87596835698904785 9.678992 ∗ 10−6 14 0.93824371262559758 6.344653 ∗ 10−9

7 0.88998444919711206 3.551215 ∗ 10−6 15 0.94186426368404708 2.721482 ∗ 10−9

8 0.90110745351730037 1.349968 ∗ 10−6 16 0.94508125972497303 1.177902 ∗ 10−9

GTEngine implements this algorithm on the CPU/FPU for n = 8. The
implementation is shown in Listing 6.30.

template <typename Real> Quatern ion<Real> S l e r p ( Rea l t ,
Quatern ion<Real> const& q0 , Quatern ion<Real> const& q1 )

{
Rea l const onePlusMuFPU = ( Rea l )1 .90110745351730037;

Rea l const a [ 9 ] =
{

( Rea l ) 1 / ( ( Rea l )1∗( Rea l ) 3 ) , ( Rea l ) 1 / ( ( Rea l )2∗( Rea l ) 5 ) ,
( Rea l ) 1 / ( ( Rea l )3∗( Rea l ) 7 ) , ( Rea l ) 1 / ( ( Rea l )4∗( Rea l ) 9 ) ,
( Rea l ) 1 / ( ( Rea l )5∗( Rea l )11 ) , ( Rea l ) 1 / ( ( Rea l )6∗( Rea l )13 ) ,
( Rea l ) 1 / ( ( Rea l )7∗( Rea l )15 ) , ( Rea l ) 1 / ( ( Rea l )8∗( Rea l )17 ) ,
onePlusMuFPU ∗( Rea l ) 1 / ( ( Rea l )9∗( Rea l )19 )

} ;

Rea l const b [ 9 ] =
{

( Rea l )1/ ( Rea l )3 , ( Rea l )2/ ( Rea l )5 ,
( Rea l )3/ ( Rea l )7 , ( Rea l )4/ ( Rea l )9 ,
( Rea l )5/ ( Rea l ) 11 , ( Rea l )6/ ( Rea l ) 13 ,
( Rea l )7/ ( Rea l ) 15 , ( Rea l )8/ ( Rea l ) 17 ,
onePlusMuFPU ∗( Rea l )9/ ( Rea l )19

} ;

Rea l c s = Dot ( q0 , q1 ) ;
Rea l s i g n ;
i f ( c s >= ( Rea l )0 )
{

s i g n = ( Rea l ) 1 ;
}
e l s e
{

cs = −cs ;
s i g n = ( Rea l )−1;

}

Rea l csm1 = cs − ( Rea l ) 1 ;
Rea l term0 = ( Rea l )1 − t , term1 = t ;
Rea l s q r0 = term0∗term0 , sq r1 = term1∗ term1 ;
Rea l u0 = term0 , u1 = term1 ;
f o r ( i n t i = 0 ; i <= 8 ; ++i )
{

term0 ∗= ( a [ i ]∗ sq r0 − b [ i ] )∗ csm1 ;
term1 ∗= ( a [ i ]∗ sq r1 − b [ i ] )∗ csm1 ;
u0 += term0 ;
u1 += term1 ;

}
u1 ∗= s i g n ;
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Quatern ion<Real> s l e r p = q0∗u0 + q1∗u1 ;
r e tu r n s l e r p ;

}

LISTING 6.30: A fast, accurate, and robust implementation of SLERP.

On the CPU/FPU, the speed-up over the code in Listing 6.29 is more than
two-fold for 32-bit floating-point numbers. A SIMD implementation, described
in a later section, provides for parallel SLERP operations for additional speed
ups.

6.3.5 Euler Angles

Rotations about the coordinate axes are easy to define and work with.
My convention is that a positive angle θ corresponds to a counterclockwise
rotation in the plane when viewed by an observer on the positive side of the
axis looking at the origin. In order to conform to this convention, the rotation
matrix depends on the matrix-vector multiplication convention in effect.

name vector-on-the-right vector-on-the-left name

R0(θ0)





1 0 0
0 cos θ0 − sin θ0
0 sin θ0 cos θ0









1 0 0
0 cos θ0 sin θ0
0 − sin θ0 cos θ0



 R̂0(θ0)

R1(θ1)





cos θ1 0 sin θ1
0 1 0

− sin θ1 0 cos θ1









cos θ1 0 − sin θ1
0 1 0

sin θ1 0 cos θ1



 R̂1(θ1)

R2(θ2)





cos θ2 − sin θ2 0
sin θ2 cos θ2 0

0 0 1









cos θ2 sin θ2 0
− sin θ2 cos θ2 0

0 0 1



 R̂2(θ2)

(6.102)

Index zero indicates a rotation about the x-axis, index one indicates a rotation
about the y-axis, and index 2 indicates a rotation about the z-axis. The angles
are referred to as Euler angles.

For example, using vector-on-the-right convention, consider a rota-
tion matrix that is a composition of coordinate rotation matrices, R =
R0(θ0)R1(θ1)R2(θ2). The ordering is said to be xyz. Five other possible
combinations are xzy, yxz, yzx, zxy, and zyx. Another type of composi-
tion involves three angles but only two coordinate axes; for example, R =
R0(θ0)R1(θ1)R0(θ2). The ordering is said to be xyx. Five other possible com-
binations are xzx, yxy, yzy, zxz, and zyz. In total, we have twelve possible
combinations of coordinate axis rotation matrices.

The term “xyz ordering” is confusing when you allow for different multipli-
cation conventions. In the previous paragraph, xyz ordering is a composition
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for which the z-axis rotation is applied first, the y-axis rotation second, and
the x-axis rotation third:

RV = R0(θ0)[R1(θ1)[R2(θ2)V]] (6.103)

Using vector-on-the-left convention, the rotation R̂ = RT leads to equal 3-
tuples RV and VTR̂. It is convenient to implement Euler angles in a manner
that hides the underlying matrix-vector multiplication convention. For the
current example, we want a composition for R̂ that applies the z-axis rotation
first, the y-axis rotation second, and the x-axis rotation third. Specifically,
R̂ = R̂2(θ2)R̂1(θ1)R̂0(θ0), which is a “zyx ordering.” The application to a
vector is

VTR̂ =
[[

VTR̂2(θ2)
]

R̂1(θ1)
]

R̂0(θ0) (6.104)

which is the same 3-tuple as RV. In terms of matrix operations, all we are
doing is applying tranposes,

R̂ = RT

= (R0(θ0)R1(θ1)R0(θ2))
T

= R2(θ2)
TR1(θ1)

TR0(θ2)
T

= R̂2(θ2)R̂1(θ1)R̂0(θ0)

(6.105)

GTEngine hides the matrix-vector multiplication convention as described
previously. The Euler angle composition is presented through an interface that
implements the function W ,

W (Ei0 , φ0,Ei1 , φ1,Ei2 , φ2) =
{

R(Ei2 , φ2)R(Ei1 , φ1)R(Ei0 , φ0), vector-on-the-right convention

R̂(Ei0 , φ0)R̂(Ei1 , φ1)R̂(Ei2 , φ2), vector-on-the-left convention

(6.106)

For three distinct axes, (i0, i1, i2) is one of (0, 1, 2), (0, 2, 1), (1, 2, 0), (1, 0, 2),
(2, 0, 1), or (2, 1, 0). For two distinct axes, (i0, i1, i2) is one of (0, 1, 0), (0, 2, 0),
(1, 0, 1), (1, 2, 1), (2, 0, 2), or (2, 1, 2). The indexing of axes is such that regard-
less of multiplication convention, the rotation about axis i0 is applied first,
the rotation about axis i1 is applied second, and the rotation about axis i2 is
applied third. The angles are φj = θij for 0 ≤ j ≤ 2.

6.3.5.1 World Coordinates versus Body Coordinates

I refer to the twelve factorizations of the last section as Euler angles in
world coordinates. The coordinate axis rotations are specified for the original
coordinate axes, and the rotations are applied one at a time in the world
coordinate system. It is also possible to define Euler angles in body coordinates.
In this scenario, the coordinate axes themselves are rotated. In my opinion,
specifying Euler angles in body coordinates is more intuitive than specifying
them in world coordinates, because you can imagine the actual motion of the
object for each selected body-axis rotation.
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Let the initial body axes be the orthonormal right-handed basis
{U0,U1,U2}. The vectors are unit-length, mutually perpendicular, and
U0 × U1 = U2. Let the rotation angles be θi for 0 ≤ i ≤ 2 and define
si = sin θi and ci = cos θi. The rotation matrix by an angle θ corresponding
to an axis with unit-length direction V is R(V, θ).

The illustration assumes the vector-on-the-right multiplication convention.
The first rotation is by angle θ0 about the body axis U0; let the rotation
matrix be denoted R0 = R(U0, θ0). The second rotation is by angle θ1 about
the rotated body axis R0U0; the rotation matrix is R1 = R(R0U0, θ1). The
third rotation is by angle θ2 about the twice-rotated body axis R1R0U2;
the rotation matrix is R2 = R(R1R0U2, θ2). The composition of the three
rotations is R2R1R0, say,

B(U0, θ0,U1, θ1,U2, θ2)
= R(R(R(U0, θ0)U1, θ1)U2, θ2)R(R(U0, θ0)U1, θ1)R(U0, θ0)
= R(s1U0 − s0c1U1 − s0c0U2, θ2)R(c0U1 + s0U2, θ1)R(U0, θ0)

= UB(E0, θ0,E1, θ1,E2, θ2)U
T

(6.107)

where E0 = (1, 0, 0), E1 = (0, 1, 0), E2 = (0, 0, 1), and U = [U0 U1 U2]
is the rotation matrix whose columns are the specified vectors. I leave it as
an exercise to prove the following relationship between Euler angles in world
coordinates and Euler angles in body coordinates,

B(E0, θ0,E1, θ1,E2, θ2) = W (E0, θ0,E1, θ1,E0, θ2) (6.108)

Observe that the world-coordinate function corresponds to a three-axis rota-
tion where one of the axes is repeated.

We may also compose three body-axis rotations when one of the axes is
repeated. The general composition formula in Equation (6.107) is overloaded
to cover this case. For example, the xyx composition using the standard Eu-
clidean basis is

B(U0, θ0,U1, θ1,U0, θ2)
= R(R(R(U0, θ0)U1, θ1)U0, θ2)R(R(U0, θ0)U1, θ1)R(U0, θ0)
= R(c1U0 + s0s1U1 − c0s1U2, θ2)R(c0U1 + s0U2, θ1)R(U0, θ0)

= UB(E0, θ0,E1, θ1,E0, θ2)U
T

= UB(E0, θ0 + θ2,E1, θ1,E0, 0)U
T

(6.109)

The last equality appeals to your intuition that—with body coordinates—if
you rotate around a body axis two separate times, you might as well rotate
around it once by the sum of the angles. This reduction is not valid when
using xyx Euler angles in world coordinates.

The body-axis composition when using the vector-on-the-left convention
is

B(U0, θ0,U1, θ1,U2, θ2)

= R̂(U0, θ0)R̂(UT
1 R̂(U0, θ0), θ1)R̂(UT

2 R̂(UT
1 R̂(U0, θ0), θ1), θ2)

(6.110)

The matrix-vector convention is hidden by using the same interface for both
conventions.
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6.3.6 Conversion between Representations

GTEngine supports four different representations for rotations: matrices,
axis-angle pairs, quaternions, and Euler angles in world coordinates. In most
applications, invariably you want to convert from one representation to an-
other. There are twelve such conversions—a 4×4 table where the off-diagonal
entries correspond to the conversion functions.

The conversions are encapsulated by a templated class, Rotation<N,Real>,
where N is three or four and Real is float or double. The idea of parameter N

is to support conversions for 3D rotations embedded in 4D when using affine
algebra. I also wanted a consistent interface for any-to-any conversions, but as
is well known, the return type of C++ functions is not part of the signature
when generating decorated names. It is convenient to have compact code as
shown in Listing 6.31.

// E r r o r : The comp i l e r comp la i n s tha t the Convert f u n c t i o n s a r e ambiguous ,
// because the r e t u r n type i s not p a r t o f the f u n c t i o n s i g n a t u r e .
template < i n t N, typename Real> Matr ix<N,N, Real>
Convert ( Quatern ion<Rea l const&);

template < i n t N, typename Real> Matr ix<N,N, Real>
Convert ( Ax i sAngle<Real> const&);

Quatern ion<f l o a t> q = <some qua te rn i on >;
Ax i sAngle <3, f l o a t> aa = <some ang le−a x i s pa i r >;
Matr i x3x3<f l o a t> r0 = Convert ( q ) ;
Matr i x3x3<f l o a t> r1 = Convert ( aa ) ;

LISTING 6.31: An attempt to have compact conversion code. The compiler
does not allow this.

The usual way to deal with this is to return the result via a function parameter,
as shown in Listing 6.32.

template < i n t N, typename Real>
vo id Convert ( Quatern ion<Rea l const&, Matr i x<N,N, Real>&);

template < i n t N, typename Real>
vo id Convert ( Ax i sAngle<Real> const&, Matr i x<N,N, Real>&);

Quatern ion<f l o a t> q = <some qua te rn i on >;
Ax i sAngle <3, f l o a t> aa = <some ang le−a x i s pa i r >;
Matr i x3x3<f l o a t> r0 , r1 ;
Convert (q , r0 ) ;
Convert ( aa , r1 ) ;

LISTING 6.32: A workaround for the compiler complaints of Listing 6.31.

I prefer the compact code. To circumvent the compiler complaints, I imple-
mented the Rotation class so that its constructors act as the input consumers
of the conversion and implicit operators act as the output producers of the
conversion, as shown in Listing 6.33.

template < i n t N, typename Real>
c l a s s Rota t i on
{
pub l i c :
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// Crea te r o t a t i o n s from v a r i o u s r e p r e s e n t a t i o n s .
Rota t i on ( Matr i x<N,N, Real> const& mat r i x ) ;
Ro ta t i on ( Quatern ion<Real> const& qua t e r n i o n ) ;
Ro ta t i on ( Axi sAng le<N, Real> const& ax i sAng l e ) ;
Ro ta t i on ( Eu l e rAng l e s<Real> const& eu l e r A n g l e s ) ;

// Convert one r e p r e s e n t a t i o n to ano the r .
ope ra to r Matr ix<N,N, Real> ( ) const ;
ope ra to r Quatern ion<Real> ( ) const ;
ope ra to r Axi sAngle<N, Real> ( ) const ;
ope ra to r Eu l e rAng l e s<Real> ( ) const ;

} ;

Quatern ion<f l o a t> q = <some qua te rn i on >;
Ax i sAngle <3, f l o a t> aa = <some ang le−a x i s pa i r >;
Matr i x3x3<f l o a t> r0 = Rotat ion <3,Real>(q ) ;
Matr i x3x3<f l o a t> r1 = Rotat ion <3,Real>(aa ) ;

Rotat ion <3,Real> r o t a t i o n ( q ) ;
Matr i x3x3 mat r i x = r o t a t i o n ;
Eu l e rAng l e s<f l o a t> e u l e r = r o t a t i o n ;

LISTING 6.33: The final conversion code that provides compact code but
no compiler warnings.

The conversions themselves are implemented as private class member func-
tions. In fact, you can have a persistant Rotation object that can be used to
convert to different representations, as shown by the final block of code in the
listing. In a sense, Rotation is an abstraction of the concept of a rotation. To
apply a rotation, you need an instantiation as some algebraic entity, which is
what the implicit operator conversions give you.

6.3.6.1 Quaternion to Matrix

The conversion from a quaternion to a rotation matrix for the vector-on-
the-right convention was provided by Equation (6.86). The rotation matrix
for the vector-on-the-left convention is the transpose of the matrix of that
equation.

6.3.6.2 Matrix to Quaternion

The rotation matrices corresponding to quaternions contain quadratic
terms involving the quaternion components x, y, z, and w. Let the entries
of the rotation matrix be rij for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2.

4x2 = (+r00 − r11 − r22 + 1), 4y2 = (−r00 + r11 − r22 + 1),

4z2 = (−r00 − r11 + r22 + 1), 4w2 = (+r00 + r11 + r22 + 1),

4xy = r01 + r10, 4xz = r02 + r20, 4yz = r12 + r21,

4xw = r21 − r12, 4yw = r02 − r20, 4zw = r10 − r01, (vector-on-right)

4xw = r12 − r21, 4yw = r20 − r02, 4zw = r01 − r10, (vector-on-left)

2(x2 + y2) = 1− r22, 2(z2 + w2) = 1 + r22,

2(y2 − x2) = r11 − r00, 2(w2 − z2) = r11 + r00

(6.111)
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If Q is the 4× 1 vector corresponding to the 4-tuple (x, y, z, w), the previous
equations give us a matrix

4QQT =

⎡

⎢

⎢

⎣

4x2 4xy 4xz 4zw
4yx 4y2 4yz 4yw
4zx 4zy 4z2 4zw
4wx 4wy 4wz 4w2

⎤

⎥

⎥

⎦

(6.112)

Theoretically, any nonzero row of the matrix can be normalized to obtain
a quaternion q. To be numerically robust, the code determines the row of
maximum length and normalizes it to obtain q.

The row of maximum length corresponds to the quaternion component of
largest magnitude, but this begs the question because we do not know yet what
the quaternion components are. Instead, we must infer the largest-magnitude
component. The quaternion is obtained by normalizing the corresponding row.
The pseudocode in Listing 6.34 does the job.

Rea l s i g n = ( vecto r−on−r i g h t−conven t i on ? +1 : −1);
i f ( r22 <= 0) // 2( xˆ2 + y ˆ2) >= 1
{

omr22 = 1 − r22 ; d i f 1 0 = r11 − r00 ;
i f ( d i f 1 0 <= 0) // xˆ2 >= y ˆ2 , 4xˆ2 >= 1 , x >= 1/2 , | x | i s maximum
{

f o u r x s q r = omr22 − d i f 1 0 ; i n v f o u r x = 0 .5/ s q r t ( f o u r x s q r ) ;
q . x = f o u r x s q r ∗ i n v f o u r x ;
q . y = ( r01+r10 )∗ i n v f o u r x ;
q . z = ( r02+r20 )∗ i n v f o u r x ;
q .w = s i g n ∗( r21−r12 )∗ i n v f o u r x ;

}
e l s e // yˆ2 >= x ˆ2 , 4yˆ2 >= 1 , y >= 1/2 , | y | i s maximum
{

f o u r y s q r = om22 + d i f 1 0 ; i n v f o u r y = 0 .5/ s q r t ( f o u r y s q r ) ;
q . x = ( r01+r10 )∗ i n v f o u r y ;
q . y = f o u r y s q r ∗ i n v4y ;
q . z = ( r12+r21 )∗ i n v f o u r y ;
q .w = s i g n ∗( r02−r20 )∗ i n v f o u r y ;

}
}
e l s e // 2( z ˆ2 + wˆ2) >= 1
{

opr22 = 1 + r22 ; sum10 = r11 + r00 ;
i f ( sum10 <= 0) // z ˆ2 >= wˆ2 , 4z ˆ2 >= 1 , z >= 1/2 , | z | i s maximum
{

f o u r z s q r = opr22 − sum10 ; i n v f o u r z = 0 .5/ s q r t ( f o u r z s q r ) ;
q . x = ( r02+r20 )∗ i n v f o u r z ;
q . y = ( r12+r21 )∗ i n v f o u r z ;
q . z = f ou r z s q r ∗ i n v f o u r z ;
q .w = s i g n ∗( r10−r01 )∗ i n v f o u r z ;

}
e l s e // wˆ2 >= z ˆ2 , 4wˆ2 >= 1 , w >= 1/2 , |w| i s maximum
{

f ou rwsq r = opr22 + sum10 ; i nv f ou rw = 0 .5/ s q r t ( f ou rwsq r ) ;
q . x = s i g n ∗( r21−r12 )∗ i n v f ou rw ;
q . y = s i g n ∗( r02−r20 )∗ i n v f ou rw ;
q . z = s i g n ∗( r10−r01 )∗ i n v f ou rw ;
q .w = fou rwsq r ∗ inv4w ;

}
}

LISTING 6.34: Determining the largest-magnitude component of q from the
products of components.
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6.3.6.3 Axis-Angle to Matrix

The conversion from an axis-angle pair to a matrix is provided by Equa-
tion (6.68). The equation was derived for the vector-on-the-right convention.
The implementation for vector-on-the-left just computes the transpose of the
matrix of this equation.

6.3.6.4 Matrix to Axis-Angle

For the vector-on-the-right convention, the rotation matrix is R = I +
(sin θ)S + (1− cos θ)S2, where S = [sij ] is the skew-symmetric matrix whose
components determine the unit-length direction of the axis of rotation. If that
direction is U = (u0, u1, u2), then s01 = −u2, s02 = u1, and s12 = −u0.
The trace of R is the sum of the diagonal entries, and it can be determined
from the matrix equation: trace(R) = 1 + 2 cos θ. Solving for the angle, θ =
acos((trace(R)− 1)/2) ∈ [0, π].

If θ = 0, the rotation matrix is the identity I. Any axis serves as the
rotation axis, so the source code uses (arbitrarily) U = (1, 0, 0).

If θ ∈ (0, π), the axis direction is extracted from S = (R − RT)/(2 sin θ).
To be numerically robust, the 3-tuple extracted is normalized to minimize the
effects of numerical roundoff errors when θ is nearly 0 or nearly π. To avoid bias
from previous roundoff errors and guarantee the result is the same whether we
extract from R or RT, set u0 = r21 − r12, u1 = r02 − r20, and u2 = r10 − r01.
The resulting 3-tuple is the normalized. For the vector-on-the-left convention,
the axis direction is extracted from S = (RT−R)/(2 sin θ) using u0 = r12−r21,
u1 = r20 − r02, and u2 = r01 − r10 followed by normalization.

If θ = π, then

R+ I = 2(I + S2) = 2UUT =

⎡

⎣

2u2
0 2u0u1 2u0u2

2u0u1 2u2
1 2u1u2

2u0u2 2u1u2 2u2
2

⎤

⎦ (6.113)

which is a symmetric matrix regardless of choice of multiplication convention.
The source code does not need to use conditional defines to handle sepa-
rate cases. Extracting U in a numerically robust manner is similar to how
we computed a quaternion from a matrix. In this case, we simply compute
the maximum diagonal entry of R + I to determine the largest-magnitude
component of U and select the corresponding row of the matrix to normal-
ize. The axis direction is obtained by normalizing the corresponding row. The
pseudocode in Listing 6.35 illustrates.

i f ( r00 >= r11 )
{

i f ( r00 >= r22 ) // u0ˆ2 l a r g e s t−magnitude
{

U = ( r00 + 1 , ( r01 + r10 )/2 , ( r02 + r20 ) / 2 ) ;
}
e l s e // u2ˆ2 l a r g e s t−magnitude
{

U = ( ( r20 + r02 )/2 , ( r21 + r12 )/2 , r22 + 1 ) ;
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}
}
e l s e
{

i f ( r11 >= r22 ) // u1ˆ2 l a r g e s t−magnitude
{

U = ( ( r10 + r01 )/2 , r11 + 1 , ( r12 + r21 ) / 2 ) ;
}
e l s e // u2ˆ2 l a r g e s t−magnitude
{

U = ( ( r20 + r02 )/2 , ( r21 + r12 )/2 , r22 + 1 ) ;
}

}
Norma l i z e (U) ;

LISTING 6.35: Determining the largest-magnitude component of U from
the products of components.

Numerical bias is avoided by averaging the off-diagonal terms, ensuring the
results are the same for R or RT. It does not matter that the normalization
computes a positive entry in U corresponding to the specially computed diag-
onal entry. For a rotation by π radians, R(U, π) and R(−U, π) are the same
rotation matrix.

6.3.6.5 Axis-Angle to Quaternion

This conversion is simple. The quaternion angle is half the rotation angle
and the imaginary portion of the quaternion is a multiple of the rotation axis.
Listing 6.36 has the pseudocode for converting an axis-angle pair (axis,angle)

to a quaternion q.

Rea l s i g n = ( vecto r−on−the−r i g h t−conven t i on ? +1 : −1);
Rea l h a l fAng l e = 0.5∗ s i g n ∗ ang l e ;
Rea l sn = s i n ( h a l fAng l e ) ;
q [ 0 ] = sn∗ a x i s [ 0 ] ;
q [ 1 ] = sn∗ a x i s [ 1 ] ;
q [ 2 ] = sn∗ a x i s [ 2 ] ;
q [ 3 ] = cos ( h a l fAng l e ) ;

LISTING 6.36: Conversion of an axis-angle pair (axis,angle) to a quaternion
q.

6.3.6.6 Quaternion to Axis-Angle

This conversion is as simple as that for axis-angle to quaternion, as shown
in Listing 6.37.

Rea l s i g n = ( vecto r−on−the−r i g h t−conven t i on ? +1 : −1);
Rea l a x i s Sq r L en = q [ 0 ]∗ q [ 0 ] + q [ 1 ]∗ q [ 1 ] + q [ 2 ]∗ q [ 2 ] ;
i f ( a x i s Sq r L en > 0)
{

Rea l a d j u s t = s i g n / s q r t ( a x i s Sq r L en ) ;
a x i s [ 0 ] = q [ 0 ]∗ a d j u s t ;
a x i s [ 1 ] = q [ 1 ]∗ a d j u s t ;
a x i s [ 2 ] = q [ 2 ]∗ a d j u s t ;
ang l e = acos ( q [ 3 ] ) ;

}
e l s e
{
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// The ang l e i s 0 (modulo 2∗ p i ) . Any a x i s w i l l work , so choose ( 1 , 0 , 0 ) .
a . a x i s [ 0 ] = 1 ;
a . ang l e = 0 ;

}

LISTING 6.37: Conversion of a quaternion q to an axis-angle pair (axis,angle).

6.3.6.7 Euler Angles to Matrix

The conversion involves a simple composition of coordinate-axis rotations,
as shown in Listing 6.38. The pseudocode assumes that the indices are cor-
rectly formed; all are distinct, or the first and last indices are the same and
different from the middle.

s t r u c t Eu l e rAng l e s
{

i n t a x i s [ 3 ] ; // i n {0 ,1 ,2}
Rea l ang l e [ 3 ] ; // i n r a d i a n s

}

Vector3 Uni t [ 3 ] = { ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , (0 ,0 ,1 ) } ;

Matr i x3x3 r0 = Rota t i on ( Ax i sAng l e ( Un i t ( e . a x i s [ 0 ] ) , e . ang l e [ 0 ] ) ) ;
Matr i x3x3 r1 = Rota t i on ( Ax i sAng l e ( Un i t ( e . a x i s [ 1 ] ) , e . ang l e [ 1 ] ) ) ;
Matr i x3x3 r2 = Rota t i on ( Ax i sAng l e ( Un i t ( e . a x i s [ 2 ] ) , e . ang l e [ 2 ] ) ) ;
Matr i x3x3 r = ( vecto r−on−r i g h t−conven t i on ? r2∗ r1∗ r0 : r0∗ r1∗ r2 ) ;

LISTING 6.38: Conversion of Euler angles e to a rotation matrix r.

6.3.6.8 Matrix to Euler Angles

Define ci = cos(θi) and si = sin(θi) for 0 ≤ i ≤ 2. Let the rotation matrix
be R = [rij ] for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2.

The product R = R0(θ0)R1(θ1)R2(θ1) serves as the pattern for six factor-
izations with three distinct coordinate axes. Formally multiplying the three
coordinate rotation matrices and equating yields

⎡

⎣

r00 r01 r02
r10 r11 r12
r20 r21 r22

⎤

⎦ =

⎡

⎣

c1c2 −c1s2 s1
c0s2 + s0s1c2 c0c2 − s0s1s2 −s0c1
s0s2 − c0s1c2 s0c2 + c0s1s2 c0c1

⎤

⎦ (6.114)

The simplest term to work with is s1 = r02, so θ1 = asin(r02). There are three
cases to consider.

1. If θ1 ∈ (−π/2, π/2), then c1 �= 0 and c1(s0, c0) = (−r12, r22), in which
case θ0 = atan2(−r12, r22), and c1(s2, c2) = (−r01, r00), in which case
θ2 = atan2(−r01, r00). In the source code, this case is tagged as UNIQUE.

2. If θ1 = π/2, then s1 = 1 and c1 = 0. In this case,

[

r10 r11
r20 r21

]

=

[

s0c2 + c0s2 c0c2 − s0s2
s0s2 − c0c2 s0c2 + c0s2

]

=

[

sin(θ0 + θ2) cos(θ0 + θ2)
− cos(θ0 + θ2) sin(θ0 + θ2)

]
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Therefore, θ0 + θ2 = atan2(r10, r11). There is one degree of freedom, so
the factorization is not unique. In the source code, this case is tagged as
NOT UNIQUE SUM.

3. If θ1 = −π/2, then s1 = −1 and c1 = 0. In this case,
[

r10 r11
r20 r21

]

=

[

c0s2 − s0c2 c0c2 + s0s2
c0c2 + s0s2 s0c2 − c0s2

]

=

[

sin(θ2 − θ0) cos(θ2 − θ0)
cos(θ2 − θ0) − sin(θ2 − θ0)

]

Therefore, θ2 − θ0 = atan2(r10, r11). There is one degree of freedom, so
the factorization is not unique. In the source code, this case is tagged as
NOT UNIQUE DIF.

The factorization R = R0(θ0)R1(θ1)R0(θ2) serves as the pattern for six
factorizations with two distinct coordinate axes, one repeated. Formally mul-
tiplying the three coordinate rotation matrices and equating yields
⎡

⎣

r00 r01 r02
r10 r11 r12
r20 r21 r22

⎤

⎦ =

⎡

⎣

c1 s1s2 s1c2
s0s1 c0c2 − s0c1s2 −s0c1c2 − c0s2
−c0s1 s0c2 + c0c1s2 c0c1c2 − s0s2

⎤

⎦ (6.115)

The simplest term to work with is c1 = r00, so θ1 = acos(r00). There are three
cases to consider.

1. If θ1 ∈ (0, π), then s1 �= 0 and s1(s0, c0) = (r10,−r20), in which case
θ0 = atan2(r10,−r20), and s1(s2, c2) = (r01, r02), in which case θ2 =
atan2(r01, r02). In the source code, this case is tagged as UNIQUE.

2. If θ1 = 0, then c1 = 1 and s1 = 0. In this case,
[

r11 r12
r21 r22

]

=

[

c0c1 − s0s1 −s0c1 − c0s1
s0c1 + c0s1 c0c1 − s0s1

]

=

[

cos(θ1 + θ0) − sin(θ1 + θ0)
sin(θ1 + θ0) cos(θ1 + θ0)

]

Therefore, θ1 + θ0 = atan2(−r12, r11). There is one degree of freedom, so
the factorization is not unique. In the source code, this case is tagged as
NOT UNIQUE SUM.

3. If θ1 = π, then c1 = −1 and s1 = 0. In this case,
[

r11 r12
r21 r22

]

=

[

c0c1 + s0s1 s0c1 − c0s1
s0c1 − c0s1 −c0c1 − s0s1

]

=

[

cos(θ1 − θ0) − sin(θ1 − θ0)
− sin(θ1 − θ0) − cos(θ1 − θ0)

]
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Therefore, θ1 − θ0 = atan2(−r12, r11). There is one degree of freedom, so
the factorization is not unique. In the source code, this case is tagged as
NOT UNIQUE DIF.

All twelve cases of Euler angles can be analyzed as shown previously. A
simple implementation involves setting up a switch statement to select among
these cases. However, it is possible to establish patterns in all the code frag-
ments to eliminate the switch in favor of a couple of comparisons. Listing 6.39
shows the compact code for the vector-on-the-right convention. The pseu-
docode assumes that the indices are correctly formed; all are distinct, or the
first and last indices are the same and different from the middle. The Euler
angle structure is the same as that of Listing 6.38.

i f ( e . a x i s [ 0 ] != e . a x i s [ 2 ] )
{

// Map ( 0 , 1 , 2 ) , ( 1 , 2 , 0 ) , and (2 ,0 ,1 ) to +1. Map ( 0 , 2 , 1 ) , ( 2 , 1 , 0 ) ,
// and (1 ,0 ,2 ) to −1.
i n t p a r i t y = ( ( ( e . a x i s [ 2 ] | ( e . a x i s [ 1 ] << 2) ) >> e . a x i s [ 0 ] ) & 1 ) ;
Rea l const s i g n = ( p a r i t y & 1 ? −1 : +1);

i f ( r ( e . a x i s [ 2 ] , e . a x i s [ 0 ] ) < 1)
{

i f ( r ( e . a x i s [ 2 ] , e . a x i s [ 0 ] ) > −1)
{

e . ang l e [ 2 ] = atan2 ( s i g n ∗ r ( e . a x i s [ 1 ] , e . a x i s [ 0 ] ) ,
r ( e . a x i s [ 0 ] , e . a x i s [ 0 ] ) ) ;

e . ang l e [ 1 ] = a s i n(− s i g n ∗ r ( e . a x i s [ 2 ] , e . a x i s [ 0 ] ) ) ;
e . ang l e [ 0 ] = atan2 ( s i g n ∗ r ( e . a x i s [ 2 ] , e . a x i s [ 1 ] ) ,

r ( e . a x i s [ 2 ] , e . a x i s [ 2 ] ) ) ;
r e s u l t = UNIQUE ;

}
e l s e

{
e . ang l e [ 2 ] = 0 ;
e . ang l e [ 1 ] = s i g n ∗ p i /2 ;
e . ang l e [ 0 ] = atan2(− s i g n ∗ r ( e . a x i s [ 1 ] , e . a x i s [ 2 ] ) ,

r ( e . a x i s [ 1 ] , e . a x i s [ 1 ] ) ) ;
r e s u l t = NOT UNIQUE DIF ;

}
}
e l s e
{

e . ang l e [ 2 ] = 0 ;
e . ang l e [ 1 ] = −s i g n ∗ p i /2 ;
e . ang l e [ 0 ] = atan2(− s i g n ∗ r ( e . a x i s [ 1 ] , e . a x i s [ 2 ] ) ,

r ( e . a x i s [ 1 ] , e . a x i s [ 1 ] ) ) ;
r e s u l t = NOT UNIQUE SUM;

}
}
e l s e
{

// Map ( 0 , 2 , 0 ) , ( 1 , 0 , 1 ) , and (2 ,1 ,2 ) to +1. Map ( 0 , 1 , 0 ) , ( 1 , 2 , 1 ) ,
// and (2 ,0 ,2 ) to −1.
i n t b0 = 3 − e . a x i s [ 1 ] − e . a x i s [ 2 ] ;
i n t p a r i t y = ( ( ( b0 | ( e . a x i s [ 1 ] << 2) ) >> e . a x i s [ 2 ] ) & 1 ) ;
Rea l const s i g n = ( p a r i t y & 1 ? +1 : −1);

i f ( r ( e . a x i s [ 2 ] , e . a x i s [ 2 ] ) < 1)
{

i f ( r ( e . a x i s [ 2 ] , e . a x i s [ 2 ] ) > −1)
{

e . ang l e [ 2 ] = atan2 ( r ( e . a x i s [ 1 ] , e . a x i s [ 2 ] ) ,
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s i g n ∗ r ( b0 , e . a x i s [ 2 ] ) ) ;
e . ang l e [ 1 ] = acos ( r ( e . a x i s [ 2 ] , e . a x i s [ 2 ] ) ) ;
e . ang l e [ 0 ] = atan2 ( r ( e . a x i s [ 2 ] , e . a x i s [ 1 ] ) ,

−s i g n ∗ r ( e . a x i s [ 2 ] , b0 ) ) ;
e . r e s u l t = UNIQUE ;

}
e l s e
{

e . ang l e [ 2 ] = 0 ;
e . ang l e [ 1 ] = p i ;
e . ang l e [ 0 ] = atan2 ( s i g n ∗ r ( e . a x i s [ 1 ] , b0 ) ,

r ( e . a x i s [ 1 ] , e . a x i s [ 1 ] ) ) ;
e . r e s u l t = NOT UNIQUE DIF ;

}
}
e l s e

{
e . ang l e [ 2 ] = 0 ;
e . ang l e [ 1 ] = 0 ;
e . ang l e [ 0 ] = atan2 ( s i g n ∗ r ( e . a x i s [ 1 ] , b0 ) ,

r ( e . a x i s [ 1 ] , e . a x i s [ 1 ] ) ) ;
e . r e s u l t = NOT UNIQUE SUM ;

}
}

LISTING 6.39: Conversion of a rotation matrix r to Euler angles e when
using the vector-on-the-right convention.

The main difficulty in establishing the pattern is in discovering the need for
the parity, sign, and b0 variables.

The pseudocode for the vector-on-the-left convention is shown in Listing
6.40.

i f ( e . a x i s [ 0 ] != e . a x i s [ 2 ] )
{

// Map ( 0 , 1 , 2 ) , ( 1 , 2 , 0 ) , and (2 ,0 ,1 ) to +1. Map ( 0 , 2 , 1 ) , ( 2 , 1 , 0 ) ,
// and (1 ,0 ,2 ) to −1.
i n t p a r i t y = ( ( ( e . a x i s [ 0 ] | ( e . a x i s [ 1 ] << 2) ) >> e . a x i s [ 2 ] ) & 1 ) ;
Rea l const s i g n = ( p a r i t y & 1 ? +1 : −1);

i f ( r ( e . a x i s [ 0 ] , e . a x i s [ 2 ] ) < 1)
{

i f ( r ( e . a x i s [ 0 ] , e . a x i s [ 2 ] ) > −1)
{

e . ang l e [ 0 ] = atan2 ( s i g n ∗ r ( e . a x i s [ 1 ] , e . a x i s [ 2 ] ) ,
r ( e . a x i s [ 2 ] , e . a x i s [ 2 ] ) ) ;

e . ang l e [ 1 ] = a s i n(− s i g n ∗ r ( e . a x i s [ 0 ] , e . a x i s [ 2 ] ) ) ;
e . ang l e [ 2 ] = atan2 ( s i g n ∗ r ( e . a x i s [ 0 ] , e . a x i s [ 1 ] ) ,

r ( e . a x i s [ 0 ] , e . a x i s [ 0 ] ) ) ;
e . r e s u l t = UNIQUE ;

}
e l s e

{
e . ang l e [ 0 ] = 0 ;
e . ang l e [ 1 ] = s i g n ∗ p i /2 ;
e . ang l e [ 2 ] = atan2(− s i g n ∗ r ( e . a x i s [ 1 ] , e . a x i s [ 0 ] ) ,

r ( e . a x i s [ 1 ] , e . a x i s [ 1 ] ) ) ;
e . r e s u l t = NOT UNIQUE DIF ;

}
}
e l s e
{
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e . ang l e [ 0 ] = 0 ;
e . ang l e [ 1 ] = −s i g n ∗ p i /2 ;
e . ang l e [ 2 ] = atan2(− s i g n ∗ r ( e . a x i s [ 1 ] , e . a x i s [ 0 ] ) ,

r ( e . a x i s [ 1 ] , e . a x i s [ 1 ] ) ) ;
e . r e s u l t = NOT UNIQUE SUM ;

}
}
e l s e
{

// Map ( 0 , 2 , 0 ) , ( 1 , 0 , 1 ) , and (2 ,1 ,2 ) to −1. Map ( 0 , 1 , 0 ) , ( 1 , 2 , 1 ) ,
// and (2 ,0 ,2 ) to +1.
i n t b2 = 3 − e . a x i s [ 0 ] − e . a x i s [ 1 ] ;
i n t p a r i t y = ( ( ( b2 | ( e . a x i s [ 1 ] << 2) ) >> e . a x i s [ 0 ] ) & 1 ) ;
Rea l const s i g n = ( p a r i t y & 1 ? −1 : +1);

i f ( r ( e . a x i s [ 0 ] , e . a x i s [ 0 ] ) < 1)
{

i f ( r ( e . a x i s [ 0 ] , e . a x i s [ 0 ] ) > −1)
{

e . ang l e [ 0 ] = atan2 ( r ( e . a x i s [ 1 ] , e . a x i s [ 0 ] ) ,
s i g n ∗ r ( b2 , e . a x i s [ 0 ] ) ) ;

e . ang l e [ 1 ] = acos ( r ( e . a x i s [ 0 ] , e . a x i s [ 0 ] ) ) ;
e . ang l e [ 2 ] = atan2 ( r ( e . a x i s [ 0 ] , e . a x i s [ 1 ] ) ,

−s i g n ∗ r ( e . a x i s [ 0 ] , b2 ) ) ;
e . r e s u l t = UNIQUE ;

}
e l s e
{

e . ang l e [ 0 ] = 0 ;
e . ang l e [ 1 ] = p i ;
e . ang l e [ 2 ] = atan2 ( s i g n ∗ r ( e . a x i s [ 1 ] , b2 ) ,

r ( e . a x i s [ 1 ] , e . a x i s [ 1 ] ) ) ;
e . r e s u l t = NOT UNIQUE DIF ;

}
}
e l s e
{

e . ang l e [ 0 ] = 0 ;
e . ang l e [ 1 ] = 0 ;
e . ang l e [ 2 ] = atan2 ( s i g n ∗ r ( e . a x i s [ 1 ] , b2 ) ,

r ( e . a x i s [ 1 ] , e . a x i s [ 1 ] ) ) ;
e . r e s u l t = NOT UNIQUE SUM ;

}
}

LISTING 6.40: Conversion of a rotation matrix r to Euler angles e when
using the vector-on-the-left convention.

The main difficulty in establishing the pattern is in discovering the need for
the parity, sign, and b2 variables.

6.3.6.9 Euler Angles to and from Quaternion or Axis-Angle

The conversions use those developed previously. For conversion of Euler
angles to quaternion or axis-angle, the Euler angles are first converted to a
matrix representation. The matrix is then converted to quaternion or axis-
angle. For the conversion of quaternion or axis-angle to Euler angles, the
quaternion or axis-angle is first converted to a matrix representation. The
matrix is then converted to Euler angles.
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6.4 Coordinate Systems

Coordinate systems in the 3D world are a convenient way for describing
where objects are located and how they move. We each might have our own
systems, but as always it is generally difficult to get two people to agree!

We have three degrees of freedom in our world for specifying locations and
directions. In the abstract, we will talk about those degrees of freedom as
scalar measurements and list them as a 3-tuple, (x, y, z). Invariably there is a
reference point from which the measurements are made. In the abstract, this
is called the origin and is denoted (0, 0, 0). The directions at the origin along
which we make the measurements are denoted (1, 0, 0) for the x-measurement,
(0, 1, 0) for the y-measurement, and (0, 0, 1) for the z-measurement. Clearly,
if two people observe the same object in the world, that object is located
somewhere. How the people measure where that location is depends on their
choices for the origin and the directions of measurement. No matter how we
make those measurements based on our conventions, the object exists in the
world in a fixed location. What is required to avoid the ambiguity of multiple
measurement systems is a common frame of reference.

The common frame of reference is an abstraction that allows you to do
bookkeeping, so to speak. Choosing a common frame of reference and setting
up coordinate systems appears to be a chicken-and-egg problem. To choose a
common frame, do we not get back to the same ambiguity when two people
define the frame differently? The ambiguity is in the bookkeeping. Your brain
gives you the ability to visualize the world and its geometric relationships,
and the geometry has no ambiguities. When attempting to work with two
coordinate systems, you must visualize how one system is overlaid on the
other so that the geometric relationships are the same.

The common frame of reference is called the Cartesian frame. The 3-tuples
to identify the origin and directions of measurement are referred to as the
Cartesian coordinate system. I like to think of these as the world and world
coordinate system. Naturally, I can have my world and you can have yours.
But if you want to play in my world, you must accept my world coordinate
system, and you must understand how your bookkeeping relates to mine.

One of the problems in understanding coordinate systems is the use of
(x, y, z) when teaching people 3D mathematics. The meanings of the coordi-
nate values and how they relate to the geometry of the world are typically
implicit in the lectures and depend on the choices of the lecturer. As a math-
ematician, I am guilty of using (x, y, z) in different contexts with different
meanings. In my writings about computer graphics, I prefer to talk in terms
of the visually meaningful degrees of freedom. For example, I might use more
meaningful symbols, say, the 3-tuple (f, r, u), to indicate locations relative to
a stationary observer at an origin (0, 0, 0). The observer measures distances
if he were to move forward or backward, left or right, and up or down. The
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measurement f is made in the forward direction where a positive value implies
forward motion and a negative value implies backward motion. Similarly, the
measurement r is made in the right direction and the measurement u is made
in the up direction. Even so, someone else writing about computer graphics
might instead choose to use bookkeeping in the order (f, u, r). The swapping
of the last two components is effectively a change in handedness, and all book-
keeping depends on your choice of ordering. In the end, you must make clear
what your conventions are, what the variables measure, and how you are doing
your bookkeeping.

In this section I will describe the basics for setting up a coordinate system
and communicating your conventions to someone else in case they have to
convert between their coordinate system and yours. In particular, a frequently
asked question in 3D applications is how to convert between right-handed
coordinate systems and left-handed coordinate systems. I will introduce some
example conversions and then describe the general mathematical process for
conversions.

6.4.1 Geometry and Affine Algebra

The mathematical framework for dealing with the algebra of coordinate
systems as related to the geometry is referred to as affine algebra. The Carte-
sian frame represents points as 3-tuples (x, y, z), and the origin (0, 0, 0) is a
special point. The directions of measurements are also 3-tuples and are called
vectors. Points are measurements of absolute location whereas vectors are
measurements of relative locations.

Vectors are the central focus in a course on linear algebra. Sets of vectors
endowed with an addition operator and a scalar multiplication operator are
called vector spaces. The introduction of points, distinct from vectors, are the
focus of affine algebra. Such an algebra involves a vector space L and a set of
points A. The following conditions are the definition for affine algebra:

1. For each ordered pair of points P ,Q ∈ A, there is a unique vector in L
called the difference vector and denoted by ∆(P ,Q).

2. For each point P ∈ A and V ∈ L, there is a unique point Q ∈ A such
that V = ∆(P ,Q).

3. For any three points P ,Q,R ∈ A, it must be that ∆(P ,Q)+∆(Q,R) =
∆(P ,R).

Figure 6.6 illustrates these three items. If P and Q are specified, V is
uniquely determined (item 1). If P and V are specified, Q is uniquely deter-
mined (item 2). Figure 6.6(b) illustrates item 3.

The formal definition for an affine space introduced the difference vector
∆(P ,Q). Figure 6.6 gives you the geometric intuition about the difference,
specifically that it appears to be a subtraction operation for two points. How-
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Q

V = ¢(P,Q)

P

(a) (b)

FIGURE 6.6: (a) A vector V connecting two points P and Q. (b) The sum
of vectors, each vector determined by two points.

ever, certain consequences of the definition may be proved directly without
having a concrete formulation for an actual subtraction of points.

A few consequences of the definition for an affine algebra follow.

1. ∆(P ,P) = 0.

2. ∆(Q,P) = −∆(P ,Q).

3. If ∆(P1,Q1) = ∆(P2,Q2), then ∆(P1,P2) = ∆(Q1,Q2).

The first consequence follows immediately from item 3 in the definition
where Q is replaced by P , ∆(P ,P)+∆(P ,R) = ∆(P ,R). The vector ∆(P ,R)
is subtracted from both sides to obtain ∆(P ,P) = 0.

The second consequence also follows from item 3 in the definition where
R is replaced by P , ∆(P ,Q) + ∆(Q,P) = ∆(P ,P) = 0. The last equality is
what we just proved in the previous paragraph. The first vector is subtracted
from both sides to obtain ∆(Q,P) = −∆(P ,Q).

The third consequence is called the parallelogram law. Figure 6.7 illustrates
this law. Item 3 in the definition can be applied in two ways:

∆(P1,P2) + ∆(P2,Q2) = ∆(P1,Q2) and
∆(P1,Q1) + ∆(Q1,Q2) = ∆(P1,Q2)

(6.116)

Subtracting these leads to

0 = ∆(P1,P2) + ∆(P2,Q2)−∆(P1,Q1)−∆(Q1,Q2)
= ∆(P1,P2)−∆(Q1,Q2)

(6.117)

where the last equality is valid because we assumed ∆(P1,Q1) = ∆(P2,Q2).
Therefore, ∆(P1,P2) = ∆(Q1,Q2).
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FIGURE 6.7: The parallelogram law for affine algebra.

In the formal sense of affine algebra, points and vectors are distinct entities.
We have already used two different fonts to help distinguish between them: P
is a point, V is a vector. To be suggestive of the standard implementation of
difference of points, we may use V = Q−P instead of V = ∆(P ,Q), and we
may reorganize the expression as Q = P +V.

When implementing the concepts of points and vectors in an object-
oriented mathematics, you have the choice of creating separate classes, say,
Point and Vector. It is common to use 4-tuples (x, y, z, w) for both, choosing
points as (x, y, z, 1) and vectors as (x, y, z, 0). In this way, the difference of
points is a vector, and the sum of a point and a vector is a point. However,
if you attempt to add two points, you obtain a w-component of two, which
should not be allowed. You can rely on the compiler to enforce some of the
rules that distinguish points from vectors. For example, your Point class will
define an operator for subtracting two points but not an operator to add two
points. If a user tries to add points, the compiler complains. However, as you
add more functionality to the class, you will find that you have to enforce
some of the rules at runtime, say, by generating exceptions. This is particu-
larly true when computing an affine sum of points, a weighted sum of points
where the weights sum to one, in which case the result is a point. This type of
operation is what barycentric coordinates is about. Similarly, you can have an
affine difference of points, a weighted sum of points where the weights sum to
zero, in which case the result is a vector. This type of operation occurs when
estimating derivatives of point-valued functions—the derivatives are vector
quantities. Finally, if you then allow homogeneous points in general, where w
can be any real-valued number, and you allow homogeneous transformations
that include affine matrices and projection matrices, the rule enforcement
becomes more complicated.

Over the years I have flip-flopped between enforcement of the distinction
between points and vectors or simply having a single vector class. In the for-
mer case, the enforcement is complicated. In the latter case, the programmer
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is responsible for keeping the distinction in his head and enforcing the rules ac-
cordingly. In my last commercial endeavor I attempted to build a very general
homogeneous algebra system, supporting linear algebra, affine algebra, and
homogeneous operations, while at the same time having as much compiler
support and runtime support for enforcing the rules. In the end, the program-
mers using the system still found ways to violate the point-vector distinction
although not intentionally. My conclusion was that the effort spent trying
to protect a programmer from inadvertently making errors was not justified
by the maintenance costs. The bottom line is: You must understand and be
adept at the mathematical abstractions, and you are responsible for getting
it right in code. In GTEngine, I have implemented only the Vector class; there
is no support for Point. The Matrix4x4 class allows you to use affine algebra, as
shown in the next section.

6.4.2 Transformations

Affine transformations are the most frequent type of transformation en-
countered in 3D applications. Less frequent are projections, but these are
necessary for 3D graphics applications, whether the drawing uses perspective
or orthographic projection. Having to manipulate 4 × 4 matrices directly is
sometimes error prone, whereby a programmer forgets to distinguish between
a point and a vector. If there is no strong type checking, one might very
well compute a difference of 4-tuple points (w-components are 1), the result
a 4-tuple vector (w-component is 0), but assign the result to a point, thus
overlooking the fact that the point now (incorrectly) has a w-component of 0.
This is particularly a problem when the tuples and matrices are designed for
SIMD support.

Additionally, programmers tend to think geometrically rather than alge-
braically when it comes to transformations. We have geometric intuition what
it means to translate, scale, rotate, and shear. The algebraic details are once
again part of the bookkeeping process. It is natural and convenient to provide
a transformation factory for programmers to use. Such a factory allows one
to specify the natural channels of translation, scaling, rotation, and shearing.
Projection transformations represented as homogeneous 4 × 4 matrices are
less intuitive geometrically than affine transformations, but these also may be
created by a transformation factory.

In this section I am assuming the vector-on-the-right convention when us-
ing matrices and vectors. The actual convention can be hidden by the interface
for the transformation factory.

6.4.2.1 Composition of Affine Transformations

The natural channels of an affine transformation include translation, scal-
ing, rotation, and shearing. Composing these channels is a straightforward
process, as shown next. As a reminder, we are using the right-handed coor-
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dinate system with origin (0, 0, 0) and ordered axis direction vectors (1, 0, 0),
(0, 1, 0), and (0, 0, 1). We use the vector-on-the-right convention for matrix-
vector multiplication.

Translation. The simplest of transformations is translation. In tuple form,
if (t0, t1, t2) is the specified translation, a tuple (x0, x1, x2) is translated to
(y0, y1, y2) = (x0 + t0, x1 + t1, x2 + t2). In affine form using 3× 3 matrices,

Y =

⎡

⎣

y0
y1
y2

⎤

⎦ =

⎡

⎣

x0 + t0
x1 + t1
x2 + t2

⎤

⎦ =

⎡

⎣

x0

x1

x2

⎤

⎦+

⎡

⎣

t0
t1
t2

⎤

⎦ = IX+T = X+T (6.118)

where I is the 3 × 3 identity matrix. Linear transformations are of the form
Y = AX, where A is a 3 × 3 matrix of constants, and where X and Y are
vectors. The translation equation is of the form Y = IX + T, where I is
the 3 × 3 identity matrix. This is not a linear transformation because of the
addition of the translation vector T. It is an affine transformation.

This representation clouds the distinction between a point and a vector. If
you noticed, I referred to X, Y, and T as vectors. No mention is made about
points, yet translation is an affine transformation. Because T is the term that
prevents the translation from being a linear one, we could say that T is a
point rather than a vector. The consequence is that X + T is the sum of a
vector and a point. Our axioms of affine algebra state that the result must be
a point, yet we have called Y a vector.

The problem lies in trying to think of T as either a point or a vector. The
resolution is to use 4× 4 matrices and the convention of the w-component of
0 for vectors and 1 for points. The affine form of translation is then

[

Y

1

]

=

⎡

⎢

⎢

⎣

y0
y1
y2
1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

x0 + t0
x1 + t1
x2 + t2

1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 0 0 t0
0 1 0 t1
0 0 1 t2
0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x0

x1

x2

1

⎤

⎥

⎥

⎦

= HT

[

X

1

]

=

[

X+T

1

]

(6.119)

The translation components are part of the homogeneous matrixHT , so in this
sense the translation is neither a point nor a vector. However, the difference
of input and output points is

[

Y

1

]

−
[

X

1

]

=

[

T

0

]

(6.120)

so the translation may be thought of a 4-tuple (T, 0) that is a vector, not a
point.
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We may summarize the block-matrix form of HT , namely,

HT =

⎡

⎢

⎢

⎣

1 0 0 t0
0 1 0 t1
0 0 1 t2
0 0 0 1

⎤

⎥

⎥

⎦

=

[

I T

0T 1

]

(6.121)

The inverse of the translation is X = Y−T. The corresponding homogeneous
inverse matrix is

H−1
T =

⎡

⎢

⎢

⎣

1 0 0 −t0
0 1 0 −t1
0 0 1 −t2
0 0 0 1

⎤

⎥

⎥

⎦

=

[

I −T

0T 1

]

(6.122)

when applied to the 4-tuple (Y, 1), we obtain the 4-tuple (X, 1) = (Y−T, 1).
Scaling. Let s0, s1, and s2 be nonzero scaling parameters. Although a

scaling can be zero, typically we do not see this in a 3D application. Also,
the scales are usually positive. A negative scale acts like a reflection and a
positive scale in the corresponding axis direction. A tuple (x0, x1, x2) is scaled
by (y0, y1, y2) = (s0x0, s1x1, s2x2). In affine form using 3× 3 matrices,

Y =

⎡

⎣

y0
y1
y2

⎤

⎦ =

⎡

⎣

s0x0

s1x1

s2x2

⎤

⎦ =

⎡

⎣

s0 0 0
0 s1 0
0 0 s2

⎤

⎦

⎡

⎣

x0

x1

x2

⎤

⎦ = SX (6.123)

where S is the diagonal matrix of scales.
In affine form using 4× 4 matrices,

[

Y

1

]

=

⎡

⎢

⎢

⎣

y0
y1
y2
1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

s0x0

s1x1

s2x2

1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

s0 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x0

x1

x2

1

⎤

⎥

⎥

⎦

= HS

[

X

1

]

=

[

SX
1

]

(6.124)

The scale components are part of the homogeneous matrix HS .
We may summarize the block-matrix form of HS , namely,

HS =

⎡

⎢

⎢

⎣

s0 0 0 0
0 s1 0 0
0 0 s2 0

0 0 0 1

⎤

⎥

⎥

⎦

=

[

S 0

0T 1

]

(6.125)

When the scales are nonzero, the inverse of the translation is X = S−1Y. The
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corresponding homogeneous inverse matrix is

H−1
S =

⎡

⎢

⎢

⎣

1
s0

0 0 0

0 1
s1

0 0

0 0 1
s2

0

0 0 0 1

⎤

⎥

⎥

⎦

=

[

S−1 0

0T 1

]

(6.126)

when applied to the 4-tuple (Y, 1), we obtain the 4-tuple (X, 1) = (S−1Y, 1).
A special case of interest is uniform scaling, where the scales are all the

same: s0 = s1 = s2.
Rotation. The 3D rotation matrices were discussed previously, where

positive angles correspond to counterclockwise rotations assuming the ob-
server is looking at the rotation plane in the direction opposite that of
the rotation axis. Let the rotation axis direction be the unit-length vector
U = (u0, u1, u2) and let the rotation angle be θ. Using the Rodrigues formula
R = I + (sin θ)S + (1− cos θ)S2, where S is the skew symmetric matrix such
that SV = U × V, a vector X is rotated to Y = RX. In affine form using
4× 4 matrices,

[

Y

1

]

=

[

R 0

0T 1

] [

X

1

]

= HR

[

X

1

]

(6.127)

The inverse transformation is
[

X

1

]

=

[

RT 0

0T 1

] [

Y

1

]

= H−1
R

[

Y

1

]

(6.128)

The inverse transformation uses the fact that a rotation matrix is orthogonal,
RTR = I.

Shearing. In 2D, shearing matrices are of the form

A =

[

1 a
0 1

]

, B =

[

1 0
b 1

]

(6.129)

The matrix A represents a shear in the x0-direction. The shearing of tuple
(x0, x1) is (y0, y1) = (x0 + ax1, x1). Observe that the x1-component are un-
changed, so each tuple is moved along lines parallel to the x0-axis. The ma-
trix B represents a shear in the x1-direction. The shearing of tuple (x0, x1)
is (y0, y1) = (x0, x1 + bx0). Observe that the x0-components is unchanged, so
each tuple is moved along lines parallel to the x1-axis.

In 3D, shearing matrices are

A =

⎡

⎣

1 a0 a1
0 1 a2
0 0 1

⎤

⎦ , B =

⎡

⎣

1 0 0
b0 1 0
b1 b2 1

⎤

⎦ (6.130)
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The corresponding 4× 4 affine matrices are

HA =

⎡

⎢

⎢

⎣

1 a0 a1 0
0 1 a2 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

=

[

A 0

0T 1

]

HB =

⎡

⎢

⎢

⎣

1 0 0 0
b0 1 0 0
b1 b2 1 0

0 0 0 1

⎤

⎥

⎥

⎦

=

[

B 0

0T 1

]

(6.131)

The inverses are

H−1
A =

⎡

⎢

⎢

⎣

1 −a0 a0a2 − a1 0
0 1 −a2 0
0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎦

=

[

A−1 0

0T 1

]

H−1
B =

⎡

⎢

⎢

⎣

1 0 0 0
−b0 1 0 0

b0b2 − b1 −b2 1 0

0 0 0 1

⎤

⎥

⎥

⎦

=

[

B−1 0

0T 1

]

(6.132)

The inverses are themselves shearing matrices. In the transform factory im-
plementation using our vector-on-the-right convention, we use only shears for
which the matrices are upper triangular.

Exercise 6.1 Consider shearing matrices

A0 =

[

1 a0
0 1

]

, A1 =

[

1 0
a1 1

]

, A2 =

[

1 a2
0 1

]

Determine a0, a1, and a2 so that the product A0A1A2 is a rotation matrix.
Show that every rotation matrix can be factored into a product of three shearing
matrices.

Exercise 6.2 Is it possible to factor a 3D rotation into a product of shear-
ing matrices? If so, how many shearing matrices are needed and what is the
formula?

Composition of the Homogeneous Matrices. We may multiply any combi-
nation of translations, scalings, rotations, and shears, the end result an affine
matrix. Generally, the product of two affine matrices is an affine matrix,

[

M0 T0

0T 1

] [

M1 T1

0T 1

]

=

[

M0M1 M0T1 +T0

0T 1

]

(6.133)
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Thus, it is simple enough to compose matrices as a product. The more difficult
problem is how to decompose a matrix into translations, rotations, scalings,
and shearings. That is the topic of the next section.

A special set of transformations is the set of rigid transformations. These
consist of products of translations and rotations. An object for which all its
points are transformed by translations and rotations retains its shape—only
its location and orientation vary. A rigid transformation is of the form

H =

[

R T

0T 1

]

(6.134)

Another special set of transformations involve only translations, uniform
scalings, and rotations. I will call these scaled rigid transformations. Such a
transformation is of the form

H =

[

sR T

0T 1

]

(6.135)

for some scale s �= 0.

Exercise 6.3 Show that the product of rigid transformations is a rigid trans-
formation. Show the inverse of a rigid transformation is a rigid transforma-
tion.

Exercise 6.4 Show that the product of scaled rigid transformations is a scaled
rigid transformation. Show that the inverse of a scaled rigid transformation is
a scaled rigid transformation.

Exercise 6.5 Consider the set of transformations consisting of shearings and
translations. Show that the product of shear-translation transformations is a
shear-translation transformation. Show that the inverse of a shear-translation
transformation is a shear-translation transformation.

Exercise 6.6 What do translations, scalings, rotations, and shearings look
like as 4× 4 matrices using the vector-on-the-left convention?

Exercise 6.7 Equation (6.133) shows that the product of two affine matrices
is an affine matrix. Therefore, the product of three affine matrices is an affine
matrix. What is the final matrix resulting from a product of three affine matri-
ces? What is the final matrix resulting from a product of four affine matrices?
Generalize this to a closed-form equation for the product of n affine matrices.

6.4.2.2 Decomposition of Affine Transformations

It is not always possible to factor a matrix M into a product of a rotation
matrix, a scale matrix and a translation matrix. The translation part is always
trivial to factor out, so consider M without translation. Generally, the best
you can do is factor M = LSR where L and R are rotation matrices and S is a
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diagonal matrix of nonnegative entries. This is referred to as a singular value
decomposition. Related to this is the polar decomposition, M = RS, where R
is a rotation matrix and S is a symmetric matrix. These factorizations are
advanced topics; for example, see [18].

Any 3 × 3 invertible matrix M may be decomposed uniquely into the
product of an orthogonal matrix, a scaling matrix with positive scales, and a
shearing matrix. The first step in showing this involves the QR decomposition,
which may be computed using Gram-Schmidt orthonormalization. Let M =
[M0 M1 M2], where the three vectors are the columns of M . Because M is
invertible, M0 is not the zero vector and may be normalized:

Q0 =
M0

|M0|
(6.136)

Because M is invertible, M0 and M1 cannot be parallel. Thus, projecting M0

onto the plane perpendicular to Q0 must produce a nonzero vector that is
perpendicular to Q0 and may be normalized:

Q1 =
M1 − (M1 ·Q0)Q0

|M1 − (M1 ·Q0)Q0|
(6.137)

Because M is invertible, M2 cannot lie in the plane spanned by M0 and M1,
so projecting M2 onto the line perpendicular to that plane must produce a
nonzero vector that is perpendicular to both Q0 and Q1 and may be normal-
ized:

Q2 =
M2 − (M2 ·Q0)Q0 − (M2 ·Q1)Q1

|M2 − (M2 ·Q0)Q0 − (M2 ·Q1)Q1|
(6.138)

By the construction of the Qi vectors, the matrix Q = [Q0 Q1 Q2] is orthog-
onal. It is a rotation matrix when the determinant of M is positive; it is a
reflection matrix when the determinant of M is negative. We will see why in
a moment.

The columns of Q are linearly independent vectors, so we may represent
the columns of M in terms of those vectors. Moreover, some of the terms in
the representation are not present because of how we constructed the columns
of Q from the columns of M :

M0 = (Q0 ·M0)Q0 + (0)Q1 + (0)Q1

M1 = (Q0 ·M1)Q0 + (Q1 ·M1)Q1 + (0)Q2

M2 = (Q0 ·M2)Q0 + (Q1 ·M2)Q1 + (Q2 ·M2)Q2

(6.139)

This is written in matrix form as

M = [M0 M1 M2]

= [Q0 Q1 Q2]

⎡

⎣

Q0 ·M0 Q0 ·M1 Q0 ·M2

0 Q1 ·M1 Q1 ·M2

0 0 Q2 ·M2

⎤

⎦ = QR
(6.140)



Linear and Affine Algebra 329

where the matrix R is upper triangular, but sometimes called right triangular,
which is why R is used in the name of the decomposition.

The determinant may be computed as

det(M) = det(Q) det(R) = det(Q)(Q0 ·M0)(Q1 ·M1)(Q2 ·M2) (6.141)

where det(Q) = +1 when Q represents a rotation or det(Q) = −1 when Q
represents a reflection. The remaining terms on the right-hand side of the
determinant equation turn out to be positive. Dotting equation (6.136) with
M0 leads to

Q0 ·M0 = |M0| > 0 (6.142)

Dotting equation (6.137) with M1 and the orthonormality of the Qi lead to

Q1 ·M1 = Q1 · [M1 − (Q0 ·M1)Q0]

= |M1 − (Q0 ·M1)Q0| > 0
(6.143)

Dotting equation (6.138) with M2 and using the orthonormality of the Qi

lead to

Q2 ·M2 = Q2 · [M2 − (Q0 ·M2)Q0 − (Q1 ·M2)Q1]

= |M1 − (Q0 ·M1)Q0 − (Q0 ·M2)Q1| > 0
(6.144)

Therefore, the Q is a rotation when det(M) > 0 or Q is a reflection when
det(M) < 0.

The decomposition is unique when all we require is that M is invertible
and Q is orthogonal. The diagonal entries of R are positive. If we define
those diagonal entries by si = Qi · Mi and define the scale matrix S =
diagonal(s0, s1, s2), then the decomposition is M = QCS, where C = RS−1

is an upper triangular matrix whose diagonal entries are all one. Thus, Q is
orthogonal, C is a shearing matrix, and S is a scaling matrix.

If we always wish to have a decomposition where Q is a rotation matrix,
then the uniqueness of the decomposition is not possible. To see this, suppose
Q is a reflection matrix. We can negate one of its columns to obtain a rotation
matrix. To preserve the equality in the decomposition, we in turn must negate
the diagonal entry of R in that same column. This gives us three possibilities
for factoring M into a rotation, a shearing, and a scaling. Eliminating the
reflection means introducing a negative scale.

The construction here should make it clear why reflections and negative
scales are both undesirable in most 3D applications. If we require that any 3×3
matrix M used in an affine transformation have positive determinant, then
we will have a unique decomposition M = RCS, where R is a rotation matrix
(notice the switch in notation from Q to R), C is an upper-triangular shearing
matrix, and S is a scaling matrix of positive scales. This requirement is the
foundation for the transformation factory whose implementation is provided
later. The factory allows us to create transformations by manipulating only
translations, rotations, upper-triangular shearings, and positive scalings.
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6.4.2.3 A Simple Transformation Factory

Let us first consider 4× 4 affine transformations,

H =

[

M T

0T 1

]

(6.145)

A programmer can manipulate the twelve entries of M and T directly, choos-
ing them to represent the desired translation, scaling, rotation, and shearing.
If M is known to be a composition of rotation and uniform scale, we might
wish to update only the scale or only the rotation. This requires decomposing
M = Rs, where R is the rotation matrix and s is the scale. Knowing M is
of this form, the scale is the length of the first column of M and, in fact, the
length of any column of M . The rotation matrix is extracted by normalizing
the columns of M :

M = [M0 M1 M2] → s = |M0|, R = M/s (6.146)

The scale and/or rotation may be updated and composed to form the new
matrix M .

Similarly, if M is known to be a composition of rotation and shearing, we
might wish to update only the rotation or only the shearing. The programmer
must use Gram-Schmidt orthonormalization to decompose M = RC, where
R is a rotation and C is a shear. In this case, though, knowing the order
of composition is important. We might have built M = CR, in which case
the decomposition is different. Having the programmer remember the order of
composition and the process of decomposing matrix is typically cumbersome,
repetitive, and error prone. It makes sense to specify the order of composition
of the individual components and to provide a factory that encapsulates the
details of the composition and decomposition.

As discussed previously, if we require det(M) > 0, we can factorM = RCS
uniquely, where R is a rotation matrix, C is an upper-triangular shearing
matrix, and S is a scaling matrix of positive scales. The affine matrix has
twelve independent components; the last row is always (0, 0, 0, 1). We wish to
store the translation, scale, rotation, and shear and allow the programmer to
set and get these as desired. When the programmer requests the composition
of these as an affine matrix, the factory will do so at that time.

The translation has three components, (t0, t1, t2). The scales are (s0, s1, s2)
with the understanding that all three scales are equal when we want uniform
scaling. The rotation matrix has nine elements, but we can store it instead
as a quaternion with components q = q0i+ q1j + q2k + q3. We know that −q
also represents the rotation, so if we require q3 ≥ 0 and take advantage of the
unit length of q as a 4-tuple, we can reduce the storage to (q0, q1, q2). The
factory is responsible for computing q3 =

√

1− q20 − q21 − q22 at the time the
affine matrix is requested. The shearing matrix has 3 unknown components,
(c0, c1, c2). In total, the factory must only store twelve numbers for the chan-
nels used to build the affine matrix, so the memory requirements are the same
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as those for storing M and T generally. The advantage of the separate chan-
nels, though, is that the programmer can manipulate them in a geometrically
intuitive manner and not have to worry about the mathematical details of the
composition or decomposition.

The simple transformation factory may be extended to support projection
matrices, including those for a symmetric view frustum, for a nonsymmetric
view frustum, and for a convex quadrilateral viewport.

In GTEngine, we have provided a transformation factory for the most com-
monly used channels: translation, rotation (with multiple representations),
and nonzero uniform scaling. The class interface is shown in Listing 6.41.

template <typename Real>
c l a s s Trans form : pub l i c Matr ix4x4<Real>
{
pub l i c :

// Con s t r u c t i o n and d e s t r u c t i o n . The d e f a u l t c o n s t r u c t o r g en e r a t e s the
// i d e n t i t y t r a n s f o rma t i o n .
˜Trans form ( ) ;
Trans form ( ) ;
Trans form ( Trans form const& trans fo rm ) ;

// Ass ignment .
Trans form& ope ra to r= ( Trans form const& trans fo rm ) ;

// Set the t r a n s f o rma t i o n to the i d e n t i t y .
vo id S e t I d e n t i t y ( ) ;

// The qua t e r n i o n i s u n i t l e n g t h .
vo id SetQua te rn i on ( Quatern ion<Real> const& q ) ;
Quatern ion<Real> GetQuatern ion ( ) const ;

// The a x i s i s u n i t l e n g t h and the ang l e i s i n r a d i a n s .
vo id SetAx i sAng l e ( Axi sAng le <4,Real> const& ax i sAng l e ) ;
Ax i sAngle <4,Real> GetAx i sAng l e ( ) const ;

// The Eu l e r a n g l e s a r e i n r a d i a n s . The GetEu l e rAng l e s f u n c t i o n
// exp e c t s the e u l e r A n g l e s . a x i s [ ] v a l u e s to be s e t to the a x i s o r d e r
// you want .
vo id Se tEu l e rAng l e s ( Eu l e rAng l e s<Real> const& eu l e r A n g l e s ) ;
vo id GetEu l e rAng l e s ( Eu l e rAng l e s<Real>& eu l e r A n g l e s ) const ;

// The c a l l e r must en su r e tha t the i n p u t to SetRo ta t i on i s a r o t a t i o n
// mat r i x .
vo id SetRota t i on ( Matr i x4x4<Real> const& r o t a t i o n ) ;
Matr i x4x4<Real> GetRota t i on ( ) const ;

// The s c a l e i s a nonzero number .
vo id Se tSca l e ( Rea l s c a l e ) ;
Rea l GetSca l e ( ) const ;

// No c o n s t r a i n t s e x i s t f o r the t r a n s l a t i o n components . The second
// Set∗ f u n c t i o n u s es on l y the f i r s t t h r e e components o f
// ’ t r a n s l a t i o n ’ . The Get∗W∗ f u n c t i o n s s t o r e the t r a n s l a t i o n i n the
// f i r s t t h r e e components o f the output . The f o u r t h component i s w=0
// or w=1 depend ing on which f u n c t i o n you c a l l .
vo id Se tT r a n s l a t i o n ( Rea l x0 , Rea l x1 , Rea l x2 ) ;
Vector3<Real> Ge tT r a n s l a t i o n ( ) const ;
vo id Se tT r a n s l a t i o n ( Vector4<Real> const& t r a n s l a t i o n ) ;
Vector4<Real> GetTrans la t ionW0 ( ) const ;
Vector4<Real> GetTrans la t ionW1 ( ) const ;
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// M u l t i p l i c a t i o n o f t r a n s f o rms . M0 i s ’ t h i s ’ , M1 i s ’ t r an s f o rm ’ ,
// and the f u n c t i o n r e t u r n s M0∗M1.
Transform<Real> ope ra to r∗ ( Transform<Real> const& trans fo rm ) const ;

p r i v a t e :
// Compute the base−c l a s s Matr i x4x4<Real> f rom the ch ann e l s .
vo id UpdateMatr i x ( ) ;

Quatern ion<Real> mQuaternion ;
Rea l mTrans l a t i on [ 3 ] , mScale ;

} ;

LISTING 6.41: The Transform class in GTEngine.

The Transform class stores the individual channels for rotation, translation,
and uniform scale. Each Set* operation invokes the private UpdateMatrix that
computes the actual 4× 4 affine representation and stores it in the Matrix4x4

base-class member.
The class works for either matrix-vector multiplication conventions. The

translation handling allows you to set the w-component when using affine
algebra, which allows you to manipulate a translation as either a point or a
vector. The multiplication operator is convenient for products of transforms,
especially for scene graph transformation hierarchies; see classes Spatial and
Node.

6.4.3 Coordinate System Conventions

I will focus on the most common coordinate systems, those where the axis
directions form an orthonormal set. This naturally ties coordinate systems to
the concepts of rotation. Let us review briefly rotation in the xy-plane. The
classical view is to select the (x, y) coordinates so that the positive x-axis is
directed rightward and the positive y-axis is directed upward, as is shown in
Figure 6.8.

The length of the vector (x0, y0) is r =
√

x2
0 + y20 . From basic trigonometry,

x0 = r cosφ and y0 = r sinφ. Because (x1, y1) is obtained by rotating (x0, y0),
its length is also r. Also from basic trignometry, x1 = r cos(θ + φ) and y1 =
r sin(θ + φ). Therefore,

x1 = r cos(θ + φ) = r cos θ cosφ− r sin θ sinφ = x0 cos θ − y0 sin θ

y1 = r sin(θ + φ) = r sin θ cosφ+ r cos θ sinφ = x0 sin θ + y0 cos θ

The visualization of the problem is an appeal to geometry. The construction
uses trigonometry. The final aspect is bookkeeping, where we algebraically
write the equations in tabular form as a matrix-vector product.

[

x1

y1

]

=

[

cos θ − sin θ
sin θ cos θ

] [

x0

y0

]

(6.147)

This should be a familiar formula that you have used for rotating vectors in
the plane.
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FIGURE 6.8: Illustration of a counterclockwise rotation of (x0, y0) to (x1, y1)
by a positive angle θ measured from the positive x-axis. The positive angle
φ is the angle between the x-axis and the initial point (x0, y0). The positive
angle θ + φ is the angle between the x-axis and the final point (x1, y1).

A substantial amount of terminology was introduced for constructing
Equation (6.147), which represents a rotation in the xy-plane. Most of us
would construct the equation without thinking twice about our conventions,
but indeed we have several issues that need addressing. It is important to
document the conventions you are using for your coordinate systems.

• Clearly Defined Coordinate System. The origin is the point (0, 0). Al-
though this is not specifically stated in the chapter introduction, you
probably assumed this to be the case based on Figure 6.8. The figure
also clearly defines the coordinate axis directions, which numerically you
would intuitively choose as (1, 0) for the x-axis direction and (0, 1) for
the y-axis direction.

• Points or Vectors? It is not clear whether the 2-tuple (x, y) refers to a
point in the plane or is a vector measured relative to the origin (0, 0).
Equation (6.147) intends for the 2-tuples to be vectors.

• Which Handedness? The coordinate system is defined to be right handed.
This is an arbitrary convention in 2D, without appeal to the right-hand
rule for cross products in 3D. However, right handedness is the standard
choice for the geometry shown in Figure 6.8. When processing 2D im-
ages, it is typical to use left-handed coordinates, where the origin is the
upper-left corner of the image, the x-axis is directed rightward, and the
y-axis is directed downward.

• Angle Measurement and Rotation Direction. The caption of Figure 6.8
specifies that the angles are measured from the positive x-axis, and that
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a positive angle corresponds to a counterclockwise rotation. Although the
use of the terms clockwise and counterclockwise rotation are standard,
not all clocks have hands that move the way you expect!2 I will assume
that we all agree what clockwise and counterclockwise refer to.

• Column or Row Vectors? Equation (6.147) has a tabular form that rep-
resents the 2-tuples as 2× 1 column vectors. The matrix-vector product
uses what I refer to as the vector-on-the-right convention. I could have
easily used a vector-on-the-left convention, whereby the 2-tuples are rep-
resented as 1 × 2 row vectors. This changes the tabular format of the
equation.

• Matrix Data Storage. Although this is a concept that is irrelevant mathe-
matically, it is important when implementing vector and matrix algebra
on a computer. The two standard choices are to store the 2D-array data
in 1D-memory either in row-major or column-major order. At first glance
this might be viewed as an arbitrary choice, but there are performance
consequences to consider (discussed later in this chapter).

Is this much ado about nothing? In my experience, no. The most annoying
aspect of working with someone else’s mathematics library is when the con-
ventions are not clearly stated. You have to rely on code samples that use that
library in order to reverse engineer the conventions, either by reading those
samples or by writing your own and executing the code to see the relation-
ships among inputs and outputs. Moreover, the conventions stated here have
dependencies. It is absolutely essential that you make clear what your con-
ventions are. To stress the importance, let us further look at the 2D rotation
problem.

Suppose that you are using a mathematics library that supports 2D rota-
tion and the comment in the source code is that of Listing 6.42.

// The 2D r o t a t i o n mat r i x f o r the l i b r a r y i s o f the form
// +− −+
// R = | cos ( t ) −s i n ( t ) |
// | s i n ( t ) cos ( t ) |
// +− −+

LISTING 6.42: Incomplete comments describing the form of a 2D rotation
matrix.

At least the code has some comments, but they are not sufficient for you
to understand the conventions. If R is intended to be used according to the
conventions described previously in this chapter, then you need to be told

2When I was in 9th grade, my homeroom was the Electric Shop. We salvaged useable
components from Army Surplus equipment, such as transistors the size of your little finger-
tip. We were entertained by an odd piece of equipment—a clock whose numbers were the
opposite order you are used to and whose hands moved in the opposite direction you are
used to. That throws a wrench into a consistent definition of clockwise and counterclockwise.
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xμ μ

FIGURE 6.9: A point in the world located with different coordinates sys-
tems. (a) The coordinate system (x, y) is right handed. (b) The coordinate
system (x̄, ȳ) is left handed.

this. What if the library provider uses the vector-on-the-left and positive-
angle-counterclockwise conventions? In this case, R represents a rotation in
the opposite direction from that with vector-on-the-right and positive-angle-
counterclockwise. What if the library provider uses the vector-on-the-left and
positive-angle-clockwise conventions? Now R represents the rotation we dis-
cussed when using vector-on-the-right and positive-angle-counterclockwise.

Wait! The analysis of the previous paragraph is based on the assumptions
that the coordinate system is right handed and that angles are measured
from the positive x-axis. Figure 6.9 compares the two systems with differ-
ent handedness. If (x0, y0) is a specific point in the right-handed system, its
representation in the left-handed system is (x̄0, ȳ0) = (x0,−y0). Let r be the
length of the tuples as vectors. Assuming the right-handed system uses the
vector-on-the-right and positive-angle-counterclockwise conventions, (x0, y0)
is obtained by rotating (r, 0) counterclockwise by the angle θ > 0. The ma-
trix R represents the rotation. The same matrix represents the rotation when
using vector-on-the-left and positive-angle-clockwise conventions. In fact, R
represents the rotation in the left-handed system as long as that system uses
the vector-on-the-right and positive-angle-clockwise conventions or if it uses
the vector-on-the-left and positive-angle-counterclockwise conventions. In all
four cases, the angle is measured from the positive rightward axis.

For notation’s sake, let us use the acronyms RHS for right-handed system,
LHS for left-handed system, VOR for vector-on-the-right, VOL for vector-
on-the-left, CW for positive-angle-clockwise, and CCW for positive-angle-
counterclockwise. Table 6.2 shows the combination of conventions for which R
is the rotation matrix and for which RT is the rotation matrix. As is apparent,
the handedness, the vector-multiplication convention, and the direction of ro-
tation are interdependent. In fact, if you change one of these three attributes,
the matrix you should choose is the transpose of the one chosen before the



336 GPGPU Programming for Games and Science

TABLE 6.2: Rotation conventions
R is the rotation matrix RT is the rotation matrix
RHS VOR CCW RHS VOR CW
RHS VOL CW RHS VOL CCW
LHS VOR CW LHS VOR CCW
LHS VOL CCW LHS VOL CW

change. Three attributes, each having two choices, leads to eight possibilities,
as Table 6.2 shows. It is important to make clear how you have chosen these
conventions.

6.4.4 Converting between Coordinate Systems

Consider a simple case of converting between two coordinate systems,
one a right-handed system and one a left-handed system, both based at
their natural origins. Figure 6.10 illustrates. Both coordinate system ori-
gins are at the Cartesian frame origin (0, 0, 0). The Cartesian coordinate
axis directions are (1, 0, 0) in the right direction, (0, 1, 0) into the plane of
the page, and (0, 0, 1) in the up direction. The coordinate axis directions for
the first system are the same as those for the Cartesian frame. Observe that
(1, 0, 0)× (0, 1, 0) = (0, 0, 1), so the last vector is the cross product of the first
two. Geometrically, these conform to the right-hand rule for cross products,
so the coordinate system is right handed. The coordinate axis directions for
the second system in the order specified by (x′

0, x
′
1, x

′
2) and in terms of the

same common Cartesian frame as the first system are (1, 0, 0), (0, 0, 1), and
(0, 1, 0). Observe that (1, 0, 0)× (0, 0, 1) = (0,−1, 0), so the last vector is the
negative cross product of the first two. These conform to the left-hand rule
for cross products, so the coordinate system is left handed.

The conversion details are driven by the geometry of the images in the
figure. The axes are all aligned but their names are different. The xi coordinate
of the first system and the x′

i coordinate correspond to the same measurement
along their common axis. We can set up a matrix equation that relates the
measurements,

X′ =

⎡

⎣

x′
0

x′
1

x′
2

⎤

⎦ =

⎡

⎣

1 0 0
0 0 1
0 1 0

⎤

⎦

⎡

⎣

x0

x1

x2

⎤

⎦ = CX (6.148)

where the last equation defines the 3 × 3 matrix C. The matrix C swaps the
last two components of a vector. The matrix is orthogonal, because CTC = I,
and det(C) = −1, which makes the matrix a reflection. The conversion in the
other direction is

⎡

⎣

x0

x1

x2

⎤

⎦

⎡

⎣

1 0 0
0 0 1
0 1 0

⎤

⎦

⎡

⎣

x′
0

x′
1

x′
2

⎤

⎦ = C−1

⎡

⎣

x′
0

x′
1

x′
2

⎤

⎦ (6.149)
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(-sin μ, cos μ, 0)     

(0,0,0)

(cos μ, sin μ, 0) 

(-sin μ, 0, cos μ)     

(0,0,0)

(cos μ, 0, sin μ) 

X2

X1

X0

FIGURE 6.10: Conversion from (x0, x1, x2) in a right-handed coordinate
system to (x′

0, x
′
1, x

′
2) in a left-handed coordinate system.

It so happens that C−1 = CT = C. For orthonormal coordinate axes, generally
C−1 = CT.

Equations (6.148) and (6.149) are easy enough to set up based on a visual
inspection of the coordinate axes. Now suppose that we have a rotation in the
first coordinate system, and that rotation is represented by a rotation matrix
R. We want to determine the rotation matrix R′ in the second coordinate
system that produces the same rotation. For example, suppose we rotate points
about the z-axis by a small angle θ. The left image of Figure 6.10 shows the
action of the rotation for inputs (1, 0, 0) and (0, 1, 0). The right image shows
the same action, which is a rotation in the x′z′-plane. The transformations
are

U =

⎡

⎣

u0

u1

u2

⎤

⎦ =

⎡

⎣

c −s 0
s c 0
0 0 1

⎤

⎦

⎡

⎣

x0

x1

x2

⎤

⎦ = RX

U′ =

⎡

⎣

u′
0

u′
1

u′
2

⎤

⎦ =

⎡

⎣

c 0 −s
0 1 0
s 0 c

⎤

⎦

⎡

⎣

x′
0

x′
1

x′
2

⎤

⎦ = R′X′

(6.150)
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where c = cos θ and s = sin θ. The linear-algebraic relationship between R and
R′ is obtained by substituting Equations (6.148) and (6.149) for both inputs
and outputs into the last equation, R′X = U′ = CU = CRX = CRC−1X′,
in which case

R′ = CRC−1, R = C−1R′C (6.151)

This is known in linear algebra as a change of basis. We can represent the
same geometric action in two different coordinate systems. In our case, the
domain and range of the transformation have the same basis. Change of basis
is more general in that you can have different bases for the domain and range.

Let us generalize for a more complicated setting. Suppose that the right-
handed coordinate system has origin at a point P and the left-handed coordi-
nate system has an origin at a point P′. To determine the conversion between
systems, we can reduce this case to the one discussed previously by subtract-
ing the origins from our points to form vectors. Equation (6.148) is compactly
written as X′ = CX. In our current scenario, the equation becomes

X′ −P′ = C (X−P) (6.152)

Equation (6.149) is compactly written as X = C−1X′. In our current sce-
neario, the equation becomes

X−P = C−1
(

X′ −P′
)

(6.153)

Equation (6.152) may be written using points and affine matrices,
[

I −P′

0T 1

] [

X′

1

]

=

[

C 0

0T 1

] [

I −P

0T 1

] [

X

1

]

(6.154)

and then inverting the matrix on the left and multiplying both sides of the
equation and composing products:

[

X′

1

]

=

[

C P′ − CP

0T 1

] [

X

1

]

= A

[

X

1

]

(6.155)

where the last equality defines the 4×4 matrix A. Similarly, Equation (6.153)
becomes

[

X

1

]

=

[

C−1 P− C−1P′

0T 1

] [

X

1

]

= A−1

[

X′

1

]

(6.156)

This is referred to as an affine change of basis.
The conversion of matrices is similar to the original example. Geometri-

cally, the rotation in the right-handed coordinate system is about the axis
containing the origin P with x2-axis direction. The same rotation in the left-
handed coordinate system is about the axis containing the origin P′ with
x′
1-axis direction. We may subtract the origins to obtain vectors that are ro-

tated as shown previously,

U−P = R(X−P), U′ −P′ = R′(X′ −P′) (6.157)
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H
M ′

−→ H
A ↑↓ A−1 A ↑↓ A−1

H −→
M

H

FIGURE 6.11: The commutative diagram that shows how transformations
are related via a change of basis.

Applying the change of basis for both inputs and outputs,

R′(X′−P′) = U′−P′ = C(U−P) = CR(X−P) = CRC−1(X′−P′) (6.158)

Of course we already know that R′ = CRC−1, but the equation allows us
to represent the relationship between the rotations using affine matrices. The
transformation for the right-handed coordinate system involves translating
the coordinate system origin P to the Cartesian origin, rotating about the up
axis, then translating back to P. The transformation is

[

U

1

]

=

[

I P

0T 1

] [

R 0

0T 1

] [

I −P

0T 1

] [

X

1

]

=

[

R P−RP

0T 1

] [

X

1

]

= M

[

X

1

]

(6.159)

where the last equality defines the 4 × 4 matrix M . The transformation for
the left-handed coordinate system is

[

U′

1

]

=

[

I P′

0T 1

] [

R′ 0

0T 1

] [

I −P′

0T 1

] [

X′

1

]

=

[

R′ P′ −R′P′

0T 1

] [

X′

1

]

= M ′

[

X′

1

]

(6.160)

where the last equality defines the 4 × 4 matrix M ′. The transformations M
and M ′ are related by

M ′ = AMA−1, M = A−1M ′A (6.161)

The relationship is summarized by the commutative diagram shown in
Figure 6.11. In fact, this diagram is valid for any affine transformation M
and any change of basis, even if the bases are nonorthogonal sets. The symbol
H denotes the space of 4-tuple points. In the bottom row, the domain of the
transformation is the leftmost H , and M maps the domain to the range, which
is the rightmostH . Alternatively, you can follow the path from lower-leftH to
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upper-left H (apply A), to upper-right H (apply M ′), and then to lower-right
H (apply A−1). That is, M and A−1M ′A produce the same result, where
application of matrices is from right to left (vector-on-the-right convention).
Similarly, you can apply M ′ from upper-left H to upper-right H or you can
equivalently traverse from upper-left to lower-left to lower-right to upper-right
using AMA−1.

For orthonormal bases, the process is automated for you except the very
first step: You must visualize how the coordinate axes are overlayed and you
must then construct the matrix C. That’s geometry. The rest is algebra.

The process applies even for general bases but creating the change of basis
matrix is slightly more complicated. Let the basis for the first coordinate
system be {V0,V1,V2} and the basis for the second coordinate system be
{V′

0,V
′
1,V

′
2}. The change of basis matrix C has the property that V′

i = CVi

for all i. If V is the matrix whose columns are the Vi and V ′ is the matrix
whose columns are the V′

i, then V ′ = CV . We can invert V to obtain C =
V ′V −1.

The conversions of transformations assumed both coordinate systems use
the vector-on-the-right multiplication convention. If either or both coordinate
systems use the vector-on-the-left convention, you can still use the conver-
sion here but you must transpose each matrix that uses the vector-on-the-
left convention, apply the conversion, then transpose the result. For exam-
ple, if the first coordinate system uses vector-on-the-right and the second
coordinate system uses vector-on-the-left, the transformation M ′ for the sec-
ond coordinate system is (M ′)T = AMA−1. If the first coordinate system
uses vector-on-the-left and the second coordinate system uses vector-on-the-
right, the relationship is M ′ = AMTA−1. If both use vector-on-the-right, then
(M ′)T = AMTA−1.



Chapter 7

Sample Applications

7.1 Video Streams

The video stream sample illustrates the parallel copying that was men-
tioned in Section 4.7. The application is located at

GeometricTools/GTEngine/Samples/Graphics/VideoStreams

A video stream is a collection of images through time. Some application do-
mains have multiple video streams, presumably synchronized in time. Stereo
vision is one such domain where you have two streams, one per camera. The
goal is to process the images as they arrive from their producer, whether live
camera feeds or recordings on disk.

Although it would be nice to demonstrate the concept with real video
data, that is a lot of data to download from the Geometric Tools website. For
the sake of reducing bandwidth, four video streams are generated randomly
by the sample and written to disk. Later, the streams are loaded from disk
and are processed using a producer-consumer model. The producer is the file
loader, which runs in its own thread, and the consumer is the main thread
that displays the images in the application window. Because the randomly
generated images are not interesting, I have not provided any screen captures
for this book.

7.1.1 The VideoStream Class

The abstract base class VideoStream encapsulates the behavior for process-
ing a stream of images. It provides a frame capturing system that calls a virtual
function, GetImage, to access a single image in the stream. Each derived class
overrides GetImage; in our case, the class is FileVideoStream that loads the next
available image from disk. If you were building a system driven by live cam-
eras, a class CameraVideoSystem can be implemented whose GetImage obtains
the next available image from the camera.

The image is stored in a GTEngine Texture2 object of the appropriate
format and size so that it can be processed by the GPU. A frame is defined as
a structure that contains a Texture2 image, a unique frame number, and the
time (in ticks) required to acquire the image from the producer and copy it to
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GPU memory. The latter value is simply for performance measurements and
might not be necessary for other applications. Listing 7.1 shows the code for
acquiring the image and creating the texture.

vo id VideoStream : : CaptureFrame ( )
{

i n t 6 4 t s t a r tT i c k s = mProductionTimer . GetTicks ( ) ;
char∗ data = GetImage ( ) ;
i f ( data )
{

mFrame . image . r e s e t (
new Texture2 (mType , mWidth , mHeight , f a l s e , f a l s e ) ) ;

mFrame . image−>SetData ( data ) ;
mEngine−>Bind (mFrame . image ) ;
mFrame . image−>SetData ( n u l l p t r ) ;

}
i n t 6 4 t f i n a l T i c k s = mProductionTimer . GetTicks ( ) ;
mFrame . t i c k s = f i n a l T i c k s − s t a r tT i c k s ;
mPer formanceTicks = mPerformanceTimer . GetTicks ( ) ;
++mPerformanceFrames ;

}

LISTING 7.1: Acquiring an image and creating a texture from it.

The timer is started and a call is made to acquire the image. In our case,
the call leads to a load of the image from disk. For typical images, the size
is large enough that in a single-threaded program, the disk load can cause a
noticeable stall. If the producer cannot provide an image when requested, it
has the option of returning a null pointer as a signal that the consumer the
data is not available—a dropped frame, so to speak.

When the data is available, a Texture2 object is created from the known
format mType with the known sizes mWidth and mHeight. The first false pa-
rameter says we do not want mipmaps for this texture, which is a message
to the engine to create the GPU version without mipmaps. The second false

parameter says we do not want a system memory copy in which to store the
texture. We could have used the default creation using the default-initialized
inputs and then copied the image data to the system memory, using

mFrame . image . r e s e t (new Texture2 (mType , mWidth , mHeight ) ) ;
memcpy (mFrame . image−>GetData ( ) , data , mFrame . image−>GetNumBytes ( ) ) ;
mEngine−>Bind (mFrame . image ) ;

but this leads to an extra copy—from CPU to CPU—that is inefficient. In-
stead, the GTEngine Resource base class (for Texture2) allows you to specify a
pointer to data that is used as the data source when the Bind call creates the
GPU version of the resource.

After the capture and creation of the GPU version of the texture, the timer
is stopped. The application displays the performance statistics overlaid on top
of the application window.

7.1.2 The VideoStreamManager Class

It is convenient to have a manager class for multiple video streams, espe-
cially when the streams need to be synchronized (as they do in stereo vision).
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The class VideoStreamManager provides the necessary mananagement, and it
also has summary statistics for the performance for all the video streams. In
this sample, the number of video streams is four.

The class has support for various methods of capturing, both in serial and
in parallel, to demonstrate the performance characteristics of each approach.
You can change the method by exposing one of four conditional defines in
the VideoStreamsWindow.h file. Their names involve MANUAL or TRIGGERED.
The former means that the frame capture is explicitly launched by calls in the
main thread. The latter means that the frame capture is implicitly launched
by a separate thread using a timer that is designed to deliver frames at a fixed
rate. The names also involve SERIAL or PARALLEL. The former means that the
video streams are captured one at a time. The latter means the frames are
captured by launching threads for all the streams and waiting for them all to
finish.

Regardless of the capture method, once all video frames are available they
must be assembled into an aggregrate frame. The frame data structure for
VideoStreamManager consists of an array of Texture2 images—one per video
stream and presumably synchronized to be images captured of the same scene,
a unique frame number, and the time (in ticks) required to acquire all the im-
ages and copying them to GPU memory. The latter value is for performance
measurements and might not be necessary for other applications. To sup-
port parallelism and concurrent access, the frames are placed in a thread-safe
queue. Thus, the video stream manager acts as the producer for frames, de-
positing frames on the queue. When the consumer is ready to process a frame,
it accesses the same queue and removes the frame it will process. The function
for assembling frames is named AssembleFullFrame.

Listing 7.2 is the function for capturing the video streams serially.

vo id VideoStreamManager : : Cap tu r eFrameSer i a l ( )
{

i n t 6 4 t s t a r tT i c k s = mProductionTimer . GetTicks ( ) ;
s i z e t const numVideoStreams = mVideoStreams . s i z e ( ) ;
f o r ( s i z e t i = 0 ; i < numVideoStreams ; ++i )
{

mVideoStreams [ i ]−>CaptureFrame ( ) ;
}
AssembleFu l lFrame ( s t a r t T i c k s ) ;

}

LISTING 7.2: Capturing video streams serially.

Listing 7.3 is the function for capturing the video streams in parallel.

vo id VideoStreamManager : : Ca p tu r eF r amePa r a l l e l ( )
{

i n t 6 4 t s t a r tT i c k s = mProductionTimer . GetTicks ( ) ;
s i z e t const numVideoStreams = mVideoStreams . s i z e ( ) ;
s td : : vec to r<s td : : thread> cap tu r eThread ( numVideoStreams ) ;
f o r ( s i z e t i = 0 ; i < numVideoStreams ; ++i )
{

cap tu r eThread [ i ] = s td : : thread
(

[ t h i s , i ] ( )
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{
mVideoStreams [ i ]−>CaptureFrame ( ) ;

}
) ;

}
f o r ( s i z e t i = 0 ; i < numVideoStreams ; ++i )
{

cap tu r eThread [ i ] . j o i n ( ) ;
}

AssembleFu l lFrame ( s t a r t T i c k s ) ;
}

LISTING 7.3: Capturing video streams in parallel.

The first loop launches threads to capture frames, one per video stream. The
second loop waits for the threads to finish. The application must explicitly
call one or the other when capture is initiated in the main thread, say, in the
OnIdle function call,

mVideoStreamManager−>Captu r eFrameSer i a l ( ) ;
// or mVideoStreamManager−>Cap tu r eF r amePa r a l l e l ( ) ;
i f ( mVideoStreamManager−>GetFrame ( mCurrent ) )
{

f o r ( i n t i = 0 ; i < 4 ; ++i )
{

mOverlay [ i ]−>SetTextu re ( mCurrent . f r ames [ i ] . image ) ;
mEngine−>Draw( mOverlay [ i ] ) ;

}
Dr awS t a t i s t i c s ( ) ;
mEngine−>D i s p l a yCo l o r B u f f e r ( 0 ) ;

}

The consumer is the main thread, which sets the overlay effects to use the
textures and draws them to the application window. Control of the frame rate
can be accomplished by setting the input parameter to DisplayColorBuffer to 1
for 60 frames per second, 2 for 30 frames per second, etc. In the sample, the
input 0 says not to wait for the vertical retrace. The GetFrame call determines
whether the queue of frames has elements. If it does, one is removed from the
queue and returned in the mCurrent object. The capture is occurring in the
same frame, so the queue should always have a frame for consumption as long
as the producer has created one. The file loading always blocks until the image
is loaded, so indeed the producer always inserts an image into the queue.

For triggered capturing, the application must launch a thread that calls
either the serial or parallel capture function. Listing 7.4 shows the implemen-
tation.

vo id VideoStreamManager : : S t a r tT r i g g e r edCap t u r e ( doub le fps , bool p a r a l l e l )
{

i f ( n u l l p t r == mTrigger && fp s > 0 . 0 )
{

vo id ( VideoStreamManager : : ∗ Capture ) ( vo id ) ;
i f ( p a r a l l e l )
{

Capture = &VideoStreamManager : : Ca p tu r eF r amePa r a l l e l ;
}
e l s e

{
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Capture = &VideoStreamManager : : Cap tu r eFrameSer i a l ;
}

mTrigger = new Tr i g g e r ( ) ;
mTrigger−>t i ck sPe rFrame = mTrigger−>t ime r . GetTicks ( 1 . 0 / f p s ) ;
mTrigger−>r unn ing = t r ue ;

mTrigger−>t r i g g e rTh r e a d = new s td : : thread
(

[ t h i s , Capture ] ( )
{

i n t 6 4 t s ta r tT ime = mTrigger−>t ime r . GetTicks ( ) ;
wh i l e ( mTrigger−>r unn ing )
{

i n t 6 4 t f i n a lT ime = s ta r tT ime + mTrigger−>t i ck sPe rFrame ;
do

{
s ta r tT ime = mTrigger−>t ime r . GetTicks ( ) ;

}
wh i l e ( s ta r tT ime < f i n a lT ime ) ;
( t h i s−>∗Capture ) ( ) ;

}
}

) ;
}

}

LISTING 7.4: Launching a thread to handle image capturing.

The frame rate in frames per second and the choice of serial or parallel capture
are provided as inputs. The Trigger object is a structure that has a 64-bit
timer, a pointer to the thread object, a Boolean that may be set to enable
or disable capturing, and a counter for the number of ticks per frame. The
latter is used so that we can call Capture using the 64-bit counter rather than
always converting ticks to seconds and using floating-point numbers instead.
The thread function is specified as a lambda, which is simple to read and
encapsulates the thread creation in a single code block.

The application calls this function once it is ready to start the message
pump, which is usually at the end of the constructor. Once the message pump
starts, OnIdle is called frequently. The function has the code block

i f ( mVideoStreamManager−>GetFrame ( mCurrent ) )
{

f o r ( i n t i = 0 ; i < 4 ; ++i )
{

mOverlay [ i ]−>SetTextu re ( mCurrent . f r ames [ i ] . image ) ;
mEngine−>Draw( mOverlay [ i ] ) ;

}
Dr awS t a t i s t i c s ( ) ;
mEngine−>D i s p l a yCo l o r B u f f e r ( 0 ) ;

}

As before, GetFrame queries the queue of frames to determine whether there is
a frame available. Because the image capture is running in a separate thread
and occurs at a specified rate, most of the time GetFrame finds there is no
image available. When there is one, it is removed from the thread-safe queue
and the images are drawn.
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Generally, disk loading is slow, so it might not be possible to run at 60
or 30 frames per second. If you have a solid state drive, you might get the
impression it is. Also, disk caching might give the illusion you are running
fast. But when the video streams are on the order of gigabytes of data, you
will probably notice the drop in frame rate. For live camera capture, as long
as the camera hardware can deliver at 60 or 30 frames per second, the drawing
can easily keep up with that rate and there are no stalls in the application.
However, any extensive image processing that occurs in OnIdle might take long
enough that you cannot meet the desired frame rate. For example, in stereo
vision where you are trying to match corresponding points to obtain depth
values, the computations will be extensive. You might have to balance image
size, camera frame rate, and CPU/GPU frame rate in order to accomplish
your goals.

7.2 Root Finding

Several methods are discussed for computing roots to functions when you
are in a single-threaded CPU environment. As an alternative, the GPU may
allow you to find roots using an exhaustive search when computing with 32-
bit floating-point numbers, but you will need to interpret properly the output
depending on the function.

7.2.1 Root Bounding

The general problem is this: given a continuous real-valued function f(x)
with domain D ⊆ IR, find all x for which f(x) = 0. In practice, the root
finding might be limited to a finite interval that is a subset of the domain.
In many cases, the interval is determined via root bounding. That is, you
search D for intervals of the form [a, b] for which f(a) and f(b) have opposite
sign. The intermediate value theorem says that the function must attain any
value between f(a) and f(b). In particular, if the signs of these numbers are
opposite, then 0 is between f(a) and f(b), so there must be a number x ∈ (a, b)
for which f(x) = 0. The intermediate value theorem guarantees at least one
root for f(x) on [a, b], but there may be others.

The practical challenge is to find an interval on which f(x) has a unique
root. Techniques exist for computing root-bounding intervals for polynomial
functions, although some of these are sensitive to the use of floating-point
arithmetic, so you need to implement them very carefully. One such method
is recursive, computing the roots of derivatives of the polynomial. Another
related one but more robust involves Sturm sequences of polynomials; for
example, see [8].
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7.2.2 Bisection

If f(x) is defined in [a, b] and has opposite signs at the endpoints
(f(a)f(b) < 0), then the simplest method for computing a root is bisection.
For the sake of argument, suppose f(a) < 0 and f(b) > 0. Compute the in-
terval midpoint m = (a + b)/2 and evaluate f(m). If f(m) < 0, then the
intermediate value theorem guarantees f(x) has a root on [m, b]. This subin-
terval is half the length of the original. If f(m) > 0, then f(x) has a root
on [a,m]. In either case, you can repeat the algorithm on the subinterval. Of
course if you get lucky and find that f(m) = 0, you have your root.

In theory, the bisection algorithm usually does not converge in a finite
number of steps, so in practice you need to limit the number of iterations.
Based on the discussion of Section 2.5.5, root finding can be badly behaved
if you were to terminate the iterations based on how close to zero the cur-
rent f(m) is. Instead, you can terminate based on the length of the current
subinterval. Current generation floating-point units are fast enough that an
alternative is to repeat bisection until the midpoint equals one of the end-
points. The termination is guaranteed, because there are only a finite number
of floating-point numbers and at some time the rounding of the average of the
endpoints will be to one of those endpoints:

Rea l x0 , x1 ; // i n t e r v a l [ x0 , x1 ] wi th x0 < x1 , Rea l i s f l o a t or doub l e
Rea l f 0 = f ( x0 ) , f 1 = f ( x1 ) ;
i n t s0 = Sign ( f 0 ) , s1 = Sign ( f 1 ) ; // s0∗ s1 < 0
Rea l r o o t ;
f o r ( ; ; )
{

Rea l xmid = ( x0 + x1 ) / 2 ;
i n t smid = Sign ( f ( xmid ) ) ;
i f ( x0 == xmid | | x1 == xmid | | smid == 0)
{

r o o t = xmid ;
break ;

}
i f ( smid == s0 )
{

x0 = xmid ;
}
e l s e

{
x1 = xmid ;

}
}

If the loop terminates because smid is zero, then you have a root for which
the function evaluates exactly to zero. However, be aware that with floating-
point arithmetic, the expression you use to evaluate the function can influence
the outcome. For example, consider a quadratic polynomial f(x) = ax2+bx+c.
With floating-point, you can get two different values,

f l o a t a = 0.1234 f ;
f l o a t b = −0.56 f ;
f l o a t c = −122840.000 f ;
f l o a t x = 1000.0 f ;
f l o a t f0 , f 1 ;
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f 0 = a∗x∗x + b∗x + c ; // f0 = 0 .0 f
f 1 = x∗( a∗x + b ) + c ; // f1 = 0.00781250000 f

The computed numbers are indeed different. If the loop terminates with dis-
tinct x0 and x1 and where f0 and f1 have opposite signs, you have a root-
bounding interval (given the way you have decided to evaluate the function),
no matter how small or large in magnitude the endpoint function values. As
mentioned in Section 2.5.5, this is the best you can do with 32-bit floating-
point arithmetic.

7.2.3 Newton’s Method

One of the most popular root-finding methods is Newton’s method, which
requires the function to be continuously differentiable. It is based on having
an estimate xi of a root and then choosing the next estimate xi+1 as the point
of intersection between the tangent line to the graph of f at (xi, f(xi)). This
point is

xi+1 = xi −
f(xi)

f ′(xi)
(7.1)

It is essential that you have a good initial estimate x0 for the root in order for
the iterates to converge to the root. In practice, the iterations are repeated
until you meet some termination criterion.

As mentioned in Section 2.5.5, choosing a criterion based on how close
f(xi) is to zero usually is not advised. Even if the function values are on order
one (i.e., reasonably sized floating-point numbers) you can run into problems.
A typical attempt at coding the root finder is

f l o a t x ; // i n i t i a l gues s
f l o a t f u n c t i o n E p s i l o n ; // p o s i t i v e number c l o s e to z e ro
f l o a t d e r i v a t i v e E p s i l o n ; // wo r r i e s about d i v i d i n g by ze ro
i n t ma x I t e r a t i o n s ; // l i m i t i t e r a t i o n s when the unexpected happens
f o r ( i n t i = 0 ; i < ma x I t e r a t i o n s ; ++i )
{

f l o a t f = Funct i on ( x ) ;
i f ( s td : : abs ( f ) < f u n c t i o n E p s i l o n )
{

r e tu r n x ; // f sma l l , so we w i l l c a l l t h i s a r o o t
}
f l o a t d f = Fu n c t i o nD e r i v a t i v e ( x ) ;
i f ( s td : : abs ( d f ) < d e r i v a t i v e E p s i l o n )
{

// Thi s l e a d s to d i v i s i o n by ( n e a r l y ) z e ro . WHAT TO DO?
r e tu r n aargh ;

}
x −= f / d f ;

}
r e tu r n x ; // F a i l e d to converge , so r e t u r n c u r r e n t b e s t gues s ?

Let us ignore the problem for now of the derivative nearly zero, assuming
you have a function whose derivative does not have this behavior near a root.
The comparison to functionEpsilon can fail; consider the quadratic polynomial
of Section 2.5.5 for which you have a root bound of two consecutive floating-
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point numbers but their magnitudes well exceed the epsilon test. Most likely,
you will continue to loop until maximum iterations, never obtaining estimates
better than the previous iterations.

One of the classical root-finder breakers you see in a course on numerical
methods is a function for which the iterates cycle around the root but never
converge. For example, f(x) = x/(1+x2/3) has this property at x = ±1. The
iterates are

xi+1 = xi −
f(xi)

f ′(xi)
= − 2x3

i

3− x2
i

(7.2)

For initial guess x0 = 1, the next iterate is x1 = −1 and yet the next iterate
is x2 = 1. You can iterate as much as you want but you will not find the
root x = 0. The same cyclical behavior can happen due to numerical roundoff
errors if you are near a root. My suggestion for a solution with a computer-
science flavor rather than a purely mathematical one is to store the iterates
and trap the cycles,

f l o a t x ; // i n i t i a l gues s
f l o a t f u n c t i o n E p s i l o n ; // p o s i t i v e number c l o s e to z e ro
i n t ma x I t e r a t i o n s ; // l i m i t i t e r a t i o n s when the unexpected happens
s td : : s e t<f l o a t> v i s i t e d ;
v i s i t e d . i n s e r t ( x ) ;
f o r ( i n t i = 0 ; i < ma x I t e r a t i o n s ; ++i )
{

f l o a t f = Funct i on ( x ) ;
i f ( s td : : abs ( f ) < f u n c t i o n E p s i l o n )
{

r e tu r n x ; // f sma l l , so we w i l l c a l l t h i s a r o o t
}
f l o a t d f = Fu n c t i o nD e r i v a t i v e ( x ) ;
x −= f / d f ;
i f ( v i s i t e d . f i n d ( x ) == v i s i t e d . end ( ) )
{

// We have not ye t s een t h i s i t e r a t e .
v i s i t e d . i n s e r t ( x ) ;

}
e l s e
{

// We have s een t h i s i t e r a t e , so t h e r e i s a c y c l e . One p o s s i b l e
// r e s p o n s e i s to r e t u r n the i t e r a t e whose f u n c t i o n va l u e i s
// sm a l l e s t .
f l o a t fmin = s td : : n um e r i c l i m i t s<f l o a t > : :max ( ) ;
f l o a t r o o t = s td : : n um e r i c l i m i t s<f l o a t > : :max ( ) ;
f o r ( auto y : v i s i t e d )
{

f l o a t f a b s = s td : : abs ( Funct i on ( y ) ) ;
i f ( f a b s < fmin )
{

fmin = f a b s ;
r o o t = y ;

}
}
r e tu r n r o o t ;

}
}
r e tu r n x ; // F a i l e d to converge , so r e t u r n c u r r e n t b e s t gues s ?

Finally, in practice you probably want to implement a hybrid of Newton’s
method and bisection. Given a root-bounding interval [a, b], compute a New-
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ton’s iterate starting at x0 = a. If the resulting x1 is inside [a, b], then accept
this value and compute another Newton’s iterate. But if x1 is outside [a, b],
reject x1 and apply a bisection step.

7.2.4 Exhaustive Evaluation

If you want a (presumably) robust computation for float roots of any func-
tion f(x) with no worries about computation time, a simple but slow algorithm
is to iterate over all finite float numbers and evaluate the function. Let x0 and
x1 be two consecutive finite floating-point numbers. If f(x0)f(x1) < 0, then
the interval [x0, x1] bounds a root. However, there are no floating-point num-
bers between x0 and x1, so the best you can do is estimate the root with xi

for which |f(xi)| is the minimum absolute value of the two function values. In
fact, the test should be f(x0)f(x1) ≤ 0, allowing for either of the x-values to
be exactly a root with the understanding that the function evaluation involves
potentially roundoff errors—with exact arithmetic, f is not exactly zero at the
rational-valued input.

A sample application illustrating the root finding is located at

GeometricTools/GTEngine/Samples/Numerics/RootFinding

In the previous paragraph, I parenthesized “presumably” because there are
some potential problems with the GPU output. These are mentioned at the
end of the discussion.

7.2.4.1 CPU Root Finding Using a Single Thread

The inner-loop costs depend on the function evaluation. To give you an
idea of how expensive the approach is, consider the code in Listing 7.5 that
computes the roots of f(x) = (x− 1.1)(x+2.2). On my machine with an Intel
Core i7-3930K 3.20 GHz core, the execution time was approximately 10.5
seconds. In general, the polynomial function may be replaced by any other
function whose domain is the set of real numbers; that is, the algorithm is not
specific to polynomials, but of course the execution time increases as the cost
of evaluating f(x) increases. If your function’s domain is a subset of the real
numbers, you will need to modify the code to visit only those floating-point
numbers in the domain.

f l o a t MyFunction ( f l o a t x ) { r e tu r n ( x − 1 .1 f )∗( x + 2 .2 f ) ; }

vo id FindRootsCPUSing le ( s td : : s e t<f l o a t>& roo t s )
{

s td : : s e t<f l o a t> r o o t s ;
uns igned i n t const s u pT r a i l i n g = (1 << 23 ) ;
f o r ( uns igned i n t t r a i l i n g = 0 ; t r a i l i n g < s u pT r a i l i n g ; ++t r a i l i n g )
{

f o r ( uns igned i n t b i a s ed = 0 ; b i a s ed < 255 ; ++b i a s ed )
{

uns igned i n t exponent = ( b i a s ed << 23 ) ;
uns igned i n t encod i ng0 = exponent | t r a i l i n g ;
uns igned i n t encod i ng1 = encod i ng0 + 1 ;
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f l o a t z0 = ∗( f l o a t ∗)&encod i ng0 ;
f l o a t z1 = ∗( f l o a t ∗)&encod i ng1 ;

f l o a t f 0 = MyFunction ( z0 ) ;
f l o a t f 1 = MyFunction ( z1 ) ;
i f ( f 0∗ f 1 <= 0.0 f )
{

r o o t s . i n s e r t ( s td : : abs ( f 0 ) <= std : : abs ( f 1 ) ? z0 : z1 ) ;
}

z0 = −z0 ;
z1 = −z1 ;
f 0 = MyFunction ( z0 ) ;
f 1 = MyFunction ( z1 ) ;
i f ( f 0∗ f 1 <= 0.0 f )
{

r o o t s . i n s e r t ( s td : : abs ( f 0 ) <= std : : abs ( f 1 ) ? z0 : z1 ) ;
}

}
}

}

LISTING 7.5: Root finding on the CPU using an exhaustive search with a
single thread.

The same approach for double roots is a lot slower. Do not try this at home.
You have 232 times more numbers to process, so the total execution time is
on the order of 1430 years!

7.2.4.2 CPU Root Finding Using Multiple Threads

The exhaustive processing for finite float numbers may be reduced by dis-
tributing the work across cores. Each core handles a subset of the inputs.
Listing 7.6 shows an implementation of this.

vo id FindSubRootsCPU( uns igned i n t tmin , uns igned i n t tsup ,
s td : : s e t<f l o a t>& roo t s )

{
f o r ( uns igned i n t t r a i l i n g = tmin ; t r a i l i n g < t s up ; ++t r a i l i n g )
{

f o r ( uns igned i n t b i a s ed = 0 ; b i a s ed < 255 ; ++b i a s ed )
{

uns igned i n t exponent = ( b i a s ed << 23 ) ;
uns igned i n t encod i ng0 = exponent | t r a i l i n g ;
uns igned i n t encod i ng1 = encod i ng0 + 1 ;
f l o a t z0 = ∗( f l o a t ∗)&encod i ng0 ;
f l o a t z1 = ∗( f l o a t ∗)&encod i ng1 ;

f l o a t f 0 = MyFunction ( z0 ) ;
f l o a t f 1 = MyFunction ( z1 ) ;
i f ( f 0∗ f 1 <= 0.0 f )
{

r o o t s . i n s e r t ( s td : : abs ( f 0 ) <= std : : abs ( f 1 ) ? z0 : z1 ) ;
}

z0 = −z0 ;
z1 = −z1 ;
f 0 = MyFunction ( z0 ) ;
f 1 = MyFunction ( z1 ) ;
i f ( f 0∗ f 1 <= 0.0 f )
{

r o o t s . i n s e r t ( s td : : abs ( f 0 ) <= std : : abs ( f 1 ) ? z0 : z1 ) ;
}
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}
}

}

vo id FindRootsCPUMult i th readed ( s td : : s e t<f l o a t>& roo t s )
{

i n t const numThreads = 16 ;
uns igned i n t const s u pT r a i l i n g = (1 << 23 ) ;
s td : : s e t<f l o a t> subRoots [ numThreads ] ;

s td : : thread p r o c e s s [ numThreads ] ;
f o r ( i n t t = 0 ; t < numThreads ; ++t )
{

uns igned i n t tmin = t ∗ s u pT r a i l i n g / numThreads ;
uns igned i n t t s up = ( t + 1) ∗ s u pT r a i l i n g / numThreads ;
auto r o o tF i n d e r = s td : : b i nd ( FindSubRootsCPU , tmin , tsup ,

s td : : r e f ( subRoots [ t ] ) ) ;

p r o c e s s [ t ] = s td : : thread ([& r o o tF i n d e r ] ( ){ r o o tF i n d e r ( ) ; } ) ;
}

f o r ( i n t t = 0 ; t < numThreads ; ++t )
{

p r o c e s s [ t ] . j o i n ( ) ;
}

f o r ( i n t t = 0 ; t < numThreads ; ++t )
{

f o r ( auto const& z : subRoots [ t ] )
{

r o o t s . i n s e r t ( z ) ;
}

}
}

LISTING 7.6: Root finding on the CPU using an exhaustive search with
multiple threads.

The performance depends on the number of cores your machine has available.
My machine has six cores (twelve logical processors). Running sixteen threads,
the execution time for the root finding is approximately 1.7 seconds, which is
faster than the 10.5 seconds for root finding in a single thread.

7.2.4.3 GPU Root Finding

You can even perform this experiment using a GPU. The number of trailing
significands is 223, so I chose to partition these into a 212 × 211 = 4096× 2048
grid. The trailing significand mapping is i = x+4096y. Listing 7.7 contains the
compute shader and the GTEngine application code that creates and executes
it.

// Roo tF i nd i ng . h l s l

// The macro FUNCTION BODY must be d e c l a r ed by an HLSLDef iner o b j e c t .
f l o a t Funct i on ( f l o a t z ) { r e tu r n FUNCTION BODY; }

// The number o f e l emen t s i n the append b u f f e r must be s u f f i c i e n t l y l a r g e .
AppendSt ruc tu r edBu f f e r<f l o a t 4> rootBounds ;

[ numthreads (8 , 8 , 1 ) ]
vo id CSMain( u i n t 2 t : SV DispatchThread ID)
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{
u i n t t r a i l i n g = t . x + 4096 ∗ t . y ;
f o r ( u i n t b i a s ed = 0 ; b i a s ed < 255 ; ++b i a s ed )
{

u i n t exponent = ( b i a s ed << 23 ) ;
u i n t encod i ng0 = exponent | t r a i l i n g ;
f l o a t z0 = a s f l o a t ( encod ing0 ) ;
u i n t encod i ng1 = encod i ng0 + 1 ;
f l o a t z1 = a s f l o a t ( encod ing1 ) ;
f l o a t f 0 = Funct i on ( z0 ) ;
f l o a t f 1 = Funct i on ( z1 ) ;
i f ( s i g n ( f 0 ) ∗ s i g n ( f 1 ) <= 0.0 f )
{

rootBounds . Append ( f l o a t 4 ( z0 , f0 , z1 , f 1 ) ) ;
}
z0 = −z0 ;
z1 = −z1 ;
f 0 = Funct i on ( z0 ) ;
f 1 = Funct i on ( z1 ) ;
i f ( s i g n ( f 0 ) ∗ s i g n ( f 1 ) <= 0.0 f )
{

rootBounds . Append ( f l o a t 4 ( z1 , f1 , z0 , f 0 ) ) ;
}

}
}

// C++ a p p l i c a t i o n code
vo id FindRootsGPU( s td : : s e t<f l o a t>& roo t s )
{

DX11Engine eng i ne ;

s td : : s h a r ed p t r<S t r u c t u r e dBu f f e r> a cBu f f e r (new S t r u c t u r e dBu f f e r (
1024 , s i z e o f ( Vector4<f l o a t >))) ;

a cBu f f e r−>MakeAppendConsume ( ) ;
a cBu f f e r−>SetCopyType ( Resource : : COPY STAGING TO CPU ) ;
a cBu f f e r−>SetNumAct iveElements ( 0 ) ;

HLSLDef iner d e f i n e r ;
d e f i n e r . S e tS t r i n g ( ”FUNCTION BODY” , ” ( z − 1 .1 f )∗( z + 2 .2 f ) ” ) ;
s td : : s h a r ed p t r<ComputeShader> cshade r (

Shade rFacto r y : : CreateCompute ( ”Roo tF i nde r . h l s l ” , d e f i n e r ) ) ;
cshader−>Set ( ” rootBounds” , a cBu f f e r ) ;

eng i ne . Execute ( cshader , 512 , 256 , 1 ) ;

eng i ne . CopyGpuToCpu( a cBu f f e r ) ;
i n t numActive = acBu f f e r−>GetNumActiveElements ( ) ;
Vector4<f l o a t>∗ rootBounds = acBu f f e r−>GetAs<Vector4<f l o a t >>();
f o r ( i n t i = 0 ; i < numActive ; ++i )
{

Vector4<f l o a t> const& rb = rootBounds [ i ] ;
i f ( s td : : abs ( rb [ 1 ] ) <= std : : abs ( rb [ 3 ] ) )
{

r o o t s . i n s e r t ( rb [ 0 ] ) ;
}
e l s e
{

r o o t s . i n s e r t ( rb [ 2 ] ) ;
}

}

a cBu f f e r = n u l l p t r ;
c s hade r = n u l l p t r ;

}

LISTING 7.7: Root finding on the GPU using an exhaustive search with
512× 256 thread groups, each group containing 8× 8 threads.
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The execution time for the GPU version of the root finder was measured
to be approximately 1.4 seconds. This is faster than the CPU single-threaded
time (10.5 seconds) and the CPU multithreaded time (1.7 seconds). The speed
up of the GPU version over the CPU multithreaded version is not that much,
but if the function is more complicated and expensive to compute, the GPU
version should be much faster.

Several comments are in order about the GPU root finder.

1. The HLSL function asfloat is extremely handy for allowing you to inter-
pret bit patterns differently. This feature was not available in Shader
Model 3 (D3D 9). A similar function asdouble allows you to assemble
double values from input resources that store uint values.

2. The body of the function is delivered to the HLSL compiler via an
HLSLDefiner object that is part of the design of GTEngine. You can see
where this is set in the C++ application code.

3. Because sorting is not a natural thing to do in a shader, I choose to
compute root-bounding intervals and store them in an append buffer.
The GPU memory for this buffer must be copied back to the CPU in
order to construct the (sorted) set of roots. The read-back from the GPU
is the most expensive part of the computation.

4. The GPU floating-point arithmetic might use flush-to-zero semantics
for subnormals, potentially leading to differences in the sets of roots
reported by the CPU and by the GPU.

5. The number of root-bounding intervals is generally unknown, although
in this example we know that the quadratic polynomial has two roots.
The append buffer must be created with enough storage for the intervals;
otherwise, we may miss some intervals once the buffer is full. If r is a
floating-point number for which the floating-point computation of F (r)
is exactly zero, we will actually get two bounding intervals, [r0, r] and
[r, r1] where r0, r, and r1 are three consecutive floating-point numbers.
In worst case all roots lead to function values of exactly zero, so to be
safe we need the append buffer to have twice as many roots. In fact, the
situation can be worse when extraneous roots are generated, typically
when the GPU uses flush-to-zero semantics for subnormal floating-point
numbers. If you want to ensure you have enough storage for a general
root finder, you can make multiple passes. The first pass does not append
the intervals; rather, it keeps track of the number of intervals, storing
this counter in a RWStructuredBuffer<uint> that has exactly one element.
The counter is read back to the CPU and an append buffer is created
to store that many intervals. The second pass uses the compute shader
as shown in Listing 7.7.

6. When a function is nearly zero, floating-point roundoff errors during
function evaluation can cause a lot of spurious root-bounding intervals.
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For example, when experimenting with the minimax approximation to
the inverse sine function, I used the GPU-based exhaustive approach
to compute root bounds for g(x) and g′(x) mentioned in the minimax
construction, using 32-bit float. I knew from plotting the graphs that
g′(x) had three roots, but the GPU output reported approximately fifty
root-bounding intervals. An analysis of the output showed that the inter-
vals were clustered about 3 different floating-point values. The spurious
intervals were a result of sign changes caused by the rounding errors.
I performed the same experiment on the CPU and had approximately
40 root-bounding intervals reported. When I switched to 64-bit double,
the CPU code reported 3 root-bounding intervals. I could not switch to
double on the GPU because there is no sqrt function available in double
precision. The message here is that you cannot just blindly use the GPU
output. You might have additional work to do, say, regarding clustering
of the output intervals.

7. The root-bounding intervals have float endpoints. If you want a higher-
precision estimate for the root, you can convert the endpoints to double

and use bisection or Newton’s method on the CPU to polish the root.

7.3 Least Squares Fitting

A common algorithm for fitting data with a parameterized function is least
squares fitting. This section shows algorithms for fitting of lines and planes.

A GPGPU version of plane fitting is provided to show how to estimate
normal vectors of height-field samples. The vectors can be used for lighting
or they can be used to identify flat portions of the height field. The latter is
typical of LIDAR, where lasers are used to illuminate a target and the reflected
light can be measured to estimate distances to the target. For example, one
might want to identify sections of roofs in a scene with LIDAR generated from
an airplane.

7.3.1 Fit a Line to 2D Points

The classical introduction to least squares fitting involves fitting a set of
points {(xi, yi)}n−1

i=0 by a line y = Ax+B. The assumption is that the y-values
are measurements that are dependent on the x-values.

The selection of A and B is based on minimizing the sum of squared
errors between the samples and the corresponding points on the fitted line.
The errors are measured only in the y-direction. Define the error function
F (A,B) =

∑n−1
i=0 [(Axi + B) − yi]

2, a nonnegative function whose graph is a
paraboloid with vertex occurring when ∇F (A,B) = (0, 0). Thus, the global
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minimum of F occurs at the vertex. The gradient equation leads to a system
of two linear equations in the unknowns A and B, namely, (0, 0) = ∇F =
2
∑n

i=0[(Axi + B − yi](xi, 1). The linear system is listed next, where we use
the statistical concept of expected value of a uniformly distributed random
variable U , namely, E[U ] = (

∑n
i=0 ui)/n;

[

E[X2] E[X ]
E[X ] 1

] [

A
B

]

=

[

E[XY ]
E[Y ]

]

(7.3)

The solution to this system provides the coefficients for the least squares fit.

[

A
B

]

=
1

E[X2]− E[X ]2

[

E[XY ]− E[X ]E[Y ]
E[X2]E[Y ]− E[XY ]E[X ]

]

(7.4)

Although the construction is mathematically correct, in practice when us-
ing floating-point numbers to solve the system, ill conditioning can cause prob-
lems. Typically, the ill conditioning manifests itself via subtractive cancella-
tion; see the example presented later.

To avoid the ill conditioning, it is better to fit the data with a line y− ȳ =
A(x − x̄) + C, where x̄ = E[X ] and ȳ = E[Y ] are the averages of the sample
channels. The error function F (A,C) for this version has zero gradient that
leads to the linear system

[

E[(X − x̄)2] E[X − x̄]
E[X − x̄] 1

] [

A
C

]

=

[

E[(X − x̄)(Y − ȳ)]
E[Y − ȳ]

]

(7.5)

Observe that E[X − x̄] = 0 and E[Y − ȳ] = 0, so in fact the matrix of
coefficients is diagonal and the last entry of the right-hand side is zero. The
solution is

A = E[(X − x̄)(Y − ȳ)]/E[(X − x̄)2], C = 0 (7.6)

and the fitted line is y− ȳ = A(x− x̄). The line has slope A and passes through
the average point (x̄, ȳ). Compared to the previous version, it can be shown
that B = ȳ − Ax̄, so mathematically the two formulations produce the same
line. However, the second formulation does not suffer from the ill conditioning
that the first formulation does when computing numerically.

Listing 7.8 is a program that fits a line to four samples.

i n t main ( )
{

// Random samples . Case 1 : The x−va l u e s a r e not o rde r ed , but
// ma th ema t i c a l l y t h i s i s not r e q u i r e d . Case 2 : Swap sample [ 2 ]
// and sample [ 3 ] to o r d e r by x−va l u e .
i n t const numSamples = 4 ;
Vector2<f l o a t> sample [ numSamples ] =
{

Vector2<f l o a t >(1.00001252f , 156 .358536 f ) ,
Vector2<f l o a t >(1.00193310f , 180 .874054 f ) ,
Vector2<f l o a t >(1.00585008f , 147 .987305 f ) ,
Vector2<f l o a t >(1.00350296f , 189 .596252 f )

} ;
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// Compute l i n e a r sys tem e l emen t s .
f l o a t sumX = 0.0 f , sumY = 0.0 f , sumXX = 0.0 f , sumXY = 0.0 f ;
f l o a t sum1 = ( f l o a t ) numSamples ;
f o r ( i n t i = 0 ; i < numSamples ; ++i )
{

sumX += sample [ i ] [ 0 ] ;
sumY += sample [ i ] [ 1 ] ;
sumXX += sample [ i ] [ 0 ] ∗ sample [ i ] [ 0 ] ;
sumXY += sample [ i ] [ 0 ] ∗ sample [ i ] [ 1 ] ;

}
Matrix2<f l o a t> A(sumXX, sumX , sumX , sum1 ) ;
Vector2<f l o a t> B(sumXY, sumY ) ;
f l o a t det = A [ 0 ] [ 0 ] ∗A [ 1 ] [ 1 ] − A[ 0 ] [ 1 ] ∗A [ 1 ] [ 0 ] ;
f l o a t i n vDet = 1 .0 f / det ;

// So l ve by computing the i n v e r s e o f A f i r s t ; tha t i s , the a d j o i n t
// o f A i s d i v i d e d by the dete rm inan t b e f o r e the m u l t i p l i c a t i o n o f B .
Vector2<f l o a t> s o l u t i o n 1 ;
s o l u t i o n 1 [ 0 ] = (A [ 1 ] [ 1 ] ∗ i n vDet )∗B[ 0 ] − (A [ 0 ] [ 1 ] ∗ i n vDet )∗B [ 1 ] ;
s o l u t i o n 1 [ 1 ] = (A [ 0 ] [ 0 ] ∗ i n vDet )∗B[ 1 ] − (A [ 1 ] [ 0 ] ∗ i n vDet )∗B [ 0 ] ;

// So l ve by mu l t i p l y i n g B by the a d j o i n t o f A and then d i v i d i n g by
// the dete rm inan t .
Vector2<f l o a t> s o l u t i o n 2 ;
s o l u t i o n 2 [ 0 ] = (A [ 1 ] [ 1 ] ∗B[ 0 ] − A[ 0 ] [ 1 ] ∗B[ 1 ] )∗ i n vDet ;
s o l u t i o n 2 [ 1 ] = (A [ 0 ] [ 0 ] ∗B[ 1 ] − A[ 1 ] [ 0 ] ∗B[ 0 ] )∗ i n vDet ;

// Compute the mean o f the samples and s u b t r a c t b e f o r e computing the
// sum o f squa r ed terms .
Vector2<f l o a t> mean (sumX/numSamples , sumY/numSamples ) ;
f l o a t rsumXX = 0.0 f ;
f l o a t rsumXY = 0.0 f ;
f o r ( i n t i = 0 ; i < numSamples ; ++i )
{

f l o a t dx = sample [ i ] [ 0 ] − mean [ 0 ] ;
f l o a t dy = sample [ i ] [ 1 ] − mean [ 1 ] ;
rsumXX += dx∗dx ;
rsumXY += dx∗dy ;

}
Vector2<f l o a t> s o l u t i o n 3 ( rsumXY/rsumXX , 0 .0 f ) ;

// Compute the l e a s t s q u a r e s e r r o r f u n c t i o n s f o r the t h r e e c a s e s .
f l o a t e r r o r 1 = 0 .0 f , e r r o r 2 = 0 .0 f , e r r o r 3 = 0 .0 f ;
f l o a t d i f f ;
f o r ( i n t i = 0 ; i < numSamples ; ++i )
{

d i f f = s o l u t i o n 1 [ 0 ]∗ sample [ i ] [ 0 ] + s o l u t i o n 1 [ 1 ] − sample [ i ] [ 1 ] ;
e r r o r 1 += d i f f ∗ d i f f ;
d i f f = s o l u t i o n 2 [ 0 ]∗ sample [ i ] [ 0 ] + s o l u t i o n 2 [ 1 ] − sample [ i ] [ 1 ] ;
e r r o r 2 += d i f f ∗ d i f f ;
d i f f = s o l u t i o n 3 [ 0 ]∗ ( sample [ i ] [ 0 ] − mean [ 0 ] ) −

( sample [ i ] [ 1 ] − mean [ 1 ] ) ;
e r r o r 3 += d i f f ∗ d i f f ;

}

r e tu r n 0 ;
}

LISTING 7.8: Program to illustrate ill conditioning in line fitting when the
mean is not subtracted from the samples.

The linear system AS = B is ill conditioned. Recall that the inverse of a
matrix is A−1 = adjoint(A)/ det(A). The first approach solves the system
by computing the inverse first and then multiplying B, S1 = A−1B. The
second approach multiplies by the adjoint matrix first and then divides by the
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TABLE 7.1: Numerical ill conditioning for least squares

Case 1 Case 2

sumX 4.01129866 4.01129818
sumY 674.816162 674.816162
sumXX 4.02264738 4.02264738
sumXY 676.697632 676.697632
det 7.24792480e−005 7.62939453e−005
invDet 13797.0527 13107.2002
solution1 (−1360.00000, 1536.00000) (−1288.00000, 1460.00000)
solution2 (−1360.84216, 1532.63159) (−1289.59998, 1459.20007)
rsumXX 1.83162738e−005 1.83162738e−005
rsumXY −0.0246384665 −0.0246384628
solution3 (−1345.16809, 0.000000000) (−1345.16785, 0.000000000)
error1 1180.78613 1133.57544
error2 1135.34753 1163.27869
error3 1133.04541 1133.04553

determinant, S2 = (adjoint(A)B)/ det(A). The third approach subtracts the
mean from the samples and then computes solution S3 directly. Two cases
are presented to illustrate how sensitive the first two approaches are to even
something as simple as swapping a pair of samples. The numerical results
are shown in Table 7.1. Solution S3 is better than the other two, and it is
robust to swapping the order of two of the samples. Solution S1 has integer
components due to computations that produce floating-point numbers in the
range for which the numbers are nonconsecutive integers (the numbers are
larger than 224).

Using exact rational arithmetic to compute the coefficients A and B
for the fitted line y = Ax + B and to compute the least squares er-
ror F (A,B), and then converting to the nearest double values, we ob-
tain A = −1345.1678879586245, B = 1517.6715721342564, and F =
1133.0455049651985.

7.3.2 Fit a Plane to 3D Points

Given a set of points {(xi, yi, zi)}n−1
i=0 , where it is presumed that the z-

values are measurements that depend on the x- and y-values, a plane of the
form z = Ax+By+C may be fitted to the data. The construction is similar
to that for fitting 2D points by a line.

The selection of A, B, and C is based on minimizing the sum of squared
errors between the samples and the corresponding points on the fitted plane.
The errors are measured only in the z-direction. Define the error function
F (A,B,C) =

∑n−1
i=0 [(Axi + Byi + C) − zi]

2, a nonnegative function whose
graph is a paraboloid with vertex occurring when (0, 0, 0) = ∇F (A,B,C) =
2
∑n

i=0[(Axi+Byi+C)− zi](xi, yi, 1). The linear system is listed next, where
the E[] notation refers to expected value mentioned in the section on line
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fitting,
⎡

⎣

E[X2] E[XY ] E[X ]
E[XY ] E[Y 2] E[Y ]
E[X ] E[Y ] 1

⎤

⎦

⎡

⎣

A
B
C

⎤

⎦ =

⎡

⎣

E[XZ]
E[Y Z]
E[Z]

⎤

⎦ (7.7)

The solution to this system provides the coefficients for the least squares fit.
As in the case of fitting a line, the linear system can be ill conditioned. To

avoid this, it is better to fit the data with a plane z−z̄ = A(x−x̄)+B(y−ȳ)+D,
where x̄, ȳ, and z̄ are the averages of the sample channels. The error function
F (A,B,D) for this version has zero gradient that leads to the linear system

⎡

⎣

E[(X − x̄)2] E[(X − x̄)(Y − ȳ)] 0
E[(X − x̄)(Y − ȳ)] E[(Y − ȳ)2] 0

0 0 1

⎤

⎦

⎡

⎣

A
B
D

⎤

⎦

=

⎡

⎣

E[(X − x̄)(Z − z̄)]
E[(Y − ȳ)(Z − z̄)]

0

⎤

⎦

(7.8)

The solution for (A,B) is obtained by solving a 2× 2 linear system, and it is
the case that D = 0. The fitted plane is z − z̄ = A(x − x̄) + B(y − ȳ). The
plane has unit-length normal vector (−A,−B, 1)/

√
A2 +B2 + 1 and passes

through the average point (x̄, ȳ, z̄).
Even in the well-conditioned formulation, you can still have numerical

problems—when the 2 × 2 block of the coefficient matrix is nearly singular.
This can happen if you have a collection of points that are nearly collinear,
which makes it difficult to fit with a plane.

If the covariance E[(X− x̄)(Y − ȳ)]] is zero, then the coefficients are easily
determined because the matrix of coefficients is diagonal. In particular, this
case happens on a rectangular grid of samples, say, where (xi, yj) = (a+ci, b+
dj) for 0 ≤ i ≤ imax, 0 ≤ j ≤ jmax, c > 0, and d > 0.

A practical example is provided in Section 7.3.4 with implementations both
for the CPU and GPU.

7.3.3 Orthogonal Regression

The line and plane fitting previously discussed had one variable dependent
on the others. It is possible to fit the points with lines and planes when all
variables are independent.

7.3.3.1 Fitting with Lines

Section 7.3.1 is about fitting samples (xi, yi) with a line y = Ax+B. The
y-value is assumed to be dependent on the x-value. The least squares fitting
uses errors measured in the y-direction. I refer to this as height line fitting to
emphasize that errors are measured in the dependent variable (the height of
the graph). If the x- and y-values are independent variables, we may measure
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errors in the direction orthogonal to the postulated line. This is referred to as
orthogonal line fitting.

Because the variables are independent, orthogonal line fitting may be used
in any dimension m. Let the m-dimensional samples be {Xi}n−1

i=0 . The fitted
line is parameterized as L(t) = A + tD where D is unit length and A is a
point on the line. The squared distance from a sample point to the line is
obtained by projecting out the D component of Xi −A and computing the
squared length,

ℓ2i = |(Xi −A)−D · (Xi −A)D|2 = (Xi −A)TP (Xi −A) (7.9)

where P = I −DDT is a projection matrix onto a plane containing the origin
and whose normal is D. The matrix has the property P 2 = P . The least
squares error function is the sum of the squared lengths,

F (A,D) =

n−1
∑

i=0

ℓ2i =

n−1
∑

i=0

(Xi −A)TP (Xi −A) (7.10)

A minimum of F must occur its derivative with respect to the components of
A is zero, namely,

0 =
∂F

∂A
= −2

n−1
∑

i=0

P (Xi −A) = −2P

n−1
∑

i=0

(Xi −A) (7.11)

Therefore, (
∑n−1

i=0 Xi)/n = A+ τD for some scalar τ . Regardless of choice of
τ , the right-hand side is a point on the line whose location cannot change the
value of F because the line itself is invariant regardless of its parameterization;
that is, F (A+ τD,D) = F (A,D) for all τ . We might as well choose τ = 0, so

A =
1

n

n−1
∑

i=0

Xi (7.12)

is the average of the sample points.
Define Yi = Xi −A and observe that F may be factored as

F (A,D) = DT
n−1
∑

i=0

(

YT
i Y I −YiY

T
i

)

D = DTSD (7.13)

where I is the identity matrix and where the last equality defines the sym-
metric matrix S. The problem is now one of minimizing a quadratic form over
the set of unit-length vectors. The minimum occurs for a unit-length vector
D whose corresponding eigenvalue is the minimum of all the eigenvalues. We
may use an eigensolver to compute D.
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7.3.3.2 Fitting with Planes

Section 7.3.2 is about fitting samples (xi, yi, zi) with a plane z = Ax+By+
C. The z-value is assumed to be dependent on the x- and y-values. The least
squares fitting uses errors measured in the z-direction. I refer to this as height
plane fitting to emphasize that errors are measured in the dependent variable
(the height of the graph). If the x-, y-, and z-values are independent variables,
we may measure the errors in the direction orthogonal to the postulated plane.
This is referred to as orthogonal plane fitting.

Because the variables are independent, orthogonal plane fitting may be
used in any dimension m. Let the m-dimensional samples be {Xi}n−1

i=0 . The
fitted hyperplane is represented implicitly by N · (X −A) = 0 where A is a
point on the hyperplane and N is a unit-length normal for the hyperplane.
The squared distance from a sample point to the hyperplane is obtained by
projecting Xi −A onto a normal line and computing the squared length,

ℓ2i = |N · (Xi −A|2 = (Xi −A)TP (Xi −A) (7.14)

where P = NNT is a projection matrix onto a normal line containing the
origin and whose direction is N. The matrix has the property P 2 = P . The
least squares error function is the sum of the squared lengths,

F (A,N) =

n−1
∑

i=0

ℓ2i =

n−1
∑

i=0

(Xi −A)TP (Xi −A) (7.15)

A minimum of F must occur its derivative with respect to the components of
A is zero, namely,

0 =
∂F

∂A
= −2

n−1
∑

i=0

P (Xi −A) = −2P
n−1
∑

i=0

(Xi −A) (7.16)

Therefore, (
∑n−1

i=0 Xi)/n = A+D for some vector D that is perpendicular to
N; that is, D lies in the hyperplane. Regardless of choice of D, the right-hand
side is a point on the line whose location cannot change the value of F because
the hyperplane itself is invariant regardless of the location of its origin; that
is, F (A+D,N) = F (A,N) for all D for which D ·N = 0. We might as well
choose D = 0, so

A =
1

n

n−1
∑

i=0

Xi (7.17)

is the average of the sample points.
Define Yi = Xi −A and observe that F may be factored as

F (A,N) = NT
n−1
∑

i=0

YiY
T
i N = NTSN (7.18)
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where the last equality defines the symmetric matrix S. As for lines, the
problem is now one of minimizing a quadratic form over the set of unit-length
vectors. The minimum occurs for a unit-length vector N whose corresponding
eigenvalue is the minimum of all the eigenvalues. We may use an eigensolver
to compute N.

7.3.4 Estimation of Tangent Planes

The sample application

GeometricTools/GTEngine/Samples/Numerics/PlaneEstimation

shows how to estimate tangent planes to points on a bicubic Bézier height
field. The surface points are stored in a 32-bit RGBA texture image of size
1024× 1024. The (x, y) values are the indices into the texture. The z-value is
computed using Bézier control points. The tangent plane at each surface point
(x, y, f(x, y)) is estimated using a least-squares fit as described previously.
The estimation is computed for a 7× 7 neighborhood centered at (x, y). The
neighborhood size is a parameter to the shader that does the least-squares
fitting, so you can experiment by modifying the size.

The points are chosen so that most of the height values are positive but
some are negative or zero. When computing the height field, any nonpositive
value is deemed to be missing data. This makes the plane fitting interesting
in that the neighborhood does not always contain forty-nine points.

The application visualizes both the surface and the normals to the surface.
Points for which the height is positive are drawn in shades of green that are
proportional to height. Missing data is drawn in solid blue. This visualization
appears in the left half of the application window. The fitted planes are of the
form z = Ax+By+C and are reported as 4-tuplesD(A,B,−1, C), where D is
the determinant of the covariance matrix built by the fitting algorithm. In the-
ory, D > 0, so you can extract unit-length normals by normalizing the 3-tuple
(DA,DB,−D) to obtain N = (A,B,−1)/

√
A2 +B2 + 1. In this example, A

and B are relatively small compared to one, so instead of pseudocoloring the
normal vectors, I pseudocolor using normalized (A,B) and then map to the
unit square [0, 1]2 to obtain valid red and green colors. Missing data is drawn
as solid blue.

The HLSL compute shader for least-squares fitting is shown in Listing 7.9.
Currently, I have the number of threads in each dimension set to eight and the
radius to three. I stripped the comments from the listing to keep the listing
short. The discussion about the shader design occurs after the listing. The
actual HLSL file has the comments embedded in it.

Texture2D<f l o a t 4> p o s i t i o n s ;
RWTexture2D<f l o a t 4> p l a n e s ;

[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain ( i n t 2 t : SV DispatchThread ID)
{
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f l o a t 4 p o s i t i o n = p o s i t i o n s [ t ] ;
i f ( p o s i t i o n .w > 0 .0 f )
{

f l o a t 4 c en t e r = f l o a t 4 ( p o s i t i o n . xy , 0 , 0 ) ;
f l o a t 4 sums0 = 0 .0 f ; // (sumXX , sumXY, sumX , sumXZ)
f l o a t 4 sums1 = 0 .0 f ; // (sumYX , sumYY, sumY , sumYZ)
f l o a t 4 sums2 = 0 .0 f ; // (sumX , sumY , sum1 , sumZ )
i n t 2 o f f s e t ;
[ u n r o l l ]
f o r ( o f f s e t . y = −RADIUS ; o f f s e t . y <= RADIUS ; ++o f f s e t . y )
{

[ u n r o l l ]
f o r ( o f f s e t . x = −RADIUS ; o f f s e t . x <= RADIUS ; ++o f f s e t . x )
{

f l o a t 4 d i f f = p o s i t i o n s [ t + o f f s e t ] − c en t e r ;
f l o a t v a l i d = s i g n ( d i f f .w ) ;
sums0 += v a l i d ∗ d i f f . xxxx∗ d i f f . xywz ;
sums1 += v a l i d ∗ d i f f . yyyy∗ d i f f . xywz ;
sums2 += v a l i d ∗ d i f f . xywz ;

}
}

i f ( sums2 . z >= 3.0 f )
{

f l o a t 3 V0xV1 = c r o s s ( sums0 . xyz , sums1 . xyz ) ;
f l o a t 3 V1xV2 = c r o s s ( sums1 . xyz , sums2 . xyz ) ;
f l o a t 3 V2xV0 = c r o s s ( sums2 . xyz , sums0 . xyz ) ;
f l o a t dete rm inan t = dot ( sums0 . xyz , V1xV2 ) ;
f l o a t 3 DABC = sums0 .w∗V1xV2 + sums1 .w∗V2xV0 + sums2 .w∗V0xV1 ;
p l a n e s [ t ] = f l o a t 4 (DABC. xy , −dete rm inan t , DABC. z ) ;

}
e l s e
{

p l a n e s [ t ] = 0 .0 f ;
}

}
e l s e

{
p l a n e s [ t ] = 0 .0 f ;

}
} ;

LISTING 7.9: HLSL shader for least-squares plane fitting.

Valid positions are of the form (x, y, z, 1), where z > 0 and missing data
are of the form (x, y, 0, 0). The shader first tests the w-component to see
whether the incoming point is valid. If not, the returned 4-tuple for the plane
is (0, 0, 0, 0) as an indication to the application that no plane is available for
a missing datum.

The center of the neighborhood is chosen to occur at (x, y) of the incom-
ing point. For the height field of this example, this point is the xy-mean when
the neighborhood has no missing values. However, it is only the approximate
xy-mean when the neighborhood has missing values. Subtracting the approxi-
mate xy-mean will still help us avoid the catastrophic cancellation mentioned
previously.

The covariance matrix is computed by iterating over the neighboring
points. Notice that as a 4-tuple the center is (x, y, 0, 0). When computing
the covariance matrix, we subtract the center from each neighbor. Having a
w-value of zero means that we will not destroy the validity information stored
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in the points’ w-channel. The sign of the w-channel of the difference is either
one or zero.

The summation is computed efficiently using vectorization. The match-
ing swizzles indicate the particular sum. For example, the swizzle pairs of
diff.xxxx*diff.xywz are xx, xy, xw, and xz. For valid positions, the w-channel is
one, so the pair xw corresponds to an x-sum. For diff.yyyy*diff.xywz the pairs
are yx, yy, yw, and yz. For valid positions, the w-channel is one, so the pair
yw corresponds to a y-sum. For diff.xywz and valid positions, the w-channel
corresponds to a sum of the numbers one, in which case sums2.z is the number
of valid positions in the neighborhood. No valid positions mean no estimated
plane, but to obtain a plane fit we should have at least three noncollinear
points. Thus, sums2.z needs to be at least three. Even this might not be enough
if your missing data is such that the valid neighborhood points lie on a line.
When not enough valid data is available, the returned plane is (0, 0, 0, 0) as
an indication to the application that no plane is available.

At this time we have enough valid sample points to solve the linear sys-
tem for the coefficients (A,B,C). Abstractly, the system of Equation (7.7) is
MP = R, where M is the matrix of summations, P represents the coefficients
of the plane equation, and R is the right-hand-side column of summations.
The HLSL shader could explicitly solve the equation using Cramer’s rule and
scalar computations, but to take advantage of the vectorization of the cross
product, I use the following fact. We can write M as a matrix of row vectors
and the inverse as a matrix of column vectors,

M =

⎡

⎣

VT
0

VT
1

VT
2

⎤

⎦ , M−1 =
1

det(M)

[

V1 ×V2 V2 ×V0 V0 ×V1

]

(7.19)

where Vi are 3× 1 column vectors and det(M) = V0 ·V1 ×V2 is the deter-
minant of M .

If you were to convert the shader to using double rather than float, be
aware that there are no double versions of cross or dot. You will need to write
your own. You can do so in a scalar-like manner but you could also mimic
the Intel SSE2 SIMD approach that is implemented in class SIMD in the files
GteIntelSSE.{h,inl,cpp}.

Executing the two shaders—one for Bézier evaluation and one for least-
squares fitting—in each pass of OnIdle leads to approximately 186 frames per
second.

7.4 Partial Sums

Given a sequence of n numbers {ai}n−1
i=0 , the goal is to compute the partial

sums {sj}n−1
j=0 where sj =

∑j
i=0 aj . Although perhaps not interesting by itself,
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s3

s2

s1

s0=a0 a1 a2 a3

FIGURE 7.1: The binary expression tree for computing partial sums on the
CPU.

applications might have partial sums as a subproblem. An example is provided
in Section 7.6 for computing the shortest path through a weighted graph on
a rectangular grid.

Computing partial sums on a CPU is simple, as shown in Listing 7.10.

f l o a t a [ n ] = <the numbers to sum>;
f l o a t s [ n ] ; // the p a r t i a l sums
s [ 0 ] = a [ 0 ] ;
f o r ( i n t i = 1 ; i < n ; ++i )
{

s [ i ] = s [ i −1] + a [ i ] ;
}

LISTING 7.10: A CPU implementation for computing partial sums.

This algorithm is sequential, because each partial sum is computed only af-
ter the previous partial sum is computed. It is possible to implement this
algorithm for the GPU using a single thread; however, n must be small, oth-
erwise the GPU execution time might exceed the maximum allowed before the
display driver must gracefully shutdown, and a single thread of execution is
definitely not recommended for hardware designed for embarrassingly parallel
computation.

To motivate how you would make better use of the GPU, note that the
CPU algorithm generates an expression tree that is binary. For example, let
n = 4. The binary tree is shown in Figure 7.1. Each interior node is a sum
of the numbers in the two child nodes to which the arrows point. The tree
represents a parenthesizing of the sums, namely, s0 = a0, s1 = (a0) + a1,
s2 = (a0 + a1) + a2, and s3 = ((a0 + a1) + a2) + a3.

If we can construct a different binary tree to represent the expression, but
one that allows us to compute in parallel, such a tree will be a good candidate
for computing the partial sums on the GPU. In fact, there are many ways to
do this, all according to dynamic programming. Define S(i, j) =

∑j
k=i aj for

all relevant indices i and j with i ≤ j. The input numbers are ai = S(i, i).
We can decompose such a sum as S(i, j) = S(i, k) + S(k+ 1, j) for any index
k with i ≤ k and k + 1 ≤ j. As is the case in dynamic programming, there
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S(0,0) S(1,1) S(2,2) S(3,3)

S(0,1)

S(0,2)

S(0,3)

S(2,3)

FIGURE 7.2: A DAG for computing partial sums of four numbers.

are many subproblems we could solve but we want to select a small set of
subproblems, memoize the results, and combine them to solve the original
problem. One such approach is illustrated as a directed acyclic graph (DAG)
when n = 4, shown in Figure 7.2. Each node in the graph has two arcs
pointing to the nodes whose values are summed. The inputs are S(i, i) = ai
for 0 ≤ i ≤ 3. The first sums to compute are S(0, 1) = S(0, 0) + S(1, 1) and
S(2, 3) = S(2, 2) + S(3, 3). These may be computed simultaneously, so we
have our first hint at parallelism. The next sums to compute are S(0, 2) =
S(0, 1) + S(2, 2) and S(0, 3) = S(0, 1) + S(2, 3).

The pattern of decomposing is more obvious when n = 8, as shown in Fig-
ure 7.3. The first sums to compute in parallel are S(0, 1), S(2, 3), S(4, 5), and
S(6, 7). The second sums to compute in parallel are S(0, 2), S(4, 6), S(0, 3),
and S(4, 7). The third sums to compute in parallel are S(0, 4), S(0, 5), S(0, 6),
and S(0, 7). Observe that each subset of sums has four numbers that can be
computed in parallel. If we were to compute the partial sums using the CPU
algorithm discussed first, the number of additions is seven because the loop
executes seven times. Using the DAG approach, we use twelve additions, but
unlike the CPU algorithm, some of these happen in parallel. Each subset of
four terms are computed simultaneously, so four additions occur in a single
unit of time. We have three subsets, so effectively we use three units of time for
addition on the GPU but seven units on the CPU. Of course, in practice you
have start-up costs to take into account, so as always—profile your results.

The DAG pattern extends to larger n = 2m. The decomposition is

S(2px, 2px+ 2p−1 + y)
= S(2px, 2px+ 2p−1 − 1) + S(2px+ 2p−1, 2px+ 2p−1 + y)

(7.20)

for 0 ≤ x < 2m−p, 0 ≤ y < 2p−1, and for each p increasing from 1 to m.
This equates to m shaders called in succession, each shader having a single
group of n/2 = 2m−1 threads. The CPU version of the algorithm uses n − 1
additions. The GPU version makes log2(n) passes, n/2 additions computed in
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S(0,0) S(1,1) S(2,2) S(3,3) S(4,4) S(5,5) S(6,6) S(7,7)

S(0,1)

S(0,2)

S(0,3)

S(0,4)
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S(0,6)
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S(2,3) S(4,5)
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FIGURE 7.3: A DAG for computing partial sums of eight numbers.

parallel per pass, so asymptotically the GPU performance is superior. That
is the theory, but as always you need to profile the algorithm to measure the
real speedup.

The number of threads per dimension in a D3D11 HLSL program is limited
to 1024, so the sample code presented next is set up for n = 1024. The numbers
S(i, j) are stored in an array, but the set of relevant numbers is sparse in the
array. This allows the program to remain simple. The HLSL program can be
redesigned to handle n > 1024 and to be more efficient about memory usage,
but I leave this as an exercise. Listing 7.11 shows the HLSL code.

// Code con t a i n s c o n t en t s o f Pa r t i a l Sums . h l s l .
#de f i n e NUM X THREADS (1 << (LOGN−P) )
#de f i n e NUM Y THREADS (1 << (P−1))
#de f i n e TWO P (1 << P)
#de f i n e TWO PM1 (1 << (P−1))
RWTexture2D<f l o a t> sum ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain( i n t 2 t : SV GroupThreadID )
{

f l o a t i npu t0 = sum [ i n t 2 (TWO P ∗ t . x , TWO P ∗ t . x + TWO PM1 − 1 ) ] ;
f l o a t i npu t1 = sum [ i n t 2 (TWO P ∗ t . x + TWO PM1,

TWO P ∗ t . x + TWO PM1 + t . y ) ] ;
sum [ i n t 2 (TWO P ∗ t . x , TWO P ∗ t . x + TWO PM1 + t . y ) ] = inpu t0 + inpu t1 ;

}
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// The a p p l i c a t i o n code i s execu ted on the CPU . Crea te the compute shade r
// o b j e c t s . The d i a g o n a l o f sum(∗ ,∗) i s s e t to the numbers whose p a r t i a l
// sums a re r e q u i r e d .
s td : : mt19937 mte ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> unitRandom (0 . 0 f , 1 . 0 f ) ;
i n t const l o gn = 10 ;
i n t const n = (1 << l o gn ) ;
s td : : s h a r ed p t r<ComputeShader> pa r t i a l SumShader [ l ogn ] ;
s td : : s h a r ed p t r<Texture2> sum(new Texture2 (DF R32 FLOAT , n , n ) ) ;
f l o a t ∗ data = sum−>GetAs<f l o a t >();
f o r ( i n t i = 0 ; i < n ; ++i )
{

data [ i + n∗ i ] = unitRandom (mte ) ;
}
sum−>SetUsage ( Resource : : SHADER OUTPUT ) ;
sum−>SetCopyType ( Resource : : COPY STAGING TO CPU ) ;
HLSLDef iner d e f i n e r ;
d e f i n e r . S e t I n t ( ”LOGN” , l ogn ) ;
f o r ( i n t i = 0 ; i < l o gn ; ++i )
{

d e f i n e r . S e t I n t ( ”P” , i + 1 ) ;
pa r t i a l SumShader [ i ] . r e s e t (

Shade rFacto r y : : CreateCompute ( ” Pa r t i a l Sums . h l s l ” ) , d e f i n e r ) ;
pa r t i a l SumShader [ i ]−>Set ( ”sum” , sum ) ;

}

// Execute the shade r . Each c a l l i n v o l v e s one group o f t h r e a d s .
DX11Engine∗ eng i ne = <your eng i ne ob jec t >;
f o r ( i n t i = 0 ; i < l o gn ; ++i )
{

eng ine−>Execute ( pa r t i a l SumShader [ i ] , 1 , 1 , 1 ) ;
}

// Read back the data . I f t h i s i s one s t a g e i n a l o n g e r GPU p i p e l i n e and
// you p l an on consuming the p a r t i a l sums i n a l a t e r s tage , t h e r e i s no
// need to r ead back the data .
eng ine−>CopyGpuToCpu( sum ) ;
f l o a t pa r t i a l Sum [ n ] ;
f o r ( i n t i = 0 ; i < n ; ++i )
{

p a r t i a l [ i ] = data [0 + n∗ i ] ; // The e l emen t s sum(0 , i ) .
}

LISTING 7.11: The HLSL program for computing partial sums of numbers.

7.5 All-Pairs Triangle Intersection

Let us look at the problem of computing whether two 3D triangles inter-
sect, a test-intersection query, so to speak. In such a query, we care only about
knowing the triangles intersect (or not). A find-intersection query involves
computing the actual set of intersection, which in the case of two triangles is
either a point or a line segment. For simplicity, I will consider the two trian-
gles to intersect only when the set of intersection is a line segment. Such an
intersection is said to be transverse, whereas the point-contact case is said to
be tangential.

Let the first triangle have vertices Ui and the second triangle have vertices
Vi for 0 ≤ i ≤ 2. The planes that contain the triangles have (not necessarily
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unit-length) normal vectors

N = (U2 −U0)× (U1 −U0), M = (V2 −V0)× (V1 −V0) (7.21)

and the plane equations are N · (X−U0) = 0 and M · (X−V0) = 0.
A necessary condition for the second triangle to intersect the first is that

the second triangle must intersect the plane of the first. A transverse inter-
section of triangle and plane requires that at least one vertex is on the side of
the plane in the direction of N and at least one vertex is on the opposite side
of the plane. In terms of the plane equation, we need di0 = N · (Vi0 −U0) > 0
for some i0 and di1 = N · (Vi1 −U0) < 0 for some i1. The remaining vertex
Vi2 can be on either side of the plane or even on the plane itself. The edge
connecting Vi0 and Vi1 intersects the plane at a point P = Vi0 +t(Vi1 −Vi0)
for some t ∈ (0, 1). Because the intersection point is on the plane, we know

0 = N · (P−U0)
= N · (Vi0 −U0) + tN · (Vi1 −Vi0)
= N · (Vi0 −U0) + tN · ((Vi1 −U0)− (Vi0 −U0))
= di0 + t(di1 − di0)

(7.22)

Solving for t and substituting in the parametric equation for P, the intersec-
tion point is

P =
di1Vi0 − di0Vi1

di1 − di0
(7.23)

If two edges of the triangle intersect the plane transversely, we can compute
the points of intersection using Equation (7.22), say P0 and P1. In the event
that only one edge transversely intersects the plane, call the intersection P0,
then call the remaining vertex on the plane P1. In either case the line segment
of intersection has endpoints P0 and P1. A direction of the line segment
is, of course, the difference of endpoints. However, a line direction is also
the cross product of normals, N × M. Choose a unit-length direction D =
N×M/|N×M|.

For the triangles to intersect transversely, we need each triangle to intersect
the plane of the other triangle, thereby producing two segments with four
endpoints: P0, P1, Q0, andQ1. Both segments must be contained by the same
line, but we do not yet know whether the segments overlap (triangles intersect)
or are separated (triangles do not intersect). For numerical robustness, choose
A to be the average of the four points. We may compute scalars si and ti so
that Pi = A + siD and Qi = A + tiD. The triangles intersect transversely
whenever the intervals [min(s0, s1),max(s0, s1)] and [min(t0, t1),max(t0, t1)]
overlap. They do overlap when

max(s0, s1) > min(t0, t1) and max(t0, t1) > min(s0, s1) (7.24)

In fact, this is a find-intersection query because the interval of intersection
determines the line segment of intersection of the two triangles.
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The exhaustive algorithm for determining where two triangle meshes inter-
sect is to iterate over all pairs of triangles, one from each mesh, and compute
the intersection of the two triangles of the pair. This is generally not the ap-
proach one should take when computing on a CPU, because it is extremely
slow and inefficient. A spatial data structure is typically used to localize the
search for intersecting pairs. For example, a tree of bounding volumes may
be precomputed for a nondeformable triangle mesh—usually the bounding
volumes are spheres, axis-aligned boxes, or oriented boxes. The intersection
query involves testing for overlap of the root bounding volumes, one from each
tree. If they do not overlap, then the triangle meshes cannot intersect. If they
do overlap, a double recursion is applied, once for the first tree and then for
each visited node, once for the second tree. At any time when two bounding
volumes do not overlap, the depth-first traversal stops for those tree branches.
Assuming the meshes do intersect, you will eventually reach two overlapping
bounding volumes, each one at a leaf of a tree. Assuming that the leaf nodes
represent single triangles, at that time you can apply the triangle-triangle
intersection query. I have a description of this algorithm in [9] and a Wild
Magic sample application called CollisionsBoundTree that implements it for two
cylinder meshes.

When you have a massively parallel GPU, you might very well have enough
computing power for all-pairs triangle intersections, assuming that the number
of triangles is not too large. The sample application that illustrates this is

GeometricTools/GTEngine/Samples/Geometry/AllPairsTriangles

The triangle-triangle intersection query described previously is implemented
in the files TriangleIntersection.{h,cpp}. A mesh-mesh intersection query is im-
plemented both for the CPU and for the GPU. In this sample, the first mesh
is a cylinder with 4416 triangles and the second mesh is a torus with 4608
triangles. Initially, the two meshes are not intersecting. The cylinder triangles
are drawn in blue and the torus triangles are drawn in red. You can use the
virtual trackball by left-click-and-drag to rotate the torus so that it intersects
the cylinder. When a pair of triangles intersect, the cylinder triangle is drawn
in cyan and the torus triangle is drawn in yellow. Figure 7.4 shows a screen
capture of the intersection.

The performance difference is quite noticeable on my AMD 7970 graphics
card. The GPU version runs at 175 frames per second, allowing you to rotate
the torus and see the intersection results in real time. The CPU version runs
so slowly that the frame rate counter I display always shows zero frames per
second. Thus, you might as well measure seconds per frame for the CPU.

You can certainly choke the GPU by increasing the triangle count. Possible
alternatives to improve performance are:

1. Decompose the meshes into submeshes and call the GPU triangle-
triangle intersector for each pair of submeshes.
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FIGURE 7.4: Intersection of a meshes for a cylinder and a torus.

2. Precompute a tree of bounding volumes and perform the localized search
on the CPU to generate sets of triangles that you know do intersect.
Then process those sets with the GPU triangle-triangle intersector.

3. Precompute the tree of bounding volumes on the GPU and use the GPU
triangle-triangle intersector.

I leave these alternatives as exercises.

7.6 Shortest Path in a Weighted Graph

Consider a directed graph G = (V,E), where V is the set of vertices and
E is the set of directed edges connecting vertices. Assuming V is finite, we
may index the n vertices as V = {Vi}n−1

i=0
and the m edges as E = {Ej}m−1

j=0
,

where Ej = 〈Vij , Vkj
〉 for a pair of vertices. Each edge is assigned a positive

weight wj . Given a beginning vertex Vb and an ending vertex Ve, the problem
is to compute a path from Vb to Ve whose sum of weights along the path is
the minimum for any path connecting the two vertices.
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Standard textbooks on algorithms (for example, [6]) discuss this type of
problem in the general context of graph algorithms. In particular, this is
known as a single-pair shortest-path problem. Variations include single-source
shortest-path (shortest paths from a beginning vertex to all other vertices),
single-destination shortest-path (shortest path to an ending vertex from all
other vertices), and all-pairs shortest-paths (shortest paths for all pairs of
vertices). Methods of solving such problems include relaxation, Dijkstra’s al-
gorithm, and the Bellman-Ford algorithm. For the single-pair shortest-path
problem in a directed acyclic graph, we can use a topological sort of the ver-
tices and compute the shortest path on order O(n+m), where n is the number
of vertices and m is the number of edges.

This section provides an example of such a problem for a graph that is a
square grid of dimensions S × S. The grid points are located at the integer
points (x, y), where 0 ≤ x < S and 0 ≤ y < S. The directed edges starting at
(x, y) are limited to E1(x, y) = 〈(x, y), (x+1, y)〉, E2(x, y) = 〈(x, y), (x, y+1)〉,
and E3(x, y) = 〈(x, y), (x + 1, y + 1)〉. Each point has an associated function
value, F (x, y) > 0.

Think of the grid and function values as an image that represents a terrain
where the function values are altitude (height). To walk between two points
on the terrain with minimum effort, you want to minimize the total change
in altitude. For example, if you are at a point facing a tall mountain peak
and you want to get to a point directly ahead but on the other side of the
mountain, you have the option of walking straight up the mountain, over the
top, and down to your destination. Climbing can be a lot of effort, so you
can instead try to walk around the mountain because the path keeps you on
relatively flat terrain. However, if the path around the mountain is on the
order of ten kilometers but the path up and over the mountain is on the
order of one kilometer, it is not clear which path minimizes your effort. On
a small scale, you will consider the altitudes between your current location
and a location to which you want to walk taking into account the distance
between the locations.

In the abstract, the weight w assigned to an edge of the grid is the
sum of the altitudes along the straight-line path connecting the vertices
but multiplied by the length of the path. In the continuous formulation,
consider vertices (x0, y0) and (x1, y1) and the linear path connecting them,
(x(t), y(t)) = (x0, y0) + t(x1, y1) for t ∈ [0, 1]. The weight is an integral that
we can approximate using the trapezoid rule,

w =
√

(x1 − x0)2 + (y1 − y0)2
∫ 1

0 F (x(t), y(t)) dt

.
=

√

(x1 − x0)2 + (y1 − y0)2 (F (x0, y0) + F (x1, y1)) /2

(7.25)

where the right-hand side is an application of the trapezoid rule for approxi-
mating an integral. Thus, the weights wi associated with the edges Ei defined
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FIGURE 7.5: The directed edges from a point in the grid graph. Each vertex
stores the altitude F (x, y) and the weights w1(x, y), w2(x, y), and w3(x, y).

previously are

w1(E1) = (F (x, y) + F (x+ 1, y)) /2

w2(E2) = (F (x, y) + F (x, y + 1)) /2

w3(E3) = (F (x, y) + F (x+ 1, y + 1)) /
√
2

(7.26)

Figure 7.5 shows point (x, y) and the three neighbors to which you can walk.
The weights are labeled with the beginning point, indicating that a data struc-
ture for the vertex at (x, y) stores the altitude F (x, y) and three weights
w1(x, y), w2(x, y), and w3(x, y) for the outgoing edges.

The beginning vertex for our example is (0, 0) and the ending vertex is
(S − 1, S − 1). We need to compute a path of minimum total weight. I will
refer to the sum of weights for a path between two vertices as the distance
between the vertices, but keep in mind this is not the Euclidean distance
between the xy-values. Let d(x, y) denote the distance from (0, 0) to (x, y).
The vertices are sorted topologically in the sense that a vertex located at
(x, y) also has three incoming edges, as shown in Figure 7.6. If the distances
d(x− 1, y− 1), d(x− 1, y), and d(x, y− 1) are known, we can compute d(x, y)
in a recursive manner as

d(x, y) = min

⎧

⎨

⎩

d(x − 1, y) + w1(x − 1, y),
d(x, y − 1) + w2(x, y − 1),
d(x − 1, y − 1) + w3(x − 1, y − 1)

⎫

⎬

⎭

(7.27)

Initially we know that d(0, 0) = 0; that is, the distance from a vertex to
itself is zero. The recursion in Equation (7.27) requires us to know the distance
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FIGURE 7.6: The directed edges to a point in the grid graph.

for the three predecessors show in Figure 7.6. Consequently, we must compute
next the values d(x, 0) for 1 ≤ x < S and d(0, y) for 1 ≤ y < S. Finally, we
can compute d(x, y) for x ≥ 1 and y ≥ 1, but not just at any selected (x, y).
The distance computation effectively is a breadth-first process. Once we know
the distance at the top and left edges of the grid, we can solve for distances
along grid lines of the form x + y = z for 2 ≤ z ≤ 2(S − 1), as shown in
Figure 7.7. Once we have computed the distances for all grid points on a line
x + y = z, we can use those distances for computing grid points on the next
line x+ y = z+1. For z = 2, we have previously computed d(2, 0) and d(0, 2),

z=2 z=3 z=4

z=5

z=6

z=7

z=8

x

y

FIGURE 7.7: The breadth-first update of distances in a 5× 5 grid.



Sample Applications 375

so we need only compute d(1, 1). For z = 3, we must compute d(1, 2) and
d(2, 1). Pseudocode for the breadth-first search on an S × S grid is shown in
Listing 7.12.

d (0 ,0 ) = 0 ;
f o r ( x = 1 ; x < S ; ++x )
{

d ( x , 0 ) = d ( x−1 ,0) + w1( x−1 ,0);
}
f o r ( y = 1 ; y < S ; ++y )
{

d (0 , y ) = d (0 , y−1) + w2(0 , x−1);
}
f o r ( z = 2 ; z < S ; ++z )
{

f o r ( x = 1 , y = z−x ; y > 0 ; ++x , −−y )
{

d1 = d ( x−1,y ) + w1( x−1,y ) ;
d2 = d ( x , y−1) + w2( x , y−1);
d3 = d ( x−1,y−1) + w3( x−1,y−1);
d ( x , y ) = min ( d1 , d2 , d3 ) ;

}
}
f o r ( z = S ; z <= 2∗(S−1); ++z )
{

f o r ( y = S−1, x = z−y ; x < S ; −−y , ++x )
{

d1 = d ( x−1,y ) + w1( x−1,y ) ;
d2 = d ( x , y−1) + w2( x , y−1);
d3 = d ( x−1,y−1) + w3( x−1,y−1);
d ( x , y ) = min ( d1 , d2 , d3 ) ;

}
}

LISTING 7.12: Breadth-first update of distances in an S × S grid.

It is not sufficient to compute the distances. We need to keep track of the
actual path. Whatever weight was used in computing the minimum distance,
its grid location must be stored. The data structure for each grid point is
therefore

s t r u c t Node
{

f l o a t d i s t a n c e ;
i n t xPrev i ou s , yP r e v i o u s ;

} ;

At (0, 0), the previous location is set to (−1,−1) as a flag indicating there is
no previous neighbor. For x > 0, the previous location for (x, 0) is (x − 1, 0).
For y > 0, the previous location for (0, y) is (0, y − 1). For x > 0 and y > 0,
the innermost loop logic must be replaced by

dmin = d ( x−1,y ) + w1( x−1,y ) ;
p r ev i ou sm in = ( x−1,y ) ;
d cand i da te = d ( x , y−1) + w2( x , y−1);
i f ( dcand i da te < dmin )
{

dmin = dcand ida te ;
p r ev i ou sm in = ( x , y−1);

}
dcand ida te = d ( x−1,y−1) + w3( x−1,y−1);
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i f ( dcand i da te < dmin )
{

dmin = dcand ida te ;
p r ev i ou sm in = ( x−1,y−1);

}
d ( x , y ) = dmin ;
p r e v i o u s ( x , y ) = prev i ou sm in ;

Once the distances have been computed, the path is generated by

s tack<i n t p a i r> path ;
x = S − 1 ; y = S − 1 ;
wh i l e ( x != −1 && y != −1)
{

path . push ( x , y ) ;
( x , y ) = p r e v i o u s ( x , y ) ;

}

and you can pop the stack to visit the path nodes from (0, 0) to (S−1, S−1).
The algorithm for shortest path is straightforward to implement for the

CPU. However, implementing a GPU version that has decent performance
is more difficult. The first problem is implementing the partial sums via the
loops for d(x, 0) and d(0, y). A single GPU thread could be dedicated per
loop, but that sequential operation is not efficient. Instead, we can use the
dynamic programming solution discussed in Section 7.4. The second problem
is implementing the inner loops of the z-loops. Because of the dependency
that the z + 1 line cannot be computed until the z line is computed, we
do not have much workload that can be distributed across GPU threads.
Fortunately, though, the order of computation in the inner loops is irrelevant,
so each distance d(x, y) on a line x+ y = z can be computed in parallel with
the others. Thus, we can take advantage of some parallelism, but the GPU is
not fully utilized.

The sample algorithm that implements both the CPU and GPU versions
is

GeometricTools/GTEngine/Samples/Geometry/ShortestPath

A height field (for the altitudes) of size 512× 512 is generated from a bicubic
polynomial and then perturbed by small random numbers. This could be done
on the CPU, but I have chosen to create it on the GPU. The values must be
read back to the CPU in order for the CPU-based shortest-path algorithm to
consume it. The GPU version has quite a few shaders to create in order to use
the partial-sum algorithm and have the results for d(x, 0) stored in the first
row of a distance texture and the results for d(0, y) stored in the first column of
the same texture. Also, a previous texture is required, a two-channel integer-
valued texture whose first row and first column must be initialized properly.
The z-line shader has a constant buffer that stores the starting (x, y) and
the number of pixels on that line to update. This buffer is updated for each
z-value in the loops.

The height field is recomputed each frame. The performance measurements
are comparable for my AMD 7970 graphics card. The CPU performance is 57
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frames per second and the GPU performance is 60 frames per second. This
is not that significant a speed up. However, the need for a shortest-path al-
gorithm with the grid as described here arose in a stereo vision application.
Signals (digital curves) for two corresponding scan lines in rectified left and
right images needed to be matched to locate corresponding points. The func-
tion F (x, y) was a cost function for matching a point (and neighborhood) at
row-index x on the left signal to a point (and neighborhood) at row-index y
on the right signal. The cost function is expensive to compute on a CPU, so
it was computed instead on the GPU; this is why I recompute the height field
in the sample application—to mimic the vision application. Reading back the
results to the CPU, computing the shortest path on the CPU, and uploading
the path to the GPU for downstream computations was not an option be-
cause we wanted the vision computations to stay always on the GPU. This is
an example of the performance guidelines I mentioned in Section 5.3.3: it is
not always necessary to have each task in a GPU-based application run faster
than its counterpart on the CPU. The important performance measurement
is end-to-end speed.

7.7 Convolution

Consider a 2D image, whether color or grayscale, that must be filtered by
convolution. This process computes a pixel at location (x, y) in the output
image as a weighted sum of pixels in a rectangular region centered at (x, y) in
the input image. Let the input image be represented as an N0×N1 array with
elements Ai0,i1 , where 0 ≤ i0 < N0 and 0 ≤ i1 < N1. The output image is
the same sized array and has elements Bi0,i1 . The weights are represented as
a (2M0 +1)× (2M1 +1) array with elements Wj0,j1 where 0 ≤ j0 ≤ 2M0 and
0 ≤ j1 ≤ 2M1. For simplicity, the weight array is chosen with odd dimensions.
The convolution of image A with weights W is

Bi0,i1 =

M0
∑

j0=−M0

M1
∑

j1=−M1

Wj0+M0,j1+M1
Ii0+j0,i1+j1 (7.28)

The typical example is blurring using a radially symmetric Gaussian dis-
tribution to generate the weights in a square filter of size 2M + 1,

G(x, y, σ) =
1

2πσ2
exp

(

− x2 + y2

2σ2

)

(7.29)

where σ2 is the variance and the mean is (0, 0). The distribution is formulated
in terms of continuous variables but you need the weights on a discrete grid.
Therefore, you need a relationship between the desired standard deviation σ
and M ; see the discussion later in this section about one way to do this.
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The sample application

GeometricTools/GTEngine/Samples/Imagics/Convolution

shows several methods for computing a convolution for a 2D image. Two of
these compute the convolution natively in 2D. Three of these use the fact that
the Gaussian distribution is separable:

G(x, y, σ) =
1√
2πσ2

exp

(

− x2

2σ2

)

1√
2πσ2

exp

(

− y2

2σ2

)

= g0(x, σ)g1(y, σ)

(7.30)
where the last equality defines the functions g0 and g1. In continuous terms
with images defined for all real numbers, the convolution is defined by

B(x, y) = [G⊗ I](x, y) =

∫ ∞

−∞

∫ ∞

−∞

G(u, v)I(x− u, y − v) du dv (7.31)

Turns out that separability means you can convolve with each of the functions
in the factorization,

B(x, y) = [G⊗ I](x, y) = [g1 ⊗ [g0 ⊗ I]](x, y) (7.32)

In discrete terms, the convolution of an image with a separable filter of size
N ×M is equivalent to convolving first with a filter of size N × 1 and then by
a filter of size 1×M . The number of arithmetic operations is greatly reduced,
so it is more efficient to use separability. The sample application demonstrates
this and shows the frame rates associated with each method.

The sample application also shows how to use group-shared memory in a
compute shader. The memory is declared using an identifier groupshared, and
it is shared by all threads in the thread group currently executing. In image
processing algorithms such as convolution, the neighborhood image lookups
can be a bottleneck in the memory system. A large amount of time is spent on
looking up the same pixel value but in different threads when those threads
all need access to the pixel. The idea of group-shared memory is to allow each
thread to load one image value, have all threads wait until the entire group
has loaded its values (via a synchronization call), and then proceed with the
computations by accessing values in group-shared memory.

Listing 7.13 shows the straightforward implemention of a convolution of
an image with a filter kernel of size (2R + 1) × (2R + 1) where the radius
R > 0.

c b u f f e r Weights { f l o a t we igh t [2∗R+1][2∗R+1] ; } ;
Texture2D<f l o a t 4> i n p u t ;
RWTexture2D<f l o a t 4> output ;

[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain( i n t 2 dt : SV DispatchThread ID)
{

f l o a t 4 r e s u l t = 0 .0 f ;
f o r ( i n t y = −R ; y <= R; ++y )
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{
f o r ( i n t x = −R; x <= R; ++x )
{

r e s u l t += we igh t [ y+R ] [ x+R]∗ i n p u t [ dt+i n t 2 ( x , y ) ] ;
}

}
output [ dt ] = r e s u l t ;

}

LISTING 7.13: Convolution with a square filter kernel.

The filter kernel weights are supplied via a constant buffer. The default HLSL
packing rules will store each weight in the x-swizzle of a register, so the con-
stant buffers uses (2R+1)2 registers and the application must pack the weights
accordingly. Each thread will load all (2R + 1)2 image values in the neigh-
borhood centered at the thread ID (dt.x,dt.y). No attempt is made to avoid
accessing the input image using out-of-range indices. According to the HLSL
specifications for the ld instruction for a texture, out-of-range reads will re-
turn zeroed memory. If you execute this shader for a large radius, you will
see darkening around the blurred image boundary. The zeroed memory is
averaged with the image values, causing the darkening.

We do not know the order of execution of threads, but imagine that if
thread (dt.x + 1, dt.y) were to execute immediately after thread (dt.x,dt.y), we
would again load (2R + 1)2 image values. However, only (2R + 1) of them
are new compared to the previous set, so will have loaded redundantly many
image values from memory to registers. In an attempt to avoid the redundant
loads, you may use group-shared memory. Listing 7.14 shows a shader that
does so.

c b u f f e r Weights { f l o a t we igh t [2∗R+1][2∗R+1] ; } ;
Texture2D<f l o a t 4> i n p u t ;
RWTexture2D<f l o a t 4> output ;
g roupsha r ed f l o a t 4 samples [NUM Y THREADS + 2 ∗ R ] [ NUM X THREADS + 2 ∗ R ] ;

[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain( i n t 2 dt : SV DispatchThreadID , i n t 2 gt : SV GroupThreadID )
{

// Load the t e x e l s from the i n pu t t e x t u r e , s t o r e them i n group−sha r ed
// memory , and have a l l t h r e a d s i n the group wa i t u n t i l a l l t e x e l s
// a r e l oaded .
samples [ gt . y + R ] [ gt . x + R] = i n pu t [ dt ] ;
i f ( gt . y >= R)
{

i f ( gt . y < NUM Y THREADS − R)
{

i f ( gt . x >= R)
{

i f ( gt . x < NUM X THREADS − R)
{

// No ex t r a i n p u t s to l oad .
}
e l s e
{

samples [ gt . y+R ] [ gt . x+2∗R] = i npu t [ dt+i n t 2 (+R , 0 ) ] ;
}

}
e l s e
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{
samples [ gt . y+R ] [ gt . x ] = i n pu t [ dt+i n t 2 (−R , 0 ) ] ;

}
}
e l s e
{

i f ( gt . x >= R)
{

i f ( gt . x < NUM X THREADS − R)
{

samples [ g t . y+2∗R ] [ gt . x+R] = i n pu t [ dt+i n t 2 (0 ,+R ) ] ;
}
e l s e
{

samples [ g t . y+2∗R ] [ gt . x+2∗R] = i npu t [ dt+i n t 2 (+R,+R ) ] ;
samples [ g t . y+2∗R ] [ gt . x+R] = i n pu t [ dt+i n t 2 (0 ,+R ) ] ;
samples [ gt . y+R ] [ gt . x+2∗R] = i npu t [ dt+i n t 2 (+R , 0 ) ] ;

}
}
e l s e
{

samples [ g t . y+2∗R ] [ gt . x ] = i n pu t [ dt+i n t 2 (−R,+R ) ] ;
samples [ g t . y+2∗R ] [ gt . x+R] = i n pu t [ dt+i n t 2 (0 ,+R ) ] ;
samples [ gt . y+R ] [ gt . x ] = i n pu t [ dt+i n t 2 (−R , 0 ) ] ;

}
}

}
e l s e

{
i f ( gt . x >= R)
{

i f ( gt . x < NUM X THREADS − R)
{

samples [ gt . y ] [ g t . x+R] = i n pu t [ dt+i n t 2 (0 ,−R ) ] ;
}
e l s e
{

samples [ gt . y ] [ g t . x+2∗R] = i npu t [ dt+i n t 2 (+R,−R ) ] ;
samples [ gt . y ] [ g t . x+R] = i n pu t [ dt+i n t 2 (0 ,−R ) ] ;
samples [ gt . y+R ] [ gt . x+2∗R] = i npu t [ dt+i n t 2 (+R , 0 ) ] ;

}
}
e l s e
{

samples [ gt . y ] [ g t . x ] = i n pu t [ dt+i n t 2 (−R,−R ) ] ;
samples [ gt . y ] [ g t . x+R] = i n pu t [ dt+i n t 2 (0 ,−R ) ] ;
samples [ gt . y+R ] [ gt . x ] = i n pu t [ dt+i n t 2 (−R , 0 ) ] ;

}
}

GroupMemoryBarr ierWithGroupSync ( ) ;

f l o a t 4 r e s u l t = 0 .0 f ;
f o r ( i n t y = 0 ; y <= 2∗R; ++y )
{

f o r ( i n t x = 0 ; x <= 2∗R; ++x )
{

r e s u l t += we igh t [ y ] [ x ] ∗ samples [ gt . y+y ] [ gt . x+x ] ;
}

}
output [ dt ] = r e s u l t ;

}

LISTING 7.14: Convolution with a square filter kernel and using group-
shared memory.
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You will notice that the shader program is much longer than the direct
approach. The first part of the program loads the input image values to group-
shared memory. But why is this so complicated? The test image is 1024×768.
For the sake of simplicity in the presentation, suppose R = 1 in which case we
are convolving with a 3 × 3 kernel. Suppose that the number of x-threads is
512 and the number of x-groups is 2. To produce an output at pixel (x0, y0)
requires accessing pixels with x-value satisfying x0−R ≤ x ≤ x0+R and with
y-value satisfying y0 −R ≤ y0 + R. If (x0, y0) is within R pixels of the pixels
represented by the thread group, we would access neighborhood values outside
that set of pixels. Thus, the group-shared memory samples must be larger
than the number of group threads in order to store the image values outside
the group. The nested if-then-else statements are designed to distribute the
loading responsibility among those pixels near the group boundaries. This is
preferable to assigning the responsibility of a large number of loads to a small
number of threads because threads not loading a lot of data will be stalled
until the other threads can load theirs.

The function GroupMemoryBarrierWithGroupSync is for synchronization and
specifies that all threads in the group wait until they get to that point in
the code. Once they do, all data in the thread group has been loaded into
samples and each thread can read the shared memory as needed to compute
its weighted sum.

Now you might ask why bother choosing more than one x-group. The
problem is that in D3D11, group-shared memory is limited to 32,768 bytes
and the number of threads in a group is limited to 1024. In most cases you
have to decompose the domain into small groups so that the shared data fits
in memory. In Listing 7.14, we need

(NUM X THREADS+2∗R)∗(NUM Y THREADS+2∗R) <= 32768/ s i z e o f ( f l o a t ) = 2048

In the application code, I selected the number of x-threads and y-threads each
to be sixteen and the radius can be no larger than eight. The radius eight case
uses 16,384 bytes of shared memory.

The application also implements a shader that uses the separability of
the Gaussian kernel. Two passes are required, one for a convolution with a
(2R+1)× 1 filter and one for a convolution with a 1× (2R+1) filter. Listing
7.15 shows the HLSL code.

c b u f f e r Weights { f l o a t we igh t [2∗R+1] ; } ;
Texture2D<f l o a t 4> i n p u t ;
RWTexture2D<f l o a t 4> output ;

[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id Ho r i z o n t a l Pa s s ( i n t 2 dt : SV DispatchThread ID)
{

f l o a t 4 r e s u l t = 0 .0 f ;
f o r ( i n t x = −R ; x <= R; ++x )
{

r e s u l t += we igh t [ x+R] ∗ i n p u t [ dt+i n t 2 ( x , 0 ) ] ;
}
output [ dt ] = r e s u l t ;

}
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[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id Ve r t i c a l P a s s ( i n t 2 dt : SV DispatchThread ID)
{

f l o a t 4 r e s u l t = 0 .0 f ;
f o r ( i n t y = −R ; y <= R; ++y )
{

r e s u l t += we igh t [ y+R] ∗ i n p u t [ dt+i n t 2 (0 , y ) ] ;
}
output [ dt ] = r e s u l t ;

LISTING 7.15: Convolution with a square filter kernel and using separabil-
ity.

The code is concise and runs faster than the code in Listings 7.13 and 7.14. I
have also implemented the separable filters using group-shared memory, but
I will not include the code here.

As always, you want to profile the results. Using simple frame rates (in
convolutions per second), Table 7.2 is a comparison of the implementations.
The method is 0 for Listing 7.13, 1 for Listing 7.14, and 2 for Listing 7.15.
Method 3 is a convolution using separability and group-shared memory where
the number of x-groups is 1. Method 4 is a convolution using separability
and group-shared memory where the number of x-groups is 4. The numbers
were somewhat surprising when comparing a method with and without group-
shared memory. I expected the group-shared performance to be better for large
radii. The only win for shared memory appears to be for 2D convolution with
radius one. Apparently, the memory reads for the AMD 7970 are good enough
that the groupshared mechanism does not help in this application. You should
compare the methods anyway on other hardware.

In this example, the hope for group-shared memory was to avoid redundant
memory lookups. Shared memory can be used also to cache numbers that are
expensive to compute; that is, if you had to recompute expressions many
times, causing a bottleneck in the scalar or vector arithmetic logic units, you
should consider storing them in shared memory.

A final concept about convolution with square filter kernels is in order. The
Gaussian kernel is separable. Thinking of the kernel as a (2R+ 1)× (2R+ 1)
matrix M , the matrix can be factored as M = VVT where V is a (2R+1)×1
vector. A 2D convolution by M may be obtained by convolving with VT

TABLE 7.2: Performance comparisons for convolution implementations

radius method 0 method 1 method 2 method 3 method 4
1 2834 3012 2238 1746 1750
2 2407 1860 2245 1743 1773
3 1442 1168 2233 1830 1929
4 1045 779 2275 1804 2086
5 701 544 2305 1705 1948
6 545 396 2244 1584 1780
7 399 306 2135 1495 1530
8 323 241 2033 1396 1500
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(horizontal pass) and convolving the result with V (vertical pass). The vector
V has symmetry to it. If vi are the components of V for 0 ≤ i ≤ 2R, then the
center element is vR and vR+j = VR−j for 0 ≤ j ≤ R. As a consequence, M
is symmetric about its center; I will use the term fully symmetric to describe
M . If mi,j are the elements of M for 0 ≤ i ≤ 2R and 0 ≤ j ≤ 2R, then
mR+j,R+k = mR−k,R−ℓ for 0 ≤ k ≤ R and 0 ≤ ℓ ≤ R. For example, consider
R = 2 and σ = 0.538079560; then the vector is the following, written as a
tuple

V = (0.00073656, 0.13098156, 0.73656368, 0.13098156, 0.00073656) (7.33)

and the matrix is

M=

⎡

⎢

⎢

⎢

⎣

0.00000054 0.00009647 0.00005425 0.00009647 0.00000054
0.00009647 0.01715617 0.09647627 0.01715617 0.00009647
0.00005425 0.09647627 0.54252612 0.09647627 0.00005425
0.00009647 0.01715617 0.09647627 0.01715617 0.00009647
0.00000054 0.00009647 0.00005425 0.00009647 0.00000054

⎤

⎥

⎥

⎥

⎦

(7.34)

If you were given a (2R+1)2 fully symmetric matrix M without knowledge
of how it was generated, how can you factor it in order to take advantage of
separability? As it turns out, not all fully symmetric matrices can be factored
into a product of a vector with itself. To see this, consider

M =

⎡

⎣

a b a
b c b
a b a

⎤

⎦

?
=

⎡

⎣

u
v
u

⎤

⎦

[

u v u
]

=

⎡

⎣

u2 uv u2

uv v2 uv
u2 uv u2

⎤

⎦ (7.35)

where the question mark suggests it might or might not be possible to equate
the left-hand and right-hand sides. For equality to occur, we need a ≥ 0 and
c ≥ 0. This already places constraints on the elements of M , so not all fully
symmetric matrices can be factored this way. As an attempt to allow negative
a or c, we could introduce a scalar factor σ < 0 on the right-hand side so that
a = σu2 and c = σv2; however, it is clear that the signs of a and c must agree.
A matrix M with a = −1 and c = 1 cannot be factored as desired. When a
and c are nonnegative, we obtain u =

√
a, v =

√
c, and b =

√
ac which implies

b ≥ 0; however, if b < 0, we can choose u or v to be the negative square root.
It is possible, though, to factorM into a linear combination of at mostR+1

vector products. The matrix is symmetric in the classical linear algebraic sense,
MT = M , so it has (2R + 1) linearly independent unit-length eigenvectors,
say, Ui for 0 ≤ i ≤ 2R, and corresponding eigenvalues λi. The eigenvalues are
not necessarily distinct; in fact, zero is an eigenvalue of algebraic multiplicity
at least R. The matrix can be decomposed into

M =
2R
∑

i=0

λiUiU
T
i (7.36)

which is derivable algebraically from MR = RD, where R is a rotation matrix
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whose columns are the Ui and D is a diagonal matrix whose diagonal entries
are the corresponding eigenvalues. Let the eigenvalues be ordered so that the
zero eigenvalues occur from indices n to 2R, where n ≤ R; then

M =
n−1
∑

i=0

λiUiU
T
i (7.37)

The convolution ofM with an image can be computed by convolving the image
2n times and then summing outputs. The input image is convolved with Ui

(horizontal pass) and then UT
i (vertical pass), the result stored in an output

image Ti. The final output image T is the linear combination T =
∑n−1

i=0 λiTi.
For example, the derivative-like filter

M =

⎡

⎣

−1 −2 −1
−2 12 −2
−1 −2 −1

⎤

⎦ = λ0U0U
T
0 + λ1U1U

T
1 (7.38)

where λ0 = 5 +
√
57, λ1 = 5−

√
57, and

U0 =
(2,−7−

√
57, 2)

√

8 + (7 +
√
57)2

, U1 =
(2,−7 +

√
57, 2)

√

8 + (7−
√
57)2

(7.39)

More factorizations for 5 × 5 general matrices (not necessarily fully sym-
metric) are proved in the PhD dissertation [24], where M is a sum of products
with terms not necessarily generated by vector products. The hope is that a
linear combination by convolutions of smaller filters will perform faster than
a convolution by the original filter.

7.8 Median Filtering

Consider a 2D grayscale image that has a small number of pixel values that
you wish to modify because they are extremely large or small compared to
what you expect pixel values to be. For example, you might have a generally
dark image that contains a small number of very bright pixels. At first you
might consider using convolution with a filter kernel that performs a weighted
average in each pixel’s neighborhood to produce an output image for which
the noise has been visually reduced. However, if a pixel is very bright and its
neighbors very dark, a weighted average might not be enough to remedy the
contrast at that pixel.

Instead, we can apply a rank-order filter that sorts the neighborhood of
pixels by intensity and chooses as output one of the ordered values in a spec-
ified location. The most common is to choose the median of the pixel values.
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The idea is that the very bright or very dark pixels are outliers and the sorting
places them at the tail ends of the sorted pixels. Selecting the median reduces
greatly the chance that a noisy pixel will still remain in the neighborhood in
the output image.

Although the output is via selection, the rank-order filters are image
smoothers just as weighted-average convolution filters are when you apply
them repeatedly to an image. This is no surprise, because for sets of num-
bers with not a lot of variation of intensity, the mean and the median are
similar. In fact, the fixed-point sequences from the repeated application of a
one-dimensional median filter are completely known [7].

Rank-order filters may be extended by computing the output to be
a weighted average of the ordered neighbors, but these filters are also
smoothers. A more sophisticated extension is a weighted majority minimum
range (WMMR) filter [22]. A set of N + 1 nonnegative weights are chosen
that sum to one. After sorting a neighborhood of (2N + 1) intensities, the
weighted average is computed for each subset of N + 1 contiguous numbers.
There are N+1 such averages, the minimum chosen as the output of the filter.
The fixed-point sequences from the repeated application of one-dimensional
WMMR filter are also completely known. These demonstrate that the filter
has smoothing behavior in regions where the intensities have small variation
but has edge-preserving behavior in regions where the intensities have large
variation.

In this section I discuss how to implement median filtering on two-
dimensional images for high performance on the GPU. The sample application
is

GeometricTools/GTEngine/Samples/Imagics/MedianFiltering

The WMMR filters may also be implemented on the GPU, but the implemen-
tations are not provided here. The median filtering is implemented for 3 × 3
and 5× 5 neighborhoods using repeated applications of the min and max op-
erators. The 3× 3 approach is discussed in Median Finding on a 3-by-3 Grid
by Alan Paeth in [13]. An optimal extension to 5 × 5 neighborhoods is not
immediately obvious from the 3 × 3 case. For comparison, a shader program
that uses an insertion sort for the neighborhood is provided. The min-max
approach clearly outperforms the insertion sort approach.

7.8.1 Median by Sorting

I used an insertion sort for computing the median value of a neighborhood
of dimensions (2R+1)× (2R+1), where R is the radius of the neighborhood.
Listing 7.16 contains the HLSL code.

#de f i n e SIZE (2∗RADIUS+1)
#de f i n e NUM DATA ( SIZE∗SIZE )
Texture2D<f l o a t> i n p u t ;
RWTexture2D<f l o a t> output ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
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vo id CSMain( i n t 2 dt : SV DispatchThread ID)
{

// Load the ne i ghbo rhood o f the p i x e l .
f l o a t data [NUM DATA ] ;
i n t i = 0 ;
i n t 2 o f f s e t ;
[ u n r o l l ]
f o r ( o f f s e t . y = −RADIUS ; o f f s e t . y <= RADIUS ; ++o f f s e t . y )
{

[ u n r o l l ]
f o r ( o f f s e t . x = −RADIUS ; o f f s e t . x <= RADIUS ; ++o f f s e t . x )
{

data [ i ] = i n pu t [ dt + o f f s e t ] ;
++i ;

}
}

// Use an i n s e r t i o n s o r t to l o c a t e the median va l u e .
f o r ( i n t i 0 = 1 ; i 0 < NUM DATA; ++i 0 )
{

f l o a t va l u e = data [ i 0 ] ;
i n t i 1 ;
f o r ( i 1 = i 0 ; i 1 > 0 ; −−i 1 )
{

i f ( v a l u e < data [ i 1 − 1 ] )
{

data [ i 1 ] = data [ i 1 − 1 ] ;
}
e l s e
{

break ;
}

}
data [ i 1 ] = va l u e ;

}

output [ dt ] = data [NUM DATA / 2 ] ;
}

LISTING 7.16: A shader that uses insertion sort to compute the median.

The radius and number of x- and y-threads is provided via an HLSLDefiner

object in the application code. The first pair of loops has compact code for
reading the neighborhood of the pixel, but the unroll directives cause the HLSL
compiler to generate sequential code for loading the values. The second pair of
loops is standard code for an insertion sort of a set of numbers. I unit-tested
the code by applying the filter on the GPU, reading back the output image,
and comparing to an output image generated by the same code on the CPU. I
also compared the insertion sorts of neighborhoods to sorted values obtained
by std::sort. On my AMD 7970 graphics card for a 1024×1024 image, the 3×3
filter runs at 1370 frames per second and the 5× 5 filter runs at 60 frames per
second.

I also added unroll directives to the loops of the insertion sort, but the
output was incorrect in both cases. The Microsoft Direct3D shader compiler
version is 6.3.9600.16384. I did not investigate further to determine the cor-
rectness (or not) of the generated assembly instructions. When you unroll the
loop manually, you have a long sequence of nested if-then expressions, so even
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if the loop were to be unrolled correctly, you have a lot of branching that can
occur. Most likely that branching is as expensive as the loop construct.

7.8.2 Median of 3× 3 Using Min-Max Operations

To avoid branching and looping in the shader, the key observation is that
if you have a set S of 2n + 1 numbers, any subset T of n + 2 numbers has
the property min(T ) ≤ median(S) ≤ max(T ). The proof is by contradiction.
Suppose that median(S) < min(T ). If you were to sort S, say, x0 ≤ · · · ≤
xn ≤ · · · ≤ x2n, then xn = median(S). However the n + 2 elements of T ,
presumed to be larger than xn must be in the sorted set as xn−1 through
x2n, which overlaps xn, a contradiction. Similarly, if it were the case that
median(S) > max(T ), then the n+ 2 elements of T must be in the sorted set
as x0 through xn+1, which overlaps xn and is again a contradiction.

A 3 × 3 neighborhood has 2n + 1 = 9 numbers (n = 4). If we choose
a subset T of n + 2 = 6 numbers and locate the minimum and maximum
without fully sorting T , we can discard those numbers because they cannot be
the median. This leaves us with a set of seven numbers. We can repeat the
process and discard two more numbers, leaving us with a set of five numbers,
and then again leaving us with a set of three numbers. The median is obtained
by ordering the three numbers and selecting the middle one.

The algorithm for locating the minimum and maximum is performed
within the array. We swap elements so that the minimum bubbles toward
the beginning of the array and the maximum bubbles toward the end of the
array. Only swapping is allowed, because elements that are not the extreme
must be preserved for repetition of the algorithm on the next smallest set. Al-
though a direct GPU implementation may manipulate the subsets as arrays
of scalars float, we can additionally take advantage of vectorization and store
the numbers in 4-tuples float4. This allows us to perform swaps of the channels
of float4 numbers in parallel.

The nine elements of the neighborhood are stored in three float4 tuples
where only the first channel of the last tuple is used. Although we can set
up the float4 values manually by assigning one channel at at time, the HLSL
compiler will unroll a double loop and set up the swizzling properly. Listing
7.17 shows the HLSL code for this.

vo id LoadNeighbors (
i n Texture2D<f l o a t> i npu t , // the image to be f i l t e r e d
i n i n t 2 dt , // the ne i ghbo rhood c en t e r ( dt . x , dt . y )
out f l o a t 4 e [ 3 ] ) // n i ne e l emen ts cop i ed to e [ 0 ] . xyzw , e [ 1 ] . xyzw , e [ 2 ] . x

{
u i n t i = 0 ;
i n t 2 o f f s e t ;
[ u n r o l l ]
f o r ( o f f s e t . y = −1; o f f s e t . y <= 1 ; ++o f f s e t . y )
{

[ u n r o l l ]
f o r ( o f f s e t . x = −1; o f f s e t . x <= 1 ; ++o f f s e t . x )
{
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// The HLSL comp i l e r d e t e rm i n e s the c o r r e c t s w i z z l e ( . s ) f o r
// e [ i / 4 ] . s knowing tha t i s t a r t e d at 0 and i n c r emen t s on
// each pa s s .
e [ i / 4 ] [ i % 4 ] = i n pu t [ dt + o f f s e t ] ;
++i ;

}
}

}

LISTING 7.17: Initialization of data for vectorized median filtering.

The operation that is at the heart of the min-max searching is to swap
two k-tuples u and v so that the minimum is in u and the maximum is in v.
The minimum and maximum are computed in the SIMD sense, applying to
all channels of the tuples. The generic function for this operation is

vo id minmax( i n o u t vec to r<f l o a t , k> u , i n o u t vec to r<f l o a t , k> v )
{

vec to r<f l o a t , k> s a ve = u ;
u = min ( save , v ) ;
v = max( save , v ) ;

}

Let us now locate the minimum and maximum in the subset of six numbers
stored in e[0].xyzw and e[1].xy. Listing 7.18 shows the function that bubbles the
minimum to e[0].x and the maximum to e[1].y.

vo id minmax6 ( i n o u t f l o a t 4 e [ 3 ] )
{

minmax( e [ 0 ] . xy , e [ 0 ] . zw ) ; // min i n {e0 . xy , e1 . xy } , max i n {e0 . zw , e1 . xy}
minmax( e [ 0 ] . xz , e [ 0 ] . yw ) ; // min i n {e0 . x , e1 . xy } , max i n {e0 .w, e1 . xy}
minmax( e [ 1 ] . x , e [ 1 ] . y ) ; // min i n {e0 . x , e1 . x} , max i n {e0 .w, e1 . y}
minmax( e [ 0 ] . xw , e [ 1 ] . xy ) ; // min i n e0 . x , max i n e1 . y

}

LISTING 7.18: Extracting the minimum and maximum from six numbers
with swaps.

The comments in the code make it clear the subsets of numbers that contain
the minimum and the maximum. Similar functions for smaller subsets are
named minmax5, minmax4, and minmax3. These are all designed to minimize
the number of swaps needed to bubble the extremes to the first and last
swizzles.

The compute shader for the median filtering is shown in Listing 7.19. The
subset of six elements has its minimummoved to e[0].x and its maximummoved
to e[1].y by the function minimax6. The minimum is discarded by moving an
unvisited element of the neighborhood into e[0].x. The maximum is discarded
implicitly, because the next subset of five elements has the last element in the
channel immediately before the maximum’s channel.

#in c l u d e ”MedianShared . h l s l i ”
Texture2D<f l o a t> i n p u t ;
RWTexture2D<f l o a t> output ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain( i n t 2 dt : SV DispatchThread ID)
{

f l o a t 4 e [ 3 ] ; // 12 s l o t s , we use the f i r s t 9
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LoadNeighbors ( i npu t , dt , e ) ;
minmax6 ( e ) ; // D i s ca rd min/max o f v0 . . v5 (2 n+1=9, n+2=6).
e [ 0 ] . x = e [ 2 ] . x ; // Copy v8 to v0 s l o t .
minmax5 ( e ) ; // D i s ca rd min/max o f v0 . . v4 (2 n+1=7, n+2=5).
e [ 0 ] . x = e [ 1 ] . w ; // Copy v7 to v0 s l o t .
minmax4 ( e ) ; // D i s ca rd min/max o f v0 . . v3 (2 n+1=5, n+2=4).
e [ 0 ] . x = e [ 1 ] . z ; // Copy v6 to v0 s l o t .
minmax3 ( e ) ; // So r t v0 , v1 , and v2 .
output [ dt ] = e [ 0 ] . y ; // Return the median v1 .

}

LISTING 7.19: The compute shader for 3× 3 median filtering.

The LoadNeighbors and minmaxN functions are defined in the included hlsli file
to be shared by all median filter shaders. Although this example shows hard-
coded numbers for radius three, the actual shader code uses macros to generate
these.

On my AMD 7970 graphics card for a 1024× 1024 image, the 3× 3 filter
runs at 2540 frames per second, which is faster than the 1370 frames per
second for the insertion-sort approach.

7.8.3 Median of 5× 5 Using Min-Max Operations

The generalization of the algorithm from 3 × 3 to 5 × 5 neighborhoods
has many paths. When you have a larger set of numbers, the possibilities for
swapping channels increases greatly. The goal is to minimize the swaps. The
number of float4 required is seven, where we use only the first twenty five of
the twenty eight available channels.

Given 2n + 1 = 25 elements (n = 12), the largest subset to process is
the first one with n + 2 = 14 elements. As a first attempt to generalize, you
might consider defining functions minmax7 through minmax14 and apply them
one at a time and then copying an unprocessed element into e[0].x as we did
in Listing 7.19. The problem, though, is that when the last float4 is not fully
filled, the number of minmax operations increases due to (1) a need for swizzling
involving single channels and (2) the limit of two float4 per minmax call. For
example, minmax6 in Listing 7.18 has four minmax operations. A function for
seven elements is shown in Listing 7.20 and uses six minmax operations.

vo id minmax7 ( i n o u t f l o a t 4 e [ 7 ] )
{

minmax( e [ 0 ] . xy , e [ 0 ] . zw ) ; // min i n {e0 . xy , e1 . xyz } , max i n {e0 . zw , e1 . xyz}
minmax( e [ 0 ] . xz , e [ 0 ] . yw ) ; // min i n {e0 . x , e1 . xyz } , max i n {e0 .w, e1 . xyz}
minmax( e [ 1 ] . x , e [ 1 ] . y ) ; // min i n {e0 . x , e1 . xz } , max i n {e0 .w, e1 . yz}
minmax( e [ 1 ] . x , e [ 1 ] . z ) ; // min i n {e0 . x , e1 . x} , max i n {e0 .w, e1 . yz}
minmax( e [ 1 ] . y , e [ 1 ] . z ) ; // min i n {e0 . x , e1 . x} , max i n {e0 .w, e1 . z}
minmax( e [ 0 ] . xw , e [ 1 ] . xz ) ; // min i n e0 . x , max i n e1 . z

}

LISTING 7.20: Extracting the minimum and maximum from seven numbers
with swaps.

A function for eight elements is shown in Listing 7.21 and uses five minmax

operations, one fewer than that for the smaller subset of seven elements.
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vo id minmax8 ( i n o u t f l o a t 4 e [ 7 ] )
{

minmax( e [ 0 ] , e [ 1 ] ) ; // min i n e0 , max i n e1
minmax( e [ 0 ] . xy , e [ 0 ] . zw ) ; // min i n e0 . xy , max i n e1
minmax( e [ 0 ] . x , e [ 0 ] . y ) ; // min i n e0 . x , max i n e1
minmax( e [ 1 ] . xy , e [ 1 ] . zw ) ; // min i n e0 . x , max i n e1 . zw
minmax( e [ 1 ] . z , e [ 1 ] . w) ; // min i n e0 . x , max i n e1 .w

}

LISTING 7.21: Extracting the minimum and maximum from eight numbers
with swaps.

This pattern occurs for larger numbers, and it appears that the largest number
of minmax operations occurs when the last float4 uses only three channels.

The first attempt was based on wanting to apply the key observation that
the minimum and maximum of a subset of n + 2 elements can be discarded.
But the same is true even when the subset has more than n + 2 elements.
The trick to reducing the number of calls to minmax is to use subsets whose
numbers of elements are multiples of four. The idea is to take advantage of
the vectorization and swap as many channels in parallel at the same time.
In particular, we want to swap fully filled float4 objects. For an initial set of
twenty-five elements, we need only two more functions, namely, minmax12 and
minmax16, shown in Listing 7.22.

vo id minmax12( i n o u t f l o a t 4 e [ 7 ] )
{

minmax( e [ 0 ] , e [ 1 ] ) ; // min i n {e0 , e2 } , max i n {e1 , e2}
minmax( e [ 0 ] , e [ 2 ] ) ; // min i n e0 , max i n {e1 , e2}
minmax( e [ 1 ] , e [ 2 ] ) ; // min i n e0 , max i n e2
minmax( e [ 0 ] . xy , e [ 0 ] . zw ) ; // min i n e0 . xy , max i n e2
minmax( e [ 0 ] . xz , e [ 0 ] . yw ) ; // min i n e0 . x , max i n e2
minmax( e [ 2 ] . xy , e [ 2 ] . zw ) ; // min i n e0 . x , max i n e2 . xy
minmax( e [ 2 ] . xz , e [ 2 ] . yw ) ; // min i n e0 . x , max i n e2 . y

}

vo id minmax16( i n o u t f l o a t 4 e [ 7 ] )
{

minmax( e [ 0 ] , e [ 1 ] ) ; // min i n {e0 , e2 , e3 } , max i n {e1 , e2 , e3}
minmax( e [ 2 ] , e [ 3 ] ) ; // min i n {e0 , e2 } , max i n {e1 , e3}
minmax( e [ 0 ] , e [ 2 ] ) ; // min i n e0 , max i n {e1 , e3}
minmax( e [ 1 ] , e [ 3 ] ) ; // min i n e0 , max i n e3
minmax( e [ 0 ] . xy , e [ 0 ] . zw ) ; // min i n e0 . xy , max i n e3
minmax( e [ 0 ] . xz , e [ 0 ] . yw ) ; // min i n e0 . x , max i n e3
minmax( e [ 3 ] . xy , e [ 3 ] . zw ) ; // min i n e0 . x , max i n e3 . xy
minmax( e [ 3 ] . xz , e [ 3 ] . yw ) ; // min i n e0 . x , max i n e3 . y

}

LISTING 7.22: Extracting the minimum and maximum from twelve or six-
teen numbers with swaps.

Not only will this reduce the number of minmax calls compared to the first
attempt, you have fewer new functions to implement (two versus eight). This
is helpful in the event you want larger neighborhoods. By the way, in each
function the first block of minmax calls that take float4 inputs are essentially
a parallel sort of the four channels. For example, after the first three calls
in minmax12, you know that e[0].x ≤ e[1].x ≤ e[2].x, e[0].y ≤ e[1].y ≤ e[2].y,
e[0].z ≤ e[1].z ≤ e[2].z, and e[0].w ≤ e[1].w ≤ e[2].w.
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In the second (and optimal) attempt, we will use minmax8, minmax12, and
minmax16 multiple times. Each time, though, we must copy two unprocessed
elements rather than one in order to set up for the next smaller subset. The
compute shader for the median filtering is shown in Listing 7.23.

#in c l u d e ”MedianShared . h l s l i ”
Texture2D<f l o a t> i n p u t ;
RWTexture2D<f l o a t> output ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain( i n t 2 dt : SV DispatchThread ID)
{

f l o a t 4 e [ 7 ] ; // 28 s l o t s , we use the f i r s t 25
LoadNeighbors ( i npu t , dt , e ) ;
minmax16( e ) ; // D i s ca rd min/max o f v0 . . v15 (2 n+1=25, n+2<16).
e [ 0 ] [ 0 ] = e [ 6 ] [ 0 ] ; // Copy v24 to v0 s l o t .
e [ 3 ] [ 3 ] = e [ 5 ] [ 3 ] ; // Copy v23 to v15 s l o t .
minmax16( e ) ; // D i s ca rd min/max o f v0 . . v15 (2 n+1=23, n+2<16).
e [ 0 ] [ 0 ] = e [ 5 ] [ 2 ] ; // Copy v22 to v0 s l o t .
e [ 3 ] [ 3 ] = e [ 5 ] [ 1 ] ; // Copy v21 to v15 s l o t .
minmax12( e ) ; // D i s ca rd min/max o f v0 . . v11 (2 n+1=21, n+2=12).
e [ 0 ] [ 0 ] = e [ 5 ] [ 0 ] ; // Copy v20 to v0 s l o t .
e [ 2 ] [ 3 ] = e [ 4 ] [ 3 ] ; // Copy v19 to v11 s l o t .
minmax12( e ) ; // D i s ca rd min/max o f v0 . . v11 (2 n+1=19, n+2<12).
e [ 0 ] [ 0 ] = e [ 4 ] [ 2 ] ; // Copy v18 to v0 s l o t .
e [ 2 ] [ 3 ] = e [ 4 ] [ 1 ] ; // Copy v17 to v11 s l o t .
minmax12( e ) ; // D i s ca rd min/max o f v0 . . v11 (2 n+1=17, n+2<12).
e [ 0 ] [ 0 ] = e [ 4 ] [ 0 ] ; // Copy v16 to v0 s l o t .
e [ 2 ] [ 3 ] = e [ 3 ] [ 3 ] ; // Copy v15 to v11 s l o t .
minmax12( e ) ; // D i s ca rd min/max o f v0 . . v11 (2 n+1=15, n+2<12).
e [ 0 ] [ 0 ] = e [ 3 ] [ 2 ] ; // Copy v14 to v0 s l o t .
e [ 2 ] [ 3 ] = e [ 3 ] [ 1 ] ; // Copy v13 to v11 s l o t .
minmax8 ( e ) ; // D i s ca rd min/max o f v0 . . v7 (2 n+1=13, n+2=8).
e [ 0 ] [ 0 ] = e [ 3 ] [ 0 ] ; // Copy v12 to v0 s l o t .
e [ 1 ] [ 3 ] = e [ 2 ] [ 3 ] ; // Copy v11 to v7 s l o t .
minmax8 ( e ) ; // D i s ca rd min/max o f v0 . . v7 (2 n+1=11, n+2<8).
e [ 0 ] [ 0 ] = e [ 2 ] [ 2 ] ; // Copy v10 to v0 s l o t .
e [ 1 ] [ 3 ] = e [ 2 ] [ 1 ] ; // Copy v9 to v7 s l o t .
minmax6 ( e ) ; // D i s ca rd min/max o f v0 . . v5 (2 n+1=9, n+2=6).
e [ 0 ] . x = e [ 2 ] . x ; // Copy v8 to v0 s l o t .
minmax5 ( e ) ; // D i s ca rd min/max o f v0 . . v4 (2 n+1=7, n+2=5).
e [ 0 ] . x = e [ 1 ] . w ; // Copy v7 to v0 s l o t .
minmax4 ( e ) ; // D i s ca rd min/max o f v0 . . v3 (2 n+1=5, n+2=4).
e [ 0 ] . x = e [ 1 ] . z ; // Copy v6 to v0 s l o t .
minmax3 ( e ) ; // So r t v0 , v1 , and v2 .
output [ dt ] = e [ 0 ] . y ; // Return the median v1 .

}

LISTING 7.23: The compute shader for 5× 5 median filtering.

The LoadNeighbors and minmaxN functions are defined in the included hlsli file
to be shared by all median filter shaders. Although this example shows hard-
coded numbers for radius five, the actual shader code uses macros to generate
these.

On my AMD 7970 graphics card for a 1024× 1024 image, the 5× 5 filter
runs at 2500 frames per second, which is orders of magnitude faster than the
60 frames per second for the insertion-sort approach. Clearly, the absence of
looping and branching in the min-max approach is superior and shows you
just how expensive looping and branching can be on the GPU.
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FIGURE 7.8: A level surface for a single voxel.

7.9 Level Surface Extraction

Consider a continuous function F (x, y, z) defined on a domain that is an
axis-aligned solid box [xmin, xmax]× [ymin, ymax]× [zmin, zmax] and with range
[fmin, fmax]. A level set is defined by the implicit equation F (x, y, z) = L for
L ∈ [fmin, fmax]. The number L is said to a level value. The level set contains
topological objects, potentially of mixed dimension. For practical purposes,
though, we are interested in those objects that are locally two-dimensional;
these are referred to as isosurfaces or level surfaces.

In image processing, the function F (x, y, z) is built from a 3D regular lat-
tice of function samples. For example, in medical imaging the samples can be
magnetic resonance images (MRI) or computed tomography (CT). In other
application domains, the samples can be scalar measurements from physi-
cal processes. The regular lattice has size N0 × N1 × N2 with integer points
(i0, i1, i2), where 0 ≤ ij < Nj for all j. A voxel is a rectangular solid whose cor-
ners are eight neighboring lattice points (i0, i1, i2), (i0+1, i1, i2), (i0, i1+1, i2),
(i0 + 1, i1 + 1, i2), (i0, i1, i2 + 1), (i0 + 1, i1, i2 + 1), (i0, i1 + 1, i2 + 1), and
(i0 + 1, i1 + 1, i2 + 1). Figure 7.8 illustrates the level surface contained by a
single voxel. Each corner of the voxel has an associated function value. Four
of these are shown in Figure 7.8, one positive and three negative. Assuming
the function values vary continuously, each edge connecting a positive and
negative value must have a point where the function is zero. The level surface
F (x, y, z) = 0 necessarily passes through those zero points, as illustrated by
the triangularly shaped surface drawn in gray.

A standard isosurface extraction algorithm for a 3D image is the Marching
Cubes algorithm [23][?]. The algorithm analyzes each voxel in the image and
determines whether the isosurface intersects it. If so, the algorithm produces
a triangle mesh that approximates the isosurface inside the voxel. To simplify
the algorithm, the function values at the corners are required to be positive
or negative and the level value is required to be zero. The latter constraint is
not restrictive, because you can always reformulate the level set F (x, y, z) = L
as the zero level set of G(x, y, z) = F (x, y, z) − L. The former constraint of
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nonzero function values prevents the isosurface from containing voxel corners.
This leads to a table lookup for the triangle meshes with 256 entries (two
possible signs at the eight corners). The constraint is generally not an issue.
For example, medical image data tends to be integer valued. The isosurfaces
produced by a level value that is exactly an integer I are usually not much
different from those produced by a level value that is a floating-point number
I + ε for a small number ε.

The strength of this algorithm is the speed in which the triangle meshes
are generated for the entire isosurface, the performance due to the simplicity
of the table lookups. The original algorithm had a topological flaw. Two voxels
sharing a face with alternating signs at the four corners might lead to triangle
meshes that do not form a continuous mesh across the face. This problem
can be fixed by carefully implementing the table to deal with meshes and
reflections of them, depending on the sign data. The consequence, though,
is that the triangle mesh produced for the level set F = L can be different
from the triangle mesh produced by the level set −F = −L. The meshes are
not always consistent with those produced by truly assuming the voxel corners
produce a function via trilinear interpolation, but in practice this is usually not
a problem. If it is, you can use an ear-clipping algorithm that is consistent with
a trilinear function, one that I described in [9]. The ear-clipping algorithm,
though, is more complicated to implement on a GPU.

The table lookup leads to twenty-one distinct triangle-mesh configurations.
Each configuration can occur with different orientations depending on the
signs at the corners. Figures 7.9 through 7.10 show the configurations, each
labeled with a name to describe the sign patterns at the corners. In the source
code, the signs are stored in an 8-bit quantity, where a 0-bit denotes a positive
sign and a 1-bit denotes a negative sign. The cubes that are shown are oriented
so that the corners are 3-tuples with components either zero or one. The
corner (0, 0, 0) is the one farthest from view. The z-axis is upward, the y-axis
is rightward, and the x-axis points out of the plane of the page although it
is drawn askew at a 45-degree angle for perspective. The indexing is: (0, 0, 0)
has index 0, (1, 0, 0) has index 1, (0, 1, 0) has index 2, (1, 1, 0) has index 3,
(0, 0, 1) has index 4, (1, 0, 1) has index 5, (0, 1, 1) has index 6, and (1, 1, 1) has
index 7.

GTEngine has a class called MarchingCubes that is used to generate a table
of information about the vertices and triangles in a voxel determined by the
8-bit sign index for the voxel corners. The maximum number of vertices for
a voxel mesh is twelve, because the voxel has twelve edges. The maximum
number of triangles is five, which you can count for yourself in Figures 7.9
through 7.10. The table is stored as a 2D array of integers, table[256][41],
where the row index represents the 256 possible 8-bit sign indices. For the
configuration i, table[i][0] stores the number of vertices and table[i][1] stores the
number of triangles.

The twenty-four entries table[i][2] through table[i][25] store up to twelve pairs
of voxel corner indices. Each pair identifies a voxel edge that contains a vertex,
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FIGURE 7.9: Triangle mesh configurations (part 1).

so the number of pairs is the same as the number of vertices. The pair of indices
are always listed with smallest first and largest second. These numbers are used
for linear interpolation of the function values at the voxel corners in order to
identity where on the edge the mesh vertex lives.

The fifteen entries table[i][26] through table[i][40] store up to five triples of
indices that represent triangles in the mesh. The indexing is for the pairs of
voxel corner indices, effectively telling you which vertices form the triangle.
The index ordering is such that the triangle is counterclockwise oriented when
viewed from the negative side of the zero-valued level surface.

For example, the configuration Bit 5 FaceDiag-FaceDiag has nine vertices
and five triangles. Vertex v0 is associated with the pair (0, 1), where 0 is
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FIGURE 7.10: Triangle mesh configurations (part 2).
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associated with corner (0, 0, 0) and 1 is associated with corner (1, 0, 0). Vertex
v5 is associated with pair (1, 3) and vertex v6 is associated with pair (1, 5).
The triple of indices for the triangle formed by these three vertices is (0, 5, 6).
The ordering is counterclockwise when viewed from the negative side of the
level surface, say, from the corner (1, 0, 0) that has a negative function value.
The table in full is

i n t i = 0 x29 ; // s i g n b i t s , b i n a r y 00101001 (−−+−+−−+)
t a b l e [ i ] [ 0 ] = 9 ;
t a b l e [ i ] [ 1 ] = 5 ;
t a b l e [ i ] [ 2 . . 2 5 ] = {0 ,1 ,0 ,4 ,0 ,2 ,2 ,3 ,3 ,7 ,1 ,3 ,1 ,5 ,5 ,7 ,4 ,5 , x , x , x , x , x , x } ;
t a b l e [ i ] [ 2 4 . . 4 0 ] = {0 ,5 ,6 ,1 ,8 ,7 ,1 ,7 ,2 ,2 ,7 ,4 ,2 ,4 ,3} ;

The sample application illustrating the concepts is

GeometricTools/GTEngine/Samples/Imagics/SurfaceExtraction

Two different algorithms are presented for the extraction, the second one the
preferred one for optimal performance. A function is generated as a sum of
Gaussian distributions in order to produce multiple components for various
level values.

The first algorithm uses the compute shader in ExtractSurface.hlsl. The in-
puts are the Marching Cubes lookup table (structured buffer), the 3D image
from which level surfaces will be extracted (3D texture), and a constant buffer
with the level value of interest. The buffer also had the dimensions of a voxel,
because some image applications require this; for example, medical images
usually have a real-world measurement for the voxel size, say, in millimeters
per dimension. The output is an append buffer, because it is unknown how
many voxels actually contain the level surface. The append buffer uses a data
structure that stores the bit-sign index and the information obtained from the
Marching Cubes table lookup. It also stores the linearly interpolated function
values along the edges so that we know where the vertices lie on the voxel
edges. Keep in mind that the order of GPU thread execution is not determin-
istic, so the order of the voxels in the append buffer can vary for each call
using the same level value. If you need a spatially organized set of voxels that
contain the level surface, you can always allocate a structured buffer that has
the same number of elements as the original image, but this can consume a
large amount of GPU memory. The compute shader cannot produce index
buffer outputs directly, so the append buffer is read back from the GPU so
that the CPU can construct the triangle mesh, this using the sample applica-
tion CreateMesh function. The triangle mesh is then uploaded to the GPU for
drawing. The memory transfer between the GPU and CPU is a bottleneck in
the application.

The second algorithm uses the SV VertexID semantic in D3D11 so you can
use the drawing subsystem to pass the indices of the index buffer represent-
ing the triangles instead of the actual vertices. This mechanism facilitates the
interoperability of compute shaders with vertex, geometry, and pixel shaders;
that is, compute shaders can generate information in structured buffers and
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FIGURE 7.11: Surface extraction for two level values.

textures, and these resources can be attached to vertex, geometry, and pixel
shaders to be accessed via the indices passed to the vertex shader. The com-
pute shader in ExtractSurfaceIndirect.hlsl is similar to the previous compute
shader except that the only information returned in the voxel buffer is the
1D index of the voxel relative to the 3D image and the bit-sign index that is
used in the Marching Cubes table lookup.

In this algorithm, the append buffer is not read back to the CPU. However,
the number of elements in the append buffer is read back—this is a single
4-byte integer, so the memory transfer is not a bottleneck. We have vertex,
geometry, and pixel shaders in the file DrawSurfaceIndirect.hlsl. The drawing call
specifies that we will draw points, but in this case the indices are just those
between zero and the number of elements in the append buffer. The append
buffer is attached to the vertex shader. When the vertex shader receives an
index, it extracts the voxel index and bit-sign index and passes them to the
geometry shader. The geometry shader does the work of interpolating the
edges for the voxel at hand in order to generate 3D points for the vertices,
and then it creates the triangles using information from the Marching Cubes
table.

The performance between the two methods is noticeable, mainly because
the large GPU-CPU memory transfers are not present in the second method.
On my AMD 7970, the first method runs at 612 frames per second for level
value 0.5 and at 80 frames per second for level value 0.01. The program slows
down for smaller level values, because there are more voxels that contain
portions of the triangle mesh and so the GPU-CPU transfer involves more
data. The second method runs at 1375 frames per second for level value 0.5
and at 914 frames per second for level value 0.01. Either method produces the
same output, shown in Figure 7.11. The figures are drawn in grayscale. The
actual program displays them with various colors, and you can toggle between
solid display and wireframe display.
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7.10 Mass-Spring Systems

A deformable body can be modeled as a system of particles (point masses)
connected by springs. One-dimensional arrays are good for modeling hair or
rope, two-dimensional arrays are good for modeling cloth or water surfaces,
and three-dimensional arrays are good for modeling solid blobs, say, of gelati-
nous material.

Arbitrary topologies are also allowed, so in general suppose you have a
mass-spring system of p particles where particle i has mass mi (possibly in-
finite) and location Xi. The system has springs, modeled using Hooke’s law.
The spring attaching particle i to particle j has spring constant cij and resting
length Lij . Let Ai denote the set of indices j for which particle j is connected
to particle i by a spring. The equation of motion for particle i is

miẌi = Ii +Ei =
∑

j∈Ai

cij (|Xj −Xi| − Lij)
Xj −Xi

|Xj −Xi|
+Ei (7.40)

where the terms of the summation for Ii are the internal forces due to the
springs. The external forcesE are generated by wind, gravity, or simply pulling
on the particles. The particle positions may be listed in a single tuple

X = (X0, . . . ,Xn−1) (7.41)

and the internal and external forces divided by the masses may be listed in a
single tuple,

F = ((I0 +E0)/m0, . . . , (In−1 +En−1)/mn−1) (7.42)

If you want a particle to be immovable, you can assign it infinite mass. In
practice, you assign zero to the inverse mass 1/m. Equation (7.40) is concisely
written as a system of second-order differential equations,

Ẍ = F(t,X, Ẍ) (7.43)

where the right-hand side indicates that F can vary with time, position, and
velocity. This can be reduced further to a system of first-order differential
equations by choosing V = Ẋ, in which case V̇ = Ẍ and

Ṡ =

[

Ẋ

V̇

]

=

[

V

F(t,X,V)

]

= G(t,S) (7.44)

where S is the state vector of positions and velocity and G(t,S) is a concise
representation of the right-hand side of the system of differential equations.

To simulate the mass-spring system, we need to implement a numerical
solver for the first-order system of differential equations. I choose to use a
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Runge–Kutta fourth-order method whose input is the current time ti and
current state Si and whose output is the state Si+1 at the next time ti+1 =
ti + h for a small time step h > 0:

K1 = G(ti,Si)
K2 = G(ti + h/2,Si + hK1/2)
K3 = G(ti + h/2,Si + hK2/2)
K4 = G(ti + h,Si + hK3)
Si+1 = Si + h(K1 + 2K2 + 2K3 +K4)/6

(7.45)

Equation (7.40) can be specialized for arrays of particles. For a 1D array,
each particle has two neighbors. Let the spring connecting particle j to particle
j + 1 have spring constant cj and resting length Lj . Define the Hooke’s law
term

Hj = cj (|Xj+1 −Xj | − Lj)
Xj+1 −Xj

|Xj+1 −Xj |
(7.46)

The equation of motion for the particle is

miẌi = Hi−1 +Hi +Ei (7.47)

For a 2D array, each particle has four neighbors. Let the spring connecting par-
ticle (j0, j1) to particle (k0, k1) have spring constant cj0,j1 and resting length
Lj0,j1 . Define the Hooke’s law term

Hj0,j1 = cj0,j1 (|Xk0,k1
−Xj0,j1 | − Lj0,j1)

Xk0,k1
−Xj0,j1

|Xk0,k1
−Xj0,j1 |

(7.48)

The equation of motion for the particle is

mi0,i1Ẍi0,i1 = Hi0−1,i1 +Hi0+1,i1 +Hi0,i1−1 +Hi0,i1+1 +Ei0,i1 (7.49)

For a 3D array, each particle has six neighbors. Let the spring connecting
particle (j0, j1, j2) to particle (k0, k1, k2) have spring constant cj0,j1,j2 and
resting length Lj0,j1,j2 . Define the Hooke’s law term

Hj0,j1,j2 =

cj0,j1,j2 (|Xk0,k1,k2
−Xj0,j1,j2 | − Lj0,j1,j2)

Xk0,k1,k2
−Xj0,j1,j2

|Xk0,k1,k2
−Xj0,j1,j2

|

(7.50)

The equation of motion for the particle is

mi0,i1,i2Ẍi0,i1,i2 = Hi0−1,i1,i2 +Hi0+1,i1,i2 +Hi0,i1−1,i2

+Hi0,i1+1,i2 +Hi0,i1,i2−1 +Hi0,i1,i2+1 +Ei0,i1,i2
(7.51)

The sample application

GeometricTools/GTEngine/Samples/Physics/MassSprings3D



400 GPGPU Programming for Games and Science

is an implementation of Equation (7.51) using the numerical method of Equa-
tion (7.45) for both the CPU and GPU in order to compare performance.
The graphics are not particularly pretty. The mass-spring system has size
32× 32× 32. The outer shell of particles are set to have infinite mass so that
they cannot move. This prevents the cube of masses from collapsing into its
center. The faces of the cube of masses are vertex colored, each face having
a distinct color. The only external force is viscous friction, where each parti-
cle’s velocity is dampened by the coefficient of viscosity whose value is 0.1. As
the simulation is executed, you can see the particles on the cube faces move
about slightly. A more visually interesting application is the gelatin cube of
[9], where the cube has semitransparent textured faces and only 6× 6× 6 par-
ticles. However, the particle positions are used as control points for a Bézier
volume function, which adds smoothness to the motion. And that application
runs on the CPU. As an exercise, you can modify the mass-spring application
of this book to have the same visual appearance.

The differential equation update occurs as eight separate loops to compute
in order: K1, Si + hK1/2, K2, Si + hK2/2, K3, Si + hK3, K4, and Si +
h(K1 + 2K2 + 2K3 +K4). This is encapsulated by class CpuMassSpringVolume

for CPU computing. The GPU version is in class GpuMassSpringVolume but the
differential equation solver is contained in eight different HLSL shaders. These
shaders have no tricks to deal with CPU-GPU differences. The Runge–Kutta
solver is a straightforward implementation for either processor.

As expected, the performance difference is striking. The CPU version of
the mass-spring system executes at 33 frames per second. The GPU version
runs on my AMD 7970 graphics card at 2300 frames per second.

7.11 Fluid Dynamics

Consider a fluid in space (2D or 3D) that has velocity u(x, t) and density
ρ(x, t), each dependent on spatial location x and time t. A simplified model
of fluid flow is presented in [54], and a detailed derivation of the model from
conservation laws and with simplifying assumptions is provided in [9]. The
model is suitable for computing on a GPU, thus providing real-time fluid
simulations. The modeling equations are

∂u
∂t + (u · ∇)u = νvel∇2u+ Fvel, conservation of momentum
∂ρ
∂t + (u · ∇)ρ = νden∇2ρ+ Fden, conservation of mass

∇ · u = 0, incompressible fluid

(7.52)

where ∇ is the gradient operator, ∇2 = ∇ · ∇ is the Laplacian operator, νvel
and νden are viscosity coefficients (positive constants), Fvel(x, t) is an external
source of acceleration (for example, due to wind or gravity), and Fden(x, t) is
an external source (or sink) of density.
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The fluid is confined to a bounded region of space R that has boundary
B. The initial conditions for velocity and density must be specified within the
region,

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), x ∈ R (7.53)

for user-defined functions u0 and ρ0.
The boundary conditions must be specified also for all time. For simplic-

ity, the density is required to be zero on the boundary and the velocity is
required to have zero component in the normal direction to the boundary.
These conditions are based on the requirement of confinement. No mass is
at the boundary of the region (density is zero) and no mass may escape the
region due to motion (velocity has zero component normal to the boundary):

n(x) · u(x, t) = 0, ρ(x, t) = 0, x ∈ B, t ≥ 0 (7.54)

where n(x) is the unit-length outer-pointing normal vector to the boundary
point x.

7.11.1 Numerical Methods

The classical approach to solve the first two of Equations (7.52) uses fi-
nite difference estimates for the derivatives. The time derivative is estimated
by a forward difference and the spatial derivatives are estimated by centered
differences. The numerical method is usually conditionally stable, requiring
small time steps in the simulation. Creating an implicit equation with the
right-hand-side terms involving t+∆t (the time we want new state informa-
tion) rather than time t is a reasonable alternative that may be solved using
Gauss-Seidel iteration. In the case at hand, the terms (u · ∇)ρ and (u · ∇)u
lead to a complicated set of equations to iterate.

A third possibility takes advantage of the left-hand-sides of the first two
of Equations (7.52) being material derivatives. The fluid flow may be thought
of as particles traveling along curves with time-varying positions, say, x(t).
These curves are referred to as flow lines where the particles travel along the
curves with velocity x′(t) = u(t). The time-varying density is related to how
the particles move: h(t) = ρ(x(t), t). The time derivative is

h′(t) =
∂ρ

∂t
+ x′(t) · ∇ρ =

∂ρ

∂t
+ (u · ∇)ρ =

(

∂

∂t
+ u · ∇

)

ρ =
Dρ

Dt
(7.55)

where D/Dt = ∂/∂t+ u · ∇ is the material derivative operator. Similarly, if
g(t) = u(x(t), t), then g′(t) = Du/Dt. Define the state vector that consists of
density and velocity to be S(t) = (g(t), h(t)), define the differential operator
L = (νvel∇2, νden∇2), and define the external source F = (Fvel, Fden). The
initial condition is S(0) = (u0, ρ0). In vectorized form, Equations (7.52) are
then

∂S(x,t)
∂t = LS(x, t) + F(x, t), ∇ · u(x, t) = 0, x ∈ R, t ≥ 0

S(x, 0) = (u0(x), ρ0(x)), x ∈ R

(n(x), 1) · S(x, t) = 0, x ∈ B, t ≥ 0

(7.56)
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We use the following estimate for the material derivative of S:

S′(t)
.
=

S(x(t), t+∆t)− S(x(t−∆t), t)

∆t
(7.57)

The right-hand side in the limit as ∆t approaches zero becomes S′(t). This
allows us to compute the next state at the current position using the current
state at the last position, thus simplifying the numerical computations. Let L̂
represent the operator corresponding to centered differences for estimates of
spatial derivatives. The numerical method for solving the first two of Equations
(7.52) is

S(x(t), t+∆t) = S(x(t−∆t), t) + ∆t

(

L̂S(x(t), t) + F(x(t), t)
)

(7.58)

The left-hand side of the equation is the state vector we want to compute for
the next time t+∆t. The right-hand side of the equation requires computing
the sources at the current time t. It also requires looking up the state vector at
the previous time t−∆t but along flow lines. This mechanism is referred to as
advection. We can estimate the previous state by using the backward difference
u(x(t), t)

.
= (x(t) − x(t − ∆t))/∆t; that is, x(t − ∆t)

.
= x(t) − ∆tu(x(t), t).

Given the current position and time, we can estimate the previous position
and look up the state vector at that position at the previous time. On a regular
grid, the previous position is usually not at a grid point, so we will use linear
interpolation to approximate the previous state vector. The final formulation
of the numerical method is listed next, where we have dropped the notation
about position depending on time:

S(x, t+∆t) = S(x −∆tu(x, t), t) + ∆t

(

L̂S(x, t) + F(x, t)
)

(7.59)

The left-hand side is the new state (time t + ∆t) at a grid position x, and
it depends on the right-hand side that contains information only about the
current state (time t) in a neighborhood of the grid position.

The update of the state vector has approximation errors, so the estimated
velocity does not necessarily have a divergence of zero. A velocity vector field u

may be decomposed as u = −∇φ+∇×g; this is referred to as the Helmholtz de-
composition. Dotting the decomposition with the gradient operator, the func-
tion φ must be a solution to ∇2φ = −∇ · u. If u is the output from the state
vector update, we need to modify it to have divergence of zero, û = u+∇φ.
Observe that ∇ · û = ∇ · u + ∇2φ = 0. Thus, we must solve the Poisson
equation ∇2φ = −∇ · u for φ, compute its gradient, and update the velocity
to û. The numerical method for solving the Poisson equation involves cen-
tered difference estimates for the spatial partial derivatives and Gauss-Seidel
iteration to solve the set of linear equations produced by the estimates. We
need a boundary condition for the Poisson equation. In the theoretical case of
∇ · u = 0, we can choose φ = 0, which suggests that the boundary values for
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φ should be zero. This process is summarized next but with the dependence
on t not shown,

∇2φ(x) = −∇ · u(x), x ∈ R

φ(x) = 0, x ∈ B

û(x) = u(x) +∇φ(x), x ∈ R

n(x) · û(x) = 0, x ∈ B

(7.60)

High-level pseudocode for the numerical solver is shown in Listing 7.24.

t = 0 ;
dt = <sma l l p o s i t i v e t ime step >;

// any s e tup f o r F( x , t ) i n Equat ion ( 7 . 5 6 )
I n i t i a l i z e S o u r c e s ( ) ;

// Compute S( x , 0 ) i n Equat ion ( 7 . 5 6 ) . To suppo r t a d v e c t i o n on the
// f i r s t update , s e t S ( x,−dt ) = S( x , 0 ) .
I n i t i a l i z e V e l o c i t y A n dD e n s i t y ( ) ;

// c o n s t r a i n t i n Equat ion ( 7 . 5 6 ) f o r S( x , 0 ) and S( x ,−dt )
En f o r c eVe l o c i t yAndDen s i t yBounda r yCons t r a i n t ( ) ;

DoForever
{

// Compute S( x , t+dt ) from S( x , t ) and S ( x , t−dt ) .
ComputeNextState ( ) ;

// c o n s t r a i n t f o r S ( x , t+dt )
En f o r c eVe l o c i t yAndDens i t yBounda r yCons t r a i n t ( ) ;

// Update the v e l o c i t y to have a ze ro d i v e r g en c e .
ComputeD i ve rgenceO fVe l o c i t y ( ) ;
So l vePo i s s onEqua t i onFo rPh i ( ) ;
En fo r cePh iBounda r yCon s t r a i n t ( ) ;
AddGrad i en tPh iToVe l oc i t y ( ) ;
E n f o r c eVe l o c i t yBounda r yCon s t r a i n t ( ) ;

t += dt ;
} ;

LISTING 7.24: Pseudocode for the high-level fluid simulation.

Actual implementations for 2D and 3D are provided in the source code that
accompanies the book. They are described in the next sections.

7.11.2 Solving Fluid Flow in 2D

The sample application is found at

GeometricTools/GTEngine/Samples/Physics/Fluids2D

In the application, the 2D fluid is be confined to a square R = {(x, y) : 0 ≤
x ≤ 1, 0 ≤ y ≤ 1}. The boundary B consists of points for which x = 0, x = 1,
y = 0, or y = 1. The velocity is (u, v). The velocity boundary conditions are
u(0, y, t) = 0, u(1, y, t) = 0, v(x, 0, t) = 0, and v(x, 1, t) = 0.

We partitionR into anN0×N1 grid, each grid cell a rectangle of dimensions
∆x = 1/N0 and ∆y = 1/N1. Centered finite differences are used for L̂ in
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Equation (7.59),

Sxx(x, y, t)
.
=

S(x+∆x, y, t)− 2S(x, y, t) + S(x−∆x, y, t)

∆2
x

(7.61)

and

Syy(x, y, t)
.
=

S(x, y +∆y , t)− 2S(x, y, t) + S(x, y −∆y , t)

∆2
y

(7.62)

The update for state information is

S(x, y, t+∆t) = S(x−∆tu, y −∆tv, t)
+ λx ∗ (S(x+∆x, y, t)− 2S(x, y, t) + S(x−∆x, y, t))
+ λy ∗ (S(x, y +∆y, t)− 2S(x, y, t) + S(x, y −∆y, t))
+ ∆tF(x, y, t)

(7.63)

where λx = (∆t/∆
2
x)(νvel, νvel, νden), λy = (∆t/∆

2
y)(νvel, νvel, νden), and the ∗

operator denotes componentwise multiplication of tuples: (a, b, c) ∗ (d, e, f) =
(ad, be, cf).

In the compute shaders of the sample application, a constant buffer is
used to store the various physical parameters. The declaration in the shaders
and the creation and initialization are listed next. The naming conventions to
relate the two are clear. Listing 7.25 shows the setup code.

// From v a r i o u s HLSL f i l e s :
c b u f f e r Parameters
{

f l o a t 4 spaceDe l ta ; // ( dx , dy , 0 , 0)
f l o a t 4 h a l fD i vD e l t a ; // ( 0 . 5 / dx , 0 . 5/ dy , 0 , 0)
f l o a t 4 t imeDe l ta ; // ( dt /dx , dt /dy , 0 , dt )
f l o a t 4 v i s c o s i t y X ; // ( velVX , velVX , 0 , denVX)
f l o a t 4 v i s c o s i t y Y ; // ( velVX , velVY , 0 , denVY)
f l o a t 4 e p s i l o n ; // ( ep s i l onX , ep s i l onY , 0 , e p s i l o n 0 )

} ;

// From Smoke2D . cpp :
// Crea te the sha r ed pa ramete r s f o r many o f the s im u l a t i o n s h a d e r s .
f l o a t dx = 1 .0 f / s t a t i c c a s t<f l o a t >(mXSize ) ;
f l o a t dy = 1 .0 f / s t a t i c c a s t<f l o a t >(mYSize ) ;
f l o a t dtDivDxDx = ( dt /dx )/ dx ;
f l o a t dtDivDyDy = ( dt /dy )/ dy ;
f l o a t r a t i o = dx/dy ;
f l o a t r a t i o S q r = r a t i o ∗ r a t i o ;
f l o a t f a c t o r = 0 .5 f / ( 1 . 0 f + r a t i o S q r ) ;
f l o a t ep s i l o nX = f a c t o r ;
f l o a t ep s i l o nY = r a t i o S q r ∗ f a c t o r ;
f l o a t e p s i l o n 0 = dx∗dx∗ f a c t o r ;
f l o a t const d e nV i s c o s i t y = 0.0001 f ;
f l o a t const v e l V i s c o s i t y = 0.0001 f ;
f l o a t denVX = d enV i s c o s i t y ∗dtDivDxDx ;
f l o a t denVY = d enV i s c o s i t y ∗dtDivDyDy ;
f l o a t velVX = v e l V i s c o s i t y ∗dtDivDxDx ;
f l o a t velVY = v e l V i s c o s i t y ∗dtDivDyDy ;
mParameters . r e s e t (new Cons tan tBu f f e r ( s i z e o f ( Parameters ) , f a l s e ) ) ;
Parameters& p = ∗mParameters−>GetAs<Parameters >();
p . s paceDe l ta = Vector4<f l o a t >(dx , dy , 0 .0 f , 0 . 0 f ) ;
p . h a l fD i vD e l t a = Vector4<f l o a t >(0.5 f /dx , 0 .5 f /dy , 0 .0 f , 0 . 0 f ) ;
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p . t imeDe l ta = Vector4<f l o a t >(dt /dx , dt /dy , 0 .0 f , dt ) ;
p . v i s c o s i t y X = Vector4<f l o a t >(velVX , velVX , 0 .0 f , denVX ) ;
p . v i s c o s i t y Y = Vector4<f l o a t >(velVY , velVY , 0 .0 f , denVY ) ;
p . e p s i l o n = Vector4<f l o a t >(ep s i l onX , ep s i l onY , 0 .0 f , e p s i l o n 0 ) ;

LISTING 7.25: Setup of constant buffers for the 2D fluid simulation.

The fluid grid has mXSize columns and mYSize rows, which are both 256 in the
application. The time step dt is chosen to be 0.001.

7.11.2.1 Initialization of State

The initialization of velocity and density is implemented in the class
InitializeState. The assignments are in the constructor for the class. The initial
velocities are set to zero and the initial densities are set to random numbers
in [0, 1]. Textures storing state information at current time and previous time
are also created by the constructor. Listing 7.26 shows the pseudocode.

// I n i t i a l d e n s i t y v a l u e s a r e randomly gene ra ted .
s td : : mt19937 mte ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> un i r nd ( 0 . 0 f , 1 . 0 f ) ;
mDensity . r e s e t (new Texture2 (DF R32 FLOAT , xS i z e , yS i z e ) ) ;
f l o a t ∗ data = mDensity−>GetAs<f l o a t >();
f o r ( i n t i = 0 ; i < mDensity−>GetNumElements ( ) ; ++i , ++data )
{

∗data = un i rnd (mte ) ;
}

// I n i t i a l v e l o c i t y v a l u e s a r e z e ro .
mVeloc i t y . r e s e t (new Texture2 (DF R32G32 FLOAT , xS i z e , yS i z e ) ) ;
memset ( mVeloc i ty−>GetData ( ) , 0 , mVeloc i ty−>GetNumBytes ( ) ) ;

// The s t a t e s at t ime 0 and t ime −dt a r e i n i t i a l i z e d by a compute shade r .
mStateTm1 . r e s e t (new Texture2 (DF R32G32B32A32 FLOAT , xS i z e , yS i z e ) ) ;
mStateTm1−>SetUsage ( Resource : : SHADER OUTPUT ) ;
mStateT . r e s e t (new Texture2 (DF R32G32B32A32 FLOAT , xS i z e , yS i z e ) ) ;
mStateT−>SetUsage ( Resource : : SHADER OUTPUT ) ;

LISTING 7.26: Selection of initial state for 2D fluids.

The compute shader is trivial as is the GTEngine code that creates an
instance and executes the shader, as shown in Listing 7.27.

// From I n i t i a l i z e S t a t e . h l s l :
Texture2D<f l o a t> d e n s i t y ;
Texture2D<f l o a t 2> v e l o c i t y ;
RWTexture2D<f l o a t 4> stateTm1 ;
RWTexture2D<f l o a t 4> s ta teT ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

f l o a t 4 i n i t i a l = f l o a t 4 ( v e l o c i t y [ c . xy ] , 0 . 0 f , d e n s i t y [ c . xy ] ) ;
stateTm1 [ c . xy ] = i n i t i a l ;
s t a t eT [ c . xy ] = i n i t i a l ;

}

// From I n i t i a l i z e S t a t e . cpp :
// Crea te the shade r f o r i n i t i a l i z i n g v e l o c i t y and d e n s i t y .
HLSLDef iner d e f i n e r ;
d e f i n e r . S e t I n t ( ”NUM X THREADS” , numXThreads ) ;
d e f i n e r . S e t I n t ( ”NUM Y THREADS” , numYThreads ) ;
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m I n i t i a l i z e S t a t e . r e s e t (
Shade rFacto r y : : CreateCompute ( ” I n i t i a l i z e S t a t e . h l s l ” , d e f i n e r ) ) ;

m I n i t i a l i z e S t a t e−>Set ( ” d e n s i t y ” , mDensity ) ;
m I n i t i a l i z e S t a t e−>Set ( ” v e l o c i t y ” , mVe l oc i t y ) ;
m I n i t i a l i z e S t a t e−>Set ( ” stateTm1 ” , mStateTm1 ) ;
m I n i t i a l i z e S t a t e−>Set ( ” s ta teT ” , mStateT ) ;

// From I n i t i a l i z e S t a t e . cpp ( i n a wrapper f o r e x e cu t i o n ) :
eng ine−>Execute ( m I n i t i a l i z e S t a t e , mNumXGroups , mNumYGroups , 1 ) ;

LISTING 7.27: Initial state computations 2D fluids, both for the CPU and
the GPU.

7.11.2.2 Initialization of External Forces

The external density control in Equation (7.52) has a source, a sink, and
is constant for all time. Thus, fluid is added at one location in the square and
removed at another location.

Fden(x, y) = A0 exp
(

− |(x−x0,y−y0)|
2

2σ2
0

)

−A1 exp
(

− |(x−x1,y−y1)|
2

2σ2
1

)

(7.64)

where Ai > 0, σi > 0, and (xi, yi) ∈ (0, 1)2 are user-defined constants.
The external velocity control has three types of components. A constant

gravitational force G is applied. A wind force W is applied at the middle of
the left side of the square but is distributed as a Gaussian through a small
portion of space with direction towards the right. Finally, a sum of vortices
Vi gives the fluid local swirling effects. All external forces are constant over
time.

Fvel(x, y) = G+W(x, y) +
∑n−1

i=0 Vi(x, y)

=

[

g0
g1

]

+M0 exp
(

− (x−ξ0)
2

2s2
0

)

[

1
0

]

+
∑n

i=1 Mi exp
(

− |(x−ξi,y−ηi)|
2

2s2
i

)

[

(y − ηi)
−(x− ξi)

]

(7.65)

where gi, Mi > 0, si > 0, and (ξi, ηi) ∈ (0, 1)2 are user-defined constants.
The class InitializeSource manages the setup and evaluation of the external

forces. The constructor does the work, but the initialization is more compli-
cated than that for state initialization. If the number n of vortices is small,
we can generate the vortex contribution rapidly on the CPU. However, if n
is large, the start-up time for the application can be quite lengthy because
of the triple loop necessary to sum the n contributions at each pixel in the
image. In the application, I have chosen to use 1024 vortices. Unlike the den-
sity that is initialized to random numbers on the CPU, the parameters of the
external forces are selected on the CPU but the computations of the initial
source are all performed on the GPU. The InitializeSource constructor contains
code shown in Listing 7.28.
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// Crea te the r e s o u r c e s f o r g en e r a t i n g v e l o c i t y from v o r t i c e s .
mVortex . r e s e t (new Cons tan tBu f f e r ( s i z e o f ( Vortex ) , t r ue ) ) ;
mVe l oc i t y0 . r e s e t (new Texture2 (DF R32G32 FLOAT , xS i z e , yS i z e ) ) ;
mVeloc i ty0−>SetUsage ( Resource : : SHADER OUTPUT ) ;
mVe l oc i t y1 . r e s e t (new Texture2 (DF R32G32 FLOAT , xS i z e , yS i z e ) ) ;
mVeloc i ty1−>SetUsage ( Resource : : SHADER OUTPUT ) ;

// Crea te the r e s o u r c e s f o r g en e r a t i n g v e l o c i t y from wind and g r a v i t y .
mExterna l . r e s e t (new Cons tan tBu f f e r ( s i z e o f ( E x t e r n a l ) , f a l s e ) ) ;
E x t e r n a l& e = ∗mExterna l−>Data<Exte rna l >();
// ( x , y , v a r i a n c e , amp l i tude )
e . d en s i t yP r o du c e r = Vector4<f l o a t >(0.25 f , 0 . 75 f , 0 . 01 f , 2 . 0 f ) ;
// ( x , y , v a r i a n c e , amp l i tude )
e . d en s i t yConsumer = Vector4<f l o a t >(0.75 f , 0 . 25 f , 0 . 01 f , 2 . 0 f ) ;
// no g r a v i t y f o r t h i s sample
e . g r a v i t y = Vector4<f l o a t >(0.0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;
// ( x , y , v a r i a n c e , amp l i tude )
e . wind = Vector4<f l o a t >(0.0 f , 0 . 5 f , 0 .001 f , 32 .0 f ) ;
mSource . r e s e t (new Texture2 (DF R32G32B32A32 FLOAT , xS i z e , yS i z e ) ) ;
mSource−>SetUsage ( Resource : : SHADER OUTPUT ) ;

LISTING 7.28: Setup code for initialization of source forces for 2D fluids.

The mSource texture is initialized with the external forces.
The vortex generation occurs first and is passed to the initialization shader

so that gravity and wind forces may be added. The Parameters constant buffer
was mentioned previously and is omitted from the listings. The relevant HLSL
code is shown in Listing 7.29.

// From Genera teVor t ex . h l s l :
c b u f f e r Vortex
{

f l o a t 4 data ; // ( x , y , v a r i a n c e , amp l i tude )
} ;
Texture2D<f l o a t 2> i n V e l o c i t y ;
RWTexture2D<f l o a t 2> o u tV e l o c i t y ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

f l o a t 2 l o c a t i o n = spaceDe l ta . xy ∗( c . xy + 0 .5 f ) ;
f l o a t 2 d i f f = l o c a t i o n − data . xy ;
f l o a t arg = −dot ( d i f f , d i f f )/ data . z ;
f l o a t magnitude = data .w∗exp ( arg ) ;
f l o a t 2 v o r t e xV e l o c i t y = magnitude∗ f l o a t 2 ( d i f f . y , −d i f f . x ) ;
o u tV e l o c i t y [ c . xy ] = i n V e l o c i t y [ c . xy ] + v o r t e x V e l o c i t y ;

}

// From I n i t i a l i z e S o u r c e . h l s l :
c b u f f e r E x t e r n a l
{

f l o a t 4 d en s i t yP r o du c e r ; // ( x , y , v a r i a n c e , amp l i tude )
f l o a t 4 den s i t yConsumer ; // ( x , y , v a r i a n c e , amp l i tude )
f l o a t 4 g r a v i t y ; // ( x , y , ∗ , ∗)
f l o a t 4 wind ; // ( x , y , v a r i a n c e , amp l i tude )

} ;
Texture2D<f l o a t 2> v o r t e x V e l o c i t y ;
RWTexture2D<f l o a t 4> s o u r c e ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

// Compute the l o c a t i o n o f the p i x e l ( x , y ) i n no rma l i z ed [ 0 , 1 ] ˆ 2 .
f l o a t 2 l o c a t i o n = spaceDe l ta . xy ∗( c . xy + 0 .5 f ) ;
// Compute an i n p u t to the f l u i d s im u l a t i o n c o n s i s t i n g o f a p roduce r
// o f d e n s i t y and a consumer o f d e n s i t y .
f l o a t 2 d i f f = l o c a t i o n − d en s i t yP r o du c e r . xy ;
f l o a t arg = −dot ( d i f f , d i f f )/ d en s i t yP r o du c e r . z ;
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f l o a t d e n s i t y = den s i t yP r o du c e r .w∗exp ( arg ) ;
d i f f = l o c a t i o n − den s i t yConsumer . xy ;
a rg = −dot ( d i f f , d i f f )/ den s i t yConsumer . z ;
d e n s i t y −= dens i t yConsumer .w∗exp ( arg ) ;
// Compute an i n p u t to the f l u i d s im u l a t i o n c o n s i s t i n g o f g r a v i t y ,
// a s i n g l e wind source , and vo r t e x impu l s e s .
f l o a t w i ndD i f f = l o c a t i o n . y − wind . y ;
f l o a t windArg = −w i ndD i f f∗w i ndD i f f /wind . z ;
f l o a t 2 w i n dVe l o c i t y = { wind .w∗exp ( windArg ) , 0 .0 f } ;
f l o a t 2 v e l o c i t y = g r a v i t y . xy + w i ndVe l o c i t y + v o r t e xV e l o c i t y [ c . xy ] ;
s o u r c e [ c . xy ] = f l o a t 4 ( v e l o c i t y . xy , 0 .0 f , d e n s i t y ) ;

}

LISTING 7.29: HLSL code for generating vortices and other forces in 2D
fluids.

The creation of instances of the shader and the execution of them is shown
in Listing 7.30.

// From I n i t i a l i z e S o u r c e . cpp :
HLSLDef iner d e f i n e r ;
d e f i n e r . S e t I n t ( ”NUM X THREADS” , numXThreads ) ;
d e f i n e r . S e t I n t ( ”NUM Y THREADS” , numYThreads ) ;
mGenerateVortex . r e s e t (

Shade rFac to r y : : CreateCompute ( ” Gene ra teVo r tex . h l s l ” , d e f i n e r ) ) ;
mGenerateVortex−>Set ( ” Parameters ” , pa ramete r s ) ;
mGenerateVortex−>Set ( ”Vortex ” , mVortex ) ;
mGenerateVortex−>Set ( ” i n V e l o c i t y ” , mVe l oc i t y0 ) ;
mGenerateVortex−>Set ( ” o u tV e l o c i t y ” , mVe l oc i t y1 ) ;
m I n i t i a l i z e S o u r c e . r e s e t (

Shade rFac to r y : : CreateCompute ( ” I n i t i a l i z e S o u r c e . h l s l ” , d e f i n e r ) ) ;
m I n i t i a l i z e S o u r c e−>Set ( ” Parameters ” , pa ramete r s ) ;
m I n i t i a l i z e S o u r c e−>Set ( ” Ex t e r n a l ” , mExterna l ) ;
m I n i t i a l i z e S o u r c e−>Set ( ” s o u r c e ” , mSource ) ;

// From I n i t i a l i z e S o u r c e . cpp ( i n a wrapper f o r e x e cu t i o n ) :
// Compute the v e l o c i t y one vo r t e x at a t ime . A f t e r the l oop te rm ina te s ,
// the f i n a l v e l o c i t y i s s t o r ed i n mVe l oc i t y0 .
s td : : mt19937 mte ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> un i r nd ( 0 . 0 f , 1 . 0 f ) ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> symrnd (−1.0 f , 1 . 0 f ) ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> pos rnd0 (0 .001 f , 0 . 01 f ) ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> pos rnd1 (128 .0 f , 256 .0 f ) ;
memset ( mVeloc i ty0−>GetData ( ) , 0 , mVeloc i ty0−>GetNumBytes ( ) ) ;
Vortex& v = ∗mVortex−>GetAs<Vortex >();
f o r ( i n t i = 0 ; i < NUM VORTICES; ++i )
{

v . data [ 0 ] = un i r nd (mte ) ;
v . data [ 1 ] = un i r nd (mte ) ;
v . data [ 2 ] = posrnd0 (mte ) ;
v . data [ 3 ] = posrnd1 (mte ) ;
i f ( symrnd (mte ) < 0 .0 f ) { v . data [ 3 ] = −v . data [ 3 ] ; }
eng ine−>CopyCpuToGpu(mVortex ) ;
eng ine−>Execute ( mGenerateVortex , mNumXGroups , mNumYGroups , 1 ) ;
s td : : swap ( mVeloc i ty0 , mVe l o c i t y1 ) ;
mGenerateVortex−>Set ( ” i n V e l o c i t y ” , mVe l oc i t y0 ) ;
mGenerateVortex−>Set ( ” o u tV e l o c i t y ” , mVe l oc i t y1 ) ;

}

// Compute the s o u r c e s f o r the f l u i d s im u l a t i o n .
m I n i t i a l i z e S o u r c e−>Set ( ” v o r t e x V e l o c i t y ” , mVe l oc i t y0 ) ;
eng ine−>Execute ( m I n i t i a l i z e S o u r c e , mNumXGroups , mNumYGroups , 1 ) ;

LISTING 7.30: Shader creation and execution for initializing sources in 2D
fluids.
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The vortex parameters are randomly generated on the CPU, one vortex at
a time. The negation of v.data[3] reverses the direction of spin for the vortex—
also randomly selected. These parameters are uploaded as constant buffers
and then the shader is executed. The loop ping-pongs between two textures
for efficiency (no GPU-to-CPU copies). When all vortices are computed, the
result is in mVelocity0, which is then attached to the shader that computes the
gravity and wind forces. The vortex velocities are added to those.

The design for the remaining shader wrapper classes is similar to that for
InitializeState and InitializeSource. Resources are created, shaders are loaded from
disk and compiled, and an execution wrapper is provided for the simulation.
The remainder of the discussion focuses on the HLSL files themselves.

7.11.2.3 Updating the State with Advection

The update of state using advection and derivative estimation is encapsu-
lated in the class UpdateState, as shown in Listing 7.31. The Parameters constant
buffer is omitted from the listing.

// From UpdateState . h l s l :
Texture2D<f l o a t 4> s o u r c e ;
Texture2D<f l o a t 4> stateTm1 ;
Texture2D<f l o a t 4> s ta teT ;
Samp l e rS ta te advec t i onSamp l e r ; // b i l i n e a r , clamp
RWTexture2D<f l o a t 4> upda teSta te ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 2 dim ;
s ta teT . GetDimens ions ( dim . x , dim . y ) ;

i n t x = i n t ( c . x ) ;
i n t y = i n t ( c . y ) ;
i n t xm = max( x−1, 0 ) ;
i n t xp = min ( x+1, dim . x−1);
i n t ym = max( y−1, 0 ) ;
i n t yp = min ( y+1, dim . y−1);

// Sample s t a t e s at ( x , y ) , ( x+dx , y ) , ( x−dx , y ) , ( x , y+dy ) , ( x , y−dy ) .
f l o a t 4 s ta teZZ = s ta teT [ i n t 2 ( x , y ) ] ;
f l o a t 4 s ta tePZ = s ta teT [ i n t 2 ( xp , y ) ] ;
f l o a t 4 stateMZ = sta teT [ i n t 2 (xm , y ) ] ;
f l o a t 4 s ta teZP = s ta teT [ i n t 2 ( x , yp ) ] ;
f l o a t 4 stateZM = sta teT [ i n t 2 ( x , ym ) ] ;

// Sample the s o u r c e s t a t e at ( x , y ) .
f l o a t 4 s r c = s ou r c e [ i n t 2 ( x , y ) ] ;

// Es t ima te second−o r d e r d e r i v a t i v e s o f s t a t e at ( x , y ) .
f l o a t 4 stateDXX = statePZ − 2 .0 f∗ s ta teZZ + stateMZ ;
f l o a t 4 stateDYY = stateZP − 2 .0 f∗ s ta teZZ + stateZM ;

// Compute a d v e c t i o n .
f l o a t 2 tcd = spaceDe l ta . xy ∗( c . xy − t imeDe l ta . xy∗ s ta teZZ . xy + 0 .5 f ) ;
f l o a t 4 a d v e c t i o n = stateTm1 . SampleLeve l ( advec t i onSamp l e r , tcd , 0 .0 f ) ;

// Update the s t a t e .
upda teSta te [ c . xy ] = ad ve c t i o n +

( v i s c o s i t y X ∗stateDXX + v i s c o s i t y Y ∗stateDYY + t imeDe l ta .w∗ s r c ) ;
}

LISTING 7.31: HLSL code for updating the 2D fluid state with advection.
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The resources for compute shaders are accessed directly by index. The
dimensions of the texture are conveniently accessed by the HLSL function
GetDimensions. The SV DispatchThreadID system-value semantic provides a nat-
ural tuple into a grid. If a compute shader is called with (xt, yt, zt) threads
(the parameters in the [numthreads] statement) and (xg, yg, zg) groups (the pa-
rameters passed to the Dispatch call), then the dispatch ID (cx, cy, cz) satisfies

(0, 0, 0) ≤ (cx, cy, cz) < (xt, yt, zt) ∗ (xg, yg, zg) = (xtxg, ytyg, ztzg) (7.66)

In our case, the thread counts are NUM X THREADS, NUM Y THREADS, and 1.
The group counts are dim.x/NUM X THREADS, dim.y/NUM Y THREADS, and 1.
The dispatch thread ID c satisfies (0,0,0) <= (c.x,c.y,c.z) < (dim.x,dim.y,1). We
are guaranteed that the x and y values in the shader are within bounds for
the state texture. We need to access the four immediate neighbors to compute
centered finite differences, so the computation of xm, xp, ym, and yp must be
clamped to the image domain.1

The external force contributions are provided by the lookup into the
source texture. The finite difference approximations are stored in stateDXX

and stateDYY; observe that these computations are vectorized for speed—the
first two components are for the velocity and the last component is for density.

Recall that advection involves estimating the previous state at a subpixel
location; see Equation (7.63). That location is (x, y) −∆t(u, v), where (x, y)
is the current pixel center and (u, v) is the current velocity. Texture sampling,
though, requires a normalized texture coordinate in [0, 1]2. The shader code
float2 tcd = spaceDelta.xy*(c.xy - timeDelta.xy*stateZZ.xy + 0.5f) is the conversion
to such a coordinate. For an image of width W and height H , the standard
graphics mapping for a pixel (xp, yp) ∈ [0,W )× [0, H) to a texture coordinate
(xt, yt) ∈ [0, 1)2 is

(xt, yt) =

(

xp + 1/2

W
,
yp + 1/2

H

)

(7.67)

The term c.xy - timeDelta.xy*stateZZ.xy is in pixel coordinates. Adding 0.5f

and multiplying by spaceDelta.xy = (1/dim.x, 1/dim.y) = (1/W,1/H) converts the
pixel coordinates to texture coordinates. As always in compute shaders,
you must specify the miplevel, which requires a call to the HLSL function
SampleLevel rather than Sample.

The final statement is the update step and is also vectorized for speed.

7.11.2.4 Applying the State Boundary Conditions

The compute shaders are allowed to compute values on the image bound-
aries. Because we cannot guarantee the order in which GPU threads are called,
we cannot enforce boundary values until all state information is computed on

1Alternatively, we could have use nearest-neighbor sampling of the state texture using
the HLSL SampleLevel function call, which requires computing first a texture coordinate.
The sampler can then take care of the clamping to image domain.
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the image domain. Thus, enforcing the boundary conditions is a postprocess-
ing task. Multiple shaders are used for this task and use ping-pong buffers.
The shaders are executed in pairs.

The boundary condition n(x) · u(x, t) = 0 may be applied on the grid
solely by setting the appropriate velocity components to zero at the boundary
cells. However, this introduces some discontinuity in the velocity near the
boundary. To counteract this, a zero-derivative condition is also applied. The
grid cells adjacent to the boundary are copied to the boundary first, then the
appropriate components are set to zero.

One shader of the pair is responsible for copying the velocity information
from boundary-adjacent rows and columns adjacent to temporary buffers.
The other shader writes the information from the temporary buffers to the
boundary rows and columns and sets various components to zero. The process
is illustrated next using a small grid.

(u00, v00, ρ00) (u01, v01, ρ01) (u02, v02, ρ02) (u03, v03, ρ03)

(u10, v10, ρ10) (u11, v11, ρ11) (u12, v12, ρ12) (u13, v13, ρ13)

(u20, v20, ρ20) (u21, v21, ρ21) (u22, v22, ρ22) (u23, v23, ρ23)
(u30, v30, ρ30) (u31, v31, ρ31) (u32, v32, ρ32) (u33, v33, ρ33)

Copy v of columns 1 and 2:
→
v01
v11
v21
v31

v02
v12
v22
v32

Write v to columns 0 and 3 and zero u and ρ:
→
(0, v01, 0) (u01, v01, ρ01) (u02, v02, ρ02) (0, v02, 0)

(0, v11, 0) (u11, v11, ρ11) (u12, v12, ρ12) (0, v12, 0)

(0, v21, 0) (u21, v21, ρ21) (u22, v22, ρ22) (0, v22, 0)

(0, v31, 0) (u31, v31, ρ31) (u32, v32, ρ32) (0, v32, 0)

Copy u of rows 1 and 2:
→
0 u11 u12 0

0 u21 u22 0

Write u to rows 0 and 3 and zero v and ρ:
→
(0, 0, 0) (u11, 0, 0) (u12, 0, 0) (0, 0, 0)

(0, v11, 0) (u11, v11, ρ11) (u12, v12, ρ12) (0, v12, 0)
(0, v21, 0) (u21, v21, ρ21) (u22, v22, ρ22) (0, v22, 0)

(0, 0, 0) (u21, 0, 0) (u22, 0, 0) (0, 0, 0)

(7.68)
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The class EnforceStateBoundary encapsulates the boundary handling for ve-
locity and density. The compute shaders are listed next and executed in the
order specified. The shaders are compiled one at a time using conditional de-
fines to expose the main functions. Listing 7.32 has the relevant shader code.

// From En fo r ceSta teBounda ry . h l s l :
Texture2D<f l o a t 4> s t a t e ;
RWTexture1D<f l o a t> xMin ;
RWTexture1D<f l o a t> xMax ;
[ numthreads (1 , NUM Y THREADS, 1 ) ]
vo id CopyXEdge ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 2 dim ;
s t a t e . GetDimens ions ( dim . x , dim . y ) ;
xMin [ c . y ] = s t a t e [ u i n t 2 (1 , c . y ) ] . y ;
xMax [ c . y ] = s t a t e [ u i n t 2 ( dim . x−2, c . y ) ] . y ;

}

Texture1D<f l o a t> xMin ;
Texture1D<f l o a t> xMax ;
RWTexture2D<f l o a t 4> s t a t e ;
[ numthreads (1 , NUM Y THREADS, 1 ) ]
vo id WriteXEdge ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 2 dim ;
s t a t e . GetDimens ions ( dim . x , dim . y ) ;
s t a t e [ u i n t 2 (0 , c . y ) ] = f l o a t 4 ( 0 . 0 f , xMin [ c . y ] , 0 . 0 f , 0 . 0 f ) ;
s t a t e [ u i n t 2 ( dim . x−1, c . y ) ] = f l o a t 4 ( 0 . 0 f , xMax [ c . y ] , 0 . 0 f , 0 . 0 f ) ;

}

Texture2D<f l o a t 4> s t a t e ;
RWTexture1D<f l o a t> yMin ;
RWTexture1D<f l o a t> yMax ;
[ numthreads (NUM X THREADS, 1 , 1 ) ]
vo id CopyYEdge ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 2 dim ;
s t a t e . GetDimens ions ( dim . x , dim . y ) ;
yMin [ c . x ] = s t a t e [ u i n t 2 ( c . x , 1 ) ] . x ;
yMax [ c . x ] = s t a t e [ u i n t 2 ( c . x , dim . y−2) ] . x ;

}

Texture1D<f l o a t> yMin ;
Texture1D<f l o a t> yMax ;
RWTexture2D<f l o a t 4> s t a t e ;
[ numthreads (NUM X THREADS, 1 , 1 ) ]
vo id WriteYEdge ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 2 dim ;
s t a t e . GetDimens ions ( dim . x , dim . y ) ;
s t a t e [ u i n t 2 ( c . x , 0 ) ] = f l o a t 4 ( yMin [ c . x ] , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;
s t a t e [ u i n t 2 ( c . x , dim . y−1)] = f l o a t 4 (yMax [ c . x ] , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;

}

LISTING 7.32: HLSL code for enforcing the boundary conditions for the
2D fluid state.

The minimum and maximum buffers are created and managed by the class
but not exposed to the application.
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7.11.2.5 Computing the Divergence of Velocity

The class ComputeDivergence manages the simple shader for computing the
divergence of the velocity vector. This involves centered finite difference esti-
mates. Listing 7.33 shows the compute shader; the Parameters constant buffer
is omitted.

// From ComputeDivergence . h l s l :
Texture2D<f l o a t 4> s t a t e ;
RWTexture2D<f l o a t> d i v e r g en c e ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

u i n t w, h ;
s t a t e . GetDimens ions (w, h ) ;

i n t x = i n t ( c . x ) ;
i n t y = i n t ( c . y ) ;
i n t xm = max( x−1, 0 ) ;
i n t xp = min ( x+1, w−1);
i n t ym = max( y−1, 0 ) ;
i n t yp = min ( y+1, h−1);

f l o a t 2 v e l o c i t y G r a d i e n t =
{

s t a t e [ i n t 2 ( xp , y ) ] . x − s t a t e [ i n t 2 (xm , y ) ] . x ,
s t a t e [ i n t 2 ( x , yp ) ] . y − s t a t e [ i n t 2 ( x , ym ) ] . y

} ;

d i v e r g en c e [ c . xy ] = dot ( h a l fD i vD e l t a . xy , v e l o c i t y G r a d i e n t ) ;
}

LISTING 7.33: HLSL code for computing the divergence of the velocity for
2D fluids.

7.11.2.6 Solving the Poisson Equation

The class SolvePoisson manages the shaders for solving the Poisson equa-
tion ∇2φ = −∇ · u with boundary condition φ = 0. As noted previously,
the solver is implicit and uses Gauss-Seidel iteration with ping-pong buffers.
The first buffer must be zeroed, which is accomplished by a compute shader
ZeroPoisson.hlsl. The compute shader SolvePoisson.hlsl is called thirty-two times,
each time swapping buffer pointers to avoid memory copies. Listing 7.34 shows
the compute shaders for solving the equation; the Parameters constant buffer
is omitted.

// From ZeroPo i s s on . h l s l :
RWTexture2D<f l o a t> po i s s o n ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

po i s s o n [ c . xy ] = 0 .0 f ;
}

// From So l v ePo i s s o n . h l s l :
Texture2D<f l o a t> d i v e r g en c e ;
Texture2D<f l o a t> po i s s o n ;
RWTexture2D<f l o a t> ou tPo i s s on ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
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{
u i n t 2 dim ;
d i v e r g en c e . GetDimens ions ( dim . x , dim . y ) ;

i n t x = i n t ( c . x ) ;
i n t y = i n t ( c . y ) ;
i n t xm = max( x−1, 0 ) ;
i n t xp = min ( x+1, dim . x−1);
i n t ym = max( y−1, 0 ) ;
i n t yp = min ( y+1, dim . y−1);

// Sample the d i v e r g en c e at ( x , y ) .
f l o a t d i v = d i v e r g en c e [ i n t 2 ( x , y ) ] ;

// Sample v a l u e s at ( x , y ) , ( x+dx , y ) , ( x−dx , y ) , ( x , y+dy ) , ( x , y−dy ) .
f l o a t poisPZ = po i s s o n [ i n t 2 ( xp , y ) ] ;
f l o a t poisMZ = po i s s o n [ i n t 2 (xm , y ) ] ;
f l o a t poisZP = po i s s o n [ i n t 2 ( x , yp ) ] ;
f l o a t poisZM = po i s s o n [ i n t 2 ( x , ym ) ] ;

f l o a t 4 temp = { poisPZ + poisMZ , poisZP + poisZM , 0 .0 f , d i v } ;
ou tPo i s s on [ c . xy ] = dot ( ep s i l o n , temp ) ;

}

LISTING 7.34: HLSL code for solving the Poisson equation for 2D fluids.

The boundary conditions are enforced via postprocessing shaders. These
are simple, writing zeros to the desired locations and using temporary buffers
to avoid memory copies. Listing 7.35 shows the shader code.

// From En fo r cePo i s sonBounda r y . h l s l :
RWTexture2D<f l o a t> image ;
[ numthreads (1 , NUM Y THREADS, 1 ) ]
vo id WriteXEdge ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 2 dim ;
image . GetDimens ions ( dim . x , dim . y ) ;
image [ u i n t 2 (0 , c . y ) ] = 0 .0 f ;
image [ u i n t 2 ( dim . x−1, c . y ) ] = 0 .0 f ;

}

RWTexture2D<f l o a t> image ;
[ numthreads (NUM X THREADS, 1 , 1 ) ]
vo id WriteYEdge ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 2 dim ;
image . GetDimens ions ( dim . x , dim . y ) ;
image [ u i n t 2 ( c . x , 0 ) ] = 0 .0 f ;
image [ u i n t 2 ( c . x , dim . y−1)] = 0 .0 f ;

}

LISTING 7.35: HLSL code for enforcing the boundary conditions after solv-
ing the Poisson equation.

7.11.2.7 Updating the Velocity to Be Divergence Free

The gradient of φ, the solution to the Poisson equation, must be added
back to the velocity vector. This process is managed by class AdjustVelocity.
The shader code is shown in Listing 7.36; the Parameters constant buffer is
omitted.
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// From Ad j u s tV e l o c i t y . h l s l :
Texture2D<f l o a t 4> i n S t a t e ;
Texture2D<f l o a t> po i s s o n ;
RWTexture2D<f l o a t 4> ou tSta te ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 2 dim ;
i n S t a t e . GetDimens ions ( dim . x , dim . y ) ;

i n t x = i n t ( c . x ) ;
i n t y = i n t ( c . y ) ;
i n t xm = max( x−1, 0 ) ;
i n t xp = min ( x+1, dim . x−1);
i n t ym = max( y−1, 0 ) ;
i n t yp = min ( y+1, dim . y−1);

// Sample the s t a t e at ( x , y ) .
f l o a t 4 s t a t e = i n S t a t e [ c . xy ] ;

// Sample Po i s s on va l u e s at immedia te n e i g h bo r s o f ( x , y ) .
f l o a t poisPZ = po i s s o n [ i n t 2 ( xp , y ) ] ;
f l o a t poisMZ = po i s s o n [ i n t 2 (xm , y ) ] ;
f l o a t poisZP = po i s s o n [ i n t 2 ( x , yp ) ] ;
f l o a t poisZM = po i s s o n [ i n t 2 ( x , ym ) ] ;

f l o a t 4 d i f f = { poisPZ − poisMZ , poisZP − poisZM , 0 .0 f , 0 . 0 f } ;
ou tSta te [ c . xy ] = s t a t e + ha l fD i vD e l t a ∗ d i f f ;

}

LISTING 7.36: HLSL code for updating the velocity to be divergence free.

The gradient is estimated using centered finite differences and the result is
structured to use vectorized computations for speed.

7.11.2.8 Screen Captures from the Simulation

The 2D fluid simulation is clamped to run at 60 frames per second. The
screen captures shown in Figure 7.12 were taken every second. The coloring
of the density is based on the velocity vectors and modulated by the density.
The pixel shader is shown in Listing 7.37.

// From DrawDensity . h l s l :
Texture2D<f l o a t 4> s t a t e ;
Samp l e rS ta te b i l i n e a rC l ampSamp l e r ;
s t r u c t PS INPUT { f l o a t 2 vertexTCoord : TEXCOORD0; } ;
f l o a t 4 PSMain (PS INPUT i npu t ) : SV TARGET
{

f l o a t 4 c u r r e n t = s t a t e . Sample ( b i l i n ea rC l ampSamp l e r ,
i n p u t . ver texTCoord ) ;

f l o a t 3 c o l o r = 0 .5 f + 0 .5 f ∗ c u r r e n t . xyz / ( 1 . 0 f + abs ( c u r r e n t . xyz ) ) ;
r e tu r n f l o a t 4 ( c u r r e n t .w∗ co l o r , 1 . 0 f ) ;

}

LISTING 7.37: The pixel shader for visualizing the density of the 2D fluid.

Naturally, screen captures are not sufficient to convey the actual real-time
behavior. You will have to run it yourself.
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FIGURE 7.12: Screen captures from the 2D fluid simulation. The upper-
left image is the initial random density with initial zero velocity. The captures
were taken at 1-second intervals, left to right and then top to bottom.

7.11.3 Solving Fluid Flow in 3D

The sample application is found at

GeometricTools/GTEngine/Samples/Physics/Fluids3D

In the sample application, the 3D fluid is confined to a cube R = {(x, y, z) :
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}. The boundary B consists of points
for which x = 0, x = 1, y = 0, y = 1, z = 0, or z = 1. The velocity is
(u, v, w). The velocity boundary conditions are u(0, y, z, t) = 0, u(1, y, z, t) =
0, v(x, 0, z, t) = 0, v(x, 1, z, t) = 0, w(x, y, 0, t) = 0, and w(x, y, 1, t) = 0.

We partition R into an N0 × N1 × N2 grid, each grid cell a rectangular
solid of dimensions ∆x = 1/N0, ∆y = 1/N1, and ∆z = 1/N2. Centered finite
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differences are used for L̂ in Equation (7.59),

Sxx(x, y, z, t)
.
=

S(x +∆x, y, z, t)− 2S(x, y, z, t) + S(x−∆x, y, z, t)

∆2
x

(7.69)

and

Syy(x, y, z, t)
.
=

S(x, y +∆y, z, t)− 2S(x, y, z, t) + S(x, y −∆y, z, t)

∆2
y

(7.70)

and

Szz(x, y, z, t)
.
=

S(x, y, z +∆z , t)− 2S(x, y, z, t) + S(x, y, z −∆z , t)

∆2
z

(7.71)

The update for state information is

S(x, y, z, t+∆t) = S(x−∆tu, y −∆tv, z −∆tw, t)
+ λx ∗ (S(x+∆x, y, z, t)− 2S(x, y, z, t) + S(x −∆x, y, z, t))
+ λy ∗ (S(x, y +∆y, z, t)− 2S(x, y, z, t) + S(x, y −∆y, z, t))
+ λz ∗ (S(x, y, z +∆z , t)− 2S(x, y, z, t) + S(x, y, z −∆z , t))
+ ∆tF(x, y, z, t)

(7.72)

where λx = (∆t/∆
2
x)ν, λy = (∆t/∆

2
y)ν, and λz = (∆t/∆

2
z)ν with ν =

(νvel, νvel, νvel, νden). Also, (a, b, c, d) ∗ (e, f, g, h) = (ae, bf, cg, dh) is compo-
nentwise multiplication of tuples.

In the compute shaders of the sample application, a constant buffer is
used to store the various physical parameters. The declaration in the shaders
and the creation and initialization are listed next. The naming conventions to
relate the two are clear. Listing 7.38 shows the setup code.

// From v a r i o u s HLSL f i l e s :
c b u f f e r Parameters
{

f l o a t 4 spaceDe l ta ; // ( dx , dy , dz , 0)
f l o a t 4 h a l fD i vD e l t a ; // ( 0 . 5 / dx , 0 . 5/ dy , 0 . 5/ dz , 0)
f l o a t 4 t imeDe l ta ; // ( dt /dx , dt /dy , dt /dz , dt )
f l o a t 4 v i s c o s i t y X ; // ( velVX , velVX , velVX , denVX)
f l o a t 4 v i s c o s i t y Y ; // ( velVX , velVY , velVY , denVY)
f l o a t 4 v i s c o s i t y Z ; // ( velVZ , velVZ , velVZ , denVZ)
f l o a t 4 e p s i l o n ; // ( ep s i l onX , ep s i l onY , ep s i l onZ , e p s i l o n 0 )

} ;

// From Smoke3D . cpp :
// Crea te the sha r ed pa ramete r s f o r many o f the s im u l a t i o n s h a d e r s .
f l o a t dx = 1 .0 f / s t a t i c c a s t<f l o a t >(mXSize ) ;
f l o a t dy = 1 .0 f / s t a t i c c a s t<f l o a t >(mYSize ) ;
f l o a t dz = 1 .0 f / s t a t i c c a s t<f l o a t >(mZSize ) ;
f l o a t dtDivDxDx = ( dt /dx )/ dx ;
f l o a t dtDivDyDy = ( dt /dy )/ dy ;
f l o a t dtDivDzDz = ( dt /dz )/ dz ;
f l o a t r a t i o 0 = dx/dy ;
f l o a t r a t i o 1 = dx/dz ;
f l o a t r a t i o 0 S q r = r a t i o 0 ∗ r a t i o 0 ;
f l o a t r a t i o 1 S q r = r a t i o 1 ∗ r a t i o 1 ;
f l o a t f a c t o r = 0 .5 f / ( 1 . 0 f + r a t i o 0 S q r + r a t i o 1 S q r ) ;
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f l o a t ep s i l o nX = f a c t o r ;
f l o a t ep s i l o nY = r a t i o 0 S q r∗ f a c t o r ;
f l o a t ep s i l o nZ = r a t i o 1 S q r∗ f a c t o r ;
f l o a t e p s i l o n 0 = dx∗dx∗ f a c t o r ;
f l o a t const d e nV i s c o s i t y = 0.0001 f ;
f l o a t const v e l V i s c o s i t y = 0.0001 f ;
f l o a t denVX = d enV i s c o s i t y ∗dtDivDxDx ;
f l o a t denVY = d enV i s c o s i t y ∗dtDivDyDy ;
f l o a t denVZ = d enV i s c o s i t y ∗dtDivDzDz ;
f l o a t velVX = v e l V i s c o s i t y ∗dtDivDxDx ;
f l o a t velVY = v e l V i s c o s i t y ∗dtDivDyDy ;
f l o a t velVZ = v e l V i s c o s i t y ∗dtDivDzDz ;

LISTING 7.38: Setup of constant buffers for the 3D fluid simulation.

The fluid grid has mXSize columns, mYSize rows, and mZSize slices, which are
both 128 in the application. The time step dt is chosen to be 0.002.

7.11.3.1 Initialization of State

The initialization of velocity and density is implemented in the class
InitializeState. The assignments are in the constructor for the class. The initial
velocities are set to zero and the initial densities are set to random numbers
in [0, 1]. Textures storing state information at current time and previous time
are also created by the constructor. Listing 7.39 shows the pseudocode.

// I n i t i a l d e n s i t y v a l u e s a r e randomly gene ra ted .
s td : : mt19937 mte ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> un i r nd ( 0 . 0 f , 1 . 0 f ) ;
mDensity . r e s e t (new Texture3 (DF R32 FLOAT , xS i z e , yS i z e , z S i z e ) ) ;
f l o a t ∗ data = mDensity−>GetAs<f l o a t >();
f o r ( i n t i = 0 ; i < mDensity−>GetNumElements ( ) ; ++i , ++data )
{

∗data = un i rnd (mte ) ;
}

// I n i t i a l v e l o c i t y v a l u e s a r e z e ro .
mVeloc i t y . r e s e t (new Texture3 (DF R32G32B32A32 FLOAT , xS i z e , yS i z e , z S i z e ) ) ;
mVeloc i ty−>SetUsage ( Resource : : SHADER OUTPUT ) ;
memset ( mVeloc i ty−>GetData ( ) , 0 , mVeloc i ty−>GetNumBytes ( ) ) ;

// The s t a t e s at t ime 0 and t ime −dt a r e i n i t i a l i z e d by a compute shade r .
mStateTm1 . r e s e t (new Texture3 (DF R32G32B32A32 FLOAT , xS i z e , yS i z e , z S i z e ) ) ;
mStateTm1−>SetUsage ( Resource : : SHADER OUTPUT ) ;
mStateT . r e s e t (new Texture3 (DF R32G32B32A32 FLOAT , xS i z e , yS i z e , z S i z e ) ) ;
mStateT−>SetUsage ( Resource : : SHADER OUTPUT ) ;

LISTING 7.39: Selection of initial state for 3D fluids.

The compute shader is trivial as is the GTEngine code that creates an
instance and executes the shader, as shown in Listing 7.40.

// From I n i t i a l i z e S t a t e . h l s l :
Texture3D<f l o a t> d e n s i t y ;
Texture3D<f l o a t 4> v e l o c i t y ;
RWTexture3D<f l o a t 4> stateTm1 ;
RWTexture3D<f l o a t 4> s ta teT ;
[ numthreads (NUM X THREADS, NUM Y THREADS, NUM Z THREADS ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

f l o a t 4 i n i t i a l = f l o a t 4 ( v e l o c i t y [ c . xyz ] . xyz , d e n s i t y [ c . xyz ] ) ;
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stateTm1 [ c . xyz ] = i n i t i a l ;
s t a t eT [ c . xyz ] = i n i t i a l ;

}

// From I n i t i a l i z e S t a t e . cpp :
// Crea te the shade r f o r i n i t i a l i z i n g v e l o c i t y and d e n s i t y .
HLSLDef iner d e f i n e r ;
d e f i n e r . S e t I n t ( ”NUM X THREADS” , numXThreads ) ;
d e f i n e r . S e t I n t ( ”NUM Y THREADS” , numYThreads ) ;
d e f i n e r . S e t I n t ( ”NUM Z THREADS” , numZThreads ) ;
m I n i t i a l i z e S t a t e . r e s e t ( Shade rFacto r y : : CreateCompute ( path , d e f i n e r ) ) ;
m I n i t i a l i z e S t a t e−>Set ( ” d e n s i t y ” , mDensity ) ;
m I n i t i a l i z e S t a t e−>Set ( ” v e l o c i t y ” , mVe l oc i t y ) ;
m I n i t i a l i z e S t a t e−>Set ( ” stateTm1 ” , mStateTm1 ) ;
m I n i t i a l i z e S t a t e−>Set ( ” s ta teT ” , mStateT ) ;

// From I n i t i a l i z e S t a t e . cpp ( i n a wrapper f o r e x e cu t i o n ) :
eng ine−>Execute ( m I n i t i a l i z e S t a t e , mNumXGroups , mNumYGroups , mNumZGroups ) ;

LISTING 7.40: Initial state computations 3D fluids, both for the CPU and
the GPU.

7.11.3.2 Initialization of External Forces

The external density control in Equation (7.52) has a source, a sink, and
is constant for all time. Thus, fluid is added at one location in the square and
removed at another location.

Fden(x, y, z) = A0 exp
(

− |(x−x0,y−y0,z−z0)|
2

2σ2
0

)

−A1 exp
(

− |(x−x1,y−y1,z−z1)|
2

2σ2
1

)

(7.73)

where Ai > 0, σi > 0, and (xi, yi, zi) ∈ (0, 1)2 are user-defined constants.
The external velocity control has three types of components. A constant

gravitational force G is applied. A wind force W is applied at the middle of
the left side of the square but is distributed as a Gaussian through a small
portion of space with direction towards the right. Finally, a sum of vortices
Vi gives the fluid local swirling effects. All external forces are constant over
time.

Fvel(x, y, z) = G+W(x, y, z) +
∑n−1

i=0 Vi(x, y, z)

=

⎡

⎣

g0
g1
g2

⎤

⎦+M0 exp
(

− (x−ξ0)
2+(z−ξ2)

2

2s2
0

)

⎡

⎣

0
1
0

⎤

⎦

+
∑n

i=1 Mi exp
(

− |(x−ξi,y−ηi,z−ζi)|
2

2s2
i

)

Ni ×

⎡

⎣

x− ξi
y − ηi
z − ζi

⎤

⎦

(7.74)

where gi, Mi > 0, si > 0, (ξi, ηi, ζi) ∈ (0, 1)3 are user-defined constants. The
normal vectors Ni are unit length and act as the axis directions for the planar
vortices.
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The class InitializeSource manages the setup and evaluation of the external
forces. The constructor does the work, but the initialization is more compli-
cated than that for state initialization. If the number n of vortices is small,
we can generate the vortex contribution rapidly on the CPU. However, if n
is large, the start-up time for the application can be quite lengthy because
of the triple loop necessary to sum the n contributions at each pixel in the
image. In the application, I have chosen to use 1024 vortices. Unlike the den-
sity that is initialized to random numbers on the CPU, the parameters of the
external forces are selected on the CPU but the computations of the initial
source are all performed on the GPU. The InitializeSource constructor contains
code shown in Listing 7.41.

// Crea te the r e s o u r c e s f o r g en e r a t i n g v e l o c i t y from v o r t i c e s .
s t r u c t Vortex { Vector4<f l o a t> p o s i t i o n , normal , data ; } ;
mVortex . r e s e t (new Cons tan tBu f f e r ( s i z e o f ( Vortex ) , t r ue ) ) ;
mVe l oc i t y0 . r e s e t (new Texture3 (DF R32G32B32A32 FLOAT , xS i z e , yS i z e , z S i z e ) ) ;
mVeloc i ty0−>SetUsage ( Resource : : SHADER OUTPUT ) ;
mVe l oc i t y1 . r e s e t (new Texture3 (DF R32G32B32A32 FLOAT , xS i z e , yS i z e , z S i z e ) ) ;
mVeloc i ty1−>SetUsage ( Resource : : SHADER OUTPUT ) ;

// Crea te the r e s o u r c e s f o r g en e r a t i n g v e l o c i t y from wind and g r a v i t y .
s t r u c t Ex t e r n a l
{

Vector4<f l o a t> d en s i t yP r o du c e r ; // ( x , y , z , ∗)
Vector4<f l o a t> den s i t yPData ; // ( va r i a n c e , ampl i tude , ∗ , ∗)
Vector4<f l o a t> den s i t yConsumer ; // ( x , y , z , ∗)
Vector4<f l o a t> den s i t yCData ; // ( va r i a n c e , ampl i tude , ∗ , ∗)
Vector4<f l o a t> g r a v i t y ;
Vector4<f l o a t> windData ;

} ;
mExterna l . r e s e t (new Cons tan tBu f f e r ( s i z e o f ( E x t e r n a l ) , f a l s e ) ) ;
E x t e r n a l& e = ∗mExterna l−>GetAs<Exte rna l >();
e . d en s i t yP r o du c e r = Vector4<f l o a t >(0.5 f , 0 . 5 f , 0 . 5 f , 0 . 0 f ) ;
e . d en s i t yPData = Vector4<f l o a t >(0.01 f , 16 .0 f , 0 . 0 f , 0 . 0 f ) ;
e . d en s i t yConsumer = Vector4<f l o a t >(0.75 f , 0 . 75 f , 0 . 75 f , 0 . 0 f ) ;
e . d en s i t yCData = Vector4<f l o a t >(0.01 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;
e . g r a v i t y = Vector4<f l o a t >(0.0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;
e . windData = Vector4<f l o a t >(0.001 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;
mSource . r e s e t (new Texture3 (DF R32G32B32A32 FLOAT , xS i z e , yS i z e , z S i z e ) ) ;
mSource−>SetUsage ( Resource : : SHADER OUTPUT ) ;

LISTING 7.41: Setup code for initialization of source forces for 3D fluids.

The mSource texture is initialized with the external forces.
The vortex generation occurs first and is passed to the initialization shader

so that gravity and wind forces may be added. The Parameters constant buffer
was mentioned previously and is omitted from the listings. The relevant HLSL
code is shown in Listing 7.42.

// From Genera teVor t ex . h l s l :
c b u f f e r Vortex
{

f l o a t 4 p o s i t i o n ; // ( px , py , pz , ∗)
f l o a t 4 normal ; // ( nx , ny , nz , ∗)
f l o a t 4 data ; // ( va r i a n c e , ampl i tude , ∗ , ∗)

} ;
Texture3D<f l o a t 4> i n V e l o c i t y ;
RWTexture3D<f l o a t 4> o u tV e l o c i t y ;
[ numthreads (NUM X THREADS, NUM Y THREADS, NUM Z THREADS ) ]
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vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

f l o a t 3 l o c a t i o n = spaceDe l ta . xyz ∗( c . xyz + 0 .5 f ) ;
f l o a t 3 d i f f = l o c a t i o n − p o s i t i o n . xyz ;
f l o a t arg = −dot ( d i f f , d i f f )/ data . x ;
f l o a t magnitude = data . y∗exp ( arg ) ;
f l o a t 4 v o r t e xV e l o c i t y = f l o a t 4 ( magnitude ∗ c r o s s ( normal . xyz , d i f f ) , 0 . 0 f ) ;
o u tV e l o c i t y [ c . xyz ] = i n V e l o c i t y [ c . xyz ] + v o r t e xV e l o c i t y ;

}

// From I n i t i a l i z e S o u r c e . h l s l :
c b u f f e r E x t e r n a l
{

f l o a t 4 d en s i t yP r o du c e r ; // ( x , y , z , ∗)
f l o a t 4 den s i t yPData ; // ( va r i a n c e , ampl i tude , ∗ , ∗)
f l o a t 4 den s i t yConsumer ; // ( x , y , z , ∗)
f l o a t 4 den s i t yCData ; // ( va r i a n c e , ampl i tude , ∗ , ∗)
f l o a t 4 g r a v i t y ; // ( x , y , z , ∗)
f l o a t 4 windData ; // ( va r i a n c e , ampl i tude , ∗ , ∗)

} ;
Texture3D<f l o a t 4> v o r t e x V e l o c i t y ;
RWTexture3D<f l o a t 4> s o u r c e ;
[ numthreads (NUM X THREADS, NUM Y THREADS, NUM Z THREADS ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

// Compute the l o c a t i o n o f the vo x e l ( x , y , z ) i n no rma l i z ed [ 0 , 1 ] ˆ 3 .
f l o a t 3 l o c a t i o n = spaceDe l ta . xyz ∗( c . xyz + 0 .5 f ) ;
// Compute an i n p u t to the f l u i d s im u l a t i o n c o n s i s t i n g o f a p roduce r
// o f d e n s i t y and a consumer o f d e n s i t y .
f l o a t 3 d i f f = l o c a t i o n − d en s i t yP r o du c e r . xyz ;
f l o a t arg = −dot ( d i f f , d i f f )/ den s i t yPData . x ;
f l o a t d e n s i t y = dens i t yPData . y∗exp ( arg ) ;
d i f f = l o c a t i o n − den s i t yConsumer . xyz ;
a rg = −dot ( d i f f , d i f f )/ den s i t yCData . x ;
d e n s i t y −= dens i t yCData . y∗exp ( arg ) ;
// Compute an i n p u t to the f l u i d s im u l a t i o n c o n s i s t i n g o f g r a v i t y ,
// a s i n g l e wind source , and vo r t e x impu l s e s .
f l o a t windArg = −dot ( l o c a t i o n . xz , l o c a t i o n . xz )/ windData . x ;
f l o a t 3 w i n dVe l o c i t y = { 0 .0 f , windData . y∗exp ( windArg ) , 0 .0 f } ;
f l o a t 3 v e l o c i t y =

g r a v i t y . xyz + w i ndVe l o c i t y + v o r t e x V e l o c i t y [ c . xyz ] . xyz ;
s o u r c e [ c . xyz ] = f l o a t 4 ( v e l o c i t y . xyz , d e n s i t y ) ;

}

LISTING 7.42: HLSL code for generating vortices and other forces in 3D
fluids.

The creation of instances of the shader and the execution of them is shown
in Listing 7.43.

// From I n i t i a l i z e S o u r c e . cpp :
HLSLDef iner d e f i n e r ;
d e f i n e r . S e t I n t ( ”NUM X THREADS” , numXThreads ) ;
d e f i n e r . S e t I n t ( ”NUM Y THREADS” , numYThreads ) ;
d e f i n e r . S e t I n t ( ”NUM Z THREADS” , numZThreads ) ;
mGenerateVortex . r e s e t (

Shade rFac to r y : : CreateCompute ( ” Gene ra teVo r tex . h l s l ” , d e f i n e r ) ) ;
mGenerateVortex−>Set ( ” Parameters ” , pa ramete r s ) ;
mGenerateVortex−>Set ( ”Vortex ” , mVortex ) ;
mGenerateVortex−>Set ( ” i n V e l o c i t y ” , mVe l oc i t y0 ) ;
mGenerateVortex−>Set ( ” o u tV e l o c i t y ” , mVe l oc i t y1 ) ;
m I n i t i a l i z e S o u r c e . r e s e t (

Shade rFac to r y : : CreateCompute ( ” I n i t i a l i z e S o u r c e . h l s l ” , d e f i n e r ) ) ;
m I n i t i a l i z e S o u r c e−>Set ( ” Parameters ” , pa ramete r s ) ;
m I n i t i a l i z e S o u r c e−>Set ( ” Ex t e r n a l ” , mExterna l ) ;
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m I n i t i a l i z e S o u r c e−>Set ( ” s o u r c e ” , mSource ) ;

// From I n i t i a l i z e S o u r c e . cpp ( i n a wrapper f o r e x e cu t i o n ) :
// Compute the v e l o c i t y one vo r t e x at a t ime . A f t e r the l oop te rm ina te s ,
// the f i n a l v e l o c i t y i s s t o r ed i n mVe l oc i t y0 .
s td : : mt19937 mte ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> un i r nd ( 0 . 0 f , 1 . 0 f ) ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> symrnd (−1.0 f , 1 . 0 f ) ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> pos rnd0 (0 .001 f , 0 . 01 f ) ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <f l o a t> posrnd1 ( 6 4 . 0 f , 128 .0 f ) ;
memset ( mVeloc i ty0−>GetData ( ) , 0 , mVeloc i ty0−>GetNumBytes ( ) ) ;
Vortex& v = ∗mVortex−>GetAs<Vortex >();
f o r ( i n t i = 0 ; i < NUM VORTICES; ++i )
{

v . p o s i t i o n [ 0 ] = un i r nd (mte ) ;
v . p o s i t i o n [ 1 ] = un i r nd (mte ) ;
v . p o s i t i o n [ 2 ] = un i r nd (mte ) ;
v . p o s i t i o n [ 3 ] = 0 .0 f ;
v . normal [ 0 ] = symrnd (mte ) ;
v . normal [ 1 ] = symrnd (mte ) ;
v . normal [ 2 ] = symrnd (mte ) ;
v . normal [ 3 ] = 0 .0 f ;
No rma l i z e ( v . normal ) ;
v . data [ 0 ] = posrnd0 (mte ) ;
v . data [ 1 ] = posrnd1 (mte ) ;
v . data [ 2 ] = 0 .0 f ;
v . data [ 3 ] = 0 .0 f ;
eng ine−>CopyCpuToGpu(mVortex ) ;
eng ine−>Execute ( mGenerateVortex , mNumXGroups , mNumYGroups ,

mNumZGroups ) ;
s td : : swap ( mVeloc i ty0 , mVe l o c i t y1 ) ;
mGenerateVortex−>Set ( ” i n V e l o c i t y ” , mVe l oc i t y0 ) ;
mGenerateVortex−>Set ( ” o u tV e l o c i t y ” , mVe l oc i t y1 ) ;

}

// Compute the s o u r c e s f o r the f l u i d s im u l a t i o n .
m I n i t i a l i z e S o u r c e−>Set ( ” v o r t e x V e l o c i t y ” , mVe l oc i t y0 ) ;
eng ine−>Execute ( m I n i t i a l i z e S o u r c e , mNumXGroups , mNumYGroups , mNumZGroups ) ;

LISTING 7.43: Shader creation and execution for initializing sources in 3D
fluids.

The vortex parameters are randomly generated on the CPU, one vortex
at a time. These parameters are uploaded as constant buffers and then the
shader is executed. The loop ping-pongs between two textures for efficiency
(no GPU-to-CPU copies). When all vortices are computed, the result is in
mVelocity0, which is then attached to the shader that computes the gravity
and wind forces. The vortex velocities are added to those.

The design for the remaining shader wrapper classes is similar to that for
InitializeState and InitializeSource. Resources are created, shaders are loaded from
disk and compiled, and an execution wrapper is provided for the simulation.
The remainder of the discussion focuses on the HLSL files themselves.

7.11.3.3 Updating the State with Advection

The update of state using advection and derivative estimation is encapsu-
lated in the class UpdateState, as shown in Listing 7.44. The Parameters constant
buffer is omitted from the listing.
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// From UpdateState . h l s l :
Texture3D<f l o a t 4> s o u r c e ;
Texture3D<f l o a t 4> stateTm1 ;
Texture3D<f l o a t 4> s ta teT ;
Samp l e rS ta te advec t i onSamp l e r ; // t r i l i n e a r , clamp
RWTexture3D<f l o a t 4> upda teSta te ;
[ numthreads (NUM X THREADS, NUM Y THREADS, NUM Z THREADS ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 3 dim ;
s ta teT . GetDimens ions ( dim . x , dim . y , dim . z ) ;

i n t x = i n t ( c . x ) ;
i n t y = i n t ( c . y ) ;
i n t z = i n t ( c . z ) ;
i n t xm = max( x−1, 0 ) ;
i n t xp = min ( x+1, dim . x−1);
i n t ym = max( y−1, 0 ) ;
i n t yp = min ( y+1, dim . y−1);
i n t zm = max( z−1, 0 ) ;
i n t zp = min ( z+1, dim . z−1);

// Sample s t a t e s at ( x , y , z ) and immed iate n e i g h bo r s .
f l o a t 4 stateZZZ = s ta teT [ i n t 3 ( x , y , z ) ] ;
f l o a t 4 statePZZ = s ta teT [ i n t 3 ( xp , y , z ) ] ;
f l o a t 4 stateMZZ = sta teT [ i n t 3 (xm , y , z ) ] ;
f l o a t 4 stateZPZ = s ta teT [ i n t 3 ( x , yp , z ) ] ;
f l o a t 4 stateZMZ = sta teT [ i n t 3 ( x , ym , z ) ] ;
f l o a t 4 stateZZP = s ta teT [ i n t 3 ( x , y , zp ) ] ;
f l o a t 4 stateZZM = sta teT [ i n t 3 ( x , y , zm ) ] ;

// Sample the s o u r c e s t a t e at ( x , y , z ) .
f l o a t 4 s r c = s ou r c e [ i n t 3 ( x , y , z ) ] ;

// Es t ima te second−o r d e r d e r i v a t i v e s o f s t a t e at ( x , y , z ) .
f l o a t 4 stateDXX = statePZZ − 2 .0 f∗ stateZZZ + stateMZZ ;
f l o a t 4 stateDYY = stateZPZ − 2 .0 f∗ stateZZZ + stateZMZ ;
f l o a t 4 stateDZZ = stateZZP − 2 .0 f∗ stateZZZ + stateZZM ;

// Compute a d v e c t i o n .
f l o a t 3 tcd =

spaceDe l ta . xyz ∗( c . xyz − t imeDe l ta . xyz∗ stateZZZ . xyz + 0 .5 f ) ;
f l o a t 4 a d v e c t i o n = stateTm1 . SampleLeve l ( advec t i onSamp l e r , tcd , 0 .0 f ) ;

// Update the s t a t e .
upda teSta te [ c . xyz ] = ad ve c t i o n +

( v i s c o s i t y X ∗stateDXX + v i s c o s i t y Y ∗stateDYY +
v i s c o s i t y Z ∗ stateDZZ + t imeDe l ta .w∗ s r c ) ;

}

LISTING 7.44: HLSL code for updating the 3D fluid state with advection.

The resources for compute shaders are accessed directly by index. The
dimensions of the texture are conveniently accessed by the HLSL function
GetDimensions. The SV DispatchThreadID system-value semantic provides a nat-
ural tuple into a grid. If a compute shader is called with (xt, yt, zt) threads
(the parameters in the [numthreads] statement) and (xg, yg, zg) groups (the pa-
rameters passed to the Dispatch call), then the dispatch ID (cx, cy, cz) satisfies

(0, 0, 0) ≤ (cx, cy, cz) < (xt, yt, zt) ∗ (xg, yg, zg) = (xtxg, ytyg, ztzg) (7.75)

In our case, the thread counts are NUM X THREADS, NUM Y THREADS,
and NUM Z THREADS. The group counts are dim.x/NUM X THREADS,
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dim.y/NUM Y THREADS, and dim.z/NUM Z THREADS. The dispatch thread ID
c satisfies (0,0,0) <= (c.x,c.y,c.z) < (dim.x,dim.y,dim.z). We are guaranteed that
the x, y, and z values in the shader are within bounds for the state texture.
We need to access the four immediate neighbors to compute centered finite
differences, so the computation of xm, xp, ym, yp, zm, and zp must be clamped
to the image domain.

The external force contributions are provided by the lookup into the source

texture. The finite difference approximations are stored in stateDXX, stateDYY,
stateDZZ; observe that these computations are vectorized for speed—the first
three components are for the velocity and the last component is for density.

Recall that advection involves estimating the previous state at a subvoxel
location; see Equation (7.72). That location is (x, y, z) − ∆t(u, v, w), where
(x, y, z) is the current voxel center and (u, v, w) is the current velocity. Texture
sampling, though, requires a normalized texture coordinate in [0, 1]3. The
shader code float3 tcd = spaceDelta.xyz*(c.xyz - timeDelta.xyz*stateZZ.xyz + 0.5f);

is the conversion to such a coordinate. For an image of width W , height H ,
and thickness T , the standard graphics mapping for a voxel (xp, yp, zp) ∈
[0,W )× [0, H)× [0, T ) to a texture coordinate (xt, yt, zt) ∈ [0, 1)3 is

(xt, yt, zt) =

(

xp + 1/2

W
,
yp + 1/2

H
,
zp + 1/2

T

)

(7.76)

The term c.xyz - timeDelta.xyz*stateZZ.xyz is in voxel coordinates. Adding 0.5f

and multiplying by spaceDelta.xyz = (1/dim.x, 1/dim.y,1/dim.z) = (1/W,1/H,1/T)

converts the voxel coordinates to texture coordinates. As always in compute
shaders you must specify the miplevel, which requires a call to the HLSL
function SampleLevel rather than Sample.

The final statement is the update step and is also vectorized for speed.

7.11.3.4 Applying the State Boundary Conditions

The compute shaders are allowed to compute values on the image bound-
aries. Because we cannot guarantee the order in which GPU threads are called,
we cannot enforce boundary values until all state information is computed on
the image domain. Thus, enforcing the boundary conditions is a postprocess-
ing task. Multiple shaders are used for this task and use ping-pong buffers.
The shaders are executed in pairs.

The boundary condition n(x) · u(x, t) = 0 may be applied on the grid
solely by setting the appropriate velocity components to zero at the boundary
cells. However, this introduces some discontinuity in the velocity near the
boundary. To counteract this, a zero-derivative condition is also applied. The
grid cells adjacent to the boundary are copied to the boundary first, then the
appropriate components are set to zero. The details are tedious and mimic
those shown in Equation (7.68), so they are not discussed here. You can go
directly to the HLSL file to see the shader implementations.
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7.11.3.5 Computing the Divergence of Velocity

The class ComputeDivergence manages the simple shader for computing the
divergence of the velocity vector. This involves centered finite difference esti-
mates. Listing 7.45 shows the compute shader; the Parameters constant buffer
is omitted.

// From ComputeDivergence . h l s l :
Texture3D<f l o a t 4> s t a t e ;
RWTexture3D<f l o a t> d i v e r g en c e ;
[ numthreads (NUM X THREADS, NUM Y THREADS, NUM Z THREADS ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 3 dim ;
s t a t e . GetDimens ions ( dim . x , dim . y , dim . z ) ;

i n t x = i n t ( c . x ) ;
i n t y = i n t ( c . y ) ;
i n t z = i n t ( c . z ) ;
i n t xm = max( x−1, 0 ) ;
i n t xp = min ( x+1, dim . x−1);
i n t ym = max( y−1, 0 ) ;
i n t yp = min ( y+1, dim . y−1);
i n t zm = max( z−1, 0 ) ;
i n t zp = min ( z+1, dim . z−1);

f l o a t 3 v e l o c i t y G r a d i e n t =
{

s t a t e [ i n t 3 ( xp , y , z ) ] . x − s t a t e [ i n t 3 (xm , y , z ) ] . x ,
s t a t e [ i n t 3 ( x , yp , z ) ] . y − s t a t e [ i n t 3 ( x , ym , z ) ] . y ,
s t a t e [ i n t 3 ( x , y , zp ) ] . z − s t a t e [ i n t 3 ( x , y , zm ) ] . z

} ;

d i v e r g en c e [ c . xyz ] = dot ( h a l fD i vD e l t a . xyz , v e l o c i t y G r a d i e n t ) ;
}

LISTING 7.45: HLSL code for computing the divergence of the velocity for
3D fluids.

7.11.3.6 Solving the Poisson Equation

The class SolvePoisson manages the shaders for solving the Poisson equa-
tion ∇2φ = −∇ · u with boundary condition φ = 0. As noted previously,
the solver is implicit and uses Gauss-Seidel iteration with ping-pong buffers.
The first buffer must be zeroed, which is accomplished by a compute shader
ZeroPoisson.hlsl. The compute shader SolvePoisson.hlsl is called thirty-two times,
each time swapping buffer pointers to avoid memory copies. Listing 7.46 shows
the compute shaders for solving the equation; the Parameters constant buffer
is omitted.

// From ZeroPo i s s on . h l s l :
RWTexture3D<f l o a t> po i s s o n ;
[ numthreads (NUM X THREADS, NUM Y THREADS, NUM Z THREADS ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

po i s s o n [ c . xyz ] = 0 .0 f ;
}

// From So l v ePo i s s o n . h l s l :
Texture3D<f l o a t> d i v e r g en c e ;
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Texture3D<f l o a t> po i s s o n ;
RWTexture3D<f l o a t> ou tPo i s s on ;
[ numthreads (NUM X THREADS, NUM Y THREADS, NUM Z THREADS ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 3 dim ;
d i v e r g en c e . GetDimens ions ( dim . x , dim . y , dim . z ) ;

i n t x = i n t ( c . x ) ;
i n t y = i n t ( c . y ) ;
i n t z = i n t ( c . z ) ;
i n t xm = max( x−1, 0 ) ;
i n t xp = min ( x+1, dim . x−1);
i n t ym = max( y−1, 0 ) ;
i n t yp = min ( y+1, dim . y−1);
i n t zm = max( z−1, 0 ) ;
i n t zp = min ( z+1, dim . z−1);

// Sample the d i v e r g en c e at ( x , y , z ) .
f l o a t d i v = d i v e r g en c e [ i n t 3 ( x , y , z ) ] ;

// Sample Po i s s on va l u e s at ( x , y ) and immediate n e i g h bo r s .
f l o a t poisPZZ = po i s s o n [ i n t 3 ( xp , y , z ) ] ;
f l o a t poisMZZ = po i s s o n [ i n t 3 (xm , y , z ) ] ;
f l o a t poisZPZ = po i s s o n [ i n t 3 ( x , yp , z ) ] ;
f l o a t poisZMZ = po i s s o n [ i n t 3 ( x , ym , z ) ] ;
f l o a t poisZZP = po i s s o n [ i n t 3 ( x , y , zp ) ] ;
f l o a t poisZZM = po i s s o n [ i n t 3 ( x , y , zm ) ] ;

f l o a t 4 temp = { poisPZZ + poisMZZ , poisZPZ + poisZMZ ,
poisZZP + poisZZM , d i v } ;

ou tPo i s s on [ c . xyz ] = dot ( ep s i l o n , temp ) ;
}

LISTING 7.46: HLSL code for solving the Poisson equation for 3D fluids.

The boundary conditions are enforced via postprocessing shaders. These
are simple, writing zeros to the desired locations and using temporary buffers
to avoid memory copies. Listing 7.47 shows the shader code.

// From En fo r cePo i s sonBounda r y . h l s l :
RWTexture3D<f l o a t> image ;
[ numthreads (1 , NUM Y THREADS, NUM Z THREADS ) ]
vo id WriteXFace ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 3 dim ;
image . GetDimens ions ( dim . x , dim . y , dim . z ) ;
image [ u i n t 3 (0 , c . y , c . z ) ] = 0 .0 f ;
image [ u i n t 3 ( dim . x−1, c . y , c . z ) ] = 0 .0 f ;

}

RWTexture3D<f l o a t> image ;
[ numthreads (NUM X THREADS, 1 , NUM Z THREADS ) ]
vo id WriteYFace ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 3 dim ;
image . GetDimens ions ( dim . x , dim . y , dim . z ) ;
image [ u i n t 3 ( c . x , 0 , c . z ) ] = 0 .0 f ;
image [ u i n t 3 ( c . x , dim . y−1, c . z ) ] = 0 .0 f ;

}

RWTexture3D<f l o a t> image ;
[ numthreads (NUM X THREADS, NUM Y THREADS, 1 ) ]
vo id WriteZFace ( u i n t 3 c : SV DispatchThread ID)
{
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u i n t 3 dim ;
image . GetDimens ions ( dim . x , dim . y , dim . z ) ;
image [ u i n t 3 ( c . x , c . y , 0 ) ] = 0 .0 f ;
image [ u i n t 3 ( c . x , c . y , dim . z−1)] = 0 .0 f ;

}

LISTING 7.47: HLSL code for enforcing the boundary conditions after solv-
ing the Poisson equation.

7.11.3.7 Updating the Velocity to Be Divergence Free

The gradient of φ, the solution to the Poisson equation, must be added
back to the velocity vector. This process is managed by class AdjustVelocity.
The shader code is shown in Listing 7.48; the Parameters constant buffer is
omitted.

// From Ad j u s tV e l o c i t y . h l s l :
Texture3D<f l o a t 4> i n S t a t e ;
Texture3D<f l o a t> po i s s o n ;
RWTexture3D<f l o a t 4> ou tSta te ;

[ numthreads (NUM X THREADS, NUM Y THREADS, NUM Z THREADS ) ]
vo id CSMain ( u i n t 3 c : SV DispatchThread ID)
{

u i n t 3 dim ;
i n S t a t e . GetDimens ions ( dim . x , dim . y , dim . z ) ;

i n t x = i n t ( c . x ) ;
i n t y = i n t ( c . y ) ;
i n t z = i n t ( c . z ) ;
i n t xm = max( x−1, 0 ) ;
i n t xp = min ( x+1, dim . x−1);
i n t ym = max( y−1, 0 ) ;
i n t yp = min ( y+1, dim . y−1);
i n t zm = max( z−1, 0 ) ;
i n t zp = min ( z+1, dim . z−1);

// Sample the s t a t e at ( x , y , z ) .
f l o a t 4 s t a t e = i n S t a t e [ c . xyz ] ;

// Sample Po i s s on va l u e s at immedia te n e i g h bo r s o f ( x , y , z ) .
f l o a t poisPZZ = po i s s o n [ i n t 3 ( xp , y , z ) ] ;
f l o a t poisMZZ = po i s s o n [ i n t 3 (xm , y , z ) ] ;
f l o a t poisZPZ = po i s s o n [ i n t 3 ( x , yp , z ) ] ;
f l o a t poisZMZ = po i s s o n [ i n t 3 ( x , ym , z ) ] ;
f l o a t poisZZP = po i s s o n [ i n t 3 ( x , y , zp ) ] ;
f l o a t poisZZM = po i s s o n [ i n t 3 ( x , y , zm ) ] ;

f l o a t 4 d i f f = { poisPZZ − poisMZZ , poisZPZ − poisZMZ ,
poisZZP − poisZZM , 0 .0 f } ;

ou tSta te [ c . xyz ] = s t a t e + ha l fD i vD e l t a ∗ d i f f ;
}

LISTING 7.48: HLSL code for updating the velocity to be divergence free.

The gradient is estimated using centered finite differences and the result is
structured to use vectorized computations for speed.

7.11.3.8 Screen Captures from the Simulation

The 3D fluid simulation is clamped to run at 60 frames per second. The
screen captures shown in Figure 7.13 were taken at various times during the



428 GPGPU Programming for Games and Science

FIGURE 7.13: Screen captures from the 3D fluid simulation. The captures
were taken at various time intervals with increasing time from left to right
and then top to bottom.

simulation. The coloring of the density is based on the velocity vectors. The
semitransparency is obtained via alpha blending, where the geometric primi-
tives are nested boxes and the boxes are drawn from innermost to outermost.

Naturally, screen captures are not sufficient to convey the actual real-time

behavior. You will have to run it yourself.
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Index

accuracy, 19
advection, 402
Append, see HLSL functions
append-consume buffer, see

resources, buffers
AppendStructuredBuffer, see HLSL

types
approximation

cosine, by minimax, 116
exponential, by minimax, 120
inverse cosine, by minimax, 119
inverse sine, by minimax, 117
inverse square root
by minimax, 114
by Newton’s method, 110

inverse tangent, by minimax,
119

least-squares algorithm, 107,
355, 362

logarithm, by minimax, 120
minimax algorithm, 82, 109, 355
orthogonal fitting, 360
sine, by minimax, 116
square root
by minimax, 111
by Newton’s method, 111

tangent, by minimax, 117
asfloat, see HLSL functions
asint, see HLSL functions
asuint, see HLSL functions

back buffer, 169
clearing, 173
color, 172
creating, 172
depth-stencil, 172
resizing, 173

barycentric coordinates, 131
Bellman-Ford algorithm, see shortest

path in graph
binary encodings, 32

general format, 45
binary scientific notation, 24
binary scientific number

definition, 24
implementation (BSNumber), 24
implementation of ratios

(BSRational), 30
properties
algebraic, 30
arithmetic, 27

ByteAddressBuffer, see HLSL types

Cayley-Hamilton theorem, 293
change of basis, 338
characteristic polynomial, 293
Chebyshev

equioscillation theorem, 82, 109,
116, 303

polynomials, 109, 302
conservation laws, 400
constant buffer, see resources, buffers
Consume, see HLSL functions
ConsumeStructuredBuffer, see HLSL

types
conversion

binary32 to rational, 64
binary64 to rational, 66
integer to floating-point, 60
narrow format to wide format,

70
general implementation, 73

rational to binary scientific
number, 24

435
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conversion (continued)
rational to binary32, 67
rational to binary64, 70
wide format to narrow format,

73
general implementation, 81

coordinate system
converting between right-handed

and left-handed, 336
handedness, 319, 333, 335
orthonormal basis
left-handed, 124
right-handed, 124

orthonormal set, 263
counting drawn pixels, 205

D3D interfaces
ID3DBlob, 161, 203, 226
ID3DInclude, 160

D3D11 device, 168
creating, 169
reference, 170

D3D11 interfaces
ID3D11BlendState, 202
ID3D11Buffer, 181
dynamic update, 208

ID3D11ComputeShader, 203
ID3D11DepthStencilState, 202
ID3D11DepthStencilView, 173
creating, 178

ID3D11DeviceContext, 169
ID3D11Device, 169
ID3D11GeometryShader, 203
ID3D11InputLayout, 184, 230
ID3D11PixelShader, 203
ID3D11Query

counting drawn pixels, 205
performance measurements,
243

wait for GPU to finish, 207
ID3D11RasterizerState, 202
ID3D11RenderTargetView, 173
creating, 178

ID3D11SamplerState, 202

ID3D11ShaderReflection, 161
ID3D11ShaderResourceView, 177
ID3D11UnorderedAccessView, 177
ID3D11VertexShader, 203
hierarchy, 174, 228

dadd, see HLSL functions
ddiv, see HLSL functions
DecrementCounter, see HLSL functions
deferred context, 168
depth-stencil texture, see resources,

textures
depth-stencil view, see resources,

views
deq, see HLSL functions
dfma, see HLSL functions
dge, see HLSL functions
Dijkstra’s algorithm, see shortest

path in graph
division

of binary scientific numbers, 30
by multiplicative division, 82
by Newton’s method, 81

dlt, see HLSL functions
dmax, see HLSL functions
dmin, see HLSL functions
dmov, see HLSL functions
dmul, see HLSL functions
dne, see HLSL functions
drcp, see HLSL functions
dtof, see HLSL functions
DXGI interfaces

IDXGIAdapter

device creation, 169
enumerating adapters, 215

IDXGIDevice, creating swap
chains, 170

IDXGIFactory1

copying between GPUs, 217
creating swap chains, 170
enumerating adapters, 215

IDXGIOutput, enumerating
displays, 215

IDXGIResource, sharing textures,
195
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IDXGISwapChain

creation, 170
resizing the back buffer, 173
toggling between windowed
and full-screen, 171

dynamic programming, 365, 376

error
absolute, 19
relative, 19
rounding, 26
truncation, 26

Euler angles
body coordinates, 306
world coordinates, 306

finite difference estimation, 401
floating-point

adjacent number
next-down, 47
next-up, 47

biased exponent, 33, 37, 39, 41
classification, 45
narrow format, 51
normal, 33, 37, 39, 41
not-a-number (NaN), 32
payload, 33
quiet, 32
signaling, 32

pseudocode for parsing, 34, 38,
40, 42, 45

sign, 33, 36, 39, 41
signed infinities, 32
signed zeros, 32
significand, 33, 37, 39, 41
subnormal, 33, 37, 39, 41
trailing significand, 33, 37, 39, 41
wide format, 51

front buffer, 169
ftod, see HLSL functions

Gauss-Seidel iteration, 401
Gaussian distribution, see image

processing

geometric algorithm
definition, 16
robust, 16
stable, 16

geometric problem
constructive, 15
convex hull of disks, 15
convex hull of points, 15
definition, 14
distance between points, 17
intersection of line segments, 15
selective, 15

Gram-Schmidt orthonormalization,
263, 265, 267, 268, 328, 330

graph
directed, 371
directed acyclic, 372
topological sort, 372

group-shared memory, in compute
shader, 378

GroupMemoryBarrierWithGroupSync, see
HLSL functions

handedness, see coordinate system
Helmholtz decomposition of vector

fields, 402
HLSL functions

decrementcounter, 188
incrementcounter, 188
Append

behavior when buffer full, 187
in compute shader, 186
in geometry shader, 139

asdouble, 188, 354
asfloat, 188, 221, 352, 354
asint, 188
asuint, 188
Consume, 186
dadd, 221
ddiv, 221
deq, 221
dfma, 221
dge, 221
dlt, 221
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HLSL functions (continued)
dmax, 221
dmin, 221
dmov, 221
dmul, 221
dne, 221
drcp, 221
dtof, 221
ftod, 221
Load4, 189
mul, 134, 135
RestartStrip, 139
Store4, 189

HLSL loop unrolling, 158
HLSL registers

constant buffer (cb#), 149
input (v#), 149
output (o#), 149
output stream (m#), 155
sampler (s#), 152
temporary (r#), 149
temporary indexable (x#), 158
texture (t#), 152
unordered access view (u#), 158

HLSL types
AppendStructuredBuffer, 186
ByteAddressBuffer, 188
ConsumeStructuredBuffer, 186
RWByteAddressBuffer, 188
RWStructuredBuffer, 185, 186
StructuredBuffer, 185
TriangleStream, 139

IEEE 754-2008 Standard, 22–23
binary interchange formats, 32

binary8, 33
binary16, 36
binary32, 39
binary64, 41
binaryN, 42

GPU conformance, 218
SIMD conformance, 103

image processing
convolution, 377
filter kernel, 378

Gaussian distribution, 377
median filter, 384
using insertion sort, 385
using min-max swapping, 387

rank-order filter, 384
separable filter, 378

immediate context, 168
creating, 169

IncrementCounter, see HLSL functions
index buffer, see resources, buffers
input assembly stage, 185
input layout, 184, see resources
intermediate value theorem, 346
intersections

bounding volume trees, 370
find query, 368
tangential, 368
test query, 368
transverse, 368

l’Hôpital’s Rule, 294
Laplace expansion theorem, 284
Laplacian operator, 400
least-squares, see approximation
left-handed, see coordinate system
level set, 392
level surface, 392
level value, 392
Load4, see HLSL functions

mass-spring system, 398
matrix

column-major order, 274
row-major order, 274
vector-on-the-left convention,

274
vector-on-the-right convention,

274
median filter, see image processing
memory mapping, 182, 208, 211
minimax, see approximation
mul, see HLSL functions
multiple render targets, 201

output merger stage, 206
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ping-pong buffers, 143, 411, 414, 425,
426

Poisson equation, 402, 414, 426
precision

definition, 19
of floating-point numbers, 43

processing unit
CPU (central processing unit), 1
FPU (floating-point processing

unit), 22
GPU (graphics processing unit),

1
SIMD (single-instruction-

multiple-data), 2,
93

programming pattern
adapter, 174
bridge, 174
listener, 230

rank-order filter, see image
processing

register
shuffling (swizzling), 94
splat, 95

relaxation, see shortest path in graph
Remez

algorithm, 109, 303
iteration, 112–114, 116

render-target texture, see resources,
textures

render-target view, see resources,
views

resources
buffers
append-consume, 186
byte-address, 188
constant, 182
index, 138, 185
indirect argument, 190
raw, 188
structured, 185
structured with internal
counters, 186

texture, 182
vertex, 138, 183

indexless primitive, 138
input layout, 138
limit on bind points, 191
staging, 175
texture arrays, 196
1-dimensional, 196
2-dimensional, 197

textures, 190
1-dimensional, 193
2-dimensional, 194
3-dimensional, 195
automatic mipmap
generation, 191, 193, 195,
196

creation, 191
cubemap, 198
cubemap arrays, 199
depth-stencil, 200
render target, 199
sharing between devices, 195

views, 176
depth-stencil, 176
render target, 176
setting render targets and
unordered access views
together, 206

shader resource, 176
unordered access, 176

RestartStrip, see HLSL functions
right-handed, see coordinate system
Rodrigues rotation formula, 292
root polishing, 85
rounding

correctly rounded result, 50
floating-point to integral

floating-point, 54
ties-to-away, 51, 52, 56
ties-to-even, 26, 51, 54
toward negative, 51, 53, 59
toward positive, 51, 52, 58
toward zero, 51, 52, 57

Runge–Kutta fourth-order method,
399
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RWByteAddressBuffer, see HLSL types
RWStructuredBuffer, see HLSL types

semantics, 136
COLOR, 135, 149
POSITION, 135, 148
TEXCOORD, 136, 151

shader compiling, 144
using D3DCompile, 160
using FXC, 144

shader reflection, 138, 161
determining buffer packing, 163
skeleton code wrapper, 163
using D3DReflect, 161

shader resource view, see resources,
views

shaders
compute
dispatch thread ID, 143
for Gaussian blurring, 142
group ID, 143
group thread ID, 143
groups of threads, 142

geometry
for billboards, 139
for splatting, 141
for surface extraction, 396

out-of-range resource accesses,
160

pixel
for texturing, 137
for vertex coloring, 135

vertex
for texturing, 137
for vertex coloring, 135

shortest path in graph, 372
slerp (spherical linear interpolation),

300
spaces

model, 123
projection (clip), 125
perspective divide, 129
view frustum, 127
view plane, 125

view (camera), 124
window, 129
normalized device
coordinates, 129

viewport, 129
world, 123

SSE instructions
arithmetic

mm add ps, 100
mm div ps, 100
mm mul ps, 100
mm rcp ps, 100
mm rsqrt ps, 100
mm sqrt ps, 100
mm sub ps, 100

comparison
mm cmpeq ps, 99
mm cmpge ps, 99
mm cmpgt ps, 99
mm cmple ps, 99
mm cmplt ps, 99
mm cmpneq ps, 99
mm cmpnge ps, 99
mm cmpngt ps, 99
mm cmpnle ps, 99
mm cmpnlt ps, 99

floating-point control registers
mm getcsr, 103
mm setcsr, 103

logical
mm and not ps, 99
mm and ps, 99
mm or ps, 99
mm xor ps, 99

matrix transpose
MM TRANSPOSE4 PS, 102

memory allocation
mm free, 93
mm malloc, 93

memory loading and storing
MM SHUFFLE, 94
mm load ps, 96
mm loadu ps, 96
mm set ps1, 94
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mm set ps, 94
mm setr ps, 94
mm shuffle ps, 94
mm store ps, 96
mm storeu ps, 96

selection (flattening), 104
Store4, see HLSL functions
structured buffer, see resources,

buffers
structured buffer with counter, see

resources, buffers
StructuredBuffer, see HLSL types
Sturm polynomial sequence, 346
subresources, 179

numbering of mipmaps, 179
numbering of texture arrays,

179
subtractive cancellation, 84
swap chain, 169

creating, 170
system value semantics, 136

SV Depth, 201
SV DispatchThreadID, 143
SV GroupID, 143
SV GroupIndex, 143
SV GroupThreadID, 143
SV Position

clip position in vertex shader,
136

pixel center in pixel shader,
136

SV Target, 136
SV VertexID, 396

texture buffer, see resources, buffers
texture sampling modes, 152
top-left rule for rasterization, 131
trade-offs, 20–22

transformation
affine, 322
decomposition, 327
rotation, 325
scaling, 324
shearing, 325
translation, 323

composition, 326
model-world, 123
orthographic projection, 127
perspective projection, 127
projection-window, 129
rigid, 327
scaled rigid, 327
view-projection, 128
world-view, 125
world-view-projection, 226, 232,

236
HLSL storage order, 150
used in vertex shaders, 137

trapezoid rules, 372
TriangleStream, see HLSL types

unordered access view, see resources,
views

vertex buffer, see resources, buffers
video streams, 341

parallel processing, 343
producer-consumer model, 341
serial processing, 343

voxel
definition, 392
use in 3D fluid flow, 417
use in surface extraction, 392

wait for GPU to finish, 207
world-view-projection matrix, see

transformation
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