
Graphics Shaders: Theory and Practice is intended for a second course in computer graphics at the 
undergraduate or graduate level, introducing shader programming in general, but focusing on the GLSL 
shading language. While teaching how to write programmable shaders, the authors also teach and reinforce 
the fundamentals of computer graphics. The second edition has been updated to incorporate changes in the 
OpenGL API (OpenGL 4.x and GLSL 4.x0) and also has a chapter on the new tessellation shaders, including 
many practical examples.  

The book starts with a quick review of the graphics pipeline, emphasizing features that are rarely taught in 
introductory courses but are immediately exposed in shader work. It then covers shader-specific theory for 
vertex, tessellation, geometry, and fragment shaders using the GLSL 4.x0 shading language. The text also 
introduces the freely available glman tool that enables you to develop, test, and tune shaders separately from 
the applications that will use them. The authors explore how shaders can be used to support a wide variety 
of applications and present examples of shaders in 3D geometry, scientific visualization, geometry morphing, 
algorithmic art, and more.

Features of the Second Edition:
• Written using the most recent specification releases (OpenGL 4.x and GLSL 4.x0) including code 

examples brought up-to-date with the current standard of the GLSL language
• More examples and more exercises
• A chapter on tessellation shaders
• An expanded Serious Fun chapter with examples that illustrate using shaders to produce fun effects
• A discussion of how to handle the major changes occurring in the OpenGL standard, and some C++ 

classes to help you manage that transition
• Source code for many of the book’s examples at www.cgeducation.org

“If you are one of the multitudes of OpenGL programmers wondering about how to get started with 
programmable shaders or what they are good for, this is the book for you. Mike and Steve have filled their new 
edition with such a variety of interesting examples that you’ll be running to your computer to begin writing your 
own shaders.”

—Ed Angel, Chair, Board of Directors, Santa Fe Complex; Founding Director, Art, Research, Technology, and 
Science Laboratory (ARTS Lab); Professor Emeritus of Computer Science, University of New Mexico

“Shaders are an essential tool in today’s computer graphics, from films and games to science and industry. 
In this excellent book, Bailey and Cunningham not only clearly explain the how and why of shaders, but they 
provide a wealth of cutting-edge shaders and development tools.  If you want to learn about shaders, this is 
the place to start!”
  

 —Andrew Glassner

Mike Bailey • Steve CunninghaM
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Foreword

Excellent! I am glad that you are reading this book. You might want to skip 
straight ahead to the good stuff, but as long as you are here…

Computer graphics is a fascinating and fast-changing field that didn’t 
even exist when I was born. I was attracted to it because it is a field with a 
unique mix of engineering and artistry. In the computer graphics industry, 
people with engineering skills design graphics software and hardware prod-
ucts that offer ever-increasing levels of performance and image quality. These 
products inspire people with artistic skills to use the resulting products to cre-
ate amazing visual experiences that entertain, teach, or help others create or 
design. This in turn inspires the engineers to create even better hardware and 
software in order to improve the visual experiences created by artists. This 
symbiotic relationship between engineers and artists has never let up and has 
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resulted in photorealistic effects for movies and near-cinematic quality experi-
ences for computer games. 

You might be reading this book because of your interest in the computer 
graphics field. Perhaps you are an engineer looking to develop another tool for 
your toolbox of software development skills for computer graphics. Perhaps 
you are an artist who is interested in learning a little more about the bits and 
bytes of how computer graphics images are created. Perhaps you are that rare 
breed, an engineer/artist, and you have in your mind’s eye a vision of what 
you want to create, and you need only to develop an understanding of this 
new medium in order to bring your vision to reality. If any of these are true, 
you have selected an excellent guide book to help you on your journey.

You are holding in your hands a book written by two people who share 
two passions. Mike Bailey and Steve Cunningham both love computer graph-
ics, and they are absolutely passionate about teaching. This book allows them 
to combine both of these passions into a form that is sure to benefit you, the 
reader. 

Actually, the word “passionate” understates the impact that Mike and 
Steve have had on computer graphics education. Mike is a “lifer” in the com-
puter graphics industry. I met him some 15 years ago when we asked him to 
lead an effort to define industry-standard benchmarks for computer graphics 
systems (which he graciously agreed to do). He has been teaching or practic-
ing computer graphics for almost 30 years now. He has won numerous awards 
as a professor of computer graphics. His dedication to educating people new 
to graphics is demonstrated by the fact that he annually prepares and deliv-
ers the “Introduction to Computer Graphics” tutorial at SIGGRAPH (ACM’s 
Special Interest Group on Graphics). 

Steve is a similarly dedicated, accomplished, and award-winning edu-
cator. He was a co-founder of the SIGGRAPH Education Committee and co-
chaired this activity for many years. He served in countless leadership positions 
in the SIGGRAPH organization and for the SIGGRAPH conference itself (the 
largest, most prestigious, and longest-lived conference focusing on computer 
graphics). For his lifelong efforts, he was given the 2004 ACM SIGGRAPH 
Outstanding Service Award. His influence on the computer graphics industry 
is global, as witnessed by the fact that he was the first Eurographics Education 
Board chair and he has been named a Eurographics Fellow. 

So it is certainly the case that these two authors can tell you a thing or two 
about computer graphics. But even more importantly, they can tell it to you in 
a way that you will understand and remember. 

The topic of this book, writing shaders with the OpenGL Shading 
Language, is both important and timely. OpenGL and its companion shading 
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language are industry standards. This means that they are supported by a vari-
ety of hardware companies on a variety of operating environments. OpenGL 
and GLSL are available on Macs, PCs, and Linux systems;  on workstations, 
towers, desktops, laptops, and handhelds. The goal of a standard is simple: to 
make it easy for you, the programmer, to deploy your code on a diverse range 
of products without requiring any changes to the source code. The resulting 
portability amortizes the cost of the software development by creating a bigger 
market for software products based on industry standards. 

But the most important part of this book is that while it is teaching you 
how to write programmable shaders, it is also teaching and reinforcing the 
fundamentals of computer graphics. As a result, you will be able to easily 
adapt the lessons learned here to other shading languages and graphics para-
digms. This is becoming increasingly important since the trend for graphics 
hardware is to offer more general programmability and less fixed functionality 
built into hardware. In other words, we are returning to the days where com-
puter graphics innovation occurs in software. The knowledge and skills that 
you learn while reading this book can be adapted to the even more general 
graphics programming environments of the future.

At the end of each chapter in this book, you will find some exercises that 
will help develop your knowledge of graphics and programmable shading. In 
that spirit, here are the exercises that I would prescribe for you:

1.  Read this book.
2.  Use computer graphics and programmable shading to create beauty.
3.  Share your creation and your knowledge with others.

Most importantly,

4.  Have fun!

Randi Rost
December 31, 2008



This page intentionally left blankThis page intentionally left blank



xxiii

Preface

Does this remind you of yourself?

You have lots of great, creative ideas in your head, but can’t seem to get 
the right pixels to come out onto your graphics screen. Then, you are our type 
of person. And, this is your type of book.

Welcome to the second edition of Graphics Shaders: Theory and Practice. As 
the name implies, this book deals with both the theory and equations behind 
what shaders do, as well as lots and lots of code examples of putting the theory 
into practice. To help you, this book has been printed with color throughout. 
That means that the lots of examples have lots of images to go with them to 
help understand the concepts. So stop and stay for a while. Put your feet up 
and start reading. You are really going to enjoy this.

http://xkcd.com
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This book has over 100 more pages than the first edition did. Here are the 
major improvements:

1. This book is written against the most-recent specification releases: 
OpenGL 4.x and GLSL 4.x0.

2. All code examples have been brought up-to-date with the current stan-
dard of the GLSL language.

3. There is an entire chapter (with examples) on the new tessellation shaders.
4. All chapters have more examples and more exercises.
5. Many diagrams have been improved. The ones involving GLSL function-

ality levels have been brought up to 4.x0.
6. The OpenGL Architecture Review Board (ARB) has depecated some por-

tions of OpenGL, but has not eliminated them. This edition discusses that, 
and presents a strategy to write your own code with that in mind. All code 
examples in this book now follow that strategy. Also, by following that 
strategy, you will be prepared for migration to OpenGL-ES 2.0.

7. Appendices have been added showing the use of C++ classes to make 
writing OpenGL shader applications easier, and help with the post-dep-
recation strategy.

Programmable computer graphics shaders have had an interesting his-
tory. In not-too-distant memory, at least for some of us, all aspects of computer 
graphics were programmable. In fact, “programmable” is probably not a good 
term, because that implies that there was a programmability option when cre-
ating an image. There wasn’t. If you wanted anything to happen, you had no 
choice but to program it. Yourself. “Involuntary programmability” might be a 
better way to put it.

Computer graphics APIs changed that for most graphics practitioners. 
With a good API, you could write very good graphics programs much more 
easily because you could let the API’s functionality take over large portions of 
the graphics process. However, you paid for this in giving up any functional-
ity that the API didn’t know how to handle. A good example is surface shad-
ing, where most of the 1990s APIs could not support anything beyond simple 
smooth lighted surfaces.

Fortunately, neither the computer graphics research community nor 
advanced graphics practitioners were satisfied with this. First in software and 
then in hardware, as graphics processors were developed, specific functional-
ity was developed to support the programming of features that fixed-function 
graphics APIs had fenced off. This functionality has now developed its own 
standards, including the GLSL shader language that is part of the OpenGL 
standard. Programmable graphics shaders, programs that can be downloaded 
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to a graphics processor to carry out operations outside the fixed-function pipe-
line of earlier standards, have become a key feature of computer graphics.

This process is now being paralleled in the teaching and learning of 
computer graphics. Just as students usually first learned computer graph-
ics through a graphics standard, most often OpenGL, students now need to 
understand the role of programmable shaders and to have experience in writ-
ing and using them. One of the remarkable things about shader-level pro-
gramming is that it brings us all back to the same kind of graphics questions 
that were being examined in the 1970s. We can now manipulate vertices and 
individual pixels while still having the full OpenGL API high-speed support 
whenever we want to use it. This gives students and practitioners a wonderful 
range of capabilities that can be used in games, in scientific visualization, and 
in general graphical communication.

This book is designed to open computer graphics shader programming to 
students, whether in a traditional class or on their own. It is intended to com-
plement texts based on fixed-function graphics APIs, specifically OpenGL. It 
introduces shader programming in general, and specifically the GLSL shader 
language. It also introduces a flexible, easy-to-use tool, glman, which helps you 
develop and tune shaders outside an application that would use them.

This book is intended as a text for a second course in computer graphics at 
either the undergraduate or graduate level. It is not a textbook for a first course 
in computer graphics, because it assumes knowledge of not only OpenGL, 
but of general graphics concepts. Knowledge of another graphics API, such as 
Direct3D, will work, but we focus on GLSL and will use OpenGL terminology 
consistently. Because shader programming lets you work in areas that APIs 
might hide from you, sometimes you will need to work at fundamental levels 
of geometry, lighting, shading, and similar concepts. You will benefit from 
a prior understanding of these. You will also find that shader programming 
exposes some areas of API operation that you may not have fully understood, 
so you may need to review some of these details.

Our choice of GLSL as the vehicle for teaching shaders is based on its 
integration into the widely-used OpenGL multiplatform API and its solid per-
formance. The concepts presented here will also help anyone who works with 
other shader APIs such as Cg or HLSL, because the basic ideas of shaders 
are all similar. The book is designed to take the student from a review of the 
fixed-function graphics pipeline through an understanding of the basic role 
and functions of shader programming to solid experience in writing vertex, 
fragment, and geometry shaders for both glman and actual applications.

While it might seem logical to treat shaders in the order in which they are 
applied in the expanded graphics pipeline, with vertex shaders first, followed 
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by geometry shaders and then fragment shaders, we have chosen to lay out 
their order a little differently. Again, it might seem logical to treat shaders in 
the order of frequency of use, with fragment shaders first, followed by vertex 
shaders and then geometry shaders, but that also does not quite seem to work. 
Because many of the operations of a fragment shader depend on things that 
come out of a vertex shader, we treat vertex shaders first, followed by frag-
ment shaders, and finally geometry and tessellation shaders.

The overall outline of the text is straightforward. In the first chapters, 
which make up the background for the rest of the book, we begin by covering 
the fixed-function graphics pipeline of OpenGL in Chapter 1, and OpenGL 
shader evolution in Chapter 2. We then present the basic principles of vertex, 
fragment, geometry, and tessellation shaders in Chapter 3, including several 
examples, using the GLSL shader language. Chapter 4 introduces the glman 
tool with a kind of mini-manual on its use. Finally, Chapter 5 presents the 
GLSL shader language and discusses its similarities and differences from the 
C programming language.

The next set of chapters sets up vertex and fragment shader concepts. 
Chapter 6 covers lighting from the point of view of shaders and introduces 
the ADS (ambient, diffuse, specular) lighting function that we will use several 
times in later chapters. This is fundamental in both vertex and fragment shad-
ers, since vertex shaders often need to compute lighting for each vertex, and 
fragment shaders may want to compute lighting for each pixel. In Chapter 7 
we cover vertex shaders, emphasizing their inputs and outputs as well as 
the ways they can be used to modify vertex geometry. Finally, in Chapter 8 
we cover fragment shaders, again emphasizing their inputs and outputs and 
showing how they can be used to replace the usual fixed-function fragment 
operations.

The next three chapters discuss particular capabilities of fragment shad-
ers. In Chapter 9 we describe the way fragment shaders handle texture map-
ping, including bump mapping, cube mapping, and rendering a scene to a 
texture. Chapter 10 discusses noise functions and their role in writing textures 
and shaders, and introduces a tool, noisegraph, that lets you experiment with 
the properties of 1D and 2D noise functions. Finally, Chapter 11 examines 
some ways you can manipulate 2D images, treated as textures, with the tools 
that fragment shaders make available.

Chapter 12 presents geometry shaders, including how they are related to 
vertex and fragment shaders as well as their own capabilities. Several exam-
ples highlight the way geometry shaders can expand the geometric capability 
of your models or show the capability of geometry shaders to handle sim-
ple level-of-detail operations. Chapter 13 discusses tessellation shaders. We 
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show how they are somewhat similar to geometry shaders but have important 
enhancements.

The final set of chapters focuses on computer graphics shaders in appli-
cations. Chapter 14 describes the GLSL API that lets you compile, link, and 
use shaders in an application. It also discusses passing data and graphics 
state information to shader programs and introduces a simple C++ class that 
encapsulates the process of incorporating shader programs in an application. 
In Chapter 15, we focus on how shaders can be used in scientific visualiza-
tion applications, and show examples of a number of specific visualization 
operations. And in Chapter 16 we explore some fun things you can do with 
computer graphics shaders, under the guise of getting real work done. (Don’t 
tell anyone.)

Four appendices have been added showing the use of C++ classes to help 
write OpenGL applications and handle some of the post-deprecation chal-
lenges.

While many of the topics in this text are straightforward, some are 
tricky or deserve special attention. We have followed the lead of the Nicholas 
Bourbaki mathematics texts of the early 20th century and have highlighted 
these with a “dangerous curves ahead” sign as shown to the right. We hope 
this will help you notice these points.

Because shader functions are changing, there are times when we want to 
highlight things that have evolved or things we introduce to deal with these 
changes. We have used a second sign, shown at right, to draw your attention 
to these points.

We are confident that the tools and capabilities we describe in this book 
will both make you a better graphics programmer and make graphics pro-
gramming a much more interesting experience for you. As OpenGL evolves 
toward the future and shaders become the only way that geometry and ren-
dering are handled, we believe that you will find this text to be an invaluable 
guide.

Thanks
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The Fixed-Function  
Graphics Pipeline1

In your first course in computer graphics, you probably used a graphics API 
to help you create your projects. Because this book focuses on graphics using 
OpenGL, we assume that your API was OpenGL, and in this chapter we 
review the graphics pipeline as it is expressed in OpenGL versions 1.x. If you 
used a different API, especially in a first graphics course, your experience was 
probably very close to the OpenGL approach. These APIs used a fixed-function 
pipeline, or a pipeline with a fixed set of operations on vertices and fragments. 
In the rest of this book, we will look at the shader capabilities of OpenGL ver-
sions 2.x and how you can use them to create effects that are difficult or impos-
sible with the fixed-function pipeline.
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The Traditional View

When you develop a graphics application with the OpenGL API, you define 
geometry, viewing, projection, and a number of appearance properties. 
Objects’ geometries are defined by their vertices, their normals, and their 
graphics primitives, specified by glBegin-glEnd pairs that encompass points, 
lines, geometry-compressed groups, or polygons. Viewing and projection are 
each defined with a specific function. Appearance is specified by defining 
color, shading, materials, and lighting, or texture mapping. This information 
is all processed in a very straightforward way by the fixed-function OpenGL 
system, acting either in software or in a graphics card.

The simplest way to view OpenGL’s operations is to think of it as using 
two connected operations: a vertex-processing operation and a pixel-processing 
operation. Each operation in fixed-function OpenGL has a pre-determined set 
of capabilities. It is important to understand how the geometry and appear-
ance directives you give are carried out in the pipelines. When you work with 
shaders, though, it is more than important to understand the pipelines; your 
shaders will actually take over part of these operations, so you absolutely must 
understand them.

The Vertex Operation

To create the geometry of a scene, you specify primitives and vertices, and 
operations that act on each vertex and create its pixel coordinates in screen 
space. The primitive you specified then determines the pixels that must be 
filled to represent it, and any appearance information you specified is used to 
determine how those pixels are to be colored in the pixel-processing operation. 
The geometry part of the vertex processing follows the flow in Figure 1.1. The 
geometry processing is carried out for each vertex independently of any infor-
mation on grouping in your specified primitive; the grouping information is 
only used after the vertices finish the vertex processing.

The first stage of the vertex operation defines the fundamental geom-
etry of your scene. The input to this stage is the set of vertex definitions (your 
glVertex*, glNormal*, and glTexCoord* function calls) and the grouping defi-
nition (your glBegin(...) and glEnd( ) function calls) that you set for the 
scene. Each piece of geometry is created, or modeled, in its own model space. 
This coordinate space can be anything that makes it easy for you to define 
the vertices and relationships for your model. Modeling functions include any 
operations you may need to create these definitions and often use mathemati-
cal functions operating in the model space. As we noted, the geometry might 
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Figure 1.1. Vertex processing in the OpenGL pipeline.

include normal vectors and texture coor-
dinates, as well as vertex coordinates. It 
also includes primitive specifications that 
specify how pixels are to be assembled 
from your vertices. It may also include 
lights when you want the lights to have 
specific relationships with your geometry. 
You are probably used to including other 
definitions, such as colors and material 
properties, as you define your geometry. 
These are appearance factors for the scene 
and are used later in the vertex pipeline, 
as we will see. The output of this stage is a 
set of vertices in model coordinates, with 
other geometric information and with 
primitive information.

The second stage of the vertex opera-
tion defines the world space that will hold 
the entire scene and puts all your individ-
ual models in that space. Each geometric primitive is placed into world space 
by modeling transformations such as scaling, rotation, or translation transfor-
mations, so the input to this stage is your set of modeling transformation spec-
ifications (your glRotatef(...), glTranslatef(...), and glScalef(...) 
function calls). These transformations convert the individual model space 
coordinates into a single set of world or application space coordinates. They 
do not affect color or material definitions, texture coordinates, or groupings, 
but they do modify vertices, normals, and the geometry of lighting. Often, 
lights are defined directly in world space when you think of lighting a whole 
scene instead of a single object. Light geometry, such as position or direction, 
is affected by whatever modeling is in effect when the light is defined. The 
output of this stage is a modified set of vertices and normals, representing the 
original geometry in a different space.

The third stage of the vertex operation defines the eye space that is created 
when you specify viewing information for your scene. The input to this stage 
is your definition of the viewing environment, often using the GLU function 
gluLookAt(...). This defines the viewing transformation that modifies your 
scene to create the standard eye view of a scene, a coordinate system with the 
eye at the origin, and the x-, y-, and z-axes in their familiar right-handed 3D ori-
entations. This transformation modifies vertex, normal, and light information, 
so the output of this stage is the modified geometry with the original primi-
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tive information, with the geometry representing a standard viewing space. All 
depth information for later processing comes from the z-coordinates in this eye 
space. The ModelView matrix is defined at this point, and is used to transform 
the vertices for geometric computations, as well as to transform the values of 
the normals, light positions, and light directions for lighting computations. 

Once you are in eye space, other information comes into play. As part 
of defining each vertex, you probably also provided some appearance infor-
mation (e.g., glColor3f) or other information (e.g., lights or materials). This 
information can be used here to set the vertex color. The color of each vertex 
can be set as your color statements are implemented or any lighting operations 
you specified are carried out. If lighting is enabled, the light parameters, light 
position and direction, normal vectors, and material specification are used to 
determine a color for each vertex. Each vertex is assumed to have a color value 
from this point on in the process.

The fourth stage of the vertex operation defines the clip space that is cre-
ated when you specify the projection of your scene to the viewplane. The input 
to this stage is your projection definition, either perspective or orthographic. 
This projection definition defines a projection transformation that is to be 
applied to the eye space. Your projection definition creates a view volume, and 
the projection transformation is applied to this view volume to create a rectan-
gular 3D space that can easily be used for the next stage. 

The final stage of the vertex operation uses your specified viewport infor-
mation to create pixel-space representations for each vertex in screen space. 
There are two primary operations here. One is clipping the geometry you spec-
ified on the clip space boundaries in your projection definition; if any clipping 
is done, it may create new or modified primitives as vertex pixels are added or 
deleted. When there is clipping, the new vertex pixels will need to have their 
new colors or texture coordinates interpolated in the same way as edges are 
interpolated in the rendering process. The second is converting the 3D clip 
space coordinates into the 2D integer coordinates of the specified viewport. 
This is a simple proportion operation in the x- and y-coordinates plus homoge-
neous division, followed by a truncation of these real values to integers. At the 
same time, the z-coordinates are converted to depth values (usually integers) 
that can be used in rendering. The output of this stage, and thus the output of 
the entire vertex pipeline, is a set of vertices in integer pixel x- and y-coordi-
nates with grouping, normals, depth, texture coordinates, and color.

While Figure 1.1 describes the actions of the vertex pipeline, it can also 
be useful to see the effects of these actions. In Figure 1.2 we describe this by 
showing how the overall graphics pipeline works on a simple triangle rep-
resented by the three (blue) vertices. These are sent to the vertex pipeline by 



5The Traditional View

the CPU, are transformed into screen space by the vertex processor, are 
assembled to go into the rasterizer, and are turned into pixels by the fragment  
processor.

The graphics pipeline as described above includes a number of transfor-
mations noted in Figure 1.1: several modeling transformations, the viewing 
transformation, and the projection transformation. The actual OpenGL imple-
mentation of the pipeline uses a more unified version of these transforma-
tions, however; the modeling and viewing transformations are combined into 
the ModelView transformation, and new modeling transformations are multi-
plied into this as they are defined. A transformation stack is maintained for the 
ModelView and Projection transformations, with the current version at the top 
of the stack. The glPushMatrix( ) and glPopMatrix( ) operations let you save 
and restore modeling environments. The ModelViewProjection transformation is 
the product of the ModelView and Projection transformations, and is updated 
whenever the ModelView transformation or Projection Transformation is 
updated. The ModelViewProjection transformation is applied to individual 
vertices to place them into clip space. The system also maintains another trans-
formation, the Normal transformation, calculated as the inverse of the transpose 
of the ModelView transformation, which handles the problem of ensuring that 
the normal can be correctly used for lighting and other operations. Later in the 
chapter we will describe how this is done.

Figure 1.2. The actions of the overall graphics pipeline.
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Figure 1.3. A simplified view of the OpenGL render-
ing pipeline.

The Fragment Processing Part of the Pipeline

OK, a moment ago we called it “pixel-processing,” but the fact is that it is really 
called “fragment-processing.” What is a pixel? A pixel, in GLSL terminology, 
is a set of appearance information (usually red, green, blue, alpha, z-depth, 
etc.) that is about to be written to the framebuffer. Then what is a fragment? A 
fragment is a pixel-to-be; that is, it is a pixel’s worth of information necessary 
to compute that pixel’s red, green, blue, alpha, z-depth, etc. The operation is 
called “fragment processing” because its job is to take all that information and 
produce the pixel appearance. We will now see how that operation fits in with 
the entire graphics pipeline. 

The graphics pipeline takes the vertices in screen space and constructs 
the regions you defined in your grouping with the appearance you specified 
in the OpenGL rendering commands. This is described in the somewhat sim-
plified diagram of the rendering pipeline shown in Figure 1.3. This takes as its 
input the output of the last step of the vertex pipeline in Figure 1.1. 

Looking at this as we did at the vertex operation, we ask about the inputs 
and outputs for each stage. We start with the output of the vertex operation: 
vertices in screen coordinates with groupings, colors, depths, and texture 
coordinates. (Normals are not considered here; the fixed-function pipeline 
does not need them for fragment processing because lighting is computed per-
vertex and only the resultant color intensities are interpolated per-fragment.) 
The first rendering stage takes the ordered vertices and creates the edges of the 
primitive. The colors, depths, and texture coordinates at the vertices are inter-
polated to define these same properties along the edges and are then interpo-
lated left-edge-to-right-edge for each fragment.

The next rendering stage processes 
fragments. It takes that “pre-information” 
we just talked about and creates the appear-
ance information that will be written into the 
framebuffer. 

In the final stage of the graphics pipe-
line, the color of the pixel is integrated into 
the framebuffer by functions such as depth 
testing, blending, and masking that assem-
ble the final framebuffer content. These pro-
cesses might ignore the pixel (depth test-
ing, masking) or might change the color of 
the pixel (blending). The final output of this 
stage is the actual color in the framebuffer.
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Figure 1.4. The OpenGL state as a graphics context object.

There are, of course, many details in these operations, and we have only 
sketched the overall process here. Many of these should be familiar from your 
experience with graphics programming using OpenGL. Later in this chapter 
we will review some of these details and discuss some others that may not be 
quite as familiar. And in the later chapters that describe fragment shaders and 
show how you can use them, you will see how to control most of the details 
yourself.

State in the Graphics Pipeline

In order to manage the large number of OpenGL operations and all of the 
options they need, OpenGL sets and maintains a set of state information that 
is used in the vertex and rendering operations. A large number of OpenGL 
functions have as their only operation the setting of information in the graph-
ics state. As these operations are carried out, they get their information from 
the state.

We need to be very aware of the OpenGL state in working with shaders, 
because we will have to replace some critical fixed-function operations. It will 
be useful to have a comfortable language and notation to talk about OpenGL 
state. We introduce the notion of a graphics context to describe the OpenGL 
state, and introduce a diagram of this context in Figure 1.4.

The initial graphics context has a number of default values (e.g., lines 
are white and one pixel wide, the background color is black, and there are no 
active textures.) When we set values with functions such as glColor3f(...), 
we will say that we “dock” the color value to the slot that holds the primary 
color value in the OpenGL state. If we change that color with another function 
call, then the slot holds the new value and the old value is lost. Thus, each 
“docking point” holds a unique state value that is used in the graphics process, 
and most values can be queried as well as set. We will see this from time to 
time as we discuss shader operations.
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Figure 1.5. The OpenGL pipeline in graphics hardware.

How the Traditional View Is Implemented

In the OpenGL system, the actual processes that implement the pipeline are 
grouped into different kinds of functionality. A block diagram of these func-
tional groups in a generic graphics system is shown in Figure 1.5.

The first functional group handles the vertex processing that is shown in 
Figure 1.1. The input to this group includes vertices, normals, primitive defini-
tions, colors, lights (and their parameters), materials, and texture coordinates. 
The output is a set of vertices as pixels with their color, depth, and texture 
coordinates, and perhaps as revised primitives.

The next step is rasterizing. This implements the Vertices-to-Fragments 
step in the rendering pipeline of Figure 1.3. The input to the rasterizer is the set 
of vertices in screen coordinates with their depth, color, and texture coordinates, 
along with how the vertices are to be connected. The rasterization process inter-
polates the vertices to create fragments, and the same interpolation is applied to 
determine the depth, color, and texture coordinates for each fragment.

The second functional group is fragment processing. The input to this 
group is a fragment rasterized from 
a graphics primitive. The frag-
ment’s color is determined by pro-
cessing its color, depth, and texture 
coordinate information. The out-
put of fragment processing is a set 
of completed pixels, the “RGBAZ 
Pixels” of Figure 1.5, with color 
(RGB), blending (A, for alpha), and 
depth (Z) values, ready to be inte-
grated into the color buffer.

The final step is this integration 
of pixels into the color buffer. This 
corresponds to the Fragments-to-
Pixels section of the rendering pipe-
line of Figure 1.3. The pixels from 
the fragment processor are inte-
grated into the color buffer by ras-
ter operations that merge the frag-
ment with the pixels in the frame-
buffer. This is the same for both 
fixed-function and shader-based  
graphics.
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Vertex Processing

There are many details of this fixed-function vertex pipeline process that must 
be understood in terms of the hardware pipeline in order to work with shad-
ers. The first is probably the ModelView matrix, the matrix that implements the 
ModelView transformation.

Whenever any vertex V is sent to the vertex processor, it is multiplied by 
the ModelView matrix M as V′ = M * V to convert it to eye space and begin its 
processing.

The second detail of the vertex pipeline process is the role of the pro-
jection and viewport transformations. After vertices are transformed from 
model space to eye space by applying the ModelView transformation, they 
are further transformed by applying the projection transformation (set by the 
functions glOrtho( ), glFrustum( ), or gluPerspective( )) into clip space, 
and the clipping is done by a separate operation. In fact, the ModelView and 
Projection transformations are combined to create the ModelViewProjection 
transformation that takes your model into clip space in one operation. The 
name “clip space” is used because the projection transformation maps the ver-
tices into a coordinate space in which clipping is easily done. Finally, homoge-
neous division and the viewport transformation convert vertices in clip space 
to their integer screen coordinates.

Why is the normal matrix the transpose of the inverse of the ModelView matrix? Let’s 
consider a normal vector N to a surface at a point P, and let’s choose a point Q so that 
the vector T = Q − P  is tangent to the surface at P. Then N × T = 0 or, using matrix 
multiplication, NT * T = 0 (recall that if vertices and normals are expressed as column 
vectors, a transpose is a row vector, so this is a product of a 1 × 3 and a 3 × 1 matrix, or 
a scalar). Then if we apply the transformation M so that P′ = M * P and  Q′ = M * Q, 
the new tangent vector is T′ = Q′ − P′ = M * Q − M * P = M * (Q − P) = M * T. Now 
if we define N′ to be the normal in the transformed space, (N′)T * T′ must be zero. So 
if R is the matrix that transforms the normal N to the new normal N′, we have

0 = N′T * T′ = (R * N)T * T′ = (NT * RT) * (M * T) = NT * (RT * M) * T.

Since NT * T = 0, the middle term RT * M must be the identity, so RT * M−1 and finally 
R = (M−1)T.

In fact, this process is less mysterious than it might seem, because if only rotation 
is done, the matrix is orthonormal. One property of an orthonormal matrix is that its 
inverse is equal to its transpose. In that case, the normal is transformed by the same 
rotation that transforms the vertices.
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With this processing for vertex coordinates, what is done for normals? In 
order to compute normals accurately, OpenGL uses a Normal transformation 
that maintains the normal property: if the normal vector is transformed by the 
normal transformation, the result is still normal to the transformed surface. 
This is implemented by the normal matrix, computed by taking the transpose 
of the inverse of the upper-left 3 × 3 submatrix of the ModelView matrix. The 
normal matrix is updated automatically whenever the ModelView matrix is 
changed, so it does not need to be re-created each time a normal is processed.

We want to remind you that vertex lighting color computation is han-
dled in the vertex processor. This is not always obvious. If you generate colors 
for your scene by using lighting and materials specification instead of simply 
specifying colors for each vertex, you define a number of parameters for the 
lights and for the materials of each object. This information is available to the 
vertex processor, and the lighting model you specify is applied to compute a 
color for each vertex. In any case, whether you use a lighting model or not, the 
color of each vertex is passed into the rendering process, not calculated while 
rendering.

Rendering Processing

In the rendering process, the vertex data from the vertex pipeline (pixel posi-
tion, depth, color, and texture coordinate) is used to define the set of pixels that 
make up a graphical object and to calculate the color for each of these pixels. 
This process associates the graphics primitive specification, the appearance 
information you specify for each vertex, such as the actual texture to be used, 
and directions on how appearance processing is to be done, to create the actual 
image.

Primitive specifications define the way a sequence of vertices is to be used 
to define a geometric object, and this quickly reduces to the question of defining 
a single polygon. Polygons are defined to be planar and non-self-intersecting 

(though OpenGL does not check this). Further, in 
OpenGL a polygon is always assumed to be convex, 
that is, to have the property that any line segment 
whose endpoints are inside the polygon must itself 
lie completely within the polygon. This is shown in 
Figure 1.6 (although to be strict with the definition, 
the rightmost figure isn’t really a polygon, since it 
self-intersects). If you should define a non-convex 
polygon, it is usually processed in a way that is 
inconsistent with your intent.

Figure 1.6. A convex (allowed) polygon (left) 
and two non-convex (not allowed) polygons 
(middle and right).
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Any convex polygon can be triangulated, or broken 
up into triangles, by choosing any vertex and constructing 
a triangle fan by processing the vertices in order, starting 
with that vertex. (A non-convex polygon does not have that 
property, even though you might be able to find a way to 
make up the polygon from triangles, as is the case with the 
middle example of Figure 1.6.) This concept also extends 
to other geometry constructors, such as quad strips; an 
OpenGL quad strip is defined in such a way that it can 
as easily be viewed as a triangle strip. Since OpenGL only 
handles convex polygons, we can assume polygons are 
convex, and so we can simply use triangles as our model 
for polygon processing.

A key concept in rendering is interpolation. Given a 
set of vertices in screen coordinates and a polygon defined 
by their grouping, interpolation is needed to determine the 
edges that bound the polygon, and interpolation is again 
needed to fill the interior of the polygon. The interpolation 
not only creates locations to be filled, but also interpolates 
all the accompanying properties, such as depth, color, and 
texture coordinates. Interpolation is supported by graph-
ics hardware; in the fixed-function rendering pipeline, this 
handles simple interpolation (needed for depth or smooth 
shading) and perspective interpolation (needed for accu-
rate coordinates, especially texture coordinates).

The interpolation for smooth-shaded color or for 
depth is linear interpolation of these values at the vertices or the endpoints of 
an edge. This interpolation first interpolates the vertex colors along the edges 
of the object and then interpolates the edge colors across the interior of the 
object. This interpolation may not be exactly as you imagined it would be. 
Figure 1.7 (top) shows a simple quad having one blue, one green, and two red 
vertices, with fixed-function color interpolation across the interior. You see 
that the shading looks as though there were two triangles that were interpo-
lated separately, one including the top right vertex and the other including the 
bottom left vertex, as shown in the bottom image in the figure.1 This is obvi-
ously a weakness in simple interpolation shading that we would like to be able 
to deal with, as we will discuss in Chapter 15.

1. You can tell that something is not right in the way this quad is being rendered because the upper-left 
to lower-right diagonal has just green-blue colors on it.  There is no evidence of red on the diagonal 
despite there being two vertices colored red.

Figure 1.7. Linear color interpola-
tion across a polygon.
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There is also an interpolation for texture coordinates. 
The texture coordinates for each vertex are interpolated to 
get the texture coordinates for the boundary pixels, and 
the texture coordinates of the endpoints of a fragment are 
interpolated to get the texture coordinates for each pixel in 
the fragment. After the texture coordinates for each pixel 
are computed, the texture coordinates are sent to the tex-
ture space and texel values are returned to be combined 
with other pixel information as specified in your texture 
specifications.

The kind of interpolation done for texture coordi-
nates depends on your texture quality hint. If you ask for 
“fastest” you might get a simple linear interpolation, but if 
you ask for “best” the texture coordinates are interpolated 
based on a perspective interpolation. Figure 1.8 shows the 
difference between linear and perspective interpolation 
for texture coordinates applied to a single quad seen as 
two triangles. Many graphics systems do not distinguish 
between “fastest” and “best,” so you may not see this dif-
ference on your own system.

Simple linear interpolation is a familiar technique. 
Given a general data value f with values fa and fb at the 
two endpoints a and b of a line segment, linear interpo-
lation with linear parameter t is typically given by the  
function

1−( ) +t f t fa b .

If the data values f are in homogeneous coordinates (r, s, t, q) with q ≠ 1, then 
you must convert the coordinates into standard form by dividing each f by the 
values of q and interpolate the f/q values:

1−( ) +t f q t f qa a b b .

This last case clearly is the same as the first case if fa and fb are already in stan-
dard homogeneous form.

As usual in interpolations, we notice that if t = 0, the function has value fa, 
while if t = 1, the function has value fb. The value of the interpolating parameter 
t that would give a particular pixel in the interpolating line can be computed by

t
p p p p

p p

p p p p
p p p p

r a b a

b a

r a b a

b a b a

=
−( ) • −( )

−
=

−( ) • −( )
−( ) • −( )2

Figure 1.8. Texture mapping a check-
erboard pattern on a quad without 
perspective correction (top) and with 
perspective correction (bottom).
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where pr = (xr, yr) gives the coordinates of the pixel in pixel space and pa = (xa, ya) 
and pb = (xb, yb) give the screen coordinates of the endpoints in pixel space of 
the line segment containing the pixel.

Simple linear interpolation like this is readily supported by graphics 
hardware and is used to interpolate simple values such as depth and smooth-
shading color. But it has some problems if we use simple linear interpolation 
in model space when the real graphical meaning of those values is determined 
in clip space. For interpolating these kinds of values, such as texture coordi-
nates, we need to do the actual interpolation in clip space. That is more inter-
esting. For these values, instead of linear interpolation, OpenGL uses a modi-
fied interpolation function (using the same parameter t as above) given by

1
1
−( ) +
−( ) +
t f w t f w
t w t w

a a b b

a a b bα α
,

where α = 1 unless you are interpolating textures and the texture coordinates  
(s, t, r, q) have q ≠ 1; in that case αa = qa and αb = qb. Further, wa and wb are the 
fourth coordinate of the endpoints a and b in homogeneous clip space. Again, if 
t = 0, we simply get the value fa and if t = 1, we get fb (or their homogenized value 
if f is a texture coordinate). We may call this a perspec-
tive interpolation, because it is really only different from 
linear interpolation when clip space is different from 
eye space, which happens with a perspective projection. 
This interpolation can be quite non-linear if the original 
endpoints a and b have different z-values, because the 
values of wa and wb are generally the reciprocals of those 
z-values. Figure 1.9 shows how a value (in this case one 
of the coordinate values) is interpolated by this process 
between two endpoints; notice that this is not linear.

Although we think of depth in terms of the z-val-
ues in clip space, depth computations are not done with 
these values. That is, the depth buffer is not a traditional 
z-buffer. The depth value for a pixel in screen space is 
represented in fixed-point form (effectively as an inte-
ger) with at least as many bits as are in the depth buffer, 
and the depth buffer stores these values, truncated if nec-
essary, for depth comparisons. Thus, the depth value is 
aliased, and to minimize aliasing problems, you want to 
define your near and far clipping planes so the distance 
between them is as small as possible. The near clipping 

Figure 1.9. Interpolating the x-coordi-
nates of two points in 2D eye space. The 
points are (-3, -1, 3, 1) and (3, -1, 5, 1) in 
3D eye space.
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plane has the smallest depth value, while the far clipping 
plane has the largest. The linear interpolation calculation 
based on the depth value of the endpoint of a line seg-
ment or fragment gives the depth for a given pixel.

In the final phase of pixel processing, these pixels 
are sent to the final stage of the rendering pipeline after 
they are computed, but before they are written to the 
framebuffer. These final stages handle several opera-
tions, including masking, depth testing, and alpha 
blending. The integer depth value is used in depth test-
ing, and pixels are ignored if their depth exceeds the 
depth of that pixel already in the depth buffer. If the 
aliased depth values of two pixels are the same, only 
one of them can be used. This can lead to unusual sur-
face behaviors such as uneven boundaries between 
objects that intersect at a very shallow angle; this is 

called z-fighting. This is illustrated in Figure 1.10, which shows two quads that 
differ in depth by only a very small amount; you can see that there is no con-
sistent calculation of depth priority for the polygons. Blending uses the alpha 
value for each pixel, from the color setting, material definition, or alpha com-
ponent of the texture, and should be familiar to you. Masking is handled by 
scissors testing, alpha testing, stencil comparison, or other logical operations.

So the overall geometry and rendering processing includes many steps, 
but OpenGL organizes them in a reasonable and manageable order and gives 
the programmer the tools to do sound basic computer graphics while work-
ing at a relatively high level. The success of OpenGL in making high-quality 
computer graphics accessible to the general computing environment is one of 
the true success stories in computing—but it has gone about as far as it can 
go, and this book is about the next step in making ever-better graphics widely 
accessible.

Homogeneous Coordinates in the Fixed-Function Pipeline

Homogeneous coordinates are often treated lightly, if at all, in a beginning 
graphics course, but it can be very important to understand them in more 
advanced work because they affect the way OpenGL works. Homogeneous 
coordinates refers to vectors in 4-dimensional real space whose fourth coor-
dinate is often unitary. The components of a vertex have the name conven-
tions (x, y, z, w), and a vertex in standard form has w = 1. You may have 
used 2D or 3D vertices in your graphics programs, but internally in OpenGL 

Figure 1.10. An illustration of z-fighting, 
with the area where two polygons inter-
sect having depth aliasing problems.
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these are always treated as points in 4-space. If you specified a vertex with 
glVertex2f(x,y), then the point (x, y, 0, 1) was used. If you specified a ver-
tex with glVertex3f(x,y,z) then the point (x, y, z, 1) was used. And if you 
specified a vector with glVertex4f(x,y,z,w), but the 3D point you specified 
was really (x/w, y/w, z/w, 1). For example, the homogeneous points (1, 2, 3, 1),  
(2, 4, 6, 2), and (−1, −2, −3, −1) all represent the same (1, 2, 3) 3D point.

This apparent confusion between 3D and 4D space, and the apparently 
arbitrary decision to always want a unit value for w seem awkward; why do 
it this way? One reason is that it allows for perspective division within the 
matrix mechanism. The OpenGL call 

glFrustum( left, right, bottom, top, near, far ) 

creates this matrix:
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This gives w’ = –z, which is the necessary divisor for perspective.
This approach also gives us a way to work with a more general geom-

etry than simple 3D space. As another way of thinking about homogeneous 
coordinates, consider the four homogeneous points (1, 2, 3, 1), (1, 2, 3, 0.1), 
(1, 2, 3, 0.01), and (1, 2, 3, 0.001). In standard form, these points are (1, 2, 3, 1), 
(10, 20, 30, 1), (100, 200, 300, 1), and (1000, 2000, 3000, 1). In mathematical terms, 
the homogeneous coordinates of a point in 4-space are the representation in 
three-dimensional projective space of the line through the point and the origin, 
and the point (1, 2, 3, 0) is the “point at infinity” in the (1, 2, 3) direction.

We will sometimes find it important to consider vectors defined by their 
two endpoints, and we often think of these as being defined by simply doing 
a vector subtraction of the coordinates of the endpoints. This is not exactly the 
case for vertices in 4-space, or more specifically, for vertices in homogeneous 
coordinates. In this case, as well as addition in homogeneous coordinates, we 
must think a little more carefully about the question.

To compute the difference between two points in 3-space when they are 
represented in 4-space, we start with the vectors in 4-space, convert them to 
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3-space, take the difference, and find an appropriate representation of that dif-
ference. We have
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Now the denominator in the right-hand side is a scalar, so if we only want a 
unit direction vector, we can simply normalize the numerator as

  v w x w x w y w y w z w za b b a a b b a a b b a= − − −( )normalize , , .   

If both of the original vectors were already in homogeneous form with wa and 
wb both equal to one, this reduces to the standard form for the difference of two 
vectors.

Light position is specified in homogeneous coordinates with four values 
that actually position the light in projective 4-space. If the w component is not 
zero, the light position is an ordinary point in 3D world space whose x-, y-, 
and z-values are given when the point is converted to standard homogeneous 
form. But if you use a light position whose homogeneous coordinate w is zero, 
the light is treated as a directional light, because the position is the “point at 
infinity” of projective space. Modeling and viewing transformations affect the 
direction of the light, but they do not affect light’s position.

Texture coordinates are also stored as real 4-vectors, just like vertices, but 
they also include the possibility of a one-dimensional case. Texture coordinate 
components have name conventions, just as vertices do; for textures, these are 
(s, t, p, q). (The letter p is used for the third texture coordinate instead of r in 
order to avoid confusion with the letter for the color red.) If you specify a 1D 
texture with a value of s, the t and p values are set to 0 and the q value is set to 1. 
The 2D and 3D texture coordinates are set in the same way.

Color is also stored internally in four dimensions in RGBA form, and if 
you only specify a color in RGB form, its alpha component is set to 1. Normal 
vectors are always defined to be three-dimensional, as in glNormal3f(x,y,z), 
so there are no homogeneous-coordinate issues with normals.

Graphics cards’ reliance on 4-vectors lets them adopt a uniform data path 
that is four floats wide. This lets cards become, in effect, array processors, and 
is part of the reason that graphics cards can speed up the pipeline processes 
so effectively.
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Vertex Arrays

Throughout this chapter, in order to keep the concepts clear, we have been 
talking about the graphics pipeline as it operates on simple vertices and 
primitives. In actual applications, however, there are techniques that greatly 
increase the speed of graphics processing. One such technique is called vertex 
arrays. You may have already met this in an earlier computer graphics course, 
but if you have not, we want to give you a quick look at it here.

Vertex arrays are created on the host CPU to store vertex coordinates 
and vertex attributes. These arrays are transmitted to the graphics card along 
with indices that tell what vertex numbers need to be connected in graphics 
primitives. This way, each vertex is only transformed once, and there are fewer 
overall function calls.

Vertex arrays are activated with the command

glEnableClientState( type )

where type includes

GL_VERTEX_ARRAY
GL_COLOR_ARRAY 
GL_NORMAL_ARRAY 
GL_SECONDARY_COLOR_ARRAY 
GL_TEXTURE_COORD_ARRAY

This function lets you enable all the vertex arrays you need to describe vertex 
data.

To deactivate a vertex type, use

glDisableClientState( type )

Once you have activated the vertex state(s) you need, you can fill the 
arrays by simple array operations, such as these for vertex data:

static GLfloat Vertices[ ][3] = { 
{ 
 { 1., 2., 3. }, 
 { 4., 5., 6. }, 
 . . .
};

Similar operations could fill arrays for colors, normals, and texture coor-
dinates, as noted above. To specify that an array will be used as a vertex array, 
you use the functions
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glVertexPointer( size, type, stride, array );
glColorPointer( size, type, stride, array );
glNormalPointer( type, stride, array );
glSecondaryColorPointer( size, type, stride, array );
glTexCoordPointer( size, type, stride, array );

that let you specify that an array is to be used for vertex 
coordinates, colors, normals, etc. Here, size is the dimen-
sion of a vertex and can be 2, 3, or 4; type can be any of 
GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE; and array is 
the name of the corresponding data array. The variable 
stride is the byte offset between consecutive entries in the 
array (0 means tightly packed) and is most easily set with 
the sizeof( ) function.

As an example, let’s draw the standard RGB cube 
whose vertices are indexed in Figure 1.11 by specifying its 
vertex coordinates and vertex colors. We set vertex 0 to be 
black, its adjacent vertices 1, 2, and 4 to be red, green, and 
blue respectively, vertices 3, 6, and 5 to be yellow, cyan, and 
magenta respectively, and vertex 7 to be black.

The following statements set up these arrays:

 static GLfloat CubeVertices[ ][3] =
 {
  { -1., -1., -1. },
  {  1., -1., -1. },
  { -1.,  1., -1. },
  {  1.,  1., -1. },
  { -1., -1.,  1. },
  {  1., -1.,  1. },
  { -1.,  1.,  1. },
  {  1.,  1.,  1. }
 };

 static GLfloat CubeColors[ ][3] =
 {
  { 0., 0., 0. },
  { 1., 0., 0. },
  { 0., 1., 0. },
  { 1., 1., 0. },
  { 0., 0., 1. },
  { 1., 0., 1. },
  { 0., 1., 1. },
  { 1., 1., 1. },
 };

Figure 1.11. A cube with vertices 
numbered to match the RGB cube.
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Then we can draw the RGB cube using the glArrayElement( ) function 
and simply list all the vertices by their index. The geometry and color for each 
vertex is used as if the glVertex( ) and glColor( ) statements were given for 
each vertex.

 glEnableClientState( GL_VERTEX_ARRAY );
 glEnableClientState( GL_COLOR_ARRAY );
 glVertexPointer( 3, GL_FLOAT, 0, CubeVertices );
 glColorPointer( 3, GL_FLOAT, 0, CubeColors );
 glBegin( GL_QUADS );
  glArrayElement( 0 );
  glArrayElement( 2 );
  glArrayElement( 3 );
  glArrayElement( 1 );
  glArrayElement( 4 );
  glArrayElement( 5 );
  glArrayElement( 7 );
  glArrayElement( 6 );
  glArrayElement( 1 );
  glArrayElement( 3 );
  glArrayElement( 7 );
  glArrayElement( 5 );
  glArrayElement( 0 );
  glArrayElement( 4 );
  glArrayElement( 6 );
  glArrayElement( 2 );
  glArrayElement( 2 );
  glArrayElement( 6 );
  glArrayElement( 7 );
  glArrayElement( 3 );
  glArrayElement( 0 );
  glArrayElement( 1 );
  glArrayElement( 5 );
  glArrayElement( 4 );
 glEnd( );

This feels rather long and inelegant, and not very productive. But we 
can also define an array that holds the indices of the vertices on each of the six 
faces of the cube and use the glDrawElements( ) function.

 static GLuint CubeIndices[ ][4] =
 {
  { 0, 2, 3, 1 },
  { 4, 5, 7, 6 },
  { 1, 3, 7, 5 },
  { 0, 4, 6, 2 },
  { 2, 6, 7, 3 },
  { 0, 1, 5, 4 }
 };
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 glEnableClientState( GL_VERTEX_ARRAY );
 glEnableClientState( GL_COLOR_ARRAY );

 glVertexPointer( 3, GL_FLOAT, 0, CubeVertices );
 glColorPointer( 3, GL_FLOAT, 0, CubeColors );
 glDrawElements( GL_QUADS, 24, GL_UNSIGNED_INT, CubeIndices );

which is certainly shorter and feels somewhat more elegant. 
Notice that the CubeIndices array is never named by a pointer-
specifying function; it is simply an ordinary array of indices. 
The result is shown in Figure 1.12.

This is a very simple example, but in applications it is not 
uncommon to have these arrays contain hundreds, if not thou-
sands, of vertices, and to have large portions of scenes cap-
tured in single arrays. This is sound data encapsulation and 
re-use, and it makes scenes much faster to render.

Vertex arrays are stored on the client, or host, side of the 
bus. That means that they are not as efficiently accessible to the 
graphics card as they could be. Vertex buffer objects (VBOs), 
which operate just like vertex arrays but live on the graphics 
card side, are a more efficient way to encapsulate graphics 

geometry. VBOs are created and used almost identically to vertex arrays, with 
a few small differences.  See the OpenGL “Red Book” [41] for details.

Conclusions

The fixed-function graphics pipeline has shown itself to be very valuable in 
creating a model for computer graphics that has become widely used. It can be 
implemented in both software and hardware with predictable results across 
all computing platforms. Its fully determined processing lets most graphics 
operations be optimized and moved into silicon. These well-designed data 
paths let graphics use parallel processing to handle vertex data uniformly, and 
the parallel architecture of graphics cards lets the rendering processor handle 
many pixels simultaneously. The number of vertex and fragment processors 
on a card is continually growing, and as of this writing has reached as high 
as 128. This speeds fragment processing significantly.

As we go through the traditional fixed-function pipeline, however, we 
see that there are some kinds of graphics operations we would like to do that 
are simply hard to handle. All of these have been done in specially built com-
puter graphics systems, often in research environments, and it is a goal of the 

Figure 1.12. The RGB cube 
produced by the code above 
(with axes added).
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evolving computer graphics APIs to provide more and more of these abilities. 
Among these are

• Eye-space-dependent modeling, in which objects are only defined relative 
to the eye. A good example of this is a rainbow, which depends critically 
on objects (water droplets) that define a particular angle between the eye 
and the light.

• Ability to work in world space as well as model space and eye space. 
• Phong shading, in which the normal vector is interpolated across poly-

gons, and the color of a pixel is determined by the standard lighting 
model applied pixel-by-pixel rather than by interpolating the colors of 
the vertex pixels.

• Anisotropic shading, in which light is reflected from objects differently 
than the assumptions on which the ambient-diffuse-specular lighting 
model is based.

• Texture effects that are completely scale-independent, for which you can 
zoom in on textured geometry and always get a texture that is exactly 
right for the scale being used.

• Nonphotorealistic rendering, in which the rendering creates effects that are 
not explicit in the geometry and appearance information.

• Image processing techniques that take advantage of the ability to access and 
work with individual values in a texture.

• Creating geometry as needed with the geometry shader to create effects 
such as level of detail that adapt themselves based on the nature of the 
screen space for the image.

• Creating detailed tessellations of an object based on relatively simple object 
definitions.

We will see all of these things as we move through the rest of the book.

Exercises

1. The perspective transformation into clip space is performed simply by 
dividing each of the x- and y-coordinates (as well as the w-coordinate, 
actually) by the z-coordinate for each point. Create a model that you will 
view with perspective, and hand-compute an alternate model by carrying 
out the perspective transformation yourself. That is, create a new model 
in which the old model’s clip space is the new model’s world space. Then 
draw both models and compare the results.
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2. In this chapter, we claimed that it was easy to create the inverse of any 
transformation that is built with only rotation, scaling, and translation. 
Verify this symbolically and use the OpenGL matrix operations to verify 
it numerically.

3. When we use flat shading for a graphic object, we usually set the color 
before we define the first vertex. In principle, though, we could set a 
separate color for each vertex. Try this, creating a graphics object and 
calling glColor3f(...) with a different color before each vertex. What 
conclusions can you draw about when the color value is set for an 
object? For example, is it set the last time glColor3f is called? The first  
time? Compare your results with others to see if this is consistent across 
OpenGL systems.

4. The way the colors in Figure 1.7 are interpolated suggests that the quad 
is actually drawn as two triangles. First, verify this for your own OpenGL 
system, because your system may implement quads differently from 
ours. Second, extend this by adding more vertices in different colors to 
create polygons by extending the quad, and see if you can identify the 
way the polygon is implemented. (Our systems seem to implement poly-
gons as triangle fans.)

5. Experiment with non-convex polygons by defining such a polygon with 
color or lighting information at each pixel and seeing what your OpenGL 
system actually draws. Carefully describe what you see, and develop an 
explanation for it.

6. While polygons are defined to be planar, you can readily give OpenGL 
a set of non-planar vertices within a GL_QUADS or GL_POLYGON primitive. 
Experiment with what happens when you give a set of non-planar ver-
tices to a quad or a polygon, and discuss why your results are plausible.

7. Experiment with z-fighting by drawing two polygons that meet at a very 
shallow angle, as shown in Figure 1.10. When you get an example of 
this problem, look at the depth of your projection’s viewing volume, and 
adjust its front and back planes to make the depth as small as possible. 
Does this reduce the z-fighting problem? Does it eliminate the problem?

8. Create a model with vertices, vertex colors, and normals and store it using 
vertex arrays. Display it without shading, using the vertex colors, with the 
glDrawElements( ) technique instead of the usual glBegin( )-glEnd( ) 
approach. Then change the model to use a single color and the normals 
and use smooth shading to display it.
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9. Experiment with rendering efficiency benchmarks.  Create a reasonably 
large amount of geometry and render it using

 glBegin-glEnd in immediate mode
 glBegin-glEnd in a display list
 Vertex Arrays
 Vertex Buffer Objects

What do these results tell you about your graphics card and its driver?
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OpenGL Shader Evolution2

In its early days, computer graphics had no standard programming models. 
Vendors provided a low-level interface to their hardware, and each person or 
group then developed their own approach to taking geometry and appear-
ance information and applying their particular algorithms to create a screen 
display. It was fun (in a geeky sort of way), but not very efficient or portable. 
While many of the images created in this period might seem very simple by 
today’s standards, a lot of work went into them, and the basic ideas generated 
in those days still impact us today.

Early attempts to reduce the amount of development work needed for 
production focused on building graphics standards, but the standards gener-
ally provided only a least-common-denominator level of functions. However, 
as standards developed, they led to a growing understanding of the funda-
mental operations needed in the graphics process and provided a rising level 
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of expectations for the quality of images they could produce. In turn, these led 
to the graphics engines developed by companies like Evans and Sutherland 
(E&S) and Silicon Graphics (SGI) and others that began to implement basic 
graphics processes in hardware. These again increased the expectations of per-
formance and quality. A part of the “family tree” of public, non-proprietary 
graphics standards is shown in Figure 2.1.

Originally, graphics standards were meant to solve portability problems. 
That is, graphics standards enabled programmers to re-deploy existing appli-
cations on different hardware systems with a minimal amount of work. But as 
hardware acceleration became more common, graphics standards also became 
a blueprint for what operations needed to be accelerated.

For example, in order to take advantage of the SGI graphics engines, 
the engineers at SGI also developed a graphics API that mapped well to the 
engines’ processes. This was Iris GL, and it made developing graphics applica-
tions so much more straightforward that an industry-wide version was cre-
ated. The resulting OpenGL API can be said to have been one of the key factors 
that has made graphics so ubiquitous in the computing world. Of course, oth-
ers have looked at OpenGL and have believed they could do better by match-
ing the API more closely to their particular platforms or by extending the func-
tionality of the API in different ways, so we continue to find ourselves in a 
world with many competing “standards.”

OpenGL makes no assumptions of hardware support. The spec only says 
what should be done, not how it should happen, or how fast. It is possible 
to implement OpenGL entirely in software without affecting the applications 
in any way except speed. However, many—perhaps most—graphics appli-
cations need to create images at interactive speeds. This is particularly true 

Figure 2.1. Some graphics standards that led to OpenGL.
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for real-time applications such as games and simulation. So simple “graphics 
cards”—cards that contained a graphics memory and acted as a simple frame-
buffer—were replaced by cards that included onboard graphics operations 
and eventually the full fixed-function graphics pipeline that we discussed 
in the previous chapter. These provided a great increase in graphics speed, 
but the graphics audience wanted more. It’s a truism is that you can never be 
too thin or too rich—but in computer graphics you can never have too much 
speed or too much resolution or too many colors. As a community, we are very 
greedy—and proud of it!

While simple graphics cards were a great improvement over software 
rendering, they were restricted to what the fixed-function pipeline could do, 
and they did not support many effects and capabilities that a creative graphics 
programmer might want. The next step, where we are now, was to make the 
cards programmable so that extra functionality could be added as needed. With 
emerging systems such as OpenGL ES (for embedded systems such as PDAs 
and cell phones) having no fixed-function pipeline, and with core OpenGL 
4.0 replacing the fixed-function approach with a shader-required approach, it 
seems clear that shaders are increasingly central to computer graphics appli-
cations and that anyone planning to do serious graphics work will need to 
become skilled in shader programming and development.

History of Shaders

Even though GPU-based shaders are a relatively recent phenomenon, the 
overall history of shaders goes back about 30 years. Looking back, it could be 
considered to have started in 1977, with the release of a low budget movie that 
was to grow into a cult phenomenon: Star Wars Episode IV: A New Hope. 

Star Wars IV was revolutionary in using models and robotic-controlled 
cameras to create the illusion of actual moving space ships in a fierce battle. It 
did use computer graphics, but not much. What it did use was well below the 
capabilities of that time, but the astonishing box office success of the movie 
demonstrated that special effects sell tickets. But for future movies, it was real-
ized that it would be difficult to greatly scale up the use of physical models. 
However, George Lucas was a man with a vision—and, more importantly, the 
movie had given him the funds to implement that vision.

Turning to computer graphics, Lucas hired Ed Catmull and others from 
the New York Institute of Technology around 1980 to become the Computer 
Division of Lucasfilm. Their efforts at Lucasfilm had three thrusts:
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• Digital editing and compositing.
• Hardware for 2D image processing.
• Hardware for 3D graphics rendering.

In 1983, Lucasfilm spun off the 2D and 3D groups into their own com-
pany, called Pixar, and sold it to Steve Jobs in 1986. The 2D Image Processing 
group produced the Pixar Image Computer (PIC), a hardware device to perform 
image processing. The PIC used 4-way SIMD (single instruction multiple data) 
operations to perform image processing on all four RGBA components simul-
taneously. Thus, when we say in GLSL

vec4 rgba;
. . .
rgba *= 0.5;

we are using the modern-day evolution of the PIC SIMD paradigm. Despite 
its technical success, Pixar eventually discontinued work on the PIC to focus 
on 3D rendering.

The Pixar rendering group’s intention was to create a hardware render-
ing device. But first, a software prototype of that device needed to be devel-
oped. This was known as the REYES system, a tribute to Point Reyes in north-
ern California, and also an acronym for Renders Everything You Ever Saw.

Figure 2.2. The Stained Glass Knight from Young Sherlock Holmes. (Copyright Paramount 
Pictures; used by permission. Image courtesy of Pixar Inc.)
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In 1984, Rob Cook from Pixar published his landmark “Shade Trees” paper 
[10], in which he showed how the rendering process could be user-manipulated 
by writing “scripts” and inserting them in the proper places in the rendering 
pipeline. His paper’s abstract says it all, and is still appropriate today:

Shading is an important part of computer imagery, but shaders have 
been based on fixed models to which all surfaces must conform. As 
computer imagery becomes more sophisticated, surfaces have more 
complex shading characteristics and thus require a less rigid shading 
model. This paper presents a flexible tree-structured shading model 
that can represent a wide range of shading characteristics.

The Shade Tree concept allowed developers to create many different 
effects without having to constantly be adding new code permanently into the 
renderer. One of the first commercial uses of these shaders was in the movie 
Young Sherlock Holmes in 1985, which created the Stained Glass Knight shown 
in Figure 2.2. (If you’ve never seen this movie—egad!—you really need to go 
rent it! No computer graphics background is complete without having seen it.)

In the meantime, work on hardware rendering continued along with the 
REYES software prototype. Someone made the comment that someday every-
one will carry a small rendering box around on their belt with them. It will 
be like a Sony Walkman, they said, but instead would be called a RenderMan 
[38] [43], and a name was born. Eventually, the hardware idea was dropped 
in favor of a general-purpose software solution, which became the package 
Photorealistic RenderMan (prman).

In the meantime, others took the idea of shaders and developed differ-
ent software and hardware approaches to creating graphics scenes. In 1985, 
Perlin [34] published his landmark Image Synthesizer paper. His use of a pro-
cedural noise function to make surfaces more interesting probably did more to 
promote the use of shaders than any other development. However, it is often 
overlooked that this work created surface shading functions with expressions 
and flow control, and thus also showed the graphics community how much 
could be done with procedural languages in the graphics pipeline.

In 1998, Olano and Lastra [31] developed a shading language for the 
PixelFlow graphics system. PixelFlow was a very innovative approach to fast 
graphics developed at the University of North Carolina. Some of its ideas on 
parallelism can be seen to have influenced today’s graphics hardware. Their 
shading language achieved 30 frames/sec update rates—a first for a shading 
language. In 2001, Proudfoot et al. [39] at Stanford developed a higher-level 
shading language that could transparently spread its operations to a combina-
tion of CPU and GPU, wherever it made most sense. It was important because it 
allowed a graphics programmer to ride the hardware acceleration capabilities 
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curve without changing code. There were many others working in hardware 
shaders at that time, and we apologize to anyone whose work we omitted.

By the early 2000s, graphics hardware had become sophisticated and fast 
enough that people started thinking that it needed the same sort of flexible 
shading capability that Rob Cook had described nearly 20 years before. The 
first implementations of this were Cg [29] [16] and HLSL (High Level Shader 
Language) [33], which, while separate products, were developed in lockstep 
and thus look very similar. Cg was developed by NVIDIA Corporation, while 
HLSL was developed by Microsoft as part of its Direct3D graphics API. Close 
behind came GLSL (OpenGL Shading Language), created by the OpenGL 
Architecture Review Board (ARB).

These three hardware-oriented shader languages do things a little differ-
ently, but all have the same basic functionality: vertex, geometry, and fragment 
(or pixel) shaders, a C-like language, and access to key data values within the 
graphics pipeline. This book bases all its application examples on GLSL, but 
the same underlying concepts are common to all three languages, and the code 
can be readily translated between them. If you know one of the three, learning 
the other two isn’t hard.

OpenGL Shader History 

To understand the nature of OpenGL 
shaders, we need to look more 
deeply at OpenGL’s evolution, and 
particularly to the evolution of shad-
ers and shader technology in the last 
few years. Table 2.1 shows the time-
line for OpenGL’s versions.

OpenGL 2.0/GLSL 1.10

This version of OpenGL introduces 
shader-based graphics program-
ming, including programmable ver-
tex and fragment shaders and the 
GLSL language. Each of these is the 
subject of a later chapter in this book. 
These shaders restore an enormous 
amount of flexibility and creativity 

OpenGL Release GLSL Release When
1.0 --- 1993
1.1 --- 1997
1.2 --- 1998
1.3 --- 2001
1.4 --- 2002
1.5 --- 2003
2.0 1.10 2004
2.1 1.20 2006
3.0 1.30 July 2008

3.1, 3.2, 3.3 3.30 July 2009
4.0 4.00 March 2010
4.1 4.10 July 2010
4.2 4.20 August 2011

Table 2.1. Evolution of OpenGL and GLSL.
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to OpenGL graphics programming, and in some sense all the later OpenGL 
developments are mainly evolutions of this approach. This version includes a 
few of these evolutionary steps, including

• Vertex buffer objects let you store vertex arrays in graphics memory to 
reduce the amount of communication needed between the CPU and card.

• Occlusion queries let you ask how many pixels a particular scene element 
would occupy if displayed.

• Texture-mapped point sprites let you create many small 2D objects for 
uses such as particle systems.

• Separate stencil operations for front and back faces give you better sup-
port for shadowing.

OpenGL 3.x/GLSL 3.30

OpenGL 3.0 and GLSL 3.00 is a major revision in the standard that reflected 
the growing processing power in graphics cards. It introduces geometry shad-
ers, the next development in shader technology and the subject of Chapter 12. 
It also includes several new types of objects to store structured data on the 
graphics card.

• Frame buffer objects let you render into non-displayable buffers for such 
uses as render-to-texture.

• Texture buffer objects allow you to use much larger texture arrays.
• Uniform buffer objects let you define a collection of uniform variables so 

that you can quickly switch between different sets of uniform variables 
(typically different ways to present a set of primitives) in a single pro-
gram object or share the same set of uniform variables between different 
program objects.

All OpenGL buffer objects share the capability to replace a range of data in the 
buffer instead of having to replace the data one item at a time. 

The OpenGL 3.* and GLSL 3.30 standards also add several new capabili-
ties not available in earlier versions:

• For textures, you can now define a texture array (sometimes called an 
array texture) that contains a sequence of 1D or 2D textures of the same 
size, so you can use different textures without having to do multiple tex-
ture bindings. You can use rectangular textures, which can be useful for 
video processing, though these do not have bias or level-of-detail capabil-
ity. You can also query the size of a texture with the new textureSize( ) 
function.
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• When variables are interpolated in the fragment shader, you can choose 
different interpolation techniques with the interpolation qualifiers cen-
troid, flat, invariant, or nonperspective. The differences are discussed in 
Chapter 8.

• There is now a layout qualifier that can be applied to either in or out vari-
ables for some shaders. This qualifier’s effect varies considerably between 
shader types, but it includes specifying the position of a vertex shader 
input variable in an array, defining the input and output properties for a 
geometry shader, or the input coordinates of a pixel in a fragment shader.

• 16-bit floats and 16-bit floating point variables are added, which have less 
precision than 32-bit floats but are more compact and faster to compute.

This version also includes significant revisions of the GLSL standard, 
moving it away from fixed-function OpenGL by deprecating a number of 
capabilities that mirrored fixed-function operations. Because of the large num-
ber of applications that were built with earlier versions of OpenGL and GLSL, 
however, this version also supports compatibility mode operation that lets 
you use these earlier versions. This book uses GLSL 4.1, but we include several 
notes in the appropriate chapters that describe compatibility-mode alterna-
tives. These notes are marked with flags like the one in the margin. Among the 
capabilities that have been deprecated are

• any use of the fixed-function vertex or fragment operations; you now 
need to use shaders for everything,

• the use of glBegin / glEnd to define primitives; you now need to use ver-
tex arrays and vertex buffers for your geometry,

• use of quad or polygon primitives; you now only use triangles,
• use of display lists; you now use vertex arrays and vertex buffers,
• use of most of the built-in attribute and uniform variables in GLSL; you 

now need to define all these in your application and pass them all into 
your shaders.

While these features are deprecated, and are thus not guaranteed to be avail-
able in all future versions, you really need not be afraid to use them. They are 
said to be going away “at some future time,” but there is some feeling that this 
might end up meaning, “when the sun burns itself out.”

OpenGL 4.0/GLSL 4.00

OpenGL 4.0 introduces the final kind of shaders discussed in this book: tessel-
lation shaders. These let you generate new geometry to provide greater detail 
in your geometry, and are covered in Chapter 13. One object of this version 
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is to implement shader model 5 by applying more of an object model to the 
GLSL shader language. This includes such features as shader subroutines, giv-
ing you runtime selection of the particular function to be called so you can 
keep multiple ways of doing things in a single shader.

GLSL 4.00 includes significant developments for geometry shaders, 
which are discussed in more detail in Chapter 12. You can now have mul-
tiple iterations of a single geometry shader to create multiple instances of the 
shader, letting you recursively subdivide geometry primitives. You can also 
create multiple vertex streams from a geometry shader, with the first stream 
being the normal output to primitive assembly and the rasterizer, and with 
additional streams going to transform feedback objects.

Texture interpolation is enhanced in GLSL 4.00. It includes the texture 
gather operation, returning the four texel values that would be returned by 
standard texel interpolation so that you can apply your own interpolation to 
them.

The GLSL compiler is designed to optimize expressions for the sake of 
efficiency, but the optimization makes it impossible to know exactly how an 
expression is implemented. GLSL 4.00 introduces the invariant qualifier for 
a variable that requires the compiler to compute the same variable expression 
the same way in two different shaders. This lets you maintain computational 
consistency in multipass algorithms.

With GLSL 4.00, the shader language becomes even more C-like. You 
finally get the functionality of the #include statement, you get full 64-bit IEEE 
floating point variables with the keyword double, function overloading, and 
you get a wider set of implicit type conversions, including float → double, 
int → double, uint → double, and int → int. You also get a new operator, 
the fused multiply-add, written as fma(a,b,c); this performs the operation 
(a*b)+c with a single operation and no loss of precision.

OpenGL 4.x/GLSL 4.x0
OpenGL 4.x and GLSL 4.x0 are probably best characterized by the way they 
increase the generality of shader operations. They support shader binaries, pre-
compiled shaders that can be written to a file and loaded separately to save 
recompilation, as well as separable shader pipeline stages, linking shaders to 
a shader program at runtime so you can select different shader stages then. 
This standard level also supports viewport arrays, supporting drawing into 
multiple viewports by allowing the geometry shader to select which viewport 
to render into.

One of the newest features in OpenGL 4.x and GLSL 4.x0 is the ability to 
generate “side effects.” GLSL programs can now read and write to image tex-
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tures and can perform atomic arithmetic operations in uniform buffers. (This 
should keep algorithm developers busy for some time!)

The other key feature of this standard is its relation to OpenGL ES 2.0. 
The growing importance of OpenGL ES has made it important to support 
application development for both desktop and embedded systems, and this 
standard release makes desktop OpenGL a proper superset of OpenGL ES 2.0. 
That is, if you develop for OpenGL ES 2.0, your application will run correctly 
with OpenGL 4.x and GLSL 4.x0.

Finally, this standard extends the 64-bit floating point capability to vertex 
shader input variables (that is, to attribute and uniform variables), allowing 
you to do your application computation in double precision and maintain that 
precision when your data is sent to the shaders.

What’s Behind These Developments?
This continuing evolution of the OpenGL and GLSL standards is driven by 
several factors. One is the continuing emphasis on speed by applications such 
as games, and several of the new OpenGL/GLSL features reduce the need for 
communication between the CPU and the graphics card or move computa-
tions from the CPU to the card. Another is the increasingly general architec-
ture of graphics cards that corresponds to the increasing use of these cards 
for general-purpose computing with tools such as CUDA or OpenCL. These 
changes will continue to drive OpenGL and GLSL for the foreseeable future.

OpenGL ES

OpenGL ES 2.0 is designed to support high-quality graphics on embedded 
systems such as cell phones. It is based on OpenGL 2.0, but does not support 
any fixed-function operations—all the vertex and fragment processing must 
be done with shaders. It also does not support tessellation and geometry shad-
ers, just vertex and fragment shaders.

The key issue with embedded systems is the need to operate with limited 
memory sizes and limited computing capabilities. Supporting the full set of 
fixed-function operations requires a significant memory overhead, but using 
shaders only requires memory for the data and operations you actually use. 
Only vertex and fragment shaders are supported, however, because geometry 
and tessellation shaders may expand the input geometry and require addi-
tional memory.

The OpenGL ES shading language is more restrictive than the GLSL 1.10 
that is associated with OpenGL 2.0, however. It does not include the set of 
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built-in attribute and uniform variables of GLSL 1.10, but requires you to cre-
ate your own variables as needed. This is similar to GLSL 3.30, and in fact 
GLSL 4.10 is a proper superset of the OpenGL ES shader language 1.10—if you 
write a shader program in OpenGL ES, it will run with OpenGL 4.1.

How Can You Respond to These Changes?

There are two ways you can respond to the continuing evolution of the 
OpenGL shader standards.

1. Follow the standards and make continuing changes to your code to use 
the latest versions. Do everything the core profile requires. At the top of 
your shader sources, put the line

 #version 4.00 core

The advantages of using the latest shader standards are performance 
and generality, and by using the right subset of the core profile you can 
be compatible with OpenGL ES 2.0. The disadvantage is that the latest 
graphics hardware is needed to use these standards and you must com-
mit to continuing code maintenance to keep current as the standards 
evolve.

2. Adopt as much of the evolving standards as you want, to take advantage 
of ways the changes provide more performance without making your life 
too difficult, and use compatibility mode for the capabilities you want to 
keep from earlier standards. At the top of your shader sources, put the 
line

 #version 4.00 compatibility

This will let you use whatever you like from any earlier version of the 
standard.

For example, you may want to target an audience that could not 
be expected to have the latest graphics hardware. Or perhaps you may 
want to simplify your shaders by using built-in attribute or uniform vari-
able names from OpenGL 2.1, but may want to use tessellation shaders, 
or perhaps vertex buffer objects because they are much more efficient 
than begin-end primitive definition and they can be disguised to look 
like begin-end.

Your code will run at least as fast on the newer cards as it did on 
older ones, it may be easier to get people productive with the earlier ver-
sions, and you will not have to rework your existing code.
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Our Approach in this Book

In this book we take something of a hybrid approach to the question of OpenGL 
standard levels. We generally use GLSL at the 1.50 level, but do use many 
of the more advanced constructions of OpenGL 3.* and 4.*. We do cover tes-
sellation shaders and geometry shaders, and we use the most current syntax 
for passing data between shaders. For the most part, we don’t use the depre-
cated built-in variable names in our sample code. However, to make life easier, 
later on we will show you a file we’ve created for our own use, gstap.h, which 
#defines the un-deprecated names to the deprecated names. In this way, you 
can get the best of both worlds—your code looks cleaner and more modern, 
but underneath you are still using the easy-to-get-at built-ins.

Variable Name Convention

As we will discuss in the next chapter, variables take on a number of different 
roles for shaders. Two kinds of variables are provided by your application (or 
by the OpenGL system, if you are using older OpenGL standards): attribute 
and uniform variables. Attribute variables are used to describe individual ver-
tices, while uniform variables are used to define whole graphics primitives 
or larger-scale graphics concepts. Other variables are used to pass variables 
between shaders: out and in variables. Each shader passes data to other shad-
ers or other OpenGL stages as out variables, and each shader takes data from 
other shaders or the application program as in variables.

In this text we will adopt a convention for variable names that are passed 
between the application and the various shaders that we will present. This 
convention is entirely arbitrary, but it helps us keep track of the source of vari-
ables that come into each of the shaders. We will use the convention in the 

Prefix Stage that wrote it Example
a Attribute (from application) aColor

u Uniform (from application) uModelViewMatrix

v Vertex Shader vST

tc Tessellation Control Shader tcRadius

te Tessellation Evaluation Shader teNormal

g Geometry Shader gNormal

f Fragment Shader fFragColor

Table 2.2. Our initial letter naming convention.
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shader sources throughout the book, and we hope you will not found it con-
fusing. This convention is shown in Table 2.2.

Thus at the beginning of a vertex shader (for example) we might find data 
declarations such as

 in vec4 aVertex;
 in vec4 aTexCoord0;

 uniform mat4 uModelViewProjectionMatrix;

 out vec4 vST;

to pass the vertex coordinates (in model space), texture coordinates, and mod-
elviewprojection matrix into the shader and the texture coordinates from the 
vertex shader to be used by the fragment shader. This kind of declaration set 
will become quite familiar as you read the examples throughout the book.

Exercises

1. Rent one of the movies mentioned in this chapter and look at the effects 
we discussed. You will only see them in TV resolution, but step through 
the stained glass knight or the Genesis effect (Star Trek II: The Wrath of 
Khan) sections frame by frame and note how each works. For the stained 
glass knight, notice the effect of a colored dirty surface that transmits 
light from behind it.

2. Take one of the simple vertex shader source files that we use to intro-
duce the shader concepts. You will find some of the data coming from 
vertex attributes, some hard-coded, and some coming from uniform vari-
ables defined through glman. For each of these data, identify an original 
OpenGL function that would define the data, if possible (some of the 
uniform variables do not fit this), and identify the OpenGL 2.1 built-in 
variable that would contain the data.
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Fundamental Shader 
Concepts3

Shaders in the Graphics Pipeline

Let’s have another look at the graphics pipeline, but let’s break it out in a little 
different way than we did in the previous chapter. Let’s add into the pipe-
line the five shaders we are considering in this book: vertex shaders, tessella-
tion control shaders, tessellation evaluation shaders, geometry shaders, and 
fragment shaders. This expanded view of the pipeline is shown in Figure 3.1, 
where the positions of the shaders in the pipeline suggest the functions that 
each provides. While it is not obvious from the diagram, each shader block is 
in an alternate branch of the pipeline; they are optional capabilities that may or 
may not be used for any application. You may use any combination of vertex, 
tessellation, geometry, or fragment shaders in your program; you do not have 
to use any particular combinations, although, in general, if you use any shad-
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ers, you usually are required to include a vertex 
shader, too.

When you’re developing shaders, however, 
you don’t necessarily need to think of the entire 
graphics pipeline like this. For each individual 
shader, it is helpful to understand what data 
comes into this shader, what this shader can do 
with it, and what new data gets transmitted to 
the next stage. For this, it’s interesting to consider 
how the graphics pipeline looks to shaders; this 
is shown in Figure 3.2, with an emphasis on how 
data moves among the shader stages. Of course, 
if you choose not to include any shader stage, the 
in/out variables from the previous stage simply 
skip the omitted stage and go on to the subsequent 
stage.

Notice in Figure 3.2 that all attribute variables 
are input to the vertex shader, and all uniform vari-
ables are input to whatever shader needs them. 
Uniform variables are written by the application; 
none of them can be written by any shader. Any 
computation that needs to pass data on to the next 
shader must do so through an out variable, and 
that variable must be read (as an in variable) and 
passed along (as an out variable) by intermediate 
variables until it is used.

Let’s consider how the separate functional-
ities of the graphics pipeline might be enhanced by 
using shaders. To begin, let’s look at the modeling 
functions that begin the geometry pipeline. In the 
standard pipeline, you define the vertices of your 

model either by using specific statements, such as glVertex3f(2.0, -1.0, 3.0), 
or by using a computation to create the vertex coordinates. You can add other 
geometric information such as normals and texture coordinates as you need 
them and as they are available. You can also add appearance information. 
This may be done while the geometry is defined, as you might do with colors 
through the glColor*(...) function. Another approach to appearance defines 
and enables environments such as lighting, with its associated materials defi-
nition, or textures, with their associated texture parameters, texture environ-
ment, and texture image.

Figure 3.1. The expanded graphics pipeline, 
with programmable stages shown in green 
and fixed-function stages shown in orange.
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The geometry operations in 
the fixed-function pipeline can be 
replaced and possibly expanded by 
any (or all) of the GLSL vertex shad-
ers, tessellation shaders, or geom-
etry shaders. A vertex shader only 
operates on one vertex at a time and 
can take the initial vertex definition 
and alter it by changing the values 
of the position, normal, or texture 
coordinates. As we will see, the ver-
tex shader must set the transformed 
position of each vertex. It may also 
set the color for the vertex, espe-
cially if per-vertex lighting is used.

The tessellation shaders take 
a set of points called a patch, which 
can represent anything, and inter-
polate the points to create a new 
geometry. You get to define what 
meaning these points have. The 
tessellation shaders will then assist 
you in creating new geometry from 
them.

A geometry shader can take a graphics primitive from a vertex shader 
and create one or more new primitives. Geometry shaders can do the same 
computation as a vertex shader to compute the full geometry and color of each 
new vertex. They can also prepare variables for later use by a fragment shader.

The final shader capability is fragment processing, done by the fragment 
shader. This takes the information developed by vertex processing (vertex 
shader, tessellation shader, or geometry shader) and expands the traditional 
fragment operations by letting you operate on each fragment individually to 
generate the color of its pixel. This is a highly parallel operation that can apply 
traditional or procedural textures; special coloring, such as pseudocolor trans-
fer functions; and advanced kinds of shading, such as Phong or anisotropic 
shading. The operation can also determine whether its pixel is to be retained 
or discarded for the final image. The fragment shader has the strongest impact 
on the visual effect of your images.

In the next few sections, we will look at the functionality of each shader 
by looking at simple examples. For reference, a sphere with only standard 

Figure 3.2. The shader’s-eye view of the pipeline.
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fixed-function processing is shown in Figure 3.3. In each sec-
tion, we will outline the shaders’ operations and give a short 
example of a vertex and a fragment shader that produce the 
figure; we will then give a brief description of the GLSL shader 
language, so you can see the language features that we use in 
the examples. A more complete discussion of GLSL will come 
in Chapter 5.

In the next chapter, we’ll describe the glman tool that lets 
you create and experiment with shaders without having to 
write a complete application; here, it is useful if you see how 
you could define this image with glman. Here is the GLIB file 
that sets up the image and specifies the shaders to be used:

Vertex Sphere.vert

Fragment Sphere.frag

Program Sphere

Color  1 0.5 0
Sphere 2.0 100 100

We will provide the vertex and fragment shader files for this example 
later in this chapter.

Vertex Shaders

A GLSL vertex shader takes the vertex and environment information that is 
stored by the OpenGL system and makes it available to you through a set 
of uniform and attribute variables, so that you can do your own vertex com-
putations. Later in this chapter, we will outline some of the highlights of the 
GLSL shader language, including these commonly used uniform and attribute 
variables. Vertex shaders act on geometry that is usually given in model space 
coordinates and produce geometry that is output in 3D clip space; all projec-
tion and clipping is done later in the graphics pipeline. Vertex shaders must 
do much more than that, however. A GLSL vertex shader replaces these opera-
tions in the fixed-function geometry pipeline:

• Vertex transformations.
• Normal transformations.
• Normal normalization (i.e., turn it into a unit vector).
• Handling of per-vertex lighting.
• Handling of texture coordinates.

Figure 3.3. A sphere with sim-
ple color, diffuse lighting, and 
smooth shading.
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These are very important operations. Fortunately, the necessary informa-
tion is readily available, and the operations you need to perform are expressed 
well in the GLSL language, which handles vector and matrix operations with 
ease.

However, a GLSL vertex shader does not replace all of the operations in 
the geometry pipeline. In particular, it does not replace the operations that 
take the clip space to the final pixel space. The specific functions that are still 
done by the fixed-function pipeline are

• View volume clipping.
• Homogeneous division.
• Viewport mapping.
• Backface culling.
• Polygon mode.
• Polygon offset.

A key function of a vertex shader is to take all attribute variables and 
either use them or copy them into out variables for later shaders to use.

Vertex shaders have several kinds of output. The most important are the 
transformed vertices and the color associated with each vertex. Of course, the 
vertex shader can compute or re-compute normals and texture coordinates as 
well as vertex coordinates. If you use a fragment shader, the vertex processing 
can develop variables that let the fragment shader interpolate these properties 
as each fragment is developed. By setting up color, normals, or textures with 
variables from vertex processing, the fragment shader can carry out sophisti-
cated operations on each fragment.

The vertex shader for 
the smooth shading on the 
simple sphere of Figure 3.3 
is shown below. This 
shader code, and the other 
shader code examples in 
this chapter, will be better 
understood when we have 
discussed GLSL in more 
depth later in the book. For 
now, though, note that this 
shader calculates per-vertex 
light intensity by the stan-
dard diffuse lighting com-

The shader code in this chapter uses the name 
prefix conventions we introduced in Chapter 2. 
Variable names start with a character that indicates 
who created it:

a attribute variable
f variable from a fragment shader 
g variable from a geometry shader
tc variable from a tessellation control shader
te variable from a tessellation evaluation shader
v variable from a vertex shader
u uniform variable

As in C/C++, constants are generally written in all 
caps.
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putation using the normal, vertex eye coordinates, and light position, and 
that it sets the required output gl_Position from the uModelViewProjection 
matrix and the vertex coordinates.

uniform mat4 uModelViewMatrix;
uniform mat4 uModelViewProjectionMatrix;
uniform mat3 uNormalMatrix;

in vec4 aVertex;
in vec4 aNormal;
in vec4 aColor;

out vec4  vColor;
out vec3  vMCposition;
out float vLightIntensity; 

const vec3 LIGHTPOS = vec3( 3., 5., 10. );

void main( )
{
 vec3 transNorm   = normalize( uNormalMatrix * aNormal );
 vec3 ECposition  = vec3( uModelViewMatrix * aVertex );
 vLightIntensity  = dot(normalize(LIGHTPOS - ECposition), 
            transNorm);
 vLightIntensity  = abs( vLightIntensity );

 vColor        = aColor;
 vMCposition   = aVertex.xyz;
 gl_Position   = uModelViewProjectionMatrix * aVertex;
}

The example for Figure 3.3 did not do one important thing that a vertex 
shader can do, however: modify the application-supplied vertex coordinates. 
As an example of geometry modification, let’s start with a simple plane (rep-
resented by a 200 × 200 mesh of quads) considered as the domain of a func-
tion, and let the vertex shader apply that function. The GLIB file is essentially 
the same as that for the Figure 3.3 example, except that the specified geometry 
is a 200 × 200 set of quads in the XY-plane, instead of a sphere, specified like 
this:

 QuadXY  -2.  1. 200 200

The vertex shader will apply the function

z x y x y, . sin( ) = ∗ +( )0 3 2 2
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to the x and y coordinates of each vertex to calculate the z-coordinate, and will 
calculate the normals to each vertex by using an analytic computation, since 
the derivative is known. This uses the fact that the tangent vectors are given by 
taking the derivatives of z with respect to x and y:

∂
∂
∂
∂

z
x

x x y

z
y

y x y

= ∗ ∗ +( )

= ∗ ∗ +( )

2 0 3

2 0 3

2 2

2 2

.* . cos ,

.* . cos .

After the vertices and normals are set up, the usual computations for eye 
coordinates (ECposition) and light intensity are done. The resulting function 
surface is shown in Figure 3.4.

The vertex shader for the rippled surface in Figure 3.4 is given below. The 
operations for the diffuse light intensity are those for standard ambient and dif-
fuse lighting, based on the eye-space coordinates of each vertex (the ECpos vari-
able), the normal (myNorml) computed from the analytic partial derivatives, 
and a fixed light position (LIGHTPOS) that would ordinarily be passed into the 
shader from the application as a uniform variable. The actual display coordi-
nates gl_Position are set by multiplying by uModelViewProjectionMatrix to 
apply the model, view, and projection transformations. The output of this ver-
tex shader includes two variables: the light intensity and color values defined 
in the vertex shader. None of this is difficult, but it requires you to work with 
your objects at a lower level than the usual OpenGL.

Figure 3.4. A rippled surface generated by a vertex shader; still with simple color, ambient 
plus diffuse lighting, and smooth shading.
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in vec4 aVertex;

in vec4 aColor;

uniform mat4 uModelViewMatrix;

uniform mat4 uModelViewProjectionMatrix;

out float vLightIntensity; 

out vec3  vMyColor;

const vec3 LIGHTPOS = vec3( 0., 10., 0. );

void main( )

{

 vec4 thisPos = aVertex;

 vMyColor     = aColor.rgb;

 // create a new height for this vertex:

 float thisX = thisPos.x;

 float thisY = thisPos.y;

 // the surface is z = 0.3 * sin (x^2 + y^2)

 thisPos.z = 0.3 * sin( thisX*thisX + thisY*thisY );

 // now compute the normal and the light intensity

 vec3 xtangent = vec3( 1., 0., 0. );

 xtangent.z = 2. * 0.3 * thisX * cos( thisX*thisX + 

                  thisY*thisY );

 vec3 ytangent = vec3( 0., 1., 0. );

 ytangent.z = 2. * 0.3 * thisY * cos( thisX*thisX + 

                  thisY*thisY );

 vec3 thisNormal = normalize( cross( xtangent, ytangent ) );

 vec3 ECpos = vec3( uModelViewMatrix * thisPos );

 vLightIntensity  = dot( normalize(LIGHTPOS - ECpos), 

             thisNormal );

 vLightIntensity = 0.3 + abs( vLightIntensity ); // 0.3 ambient

 vLightIntensity = clamp( vLightIntensity, 0., 1. );

 gl_Position     = uModelViewProjectionMatrix * thisPos;

}
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Fragment Shaders

Sometimes called pixel shaders (e.g., in Cg), fragment shaders operate on a frag-
ment to determine the color of its pixel. We know that rasterization opera-
tions interpolate quantities such as colors, depths, and texture coordinates. 
Fragment shaders use these interpolated values, as well as many other kinds 
of information, to determine the color of each fragment’s pixel.

The rasterizer interpolates any variables that have been defined in the 
geometry processing stages and passed to the fragment shader. These inter-
polated values may be used in any kind of fragment computation you want. 
These computations are performed on several fragments in parallel, with the 
width of the parallelization depending on the particular graphics card you 
use. This parallelization lets a fragment shader operate with the same kind of 
acceleration as graphics cards do for the fixed-function pipeline.

As we saw for vertex shaders, many operations that were automatically 
handled by the fixed-function pipeline are now the responsibility of the shader 
programmer. A GLSL fragment shader replaces or adds the following operations:

• Color computation.
• Texturing.
• Per-pixel lighting.
• Fog.
• Discarding pixels in fragments.

A Comment on Shader Code Efficiency

GLSL gives you some clever ways to make your code execute super efficiently on 
graphics hardware.  As with many such things in computing, however, it often makes 
the code harder to read.  For example, rather than creating two separate variables above, 
thisX and thisY, and then squaring each to compute thisPos.z as shown previously, it 
would be more efficient to say

 vec2 thisXY = thisPos.xy;
 thisPos.z   = 0.3 * sin( dot( thisXY, thisXY ) );

Similarly, the computation for the tangent vectors could be expressed more efficiently as
 xtangent.z = 2. * 0.3 * thisX * cos( dot( thisXY, thisXY ) );
 ytangent.z = 2. * 0.3 * thisY * cos( dot( thisXY, thisXY ) );

But, at least for some, this would make the code less readable.  For this book, we have 
often taken our own code and re-written it to be more readable, even though that may 
make it less efficient.  We’re sure you will find lots of examples of this.  Don’t email us 
about it—we already know.
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However, a fragment shader does not replace 
all the operations in the rasterization process. In 
particular, a GLSL fragment shader does not replace 
several raster operations, including 

• Blending.
• Stencil test.
• Depth test.
• Scissor test.
• Stippling operations.
• Raster operations performed as a pixel is being 

written to the framebuffer.

Figure 3.5 shows the sphere with some parts 
made invisible by discarding pixels in the fragment 
shader instead of drawing them. Its fragment shader, 
which is listed after the figure, takes the three input 

variables for light intensity, color, and model coordinates, as well as three uni-
form variables that were set externally to the program (in this case, in the GLIB 
file needed by glman). It also receives texture coordinates that were passed 
from the application. It uses the scaled and truncated texture coordinates in the 
model to create a screen effect, and pixels that are not within a given distance 
of the screen lines are discarded. If a pixel is kept, any alpha value in the color 
is ignored and the pixel is lit with standard diffuse lighting.

The vertex shader for this figure is straightforward. It simply calculates 
the normal and eye-coordinate position, from which it gets the light intensity, 
and then passes the attribute variable aTexCoord0 along to the fragment shader.

uniform mat4 uModelViewMatrix;
uniform mat4 uModelViewProjectionMatrix;
uniform mat3 uNormalMatrix;

in vec4   aVertex;
in vec4   aTexCoord0;
in vec4   aColor;
in vec3   aNormal;

out vec4  vColor;
out float vLightIntensity; 
out vec2  vST;

const vec3 LIGHTPOS = vec3( 0., 0., 10. );

Figure 3.5. A sphere with a positional 
screen pixel-discard fragment shader.
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void main( )
{
 vec3 transNorm  = normalize( vec3( uNormalMatrix * aNormal )
               );
 vec3 ECposition = vec3( uModelViewMatrix * aVertex );
 vLightIntensity = dot( normalize(LIGHTPOS-ECposition), 
            transNorm );
 vLightIntensity = clamp( .3 + abs( vLightIntensity ), 0., 1. 
              );

 vST         = aTexCoord0.st;
 vColor      = aColor;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

Below is the fragment shader for Figure 3.5. It takes the s and t coor-
dinates provided by the vertex shader and uses them to decide whether to 
discard a pixel.

uniform float uDensity;
uniform float uFrequency;

in vec4  vColor;
in float vLightIntensity; 
in vec2  vST;

out vec4 fFragColor;

void main( )
{
 float sf = vST.s * uFrequency;
 float tf = vST.t * uFrequency;
 
 if( fract( sf ) >= uDensity && fract( tf ) >= uDensity )
  discard;

 fFragColor = vec4( vLightIntensity*vColor.rgb, 1. );
}

Again, a more efficient implementation that takes advantage of the paral-
lelism in graphics hardware would be

 vec2 stf = vST * uFrequency;
 
 if( all( fract(stf) >= vec2(uDensity, uDensity) ) ) 
  discard;
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Tessellation Shaders

Tessellation shaders follow the vertex shader in the 
shader pipeline. They take vertex data and can inter-
polate the original vertices to create additional ver-
tices in your geometry. (Note that this interpolation 
is quite different from the interpolations in fragment 
shaders.) Among other things, tessellation shaders let 
you perform adaptive subdivision of your geometry 
to increase the quality of your images, manage level-
of-detail (LOD) image quality, or apply displacement 
maps without defining detailed geometry.

There are actually two kinds of tessellation shad-
ers, as you saw in Figures 3.1 and 3.2: tessellation con-
trol shaders let you set up the parameters for the inter-
polations to be carried out, and tessellation evaluation 
shaders let you define the computation that will be 
used in creating the actual output geometry.

Figure 3.6 illustrates the subdivision capability 
of tessellation shaders.  It shows a surface built from 

a single 4 × 4 vertex patch, with each triangle in the surface shrunken slightly 
so you can see how the surface is created.1 

Two key concepts in tessellation shaders are the patch, or basic geometry 
the shader is to work on, and the tessellation level, or the number of subdivi-
sions into which a patch is divided. The vertices in the patch for this figure are 
set in the glib file for the example using glman, and are available on the book’s 
website. The tessellation control shader for the figure is shown below. It speci-
fies the number of vertices in a patch and passes the input geometry in gl_in 
to the geometry gl_out for the tessellation evaluation shader to use. It also 
takes tessellation levels as uniform variables and sets up the required variables 
gl_TessLevelOuter and gl_TessLevelInner.

#version 400
#extension GL_ARB_tessellation_shader : enable

uniform float uOuter02, uOuter13, uInner0, uInner1;

layout( vertices = 16 )  out;

Figure 3.6. A Bézier surface interpolated 
from a  4 × 4 patch by tessellation shaders.

1. This example is explained in more detail in Chapter 13.
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void main( )
{
 gl_out[ gl_InvocationID ].gl_Position =
          gl_in[ gl_InvocationID ].gl_Position;

 gl_TessLevelOuter[0] = gl_TessLevelOuter[2] = uOuter02;
 gl_TessLevelOuter[1] = gl_TesslevelOuter[3] = uOuter13;
 gl_TessLevelInner[0] = uInner0;
 gl_TessLevelInner[1] = uInner1;
}

In this example, the amount of tessellation is set by uniform variables for 
simplicity. But, in fact, those levels could also have been set by examining the 
geometry’s coordinate size, screen extent, zoom factors, curvature, etc. That’s 
the advantage of placing this capability in the pipeline as a programmable 
shader.

The tessellation evaluation shader defines the way interpolation com-
putations are to be done, and the tessellation evaluation shader for the figure 
is shown below. Part of a long set of assignments is omitted, but you should 
think of pij as the [i,j] entry in the 2D control points array that is passed in 
from the tessellation control shader. The real function of this particular shader 
is to set up the Bézier basis functions and the computations for position and 
normal for any point in an interpolated patch. This should be familiar to those 
who have written their own Bézier patch code. The vertices of the patch are 
computed with fixed-function computations based on the tessellation levels 
from the tessellation control shader, and the output of this shader is a set of 
triangle vertices that are assembled for the next piece of the pipeline.

#version 400
#extension GL_ARB_tessellation_shader : enable

layout( quads, equal_spacing, ccw)  in;

out vec3 teNormal;

void main( )
{
 vec3 p00 = gl_in[  0 ].gl_Position;
 ...
 vec3 p33 = gl_in[ 15 ].gl_Position;

 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;



52 3.  Fundamental Shader Concepts

 // the Bezier basis functions and their derivatives:

 float bu0 = (1.-u) * (1.-u) * (1.-u);

 float bu1 = 3. * u * (1.-u) * (1.-u);

 float bu2 = 3. * u * u * (1.-u);

 float bu3 = u * u * u;

 float dbu0 = -3. * (1.-u) * (1.-u);

 float dbu1 =  3. * (1.-u) * (1.-3.*u);

 float dbu2 =  3. * u *      (2.-3.*u);

 float dbu3 =  3. * u *      u;

 float bv0 = (1.-v) * (1.-v) * (1.-v);

 float bv1 = 3. * v * (1.-v) * (1.-v);

 float bv2 = 3. * v * v * (1.-v);

 float bv3 = v * v * v;

 float dbv0 = -3. * (1.-v) * (1.-v);

 float dbv1 =  3. * (1.-v) * (1.-3.*v);

 float dbv2 =  3. * v *      (2.-3.*v);

 float dbv3 =  3. * v *      v;

 // finally we get to compute something

 gl_Position  = bu0 * ( bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03 )

           + bu1 * ( bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13 )

          + bu2 * ( bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23 )

           + bu3 * ( bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33 );

 vec4 dpdu = dbu0 * ( bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03 )

           + dbu1 * ( bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13 )

         + dbu2 * ( bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23 )

         + dbu3 * ( bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33 );

 vec4 dpdv = bu0 * ( dbv0*p00 + dbv1*p01 + dbv2*p02 + 

          dbv3*p03 )

           + bu1 * ( dbv0*p10 + dbv1*p11 + dbv2*p12 + 

          dbv3*p13 )

         + bu2 * ( dbv0*p20 + dbv1*p21 + dbv2*p22 + 

          dbv3*p23 )

         + bu3 * ( dbv0*p30 + dbv1*p31 + dbv2*p32 + 

          dbv3*p33 );

 teNormal = normalize( cross( dpdu.xyz, dpdv.xyz ) );

}
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Geometry Shaders

The geometry shader is another kind of shader available with OpenGL and the 
GLSL shader language. This shader’s operations change or expand the origi-
nal geometry sent to the shader by developing new vertices and vertex groups. 
As an example, each triangle in a model could be replaced by a triangle shrunk 
about its centroid, as shown in Figure 3.7.

The source code for this geometry shader is more complicated, and it 
involves more new concepts than the previous vertex and fragment shaders do, 
but it is still worth seeing as a way to understand where we are headed. The basic 
idea is that all the vertices in each triangle primitive are being passed together  
( vec4 gl_PositionIn[i] ). From these, a centroid is computed, and all 
three vertices are shrunk about it and emitted to become a new triangle. A 
more complete discussion is found in Chapter 12. 

layout( triangles )  in;
layout( triangle_strip, max_vertices=32 )  out;

uniform float     uShrink;
uniform mat4      uModelViewProjectionMatrix;

in vec3           vNormal[3];

out float         gLightIntensity;

const vec3        LIGHTPOS = vec3( 0., 10., 0. );

Figure 3.7. Triangles in different models shrunk with a geometry shader (this is useful for 
examining how fine the triangularization of a particular model is).
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vec3 V[3];
vec3 CG;

void
ProduceVertex( int vi )
{
 gLightIntensity = dot( normalize(LIGHTPOS - V[vi]), \
            vNormal[vi] );
 gLightIntensity = abs( gLightIntensity );

 gl_Position = uModelViewProjectionMatrix *
      vec4( CG + uShrink * ( V[vi] - CG ), 1. );
 EmitVertex( );
}

void
main( )
{
 V[0]  =   gl_PositionIn[0].xyz;
 V[1]  =   gl_PositionIn[1].xyz;
 V[2]  =   gl_PositionIn[2].xyz;
 CG    =   (  V[0] + V[1] + V[2]  ) / 3.;
 ProduceVertex( 0 );
 ProduceVertex( 1 );
 ProduceVertex( 2 );
}

The GLSL Shading Language

The GLSL shader language is a C-like language with some extensions and 
some limitations. From a pure language point of view, it has some charac-
teristics that recall features of early programming languages. For example, 
there are special variables that give you access to the data set by an OpenGL 
application into on-card registers, several special-purpose operations on 
vectors and matrices that are designed specifically for graphics, special vari-
able types to reflect the different kinds of operations that will be done with 
variables, and shared name spaces that provide communication between 
applications, vertex shaders, and fragment shaders. We will describe the 
language in full detail in Chapter 5.

One way to think about GLSL, or any computer language, is to con-
sider some of the basic attributes of the language. For GLSL, some of these 
are given in the following table. 
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Goals Primary: speed; secondary: image quality

Shader Types Vertex, Tessellation Control, Tessellation Evaluation, 
Geometry, Fragment

Shader Variables Attribute, Uniform, Constant, Out, In
Coordinate Systems Model, World, Eye, Clip
Noise Either as a texture or using the built-in function
Compile Shaders Done by the driver

GLSL shader code looks much like C, with the usual operators and logic. 
Preprocessor commands such as #define, #ifdef, and the like are available. 
GLSL has some extensions to support graphics operations. These include a 
number of new types, including some built-in vector and matrix types that are 
probably new to you, but that make life in graphics much easier.

• Integer scalar and vector types: int, ivec2, ivec3, ivec4.
• Real-valued scalar and vector types: float, vec2, vec3, vec4.
• Matrix types for square real-valued matrices: mat2, mat3, mat4.
• Matrix types for non-square real-valued matrices: mat3x2, etc.
• Boolean scalar and vector types: bool, bvec2, bvec3, bvec4.
• A sampler type to access textures.

The new vector and matrix types in GLSL require some new kinds of 
access and operations. Many familiar operators are overloaded to handle vec-
tors and matrices . The familiar multiplication operator * has some new mean-
ings. For the statement m*n, we have four new meanings:

• If m is a scalar and n is a vector or matrix, then m*n is a vector or matrix of 
the same size as n whose entries are the original vector or matrix entries, 
each multiplied by m.

• If m and n are both vectors of the same size, then m*n is the scalar prod-
uct (component-by-component product) of the vectors, not their dot  
product.

• If m is a matrix and n is a vector of compatible size, then m*n is a vector of 
the appropriate size that is the usual matrix*vector product.

• If m and n are both matrices of compatible sizes, then m*n is a matrix of the 
appropriate size that is the usual matrix*matrix product.

A number of other operations have been added, and many operations 
have been extended to operate on entire vectors or matrices.

Access to components of vectors involves another set of new operations. 
Vector components may be accessed with the familiar [index], or they may use 
symbolic names, called name sets, that are familiar for the meanings of different 
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vectors: .rgba (for vectors as color), .xyzw (for vectors as geometry), and .stpq 
(for vectors as texture coordinates). You can also use any subset of the symbolic 
names to access parts of a vector. For example, aVertex.xyz gets you the first 
three components of a vertex. aVertex.rgb looks wrong, but would get you 
the same thing. Another new kind of vector access involves rearranging their 
components, or “swizzling” them. Components can be swizzled by giving the 
symbolic names of the components in changed order (e.g., c1.rgba = c2.abgr) 
to rearrange their order.

GLSL shaders also extend the normal C functionality in adding new kinds 
of type qualifiers for variables. The new qualifiers, and their meanings, are

•  const—a variable that is a compile-time constant and cannot be refer-
enced outside the shader that defines it. These variables cannot be used 
on the left-hand side of an assignment operation under any circum-
stances. (This is the same as the C++ const.)

•  attribute—a variable, only used in a vertex shader, that is set by the 
application per-vertex and is generally sent from the application to the 
graphics card by OpenGL functions. Attribute variables may include the 
traditional per-vertex values of model coordinates, color, normal, normal 
matrix, or texture coordinates, but an application may define additional 
attribute variables when needed.

•  uniform—a variable that is set outside a shader and can be changed at 
most once per primitive.

•  in or out—variables used to communicate results from one shader 
to another. An out variable is to get its value in the shader where it is 
defined and be passed from that shader to the next shader further along 
in the shader pipeline. It is a write-only variable in the shader where it 
is defined. An in variable is to be received from a previous shader in the 
shader pipeline and used in the shader where it is defined. It is a read-only 
variable in the shader where it is defined. An in variable in a fragment 
shader will be interpolated across the fragments in a graphics primitive. 
This interpolation will be done in a perspective-corrected fashion; see [14].

Shaders can create their own functions, just like in C/C++, with their own 
parameters and local variables. Another set of type qualifiers is used for func-
tion parameters for shaders. These are keyed to the role of the parameters in 
the function, and are

•  in—a parameter of this type is intended to have a value when it is passed 
into a function but is not to be changed in the function. It functions much 
as a const variable would. Such parameters are intended to communicate 
only from the calling function to the called function.
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•  out—a parameter of this type is not assumed to have an initial value the 
first time it appears in the function, but it is assumed that a value will be 
assigned before the function returns. Such parameters are intended to 
communicate only from the called function to the calling function.

•  inout—a parameter that is intended to have a value when it is passed 
into a function and to have a value, possibly different, when the function 
returns. Such parameters are intended to provide two-way communica-
tion between the called function and the calling function.

One final additional capability in fragment shaders that should be men-
tioned is the discard operator. This is used to discard pixels so they will not be 
passed to the framebuffer. Note that this is quite different from having the pix-
els made transparent by setting their alpha color value to zero. Pixels with zero 
alpha still have a depth value and are recorded in the depth buffer, so they 
mask any pixel that might lie behind them. As you can clearly see in Figure 3.5, 
discarded pixels do not mask anything.

The GLSL shader language is missing some of the properties of C that 
you may be used to using. Remember that shaders operate in the graphics pro-
cessor, not in a general-purpose processor, and that this limits the operations 
that it makes sense for the language to support. Many of these can be worked 
around (type casts) and some do not fit the concept of graphics processing (no 
enums or strings)—and some you simply will need to live without or will need 
to do outside the shader. Some of the differences include

• No type casts (use constructors instead).
• No automatic promotion (although some GLSL compilers handle this).
• No pointers.
• No strings.
• No enums.
• Can only use 1D arrays (no bounds checking).
• No file-based pre-processor directives.

There are several attribute variables that you will use a lot in your vertex 
shaders. These variables are defined in your application and give you access to 
per-vertex OpenGL state information for your shader. In the examples above, 
you saw some key values taken from these attribute variables, such as model 
coordinates, normals, and color, and these values (possibly modified) were 
turned into out variables so they could be used by tessellation or geometry 
shaders or interpolated later by a fragment shader. Using our variable name 
convention, and noting that you may use other names instead of those we 
chose here, these variables include
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•  vec4 aVertex—the coordinates of the current vertex in model coordi-
nates.

•  vec3 aNormal—the coordinates of the current vertex normal in the origi-
nal coordinates.

•  vec4 aColor—the color defined for the current vertex, if one has been 
defined.

•  vec4 aTexCoordi (i = 0, 1, 2, ...)—the level i texture coordinates associ-
ated with the vertex.

There are also some uniform variables that you will use a lot.  These vari-
ables are also defined in your application and are available to all your shaders.  
In the examples above you saw some of these variables involved in the coor-
dinate computations.  Again, these use our name convention and, noting that 
these names are chosen for clarity of presentation, we have

•  mat4 uModelViewMatrix—the ModelView matrix, the product of the 
viewing and modeling transformation matrices, that is active for the par-
ticular vertex.

•  mat4 uProjectionMatrix—the matrix of the projection transformation 
that is active for the particular vertex.

•  mat4 uModelViewProjectionMatrix—the product of the ModelView 
matrix and the Projection matrix.

•  mat3 uNormalMatrix—the normal matrix that is active for the particular 
vertex (as we will see, this is the inverse transpose of the ModelView 
matrix).

Other important uniform variables you will define in your application 
define lights and materials. These are described in the discussion of uniform 
variables below.

The built-in vertex shader output variable gl_Position is a particularly 
key variable, because you set it as the final vertex position for the remain-

ing geometry processing. Another vertex 
shader output variable you may use is 
gl_PointSize.

There are two fragment shader vari-
ables you will use a lot. These are, in a 
sense, the primary output variables from 
a fragment shader; you give them values 
to set the properties of each pixel as the 
fragment is processed. They let you set the 
color and depth for a pixel, respectively. 

Technically, none of the coordinate 
systems are part of GLSL, but 
they are available by applying 
GLSL operations. World space is 
not available with fixed-function 
OpenGL but requires the ability to 
define your own transformations, 
which, of course, shaders let you do.
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All the operations of a fragment shader—color computation, texturing, color 
arithmetic, and fog—come together to set these variables.  They are

•  vec4 fFragColor—the color of the pixels.
•  float gl_FragDepth—the depth of the pixels.

Passing Data from Your Application into Shaders

As you write any program with the OpenGL API, even if you don’t intend 
that program to use GLSL shaders, you create data that the system will use in 
creating a scene. This is generally graphical data that describes the scene. For 
example, you can specify the color for each vertex, or you can create an array 
of vertices and a parallel array with data such as elevations, temperature, or 
any measured data. The data could be used in fixed-function operations by 
manipulating primitives based on your data, or with shader-based operations 
by putting the data into user-defined attribute or uniform data that you can 
access within the shader function(s). In these sections, we describe how you 
can create attribute or uniform data for shaders, and we give some examples 
that show these in action. In Chapter 9, we describe how you can create sam-
pler data for shaders.

Defining Attribute Variables in Your Application

Attribute variables are a way to provide per-vertex data to a vertex shader. 
These are only available to a vertex shader. If any vertex-specific attribute data 
needs to be used by a later shader, the vertex shader must first convert it to an 
out variable so the later shader can take it as an in variable. Here we describe 
the general approach to defining variables that describe properties of an indi-
vidual vertex in your model. 

Besides the usual attribute data such as the coordinates, normal, color, 
or texture coordinates of a vertex, you may also need to define other data to 
associate with a vertex. OpenGL lets applications define custom attributes to 
pass to a vertex shader. Each vertex attribute has an indexed location and can 
contain up to four values.

As with uniform variables, you need to determine the symbol table loca-
tion of an attribute variable before you can set it:

GLuint glGetAttribLocation( GLuint program,  

              GLchar * attribName );
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where attribName is a character string of the name of the variable.
An application can set a per-vertex attribute using one of the functions:

void glVertexAttrib{i}{t}{v}(GLuint index, TYPE val) 

The value of i can be 1, 2, 3, or 4, depending on the dimension of the 
data to be given to that attribute. The value of t specifies the data type for the 
data to be given to the attribute; this can be b (byte), s (short), i (int), f (float), 
d (double), ub (unsigned byte), us (unsigned short), or ui (unsigned int). The 
suffix v means that the data is in vector form rather than as a list of scalars. 
These are consistent with the format of the glVertex* functions.

The parameter index is the particular 
symbol table index of the attribute vari-
able you are setting, and the parameter or 
parameters val are the value(s) to be writ-
ten to the attribute variable at that index. 
All the glVertexAttrib functions are 
expected to be used between glBegin and 
glEnd, just as the built-in attribute setting 
functions are.  

The type of the data val is expected 
to match the type specified in the function 

name. However, since the vertex attributes are always stored in an array of 
type vec4, any byte, short, int, unsigned byte, unsigned short, or unsigned int 
will be converted into a standard GLfloat before it is actually stored.

In the short application code fragment below, which uses compatibil-
ity mode for clarity, we assume that the attribute named abArray has been 
defined in the vertex shader as, say,

vec3 aMyArray[N]:

and we want to set the values of that attribute for each vertex of a triangle.  
The values to be assigned to that attribute for the vertices are the values of 
a0, b0, and c0 (respectively a1, b1, and c1, or a2, b2, and c2). The role of the 
glVertexAttrib3f( ) function is to set these values for the attribute.

GLint myArrayLoc = glGetAttribLocation( program, “aMyArray” );
if(myArrayLoc < 0 )
 fprintf( stderr, “Cannot find Attribute variable 
          ‘aMyArray’\n” );
else
{

Notice that the glVertexAttrib* 
routines do not take a program 
handle as one of their arguments.  
Since you set the attribute variables 
as you do the drawing, it is assumed 
that the intended shader program 
has already been made active when 
glVertexAttrib* is called.
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 glBegin( GL_TRIANGLES );
  glVertexAttrib3f( myArrayLoc, a0, b0, c0 );
  glVertex3f( x0, y0, z0 );
  glVertexAttrib3f( myArrayLoc, a1, b1, c1 );
  glVertex3f( x1, y1, z1 );
  glVertexAttrib3f( myArrayLoc, a2, b2, c2 );
  glVertex3f( x2, y2, z2 );
 glEnd( );
}

A very simple visualization per-vertex attribute example would display 
pressure data on a surface. The usual way this would be programmed with 
the fixed-function OpenGL would be to use the pressure to define the color at 
each vertex in the surface, and then—assuming a continuous pressure func-
tion on the surface—to send the surface’s graphics primitives into the render-
ing stages, to be drawn with smooth shading color interpolation. However, we 
could also define pressure to be an attribute variable with each vertex, and use 
that directly for drawing the surface, giving us more options in using color to 
present the pressure data. 

Attribute Variables in Compatibility Mode

In compatibility mode, GLSL defines a number of built-in attribute variables for a 
vertex shader to use directly or to pass along to other shaders. Each of the standard 
OpenGL functions that define a vertex (those you can call within a glBegin-glEnd 
pair) defines a built-in attribute variable that can be used by a vertex shader. Each 
time one of these functions is invoked, the corresponding attribute variable’s value is 
updated. These variables are defined fully in Chapter 5 on the GLSL language, and are 
shown in Table 3.1.
 attribute vec4 gl_Color;;

 attribute vec3 gl_Normal;

 attribute vec4 gl_Vertex;

 attribute vec4 gl_MultiTexCoord0;

Standard OpenGL Function Built-in Attribute Variable Our Name
glVertex*(...) gl_Vertex aVertex

glColor*(...) gl_Color aColor

glNormal*(...) gl_Normal aNormal

glMultiTexCoord*(i, ...) gl_MultiTexCoordi, i=1..N aTexCoord0

Table 3.1. Attribute variables defined by compatibility-mode OpenGL vertex functions.
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The steps in doing this are as follows:

• Define the attribute variable in the application and set the variable to its 
appropriate value for each vertex as you define the vertex geometry.

• Pick up the value of the attribute variable in the vertex shader and write it 
to an out variable so it can be interpolated smoothly across each graphics 
primitive.

• Use the variable as an in variable to any shader that needs it and, if appro-
priate, use its value to determine the color to be used in filling pixels.

This could let us add pressure contour lines, or could let us color differ-
ent pressure regimes in distinct colors, or create other displays as needed. This 
idea will be explored more fully in Chapter 15.

Defining Uniform Variables in Your Application

GLSL uniform variables contain information that can change at most with 
each graphics primitive. You can think of these uniform variables as a sort of 
“global variables” that are available to all the shaders currently being used. 
If you want a shader to have data and that data isn’t directly available from 
OpenGL, you can define your own uniform variables to give that data to a 
shader. Uniform variables are used within a shader, and their values are set by 
the application. Uniform variables can hold any kind of data, including structs 
and arrays, as we saw with the built-in uniform variables.

The mechanism for defining and using your own uniform variables is 
indirect and somewhat unusual.  When you define a uniform variable in your 
shader program, you simply declare the variable in the usual way:

uniform type name;

This associates a name and a type with the variable, but does not associate an 
address. An address is only assigned when the shader program is linked. Once 
linking has been done, an address is available for each variable. You query the 
address and then use it to set the variable from your application.

But how does the application get the address for a variable it does not 
know about? The application must know the name of the uniform variable 
in a linked shader program. It can then get the location (or address) with the 
function

GLint glGetUniformLocation(GLuint program, const GLchar *name);

Here program is the value returned from the glCreateProgram( ) func-
tion, and name is the name (a text string) of the uniform variable. This function 
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returns the address of the named variable within the named program object, 
so it can be used in the application. The uniform variable must be a simple 
variable, not an array or struct; these are handled differently. A uniform vari-
able (either built-in or user-defined) is called active if the link operation finds 
that it can be accessed during program execution; a link operation must have 
been done (though it might not have succeeded) before the uniform variables 
in the shader program can be active.

You can think of this as creating a pipe from your application to the 
shader.  The location you get from glGetUniformLocation( ) is the place the 
pipe goes. You then use one of the glUniform*( ) functions to put data into 
the pipe to get it to the shader.

The application can set the value of a uniform variable whose location is 
known in three ways. The first way sets scalar or simple vector data with the 
function

glUniform{i}{t}(GLint location, TYPE val)

where i can be 1, 2, 3, or 4, depending on the dimension of the variable, and 
t can be either f or i, depending on whether the type’s base is floating-point 
or integer. The function causes the value of the parameter val to be loaded into 
the location indicated. This parameter can be a simple vec1, vec2, vec3, vec4, 
ivec1, ivec2, ivec3, or ivec4, but not an array of these types.

The second way sets array (vector) data with

glUniform{i}{t}v( GLint location, GLuint length, const TYPE  
         *val ) 

where the meanings i and t are the same, but the data in val is a vector of the 
specified type (including vec* and ivec*) whose length is length.

Finally, the third way sets matrices, and is

glUniformMatrix{i}fv( GLint location, GLuint count,
                      GLboolean transpose, const GLfloat *val )

If i has the value 2, *val must be a 2 × 2 matrix; if 3, a 3 × 3 matrix; and if 4, a 
4 × 4 matrix. If transpose has value GLfalse, the matrix is taken to be in stan-
dard OpenGL column matrix order, while if transpose has value GLtrue, the 
matrix is taken to be in row-major order. The value of count is the number of 
matrices that are being passed, so if you are only passing a single matrix, that 
value is 1.

When you develop vertex shaders, it is sometimes nice to be able to 
separate the Model and the Viewing matrices, instead of having them pre-
combined into one ModelView matrix, as OpenGL does. If you are willing 
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to manipulate the contents of those matri-
ces yourself, then you can accomplish this 
using matrix uniform variables.

If you have defined a struct as a uni-
form variable, you cannot set the entire 
struct at once; you must use the functions 
above to set each field individually.

As an example, suppose you wanted 
to pass a light location into your shaders. 
The following very short code fragment, to 
be used in your application, wants to store 
a value in your shader’s vec3 uniform vari-
able named uLightPos. 

The glGetUniformLocation function 
lets you find the location of the uniform 
variable in the shader program’s symbol 

table. The glUniform3fv function lets you set that uniform variable. Note also 
how location is checked to ensure that the variable is actually found.

float LightPos[3] = { 0., 100., 0. }; // values to store

GLint lightPosLoc = glGetUniformLocation( program, 
                   “uLightPos” );
     // where in the shader symbol table to store them
if( lightPosLoc < 0 )
 fprintf(stderr, “Uniform variable ‘uLightPos’ not found\n”);
 
 . . .

glUseProgram( program );

if( lightPosLoc >= 0 )
 glUniform3fv( lightPosLoc, 3, lightPos );

A Convenient Way to Transition to the Newer Versions of GLSL

The GLSL specification has been in transition. Many (most) of the built-in 
GLSL variables have been deprecated in favor of defining and using your 
own variable names. Although it is not clear if the GLSL deprecated features 
will completely go away, it is clear that they might. We believe that graphics 
programmers should start transitioning to the new way of doing things. This 
is further supported by that fact that OpenGL ES 2.0 requires the transition 

Notice that none of these glUniform* 
routines take a program handle as 
one of its arguments. Those routines 
set uniform variables in the currently 
active shader program. So be sure 
that you call glUseProgram( ) on 
the correct program before setting 
that program’s variables.

However, there is another set 
of GLSL API routines that let you 
specify the program. They look like 
this:

glProgramUniform*( program, 
 loc, count, value(s) );
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Uniform Variables in Compatibility Mode
In compatibility mode, GLSL defines a number of built-in uniform variables that 
give you access to OpenGL states for primitives, as we describe fully in Chapter 5 
on the GLSL language. There are a number of built-in uniform variables, including 
the ModelView, Projection, and Normal matrices and all texture, light, and materials 
data. Your applications set these values through standard OpenGL functions and can 
use the associated uniform variables in your shaders. These give you access to all the 
OpenGL state values or values derived from these states. When a program object is 
made current, the built-in uniform variables that track the OpenGL state are initialized 
to the current value of those states, and any later OpenGL calls that modify state values 
update the built-in uniform variable that tracks those states. The most commonly-used 
of these are shown in Table 3.1.

Standard OpenGL Function Built-in Uniform Variable

transformations mat4 gl_ModelViewMatrix

mat4 gl_ModelViewProjectionMatrix

mat4 gl_ProjectionMatrix

mat3 gl_NormalMatrix

materials struct gl_MaterialParameters {

   vec4  emission;

   vec4  ambient;

   vec4  diffuse;

   vec4  specular;

   float shininess;

} gl_Frontmaterial; gl_BackMaterial;

lights struct gl_LightSourceParameters {

   vec4  ambient;

   vec4  diffuse;

   vec4  specular;

   vec4  position;

   vec4  halfVector;

   vec3  spotDirection;

   float spotExponent;

   float spotCutoff;

   float spotCosCutoff;

} gl_LightSource[gl_MaxLights];

Table 3.2. Some common uniform variables defined by OpenGL functions in compatibility 
mode.
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to the new approach. Compare the installed base for OpenGL desktop to 
the installed base for OpenGL ES (mobile), and you realize that develop-
ing applications that run only on OpenGL desktop is short-sighted. As the 
standard continues to evolve, you will have a huge advantage if you develop 
applications that can run both on the desktop and on the ubiquitous mobile 
devices.

For our own work, we have developed a way to start a smooth transition 
to the new approach through the use of a set of #defines in a file called gstap.h, 
shown here and also available at this book’s website:

#ifndef GSTAP_H
#define GSTAP_H

// gstap.h -- useful for glsl migration
// from:
//  Mike Bailey and Steve Cunningham
//  “Graphics Shaders: Theory and Practice”,
//  Second Edition, AK Peters, 2011.

// we are assuming that the compatibility #version line
// is given in the source file, for example:
// #version 400 compatibility

// for OpenGL-ES compatibility:

precision highp     float;
precision highp     int;

// uniform variables:

#define uModelViewMatrix     gl_ModelViewMatrix
#define uProjectionMatrix    gl_ProjectionMatrix
#define uModelViewProjectionMatrix
    gl_ModelViewProjectionMatrix
#define uNormalMatrix      gl_NormalMatrix
#define uModelViewMatrixInverse gl_ModelViewMatrixInverse

2. “gstap” stands for the book title, Graphics Shaders: Theory and Practice.
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// attribute variables:

#define aColor     gl_Color
#define aNormal     gl_Normal
#define aVertex     gl_Vertex

#define aTexCoord0    gl_MultiTexCoord0
#define aTexCoord1    gl_MultiTexCoord1
#define aTexCoord2    gl_MultiTexCoord2
#define aTexCoord3    gl_MultiTexCoord3
#define aTexCoord4    gl_MultiTexCoord4
#define aTexCoord5    gl_MultiTexCoord5
#define aTexCoord6    gl_MultiTexCoord6
#define aTexCoord7    gl_MultiTexCoord7

#endif  // #ifndef GSTAP_H

These #defines allow you to 
use new names for things, without 
having to (yet) define them and pass 
them in yourself. Then, when the 
time comes to complete your migra-
tion to the new approach, you don’t 
need to make massive code changes 
to your shaders. Note that these 
names use our variable naming stan-
dard descsribed earlier in this chap-
ter.

Exercises

The code for all the shaders discussed in this chapter is available on the book’s 
website, and this chapter’s exercises are mostly concerned with experiments 
on this code using the glman application. Details on glman are discussed in the 
next chapter, so you may want to use it as a reference while you work on these 
exercises.

1. Experiment with shape: in this chapter we only used spheres for our 
examples, but glman allows you to use a number of other kinds of shapes. 
In the GLIB file for any of these examples, replace the sphere by other 

To make life even easier for you, the 
gstap.h code has been built-in to the glman 
software, so that every shader source that 
you load automatically has it included. 
Just include a line in your .glib file with the 
word gstap.h on it. If you use glman, there is 
no reason not to transition away from the 
deprecated built-in variables right away.
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shapes, and see how the effects change. Other shapes you may use are 
cylinders, boxes, cones, tori, and teapots.

2. Experiment with color: change the color of the simple figures in these 
examples to other colors. You may do this with the GLIB file, or you may 
add color as a uniform variable set through the glman parameter interface 
described in the next chapter.

3. Compute with color: you can use color as data and base your computa-
tions on it. For example, in a fragment shader you can include a state-
ment like

 if (color.b > 0.5) color.r = 1.0;

 This can be a very useful technique for debugging shaders, since you can-
not instrument your shader code with print statements or other familiar 
techniques.

4. Compare pixel blending with pixel discarding: instead of discarding pix-
els as in the example of Figure 3.5, change the alpha value of the color of 
each pixel that would have been discarded to zero and see what happens. 
Don’t be satisfied to observe the results from a single viewpoint; rotate 
the sphere (or other object) to view it from all angles, and note when an 
alpha of zero has, and when it does not have, the same effect as a discard.

5. Figure 3.5 showed a very regular pattern of discards because of the logic 
in the fragment shader. Change that logic and see what kind of patterns 
you can make on the sphere. For example, apply a trigonometric function 
to some combination of coordinates, and see if you can discard sinusoidal 
ribbons around the sphere.

6. Get the GLIB file for the tessellation shader example in Figure 3.6, and 
experiment with this example by changing the vertices in the patch and 
by changing both the inner and outer tessellation levels. (Use any conve-
nient fragment shader to finish creating the image.)

7. Add the geometric shrink shader to the previous exercise so you can see the 
individual triangles in the patch you produce, as was done in Figure 3.6.
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Using glman4

Shaders, like many other areas in graphics, have many complexities in their 
structure and options, and one of the best ways to learn them is simply to try 
out ideas, choices, and different parameters in the shaders you write. However, 
exploring shaders in this way can be time-consuming when you have to go 
through the entire edit-compile-link-run cycle for each change you want to test 
in the shader. In order for you to try out many options and ideas for shaders 
with a very short turnaround cycle, the glman tool provides a handy OpenGL 
program substitute that lets you change shader code and see the results very 
quickly, especially since it also lets you experiment with the values of uniform 
variables as shader parameters. The cycle of experimentation for developing 
shaders with and without glman is shown in Figure 4.1.

To use glman, you need to create a GLIB file. The name GLIB stands for 
“GL Interface Bytestream,” and a GLIB file is a scene description script whose  
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details are described later in this chapter. This is an ASCII-encoded input file 
inspired by the Photorealistic RenderMan RIB file. You need to have both a 
vertex shader and a fragment shader to use glman; you can also have a tessel-
lation shader or a geometry shader if you want, and if your system supports it.

You start by writing a GLIB file that describes your geometry and speci-
fies your vertex, tessellation, geometry, and fragment shaders. The GLIB file 
can define uniform variables, including variables that can be changed using 
sliders or color pickers. You can edit GLIB and shader files from within glman, 
so you can start adding effects to the shaders, or geometry to the GLIB file, to 
get incremental results. The glman system will return error messages if you 
have compile errors in your shaders, which is very helpful as you begin to 
learn to develop them. This experimental approach and incremental develop-
ment of shaders gives you good feedback on what works and lets you create 
some very interesting images along the way.

While glman will let you make some very interesting images that illus-
trate how your shaders work, you should realize that it is not a production 
tool for creating general graphics applications. There were conscious design 
decisions to support only a limited geometry and interaction set, for example. 
What it does is give you a tool to develop shaders easily and fairly quickly and 
to experiment with shader parameters, and it does that very well.

When you are satisfied that the shaders you have developed do the things 
you want, you can be confident that they will be useable for your other work. 
Later chapters discuss how to use shaders for applications, so the shaders you 
develop here will be useful there.

You can get glman from this book’s website at http://www.cgeducation 
.org/glman. It runs on Windows, even if you do not have a compiler and pro-
gramming environment on the system. Linux and Macintosh versions are 

Figure 4.1.  The cycle of experimentation without glman (left) and with glman (right).
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being worked on and will be announced on the book’s webapge when ready. 
It does, however, require that the OpenGL system be available on your com-
puter and that your system graphics card supports programmable shaders. 
The glman distribution includes some additional files that you need to have 
on your system and has instructions on how to install them. If your computer 
and OpenGL systems have the geometry shader capability, those are also sup-
ported by glman. Our plans are to keep glman’s capabilities up with wherever 
the GLSL shader specification goes.

Using glman

The glman application is started in the usual way an application 
is started on your machine. When it begins, it presents a user 
interface window, as shown in Figure 4.2. (All of these figures 
are from a Windows environment.) This window has several 
parts that will be discussed as we go through the chapter. The 
key parts are loading a GLIB file, editing files, handling screen 
dumps, supporting scene and eye transformations, enabling 
object picking and transformations, and a few others; the inter-
face is not particularly complex and is easy to understand.

The first thing glman does is query your graphics card’s 
driver to see what shader types it supports. There will be up 
to six user interface “Edit a XXX File” buttons, depending on 
what is supported. If a button is left out, it means your system 
can’t handle that type of shader anyway. 

Following OpenGL’s standard, glman’s eye position is 
at the origin looking in the −Z direction. When your scene is 
loaded, you should push it back a little bit in the −Z direction 
using the Eye Transformation Trans Z widget to make it vis-
ible.

In addition to this interface window, glman opens a small 
console window on the screen. This window gives you some 
information about your system, as well as the operation of the 
application and your shaders, but most of the time it can be 
safely ignored—or even minimized. On the other hand, you 
may want to get very detailed information about your opera-
tions through this window by using verbose mode. Other pro-
gram windows may also be opened up if you request them, as 
described later in this chapter.

Figure 4.2.  The full glman inter-
face window.
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Loading a GLIB File

The file areas of the glman interface are shown in Figure 4.3. 
You load a GLIB file with the load or reload buttons; the load 
button brings up a file browser to select the file. This area lets 
you load a new file or reload the file you have been using; the 
latter is how you would reload an image when you had been 
experimenting with the shaders or changing the geometry. 
It also shows the full path name of the file you have loaded, 
although sometimes this is really too long for appropriate 
display.

The GLIB file supports a modest set of geometry and 
texture specifications. The full set of commands available 
in GLIB files is listed below, along with their parameters. 
The commands themselves are case-insensitive, but any text 
arguments are case-sensitive. Numbers in square brackets  
[ ] show the default values if the parameters are not set. If no 
default is given, then this command does not do anything 
without parameters.

Editing GLIB and Shader Source Files

The .glib, .vert, .tcs, .tes, .geom, and .frag files can be 
edited any way you want. If you want to open a WordPad 
(on Windows) or TextEdit (on Macintosh) editing window on 
a file, click on one of the buttons in the Editing section of the 
interface, and then select the file from the given file browser. 
You can have as many of these editing windows open at one 
time as you wish, and this can be a good way to copy func-
tionality from one shader to another. 

GLIB Scene Creation

GLIB includes a number of commands that you will use to control your dis-
play. These include commands about the window and viewing, about trans-
formations, about creating geometry to display, about textures, about the 
shaders to use and their uniform variables, and about a few miscellaneous 

Figure 4.3.  The file area of the 
interface panel
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things. While we always write commands with an initial capital letter, they are 
case-insensitive. Some commands have default parameters. These are given 
with the command description.

Window and Viewing

WindowSize wx wy Specify the initial graphics window size in pixels. [600. 600.]
Ortho xl xr yb yt Set the current projection to orthographic with the given 

parameters. [-1. 1. -1. 1.]
Persp fov Set the current projection to perspective with the given field 

of view (angle in degrees). [50.]
Color r g b a Set the current rendering color to (r, g, b, a). If no alpha value 

is given, alpha is set to 1.0. 0. ≤ r, g, b, a ≤ 1. (glman can also 
take Colour to make it look more international.)

Transformations

Like OpenGL itself, these transformations take effect in the reverse order in 
which they are listed; the one nearest to the geometry is performed first.

Translate tx ty tz Pre-concatenate a translation by the given translation 
values onto the current matrix.

Rotate angle ax ay az Pre-concatenate a rotation by the given angle around 
the line with the given direction onto the current matrix 
(angle in degrees).

Scale sx sy sz Pre-concatenate a scale by the given scale factors onto 
the current matrix.

Scale s Uniformly scale by (s, s, s,)
PushMatrix Push the current matrix on the matrix stack.
PopMatrix Pop the current matrix from the matrix stack.

Defining Geometry

The geometry options let you select enough shapes to see how your shaders 
will perform on a variety of different objects. The .obj file option lets you use a 
large number of shapes that you can get from different sources.
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Box dx dy dz Create a 3D box. If specified, (dx, dy, dz) are the lengths of 
the sides. [2. 2. 2.]

Cylinder radius 

height

Create a solid cylinder. [1. 1.]

Cone radius height Create a solid cone. [1. 1.]

DiskXY Create a unit disk parallel to the XY plane and passing 
through Z = 0.

LinesAdjacency [v0] 

[v1] [v2] [v3]

Create an instance of the OpenGL geometry shader 
GL_LINES_ADJACENCY primitive. This only works with 
geometry shaders. Each vertex consists of an x, y, and z, 
given in square brackets. So, for instance, [v0] might be: 
[1. 2. 3.]

glBegin topology

glVertex x y z

… 

glEnd

Specify the vertices for different OpenGL tropologies, 
including LinesAdjacency, TrianglesAdjacency, and the 
new GL_PATCHES topology, discussed in Chapter 13.

Linewidth N Set the width of individual lines to N pixels.

PointCloud numx 

numy numz

Create a 3D point cloud, a regular point grid in three 
dimensions. The parameters num* are the number of points 
to use in each direction.

JitterCloud numx 

numy numz

Create a 3D point cloud as above, with the position of each 
point jittered (moved randomly) from its regular position.

Pointsize size Define the size of points in your scene.

QuadBox numquads Create a series of numquads (quadrilaterals parallel to the 
XY plane). The XYZ coordinates run from (-1.,-1.,-1.) to 
(1.,1.,1.). The 3D texture coordinates run from (0.,0.,0.) to 
(1.,1.,1.). This is a good way to test 3D textures. [10]

QuadXY z size nx ny Create a quadrilateral parallel to the XY plane, passing 
through Z = z. If given, size is the quadrilateral’s dimen-
sion, going from (-size, –size) to (size, size) in X and 
Y. If given, nx and ny are the number of sub-quads this 
quadrilateral is broken into. This is a good way to test 2D 
textures. [0 1 4 4]

QuadXZ y size nx nz Creates a quadrilateral parallel to the XZ plane, passing 
through Y = y. If given, size is the quadrilateral’s dimen-
sion, going from (-size, –size) to (size, size) in X and Z. 
If given, nx and nz are the number of sub-quads this quad-
rilateral is broken into. [0 1 4 4]
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QuadYZ x size ny nz Creates a quadrilateral parallel to the YZ plane, passing 
through X = x. If given, size is the quadrilateral’s dimen-
sion, going from (-size, -size) to (size, size) in Y and Z. 
If given, ny and nz are the number of sub-quads this quad-
rilateral is broken into. [0 1 4 4]

Soccerball radius Creates a geometric soccer ball from 12 pentagons and 
20 hexagons. As part of this, two uniform variables are 
defined: 
FaceIndex: which face are we on right now. 0–11 are the 
pentagons, 12–31 are the hexagons.
Tangent: vec3 pointing in a consistent tangent direction, 
same as the Sphere uses.
In addition, the s and t texture coordinates are filled with 
good values for mapping an image to each face. The p 
value is filled with a normalized radius from the center. 
The seam is located at p = 1. [1.]

Sphere radius  

slices stacks

Create a solid sphere. This primitive sets the vertex coor-
dinates, the vertex normals, and the vertex texture coordi-
nates. In order to align bump-mapping, it also sets a vec3 
called Tangent at each vertex. The vectors Tangent are all 
tangent to the sphere surface and always point in a consis-
tent direction, towards the North Pole. [1. 60. 60.]

Teapot Create a solid teapot. The default teapot is approximately 
1.6 units high and 3 units long.

Torus innerradius 

outerradius

Create a solid torus. [.2 1.]

Wiresphere radius Create a wireframe sphere. [1.]

Wirecylinder radius 

height

Create a wireframe cylinder. [1. 1.]

Wirecone radius 

height

Create a wireframe cone. [1. 1.]

Wirecube L Create a wireframe cube [1.]

Wiretorus  

innerradius  

outerradius

Create a wireframe torus. [.2 1.]

Wireteapot Create a wireframe teapot.

Xarrow numslices Create an arrow along the X-axis, from X = 0. to X = 1. If 
specified, numslices is the number of individual slices to 
use along the arrow. [100]
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The .obj file format was developed by Wavefront years ago to store 
geometric information, including lines and polygons (and more). The glman 
application supports a subset—but a very useful subset—of the format. A full 
description of the file format is found in [30], and there are various public-
domain sources for .obj files that you can import. You will find several .obj files 
in the book’s Web resources. If you have a particular geometry on which you 
want to test your shader(s), creating an .obj version of the geometry could be 
useful, and it is not difficult to create.

Obj filename Reads a list of GL_TRIANGLES from an .obj file named filename. If 
a filename is not given, glman will prompt you for it. The full 
.obj format can be quite complex, but glman just supports verti-
ces, normals, texture coordinates, and faces.

WireObj filename Same as Obj, but creates a wireframe object.

ObjAdj filename Reads a list of GL_TRIANGLES_ADJACENCY from an .obj file named 
filename. Triangles with adjacency are described in Chapters 5 
and 12, and this command is useful for working with geometry 
shaders. If you don’t have a real need to use triangle adjacency, 
use Obj instead of ObjAdj. The file will read faster, and the 
resulting geometry will display faster. If no filename is given, 
glman will prompt you for it. As with the Obj command, this 
feature just supports vertices, normals, texture coordinates, and 
faces.

In order to work with tessellation shaders, glman must support the con-
cept of a patch. This requires one new command and a construction to define 
the patch geometry.

NumPatchVertices N Specify the number of vertices in a patch.

glBegin gl_patches

glVertex X Y Z

...

glVertex X Y Z

glend

Define the vertices that make up the patch. The total num-
ber of glVertex statements must match the number of ver-
tices specified for the patch.

Specifying Textures

These commands let you load a 1D, 2D, or 3D texture from a file to use with 
your shaders.
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Texture1D texture_unit 

filename

Read a 1D texture from a file in a raw format, which 
consists of one 4-byte integer giving the dimension of 
the texture and then four components per texel speci-
fying the red, green, blue, and alpha of that texel as 
either unsigned bytes or 32-bit floating point numbers.

Texture2D texture_unit 

filename

Read a 2D texture from a file. Don’t use texture units 
2 or 3 unless you want to override the 2D and 3D 
noise textures. If the filename ends in a .bmp suffix, 
an uncompressed BMP image file is assumed, with 
red, green, and blue read from the file (no alpha). Any 
other filename pattern implies a “raw” file format, 
which is described later. The four components can be 
all unsigned bytes or all 32-bit floating point.

Texture3D texture_unit 

filename

Read a 3D texture from a file in a raw format, which 
consists of three binary 4-byte integers giving the X, 
Y, and Z dimensions of the volume, and then four 
components per texel specifying the red, green, blue, 
and alpha of that texel. The four components can be all 
unsigned bytes or all 32-bit floating point.

CubeMap texture_unit \  

posxfile    negxfile 

posyfile    negyfile 

poszfile    negzfile

Generate a cubemap texture on texture unit 
texture_unit with the six BMP image face files, as 
specified

Specifying Shaders

These commands specify the shaders that are to be compiled and linked with 
your geometry to produce the image. For geometry shaders they also include 
specifications of the input and output geometry types they will use.

Vertex     file.vert Specify a vertex shader filename.

TessControl  file.tcs Specify a tessellation control shader filename.

TessEvaluation file.tes Specify a tessellation evaluation shader filename.

Geometry   file.geom Specify a geometry shader filename.

Fragment   file.frag Specify a fragment shader filename.
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Program 

programname 

uniformvariables 

...

Compile and link the vertex, fragment, and possi-
bly geometry (see below), shaders into a program, 
and specify the uniform variables for that program 
(see below). The program command must come 
last in this group. It links together the current ver-
tex shader, the current fragment shader, and pos-
sibly the current tessellation shaders and geometry 
shader. This lets you reuse a shader in another 
shader program by simply not redefining another 
shader of that type. If you want to unspecify a 
shader in a program (that is, no longer use it), just 
give its vertex, fragment, tessellation, or geometry 
command with no arguments.

If you use a geometry shader, you can also use the geometry commands  
in the table below in your GLIB file before the Program statement.

Geometryinputtype Specify what type of topology this geometry shader 
expects to find as input. This can be: GL_POINTS, 
GL_LINES, GL_LINES_ADJACENCY, GL_TRIANGLES, or 
GL_TRIANGLES_ADJACENCY.

Geometryoutputtype Specify what type of topology this geometry shader will 
be emitting. This can be GL_POINTS, GL_LINE_STRIP, or 
GL_TRIANGLES_STRIP.

Like the vertex, tessellation, geometry, and fragment shader specifications, 
these must come before the program command.

Miscellaneous

The miscellaneous information for GLIB files includes two important func-
tions—creating noise textures and setting a timer for animations. It also includes 
several commands that are useful in defining the presentation to the user.

Noise2d res Create a 2D noise texture (see below).

Noise3d res Create a 3D noise texture (see below).

Timer numsecs Set the timer period from the default of 10 seconds 
per cycle to numsecs per cycle.

Background color Define the background color for your image. This 
duplicates the function of the background slider in 
the interface window.
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MessageBox An informative 

text message

Put up a Message Box with the text message in it so 
you can show an informative message to the user.

Verbose Sets the system to output all actions to the console 
window, overriding the function in the interface 
window.

The text conventions in GLIB files are

• Multiple whitespace characters in a row are treated as a single whitespace 
character.

• A # causes the rest of the line to be treated as a comment and ignored.
• A / causes the rest of the line to be treated as a comment and ignored (so 

that // will act as expected).
• A backslash (\) at the end of a line causes the carriage return to be 

ignored. The current line is continued onto the next line. This must be the 
last character on that line before the return.

You can see that the available geometry in glman is good, but it is prob-
ably not rich enough to support many real applications. That is deliberate—
glman is only intended to give you a testbed to support your experimentation 
with shaders. From the experience of students and others who have used it, it 
does that well.

Specifying Uniform Variables

Uniform variables are specified on the Program command line in a tag-value 
pair format. The values may be scalars, arrays, range variables, or colors.

• Scalar variables are just listed as numbers.
• Array variables are enclosed in square brackets, as [ ].
• Range variables are enclosed in angle brackets, as < >. These are scalar 

variables, and glman automatically generates a slider in the Uniform 
Variable user interface for each range variable, so that you can then 
change this value as glman executes. The three values in the brackets are 
<min current max>, e.g., <0. 5. 10.>. To decide if this range variable should 
be a float or an int, glman will look into your shader program’s symbol 
table, and will create a slider of the appropriate type.

• Boolean variables can also end up in your user interface as well. In the 
GLIB file, a Boolean variable has a name, and then the word true or the 
word false inside angle brackets, e.g., “<true>.” The glman user interface 
will automatically create a checkbox in the user interface window. The 
value in the brackets is the initial setting of the checkbox.
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Figure 4.4.  A GLIB file that specifies parameter and color interaction, and the uniform vari-
able interface window and color picking window it creates.

Most OpenGL shader compilers are 
heavily optimizing, so if you define 
a uniform variable but don’t use it to 
make some part of the scene display, 
the variable will likely be eliminated 
and not seen by the loader. This can 
generate an error that will make no 
sense to you because you are pretty 
sure you actually typed the uniform 
variable name into your shader. The 
message looks like this:

So be careful to use all the uniform 
variables you define!

• Color variables are enclosed in curly 
brackets, as { }. Color variables may be 
either RGB or RGBA, as
{red green blue}
or
{red green blue alpha}
This will generate a button in the UI 
panel that, when clicked, brings up a 
color selector window. The color selec-
tor allows you to change the value of 
this color variable as glman executes.

• Multiple vertex-geometry-fragment-
program combinations are allowed 
in the same GLIB file. If there is more 
than one combination, they will appear 
as separate rollout panels in the user 
interface. The first program rollout will 
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be open, and all the others will be closed. Open the ones you need 
when you need them.

As an example of how the uniform variable selectors are presented, the 
parameter interface window and color selection window shown in Figure 4.4 
were created as a result of the lines in the GLIB file shown in that figure.

Examples of GLIB Files

In Chapter 3 we saw some examples of vertex and fragment shaders and the 
images they create with glman. In this section we present the GLIB files that 
correspond to these examples, so you can see how they were set up. These 
example GLIB files are pretty simple, but they will help you get started on 
writing your own as you start developing shaders using glman.

We’ll see the example GLIB file from the screen shader example of the 
previous chapter. In this example, you will see the following features:

• The perspective is identified, with a field of view.
• Eye position information is provided (eye position, look-at position, up-

vector).
• The vertex and shader files ovalnoise.vert and ovalnoise.frag are 

specified.
• Uniform variables are set up. 
• The geometry is a standard teapot.

##OpenGL GLIB

Perspective 70

LookAt 0 0 3  0 0 0  0 1 0

Vertex  ovalnoise.vert

Fragment ovalnoise.frag

Program OvalNoise \

 uAd <.05 .1 .5> uBd <.05 .1 .5> \

 uNoiseAmp <0. 0. 3.> uNoiseFreq <0. .25 1.> \

 uAlpha <0. 1. 1.> \

 uTol <0. 0. .25> \

 uUseChromaDepth <false> \

 uChromaBlue <-5. -2.4 -1.> \

 uChromaRed <-3. 1.1 2.> \

 uDotColor {1. .5 0.}

Teapot
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Another example GLIB file comes from the function graphing shader of 
Chapter 2; in this example, you will see the following features:

• Perspective is identified, with a field of view of 70°.
• The vertex and fragment shaders ripple.vert and ripple.frag are 

specified.
• The color is specified with RGB of (1.0, 0.5, 0.0).
• A QuadXY is specified with range −5 to 5 and with 200 sub-quads in each 

direction (this makes the function graph show up very smoothly).

You should be able to see something of these in Figure 3.4 in the earlier 
chapter.

##OpenGL GLIB 
Perspective 70

Vertex  ripple.vert
Fragment ripple.frag
Program Ripple

Color 1. 0.5 0
QuadXY .2 5. 200 200

More on Textures and Noise

Textures and noise are two important concepts for fragment shaders, and 
glman gives you good access to them. This section covers a few important ideas 
in working with them.

Using Textures

As indicated above, there are two ways to input a 2D texture in glman: as a 
BMP file or as a raw texture file. If you input the texture as a BMP file, the file 
must be 24-bit RGB, uncompressed. If you want this texture to be useable on 
any graphics card, even an older one,, be sure the image dimensions are pow-
ers of two. Some graphics cards quietly don’t require this to be true, but many 
still do.

The 2D raw texture format is very simple. The first 8 bytes are two 
4-byte integers, declaring the S and T image dimensions. The next bytes are 
the RGBA values for each texel. These RGBA values can be unsigned bytes or 
floats. Either way, glman will look at the size of the file and do the right thing. 
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Do not confuse this format with the raw format from Photoshop; that is simply 
a list of colors that does not include any dimensions.

If you write code to produce a raw 2D floating point texture file, it should 
be organized like this:

int nums, numt;

. . .

fwrite( &nums, 4, 1, fp ); // nums is the S dimension of the file
fwrite( &numt, 4, 1, fp ); // numt is the T dimension of the file

for( int t = 0; t < numt; t++ )
{
 for( int s = 0; s < nums; s++ )
 {
  float red, green, blue, alpha;
  . . .
  // set red, green, blue, and alpha for the texel at    
 // (s, t)
  fwrite( &red, 4, 1, fp );
  fwrite( &green, 4, 1, fp );
  fwrite( &blue, 4, 1, fp );
  fwrite( &alpha, 4, 1, fp );
 }
}

The 3D texture raw format is analogous to this and is just as simple. The 
first 12 bytes are three 4-byte integers, declaring the S, T, and P volume dimen-
sions. The following bytes are the RGBA values for each texel. These RGBA 
values can be unsigned bytes or floats. Again, glman will look at the size of the 
file and do the right thing.

If you write code to produce a raw 3D texture file, it should be organized 
like this:

int nums, numt, nump;
. . .

fwrite( &nums, 4, 1, fp ); // S dimension
fwrite( &numt, 4, 1, fp ); // T dimension
fwrite( &nump, 4, 1, fp ); // P dimension

for( int p = 0; p < nump; p++ )
{
 for( int t = 0; t < numt; t++ )
 {
  for( int s = 0; s < nums; s++ )
  { 
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   float red, green, blue, alpha;
   . . .
   fwrite( &red, 4, 1, fp );
   fwrite( &green, 4, 1, fp );
   fwrite( &blue, 4, 1, fp );
   fwrite( &alpha, 4, 1, fp );
  }
 }
}

Note that glman expects the binary byte-ordering in a raw texture file to 
be consistent with the Intel x86 architecture. If you write raw texture files from 
a pre-Intel Macintosh, you must reverse the byte ordering yourself. 

The second argument in the Texture2D and Texture3D commands is 
the OpenGL texture unit to assign this texture to. You then need to tell your 
shaders what that texture number is. For example, the GLIB Texture command 
might specify that a texture is to use texture unit 7 by

Program Texture uTexUnit 7

and your fragment shader might include code that picks up the value of 
uTexUnit as the unit for the sampler2D texture with

uniform sampler2D uTexUnit;
in vec2 vST;  // from the vertex shader
out vec4 fFragColor;

void
main( )
{
 vec4 rgba  = texture( uTexUnit, vST );
 fFragColor  = vec4( rgba.rgb, 1. );
}

You should not hard-code the value 7 in the Texture2D function call—the 
compiler won’t let you! Furthermore, don’t use texture units 2 and 3 yourself; 
glman uses these as default values to tell your shaders about its built-in 2D and 
3D noise textures.

Using Noise

As we will see in Chapter 10, glman automatically creates a 3D noise texture 
and places it into Texture Unit 3. Your vertex, tessellation, geometry, or frag-
ment shader can get at it through the pre-created uniform variable called 
Noise3. You can reference it in your shader as 
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uniform sampler3D Noise3;
. . .
vec3 stp = ...
vec4 nv = texture( Noise3, stp );

The noise texture is a vec4 whose components have separate meanings, 
described in Table 4.1. The [0] component is the low frequency noise. The [1] 
component is twice the frequency and half the amplitude of the [0] component, 
and similarly for the [2] and [3] 
components. Each component is 
centered around a value of .5, so 
that if you want a plus-or-minus 
effect, subtract .5 from each 
component. To get a nice four-
octave noise value between 0 
and 1 (useful for noisy mixing), 
add up all four components, 
subtract 1, and divide the result 
by 2, as shown in the follow-
ing table and GLSL code. More 
details on this can be found in 
Chapter 10.

float sum = nv.r + nv.g + nv.b + nv.a; // range is 1. -> 3.
sum = (sum - 1.) / 2.;          // range is now 0. -> 1.

By default, the glman 3D noise texture has dimensions 64 × 64 × 64. You 
can change this by putting a command in your GLIB file of the form

 Noise3D 128

to get size 128, or choose whatever resolution you want (up to around 400). 
Remember that for the most general use, the resolution should be a power of 
two. The first time glman creates a 3D noise texture for you, it will take a few 
seconds. But glman then writes it to a file, and the next time this 3D texture is 
needed it is read from the file, which is a lot faster.

A 2D noise texture works the same way, except you get at it with

 uniform sampler2D Noise2;
 . . .
 vec2 st = ...

 vec4 nv = texture( Noise2, st );

Component Term Term Range Term Limits
0 nv.r 0.5 ± .5000 0.0000 → 1.0000
1 nv.g 0.5 ± .2500 0.2500 → 0.7500
2 nv.b 0.5 ± .1250 0.3750 → 0.6250
3 nv.a 0.5 ± .0625 0.4375 → 0.5625

sum 2.0 ± ~ 1.0    ~ 1.0 → 3.0
sum – 1 1.0 ± ~ 1.0    ~ 0.0 → 2.0

(sum – 1) / 2 0.5 ± ~ 0.5    ~ 0.0 → 1.0
( sum – 2 ) 0.0 ± ~ 1.0  ~ −1.0 → 1.0

Table 4.1.  The range of the four octaves of noise and some useful 
combinations. 



86 4.  Using glman

Functions in the glman Interface Window

The glman user interface window includes a number of other functions besides 
loading GLIB files, which we saw at the beginning of this chapter. In this sec-
tion, we will look at them so you can use them easily in your work.

Generating and Displaying a Hardcopy of Your Scene

Generating a hardcopy. Because you will be doing cool things with glman, 
you will often want to write your output to an image file. The Hardcopy and 
Display button shown in Figure 4.2 expands as shown in Figure 4.5. This gives 
you a Create Hardcopy File button that will write output (at the resolution you 

specify in the resolution window) to a BMP file and will 
bring up a file browser window that lets you specify the 
name of the BMP file to write into. This does not just do a 
raw pixel dump of the graphics window area; it generates 
the scene into a separate framebuffer and writes that buf-
fer into the file, which means you can ask for a hardcopy 
image that has higher resolution than your screen has. This 
is useful when generating hardcopy for high-quality pub-
lications and large posters.

Display the hardcopy file. To confirm the hardcopy file you got, and perhaps 
to send it to a printer, click on the Display the Hardcopy File button. 

Global Scene Transformation

The Global Scene Transformation widgets at the top of the transformation 
group in Figure 4.6 let you transform the entire scene in the graphics window. 
There are mouse button shortcuts; the scene can be rotated by holding down 
the left mouse button and moving the cursor in the graphics window, or it can 
be scaled by holding down the middle mouse button (if you have one) and 
moving the cursor in the graphics window.

It is important to realize that, unlike what is normally done in an OpenGL 
program, these transformations do not end up in the ModelView matrix. In 
glman, they end up in the Projection matrix, so they have no impact on any-
thing your shaders do in eye coordinates. For example, these scene transfor-
mations can be used to see the back side of a scene without changing the eye 
coordinate behavior of the shaders.

Figure 4.5. The expanded screen 
capture and display area.
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Eye Transformation

These widgets are the second set of transformation widgets 
in Figure 4.6. They let you transform the entire scene in the 
graphics window. Unlike the Global Scene Transformation 
widgets above, however, these transformations do end up in 
the ModelView matrix, just as if the OpenGL gluLookAt( ) 
routine had been called. That is, these scene transformations 
change the Eye Coordinate behavior of the shaders.

To repeat something we said at the start of this chapter, 
unless you initially translate your geometry in the negative Z 
direction in the GLIB file, your first move upon opening up 
a new GLIB scene is probably to use the “Trans Z” widget in 
the Eye Transformation group to push the scene back into 
the viewing volume, where it is more visible. You can use the 
.glib LookAt command to do this as well.

Object Picking and Transformation

Individual objects in the scene can be picked and indepen-
dently transformed. This is a good way to test shaders that 
operate in eye coordinates rather than in model coordinates. 
In order to use this functionality, just click on the “+” sign 
in the “Object (Individual Matrix) Transformation” button to 
bring it up. To remove it, click on the “–” sign in the button.

To be able to select an object, you must enable object 
picking by turning on the Enable Object Picking checkbox 
shown in Figure 4.7. Then clicking on a 3D object in the scene 
with the left mouse button will cause that object to be selected, 
as shown in Figure 4.8. A large 3D cursor becomes centered 
on the object to show that it is selected.

When an object has been 
selected, the Object Transformation 
widgets shown in Figure 4.7 will 
become active. These widgets will 
apply transformations to the selected 
object separately from all other 
objects in the scene. The object trans-
formations go into the ModelView 
matrix for the one picked scene 
object, where they will impact any 

Figure 4.6. The interface win-
dow with the transformation 
functions.

Figure 4.7. The expanded Texture and 
Object Transformation area in the inter-
face window.
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shader that performs operations in 
eye coordinates. When object picking 
has been enabled, mouse motions in 
the window noted above are applied 
only to the selected object.

To deselect an object, click in an 
open area of the graphics window, 
uncheck the Enable Object Picking 
checkbox, or close the object trans-
formation area by clicking on the “–” 
sign in the button.

Texture Transformation

In addition, glman gives you a way to change the texture transformation 
matrix (mat4 gl_TextureMatrix[0]). As this is not something that is done 
often, glman has hidden it in a user interface “rollout.” Just click on the “+” 
sign in the “Texture (Texture Matrix) Transformation” button to bring it back 
out. The Texture Transformation widgets work the same as the Global Scene 
Transformation, Eye Transformation, and Object Transformation coordinate 
transforms. Note that using these widgets will not automatically transform 
texture coordinates as in the fixed-function OpenGL pipeline. These widgets 
just set the gl_TextureMatrix[0] matrix. What you do with that is up to you.

Monitoring the Frame Rate

It is sometimes useful to get an idea of how much certain shader operations 
affect the overall speed of the graphics pipeline. For example, certain math 
functions are implemented in hardware, some in software; if-tests often cause 
a slowdown; and low-count for loops often give better performance if they are 
unrolled. To see what your current frame rate is, click the Display Frame Rate 
checkbox in the middle of the user interface window. This makes glman time 
your display as you interact with it. After you turn this option on, you will 
see two things: (1) a frames-per-second (FPS) number will be presented in the 
graphics window, and (2) your display speed will drop sharply. This speed 

Figure 4.8. A picked object with both axes 
and the 3D cursor.
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drop is caused by glman looping through multiple instances of your display to 
get more precise timing. Your speed will go back to normal once you turn off 
this option. The timing does not include the initial setting and clearing of the 
framebuffers, nor does it include swapping of double buffers. It measures the 
display speed of just your scene.

Miscellaneous

At the top of the user interface window there are two check-
boxes and one slider, shown in Figure 4.9.

• Axes. When this checkbox is selected, the three coordi-
nate axes in eye space are shown. Each of the axes is 
labeled and is two units long in the appropriate direc-
tion.

• Perspective. When this checkbox is selected, you are tog-
gled between perspective and orthogonal viewing, irre-
spective of your specification in the GLIB file.

• Background Intensity. This slider lets you set the back-
ground intensity for your image.

At the bottom of the user interface window you will see 
an area with a checkbox and two buttons, also shown in 
Figure 4.9. The options given in this area are described below.

• Verbose. Normally, the messages in the console window 
are things that you might really need to know. If you 
would like to see more of what is really going on behind 
the scenes, click this checkbox on—but at times this can 
be voluminous, so be sure you really want to see all this. 
Don’t say we didn’t warn you!

• Reset. This button returns the scene to its original form 
before any global or eye transformations have been 
made, and before any selections. However, any changes 
that were made in the uniform variables declared in the 
GLIB file are retained.

There is one more checkbox in another window that you 
should know about:

• Show Variable Labels. This checkbox shows up at the bot-
tom left of the Uniform Variable user interface window 
shown in Figure 4.4. When you click it, the values of the 
uniform variables will be superimposed on top of your 
graphics scene. This is very handy for doing screen cap-

Figure 4.9. The Axes, Perspective, 
and background color sections 
(top), the Display Frame Rate box 
(middle), and the Verbose check-
box and Reset and Quit buttons 
(bottom).
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tures of your graphics scene and documenting the uniform variable value 
settings that made this scene.

Exercises

The exercises in this chapter will give you some experience in working with 
the glman application, which should make it easier for you to do the work 
on shaders in later chapters. Exercises in later chapters will ask for you to do 
things in glman to work with the functionality of different shader types.

1. In the previous chapter we gave some examples of shaders to create some 
of the chapter’s figures, and in this chapter we showed the GLIB files that 
worked with them to create the figures. For at least one of these, identify 
each of the GLIB file commands and show how it led to features of the 
figure(s) it helped create.

2. The glman interface panel has a number of functions, and you should 
take a moment to exercise as many of those as you can. In particular, use 
the eye transformation, hardcopy, object selection and manipulation, and 
frame rate options, and analyze and note what each of these does.

3. Use the editing functions of glman to make small changes in the GLIB 
file and the vertex and fragment shader files and note the effect of the 
changes. Do this by first loading a GLIB file and noting the image, and 
then editing one or more of the files and using the Reload function. This 
cycle should become very familiar to you as you develop your shaders.

4. The glman tool provides a number of different graphics primitives. Use 
several primitives in a single scene (described in a GLIB file) to see how 
each looks. Use translations so they won’t all be drawn on top of each 
other, and use a different color for each.

5. Create a scene with at least two objects whose color is set by a glman uni-
form color variable. (You can do this as part of Exercise 4.)

6. Create a scene with an object whose properties (for example the density 
and frequency of the screen in the pixel-discard shader in the previous 
file) are set by a glman uniform slider variable. (You can do this as part of 
Exercise 4.)

7. Create a scene that includes a graphics object defined by an .obj file. You 
can get such files from the book’s website, or you can get such files from 
the book’s website http://www.cgeducation.org.

8. Create a scene that uses texturing on a graphics primitive. You may need 
to refer to Chapter 8 for some details.
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The GLSL Shader 
Language5

As shader capabilities in graphics hardware have become more flexible, shader 
languages have been developed to give the graphics programmer access to 
these capabilities. The GLSL shading language was designed to be device inde-
pendent and has been part of the OpenGL standardfrom OpenGL 2.0 forward. 
It accomplishes its device independence by having compilers built into the 
graphics card driver translate the GLSL code into the specific device instruc-
tions for that card. The actual process of attaching shaders to shader programs, 
compiling them, and linking them to be downloaded into the graphics card is 
part of the GLSL API, covered in Chapter 14.

GLSL is a very C-like language, with most of the same fundamental 
code structure and operators that are found in that language. Thus, there 
are no challenges to the graphics programmer in understanding the control 
flow, basic operations, or basic data types in the language. However, there 
are some areas where GLSL extends the capabilities of C, some areas where 



92 5.  The GLSL Shader Language

GLSL omits some of the capabilities 
of C, and some areas where GLSL 
has language features that remind 
us of the best of earlier generations 
of computer languages. This chap-
ter focuses on these differences and 
discusses why they are needed for 
the shader environment. There is a 
tendency for any discussion like this 
to have a strong flavor of a language 
manual, and you might find that 
you use this chapter more as a refer-
ence than as general reading.

We introduced a number 
of GLSL language features in 

Chapter 3, but here we take a more thorough approach to the language and 
describe it more formally. We are working from the GLSL language specifica-
tion [23] and include those features and capabilities that we believe are most 
useful to you, but we are not absolutely complete in our coverage. Once you 
are familiar with a good working set of GLSL, you probably should read the 
GLSL specification to see what else is there—especially since the language will 
continue to evolve over time.1

We are indebted to the GLSL Shader Language Specification document  
both for the overall information it contains and for its excellent tables of GLSL 
functions and operations that we have borrowed from extensively.

Factors that Shape Shader Languages

Shader languages operate in a different environment and with different goals 
than general-purpose languages. Their environment is the processing capabil-
ity of graphics cards, which differs in some important ways from the capability 
of a general CPU, and their goals are tightly focused on supporting graphics 
operations, rather than more general kinds of computations. These capabilities 
shape the language in significant ways, and it is important that you under-
stand their impacts as you write shaders.

GLSL shader capabilities are very much 
a moving target. This chapter and all 
our examples are based on GLSL 4.1. 
However, we also include many features 
that are deprecated in that standard but are 
available in compatibility mode, because 
they may be helpful to someone learning to 
work with shaders for the first time.

In order to keep current on GLSL, 
you should consult [32] from time to time.1 

You will not need a new copy of glman, 
however, because OpenGL will compile 
only the GLSL shaders, but you may need 
to get a new OpenGL driver.

1. Good resources: “OpenGL.” Khronos. Available at http://www.khronos.org/opengl/.
“OpenGL 4.2 API Quick Reference Card.” Khronos. Available at http://www.khronos.org/files/

opengl42-quick-reference-card.pdf, 2010.
“OpenGL Shading Language.” OpenGL. Available at http://www.opengl.org/documentation/glsl/, 

2011.
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Graphics Card Capabilities

The first thing we should understand when we think of a language to support 
graphics shaders is that graphics cards, or GPUs, are not like standard CPUs in 
several ways. In some ways they are much more advanced than most proces-
sors, and in some ways they are more restricted. GPUs are meant to operate on 
streaming data, transforming it and passing it along a pipeline of processing 
stages. They hate exceptions, and exceptions can force a whole pipeline to be 
flushed and restarted. The GLSL shader language has added features that take 
advantage of graphics card capabilities, especially features that come from the 
increasingly general-purpose architecture of these cards. These changes are 
described throughout this chapter.

Parallelism in Graphics Cards

One of the main differences between graphics cards and standard processors is 
that graphics cards can be parallel processors. Certainly there are some kinds 
of data-level parallelism in modern processors and, in fact, it has become com-
mon for systems to offer parallelism through multiple processors or cores. But 
these are different kinds of parallelism. Today’s graphics cards typically per-
form parallelism at four levels:

1. Device-Level Parallelism—multiple processors or multiple graphics 
cards can exist in the same system.

2. Core-Level Parallelism—each processor typically has multiple cores that 
are capable of independent execution.

3. Thread-Level Parallelism—each core can run multiple threads, that is, can 
have multiple instruction streams.

4. Data-Level Parallelism—
many instructions can act on mul-
tiple data elements at once. 

Much of the time, the details of 
these modes of parallelism are abstracted 
away from the application programmer, 
and are used as shown in Figure 5.1. This 
is a good thing. Most of the time, we 
don’t care where or how the processing 
takes place, just that it happens with suf-
ficient parallelism to handle the increas-
ing demands of today’s complex render-
ing tasks. Figure 5.1. Abstracted parallelism in graphics processors.
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The Need to Support Graphics Operations

Another key fact about graphics cards is that they must carry out a large num-
ber of matrix operations at high speeds, so matrix and vector operations are 
native to the language, and most likely supported at some level in your hard-
ware. Thus, the GLSL language is shaped by its goal of supporting the opera-
tions needed for computer graphics. This is done by adding specific support 
for matrix and vector data types and operations, including both operations 
and useful functions; supporting functions that are frequently used for geo-
metric operations; adding language support for noise functions; and adding 
functions for texture and fragment operations. Some of these are included 
so they can be optimized, and some are included in anticipation of higher-
level operations moving onto graphics cards. GLSL developments so far have 
extended the original scope of the language, and there is every reason to 
believe that when additional graphical capabilities are available, such as the 
recent development of geometry shaders, the language will be extended to 
support them.

Built-In Data

General-purpose processors have registers that can be used for many kinds 
of variables, so each must be capable of any kind of operation. Graphics cards 
designed as OpenGL 2.1 was being released, on the other hand, have a num-
ber of special-purpose registers that are loaded with specific data when infor-
mation is received from the general OpenGL application program. This gives 
these graphics cards known environments that can be read or written by a 
shader program, leading to the use of specific names for variables that have 
particular information.

This aspect of the graphics environment is primarily handled in GLSL 
by a number of built-in variables that let you access standard data passed to 
the graphics card from the OpenGL API. This data describes geometry, light-
ing, transformations, and textures. By using the appropriate GLSL variables, 
you can use this information for computation in your shaders.

More recently, however, graphics cards have become much more gen-
eral processors, and these special-purpose registers have been deprecated. A 
few specific variables have been retained, but the task of building the graph-
ics environment has been passed to the graphics programmer. This increases 
the programmer’s task, but returns significant improvements in performance 
and in the generality of graphics operations you can create. These changes are 
described below and in the chapters on each kind of shader.
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General GLSL Language Concepts

GLSL is designed to be similar to C and maintains many of the familiar con-
ventions of that language. The overall syntax is the same, with the same con-
ventions for literals and identifiers, and the same preprocessor capabilities. 
You have have the full set of integer and unsigned integer operations, most 
of the same operators, and the same operator precedence. The looping and 
conditional structures are the same, including the switch statement. Overall, 
if you know C, you will find the basic nature of GLSL to be quite comfortable.

However, there are differences between GLSL and C that are driven by 
the differences in the special environment and the goals of the language, rather 
than by limitations of C. There are five fundamental ways in which GLSL dif-
fers from most conventional languages:

1. The range of conventional operators and functions is extended beyond 
those usually found in C or similar languages.

2. The language contains some capabilities, such as name sets and shared 
data namespaces that are implicit in the language, rather than explicitly 
specified.

3. Data passing between shaders is handled by specifically declaring which 
variables are input and which are output, and some variables must be 
explicitly passed along from a shader to subsequent shaders.

4. Function parameters are passed by value-return, rather than by value 
alone.

5. Some general-purpose language capabilities are omitted.

In GLSL, some conventional operators and functions have extended capa-
bilities, and some new functions and operations are introduced that are con-
venient for graphics. GLSL has two new implicit capabilities that come from 
extending the variable types to include types that carry specific capabilities 
and from using a shared namespace to communicate between shaders. The 
GLSL function parameters and omitted capabilities from C come from changes 
in the processing environment. All these differences are described fully later in 
this chapter, but are briefly discussed in the sections below.

Shared Namespace

Shaders operate independently of each other, so an application can use any 
shader independently of any other. In order for shaders to communicate, they 
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must use memory on the graphics card, so the application and its shaders must 
create names for variables in on-card memory. Sharing these names between 
shaders that are linked into a single shader program then creates the between-
shader communication that shaders need. The set of names of variables used 
by a set of shaders is called a shared namespace.

A namespace may hold attribute variables, created by the appliction to 
define per-vertex data and available only to the vertex shader as in variables; 
uniform variables, created by the application to be used as read-only variables 
by any shader; and shader-defined variables, created as out variables to pass on 
as in variables to later shaders. (The concept of out and in variables is dis-
cussed later in this chapter.) Some variables created in vertex-processing shad-
ers are intended to be used by fragment shaders by being interpolated across 
a fragment as a geometric primitive is processed.

You can define attribute variables in your application through the 
OpenGL API function glVertexAttrib*( ) and make them accessible to the 
vertex shader. This lets you define per-vertex data that can be used to define 
colors or other properties of vertices. You can also define uniform variables to 
communicate from your OpenGL application to vertex or fragment shaders. 
Because of limitations on the memory on the graphics card, there is a limit 
to the total amount of uniform data available to you. Defining and accessing 
user-defined attribute and uniform variables will be discussed when we pres-
ent the GLSL API in Chapter 14.

The types and initializers of variables with the same name must match 
across all shaders that are linked into a single executable. It is legal for some 
shaders to provide an initializer for a particular variable, while other shaders 
do not, but all provided initializers must be equal. This is checked as the pro-
gram is linked.

There are a few specific variables that GLSL uses for very specific capa-
bilities; these may be seen as basic parts of the namespace for one or more 
kinds of shader. These are described in the chapters on the different shaders.

Extended Function and Operator Capabilities

GLSL extends some of the operators and functions of C to act on vectors and 
matrices. The standard scalar arithmetic operators are extended to vectors by 
applying the original operation componentwise. The additive operators are 
also extended to componentwise operations on matrices, but the multiply 
operator is taken to mean the standard linear algebra matrix multiplication. 
Many familiar functions on scalars are similarly extended to vectors by acting 
componentwise.
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GLSL also adds several new vector and matrix operators. There are 
name set conventions for vectors that let you name components in computer-
graphics ways, and there are operations to construct vectors and matrices, and 
to reorder vector components that give you much more flexible control over 
these data objects. Overall, GLSL treats vectors and matrices much more like 
data primitives than does C.

New Functions

GLSL includes many numeric functions that might be relatively easy to 
write for yourself, but that when included, make their capabilities more 
standardized across the developer world. These include floor, ceil, fract, 
mod (a generalized version of the familiar function), min, max, clamp, mix, 
step, and smoothstep. GLSL also includes several vector and matrix func-
tions to support common operations in a uniform way. These include the 
dot and cross product for vectors, functions for the reflection and refrac-
tion vectors, and the transpose and outer product for matrices. These are 
described fully later.

New Variable Types

GLSL introduces some new variable types: const, attribute, and uniform.
Const variables act as constants, much as if they were set with a #define state-
ment, only more strongly typed as they are in C and C++. Attribute variables 
are per-vertex values passed to the vertex shader. Uniform variables let you 
define graphics variables that do not vary across a primitive and make them 
accessible to all shaders.

Shaders create a shared namespace, described above, by specifying the 
variables to be included in the namespace. They do this by declaring out vari-
ables, treated as write-only and used to give variables values to be used in the 
next shader in the pipeline, and in variables, treated as read-only and used 
to read values in from the previous shader in the pipeline. An out variable 
declared in, say, a vertex shader, can be used to set a value to be read in an in 
variable of the same name declared in, say, a fragment shader.

There are some keywords that modify the behavior of in variables for a 
fragment shader; these are flat, noperspective, and centroid. The keyword 
flat indicates that values of the input variables are not to be interpolated 
across a primitive. The usage is 

flat in float variable_name;
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as discussed in Chapter 8. The keyword noperspective indicates that these 
variables are interpolated in screen space, rather than being interpolated in a 
perspective-correct way. The usage is

noperspective in float variable_name;

The keyword centroid indicates that values are to be centroid sampled, 
that is, sampled at an implementation-defined position in the intersection of 
a pixel and a primitive, for the purpose of determining what value to apply to 
the pixel. This is an advanced topic, but it could be useful if you are applying 
functions across a primitive that may be discontinuous or highly non-linear.

New Function Parameter Types

GLSL function parameters are passed by value-return, rather than by value. This 
allows two-way communication between the calling function and the called 
function by copying values into and out of function parameters. Parameters 
are modified by the keywords in, out, and inout. The parameter keyword in 
describes the traditional pass-by-value of C, while the parameter keywords 
out and inout, described later in this chapter, replace the need for reference 
parameters. GLSL does not use pointers.

Language Details

In the sections below, we discuss specific features of the GLSL shader lan-
guage. In most cases, it should be clear how these features support the kinds 
of computation needed for shaders. In a few cases, however, we will briefly 
discuss some examples, such as swizzle operations where the language fea-
tures make capabilities possible that go beyond those implicit in the nature of 
the language.

Omitted Language Features

Because GLSL is not a general-purpose language, it does not have some capa-
bilities we are used to seeing in C and other languages. In fact, it cannot have 
some of these features because the graphics processor does not support all the 
operations that a general-purpose processor must. The features that are omit-
ted are probably less important for most processing than they are convenient, 
so you will probably not miss them too much. They include
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• There are no char, char *, or string data types, and GLSL has no string-
manipulation functions.

• There is no sizeof( ) operator, because there is no need to deal with data 
in various sizes. There are standard constructors for arrays and matrices 
of all needed sizes.

• No implicit type conversions are allowed in GLSL. Conversions are sup-
ported by explicit type constructors.

Instead of implicit conversions, or type casts, there are three explicit con-
structors for simple types, as follows:

• int(arg): converts the argument to an int; the argument may be a float 
or a bool.

• float(arg): converts the argument to a float; the argument may be an 
int or a bool.

• bool(arg): converts the argument to a boolean; the argument may be a 
float or an int.

The usual conversion operations are used: conversions from float to int 
simply drop the fractional part, nonzero floats or ints convert to the Boolean 
true, etc. This is a different syntax from the familiar cast operations, but it gives 
you the same functionality if you need it.

New Matrix and Vector Types

GLSL supports a number of predefined data types for vectors and matri-
ces. Vectors may have a real, integer, or Boolean base type, but matrices 
must be real. Many familiar vector and matrix operations and functions can 
be applied to variables of these types, and a number of useful new func-
tions are also provided. These are discussed in several sections later in this  
chapter.

GLSL’s built-in floating-point scalar and vector types are float, vec2, 
vec3, and vec4. The storage for a variable of type vecN is simply that of a tra-
ditional array, but you want to use the built-in type rather than the traditional 
array type. Using the vecN types explicitly makes a much larger number of 
operations available for the data, and these operations can then take advan-
tage of graphics card parallelism to work at a much higher speed.

GLSL’s built-in integer, scalar, and vector types are int, ivec2, ivec3, and 
ivec4. Again, the storage for an ivec variable is the same as that for a tradi-
tional array, but the explicit ivec type can take a much larger set of operations.
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GLSL’s built-in Boolean scalar and vector types are bool, bvec2, bvec3, 
and bvec4. The main value in Boolean vectors is their ability to support logical 
operations on vectors, and thus to parallelize some logical tests.

GLSL supports a number of matrix types. For square matrices, mat2, mat3, 
and mat4 can be used for square floating-point matrices of dimension 2 × 2, 
3 × 3, or 4 × 4, respectively. Using explicit matrix types rather than simple arrays 
lets you take advantage of GLSL’s many matrix operations and functions.

There are also matrix types that define the dimensions explicitly by listing 
both dimensions in the declaration. Thus, GLSL has mat2x2, mat2x3, mat2x4, 
mat3x2, mat3x3, mat3x4, mat4x2, mat4x3, and mat4x4 floating-point matrix 
types. When the two dimensions are equal, this is the same as the declarations 
above (mat2x2 is the same as mat2, for example). Using these matrix types lets 
you use GLSL’s matrix operations on non-square matrices. Note that there is 
no declaration of mat1xN or matNx1 arrays; when a one-dimensional array is 
needed, you can usually use a simple vecN in its place.

Name Sets

GLSL supports some standard name sets for vector components that are used 
for notational convenience. For a vec4 variable, you can use (x, y, z, w) if you 
want to refer to components for geometry, (r, g, b, a) if you want to refer to 
components for color, or (s, t, p, q) if you want to refer to components for tex-
ture coordinates. The name set you choose need not depend on the context; 
you can use (x, y, z, w) to refer to colors if you like, for example. (Note that the 
letter r for texture coordinates has been replaced by p to avoid confusion with 
the letter r for red.) In general, you should be careful to avoid name sets that 
imply such meanings when choosing name sets for vectors other than geom-
etry, RGBA color, or texture.

The component selection syntax allows multiple components to be 
selected by appending their names (which must be from the same name set) 
after the period ( . ).  So with a declaration vec4 v4, for example, we have the 
examples given in the table below.

v4.rgba Is a vec4 and is the same as just using v4.
v4.rgb Is a vec3 made from the first three components of v4.
v4.b Is a float whose value is the third component of v4; also v4.z or v4.p.
v4.xz Is a vec2 made from the first and third components of v4; also v4.rb or 

v4.sp.
v4.xgba Is illegal because the component names do not come from the same set.
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Vector Constructors

GLSL has a number of constructors that let you create new vectors from a mix 
of scalars and other vectors. These constructors have the same name as the 
vector types and serve to construct a vector of the named type. Some examples 
are given in the table below.

vec3(float, float, float) Initializes each component of a vector with the 
explicit floats provided.

vec4(ivec4) Makes a vec4 with component-wise conversion.
vec2(float) Initializes a vec2 with the float value in each posi-

tion.
ivec3(int, int, int) Initializes an ivec3 with three ints.
bvec4(int,int,float,float) Performs four Boolean conversions.
vec2(vec3) Drops the third component of a vec3.
vec3(vec4) Drops the fourth component of a vec4.
vec3(vec2, float) vec3.xy = vec2

vec3.z = float

vec3(float, vec2) vec3.x = float

vec3.yz = vec2

vec4(vec3, float) vec4.xyz = vec3

vec4.w = float

vec4(float, vec3) vec4.x = float

vec4.yzw = vec3

vec4(vec2a, vec2b) vec4.xy = vec2a

vec4.zw = vec2b

To initialize a matrix by using specified vectors or scalars, we recall that 
matrices are stored in column-major order (unlike in C), so the components are 
assigned to the matrix elements in that order.

mat2(vec2, vec2)

mat3(vec3, vec3, vec3)

mat4(vec4, vec4, vec4, vec4)

mat3x2(vec2, vec2, vec2)

Each matrix is filled using one column per 
argument.

mat2(float, float, float, float) Rows are first column and second column, 
respectively.
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mat3(float, float, float,

     float, float, float, 

     float, float, float)

Rows are first column, second column, and 
third column, respectively.

mat4(float,float,float,float,

     float,float,float,float,

     float,float,float,float,

     float,float,float,float)

Rows are first column, second column, third 
column, and fourth column, respectively.

mat2x3(vec2, float, 

       vec2, float)

Rows are first column and second column, 
respectively.

Even though GLSL offers these 2D matrix formats, it is sometimes convenient 
to use simpler 1D arrays. For example, we can represent a 3 × 3 matrix M as three 
separate vec3 variables and then multiply M by a matrix V by using three dot 
products.

There are many other ways to construct a matrix from vectors and scalars, 
as long as there are enough components to initialize the matrix. The construc-
tion acts as though the matrix begins as an identity matrix (or a subset of an 
identity matrix), and the new elements that are specified replace the originals. 
For example, to construct a matrix from a matrix we might have the possibili-
ties given in the following table. 

mat3x3(mat4x4) Uses the upper-left 3 × 3 submatrix of the mat4x4 matrix.

mat2x3(mat4x2) Takes the upper-left 2 × 2 submatrix of the mat4x2, and sets 
the last column to vec2(0.).

mat4x4(mat3x3) Puts the mat3×3 matrix in the upper-left submatrix and sets 
the lower right component to 1 and the rest to 0.

Functions Extended to Matrices and Vectors

Standard programming languages tend to have a number of numeric func-
tions and operators, including trigonometric functions, exponential functions, 
number manipulation functions, and relational operators. In GLSL, most of 
these can operate on vectors, as well as on scalar values.

The familiar bitwise integer functions <<, >>, %, &, |, ^, and ~ are all avail-
able in GLSL and apply to both simple integer and ivecN data.

In the lists of functions below, we use the term genType to refer to any 
scalar or vector data type that is appropriate for each function. In general, these 
functions use float or vecN data, but you can use an integer type anywhere a 
float type is needed, because GLSL allows that implicit type conversion.
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GLSL supports the familiar set of trigonometric and inverse trigonomet-
ric functions. As with all the other functions, these can operate componentwise 
on vectors. Arguments identified with angle are assumed to be in radians.

genType radians( genType degrees) Converts degrees to radians: (π/180)*degrees.
genType degrees( genType radians) Converts radians to degrees: (180/π)*radians.
genType sin( genType angle)

genType cos( genType angle)

genType tan( genType angle)

The standard trigonometric sine, cosine, and tangent func-
tions, with the argument angle in radians.

genType asin(genType x) Arc sine. Returns the primary radian value of the angle 
whose sine is x. The range of returned values is [−π/2,π/2]. 
Undefined if |x|>1.

genType acos(genType x) Arc cosine. Returns the primary radian value of the angle 
whose cosine is x. The range of returned values is [0,π]. 
Results are undefined if |x|>1.

genType atan(genType y, genType x) Arc tangent. Returns the primary radian value of the angle 
whose tangent is y/x. The signs of x and y determine the 
angle’s quadrant. The range of returned values is [−π,π]. 
Undefined if x and y are both 0.

genType atan( genType y_over_x) Arc tangent. Returns the primary radian value of the angle 
whose tangent is y_over_x. The range of returned values is 
[−π/2,π/2].

GLSL also supports the full range of hyperbolic trigonometric functions, 
sinh, cosh, and tanh, and their inverses.

GLSL has the usual exponential, logarithmic, and square root functions, 
including exponential and logarithmic functions of base 2. These can also 
operate componentwise on vectors.

genType pow(genType x, genType y) Power function. Returns x raised to the y power, xy. 
Undefined if x < 0, or if x = 0 and y ≤ 0.

genType exp(genType x) Returns the natural exponentiation of x, ex.
genType log(genType x) Returns the natural logarithm of x, the value y for which 

x = ey. Undefined if x ≤ 0.
genType exp2(genType x) Returns 2 raised to the x power: 2x. 
genType log2(genType x) Returns the base 2 logarithm of x, the value y for which 

x = 2y. Undefined if x <= 0.

genType sqrt(genType x) Returns the nonnegative square root of x. Undefined if x < 0.
genType inversesqrt( genType x) Returns 1/ .x  Undefined if x ≤ 0.
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GLSL supports a familiar set of common 
functions, as well as some that are not as familiar. 
Among the less-familiar functions are some that are 
very useful in combining colors or geometry. These 
functions can all operate componentwise on any 
vector. Note that the mod function is generalized to 

real numbers as well as integers. The functions abs, clamp, min, max, and sign 
can be applied to integers as well as to real numbers. 

Don’t use inversesqrt( ) 
to normalize a vector! Use 
normalize( ) instead.

genType abs(genType x) Returns x if x ≥ 0, otherwise returns –x.
genType sign(genType x) Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if x < 0.
genType floor(genType x) Returns a value equal to the nearest integer that is less than 

or equal to x.
genType ceil(genType x) Returns a value equal to the nearest integer that is greater 

than or equal to x.
genType fract(genType x) Returns the fraction part of x: x – floor(x).
genType truncate (genType x) Returns the integer closest to x whose absolute value is not 

larger than abs(x).
genType round(genType x) Returns the integer closest to x.
genType mod(genType x, float y)

genType mod(genType x, genType y)

Generalized modulus. Returns x – y * floor(x/y).

genType min(genType x, genType y)

genType min(genType x, float y)

Minimum. Returns y if y < x, otherwise returns x.

genType max(genType x, genType y)

genType max(genType x, float y)

Maximum. Returns y if x < y, otherwise returns x.

genType clamp(genType x,

              genType minVal,

              genType maxVal)

genType clamp(genType x,

              float minVal,

              float maxVal)

Clamped value; Returns min(max(x, minVal), maxVal).
Undefined if minVal > maxVal.

genType mix(genType x,

            genType y,

            genType a)

genType mix(genType x,

            genType y,

            float a)

Proportional mix. Returns a linear combination of x and y: 
a * x + (1 – a) * y.

genType mix(genType x, 

            genType y, 

            bool b)

Select the value of either x or y, depending on the value of 
b.
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Operations Extended to Matrices and Vectors

The traditional primitive operators, sum (+), difference (–), product (*), and 
quotient (/), operate only on scalar data in most languages. In GLSL, this is 
extended in a natural way to vector and matrix data. There are two different 
cases to consider here.

Sums, differences, and quotients act componentwise when

• One operand is a scalar and one is either a vector or matrix, or
• Both are vectors or matrices.

Products act componentwise when

• One operand is a scalar and one is either a vector or matrix, or
• Both are vectors.

Note that if u and v are vectors, u*v is not a dot product! This product u*v 
is just a componentwise product and is still a vector. If you are trying to get 
a dot product, use dot( ) instead. In order to compute a product of vectors 
or matrices, of course, both operands must have the same dimensions and 
appropriate types. The result is a vector or matrix of the appropriate size and  
type.

Products of a vector and a matrix, or of two matrices, are different; they 
do not perform scalar operations, but perform the correct linear algebra opera-
tions on their operands. For vectors u, v and matrices m, n, r (always assuming 
appropriate dimensions so the operations make sense),

genType step(genType edge, 

             genType x)

genType step(float edge, 

             genType x)

Step function at the value of edge. Returns 0.0 if x < edge, 
otherwise returns 1.0.

genType smoothstep( genType edge0,

                    genType edge1,

                    genType x)

genType smoothstep( float edge0,

                    float edge1,

                    genType x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1, and performs 
smooth Hermite interpolation between 0. and 1. when 
edge0 < x < edge1. This is useful in cases where you would 
want a threshold function with a smooth transition. This is 
equivalent to
 genType t;

 t = clamp((x – edge0)/

 (edge1 – edge0), 0., 1.);

 return 3.*t*t – 2.*t*t*t;

Results are undefined if edge0  > edge1.
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• We can write u = v * m; this treats v as if it were a 1 × d matrix and per-
forms the correct operation of the dot product of v with each column of m.

• We can write u = m * v; this treats u and v as if they were d × 1 matrices 
and performs the correct operation of the dot product of v with each row 
of m.

• We can write r = m * n; this performs the dot product of each row of m 
with each column of n to produce the matrix r.

In addition, the assignment operator = and relational equality and inequal-
ity operators == and != can be applied to entire arrays or structs, but the oper-
ands must be of the same size and, for structs, the same declared types. Other 
relational functions are available for vectors, but they differ from the familiar 
built-in relational operators. These are described later in this chapter.

Other familiar vector operations, the dot and cross products, are avail-
able through the built-in dot and cross product operations that are described 
fully later in this chapter when we present GLSL’s matrix functions. These 
include several other useful capabilities. For example, if you should want the 
componentwise scalar product of two matrices, you will need to use the new 
matrix function matrixCompMult. Or if you should want to do an outer product 
of two vectors (the outer product of two vectors u, v of dimension n is defined 
as though u has dimension n × 1 and v has dimension 1 × n and you are com-
puting the matrix product [u times v]), you can use the new matrix function 
outerProduct.

New Functions

As described in previous sections, many common functions from C are also 
available in GLSL. However, languages such as C do not focus on graphics and 
so have few functions to handle geometry and matrix data. GLSL provides 
several new functions to do this. The list here is long, but is broken out into 
several different areas, as they are in the language specification.

Geometric Functions

GLSL supports a number of functions to support geometric operations. These 
have an obvious application for graphics, since many of the basic graphical 
operations basically manipulate geometry. These functions include the famil-
iar scalar functions for length and dot product, and the familiar vector opera-
tions for cross product and normalization. They also include less familiar vec-
tor operations for reflection, refraction, and faceforward that can be very use-
ful.
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float length(genType x)
Returns the length of the vector x, ( [ ] [ ] ...).x x0 12 2+ +

float distance(genType p0,

              genType p1)

Returns the distance between p0 and p1: length(p0 – p1).

float dot(genType x, 

         genType y)

Returns the dot product of x and y: x[0]*y[0]+x[1]*y[1]+... .

vec3 cross(vec3 x, vec3 y) Returns the cross product of x and y, 
x y y x
x y y x
x y y x

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 2 1 2
2 0 2 0
0 1 0 1

−
−
−
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genType normalize(genType x) Returns a vector in the same direction as x, but with a length of 1, 
or x

x
 .

genType faceforward( 

           genType N, 

           genType I, 

           genType Nref)

Make N face in the direction of Nref. If dot(Nref, I ) < 0 return N, 
otherwise return –N.

genType reflect(genType I, 

               genType N)

For the incident vector I and surface  orientation  N, returns the 
reflection direction: I − 2 * dot(N,I ) * N. The normal vector N must 
already be normalized in order to achieve the correct result.

genType refract(genType I,

                genType N, 

                float eta)

For the incident vector I and surface normal N, and the ratio of 
indices of refraction eta, return the refraction vector. The result is 
computed by
k=1.0-eta*eta*(1.0-dot(N,I)*dot(N,I))

if (k < 0.0)

   return genType(0.0)

else

   return eta*I-(eta*dot(N,I)+sqrt(k))*N.

The incident vector I and the normal vector N must already be 
normalized in order to achieve the correct result.
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Matrix Functions

GLSL has several useful functions for matrices, including componentwise 
multiplication, the outer product, and the transpose. If no matrix type is other-
wise specified, mat is used for any matrix type.

mat matrixCompMult(mat x, mat y) Multiply matrix x by matrix y compo-
nent-wise, so that result[i][j] is the scalar 
product of x[i][j] and y[i][j]. Note: to get 
linear algebraic matrix multiplication, 
use the multiply operator (*).

mat2 outerProduct(vec2 c, vec2 r)

mat3 outerProduct(vec3 c, vec3 r)

mat4 outerProduct(vec4 c, vec4 r)

mat2x3 outerProduct(vec3 c, vec2 r)

mat3x2 outerProduct(vec2 c, vec3 r)

mat2x4 outerProduct(vec4 c, vec2 r)

mat4x2 outerProduct(vec2 c, vec4 r)

mat3x4 outerProduct(vec4 c, vec3 r)

mat4x3 outerProduct(vec3 c, vec4 r)

Treats the first parameter c as a column 
vector (matrix with one column) and 
the second parameter r as a row vector 
(matrix with one row) and does a linear 
algebraic matrix multiply c * r, yielding 
a matrix whose number of rows is the 
number of components in c and whose 
number of columns is the number of 
components in r.

mat2 transpose(mat2 m)

mat3 transpose(mat3 m)

mat4 transpose(mat4 m)

Returns a matrix that is the transpose of 
m; m need not be square, as is shown. 
The input matrix m is not modified.

mat2x3 transpose(mat3x2 m)

mat3x2 transpose(mat2x3 m)

mat2x4 transpose(mat4x2 m)

mat4x2 transpose(mat2x4 m)

mat3x4 transpose(mat4x3 m)

mat4x3 transpose(mat3x4 m)

Relational Functions for Vectors

GLSL extends the familiar relational operators for scalars to a set of relational 
functions for vectors. These compare vectors componentwise and return a 
bvec result that can be used for parallel comparisons. There are also several 
functions that can convert a bvec result to a single Boolean scalar. In these 
descriptions, vec is a real vector, ivec is an integer vector, and bvec is a Boolean 
vector, and their lengths are arbitrary except that in each case the lengths are 
equal.
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bvec lessThan(vec x, vec y)

bvec lessThan(ivec x, ivec y)

Returns the component-wise compare of x < y.

bvec lessThanEqual(vec x, vec y)

bvec lessThanEqual(ivec x, ivec y)

Returns the component-wise compare of x <= y.

bvec greaterThan(vec x, vec y)

bvec greaterThan(ivec x, ivec y)

Returns the component-wise compare of x > y.

bvec greaterThanEqual(vec x, vec y)

bvec greaterThanEqual(ivec x, ivec y)

Returns the component-wise compare of x >= y.

bvec equal(vec x, vec y)

bvec equal(ivec x, ivec y)

bvec equal(bvec x, bvec y)

Returns the component-wise compare of x == y.

bvec notEqual(vec x, vec y)

bvec notEqual(ivec x, ivec y)

bvec notEqual(bvec x, bvec y)

Returns the component-wise compare of x != y.

bool any(bvec x) The vector equivalent of the logical or, |—returns true if 
any component of x is true.

bool all(bvec x) The vector equivalent of the logical and, &—returns true 
only if all components of x are true.

bvec not(bvec x) The vector equivalent of the logical not, !—returns the 
component-wise logical complement of x.

Texture Lookup Functions

The built-in texture lookup functions give you access to textures through sam-
plers, as set up through the OpenGL API. A texture sampler is a GLSL uniform 
variable that has been previously associated with a particular texture unit. The 
texture unit acts as a pointer to the texture data itself and its sampling informa-
tion, such as size, pixel format, number of dimensions, filtering methods, and 
number of mip-map levels. These texture properties are taken into account as 
the texture is accessed.

Texture lookup functions can be used by both vertex and fragment shad-
ers. However, level of detail is not computed by fixed functionality for vertex 
shaders, so there are some differences in operation between vertex and frag-
ment texture lookups.
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The additional functions support texture lookups for shadow textures or 
for level-of-detail (“LOD”) in shaders. Functions whose names include Lod are 
allowed only in vertex shaders. The bias term is optional for fragment shaders, 
but is not accepted for vertex shaders. If it is included, it is added to the level 
of detail before the texture access.

vec4 texture( sampler1D sampler,

              float coord [, float bias])

vec4 textureProj( sampler1D sampler,

                  vec{2,4} coord [, float bias])

vec4 textureLod( sampler1D sampler,

                 float coord, float lod)

vec4 textureProjLod( sampler1D sampler,

                     vec{2,4} coord, float lod)

Use the texture coordinate coord to do a 
texture lookup in the 1D texture currently 
bound to sampler. For the projective 
(Proj) versions, the texture coordinate 
coord.s is divided by the last component 
of coord.

vec4 texture( sampler2D sampler,

              vec2 coord [, float bias])

vec4 textureProj( sampler2D sampler,

                  vec{3,4} coord [, float bias])

vec4 textureLod( sampler2D sampler,

                 vec2 coord, float lod)

vec4 textureProjLod( sampler2D sampler,

                     vec{3,4} coord, float lod)

Use the texture coordinate coord to do 
a texture lookup in the 2D texture cur-
rently bound to sampler. For the projec-
tive (Proj) versions, the texture coordi-
nate (coord.s, coord.t) is divided by 
the last component of coord. The third 
component of coord is ignored for the 
vec4 coord variant.

vec4 texture( sampler3D sampler,

              vec3 coord [, float bias])

vec4 textureProj( sampler3D sampler,

                  vec4 coord [, float bias])

vec4 textureLod( sampler3D sampler,

                 vec3 coord, float lod)

vec4 textureProjLod( sampler3D sampler,

                     vec4 coord, float lod)

Use the texture coordinate coord to do a 
texture lookup in the 3D texture currently 
bound to sampler. For the projective 
(Proj) versions, the texture coordinate is 
divided by coord.q.

vec4 texture( samplerCube sampler,

              vec3 coord [, float bias])

vec4 textureLod( samplerCube sampler,

                 vec3 coord, float lod) 

Use the texture coordinate coord to do a 
texture lookup in the cube map texture 
currently bound to sampler. The direc-
tion of coord is used to select in which 
face to do a two-dimensional texture 
lookup.



111Language Details

Fragment Processing Functions

GLSL fragment shaders can antialias procedural textures using a variety of 
techniques, including analytic prefiltering. To support this, GLSL includes 
functions that let you calculate the gradient of any parameter in screen space, 
and a function that gives you a value for the upper bound of the width of the 
sampling filter needed to eliminate aliasing. 

genType dFdx(genType p) Returns the derivative in x using local differencing for the input 
argument p.

genType dFdy(genType p) Returns the derivative in y using local differencing for the input 
argument p.

These two functions are commonly used to estimate the filter width used to antialias procedural tex-
tures. It is assumed that the expression is being evaluated in parallel on a SIMD array, so that at any 
given point in time the value of the function is known at the grid points represented by the array. 
Local differencing between array elements can therefore be used to derive dFdx, dFdy, etc.

genType fwidth(genType p) Returns the sum of the absolute derivative in x and y using local 
differencing for the input argument p, 
abs(dFdx(p)) + abs(dFdy(p));

vec4 shadow1D( sampler1DShadow sampler,

               vec3 coord [, float bias])

vec4 shadow2D( sampler2DShadow sampler,

               vec3 coord [, float bias])

vec4 shadow1DProj( sampler1DShadow sampler,

                   vec4 coord [, float bias])

vec4 shadow2DProj( sampler2DShadow sampler,

                   vec4 coord [, float bias])

vec4 shadow1DLod( sampler1DShadow sampler,

                  vec3 coord, float lod)

vec4 shadow2DLod( sampler2DShadow sampler,

                  vec3 coord, float lod)

vec4 shadow1DProjLod( sampler1DShadow sampler,

                      vec4 coord, float lod)

vec4 shadow2DProjLod( sampler2DShadow sampler,

                      vec4 coord, float lod)

Use the texture coordinate coord to do a 
depth comparison lookup on the depth 
texture bound to sampler, as described 
in Section 3.8.14 of Version 1.4 of the 
OpenGL specification. The third compo-
nent of coord (coord.p) is used as the R 
value. The texture bound to sampler must 
be a depth texture, or results are unde-
fined. For the projective (Proj) version 
of each built-in, the texture coordinate 
is divided by coord.q, giving a depth 
value R of coord.p/coord.q. The second 
component of coord is ignored for the 1D 
variants.
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Noise Functions

GLSL includes the built-in noise func-
tions below, which can be used by both 
fragment and vertex shaders. The noise 
functions are pseudo-random stochas-
tic functions that are C1 continuous with 
range [–1., 1.] and mean 0.0, and they 
are deterministic for a given input. The 
output has the same statistical character 
if the domain is rotated or translated. 
The noise functions can readily be used 
to create textures that add to the visual 
complexity of a scene.

float noise1(genType x) Returns a 1D noise value based on the input value x.  
At this time, this function is not available in GLSL.

vec2 noise2(genType x) Returns a 2D noise value based on the input value x.  
At this time, this function is not available in GLSL.

vec3 noise3 (genType x) Returns a 3D noise value based on the input value x.

vec4 noise4 (genType x) Returns a 4D noise value based on the input value x.

Swizzle

An operation that is probably new to you is the swizzle operation. This lets you 
rearrange or reorganize the components of a vector in any way you want. This 
operation is specified by simply writing the components of a vector in any 
order you want, using one of the component name sets. For example, if m is a 
vec4, you can reverse the order of the components of m by writing m.wzyx, or 
you can duplicate some of the components of m by writing m.rrbb.

New Function Parameter Types

GLSL function parameters differ from the standard C “pass by value” approach. 
GLSL parameters are passed by value-return. This means that parameters’ val-
ues may be copied into a function or may be returned by the function, or both, 
but unlike with “pass by reference” variables, there is no change to any of the 
actual parameters until the function returns. The function parameters are pre-
ceded by one of the keywords in, out, or inout; this comes before the type of 
the parameter.

The GLSL language specification 
defines the noise functions shown here, 
but at this writing, it has not actually 
been implemented in all GLSL systems. 
While everyone agrees that there need 
to be built-in noise functions available, 
not everyone agrees on what would be 
the best specific implementation. This 
is why glman builds them in using 2D 
and 3D textures.
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The keywords’ meanings are
• const: The value of the input parameter is copied to the formal param-

eter, but no change to the formal parameter is allowed in the function.
• in: The  value of the actual parameter is copied to the formal parameter, 

but no changed value will be returned. The actual parameter may be an 
expression that sets the value to be copied into the function. The formal 
parameter may be changed during the execution of the function. The key-
word in may be preceded by const, in which case the formal parameter 
will be treated as a const in the function.

• out: The formal parameter must be an lvalue and will have no value 
until it is set inside the function. Any function operations may use this 
parameter, but a value must be set in the function. The value of the for-
mal parameter in the function is copied to the actual parameter when the 
function terminates.

• inout: The formal parameter must be an lvalue and is assumed to have 
a value when it is copied to the function, and this value may be used or 
changed during the function execution. When the function terminates, 
the value of the formal parameter is copied to the actual parameter.

Const

The const data type lets you declare named compile-time constants. Any vari-
ables qualified by const are read-only variables for that shader and must be 
initialized when declared; the initial values must be constant expressions. The 
const qualifier can be used with any of the basic data types. As in C++, using 
const is good programming style because it is strongly typed and it will cause 
the compiler to throw an error if you attempt to re-assign a value to something 
you originally expected should never get reassigned.

GLSL has several built-in const variables for vertex and fragment shad-
ers. The values given for initialization are implementation-dependent and are 
the minimum values allowed.

 const int gl_MaxLights = 8;
 const int gl_MaxClipPlanes = 6;
 const int gl_MaxTextureUnits = 2;
 const int gl_MaxTextureCoords = 2;
 const int gl_MaxVertexAttribs = 16;
 const int gl_MaxVertexUniformComponents = 512;
 const int gl_MaxVaryingFloats = 32;
 const int gl_MaxVertexTextureImageUnits = 0;
 const int gl_MaxCombinedTextureImageUnits = 2;
 const int gl_MaxTextureImageUnits = 2;
 const int gl_MaxFragmentUniformComponents = 64;
 const int gl_MaxDrawBuffers = 1;
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Compatibility Mode

OpenGL 4.1 has replaced a number of features of the 2.x and 3.x standards with 
much more general functionality. This has increased the power, efficiency, and 
generality of the standard, but requires much more planning and setup than 
the earlier standard. If you are maintaining OpenGL code that was based on 
the 2.x and 3.x standards, or if you simply want to write quick shaders to test 
out some ideas, you may want to work in what is called compatibility mode: a 
mode in which you can use the earlier OpenGL functionality.

Defining Compatibility Mode

It is quite straightforward to specify that a shader is to be run in compatibility 
mode. If you are working in OpenGL 4.x, you can simply put the line

#version 400 compatibility

at the top of any shader source. If you are working in OpenGL 3.3, a similar 
command can be used:

#version 330 compatibility

Then you can use any functionality you like from the OpenGL 2.1 standard.
Among the things you might find most useful from the earlier standard 

is the set of built-in data. These let you pick up attribute and uniform variables 
that are defined by OpenGL 2.1 functions so you can use them easily in your 
shaders.

OpenGL 2.1 Built-in Data Types

GLSL originally included some completely new data types that correspond to 
functions needed to manage data flow across the spectrum of an application, 
the OpenGL API, the onboard data on a graphics card, and the needs of vertex 
and fragment shaders. These types are available in OpenGL 2.1 or in compat-
ibility mode for later versions, and are named attribute, uniform, and varying. 
Their function is described in this section.

In general, you can differentiate these data types by how often the data 
they represent change. Uniform data changes infrequently and never within 
a graphics primitive; attribute data changes frequently, often as frequently as 
each vertex; and varying data changes most frequently, with each fragment as 
it’s interpolated by the rasterizer.
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Attribute

The attribute data qualifier lets you access per-vertex data passed to the graph-
ics card by the OpenGL API functions. Attribute variables have only float, vec, 
and mat data types, and cannot be declared as arrays or structs. Attribute vari-
ables are only accessible in a vertex shader and are read-only for that shader. 
They must have global scope and must be declared outside of function bodies 
before they are first used.

Originally, GLSL had built-in variable names for all the standard OpenGL 
vertex attributes to give you easy access to data defined by OpenGL vertex 
functions. These are

 attribute vec4 gl_Color;
 attribute vec3 gl_Normal;
 attribute vec4 gl_Vertex;
 attribute vec4 gl_MultiTexCoordi; // i = 0..7

Uniform

The uniform qualifier identifies global variables whose values are constant 
across a graphics primitive. This can be used with any of the basic data types, 
or when declaring a variable whose type is a structure, or an array of any of 
these. Uniform variables are read-only for all shaders and are initialized exter-
nally either at link time or through the OpenGL API.

GLSL has a large set of built-in uniform variables that let you access the 
graphics states set by the OpenGL API in your application. These are listed 
below in groups that access similar states.

Primary matrices. OpenGL maintains four primary matrices that are available 
to your shaders:

 uniform mat4 gl_ModelViewMatrix;
 uniform mat4 gl_ProjectionMatrix;
 uniform mat4 gl_ModelViewProjectionMatrix;

 uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];

Derived matrices. OpenGL computes a number of other matrices that are used 
in various geometry processing steps. Some of these are inverses or transposes 
of the primary matrices, and you should be aware that if the primary matrix 
is poorly conditioned, the inverses may have unpredictable values. These 
derived matrices are available to your shaders:
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 uniform mat3 gl_NormalMatrix; // transpose of inverse of   

               // the upper leftmost 3x3 of  

               // gl_ModelViewMatrix

 uniform mat4 gl_ModelViewMatrixInverse;

 uniform mat4 gl_ProjectionMatrixInverse;

 uniform mat4 gl_ModelViewProjectionMatrixInverse;

 uniform mat4 gl_TextureMatrixInverse[gl_MaxTextureCoords];

 uniform mat4 gl_ModelViewMatrixTranspose;

 uniform mat4 gl_ProjectionMatrixTranspose;

 uniform mat4 gl_ModelViewProjectionMatrixTranspose;

 uniform mat4 gl_TextureMatrixTranspose 

  [gl_MaxTextureCoords];

 uniform mat4 gl_ModelViewMatrixInverseTranspose;

 uniform mat4 gl_ProjectionMatrixInverseTranspose;

 uniform mat4 gl_ModelViewProjectionMatrixInverseTranspose;

 uniform mat4 gl_TextureMatrixInverseTranspose 

  [gl_MaxTextureCoords];

Normal scaling. If your application does its own normal scaling instead of 
relying on the normalization operation, you can access that normal scaling 
factor:

 uniform float gl_NormalScale;

Front and back clipping planes. When you specify your projection in OpenGL, 
you specify the front and back clipping planes, and hence the depth of these 
planes. This data is available to your shaders:

 struct gl_DepthRangeParameters

 {

  float near; // n

  float far; // f 

  float diff; // f – n

 };

 uniform gl_DepthRangeParameters gl_DepthRange;

Clip planes. OpenGL allows you to define clipping planes in your scene by 
specifying the equation of the plane as four real numbers. This data is avail-
able to your shaders:

 uniform vec4 gl_ClipPlane[gl_MaxClipPlanes];
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Point parameters. In OpenGL you can specify the properties of a geometric 
point. This data is available to your shaders:

 struct gl_PointParameters
 {
  float size;
  float sizeMin;
  float sizeMax;
  float fadeThresholdSize;
  float distanceConstantAttenuation;
  float distanceLinearAttenuation;
  float distanceQuadraticAttenuation;
 };
 uniform gl_PointParameters gl_Point;

In the items below, we introduce some shortcut names for a number 
of properties of materials and lights. These are used to show how the later 
derived materials states are computed.

Materials. When you use the OpenGL lighting model, you specify properties 
of the materials that make up a graphics primitive. This data is available to 
your shaders:

 struct gl_MaterialParameters
 {
  vec4 emission;   // Ecm
  vec4 ambient;    // Acm
  vec4 diffuse;    // Dcm
  vec4 specular;   // Scm
  float shininess;  // Srm
 };
 uniform gl_MaterialParameters gl_FrontMaterial;
 uniform gl_MaterialParameters gl_BackMaterial;

Lights. When you specify a light in OpenGL, you specify a number of proper-
ties, from the light’s colors to the light’s position, to the type of light it is to be. 
You also specify the kind of light model to be used. This data is available to 
your shaders:

 struct gl_LightSourceParameters
 {
  vec4 ambient;   // Acli
  vec4 diffuse;   // Dcli
  vec4 specular;  // Scli
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  vec4 position;  // Ppli
  vec4 halfVector;   // Derived: Hi
  vec3 spotDirection;  // Sdli
  float spotExponent;  // Srli
  float spotCutoff;   // Crli
           
// (range: [0.0,90.0], 180.0)
  float spotCosCutoff; // Derived: cos(Crli)
// (range: [1.0,0.0],-1.0)
  float constantAttenuation; // K0
  float linearAttenuation;  // K1
  float quadraticAttenuation; // K2
 };
 uniform gl_LightSourceParameters gl_LightSource 
  [gl_MaxLights];

 struct gl_LightModelParameters
 {
  vec4 ambient;     // Acs
 };
 uniform gl_LightModelParameters gl_LightModel;

Derived materials state. These states are products of the light and material 
that are used for actual color computations:

 struct gl_LightModelProducts
 {
  vec4 sceneColor; // Derived. Ecm + Acm * Acs 
 };
 uniform gl_LightModelProducts gl_FrontLightModelProduct;
 uniform gl_LightModelProducts gl_BackLightModelProduct;

 struct gl_LightProducts
 {
  vec4 ambient;    // Acm * Acli
  vec4 diffuse;    // Dcm * Dcli
  vec4 specular;   // Scm * Scli
 };
 uniform gl_LightProducts gl_FrontLightProduct 
  [gl_MaxLights];
 uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights];

Texture environment. This set of GLSL built-in uniform variables gives you 
the colors that are produced by each texture unit and the coordinates of the 
eye plane or object plane for eye-linear or object-linear textures, respectively.
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 uniform vec4 gl_TextureEnvColor[gl_MaxTextureUnits];
 uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords];  
   // eye linear
 uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords];
 uniform vec4 gl_EyePlaneR[gl_MaxTextureCoords];
 uniform vec4 gl_EyePlaneQ[gl_MaxTextureCoords];
 uniform vec4 gl_ObjectPlaneS[gl_MaxTextureCoords];  
   // object linear
 uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords];
 uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords];
 uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords];

Fog. All the GLSL fog parameters set by the graphics API are available to your 
shaders:

 struct gl_FogParameters
 {
  vec4 color;
  float density;
  float start;
  float end;
  float scale; // Derived: 1.0 / (end - start)
 };

Varying

GLSL’s varying variables provide communication from vertex shaders to frag-
ment shaders. Vertex shaders compute information for each vertex and write 
them to varying variables to be interpolated across a graphics primitive and 
then used by a fragment shader. GLSL specifies that default interpolations of 
varying variables must be done in a perspective-correct manner, so the prob-
lems of perspective correction that we saw in Chapter 1 are not part of GLSL. 
Only those varying variables used in the fragment shader must be written by 
the previous shader in the shader pipeline, but that previous shader may also 
declare other varying variables. A fragment shader cannot write to a varying  
variable.

The varying qualifier can be used only with float variables, floating-point 
vectors, matrices, or arrays of these. Structures cannot be varying. Varying vari-
ables must have global scope and must be declared outside of function bodies.

Varying variables may be defined using a modifier that describes how they 
are interpolated across a fragment. These modifiers are flat, noperspective, 
and centroid, and were discussed earlier in this chapter.
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Summary

We have seen that GLSL is a language that looks familiar enough to be used 
easily, but that it has a significant number of new features that make writing 
shaders possible—and that are easy enough to use that it’s straightforward to 
get started by writing shaders that do interesting things. Like OpenGL, it has 
enough capability that you will likely never run out of ways to add sophistica-
tion and new features to your shaders, or to create every effect that it can give 
you. This chapter should familiarize you with the basic operation of GLSL and 
should be a useful reference for you, but only when you actually begin to use 
the language to write shaders will you really understand the graphical power 
it gives you.

Exercises

1. For the following table of operator and operand type, indicate which 
operator can legally operate on the operands given. For each one that is 
legal, create an example of the two operands and show the result of the 
operation.

Operator Left Operand Right Operand Result
+ mat2 float :

+ vec3 ivec3 :

* vec2 mat2 :

* mat3x4 mat4x3 :

2. For the following table of functions and parameter type(s), indicate 
whether the function can legally act on the parameter(s) given. For each 
case where the function can legally act, identify the type of the return 
value, give an example of the function applied to the parameter(s) and 
show the returned value of the function.

Function name Parameter(s)

a. pow vec4, vec4

b. mod vec3, float

c. cross vec3, vec3

d. outerProduct mat2x3, mat3x4

e. notEqual float, vec4
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3. Use GLSL operators to write three different ways to calculate the distance 
between two points.

4. Diagram the data flow that describes how geometric data gets from an 
application, through the OpenGL API, to the graphics card, to a vertex 
shader, to a fragment shader, and finally to a single pixel that is output to 
the graphics color buffer.

5. Write constructors to create new variables from old ones, using either the 
scalar, vector, or matrix constructors described in this chapter.

a. Construct an integer I from a float F.

b. Construct a vec3 from three ints.

c. Construct a vec2 as the middle two components of a vec4.

d. Construct a mat4 with the first row a set of four floats and with the 
remaining part of each column given by a vec3.

6. Write statements you could use in a GLSL shader to convert a vec4 color 
to a grayscale color with the same alpha value. Is there a difference in 
how you would do this for a vertex shader and for a fragment shader?
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Lighting6

The simplest way to perform lighting is by computing it per-vertex, which 
would place responsibility for most of the work squarely on the shoulders of 
the vertex shader. If lighting is performed this way, the color is computed based 
on light and material properties that determine the color of each vertex based 
on the standard ambient-diffuse-specular (ADS) lighting model. This per-vertex 
color can be used for either flat or smooth shading. However, if a more complex 
shading model is to be used, such as Phong or anisotropic shading, the color 
computation will probably be deferred until the fragment shader, where per-
pixel color can be computed. 

In this chapter, we will discuss both per-vertex and per-fragment lighting 
methods.
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The ADS Lighting Model

This lighting model is the basis for fixed-function OpenGL lighting, and we 
want to see how to handle this in shaders you write yourself. You were prob-
ably introduced to this in your beginning computer graphics course, but let’s 
review it to be sure we’re all using the same terminology and notation. The 
three kinds of light used in this model are

• Ambient light, or light that is always present at all points in a scene.
• Diffuse light, or light that comes directly from a light source.
• Specular light, or light that is reflected in a “shiny” way from a light source 

by an object.

Each of these kinds of light contributes to the overall lighting at any 
point in a separate way. The general context for these contributions is shown 
in Figure 6.1, which illustrates a point on a surface with normalized (unit) vec-
tors from the point to the eye, Ê ; from the point to a light source, L̂ ; the normal 
to the surface at the point, N̂ ; and the reflected light direction R̂ .

Ambient light contributes to the lighting as a product of the ambient light 
itself AL  and the ambient light color of the material being lighted :AM

A AA L M= * .
Diffuse light contributes to the lighting as a product of the diffuse light 

itself ,DL  the diffuse light color of the material being lighted ,DM  and the 
cosine of the angle Θ between the light and the normal, (L̂•N̂ ): 

D = LD * MD * (L̂•N̂ ).

 

Figure 6.1. The setup for ADS lighting.
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Specular light contributes to the lighting as a product of the specular 
light itself ,SL  the specular light color of the material being lighted ,SM  and a 
power (the “shininess” coefficient SH) of the cosine of the angle Φ between the 
eye vector and the light reflection vector, (R̂•Ê )SH :  

S = LS * MS * (R̂•Ê )SH.

Then the total lighting at the point is the sum of these:

A + D + S = LA * MA + LD * MD *  (L̂•N̂ ) + LS * MS * (R̂•Ê )SH.

The reflection vector R is calculated by R = 2(N̂•L̂ )N̂  − L̂ . Details on how 
these individual formulas are derived may be found in any introductory graph-
ics text, such as [14]. Also, GLSL has a built-in function called reflect( ), 
which will do this for you.

This model can also take into account attenuation, or the reduction in 
light intensity with distance. OpenGL models this with three factors: a con-
stant attenuation AC , a linear attenuation AL , and a quadratic attenuation AQ. If 
a point is at a distance D from a light, the overall attenuation A is calculated as

A
A A D A DC L Q

=
+ +

1
2 .

The distance can be calculated from the light and vertex positions in eye 
space, and this value of A then multiplies the diffuse and specular terms above.

In the ADS lighting function in the next section, we use the reflected-light 
formulation because we have access to the reflection for each pixel, using the 
GLSL function reflect( ) to compute the reflection vector. However, fixed-
function OpenGL uses the half-angle formulation for specular light because it 
is easier to compute for each vertex.

The ADS Lighting Model Function

Below is a function that computes the color at a vertex based on the ADS light-
ing model with standard light and material definitions. It is intended for use 
with glman, so it uses stubs for the values it would get from another source. 
These stubbed values would come from system uniform variables, as noted in 
the function’s comments.

You can use this function in a vertex shader if you are computing the 
color at each vertex, as you would if you were planning to interpolate the color 
across the graphics primitive, as in smooth shading, or you can use it in a frag-
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ment shader if you are computing the color at each pixel for Phong shading. 
These two kinds of shading were discussed earlier in this chapter. Because we 
have not yet talked about the GLSL programming API, we have stubbed in the 
light and materials definitions in the function, indicating where they would 
come from if this were part of a graphics application.

// Assumed context:
// uniform variables uLightsource[i] and uFrontMaterial are
// stubbed with constant values below. These would probably be
// passed into the shader function if used in an application.
//
// variables myNormal and myPosition are passed in; in a vertex
// shader these would be computed and used directly, while in a
// fragment shader these would be set by the associated vertex
// shader.
//
// the ADS color is returned from the function

vec3 ADSLightModel( in vec3 myNormal, in vec3 myPosition )
{
 const vec3 myLightPosition     = vec3( 1. , 0.5, 0.  );

 const vec3 myLightAmbient      = vec3( 0.2, 0.2, 0.2 );
 const vec3 myLightDiffuse      = vec3( 1. , 1. , 1 . );
 const vec3 myLightSpecular     = vec3( 1. , 1. , 1.  );

 const vec3 myMaterialAmbient   = vec3( 1. , 0.5, 0.  );
 const vec3 myMaterialDiffuse   = vec3( 1. , 0.5, 0.  );
 const vec3 myMaterialSpecular  = vec3( 0.6, 0.6, 0.6 );

 const float myMaterialShininess = 80.;

// normal, light, view, and light reflection vectors
 vec3 norm   = normalize( myNormal );
 vec3 lightv = normalize( myLightPosition - myPosition);
 vec3 viewv  = normalize( vec3(0.,0.,0.) - myPosition );
 vec3 refl   = reflect( vec3(0.,0.,0.) - lightv, norm ); 
// ambient light computation
 vec3 ambient = myMaterialAmbient*myLightAmbient;

// diffuse light computation
 vec3 diffuse = max(0.0, dot(lightv, norm)) * myMaterialDiffuse
        *myLightDiffuse;

// Optionally you can add a diffuse attenuation term at this 
//point
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// specular light computation
 vec3 specular = vec3( 0.0, 0.0, 0.0 );
 if( dot(lightv, viewv) > 0.0)
 {
  specular = pow(max(0.0, dot(viewv,refl)),
         myMaterialShininess)*myMaterialSpecular*
         myLightSpecular; 
 }
 return clamp( ambient + diffuse + specular, 0.0, 1.0);
}

This calculation does not take into account lighting attenuation. If you 
want to include attenuation, you can enhance this computation by computing 
the distance to the light and getting the light’s constant, linear, and quadratic 
attenuation terms as uniform variables, and then computing

 1./(constant + linear*distance + quadratic*distance*distance)

as a multiplier of the diffuse and specular components, as described above. 
(Attenuation does not act on the ambient light component.)

These computations use simple vector addition and subtraction, not 
homogeneous addition and subtraction, because we want to keep this sim-
ple. If you want to make them fully general, you would need to replace these 
with homogeneous vector addition and subtraction, as we discussed in Chap- 
ter 1. This would be necessary, for instance, if you have a directional light 
source (which acts as if it were placed at infinity).

Types of Lights

Since the fixed-function pipeline does all the color computations at the vertex 
processing stage, whenever you use shaders to replace fixed-function opera-
tions, you must handle lighting yourself. Besides the full ADS lighting model, 
there are other issues in lighting because OpenGL supports spot lights and 
directional lights, as well as positional lights. To be able to replace fixed-func-
tion lighting computations, you must have ways to handle all the options that 
you plan to use. If you are using lighting, you are probably using material 
properties as well. 

Overall, the OpenGL API gives you ways to define color, lights, and mate-
rial properties that are treated globally in the graphics system. So you may define 
a light position, a color, etc. using the API calls to set their global properties, so 
that any shader can pick them up. We have often used an alternate approach of 
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setting discrete uniform variables 
in our examples, because we can 
then put them on sliders so that 
you can experiment with them. In 
applications, though, you should 
probably take the more global 
OpenGL API approach. This will 
be described in Chapter 14.

Positional Lights

The most common kind of lighting in OpenGL scenes is with positional lights. 
Each light has position, color, and a number of other values.

For positional lights, the primary consideration is the direction from a 
vertex to the light source, and you can get that by a simple vector subtraction 
so you can make it an out vector in the vertex shader and pass it to the frag-
ment shader. Alternately, you can make the vertex position in eye space an 
out variable so the fragment shader can use the ADS lighting function. Your 
choice will probably depend on the effect you are trying to achieve. As we will 
see in examples below, you can get traditional smooth shading by computing 
the light direction at each vertex and defining the color as an out variable in a 
vertex (or tessellation) shader, while you can get Phong shading by defining 
the normal as an out variable and interpolating either the vertex position or 
the light direction for each pixel.

Lighting 
Method

Vertex Shader 
Does

Rasterizer 
Interpolates

Fragment 
Shader Does

Per-vertex Lighting model Color Applies color

Per-fragment Setup Normal and EC 
position

Lighting model

Directional Lights

If you use directional lights or spot lights, the necessary data for using 
these kinds of lights can be found in the components of the built-in uniform 
uLightSource[i] struct. Directional lights, also called parallel light sources, are 

Recall our assumption that in our example 
shader code, we use general attribute and 
uniform variables with our first-letter naming 
convention instead of the built-in OpenGL 
variable names. These names are close enough 
to the built-in variable names that you can 
easily convert them if you are working in 
compatibility mode.
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treated in almost the same way as positional lights, except that the direction to 
the light is always the same, regardless of the position of a point. This simpli-
fies the light direction in any lighting computation by letting you use the light 
direction directly, instead of computing the direction between the point and 
the light position. Conceptually, for a directional light, you simply treat the 
light as a homogeneous point at infinity.

Spot Lights

Spot lights include specifications for the direction, cutoff, and attenuation. To 
use a spot light, you must compute the angle between the light direction and 
the direction from the light to the vertex. By comparing that to the light’s cutoff 
angle and using the light’s attenuation, you can then determine the value of 
the light at the vertex. This requires the vertex shader to send both the light 
position and the light direction to the fragment 
shader, and the fragment shader must calculate 
the angle between the light direction and the 
vector from the light to the point in order to see 
whether to use the light in the color computa-
tion.

In the vertex shader example below, you 
can see the kind of computation that is needed 
to compute the light intensity for a spot light. 
The color always includes the ambient light, and 
it uses diffuse and specular light for the particu-
lar light source only if the point is close enough 
to the light direction. The effect of spot lighting 
is shown in Figure 6.2, where the light shines 
on only part of the geometric primitive, but we 
omit the specular contribution in this case to 
simplify the computation.

A vertex shader for lighting with a spot 
light or directional light (or both) requires us 
to manage that lighting function ourselves. The 
fixed-function OpenGL spot light on the stan-
dard teapot is shown in Figure 6.2 (top), while 
we can use the capabilities of GLSL and the ver-
tex shader to create the “fuzzy” spot light shown 
in Figure 6.2 (bottom). The vertex shader for this 
example has only three things to do:

Figure 6.2. The effect of a spot light on a teapot 
that lies on the edge of the light’s illumination 
area. Traditional OpenGL spot light (top) and a 
spot light with a fuzzy edge (bottom).
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• Copy the color from the attribute variable aColor to an out variable such 
as vColor.

• Set an out variable such as vLightIntensity with the light intensity 
based on diffuse lighting computations at this vertex.

• Set an out variable such as vECposition with the eye coordinates of the 
vertex.

The fragment shader carries out all the interesting computations that 
simulate spot lighting for glman use. The positions of the light, the eye, and a 
focal point of the light are set in eye space to define two vectors that meet at the 
focal point, and uniform slider variables are used to set the angle of the light 
and the horizontal location (the variable LeftRight) of the light focal point. 
The cosine of the angle set by the vectors is compared with the cosine of the 
cutoff angle in a smoothstep( ) function to determine the amount of diffuse 
light to include for each pixel. The simulation uses a number of parameters 
that would normally be taken from the uniform lighting variables provided by 
the system. See the GLSL API for more details.

uniform float uAngle;
uniform float uLeftRight;
uniform float uWidth;

in vec4  vColor;
in float vLightIntensity;
in vec3  vECposition;

out vec4 fFragColor;

const vec4  LIGHTPOS  = vec4(0.,0.,40.,1.);
const float AMBCOEFF  = 0.5;
    // simulate ambient reflection coefficient
const float DIFFCOEFF = 0.6;
    // simulate diffuse reflection coefficient

void main( )
{
 // stubs for data in system attribute variables
 // simulate MC light position

 vec3  ECLightTarget  = vec3( uModelViewMatrix *
          vec4( uLeftRight, 0., 1.5, 1. ) );
 vec3  LightDirection = normalize( ECLightTarget - LIGHTPOS );
 vec3  EyeDirection   = normalize( vECposition   - LIGHTPOS );

 // Ambient only
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 fFragColor = vLightIntensity*AMBCOEFF*vColor;

 // Add diffuse light based on spotlight
 float myAngleCosine  = dot( LightDirection, EyeDirection );
 float CutoffCosine   = cos( radians(uAngle) );
 float BlendFactor    = smoothstep( CutoffCosine - uWidth,
                   CutoffCosine + uWidth, myAngleCosine);

 fFragColor += DIFFCOEFF*BlendFactor*vColor*vLightIntensity;
}

Of course, in an application, uAngle and uWidth would be passed to the 
shader as uniform variables from the application, and it would be better to 
compute the value of CutoffCosine there, instead of for each pixel. We do it as 
above in order to take advantage of glman.

Setting Up Lighting for Shading

Shading is the process of determining the color of each pixel in each primitive 
in your scene. This is actually carried out in the fragment processing part of 
the graphics processor that we described in Figure 1.5, but the vertex proces-
sor must set up the right environment for the kind of shading that you will 
implement. In this section, we will discuss some kinds of shading and how 
they are set up. In our discussion, we will draw on several shader concepts 
from Chapter 2.

The standard shading models available in fixed-function OpenGL are 
limited. They are flat shading, where a polygon is given a single color, and 
smooth shading, where the colors at the vertices of the polygon are interpo-
lated to fill its interior. These are far from the only kinds of shading that have 
been used in the graphics field, but they are enough for many kinds of graph-
ics work. More sophisticated shading is discussed later in this chapter and in 
Chapter 8.

Recall from the discussions in Chapter 1 that the fixed-function vertex 
processor must set a color for each vertex, and that the fragment processor can 
only interpolate vertex colors. This gives us our first two kinds of shading: flat 
shading and smooth shading. However, if we have vertex and fragment shad-
ers, we can set up out variables in the vertex shader so that the fragment shader 
can interpolate other information and compute each pixel’s color directly. 
This gives us two other kinds of shading: Phong shading and anisotropic  
shading.
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Flat Shading

Flat shading is a type of per-vertex color computation. In order to use flat 
shading for a graphics primitive, the vertex shader will determine a color for 
a particular vertex (called the provoking vertex) and pass it forward to the frag-
ment processor. The color will not be interpolated across the fragments. The 
color can come from an aColor attribute variable, or it could come from a light-
ing calculation, as described below.

In early versions of GLSL, it was not possible to specify flat shading, and 
flat shading was seen as an operation that would be done by fixed-function 
processing outside the GLSL shaders. However, GLSL has added a keyword 

flat to the GLSL language, defining a vari-
able type called flat out variables. These vari-
ables may be passed to a fragment shader and 
call for the variable’s value not to be inter-
polated across a graphics primitive during 
fragment processing. Our familiar teapot is 
shown in Figure 6.3 with flat shading, a look 
that may be familiar from your own begin-
ning graphics work.

Vertex shaders that use flat out vary-
ing variables differ little from those you are 
already familiar with. An example vertex 
shader is shown below, which computes light 
intensity from the standard diffuse technique 

and passes this intensity to a fragment shader through the flat out variable 
vLightIntensity. Compare this with the vertex shader you saw early in the 
book to create Figure 2.2.

uniform vec3 uLightPos;

flat out float vLightIntensity;

void main( )
{
 vec3 transNorm  = normalize( uNormalMatrix * aNormal );
 vec3 ECposition = ( uModelViewMatrix * aVertex ).xyz;
 vLightIntensity = dot(normalize(uLightPos-
                ECposition),transNorm);
 vLightIntensity = abs(vLightIntensity);
 gl_Position     = uModelViewProjectionMatrix * aVertex;
}

Figure 6.3. The familiar teapot with flat shading.
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Smooth (Gouraud) Shading

Smooth shading is another kind of per-vertex color computation. In order to 
use smooth shading (also known as Gouraud shading) for a graphics primi-
tive, the vertex shader must determine a color for each vertex as above and 
pass that color as an out variable to the fragment processor. The color can 
be determined from the ADS lighting model 
by using the function we gave earlier in this 
chapter, or it can simply be defined in an 
application through a color attribute vari-
able. Because the color is passed to the frag-
ment shader as an in varying variable, it is 
interpolated across the fragments that make 
up the primitive, thus giving the needed 
smooth shading. Below, we see a very sim-
ple vertex shader that computes the out vari-
able vColor using the ADSLightModel func-
tion and makes it available to a fragment 
shader. Figure 6.4 shows the familiar teapot 
with Gouraud shading; it is clear that this is 
the smooth shading we are used to seeing in 
fixed-function shading.

out vec3 vColor;

// use vec3 ADSLightModel here

void main( )
{
 vec3 transNorm = normalize( uNormalMatrix * aNormal );
 vec3 ECpos     = ( uModelViewMatrix * aVertex ).xyz;

 vColor         = ADSLightModel( transNorm, ECpos );

  gl_Position    = uModelViewProjectionMatrix * aVertex;
}

The specular highlight in Gouraud-shaded figures are often not smooth, 
but show the typical smooth-shading effect of differing interpolations across 
neighboring primitives that leads to Mach banding on polygon edges. We 
will see much better results in the next section when we develop Phong 
shading.

Figure 6.4. The familiar teapot with smooth 
(Gouraud) shading.
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Phong Shading

Phong shading is a per-fragment color computation, and is a capability missing 
from the fixed-function OpenGL system. In true Phong shading, the vertex 
normals are interpolated across a graphics primitive, and the ADS lighting 
model is applied separately at each individual pixel. In order to do that, the 

lighting model’s key variables must be evalu-
ated and set up as out variables during vertex 
processing. The vertex shader code below sets 
up the normal and position data for the ADS 
lighting model function in out variables, so that 
a fragment shader can interpolate these vari-
ables and use them in the ADSLightModel( ) 
function to compute the color. The actual frag-
ment shader that implements this lighting is 
shown in Chapter 8. In Figure 6.5, you can see 
the smooth specular highlight that you expect 
from Phong shading.

out vec3 vNormal;
out vec3 vECpos;

void main( )
{
 vNormal     = normalize( uNormalMatrix * aNormal );
 vECpos      = ( uModelViewMatrix * aVertex ).xyz;
 gl_Position = uModelViewProjectionMatrix * aVertex; 
}

This specular computation uses the unit reflection vector, R̂ , which 
changes with each pixel. An alternative approach computes the “half angle”—
the vector Ĥ  halfway between the light L̂  and the eye Ê  vectors—and uses the 
cosine of the angle Φ between Ĥ  and the normal N̂ . If the angle Φ is zero, the 
cosine is 1 and the light is reflected directly to the eye. As the angle increases, 
the cosine decreases. Again, a power of that cosine is used to control the size 
of the specular highlight. So we could replace the specular term in the model 
by the expression

S = LS * MS * (N̂•Ĥ)SH. 

The half angle vector Ĥ  is computed as the average of the unitized L and 
E vectors, which in GLSL is expressed as normalize(L + E), and the term       
(N̂•Ĥ)SH that provides the shiny appearance of specular light is slightly differ-

Figure 6.5. The familiar teapot with Phong 
shading.



135Setting Up Lighting for Shading

ent from the similar term in the reflection vector formulation. In general, the 
half-angle formulation for specularity gives a slightly less-focused specular 
highlight than the reflected-light version. Since the shininess coefficient SH is 
simply an approximation that is adjusted for visual effect anyway, the differ-
ence is only qualitative. You can see this qualitative difference in Figure 6.6, 
which shows the half-angle formulation on the left, and the full-angle formu-
lation on the right.

In fact, it is sometimes possible to get even better shading than Phong 
shading. For some kinds of applications, it is possible to compute exact normals 
at each pixel instead of simply interpolating vertex normals. We call this exact 
shading, and we discuss it further in Chapter 8.

Anisotropic Shading

Anisotropic shading is another per-pixel color computation that is not available 
in fixed-function OpenGL. Anisotropic shading is shading in which specular 
light is not reflected equally in all directions from the surface. An example of 
this is shown in Figure 6.7, which simulates a sphere for which light is reflected 
more strongly in a direction perpendicular to the arc from the poles through 
the point. Note that the bright spot in the figure is not circular because the 
material has different properties in different directions. Materials such as fur, 
hair, and brushed metal behave this way [22].

If you are writing shaders to implement anisotropic shading, the vertex 
shader must send the usual information, such as the normal, the eye position, 
and the light position, into the fragment shader, in the same way as would be 

Figure 6.6. Specular lighting with the half-angle formulation (left) and full-angle formulation (right).
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done for Phong shading. In addition, the fragment shader must get whatever 
extra information is needed to describe the directional reflection; in this case, 
that is the tangent vector to the sphere normal to the polar arc through the 
point. The fragment shader then carries out the ambient and diffuse light com-
putations for regular ADS lighting and computes the specular part of the light 
based on the new light direction.

The particular kind of anisotropic shading shown in Figure 6.7 is a com-
puter graphics “classic,” going back to the late 1980s. The specular reflection is 
not given by the usual term

S = LS * MS * (R̂•Ê )SH,
but by the term

dl = T̂•L̂ ,

de = T̂•Ê ,

dl T L
de T E
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where T̂  is the tangent vector (the direction of the brushing or hair), L̂  is the 
light vector, Ê  is the eye vector, and SH is the shininess. In the code snippet 
below, taken from the fragment shader, the values of the tangent, light, and 
eye vectors, and the value of vColor, are assumed to have been computed 
separately in the associated vertex shader. The anisotropic shading param-
eters uKa, uKd, and uKs are assumed to be passed into the shader, and  the color 
vColor is used for all three components of the ADS lighting model.

Figure 6.7. Anisotropic lighting in human hair (left); a sphere with anisotropic shading 
(right).
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 vec3 ambient = vColor.rgb;

 float dl = dot( That, Lhat );
 vec3 diffuse = sqrt( 1. - dl*dl ) * vColor.rgb;

 float de = dot( That, Ehat );
 vec3 spec = uLightColor * pow(dl * de + 
   sqrt(1. - dl*dl) * sqrt(1. - de*de), uShininess);

 fFragColor = vec4( uKa*ambient + uKd*diffuse + uKs*spe, 1. );

Exercises

1. Compare the tradeoffs between granularity and shading quality, spe-
cifically between smooth and Phong shading. Create a model with a 
granularity you can adjust, and see if you can identify the granularity of 
smooth shading that is indistinguishable from Phong shading.

2. In the text, we say that the specular light computation using the reflec-
tion vector gives you a smaller specular highlight than the computation 
using the half-angle vector when the same specularity exponent is used. 
Modify the ADS lighting function in the text to use the half-angle formu-
lation, and verify this statement. Add a slider for the shininess exponent 
to the GLIB file for the Phong shader, and see if you can quantify the rela-
tion between the exponents for the two formulations that give the same 
look.

3. Modify the ADS light function to use homogeneous vector computations 
throughout. Is this enough to make it work with directional as well as 
positional lights? If not, modify it further to support directional lights.

4. In the spotlight example in the text, we simply used ambient and dif-
fuse light. Modify this shader to use the ADS light function and compute 
specular light as well.

5. Suppose that you had a material that reflected light from a sphere differ-
ently from the anisotropic example above: the light is reflected in a direc-
tion tangent to the sphere toward the poles. Write a shader to implement 
this kind of lighting.
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In fixed-function OpenGL, the vertex processing in the graphics pipeline is 
responsible for taking the model-space geometry you define, along with what-
ever color, lighting, materials, shading, and texture information you specify, 
and creating a set of vertices in clip space that have color, depth, normal, 
and texture associated with each. The role of the vertex shader is shown in 
Figure 7.1. The vertex shader replaces much of the fixed-function vertex pro-
cessing, and possibly changes the vertex coordinates as well. It also sets up 
the shader environment for any further vertex processing by tessellation and 
geometry shaders and for the rasterization and fragment shader processing.

In this chapter, we will discuss the vertex shader from a functional 
approach: what it does, what its inputs are, what its outputs are, and what 
kind of operations it can perform. We will also see several examples of vertex 
shaders that carry out many of these shaders’ different operations.

7 Vertex Shaders
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Vertex Shaders in the Graphics Pipeline

As we consider in detail how the 
vertex shader works in the graph-
ics pipeline, we need to look at the 
inputs to a shader and the outputs 
from a shader, as well as the kinds 
of processing that can go between 
the input and the output.

In the discussions below, we 
will often refer to aspects of the 
GLSL shader languages that were 
presented in Chapter 5, because 
vertex processors deal with attri-
bute variables, uniform variables, 
and variables that are passed to 
other shaders for their work. If you 
are working through this book in 
chapter order, this material should 
be fresh, but if you are picking it up 
bit by bit, you should at least skim 
Chapter 5 to understand the basic 
ideas of GLSL variables.

Input to Vertex Shaders

Vertex shaders take the inputs that would ordinarily go to the vertex process-
ing stage of the graphics pipeline, along with other data that the application 
might want to send to the shaders. This lets the vertex shader replace key parts 
of the standard vertex processing. Vertex shaders can take attribute and uni-
form variables as inputs, and produce other variables as outputs. Both attri-
bute and uniform variables are treated as read-only variables by vertex shad-
ers. (Vertex shader out variables are treated as write-only variables destined 
for the next stage in the pipeline.)

Attribute variables can take on a different value for each vertex in your 
model and are considered to be read-only to the vertex shader. Some of the 
attribute variables are built-in to GLSL, such as vertex coordinates, vertex 
color, vertex normal, and vertex texture coordinates. 

Figure 7.1.  The place of vertex shaders in the pipeline.
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  You can also create your own per-vertex attribute variables. These can 
be used to send per-vertex data values, as well as geometry, into the graphics 
pipeline so that the graphics functions can use the data in developing images. 
This might include per-vertex application-specific data such as elevation, tem-
perature, density, or speed, which can be used in computing the image. We 
will see some examples of the use of application-defined attribute variables in 
Chapter 15.

Uniform variables are constant across a graphics primitive and are read-
only to all shader types. As with attribute variables, uniform variables come 
from the OpenGL application program.

The GLSL built-in uniform variables reflect the kind of information that 
an application would specify, including such items as

• The primary OpenGL matrices, such as the ModelView matrix, the 
Projection matrix, and the Texture matrix.

• The derived OpenGL matrices, such as the Normal matrix, the 
ModelViewProjection matrix, and the ModelViewInverse matrix.

• The front and back clipping planes and the user-defined clipping planes.
• The material properties: ambient, diffuse, specular, shininess, and emis-

sion.
• The full set of light properties, including colors, position, direction, cut-

off, and attenuation properties.
• The texture environment.
• The fog data, such as color, density, start, and end.

Besides the built-in uniform variables, an application can provide user-
defined uniform variables as needed through the GLSL API. The mechanics of 
defining and initializing these variables will be described in Chapter 14. These 
variables can be used in similar ways as the system-defined attribute variables 
if you are working with data that is constant over a graphics primitive.

Another vertex shader input can come from texture coordinates that are 
defined in modeling operations. Textures can be used in vertex shaders for a 
variety of applications, such as displacement maps. However, the most com-
mon use of texture coordinates in a vertex shader is to pass them along as out 
variables so they can be interpolated by the rasterizer for use by the fragment 
shader, as we see in the next section.

Vertex shaders can also accept uniform sampler variables to access several 
kinds of textures. We discuss sampler variables in more detail in Chapter 9.

The inputs to the vertex shader are not just data but can also affect the 
kind of processing that will be done. Those that determine different kinds of 
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processing include the choice of projection, the shading to be used, whether 
color is specified or computed, and what kind of lighting and material will be 
used to set the color of a vertex. 

Output from Vertex Shaders

The output from a vertex shader is much the same kind of output as would 
come from the vertex processing in the fixed function graphics pipeline. A ver-
tex shader can create and set variables for later use in tessellation, geometry, 
or fragment shaders. The vertex shader must also create certain variables that 
are needed for rasterization and fragment processing.

The primary responsibilities for the vertex shader in the fixed-function 
environment are to compute and pass forward the coordinates of the model, 
transformed into clip space, and to compute and pass forward the color of 
each vertex.

The special variables that are output for the geometry of the model 
include the required variable gl_Position (which holds the 4D vertex position 
in clip coordinates), and gl_PointSize (which optionally holds a point size 
in pixels).  If texturing is to be used, the texture coordinate attribute variables 
gl_MultiTexCoordi must be converted into out variables so that they can be 
used in subsequent pipeline stages, including being interpolated by the raster-
izer for the fragment shader. 

The vertex shader can also compute the color of each vertex and pass it 
along to the fragment processor to use.   

A uniform variable could contain any information that should be con-
stant across a geometric primitive. That is a uniform variable’s scope. Uniform 
variables may be read in the vertex shader, in a tessellation shader, in a geome-
try shader, or in a fragment shader. Examples of such variables include glman’s 
range variables, which you define in GLIB files.

Other variables may be defined by the vertex shader to transfer any 
kind of per-pixel data to the tessellation, geometry, or fragment processing 
stage. These may include transferring the value of user-defined attribute vari-

ables to variables defined in the ver-
tex shader, for example. It may also 
include creating appearance informa-
tion such as pixel colors, or geometric 
information such as normals or light 
direction, which can later be used in 
tessellation, geometry, or fragment 
processing.Figure 7.2.  The inputs and outputs for a vertex shader.
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These inputs and outputs for the vertex shader are summed up in 
Figure 7.2.

Geometry

If you are planning to use computed colors or textures for your final image, 
based on the vertex coordinates of your graphical objects, it can be impor-
tant for your vertex shader to enable these coordinates to be passed to your 
fragment shader so they can be used there. There are two kinds of geometry 
that you can use for this: model-space geometry or eye-space geometry. We use a 
prefix convention to show these; the MC prefix corresponds to model-space 
geometry while the prefix EC corresponds to eye-space geometry. These are, 
of course, two of the main 3D spaces you work with in computer graphics. We 
can compute these primary kinds of geometry as follows.

• For model-space geometry, you simply use the space in which your 
model was defined: vec3 MCposition = aVertex.xyz;

• For eye space coordinates, you want to work with the geometry after all 
modeling has been applied. This is straightforward using the ModelView 
matrix: vec3 ECposition = (uModelViewMatrix*aVertex).xyz;
In Figure 7.3, we see how a shader can use the model coordinate (left) or 

eye coordinate (right) values to generate colors. The fragment shaders for both 
images create stripes that are parallel to the YZ plane, but the vertex shaders 
differ in sending either model coordinates or eye coordinates to the fragment 
shader to be used to determine the colors. The geometry in both cases has been 

Figure 7.3.  The teapot with model coordinates determining the colors (left) and with eye coordinates deter-
mining the colors (right).
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rotated to show that the model coordinates stay with the object’s geometry, 
but the eye coordinates stay fixed relative to the viewing space. That is, on the 
left, the stripes are parallel to the YZ plane of the model coordinates, and on 
the right, the stripes are parallel to the YZ plane of the rotated (eye) coordinate 
space.

Below is the vertex shader for Figure 7.3, with a Boolean switch to choose 
whether you want to send the eye-space or model-space coordinates on to 
the fragment shader. The lighting computation in this shader is very simple, 
merely handling the diffuse light intensity that would be part of a full light-
ing model, as we will discuss later in this chapter. In Chapter 8, we will show 
a simple fragment shader that handles the coordinates that this vertex shader 
develops.

uniform bool  uUseModelCoords;
out vec4    vColor;
out float   vX, vY, vZ;
out float   vLightIntensity; 

void
main( )
{
 vec3 TransNorm = normalize( uNormalMatrix * aNormal );
 vec3 LightPos  = vec3( 0., 0., 10. );
 vec3 ECposition = ( uModelViewMatrix * aVertex ).xyz;
 vLightIntensity = dot(normalize(LightPos - ECposition), 
           TransNorm);
 vLightIntensity = abs( vLightIntensity );

 vColor = aColor;
 vec3 MCposition = aVertex.xyz;
 if( uUseModelCoords )
 {
  vX = MCposition.x;
  vY = MCposition.y;
  vZ = MCposition.z;
 }
 else
 {
  vX = ECposition.x;
  vY = ECposition.y;
  vZ = ECposition.z;
 }
 gl_Position = uModelViewProjectionMatrix * aVertex;
}
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This vertex shader shows other useful techniques. It picks up the object’s 
color from the attribute aColor variable and passes it on as a new variable to 
be used by the fragment shader, computes the light intensity using a standard 
diffuse lighting technique and passes that on as well, so that the lighting can be 
used in the fragment shader. However, if you want to use the full ADS light-
ing model, you must take into account much more than just the light intensity. 
This is covered in Chapter 6.

Fixed-Function Processing after the Vertex Shader

Some parts of the graphics pipeline usually associated with the vertex process-
ing are not subsumed by a vertex shader. These include

• all clipping, including view volume clipping and user-defined clipping,
• homogeneous division,
• viewport processing,
• depth range scaling.

Finally, primitive assembly is done after all vertex processing is finished 
and before the assembled vertices are sent to later shaders (such as tessellation 
or geometry shaders) and finally to the rasterization stage.

OpenGL and World Coordinates

World Coordinates are what you get when Model Coordinates are transformed into the 
scene but are not yet transformed into the eye’s coordinate space. Why don’t we have 
an example here of colors determined by world-space coordinates? Because OpenGL 
doesn’t capture world coordinates in a way that shaders can get access to them 
through built-in variables. We can use the model coordinates because we can access 
the vertex coordinates through the OpenGL variable aVertex, and we can use the eye 
coordinates because we can access the model view matrix through the OpenGL variable 
uModelViewMatrix. But the world coordinates are not available to us using OpenGL 
fixed-function matrices. However, you can manage your own model transformations 
and create world-space vertices in your vertex shader using code such as

 uniform mat4 uWorldMatrix; // created and passed in by app

 . . .

 vec3 WCposition = ( uWorldMatrix * aVertex ).xyz;
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The Relation of Vertex Shaders to Tessellation Shaders

Tessellation shaders can optionally follow vertex shaders in the shader pipe-
line Their primary function is to expand an original geometric primitive into a 
set of primitives that expresses the geometry in more detail. This can be done 
by, for example, performing adaptive subdivision, refining coarse models into 
finer ones, applying displacement maps, and carrying out level-of-detail adap-
tations to improve the visual quality of an image.

The input to the tessellation shaders consists of the assembled primi-
tives from a vertex shader together with data that controls the subdivision to 
be performed. The output from the tessellation shaders consists of the collec-
tion of vertices for the new geometry, ready for the next primitive assembly 
step. This is all discussed more fully in Chapter 13.

The Relation of Vertex Shaders to Geometry Shaders

Geometry shaders have many of the same capabilities as tessellation shaders, 
but with two very important differences:

1. Besides some standard primitives, they may take as input a different 
kind of graphics primitive, which includes not only vertices in the primi-
tive but also vertices adjacent to the primitive—the “geometry with adja-
cency” primitive type—and they produce standard graphics primitives 
as output.

2. In creating the output, they are allowed to create new topologies. For 
example, a geometry shader can take points in and produce triangles out, 
or  can take triangles in and produce lines out.

In either case, both tessellation and geometry shaders can rely on vertex 
shaders to preprocess vertices and manage attribute variables for the benefit of 
the rest of the pipeline This is all discussed more fully in later chapters.

Replacing Fixed-Function Graphics  
with Vertex Shaders

On general principle, it should be possible to write a vertex shader to carry 
out any of the non-reserved vertex processing functions of the fixed-function 
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graphics pipeline. This is underscored by the fact that some graphics devices 
are starting to use OpenGL ES 2.0, which omits all fixed-function operations. 
In this section, we will look at some familiar functionality and develop vertex 
shaders to carry out those functions. We will look at standard kinds of opera-
tions, including several kinds of lighting and shading, and will show a vertex 
shader for each. In Chapter 8, we will develop fragment shaders to go with 
many of these vertex shaders, so that you can see a full solution. The full solu-
tion will be included with the materials available for the book.

Standard Vertex Processing

The vertex and primitive grouping information for a vertex shader comes 
directly from the graphics application as attribute variables or as user-defined 
uniform or other variables, as described above. The original vertex geometry 
is in model space, so the normal and vertex position need to be set into world 
space and then eye space, the built-in gl_Position variable needs to be defined, 
and the light intensity and color need to be defined as new variables and made 
available to later fragment shader processing. This is very straightforward, as 
shown in the simple vertex shader below. This shader comes from a glman 
example that defines the light position in the vertex shader, rather than taking 
it as an attribute variable from the application. It also does not compute the 
fragment colors itself, but sends the variables vColor and vLightIntensity to 
be used to determine the pixel colors in the fragment shader, as we have seen 
in earlier examples.

out vec4 vColor;
out float vLightIntensity;

void
main( )
{
 const vec3 LIGHTPOS = vec3( 3., 5., 10. );
 vec3 TransNorm = normalize( uNormalMatrix * aNormal );
 vec3 ECposition = ( uModelViewMatrix * aVertex ).xyz;
 vLightIntensity = dot(normalize(LIGHTPOS - ECposition),\  
           TransNorm);
 vLightIntensity = abs( vLightIntensity );

 vColor    = aColor;
 gl_Position  = uModelViewProjectionMatrix * aVertex;
}
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Going Beyond the Fixed-Function  
Pipeline with Vertex Shaders

So far, we have focused on how you can use vertex shaders just to replace fixed-
function capabilities. While that may seem redundant, it may have helped you 
to understand how to keep some of the kinds of graphics you want when you 
move to using shaders. It may also become the only way to get your graph-
ics on devices that do not support the fixed-function pipeline in their built-in 
graphics systems.

Shaders have the capability to add new functionality to the standard 
fixed-function kind of graphics. We have seen that techniques such as Phong 
shading, long missing from OpenGL graphics, are now possible using the 
combined capabilities of vertex and fragment shaders. Similarly, the vertex 
shader can be set up to take user-defined per-vertex attribute data to a vertex 
shader, so that an image can be directly derived from application data.

When we discussed the inputs to the vertex shader, we noted that an 
application can define its own attribute variables for use by shaders. As we 
pointed out earlier, however, only a vertex shader can read an attribute vari-
able, so one of a vertex shader’s tasks is to transfer the necessary attribute val-
ues to other variables, so they can be used in whatever ways the application 
has in mind. Of course, a vertex shader can modify the values in the process. 
These attribute variables may also be used in the vertex shader itself. This lets 
you define shaders that respond to data in different ways, a critical capability 
that will be exploited when we discuss scientific visualization in a later chapter.

Vertex Modification

A vertex shader can modify the coordinates it receives. The vertex shader is 
a one-vertex-in, one-vertex-out process, and it cannot create more vertices—
that’s what tessellation and geometry shaders are for. The main application 
of vertex shaders is to change the vertices of the primitives you already have 
defined, and to set up variables such as lighting that depend on the vertices. 
Some of this could take user-defined attribute or uniform variables and use 
them to define the changes to be made.

Dome Geometry Example

The fixed function pipeline is limited to performing linear transformations on 
vertices. A very interesting use for vertex shaders is to transform vertices in 
ways that the fixed function pipeline cannot. One such application is to per-
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form the transformations needed to display a 3D scene on a dome. A dome 
projector is capable of expanding the displayed image to nearly a 180º field of 
view, using a large fisheye lens. From a graphics point of view, there is a circle 
on the display screen that the lens 
maps to the dome circumference. 
If you look directly at the center 
of projection, the circumference of 
the circle is what you see when you 
look 90º to the left, right, down, 
and up, as shown in Figure 7.4.

Imagine a line drawn out 
from the center of the dome projec-
tor to the center of the dome wall. 
Now imagine a line drawn from the 
dome projector to the (x,y,z) point 
being plotted. The angle between 
these two lines is Φ, and the angle around that center line is Θ. The dome 
projection strategy is to leave Θ alone and treat Φ as a radius, with Φ = π/2 rep-
resenting the maximum radius of 1.0. This situation is shown in Figure 7.5 [3].

The dome projection can be demonstrated with glman. Here is the dome 
GLIB file:

##OpenGL GLIB
Ortho -1. 1. -1. 1. .1 1000.
Vertex dome.vert
Fragment dome.frag
Program Dome
Color 1. .5 0.

Figure 7.4.  The dome projection viewing volume.

Figure 7.5.  Dome projection diagrams.
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PushMatrix

 Rotate -90 1 0 0

 WireTeapot

PopMatrix

Notice that this uses an orthographic projection. That seems strange, 
because we would expect to use perspective for most of the images we would 
want to display. The perspective is actually here—it is created as part of the 
dome equation in the vertex shader. This happens through the use of the 
point’s z-coordinate in computing the angle Φ. That dome equation makes 
geometry appear to reach a vanishing point as it gets farther away and maps 
everything to be inside the unit circle. This orthographic projection is there to 
handle the display of the unit circle and to set up the depth clipping.

The dome vertex shader code actually does all the work of converting 
spaces that is shown in Figure 7.5. As is often the case when working with 
glman, we have hardcoded a variable, the light position that would be picked 
up from the OpenGL environment in a real application.

const float   PI = 3.14159265;

out vec4    vColor;

void

main( void )

{

 vColor = aColor;

 vec4 pos = uModelViewMatrix * aVertex;

 float lenxy = length( pos.xy );

 if( lenxy != 0.0 )

 {

  float phi = atan( lenxy, -pos.z );

  pos.xy = normalize( pos.xy );

 // pos.xy is now equal to (cos theta, sin theta)

  float r = phi / (PI/2.); // radius <= 1.

  pos.xy *= r;   // same theta, different radius

 // pos.z is left alone so that it can participate in depth   

// clipping

 }

 gl_Position = uProjectionMatrix * pos;

}
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Figure 7.6 shows the effect that this shader gives vertices as you zoom 
into the object. These images are from the monitor and so will look distorted, 
but they will look correct when projected through the projector’s fisheye lens. 
As you can see in the left-hand image of Figure 7.6, from a distance the teapot 
looks about the same as it always does. But as you get closer, you can see in the 
middle image of the figure that the geometry starts to get squeezed against the 
unit circle. This makes sense in the dome world, because as you zoom through 
a scene, objects never actually disappear to the left, right, bottom, or top, as 
they would in a normal Cartesian zoom. If you think of yourself as sitting in 
the center of the dome and flying through a scene, objects close to you just get 
more even with you. Finally, in the right-hand image of Figure 7.6, you are in 
the exact center of the teapot. From there, you can see the handle, spout, lid, 
and base of the teapot all at the same time. But objects can get behind you or 
too far in front, and so the only clipping that actually takes place in a dome 
projection is Z clipping.

Issues in Vertex Shaders

There are always some things in any new capability that can trip people up. 
This is also true of vertex shaders. Here, we talk about a few of those potential 
pitfalls you might run into.

Figure 7.6.  Zooming in on a dome projection.
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Creating Normals

First, when you change the geometry that came from your model, how do you 
create accurate normals? You may have defined the normals in your original 
model, but now the geometry has changed, and you need to compute the new 
model’s normals. How you can do this depends on the way your geometry is 
defined.

In case you have an analytic description of the modified surface or 
graphical object, you can compute the surface normal by analytic means. If 
you have any two non-collinear vectors in the tangent plane to the surface 

at a point, then their cross product (in the 
right order) is normal to the surface. So if 
you have the surface as an explicit function 
surface, z(x,y), the two partial derivatives 
define tangent vectors dx z x= 1 0 ∂ ∂  
and dy z y= 0 1 ∂ ∂  that lie in the plane, 
and their cross product dx × dy can be com-
puted and normalized to get an analytic 
normal. Figure 7.7 shows the function sur-
face of Figure 3.4 with specular lighting 
added as discussed in the previous chap-
ter. An exercise at the end of this chapter 
encourages you to explore this idea more 
generally.

An even more interesting case of this is the general surface, defined 
on a rectangular domain with points in 3D space. As an example, consider 
Enneper’s surface, defined by

We will omit the shader code here, but it is straight-
forward to compute the u and v partial derivatives of 
each component, build the tangent vectors in the u and 
v directions, and use the cross product to compute the 
normal to the surface at any point. A full set of applica-
tion and shader code is available for this on the book’s 
website. Figure 7.8 shows the surface.

Figure 7.7.  A function surface with analytic normals.

It’s nice to create exact 
normals at vertices of 
analytic objects, but it’s 
even better to do that for 
each pixel in the object. 
This exact shading is 
discussed in Chapter 8.
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If the surface is analytic, but implicit rather than explicit, 
so that the surface equation is given by S(x,y,z) = 0, then its 
normal vector is given byN S x S y S z= ∂ ∂ ∂ ∂ ∂ ∂  and 
again, this needs to be normalized. The overall computation 
is not otherwise significantly different.

On the other hand, if your surface or object is given 
by simply setting vertex values, the normal cannot be 
found analytically, and we must resort to computations 
based on cross products of edges at vertices. This may be 
made difficult, because the vertex shader can only access 
coordinates of the vertex being processed; it cannot access 
the coordinates of other vertices in the primitive. In case all 
the vertex computations can be known without the actual 
coordinates, this can be sidestepped. An example would be when a texture 
map is used to compute vertex offsets, because adjacent texture coordinates 
can be read from the vertex being processed, so the adjacent vertex coordinates 
can be inferred.

But what if the computation does not let us infer coordinates? There 
really is nothing the vertex shader can do in that case. However, geometry 
shaders give you a way around this. In Chapter 12, we will show how you can 
access the data from all the vertices in a primitive so you can compute a vertex 
normal based on the cross product of edges, and at least get flat shading. If 
your primitives also have adjacency information, you can get access to some 
adjacent primitives as well, so you may be able to do just a bit better than flat 
shading. See Chapter 12 for more information.

Summary

You can do several kinds of computation in either the vertex or fragment 
shader. For example, you can calculate the direction from a vertex to a light 
in a vertex shader and make it a variable to be interpolated in the fragment 
shader, or you can use the interpolated pixel position and calculate the direc-
tion from that in a fragment shader. How do you decide exactly what you do 
in the vertex shader and what you do in the fragment shader?

As you write vertex shaders, it can be tempting to write a separate shader 
for each application. However, the lessons of code reuse suggest that you 
should think about creating very general vertex shaders that can be used with 
several different fragment shaders. This offers a very good place to include 
appropriate #ifdef statements, so you can turn specific shader operations 

Figure 7.8.  Enneper’s surface.
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on or off very easily. This might mean that you would need to create more 
variables in your vertex shader than you would need for any one particular 
fragment shader, because other versions of the same shader might need them. 
Most shader compilers are fiercely optimizing, and you will likely not find that 
there is a penalty for including variables that don’t affect the generation of the 
scene detail.

Exercises

1. Replace the simple fixed-function vertex processing for a straightforward 
example with a vertex shader. Use the shader to compute each vertex 
position and vertex color, and pass on the color values as new variables 
to a fragment shader to get smooth shading. If your implementation of 
GLSL supports flat shading, implement that as well.

2. Take a straightforward vertex shader such as one you would use for 
smooth shading, and design two different ways to organize informa-
tion that you would pass on to a fragment shader to complete an image. 
Sketch out the fragment shader you would use, and discuss how your 
choices would affect the design of the fragment shader.

3. Look at the section of Chapter 14 that covers user-defined attribute and 
uniform variables. Think of an application that can use this kind of attri-
bute or uniform data, and assuming that these have been designed, write 
a vertex shader that takes this data and prepares it for a fragment shad-
er’s use. Sketch how the fragment shader would use that data in setting 
pixel colors.

4. Create a simple scene that is made up of a few primitives, each with its 
own modeling transformation. Create a model-space shader similar to 
that used for Figure 7.3, applying the appropriate modeling transforma-
tions to each vertex as it is used.

5. Implement the Cartesian hyperbolic vertex shader, described in the 
Hyperbolic Geometry section of the Scientific Visualization shader. Do it 
using glman, so that you can make the parameter K a uniform slider vari-
able and experiment with the effect of different values of K.

6. As we did in the discussion in Chapter 3 around Figure 3.4, define a 2D 
grid on a plane, and display any surface defined by analytic expressions 
by writing a vertex shader to compute the position and normals at the 
domain points. The vertex shader shown with the example in Chapter 3 
will be a good starting point, and you might consider implementing the 
Enneper surface whose equations are given in this chapter.
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7. Your goal is to simulate wringing out a sponge object. Design an object 
with a texture that easily shows deformation, and write a glib file that 
provides a uniform Twist slider variable. As the Twist slider goes from 0. 
to 1., the object should

• twist about the Y (vertical) axis,
• get squished to zero in the Y direction, and
• shrink by 30% in the horizontal (X and Z).

It should look something like the example below.
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Fragment Shaders and 
Surface Appearance8

Just as with vertex shaders, there are specific roles for fragment processing in 
the fixed-function graphics pipeline. Their task is to take state variables, plus 
the values that are interpolated across a polygon, and produce a final color for 
each pixel. In the fixed-function world there are few things to interpolate: posi-
tion, depth, color, and texture coordinates. The classical graphics literature 
contains many more things that can be done with interpolations, however, 
and the fragment shader in GLSL can do a great number of them. This chapter 
describes the basics of fragment shaders, including some fun techniques you 
can’t do with fixed-function OpenGL graphics.

Once again, we consider the role of fragment processing in the graphics 
pipeline, just as we did for the role of the vertex shader. The general place of 
this functionality is shown in Figure 8.1, which recalls Figure 7.1. We see that 
fragment processing takes the interpolated values within a graphics primitive 
in screen space and produces pixels with color and depth to be incorporated 
into the framebuffer.
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Basic Function of a Fragment Shader

The basic function of a fragment shader is to take uniform variables and the 
output from the rasterizer and compute the color of the pixel for each frag-
ment. Figure 8.2 illustrates this process, showing first how the distinct verti-
ces of a primitive are processed by the rasterizer to form the set of fragments 
that make up the primitive.

Of course, many other built-in properties of vertices besides color and 
light intensity can be interpolated in fragment processing. The two most 
important of these are texture coordinates and pixel depth. If you are using 
texturing, as the texture coordinates are interpolated, you can use these coor-
dinates to sample a texture (or multiple textures) to help determine the colors 
of each pixel. We will focus on textures and their contribution to fragment 
processing in the chapter on texturing, and will keep our focus on other frag-
ment processing here.

Inputs to Fragment Shaders
There are many different kinds of inputs to a fragment shader from an appli-
cation, from the OpenGL system, or from a vertex shader. By now, these are 

Figure 8.1.  The place of the fragment shader in the pipeline.
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quite familiar, but we want to remind our-
selves of them in the fragment shader context.

Uniform Variables

Fragment shaders can use uniform variables 
that are provided by the system or by the 
application. Because uniform variables do 
not change within a graphics primitive, they 
will not change during the interpolations that 
the rasterizer performs. However, they can 
be used for any computations that might be 
needed in fragment processing.

As a preview, there is a special kind of 
uniform variable for textures that is avail-
able to both vertex and fragment shaders, 
but which is particularly important for frag-
ment shaders: the uniform sampler variable. 
The uniform sampler variables correspond to 
textures, so with the 1D, 2D, and 3D textures, 
we have sampler types sampler1D, sampler2D, 
and sampler3D. Since GLSL also allows cube 
mapping textures, we have the additional 
sampler type samplerCube. The particular 
sampler type that you use must correspond to 
the texture type that was defined in your application. The value associated with 
a sampler variable is the texture image number associated with the texture it 
represents, which is also set up in the texture definition functions in your appli-
cation. The texture( ) function will be used with the texture unit and texture 
coordinates to return the texture value at those coordinates, as in the line

vec4 textureValue = texture( TexUnit, coordinateVector );

We will see examples of this use in texture-based fragment shader code later 
in this chapter.

Input and Output Variables

Perhaps the most important inputs to fragment shaders are the variables that 
are passed to the fragment shader as out variables by the pipeline stage that 
occurs right before the rasterizer and fragment processor. This could be a 
vertex, geometry, or tessellation shader. These variables are the data that are 
interpolated across a graphics primitive in order to give the fragment shader 
enough information to set the colors of each pixel.

Figure 8.2.  The vertices of a graphics primitive 
and the fragments that are processed to make up 
the primitive being displayed.
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The fragment shader must use an output vec4 variable to declare what 
color should be placed in its pixel. In OpenGL 3 and beyond, you declare this 
yourself, something like

 out vec4 fFragColor;

In pre-OpenGL 3 systems, there is a built-in vec4 variable, called gl_FragColor, 
for this purpose. Our examples here will use the standard in OpenGL 3 and 
beyond.

You can declare other out vec4 variables in your fragment shader and 
write color data to it in order to send your graphics output to another buffer or 
a texture. You simply declare these variables to be the appropriate kind.

Other variables can also be provided by the previous pipeline stage 
to give the fragment shader any data or information that could be used in 
developing the pixel colors. Among the things these variables might provide 
are

• Light intensity, for scenes that use per-vertex lighting.
• Geometric coordinates in model or eye coordinates, as discussed later in 

this chapter.
• Texture coordinates, used as indices into the texture array to a per-frag-

ment lighting model.
• Per-vertex reflection vectors, for use in environment mapping, cube map-

ping, or any other computation that involves reflections.
• Per-vertex refraction vectors, for use in cube mapping or any other com-

putation that involves refractions.
• Vectors from vertices to the light source(s), for dealing with spot lighting 

or Phong shading.
• Data, for other computations that may depend on application-specific 

information that has been passed through the vertex processor.
• The coordinates (x, y, z, 1/w) of each fragment in window-relative space, 

from the built-in variable gl_FragCoord.

These variables are not required, 
but they might be written by the previous 
shader in the pipeline in case the applica-
tion using the shaders needs them for its 
particular use.

The overall input and output opera-
tions of fragment shaders are shown in 
Figure 8.3.Figure 8.3.  Inputs and outputs for a fragment shader.
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Additional Output Variables

A fragment shader program can also write a value to the built-in variable 
float gl_FragDepth so that the depth can be used in later depth process-
ing. Setting this overrides the fragment depth that the graphics pipeline keeps 
around for use in the depth buffer. This would be a way, for example, for you 
to offset pixels’ depth values to alter the scene’s z-fighting behavior.

Particularly Important “In” Variables for the Fragment Shader

The most important of the vary-
ing variables are those that give the 
position, color, texture coordinates, 
depth, and user-defined values. 
These are described in more detail 
below.

Colors

Computing the color for each frag-
ment can be done in many differ-
ent ways. The fixed-function role 
includes operations to interpolate 
colors that are passed in for each 
vertex, to interpolate texture coordi-
nates and use textures to calculate colors, and to use the interpolated color and 
texture color to develop a final pixel color. Once the color is developed, it is 
written to your output vec4 color variable (fFragColor in our case) to store the 
pixel’s color for further work before the fragment is written to the color buffer.

From now on, we are going to use the vec4 variable fFragColor to indi-
cate we are assigning the final pixel RGBA to. You, of course, are free to use 
whatever variable name you want, or to continue to use gl_FragColor in the 
compatibility profiles.

Texture Coordinates

If your graphics primitives have been assigned texture coordinates, you can 
get the texel coordinates for each vertex from whatever texture coordinates 
variable you have interpolated through the rasterizer. As most of our exam-
ples in this chapter use just a vertex and fragment shader, we will call this vec2 
variable vST. 

Once you have the texture coordinates interpolated through the raster-
izer, you get the actual texel color from the texture( ) function. You can then 

If you are working in compatibility mode, 
there are built-in versions of several of the 
input variables we discuss in this chapter:
 gl_Vertex

 gl_Normal

 gl_MultiTexCoordi

 gl_NormalMatrix

 gl_ModelViewMatrix

Here we use the variable name conventions 
we introduced earlier, but the conventions 
are basically the same as the built-in names 
without the gl_ prefix.
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use that color for any further texture processing, including multitexturing or 
managing the texture mode. This is described fully in the chapter on texture 
mapping.

Other Data

In the previous chapter, we saw that an application can create attribute data 
for each vertex, and that a vertex shader can take this attribute data and cre-
ate variables for the tessellation and geometry shaders that eventually pass 
them on to be used in creating colors. Later in this chapter, we will see some 
examples showing how this can be done. This is a particularly important capa-
bility for visualization that will be discussed in more detail in the visualization 
chapter.

Coordinate Systems

If you will be using geometric information that has been passed into the frag-
ment shader as in variables, as we discussed in the last chapter, you will get 
different effects, depending on the coordinate system that is used to develop 
the geometric information for your fragment shader’s use. In the next few sec-
tions, we will talk about how some of these coordinate systems affect your 
images.

Model Coordinates

Model coordinates are directly available to the vertex shader from the per-ver-
tex variable we called aVertex (or gl_Vertex in compatibility mode), but must 
be moved into output variables in the vertex shader before they can be passed 
along to the tessellation or geometry shader and finally used in a fragment 
shader. Similarly, the model-coordinate normal is available from the attribute 
variable we called aNormal (or gl_Normal) but must be moved into an output 
variable by a vertex shader before it can be used in a fragment shader.

You are most likely going to want to use model coordinates for develop-
ing an appearance for your objects when you want that appearance to depend 
on the object itself, and not on the location or orientation of the object in space. 
For example, this could be the basis for a procedural texture that moved with 
the object, as we will discuss later in this chapter. Another example of model-
coordinate textures could come from building a rectangular space with the 
same dimensions as a 3D data texture and using slices of the space to view the 
data in the texture, yielding a kind of volume visualization. Another example 
of the use of model coordinates could be to create an object-linear one-dimen-
sional texture. This is discussed in the stripes example later in this chapter.
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Eye Coordinates

Eye coordinates are what model coordinates become when they have been 
transformed into the scene where they belong and then transformed so that they 
are given with respect to the eye’s viewing coordinate system. The eye coor-
dinates for a vertex can be computed from the per-vertex variable aVertex by

uModelViewMatrix * aVertex 

and the eye coordinate version of the normal vector is computed from aNormal 
by

uNormalMatrix * aNormal

Both of these computations were used in early glman examples in the 
chapter on shader concepts.

You might use eye coordinates in case you want to present information 
from the viewer’s point of view, and in that case you might develop a pro-
cedural texture based on eye-coordinate information. Textures based on eye 
coordinates can include eye-linear one-dimensional textures, discussed in the 
ChromaDepth example later in this chapter. This idea will also be used to cre-
ate a 3D “data probe” in the visualization chapter.

Fragment Shader Processing

Outputs from Fragment Shaders

The primary output from the fragment shader is the same as that from the 
fragment-processor in the fixed-function pipeline: pixel color, ready to be pro-
cessed by the remaining pixel operations and then written into the framebuf-
fer. The fragment shader can also produce a depth value for each pixel, which 
can be useful if you want to compute a depth that is different from the usual 
interpolation of the vertex depths.

Replacing Fixed-Function Processing  
with Fragment Shaders

Before we start thinking of developing sophisticated kinds of fragment shad-
ing, we should stop to ask how we would implement the fixed-function kinds 
of shading we get from ordinary OpenGL. Sometimes this is easy, but some-
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times it involves more computation than we might expect. In these sections, 
we will review the primary kinds of work of the fixed-function fragment pro-
cessor and ask how we can do them with a fragment shader.

Shading

In the world of fixed-function OpenGL, shading means one of the standard 
ways to apply colors to the pixels in a graphics primitive. For fixed-function 
operations, all the processes that develop a color from lighting models are done 
during vertex processing, so if we simply replace the fixed-function process-
ing with fragment shaders, we can assume that the key inputs to the fragment 
shader are the color values, depths, and texture coordinates of each vertex in 
each graphics primitive. The simple flat and Gouraud shading were described 
in the earlier chapter on lighting.

Flat Shading

Flat shading is a standard, and very simple, way to give a color to a polygon. 
It takes a single color and applies it identically to each pixel in the polygon. 
To use flat shading, we usually specify a single color first and then define the 
vertices of the primitive. If you should specify a separate color for each vertex 
but still specify flat shading, the color that is used will be the color of the last 
vertex specified in the primitive.

We noted in the chapter on vertex shaders that GLSL did not originally 
support non-interpolating rasterization behavior, but that it has now added 
the keyword flat for output variables headed to the fragment shader as well 
as for the corresponding input variables in the fragment shader, so that those 
variables are not interpolated across the polygon. In the previous chapter, we 
introduced this concept and gave an example of a vertex shader to support flat 
shading. Below, we show some fragment shader code that does this.

in flat float  vLightIntensity;
uniform vec4  uColor;
out    vec4  fFracColor;

void main( )
{
 fFragColor= vec4( vLightIntensity * uColor.rgb, 1. );
}

The effect of this code is to use the familiar diffuse lighting computa-
tion that computes the light intensity in the vertex shader and sends it as a 
flat variable instead of as a regular variable. The light intensity then is treated 
as a constant for the primitive, yielding the same color for the entire primitive.
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Note that flat variables can also be used as a way for a vertex shader to 
pass “global” values down to a fragment shader.

Smooth (Gouraud) Shading

Smooth shading (or Gouraud shading) is a very helpful tool in creating attrac-
tive images with OpenGL, but it has some rather severe shortcomings. It does 
not handle specular highlights well, because specular highlights do not lin-
early interpolate well on the interior of a polygon. Also, smooth shading is 
vulnerable to Mach bands, meaning it shows the boundaries of polygons more 
than it should. Its implementations may also do strange things for quads and 
polygons that have very different colors at their vertices, because it is usu-
ally implemented by breaking the object into triangles and handling each tri-
angle separately. Unfortunately, implementing smooth shading in a fragment 
shader will likely not solve these problems, but it may well be something you 
would want to have in your shader arsenal.

An extremely simple fragment shader to do smooth shading is shown 
below. This simply takes the color that has been computed for each vertex, 
using whatever process the vertex shader has needed and saved there as 
vmyColor. A vertex shader that does this was shown in the chapter on light-
ing, and a Gouraud-shaded teapot was shown in Figure 5.4. The computed 
color is passed to the fragment shader and is interpolated across the primi-
tive and saved as the fragment color in fFragColor. Of course, this is a very 
simple example, but it does everything that fixed-function smooth shading 
does.

in  vec3  vmyColor;
out vec4  fFracColor

void main( )
{
  fFragColor = vec4( vmyColor, 1.0 );
}

Traditional Texture Mapping

Texture mapping is another fixed-function operation that can be readily han-
dled by fragment shaders. Texture coordinates are easily set up as input vari-
ables, so they are interpolated for each fragment, and sampler functions can 
look up coordinates in a texture map to get the actual texels to be used in 
determining each pixel’s color. Rather than covering texture mapping in this 
chapter, we discuss it fully in the next chapter.
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False Coloring

Color is important in creating realistic images, but it has other functions as well. 
If you want to display information that has more than three dimensions, for 
example, you can use traditional geometry to show up to three dimensions and 
then use color for the fourth. You can also use color to emphasize the third 

dimension when your geometry is 
projected to the two dimensions of a 
screen or of paper. This use is shown 
in Figure 8.4; this same figure was 
used in the discussion of false coloring 
(or pseudocolor) in [14], but here the 
figure has been generated using ver-
tex and fragment shaders and is much 
more effective. The technique is much 
more general than this, of course. We 

will examine this approach and the more general concept of transfer functions 
in the later chapter on shaders in scientific visualization.

The vertex shader is much like the one we illustrated when we created 
Figure 6.7 in the previous chapter, so we won’t include it here. The function 
in the figure is a Coulomb function. If we have an array of vec3 data and each 
entry’s x- and y-coordinates represent a position in the plane, while the z-coor-
dinate represents the charge at that point, the function is 

value x y
Q i z

x Q i x y Q i y
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.

. .
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where the sum is over all the entries in the plane. This function is written in 
the vertex shader as

float Value = 0.0;

for(int i=0; i<3; i++ )

{

 float dist=sqrt((x-Q[i].x)*(x-Q[i].x)+(y-Q[i].y)*(y-   
        Q[i].y));

 Value += Q[i].z/dist;

}

Note that the dist computation could have been expressed, probably 
more efficiently, as

Figure 8.4.  A surface whose elevation is coded with color.
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 float dist = distance( vec2(x,y), Q[i].xy );

The fragment shader simply uses the z-coordinate of the interpolated 
model-space coordinates for each vertex, computed in the fragment shader, 
as the input to a color-determining function, and colors the pixel accordingly. 
This use of data to determine color is known as a transfer function. We use it 
here, and will use it a lot more in the chapter on visualization.

in float vLightIntensity;
in float vMyHeight;
out vec4 fFragColor;

uniform float uVertical;
uniform float uScale;

vec3 Rainbow( in float zval )
{
 vec3 myColor;

 if (zval < 0.)    // black if below bound
 { myColor.r = 0.; myColor.g = 0.; myColor.b = 0.; }
 
 else if ((zval >= 0.) && (zval < 0.2)) // purple to blue   
        // ramp
 { myColor.r=0.5*(1.0-zval/0.2); myColor.g=0.0; 
 myColor.b=0.5+(0.5*zval/0.2); }
 
 else if ((zval >= 0.2) && (zval < 0.40)) // blue to cyan 
        // ramp
 { myColor.r= 0.0; myColor.g=(zval-0.2)*5.0;  
  myColor.b = 1.0; }
 
 else if ((zval >= 0.40) && (zval < 0.6)) // cyan to green 
        // ramp
 { myColor.r= 0.0; myColor.g= 1.0;  
  myColor.b = (0.6-zval)*5.0; }
 
 else if ((zval >= 0.6) && (zval < 0.8)) // green to yellow   
        // ramp
 { myColor.r= (zval-0.6)*5.0; myColor.g= 1.0;  
  myColor.b = 0.0; }

 else if (zval >= 0.8)    // yellow to red 
        // ramp
 { myColor.r= 1.0; myColor.g= (1.0-zval)*5.0;  
  myColor.b = 0.0; }
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 else    // white if above bound
 { myColor.r = 1.; myColor.g = 1; myColor.b = 1.; }

 return myColor;
}

void main( )
{
 vec3 color = Rainbow(vMyHeight);

 fFragColor = vec4( color, 1.);
}

Another example of using false color is to provide contour lines for sur-
face displays. To do that, you would create and display the surface however 
you like, but if the model-space elevation at a particular pixel is within a cer-
tain tolerance of one of the contour line elevations, you color the pixel with 
the contour line color, instead of the ordinary surface color. If you are already 
using false coloring for your figure, you can include this contour information 
in your transfer function; if you are not, you can make a special contour-only 
transfer function and apply it in your fragment shader after your other color-
ing operations. See Chapter 15 for more details. This kind of application is 
similar to the model-space coloring example shown in Figure 6.3 and is left as 
an exercise for the reader.

What Follows a Fragment Shader?

The fragment shader is not the last word on the color of pixels that are written 
to the color buffer. Several steps in the fixed-function graphics pipeline fol-
low the fragment shader. These include depth comparisons if depth testing is 
enabled, alpha blending, stencil testing, masking, dithering, and logical raster 
operations. Because these are standard fixed-function operations, we won’t 
go into them further. These operations use information that is not available 
to the fragment shader, such as the existing contents of the color and depth 
buffers, and are tightly controlled as pixels are finally written to the color buf-
fer. The fragment shader has some role in these operations, even if it does not 
perform them. Depth testing uses the depth output from the fragment shader, 
for example, and alpha blending uses the alpha channel that is the fourth coor-
dinate of the fFragColor value.
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Additional Shader Effects

The main value in fragment shaders, of course, lies in the capabilities that go 
beyond the functionality that is available from the fixed-function graphics 
pipeline. In the sections below, we’ll talk about some of these capabilities and 
give examples of fragment shaders that support them.

Discarding Pixels

A unique capability of fragment shaders (that 
is, unavailable with standard fixed-function 
processing) is the ability to discard pixels. 
This function is much stronger than sim-
ply setting the alpha value of pixels to zero, 
because it makes the pixel disappear in any 
view. We mentioned this in the earlier chapter 
on general shader concepts, so here we simply 
remind ourselves of this capability, shown in 
Figure 8.5. The key factor is the discard key-
word in the fragment shader that instructs the 
shader to stop processing the pixel and not 
record it in the framebuffer.

Phong Shading

In the previous chapter we introduced a function that computes the ambient-
diffuse-specular lighting model from a set of light and material properties. In 
that chapter, we showed how that function could be used in a vertex shader to 
set colors for each vertex, so that the rasterizer could smoothly interpolate the 
colors or intensities across a polygon. Here, we want to see how to do lighting 
at each fragment, instead of at each vertex. This is known as Phong shading.

A Phong shading fragment shader takes the normal as a varying variable 
from the vertex shader, has it interpolated in the rasterizer, and uses the inter-
polated normals to compute the ADS color at each fragment. The fragment 
shader that created the right hand image in Figure 8.6 is shown below. This 
uses the ADSLightModel( ) function introduced in the lighting chapter.

in vec3 vNormal;  // interpolated from the vertex shader
in vec4 vPos;    // interpolated from the vertex shader
out vec4 fFragColor;

Figure 8.5.  The standard teapot with some  pixels  
discarded by a noise process.
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// Assumed context:
// 
// variables myNormal and myPosition are passed in and
// the ADS color is returned from the function

vec3 ADSLightModel( in vec3 myNormal, in vec4 myPosition )
{
// use the function from the Lighting chapter
}

void main( )
{
 vec3 color = ADSLightModel( vNormal, vPos);
}

The figures from the lighting chapter showing how Phong shading dif-
fers from smooth shading are repeated here as Figure 8.6. Notice that the jag-
ged per-vertex artifacts in the smooth-shaded example are eliminated by using 
Phong shading.

The specular highlight in the right image is much more effective than that 
in the left image. The reason is that in the left image, the specular highlight is 
computed at each vertex and interpolated across the polygon. If a polygon’s 
vertices don’t get much specular lighting, then the pixels in that polygon won’t 
have much either, even if the specular lighting is supposed to be high in the 
interior.

Shading with Analytic Normals

As good as Phong shading is, it is still not exact, because it interpolates nor-
mals linearly across each primitive, so if there is any nonlinear variation in that 

Figure 8.6.  The smooth- (left) and Phong-shaded (right) teapots from Chapter 5.
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region, it is not seen. Sometimes we can do 
better. In the previous chapter, we showed 
that we could create an analytic height-
field function surface with a vertex shader, 
computing the normal at each vertex by 
using partial derivatives. We can also cre-
ate the normals at each pixel in a fragment 
shader by the same technique.

We begin by interpolating the points 
in the horizontal plane of the function in 
the rasterizer. It is straightforward to get 
these from the aVertex values in the ver-
tex shader, and then create a vec2 varying 
variable for the fragment shader’s use. You also need to pass the actual pixel 
position as a varying variable, because that is needed in the ADSLightModel( ) 
function. You then compute the normal from the interpolated domain coordi-
nates and pass that value and the position to the lighting function to get the 
pixel color.

The result is shown in Figure 8.7, which should be compared with 
Figure 7.7 in the previous chapter. Notice how much more smoothly this sur-
face moves from one primitive to another, especially in the area along each of 
the foreground ridges. Is this better than Phong shading? Theoretically, yes, 
because it is analytic. Visually, it will probably depend on the nature of the 
surface. This is explored in an exercise.

The fragment shader for this figure is shown below. It uses the 
ADSLightModel( ) function given above, so that function has been abridged. 
The surface is given by the function f x y x y( , ) . sin= ∗ +( )0 3 2 2  with partial 
derivatives
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 You will see these in the fragment shader code below, where we assume 
that the two input variables vMyXY and vPos come from a vertex shader.

in vec2 vMyXY;
in vec4 vPos;
out vec4 fFragColor;

Figure 8.7.  The rippled surface with exact shading.



172 8.  Fragment Shaders and Surface Appearance

vec3 ADSLightModel( in vec3 myNormal, in vec4 myPosition )
{
 ...
}

void main( )
{
 float dfdx = 2.*0.3*vMyXY.x*cos(vMyXY.x*vMyXY.x + 
                vMyXY.y*vMyXY.y);
 float dfdy = 2.*0.3*vMyXY.y*cos(vMyXY.x*vMyXY.x + 
                vMyXY.y*vMyXY.y);
 vec3 xtangent = vec3( 1., 0., dfdx );
 vec3 ytangent = vec3( 0., 1., dfdy );
 vec3 thisNormal = normalize( cross( xtangent, ytangent ) );

 vec3 color = ADSLightModel( thisNormal, vPos);
 fFragColor = vec4( color, 1. );
}

As a quick aside, the code above was written to correspond closely to the 
equations that it represents. But one could be a little more cryptic, and a little 
more efficient, by coding the expression

vMyXY.x*vMyXY.x + vMyXY.y*vMyXY.y

as
dot( vMyXY.xy, vMyXY.xy )

Anisotropic Shading
The examples of shading above have all been isotropic, that is, the light reflected 
from the surface at a point has been assumed to be the same in all directions. 
However, this is not true of all surfaces. Anisotropic shading models light 
that is reflected differently in different directions [19]. This is a property of a 
surface, and examples include hair (see the left image in Figure 8.8), brushed 
metallic surfaces, scored surfaces, or surfaces made up of oriented threads. A 
fur-covered surface can also be treated as an isotropic surface.

Anisotropic shading does not simply use the usual angles, the angle from 
the normal of the diffuse reflection and the angle from the reflected light in the 
specular reflection. Instead, it computes the angle with which light is reflected 
from a surface. This may be a direct calculation, as it is in the example below, 
or it may use a function called the bidirectional reflection distribution function (or 
BRDF) to determine how much light is reflected toward the eye. This function 
typically depends on both the latitude Θ and longitude Φ angle of the eye and 
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of the light from the point being lighted: ρ Θ Φ Θ Φe e l l, , , .( )  The BRDF may also 
take into account behaviors that differ for different wavelengths (or different 
colors) of light.

None of the shading models in the fixed-function graphics pipeline of 
OpenGL handle anisotropic shading at all, but we can do this within a frag-
ment shader, as described in the chapter on lighting. In the right image in 
Figure 8.8, we see an example of a sphere that uses an anisotropic fragment 
shader, discussed below. The light returned by the surface is clearly not the 
circular spot we would have expected to see from normal (that is, isotropic) 
shading; its shape reflects the behavior of brushed metal or threads that all go 
through the poles of the sphere.

Data-Driven Coloring
One of the really significant capabilities that GLSL shaders give you is the ability 
to pass data to the shaders, where it can be used to derive the colors of individ-
ual pixels. We have already alluded to the fact that an application can provide 
data to shaders by defining uniform and attribute variables that can be used 
freely in developing an image. This idea is also important in scientific visualiza-
tion and will be covered in detail in that chapter, but we describe it briefly here 
because this capability is an important part of the idea of the fragment shader.

As an example of using data to color an image, we can get a number of 
different kinds of weather data. Say that we want to be able to draw some con-
clusions about the weather from this data. Figure 8.9 shows three images from 
the GOES (Geostationary Operational Environmental Satellites) system, dis-
playing a visible light image at the left, a data map of infrared (temperature) in 
the center, and a data map of water vapor concentration at the right. 

Figure 8.8.  Anisotropic lighting in human hair (left); a sphere with procedural anisotropic 
shading (right).
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Suppose we wanted to ask for the areas in which snow is most likely. 
We would infer that these areas are where the water vapor concentration is 
high and the infrared is low. It is difficult to eyeball this from the images in 
Figure 8.9, but if you read the visible, infrared, and water vapor from three 
textures into visibleLightColor, infraredInten and watervaporInten, and 
read two thresholds, InfraRedThreshold and WaterVaporTheshold, as uni-
form variables, it is straightforward to write these criteria into a fragment 
shader, as shown in the fragment shader here:

vec3 rgb = visibleLightColor;
. . .
if( infraredInten < InfraRedThreshold &&  // cold
  watervaporInten > WaterVaporThreshold ) // damp
   rgb = vec3( 0., 1., 0. );  // “likely snow” = green

fFragColor = vec4( rgb, 1. );

The image generated from this shader 
is shown in Figure 8.10. Note that this 
gives a fairly obvious representation of 
the three major storm systems that were 
moving through the United States that 
day. Making this a real weather forecast-
ing tool would require applying more 
science to determine what the appropri-
ate cutoff values for moisture and infra-
red should be, along with studying other 
factors that might be included. But this 
image by itself is very useful.

Figure 8.9.  Three GOES satellite views from space: visible light (left); infrared (center); water vapor concen-
tration (right).

Figure 8.10. Using a fragment shader 
to locate all areas with high water 
vapor concentration and low infrared.
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Images Using Other Data

An important use of computer graphics is to create images that show how data 
or other information is distributed over some concrete or abstracted geometry. 
This use, and how it is facilitated by shaders, is discussed in the later chapter 
on scientific visualization. Here we want to give a simple example of how the 
eye coordinates can be used to modify the colors in an image.

The example we present is ChromaDepth coloring [2]. This computes the 
color for each vertex in your model by the depth of the vertex in your scene; 
that is, by the distance from the vertex to the eye 
plane. The purpose of this is to give the illusion 
of depth when the scene is viewed while wear-
ing special ChromaDepth glasses.

Because we are working with shaders, 
we can obtain a vertex’s eye coordinate depth 
easily as the z-coordinate of its eye coordinate, 
and can map that distance into a range that the 
ChromaDepth( ) function below can use: typi-
cally 0 to 1, though the function will clamp the 
value into that range. The ChromaDepth( ) func-
tion implements a transfer function, a function 
that computes a color from a real number. This 
can be called from a fragment shader to set the 
color of each fragment as it is interpolated. This 
function was used to create the image shown in 
Figure 8.11. 

uniform float uChromaBlue;  // z-depth corresponding to blue
uniform float uChromaRed;  // z-depth corresponding to red

in float vLightIntensity;   // from lighting model
in float vZ;        // depth in eye coordinates
out vec4 fFragColor;

vec3
ChromaDepth( float t )
{
 t = clamp( t, 0., 1. );

 float r = 1.;
 float g = 0.0;
 float b = 1. - 6. * ( t - (5./6.) );

Figure 8.11. A dinosaur with ChromaDepth col-
oring and erosion.
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 if( t <= (5./6.) )
 {
  r = 6. * ( t - (4./6.) );
  g = 0.;
  b = 1.;
 }

 if( t <= (4./6.) )
 {
  r = 0.;
  g = 1. - 6. * ( t - (3./6.) );
  b = 1.;
 }

 if( t <= (3./6.) )
 {
  r = 0.;
  g = 1.;
  b = 6. * ( t - (2./6.) );
 }

 if( t <= (2./6.) )
 {
  r = 1. - 6. * ( t - (1./6.) );
  g = 1.;
  b = 0.;
 }

 if( t <= (1./6.) )
 {
  r = 1.;
  g = 6. * t;
 }

 return vec3( r, g, b );
}

void
main( )
{
 float t = ( vZ - uChromaRed ) / ( uChromaBlue - uChromaRed );
 vec3 theColor = ChromaDepth( t );
 fFragColor = vec4( vLightIntensity*theColor, 1. );
}



177Exercises

Exercises

1. Hand-code a polygon with different colors at each vertex and draw it, 
specifying flat shading using only the fixed-function pipeline. Describe 
the result, and discuss why this result may happen.

2. Hand-code a polygon having more than three vertices with different col-
ors at each vertex and draw it, specifying smooth shading using only the 
fixed-function pipeline. Describe the result, and discuss why this result 
may happen. It may help to try several examples where the vertex order 
or the color at each vertex is changed.

3. Create a simple surface of your choosing and color it, based on the 
model-space elevation of each pixel. You may either color the whole sur-
face based on elevation, or you may use a lighting model to display the 
surface and create contour lines based on elevation.

4. Write the necessary shaders to create a Phong-shaded version of the 
ripple surface of Figure 8.7, and compare it to the exact-shaded surface 
shown there. Can you see a difference? What if you zoom in very closely 
to the surface?

5. Take the fragment shader for round bumps on a sphere and adapt it from 
a purely diffuse lighting and shading model to a Phong lighting and 
shading model.

6. Identify another analytic surface besides that of Figure 8.7; you may find 
examples from mathematics, physics, chemistry, or other sources. Create 
the surface and calculate exact shading for it as described in this chapter. 
Compare that with smooth or Phong shading for the surface.

7. Add the ChromaDepth( ) function to any program you have written, such 
as the surface of the previous exercise, in order to use the ChromaDepth 
coloring to present a three-dimensional image to the viewer.
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Surface Textures in 
the Fragment Shader9

Texture mapping is a special activity within shader programs. In can be used 
in vertex, geometry, tessellation, or fragment shaders, although most of the 
time it seems to find its most fun use in fragment shaders. In texture map-
ping, texture coordinates from the original model are used as an index into a 
1D, 2D, or 3D texture. Textures can hold any piece of information. Most of the 
time, they hold information related to determining the color of a pixel during 
fragment processing. However, more and more, textures are finding them-
selves being used to hold general-purpose data for a variety of shader-based 
computations. However, in this chapter, we will discuss the use of textures for 
image creation. While this should be familiar from your introduction to graph-
ics, you have much more control over the use of textures when you’re using 
fragment shaders. We will go well beyond the traditional texture mapping 
and will cover other techniques, such as bump mapping and cube mapping, 
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that take texture coordinates as their starting point. And later, in Chapter 15 
on scientific visualization, we will show how textures can be used to pass data 
to shaders.

Texture Coordinates

Texture coordinates specify the coordinates in texture space for each vertex of a 
graphics primitive. Texture coordinates are not part of the basic geometry of 
a primitive, but rather are an attribute attached to each vertex. In the vertex 
shader, the per-vertex texture coordinates are typically assigned to variables 
that can be interpolated by the rasterizer across the entire polygon and then 
given to the fragment shaders.

In the previous chapter on fragment shaders, you saw that you access the 
interpolated texture coordinates with the texture coordinate variables we have 
been calling vST in the vertex shader, and that you can get the RGBA color of 
a texel from one of the texture( ) functions. You are not limited to using just 
the single texels at those given texture coordinates, however. You can also use 
any texture coordinates you need in developing the color of the pixel. As an 
example, in the chapter on scientific visualization, we will describe the line 
integral convolution (LIC) process that probes the texture map along specific 
function streamlines to compute the color of each pixel. You can use a great 
deal of creativity in how you use textures.

Traditional Texture Mapping

Traditional OpenGL texture mapping uses a number of functions that define 
the way a texture is read, stored, accessed, and processed. The apparent com-
plexity comes mostly from the flexibility that a generalized graphics API must 
have in order to be used so widely. If you are writing your own texture func-
tions in a fragment shader, you can implement just those operations you need, 
which should make the task less intimidating than it might appear.

Your experience is that fixed-function OpenGL supports four kinds of 
textures: 1D, 2D, and 3D textures, and cube maps. It also supports multitextur-
ing. Our goal is to see how you can create each of these standard functional-
ities with fragment shaders.

When you first encounter texturing in OpenGL, you find that to use tex-
tures, you must first set up a number of texture properties. You must associate 
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a texture identifier (an integer generated by glGenTextures( ); this is texA in 
Figure 9.1) with a texture, you must set a number of texture parameters (such 
as texture wrap and filter), and you must set the texture image parameters that 
interpret the texture (color model, dimensions, size of texture component, and 
texture data). This is illustrated in Figure 9.1, which shows how the usual set of 
texture functions specify texture properties. The texture unit is the number of 
the “docking port” in the graphics context, with default zero, and the texture 
identifier texA acts as a pointer to a specific area in GPU memory.

In a fixed-function program, you must also associate a texture name with 
the texture identifier, enable textures, and specify the texture environment. 
Overall, the setup for a single fixed-function texture that has been loaded into 
an array texImage looks like this:

GLuint texA;

glGenTextures( 1, &texA );
glEnable( GL_TEXTURE_2D );
glBindTexture( GL_TEXTURE_2D, texA );

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexImage3D(GL_TEXTURE_2D,0,GL_RGB8,TEX_WIDTH,TEX_HEIGHT,
     0,GL_RGB,GL_UNSIGNED_BYTE,texImage);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_BLEND);

Figure 9.1. Docking texture parameters with the OpenGL system.
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As we will see in a moment, the setting of the texture image and the 
sampling parameters still need to happen when using shaders. However, the 
setting of the texture environment is replaced by your fragment shader.

GLSL Texture Mapping

With GLSL, your application still needs to set up the texture array texImage 
and the associations from Figure 9.1, but you must create your own associa-
tion of the texture with the texture unit. You must set up the uniform vari-
able texLoc, give it the name uImageUnit that you will see throughout this 
chapter’s examples, and set its value to to something (0, in this example). This 
associates the name uImageUnit with the texture GL_TEXTURE0, and you can 
use any of the fragment shaders in this chapter with your application.

glActiveTexture( GL_TEXTURE0 );

glBindTexture( GL_TEXTURE_2D,texA );
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D,0,GL_RGB8,TEX_WIDTH,TEX_HEIGHT,
        0,GL_RGB,GL_UNSIGNED_BYTE,texImage);

GLuint texLoc = glGetUniformLocation(program, “uImageUnit”);
glUniform1i( texLoc, 0 );

The GLSL built-in texture lookup functions give you access to textures 
through samplers, set up through the OpenGL API. A texture sampler is a GLSL 
uniform variable that has been previously associated with a particular texture 
unit (e.g., Texture0 in Figure 9.1). The texture unit acts as a “docking port” for 
the texture object itself. The texture object contains sampling information, such 
as size, pixel format, number of dimensions, filtering methods, and number of 
mip-map levels. These texture properties are taken into account as the texture 
is accessed. Regardless of all of these settings, though, texture sampler func-
tions in GLSL always return a vec4 (RGBA) value.

The actual look of the texture mapping result is familiar, but seeing some 
straightforward texture mapping code and the resulting image is instructive. 
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An example texture, and that texture applied to the familiar teapot, are shown 
in Figure 9.2. The fragment shader code for this image follows.

In the shader code below, the linking of the uImageUnit sampler with the 
actual texture object has already happened in the application, and the map-
ping from the original texture attribute to the variable vST has been done in 
the vertex shader. In this example we are using the multitexture at index 0, or 
glTexCoord2f in traditional OpenGL API. The 2D texture coordinates for the 
individual texture have been interpolated as the .st components of the texture 
variable, and the texture( ) function has returned the value from the texture 
unit at those coordinates. Finally, we note that the texture has been set up to 
wrap.

Below we give the GLIB file, the vertex shader, and the fragment shader for 
this example. The GLIB file sets the texture object to come from the apples.bmp 
file and links that to texture unit 5. It also assigns a value of 5 to a uniform 
variable called uImageUnit and 
tells the shader program about 
it. The vertex shader sets the tex-
ture coordinate and the value of 
gl_Position, and the fragment 
shader reads the color of the 
texture from uImageUnit and 
assigns it to the pixel.

Figure 9.2. A texture and the familiar teapot with this texture.

Here we use the function texture( ) in place 
of the texture1D, texture2D, texture3D, and 
textureCube functions used in compatibility 
mode. In the newer versions of OpenGL, the 
texture( ) function takes its dimension from 
the dimension of the sample variable.
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GLIB File

##OpenGL GLIB
Perspective 70

Texture 5 apples.bmp

Vertex  brightness.vert
Fragment brightness.frag
Program  Brightness uImageUnit 5

Teapot

Vertex Shader
out vec2    vST;

void main( ) 
{
 vST      = aTexCoord0.st;
 gl_Position  = uModelViewProjectionMatrix * aVertex;
}

Fragment Shader
uniform sampler2D uImageUnit;
in vec2      vST;
out vec4     fFragColor;

void main( )
{
 vec3 color = texture( uImageUnit, vST ).rgb;
 fFragColor = vec4( color, 1.);
}

The Texture Context

In Figure 9.1, we saw an area identified as “Context” without much explana-
tion. In fact, this is an important idea, and when working with textures, it can 
be very helpful to look at the idea of the OpenGL rendering context in more 
detail.

When you set up a texture in fixed-function OpenGL, you first get the 
identifier for the texture, representing the location where the texture informa-
tion will be. This is done by the two statements

GLuint texA;
glGenTextures( 1, &texA );
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You can then assign a number of values to properties of the texture, as is also 
shown in the functions in Figure 9.1. The set of values to be assigned is the 
same for each texture. If you were implementing this in C++, you could use a 
class as a way to envision it:

class TextureObject
{
 enum minFilter, maxFilter;
 enum storageType;
 int numComponents;
 int numDimensions;
 int numS, numT, numP;
 void *image;
};

When you want to make that texture object current, you can dock the 
texture with the texture port in the context as shown in Figure 9.1. That is, in 
C++ you would make that port in the context point to the address of the proper 
texture object. The texture parameters would then “flow” from your program 
through the context to the actual texture object. From then on, any time you 
want to use that texture, the values in its texture object will have been retained, 
so you only need to bind (“dock”) it again:

glActiveTexture( GL_TEXTURE0 );
glBindTexture( GL_TEXTURE_2D, texA );

Texture Environments in the Fixed-Function World

Fixed-function OpenGL includes several standard texture operations to deter-
mine how a texture is used in deciding colors for each fragment. Some of the 
standard OpenGL options include the texture modes blend, decal, modulate, 
and replace. In the OpenGL documentation or standard textbooks (for example 
[14]) you will see the exact operation that is required for each of these texture 
modes, depending on the kind of data the texture represents. For example, if 
the texture is RGB color and the mode is blend, then you would

1. Compute the color of the pixel Cf without texture considerations.
2. Compute the color of the pixel Ct from pure texture operations.
3. Compute the color component product C Cf t∗ −( )1  as the color of the 

pixel.

If you are using multitexturing, more than one texture is used to compute 
the texture color Ct.
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The other texture operations are similar. If the mode is modulate, you 
would replace the third step by

3. Compute the color component product Cf * Ct as the color of the pixel.

And finally, if the mode is either decal or replace, the third step is replaced by
3.  Use the color Ct as the color of the pixel.

There are other definitions of these texture modes for RGBA color, alpha, 
or luminance, but the examples above are enough to show you that the com-
putations for these modes are simple. In the fixed-function world, you need to 
know what all of these options are. In the shader world, you set this yourself 
by what you write in the shader.

Texture Sampling Parameters

Texture sampling parameters are an intrinsic part of using textures, whether 
you are in the fixed-function world or the shader world. For example, what 
do you do if your texture coordinates lie outside the normal [0., 1.] range? The 
options are to wrap or clamp these coordinates. Computing a wrapping or 
clamping operation is straightforward; if you want to use clamp operations, 
any value larger than 1 is simply replaced by 1, while any value smaller than 
0 is simply replaced by 0. If you want to use wrap operations, replace any 
texture coordinate c out of the standard range by c – floor(c) to get only the 
fractional part of the coordinate.

Also, what do you do if an individual pixel’s texture coordinates don’t 
correspond to exact integer indices of a texel in your texture? This can happen 
if you have many texels within one pixel (minification) or if you have many 
pixels that correspond to one texel (magnification). You need to define the fil-
ter operations that OpenGL is to perform when this happens. The two filter 
options are to use nearest (GL_NEAREST) or linear interpolation (GL_LINEAR) 
with neighboring texels to get the particular pixel color. The actual operations 
are straightforward for either minification or magnification. The nearest filter 
is defined by simply picking the texel that is nearest the texture coordinates 
(in x y+  measure), while the linear filter is defined by taking the weighted 
average of the four texels that are nearest (in the same measure) to the texture 
coordinates. 

Samplers

Samplers are special kinds of functions that are used to access a particular tex-
ture map using the sampling parameters that you have set. Typically, they 
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are implemented in hardware for speed. The values passed into the sampler 
should be the number of the texture unit to be used to access the texture and 
the texture coordinates. The type of the sampler defines the kind of texture 
map that will be accessed. The available types are

• sampler1D, sampler2D, and sampler3D are used to access standard 1D, 
2D, and 3D textures, respectively.

• samplerCube is used to access textures in a cube map.
• sampler1DShadow or sampler2DShadow are used to access 1D or 2D 

shadow textures when depth comparisons are enabled.
Samplers should be considered an opaque data type within a shader. The 

suffix on the sampler type indicates the texture type to be accessed: 1D, 2D, 
3D, cube map, 1D shadow, or 2D shadow. In OpenGL, a texture object of each 
of the first four texture types can be bound to a single texture unit. This suffix 
allows the desired texture object to be chosen. A 1D shadow sampler is used to 
access the 1D texture when depth comparisons are enabled, and a 2D shadow 
sampler is used to access the 2D texture when depth comparisons are enabled, 
but we do not discuss shadow textures here. If two uniform variables of differ-
ent sampler types contain the same value, an error is generated when the next 
rendering command is issued.

The function glUniform1i loads a uniform variable defined as a sampler 
type with a texture unit number. Attempting to load a sampler with any other 
function is an error. All shader types (vertex, tessellation, geometry, and frag-
ment) can use texture samplers.

Procedural Textures

We can use the term procedural texture for any process of developing textures 
by programming rather than by getting textures as data arrays, and is a stan-
dard computer graphics technique. In the fixed-function OpenGL graphics 
API, texture techniques are limited to computing data arrays to be used as 
textures. With the advent of fragment shaders, however, we can compute color 
values for each pixel during the fragment processing stage.

Computing the color value for each pixel has several advantages. One 
advantage is resolution. When you use fixed-size data arrays for textures, the 
texture dimensions are limited to the size of the data array. If you zoom into 
your geometry enough, the fixed-size texture runs out of resolution and starts 
looking “blocky.” However, if you compute the texture values for each pixel 
in the fragment processor, you compute as much resolution as your equations 
can create, and you avoid any blockiness. Another advantage of computing 
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texture values is that you need not use precious texture memory to store the 
texture, since you are computing the values on the fly.

In this section, we give some examples of procedural texturing that take 
advantage of this per-pixel computation, showing some techniques that you 
will find useful. You can take different approaches to this process. In one 
approach, you do not use any texture coordinates at all, but work directly 
from the geometry and use model, world, or eye coordinates as the basis for 
your computation. Examples of this kind of texturing include computing level 
lines or geodesic lines as textures. In another approach, you include texture 
coordinates in your modeling, but rather than serving as indices into a texture, 
the texture coordinates are used as the input to the texture computation func-
tion. Examples of this approach can include computed brick and checkerboard 
textures, such as are often found in beginning graphics texts, as well as more 
exotic kinds of textures. We use one of the more exotic examples in this section.

Using Model or Eye Coordinates

In the chapter on vertex shaders, we saw how different coordinate systems 
could be used to determine object coloring using both model-space and eye-
space coordinates, and we saw a vertex shader that could send either set of 
coordinates to the fragment shader. These colorings weren’t treated formally 
as texture operations, but because their computations can determine the color 
of individual pixels, they can be thought of in that way. The figure in the ver-
tex shader chapter showing the results of these two colorings is repeated as 
Figure 9.3, and the fragment shader for these two figures is shown below.

Notice how the fragment shader below simply picks up the varying vari-
able vX from the vertex shader, without caring which set of geometry produced 

Figure 9.3. The teapots with model-space (left) and eye-space (right) colors, repeated from Chapter 7.



189GLSL Texture Mapping

it. In the left-hand image, you see that the 
stripes follow the value of vX in model 
space (running from the tip of the spout to 
the handle), while in the right-hand image, 
you see that the stripes follow the value of 
vX in eye space (from right to left). It then 
uses these variables to compute the color of 
each pixel, either the original color of the 
object or the color white, based on a simple 
calculation—essentially computing the tex-
ture based only on the object’s geometry in 
the space that is passed to it. This fragment 
shader function is designed for glman and 
uses three uniform slider variables, uA, uP, 
and uTol, that let you experiment with the 
frequency and width of the stripes, and  the 
blurring of the stripe edges, respectively.

uniform float uA;
uniform float uP;
uniform float uTol;

in float vX;
in vec4 vColor;
in float vLightIntensity;

out vec4 fFragColor;

const vec4 WHITE = vec4( 1., 1., 1., 1. );

void
main( )
{
 float f = fract( uA*vX );
 
 float t = smoothstep( 0.5-uP-uTol, 0.5-uP+uTol, f )
        - smoothstep( 0.5+uP-uTol, 0.5+uP+uTol, f );
 fFragColor = vec4(vLightIntensity*mix( WHITE, uColor, t ).rgb, 
          1.);
}

Combining two smoothstep( ) functions like this
  smoothstep( 0.5-uP-uTol, 0.5-uP+uTol,f )
  - smoothstep( 0.5+uP-uTol, 0.5+uP+uTol,f );

Figure 9.4. The graph of the smoothpulse function.
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is known as a smooth pulse function and is very useful in smoothly blending a 
new color or value in a given tolerance (here uTol) of a given value range (here 
0.5 – uP to 0.5 + uP). This function is shown in Figure 9.4.

Using Texture Coordinates

The texture coordinates that you define with your model can be used for more 
than simple texture lookup. In the fragment processor, they appear as inter-
polated variables whose values can be used to compute a procedural texture 
directly. One example of doing this is a simple brick texture, in which the val-
ues of the texture coordinates are scaled up and tested for position. The code 
that determines the color of a pixel might look like that below. (This example 
assumes that a test for position is done in the Boolean colorTest( ) function.)

 vec3 theColor;
 vec2 st = vST;
 st.s = fract( st.s * s_Mag_Factor );
 st.t = fract( st.t * t_Mag_Factor );
 if ( colorTest( st ) )
  theColor = vec3( 0.8, 0.3. 0.0 ); // color of brick
 else
  theColor = vec3( 0.9, 0.6, 0.4 ); // color of mortar
 fFragColor = vec4( theColor, 1. );

And, as before, we quickly note that the lines

 st.s = fract( st.s * s_Mag_Factor );
 st.t = fract( st.t * t_Mag_Factor );

could be written more efficiently as

 st = fract( st * vec2(s_Mag_Factor,t_Mag_Factor) );

A more sophisticated example of a procedural texture computes the 
Mandelbrot function [28] given by the texture coordinates of each vertex, 
using an iterative process. For a particular complex number c, we can define a 
sequence f zk ( ){ }  recursively by setting f z z c0

2( ) = +  and f z f z cn n+ ( ) = ( ) +1

2  
for a complex number z. If we start with the initial value z = 0 + 0i, this sequence 
will converge for some values of c and not for others. If it converges, the num-
ber c is said to be in the Mandelbrot set. Of perhaps more interest are those 
numbers c for which the sequence does not converge. Because the sequence 
will always converge if it is bounded, the usual computational approach is to 
iterate it a large number of times to see if the magnitude of fk(z)2 ever exceeds 
some limit. If it does, the number of iterations it takes to reach that magnitude 
is said to be the Mandelbrot number of c. The sketch below shows the way this 
is computed and used to color a space.
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// Initial input is a complex number (real, imag)
// Set x = real and y = imag

Iterate until we reach a max # of iterations or x*x+y*y >= some 
limit
{
 float newx = x*x - y*y + r;
 float newy = 2.*x*y + c;
 x = newx; y = newy;
}

if x*x+y*y < some limit   // the process has converged
 color the fragment blue 
else
 color the fragment based on the number of iterations 

You see this implemented in the fragment shader code below. In this 
code, you see two variables that are set by the vertex shader; one provides the 
2D texture coordinates from the graphics primitive’s surface, and the other is 
the light intensity, so that diffuse lighting can be used. The 2D texture coordi-
nates are used as the real and imaginary parts of the complex number above, 
and are adjusted to get the texture centered and sized correctly for effect. In 
the vertex shader, the 2D varying variable ST is created by taking the texture 
coordinates for the vertices, originally in [0., 1.], and mapping them into the 
standard Mandelbrot complex domain [-1., 1.] where they can be interpolated 
by the fragment shader. All the uniform variables are set in the GLIB file, and 
most are glman slider variables, so you can experiment with the parameters for 
the texture.

uniform int uMaxIters;
uniform float uTS;  // texture coordinate scaling
uniform float uCS;  // color scaling
uniform float uS0;  // starting texture value in S
uniform float uT0;  // starting texture value in T
uniform float uLimit; // how large before stop iterations
uniform vec3 uConvergeColor;
uniform vec3 uDivergeColor1;
uniform vec3 uDivergeColor2;

in vec2 vST;
in float vLightIntensity;
out vec4 fFragColor;

void main( )
{
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 float real = vST.s * uTS + uS0;
 float imag = vST.t * uTS + uT0;
 float real0 = real;
 float imag0 = imag;
 float newr;
 int numIters;
 vec4 color = vec4( 0., 0., 0., 1. );

 for( numIters = 0; numIters < uMaxIters; numIters++ )
 {
  float newreal = real0 + real*real - imag*imag;
  float newimag = imag0 + 2.*real*imag;
  newr = newreal*newreal + newimag*newimag;
  if( newr >= uLimit )
   break;
  real = newreal;
  imag = newimag;
 }

 // choose the color
 if( newr < uLimit )
  color = uConvergeColor;
 else
  color = mix( uDivergeColor1, uDivergeColor2, 
        fract(numIters/uCS) );

 color.rgb *= vLightIntensity;
 fFragColor = color;
}

This works by choosing the color for each pixel in the fragment based on 
the way the Mandelbrot sequence converges at the point in texture space, vST, 
offset into the teapot’s surface. If the pixel is in the area where the Mandelbrot 
process converges (i.e., newr < uLimit), it is colored with uConvergeColor; if it 
does not converge it is colored by a color that blends two other colors, using 
the built-in mix( ) function, depending on the number of iterations needed. 
Notice that the resolution just keeps increasing as the image is zoomed. An 
advantage of procedural texturing in fragment shaders is that the texture can be 
computed at the pixel level, no matter what size that pixel actually represents 
in the model. The potentially large number of iterations for the Mandelbrot 
sequence gives us the opportunity to illustrate the power of double preci-
sion in shaders. Figure 9.5 shows two views of a highly-zoomed region of the 
Mandelbrot set. The top figure shows this region with single-precision compu-
tation, while the bottom figure shows it with double precision.
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Similar kinds of textures can be created with other 
iterative processes [36]. An example would be a Julia set 
texture that uses a slightly different kind of computa-
tion. For the function sequence as defined above,

f z z c0
2( ) = +  and f z f z cn n+ ( ) = ( ) +1

2 ,  

we change the focus and start with the point z as the 
input and some fixed complex number c as a constant. 
This yields a rather different kind of image, but one 
related to the Mandelbrot set image by whether the 
complex number c is in the Mandelbrot set, and if so, 
where it is. The fragment shader code to implement this 
is quite similar to the code given above, and is left as an 
exercise to the reader.

Bump Mapping

Bump mapping is a technique that simulates variations in 
a surface by manipulating the surface normals, allow-
ing the lighting process to create the appearance of the 
variations. The key is to think about normals, not ver-
tices, and to realize that in a fragment shader, you are 
touching each pixel individually. This technique can 
use an analytic approach and compute normals as func-
tion derivatives, as we will see with the ripple example 
below, or it can use a more geometric approach and 
compute normals based on location and the slopes of 
the shape of the bump pattern, as we will see in the pyr-
amid map example.

Height Fields with Bump Mapping

Many effects can be created by bump mapping. One important use is in dis-
playing height fields. For example, bump mapping can create the ripples on a 
surface, as shown in Figure 9.6; the figures also include a coordinate system 
for a particular pixel on the surface. Notice the difference between the ripples 
made by bump mapping, where the ripples do not, in fact, have any height, 
and ripples made in a vertex shader, as shown in Figure 3.4 of Chapter 3.

To analyze these bumps so that we can design appropriate mappings of 
normals, let’s start working in 2D, where we can draw figures more easily. If a 

Figure 9.5. A region of the Mandelbrot 
set computed with single precision 
(top) and double precision (bottom).
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line segment has slope m dy
dx

= , we can express the slope as the vector [1, m], as
shown in the diagrams below.

The normal to any line with slope m has slope 1
−m  (the negative recipro-

cal of the original slope), so the normal can be expressed as the vector (–m, 1.). 
Notice that the dot product is (1,m) × (−m,1) = 0, as must be true if the vectors 
are perpendicular. So if we want to model a moving “bump” on the surface 
with height a, period Pd , and time t, we have

z a x
P

t
d

= − ∗ −
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and its slope, or derivative with respect to x, is
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so the vector slope, s, is
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Figure 9.6. Ripples by bump mapping.
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Following the same pattern as before, we see that the normal vector, n, is

n a
P

x
P

t
d d

= − ∗ ∗ −






















2 2 2 0 1π π
πsin , ., . .

This is true along just the X axis. Because the ripples are propagating out 
in a circular pattern, we need to rotate the normal vector into where it really is. 
Because we are just talking about a rotation, the transformation is the same as 
if we were rotating a vertex. Noting that the unrotated Ny  is equal to 0., we get

 Nx Nx Ny Nx
Ny Nx Ny Nx

Nz

′ = ∗ − ∗ = ∗
′ = ∗ + ∗ = ∗

′ =

cos sin cos
sin cos sin

Θ Θ Θ
Θ Θ Θ

NNz =1.

As we said at the beginning, so far we have been working in 2D, not 3D; 
for the final version of the fragment shader in the ripples case above, you need 
to think in polar coordinates, so you need to substitute R, the polar coordinate 
radius, for x in the slope equation.

uniform float uTime; 
uniform float uAmp0, uAmp1;
uniform float  uPhaseShift;
uniform float  uPd;
uniform float  uLightX, uLightY, uLightZ;
uniform vec4  uColor;

in vec3 vMCposition;
in vec3 vECposition;

out vec4 fFragColor;

const float TWOPI = 2.*3.14159265;

void main( )
{
 const vec3 C0 = vec3( -2.5, 0., 0. );
 const vec3 C1 = vec3(  2.5, 0., 0. );

 // first set of ripples:

 float rad0 = length( vMCposition - C0 ); // ripple center 0
 float H0 = -uAmp0 * cos( TWOPI*rad0/uPd - TWOPI*uTime ); 

 float u = -uAmp0 * (TWOPI/uPd) * sin(TWOPI*rad0/uPd - 
                  TWOPI*uTime); 
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 float v = 0.;
 float w = 1.;

 float ang = atan( vMCposition.y - C0.y, 
         vMCposition.x - C0.x );
 float  u1 = dot( vec2(u,v), vec2(cos(ang), -sin(ang)) );
 float  v1 = dot( vec2(u,v), vec2(sin(ang), cos(ang)) );
 float  w1 = 1.;

 // second set of ripples:

 float rad1  = length( vMCposition - C1 ); // ripple center 1
 float H1  = -uAmp1 * cos( TWOPI*rad1/uPd - TWOPI*uTime ); 

 u = -uAmp1*(TWOPI/uPd)*
   sin(TWOPI*rad1/uPd-TWOPI*uTime-uPhaseShift); 
 v = 0.;
 ang = atan( vMCposition.y - C1.y, vMCposition.x - C1.x );
 float u2 = dot( vec2(u,v), vec2(cos(ang), -sin(ang)) );
 float v2 = dot( vec2(u,v), vec2(sin(ang), cos(ang)) );
 float w2 = 1.;

 // the sum is the normal:

 vec3 normal = normalize( vec3( u1+u2, v1+v2, w1+w2 ) );

 float LightIntensity = 
  abs(dot(normalize(vec3(uLightX,uLightY,uLightZ)-
   vECposition),normal));
 if( LightIntensity < 0.1 )
  LightIntensity = 0.1;

 fFragColor = vec4( LightIntensity*uColor.rgb, uColor.a );
}

And, of course, there is the usual comment about the efficiency thing. The 
lines

float ang = atan( vMCposition.y - C0.y, vMCposition.x - C0.x );
float up = dot( vec2(u,v), vec2(cos(ang), -sin(ang)) );
float vp = dot( vec2(u,v), vec2(sin(ang), cos(ang)) );

were written for clarity, but could have been written more efficiently by just 
using x and y components for the trigonometric functions:

vec2 d = vMCposition.xy - C0.xy;
vec2 cossin = normalize( d );
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float up = dot( vec2(u,v), vec2(cossin.x, -cossin.y) );
float vp = dot( vec2(u,v), cossin.yx) );

In fact, this is a good programming lesson in general. Don’t ever call the 
atan function and then turn around and use the resulting angle to compute a 
sine or cosine. You already had the sine and cosine when you called the atan 
function (albeit, possibly with a little manipulation).

Generalized Bump Mapping

Height fields are a special, and simplified, case of bump-mapping. Now, let’s 
look at it in the general case. For this, we will define a surface local coordinate 
system at each fragment with components N, T, B (Normal, Tangent, and 
Bitangent B = T × N). Figure 9.7 shows the pyramid map example, and the 
vertex and fragment shaders used to create it are shown below.

The pyramid bump map example needs special vertex and fragment 
shaders. The vertex shader sets up the surface coordinate system discussed 
above, taking the tangent and normal from the geometric object and comput-
ing the varying variable vLightDir that is used in the fragment shader, along 
with the computed normal, to determine the diffuse light component for the 
pixel. In this example, we convert everything into the eye coordinate system. 
It can also work to convert everything into the surface local coordinate system, 
but the surface local coordinate system changes at each location in the geome-
try. By using a “universal” coordinate system, such as eye coordinates, we can 
make surface coordinates, light positions and directions, reflection directions, 
and refraction directions all interoperate.

Figure 9.7. A sphere with 
pyramid bump map-
ping (left) and the right-
handed BTN coordinate 
system for one particular 
location (right).
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attribute vec3 aTangent;    // from glman Sphere primitive
              // points towards north pole

uniform float uLightX, uLightY, uLightZ; // from sliders
  
out vec3 vBTNx, vBTNy, vBTNz;
out vec3 vLightDir;       // light direction in TNB coords
out vec2 vST;

// N is the direction of the surface normal
// T is the direction of “Tangent”, which is (dx/dt, dy/dt, 
//                     dz/dt)
// B is the TxN, which is the direction of (dx/ds, dy/ds, dz/ds)

void main( ) 
{
 vST = aTexCoord0.st;

 // B-T-N form an X-Y-Z-looking right handed coordinate system:
 vec3 N = normalize( uNormalMatrix * aNormal );
 vec2 T = normalize( vec3( uModelViewMatrix*vec4(aTangent,0.) 
          ) );
 vec3 B = normalize( cross(T, N) );

 // the light direction, in eye coordinates:
 vec3 lightPosition = vec3( uLightX, uLightY, uLightZ );
 vec3 ECpos = ( uModelViewMatrix * aVertex ).xyz;
 vLightDir = normalize( lightPosition - ECpos );

 // Produce the transformation from Surface coords to 
 // Eye coords:

 vBTNx = vec3( B.x, T.x, N.x );
 vBTNy = vec3( B.y, T.y, N.y );
 vBTNz = vec3( B.z, T.z, N.z );

 gl_Position = uModelViewProjectionMatrix * aVertex;
}

The fragment shader is shown below. This uses several uniform glman 
slider variables to experiment with the surface appearance. The primary func-
tion of the shader code is to take the value of the variable vLightDir and 
develop the normal based on the normal that’s developed by pixel position 
to create the appearance of the pyramids. The angle uAng is used to rotate the 
pyramids in place.
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uniform float uAmbient;
uniform float uBumpDensity; // glman slider uniform variables
uniform float  uBumpSize;
uniform  vec4  uSurfaceColor;
uniform  float  uAng;
uniform  float  uHeight;

in vec3 vBTNx, vBTNy, vBTNz;
in vec3 vLightDir;
in vec2 vST;

out vec4 fFragColor;

const float PI = 3.14159265;

float Cang, Sang;

vec3
ToXyz( vec3 btn )
{
 float xp = btn.x*Cang - btn.y*Sang;  // rotate by +Ang
 btn.y   = btn.x*Sang + btn.y*Cang;
 btn.x   = xp;
 btn = normalize( btn );

 vec3 xyz;
 xyz.x = dot( vBTNx, btn ); // convert surface local to 
             // eye coords
 xyz.y = dot( vBTNy, btn );
 xyz.z = dot( vBTNz, btn );
 return normalize( xyz );
}

void main( )
{
 vec2 st = vST;  // locate the bumps based on (s,t)

 float Swidth = 1. / uBumpDensity;
 float Theight = 1. / uBumpDensity;
 float numInS = floor( st.s / Swidth );
 float numInT = floor( st.t / Theight );

 vec2 center;
 center.s = numInS * Swidth + Swidth/2.;
 center.t = numInT * Theight + Theight/2.;
 st -= center;    // st is now wrt the center of the bump

 Cang = cos(uAng);
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 Sang = sin(uAng);
 vec2 stp;     // st’ = st rotated by -Ang
 stp.s = st.s*Cang + st.t*Sang;
 stp.t = -st.s*Sang + st.t*Cang;
 float theta = atan( stp.t, stp.s );

 // this is the normal of the parts of the object
 // that are not in a pyramid:
 vec3 normal = ToXyz( vec3( 0., 0., 1. ) );

 // figure out what part of the pyramid we are in and
 // get the normal there; then transform it to eye cords
 if( abs(stp.s) > Swidth/4. || abs(stp.t) > Theight/4. )
 {
  normal = ToXyz( vec3( 0., 0., 1. ) );
 }
 else
 {
  if( PI/4. <= theta && theta <= 3.*PI/4. )
  {
   normal = ToXyz( vec3( 0., uHeight, Theight/4. ) );
  }
  else if( -PI/4. <= theta && theta <= PI/4. )
  {
   normal = ToXyz( vec3( uHeight, 0., Swidth/4. ) );
  }
  else if( -3.*PI/4. <= theta && theta <= -PI/4. )
  {
   normal = ToXyz( vec3( 0., -uHeight, Theight/4. ) );
  }
  else if( theta >= 3.*PI/4. || theta <= -3.*PI/4. )
  {
   normal = ToXyz( vec3( -uHeight, 0., Swidth/4. ) );
  }
 }

 float intensity = uAmbient + (1.-uAmbient)*
         dot(normal, vLightDir);
 vec3 litColor = uSurfaceColor.rgb * intensity;
 fFragColor = vec4( litColor, uSurfaceColor.a );
}

Cube Maps

Cube maps are textures that simulate the effect of an environment that sur-
rounds the 3D scene, and are usually used to create reflection or refraction 



201GLSL Texture Mapping

effects. Textures developed using cube maps operate 
differently from standard textures on the surface of an 
object. A cube map consists of six 2D textures, each one 
corresponding to the face of a cube (+X,−X,+Y,−Y,+Z,−Z) 
surrounding the scene. A cube map is indexed with 
three texture coordinates: s, t, and p. You can think of 
(s,t,p) as being a vector that points toward one wall of 
the cube map, as shown in Figure 9.8.

When you index into a cube map with (s,t,p), the 
texture-mapping hardware does the following:

1. Determines which of s, t, and p has the largest 
absolute value:

  
Val s t p= ( )max , , .

This determines which face image (+X,−X,+Y,−Y,+Z,−Z) of the cube map 
to index into. In Figure 9.8, this would be s, corresponding to the −X face.

2. Divides the remaining two coordinates (called a and b here) by that larg-
est absolute value:

′ =

′ =

s a
Val

t b
Val

,

.

In Figure 9.8, a and b would be the texture coordinates p and t.

3. Uses (s′,t′) as the 2D texture coordinates to use for the lookup on that face 
image.

To use cube maps, you must create six square texture maps of the same 
size that correspond to the sides of a cube. These individual texture maps are 
often visualized as a flattened or folded-up cube, as shown in Figure 9.9. The 
cube map images are created by rendering or photographing each of the six 
principle directions from the center of the cube, each with a 90° field of view.

Cube maps can be used to create reflection effects using the built-in GLSL 
reflect( ) function to compute an (s,t,p) reflection vector to look up in the 
cube map. Cube maps can also be used for refraction; for example, with a 
lens or a glass object in a scene. To do this, you use the built-in GLSL function 
refract( )to compute the (s,t,p) refraction vector, and use it to look up in the 
cube map.

Figure 9.8. A cube map and the (s,t,p) 
vector that indexes into it.
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Figure 9.9. The six faces of a 
cube that can be used for cube 
mapping: unfolded (top) and 
folded (bottom).
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Figure 9.10 shows what you can do with this: a view of both a reflective 
teapot in the cube (left), using reflection maps, and a glass teapot in the cube, 
using refraction maps (right). These figures use the NVIDIA lobby cube map. 
(A rich source of other cube maps can be found at [9].)

A single fragment shader will produce both these images, which come 
from glman and use the uniform slider variable uMix to control whether reflec-
tion or refraction is to be computed. They assume that a vertex shader has 
already computed the eye position and has set up the normal and normal 
matrix, and that all are varying variables, so they can be interpolated. The 
other computations simply use the reflection and refraction functions from 
GLSL and mix the color components in a familiar way.

uniform float    uMix;
uniform samplerCube uTexUnit;
uniform float    uIofR;   // index of refraction

in vec3 vECposition;
in vec3 vTheNormal;

out vec4 fFragColor;

const vec4 WHITE = vec4( 1., 1., 1., 1. );

void main( )
{
 vec3 normal = normalize( uNormalMatrix * vTheNormal );

Figure 9.10. A reflecting (left) and refracting (right) teapot.
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 // the reflect and refract functions assume the normal is
 // pointing toward the eye, that is, normal.z > 0.
 // if that’s not true, make it true:

 if( normal.z < 0. )
 {
  normal = -normal;
 }

 vec3 ReflectVector = reflect(normalize(vECposition),normal);
 vec3 RefractVector = refract(normalize(vECposition),
               normal,uIofR);

 vec4 reflectcolor = texture( uTexUnit, ReflectVector );
 vec4 refractcolor = mix(texture(uTexUnit,RefractVector),
             WHITE,0.2);

 fFragColor=vec4(mix(reflectcolor.rgb,
         refractcolor.rgb,uMix),1.);
}

Note that both the reflect( ) and refract( ) functions use the argu-
ment

normalize( vECposition )

What is this? The GLSL reflect( ) and refract( ) functions want that 
argument to be the incoming vector from the eye to the point that is being 
reflected from or refracted through. Remember that in OpenGL, once the 
viewing transformation has been applied, the eye ends up at the origin. So, 
those arguments could have been listed more clearly by making it obvious 
that we were creating that vector as a difference between two points, like this:

normalize( vECposition – vec3(0.,0.,0.) )

Also, note that the refraction result mixes in some white. This is because 
most refractive-transparent objects have a small amount of “milky” appear-
ance to them, as light is somewhat attenuated as it passes through the mate-
rial.

The second mix( ) is blending the refraction with some reflection, as is 
usually the case with real objects.

Are these accurate reflections and refractions? They look good, but they 
are not perfect, at least not in the ray-tracing sense. For one thing, each of 
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the six images in the cube map is determined from an eye position at the 
center of the cube, thus forever “baking in” that direction’s spatial relation-
ships from just a single eye position. This imperfection is true for both cube 
map reflections and refractions. Also, when doing cube map refractions, the 
refraction only takes place at the front surface of the object, not both front 
and back, as would be the case with a real object. In 3D graphics, the back 
surface’s behavior gets z-buffered out.

Note that you can also combine cube mapping with bump mapping, 
as shown in Figure 9.11. This is one of the reasons that, when doing bump 
mapping, it is better to convert the surface local coordinates of the bumps to 
eye space, instead of the other way around. This allows the bump mapping 
normals to interoperate with the cube map reflect( ) and refract( ) 
functions.

Render to Texture

Textures need not come only from files or from computation, as our previous 
examples have done. You can also render an image into a texture and then use 
that image as a texture. For example, you could render a wireframe teapot into 
a texture and use that on a moving surface, as shown in Figure 9.12.

Figure 9.11. A reflecting (left) and refracting (right) bump-mapped teapot.
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The render-to-texture operation uses the framebuffer extension, that is,  
GL_framebuffer_object, so you need to be sure this is supported on your  
system.

The steps to render an image to a texture involve creating the formal buf-
fers needed for output, creating a texture, and assigning the output buffers to 
the texture. You then carry out a set of bindings of properties to the buffers and 
texture and render a scene; this scene is then a texture, and you can use it in 
rendering another scene. The details are below.

1. You will be changing the display destination. Generate a handle for a 
framebuffer object, and generate handles for a (depth) renderbuffer 
object and for a texture object. (These will later be attached to the frame-
buffer object.)

2. Bind the framebuffer object to the context.
3. Bind the depth renderbuffer object to the context. 

Assign storage attributes to it. 
Attach it to the framebuffer object.

4. Bind the texture object to the context. 
Assign storage attributes to it. 
Assign texture parameters to it. 
Attach it to the framebuffer object.

5. Render as normal.
6. Un-bind the framebuffer object from the context.

Figure 9.12. Two views of a rotating teapot on a rotating plane.
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To implement these operations, our code closely follows the outline 
above. The code is presented in three groups. The first code group implements 
the first four points and would typically be found in your InitGraphics( ) 
function. This is independent of the particular teapot and quad example of the 
figure.

// generate FrameBuffer handle, RenderBuffer handle, Texture   
// handle
GLuint FrameBuffer;
GLuint DepthBuffer;
GLuint Texture;

glGenFramebuffers(  1, &FrameBuffer );
glGenRenderBuffers( 1, &DepthBuffer );
glGenTextures(    1, &Texture );

// set up the size for the rendered texture
int sizeX = 2048;
int sizeY = 2048;

// Bind the offscreen framebuffer to be the current output  
// display
glBindFramebuffer( GL_FRAMEBUFFER, FrameBuffer );

// Bind the Depth Buffer to the context, allocate its storage,
// and attach it to the Framebuffer
glBindRenderbuffer( GL_RENDERBUFFER, DepthBuffer );
glRenderbufferStorage( GL_RENDERBUFFER,
           GL_DEPTH_COMPONENT, sizeX, sizeY );
glFramebufferRenderbuffer( GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
             GL_RENDERBUFFER, DepthBuffer );

// Bind the Texture to the Context
glBindTexture( GL_TEXTURE_2D, Texture );

// Set up a NULL texture of the size you want to render into
// and set its properties
glTexImage2D(   GL_TEXTURE_2D, 0, 4, sizeX, sizeY, 0, GL_RGBA, 
         GL_UNSIGNED_BYTE, NULL );
glTexParameteri(  GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP );
glTexParameteri(  GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP );
glTexParameteri(  GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
         GL_LINEAR );
glTexParameteri(  GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, 
         GL_LINEAR );
glTexEnvf(     GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, 
         GL_REPLACE );
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// Tell OpenGL that you are going to render into the color   
// planes of the Texture

glFramebufferTexture2D( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, 
           GL_TEXTURE_2D, Texture, 0 );

// see if OpenGL thinks the framebuffer is complete enough to  
// use:

GLenum status = glCheckFramebufferStatus( GL_FRAMEBUFFER );
if( status != GL_FRAMEBUFFER_COMPLETE )
   fprintf( stderr, “FrameBuffer is not complete.\n” );

The next code group implements the last two points in the list above, and 
would typically be found in the Display( ) callback function. The first part of 
this code is very familiar modeling code, but it renders the wireframe teapot 
into the texture framebuffer. After that is finished, the rendering is returned 
to the usual hardware framebuffer. This is the last point in the list above. We 
have highlighted two points in the code to remind you that the dimension of 
the texture you are creating must be the same as the size you defined, and to 
note that framebuffer 0 is the standard hardware buffer.

// render as normal; be sure to set the viewport to match the 
// size of the color and depth buffers
glClearColor( 0.0, 0.2, 0.0, 1. );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glEnable( GL_DEPTH_TEST );
glShadeModel( GL_FLAT );
glViewport( 0, 0, sizeX, sizeY );

glMatrixMode( GL_PROJECTION );
glLoadIdentity( );
gluPerspective( 90., 1., 0.1, 1000. );

glMatrixMode( GL_MODELVIEW );
glLoadIdentity( );
gluLookAt( 0., 0., 3., 0., 0., 0., 0., 1., 0. );

glTranslatef( TransXYZ[0], TransXYZ[1], TransXYZ[2] );
glMultMatrixf( RotMatrix );
glScalef( scale, scale, scale );
glColor3f( 1., 1., 1. );

glutWireTeapot( 1. );
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// Tell OpenGL to go back to rendering to the hardware  
// framebuffer:

glBindFramebuffer( GL_FRAMEBUFFER, 0 );

// if you want, have OpenGL create the multiple mipmap layers  
// for you
glGenerateMipmap( GL_TEXTURE_2D );

The third code group is straightforward graphics programming with tex-
tures , using the vertex coordinate and texture coordinate functions in compat-
ibility mode for clarity’s sake. The texture that was just computed is used in 
rendering the scene (here, the simple textured quad).

// now render the rest of the scene as normal, using the Texture
// as you normally would:
. . .

glEnable( GL_TEXTURE_2D );
glBindTexture( GL_TEXTURE_2D, Texture );
glBegin( GL_QUADS );
 glTexCoord2f( 0., 0. );
 glVertex2f( -1., -1. );
 glTexCoord2f( 1., 0. );
 glVertex2f( 1., -1. );
 glTexCoord2f( 1., 1. );
 glVertex2f( 1., 1. );
 glTexCoord2f( 0., 1. );
 glVertex2f( -1., 1. );
glEnd( );

glDisable( GL_TEXTURE_2D );
. . .

Render to Texture for Multipass Rendering in glman

One of the main reasons to do render-to-texture is for multipass rendering 
algorithms. To make this easier to experiment with, glman has setup a mecha-
nism make it easy to ask for. The following .glib file shows you how this is 
done:

##OpenGL GLIB
Perspective 90



210 9.  Surface Textures in the Fragment Shader

Texture 6 1024 1024

RenderToTexture 6

Background 0. 0.1 0.
Clear

Vertex  filter.vert
Fragment filter.frag
Program Filter1              \
 uAd <.01 .2 .5> uBd <.01 .2 .5>      \
 uNoiseAmp <0. 0. 1.> uNoiseFreq <0. 1. 2.> \
 uTol <0. 0. 1.>

Teapot

RenderToTexture

Background 0. 0.0 0
Clear
LookAt 0 0 2.5 0 0 0 0 1 0

Vertex image.vert
Fragment image.frag
Program Filter2  uInUnit 6       \
        uEdgeDetect <true>   \
         uTEdge <0. 0. 1.>   \
         uTSharp <-3. 1. 10.>  

Translate 0 0 0.
QuadXY .2 2.

For once, the interesting detail is in the .glib file. The vertex and frag-
ment files used here (two of each) are standard effects that you have already 
seen. The steps in the .glib file are as follows:

1. The Texture2D glib command normally looks for a file name, but it can 
also take an s and t resolution. In this case, it sets up an empty texture 
of that size in graphics memory and assigns it to the given texture unit.

2. The RenderToTexture sets up the rendering output mechanism (just dis-
cussed) to that texture unit.

3. The teapot is rendered with a shader program that creates a procedural 
noisy-ellipse texture.

4. The empty RenderToTexture returns rendering to go to the normal screen 
framebuffer.
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5. Another shader program is made current. This one is a 2D image filter-
ing program like we have seen before. It can do blur-sharpen or edge 
detection. The texture unit into which we just rendered the 3D scene is 
supplied to this program as uInUnit.

6. A quad is drawn. You know that it is drawing a 2D quad, but because it is 
using the results of the previous 3D render as the quad’s texture, the user 
thinks that a 3D object is being drawn here.

7. The Filter2 shader changes the appearance of the 3D render.

Figure 9.13 shows this shader in action.

Figure 9.13. Render-to-texture and multipass in action:  the original, unmodified, teapot 
(top left); teapot with the noise turned on (top right);  noise teapot, sharpened (bottom left);  
noise teapot, edge detected (bottom right).
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Exercises

1. Duplicate the work shown in Figure 9.5 above for Mandelbrot sets to cre-
ate a texture via a Julia set computation.

2. Fixed-function OpenGL has its own texture environment functions, but 
when you write your own shaders for textures you implement what you 
need. In the chapter, we mentioned the four standard texture modes. 
Ignoring for now the effect on the alpha channel, implement these modes:
a. For replace or decal mode, the color of a pixel is replaced by the color 

of the texel.

b. For modulate mode, the color of a pixel is replaced by the product of the 
color of the object pixel and the color of the texel.

c. For blend mode, the color of a pixel is replaced by the product of the 
color of the object pixel and 1 – the color of the texel.

3. Continuing with texture modes, which of these modes would prob-
ably be the most useful if you were applying more than one texture to 
an object? Why? Might this be different if you were including the alpha 
channel in your textures?

4. Develop vertex and fragment shaders for a bump map that simulates 
small partial spheres placed regularly on a surface, much like the pyra-
mid shader simulates pyramids.

5. One of the problems in cube mapping is creating a good set of textures 
for the faces of the cube. You can do this from digital photographs if you 
are careful to match the edges of the faces. Do this for some familiar envi-
ronment, such as your room or a campus quad.

6. Create a combined bump-map / cube-map image as shown in Fig- 
ure 9.11.

7. Add other image processing effects to the multipass rendering example.

8. Find an excuse to change the two-pass example above to a three (or more) 
pass example.
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One of the perpetual challenges of computer graphics has been to create images 
that are not only geometrically correct, but are also visually interesting. Texture 
mapping of real images is commonly used in this way. Another technique 
involves adding procedural “random” effects such as are seen in natural phe-
nomena (clouds, fire, smoke), natural materials (marble, wood, granite, sand), 
small-scale randomness (random textures in materials), and many other things, 
through the use of noise functions. In this chapter we discuss noise functions 
and their use in shaders, specifically fragment shaders, in creating images.

The topic of noise is not necessarily associated with shaders, and you 
may have encountered it in another computer graphics course. We describe it 
separately from the details of shaders because it has interest on its own, and 
we will certainly find that it adds very interesting opportunities for shaders to 
use in creating some very attractive images.
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Fundamental Noise Concepts

A noise function is a real-valued function that takes on values between 0. and 1. 
over some domain.1 A noise function is often generated by determining pseudo-
random numbers (PRNs) at each of a number of fixed points in a domain and 
processing those values to generate a function across the entire domain. If the 
domain is an interval, we have one-dimensional noise; if the domain is a plane 
region, we have two-dimensional noise; if the domain is a region in three-dimen-
sional space, we have three-dimensional noise. The values of the noise function 
can be used to modify values of such things as the pixel properties in a fragment 
shader. In this section we will briefly introduce some kinds of noise functions 
and their properties, based on one-dimensional noise operations for simplicity.

There are some choices we will need to make as we design a shader that is 
to use noise functions. Below we discuss some of those choices. If you are using 
glman with your study of shaders, you will find the noisegraph application as 
part of the distribution, and you can use that to experiment with many of the 
noise concepts you will find in this chapter. All the 1D noise function graphs 
that you will see as figures in this chapter were developed with noisegraph.

Three Types of Noise: Value, Gradient, and Value+Gradient

One choice you will need to make is whether you want to use value noise or 
gradient noise. The value and gradient noise functions produce results that have 
qualitative differences. Both kinds of noise functions are based on piecewise 
interpolating their definitions at a fixed set of points in their domain, usually 
regularly spaced. Both kinds of noise need values at each point; these are given 
by using system-generated pseudo-random numbers. In value noise, the pseudo-
random values at each fixed point are used as the noise function values, and the 

1. Some noise functions prefer the range –1. to 1. It doesn’t really matter. It just means that you will 
transform the noise return values differently.

The GLSL specification lists a built-in noise function. However, at the time of this 
writing, its exact behavior has not yet been universally decided upon. So, while it is in 
the spec, you might not be able to use it. This chapter will discuss the fundamentals 
of noise for graphics shaders, and will show how glman uses 2D and 3D textures to 
get around the absence of a working GLSL noise function. Even if you are not using 
glman, you will see how to computationally generate noise, which you can then use by 
embedding it in your own texture.
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slope of the function at each point is set to be zero or 
to a natural slope (more on this later). These properties 
are directly interpolated to generate a piecewise cubic 
or quintic function across the entire domain. In gradient 
noise, the function value is set at each fixed point, and 
the pseudo-random values at that fixed point are used 
as the gradient (slope) of the curve through the point. 
Gradient noise with the fixed values set to zero is the 
type of noise originally defined for the Photorealistic 
RenderMan package [37]. It is also popular to set both 
the value and the gradient at the fixed points with 
pseudo-random numbers, the value+gradient noise. 
Noise that is based on pseudorandom number (PRN) 
gradients is often called Perlin noise [34], [35]. For both 
kinds of noise, these values are used to determine the 
equation of a piecewise cubic noise function between 
the two points, as described later in this chapter.

The noisegraph application is a tool that lets you 
test out these different noise types and parameters for 
yourself. It produces line graphs of 1D noise functions 
and pseudocolor regions for 2D noise. The application 
is driven by a menu with choices for the kind of noise, 
the number of octaves, and the kind of pseudocolor 
display; it also lets you make other choices for options 
discussed in this chapter.

All three types of continuous noise functions are 
illustrated by noisegraph displays in Figure 10.1. As you 
can tell from these graphs, value noise can, by chance, 
have regions of similar values, while gradient-only 
noise always passes through zero at regular points. 
This affects the kind of control you would have with 
each. This distinction forms a kind of dual relationship between the functions 
and is the key to how they are defined. We will see how it affects the actual 
function expressions when we consider those a little later in the chapter.

Cubic and Quintic Interpolation

We can use several different options as we create the piecewise interpolation 
of the initial pseudo-random values that is needed to create the overall noise 
function. Two common ones are to use a cubic interpolation or to use a quin-

Figure 10.1. A one-dimensional value-
only noise function (top), a gradient-only 
function (middle), and value+gradient 
noise function (bottom).



216 10.  Noise

tic interpolation. Quintic interpolations are similar, but 
they use a fifth-degree polynomial basis rather than 
a cubic polynomial basis. The difference between the 
two interpolations may be subtle; you will need to look 
closely at the two value+gradient noise functions from 
noisegraph in Figure 10.2 to see any difference. Cubic 
interpolations are C1 continuous (the curve has con-
tinuous slope), while quintic interpolations are C2 con-
tinuous (the curve has both continuous slope and con-
tinuous curvature) and thus are smoother. One way to 
think of the difference is that quintic functions main-
tain the curvature continuity at each connection point 
by enlarging the overshoot there, not unlike racing past 
second base in baseball. See [35] for a more complete  
discussion.

Noise Equations

The key to understanding the derivation of the noise 
functions is realizing that they are polynomial func-
tions whose coefficients are determined by the noise 
properties you are using. Let’s begin with cubic noise 

functions and then go on to quintic functions.
Any cubic function of a single variable is given by a general cubic expres-

sion as
N t A Bt Ct Dt( ) = + + +2 3.

This expression gives the value, or position, of the function for any para-
metric value t. Because this expression has four unknowns, we need four 
known quantities to determine them.

Now if we take the derivative of this expression, we get the gradient

G t dN
dt

B Ct Dt( ) .= = + +2 3 2

If we consider the values of the function and gradient at the endpoints of 
the interval [0,1] in the parameter t,

N N t N N t
G G t G G t

0 1

0 1

0 1
0 1

= =( ) = =( )
= =( ) = =( )

Figure 10.2. Cubic (top) and quintic 
(bottom) value+gradient interpolations 
on the same basis.
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then you can see that you have four values that you can use to compute the 
four unknown coefficients for the noise function. We can put these values into 
a system of four equations in the four unknowns, and we get

N
N
G
G

A
B
C
D

0

1

0

1

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3
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We can invert this matrix and get an exact matrix expression for A, B, C, and D:

A
B
C
D

N
N
G
G





















=
− − −

−



















1 0 0 0
0 0 1 0
3 3 2 1

2 2 1 1

0

1

0

11





















.

This will give us the values of the coefficients in terms of the positions 
and gradients. To simplify this, we gather the coefficients and get an expres-
sion like this:

N t B N B N B G B GN N G G( ) = + + +0 0 1 1 0 0 1 1.

When we do this, the coefficients are

B t t
B t t B
B t t t
B t t

N

N N

G

G

0
2 3

1
2 3

0

0
2 3

1
2 3

1 3 2

3 2 1

2

= − +

= − = −

= − +

= − +

,

,

,

.

Some value-only noise functions choose to set the gradients to zero at 
each of the noise points, but this is highly arbitrary. A better approach is to 
choose the gradients intelligently, based on the positions of the surrounding 
points. A good way to do this is with the gradients that one would use for 
a Catmull-Rom spline [8]. Because the noise points are all unit-spaced, the 
Catmull-Rom gradient simplifies to

G N Ni i i= −( )+ −

1
2 1 1 .
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That is, to get the parametric slope at noise point i, draw a vector from the 
previous point to the next point, and take half of it. Figure 10.3 shows how this 
changes the overall shape of the noise curve, making it a lot smoother.

Since all four coefficients are spelled out above, you now have the full 
cubic polynomial functions for any combinations of values and gradients you 
want in a noise function. Using the same conditions for t = 1 at the end of one 
segment and t = 0 at the beginning of the next segment will ensure that the 
functions are differentiable at the point between them, giving you an overall 
C1 noise function.

What about quintic noise functions? Here we need to place additional 
conditions on the function at the given points in order to derive the six coef-
ficients on the general quintic polynomial function

N t A Bt Ct Dt Et Ft( ) .= + + + + +2 3 4 5

We already have the function value N and the gradient G at each point, 
giving us four conditions. The two additional necessary conditions are given 
by specifying the curvature C of the function at the points. The curvature is 
given by the second derivative, so we now have three expressions to evaluate. 
Besides the N(t) function above, we have 

G t dN
dt

B Ct Dt Et Ft

C t d N
dt

C Dt Et

( ) ,

( )

= = + + + +

= = + + +

2 3 4 5

2 6 12 20

2 3 4

2

2
2 FFt3.

Figure 10.3. Forcing the gradients to zero (left) and computing the gradients from the dis-
tribution of points (Catmull-Rom, right). Notice how much more natural the curve appears 
as it passes through the connections when a reasonable slope is computed instead of artifi-
cially set to zero.
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As we did before, we substitute the end values at t=0 and t=1 to get the 
six conditions

N N t N N t
G G t G G t
C C t C C t

0 1

0 1

0 1

0 1
0 1
0 1

= = = =
= = = =
= = = =

( ), ( ),
( ), ( ),
( ), ( )).

As before, this gives us a system of six equations in six unknowns, and 
we can express that in matrix form as
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As above, we can invert this matrix and gather all the coefficients of N0 , N1, G0 , 
G1, C0 , and C1 together. In the end, this lets us express the quintic noise func-
tion as 

N t B N B N B G B G B C B CN N G G C C( ) = + + + + +0 0 1 1 0 0 1 1 0 0 1 1

as we did for the cubic case. The coefficients are quintic functions of t:

B t t t
B t t t B
B t t t
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3 4 5
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3 4
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6 8
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3 4

t
B t t t

B t t t t

B t t t
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C

,

,

,

= − + −

= − + −( )

= − + 55( ).

These equations define a quintic function for any combination of value, 
gradient, and curvature at the two endpoints of the parameter interval. 

As with the cubic case, if we ensure that these six conditions are the same 
at the t = 1 end of one interval and at the t = 0 end of the next interval, the 
combined function is not only differentiable at the point, but is also C2 at the 
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point, that is, has a continuous second derivative. We can actually simplify this 
further if we artificially choose to have the C2 continuity be flat (that is, have 
zero curvature). 

Both here and for cubic noise, we have left the final function expressions 
in symbolic form; for either the cubic or quintic case, and for either value or 
gradient noise, it is a simple matter to put back in the polynomials for the BXX 
coefficients and complete the function expressions. You can do this easily if 
you want to work out the details or code these functions yourself.

Other Noise Concepts

Now that we have the fundamental concepts of noise in hand, let’s look at 
some other very useful concepts in noise functions. These are derived from the 
basic noise functions discussed above, and in practice, are probably used more 
often than pure noise functions.

Fractional Brownian Motion (FBM, 1/f, Octaves)

Fractional Brownian motion, or 1/f noise, is useful because it models an opera-
tion that has many different frequencies and magnitudes. It is relatively easy 
to obtain this from simple noise functions. For each of several simple noise 
functions that are defined at different frequencies, the magnitude of the noise 
is divided by the frequency multiplier. It is usual to use powers of two for the 
frequency multipliers, so in a given domain you would have multipliers of 2, 
4, 8, 16, and so on. Each of these frequency doublings is called an octave. The 
division of the magnitude by the frequency is the source of the name 1/f noise. 
Code to create such a noise function is shown below, and Figure 10.4 shows 
the noisegraph presentation of the effect as noise at different scales is summed 
to get the final values.

float sum = 0.;

float size = 1.;

for( int i = 0; i < 4; i++ )

{

 sum += noise( size * PP ) / size;

 size *= 2.0;

}

float y = P.y + Amplitude * sum;
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Noise in Two and Three Dimensions

For two-dimensional noise, we define a function on the [0, 1] × [0, 1] unit square 
with values between zero and one. Figure 10.5, from the noisegraph applica-
tion, shows this in pseudocolor. You can see the same kind of differences in 

Figure 10.5. Two dimensional noise as pseudocolor; one octave (left) and four octaves (right).

Figure 10.4. Four types of 1D piecewise cubic value+gradient noise functions: one octave 
(top left); two octaves (top right); three octaves (bottom left); four octaves (bottom right).
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the 2D image that you saw in the simple 1D noise graphs: the four-octave noise 
has the same general shape, but much more high-frequency variation. (The 
noise is quintic value+gradient type.) The appearance is that the higher-octave 
noise has more detail and is consequently visually richer. Figure 10.6 shows a 
4-octave 2D noise function represented as a height field.

When we look at 3D noise, we have 
a little more difficult visualization prob-
lem. A 3D noise function is visualized as 
a pseudocolored volume in Figure 10.7. 
Even without seeing specific interior 
details, you can still see that there is 
some familiar-looking variation in color 
within the cube.

We could look at this in several 
ways, including explorations through 
some standard visualization techniques, 
as shown in Figure 10.8. This shows an 
isosurface with its isovalue equal to the 
midrange value of the 3D noise, and we 
can easily see the greatly increased com-
plexity that comes with the additional 
octaves of noise.

Figure 10.7. Three-dimensional one-
octave noise viewed as pseudocolor in 
a direct volume rendering.

Figure 10.6. Four octaves of 2D noise represented as a pseudocolored height field.
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Using Noise with glman

The glman tool automatically creates a 3D noise texture and places it into 
Texture Unit 3. Your vertex, geometry, or fragment shader can access it through 
the pre-created uniform variable called Noise3. You can reference it in your 
shader as

uniform sampler3D Noise3;
. . .
vec3 stp = ...
vec4 nv = texture( Noise3, stp );

The “noise vector” texture nv is a vec4 whose components have separate 
meanings. We will access these components through the rgba nameset, though 
you can use indices or any other nameset if you wish. The .r component is 
the low frequency noise. The .g component is twice the frequency and half 
the amplitude of the .r component, and so on for the .b and .a components. 
Each component is centered around the middle value of .5, so that if you want 
a plus-or-minus effect, subtract .5 from each component. To get a nice four-
octave noise value between 0 and 1, useful for features such as noisy color 
mixing, add up all four components, subtract 1, and divide the result by 2, as 
shown in Table 10.1.

Figure 10.8. Three-dimensional noise visualized by isosurfaces through the middle value; 
one octave (left) and four octaves (right).



224 10.  Noise

Component Term Term Range Term Limits
0 nv.r 0.5 ± .5000 0.0000 → 1.0000
1 nv.g 0.5 ± .2500 0.2500 → 0.7500
2 nv.b 0.5 ± .1250 0.3750 → 0.6250
3 nv.a 0.5 ± .0625 0.4375 → 0.5625

sum 2.0 ± ~ 1.0 ~1.0 → 3.0
sum – 1 1.0 ± ~ 1.0 ~0.0 → 2.0

(sum – 1) / 2 0.5 ± ~ 0.5 ~0.0 → 1.0
(sum – 2) 0.0 ± ~ 1.0 ~1.0 → 1.0

So, if you would like to have a four-octave noise function that ranges 
from 0. to 1, then do this:

float sum = nv.r + nv.g + nv.b + nv.a;
      // range is 1. -> 3.
      sum = ( sum - 1. ) / 2.;
      // range is now 0. -> 1.

If you would like to have a four-octave noise function that ranges from -1 
to 1, then do this instead:

float sum = nv.r + nv.g + nv.b + nv.a;
      // range is 1. -> 3.
     sum = ( sum - 2. );
      // range is now -1. -> 1.

By default, the glman 3D noise texture has dimensions 64 × 64 × 64. You 
can change this by putting a command in your GLIB file of the form

Noise3D 128

to get dimension 128 × 128 × 128, or choose whatever resolution you want (up 
to around 400 × 400 × 400). Remember that for the most general use, the resolu-
tion should be a power of two. The first time glman creates a 3D noise texture 
for you, it will take a few seconds. But glman then writes it to a local file, and 
the next time this 3D texture is needed it is read from the file, which is a lot 
faster.

A 2D noise texture works the same way, except you get at it with

 uniform sampler2D Noise2;
 ...
 vec2 st = ...
 vec4 nv = texture( Noise2, st );

Table 10.1. The range of the four octaves of noise and some useful combinations.
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Note that the table above still applies to convert the values from the noise 
texture into something useful. The only difference is that a 2D noise texture is 
indexed by a vec2 while the 3D noise texture is indexed by a vec3. But both 
return a vec4.

Using Noise with the Built-In GLSL Functions

If you are using a system where the GLSL built-in noise functions work, here 
is how you would use them. There are four built-in GLSL noise functions: 
noise1( ), noise2( ), noise3( ), and noise4( ). They each return a float, 
vec2, vec3, and vec4 , respectively, whose values are between −1. and 1. They 
each can accept as their single argument any of those four types of inputs, 
depending on how you want to index into the noise. Thus, where we might 
have said

uniform sampler3D Noise3;
. . .
vec3 stp = ...
vec4 nv = texture( Noise3, stp );
float sum = nv.r + nv.g + nv.b + nv.a;
sum = ( sum - 2. );

for glman, using the GLSL built-in noise functions we could accomplish the 
same thing by saying

float sum = 0.;
float size = 1.;
for( int i = 0; i < 4; i++ )
{
 sum += noise1( size*stp ) / size;
 size *= 2.;

}

Turbulence

Turbulence is a special effect created from a noise function.2 It can give you 
a “sharper” appearance than a simple noise function. Turbulence is created 
by taking the absolute value of each noise octave about the midpoint before 
summing them. It is simple to produce if you have a good noise function. 
Introducing the absolute value operation can add sharp changes in the func-

2. Turbulence is the term used in computer graphics for what we are about to describe. Note, however, 
this is not the same as fluid turbulence. The overloading of the term is unfortunate.
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tion. For example, the noise functions shown by noisegraph in Figure 10.9, a 
one-octave and a four-octave 1D cubic noise+gradient noise function and their 
absolute values, along with the four-octave 2D examples, illustrate the differ-
ence between these two kinds of noise. It is possible to have more than four 
octaves of noise, and noisegraph can provide up to eight octaves. Because the 

Figure 10.9. Comparing the appearance of a 1D 1-octave noise function (top left), with the 
turbulence function derived from it (top right); a 1D 4-octave noise function (middle left), 
with the turbulence function derived from it (middle right); and the same comparison with 
a 2D 4-octave noise function (bottom left and right).
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glman noise comes from a texture, we will only be using four octaves here, 
which will be plenty for our discussion.

As we noted for two- and three-dimensional noise, the real effect of tur-
bulence does not lie in the pure 1D functions shown in Figure 10.9, but in the 
appearance of images that use it. In Figure 10.10, we show the simple sphere 
with ordinary noise (left) and turbulence (right) to illustrate the additional 
complexity that turbulence usually presents.

To get a turbulence function in glman, take the absolute value of each of 
the four components minus the mid-value 0.5. This gives us Table 10.2.

Component Term3 Term Range
0 abs( nv.r − .5 ) 0.0000 → 0.5000
1 abs( nv.g − .5 ) 0.0000 → 0.2500
2 abs( nv.b − .5 ) 0.0000 → 0.1250
3 abs( nv.a − .5 ) 0.0000 → 0.0625

sum    0.0000 → ~ 1.0000

3. In GLSL, the abs( ) function is overloaded to take either the integer or floating point absolute value 
depending on what type was passed in. There is no fabs( ) function for floating point absolute 
value like there is in C and C++.

Figure 10.10. Noise as a surface texture on the simple sphere (left) and the same noise 
treated as turbulence on the sphere (right).

Table 10.2. The four noise octaves converted to turbulence.
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The terms can be summed and the sum used directly, as shown in the 
following fragment shader code that was used to produce the images in Fig- 
ure 10.10.

uniform sampler3D Noise3;
uniform float   uNoiseScale;
uniform float   uNoiseMag;
uniform vec4   uColor1;
uniform vec4   uColor2;

in  float  vLightIntensity;
in  vec3  vMCposition;

out vec4 fFragColor;

void main( )
{
 vec4 nv = texture( Noise3, vMCposition * uNoiseScale );

 float sum =  abs(nv.r-.5) + abs(nv.g-.5) +
       abs(nv.b-.5) + abs(nv.a-.5);

 sum  =  clamp( uNoiseMag * sum, 0.0, 1.0 );
 vec3 color = mix( uColor1.rgb, uColor2.rgb, sum )*
       vLightIntensity;

 fFragColor = vec4( color, 1.0 );
}

Note that, unlike C and C++, GLSL overloads the abs( ) function name for 
taking the absolute value of both integers and floats.

Some Examples of Noise in Different Environments

A traditional use of noise is to provide interesting textures, often mimicking 
natural phenomena, to use in our images. These use several different tech-
niques, including using only one or two of the available octaves of noise, or 
manipulating noise or turbulence so that the function values lie in only a lim-
ited range or are shifted. We include code for these examples, so you can see 
examples of some manipulations you might use.

As a first example of the use of noise to create a rich image, we illustrate 
noise to simulate surface erosion using pixel discards. In Chapter 3, we used the 
texture coordinates directly to determine the pixels to discard, and the result 
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was shown in Figure 3.5, repeated here as the left-hand image in Figure 10.11. 
We can take a different approach by using 2D texture coordinates to generate 
a noise value that will determine which pixels should be discarded. When this 
is applied to a sphere, the resulting figure is shown as the right-hand image in 
Figure 10.11—a very different kind of image. The erosion shader operates by 
generating a pattern from a noise function, but instead of using it to change 
the color of the surface, the values are used to decide whether or not to discard 
pixels. The shader uses two uniform variables, Min and Max, that determine the 
range of values that allow pixels to be kept, and the kept pixels are colored as 
if the sphere had no texture.

The fragment shader for the erosion example is given below. The two 
uniform variables for the noise frequency and cutoff values would probably 
be defined as slider variables in the glman GLIB file, and you can experiment 
with them to achieve the look you want.

uniform sampler3D Noise3;
uniform float  uMin, uMax;
uniform float  uNoiseScale;

in vec4 vColor;
in float vLightIntensity;
in vec3 vMCposition;

out vec4  fFragColor;

void main( )

Figure 10.11. The discard-based screen of Chapter 2 (left) and noise-based discard to simu-
late erosion (right).
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{
 vec4  nv  = texture( Noise3, uNoiseScale*vMCposition );
 float sum  = nv.r + nv.g + nv.b + nv.a;
 sum = ( sum - 1. ) /2.; // range: 0. -> 1.

 if( sum < uMin )
  discard;

 if( sum > uMax )
  discard;

 fFragColor = vec4( vLightIntensity*vColor.rgb, 1. );

}

We look at some other examples of using noise in the sections below. These 
show the use of noise to simulate some natural materials, where a noise texture 
can add some of the complexity that is found in nature. This is a very rich subject, 
and our relatively simple examples can only suggest how much can be done.

Noise effects begin by choosing the domain that is to be used for the noise 
function, and the way the noise is to be used. The domain can be 1D, 2D, or 3D, 
depending on whether you want linear, surface, or solid effects. It can also be 
chosen to come from model space, eye space, or texture space. So you have a 
variety of choices that can affect the way the noise effects are generated. There 
are also several ways to use the noise values that you generate. You can use 
them directly, as we saw in the erosion example above, or you can use them to 
select how different colors are to be blended; the examples below all use noise 
to determine how blends are to be done.

Marble Shader
Marble is a material that exhibits noisy-looking 
veins in a base-color stone, and the nature of the 
veins makes it a natural material to model with 
a noise-based texture. The marble fragment 
shader whose effects are shown in Figure 10.12 
implements this kind of modeling. Its domain is 
the 3D model coordinates of the geometry being 
textured, and it uses all four octaves of noise. 
The resulting value, along with the position of 
the point in model space, is then taken as input 
to a sine function, making the texture somewhat 
periodic, as the veins in marble tend to be.Figure 10.12. The teapot with a marble texture.
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The fragment shader below implements this modeling approach to simu-
late a marble texture. It uses three uniform variables: two colors, the color of 
the marble base and the color of the marble vein, and one scale that changes 
the general texture of the noise values that could be set up with glman, so you 
could experiment with the texture to get the effect you want.

uniform sampler3D Noise3;
uniform vec4     uMarbleColor;
uniform vec4     uVeinColor;
uniform float    uNoiseScale;
uniform float    uNoiseMag;

in float vLightIntensity;  
in vec3  vMCposition;

out vec4 fFragColor;

void main( )
{
 vec4 nv  = texture( Noise3, vMCposition * uNoiseScale );
 float sum =   abs(nv.r - 0.5) + abs(nv.g - 0.5)
       + abs(nv.b - 0.5) + abs(nv.a - 0.5);
 sum = clamp( uNoiseMag * sum, 0.0, 1.0 );

 float sineval  = sin(vMCposition.y*6.0+sum*12.0)*0.5 + 0.5;
 vec3 color   = mix(uVeinColor.rgb, uMarbleColor.rgb,
            sineval) * vLightIntensity;
 fFragColor  = vec4( color, 1.0 );
}

Cloud Shader

Clouds are another effect that can be readily created using a fragment shader. 
There are so many different kinds of clouds that one shader cannot begin to 
capture them, but a very simple model is that clouds occur in the sky with 
a noise-like pattern that mixes cloud color and sky color, with gradations 
between them. A cloud shader might produce effects like those shown in 
Figure 10.13, with a parameter determining the way the clouds thin out so the 
sky color can be seen. Other kinds of cloud models might assume a particular 
geometry for cloud patterns and density and then use noise to determine what 
happens at the cloud region boundaries, but they could have similarities to 
this shader if you use the geometry to drive the mix( ) function and use the 
noise effects at the boundaries.
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A fragment shader for cloud effects is given below. The noise octaves 
are not uniformly weighted, because clouds seem to have more structure at 
a larger scale, and the intensity is modified with a cosine function to achieve 
even wider cloud and sky regions. This shader uses four uniform variables 
that set the foreground and background colors for clouds and that control the 
scale of the domain and shift the noise either toward the foreground or the 
background color. If you use this shader with glman, the uniform variables 
would need to be defined as slider or color chooser variables in a GLIB file, so 
that you can adjust the values to tune the look of the cloud effect.

uniform vec4   uSkyColor;
uniform vec4   uCloudColor;
uniform float   uBias;
uniform float   uNoiseScale;
uniform sampler3D Noise3;

in float   vLightIntensity; 
in vec3   vMCposition;

out vec4  fFragColor;

const float PI = 3.14159265;

void main( )

Figure 10.13. The teapot shown with a cloud texture (left) and a cloud texture on a plane 
(right) as it might be done for a sky background.
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{
 vec4 nv = texture( Noise3, uNoiseScale * vMCposition );
 float sum = ( 3.* nv.r + nv.g + nv.b + nv.a - 2. ) / 2.;
 sum = ( 1. + cos(PI * sum) ) / 2.;   
 float t = clamp( uBias + sum, 0., 1. );

 vec3 color = mix( uSkyColor.rgb, uCloudColor.rgb, t );
 color *= vLightIntensity;

 fFragColor = vec4( color, 1.0 );
}

Wood Shader

Wood is characterized by the rings that form as 
trees grow. These rings are something like the 
veins in marble, but rings have clearly defined 
edges between the light and dark wood, and 
the variation lies in the shape of the rings 
themselves. These are approximately cylindri-
cal, with variation in their width and spacing. 
A wood fragment shader must try to capture 
those kinds of variations. In Figure 10.14, we see 
an example of a wood shader applied to a tea-
pot. This solid-texture wood shader operates by 
adding a noise value (based on the model-space 
coordinates of a point) to the distance from the 
modeling Y-axis, and uses that distance to mix 
the light and dark wood colors.

A wood fragment shader that implements this approach is shown below. 
This uses five uniform variables, three shader parameters and two color vari-
ables that control the ring colors and the parameters that simulate the rings. 
These could be used with glman as slider or color selection variables in a GLIB 
file to let you experiment with the colors and parameters to achieve the look 
you want in your shader. For example, you could use light colors and wide 
and fairly regular ring spacing to simulate pine.

uniform sampler3D Noise3;
uniform vec4   uLightWoodColor;
uniform vec4   uDarkWoodColor;
uniform float   uRingFreq;
uniform float   uNoiseScale;
uniform float   uNoiseMag;

Figure 10.14. The teapot shown with a wood 
texture.
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in float vLightIntensity; 

in vec3 vMCposition;

out vec4  fFragColor;

void main( )

{

 vec4 nv = uNoiseMag * texture( Noise3, uNoiseScale*vMCposition 

);

 vec3 location = vMCposition + nv.rgb;

 float dist = length( location.xz )

 dist *= uRingFreq;

 // create an up-down ramp:

 float t = fract( dist + nv.r + nv.g + nv.b ) * 2.0;

 if( t > 1.0 )

  t = 2.0 - t;

 vec4 color = mix( uLightWoodColor, uDarkWoodColor, t );

 color *= vLightIntensity;

 fFragColor = vec4( color.rgb, 1. );

}

One of the most common uses of a wood shader is to cre-
ate wood surfaces that model the look of wooden furniture or 
the like. We can see in Figure 10.15 that we can modify this 
shader to create the texture of a wood surface (or, more pre-
cisely, a bookmatched veneer surface). This is done by chang-
ing the expression for the dist variable by adding terms as

 sqrt(location.x*location.x+location.z*location.z)+

  sqrt(8.+location.y)+sqrt(8.+abs(location.x));

and, as before, note that

 sqrt( location.x*location.x + location.z*location.z )

can be written more efficiently as

length( location.xz )

Figure 10.15. The wood 
shader applied to a flat surface.
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This gives roughly parallel structures on each side of the middle of the 
surface. Other techniques for surfaces would consider the surface as a side of 
a board (a modified cube) and would pick up the texture of the side as part of 
the wood-textured solid.

Advanced Noise Topics

The topic of noise in computer graphics is a very large one. We have just touched 
on it here in order to give you enough information to appreciate these func-
tions and to get started using them. However, there are many more advanced 
issues that have not been covered here. One of the biggest is the issue of band 
limiting noise functions. Value, gradient, and value+gradient noise functions 
in two and three dimensions have problems with high fre-
quencies creeping in to them. This can result in aliasing 
problems in the final image. Some solutions have been pro-
posed, including an elegant approach using wavelets. See 
[11] for more details.

Using Noisegraph

The noisegraph tool has been designed to let you experi-
ment with a number of different parameters used to gener-
ate computer graphics noise, and to give you a qualitative 
feel for how those parameters affect the nature of the noise 
function. The noisegraph tool is controlled by a user inter-
face panel (shown in Figure 10.16), which is fairly simple 
to use, and it displays both a 1D and a 2D noise function 
with the properties set up in the panel.

Note that noisegraph can produce three different types 
of noise: value-only, gradient-only, and value+gradient. In 
the example shown here, the selections in the top part of 
the interface panel are for a four-octave value+gradient 
noise function with quintic interpolation. You can see this 
in the 1D noise function window. Multiple octaves can be 
summed. Each octave is twice the frequency and half the 
amplitude of the octave below it, as we discussed earlier in 
the chapter.

Figure 10.16. The noisegraph user 
interface panel.
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The order of the noise curve can be either 
cubic or quintic. The cubic curve is C1 (slope) 
continuous everywhere, while the quintic curve 
is C2 (curvature) continuous.

If value noise is used, the slope at each 
noise point can be artificially set to zero (hori-
zontal) or can be smoothed using a Catmull-
Rom slope.

Notice that one of the control points for the 
1D noise function is highlighted in green in the 
1D noise function shown in Figure 10.17. When 
a point is selected (by pointing to it and click-
ing the left mouse button), its information can 
be edited as follows: 

• The point can be moved up and down using the mouse, if the type of 
noise is value-only or value+gradient.

• The Gradient slider can be adjusted if the noise type is gradient-only 
or value+gradient. If the noise uses quintic interpolation, the Curvature 
slider can also be adjusted.

The other important option for noise is the Turbulence check box. When 
this is checked, the individual octaves’ absolute values are summed to deter-
mine the noise function’s value.

Figure 10.17. The four-octave value+gradient 
1D noise function with quintic interpolation 
described above.

Figure 10.18. The 2D noise function defined above with rainbow (left), sky (center), and fire (right) color 
scales.
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This 1D noise function makes up the bottom edge of the 2D noise func-
tion shown in the 2D noise window in Figure 10.18. As you interactively make 
changes in the 1D noise function, the changes also show up in the 2D func-
tion window. The 2D noise function can be displayed with your choice of 
four color transfer functions according to the 2D Noise Texture radio buttons. 
Figure 10.18 shows the same 2D noise function with a rainbow scale (blue-to-
green-to-red), sky scale (blue-to-white), and fire scale (red-to-yellow).

Exercises

1. Experiment with noise: in the fragment shader for any of the chapter’s 
examples, use the different octaves of noise in different ways, as we did 
with the cloud shader, to see how that can affect the texture. For example, 
you might use

  nv.r + 2.*(nv.g-.5) + 4.*(nv.b-.5) + 8.*(nv.a-.5) + 1.5

 to use all four of the octaves at the same amplitude.
2. Illustrate a 2D noise function as a surface in the same way one would 

develop a surface as the graph of a simple function of two variables. Use 
a rather fine mesh in the domain to capture the shape of the function. Do 
this for one-octave noise and four-octave noise, and compare the relation 
between the shapers to the relation between the pseudocolor 2D noise 
functions in Figure 10.5.

3. Use glman to examine the nature of the four individual octaves of noise by 
creating a very simple fragment shader similar to that in the turbulence 
shader shown in Figure 10.9. For each octave, write a shader that derives 
a texture from that octave and uses a uniform slider variable to discard 
pixels whose value is less than that slider’s value. From that, determine 
the smallest and largest value of the octave of noise.

4. Explore the difference between transparency and pixel discarding. 
Instead of discarding pixels in the erosion shader, set the alpha value of 
the pixels you would discard to zero. Describe what happens when you 
rotate the scene, and why that happens.

5. Most of the examples in this chapter have used noise to set or modify 
the color of a fragment, but you can also use it in other ways. Modify 
the previous exercise to set the alpha component of each pixel with the 
noise function so that the “transparency” is noisy, and note the effect. 
(The effect might be best observed if you have two planes of different 



238 10.  Noise

color, draw the back plane first, and then draw the front plane with this 
noisy transparency.)

6. There are many places where you can find “noisy” behavior that you can 
simulate with noise-based shaders. In one of these, create an “asphalt” 
shader, based on your observation of asphalt in streets and parking lots, 
by starting with an appropriate gray color and darkening it randomly 
using noise. Apply this to a rectangle and see how close the results are to 
actual asphalt.

7. Of course, the random behavior of an “asphalt” shader as above doesn’t 
really capture the nature of a street or parking lot. For these you need 
to show the dirtier areas where tires travel or where cars drip oil. These 
are also noisy, but the noise is confined to particular areas. You can take 
a noise function and trim it to specific areas (define a region where the 
noise is to be applied and use the smoothstep( ) function to handle the 
edges or the region). Then add this to the color from the simple asphalt 
shader.
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Image Manipulation 
with Shaders11

The OpenGL computer graphics API is primarily intended for rendering 3D 
synthetic scenes from geometric primitives, but some capabilities for manipu-
lating images were built into the system from the beginning. With the addition 
of shader capabilities, OpenGL can now use texture access and manipulation 
operations to carry out a number of new image functions. In this chapter, we 
describe some of these functions. Our main tools will be the ability to get texels 
directly from a texture and the ability to do arithmetic on texel values.

The general form of the GLIB file is as below, including a uniform slider 
variable T, used in case you use a parameterized operation such as image 
blending, and variables for the resolution of the image file. Each texture needs 
to be assigned to a texture unit. Here we have set up the GLIB file for two 
textures, because some of the later examples in this chapter operate on two 
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images. Of course there will be changes if we work on a single image (using 
only one file, sample.bmp), if we use a different image (replacing the name of 
the image file), or if we include additional uniform variables to support other 
computations.

##OpenGL GLIB

Ortho -1. 1. -1. 1.

Texture 5 sample1.bmp
Texture 6 sample2.bmp

Vertex sample.vert
Fragment sample.frag
Program Sample uT <0. 0. 5.>  \
        uImageUnit 5  uImage2Unit 6

QuadXY .2 5.

This GLIB file puts the two texture images on 
texture units 5 and 6. You can arbitrarily pick which 
texture units to use, up to the total number sup-
ported by your graphics card. 

The vertex shader is short and uses our familiar 
conventions for variable names:

out vec2 vST;

void main( )
{
 vST = aTexCoord0.st;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

Throughout this chapter we will be looking at different image manipula-
tion functions that we can build into fragment shaders.

Basic Concepts

GLSL deals with images by treating them as textures and using texture access 
and manipulation to set the color of each pixel in the color buffer. This color 
buffer may then be displayed, letting you see the effect of your manipulation, 

If you are using glman, 
do not use texture units 2 
and 3, because glman uses 
those to hold its built-in 
2D and 3D noise textures.
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or it may be saved as another texture or output as 
a file.

In Figure 11.1, we see a texture image as 
it might have been read from an image file. This 
texture file may be treated as an image raster by 
working with each texel individually. A built-in 
GLSL function textureSize( ) will tell you the 
resolution of the texture, called ResS and ResT in 
Figure 11.1. 

There are two ways to access a single texel in 
a texture. Since any OpenGL texture has texture 
coordinates ranging from 0.0 to 1.0, the coordinates 
of the center of the image are vec2(0.5,0.5) and 
you can increment texture coordinates by 1./ResS 
or 1./ResT to move from one texel to another hori-
zontally or vertically, respectively. Alternately, if 
you are working with GLSL 1.50 (OpenGL 3.2) or 
higher, you can access any texel with the texelFetch( ) function. We will use 
these GLSL texture-access capabilities in the fragment shader to identify and 
calculate colors for pixels in the color buffer.

In order to be as general as possible, we will address and increment tex-
ture coordinates with real numbers rather than integers, in spite of the weak-
ness in this approach, since it can lead to some unintentional interpolations of 
pixel values. 

Single-Image Manipulation

In the next several sections, we work with an individual image and compute 
the color of output pixels by using information contained in the image. This 
is in contrast to some later sections in this chapter, when we use two different 
images as textures loaded into different texture units in our computation.

Luminance

The luminance of a color is the overall brightness of the color, with no reference 
to the color’s hue. Luminance is a more complex property than it might seem, 
because our eyes respond to different primary colors differently. Luminance 
has been studied because of the need to give luminance cues to persons who 
have deficient color vision, as described in [15, Chapter 5], and because it was 

Figure 11.1. A texture raster that could be 
created from an image file.
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necessary to consider luminance when creating a color system that could sup-
port both black-and-white and color television.

The sRGB specification (also known as IEC 61966-2-1) is emerging as a 
standard way to define colors across various monitors and applications [42]. 
In sRGB, luminance is defined as a linear combination of red, green, and blue. 
The weight vector for luminance in sRGB is

 const vec3 W = vec3( 0.2125, 0.7154, 0.0721 );

We use this set of weights in much of the upcoming sample vertex shader 
code to compute the luminance of a pixel by taking the dot product of the vec-
tor .rgb with this weighting vector as follows:

 vec3 irgb = texture( uImageUnit, vST ).rgb;
 float luminance = dot( irgb, W );

Note that these numbers in the weight vector W sum to 1.0000 so that 
dotting this vector with a legitimate RGB vector will produce a luminance 
between 0 and 1. We will find luminance to be an important concept in several 
image manipulation techniques, such as grayscale. Grayscale conversion of an 
image is accomplished by replacing the color of each pixel with its luminance 
value. When you compute each pixel’s luminance, as shown in the code frag-
ment above, you can create a grayscale representation of the image by setting 
the pixel color to a vector of the luminance value:

 fFragColor = vec4( luminance, luminance, luminance, 1.);

A conversion from a color image to grayscale in this way is shown in 
Figure 11.2.

Figure 11.2. A supermarket fruit image (left) and its grayscale equivalent (right).
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CMYK Conversions

A common function when you are doing graphics that will be published using 
standard printing process is converting your RGB-color images to CMYK-
color. The RGB color model is based on emissive colors, adding color com-
ponents to black, as used by computer monitors. The CMYK color model is 
a transmissive model, created by subtracting color components from white. 
Standard printing uses four subtractive color components: cyan, magenta, yel-
low, and black. Converting RGB colors to CMYK colors and outputting the 
four single-color images is called creating CMYK separations. The single-color 
images are used to create four printing plates. The conversion from the RGB 
color space to the CMYK color space is straightforward, although there are dif-
ferent approaches. The examples shown here are taken from [5].

RGB to CMYK conversion works like this. First, convert RGB to CMY 
by subtracting the RGB color from white. Then calculate the amount of black 
in each color and segregate it out as the K value, then adjust each of the CMY 
colors to reflect the fact that this K is present. Sample fragment shader code 
to convert a variable vec3 color to a variable vec4 cmykcolor is shown here.

 vec3 cmycolor = vec3(1., 1., 1.) – color;
 float K = min( cmycolor.x, min(cmycolor.y, cmycolor.z) );
 vec3 temp = (cmycolor – vec3(K,K,K,) )/(1.0 – K);
 vec4 cmykcolor = vec4(temp, K);

A more complex, but much more satisfactory, conversion scales the values 
of cmycolor above by modifying the value of K used to convert to cmykcolor. 
This approach, which yields a good approximation of the Adobe Photoshop 
CMYK conversion, is given by 
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where SK = 0.1, K0 = 0.3, and Kmax = 0.9. This approach is used in developing 
Figure 11.3.

A separation is a grayscale image that captures one of the C, M, Y, or K 
components of the image. These are output as files to be used in printing either 
on film or digitally. To create a separation, you use code such as that above 
and replace each pixel’s color with the single-color grayscale. For example, to 
create the magenta separation, we could use

fFragColor = vec4( cmykcolor.yyy, 1.);

Since there is no “cmyk” nameset, and since namesets pay no attention to 
the meaning of the components, we have used the xyzw nameset for the vec4 
cmykcolor in this example.

An example of creating separations is shown in Figure 11.3, which shows 
an original color image and four separations created with this technique. The 
separations are shown in grayscale to emphasize the amount of ink that would 
be required to print each; darker values in the separations indicate that more 
ink of that color will be used at that point. The most obvious effect in this fruit 
image is the yellow tones in the fruits and the foliage, along with the magenta 
tones from the red fruit colors.

The fragment shader for this CMYK conversion is shown below, with the 
variables in the discussion hard-coded for this example.

Figure 11.3. A color image (top) and the four CMYK separations (shown in grayscale) in C-M-Y-K order.
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#define CYAN

#undef  MAGENTA

#undef  YELLOW

#undef  BLACK

uniform sampler2D uImageUnit;

in vec2 vST;

out vec4 fFragColor;

void main( )

{

 vec3 irgb = texture( uImageUnit, vST ).rgb;

 vec3 cmycolor = vec3( 1., 1., 1. ) - irgb;

 float K = min( cmycolor.x, min(cmycolor.y, cmycolor.z) );

 vec3 target = cmycolor - 0.1 * K;

 if (K < 0.3) K = 0.;

 else K = 0.9 * (K - 0.3)/0.7;

 vec4 cmykcolor = vec4( target, K );

#ifdef CYAN

 fFragColor = vec4( vec3(1. - cmykcolor.x), 1. );

#endif

#ifdef MAGENTA

 fFragColor = vec4( vec3(1. - cmykcolor.y), 1. );

#endif

#ifdef YELLOW

 fFragColor = vec4( vec3(1. - cmykcolor.z), 1. );

#endif

#ifdef BLACK

 fFragColor = vec4( vec3(1. - cmykcolor.w), 1. );

#endif

}
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Hue Shifting

Along with the conversion to CMYK color, you can also convert among the 
other major color models. We assume that you are familiar with the HLS and 
HSV color models [14], and we will implement hue shifting by converting 
RGB to either HLS or HSV color, changing the hue in the new color model, and 
then shifting back to RGB. The effect of this kind of image shifting is shown in 
Figure 11.4.

Some sample fragment shader code to do this is shown below, using 
the HSV color model. This color model is used because the hue is an angular 
function, and you can shif color easily by adding a numeric value to the hue 
and taking the result mod 360. The color conversions from RGB to HSV and 
back from HSV to RGB use two functions from [18]. The hue-shifting shader 
is written to use the glman slider variable T, with range [0., 360.], to control the 
amount of the hue shift.

uniform float uT;
uniform sampler2D uImageUnit;

in vec2 vST;

out vec4 fFragColor;

vec3
convertRGB2HSV( vec3 rgbcolor )

Figure 11.4. A color image and the same image with hue shifted by 240 degrees.
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{
 float h, s, v;
 
 float r = rgbcolor.r;
 float g = rgbcolor.g;
 float b = rgbcolor.b;
 float v = float maxval = max( r, max( g, b ) );
 float minval = min( r, min( g, b ) );
 if (maxval==0.) s = 0.0;
 else s = (maxval – minval)/maxval;

 if (s == 0.)
  h = 0.; // actually h is indeterminate in this case
 else
 {
  float delta = maxval – minval;
  if ( r == maxval ) h = (g – b)/delta;
  else
   if (g == maxval) h = 2.0 + (b – r)/delta;
   else
    if (b == maxval) h = 4.0 + (r – g)/delta;
  h *= 60.;
  if (h < 0.0) h += 360.;
 }
 return vec3( h, s, v );
}

vec3
convertHSV2RGB( vec3 hsvcolor )
{
 float h = hsvcolor.x;
 float s = hsvcolor.y;
 float v = hsvcolor.z;
 if (s == 0.0) // achromatic– saturation is 0
 {
  return vec3(v,v,v); // return value as gray
 }
 else // chromatic case
 {
  if (h > 360.0) h = 360.0; // h must be in [0, 360)
  if (h < 0.0) h = 0.0; // h must be in [0, 360)
  h /= 60.;
  int k = int(h);
  float f = h - float(k);
  float p = v * (1.0 – s);
  float q = v * (1.0 - (s * f));
  float t = v * (1.0 - (s * (1.0 - f)));



248 11.  Image Manipulation with Shaders

  if (k == 0) return vec3 (v, t, p);
  if (k == 1) return vec3 (q, v, p);
  if (k == 2) return vec3 (p, v, t);
  if (k == 3) return vec3 (p, q, v);
  if (k == 4) return vec3 (t, p, v);
  if (k == 5) return vec3 (v, p, q);
 }
}

void main( )
{
 vec3 irgb = texture( uImageUnit, vST ).rgb;
 vec3 ihsv = convertRGB2HSV( irgb );
 ihsv.x += uT;
 if (ihsv.x > 360.)  ihsv.x -= 360.; //add to hue
 if (ihsv.x < 0.)   ihsv.x += 360.; //add to hue
 irgb = convertHSV2RGB( ihsv );
 fFragColor = vec4( irgb, 1. );
}

This example includes an implicit conversion between the RGB color 
representation and the HSV color representation, showing how more general 
color conversions may be done.

Image Filtering

A number of image manipulations are based on filtering images. A filter is a 
process that convolves a pixel with its neighbors by using a matrix to weight 
neighboring pixels. The size of the filter, the values in the filter, and the mean-
ing of different values that are returned when a filter is applied, all vary from 
algorithm to algorithm.

As two examples of filters, consider the following. One is a three-by-three 
Sobel filter that is used to detect horizontal edges. The other is a five-by-five 
blur filter that can be used to smooth (or blur) an image:
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The filters are used as weights in creating a weighted sum of the values in 
an adjacent set of pixels. For pixel values Pij and filter elements Fij and a filter 
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width of 2 * 1,n+  we can express this weighted sum as  

F Pij ij
j n

n

i n

n

*
=−=−
∑∑

There are some general properties that filters may have. Filters are often 
square matrices, usually of odd size, so we can often talk about a 3 × 3 or  
5 × 5 filter. The sum of the weights in the filter is often one, especially when the 
overall content of an array is to be preserved, so applying a filter usually does 
not change the overall magnitude of whatever the filter is applied to.

Image Blurring

Image blurring can be done by applying a simple symmetric filter to the image, 
so that each pixel’s color is influenced by the color of each of its neighbors. You 
can use a simple 3 × 3 blur convolution filter like the one below or a larger 5 × 5 
blur convolution filter like the 5 × 5 example shown above:
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Figure 11.5. An original image (left) blurred by a 3 × 3 filter (center) and a 5 × 5 filter (right).
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Examples of these two filters’ effects are shown in Figure 11.5 and are 
compared with an original unblurred image, both to show you the blurred 
images and to let you compare the amount of blurring generated by each of 
these filters. Because blurring is not very easy to see in reduced-size natural-
istic images, we have chosen an original visualization image whose edges are 
particularly pronounced.

Below is a fragment shader that applies the 3 × 3 blur convolution filter 
above to a set of pixels to blur an image. The computation is done without 
formal matrix multiplication as the pixels with weight 1.0 are gathered, as are 
those with weight 2.0 and the single pixel with weight 4, and the result is 
divided by the overall weight. The code for a 5 × 5 blur filter would look quite 
similar, and both are included with the resources for this book; the difference 
is that four additional pixel addresses are needed, and 25 individual pixel col-
ors are generated, instead of the nine shown here.

uniform sampler2D uImageUnit;

in vec2 vST

out vec4 fFragColor;

void main( )
{
 ivec2 ires = textureSize( uImageUnit, 0 );
 float ResS = float( ires.s );
 float ResT = float( ires.t );
 vec3 irgb = texture( uImageUnit, vST ).rgb;

 vec2 stp0 = vec2(1./ResS, 0. ); // texel offsets
 vec2 st0p = vec2(0.   , 1./ResT);
 vec2 stpp = vec2(1./ResS, 1./ResT);
 vec2 stpm = vec2(1./ResS, -1./ResT);

// 3x3 pixel colors next

 vec3 i00   = texture( uImageUnit, vST ).rgb;
 vec3 im1m1 = texture( uImageUnit, vST-stpp ).rgb;
 vec3 ip1p1 = texture( uImageUnit, vST+stpp ).rgb;
 vec3 im1p1 = texture( uImageUnit, vST-stpm ).rgb;
 vec3 ip1m1 = texture( uImageUnit, vST+stpm ).rgb;
 vec3 im10  = texture( uImageUnit, vST-stp0 ).rgb;
 vec3 ip10  = texture( uImageUnit, vST+stp0 ).rgb;
 vec3 i0m1  = texture( uImageUnit, vST-st0p ).rgb;
 vec3 i0p1  = texture( uImageUnit, vST+st0p ).rgb;
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 vec3 target = vec3(0.,0.,0.);
 target += 1.*(im1m1+ip1m1+ip1p1+im1p1); //apply blur filter
 target += 2.*(im10+ip10+i0m1+i0p1);
 target += 4.*(i00);
 target /= 16.;
 fFragColor = vec4( target, 1. );
}

Chromakey Images

Chromakey image manipulation is used in “green 
screen” or “blue screen” image replacement. This lets 
you take any image and replace any regions that have 
the same color as the key color or are very near the key 
color with a background texture or portions of another 
image. The chromakey replacement effect is shown in 
Figure 11.6.

For chromakey computation, two textures are 
required, an “image texture” and a “before texture.” 
The “image texture” is the one that may contain pixels 
in the color key that would need to be replaced, and 
the “before texture” is the one that would replace any 
color-keyed pixels. The process then is relatively simple: 
read the image texture, and for each pixel, either keep 
this pixel, or if the pixel color is sufficiently near the key 
color, replace the pixel with the corresponding pixel in 
the before texture. The code fragment below uses pure 
green as the color key, simulating a green-screen pro-
cess. The value of uT is a tolerance, or a measure of how 
near a color must be to the color key before its pixel will 
be replaced. This is typically very small, so that only col-
ors very near green, vec3(0., 1., 0.), will pass the 
limit test and will be replaced by the “before” texture 
color.

A fragment shader for this process is shown below, 
with uniform slider variables uT and uAlpha from a GLIB 
file. The foreground image comes from the BeforeUnit 
and the background image is from the AfterUnit. The 
uAlpha variable controls the alpha value for the fore-
ground image as seen in the figure.

Figure 11.6. A synthetic image (top) 
and the result of green-screen chro-
makey processing to replace the green 
color and blend the foreground image 
with a background with an alpha value 
of 0.7 (bottom).
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uniform float uT;
uniform float uAlpha;
uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

out vec4 fFragColor;

void main( )
{
 vec3 brgb = texture( uBeforeUnit, vST ).rgb;
 vec3 argb = texture( uAfterUnit, vST ).rgb;
 vec4 color;

 float r = brgb.r;
 float g = brgb.g;
 float b = brgb.b;
 color = vec4( brgb, 1. );
 float rlimit = uT;
 float glimit = 1. - uT;
 float blimit = uT;
 if( r <= rlimit && g >= glimit && b <= blimit )
  color = vec4( argb, 1. );
 else
  color = vec4( uAlpha*brgb + (1.-uAlpha)*argb, 1. );

 fFragColor = color;
}

Stereo Anaglyphs

A very interesting and fun use for image-based fragment shaders is to produce 
stereo anaglyphs. These have long been used in comic books and movies, and 
are still popular today. These are sometimes called “red-blue stereo,” although 
today most glasses are actually red-cyan, with the convention that the red filter 
is over the left eye and the cyan filter is on the right.

Before writing the shader, we need to see how the glasses actually work. 
Our shader will produce a composite image that incorporates both the left and 
right eye views. When the composite image is viewed through the red filter, 
we want to see just the left eye image. The right eye image needs to be blocked, 
or in image terms, it needs to be blacked out. Similarly, when the compos-
ite image is viewed through the cyan filter, we want to see just the right eye 
image, so the left eye needs to be blocked. Since a red filter passes red light and 
blocks cyan light, this means that the left eye image needs to be coded in red 
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and the right eye image needs to be coded in cyan (i.e., greens and blues). The 
cyan filter on the right eye blocks red and passes green and blue, so the reverse 
needs to happen for the right eye. Thus, the final composite image needs to get 
its red component from the left eye image and its green and blue components 
from the right eye image. 

An example of doing this is shown in Figure 11.7. You need to have some 
red-cyan glasses to see the effect.

Figure 11.7. A pair of stereo images (top) and the composite anaglyph (bottom). 
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The strategy for creating anaglyph images, then, is this:

1. Start with left and right images of a 3D scene. These can be produced 
with a camera or by separately rendering two views of the same scene. 
Much of this is discussed in [27]. For photographs, take two pictures 
from points about 4 inches to 6 inches apart that frame the same area, 
preferably in the photos’ foregrounds or middlegrounds.

2. Create a composite image using the red from the left eye image and the 
green and blue from the right eye image.

3. Because there is often vertical disparity between stereo images, espe-
cially when shot with a handheld camera, allow one image to be repo-
sitioned vertically.

4. Whatever objects appear in the same location in the two images will 
appear to live in the plane of the screen or paper. This depth is known 
as the plane of zero parallax. While it is cool to place the plane of zero 
parallax towards the back of the scene so that most of the scene seems to 
hover in midair, it is awkward. Here’s why. In our everyday existence, 
things can appear in midair in front of us, a flying bird for example. 
Graphics scenes get clipped on the left, right, bottom, and top, but that 
midair bird doesn’t. So, a graphics scene hovering in front of us has the 
potential to look rather unworldly when it gets clipped in midair for 
no apparent reason. A more natural-looking approach is to place the 
plane of zero parallax in the front, so that most of the 3D scene appears 
to live inside the monitor or book. If we were watching the midair bird 
through a window, and the bird suddenly got clipped against the win-
dow sides, we would think nothing of it. So a graphics scene that goes 
into the page and gets clipped will look like something we are used to 
seeing. So, in producing this anaglyph, it is also a good idea to allow 
one image to be repositioned horizontally to change the plane of zero 
parallax.

5. Because the red and cyan filters are not usually perfectly balanced, allow 
the color components to be scaled to compensate for any inequities.

The GLIB file needs to bring in both image files and set up the sliders:

##OpenGL GLIB

Texture 5 left.bmp
Texture 6 right.bmp

Vertex anaglyph.vert
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Fragment anaglyph.frag
Program Anaglyph        \
   uOffsetS <-.25 0. .25>   \
   uOffsetT <-.25 0. .25>   \
   uRed   <0. 1. 5.>    \
   uGreen  <0. 1. 5.>    \
   uBlue   <0. 1. 5.>    \
   uLeftUnit 5 uRightUnit 6

QuadXY .2 5.

Like the other examples in this chapter, most of the work is in the frag-
ment shader:

uniform sampler2D uLeftUnit, uRightUnit;
uniform float uOffsetS, uOffsetT;
uniform float uRed, uGreen, uBlue;

in vec2 vST;

out vec4 fFragColor;

void main( )
{
 vec4 left = texture(uLeftUnit, vST );
 vec4 right = texture(uRightUnit,vST+vec2(uOffsetS,
                     uOffsetT));

 vec3 color = vec3( left.r, right.gb );
 color *= vec3( uRed, uGreen, uBlue );
 color = clamp( color, 0., 1. );

 fFragColor = vec4( color, 1. );
}

Notice that the fragment shader uses five uniform slider variables that 
are set up in the GLIB file. The variables uOffsetS and uOffsetT control the 
offset in the right image, to make up for differences in registering the images, 
and the three uniform variables uRed, uGreen, and uBlue let you adjust the 
color balance to make up for variations in the colors in the glasses. When you 
create an anaglyph image, you may want to adjust the image with these vari-
ables to get the best effect.

Figure 11.8 shows another example of creating stereo anaglyphs.
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3D TV

While we are on the subject of stereographics, let’s go one step farther. One pro-
posal for 3D television (“3DTV”) has been a technique called “SmoothPicture” 
[21] which transmits a single stereo image by spatially interlacing the left and 
right images into it, as shown in Figure 11.9. Each separate image is deci-
mated in complementary checkerboard patterns before being combined. A 

Figure 11.8. An anaglyph made from stereo pairs of images of Mars, from NASA's 
website [7]. Note that in the top of this figure, the left eye view is on the right and the 
right eye view is on the left. This makes it possible to free-view these images if you are 
good at crossing your eyes. If you are good at parallel free-viewing, try the top of Fig- 
ure 11.7.

 Right  Left
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Figure 11.9. Left and right eye views being 
combined into a single spatially interlaced 
image.

3D-enabled digital television decomposes the single 
image back into decimated left and right images, 
doubles its refresh rate to 120 Hz, and alternately 
displays the images: left-right-left-right-… Viewers 
wear shutterglass stereo eyewear to channel the 
proper image into the proper eye.

Fortunately, existing programs can be adapted 
fairly easily to produce this spatially-interlaced sig-
nal. A left eye and right eye view would need to 
be rendered, each to its own texture. A fragment 
shader, shown below, would then create the check-
erboard interlace pattern. A simple way to do that 
would be to use the built-in gl_FragCoord window-
relative pixel-space coordinates, to decide whether 
this fragment should receive the left eye image or 
the right.

uniform sampler2D uLeftUnit, uRightUnit;

in vec2 vST;

out vec4 fFragColor;

void main( )
{
 int row = int( gl_FragCoord.y );
 int col = int( gl_FragCoord.x );
 int sum = row + col;

 vec4 color;
 if( ( sum % 2 ) == 0 )
  color = texture( uLeftUnit, vST );
 else
  color = texture( uRightUnit, vST );

 fFragColor = vec4( color.rgb, 1. );

}

Here is an example of what this looks like. Figure 11.10 shows left and 
right eye images. (In this case they were taken with a stereo camera, but they 
could just have easily been computer-generated.) The spatially interlaced 
image is also shown as part of Figure 11.10, along with a zoomed-in view more 
clearly showing the checkerboard interlacing pattern.
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Figure 11.10. Left and right eye images, top, and the spatially interlaced result and a zoom-in view, bottom.
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Shutterglass stereo , in which each eye sees an image separately through 
polarized lenses, has been a visualization mainstay for many years, finding 
important applications in architecture, biology, chemistry, computer-aided 
design, geology, etc. In addition to the obvious entertainment applications, 
3DTV should become an important tool for science and engineering.

Edge Detection

Edge detection is a classic image processing technique, and is relatively easy to 
do in a fragment shader. The edge detection process we present uses a pair of 
Sobel filters, one for horizontal components and one for vertical components. 
The horizontal Sobel filter was shown above. The vertical Sobel filter is the 
same, but rotated 90 degrees. Specifically, the horizontal and vertical filters 
are, respectively,
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The effect of the Sobel filters is to compare two columns (or rows, depend-
ing on which filter you are using) that are one column (or row) apart; if there 
is no edge, the colors should be quite close and the filter should return a very 
small value. If the returned value or values are “large”, the process infers that 
an edge is present. The test may be done on the original image or the lumi-
nance-only image.

Notice that in the rightmost image of Figure 11.11, the filter results are 
interpreted as colors. Where there is no edge, the output figure is very dark; 

Figure 11.11. The edge detection operation, with the edge-showing image combined with the original image 
in proportions 0.0 (left), 0.5 (middle), and 1.0 (right).
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where there is an edge, the output color is light. This visually validates the con-
cept of detecting edges, though in many applications you would go on to make 
processing decisions based on these edges rather than simply displaying them.

Below, you see an example of some fragment shader code that imple-
ments these ideas. The colors of the 3 × 3 set of pixels are retrieved from the 
image texture, a dot product of each is done with the luminance weight vector 
to convert the 3 × 3 image to grayscale, and then the Sobel filters are applied 
and the two results combined to set a single grayscale output value. Finally, 
that output value is mixed with the original color according to a glman uniform 
slider variable, uT.

ivec2 ires = textureSize( uImageUnit, 0 );
float ResS = float( ires.s );
float ResT  = float( ires.t );
vec3 irgb  = texture( uImageUnit, vST ).rgb;

vec2 stp0 = vec2(1./ResS, 0. );
vec2 st0p = vec2(0.   , 1./ResT);
vec2 stpp = vec2(1./ResS, 1./ResT);
vec2 stpm = vec2(1./ResS, -1./ResT);

const vec3 W  = vec3( 0.2125, 0.7154, 0.0721 );
float i00   =  dot( texture( uImageUnit, vST ).rgb, W );
float im1m1  = dot( texture( uImageUnit, vST-stpp ).rgb, W );
float ip1p1  = dot( texture( uImageUnit, vST+stpp ).rgb, W );
float im1p1  = dot( texture( uImageUnit, vST-stpm ).rgb, W );
float ip1m1  = dot( texture( uImageUnit, vST+stpm ).rgb, W );
float im10   = dot( texture( uImageUnit, vST-stp0 ).rgb, W );
float ip10  =  dot( texture( uImageUnit, vST+stp0 ).rgb, W );
float i0m1  =  dot( texture( uImageUnit, vST-st0p ).rgb, W );
float i0p1  =  dot( texture( uImageUnit, vST+st0p ).rgb, W );
float h= -1.*im1p1-2.*i0p1-1.*ip1p1+1.*im1m1+2.*i0m1+1.*ip1m1;
float v= -1.*im1m1-2.*im10-1.*im1p1+1.*ip1m1+2.*ip10+1.*ip1p1;
 
float mag   = length( vec2( h, v ) );
vec3 target  = vec3( mag, mag, mag );
fFragColor = vec4( mix( irgb, target, uT ), 1. );

Embossing

We can modify the idea of edge detection to include replacing color by lumi-
nance and highlighting images differently depending on the edges’ angles. 
The result is the emboss operation that is commonly found in image manipu-
lation programs. The result of an emboss operation is shown in Figure 11.12, 
and the code for a fragment shader to accomplish this is shown below. This 
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code includes #define statements to create grayscale or color embossing; both 
are shown in the figure.

#define GRAY

uniform sampler2D uImageUnit;

in vec2 vST;

out vec4 fFragColor;

void main( )
{
 ivec2 ires = textureSize( uImageUnit, 0 );
 float ResS  = float( ires.s );
 float ResT  = float( ires.t );
 vec3 irgb  = texture( uImageUnit, vST ).rgb;

 vec2 stp0  = vec2(1./ResS, 0. );
 vec2 stpp  = vec2(1./ResS, 1./ResT);
 vec3 c00   = texture( uImageUnit, vST ).rgb;
 vec3 cp1p1 = texture( uImageUnit, vST + stpp ).rgb;

 vec3 diffs = c00 - cp1p1; // vector difference
 float max = diffs.r;
 if ( abs(diffs.g)) > abs(max) ) max = diffs.g;
 if ( abs(diffs.b)) > abs(max) ) max = diffs.b;

 float gray = clamp( max + .5, 0., 1. );
 vec3 color = vec3( gray, gray, gray );
 fFragColor = vec4( color, 1. );
}

Figure 11.12. An original photo (left) along with the emboss operation results (right).
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Toon Shader

There are various kinds of shader that are known as toon shaders. One is a 
shader for 3D graphics, in which the colors are quantized, and the edges 

are enhanced by coloring them black. This is the “toon 
shader” used by many commercial 3D graphics packages, 
so named because the resulting images look like a hand-
drawn cartoon.

This shader operates in a relatively simple fashion 
and uses the edge-detection filtering discussed above 
and some color quantization. This models both kinds of 
enhancement seen in the 3D toon shader. At a high level, 
the 2D toon shader’s operations are

1. Calculate the luminance of each pixel.
2. Apply the Sobel edge-detection filter and get a mag-

nitude.
3. If magnitude > threshold, color the pixel black
4. Else, quantize the pixel’s color.
5. Output the colored pixel.

This is shown in the following fragment shader, 
which is set up with uniform slider variables MagTol and 
Quantize to manipulate the image through glman. Notice 
that this gets the nine texture values needed for a 3 × 3 fil-
ter, converts each to its saturation value, and then applies 
both horizontal and vertical Sobel filters and tests their 
combination for edges The color is then quantized to simu-
late the behavior of hand-drawn cartoons.

uniform sampler2D uImageUnit, uBeforeUnit, uAfterUnit;

uniform float uMagTol;
uniform float uQuantize;

in vec2 vST;

out vec4 fFragColor;

Figure 11.13. The original fruit 
image (top) and with toon shading 
applied (bottom).
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void main( )

{

 ivec2 ires = textureSize( uImageUnit, 0 );

 float ResS = float( ires.s );

 float ResT = float( ires.t );

 vec3 irgb = texture( uImageUnit, vST ).rgb;

 vec3 brgb = texture( uBeforeUnit, vST ).rgb;

 vec3 argb = texture( uAfterUnit, vST ).rgb;

 vec3 rgb = texture( uImageUnit, vST ).rgb;

 vec2 stp0 = vec2(1./uResS, 0. );

 vec2 st0p = vec2(0.   , 1./uResT);

 vec2 stpp = vec2(1./uResS, 1./uResT);

 vec2 stpm = vec2(1./uResS, -1./uResT);

 const vec3 W = vec3( 0.2125, 0.7154, 0.0721 );

 float i00 =  dot( texture( uImageUnit, vST).rgb, W );

 float im1m1 = dot( texture( uImageUnit, vST-stpp ).rgb, W );

 float ip1p1 = dot( texture( uImageUnit, vST+stpp ).rgb, W );

 float im1p1 = dot( texture( uImageUnit, vST-stpm ).rgb, W );

 float ip1m1 = dot( texture( uImageUnit, vST+stpm ).rgb, W );

 float im10 =  dot( texture( uImageUnit, vST-stp0 ).rgb, W );

 float ip10 =  dot( texture( uImageUnit, vST+stp0 ).rgb, W );

 float i0m1 =  dot( texture( uImageUnit, vST-st0p ).rgb, W );

 float i0p1 =  dot( texture( uImageUnit, vST+st0p ).rgb, W );

 // next two lines apply the H and V Sobel filters at the pixel

 float h= -1.*im1p1-2.*i0p1-1.*ip1p1+1.*im1m1+2.*i0m1+1.*ip1m1;

 float v= -1.*im1m1-2.*im10-1.*im1p1+1.*ip1m1+2.*ip10+1.*ip1p1;

 float mag = length( vec2( h, v ) ); //  how much change

                 //  is there?

 if( mag > uMagTol )

 { // if too much, use black

  fFragColor = vec4( 0., 0., 0., 1. );

 }

 else

 {        // else quantize the color

  rgb.rgb *= uQuantize;

  rgb.rgb += vec3( .5, .5, .5 );   // round

  ivec3 intrgb = ivec3( rgb.rgb );  // truncate

  rgb.rgb = vec3( intrgb ) / Quantize;

  fFragColor = vec4( rgb, 1. );

 }

}
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Artistic Effects

If you use a commercial image manipulation program such as Photoshop or a 
general-distribution version such as GIMP, you will find a number of “artistic 
filters” that you can use to make an image look more like a painting or as if any 
of several other kinds of thing had been done to it. It is interesting to consider 
how you might be able to create such artistic effects with a GLSL fragment 
shader.

A general approach might be to select a region of several texels from the 
image relative to the current texel, and apply some sort of process that results 
in a single color value. For example, you might choose the texel in the region 
that has the greatest luminance. In Figure 11.14 we have done that to create a 
painting effect for the familiar cherry blossom figure of this chapter. The pro-
cess is fairly straightforward; we develop a full 5 × 5 texel rectangle R around 
an individual pixel, as well as a 5 × 5 mask rectangle M whose values are sim-
ply zero or one. We then look at the luminance values of each texel in the set 

*R M  and use the texel with the highest luminance value in the place of the 
particular pixel. The code is rather long because, at this writing, GLSL does not 
allow variables to be used as array indices, so we will not include it here. It is 
available with the resources for the book.

It is straightforward to choose which values are zero and which are one 
in the mask, and changing the “shape” of the mask will change the effect of the 
filter. You can use other criteria besides the maximum luminance to select the 
color for the pixel. There is ample ground here for fruitful experimentation!

Figure 11.14. An image (left) with a painting-effect filter applied (right).
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Image Flipping, Rotation, and Warping

In the previous examples of single-image manipulation, we worked with each 
pixel in place. However, we can also compute the color for a pixel by manipu-
lating the coordinates of the pixel to get that pixel’s color from another place 
in the image.

While we create image warps to achieve particular effects on specific 
images, it can be useful to have some kind of uniform benchmark image for 
warps. There are many such benchmark images, depending on just what 
effects you want to see, but in Figure 11.15 we see a simple rect-
angular grid that we will use to examine the details of changes in 
the images.

We will work with images by treating them as texture maps, 
as we have throughout this chapter so far. When we compute the 
source address for a pixel, we are applying a function from the 
pixel address space to itself. Since the texture space is the unit 
square, [0, 1] ×  [0, 1] we are looking for functions that map that 
space to itself. Sometimes, however, we may want to double the 
size of that space and shift it so that the space we are working with 
is [−1, 1] × [−1, 1] to make it convenient to apply familiar functions 
(such as trigonometric functions) to the space. Examples and exer-
cises will help clarify what we mean by this.

One of the simplest kinds of address-based image manipulation is image 
flipping. There are two kinds of flipping: horizontal and vertical. In vertical 
image flipping, you exchange the top pixels in the image with the bottom 
pixels, effectively mirroring the image around a horizontal line. In horizontal 
image flipping, you exchange the left and right pixels in the image, effectively 
mirroring it around a vertical line.

You can flip an image by a very simple calculation on the texture coor-
dinates. Since the texture coordinates are in the interval [0, 1], the function  
t = 1 − t will reverse the order of the coordinate t in this interval. If this is 
applied to the texture coordinates in the fragment shader (with the common 
glman setup) as

vec2 st = vST;
st.t = 1. - st.t;
vec3 irgb = texture( uImageUnit, st ).rgb;

fFragColor = vec4( irgb, 1. );

then the resulting image will be displayed “upside down” or flipped verti-
cally. It is quite easy to see how a horizontal flip could be implemented by 
manipulating the s texture coordinate.

Figure 11.15. The rectan-
gular grid image.
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Simple image rotation (that is, rotation through a multiple of 90 degrees) 
can be done similarly. If you want to rotate an image by 90 degrees counter-
clockwise, for example, you can simply replace the s-coordinate of the tex-
ture by the original texture t-coordinate, and the t-coordinate of the texture 
by one minus the s-coordinate. (See if you can quickly figure out why the 
“one minus” is needed.) In terms of functions of two variables, the function  
f (st) = (t, 1 − s) captures this operation. The other simple rotations are simi-
larly easy. More general rotations are straightforward applications of the usual 
graphics rotation operations, but are complicated by the need to preserve 
the rectangular form factor in the domain and are thus not considered here.

Filling a pixel with a pixel from somewhere else in the image is more 
interesting. You can apply any function or procedure that you like to manip-
ulate the address of any particular pixel, so long as it stays within the unit 

Figure 11.16. The grid (above) and cherry blossom image (below), manipulated to magnify 
(left) or compress (right) the center part of the image.
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square of the pixel space. The process of manipulating the image by applying 
a function to the pixel address space is called image warping [46] and has many 
potential uses.

In most image warping applications, the effect of the function can vary 
quite a bit if different parameter values are used in the function. Fortunately, 
glman is easy to set up so you can create uniform slider variables for these 
parameters. For example, if we consider the image warping with the function 
x = x + t * sin(π * x) applied to both coordinates of the texel, we see in Fig- 
ure 11.16 the effect of two different values of the parameter t for this warping 
on both the grid above and on the cherry blossom image. 

The fragment shader that defines this effect is shown below.

const float PI = 3.14159265;

uniform sampler2D uImageUnit;
uniform float uT;

in vec2 vST;

out vec4 fFragColor;

void main( )
{
 vec2 st = vST;
 vec2 xy = st;
 xy = 2. * xy - 1.;     // map to [-1,1] square
 xy += uT * sin(PI*xy);

 st = (xy + 1.)/2.;    // map back to [0,1] square
 vec3 irgb = texture( uImageUnit, st ).rgb;
 fFragColor = vec4( irgb, 1. );
}

Other kinds of image warping apply more complex kinds of operations 
to pixel coordinates. The twirl transformation is one example, and others are 
explored in the exercises. For the twirl transformation, we work in pixel coor-
dinates, so we start by transforming texture coordinates to pixel coordinates, 
apply the twirl transformation, and then come back to texture coordinates to 
select the actual pixel colors.

The twirl transformation rotates the image around a given anchor point 
(xc  , yc) by an angle that varies across the space from a value α at the center, 
decreasing linearly with the radial distance as it proceeds toward a limiting 
radius rmax. The image remains unchanged outside the radius rmax. The nota-
tion has (x′, y′) as the original pixel coordinates and (x, y) as the coordinates 
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of the pixel whose color you use; look for this in the shader code. The inverse 
mapping function for this transformation is given by
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The resulting image effect is shown in Figure 11.17 for the rectangular 
grid and for the cherry blossom image.

In the twirl transformation fragment shader below, look for the changes 
to and from pixel coordinates, and note the two parameters (angle α and limit-
ing radius rmax) that are set up as uniform variables, so they can be defined as 
glman uniform slider variables.

const float PI = 3.14159265;

uniform sampler2D uImageUnit;
uniform float uD, uR;

in vec2 vST;

Figure 11.17. The twirl transformation on the grid (left) and on the cherry blossom image 
(right).
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out vec4 fFragColor;

void main( )
{
 ivec2 ires = textureSize( uImageUnit, 0 );
 float Res = float( ires.s ); // assume it’s a square 
               //  texture image
 vec2 st = vST;
 float Radius = Res * uR;
 vec2 xy = Res * st;     // pixel coordinates from 
               // texture coords

 vec2 dxy = xy - Res/2.; // twirl center is (Res/2, Res/2)  
 float r  = length( dxy );
 float beta = atan(dxy.y,dxy.x) + radians(uD)*
                (Radius-r)/Radius;

 vec2 xy1 = xy;
 if (r <= Radius)
 {
  xy1 = Res/2. + r * vec2( cos(beta), sin(beta) );
 }
 st = xy1/Res;  // restore coordinates

 vec3 irgb = texture( uImageUnit, st ).rgb;
 fFragColor = vec4( irgb, 1. );
}

Image warping need not be uniform, of course, and you can readily use 
noise functions, as described in the previous chapter, to modify the address 
of a source pixel in an image. Some code for a fragment shader to do this is 
below, and the result is shown in Figure 11.18.

Figure 11.18. The grid (left) and cherry blossom image (right) with noise as pixel offset.
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uniform sampler2D uImageUnit;
uniform float uT;
uniform sampler3D Noise3;

in vec3 vMCposition;
in vec2 vST;

out vec4 fFragColor;

void main( )
{
 vec2 st = vST;
 float x = st.x;
 float y = st.y; // extract coordinates
 vec4 noisevecx = texture( Noise3, vMCposition );
 vec4 noisevecy = texture( Noise3, 
              vMCposition+vec3(noisevecx) );
 x += uT*(noisevecx[.r]-noisevecx[.g]+noisevecx[.b]
      +noisevecx[.a]-1.);
 y += uT*(noisevecy[.r]-noisevecy[.g]+noisevecy[.b]
      +noisevecy[.a]+1.);
 st = vec2( x, y );  // restore coordinates
 vec3 irgb = texture( uImageUnit, st ).rgb;
 fFragColor = vec4( irgb, 1. );
}

You can also see image morphing, the transition over time from one 
image to another, as a combination of image warping and image blending. 
The image blending part of this is discussed in the sections below, while the 
image warping for morphing is a very specialized process where a fixed set 
of points on one image are mapped to a fixed set in another, and the image 
blending is parameterized so that at the beginning, the geometry of one 
image is fixed, and at the end, the geometry of the second image is achieved. 
This is well beyond the scope of our discussion here, however; you can read 
more in [46].

The Image Blending Process

There are several kinds of image manipulation in which you create a linear 
combination of the pixels from one image with those from a constant or from 
another image. This kind of combination is shown in Figure 11.19. In the next 
few sections, the base value will be a constant color or a value derived directly 
from each pixel, so only the image being manipulated is used. Later in this 
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chapter, we will present examples where one of these images is a particular 
base image, and the other is an image that you want to manipulate. The gen-
eral form of the linear combination is

I T I T Iout base source= −( ) ∗ + ∗1. .

We are used to equations such as this being limited by having the param-
eter Τ restricted to the range [0., 1.]. However, for some of these applications, 
we don’t make any such limitation, because for some effects it is easier to ask 
for what you don’t want than to ask for what you do. Going outside the [0., 1.] 
range will allow us to extrapolate to the effect we want to achieve.

The parameter in the blend can be varied to get different results, and here 
glman’s ability to attach a uniform variable to a slider can be very helpful in 
experimenting with the effects of a parameter. The built-in GLSL mix( ) func-
tion supports the actual blending sum.

Blending an Image with a Constant Base Image

There are several image-manipulation processes that involve blending each 
pixel of an image with a constant value. The operations that result are quite 
common and are very useful. Many of the examples below have been set up 
for the glman environment with a uniform slider variable T that performs the 
blending operation shown in Figure 11.19.

Figure 11.19. The meaning of the parameter T in the blending process.
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Color Negative

The color negative models the way photographic negatives work. A photo-
graphic negative blocks the complement of a color from getting to photo-
graphic paper, so the negative of an image is computed by subtracting the 
color of each pixel from white:

 vec3(1.0, 1.0, 1.0) - color.rgb

If you use that negative as the base image, you get an image that looks 
just like the photographic negative, as shown in Figure 11.20.

The following code for the negative fragment shader sets up a color and 
its negative so you can blend between them with the variable uT. At uT = 0 
you have the original image, and at uT = 1 you have the negative.

uniform sampler2D uImageUnit;
uniform float uT;

in vec2 vST;

out vec4 fFragColor;

void main( )
{
 vec3 irgb = texture( uImageUnit, vST ).rgb;
 vec3 neg = vec3(1.,1.,1.) - irgb;
 fFragColor = vec4( mix( irgb, neg, uT ), 1. );
}

Figure 11.20. An image (left) and its color negative (right).
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Brightness

Informally, brightness can be thought of as the amount of not-black in a color. 
For RGB color, “less” black means that the color components are nearer to 1.0, 
and “more” black means that the components are nearer to 0.0. To manipulate 
the brightness of an image, use a black image with color

target = vec3(0.0, 0.0, 0.0)

as the base. Values of uT less than 1.0 will darken each component of the color, 
while values greater than 1.0 will brighten each component of the color up to 
the point where the color is clamped. This can, of course, wash out colors if 
the colors are already bright or if you use uT too large. This is shown in Fig- 
ure 11.21.

Sample code for a very simple fragment shader that adjusts brightness 
is shown below. In effect, brightening the image is done by subtracting black 
from it.

uniform sampler2D uImageUnit;
uniform float uT;
in vec2 vST;
out vec4 fFragColor;

void main( )
{
 vec3 irgb  = texture( uImageUnit, vST ).rgb;
 vec3 black  = vec3( 0., 0., 0. );
 fFragColor = vec4( mix( black, irgb, uT ), 1. );
}

Figure 11.21. Brightness manipulation in a photograph from a prehistoric French tomb with uT = 0.0 (left), 
1.0 (middle), and 2.0 (right).
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Contrast

The contrast in an image describes how much the colors stand out from gray. 
To manipulate the contrast in an image, use as a base image a constant 50% 
gray image, which is easily computed as

 target = vec3(0.5,0.5,0.5);

Parameter values of T less than 1 will move each color component toward 
0.5, reducing the contrast in the image, while values greater than 1 will move 
each color component away from 0.5, increasing the contrast, as shown in 
Figure 11.22.

Sample code for a very simple fragment shader that adjusts either bright-
ness or contrast is shown below. In effect, brightening the image is done by 
subtracting black from it, and contrast is increased by subtracting 50% gray 
from it.

#define BRIGHTNESS
#undef CONTRAST

uniform sampler2D uImageUnit;
uniform float uT;

in vec2 vST;

our vec4 fFragColor;

void main( )
{
 vec3 irgb = texture( uImageUnit, vST ).rgb;

Figure 11.22. Contrast manipulation in a photograph of a ruined French abbey with T = 0.0 (left), 1.0 (middle), 
and 2.5 (right).
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#ifdef BRIGHTNESS
 vec3 target = vec3( 0., 0., 0. );
#else
 vec3 target = vec3( 0.5,0.5,0.5 );
#endif
 fFragColor = vec4( mix( target, irgb, uT ), 1. );
}

Blending an Image with a Version of Itself

Another common kind of image manipulation involves creating a base value 
that is computed from the image itself. This might be a grayscale image or a 
blurred image in the examples below. Again, these are common and very use-
ful kinds of manipulation. And again, we show examples that have been set up 
for glman as described above.

Saturation

We think of color saturation as a description of the “purity” of the color, or how 
far the color is from gray. This is consistent with the notion of saturation in the 
HLS color system, where saturation is the distance from the pure grays that 
are at the center of the HLS double cone. If saturation is reduced, the color is 
more gray; if it is increased, the color is purer and more vivid.

To manipulate the saturation of an image, you create a grayscale base 
image by replacing the color at each point by its luminance that we defined 
earlier in this chapter:

 target = vec3( luminance, luminance, luminance);

and mix the color with this target, as we have seen. Values of uT less than 1 
will move each color component toward its luminance, making the color less 
saturated, while values greater than 1 will move each color component away 
from the luminance, making it more saturated, as shown in Figure 11.23.

A simple fragment shader to manipulate saturation is shown below.

const vec3 W = vec3( 0.2125, 0.7154, 0.0721 );

uniform sampler2D uImageUnit;
uniform float uT;

in vec2 vST;
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out vec4 fFragColor;

void main( )
{
 vec3 irgb = texture( uImageUnit, vST ).rgb;
 float luminance = dot( irgb, W );
 vec3 target = vec3( luminance, luminance, luminance );
 fFragColor = vec4( mix( target, irgb, uT ), 1. );

}

Sharpness

We think of sharpness as the degree of clarity in both coarse and fine image 
detail in an image. Alternately, you could think of sharpness as the opposite 
of blurred. Manipulating the sharpness of the image takes advantage of this 
fact by creating an extrapolation from a blurred version of the image through 
the image itself. The blurred image is created by the blurring process dis-
cussed earlier in the chapter. An example of sharpening an image is shown 
in Figure 11.24; the left and middle images are larger versions of those of 
Figure 11.5.

A fragment shader to manipulate sharpness would contain code some-
thing like the following. The code uses the same filter and computation 
described in the image blur example earlier in the chapter, except that it ends 
by mixing the blurred image (“target”) and the original image (“irgb”). The 
shader files are included in the materials with this book.

 ...
 fFragColor = vec4( mix( target, irgb, uT ), 1. );

Figure 11.23. Saturation manipulation of the supermarket fruit image with uT = 0.0 (left), 1.0 (middle), and 
2.0 (right).
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This is a special case of unsharp masking, a standard image manipulation 
technique to sharpen photographic images for printing. The general technique 
uses a blur filter of adjustable radius and an adjustable blend; this example 
uses radius 1 and a limited adjustable blend.

Blending Two Different Images

The two-image manipulations in the sections above have really been about 
creating effects in a single image, using another reference image as a tool. 
However, sometimes you have two images that each have content, and you 

Figure 11.25. Two sample images we will use to illustrate blending: Washington cherry 
blossoms (left) and Xidi, an ancient Hong village in Anhui province, China (right).

Figure 11.24. The result of the sharpness operation with the 5 × 5 blurred image (T = 0, left), the original image 
(T = 1, middle), and the sharpened image (T = 5, right).
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want to blend both images. There are a number of different common kinds of 
blends. In the sections below, we will sketch a few of them and show examples. 
It should be straightforward for you to complete any implementations that we 
do not give completely. In addition, we have included a few more blends as 
chapter exercises. Figure 11.25 shows two sample images that we will use to 
illustrate many of the blending operations we discuss.

Other Combinations

Complex and interesting interpolations of two images are possible because 
you can use any function that takes two RGB color values and returns another 
RGB color value. The function could act on entire RGB vectors or it could act 
on the individual color components separately. We explore a few of these 
below, and there are a few more in the exercises.

Cosine Interpolation

As an example, consider a cosine-based interpolation from [20] that looks 
interesting; Figure 11.26 shows the effect. The same pixel from both images is 

read, and the color components of the two pixels are com-
bined, using cosine multipliers. The cosine is applied to 
each component, so components nearer one are increased. 
If we take Argb as the color of the “after” image and Brgb as 
the color of the “before” image, as above, then the blended 
color is given by

color Argb Brgb= − ∗ ( ) − ∗ ∗( )ρ α π β πcos * cos

where ρ is a base color, basically an overall luminance, and 
α and β are chosen to weight the two images (and either 
ρ α β+ +  cannot exceed 1 or you must clamp the result).

Sample fragment shader code for this operation is 
given below. Notice that we have used values of 0.5 and 
–0.25 as the base value and cosine multiplier, respectively; 
in an exercise, we encourage you to experiment with these 

(and we suggest that you use glman uniform slider variables to do so).

const float PI = 3.14159265;

uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

Figure 11.26. The cosine interpola-
tion of the two sample images.
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out vec4 fFragColor;

void main( )
{
 vec3 brgb = texture( uBeforeUnit, vST ).rgb;
 vec3 argb = texture( uAfterUnit,vST).rgb;
 vec3 target = 0.5 - 0.25*cos(PI*brgb) - 0.25*cos(PI*argb);
 fFragColor = vec4( target, 1. );
}

Multiply

The multiply operation does exactly as the name suggests. You read a pixel 
from each image and multiply the color components together to get the final 
color of the pixel. In this way, one image is being used as a subtractive filter 
for the other.

Since all the color components are less than or equal to one, the final 
image will likely be darker than either original. In order to account for that, 
you can balance the colors by computing the luminance of the original colors, 
argb, brgb, and target, and adjusting the final output color of each pixel so its 
luminance is the average of the two input pixels’ colors. Some sample frag-
ment shader code for this is shown below. The result, both without and with 
the color balancing, is shown in Figure 11.27.

const vec3 W = vec3(0.2125, 0.7154, 0.0721)

uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

out vec4 fFragColor;

void main( )
{
 vec3 brgb = texture( uBeforeUnit, vST ).rgb;
 vec3 argb = texture( uAfterUnit, vST ).rgb;
 vec3 target = argb * brgb;

 float alum = dot( argb, W );
 float blum = dot( brgb, W );
 float tlum = dot( target, W );
 target = (alum + blum)/(2.*tlum);
 fFragColor = vec4( target, 1.);
}
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Darken and Lighten

The darken and lighten operations are very similar, so we discuss them together. 
The darken operation on two images uses one image to darken the other. You 
read a pixel from each image, and you take the smaller of the values of each 
color component for each pixel. Some sample fragment shader code for this is 
shown below.

The lighten operation is the converse of the darken operation above; you 
read a pixel from each image, and you take the larger of the values for each 
color component for each pixel. The fragment shader code for this is left as an 
exercise. The result for both operations is shown in Figure 11.28.

uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

out vec4 fFragColor;

void main( )

{

 vec3 brgb = texture( uBeforeUnit, vST ).rgb;

 vec3 argb = texture( uAfterUnit, vST ).rgb;

 vec3 target = min( argb, brgb ); // alternately max(...)

 fFragColor = vec4( target, 1.);

}

Figure 11.27. The results of the multiply without the color balancing (left) and with the 
color balancing (right) operations on our sample images.
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Image Transitions

In addition to combining two images into one, we should think about ways to 
move from one image to another over time. One example of this is the set of 
slide transitions in Powerpoint, but the control we have with fragment shaders 
lets us go well beyond the options available there.

The basic principle is that we start with each pixel from one image, which 
we will call the Before image, and we manipulate each pixel in a way that fin-
ishes with a second image, which we will call the After image. We can replace 
Before pixels with After pixels in any way we like, and we will try to create 
some interesting effects in doing so. In all our examples in this section, we start 
with the two images of Figure 11.25, the Washington cherry blossoms and the 
Hong village.

Horizontal Replace

The first transition we will consider moves the Before image off the display to 
the right while simultaneously moving the After image onto the display from 
the left. However, as we go through the transition, both images are displayed 
in their entirety; each is simply compressed into the part of the display that 
is available to it. An example of the transi-tion partly completed is shown in 
Figure 11.29.

The .glib file and vertex shader source are essentially identical to the 
image blending examples above, so we will focus on the fragment shader 
source, shown below.

Figure 11.28. The result of the darken (left) and lighten (right) operations on our sample 
images.
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uniform float uT; // 0. <= uT <= 1.
uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

out vec4 fFragColor;

void main( )
{
 vec2 st = vST;
 vec3 brgb = texture( uBeforeUnit, st ).rgb;
 vec3 argb = texture( uAfterUnit, st ).rgb;
 vec3 color;

 if ( st.x < uT )
 {
  st = vec2( st.x/uT, st.y );
  vec3 thisrgb = texture( AfterUnit, st ).rgb;
  color = thisrgb;
 }
 else
 {
  st = vec2( (st.x-uT)/(1.-uT), st.y );
  vec3 thatrgb = texture( BeforeUnit, st ).rgb;
  color = thatrgb;
 }

 fFragColor = vec4( color, 1.);
}

Here the two halves of the if statement repre-
sent the two halves of the display: the side where the  
s-component of the texture coordinate is less than 
uT and the side where it is greater than uT. For each 
pixel coordinate, the s-component of the appropri-
ate image (i.e., texture) is calculated by a propor-
tional computation, and the resulting texture coor-
dinate is used to select the texel to be displayed.

As uT goes from 0. to 1., the effect in this 
example is to create the transition from the Before 
image to the After image over that same period. 
No static figure can capture the full effect; an exer-
cise invites you to create your own transition and 
see it work.

Figure 11.29. The Hong village image 
replacing the cherry blossom image.
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Dissolve

The image dissolve operation computes a weighted aver-
age of the Before and After images that determines how 
much of each image’s color is used in the output image. 
This weight can be given by a parameter that changes 
over time, giving the effect of moving from one image 
to another, as can be done for slideshows. This is shown 
in Figure 11.30 and in the weighted-average fragment 
shader code below. As the value of uT ranges from 0. to 
1., the Before image dissolves into the After image.

uniform sampler2D uBeforeUnit, uAfterUnit;
uniform float uT;

in vec2 vST;

out vec4 fFragColor;

void main( )
{

 vec3 brgb = texture( uBeforeUnit, vST ).rgb;
 vec3 argb = texture( uAfterUnit, vST ).rgb;
 fFragColor = vec4( mix( argb, brgb, uT ), 1. );
}

Burn-Through

Another transition can be made where the After image 
“burns through” the Before image; that is, where the 
parts of the After image with the strongest luminance 
replace the same parts of the Before image. We will 
leave this exact transition for the exercises, but we 
will consider an example where we approximate the 
luminance by the average of the R, G, and B colors in 
the After image. The effect of this transition is almost 
like the After image burning through the Before image, 
which is why we have chosen this name for it. In 
Figure 11.31 we see this transition partway through. It 
is not difficult to see some of the darker architectural 
features of the village scene coming through the cher-
ries image.

Figure 11.30.  A dissolve of the two 
sample images with uT = 0.5.

Figure 11.31. The Hong village 
image burning through the cherry 
blossom image.
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Again, the .glib file and vertex shader are essentially the same as previ-
ous ones, and the fragment shader is shown below.

uniform float uT;
uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

out vec4 fFragColor;

void main( )
{
 vec3 brgb = texture( uBeforeUnit, vST ).rgb;
 vec3 argb = texture( uAfterUnit, vST ).rgb;
 vec3 color;

 if ( (argb.r + argb.g + argb.b)/3. < uT )
  color = argb;
 else
  color = brgb;

 fFragColor = vec4( color, 1.);
}

There is even less computation in this fragment shader; the average of 
the After color components is calculated and compared with the parameter 
uT, and the After color is used instead of the Before color when the color values 
are low (that is, when the colors are dark). As the value of uT moves from 0. 
to 1., more and more of the texels in the After image satisfy the condition and 
become part of the final display.

Break-Through

What if we had some other way for the After image to replace the Before 
image over time? What if, for example, we generated a random texture with 
a Noise( ) function and used the values of that random texture to determine 
whether the Before or After image is used for each pixel? An example of this 
kind of transition is shown in Figure 11.32. This is something like the burn-
through transition, but the image that controls the pixel selection is hidden 
and there is no apparent relation between this intermediate image and either 
of the two original images.

Because this process uses noise operations, the .glib and vertex shader are 
somewhat different from the ones we have seen before in this chapter. The .glib 
file simply selects a 3D noise texture and proceeds as in previous examples.
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##OpenGL GLIB

Noise3D 128
Ortho -1. 1. -1. 1.

Texture 6 cherries.bmp
Texture 7 Hong.village.bmp

Vertex  transition.vert
Fragment transition.frag
Program Transition uBeforeUnit 6 uAfterUnit 7

QuadXY .2 5.

The vertex shader adds an input variable, the familiar 
MCposition, that holds the model coordinates for each ver-
tex in the initial quad and, when it is interpolated across 
the quad, will hold the model coordinates for each pixel in 
the display.

out vec3 vMCposition;
out vec2 vST;

void main( )
{
 vMCposition = vec3(aVertex);
 vST     = aTexCoord0.st;
 gl_Position = uModelViewProjectionMatrix * aVertex;

}

Finally, the fragment shader gets the pixel colors for each image as usual, 
but then gets a noise value (the variable nv) for the pixel by querying the 3D 
sampler function Noise3 at a position determined by the pixel’s model coordi-
nates. Since the original quad was 10 units across, we divide the model coordi-
nates by 10 to get the actual texture coordinate for the pixel. The octaves of the 
noise value are then used to compute a numeric value whose fractional value 
is used for the comparison that selects the image.

uniform float uT;
uniform sampler3D Noise3;
uniform sampler2D uBeforeUnit, uAfterUnit;

in vec3 vMCposition;
in vec2 vST;

Figure 11.32. A break-through tran-
sition with the Hong village image 
replacing the cherry blossom image 
under the control of a noise function.
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out vec4 fFragColor;

void main( )
{
 vec3 brgb = texture( uBeforeUnit, vST ).rgb;
 vec3 argb = texture( uAfterUnit, vST ).rgb;
 vec3 color;

 vec4 nv = texture(Noise3, vMCposition/10.);
 float sum = nv.r + nv.g + nv.b + nv.a;
 sum = ( sum - 1. ) / 2.;  // 0. to 1.
 sum = fract( sum );
 if ( sum < uT )
  color = argb;
 else
  color = brgb;

 fFragColor = vec4( color, 1.);
}

Although we do not save it for any other use, this 
numeric value sum actually provides a noise texture that 
acts as the controller for the transition; if we set

 color = vec3( sum, sum, sum );

instead of setting color in the if statement, we can see that 
texture, shown in Figure 11.33.

There are obviously many other ways you could con-
trol which image contributes the actual value for any pixel. 
For example, almost any of the image blending operations 
that involves taking part of one image and part of another 
image under control of a parameter could be used to create 
a transition by varying that parameter. Further develop-
ments are left for the curious reader.

Notes

These sections have discussed a number of techniques that are all rather simi-
lar, but that differ in how an image is processed on its own, is compared with 
a reference image, or is combined with a different image. The techniques are 

Figure 11.33. The grayscale texture 
used in the break-through transition.
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straightforward; choosing the right one to use when you want to create a par-
ticular effect takes experience and some time.

Exercises

1. Complete the work of the CMYK separation example by presenting the 
four separations in their actual color, instead of in grayscale. You may 
use any image you like, but the file Figure-11.3.tif is included in the 
resources for the book so that you may compare your work to that in this 
chapter.

2. Create an anaglyph of a familiar scene, such as part of your home or cam-
pus, by taking two digital photographs from nearby points that frame the 
same portion of the middle ground of the scene, and combining them as 
described in this chapter.

3. Implement image rotation by any multiple of 90° by taking the original 
texture coordinates and applying trigonometric functions to them.

4. Implement image flipping or image inversion, the process where the top and 
bottom of an image are reversed. Do the same for reversing the left and 
right sides of an image.

5. Implement some different image warping approaches than the one we 
discussed in the chapter. Consider how you might use trigonometric 
functions in only one direction, exponential functions, or other kinds of 
manipulations to the texture coordinates.

6. Implement selective coloring. Using the luminance value, it is simple to 
convert an image to grayscale, but this can be done selectively. Get an 
image for which one thing stands out in a different color (for example, an 
apple on a windowsill) and make everything grayscale except that one 
thing. Use color testing on each pixel to decide whether or not to change 
it.

7. In the discussion of the interpolation operation, we use the equation 
below to combine the two colors we are blending:

  vec3 target = vec3(0.5) – 0.25*cos(PI*brgb) -     

     0.25*cos(PI*argb);

Experiment with the values used to control the blending. As a first try, 
you might vary the base color b and the subtractive terms s in the equation

  vec3 target = b – s*cos(PI*brgb) - s*cos(PI * argb);
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with the relationship s = (1 − b)/2. Make b a slider uniform variable in 
a GLIB file and use glman to experiment with this concept. Record and 
comment on your results.

8. You can combine the manipulation techniques described in this chapter 
to achieve other specific effects. For example, if you have a photograph 
of a green apple but you want an image of a red apple, you can use the 
technique from the chromakey to select the greens of the apple and then 
use the hue shifting operation to change the green to red, while retaining 
some of the character of the green apple. Pick one of your images that has 
a strong area of some color, and change that color to another color.

9. Combine some of the effects from this chapter and see what you get. For 
example, you can sharpen images with one technique and then make 
them grayscale with another. (Does it matter in which order you do that?) 
You can take the image output of one technique and use it as the input to 
the next. If you push some of the techniques beyond their logical bounds 
(for example, take a very large mixing factor for sharpness) you may get 
some images that could effectively be taken into another technique (for 
example, grayscale). See what you can do!

The next two exercises consider other examples of image warping, simi-
lar to the example shown in Figure 11.16. Like that example, these come 
from [6, Chapter 16].

10. The ripple transformation displaces pixels in waves in both the x- and 
y-directions. This transformation has four parameters: the period lengths 
τ τx y, ≠ 0  (in pixels) and the wave magnitudes ax, ay (in pixels) in both 
directions:

  x x a yx x= ′ + ′( )sin 2π τ  and y y a xy y= ′ + ′( )sin 2π τ .  
Create a shader that implements the ripple transformation, and apply 
it to both a grid image and a natural image. In [4] an example uses the 
parameters (in pixels) τx = 120, τy = 250, ax = 10, and ay = 15, so you might 
use these.

11. The spherical transformation simulates viewing the image through a 
hemispherical lens. If we assume that the lens is centered on the image, 
the parameters of this transformation are the radius of the lens rmax and its 
refraction index η. The functions that implement this transformation are
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Implement the spherical transformation and apply it to a grid image and 
to a natural image. A good value for the refraction index is η = 1.8.

The next few exercises ask you to examine some operations on pairs of images 
and see the results.

12. The screen operation is similar to the multiply operation, but you take the 
complement of each pixel’s color components, multiply the components 
together, and take the complement of the result. Implement this opera-
tion. The result will be lighter than either original; explain why. As we 
did in the multiply example in the text, use a luminance computation to 
balance the screen operation results with the originals.

13. The difference between two images is defined by the absolute value of the 
color difference between the images’ pixels. Implement this image opera-
tion.

14.  Negation and exclusion are similar to difference, but treat the colors some-
what differently. For the negation operation, the color target is

  vec3 target = vec3(1.,1.,1.) - abs(1. - argb - brgb );

while for the exclusion operation, the color target is
  vec3 target = argb + brgb – 2.0 * argb * brgb;

Implement both the negation and the exclusion operations. The target for 
the negation operation is automatically in the legal range for color, but 
the target for exclusion may not be; you will probably want to clamp it 
to [0., 1.].

15. Color burn and dodge are two other related operations. The color burn 
operation is given by

  vec3 target = vec3(1.,1.,1.) – (1.-argb)/brgb;

Since you are dividing by the value of color components that are no larger 
than one, you may get results greater than one, so you may need to clamp 
this result to [0., 1.]:

  vec3 result = clamp( target, 0., 1. );
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The color dodge operation involves a divide instead of a multiply and 
involves the inverse rather than the original of the second image. Again, 
some clamping may be needed.

  vec3 target = argb/(vec3(1. - brgb);

Implement both the color burn and dodge operations.
16. Modify the burn-through transition to replace the RGB average value 

with the computed luminance. Can you see any subjective difference 
between these two transitions? Discuss why you think the difference, or 
lack of difference, you see is reasonable.

17. In a variation on the break-through transition, create a systematic gray-
scale pattern texture and use that to control the selection of the image for 
each pixel.  Look at the selection of transitions available in Powerpoint 
and identify the transitions that can be implemented by this approach.

18. In the break-through transition discussion, we said that you could actu-
ally display the noise texture used to control which image is presented 
at each stage of the transi-tion. Do this. Then capture one frame part way 
through the transition and compare that capture to the noise texture to 
see if you can identify the texture’s action in the transition.

19. In the break-through transition discussion, Figure 11.33 shows how you 
can create an output image from the noise texture, by assigning the same 
value to all three color components. What if you assign nv[0] to red, 
nv[1] to green, and nv[2] to blue? What do you get? Why?

20. If you declare a variable

 uniform float Timer;

then glman will fill it with a value from 0. to 1. over the course of 10 sec-
onds. Try using Timer instead of uT in the image transitions to create an 
animated effect.
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Geometry Shader 
Concepts and Examples

The geometry shader is a new capability in shaders, introduced in late 2006 
with the release of Shader Model 4 to take advantage of the ever-growing 
capability of high-end graphics cards. It adds to the programmer’s graphics 
capabilities by providing tools to expand the basic model geometry to include 
more or different graphics primitives than were initially defined. Thus, geom-
etry shaders should really be called “geometry creators” or “geometry expand-
ers.” The place of the geometry shader in the graphics pipeline is shown in Fig- 
ure 12.1, where “vertex processing” can include a vertex shader, tessellation 
control shader, or tessellation evaluation shader. 

The geometry expansion that is provided by the geometry shader has 
many uses. One is in using the input geometry to create additional geome-
try, such as silhouette edges, shrunk triangles, or hedgehog plots. Another is 
in managing level of detail (LOD). The LOD, shrunk triangles, and silhouette 
edges examples are discussed later in this chapter, and hedgehog plots are 
discussed in Chapter 15.

12
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What Does the Geometry Shader Do?

If you use a geometry shader, your application or your vertex shader can gen-
erate all the familiar topology types plus a few new ones that we will cover 
below:

• Points.
• Lines.
• Line strips.
• Line loops.
• Lines with adjacency.
• Line strips with adjacency.
• Triangles.
• Triangle strips.

Figure 12.1. The geometry shader in the graphics pipeline.



293What Does the Geometry Shader Do?

• Triangle fans.
• Triangles with adjacency.
• Triangle strips with adjacency.
• Quads.
• Quad strips.

Any of these topologies can be used by 
the application, but geometry shaders have 
a limited number of topologies that they can 
accept. These are points, lines, lines with 
adjacency, triangles, or triangles with adja-
cency.

Thus, the primitives used by the appli-
cation sometimes need to be internally con-
verted. You, the application programmer, don’t need to know about this. But, 
you, the shader writer, do.

On the output side, the geometry shader then generates points, line strips, 
or triangle strips, and feeds them on to the rest of the graphics pipeline.

There needn’t be any correlation between geometry shader input type 
and geometry shader output type. Points can generate triangles, triangles 
can generate triangle strips, and so on. In the silhouette example later on in 
this chapter, the input is the new “triangles with adjacency” graphics primi-
tive, while the output is simply lines. This is described more visually in Fig- 
ure 12.2. 

Figure 12.2. The kinds of processing geometry shaders can do.

Geometry shaders are not intended 
to provide a general-purpose LOD 
capability because (1) they have 
a limit to the number of new 
vertices that they can create, and 
(2) they have limited access to the 
surrounding vertex information 
that would be needed for, say, 
subdivision surfaces. Tesselation 
shaders are meant for this and are 
described in the Chapter 13.
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Geometry shaders can access uniform variables, just like vertex and frag-
ment shaders can. They can also access all of the standard OpenGL-defined 
variables, such as the transformation matrices. Thus, you can transform the 
original vertices in the vertex shader, or transform them as they are being emit-
ted from the geometry shader, whichever is more convenient.

New Adjacency Primitives

As we saw in the brief discussion above, the geometry shader language intro-
duces some new geometric primitives to support the expansion capabilities in 
this shader. These primitives add adjacency information to the fundamental 
primitive, so that the additional adjacent vertices can be used in the primitive 
expansion. At the OpenGL API level, these are reflected in additional argu-
ments to the familiar glBegin( ) function:

•  GL_LINES_ADJACENCY
•  GL_LINE_STRIP_ADJACENCY
•  GL_TRIANGLES_ADJACENCY
•  GL_TRIANGLE_STRIP_ADJACENCY

These arguments reflect the new adjacency primitives that are defined 
with geometry shaders. The additional primitives, and the number and mean-
ing of the vertices that are used in implementing them if no geometry shader 
is used, are listed below. If you use a geometry shader, you will define what 
the vertices mean by the action of your shader.

• Lines with adjacency. 4N vertices are given (where N is the number of line 
segments to draw). For each set of four vertices, a line segment is drawn 
between vertex 1 and vertex 2. Vertices 0 and 3 are not part of the draw-
ing, but provide adjacency information.

• Line strip with adjacency. N+3 vertices are given (where N is the number of 
line segments to draw). A line segment is drawn between vertices 1 and 
2, vertices 2 and 3, ..., and vertices N and N+1. Vertices 0 and N+2 are not 
part of the drawing, but provide adjacency information.

• Triangles with adjacency. 6N vertices are given (where N is the number of 
triangles to draw). For each triangle, vertices 0, 2, and 4 define the tri-
angle, while vertices 1, 3, and 5 tell where adjacent triangles are.

• Triangle strip with adjacency. 4+2N vertices are given (where N is the num-
ber of triangles to draw). Vertices 0, 2, 4, 6, 8, 10, ... define the triangles, 
while vertices 1, 3, 5, 7, 9, 11, ... tell where adjacent triangles are.

These primitives are described graphically in Figure 12.3. This shows the 
sets of input vertices and the way those vertices define the primitives for lines, 
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line strips, triangles, and triangle strips. In all these cases, the vertices are listed 
in the order given, and are interpreted as described above. Notice that for the 
line primitives, the first and last vertices are the adjacent primitives, while for 
the triangle primitives, the vertices begin with one in the actual primitives and 
the adjacent vertices are interleaved with the vertices in the primitive.

There is also a new GLSL built-in variable for geometry shaders. The 
variable

int gl_PrimitiveIDIn

holds the number of primitives processed since the last time glBegin( ) was 
called. Its value is zero for the first primitive after the glBegin( ) function, 
and calling a vertex array function counts as an implied glBegin( ). Geometry 
shaders can set the value of gl_PrimitiveID to send a primitive number to the 
fragment shader.

Layouts for Input and Output Variables

A geometry shader must be told something about its input and output vari-
ables. As you can see in Figure 12.1, a geometry shader is always preceded by a 
primitive assembly step, which groups multiple vertices into a single topologi-
cal primitive before handing them to the geometry shader. Thus, on the input 
side, geometry shaders need to know what that topology is. This is done with 
a GLSL layout statement, which goes at the top of the code:

layout( topology ) in;

Figure 12.3. The four new geometric primitives with their adjacent points: lines with adja-
cency (top left), line strip with adjacency (top right), triangles with adjacency (bottom left), 
and triangle strip with adjacency (bottom right).



296 12.  Geometry Shader Concepts and Examples

where topology must be one of the following:

points
lines
lines_adjacency
triangles
triangles_adjacency

Figure 12.1 also shows you that the geometry shader is followed by another 
primitive assembly step. Thus, on the output side, a geometry shader needs to 
tell that step what topology to use to assemble the emitted vertices. To do this, 
a second layout statement is included at the top of the code:

layout( topology, max_vertices=num ) out;

where topology must be one of the following:

points
line_strip
triangle_strip

and num is the maximum number of vertices that this geometry shader will 
emit. All graphics cards have a maximum that num can be, usually around 1024.

New OpenGL API Functions

It is a little clumsier, but you can also choose not to use the layout identi-
fiers and instead use glProgramParameteri( ) calls. The OpenGL function 
glProgramParameteri( ) sets various parameters concerning the operation of 
the geometry shader. There are three primary uses of this function

1. The number of vertices the geometry shader will be emitting is given by

 glProgramParameteri( progname, 

  GL_GEOMETRY_VERTICES_OUT, intvalue)

where intvalue is that number. For many of the current graphics boards 
(as of this writing), invalue can be as much as 1024. (1024 sounds like a 
lot, but if you are trying to smooth a pyramid into a hemisphere, it isn’t 
nearly enough. This is one of the reasons that geometry shaders are not 
intended for general level-of-detail work.)
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2. The primitive type that is to be sent to the geometry shader is given by

 glProgramParameteri( progname, 

  GL_GEOMETRY_INPUT_TYPE, intvalue) 

where intvalue is a symbolic parameter for the primitive type that this 
geometry shader will be receiving. This parameter can take on any one of 
the five symbolic values

•  GL_POINTS
•  GL_LINES
•  GL_LINES_ADJACENCY
•  GL_TRIANGLES
•  GL_TRIANGLES_ADJACENCY

The kind of graphics primitive that can be passed to the geometry 
shader depends on the kind of geometry that the shader is to emit.

• If GL_LINES is chosen, the lines could actually come from GL_LINES, 
GL_LINE_STRIP, or GL_LINE_LOOP.

• If GL_LINES_ADJACENCY is chosen, the lines with adjacency could 
actually come from GL_LINES_ADJACENCY or GL_LINE_STRIP_

ADJACENCY.
• If GL_TRIANGLES is chosen, the triangles could actually come from 

GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS, or 
GL_QUAD_STRIP.

• If GL_TRIANGLES_ADJACENCY is chosen, the triangles with adja-
cency could actually come from GL_TRIANGLES_ADJACENCY or GL_
TRIANGLE_STRIP_ADJACENCY.

3. The actual primitive type that is to be emitted from the geometry shader 
is given by

 glProgramParameteri(progname, 

  GL_GEOMETRY_OUTPUT_TYPE, intvalue)

where intvalue is a symbolic parameter for the primitive type that the 
geometry shader will be emitting. This parameter can take on the sym-
bolic values

•  GL_POINTS
•  GL_LINE_STRIP
•  GL_TRIANGLE_STRIP
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If you are using the glProgramParameteri( ) functions instead of the 
layout identifiers, those functions must be called, and all these parameters set, 
before the shaders are linked in the application. 

There are some additional new GLSL functions for geometry shaders. 
These are

•  EmitVertex( ): send the vertex you have been developing on to the sec-
ond primitive assembly step.

•  EndPrimitive( ): take all the vertices that have been sent to primitive 
assembly and create a geometric primitive to send on for further process-
ing.

There is an issue about using the function glProgramParameteri( ) in a display 
list, which may not be obvious but which can cause some difficulties. Consider the 
following example of using a geometry shader within a display list:

GLuint dl = glGenLists( 1 );

glNewList( dl, GL_COMPILE );

. . .

program = glCreateProgram( );

. . .

glProgramParameteriEXT( program,GL_GEOMETRY_INPUT_TYPE,

  inputGeometryType);

glProgramParameteriEXT(program,GL_GEOMETRY_OUTPUT_TYPE,

  outputGeometryType);

glProgramParameteriEXT(program,GL_GEOMETRY_VERTICES_OUT,101);

glLinkProgram( program );

glUseProgram( program );

. . .

glEndList( );

These glProgramParameteri( ) and glUseProgram(program) function calls will 
be deferred until the list is executed by the execution of glCallList( l ), but the 
glCreateProgram( ) and glLinkProgram( program ) calls that are highlighted will 
be executed immediately when they are processed, even though the rest of the list is 
deferred. So while the parameter setting function can be placed inside a display list 
definition, this is usually a bad idea, because that would defer the execution of the 
function until glCallList( ) is called for the list you are defining. Then the geometry 
shader would be called with the wrong parameters, giving incorrect results. Our ad-
vice is to defer both the setting of program parameters and the linking of the shader 
program until after the display list is complete, or, more likely, create the program and 
then put just the glUseProgram( ) and drawing commands in the display list. There is 
rarely a good reason to have calls to glProgramParameteri( ) in a display list.
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These are illustrated in the examples below, but they are pretty self-explan-
atory. You should expect to have several instances of EmitVertex( ) as you go 
through the shader program, but you may or may not call EndPrimitive( ), 
depending on whether you are emitting only one primitive from the shader, 
or several. There is no need to call EndPrimitive( ) at the end of the geometry 
shader; this is implied.

New GLSL Variables and Variable Types

There are new kinds of variables that can be used in the geometry shader. If 
there is a geometry shader, output variables from the vertex shader are col-
lected by the primitive assembly step and passed to the geometry shader once 
enough vertices have been collected for the current primitive’s topology type. 
The user-defined variables that are input to the geometry shader from the ver-
tex shader are declared in the vertex shader as out and in the geometry shader 
as in. The geometry shader’s output variables, emitted to be interpolated in 
the rasterizer, are declared as out. 

Geometry shaders use GLSL variables just like the vertex, tessellation, and 
fragment shaders. Geometry shaders can access uniform variables, just like the 
other shaders, and geometry shaders can access all the uniform variables from 
the application (as well as the standard OpenGL-defined variables, such as the 
transformation matrices, if you are working in compatibility mode). Thus, you 
can transform the original vertices in the vertex shader, or transform them as 
they are being emitted from the geometry shader, whichever is more conve-
nient. However, there are several new GLSL variables to describe the data that 
comes to the geometry shader from the vertex or tessellation shader. These are 
described in detail in the next section.

Communication between a Vertex or Tessellation Shader  
and a Geometry Shader

If there is a geometry shader, variables from the vertex or tessellation shader 
are collected by a primitive assembly step and passed to the geometry shader 
once enough vertices have been collected for the current topology type. 

The geometry shader will take all the products of the vertex or tessel-
lation shader, from the geometric parts (gl_Position, ...) to the appearance 
parts (vColor, vST, ...) and use them as parts of the primitives it assembles. 
Notice that a vertex shader does not change the geometric primitive that is 
defined in your application, but is free to write out values as needed for the 
primitives it assembles.
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If a vertex or  
tessellation shader 
writes variables as

Then the geometry shader 
will read them as

And will write the 
new variables as

gl_Position gl_PositionIn[•] gl_Position

gl_PointSize gl_PointSizeIn[•] gl_PointSize

gl_Layer gl_LayerIn[•] gl_Layer

gl_PrimitiveID gl_PrimitiveIDIn[•] gl_PrimitiveID

In the geometry shader, the dimensions indicated by [•] are given by the 
variable gl_VerticesIn, although you will already know this by the type of 
geometry you are inputting. The dimensions are shown in the following table.

Input Topology Type # Vertices in Arrays
GL_POINTS 1

GL_LINES 2

GL_LINES_ADJACENCY 4

GL_TRIANGLES 3

GL_TRIANGLES_ADJACENCY 6

The geometry shader can assign values to any of the GLSL variables in the right-
hand column to define the properties of the vertices it emits. When the geometry shader 
calls EmitVertex( ), this set of variables is copied to a slot in the shader’s prim-
itive assembly step. So when the geometry shader calls EndPrimitive( ), or 
when the geometry shader ends (which implies that the primitive has ended), 
the vertices that have been saved in the primitive assembly step are assembled, 
rasterized, and further processed in the remainder of the standard graphics 
pipeline.

You may wonder why, if there is an EndPrimitive( ) function, we have 
not mentioned a BeginPrimitive( ) function. In fact, there is no such func-
tion; a primitive is deemed to begin at the start of the geometry shader or 
at the return from any EndPrimitive( ) call. There is also no need to call 
EndPrimitive( ) at the end of the geometry shader; this is implicit in the 
shader’s end, and ending any active primitive is part of the shader finishing 
process. If it feels wrong to you to have no BeginPrimitive( ) function, it’s 
simple enough to create an empty function by

 #define BeginPrimitive( ) ;
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Normals in Geometry Shaders

When we discussed vertex shaders, we recognized that handling only one ver-
tex at a time made it difficult to compute normals based on cross products of 
edges. If we did not have enough information to compute analytic normals 
from the changed vertex geometry, we could not get the normals we needed 
for the ambient-diffuse-specular lighting model.

Working with geometry shaders, we still want to use normals computed 
from the original geometry whenever we can, because that is better informa-
tion than normals computed from cross products of edges. However, geometry 
shaders do give us access to all the information in all the vertices of an input 
triangle or triangle with adjacency, and this can let us compute cross-product 
normals. In fact, it may well be worth adding a geometry shader to an applica-
tion that uses a vertex or tessellation shader but that does not support analytic 
normals, simply to be able to compute the cross-product normals for lighting.

Examples

Perhaps the best way to become familiar with geometry shaders is to consider 
several examples that operate in different ways. Below we have four examples, 
with the first two examples showing the use of geometry shaders to create lim-
ited LOD effects, and the next two examples showing instances where geom-
etry shaders create new geometry to add extra meaning to a figure. The first 
example takes four vertices (two vertices with adjacent vertices) and produces 
a Bézier spline curve. The second example takes a triangle and outputs the 
same triangle, but shrunk about its centroid. The third example takes a single 
triangle and expands it into an octant of a sphere. The fourth example takes a 
3D object and develops the silhouette of the object.

Bézier Curves

In our first geometry shader example, we will show how you can expand four 
points into a Bézier curve with a variable number of line segments. The GLIB 
file shown sets up the example in the same way we saw in Chapter 3, with 
some additions for geometry shaders. These are

• Specifying the types of input and output geometry.
• Specifying the geometry shader to be used.
• Setting the input values for the LinesAdjacency primitive.
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Note the use of the LinesAdjacency primitive. Figure 12.3 shows the 
fixed-function handling of this primitive—a line from point #1 to point #2. But 
with a geometry shader turned on, this primitive is really just a way of getting 
four grouped points into the shader. What you do with them after that is up to 
you. So, in this case, the geometry shader will turn those four points into a line 
strip. The vertex and fragment shaders are not given, because they are very 
simple and very standard; the vertex shader simply sets gl_Position from 
the ModelViewProjection matrix and the vertex position, and the fragment 
shader simply sets the vec4 fFragColor.

Bezier.glib

Vertex bezier.vert
Geometry bezier.geom
Fragment bezier.frag
Program Bezier uNum <2 10 50>

LineWidth 3.
LinesAdjacency [0. 0. 0.] [1. 1. 1.] [2. 1. 2.] [3. -1. 0.]

The geometry shader is the key point of this example. It calculates the 
standard Bézier curve by using the standard basis on the four points in the 
input line with adjacency and then calculates the vertices on that curve by tak-
ing evenly spaced points in the parameter space:

P t t P t t P t t P t P( ) = −( ) + −( ) + −( ) +1 3 1 3 1
3

0

2

1
2

2
3

3 .

Each point that is generated is emitted into a line strip. When the geom-
etry shader ends, there is an implicit EndPrimitive( ) that sends the line strip 
on to the rest of the graphics pipeline.

Bezier.geom
#version 330
#extension GL_EXT_geometry_shader4: enable
uniform int uNum;

layout( lines_adjacency )  in;
layout( line_strip, max_vertices=1024 )  out;

void main( )
{
 float dt = 1. / float(uNum);
 float t = 0.;
 for( int i = 0; i <= uNum; i++, t += dt )
 {
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  float omt = 1. - t;
  float omt2 = omt * omt;
  float omt3 = omt * omt2;
  float t2 = t * t;
  float t3 = t * t2;
  vec4 xyzw = omt3 * gl_PositionIn[0] +
   3. * t * omt2 * gl_PositionIn[1] +
   3. * t2 * omt * gl_PositionIn[2] +
    t3 *  gl_PositionIn[3];
  gl_Position = xyzw;
  EmitVertex( );
 }
}

The result of this shader’s operation is shown in Figure 12.4 
for two different values of the glman slider variable uNum. You can 
see the granularity of the curve for a small number of segments 
and the smoothness for a large number, as you would expect.

Note that it would have made no difference if the matrix 
transformation had been made in the geometry shader with

 gl_Position = uModelViewProjectionMatrix*xyzw;

as the last statement before EmitVertex( ) instead of multiplying 
by uModelViewProjectionMatrix in the vertex shader. The inter-
polations that are done for the Bézier curve are the same in clip-
ping space as they are in the original world space. In either case, the vertices 
are multiplied by the ModelViewProjection matrix and are then ready for pro-
cessing further down the graphics pipeline.

Shrinking Triangles

An interesting question about any 3D object is how many triangles were used 
to create it. In the shrinking triangles example, shown in Figure 12.5, each tri-
angle in the model is shrunken slightly about its centroid before it is displayed. 
This opens up a gap between the triangles, so each one is visible. Notice that 
the light on each triangle is exactly in agreement with its usual diffuse lighting, 
and you can see through the gaps between the triangles to the triangles on the 
back side of the model.

This geometry shader is shown below. It calculates the centroid of each 
triangle, calls the ProduceVertex( ) function to compute the light intensity, 
and moves each vertex toward the centroid, based on a uniform slider variable 
uShrink:

V′ = Centroid + uShrink * (V − Centroid).

Figure 12.4. The Bézier 
curve (top), with uNum = 5, 
and the Bézier curve (bot-
tom), with uNum = 25.
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When uShrink is 1., the vertices are unaltered. When uShrink is 0., all 
vertices are moved to the centroid. Clearly, neither of these is very valuable, 
so a value somewhere in between is called for. Notice that computing the cen-
troid requires knowledge of the entire triangle, and so using a vertex shader 
by itself would not work.

#version 330
#extension GL_EXT_geometry_shader4: enable

layout( triangles )  in;
layout( triangle_strip, max_vertices=32 )  out;

uniform float uShrink;

in vec3 vNormal[3];

out float gLightIntensity;

const vec3 LIGHTPOS = vec3( 0., 10., 0. );

vec3 V[3];
vec3 CG;

void
ProduceVertex( int v )
{
 gLightIntensity = dot( normalize(LIGHTPOS-V[v]), vNormal[v]);
 gLightIntensity = abs( gLightIntensity );

Figure 12.5. Two geometric figures with their component triangles shrunken.
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 gl_Position = uModelViewProjectionMatrix *
   vec4( CG + uShrink * ( V[v] - CG ), 1. );
 EmitVertex( );
}
void 
main( )
{
 V[0] = gl_PositionIn[0].xyz;
 V[1] = gl_PositionIn[1].xyz;
 V[2] = gl_PositionIn[2].xyz;
 CG = ( V[0] + V[1] + V[2] ) / 3.;
 ProduceVertex( 0 );
 ProduceVertex( 1 );
 ProduceVertex( 2 );
}

Sphere Subdivision

In this sphere subdivision example, we will start with a single 
triangle in the first octant of the sphere whose vertices lie on the 
positive coordinate axes. This triangle will be viewed as param-
eterized by two variables, which are multiplied by two adjacent 
edges of the triangle to determine all the interior points of the 
triangle. The triangle with this parameterization is shown in 
Figure 12.6, where the coordinates shown represent the values 
of the parameter pair.

This triangle is subdivided by choosing values of s and t 
for appropriate points and using them to define new triangles. 
A parametric form of this is given by

V s t V s V V t V V( , ) ( ) ( ),= + ∗ − + ∗ −0 1 0 2 0

with
s, t ≥ 0

and
s + t ≤ 1.

For example, in the triangles shown in Figure 12.7, the transition from 
level 0 to level 1 is obtained by taking the three parameter pairs (0.5, 0), (0, 0.5), 
and (0.5, 0.5) to define the three added points needed for the subdivision.

The vertex shader is straightforward and simply passes the aVertex 
value through to gl_Position. The fragment shader takes the input color and 
calculates fFragColor by multiplying the light intensity by the color, as we 
saw in earlier chapters. Neither of these needs to be presented further.

Figure 12.6. A triangle 
parameterized by two edges.
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spheresubd.geom

The geometry shader has three parts: some header information, a function that 
produces a vertex from a pair (s,t) of parameters, and the main shader func-
tion. The header information for the shader is below; this supplies the level 
that is set in the GLIB file, the light intensity that the geometry shader will 
develop to pass on to rasterization, and the values of the three vertices of the 
triangle that we will subdivide.

#version 330

#extension GL_EXT_geometry_shader4: enable

layout( triangles )  in;

layout( triangle_strip, max_vertices=1024 )  out;

uniform int uLevel;

out float gLightIntensity;

vec3 V0, V01, V02;

The function ProduceVertex( ) below produces a vertex from the param-
eters s and t in the parameterized definition of a triangle as shown above. 
The position computation uses the point v, derived from the parameters and 
normalized as a unit vector to give it a unit distance from the center of the 
sphere, as the suface normal. That position is then multiplied by the radius of 
the sphere to place it on the surface of the sphere. Thus, when the triangle is 

Figure 12.7. The original triangle (left) is subdivided into four triangles (middle), 
and then each of these four is subdivided again into four (right).
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subdivided, the results are triangles whose vertices are on the surface of the 
sphere. The variables V0, V01, and V02 are, respectively, vertex 0, the vector 
from vertex 0 to vertex 1, and the vector from vertex 0 to vertex 2, as shown in 
Figure 12.7. The rest of the computations of light intensity and actual projected 
position are familiar because they are the same as would be made in a vertex 
shader. We saw the EmitVertex( ) function above; it passes the vertex on to 
be collected into a geometric primitive and then to go the rest of the graphics 
pipeline.

void ProduceVertex( float s, float t )
{
 const vec3 LIGHTPOS = vec3( 0., 10., 0. );
 vec3 v = V0 + s*V01 + t*V02;
 v = normalize(v);
 vec3 n = v;
 vec3 TransNorm = normalize(uNormalMatrix*n);
 vec4 ECposition = uModelViewMatrix*vec4((Radius*v), 1.);
 gLightIntensity = dot( normalize(LIGHTPOS-ECposition.xyz),   
        TransNorm );
 gLightIntensity = abs( gLightIntensity);
 gl_Position = uProjectionMatrix * ECposition;
 EmitVertex( );
}

The main( ) function in the geometry shader is given below. It incre-
ments through the t and s parameters, in that order, and emits a triangle from 
each set of three vertices it computes with the function above. Notice that the t 
parameter is used to control the primary direction of subdivision through the 
triangle, and the s parameter to control the secondary direction. The level of 
subdivision that is shown in Figure 12.8 is used to set the increments in t and 
the number of the t increment is used to set the increment in s. This nested 
incrementing is a bit obscure when you first look at it, but it’s soon understood 
if you look carefully.

void 
main( )
{
 V0  =   gl_PositionIn[0].xyz;
 V01 = ( gl_PositionIn[1] - gl_PositionIn[0] ).xyz;
 V02 = ( gl_PositionIn[2] - gl_PositionIn[0] ).xyz;
 
 int numLayers = 1 << uLevel;
 float dt = 1. / float( numLayers );
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 float t_top = 1.;
 float t_bot = 1. - dt;
 for( int it = 0; it < numLayers; it++, t_top = t_bot,  
   t_bot -= dt )
 {
  float smax_top = 1. - t_top;
  float smax_bot = 1. - t_bot;

  int nums = it + 1;
  float ds_top = smax_top / float( nums - 1 );
  float ds_bot = smax_bot / float( nums );

  float s_top = 0.;
  float s_bot = 0.;

  for( int is = 0; is < nums; is++,  
   s_top += ds_top, s_bot += ds_bot )
  {
   ProduceVertex( s_bot, t_bot );
   ProduceVertex( s_top, t_top );
  }

  ProduceVertex( s_bot, t_bot );
  EndPrimitive( );

 }
}

The results of this shader, when you start with two four-sided pyra-
mids, are shown in Figure 12.8. The figure shows the resulting approxima-
tions for several different subdivision levels. Level 3 is a reasonable approxi-
mation of a sphere, and it would not take many more levels to make this 
sphere look very good indeed. The fact that this expansion can include a 
varying number of subdivisions makes it a good candidate for LOD opera-
tions and the like.

However, there is one subtle problem with using geometry shaders for 
general LOD work. For speed, emitted vertices are meant to be carried in mem-
ory on the graphics chip. Thus, there is a limited amount of space to hold them. 
As of this writing, most graphics cards limit geometry shaders to 1024 emitted 
vertices. This is good for line LOD, such as the Bézier curve, but surface LOD, 
such as the sphere, consumes those 1024 very quickly. The tessellation shader 
is probably a better way to do actual surface LOD.
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3D Object Silhouettes

A clever way to detect an edge in a 3D silhouette is that a silhou-
ette edge is shared by adjacent triangles, with one facing toward 
the eye and the other facing away from the eye. You can deter-
mine the way each triangle faces by calculating the dot product 
of the triangle surface normal and the eye vector and testing if its 
sign is positive or negative. In the triangle with adjacency shown 
in Figure 12.9, this test is applied to the central triangle and each 
of the triangles adjacent to it. One such pair of triangles is high-
lighted in the figure.

Figure 12.9. The structure 
of triangles that gives a line 
segment of the silhouette.

Figure 12.8. A single triangle in the first octant (level = 0) expanded to approximate section 
of a sphere in that octant, with level = 1 at the top right, level = 2 at the bottom left, and level 
= 3 at the bottom right.
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The input and output geometry types for this geometry shader are tri-
angles with adjancey and line strip, respectively. The glman ObjAdj command 
is similar to the Obj command, but it parses the original Obj file to determine 
adjacency information, so that triangle-with-adjacency primitives are avail-
able to the geometry shader.

As before, the vertex and fragment shader files are omitted. The vertex 
shader only performs the ModelViewProjection transformation, and the frag-
ment shader only sets the pixel color; these are completely routine.

The geometry shader works by taking a triangle with adjacency and cal-
culating the face normal to each of the four triangles, making sure that each 
normal faces correctly with the standard triangle conventions. The vertex 
shader has already placed the vertices into 3D eye space, so the normals can 
be compared by simply comparing their z components. If there is a sign dif-
ference between the z component of the normal of the center triangle and the 
z component of the normal of an adjacent triangle, then their common edge 
is drawn by emitting two vertices and ending the primitive. Notice that each 
edge of the middle triangle is checked because, in principle, the silhouette 
could include any of them. The result of this shader is shown in Figure 12.10.

Geometry Shader silh.geom
#version 330
#extension GL_EXT_geometry_shader4: enable

Figure 12.10. Three views of the bunny, with minimal lighting from below, showing the silhouette edges.
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layout( triangles_adjacency )  in;
layout( line_strip, max_vertices=32 )  out;

void main( )
{
 vec3 V0 = gl_PositionIn[0].xyz;
 vec3 V1 = gl_PositionIn[1].xyz;
 vec3 V2 = gl_PositionIn[2].xyz;
 vec3 V3 = gl_PositionIn[3].xyz;
 vec3 V4 = gl_PositionIn[4].xyz;
 vec3 V5 = gl_PositionIn[5].xyz;

 vec3 N042 = cross( V4-V0, V2-V0 );
 vec3 N021 = cross( V2-V0, V1-V0 );
 vec3 N243 = cross( V4-V2, V3-V2 );
 vec3 N405 = cross( V0-V4, V5-V4 );

// rashly assume all 4 normals are really meant to be
// within 90 degrees of each other:

 if( dot( N042, N021 ) < 0. )
  N021 = -N021;

 if( dot( N042, N243 ) < 0. )
  N243 = -N243;

 if( dot( N042, N405 ) < 0. )
  N405 = -N405;

 // look for a silhouette edge between triangles 042 and   
 // 021:

 if( N042.z * N021.z < 0. )
 {
  gl_Position = uProjectionMatrix* vec4( V0, 1. );
  EmitVertex( );
  gl_Position = uProjectionMatrix* vec4( V2, 1. );
  EmitVertex( );
  EndPrimitive( );
 }

 // look for a silhouette edge between triangles 042 and   
 // 243:

 if( N042.z * N243.z < 0. )
 {
  gl_Position= uProjectionMatrix* vec4( V2, 1. );
  EmitVertex( );
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  gl_Position= uProjectionMatrix* vec4( V4, 1. );
  EmitVertex( );
  EndPrimitive( );
 }

 // look for a silhouette edge between triangles 042 and   
 // 405:

 if( N042.z * N405.z < 0. )
 {
  gl_Position= uProjectionMatrix* vec4( V4, 1. );
  EmitVertex( );
  gl_Position= uProjectionMatrix* vec4( V0, 1. );
  EmitVertex( );
  EndPrimitive( );
 }
}

Exercises

1. Implement the silhouette for new geometry as specified by your instruc-
tor, and implement variations for both, such as

a. Vary the color of the silhouette edge to reflect the direction of the edge.

b. Vary the color of the silhouette lines to reflect the primitive ID of each 
segment.

2. Create a surface of various degrees of smoothness from four 3D vertices 
using bilinear interpolations. Use GL_LINES_ADJACENCY to input the ver-
tices together. For the collection of vertices, break them up into an arbi-
trary number of triangles like this:

 using the bilinear equation

Q s t s t Q s t Q s tQ stQ s t, , , .( ) = −( ) −( ) + −( ) + −( ) + ≤ ≤1 1 1 1 0 10 1 2 3
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So instead of drawing a non-planar quad as two creased triangles 
(Figure 12.11 (left)), it would be drawn as a smooth bilinear surface 
(Figure 12.11 (right)).

Notice that you can also interpolate vertex colors this way. This 
is useful in data visualization, where we affectionately call this object a 
“superquad.”

3. In Figure 12.10 we showed the silhouette edges of the Stanford bunny. 
Take another .obj file that describes an object with adjacency and imple-
ment the silhouette edges of that object. What happens to the silhouette 
edges as you move the object around?

4. In the Chapter 15 we describe the hedgehog plot application of geometry 
shaders. Work through this example and apply it to an object of your 
choice. See if you can create a more realistic version of hair (color, light-
ing, shading) than the very simple one given there.

Figure 12.11. Two images created from four vertices.
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Tessellation Shaders

Tessellation in computer graphics is a process that divides a surface into a 
smoother mesh of triangles. An example of this kind of tessellation is shown 
in Figure 13.1. 

What Are Tessellation Shaders?

Tessellation shaders are one of the stages available in OpenGL to create the 
geometry for a scene. New with OpenGL 4.0, they interpolate geometry to cre-
ate additional geometry that can 

13
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• Let you perform adaptive subdivision based on a variety of criteria such 
as size or curvature,

• Let you provide coarser models that can be refined in the GPU, giving 
you a kind of geometric compression,

• Let you apply detailed displacement maps without supplying equally 
detailed geometry,

• Let you adapt visual quality to the required level of detail,

• Let you create smoother silhouettes, or

• Let you perform skinning more easily.

Overall this lets you increase the quality of your final images. So why not 
just add more geometric detail right in your application program? The best 

answer is that tessellation shaders have access 
to all the information in the graphics pipe-
line, and thus can adapt to the display situa-
tion. Tessellation shaders are at their very best 
when they choose tessellation parameters, not 
statically but dynamically, based on the current 
transformations, curvatures, screen coverage, 
etc.

How does the tessellation shader fit into 
our overall shader world? The tessellation 
stage is applied between the vertex shader 
(Chapter 7) and the next shader stage in the 
pipeline, which could be either the geometry 
shader (Chapter 12) or the fragment shader 
(Chapter 8). This makes intuitive sense, because 
the vertex shader modifies vertices individu-
ally with no reference to the primitives they lie 
in. The tessellation shader amplifies a single 
primitive, and the geometry shader can pro-
vide additional primitives based on the original 
primitive. The GLSL view of the graphics pipe-

line is shown here in Figure 13.2 with the tessellation stage highlighted.
When we say “tessellation shader,” we generally mean both the tessella-

tion control shader (TCS) and the tessellation evaluation shader (TES), unless 
we say otherwise.

Figure 13.1. A polygon-interpolating mesh tes-
sellation from a GLSL shader.
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Tessellation Shaders or Geometry Shaders?

Both geometry shaders and tessellation shaders are capable of creating new 
geometry from existing geometry, and both have uses in giving you level-of-
detail support, so you might be confused about when to use each type. While 
their capabilities are in some ways similar, there are distinct differences. A 
tessellation shader gives you more geometry, but all the new geometry is of 
the same sort as you started with—you can get more segments for a line, more 
triangles for a triangular patch, or more isolines or quads for a quad patch, but 
you always get the same geometry. You should use a tessellation shader when 
you need to generate many new vertices and one of the tessellation topologies 
will suit your needs, or if your required patch input involves many (more than 
six1) vertices.

On the other hand, a geometry shader gives some different capabilities. 
You must use a geometry shader when you need to convert to different geom-
etry topologies, such as presented in the silhouette and hedgehog shaders (tri-

Figure 13.2. The full shader pipeline showing the place of the tessellation shaders.

1. Why six? The input to a geometry shader can have as many as six vertices when you use the 
triangles-with-adjacency topology.
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angles → lines) or the explosion shader (triangles → points), or if you need 
some sort of geometry processing to come after the tessellation shader (such 
as the shrink shader you saw earlier, which we will use here to show what the 
tessellation stages are actually doing). 

Finally, the fact that geometry shaders follow tessellation shaders in the 
vertex pipeline creates a limitation on using tessellation shaders. A tessellation 
shader can only emit line segments and triangles; it cannot emit any geometry 
with adjacency. If you need to create new geometry in a geometry shader and 
this geometry requires adjacency, the geometry shader cannot follow a tessel-
lation shader and so you cannot use tessellation shaders.

Tessellation Shader Concepts

Tessellation shaders are conceptually simple but, like textures, require quite a 
bit of detail to set up.

Input to the tessellation shaders uses a new graphics primitive: the patch. 
This is specified in your OpenGL program with

glBegin( GL_PATCHES );
 glVertex3f( . . . );
 glVertex3f( . . . );
glEnd( );

Even if you are using vertex arrays or buffers instead of glBegin–glEnd, 
the topology type is still GL_PATCHES. There is no implied order in the list of 
vertices. The meaning of the order is up to you. You just need to pick a consis-
tent convention for the type of geometry you are tessellating. As we will see in 
some later examples, the vertex values need not even be actual coordinates; 
we can even use them as geometric parameters. You also need to set up some 
data that describes the patch. The function

glPatchParameteri( GL_PATCH_VERTICES, num );

defines the number of vertices in the patch. Like other OpenGL topologies, 
you don’t need a glEnd–glBegin to start a new primitive. Just keep listing 
vertices. In this case, one patch is complete after num vertices, and a new one 
gets started.

As you see in Figure 13.2, there are two tessellation shader types that 
work together. The first is the tessellation control shader (TCS). Its function is 
to prepare the final control points and to determine how much to tessellate. 
It is invoked once for each output control point and takes as input num trans-
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formed patch vertices from the vertex shaders. It gets to see the entire set of 
patch data. It transforms the input coordinates to a regular surface representa-
tion, and computes the required tessellation level based on distance to the eye, 
screen space spanning, hull curvature, displacement roughness, or whatever 
criteria make most sense for your application.

The TCS takes as input an array gl_in[ ] of structures, one structure per 
control vertex, that contain

vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[ ];

as well as these single variables:

• int gl_InvocationID, which tells you which output vertex you are work-
ing on. This must be the value used to index a write into the gl_out[ ] 
array. You can read all other gl_out array values, but you can only write 
your own.

• int gl_PatchVerticesIn is the number of vertices in each patch and the 
dimension of gl_in[ ]

• int gl_PrimitiveID is the number of primitives since the last glBegin( ) 
(the first one is #0)

The TCS must let the pipeline know how many final control points will be 
output.2 This is done with the layout qualifier as follows:

 layout( vertices = N ) out;

The output from the TCS includes gl_out[ ], an array of structures that 
is the same size as the N that is specified by the layout qualifier. Each structure 
contains

vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[ ];

as well as the additional output variables

• patch out float gl_TessLevelOuter[4], an array containing up to four 
levels of tessellation at the outer edges, and

 2. The number of output control points has to do with the geometric equations you are using for this 
patch. It has nothing to do with how many output primitives will eventually be produced. That 
specification is called setting the “tessellation levels,” and is coming up in a moment.
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• patch out float gl_TessLevelInner[2], an array containing up to two 
levels of tessellation at the inner edges.

The outer and inner tessellation levels define the number of subdivisions for 
the perimeter and the interior of the input primitive, respectively, and also 
control the output of the TES. A TCS can also access the output data for its 
processing. You can also have other output variables from a TCS. User-defined 
variables defined per-vertex are qualified as “out,” while user-defined vari-
ables defined per-patch are qualified as “patch out.”

TCS instances run mostly independently, with undefined relative execu-
tion order. The built-in barrier( ) function provides some control over TCS 
relative execution order by causing all instances of TCSs to wait. This allows 
synchronization points where no TCS shader invocation will continue until all 
TCS shader invocations have reached the barrier. This is important because an 
instance of a TCS can read variables from other TCS instances that might not 
yet have been written. The barrier( ) function may only be called inside the 
main entry point of the TCS and may not be called in potentially divergent 
flow control. In particular, barrier( ) may not be called inside a switch state-
ment, in either sub-statement of an if statement, inside a do, for, or while loop, 
or at any point after a return statement in the function main( ).

The tessellation patch generator (TPG) is not a user-programmable shader 
stage, but a new fixed-function pipeline stage; you can’t change its operation 
except by setting parameters. It is invoked one time per patch. It looks at the 
tessellation levels set by the TCS and creates the right number of tessellated tri-
angles, quads, or lines, and outputs their positions as parametric coordinates 
in semi-regular barycentric (u,v,w) coordinates.

The second tessellation shader type is the tessellation evaluation shader 
(TES). It reads the (u,v,w) coordinates from the TPG and the output vertex coor-
dinates from the TCS, and then determines output (x,y,z) coordinates, interpo-
lates any attributes, and applies any displacements. There is one instance of a 
TES invoked per output vertex being generated. If you are using the TES but 
no TCS, your main program needs to set up some of the data that the TCS 
would normally provide. This is done with the functions

glPatchParameterfv( GL_DEFAULT_OUTER_LEVEL, float [4] );
glPatchParameterfv( GL_DEFAULT_INNER_LEVEL, float [2] );

that define the outer and inner levels of divisions for the interpolations, as we 
saw in the discussion of the TCS. The outer and inner levels define the number 
of subdivisions for the perimeter and the interior of the input polygon, respec-
tively.
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The interpolation pattern generated by the TPG is defined by a layout 
qualifier in the TES.3 When used for defining the TES production, it has the 
form

layout(
triangles
quads
isolines

,
equal_spacing

fract
















iional_even_spacing
fractional_odd_spacing

,
ccw
cw
























, point_mode) in;

The first parameter specifies the tessellation pattern: should the tessellation 
primitive generator subdivide a triangle into smaller triangles, a quad into 
triangles, or a quad into a collection of line segments, respectively? The second 
parameter specifies the spacing of the segments, the third the orientation of 
the triangles (if any) that are produced; specifying point_mode tells the TES is 
to produce a point at each output vertex rather than triangles or lines. Equal 
spacing and counterclockwise orientation are the defaults.

A typical invocation of this layout line might be
layout( triangles, equal_spacing, ccw ) in;

The TES has access to an input variable gl_in[ ], which is identical to the 
gl_out[ ] from the TCS, as well as the single variables

in int gl_PatchVerticesIn;
in int gl_PrimitiveID;
in vec3 gl_TessCoord;

It writes the information for the one vertex it is computing to the three output 
variables

vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistance[ ];

The write to gl_Position is required. The write to the other two is optional.
In addition to the built-in variables mentioned, both the TCS and the TES 

can take user-defined variables. User-defined variables that are defined per-
vertex are qualified as out or in, while user-defined variables defined per-
patch are qualified as patch out or patch in.

3. This seems confusing, having the TES essentially “pass information upstream” to the TPG. Don’t let 
it worry you. The shader compile and linking process takes care of this.
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Outer and Inner Division Levels

While we have seen that the outer and inner division 
levels represent the number of divisions of the boundary 
and interior of a primitive, respectively, we should look at 
this in a little more detail. The outer level is set by a four- 
element floating point array, while the inner level is set 
by a two-element floating point array. These are han-
dled differently by the output interpolation patterns as 
follows.4

For the quad output interpolation pattern, the divi-
sion levels are shown in Figure 13.3. The key point in 
the figure is the sequence in which the outer level (OL0, 
OL1, OL2, OL3) and the inner level (IL0, IL1) elements are 
applied.

The triangle output inter-
polation is specified in terms of barycentric coordi-
nates. This coordinate system gives a unique repre-
sentation for any point in terms of three coordinates 
(u,v,w), as described in Figure 13.4.

For the triangles interpolation pattern, the 
division levels are shown in 
Figure 13.5. The key point in the 
figure is the sequence in which 
the outer level (OL0, OL1, OL2) and 
the inner level (IL0) elements are 
applied. (The components that are not used are not shown 
in the vectors and need not be set.)

For the isolines pattern, the division levels are shown 
in Figure 13.6. The outer level has only two values (OL0, 
OL1), and the inner level is not used at all. Again, the com-
ponents that are not used need not be set. If OL0 is set 
to 1, only a single curve will be drawn. Essentially, OL0 
determines how many isolines are to be drawn, while OL1 
determines how many components are to be in each iso-
line.

Figure 13.3. The division levels for 
the quad output interpolation.

Figure 13.4. Barycentric 
coordinates in a triangle.

Figure 13.5. The division levels for 
the triangles output interpolation.

4. In the interest of not making you run away screaming from excruciating detail, we discuss what the 
tessellation levels mean only in very general terms. It is easiest to get a feel for what this actually 
means by experimenting with the example code. The full (excruciating) detail can be found in the 
OpenGL specification at http://opengl.org → Documentation → Specifications → OpenGL 4.2 core 
specification, in the tessellation section. Don’t say we didn’t warn you.
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Issues in Setting Tessellation Levels

GLSL will let you set any tessellation levels you like for the inner and outer 
levels of your patches, but you need to pay attention to your overall scene 
as you set these levels. One reason is aesthetic—you want to set your levels 
high enough to achieve a satisfactory image, but no higher. There is a more 
important reason, however. If you have two pieces of geometry with patches 
that share an edge, using different outer tessellation levels for the edge in the 
different patches will clearly lead to cracks where the edges of the patches 
meet. Keeping the tessellation levels the same is only a necessary condition, of 
course; you must also ensure that the computations on the patches in the TES 
are the same so that the edges align.

Examples

In this section we’ll look at four examples: one with output using an isolines 
pattern, one with output using a quads pattern, one with output using a tri-
angles pattern, and one that implements point-normal (PN) triangles. These 
will show you how many of the tessellation shader operations fit together and 
should help you get started on your own work. Each example is set up to work 
with glman, so a .glib file is presented along with the shader files; it should be 
straightforward to see how to pass the same information to the shaders from 
an application.

Figure 13.6. The division levels for the isolines output interpolation.
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Isolines

The first example uses tessellation shaders with isolines to create a familiar 
Bézier cubic curve with four control points, as shown in Figure 13.7. This curve 
is given by the equation

  P(u) = (1 − u)3P0 + 3u(1 − u)2P1 + 3u2(1 − u)P2 + u3P3, (1)

where u is the single curve parameter and the polynomials (1 − u)3, 3u(1 − u)2, 
3u2(1 − u), and u3 are the standard Bernstein basis functions for Bézier curves.

The tessellation control shader (TCS) 
figures out how much to tessellate the curve 
based on screen area, curvature, or other 
factors. The tessellation primitive genera-
tor (TPG) generates u (or [u,v,w]) values for 
as many subdivisions as the TCS asked for, 
and the tessellation evaluation shader com-
putes the (x,y,z) coordinates based on the 
TPG’s u values, using the equation derived 
by expanding (1):

P(u) = u3(−P0 + 3P1 − 3P2 + P3) + u2(3P0 − 6P1 + 3P2) + u(−3P0 + 3P1) + P0. (2)

The final result is to be the familiar curve shown in Figure 13.8.
To show how to generate the tessellated figure 

from the given control points, we will show several 
pieces of code: the first is some code you would place 
in your main program, the second is the .glib file you 
would use to set up this example through glman, the 
third is the TCS shader file, and the fourth is the TES 
shader file.

Some code you might place in your main program is

 glPatchParameteri( GL_PATCH_VERTICES, 4 );

 glBegin( GL_PATCHES );
  glVertex3f( x0, y0, z0 );
  glVertex3f( x1, y1, z1 );
  glVertex3f( x2, y2, z2 );
  glVertex3f( x3, y3, z3 );
 glEnd( );5 

Figure 13.7. A Bezier curve with four control points.

Figure 13.8. The Bézier curve with its 
positions at uniform values of u.

5. You can also use GL_PATCHES with vertex arrays and vertex buffer objects.
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Alternately, if you are developing your shaders through glman, you could use 
the .glib file below, which uses specific values for the four patch vertices.

 ##OpenGL GLIB
 Perspective 70
 LookAt 0 0 3 0 0 0 0 1 0

 Vertex     beziercurve.vert
 TessControl   beziercurve.tcs
 TessEvaluation  beziercurve.tes
 Fragment    beziercurve.frag
 Program BezierCurve uOuter1 <3. 5. 50.>

 Color 1. 1. 0.

 NumPatchVertices 4
 glBegin gl_patches
  glVertex 0. 0. 0.
  glVertex 1. 1. 1.
  glVertex 2. 1. 0.
  glVertex 3. 0. 1.
 glend

The vertex and fragment shaders would be the minimal shaders you have 
seen in the chapters on these shaders, and the TCS shader beziercurve.tcs 
could be

 #version 400
 #extension GL_ARB_tessellation_shader: enable

 uniform float uOuter1;

 layout( vertices = 4 ) out; // same size as input,
              // (but doesn’t have to be)

 void main( )
 {
  gl_out[ gl_InvocationID ].gl_Position =
         gl_in[ gl_InvocationID ].gl_Position;

  gl_TessLevelOuter[0] = 1.;
  gl_TessLevelOuter[1] = uOuter1;
 }

A new detail in this code is the gl_InvocationId value. This value is the 
output vertex number that corresponds to this instance of the TCS shader. In 
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this case, the components of the gl_in array are simply copied to the gl_out 
array, where they will serve as inputs to the TES shader. The other new detail 
is the gl_TessLevelOuter[ ] array that is to set the tessellation levels for the 
outer level in the TES.

Finally, we see the TES shader beziercurve.tes that uses the isolines 
pattern for its layout. Notice that the gl_Position value is computed with 
vector arithmetic since the p[0-3] parameters from the TCS are all vec4 val-
ues. And, because vec4 arithmetic is being used, this code will also work for 
rational Bézier cubic curves.

In this example, the variable gl_TessCoord is the (u,v,w) value of the ver-
tex being processed by the TES, and the value of the curve parameter u is 
derived from the x-coordinate of this variable. Other ways of developing the 
single parameter u are also possible.

 #version 400
 #extension GL_ARB_tessellation_shader: enable

 layout( isolines, equal_spacing) in;

 void main( )
 {
  vec4 p0 = gl_in[0].gl_Position;
  vec4 p1 = gl_in[1].gl_Position;
  vec4 p2 = gl_in[2].gl_Position;
  vec4 p3 = gl_in[3].gl_Position;

  float u = gl_TessCoord.x;

  // the basis functions:
  float b0 = (1.-u) * (1.-u) * (1.-u);
  float b1 = 3. * u * (1.-u) * (1.-u);
  float b2 = 3. * u * u * (1.-u);
  float b3 = u * u * u;

  gl_Position = b0*p0 + b1*p1 + b2*p2 + b3*p3;
 }

We assign the intermediate p[0-3] variables here to make the code more 
readable. In general, the GLSL compiler will optimize this away rather than 
creating temporary variables it doesn’t really need. Similarly, we can safely 
write out the b[0-3] variables in full detail for readability, and the GLSL com-
piler will assemble like terms rather than re-compute them.

Figure 13.9 shows the coordinate axes as well as two examples of the 
curve generated by these shaders. In the left image, you can easily see the five 
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segments that correspond to that value for outer1; in the right image you can-
not see the individual segments because of the much larger outer1 value.

We will see a little more about the isolines layout when we work through 
the Bézier surface example in the next section.

Bézier Surface

A bicubic Bézier surface patch is defined by 16 control points P i jij 0 3≤ ≤{ }, .  
The patch is a function of two parameters, u and v, with basis functions given 
by the products of the basis functions for Bézier curves, and is given by
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An example of a Bézier patch is shown in Figure 13.10. This shows the 
familiar way that the surface responds to the position of the control points and 
how the surface can be said to interpolate these points. Thus we can consider 
that a tessellation shader could interpolate the quad defined by P00, P03, P33, 
and P30 with the interpolation defined by the other control points.

The code components for this example are similar to those for the Bézier 
curve, but involve more control points and a more complex set of outer and 
inner subdivision parameters. If you begin this from an OpenGL applica-
tion, you might have code like this in the application. The order of the control 
points is unimportant, but must be consistent with your uses in the TCS and 
TES; pick a convention yourself and stick to it!

Figure 13.9. Two Bézier curves with outer1 = 5 (left) and outer1 = 50 (right).



328 13.  Tessellation Shaders

 

glPatchParameteri( GL_PATCH_VERTICES, 16 );

 glBegin( GL_PATCHES );

  glVertex3f( x00, y00, z00 );

  glVertex3f( x10, y10, z10 );

  glVertex3f( x20, y20, z20 );

  glVertex3f( x30, y30, z30 );

  glVertex3f( x01, y01, z01 );

  glVertex3f( x11, y11, z11 );

  glVertex3f( x21, y21, z21 );

  glVertex3f( x31, y31, z31 );

  glVertex3f( x02, y02, z02 );

  glVertex3f( x12, y12, z12 );

  glVertex3f( x22, y22, z22 );

  glVertex3f( x32, y32, z32 );

  glVertex3f( x03, y03, z03 );

  glVertex3f( x13, y13, z13 );

  glVertex3f( x23, y23, z23 );

  glVertex3f( x33, y33, z33 );

 glEnd( );

Alternately, if we are developing the tessellation shaders using glman, we 
could use a .glib file like the one below to set this up. Note that this sets up a 

Figure 13.10. A bicubic Bézier patch with 16 control points.
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uniform slider variable uShrink that would be used by a geometry shader to 
produce shrunken triangles to show the tessellation structure. Again, we use 
specific values for the 16 control points.

##OpenGL GLIB
Perspective 70

Vertex     beziersurface.vert
TessControl   beziersurface.tcs
TessEvaluation  beziersurface.tes
Geometry    beziersurface.geom
Fragment    beziersurface.frag
Program BezierSurface         \
   uOuter02 <1. 10. 50.>     \
   uOuter13 <1. 10. 50.>     \
   uInner0  <1. 10. 50.>     \
   uInner1  <1. 10. 50.>     \
   uShrink  <0. 1. 1.>      \
   uLightX  <-10. 0. 10.>     \
   uLightY  <-10. 10. 10.>    \
   uLightZ  <-10. 10. 10.>

Color 1. 1. 0.

NumPatchVertices 16
glBegin gl_patches
 glVertex 0. 2. 0.
 glVertex 1. 1. 0.
 glVertex 2. 1. 0.
 glVertex 3. 2. 0.

 glVertex 0. 1. 1.
 glVertex 1. -2. 1.
 glVertex 2. 1. 1.
 glVertex 3. 0. 1.

 glVertex 0. 0. 2.
 glVertex 1. 1. 2.
 glVertex 2. 0. 2.
 glVertex 3. -1. 2.

 glVertex 0. 0. 3.
 glVertex 1. 1. 3.
 glVertex 2. -1. 3.
 glVertex 3. -1. 3.
glEnd
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The TCS shader beziersurface.tcs is similar to the TCS shader in the 
Bézier curve example. In the TCS shader for the patch we pick up the values of 
the uniform slider variables uOuter* and uInner* and use them to set up the 
standard variables gl_TessLevelOuter[ ] and gl_TessLevelInner[ ].

#version 400
#extension GL_ARB_tessellation_shader : enable

uniform float uOuter02, uOuter13, uInner0, uInner1;

layout( vertices = 16 ) out;

void main( )
{
 gl_out[ gl_InvocationID ].gl_Position =
  gl_in[ gl_InvocationID ].gl_Position;

 gl_TessLevelOuter[0] = gl_TessLevelOuter[2] = uOuter02;
 gl_TessLevelOuter[1] = gl_TesslevelOuter[3] = uOuter13;
 gl_TessLevelInner[0] = uInner0;
 gl_TessLevelInner[1] = uInner1;
}

Figure 13.11 reminds us of the meaning of the outer and inner tessella-
tion levels for a quad interpolation pattern. In this TCS, the variables uOuter* 
and uInner* are copied to the elements of gl_TessLevelOuter[ ] and gl_
TessLevelInner[ ] so that opposite sides of the exterior and the interior of the 
patch have the same value. This need not be the case, and an exercise suggests 
that you experiment with the tessellation levels.

The TES beziersurface.tes is similar to that for the Bézier curve, but 
only because it involves more control points and more 
basis functions. The most important thing to note in this 
shader is the parameters to the layout qualifier. While we 
used an isolines pattern in the curve example, here we 
use a quads pattern and must also specify the orientation 
of each quad. When you see the output in Figure 13.12, 
you will see that the tessellation is a collection of quads, 
each of which is actually being drawn as two triangles. So 
specifying the quads pattern does not give you quads; it 
gives you triangles based on a quad interpolation pattern.

Finally, this TES not only outputs the required gl_
Position but also computes the partial derivatives of 
the surface in both the u and v directions and, by a cross 
product, the out variable normal—the normal to the sur-

Figure 13.11. The outer and inner 
levels for a quad interpolation pattern.
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face at that position. This normal is then used to produce the light intensity for 
the shaded patch shown in the figures.

#version 400
#extension GL_ARB_tessellation_shader : enable

layout( quads, equal_spacing, ccw ) in;

out vec3 teNormal;

void main( )
{
 vec3 p00 = gl_in[  0 ].gl_Position;
 vec3 p10 = gl_in[  1 ].gl_Position;
 vec3 p20 = gl_in[  2 ].gl_Position;
 vec3 p30 = gl_in[  3 ].gl_Position;
 vec3 p01 = gl_in[  4 ].gl_Position;
 vec3 p11 = gl_in[  5 ].gl_Position;
 vec3 p21 = gl_in[  6 ].gl_Position;
 vec3 p31 = gl_in[  7 ].gl_Position;
 vec3 p02 = gl_in[  8 ].gl_Position;
 vec3 p12 = gl_in[  9 ].gl_Position;
 vec3 p22 = gl_in[ 10 ].gl_Position;
 vec3 p32 = gl_in[ 11 ].gl_Position;
 vec3 p03 = gl_in[ 12 ].gl_Position;
 vec3 p13 = gl_in[ 13 ].gl_Position;
 vec3 p23 = gl_in[ 14 ].gl_Position;
 vec3 p33 = gl_in[ 15 ].gl_Position;

 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;

 // the basis functions and their derivatives:

 float bu0 = (1.-u) * (1.-u) * (1.-u);
 float bu1 = 3. *  u  * (1.-u) * (1.-u);
 float bu2 = 3. * u  * u * (1.-u);
 float bu3 = u  * u  * u;

 float dbu0 = -3. * (1.-u) * (1.-u);
 float dbu1 =  3.  * (1.-u) * (1.-3.*u);
 float dbu2 =  3.  * u *    (2.-3.*u);
 float dbu3 =  3.  * u *    u;

 float bv0 = (1.-v) * (1.-v) * (1.-v);
 float bv1 = 3. * v * (1.-v) * (1.-v);
 float bv2 = 3. * v * v * (1.-v);
 float bv3 = v * v * v;
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 float dbv0 = -3. * (1.-v) * (1.-v);
 float dbv1 =  3. * (1.-v) * (1.-3.*v);
 float dbv2 =  3.  * v * (2.-3.*v);
 float dbv3 =  3. * v * v;

 // finally we get to compute something

 gl_Position =
     bu0 * ( bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03 )
   + bu1 * ( bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13 )
   + bu2 * ( bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23 )
   + bu3 * ( bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33 );

 vec4 dpdu =
     dbu0 * ( bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03 )
   + dbu1 * ( bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13 )
   + dbu2 * ( bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23 )
   + dbu3 * ( bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33 );

 vec4 dpdv =
     bu0 * ( dbv0*p00 + dbv1*p01 + dbv2*p02 + dbv3*p03 )
   + bu1 * ( dbv0*p10 + dbv1*p11 + dbv2*p12 + dbv3*p13 )
   + bu2 * ( dbv0*p20 + dbv1*p21 + dbv2*p22 + dbv3*p23 )
   + bu3 * ( dbv0*p30 + dbv1*p31 + dbv2*p32 + dbv3*p33 );

 teNormal = normalize( cross( dpdu.xyz, dpdv.xyz ) );
}

Figure 13.12. The shader output for different outer and inner tessellation levels: outer = inner = 5 (left); outer 
= 10, inner = 5 (middle); outer = inner = 10 (right).
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The output of these shaders using glman is shown in Figure 13.12. 
An important question about tessellation levels is how to use them for 

making effective images. When a patch edge is visible, you may find that a tes-
sellation level that is perfectly adequate for a patch interior may look clumsy 
on the edge. We illustrate this in Figure 13.13, where the same patch shown in 
Figure 13.12 is examined in more detail at an edge where there is rapid change. 
Here the value of a larger outer tessellation level is clear from the appearance 
of the edge.

In the image on the left, the lower-left corner has outer tessellation level 
ten, which is not enough and so the lower boundary looks coarse. In the image 
on the right, the outer tessellation level has been changed to 30, resulting in a 
smooth-looking boundary. In both images, the inner tessellation levels were 
set to 10 which, in this case, were enough for standard smooth shading.

Finally, we return to the isolines pattern and use the Bézier patch exam-
ple to extend the Bézier curves example and produce multiple isolines. First, in 
the .glib file you replace the layout qualifier by one that specifies the isolines 
pattern instead of the quad pattern, as in the code

layout( isolines, equal_spacing) in;

Figure 13.13. A tessellated surface (left) with outer tessellation level 10, showing facets 
along the edges, and (right) with outer tessellation level 30, showing a smooth edge.
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Second, note that the two outer tessellation param-
eters are the number of isolines and the number of points 
in each isoline, respectively, while the inner tessellation 
parameter is ignored, as in Figure 13.14.

Some different values of inner and outer spacing for 
isolines is shown in Figure 13.15. Of course to produce 
these you must eliminate the shrink geometry shader in 
the .glib file, since you will not be producing any triangles 
for it to shrink. You will also need to move the lighting and 
the multiplication by the projection matrix from the geom-
etry shader to the tessellation evaluation shader.

Sphere Subdivision

Spheres offer some interesting display challenges. The simplest kind of 
sphere display is the GLUT sphere; this subdivides the sphere along latitude 
and longitude. There are times when you want to display a sphere while con-
trolling the number and layout of the triangles to achieve an appropriately 
smooth surface. In this example we use the triangles pattern for the tessella-
tion layout.

Figure 13.14. The effect of the two 
outer tessellation parameters.

 Figure 13.15. The Bézier surface shown as a collection of isolines. uOuter0 = uOuter1 = 5 
(left); uOuter0 = 5., uOuter1 = 50 (middle);  uOuter0 = uOuter1 = 50 (right).
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Sphere Octants

As a first example, let’s consider a single octant of a sphere. This has a tri-
angle at its base with vertices on each coordinate axis. If we take this as our 
base geometry and interpolate it with a triangle pattern, we can see some of 
the essential features of a triangle tessellation. The .glib file for this example, 
octantsubd.glib, is straightforward, with uniform slider variables for the tes-
sellation levels for you to experiment with. The geometry here is simply the 
three-vertex patch in the first octant.

##OpenGL GLIB

Vertex     octantsubd.vert
TessControl   octantsubd.tcs
TessEvaluation  octantsubd.tes
Geometry    octantsubd.geom
Fragment    octantsubd.frag
Program OctantSubd      \
   uRadius <0. 1. 3.>   \
   uOuter0 <1. 25. 50.>  \
   uOuter1 <1. 25. 50.>  \
   uOuter2 <1. 25. 50.>  \
   uInner <1. 10. 50.>   \
    uShrink <0. 1. 1.>

Color 1. 1. 0.

NumPatchVertices 3
glBegin gl_patches
  glVertex 1. 0. 0.
  glVertex 0. 1. 0.
  glVertex 0. 0. 1.
glEnd

The vertex shader applies the modelview matrix to the vertex geometry. 
The corresponding TCS file, octantsubd.tcs, copies the gl_Position values 
from the gl_in[ ] array to the gl_out[ ] array for each vertex of the primitive 
and calculates the tessellation levels from the .glib values.

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

uniform float uOuter0, uOuter1, uOuter2, uInner;
uniform float uRadius;
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layout( vertices = 3 ) out;

void main( )

{

 gl_out[ gl_InvocationID ].gl_Position =

       gl_in[ gl_InvocationID ].gl_Position;

 gl_TessLevelOuter[0] = uRadius * uOuter0;

 gl_TessLevelOuter[1] = uRadius * uOuter1;

 gl_TessLevelOuter[2] = uRadius * uOuter2;

 gl_TessLevelInner[0] = uRadius * uInner;

}

The TES shader created by the file octantsubd.tes below interpolates 
the input vertices with the tessellation coordinates gl_TessCoord[ ] using the 
triangles pattern. It applies the modelview matrix to get the position of each 
vertex in the tessellated output.

#version 400 compatibility

#extension GL_ARB_tessellation_shader : enable

uniform float uRadius;

layout( triangles, equal_spacing, ccw) in;

void main( )

{

 vec3 p0 = gl_in[0].gl_Position.xyz;

 vec3 p1 = gl_in[1].gl_Position.xyz;

 vec3 p2 = gl_in[2].gl_Position.xyz;

 float u = gl_TessCoord.x;

 float v = gl_TessCoord.y;

 float w = gl_TessCoord.z;

 gl_Position = uModelViewMatrix *

  vec4(uRadius*normalize(u*p0+v*p1+w*p2),1.);

}

The expression uRadius*normalize(...) is in the gl_Position compu-
tation to “puff” out the points to be a constant-radius spherical surface instead 
of a planar triangle.
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Because this is the first triangle-pattern tessellation we 
have seen, we should remind ourselves about the outer and 
inner tessellation levels in this example. Figure 13.16 recalls 
the meaning of outer and inner tessellation levels for trian-
gles; the first inner tessellation level controls the number of 
subdivisions along each triangle except the outermost, and 
the first three outer tessellation levels control the number 
of subdivisions along the three outer edges. The examples 
shown here use the tessellation levels rather conservatively, 
but in an exercise you are encouraged to try out different 
variations on these levels.

In the images created by this example, we can see the 
effect of different tessellation levels. Figure 13.17 shows the sphere quadrant 
with two different tessellation levels; on the left we have outer = 10 and inner = 
5, while on the right we have outer = inner = 10. You can see that in both cases, 
each outer edge has ten subdivisions while the inner edge (each line parallel to 
an outer edge) of the left image has five subdivisions and the inner edge of the 
right image has ten. In an exercise you are invited to experiment with using 
different tessellation levels for the three outer edges of the octant.

When you include the radius in setting the tessellation levels as in the 
TCS, you see that the larger the sphere radius is, the larger the tessellation level. 
This gives you a level-of-detail capability that is illustrated in Figure 13.18. 
Note that the individual triangles in the tessellations are of similar size across 
all the images.

Figure 13.16. The meaning of 
tessellation levels for triangles.

Figure 13.17. Two sphere octants with different tessellation levels: outer = 10, inner = 5. 
(left); outer = inner = 10 (right).
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Whole-Sphere Subdivision

A second sphere-subdivision example shows a different way to develop 
geometry from a tessellation shader. This example creates three spheres, each 
of which is defined by a single vertex in the patch vertex list. Each vertex is a 
vec4 value with center at (x,y,z) and with radius w, which is sufficient to define 
a sphere. We will see how this is handled in the TES. The .glib file for this 
example defines a set of uniform slider variables and is

##OpenGL GLIB

Vertex spheresubd.vert
TessControl spheresubd.tcs
TessEvaluation spheresubd.tes
Geometry spheresubd.geom
Fragment spheresubd.frag
Program SphereSubd      \
   uDetail <1. 30. 200.>  \
   uScale <0.1 1. 10.>   \
   uShrink <0. 1. 1.>   \
   uLightX <-10. 5. 10.>  \
   uLightY <-10. 10. 10.>  \
   uLightZ <-10. 10. 10.>

NumPatchVertices 1

Figure 13.18. Three sphere octants with radius 1.0, 1.5, and 2.0 respectively. Regardless of tessellation level, 
each triangle is about the same size because the tessellation levels depend on the sphere radius.
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glBegin gl_patches
 glVertex 0. 0. 0. .2  # x, y, z sphere center; w radius
 glVertex 0. 1. 0. .3
 glVertex 0. 0. 1. .4
glEnd

The vertex shader for this example, spheresubd.vert, gets the center and 
radius of the sphere from the input vertex value; it simply sets the output 
variables Center and Radius and sets the required gl_Position to the origin.

#version 400 compatibility

out vec3 vCenter;
out float vRadius;

void main( )
{
 vCenter = aVertex.xyz;
 vRadius = aVertex.w;

 gl_Position = vec4( 0., 0., 0., 1. );
}

The TCS, defined in spheresubd.tcs, takes the input from the vertex shader as 
two arrays, vRadius[ ] and vCenter[ ]. Each array has only one element in it, 
because the number of patch vertices was set to 1. The TCS sets up the tessel-
lation levels for the primitive generator. It uses the uniform variable uDetail 
and the value of the radius to set the tessellation levels. Levels uOuter[0] and 
uOuter[2] are the number of divisions at the poles, uOuter[1] and uOuter[3] 
are the number of divisions at the vertical seams, and uInner[0] and uIn-
ner[1] give the real internal sphere detail.

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

in vec3 vCenter[ ];
in float vRadius[ ];

patch out vec3 tcCenter;
patch out float tcRadius;

uniform float uDetail, uScale;

layout( vertices = 1 ) out;
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void main( )
{
 gl_out[ gl_InvocationID ].gl_Position =
    gl_in[ 0 ].gl_Position;   // (0,0,0,1)

 tcRadius = vRadius[ 0 ];
 tcCenter = vCenter[ 0 ];

 gl_TessLevelOuter[0] = 2.;

// use scale and radius to help set the tessellation level

 gl_TessLevelOuter[1] = uScale*tcRadius*uDetail;
 gl_TessLevelOuter[2] = 2.;
 gl_TessLevelOuter[3] = uScale*tcRadius*uDetail;
 gl_TessLevelInner[0] = uScale*tcRadius*uDetail;
 gl_TessLevelInner[1] = uScale*tcRadius*uDetail;
}

The TES, given by spheresubd.tes, turns the tessellation coordinates u and v 
into angles, thus tessellating the sphere in spherical coordinates, and converts 
those into rectangular coordinates that are scaled and translated to get the 
actual triangle output coordinates. The normal is also computed as the radius 
vector.

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

uniform float uScale;
layout( quads, equal_spacing, ccw) in;

patch in vec3 tcCenter;
patch in float tcRadius;

out vec3 teNormal;

const float PI = 3.14159265;

void main( )
{
 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;
 float w = gl_TessCoord.z;

 // -pi/2 <= phi <= pi/2
 // -pi <= theta <= pi
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 float phi   =    PI * ( u - .5 );  // spherical coordinates

 float theta  = 2. * PI * ( v - .5 );

 float cosphi = cos(phi);

 vec3 xyz = vec3( cosphi*cos(theta), sin(phi), 

          cosphi*sin(theta) );

 teNormal = xyz;

 xyz *= ( uScale * tcRadius );

 xyz += tcCenter;

 gl_Position = uModelViewMatrix * vec4( xyz,1. );

 // the shrink GS will multiply by the Projection matrix

}

The output of these shaders is shown in Figure 13.19, where the same three 
spheres have different levels of detail and different scale. As in the sphere 
octant example, notice that the first image has larger triangles, while the sec-
ond and third images have roughly the same level of detail since the radius is 
used in defining the tessellation levels.

Whole Sphere Subdivision while Adapting to Screen Coverage

This is good as far as it goes, but having to use uScale is restrictive. We would 
much rather use our usual user interface (whatever that is) to arbitrarily scale, 
rotate, and translate, and have the shader figure out what the right tessellation 

Figure 13.19. Three spheres as above with different values of detail and scale: uDetail = 30., uScale = 1. (left); 
uDetail = 50., uScale = 1. (center); uDetail = 50., uScale = 2.5 (right).
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levels should be. This would be especially useful in computer aided design 
and scientific data visualization, where smooth surfaces should stay smooth 
no matter how much you zoom in on them.

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable
in vec3     vCenter[ ];
in float    vRadius[ ];
patch out vec3  tcCenter;
patch out float tcRadius;
uniform float  uDetail;
layout( vertices = 1 ) out;

void main( )
{
 tcCenter = vCenter[ 0 ];
 tcRadius = vRadius[ 0 ];

 // get the extreme points of the sphere:
 vec4 mx = vec4( vCenter[0] - vec3( vRadius[0], 0., 0. ), 1. );
 vec4 px = vec4( vCenter[0] + vec3( vRadius[0], 0., 0. ), 1. );
 vec4 my = vec4( vCenter[0] - vec3( 0., vRadius[0], 0. ), 1. );
 vec4 py = vec4( vCenter[0] + vec3( 0., vRadius[0], 0. ), 1. );
 vec4 mz = vec4( vCenter[0] - vec3( 0., 0., vRadius[0] ), 1. );
 vec4 pz = vec4( vCenter[0] + vec3( 0., 0., vRadius[0] ), 1. );

 // get the extreme points in clip space:
 mx = uModelViewProjectionMatrix * mx;
 px = uModelViewProjectionMatrix * px;
 my = uModelViewProjectionMatrix * my;
 py = uModelViewProjectionMatrix * py;
 mz = uModelViewProjectionMatrix * mz;
 pz = uModelViewProjectionMatrix * pz;

 // get the extreme points in NDC space:
 mx.xy /= mx.w;
 px.xy /= px.w;
 my.xy /= my.w;
 py.xy /= py.w;
 mz.xy /= mz.w;
 pz.xy /= pz.w;

 // how much NDC do the extreme points subtend?
 float dx = distance( mx.xy, px.xy );
 float dy = distance( my.xy, py.xy );
 float dz = distance( mz.xy, pz.xy );
 float dmax = sqrt( dx*dx + dy*dy + dz*dz );
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 // set the tessellation levels from that information using
 // uDetail to make the conversion from NDC to screen space:
 gl_TessLevelOuter[0] = 2.;
 gl_TessLevelOuter[1] = dmax * uDetail;
 gl_TessLevelOuter[2] = 2.;
 gl_TessLevelOuter[3] = dmax * uDetail;
 gl_TessLevelInner[0] = dmax * uDetail;
 gl_TessLevelInner[1] = dmax * uDetail;
}

The big trick here is that the TCS is performing projection matrix mul-
tiply and homogeneous division itself. This is so that it can gain a sense of 
how large a region these points will subtend in normalized device coordinates 
(NDC), and thus how large the spheres will be when rendered on the screen. 
The outer and inner tessellations are then derived from that information. Here 
uDetail acts as a scale factor, and would normally be set by the application 
to reflect the size of the display window in pixels as well as some measure of 
your idea of what “pleasingly smooth” is.

The TES looks like this, which is the same as before except that there is 
no uScale:

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

layout( quads, equal_spacing, ccw) in;

patch in float tcRadius;
patch in vec3  tcCenter;

out vec3 teNormal;

const float PI = 3.14159265;

void main( )
{
 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;
 float w = gl_TessCoord.z;

 float phi   = PI * ( u - .5 );
 float theta  = 2. * PI * ( v - .5 );

 float cosphi = cos(phi);
 vec3 xyz = vec3( cosphi*cos(theta), sin(phi), 
           cosphi*sin(theta) );
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 teNormal = xyz;

 xyz *= tcRadius;
 xyz += tcCenter;

 gl_Position = uModelViewMatrix * vec4( xyz, 1. );
}

In Figures 13.20 and 13.21, notice that the number of tri-
angles adapts to the screen coverage of each sphere, and that the 
size of the tessellated triangles stays about the same, regardless 
of radius or transformation.

PN Triangles

This example shows how you can tessellate triangles with vertex normals, or 
point-normal (PN) triangles, to achieve significant levels of smoothness. This 
work is based on [45] and implements the techniques discussed there.

Figure 13.20. The original 
scene (left); with triangles 
shrunk to show tessellation 
(middle); zoomed out (right).

Figure 13.21. The screen zoomed in (left) and rotated (right).
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The left-hand image in Figure 13.22 shows the original triangle with three 
corner vertices and normals at those vertices. The general concept is to use this 
information to turn each PN triangle into a triangular Bézier patch, and create 
the Bézier control points. The Bézier patch equation can then be interpolated 
to any level of tessellation. The right-hand image in Figure 13.22 shows the 
Bézier control points of the curved PN triangle.  

Now the geometry of a curved PN triangle that is defined by a triangu-
lar bicubic Bézier patch, which can be tessellated as shown in the images in 
Figure 13.23.  

Below we give a complete set of shaders that handle PN triangles. They 
take input from a .glib file with uniform variables uScale, a scaling factor, 
uShrink, a shrinking factor for the geometry shader, and uInner and uOuter, 
inner and outer tessellation levels respectively. A white light is assumed, and 
its position is set in the geometry shader when the light intensity is computed. 
All these could easily be replaced to use these shaders from an application.

Figure 13.23. A tessellated PN triangle showing the individual tessellations (left) and shown as one smooth 
surface (right).

Figure 13.22. A PN triangle (left) and the Bézier control points of the curved PN triangle (right).
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The vertex shader, pntriangles.vert, is straightforward, taking its ver-
tex location and normal from the standard variables and applying the Scale 
value.

#version 400 compatibility
uniform float uScale;
out vec3 vNormal;

void main( )
{
 vec3 xyz = aVertex.xyz;
 xyz *= uScale;
 gl_Position = uModelViewMatrix * vec4( xyz, 1. );
 vNormal = normalize( uNormalMatrix * aNormal );
}

The TCS shader, pntriangles.tcs, is straightforward; it takes the posi-
tion and normal values as arrays from the primitive assembly following the 
vertex shader, passes these on to the TES shader, and sets the required tessel-
lation level values for the TES operation.

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable
uniform float uOuter, uInner;
uniform float uScale;

layout( vertices = 3 ) out;
in vec3 vNormal[ ];
out vec3 tcNormals[ ];

void main( )
{
 tcNormals[gl_InvocationID] =
   vNormal[gl_InvocationID];
 gl_out[ gl_InvocationID ].gl_Position =
   gl_in[ gl_InvocationID ].gl_Position;

 gl_TessLevelOuter[0] = uScale * Outer;
 gl_TessLevelOuter[1] = uScale * Outer;
 gl_TessLevelOuter[2] = uScale * Outer;
 gl_TessLevelInner[0] = uScale * Inner;

}

The TES shader, pntriangles.tes, is the most complex piece of the pro-
cess because it sets up and executes the Bézier patch for the triangle, produc-
ing not only the position but also the normal for each vertex in the patch.
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#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable
in vec3 tcNormals[ ];
out vec3 teNormal;

layout( triangles, equal_spacing, ccw) in;

void main( )
{
 vec3 p1 = gl_in[0].gl_Position.xyz;
 vec3 p2 = gl_in[1].gl_Position.xyz;
 vec3 p3 = gl_in[2].gl_Position.xyz;

 vec3 n1 = tcNormals[0];
 vec3 n2 = tcNormals[1];
 vec3 n3 = tcNormals[2];

 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;
 float w = gl_TessCoord.z;

 vec3 b300 = p1;
 vec3 b030 = p2;
 vec3 b003 = p3;

 float w12 = dot( p2 - p1, n1 );
 float w21 = dot( p1 - p2, n2 );
 float w13 = dot( p3 - p1, n1 );
 float w31 = dot( p1 - p3, n3 );
 float w23 = dot( p3 - p2, n2 );
 float w32 = dot( p2 - p3, n3 );

 vec3 b210 = ( 2.*p1 + p2 - w12*n1 ) / 3.;
 vec3 b120 = ( 2.*p2 + p1 - w21*n2 ) / 3.;
 vec3 b021 = ( 2.*p2 + p3 - w23*n2 ) / 3.;
 vec3 b012 = ( 2.*p3 + p2 - w32*n3 ) / 3.;
 vec3 b102 = ( 2.*p3 + p1 - w31*n3 ) / 3.;
 vec3 b201 = ( 2.*p1 + p3 - w13*n1 ) / 3.;

 vec3 ee = ( b210 + b120 + b021 + b012 + b102 + b201 ) / 6.;
 vec3 vv = ( p1 + p2 + p3 ) / 3.;
 vec3 b111 = ee + ( ee - vv ) / 2.;

 vec3 xyz = 1.*b300*w*w*w + 1.*b030*u*u*u + 1.*b003*v*v*v +
  3.*b210*u*w*w + 3.*b120*u*u*w + 3.*b201*v*w*w +
  3.*b021*u*u*v + 3.*b102*v*v*w + 3.*b012*u*v*v +
  6.*b111*u*v*w;
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 float v12 = 2. * dot( p2-p1, n1+n2 ) / dot( p2-p1, p2-p1 );
 float v23 = 2. * dot( p3-p2, n2+n3 ) / dot( p3-p2, p3-p2 );
 float v31 = 2. * dot( p1-p3, n3+n1 ) / dot( p1-p3, p1-p3 );

 vec3 n200 = n1;
 vec3 n020 = n2;
 vec3 n002 = n3;
 vec3 n110 = normalize( n1 + n2 - v12*(p2-p1) );
 vec3 n011 = normalize( n2 + n3 - v23*(p3-p2) );
 vec3 n101 = normalize( n3 + n1 - v31*(p1-p3) );

 teNormal = n200*w*w + n020*u*u + n002*v*v +
      n110*w*u + n011*u*v + n101*w*v;

 gl_Position = vec4( xyz, 1. );
}

Following the TES shader is the geometry shader, which takes a triangle 
as input and computes the light intensity and position for each vertex of the 
output triangle.

#version 400 compatibility
#extension GL_EXT_gpu_shader4: enable
#extension GL_EXT_geometry_shader4: enable

layout( triangles )  in;
layout( triangle_strip, max_vertices=32 )  out;

uniform float uShrink;
in vec3 teNormal[ ];
out float gLightIntensity;
const vec3 LIGHTPOS = vec3( 5., 10., 10. );
vec3 V[3];
vec3 CG;

void
ProduceVertex( int v )
{
 gLightIntensity = 
  abs(dot(normalize(LIGHTPOS - V[v]), 
normalize(teNormal[v])));
 gl_Position = uProjectionMatrix *
  vec4( CG + uShrink * ( V[v] - CG ), 1. );
 EmitVertex( );
}

void
main( )
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{
 V[0] = gl_PositionIn[0].xyz;
 V[1] = gl_PositionIn[1].xyz;
 V[2] = gl_PositionIn[2].xyz;

 CG = ( V[0] + V[1] + V[2] ) / 3.;

 ProduceVertex( 0 );
 ProduceVertex( 1 );
 ProduceVertex( 2 );
}

And finally we have the fragment shader, pntriangles.frag, which 
takes the light intensity and applies it to the surface color.

#version 400 compatibility

in float gLightIntensity;
out vec4 fFragColor;

const vec3 COLOR = vec3( 1., 1., 0. );

void main( )
{
 fFragColor = vec4( gLightIntensity*COLOR, 1. );
}

The result of this treatment of PN triangles is shown in the treatment of a 
face defined as a triangle mesh, from [45]. Different treatments of the model’s 
triangles yield different kinds of output quality. You should be careful when 
you use a technique such as this; you may end up creating an image that is too 
smooth to represent the reality your model has. Not all interpolations repre-
sent a reasonable approximation of reality!

A good example of the effect of using this tessellation on PN triangles is 
given by a detail of the cow model we saw in Chapter 12 on geometry shad-
ers. In Figure 13.24 we see the detail at the base of the tail in the cow model. 
In the top row, the left-hand image is the simple Gouraud shading of the tri-
angles in the tail, while the right-hand image improves the outer tessellation 
(outer = 2, inner = 1). Notice how much improvement there is just by increasing 
the outer tessellation. This is because smooth shading already helps the inner 
parts of triangles, but does nothing for the silhouettes. In the lower left image, 
the inner tessellation is also improved (outer = 2, inner = 2), while the lower 
right image shows the triangle structure by slightly shrinking all the triangles.
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Summary

Like many sophisticated features, tessellation shaders are very useful. There 
are many times when you would like to be able to specify a small amount of 
geometric detail and end up with a much larger amount. Those who have 
used RenderMan are already used to this because of RenderMan’s automatic 
“microfaceting” feature. While OpenGL’s tessellation shaders are not exactly 
the same as automated microfaceting, they are useful in many of the same 
ways. Thus, we can now perform some of the same surfacing and displace-
ment mapping for which RenderMan has been so successfully used, but at 
interactive speeds.

Figure 13.24. The cow’s tail. Top row: smooth shading (left), improved outer tessellation 
(right). Bottom row: improved outer and inner tessellation (left), and detail (right).
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Exercises

1. In the uniform variables in the .glib file for the Bézier curve, you will 
note that the variables uOuter0 and uOuter1 are slider uniform variables 
and can be set to a range of values. Experiment with these variables and 
note the result. Change the limits on the range of each and repeat the 
experiment.

2. Deliberately break the rules of good sense on tessellation levels to see the 
results. First, create two patches that share an edge and tessellate each 
with different outer tessellation levels to create holes between the two 
tessellated patches. Second, use wildly different inner and outer tessella-
tion levels on a rectangular patch to see what the result looks like and to 
get a sense of how much difference between these might be reasonable.

3. Complete the Bézier surface example by supplying vertex, geometry, 
and fragment shaders for it. Experiment with the tessellation levels; 
start by giving different values to the two outer or two inner levels and 
note the result. Then add more uniform slider variables so that each of 
the four outer or inner levels is set separately, and note the result. It is 
quite possible to get really strange (and essentially unusable) results for 
some values of these levels; don’t worry about that. It is useful to use the 
shrink geometry shader with this exercise so you can see the triangles 
more easily.

4. For a triangle tessellation, use a variety of values for the outer and inner 
tessellation levels. In particular, try out different values for the three 
outer levels and observe the results. It is useful to use the shrink geom-
etry shader with this exercise so you can see the triangles more easily.

5. We have seen both sphere octant and whole-sphere examples in this 
chapter, but we have not compared their operation. Create a whole 
sphere from eight sphere octants and compare the quality of the result-
ing sphere with the whole-sphere quality. Can you say anything about 
the speed of drawing spheres these two ways?

6. Take one of your models based on triangles with vertex normals, or cre-
ate a model of this sort, and apply the set of shaders given here for VN 
triangles. Examine the result carefully to see how it improves, or fails to 
improve, the concept you had in mind when you developed the model.

7. One of the historic uses of tessellation is to create a pattern of regu-
lar polygons or figures that fills a plane without any gaps or overlap-
ping, like you see in the works of M.C. Escher. An example is shown in 
Figure 13.25.
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Apply this pattern to a surface tessellation like some of the 
ones shown in this chapter. Hint: you will need to create 
a single repeatable rectangular tile with boundaries that 
match up, as in the figure at the right, so that it can be repli-
cated across the surface like this:

Another hint: it’s not the GLSL tessellation that you need to worry about. 
That doesn’t change from the examples. Mostly you need to figure out where 
in the whole 5-shader process you determine and assign the proper texture 
coordinates.

Figure 13.25. A pattern of Moorish tiles that creates a plane-covering tessellation.
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The GLSL API14

We have spent a lot of time talking about shaders outside the context of graph-
ics applications that would use them. This is, of course, not the way the real 
world works, and in Chapter 15, we will see a number of exciting and impor-
tant ways that shaders can contribute to creating meaningful images. To do 
that, however, you must integrate shader programming with your other 
graphics programming.

Shaders in the OpenGL Programming Process

So far, this book has focused on just writing the shader code itself, and not on 
the API boilerplate that goes around it. If you have been following along using 
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glman, you probably realize that glman is handling a lot of infrastructure for 
you. Well, it’s time to pull back the curtain and talk about how to hook GLSL 
shaders into an application.

As we have seen, shader programs replace fixed-function graphics opera-
tions that handle vertex, geometry, and fragment processing. When we use 
shaders, we must not only provide these files, but we must also carry out sev-
eral steps, diagrammed in Figure 14.1, to integrate the shaders with our appli-
cation. These steps are

1. Create the necessary shader source file(s).
2. Read each shader source file into a null-terminated text string to be com-

piled.
3. Create an empty shader object for each shader.
4. Give each shader object the text string of its shader source.
5. Compile each shader object.
6. Create an overall shader program.
7. Attach the shader objects to the program.
8. Link the shader program.
9. Specify that the shader program is to be used in place of the fixed-func-

tion pipeline.

When these are done, OpenGL will replace the fixed-function processing 
with your shaders until the application finishes or you deactivate or delete the 
shader program.

Figure 14.1. The GLSL shader-creation process from shader source to shader use.
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Handling OpenGL Extensions

At this time, shader programming with GLSL is new enough that many of the 
GLSL API calls are handled through OpenGL extensions. In order to manage 
extensions in a cross-platform way, we can use the OpenGL Extension Wrangler 
Library (GLEW). GLEW provides efficient run-time mechanisms for determin-
ing which OpenGL extensions are supported on the target platform. OpenGL 
core and extension functionality is exposed in a single header file. GLEW 
changes often to keep up with OpenGL developments. You can download 
GLEW from http://glew.sourceforge.net—you should check for new GLEW 
releases frequently.

In this chapter, we will refer to some GLSL functions that may be either 
EXT or ARB functions (that is, may not yet be fully integrated into the OpenGL 
standard), but GLEW will handle that and will replace a function name like 
glCreateProgram( ) with glCreateProgramEXT( ) or glCreateProgramARB( ) 
if either of those is the appropriate one for your system. In this chapter, we will 
only use the general function names and will leave EXT or ARB details up to 
GLEW.

You need to initialize GLEW in your application, probably in the func-
tion where you initialize your OpenGL system. The code below will do that 
for you.

#include “glew.h“

. . .

GLenum err = glewInit( );
if( err != GLEW_OK )
{
 fprintf( stderr, “glewInitError\n” );
 exit( 1 );
}

fprintf( stderr,“GLEW initialized OK\n” );
fprintf( stderr,”Status: Using GLEW %s\n”,glewGetString(GLEW_  
        VERSION) );

How Is a GLSL Shader Program Created?

The usual way of creating shader functionality is to create a collection of differ-
ent types of shaders (e.g., vertex, tessellation, geometry, fragment) and collect 
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them into a shader “program.” This program will then be invoked (“used” in 
OpenGL terminology) during the rendering process to have this combination 
of shaders replace the fixed-function pipeline. An individual GLSL shader is 
exactly what you have been working with when you write vertex, geometry, 
or fragment shader files for glman. The only functional difference is in how you 
incorporate shaders in your application. A GLSL shader is written and stored 
as a plain text file to be incorporated into an OpenGL-based application, as we 
indicate above. You can use any kind of text-editing application to create the 
source file.

As you saw in Figure 14.1, there are a number of steps needed to incor-
porate shaders in an OpenGL application. The first step in this process is to 
read the shader source file into an ordinary null-terminated text string. This 
should be a familiar programming operation, but for completeness, the fol-
lowing example is a C++ source code fragment that reads a file into a null-ter-
minated string whose address is str. From there, it can be compiled, attached 
to a shader program, and linked, so it can be used in your application.

#include <stdio.h>

FILE *fp = fopen( filename, “r” );
If ( fp == NULL ) {...} // report failure to open, and fail   
           // gracefully
fseek( fp, 0, SEEK_END );
int numBytes = ftell( fp ); // length of file

GLchar * str = new GLchar[numBytes+1];

rewind( fp );
fread( str, 1, numBytes, fp );
fclose( fp );

str[numBytes] = ‘\0‘; // end byte string with NULL

The code fragment above uses the C++ new( ) operator, and in general 
we use C++ conventions in this chapter. If you are using C, you replace that 
line with the two lines

 GLchar *str;
 . . . 
 str = (GLchar *) malloc( numBytes + 1 );

and anywhere we use the C++ delete[ ] operator, you should use the C func-
tion free(...).
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Creating and Compiling Shader Objects

Shader objects are unique objects: code groups that are downloaded from your 
application to the appropriate section of your graphics processor, where they 
can be used. There is a bit of processing involved in setting up a shader object. 
We cover that in this short section.

The process of creating a compiled shader object has three steps:

1. You must first create empty vertex, tessellation, geometry, or fragment 
shader objects. These will be identified with GLuint variables called han-
dles that let you access them later. (The actual value of the handle has no 
meaning to your graphics application. Print it if you’re curious. Just keep 
track of it and don’t ever change it.)

2. You must next read the shader source string into the shader object. We 
described how you could create this string in the previous section.

3. Finally, you compile the shader object and check that the compilation 
was successful. This checking step is needed because shader compilation 
is not like standard language compilation; there is no automatic report-
ing of compilation problems.

The code fragment below shows how this is done for a vertex shader. 
The code to create and compile a geometry or fragment shader is made by 
simply replacing every reference to vertex shader by a reference to geometry 
or fragment shader, as you will see in the examples later in this chapter. This 
is a simpler version of the same operations in the full GLSLProgram class source 
listed in Appendix A; it shows the flow of activities needed to create and com-
pile shaders.

int status;
int logLength;

// create an empty shader object

GLuint vertShader = glCreateShader( GL_VERTEX_SHADER );

// read the string into shader object
glShaderSource( vertShader, 1, (const GLchar **)&str, NULL );

// str is no longer needed and the memory can be freed
delete [ ] str;

// compile the shader object
glCompileShader( vertShader );
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// check for OpenGL errors so far
CheckGlErrors( “Vertex Shader 1” );

// see if we had compilation errors
glGetShaderiv( vertShader, GL_COMPILE_STATUS, &status );
if( status == GL_FALSE )
{
 fprintf( stderr, “Vertex shader compilation failed.\n” );
 glGetShaderiv( vertShader, GL_INFO_LOG_LENGTH, &logLength   
          );
 GLchar *log = new GLchar [logLength];
 glGetShaderInfoLog( vertShader, logLength, NULL, log );
 fprintf( stderr, “\n%s\n”, log );
 delete [ ] log;
 exit( 1 );
}

CheckGlErrors( “Vertex Shader 2” );

In the call to glCreateShader( ), the argument, GL_VERTEX_SHADER  , has 
been highlighted. This is to emphasize that this is the only place that identi-
fies what type of shader this is. Additional legal values are GL_TESSELLATION_
CONTROL_SHADER, GL_TESSELLATION_EVALUATION_SHADER, GL_GEOMETRY_

SHADER and GL_FRAGMENT_SHADER.  This shader type is then stored in the shader 
object for later use. Other than this, each shader is compiled and attached the 
same way. It is important, of course, to set the shader type correctly so that 
the handling of the overall shader program knows what to do with each indi-
vidual shader. Also, the compiler will sometimes produce different errors, 
depending on the type of shader; this is because certain things are legal in one 
type of shader but not others.

You will notice the construction (const GLchar **)&str for the shader 
source string. You can, of course, use a simpler construction for this and only 
read in a single string, but GLSL lets you construct a shader from a collec-
tion of source fragments that are stored in an array of strings and are only 
assembled at compile time. This gives you extra flexibility and lets you build 
a shader toolkit that is much finer grained than only having full shader source 
files.

As an example of taking this approach, you could use the same shader 
source, and insert the appropriate #define statements at the beginning by hav-
ing each set of #defines in its own text file, letting you avoid time-consuming 
if tests. You can insert a common header file (a standard .h file) in the source 
if you like, or you can simulate the #include to re-use common pieces of code, 
such as frequently used functions.
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As an idea of how this is done, consider the code fragment

 GLchar *ArrayOfStrings[3];
 ArrayOfStrings[0] = “#define SMOOTH_SHADING”;
 ArrayofStrings[1] = “ . . . some commonly-used procedure 
        . . . ”;
 ArrayofStrings[2] = “ . . . the real vertex shader code 
        . . . ”;
 glShaderSource( vertShader, 3, (GLchar **)ArrayofStrings, 
         NULL );

This includes a #define statement, a common function, and the basic 
shader source.

If you want to prepare your shader source in a single file and still use this 
approach, you can either read the source into a string in a one-dimensional 
array, as

 GLchar *buffer[1];
 buffer[0] = “ . . . the entire shader code . . . ”;  
 glShaderSource( vertShader, 1, (GLchar **)buffer, NULL );

Or you can read the shader source into a single buffer, but cast its address 
as

 GLchar *buffer = “ . . . the entire shader code . . . ”; 
 glShaderSource( vertShader, 1, (const GLchar **)&buffer,   
          NULL );

The CheckGLErrors Function

The CheckGlErrors function is critical, because OpenGL does not report errors, 
so you need to ask. The CheckGlErrors function is shown below. It is an excel-
lent idea to include this in all your OpenGL programs, not just shader pro-
grams, and to call it frequently. Simply knowing that errors occurred (as you 
would find when you checked GL_COMPILE_STATUS) is not enough; you need 
to get the list of errors from the compilation info log. Sometimes, errors occur 
well before their effects are felt, and with judicious use of this error checking 
function, you should be able to narrow down what the real error is and where 
it occurs.

void
CheckGlErrors( const char* caller )
{
 unsigned int gle = glGetError( );
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 if( gle != GL_NO_ERROR )
 {
  fprintf(stderr,“GL Error discovered from caller %s:”,   
        caller);
  switch (gle)
  {
   case GL_INVALID_ENUM:
    fprintf( stderr, “Invalid enum.\n” );
    break;
   case GL_INVALID_VALUE:
    fprintf( stderr, “Invalid value.\n” );
    break;
   case GL_INVALID_OPERATION:
    fprintf(stderr,“Invalid Operation.\n”);
    break;
   case GL_STACK_OVERFLOW:
    fprintf( stderr, “Stack overflow.\n” );
    break;
   case GL_STACK_UNDERFLOW:
    fprintf(stderr, “Stack underflow.\n” );
    break;
   case GL_OUT_OF_MEMORY:
    fprintf( stderr, “Out of memory.\n” );
    break;
   case GL_INVALID_FRAMEBUFFER_OPERATION; 
    fprintf( stderr, “Framebuffer object is not 
         complete.\n” ); 
    break;
  }
  return;
 }
 return;
}

Creating, Attaching, Linking,  
and Activating Shader Programs

Once you have created the shader object(s) you want to use, you must create 
an overall shader program and attach the individual shaders to it. The shader 
program is the vehicle for making shader objects available to the OpenGL sys-
tem, and activating a shader program tells the graphics card to use it to replace 
the appropriate parts of the fixed-function graphics operations.
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Creating a Shader Program and Attaching Shader Objects

The glCreateProgram( ) function is used to create an empty shader program:

GLuint program = glCreateProgram( );

The variable program is just a handle and has no numerical significance to 
the application. To attach a shader to this program, use both the program and 
shader handles in glAttachShader( ) like this:

glAttachShader ( program, vertShader );
glAttachShader ( program, tesscontrolShader );
glAttachShader ( program, tessevaluationShader );
glAttachShader ( program, geomShader );
glAttachShader ( program, fragShader );

You don’t need to have all these types of shaders in every program. The 
program will just consist of the shaders you have attached. This code should 
be placed in an initialization section of your application program. You can also 
create more than one shader program if you want to use different shaders in 
different parts of your application.

Linking Shader Programs

Before you can actually use the shader program you have just created, you 
must link the individual shader objects together, resolve their common vari-
ables, and link with any built-in support code. The linking uses the function

glLinkProgram( program )

If any shader objects are not included, the shader program will let the 
fixed-function processor continue to take on those functions.

Like compilation, linking a shader program can fail, and you should rou-
tinely check that linking is successful before assuming that the program is use-
able. The function

glGetProgramiv( program, GL_LINK_STATUS, &linkStatus )

returns a linkStatus of GL_TRUE if the program linked successfully; otherwise 
it returns GL_FALSE. Just as was the case when you compiled shader objects, 
you not only need to check for success, you also need to report any errors. The 
whole process looks like this:
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int
LinkProgram( GLuint program )
{
 glLinkProgram( program );
 CheckGlErrors(“LoadShader:Link 1”);

 GLchar* infoLog;
 GLint infoLogLen;
 GLint linkStatus;
 glGetProgramiv( program, GL_LINK_STATUS, &linkStatus );
 CheckGlErrors(“LoadShader:Link 2”);

 if( linkStatus == GL_FALSE )
 {
  glGetProgramiv( program, GL_INFO_LOG_LENGTH,     
  &infoLogLen );
  fprintf(stderr,”Failed to link program--Info Log    
  Length = %d\n”, infoLogLen );
  if( infoLogLen > 0 )
  {
   infoLog = new GLchar[infoLogLen+1];
   glGetProgramInfoLog( program, infoLogLen, 
             NULL, infoLog );
   infoLog[infoLogLen] = ‘\0’;
   fprintf( stderr, “Info Log:\n%s\n”, infoLog );
   delete [ ] infoLog;

  }
  glDeleteProgram( program );
  return 0;
 }

 return 1;
};

If the linking operation is successful, each of the program object’s active 
uniform and attribute variables is assigned a location that can be queried with 
glGetUniformLocation and glGetAttributeLocation, as discussed later in 
this chapter.

Activating a Shader Program

Once a shader program is available, it must be activated. Activating the shader 
program switches the action of the graphics card so that your shader program 
takes over the necessary operations from the fixed-function processing. To 
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make the program active, you use the statement

glUseProgram( program );

in your application. From this point until you 
next call glUseProgram( ), all graphics process-
ing will use the shader code in this shader pro-
gram.

To go back to using the fixed-function 
graphics pipeline, you simply tell the system to 
use a null shader program, like this:

glUseProgram( 0 );

If you want to change shader programs, as you may well want to do if 
you want to use different shader programs for different parts of your display, 
you need not deactivate one shader before you activate another. Simply acti-
vate the new shader program at the point where you want to begin using it. 
The shader program being used is simply an attribute of the system; that is, 
another part of the OpenGL state.

You may create, compile, link, and activate shader programs at any point 
in your application, as long as the resulting active shader programs are com-
plete before you actually use them. In practice, you may want to make this 
part of the initialization process for your application, the part that is usually 
executed only once when your application begins, and where you set up the 
application’s graphics environment. You can then activate or deactivate your 
shaders whenever you like.

Finally, you can not only deactivate a shader program; you can actually 
delete it and all its components. This frees up the memory on the graphics 
board for other shader programs or other uses. All of the functions that build 
up a shader program have functional inverses, so you can

• Detach a shader object from a shader program with 
glDetachShader(shader).

• Delete a shader program with glDeleteProgram( program ).
• Delete a shader object with glDeleteShader( shader ).

You have some protection from incorrect ordering of these functions, 
because the actual effect of the function is delayed until it makes sense. If you 
ask for a program object to be deleted, but it is part of the current rendering 
state, it is not deleted until it is no longer part of the rendering context. If you 
ask for a shader to be deleted, but it is still attached to a program object, it is 

Do not try to create or link 
shader programs within a dis-
play list, because these func-
tions are executed immediately 
when they are processed, 
rather than being deferred 
until the list is called. You 
can, however, embed a call to 
glUseProgram( ) in a display 
list.
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not deleted until after it has been detached. But it is probably much better to 
be systematic in removing program and shader objects, both to make your 
code easier to understand, and to avoid instances where the system might not 
adequately protect you.

Passing Data into Shaders

As you write any program with the OpenGL API, even if you don’t intend 
that program to use GLSL shaders, you create data that the system will use in 
creating a scene. This is generally graphical data that describes the scene. For 
example, you can specify the color for each vertex, or you can create an array 
of vertices and a parallel array with data such as elevations, temperature, or 
any measured data. The data could be used in fixed-function operations by 
manipulating primitives based on your data, or with shader-based operations 
by putting the data into user-defined attribute or uniform data that you can 
access within the shader function(s). In these sections, we describe how you 
can create attribute, uniform, or sampler data for shaders, and we give some 
examples that show these in action.

Defining Uniform Variables in Your Application

GLSL uniform variables contain information that can change at most with 
each graphics primitive. You can think of these uniform variables as a sort of 
“global variables” that are available to all the shaders currently being used. 
If you want a shader to have data and that data isn’t directly available from 
OpenGL, you can define your own uniform variables to give that data to a 
shader. Uniform variables are defined within a shader, and their values are 
set by the application. Uniform variables can hold any kind of data, including 
structs and arrays, as we saw with the built-in uniform variables.

The mechanism for defining and using your own uniform variables is 
indirect and somewhat unusual. When you define a uniform variable in your 
shader program, you simply declare the variable in the usual way:

uniform type name;

This associates a name and a type with the variable, but does not asso-
ciate an address. An address is only assigned when the shader program is 
linked. Once linking has been done, an address is available for each variable. 
You query the address and then use it to set the variable from your application.



365Passing Data into Shaders

But how does the application get the address for a variable it does not 
know about? The application must know the name of the uniform variable 
in a linked shader program. It can then get the location (or address) with the 
function

GLint glGetUniformLocation(GLuint program, const GLchar *name);

Here program is the value returned from the glCreateProgram( ) func-
tion, and name is the name (a text string) of the uniform variable. This function 
returns the address of the named variable within the named program object, 
so it can be used in the application. The uniform variable must be a simple 
variable, not an array or struct; these are handled differently. A uniform vari-
able (either built-in or user-defined) is called active if the link operation finds 
that it can be accessed during program execution; a link operation must have 
been done (though it might not have succeeded) before the uniform variables 
in the shader program can be active.

You can think of this as creating a conduit from your application to the 
shader. The location you get from glGetUniformLocation( ) is the place the  
conduit gets plugged into. You then use one of the glProgramUniform*( ) 
functions to put data into the conduit to get it to the shader.

The application can set the value of a uniform variable whose location is 
known in three ways. The first way sets scalar or simple vector data with the 
function

glProgramUniform{i}{t}(GLuint program, GLint location, TYPE val)

where i can be 1, 2, 3, or 4, depending on the dimension of the variable, and t 
can be either f or i, depending on whether the type’s base is floating-point or 
integer. The function causes the value of the parameter val to be loaded into 
the location indicated. This parameter can be a simple vec1, vec2, vec3, vec4, 
ivec1, ivec2, ivec3, or ivec4, but not an array of these types.

The second way sets array (vector) data with

glProgramUniform{i}{t}v(GLuint program, GLint location, 

    GLuint length, const TYPE *val) 

where the meanings i and t are the same, but the data in val is a vector of the 
specified type (including vec* and ivec*) whose length is length.

Finally, the third way sets matrices, and is

glProgramUniformMatrix{i}fv( GLuint program, GLint location, 

 GLuint count, GLboolean transpose, const GLfloat *val )
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If i has the value 2, val must be a 2 × 2 
matrix; if 3, a 3 × 3 matrix; and if 4, a 4 x 4 
matrix. If transpose has value GL_FALSE, 
the matrix is taken to be in standard 
OpenGL column major order, while if 
transpose has value GL_TRUE, the matrix 
is taken to be in row-major order. The 
value of count is the number of matrices 
that are being passed, so if you are only 
passing a single matrix, that value is 1.

In Chapter 7 we talked about how it would sometimes be nice to be able 
to separate the Model and the Viewing matrices, instead of having them pre-
combined into one ModelView matrix, as OpenGL does. If you are willing to 
manipulate the contents of those matrices yourself, then using matrix uniform 
variables is a good way to accomplish this.1

If you have defined a struct as a uniform variable, you cannot set the entire 
struct at once; you must use the functions above to set each field individually.

As an example, let’s suppose that you wanted to pass a light location into 
your shaders. The following very short code fragment, to be used in your appli-
cation, stores a Cfloat[3] variable named lightLoc in an application-defined 
uniform vec3 variable whose name is “uLightLocation”. Note the use of the  
glGetUniformLocation function to find the location of the uniform variable 
and of the glProgramUniform3fv function to set that uniform variable, as well 
as the check to ensure that the variable was actually found.

//  in the shader:

 uniform vec3 uLightLocation;

//  in the C / C++ application (after linking 
//  the shader program):

 float lightLoc[3] = { 0., 100., 0. };

 GLint location = glGetUniformLocation( program, 
                   “uLightLocation” );
 if( location < 0 )
  fprintf(stderr, “Uniform variable ‘uLightLocation’ not  
       found\n”);
 else
  glProgramUniform3fv( program, location, 3, lightLoc );

1. Appendix B shows a C++ class that allows you to easily manipulate your own matrices.

Notice that none of the glUniform* 
routines take a program handle as 
one of its arguments.  Those routines 
set uniform variables in the currently 
active shader program.  So, be sure 
that you call glUseProgram( ) on 
the correct program before setting 
that program’s variables.
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Uniform Variables in Compatibility Mode

In compatibility mode, GLSL defines a number of built-in uniform variables 
that give you access to OpenGL state information, as we described in Chapter 5. 
There are a number of built-in uniform variables, including the ModelView, 
Projection, and Normal matrices, and all texture, light, and materials data. 
Your applications set these values through standard OpenGL functions and 
can use the associated uniform variables in your shaders.

In the discussion of the GLSL language, you saw a list of built-in uni-
form variables. Their names begin with gl_ and they give you access to all the 
OpenGL state values or values derived from these states. When a program 
object is made current, the built-in uniform variables that track the OpenGL 
state are initialized to the current value of those states, and any later OpenGL 
calls that modify state values update the built-in uniform variable that tracks 
those states. The most commonly used of these are shown in Table 14.1.

Standard OpenGL Function Built-in Uniform Variable
transformations mat4 gl_ModelViewMatrix

mat4 gl_ModelViewProjectionMatrix

mat4 gl_ProjectionMatrix

mat3 gl_NormalMatrix

materials struct gl_MaterialParameters {

   vec4  emission;

   vec4  ambient;

   vec4  diffuse;

   vec4  specular;

   float shininess;

} gl_Frontmaterial; gl_BackMaterial;

lights struct gl_LightSourceParameters {

   vec4  ambient;

   vec4  diffuse;

   vec4  specular;

   vec4  position;

   vec4  halfVector;

   vec3  spotDirection;

   float spotExponent;

   float spotCutoff;

   float spotCosCutoff;

} gl_LightSource[gl_MaxLights];

textures gl_TextureMatrix[i]
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fog struct gl_FogParameters {

   vec4  color;

   float density;

   float start;

   float end;

   float scale;

} gl_Fog

Table 14.1. Uniform variables defined by compatibility-mode OpenGL functions.

Defining Attribute Variables in Your Application

Attribute variables are a way to provide per-vertex data to a vertex shader. 
These are only available to a vertex shader. If any vertex-specific attribute data 
needs to be used by a shader, the vertex shader must first convert it to an out 
variable so the later shader can take it as an in variable. Here we describe the 
general approach to defining variables that describe properties of an individ-
ual vertex in your model.

Besides the usual attribute data such as the coordinates, normal, color, 
or texture coordinates of a vertex, you may also need to define other data to 
associate with a vertex. OpenGL lets applications define custom attributes to 
pass to a vertex shader. Each vertex attribute has an indexed location and can 
contain up to four values.

As with uniform variables, you need to determine the location of an attri-
bute variable before you can set it:

GLint glGetAttribLocataion( program, GLchar * attribName );

where attribName is a character string of the name of the variable.
An application can specify a per-vertex attribute value using one of the 

functions

void glVertexAttrib{i}{t}{v}(GLuint location, TYPE val) 

The value of i can be 1, 2, 3, or 4, depending on the dimension of the 
data to be given to that attribute. The value of t specifies the data type for the 
data to be given to the attribute; this can be b (byte), s (short), i (int), f (float), 
d (double), ub (unsigned byte), us (unsigned short), or ui (unsigned int). The 
suffix v means that the data is in vector form rather than as a list of scalars. 
These are consistent with the format of the glVertex* functions.

The parameter location is the particular symbol table location of the 
attribute variable you are setting, and the parameter or parameters val are 
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the value(s) to be written to the attri-
bute variable at that index. All the 
glVertexAttrib functions are expected 
to be used between glBegin and glEnd, 
just as the built-in attribute setting func-
tions are. 

The type of the data val is expected 
to match the type specified in the func-
tion name. However, since the vertex 
attributes are always stored in an array of 
type vec4, any byte, short, int, unsigned 
byte, unsigned short, or unsigned int 
will be converted into a standard GLfloat 
before it is actually stored.

In the short application code fragment below, we want to assign a vec2 
attribute to each vertex of the triangle being drawn. The values to be assigned 
to that attribute for the three vertices are u0 and v0, u1 and v1, and u2 and v2.  
The role of the glVertexAttrib2f( ) function is to set these values for the 
attribute.

// in the vertex shader:
in vec2 aUV;  // a per-vertex attribute

// in the C / C++ global variables:

GLint UVloc;

// in the C / C++ graphics setup code (after linking the shader 
// program):

UVloc = glGetAttribLocation( program, “aUV” );

if( UVloc < 0 )
 fprintf( stderr, “Cannot find Attribute variable ‘aUV\n” );

// in the C / C++ display callback

if( UVloc > 0 )
{
 glBegin( GL_TRIANGLES );
  glVertexAttrib2f(  UVloc, u0, v0 );
  glVertex3f( x0, y0, z0 );
  glVertexAttrib2f(  UVloc, u1, v1 );
  glVertex3f( x1, y1, z1 );

Notice that the glVertexAttrib 
routine does not take a program 
handle as one of its arguments.  This 
routine sets attribute variables in the 
currently active shader program.  So, be 
sure that you call glUseProgram( ) on 
the correct program before setting that 
program’s variables. (Presumably you 
would already have done  this because 
to use glVertexAttrib( ) functions, 
you would be drawing something.)
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  glVertexAttrib2f(  UVloc, u2, v2 );
  glVertex3f( x2, y2, z2 );
 glEnd( );
}

A visualization per-vertex attribute example could display pressure data 
on a surface. The usual way this would be presented with the fixed-function 
OpenGL would be to use the pressure to define the color at each vertex in the 
surface, and then—assuming a continuous pressure function on the surface—
to send the surface’s graphics primitives into the rendering stages, to be drawn 
with smooth shading. However, we could also define pressure to be an attri-
bute variable with each vertex, and use that directly for drawing the surface, 
giving us more options on using color to present the pressure data.

The steps in doing this are as follows:

• Define the attribute variable in the application and set the variable to its 
appropriate value for each vertex as you define the vertex geometry.

• Pick up the value of the attribute variable in the vertex shader and write 
it to a varying variable so it can be interpolated smoothly across each 
graphics primitive.

• Use the varying variable’s value to determine the color to be used in fill-
ing pixels.

This would let us add pressure contour lines, or would let us color differ-
ent pressure regimes in distinct colors, or create other displays as needed. This 
idea will be explored more fully in Chapter 15.

Attribute Variables in Compatibility Mode

If you are working in compatibility mode, you may have a number of built-in 
attribute variables for a vertex shader to use directly or to pass along to other 
shaders. Each of the standard OpenGL functions that define a vertex (those 
you can call within a glBegin–glEnd pair) defines a built-in attribute variable 
that can be used by a vertex shader.  These include

attribute vec4 gl_Color;
attribute vec3 gl_Normal;
attribute vec4 gl_Vertex;
attribute vec4 gl_MultiTexCoord0;

These variables correspond to the standard OpenGL vertex functions, as 
shown in Table 14.2.
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Standard OpenGL Function Built-in Attribute Variable
glVertex(...) gl_Vertex

glColor(...) gl_Color

glNormal(...) gl_Normal

glSecondaryColor(...) gl_SecondaryColor

glMultiTexCoord(i, ...) gl_MultiTexCoordi, i=1..N

glFogCoordf(...) gl_FogCoord

Table 14.2. Attribute variables defined by compatibility-mode OpenGL vertex functions.

A C++ Class to Handle Shader Program Creation

Appendix A shows a C++ class that is handy for shader creation and use. As a 
preview, here is how such an application would look:

#include “glslprogram.h”

float   Ad, Bd, NoiseAmp, NoiseFreq, Tol;
GLSLProgram * Ovals;

During setup:

Ovals = new GLSLProgram( );
Ovals->SetVerbose( true );
Ovals->SetGstap( true );
bool good = Ovals->Create( “ovalnoise.vert”, “ovalnoise.frag” );
if( ! good  )
{
 fprintf( stderr, “GLSL Program Ovals wasn’t created.\n” );
 <<handle the fact that the shaders did not compile or link>>
}

In the display callback:

Ovals->Use( );
// we assume the user has interactively changed the uniform 
// vars:
Ovals->SetUniform( “uAd”, Ad );
Ovals->SetUniform( “uBd”, Bd );
Ovals->SetUniform( “uNoiseAmp”,  NoiseAmp );
Ovals->SetUniform( “uNoiseFreq”, NoiseFreq );
Ovals->SetUniform( “uTol”, Tol );
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// draw something:
glColor3f( 0., 1., 0. );
glutSolidTeapot( 1. );

// go back to the fixed-function pipeline:
Ovals->UseFixedFunction( );
. . .

// draw some items with the fixed-function pipeline:
. . .

Notes

• This example does not use a geometry shader but it could, just by listing 
the name of the .geom file.  The Create( ) method accepts any number 
of shader file names, up to five.

• The handles for the individual shaders are hidden in the class. You really 
don’t need to know them yourself.

• The handle for the overall shader program is hidden in the class. You 
really don’t need to know it yourself.

• The uniform variable locations are also hidden in the class. They are 
determined once, and then looked up whenever they are needed.

• All compiler and linker error messages are sent to standard error. The 
application can determine if something failed, because the return from 
the GLSLProgram constructor is NULL.

The structure of this class can be found in the appendix, and the class code can 
be found in the online materials for the book.

Exercises

1. Take a project you wrote for fixed-function OpenGL and rewrite it with 
shader programs replacing the fixed-function vertex and fragment pro-
cessing. Choose a straightforward program, not one that uses sophisti-
cated graphics, because the goal of this exercise is simply to get shader 
programs working for you. Add something in the shaders that is not 
available in the original program, though.

2. We gave a general example of creating a user-defined attribute variable 
that holds the value of the pressure (a one-dimensional value) at each 



373Exercises

point on a surface, so that a shader could color the surface in ways that 
communicate that pressure. Implement another visualization of the pres-
sure besides the one(s) that we described in the text.

3. While OpenGL is a fully general graphics API that can be used by almost 
everyone who needs graphics, you can write shaders that only use the 
capabilities that you need. For example, the texture mapping functions in 
fixed-function OpenGL can work with a very large number of input for-
mats for texture maps. Review the standard OpenGL texture map func-
tions and list all the possible options for texture map inputs, and identify 
the set of operations that you would yourself expect to use.
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Using Shaders for  
Scientific Visualization15

So far, we have been cutting through the shader world in one direction—exam-
ining different capabilities of GLSL. In this chapter, we try cutting in another 
direction for a while—looking at an application focus. We will describe several 
ways in which shader programming can enhance the display of data. Clearly, 
there are many more ways to do this than just the few we illustrate, but the 
point is to show how different aspects of shader programming can be brought 
to bear on a single problem grouping.

There is much more to scientific visualization than we could begin to 
cover in this chapter, of course. Our approach will be to consider how some 
shader techniques from the previous chapters can be used for visualization. 
These will include image manipulation, geometry modification with vertex 
shaders, applications of textures, using fragment shaders to implement trans-
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fer functions and to carry out flow visualization, and using geometry shader 
techniques. This includes the whole range of shader techniques in the book, 
showing just how deeply shader programming has affected computer graph-
ics applications.

Image-Based Visualization Techniques

The first few visualization techniques we describe are image based. They have 
already been covered in Chapter 10 on image manipulation, but it is useful to 
repeat them again here as we look at how they impact the understanding of 
data.

Image Negative

The first method displays the negative of an image. This is the most simple of 
the image shaders, but its use in visualization is surprisingly useful. Figure 15.1 
shows a visualization image (a volume rendering, actually) of a mouse verte-
bra. The left-hand image in the figure is the original, and the right-hand one is 
the negative. Notice how the negative brings out subtle details that were not 
obvious in the original, especially the “pock marks” on the wall of the bone. 
Many visualization programs have a “display negative” button in their user 
interface for just this reason.

Figure 15.1. The original (left) and negative (right) of an image, showing how the negative 
often brings out new features.
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Image Edge Detection

Another useful image shader in data visualization is the edge 
detection Sobel filter. As seen in Figure 15.2, the Sobel filter 
emphasizes the parts of the image where shading is changing 
quickly, usually the sharp edges. In this figure, the edges have 
been colored and superimposed on the original image, but it 
is sometimes also useful just to display the edges alone, as we 
did in Chapter 11.

Both the image negative and edge detection examples 
were implemented by looking at a static image, but in fact 
they can also become a post-process to any dynamic 3D ren-
dering. To do this, use the OpenGL render-to-texture capabil-
ity described in Chapter 9 to produce a texture image of the 
3D scene, and then render a quadrilateral with this texture on 
it, using one of the image shaders.

Toon Rendering

Toon rendering, covered in Chapter 11, starts with edge detec-
tion and adds color quantization. It is sometimes an excellent 
way to perform architectural visualization, because it strongly 
brings out a building’s key edges, while retaining the col-
ors but de-emphasizing them. This is shown in Figure 15.3, 
which shows the Smithsonian Castle in Washington, DC both 
without (left) and with (right) toon shading.

Figure 15.2. Edge detection 
emphasizes certain features.

Figure 15.3. Toon rendering for architectural visualization.
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Hyperbolic Geometry

Often when you display highly detailed data, such as a large map, you want 
to be able to zoom into an area of interest. This usually forces much of the rest 
of the display off the screen, as it does in Figure 15.4.

What if you wanted to simply force the rest of the display to the edges of 
the screen, but not off it? One answer is to use hyperbolic geometry, which can 
be implemented very effectively in a vertex shader.

The reason for using hyperbolic geometry is to create a mathematical 
process that moves the parts of the scene farthest from the area of interest, 
asymptotically towards the edges of the display. One straightforward way of 
doing this uses polar coordinates. For a given (x,y) coordinate that has already 
been translated, you convert it into a polar (r,Θ) pair. You leave the angle Θ 
alone and manipulate the radius as follows:

′ =
+

r r
r k

,

where k is a constant. As r increases, the theme of “something divided by 
something a little bigger” makes this fraction asymptotically approach 1. You 
then recombine this new radius with the original Θ to produce a new (x′,y′) 
that will always lie within a unit circle.

What does the constant k do? If k were 0, then all r′ would be 1, that is, 
the entire scene would be forced to the edges. If k were ∞, then all r′ would be 
0, that is, the entire scene would be forced to a dot in the center. So adjusting 

Figure 15.4. Linear zooming in Euclidean space.
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the value of k is a way to control how much of the scene is 
zoomed in upon and how much ends up at the edges. The 
images in Figure 15.5 show how this looks when applied to 
a street map of San Diego, while Figure 15.6 shows a hyper-
bolic rendering of a map of Corvallis, Oregon, that includes 
overlays for streets, buildings, and parks.

When doing shader programming, there is always a 
concern that needing to compute a handful of transcenden-
tal functions per vertex will kill performance. After all, turn-
ing an (x,y) into (r,Θ) involves using a square root and an 
arctan. Producing the final (x′,y′) involves using a sine and 
cosine. Fortunately, the equations simplify out all of these 
transcendantal functions except the square root:
 

r x y= +2 2 ,

′ = ′ =
+
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And, similarly,
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Figure 15.5. Zooming in polar hyperbolic space.

Figure 15.6. Hyperbolic geom-
etry display of Corvallis, Oregon, 
showing streets (orange), build-
ings (yellow), and parks (green).
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The vertex shader code to perform this is quite concise and looks like this:

uniform float  uK;
uniform float  uTransX;
uniform float  uTransY;

void main( )
{
 vec2 pos = ( uModelViewMatrix * aVertex ).xy; 
 pos += vec2( uTransX, uTransY );
 float r = length( pos );
 vec4 pos2 = vec4( pos/(r + uK), 0., 1. );
 gl_Position = uProjectionMatrix * pos2;
}

In this case, a separate set of translations is explicitly being passed in, 
although the translations encapsulated in the ModelView matrix will work 
just fine. Also, it turns out that the scale factor encapsulated in the ModelView 
matrix can be used as another way to zoom in and out. If a uniform scale factor 
s is applied to the scene using glScalef( ), the resulting hyperbolic geometry 
equation would be

′ =
+

=
+

r sr
sr k

r
r k s

.

Thus, what we just thought of as k can actually also be thought of as 1/s.
One other thing to notice is the use of the built-in GLSL length( ) func-

tion. Even though that same line could be written as

float r = sqrt( pos.x*pos.x + pos.y*pos.y );

it is always better to take advantage of built-in functions if they are available. 
At the worst, they will be the same speed as your own version. At best, though, 
they could take advantage of some features you don’t have access to, and could 
be much faster.

If you are not comfortable with this fish-eye type of zoom, you could look 
at a Cartesian hyperbolic zoom, as shown in Figure 15.7. In this case, we do not 
go to polar coordinates, but use hyperbolic transformations for the rectangular 
coordinates, as

′ =
+

′ =
+

x x
x k

y y
y k

2 2

2 2

,

.
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Again, as k goes to zero, the transformations approach the identity, but 
as k increases, the hyperbolic effect increases. This approach makes the vertex 
shader code simpler, because you do not need to go through the polar coordi-
nate conversion. The Cartesian hyperbolic vertex shader is left as an exercise.

3D Scalar Data Visualization

In this section, we are going to consider passing a 3D volume of data values 
into a shader in the form of a 3D texture, so that we can examine the volumet-
ric data. There is a format setup in glman to make this easy for you to do, but 
you need to write your data in this file format yourself. To make this easier, 
below we give you an example of a short C++ program that writes a 32 × 32 × 32 
texture file. This format is actually made to hold a floating-point 4D texture, as 
you can see in the actual file write statements, but here we are just using one 
of the four components, and leaving the other three empty. Instead of storing 
red, green, blue, and alpha (for example), we are just using the red component 
to hold a single value.

#include <stdio.h>
#include <math.h>
float ScalarValue( float, float, float );

const int NUMS = 32;
const int NUMT = 32;
const int NUMP = 32;
int
main( int argc, char *argv[ ] )

Figure 15.7. Zooming in Cartesian hyperbolic space.
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{
 FILE *fp = fopen( “vis3dtexture.tex”, “wb” );
 if( fp == NULL )
 {
  fprintf( stderr,  
   “Cannot create the output 3D texture file\n” );
   return 1;
 }

 fwrite( &NUMS, 4, 1, fp );
 fwrite( &NUMT, 4, 1, fp );
 fwrite( &NUMP, 4, 1, fp );

 float zero = 0.;
 for( int p = 0; p < NUMP; p++ )
 {
  float z = -1. + 2. * (float)p / (float)( NUMP-1 );
  for( int t = 0; t < NUMT; t++ )
  {
   float y = -1. + 2. * (float)t / (float)( NUMT-   
         1 );
   for( int s = 0; s < NUMS; s++ )
   {
    float x = -1. + 2. * (float)s / (float)     
      ( NUMS-1 );
    float value = HOWEVER YOU COMPUTE IT,      
     LOOK IT UP, ETC
    fwrite( &value, 4, 1, fp );
    fwrite( &zero, 4, 1, fp );
    fwrite( &zero, 4, 1, fp );
    fwrite( &zero, 4, 1, fp );
   }
  }
 }

 fclose( fp );
 return 0;
}

In the examples below, we will use the texture-file format to hold data 
that is a summation of decaying exponentials, approximating a temperature 
distribution in a room with individual heat sources, and whose walls are a heat 
sink. This data is available in the file vis3dtexture.tex with the resources 
for this book. In practice, up to four data components could be encapsulated 
at the same time, giving you more flexibility in what combinations you can 
visualize.
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Point Clouds

A 3D texture is just data and needs a geometry to map 
itself to. A good start is to map it to a 3D point cloud, a 
uniform mesh of 3D points. When you map the temper-
ature distribution dataset above to a point cloud, you 
get the image in Figure 15.8.

One of the interesting aspects of this approach is 
that the resolution of the point cloud does not have to 
exactly match the resolution of the dataset. Because this 
example uses texture mapping to access the data, the 
OpenGL display process will interpolate the data values 
to the cloud’s point locations. Making the resolution of 
the point cloud less than that of the data is usually a bad 
idea, since some of the data values will be completely 
skipped over in the display. But you can easily give the 
point cloud a higher resolution and get a nicer-looking 
display.

Using a higher point cloud resolution assumes, of course, that interpola-
tion makes sense for the particular data you have. It doesn’t always. For exam-
ple, suppose the data values represent integer-only data, such as the number 
of children per family. Even though a point cloud dot could exist between two 
data values, it makes no sense to combine half of one with half of the other 
to produce a data point that represents a fraction of a child. In this case, the 
resolution of the point cloud should be the same as the resolution of the data.

The GLIB file used to produce the point cloud above is

Texture 5 vis3dtexture.tex
Vertex  pointcloud.vert
Fragment pointcloud.frag
Program  PointCloud     \
     uTexUnit 5     \
     uMin <0. 0. 100>  \
    uMax <0. 100. 100.>

PointCloud 50 50 50

The vertex shader is also very short, since it just sets up the interpolation 
of the texture coordinates and performs the matrix transformation:

out vec3 vMCposition;

Figure 15.8. Uniform point cloud.
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void main( )

{

 vMCposition  = aVertex.xyz;

 gl_Position  = uModelViewProjectionMatrix * aVertex;

}

The fragment shader shown below does all the work. Because the x coor-
dinates go  from −1 to 1, and the required s texture coordinates go from 0 to 1, 
the linear mapping is

 s
x

=
+1
2

.    

The same mapping applies to y and z to create the t and p texture coordinates.  
Once we have the s-t-p texture coordinates, we can look up the data value at 
this location, which is then used to set the color for this fragment.

const float SMIN =   0.;
const float SMAX = 100.;
 
uniform int   uTexUnit;
uniform float uMin, uMax;

in  vec3 vMCposition;

out vec4 fFragColor;

void 
main( )
{
 vec3 stp = ( vMCposition + 1. ) / 2.; // maps [-1.,1.] to   
                  // [0.,1.]
 vec4 rgba = texture( uTexUnit, stp );
 float scalar = rgba.r;

 if( scalar < uMin )
  discard;

 if( scalar > uMax )
  discard;

 float t = ( scalar - SMIN ) / ( SMAX - SMIN );
 vec3 rgb = Rainbow( t );

 fFragColor = vec4( rgb, 1. );
}
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Notice the use of the Rainbow( ) function. This sets 
up the transfer function that defines the mapping between 
each scalar value and its assigned color. Routines like this 
are often written to accept a normalized input, in this case 
the variable called t. The value of t is 0 when the scalar value 
is a minimum and 1 when it is a maximum. In this way, 
the color mapping routine does not need to know anything 
about the nature of the scalar values. We cover transfer func-
tions in more detail later in this chapter.

Also notice the use of the uniform variables uMin and 
uMax in the fragment shader. They are assigned by sliders 
in the glman user interface, and are used to cull the display 
based on data values. In the image in Figure 15.9, the small-
est values in the dataset have been culled.

This isn’t a visualization book, but as we discuss visualization shaders, 
we need to talk about some fundamental visualization concepts. A disadvan-
tage of the uniform point cloud is that it can create severe display artifacts. 
In orthographic projection mode, sometimes the dots line up, creating the 
“row of corn problem.” In perspective projection mode, the alignment creates 
annoying (but often interesting) Moiré patterns. These two kinds of artifact are 
shown in Figure 15.10.

What can you do to avoid these artifacts? A common answer is to use a 
different type of point cloud, known as a jitter cloud. In a jitter cloud, the dots 
are randomly shifted by small amounts in x, y, and z, and the data values 

Figure 15.9. Culling dots based on 
scalar value.

Figure 15.10. Artifacts in uniform point clouds; the “row of corn” problem, left, and Moiré 
patterns (right).
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are reinterpolated to those new points. To support this approach, glman has 
another GLIB file geometry option:

JitterCloud 50 50 50

In glman, a jitter cloud has its points (and thus its texture stp coor-
dinates) perturbed. Results from using a JitterCloud in orthographic and 
perspective are shown in Figure 15.11. These are exactly the same as those in 
Figure 15.10, except for the jittercloud change. Note that the data values at the 
perturbed points are correct because they are looked up in the data texture 
based on their coordinates.

Another useful technique is to use the fragment shader’s knowledge of 
the data values it is seeing to alter the appearance of the dots by changing 

Figure 15.12. Changing a point’s size to emphasize its scalar value.

Figure 15.11. A JitterCloud display in orthographic (left) and perspective (right) pro-
jection.
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their size. This is done by setting the gl_PointSize variable in the fragment 
shader. Setting this value has the same effect as calling the OpenGL function 
glPointSize( ). This allows you to emphasize data points with large data 
values by making them more visible. An example of doing this is shown in 
Figure 15.12.

Cutting Planes

Now that we have created this 3D texture of data values, is there anything else 
we can do with it? Yes! One of the most useful ways to visualize 3D data is 
with cutting planes. When you pass a cutting plane through a 3D dataset, you 
focus on specific planes of interest and leave out other areas that you don’t 
care about right now. Also, a cutting plane display is a lot less cluttered than 
a point cloud.

There are two kinds of cutting planes. In one, you interpolate data values 
(and thus colors) at each pixel, and in the other, you create contour lines at 
a reduced set of pixels. As before, the color interpolation approach requires 
some sort of geometry to hang the data on. In this case, we will use the glman 
QuadXY primitive, which draws a quadrilateral in the X-Y plane from [–1,–1] to 
[1,1], by default at z = 0 (although we will change the z location with a slider). 
The vertex shader reads a z value from a slider uniform variable and sets up 
the model coordinates of the quadrilateral to be interpolated through the ras-
terizer:

uniform float uZ;

out vec3      vMCposition;

void main( )
{
 vMCposition   = aVertex.xyz;
 vMCposition.z = uZ;   // slide the cutting plane in Z
 gl_Position   = uModelViewProjectionMatrix*
         vec4(vMCposition,1.);
}

The fragment shader uses those model coordinates to determine where 
each fragment is in texture coordinate space. This process reuses much of the 
fragment code from the pointcloud shader:

const float SMIN =   0.;
const float SMAX = 100.;
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uniform sampler2D   uTexUnit;
uniform float uMin, uMax;

in vec3  vMCposition;

out vec4 fFragColor;

void main( )
{
 vec3 stp = ( vMCposition + 1. ) / 2.; 
  // maps [-1.,1.] to [0.,1.]

 if( any(    lessThan( stp, vec3(0.,0.,0.) ) ) )
  discard;
 
 if( any( greaterThan( stp, vec3(1.,1.,1.) ) ) )
  discard;

 float scalar = texture( uTexUnit, stp ).r;

 if( scalar < uMin )
  discard;

 if( scalar > uMax )
  discard;

 float t = ( scalar - SMIN ) / ( SMAX - SMIN );
 vec3 rgb = Rainbow( t );

 fFragColor = vec4( rgb, 1. );
}

Using the same 3D dataset as before, this process pro-
duces an image like that shown in Figure 15.13.

Notice the use of the lessThan( ), greaterThan( ), 
and any ( ) functions. This also could have been expressed, 
equally correctly, as
 if( stp.s < 0. || stp.s > 1. )
  discard;

 if( stp.t < 0. || stp.t > 1. )
  discard;

 if( stp.p < 0. || stp.p > 1. )
  discard;

Figure 15.13. Interpolated color 
cutting plane.
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but that code would not have been able to exploit the inherent parallelism of 
the GPU.

Now, let’s change the fragment shader to create contour lines. There are 
geometric ways to create contour lines with real OpenGL line segments, but 
for this example, we will use almost the same fragment shader code as we did 
above. Let’s say we want contour regions at each 10 degrees of temperature. 
Then the main difference in the shader will be that we need to find how close 
each fragment’s interpolated scalar data value is to an even multiple of 10. To 
do this, we say

 float scalar10 = float( 10*int( (scalar+5.)/10. ) );
 if( abs( scalar - scalar10 ) > uTol )
  discard;

Notice that this uses a uniform variable called uTol, which is read from 
a slider and has a range of 1 to 5. uTol is used to determine how close to an 
even multiple of 10 degrees we will accept, and thus how thick we want the 
contours to be. Various values for uTol produce the individual images in Fig- 
ure 15.14.

Take a close look at what this fragment-based approach to contours gets 
you compared with a line-based approach. Notice that the contours have dif-
ferent thicknesses. This is an indication of how much area was within uTol of a 
10-degree value. In addition to what the contour lines usually tell us, this type 
of display also lets us see how fast the data field is changing, i.e., the gradient. 
Thus, we can tell that the data is changing slower at the blue areas than at the 
red areas. This two-pieces-of-information-for-the-price-of-one-display feature 
is always appreciated in visualization.

Figure 15.14. Contour lines using uTol values of 1, 4, and 5.
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Also, notice that when uTol = 5., the uTol if-statement always fails, and 
we end up with the same display as we had with the interpolated colors. Thus, 
we don’t actually need the separate cutting plane shader at all. Shaders that can 
do double duty are always appreciated!

It is also important to notice that the shaders maintain the mapping from 
the coordinates of the cutting planes to the texture coordinates that hold the 
data. This means that the cutting planes do not need to be oriented parallel to 
principal axes, but can be rotated into any orientation. It also means that the 
cutting geometry does not need to be a plane at all. It can be any shape for 
which you can produce the coordinates-to-texture mapping.

Volume Probe

Sometimes a cutting plane is too restrictive, that is, it is thin and flat. What if 
we want to map a colored representation of the scalar data to something that 
is not so thin and flat? What if we want to map it instead to something that is 
3D? A variation on the cutting plane is to pass a 3D object through the scene 
and map data values to it. This called a volume probe. This technique uses a 
simple vertex shader and does most of its work in the fragment shader. The 
vertex shader, shown below, keeps track of the eye coordinates of each vertex.

out vec4 vECposition;

void main( )
{
 vECposition = uModelViewMatrix  * aVertex;
 gl_Position = uModelViewProjectionMatrix * aVertex;
} 

The eye coordinates are then interpolated through the rasterizer, con-
verted to s-t-p texture coordinates by the fragment shader, and finally looked 
up in the data texture. A fragment shader that does this is shown below.

const float SMIN =   0.;
const float SMAX = 120.;

uniform float     uMin, uMax;
uniform sampler3D uTexUnit;

in vec4  vECposition;

out vec4 fFragColor;
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void main( )
{
 vec3 stp = clamp( ( vECposition.xyz + 1. ) / 2.,  0., 1. );

 float scalar = texture( uTexUnit, stp ).r;

 if( scalar < uMin )
  discard;

 if( scalar > uMax )
  discard;

 float t = ( scalar - SMIN ) / ( SMAX - SMIN );
 vec3 rgb = Rainbow( t );

 fFragColor = vec4( rgb, 1. );
}

Of course, some choices of probe geometry make more sense than others. 
Two examples of volume probes are shown in Figure 15.15.

Figure 15.15.  Volume probes through the 3D data-
set: sphere, torus, torus with pixels discarded around 
even multiples of 10, and teapot, as was also shown in 
Figure 15.14.
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Direct Volume Rendering

So far, we have been visualizing 3D volumetric data with reduced geometry—
3D points or 2D planes. What if we want to peer into the entire volume at once? 
This is known as direct volume rendering. There are a number of ways to do this. 
One of the most common is to create many parallel interpolated color cutting 
planes and composite (blend) them back-to-front. This works well as long as 
you keep two things in mind:

1. As the eye moves, the planes need to be reoriented to always be per-
pendicular to the viewing direction, so that you never see the sides of a 
plane.

2. If you want OpenGL to do the compositing for you, you must draw the 
planes scene-back-to-scene-front, relative to the eye position, regardless 
of how the scene is oriented.

Instead of using that technique, we will describe a ray-casting approach, 
because it’s a more interesting use of shaders. Once again, we will use dummy 
quadrilaterals, not because we want to display quadrilaterals, but because we 
want to compute some display colors and need a place to put them. We posi-
tion six quadrilaterals, looking like a cube, all one unit away from the origin, to 
become the faces on which we will display the resulting fragments.

So envision the process this way. The volume data is in a 3D texture, 
which you can think of as being bounded by the six quadrilaterals.1 You are sit-
ting on an arrow at one of the 3D fragments. Your task is to “fly” through the 3D 
volume texture in a straight line, compositing colors as you go. You will paint 
the final composited color onto the fragment at which you started your flight.

Starting at each fragment, we then need to choose a ray-casting direction. 
We will start by choosing it in eye coordinates and will then convert it to tex-
ture coordinates, so that we can “fly” through the 3D texture. If we are using 
an orthographic (parallel) projection, producing this direction is easy. Because 
we are viewing the scene from the front, the direction will be (0, 0, –1) for all 
fragments. If we are using a perspective projection, the tracing direction will 
be a vector from the eye through the fragment being processed. We will use the 
vertex shader to compute this vector for each vertex being processed, and then 
let the rasterizer interpolate those vectors into each fragment.

1. This is only a loose analogy. The quadrilaterals, and thus the fragments, are in the 3D world coor-
dinate system. The volume data scalar values are in texture coordinates. We are going to force the 
data volume inside the quadrilaterals with an equation that relates the quadrilaterals’ [–1.,+1.] world 
space to the texture coordinates’ [0.,1.] space. Even though the quadrilaterals and the 3D volume 
texture are in two different coordinate spaces, it is useful to think of them as being in the same space 
with an equation that connects them.
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After being multiplied by the ModelView matrix, each vertex lives in the 
Eye Coordinate space in which the viewer’s eye position has been transformed 
to (0,0,0). We convert both the eye and the vertex coordinates into texture space 
like this:

vec4 vxyz = uModelViewMatrix*aVertex;  // vertex -> eye coords
vec3 vstp = ( vxyz.xyz + 1. ) / 2.;  // vertex -> tex coords 
vec3 eye  = ( vec3(0.,0.,0.) + 1. ) / 2.;  // eye -> tex coords

So, a vector from the eye through the vertex will be
stpvec = vstp - eye;

Depending on how the volume has been rotated and translated, vstp 
and eye could be well outside the range [0.,1.], even though they are supposed 
to be in texture coordinates. This is OK. We really aren’t going to use their 
values, except to get the vector between them, which we will eventually scale 
to something smaller.

Now comes the tricky part. The vertex shader, shown below, takes its 
scene rotation from the ModelView matrix. It uses this in two ways. It rotates 
the cube quadrilaterals forward. This makes sense—we want the faces of the 
volume to appear to rotate.

But the tricky part is that the vertex shader also rotates the casting 
direction backward. Why is this? When we rotate the volume, we want it to 
appear that the 3D data texture is rotating along with the cube faces. But in 
OpenGL, textures themselves don’t transform; only the texture coordinates 
do. Fortunately, transforming the texture is the inverse of transforming the 
texture coordinates. So, if you want to make it look like the data texture is 
rotating forward, you need to transform its texture coordinates backward. 
Since the casting direction is in texture coordinate space, its coordinates must 
be changed by the inverse of the desired texture transformation. In GLSL, to 
rotate the casting direction backward, we multiply it by the inverse of the 
ModelView matrix, encoded in the mat4 variable, uModelViewMatrixInverse. 
This multiplication is operating on a vector, which has direction and magni-
tude, but no position. So, during that multiplication, we force the w compo-
nent of the casting direction to be zero, so that we don’t pick up any of the 
uModelViewMatrixInverse translations.

The longest possible flight path through the 3D data texture is from cor-
ner to opposite corner, which would be 3  long in texture coordinates, so the 
normalized casting distance is multiplied by 3.  Then vDirSTP is divided by 
uNumSteps, the number of steps that we want to take samples at along the cast-
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ing flight path. So, now vDirSTP is how much s, t, and p will change with each 
casting step in the fragment shader’s flight path.

const float SQRT3 = 1.73205; // longest path through a volume
               // that is 1x1x1 in texture coords

uniform int  uNumSteps;  // # of steps to take through the 
            // volume

out vec3  vSTP0;   // starting location in texture coords
out vec3  vDirSTP;  // tracing step in texture coords

void main( )
{
 vSTP0 = (aVertex.xyz + 1.)/2.; // Convert [-1.,+1.]->[0.,1.]

 // leave the STP alone, rotate the position forward,
 // rotate the Dir backward

 vec3 stpvec;  // the vector to take through the volume
        // in texture coords

 if( <<we’re using orthographic projection >> )
  stpvec = vec3( 0., 0., -1. );  // all point in the 
                // same direction

 if( <<we’re using perspective projection >> )
 { vec4 vxyz = uModelViewMatrix * aVertex;
    // where this vertex is in eye space
  vec3 vstp = ( vxyz.xyz + 1. ) / 2.;
   // where the vertex is in texture coords
  vec3 eye = ( vec3(0.,0.,0.) + 1. ) / 2.;
   // where the eye is in texture coords
  stpvec = vstp - eye;
   // in perspective, the direction is a vector from    
   // the eye to the vertex
 }

 vDirSTP = normalize( (uModelViewMatrixInverse * 
            vec4(stpvec, 0.) );
 vDirSTP *= SQRT3;
 vDirSTP /= float(uNumSteps);

 gl_Position = uModelViewProjectionMatrix * aVertex;
}
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The fragment shader is where 
all the interesting graphics hap-
pens. Its arrow starts “flying” at the 
rotated model coordinate position of 
its fragment and steps through the 
data in the 3D volume, one vDirSTP at a time. If a step takes it outside the 
volume, it ignores that value. At each step, it samples the data from the 3D 
texture. Each of these samples is like a pixel with thickness, and so is called a 
volume element, or voxel. If that scalar value is outside the desired [Min,Max] 
range, the fragment shader doesn’t discard the fragment as we did before, 
but sets the alpha value to 0. to indicate that this voxel makes no contribu-
tion to the final blended color along this flight path. Otherwise, it sets the 
alpha value to some value read from a glman slider variable.2 If this voxel 
does make a contribution to the final blended color, the scalar value from the 
3D volume texture is converted into an RGB color, in this case using a rainbow 
scale color transfer function.

The fragment shader composites data colors, as shown in Figure 15.16.
While the fragment shader will do the compositing front-to-back, it is 

more intuitive to derive the equations by looking at the situation from back-
to-front. For the simple three-voxel example above, let’s see what color will 
ultimately get displayed in this fragment, by breaking each step into its own 
equation. The arrow starts at the back of the volume, in this case voxel #2. It 
uses voxel #2’s alpha value to blend the black background color with voxel 
#2’s own color. It then moves forward and uses voxel #1’s alpha value to blend 
the current color with voxel #1’s own color. It then moves forward and contin-
ues the process:

color12 = α2 * color2 + (1 − α2) * black,

color01 = α1 * color1 + (1 − α1) * color12,

color* = α0 * color0 + (1 − α0) * color01,

We can algebraically combine these equations into one equation, like this:

 color color color
color colo

∗ = ∗ + −( ) ∗{ }
= ∗ + −( ) ∗ ∗
α α
α α α

0 0 0 01

0 0 0 1

1
1 rr color

color color

121 1

0 0 0 1 1 1

1

1 1

+ −( ) ∗[ ]{ }
= ∗ + −( ) ∗ ∗ + −( ) ∗

α

α α α α α22 2 21∗ + −( ) ∗ { }color blackα . 

2. Using one alpha value for all voxels is a concession to keeping this code segment small and read-
able. Normally, you would get the proper alpha as a function of the scalar value to reflect what data 
ranges you are most interested in seeing.

Figure 15.16. Determining the overall blending equation for 
multiple colored voxels.
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Expanding everything gives

color* = α0 * color0 + (1 − α0) α1 * color1 + (1 − α0)(1 − α1) α2  

  * color2 + (1 − α0)(1 − α1) (1 − α2)black.

There’s a pattern here, so let’s look at how this appears when we move 
front-to-back. The fragment shader keeps a running alpha value called α* (astar 
in the code below) and a running RGB color value called color* (cstar). The 
variable α* is the transparency factor that the next voxel’s contribution will be 
multiplied by, and color* is the combined color so far. These get updated with 
every step taken. The final value of color*

 is then displayed at that fragment. 
Why do it front-to-back when back-to-front seems more intuitive? The 

reason is that we can usually obtain significant time savings this way. If α* ever 
becomes 0., this means that the arrow has encountered a completely opaque 
voxel and, thus, no data beyond that point will count toward the final color, 
so the code can safely break out of the loop. This may not sound like much, 
but over the course of thousands of fragments and hundreds of steps at each 
fragment, it can really add up!

const float SMIN =   0.;
const float SMAX = 120.;

uniform float   uMin;
uniform float   uMax;
uniform sampler3D uTexUnit;
uniform float   uTol;
uniform int    uNumSteps;
uniform float   uAmax;

in vec3   vSTP0;   // starting texture location
in vec3   vDirSTP;  // tracing step

out vec4      fFragColor;

void main( )
{
 float astar = 1.;
 vec3  cstar = vec3( 0., 0., 0. );
 vec3  STP   = vSTP0;

 for( int i = 0; i < uNumSteps; i++, STP += vDirSTP )
 {
  // keep looping if we’re out of bounds:

  if( any(    lessThan( STP, vec3(0.,0.,0.) ) ) )
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   continue;
 
  if( any( greaterThan( STP, vec3(1.,1.,1.) ) ) )
   continue;

  float scalar = texture( uTexUnit, STP ).r;

  float alpha = uAmax;

  if( scalar < uMin )
   alpha = 0.;

  if( scalar > uMax )
   alpha = 0.;

  float t = ( scalar - SMIN ) / ( SMAX - SMIN );
  vec3 rgb = Rainbow( t ); // transfer functions like this
             // will be covered in the next 
             // section

  cstar += astar * alpha * rgb;
  astar *= ( 1. - alpha );

  // break out if the rest of the tracing won’t matter:

  if( astar == 0. )
   break;
 }

 fFragColor = vec4( cstar, 1. );
}

Figure 15.17. The data volume shown with all colors present (left) and with the lower val-
ues culled and a reduced alpha (right).
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Figure 15.17 shows the results of this shader. 
In the left-hand image, uMin and uMax are set to 
show all data values. Because you are looking at 
everything, some key parts of the volume might be 
obscured. It would then be very helpful if you cull 
away the values you really have no interest in. In 
the right-hand image, the low (blue) values have 
been culled, giving us a much better view of the 
shape of the middle-to-high values.

This same shader can be modified to pro-
duce isosurfaces as well. An isosurface is the locus 
of points corresponding to a specific scalar value 
in the volume, referred to as S*. All you have to 

do is change the volume rendering fragment shader to consider, in its march 
through the volume, only the first scalar value that is within a certain tolerance 
of S*. An example of this is shown in Figure 15.18. The actual code to do this is 
left as an exercise. (You knew that was coming, right?)

More on Transfer Functions

The mapping of a scalar value to its color was introduced in Chapter 8. This 
mapping was glossed over in the shaders that we discussed earlier in this 
chapter with the call to the Rainbow( ) routine. We should now look closer 

Figure 15.19. Two different transfer functions applied to tsunami data off the coast of the 
Aleutian Peninsula in Alaska. (Image courtesy of Chris Janik.)

Figure 15.18. Isosurface.



399More on Transfer Functions

at this. The mapping of data values to appearance 
(i.e., color and transparency) is known as a color 
mapping, and in the visualization world, the function 
that applies this mapping is more generally called a 
transfer function, color map, or color ramp. The appro-
priate use of transfer functions is a very important 
issue. By using different transfer functions, you can 
create very different mental models of patterns in 
the data.

For example, in the tsunami wave simulation 
display in Figure 15.19, the patterns in the data come 
across quite differently, depending on the color 
mapping.

Often, visualization programs have a user inter-
face for sculpting a transfer function. An example of 
such a sculpted function is shown in Figure 15.20. In 
this figure, the horizontal axis represents the range 
of scalar values. The red, green, and blue lines show 
how those color components change with respect 
to scalar value (in this case implementing a heated 
object scale). The white line is how alpha changes 
with respect to scalar value. The background shows 
a histogram of the data value frequency.3

Figure 15.21 shows how the temperature dis-
tribution point cloud of Figure 15.8 looks with the 
heated object transfer function instead of the rain-
bow scale.

If you do not have a user interface for sculpting a transfer function, you 
can easily write your own transfer function. The sources for functions that 
implement the rainbow transfer function and the heated-object transfer func-
tion are shown here:
3.  Actually, we usually use the logarithm of the frequency, because often some of the data values, espe-

cially the lowest values, occur much more often than all the others. Without the log function, the 
other values would scarcely be visible on the same set of axes. Many visualization programs have a 
similar looking user interface for sculpting a transfer function.

Figure 15.20. Red, green, blue, and alpha 
transfer function with the colors applied to 
a data histogram.

Figure 15.21. Previously seen volume with 
a different transfer function.

Same data + different mapping = different insights.
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vec3
Rainbow( float t )
{
 t = clamp( t, 0., 1. );

// b -> c
 vec3 rgb = vec3( 0., 4. * ( t - (0./4.) ), 1. );

 // c -> g
 if( t >= (1./4.) )
  rgb = vec3( 0., 1., 1. - 4. * ( t - (1./4.) ) );

 // g -> y
 if( t >= (2./4.) )
  rgb = vec3( 4. * ( t - (2./4.) ), 1., 0. );

 // y -> r
 if( t >= (3./4.) )
  rgb = vec3( 1., 1. - 4. * ( t - (3./4.) ), 0. );

 return rgb;
}

vec3
HeatedObject( float t )
{
 t = clamp( t, 0., 1. );

 vec3 rgb = vec3( 3. * ( t - (0./6.) ), 0., 0. );

 if( t >= (1./3.) )
 {
  rgb.rg = vec2( 1., 3. * ( t - (1./3.) ) );
 }

 if( t >= (2./3.) )
 {
  rgb.gb = vec2( 1., 3. * ( t - (2./3.) ) );
 }

 return rgb;
}

Figure 15.22 shows a gallery of common themes for color transfer func-
tions. Left to right and going down the gallery, these themes and some of their 
common uses are described in Table 15.1.
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Figure 15.22. A gallery of color mappings.

Color Mapping Comments

Grayscale Black on one end and white on the other. It is simple and unambiguous. An 
example use is in x-rays.

Brightness Black on one end and a solid color on the other.
Saturation Gray on one end and a solid color on the other. Sometimes this is used to rep-

resent the validity or confidence of the data. The grayest areas are the areas of 
least confidence.

Two-color Interpolation between multiple colors. This is often used on maps to show 
transitions from, say, desert to vegetation.

Rainbow Mimics the visible portion of the electromagnetic spectrum. This is very com-
mon to anyone who learned the ROYGBIV color mnemonic in grade school.

Two-color with a 
neutral crossing

Common where crossing from one side to the other needs to convey a sense 
of neutrality, such as electrical charge in a molecule.

Heated object The range of colors that you would see if you continuously heated a piece of 
metal. It goes from black to red to yellow to white. Star temperatures work 
this way too.

Contours Involves artificially adding a set of lines into a color scale. This then shows up 
in your data as a set of contour lines.

Table 15.1. Some common color mappings and their common meanings.
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For more examples, see [14], where transfer functions are called color 
ramps and are discussed in some detail.

In the example shown in Figure 15.20, the fragment shader has taken a 
data value from the 3D texture and applied the transfer function before dis-
playing it. But wouldn’t it just be easier to set the colors when the 3D texture 
was first created and then read them directly from the texture? After all, this 
would avoid a lot of per-fragment computation, wouldn’t it?

While this would work, there are two reasons we don’t like to do it this 
way:

1. It forces us to recreate the 3D color texture every time we want to change 
the transfer function.

2. The graphics color interpolation can turn out wrong.

The first reason is pretty obvious. By passing raw data through the graph-
ics pipeline, the fragment shader can instantly start using a new color transfer 
function, depending on the value of an integer uniform variable. The input 3D 
data texture never changes.

But the second reason is more subtle, and has to do with how the graph-
ics system interpolates through the rasterizer. Suppose we want to display a 
heated metal bar that has a temperature of 0° at the left end and a temperature 
of 100º at the right, as shown in Figure 15.23. 

Figure 15.23. A bar with endpoints of different temperatures.

Figure 15.24. The bar above, but with a rainbow scale from left to right.

Figure 15.25. The bar above, but with colors interpolated from the end colors.
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Now suppose we want to use a rainbow scale, so that the left end is 
blue, the right end is red, and the locations in between are colored as in Fig- 
ure 15.24.

But suppose we take the naïve approach and draw the bar as a single 
quadrilateral with blue at the left end and red at the right end, drawing the bar 
using OpenGL smooth shading. Figure 15.25 shows what we would get. You 
see that you have no control over what lies between the two ends.

Because OpenGL interpolates each color component separately, it has 
no way to get the rainbow scale. In interpolating the left (r,g,b) to the right 
(r,g,b), the red component would go from 0 to 1, the green component would 
always be 0, and the blue component would go from 1 to 0. But if, instead, the 
temperatures at the corners were given as variables to be interpolated, then 
the  interpolated temperatures throughout the quadrilateral could be mapped 
to colors using your transfer function in the fragment shader, exactly as you 
wanted.

Passing in Data Values with Your Geometry

So far we have dealt with data values that are just sort of “there” and have 
created artificial underlying geometry in order to view them. But there are a 
multitude of visualization problems in which data is 
attached to a very specific underlying geometry. How 
do we end up with the right colors being displayed 
on the geometry as easily and as efficiently as pos-
sible? How would we know if the colors chosen for 
Figure 15.26 are right?

The first approach is the non-shader way of 
doing things with fixed-function OpenGL. It amounts 
to doing the color mapping in the CPU part of the 
application and using the rasterizer to interpolate the 
colors. This is probably clearest if we use compatibil-
ity mode to describe the geometry:

 glBegin( GL_QUADS );
  < convert s0 to r0,g0,b0,a0 >
  glColor4f( r0, g0, b0, a0 );
  glVertex3f( x0, y0, z0 );
  . . .
 glEnd( );

Figure 15.26. Example of assigning a sca-
lar value and its corresponding color, per 
vertex. being drawn. (Image courtesy of 
Chris Janik.)
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This approach has worked for a long time with more or less success, 
but for the reasons just discussed, it is not as good as it could be. The next 
approach passes the original value with the vertex, rather than converting it 
to a vertex color. This takes advantage of the GLSL attribute variables, which 
can be attached to vertices and interpolated through the rasterizer:

 glBegin( GL_QUADS );

  glVertexAttrib1f( location, s0 );

  glVertex3f( x0, y0, z0 );

  . . .

 glEnd( );

This ends up giving the fragment program the actual data values, which 
can then be mapped into colors with the transfer function. Because there are 
actually several different attribute-setting glVertexAttrib* routines, several 
data values can be passed in for each vertex.

A variation on this approach is to be a little sneaky. You can also pass the 
scalar data value in with one call to glVertex4f( ):

 glBegin( GL_QUADS );

  glVertex4f( x0, y0, z0, s0 );

  . . .

 glEnd( );

Normally the fourth element of glVertex4f( ) is defined to be the homo-
geneous coordinate, w. In this case, though, we have used the fourth element 
to hold the scalar value at this vertex. However, the graphics pipeline still 
wants that element to be the homogeneous w when the coordinates are multi-
plied by the ModelView and Projection matrices, so the first thing we need to 
do in the vertex shader is to re-assign it to a varying variable and replace the w 
coordinate with something sensible:

out float vScalar;

void main( )

{

 ...

 vScalar     = aVertex.w;

 gl_Position =uModelViewProjectionMatrix*vec4(aVertex.xyz, 1.);

}
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Terrain Bump-Mapping

Terrain mapping is a visualization use of the height-field bump-mapping 
we’ve seen before. Like the ripple bump-map shader we saw before, the idea 
is to create the illusion of lots more geometry detail than we really have.  In 
fact, like the ripple example, the entire geometry is typically a single quad.

The geometry is a square quad, scaled to match the aspect ratio of the real 
terrain area. That part of the .glib file looks like this:

Scale  1.2569  1.  1.
QuadXY  .1  1.

This code shows the vertex shader. It sets up two variables for the frag-
ment shader: the texture coordinates and the model coordinate position. The 
texture coordinates will be used to look up the terrain heights in a texture map. 
The model coordinates will be used for lighting. (We use model coordinates 
for lighting because we assume that, in the case of terrain, the light moves, but 
the geometry doesn’t.)

out vec3   vMCposition;
out vec2  vST;

void main( ) 
{
 vST = aTexCoord0.st;
 vMCposition = aVertex.xyz;
 gl_Position = aModelViewProjectionMatrix * aVertex;
}

This code shows the fragment shader. The heights are sampled from a data 
texture. Like the ripple shader, it generates a normal by taking the cross prod-
uct of two tangent vectors. It uses the normal in a lighting model that applies 
to a color that is selected based on elevation. The results of this shader, with 
two different height exaggerations, are shown in Figure 15.27.

uniform float   uLightX, uLightY, uLightZ; // light pos
uniform float   uExag;    // height exaggeration
uniform sampler2D uHgtUnit;  // where to find heights
uniform float   uLevel1;   // green-to-brown
uniform float   uLevel2;   // brown-to-white
uniform float   uTol;    // soften the transition

in vec3    vMCposition;
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in vec2   vST;

out vec4   fFragColor;

const float DELTA =  0.001;

const vec3 BLUE  =  vec3( 0.1, 0.1, 0.5 );
const vec3 GREEN =  vec3( 0.0, 0.8, 0.0 );
const vec3 BROWN =  vec3( 0.6, 0.3, 0.1 );
const vec3 WHITE =  vec3( 1.0, 1.0, 1.0 );

const float LNGMIN = -579240./2.;
const float LNGMAX =  579240./2.;
const float LATMIN = -419949./2.;
const float LATMAX =  419949./2.;

const float HGTMAX =  2891;

#define FP_TEXTURE // if we are using a floating point texture
   // to contain the elevations, instead of a byte-texture

void main( )
{
 vec2 stp0 = vec2( DELTA,  0. );
 vec2 st0p = vec2( 0.   ,  DELTA );

 float west  =  texture( uHgtUnit, vST-stp0 ).r;
 float east  =  texture( uHgtUnit, vST+stp0 ).r;
 float south =  texture( uHgtUnit, vST-st0p ).r;
 float north =  texture( uHgtUnit, vST+st0p ).r;

#ifndef FP_TEXTURE
 west  *= HGTMAX;
 east  *= HGTMAX;
 south *= HGTMAX;
 north *= HGTMAX;
#endif

 vec3 stangent = vec3( 2.*DELTA*(LNGMAX-LNGMIN), 0., 
        uExag * ( east - west ) );
 vec3 ttangent = vec3( 0., 2.*DELTA*(LATMAX-LATMIN), 
        uExag * ( north - south ) );
 vec3 normal = normalize(  cross( stangent, ttangent )  );
 float LightIntensity  =  
  (dot(normalize(vec3(uLightX,uLightY,uLightZ)- 
            vMCposition),normal));
 if( LightIntensity < 0.1 )
  LightIntensity = 0.1;



407Terrain Bump-Mapping

 float here = texture( uHgtUnit, vST ).r;
#ifndef FP_TEXTURE
 here *= HGTMAX;
#endif
 vec3 color = BLUE;
 if( here > 0. )
 {
  float t = smoothstep( uLevel1-uTol, uLevel1+uTol, here );
  color = mix( GREEN, BROWN, t );
 }
 if( here > uLevel1+uTol )
 {
  float t = smoothstep( uLevel2-uTol, uLevel2+uTol, here );
  color = mix( BROWN, WHITE, t );
 }
 fFragColor = vec4( LightIntensity*color, 1. );
}

We need to talk a little more about the elevation data-texture. Every so 
often, you see a line that looks like this:

#ifndef FP_TEXTURE

In our case, we hid the elevations in an OpenGL floating-point texture. 
This is a handy way to do it, because you can store the elevations exactly as 
their actual decimal values. When you sample that texture, you get correct 
values back out. However, some graphics systems cannot handle float-point 
textures, or handle them slowly. In that case, you would store the eleva-

Figure 15.27.  Terrain map of Oregon, USA. Height exaggeration = 1. (left) and 5. (right)
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tions in an unsigned-byte texture, but in doing so, 
you would first need to quantize the entire range of 
heights into the range 0–255. When GLSL samples 
this type of texture, it returns a range of 0. (corre-
sponding to the unsigned byte 0) to 1. (correspond-
ing to 255). To un-quantize these elevations, they 
must be multiplied by the maximum height. By 
using pre-processor directives, this shader code can 
handle it both ways.

As we discussed before, one of the great things 
about bump-mapping is that it is performed per-
pixel. This means that as you zoom in, you just keep 
sampling the elevation texture finer and finer. In this 
example, we used a 2048 × 1152 texture, so we are 
able to zoom in quite a bit, as shown in Figure 15.28.4 

Flow Visualization

Flow visualization is a common problem in scientific visualization that arises 
when simulating moving fluids or particles. In these cases, it is useful to 
show the paths that are being taken as the fluid or particles move through the  
volume.

2D Line Integral Convolution

Cabral and Leedom were the first to demonstrate the line integral convolution 
(LIC) technique [6] that smears the pixels of an image in the direction of a 2D 
flow field and thus shows the entire flow field at a glance. This algorithm can 
be implemented well in a fragment shader. Typically, this fragment shader 
takes two input image textures, one for the base image and one that has had 
the flow field function encoded in it. Let’s look at this base image texture first.

The base image is going to be smeared in the direction of the flow at each 
pixel. We almost don’t care what this base image is. It is usually white noise, 
but it can also be your favorite personal photo as well. The biggest concern is 
that there are no distinct patterns in it that might be mistaken for flow informa-
tion. This is why white noise is such a good choice.

4. To create this texture, we wrote a software tool that takes a longitude-latitude range from the US 
Geological Survey National Elevation Dataset (USGS-NED) [44] and creates the .tex file.

Figure 15.28. Zooming on the Willamette 
Valley, Oregon, USA.
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The second texture is to encode the flow field. A 2D flow field has a (vx,vy) 
velocity component pair at every point in the field. A good way to capture this 
is with a 2D texture, letting the y component be represented by red and the 
y component by green. With floating point textures, the exact (vx,vy) can be 
stored in each texel’s (r,g).

There is an unfortunate nuance here, though. Many graphics cards do not 
yet accelerate bilinear sampling of floating point textures. However, nearest-
neighbor sampling of data such as a flow field often results in a very “chunky” 
looking display. If you are using such a graphics card, then a better solution is 
to represent the flow velocities in an unsigned byte texture. For example, a 2D 
circular flow field would be represented by a red scale that shows black for a 
negative x component and red for positive, and black for a negative y 
component and green for positive, as shown in Figure 15.29.

When these components are combined, the resulting 2D texture 
field looks like Figure 15.30. For example, the lower-right corner is yel-
low because it has both a positive x and y velocity component. The 
arrows in this figure show the direction that a circular LIC visualiza-
tion would take.

In practice, we don’t actually care what the texture looks like, and 
we rarely look at it except for fun. In fact, it is usually very difficult to 
tell from the image just what the flow field really is. We don’t care. We 
just care about the data that is hiding in it.

Most of the work of LIC is in the fragment shader shown here:

uniform int  uLength;
uniform sampler2D uImageUnit;
uniform sampler2D uFlowUnit;

in vec2  vST;

out vec4 fFragColor;

void main( )
{

Figure 15.29. Example color components for a 2D flow field.

Figure 15.30. Using 
color components to 
encode flow velocities.
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 // starting location:

 vec2 v  = texture( uFlowUnit,vST ).xy;

 vec3 color = vec3( texture( uImageUnit, vST ) );

 vec2 st = vST;
 for( int i = 0; i < uLength; i++ )
 {
  st += v;
  st = clamp( st, 0., 1. );
  color += vec3( texture( uImageUnit, st ) );
 }

 st = vST;
 for( int i = 0; i < uLength; i++ )
 {
  st -= v;
  st = clamp( st, 0., 1. );
  color += vec3( texture( uImageUnit, st ) );
 }

 color /= float(uLength + uLength + 1); // divide by # of 
                   // samples
 fFragColor = vec4( color, 1. );
}

Figure 15.31 shows how this fragment shader works when applied to a 
noise image.

Figure 15.31. The circular LIC applied to a noise image. Left: length = 0 (the original image). 
Right: length = 50.
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3D Line Integral Convolution

The same process can be used in 3D. Here, we have generated a 3D positional 
noise texture and a floating point 3D flow texture in which the x, y, and z flow 
directions have been encapsulated in the r, g, and b components of the texture, 
simply extending the 2D approach above. Again, most of the work is done in 
the fragment shader:

uniform int    uLength;
uniform float   uTol;
uniform float   uScale;
uniform sampler3D uImageUnit;
uniform sampler3D uFlowUnit;

in vec3  vSTP;

out vec4 fFragColor;

void main( )
{
 float Res = float(  textureSize( uFlowUnit, 0 ).s  );

 // flow field direction:

 vec3 v = texture( uFlowUnit, vSTP ).xyz;
 v *= uScale;
 v /= Res;

 // starting location:

 vec3 stp = vSTP;
 vec3 color = texture( uImageUnit, stp ).rgb;

 for( int i = 0; i < uLength; i++ )
 {
  stp += v;
  stp = clamp( stp, 0., 1. );
  vec3 new = texture( uImageUnit, stp ).rgb;
  color += new;
 }

 stp = vSTP;
 for( int i = 0; i < uLength; i++ )
 {
  stp -= v;
  stp = clamp( stp, 0., 1. );
  vec3 new = texture( uImageUnit, stp ).rgb;
  color += new;
 }



412 15.  Using Shaders for  Scientific Visualization

 color /= float(uLength + uLength + 1);
 fFragColor = vec4( color, 1. );
}

The geometry used here was a 3D box, containing only noise, to show the 
flow field on the outside of the volume. Volume rendering techniques could 
(and should) be used to see inside the volume. (This is left as an exercise.) 
Figure 15.32 shows the resulting image for four different convolution lengths.

The flow field equation used here is flow around a corner [24]:

 v x x y z
v x x z z
v x x y z

x

y

z

= − + − +( ) −
= − − +
= + − +( ) − +

3 6 4 1 4
12 4 12 4
3 4 4 1 6

2 2

,
.

44 1y z+( ) .

Figure 15.32. 3D line integral convolution (top left: length = 0, top right: length = 5, bottom 
left: length = 10, bottom right: length = 20).
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Extruding Objects for Streamlines

If you place a weightless ping-pong ball in a 3D flow field and trace where it 
goes, the result will be a 3D streamline. Streamlines are useful in visualization 
because they give an animation “snapshot” of what is happening in the field 
and thus are good for helping viewers discern flowfield patterns. Now imag-
ine that you are driving a small car along the streamline. The car has a direc-
tion in which it is traveling, and it feels like the centrifugal force is pushing 
you to the outside of the curve you are currently traveling through. There are 
mathematical terms for these directions. Let’s name the curve you are driving 
on in the original flow field P(t). The direction you are traveling is called the 
tangent and is denoted by T(t). The direction that points to the center of the 
curve is the normal, denoted by N(t), and a vector perpendicular to both of 
these is the binormal, denoted by B(t). If you have the function P(t) describing 
the curve and the function has first and second derivatives, you can get all 
three of these quantities with the Frenet equations:

T t P t

B t P t P t

N t B t

( ) = ′( )( )
( ) = ′( )× ′′( )( )
( ) =

normalize

normalize

,

,

(( )× ( )T t .

If you have a discrete series of points for the curve instead of a continu-
ous curve, then you can still approximate P(t) by treating the curve as piece-
wise linear or perform some other interpolation through the points. For each 
point on the curve, then, the parameter t is the fraction of the total distance that 
this point is along the combination of linear pieces.

Together, these three vectors constitute a moving coordinate system, or 
frame, along the curve. Knowing these characteristics of this curve, we can take a 
simple object and extrude it along the curve with the following transformation:
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In this matrix, (x,y,z) are the points on the original (unwarped) object and 
Tx, Nx, Bx, etc., are the components of the tangent T, normal N, and binormal 
B that make up the coordinate frame at (X,Y,Z). The point (X,Y,Z) is the point 
in 3-space where we want the point (x,y,z) to be translated to after it has been 
reoriented.
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When you apply this warp operation to a geometric object such as a cylin-
der, you get a representation of the path an object would take in the flow field. 
We call this general warped object a streamtube. We will show the behavior of this 
warp operation on the glman geometric arrow object defined with the command

 Xarrow 200

This defines an arrow with 200 slices from left to right, 
aligned with the x axis, as shown in Figure 15.33. This large num-
ber of slices gives the arrow enough vertices for the vertex shader 
to produce a smooth warp.

In an application, you would normally pass in details about 
the flow field through a texture or other data structure. To simplify 
things here, we will just hard code the vertex shader to twist the 
arrow into a spiral. The properties of the spiral are defined by the 
glman uniform slider variables uN and uK that control the number 
of twists in the warped arrow and the total x-length of the warped 
arrow, respectively. Here is the vertex shader code to do this:

const float R         = 2.;
const float PI        = 3.14159265;
const float TWOPI     = 2.*PI;
const float HALFWIDTH = 0.10;

uniform float uN;
uniform float uK;
uniform float uPeristaltic;
uniform float uSpeed;
uniform float Timer;

out float vColor;
out float vLightIntensity;

const vec3 LIGHTPOS = vec3( 5., 5., 10. );

void main( )
{
 vColor = aColor;

 vec3 vertex = aVertex.xyz;

 float t = ( vertex.x + 1. ) / 2.;  // change [-1.,1.] 
                 // to [0.,1.]

 float timer = fract( uSpeed*Timer );
 if( timer-HALFWIDTH <= t  &&  t <= timer+HALFWIDTH )

Figure 15.33. The original, 
unwarped arrow object.
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 {
  float mag = 1.+uPeristaltic*(1.+cos(PI*(t-timer)/
                  HALFWIDTH) )/2.;
  vertex.yz *= vec2(mag,mag);
 }

 float x = R*cos( TWOPI*uN*t );
 float y = R*sin( TWOPI*uN*t );
 float z = uK * t;

 float xd = -R*TWOPI*uN*sin( TWOPI*uN*t );
 float yd =  R*TWOPI*uN*cos( TWOPI*uN*t );
 float zd =  uK;

 float xdd = -( TWOPI*TWOPI*uN*uN ) * x;
 float ydd = -( TWOPI*TWOPI*uN*uN ) * y;
 float zdd =  0.;

 vec3 T = normalize( vec3(xd,yd,zd) );
 vec3 B = normalize( cross( vec3(xd,yd,zd), 
              vec3(xdd,ydd,zdd) ) );
 vec3 N = normalize( cross(B,T) );

 vec3 xyz = vec3( 0., vertex.y, vertex.z );

 float xp = dot( vec3(T.x,N.x,B.x), xyz );
 float yp = dot( vec3(T.y,N.y,B.y), xyz );
 float zp = dot( vec3(T.z,N.z,B.z), xyz );

 vec3 newposition = vec3( x+xp, y+yp, z+zp );
 vec3 tpos = vec3( uModelViewMatrix * 
          vec4( newposition, 1. ) );

 float nxp = dot( T, aNormal );
 float nyp = dot( N, aNormal );
 float nzp = dot( B, aNormal );
 vec3 newnormal = vec3(nxp,nyp,nzp);
 vec3 tnorm = normalize( uNormalMatrix * newnormal );

 vLightIntensity  = dot( normalize(LIGHTPOS - tpos), tnorm );
 vLightIntensity  = abs( vLightIntensity );

 gl_Position = uModelViewProjectionMatrix *
          vec4(newposition, 1.);
}

This vertex shader and a very standard fragment shader give you the warped 
arrow object shown in Figure 15.34.
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You may have noticed the uniform variable called uPeristaltic. This 
glman uniform slider variable lets us create a dynamic visualization trick that’s 
much easier to achieve with shaders. This shader uses the glman built-in Timer 
variable to cause part of the arrow to bulge, and the bulge travels with time. 
This is another example of two-pieces-of-information-for-the-price-of-one 
display. The full arrow shows the entire streamtube, and the moving bulge 
shows relative velocity, as shown in Figure 15.35. This is definitely one exam-
ple worth running! It has a pig-in-the-python look to it, and is either one of 
the most interesting shader applications you will ever see, or one of the most 
disgusting.

Geometry Visualization

The GLSL geometry shader makes some additional techniques available for 
visualization applications. Here we discuss only two, but as the geometry 
shader capability becomes more widely available, we recognize that many 
more will be developed.

Silhouettes

Techniques for creating silhouettes were discussed earlier in Chapter 12. They 
are included again here because silhouettes are a valuable technique for visual-
izing 3D geometry. Figure 15.36 shows a carbon-50 molecule without and with 
silhouettes. Notice how the silhouettes make the outside edges of individual 
atoms a lot crisper and serve to help define the overall shape of the object.

Figure 15.34. The warped arrow. Figure 15.35. The warped arrow 
with the peristaltic bulge.
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Hedgehog Plots

The hedgehog plot is a visualization technique that uses a series of spikes per-
pendicular to a surface to give a sense of the shape of that surface. In computer 
graphics, we often use flat surfaces with different normals at the vertices, com-
bined with smooth shading, to give the appearance of smooth surfaces. Using 
a geometry shader, we can also use the same input to create these spikes and 
produce a hedgehog plot of the surface.

The basic idea is shown in Figure 15.37. A triangle with separate normals 
at its vertices is passed to a geometry shader. The geometry shader then subdi-
vides the triangle and interpolates the normals for each vertex in the new tri-
angles, and also creates the line segments for the spikes. This is progressively 
shown from left to right as additional subdivisions are created.

Figure 15.37. The original triangle with vertex normals (left) and with additional normals as the triangle is 
subdivided.

Figure 15.36. A carbon-50 (buckyball) molecule without (left) and with (right) silhouettes.
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The hedgehog plot geometry shader is shown below. It takes triangles 
as inputs and outputs line strips. As these are single line spikes, it would be 
more efficient to output line segments, but these are not allowed as the output 
from a geometry shader. For fun, a uDroop variable has been added so that this 
shader can also do simple hair.

#version 330
#extension GL_EXT_geometry_shader4: enable

layout( triangles )  in;
layout( line_strip, max_vertices=1024 )  out;

uniform int   uDetail;
uniform float uDroop;
uniform int   uLength;
uniform float uStep;

in vec3  vNormal[3];
in vec4  vColor[3];

out vec4 gColor;

vec3 Norm[3];
vec3 N0, N01, N02;
vec4 V0, V01, V02;

void
ProduceVertices( float s, float t )
{
 vec4 v = V0 + s*V01 + t*V02;
 vec3 n = normalize( N0 + s*N01 + t*N02 );

 for( int i = 0; i <= Length; i++ )
 {
  gl_Position = uProjectionMatrix * v;
  gColor = vColor[0];
  EmitVertex( );
  v.xyz += Step * n;
  v.y   -= uDroop * float(i*i);
 }
 EndPrimitive( );
}

void main( )
{
 V0  =   gl_PositionIn[0];
 V01 = ( gl_PositionIn[1] - gl_PositionIn[0] );
 V02 = ( gl_PositionIn[2] - gl_PositionIn[0] );
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 Norm[0] = vNormal[0];
 Norm[1] = vNormal[1];
 Norm[2] = vNormal[2];

 if( dot( Norm[0], Norm[1] ) < 0. )
  Norm[1] = -Norm[1];

 if( dot( Norm[0], Norm[2] ) < 0. )
  Norm[2] = -Norm[2];

 N0  = normalize( Norm[0] );
 N01 = normalize( Norm[1] - Norm[0] );
 N02 = normalize( Norm[2] - Norm[0] );

 int numLayers = 1 << uDetail;

 float dt = 1. / float( numLayers );
 float t = 1.;

 for( int it = 0; it <= numLayers; it++ )
 {
  float smax = 1. - t;

  int nums = it + 1;
  float ds = smax / float( nums - 1 );

  float s = 0.;
  for( int is = 0; is < nums; is++ )
  {
   ProduceVertices( s, t );
   s += ds;
  }

  t -= dt;
 }
}

In Figure 15.38 we see the hedgehog shader applied to the cow dataset, 
which has normals at each vertex. You can see that indeed, when the spikes 
are short, they do give insight into the shape variations (for example, look at 
the cow’s nose). Note also that each vertex has multiple spikes, corresponding 
to different triangles in the modeling. However, you can also see that when 
the normals are too long, the image turns from something insightful into a 
frightening Chia Pet.
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Exercises

1. You have been given the Rainbow( ) and HeatedObject( ) color mapping 
routines. Now write: GrayScale( ), BlackGreen( ), GrayGreen( ), 
GreenBrown( ), BlueWhiteRed( ), and RainbowWithContours( ).

2. Sometimes it is useful to not show the scalar value as a continuous range 
but as a series of stepped values. This is called quantizing. Redo the vol-
ume tracing, but with quantized scalar values. The results should look 
something like the right-hand image in Figure 15.39.

3. Add a tolerance, uTol, to the volumetrace shader, as shown in Fig- 
ure 13.40.

4. Add lighting to the volumetracing shader, as shown in Figure 15.41. 
Hint: to do this, you need to have surface normals, but a volume has 
no surface, so it shouldn’t have normals. Fortunately, volume data has 
pseudo-normals, which can be used like real surface normals. You com-
pute a pseudo-normal at a particular location by taking the gradient  
there,
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 that is, by sampling scalar values around the point where you are now.

Figure 15.38. A cow’s head showing detailed surface normals (left) compared with the “Chia Pet” cow (right).
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Figure 15.39. Volume rendering with quantized scalar values.

Figure 15.40. Volume rendering with tolerances on the scalar values.

Figure 15.41. Volume rendering with lighting.
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5.  Set the tolerance in the lighted volume shader, as shown in Figure 15.42.
6. Redo the 3D line integral convolution example with a solenoid flow vol-

ume:
v yz x y

v xz x z

v xy x y

x

y

z

= +( )
= +( )
= +( )

2 2

2 2

2 2

,

,

.

 This is shown in Figure 15.43.

Figure 15.42. Volume rendering with lighting and tolerances.

Figure 15.43. 3D line integral convolution. 
(Image courtesy of Vasu Lakshmanan.)

Figure 15.44. A decimated line integral convo-
lution. (Image courtesy of Vasu Lakshmanan.)
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7. Redo the 3D line integral convolution example to perform volume ren-
dering instead of just showing the outside of the volume.

8. Volume-rendered 3D line integral convolutions are very cluttered. Find 
ways to selectively decimate the volume so that the entire volume is not 
filled, as shown in Figures 15.43 and 15.44.

9. Adapt the direct volume rendering shader to render isosurfaces as shown 
in Figure 15.18, repeated above. Let the user give the S* value on a slider. 
Use lighting as discussed in Exercise 4 above.
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Serious Fun16

One of the great things about computer graphics is that it gives you the ability 
to create exciting images by simulating a number of special effects. It’s a way 
to have fun and still convince people that you are doing serious work, which is 
why we have entitled this chapter “Serious Fun.” We think you will find these 
effects to be both interesting and informative.

This chapter is something of a potpourri—or perhaps a bag of magic 
effects. The first area we will explore is light interference, through both a dif-
fraction grating and an oil slick. The interaction of light with different parts of a 
surface creates some exciting surface effects that we explore with shaders. The 
next area is lenses that bend light as it passes through them, and we explore the 
way a lens affects our view of space by looking at lenses within a cube map. 
The third area is atmospheric effects and how they capture and distribute light 
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within a scene, and we consider the familiar rainbow and the common, but 
perhaps less familiar, glory effect by simulating them with shaders and putting 
them in the context of scenes. We go on to note the various ways you can cre-
ate an interesting path from zero to one and how we can manipulate motion 
with these techniques. Fog is next on the list, and we show how we can make 
fog more interesting by applying noise techniques to vary the fog’s density. 
We then look at morphing (some might say “abusing”) 3D geometry. A short 
excursion into a different kind of exploration gives us algorithmic art, where 
we operate on either pixels or texels to create some new kinds of 2D images. 
We then consider the concept of information in an image and explore a way 
we can provide information with pure motion. We close with a bang, with an 
explosion shader that the geometry shader makes possible. This gives you an 
indication of just how many things you can do with shaders, and we would 
love to hear from you, via the book’s website, about your own creations.

Light Interference

The general concept of light interference is that two light waves can interfere 
with each other, reinforcing each other at times or canceling each other at 

Figure 16.1. How a CD or DVD acts as a diffraction grating.
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times. This effect can vary across a surface, changing the colors we see at dif-
ferent points. There are many ways this can happen, but we will look at two: 
diffraction gratings, such as the grooves on a CD or DVD, and oil slicks.

Diffraction Gratings

A diffraction grating is a surface containing a set of parallel lines that are very 
close together, as illustrated in Figure 16.1. One common example of this is the 
surface of a CD or DVD, in which case the “parallel lines” are concentric rings. 
On a CD, the distance d between adjacent tracks is 1600 nm, while on a DVD, 
d is 740 nm.

In this figure, we see that light arrives at a surface containing a diffrac-
tion grating with distance d between the grooves. The light arrives with an 
incident angle Φi with respect to the plane of the surface. It bounces in all 
directions, and some of it reflects toward the eye with a reflective angle Φr. 
Because the distance d between the grooves is very small with respect to 
the light and viewing distances, we will treat multiple rays as if they were  
parallel.

On the way to the surface, the light along path B travels d * cos(Φi) farther 
than the light along path A, while on the way from the surface to the eye, the 
light along path A travels d * cos(Φr) farther than along path B. The absolute 
difference between the lengths of the paths is

∆ Φ Φ= ∗ −( )d i rcos cos .

If the difference ∆ is a multiple of the light’s wavelength λ, mλ, then the 
waves of the two paths are in phase and that wavelength is reinforced. So the 
wavelengths λ* that we see in this type of situation are all defined by 

λ∗ =
∗ −( )d

m
i rcos cos

.
Φ Φ

 We know the values of Φi , Φr , and d. We just need to see what, if 
any, integer values of m would give us wavelengths in the visible spectrum. 
The following code shows the vertex shader. The eye coordinate position 
is retained, as well as the transformed tangent vector. Because the grooves 
are circular, the tangent vector to the grooves at a point (x, y) on the cir-
cle is (–y, x). This is computed by the vertex shader to use in the fragment  
shader.

out vec3 vECposition;
out vec3 vTransfTangent;
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void
main( )
{
 vECposition    = ( uModelViewMatrix * aVertex ).xyz;
 vTransfTangent = uNormalMatrix * vec3( -aVertex.y, 
                   aVertex.x, 0. );
 vTransfTangent = normalize( vTransfTangent ) ;
 gl_Position    = uModelViewProjectionMatrix * aVertex;
}

The fragment shader for the CD/DVD simulation is shown here:

uniform float uLightX, uLightY, uLightZ; // from a slider
uniform float uD;            // from a slider

in vec3 vECposition;
in vec3 vTransfTangent;

out vec4 fFragColor;

const float LAMBDAMIN = 400.;           // blue
const float LAMBDAMAX = 600.;           // red
const vec4  GRAY = vec4( .2, .2, .2, 1. );

int
AssignRGB( in float lambda, out vec3 color )
{
 if( lambda < LAMBDAMIN  ||  lambda > LAMBDAMAX )
  return 0;

 float t = ( lambda - LAMBDAMIN ) / ( LAMBDAMAX - LAMBDAMIN );
 color = Rainbow( t );
 return 1;
}

void main( )
{
 vec3 ToLight = normalize(vec3(uLightX,uLightY,uLightZ)
         -vECposition);
 vec3 ToEye   = normalize(vec3(0.,0.,0.)        
         -vECposition);

 float sum   = dot(ToLight,vTransfTangent)
         +dot(ToEye,vTransfTangent);
 float delta = uD * abs( sum );

 int mmin = int( floor( delta / LAMBDAMAX ) );
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 int mmax = int( ceil(  delta / LAMBDAMIN ) );

 fFragColor = GRAY;
 if( mmin > 0 )
 {
   vec3 color = vec3( 0., 0., 0. );
  int count = 0;
   for( int m = mmin; m <= mmax; m++ )
  {
   float lambda = delta / float(m);
   vec3 col;
   int status = AssignRGB( lambda, col );
   if( status > 0 )
     {
    color += col;
    count++;
   }
  }

  if( count > 0 )
   fFragColor = vec4( color / float(count), 1. );
 }
}

Two vectors are created in this 
fragment shader. One vector goes from 
the fragment toward the light position 
(which is specified externally on sliders 
when this is used with glman), and one 
goes toward the eye position (which 
is at (0., 0., 0.)). Each of these is dotted 
with vTransfTangent, the tangent vec-
tor to the groove, which is parallel to the 
grooves at this fragment and acts like the 
“light channel” there.

These dot products tell us how 
much of each of these vectors lies in the 
direction of the transformed tangent. 
Because of the direction of these three vectors, one of the dot products will be 
positive and one will be negative. Because our equation calls for a subtraction 
and an absolute value,

∆ Φ Φ= ∗ −( )d i rcos cos ,

Since the dot product distributes 
over vector addition, the first line of 
code could have been simplified as

float sum = dot(

ToLight+ToEye,

TransfTangent );

We didn’t do that here, because this 
construct looks confusingly like 
the “halfway vector” often used in 
the specular lighting equation. It’s 
not. Remember this distinction, so 
you are not tempted to add them 
together and normalize the result.
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we can simply add the two dot products together.

float sum = dot(ToLight, TransfTangent) + dot(ToEye,    

      TransfTangent);

float delta = D * abs( sum );

From this, Δ is computed and the wavelength equation is inverted to give 
us the required integer multipliers as a function of wavelength:

m
d i r=
∗ −( )cos cos

.
Φ Φ

λ

When the minimum and maximum wavelengths are substituted into this 
equation, we have the maximum and minimum integer multipliers, mmax and 
mmin respectively, for visible light. The fragment shader loops through these inte-
ger multipliers and computes a color for each one using the Rainbow( ) function 

that we used in the transfer function discussion in Chapter 15. 
That function is a reasonably good approximation of the visible 
portion of the electromagnetic spectrum, and it gives us a color 
distribution that looks like Figure 16.2.

It may be the case that for some points on the surface, 
mmin ≠ mmax. In those cases, we compute the colors for each 
wavelength and average the results. When we put all of this 
together, we get a final effect that looks like Figure 16.3.

This kind of diffraction effect is found in many places in 
nature, such as bird feathers and butterfly wings. Our ability to 
model the effect does not make it any less wonderful in nature!

Figure 16.2. Hue spectral changes.

Figure 16.3. CD diffraction 
shader.
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Oil Slicks

An oil slick is caused by a thin film of oil on top of water. It is 
very common to see these in streets and parking lots, espe-
cially right after a rain when it has not rained in a while. As 
shown in Figure 16.4, the light is partially reflected from 
the top surface of the oil and partially refracted down 
into the oil. At the oil-water interface, the light is reflected 
upward, and the reflected light then passes through the 
oil surface back into the air. The interference between the 
directly reflected and the refracted-then-reflected light 
causes the oil slick’s visual effect.

Here we see a similar computation of the wave-
lengths, but there is an interesting twist because the light 
undergoes a 180° phase change at the oil-water interface. 
The light that comes from the interface has a slightly lon-
ger path, which we will assume is simply 2d longer. The 
refractive index η of the oil means that the light in the oil has wavelength  
λout = λ/η, and the phase change means that the light coming out of the oil is a 
half wavelength out of phase with light that went in. The two light waves will 
then cancel if the added distance is a multiple of the wavelength of the light in 
the oil, 2d = m * λout. The light waves will reinforce each other if the distance is 
a half wavelength off such a multiple, 2d = (m + 0.5) * λout. So the wavelengths 
that we see in an oil slick are all defined by

λ
λ∗ =

+
2

0 5
d

m .
.

We know d and η. We just need to see what, if any, integer values of m 
would give us wavelengths in the visible spectrum. We will assume that the oil 
on top of the water is in the shape of decaying exponential “hump,” perturbed 
with a noise function. The vertex shader, then, records the current position in 
that hump and the location of the center center of the hump.

out vec3 vMCposition;
out vec3 vCenter;

void main( )
{
        vCenter     = vec3( 0., 0., 0. );
        vMCposition = aVertex.xyz;
        gl_Position = uModelViewProjectionMatrix * aVertex;
}

Figure 16.4. Light interacting with a 
thin oil film over water.
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The fragment shader computes the height, applies the noise function to 
the radius of the current point, and uses it to compute the decaying-exponen-
tial hump height, d. It then inverts the equation

λ
λ∗ =

+
2

0 5
d

m .

to become

m d
= −

2 0 5η
λ

.

so that, like the DVD example, a minimum and maximum multiple can be 
computed. Those multiples are looped through, computing a wavelength at 
each, which is then turned into an RGB:

uniform sampler3D Noise3;
uniform float uMaxHeight;  // variables from sliders
uniform float uNoiseMag;
uniform float uA;

in vec3 vMCposition;
in vec3 vCenter;

out vec4 fFragColor;

const float ETA       = 1.4;  // oil index of refraction
const float LAMBDAMIN = 400.; // blue
const float LAMBDAMAX = 600.; // red
const vec4  BLACK     = vec4( 0., 0., 0., 0. );

int
AssignRGB( in float lambda, out vec3 color )
{
 if( lambda < LAMBDAMIN  ||  lambda > LAMBDAMAX )
  return 0;

 float t = ( lambda - LAMBDAMIN ) / ( LAMBDAMAX - LAMBDAMIN );
 color = Rainbow( t );
 return 1;
}

void
main( )
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{
 vec4 nv   = texture( Noise3, vMCposition );
 float rad = distance( vMCposition.xy, vCenter.xy ) +
      uNoiseMag * ( nv.r - 0.5 );

 float d  = uMaxHeight * exp( -uA*rad*rad );
 int mmin = int( floor( 2.*d*ETA/LAMBDAMAX - .5 ) );
 int mmax = int( ceil(  2.*d*ETA/LAMBDAMIN - .5 ) );

 fFragColor = BLACK;
 if( mmin > 0 )
 {
   vec3 color = vec3( 0., 0., 0. );
  int count  = 0;
   for( int m = mmin; m <= mmax; m++ )
  {
   float lambda = 2.*d*ETA / ( float(m) + .5 );
   vec3 col;
   int status = AssignRGB( lambda, col );
   if( status > 0 )
     {
    color += col;
    count++;
   }
  }

  if( count > 0 )
   fFragColor = vec4( color / float(count), 1. );
 }
}

Figure 16.5 shows the effect of this function. As you would 
expect, the appearance of the oil slick can be changed dramati-
cally by changing the values of uA and uNoiseMag, which, of 
course, is part of the fun!

Lens Effects

It can be very interesting to add lenses to a scene and to see how the scene 
looks through a lens. In this section, we will review the way light interacts 
with a single lens (more lenses takes us deeply into optics) and see how that 
can be used to create the effect of a lens in the scene.

Figure 16.5. Results of the 
oil-slick shader.
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For any lens made of a material with a higher refractive index than air, as 
a ray of light from the eye to a point P enters the lens, it is bent toward the line 
of the normal to the lens at that point. As it then leaves the lens, it is bent away 
from the normal to the lens at the point where it leaves. Exactly what happens 
to the light depends on the directions of these normals and, of course, on the 
exact refractive index of the lens material relative to the air.

For a convex lens, normals point away from the centerline of the lens, 
–z in Figure 16.6, and so a light ray from the eye is bent back toward the 
centerline. This has the effect of focusing light from the eye point on the cen-
terline, which generally magnifies the appearance of any object on that. The 

image that is seen can either be seen upright or inverted, 
depending on its distance from the lens, as we will see 
later.

The focal length f of such a lens is given by the lens-
maker’s equation, 

1 1 1 1
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where the values of η are the refractive indices of the lens 
and the environment. The way the light rays and the nor-
mals behave at the points where the rays enter and leave 
the lens is shown in more detail in Figure 16.7.

Figure 16.6. A diagram of a convex lens.

Figure 16.7. Light rays and inter-
sections with a (convex) lens.
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For a concave lens, shown in Figure 16.8, the normals point towards 
the centerline –z, and so rays of light from the eye are directed farther from 
the centerline rather than toward it. This has the effect of making things seen 
through the lens seem smaller.

In the next few figures, we will show how these lens behaviors are trans-
lated into actual  images by GLSL shaders. In Figure 16.9, we see a scene in 
which the object we are looking at is in front of the lens’s convergence point. 
The objects we see through the lens are upright and are magnified.

In contrast to Figure 16.9, we see in Figure 16.10 that if an object lies 
behind the convergence point, it is inverted when viewed through the lens. 
The magnification effect is not as strong here, and you begin to see some fish-
eye magnification lens effect within the area of the lens.

For a concave lens, as shown in Figure 16.11, we see an upright image, 
but the area within the image is seen as smaller than its actual size. We also see 
a fish-eye lens effect in this lens that reduces objects’ size as rays toward the 
edge of the lens are bent more than rays toward its center.

The actual shader code for vertex and fragment shaders is shown below. 
First we include the vertex shader code, because it must compute the refraction 
vector for the lens as well as the familiar gl_Position value. In this example, 
you could let uR1 and uR2 be glman slider variables so you could experiment 
with the effect of lenses with different shapes.

Figure 16.8. A diagram of a concave lens.
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Figure 16.9. Convex lens (R1 > 0, R2 > 0) with the object in front of the convergence point.

Figure 16.10. Convex lens (R1 > 0, R2 > 0) with the object behind the convergence point.

Figure 16.11. Concave lens (R1 < 0, R2 < 0).
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uniform float uR1, uR2;

out vec3 vRefractVector;  
const float ETA = 0.66;   // eta=in/out

void main( )
{
 vec3 P = ( uModelViewMatrix * aVertex ).xyz;
 vec3 Eye = vec3( 0., 0., 0. );   // just to make it clearer
 vec3 FromEyeToPt = normalize( P - Eye  ); // vector from eye 
to pt

 vec3 Center1 = vec3( 0., 0., P.z - uR1 );
 vec3 Normal1 = normalize( sign(uR1) * ( P - Center1 ));

 vec3 v1 = refract(FromEyeToPt, Normal1, ETA);
 v1 = normalize( v1 );

 vec3 Center2 = vec3( 0., 0., P.z + uR2 );
 vec3 Normal2 = normalize( sign(uR2) * ( Center2 - P ));

 vec3 v2 = refract( v1, Normal2, 1./ETA );

 vRefractVector = v2;

 gl_Position = uModelViewProjectionMatrix * aVertex;
}

The fragment shader, by contrast, is much simpler. It simply computes 
the texture from the cube map based on the refraction vector returned by the 
vertex shader and blends that with white to get the effect of the lens not pass-
ing along all the light it receives. This also helps to make the lens visible in the 
scene.

uniform samplerCube uRefractUnit;

in vec3 vRefractVector;

out vec4 fFragColor;

const vec4 WHITE = vec4( 1.,1.,1.,1. );

void main( ) {
 vec4 refractcolor = textureCube( uRefractUnit, 
                vRefractVector );
 fFragColor        = mix( refractcolor, WHITE, .3 );
}
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Bathroom Glass

We can combine noise with bump-mapping and cube map refractions to simu-
late the effect of “bathroom glass”; that is, glass that has a wobbly enough 
surface that you can’t exactly discern the detail of what is on the other side 
of it. To do this, we are going to use a single quad as our input geometry. 
Remember that one of the beauties of bump-mapping is that you can use fairly 
coarse geometry but make it look quite detailed because the computations 
take place per-pixel.

Here is the fragment shader.  Because the input geometry is a single quad 
in the XY-plane, each fragment starts out with a normal vector of (0,0,1). That 
normal vector is going to be perturbed twice, by rotating it around X and then 
around Y. That’s the purpose of the RotateNormal( ) function. The angles to 
rotate about are generated by calling the noise function twice, using the frag-
ment’s model coordinates as an index.

uniform samplerCube uTexUnit;
uniform float    uNoiseAmp;
uniform float    uNoiseFreq;
uniform sampler3D  Noise3;

in vec3  vMCpos;
in vec3  vECpos;

out vec4 fFragColor;

const float ETA   = 1.4; // index of refraction
const vec4  WHITE = vec4( 1.,1.,1.,1. );

vec3
RotateNormal( float angx, float angy, vec3 n )
{
 float cx = cos( angx );
 float sx = sin( angx );
 float cy = cos( angy );
 float sy = sin( angy );

 // rotate about x:
 float yp =  n.y*cx - n.z*sx; // y’
 n.z      =  n.y*sx + n.z*cx; // z’
 n.y      =  yp;

 // rotate about y:
 float xp =  n.x*cy + n.z*sy; // x’
 n.z      = -n.x*sy + n.z*cy; // z’



439Bathroom Glass

 n.x      =  xp;

 return normalize( n );
}

void main( )
{
 vec3 eye     = vec3( 0., 0., 0. );
 vec3 eyeToPt = normalize( vECpos - eye );

 vec4 nvx = texture( Noise3, uNoiseFreq*vMCpos );
 vec4 nvy = texture( Noise3,
     uNoiseFreq*vec3(vMCpos.xy,vMCpos.z+0.5) );

 float angx = nvx.r + nvx.g + nvx.b + nvx.a; //  1. -> 3.
 angx = angx - 2.;     // -1. -> 1.
 angx *= uNoiseAmp;

 float angy = nvy.r + nvy.g + nvy.b + nvy.a; //  1. -> 3.
 angy =       angy - 2.;     // -1. -> 1.
 angy *=      uNoiseAmp;

 vec3 N = vec3( 0., 0., 1. ); // unperturbed normal
 N = RotateNormal( angx, angy, N );
 N = normalize( uNormalMatrix * N );
 // force the normal to point towards us:
 if( N.z < 0. )
  N = -N;

 vec3 reflectVector = reflect( eyeToPt, N );
 vec4 reflectColor  = textureCube( uTexUnit, reflectVector );

 vec3 refractVector = refract( eyeToPt, N, ETA );
 vec4 refractColor  = textureCube( uTexUnit, refractVector );
 refractColor       = mix( refractColor, WHITE, .3 );

 if( all(  equal( refractVector, vec3(0.,0.,0.) )  ))
  refractColor = reflectColor;

 fFragColor = mix( refractColor, reflectColor, uMix );
}

It is possible that the refract( ) function will fail and will tell us that 
it failed by returning the vector (0,0,0). Why could it fail? Like real refraction, 
it is possible that the angles will become such that, instead of refraction, you 
get internal reflection. You can detect this in Snell’s law of refraction by being 
forced to take an arcsin of a value greater than 1. or less than −1. You can see 
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this phenomenon in action if you lie at the bottom of a swimming pool and 
look up. Straight up, you will see the sky. As you look away from the straight-
up vector you will still see the sky, but at some angle (about 50˚) you will start 
to see the bottom of the pool reflected instead. To handle this properly, we 
check for that case and set the color to be what would have been reflected from 
the fragment rather than refracted.  Figure 16.12 shows this in action.

Atmospheric Effects

There are many wonderful effects from sunlight (and even moonlight) in the 
atmosphere. In this section, we consider two effects, both caused by light inter-
acting with water droplets in the atmosphere. The rainbow is probably the most 
familiar and has been important to people for all known history. The glory, 

caused by backscattering from much smaller water droplets 
such as clouds (near 10 µm in diameter), was once known pri-
marily to mountain climbers because it depends on looking 
at a point immediately opposite the direction of light. Now 
it is most often seen when you are flying. Figure 16.13 shows 
the general concept of light being refracted at the surface of 
a water droplet and reflected internally within the droplet, 
including the fact that this varies slightly for different wave-
lengths of light. There are many other amazing atmospheric 
effects, such as halos, sunpillars, and sundogs; for a remark-

Figure 16.12. The unperturbed normal (left), a small value of uNoiseAmp (middle), and a larger value of 
uNoiseAmp (right).

Figure 16.13. General light 
backscattering process, showing 
the different paths for different 
wavelengths of light.
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ably complete and detailed discussion, see [12] or [26]. You should be able to 
adapt the techniques developed here to simulate them.

The approach we take to simulating these effects come from [4]. We take 
a Lee diagram, computed by the MiePlot application [25], showing the color 
of scattered light at different angles based on the radius of water droplets, and 
use that as a look-up map. The color of the effect at each point on a quad is then 
determined by the angle of that point from the eye, and that color is added to 
whatever color is already present. You can compute Lee diagrams that cor-
respond to each of the effects we will discuss, so this approach works for each 
of our effects.

Rainbows

Everyone is familiar with rainbows. In Figure 16.14, we see a photograph of a 
rainbow at sunrise. Note the structure of the rainbow: from the outside, we see 
the common spectrum of light that we also see from a prism, with red going 
through orange, yellow, green, blue, indigo, and then violet. Then further 
inside, we see a general lightening in color as a white tint seems to be added to 
the scene. Although this figure does not show it, there can also be a secondary 
rainbow outside the primary one, with its colors reversed. In theory, though 
very rarely seen, there may even be further rainbows.

The structure of a rainbow comes from the reflection of light from the 
interior of water droplets in the air, as shown in Figure 16.13. This is examined 
in more detail in Figure 16.15, showing that the particular angles for a plain 
water droplet are approximately 41° ± 1°.

Figure 16.14. A rainbow photograph showing the way it affects light in the atmosphere.
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Table 16.1 shows these approximate angles for different wavelengths of 
light that correspond to the main colors we see in a rainbow. The angle Θ rep-
resents the main rainbow, and ΘΘ represents the secondary rainbow.

Color λ η Θ cosΘ ΘΘ cosΘΘ 

Red ≈ 650 nm 1.510 42° 0.743 50.0° 0.643

Green ≈ 500 nm 1.519 41° 0.755 51.5° 0.623

Blue ≈ 400 nm 1.528 40° 0.766 53.0° 0.602

Table 16.1. The approximate angles for a rainbow.

The actual computation of color for a rainbow in a scene could be done 
using angle computations in the fragment shader, as we did for the spotlight 
simulation in Chapter 8. This would involve creating a one-dimensional tex-
ture whose colors span the rainbow and using that texture with the angle val-
ues as texture coordinates. However, we have other resources, so it is probably 
simpler to use the approach of [4], with the Lee diagram for light scattering in 
the rainbow region, computed by MiePlot and shown in Figure 16.16.

We have created a texture map from this Lee diagram and have used it as 
a look-up table to return the color of the rainbow for various angles in a dis-
play. This is done by sampling a vertical line in the Lee diagram at a fixed value 
of the droplet radius. In Figure 16.17, we see the effect of this fragment shader 
computation for a plain gray quad (left), for a natural scene with the rainbow 
added (middle), and for the natural scene with an actual rainbow (right). In 
the first two cases, the color returned from the texture map is simply added to 
the color of the pixel to get the displayed color, though of course some of the 

Figure 16.15. The path of light through a water droplet.
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image techniques discussed earlier could improve 
the blending. Additional effects like the secondary 
rainbow in the natural scene are not included in 
the simulation.

Note that we’ve manipulated the alpha com-
ponent of the rainbow colors to smooth the out-
side edge of the rainbow and to show the lightened 
color inside the rainbow. These effects are not as 
strong as you might like, and an exercise invites 
you to work with the fragment shader to improve 
them. However, a significant problem in this simu-
lation is that conditions are much more complex 
than simply creating a rainbow. In the real image, 
there was a rain squall about 100 yards from the 
camera but the camera location had no rain, so 
the tree in the foreground is much darker in the 
actual image because it was not in the rain. The 
background in the actual image is obscured by the 
heavy rain that causes the rainbow, but simulating 
that is not part of simulating the rainbow. We also have not included the sec-
ondary reflection in the raindrop that gives us the faint secondary rainbow in 
the photo. Without using this additional information, the simulated image in 
the middle of Figure 16.17 is about all we can do.

Figure 16.16. The Lee diagram of the color 
of a rainbow for different angles and water 
droplet radii.

Figure 16.17. A computed rainbow against a gray quad (left), against a natural scene (middle), and compared 
with an actual photo of the scene with a rainbow (right).
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The fragment shader code for this simulation is given below, and it uses a 
number of uniform variables that come from glib sliders. These let you “tune” 
the rainbow to match real conditions, since the critical angles from the con-
trasolar point are not available in the plain photograph. These variables have 
been tuned to get the computed rainbow to align fairly well with the actual 
photograph, as shown, but the tuned values are not included here. See the 
exercises for more on tuning.

uniform float     uUpDown, uLeftRight, uInOut;
uniform float     uALF, uWhere;
uniform sampler2D uImageUnit, uRainbowUnit;

in vec2 vST;

out vec4 fFragColor;

const float PI       = 3.14159265;
const float outAngle = 41.
const float inAngle  = 39.
const vec4  LIGHTPOS = vec4( 0., 0., 40000., 1. );

void
main( )
{
// simulate directional light

// set up eye and texture coordinates
 vec3 irgb   = texture( uImageUnit, vST ).rgb;
 vec4 irgba  = vec4(irgb, 0.5);
 vec2 xy     = 100. * vST - 50.;
       // set initial eyepoint to [-50, 50]
 vec3 EyePos = vec3(xy.x + uLeftRight, xy.y + uUpDown, uInOut);

// Compute angles
 float num     = length( EyePos.xy - LIGHTPOS.xy );
 float rAngle  = atan( num, uInOut );  // angle in radians
 float angle   = degrees( rAngle );   // angle in degrees
 float myAngle = angle;

// Convert myAngle to rainbow range
 if ( angle > outAngle )
 {
  myAngle = outAngle;
 }
 if ( angle < inAngle )
 {
  myAngle = inAngle;
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 }
 float v = (outAngle - myAngle)/(outAngle - inAngle);

// Get colors by sampling RainbowUnit at the fixed value:
 vec2 Rainbowst = vec2(v, uWhere);
 vec3 rrgb = texture( uRainbowUnit, Rainbowst ).rgb;

// Set alpha components of color for blending
 vec4 rrgba = vec4( rrgb, uALF);

 // 0.5 degree dropoff band at outside edge of rainbow
 if ( (angle > outAngle - 0.5) ) {
  rrgba.a = uALF*(1. - smoothstep(outAngle-0.5,
       outAngle, angle) );
 }

 // lighter color inside rainbow
 if (angle < inAngle)
 {
  rrgba.a = uALF*cos((inAngle - angle)/PI);
 }
 float alpha = rrgba.a;

// Approximation of the background
 if (alpha < 0.3 )
  alpha = 0.3;

 vec3 colorOut = (1. - alpha) * irgb + alpha * rrgb;
 fFragColor = vec4 (colorOut, 1);
}

The Glory

A glory is the effect of seeing a bright spot with a 
rainbow fringe at a point exactly opposite the sun. 
An example is shown in Figure 16.18. Note that you 
can actually see exactly where you are in the reflec-
tion (as the center of the halo) and that you can see 
several color fringes centered at that point.

Glories are caused by interference between 
frequencies of light backscattered toward the light 
source (the sun) from atmospheric water droplets, 
but the exact way this happens is obscure. Instead 
of trying to simulate this directly, we look for simu-
lations that compute the color associated with the 

Figure 16.18. The glory as seen from an air-
plane. You can tell where the photographer 
was sitting by the center of the glory.
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effect. A Lie diagram for the glory is shown in Figure 16.19, 
computed from MiePlot for a range of water drop sizes. 
Notice that the sizes are much smaller—about an order of 
magnitude—than the sizes for the rainbow; the rainbow and 
the glory do not occur in the same atmospheric conditions. 
You will also note that there are, in fact, several bands of simi-
lar color. We will use this diagram as a look-up map as we 
did in the rainbow example, taking the radius as a constant 
set by the slider variable Radius and looking up the color 
based solely on the angle.

When we apply this approach to compute a glory, we 
see the effects shown in Figure 16.20 against a solid quad 
(left) and against a photograph of a cloud surface (right).

The code for the fragment shader that was used to cre-
ate the right-hand image of Figure 16.20 is shown below; 
it is quite similar to the rainbow fragment shader. The 
background cloud image is loaded and associated with the 
uImageUnit in the GLIB file as was done in Chapter 9. The 
angle is set up relative to the direction to the sun, not the 
angle into the scene; these angles are complementary, so the 
computed angle must be subtracted from 180° for the tex-
ture look-up (recall the angles shown in Figure 16.15).

Figure 16.19. A Lee diagram of 
the color of the glory for different 
angles and water droplet radii. 
The radii are in µm.

Figure 16.20. The glory effect, seen mixed against a solid white quad (left) and as added 
into a photograph of a cloud surface (right).
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uniform float     uUpDown, uLeftRight, uInOut;

uniform float     uMix, uRadius;

uniform sampler2D uImageUnit, uGloryUnit;

in vec2  vST;

out vec4 fFragColor;

const float THEANGLE  = 160.;  // cutoff angle for our 

              // look-up texture

const vec4  LIGHTPOS  = vec4( 0., 0., 40000., 1. );

void main( )

{

// Simulate directional light

// Get texture coordinates of fragment and convert to [-50, 50]

 vec3 irgb = texture( uImageUnit, vST ).rgb;

 vec2 xy   = 100. * vST - 50.;

// Compute angle from the light direction

 vec3 EyePos  = vec3(xy.x + uLeftRight, xy.y + uUpDown,   

                       uInOut);

 float dist   = length( LIGHTPOS.xy - EyePos.xy );

 float rAngle = atan( dist, uInOut ); // angle to point in 

                  // radians

 // the angle is measured from the direction to the sun; this

 // is 180 degrees at the contrasolar point and we avoid 180

 float angle  = 180. - degrees( rAngle );

 if( angle < THEANGLE )

   angle = THEANGLE;

 float v = ( 180. – angle )/( 180. – THEANGLE );

 if (v > .99)

  v = .99;  // avoiding 180

// get the glory texture color

 vec2 Gloryst  = vec2(v, uRadius);

 vec3 Gloryrgb = texture( uGloryUnit, Gloryst ).rgb;

// mix the glory and background colors

 vec3 colorOut = uMix * irgb + (1. - uMix) * Gloryrgb;

 fFragColor    = vec4( colorOut, 1 );

}
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Fun with One

Many GLSL variables range linearly from 0. to 1., such 
as texture components, the noise function, color compo-
nents, etc. But just because a variable ranges linearly from 
0. to 1. doesn’t mean that you have to actually use it that 
way. There are a number of ways you can manipulate the 
range [0.,1.] to get different effects. This is especially fun 
with the glman Timer function, introduced in Chapter 4 
and discussed in the next section. Some of the possibili-
ties are shown in Table 16.2, and the shapes of some of 
these functions are shown in Figures 16.21 to 16.23.

Figure 16.21. Comparison of shapes 
of tn functions.

Effect Code
Collection of curves from 
0. to 1.

float tm = Timer; 

float tm = Timer*Timer; 

float tm = Timer*Timer*Timer; 

float tm = 3.*Timer2 – 2.*Timer3; 

float tm = 10.*Timer3 – 15.*Timer4 + 6.*Timer5

Ramp from 0. to 1. and back 
to 0.

float tm; 

if( Timer <= .5 ) 

 tm = 2.*Timer; 

else 

 tm = 2. – 2.*Timer;

Smooth oscillation from –1. 
to 1. and back to –1.

float tm = sin( 2.*π*Timer );

Faster oscillation with 
parameter S.

float tm = sin( 2.*π*S*Timer );

Bigger oscillation with 
parameter M.

float tm = M * sin( 2.*π*S*Timer );

Smooth oscillation from 0. 
to 1. and back to 0.

float tm = .5 + .5*sin(2.*π*Timer );

Table 16.2. Some effects of different functions with range between 0 and 1.
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Using the glman Timer Function

The glman tool has a built-in Timer function that ranges from 0. to 1. in 10 sec-
onds, by default, though you can make that interval any length you choose. 
All you have to do is declare a uniform floating-point variable named Timer:

uniform float Timer;

in your shader, and it will magically be assigned a number that repeatedly 
ramps from 0. to 1. over time. We can use the Timer function within a shader 
to create moving effects, using the “Fun with One” ideas in the previous sec-
tion to get many different kinds of motion. You can get similar effects in your 
applications using the GLUT timer events.

Disco Ball

You can also take advantage of the Timer in many kinds of animation pro-
cesses. As an example of this, consider the disco ball example shown in Fig- 
ure 16.24, where several geometric objects are lit by a set of moving lights.

The scene uses a variable number of lights, controlled by a uniform slider 
variable in the fragment shader. The vertex shader for the disco example sim-
ply sets up the usual normal, eye coordinate position, light intensity, and  
gl_Position. This is familiar and so is not included here, but we do show the 
fragment shader for the disco example. It uses the uniform Timer variable, in 
the highlighted statement in the code below. This controls the offset angle of 

Figure 16.22. Comparison of shapes of tn, sin, and 
cubic functions.

Figure 16.23. Comparison of shapes of  sin(2πst) 
functions.
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the lights—the only animated part of the scene—so that they swirl around the 
space.

It might look like there are multiple light sources, but there really is just 
one. A real disco ball appears to be multiple light sources because of the flat 
mirrored facets on the ball itself. The fragment shader below looks at the angle 
between the fragment, the disco ball, and the single light source. It then quan-
tizes that angle to see how close one of the simulated mirrored facets comes 
to reflecting the light source to that fragment. It then uses that light intensity, 
combined with a raise-to-a-power dropoff, to illuminate the fragment.

uniform int   uNum;  // # of mirrors in each spherical direction
uniform float Timer; // built-in glman timer function

in vec3  vECpos;
in vec4  vColor;
in float vLightIntensity; 

out vec4 fFragColor;

const float DMIN       = 0.980; // minimum cosine for no light
const vec3  BALLPOS    = vec3( 0., 2., 0. );
const vec3  LIGHTPOS   = vec3( 2., 0., 0. );
const vec3  LIGHTCOLOR = vec3( 1., 1., 1. );
const float PI       = 3.14159265;

void main( )
{
 int numTheta = uNum;
 int numPhi   = uNum;
 float dtheta = 2. * PI / float(numTheta);
 float dphi   =      PI / float(numPhi);

Figure 16.24. The disco light effect.
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 vec3 BP = vECpos - BALLPOS;
 float angle = radians(Timer*360.);
 float c = cos( angle );
 float s = sin( angle );
 vec3 bp;
 bp.x =  c*BP.x + s*BP.z;
 bp.y =  BP.y;
 bp.z = -s*BP.x + c*BP.z;

 vec3 BL = LIGHTPOS - BALLPOS;
 vec3  H = normalize(  normalize(BL) + normalize(bp)  );
 float x = H.x;
 float y = H.y;
 float z = H.z;
 float xz = length( H.xz ); // = sqrt( x^2 + z^2 );
 float phi = atan( y, xz );
 float theta = atan( z, x );

 int itheta = int( floor( ( theta + dtheta/2. ) / dtheta ) );
 int iphi   = int( floor( ( phi   + dphi/2.   ) / dphi   ) );

 float theta0 = dtheta * float(itheta);
 float phi0   = dphi   * float(iphi);

 vec3 N0;
 N0.y = sin(phi0);
 xz   = cos(phi0);
 N0.x = xz*cos(theta0);
 N0.z = xz*sin(theta0);

 float d = max( dot( N0, H ), 0. );
 if( d < DMIN )
  d = 0.;
 d = pow( d, 5000. );  // much quicker drop-off

 fFragColor = vec4( vColor.rgb * vLightIntensity +
       d * LIGHTCOLOR, vColor.a ) ;
}

Figure 16.24 (left) shows how this would look if a group of GLUT solids 
were on the dance floor together. Of course, lighting equations can apply to 
the inside of objects just as well as the outside, if you want them to (as you usu-
ally do). Figure 16.24 (right) shows the inside of the teapot. If the SIGGRAPH 
conference ever creates a nightclub venue, we have no doubt it will look like 
this!
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Fog, with and without Noise

OpenGL allows you to create the appearance of fog and haze in the background 
of your scene. This is used to good effect, especially in games and simulators, 
to hide the far clipping plane. Objects can be clipped from the scene as they 
recede into the background without them appearing to “pop” out of view. 
However, the standard OpenGL fog looks too uniform. That is, everything at 
the same depth gets the same amount of fog blended into it. Real fog doesn’t 
behave that way. This example fragment shader shows how using a 3D noise 
function to modulate a fragment’s Z depth can be used to create a less uniform 
fog effect. This is shown in Figure 16.25 that we call “Dinos in the Mist.”

uniform float uNoiseScale;

uniform float uNoiseFreq;

uniform float uDepthFront, uDepthBack;

uniform sampler3D Noise3;

in float vZ;        // equal to -EC.z (dist in front of the eye)

in vec4  vColor;

in vec3  vMCposition;

in float vLightIntensity;

out vec4 fFragColor;

const vec4 FOG = vec4( 0.5, 0.5, 0.5, 1. );

void

main( )

{

 vec4  nv  = texture( Noise3, uNoiseFreq * vMCposition );

 float size = nv.r + nv.g + nv.b + nv.a;         // [1.,3.]

 size -= 2.;                                     // [-1.,+1.]

 float deltaz = uNoiseScale * size;

 float fogFactor = 

    ((vZ+deltaz) - uDepthFront)/(uDepthBack – uDepthFront);

 fogFactor = clamp( fogFactor, 0., 1. );

 fogFactor = smoothstep( 0., 1., fogFactor );

 vec3 rgb = mix( vColor.rgb * vLightIntensity, FOG.rgb,  

         fogFactor );

 fFragColor = vec4( rgb, 1. );

}
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Morphing 3D Geometry

Ever since the movie Willow (1988), morphing 3D geometry has been a main-
stream topic in computer graphics. It would be fun to use shaders to do this 
in a general way. Unfortunately, morphing one general 3D object to another 
general 3D object is quite difficult because you need to create a careful corre-
spondence between both sets of vertices, which is hard to do in an automated 
way. However, we can morph between two known shapes, such as a sphere to 
a disk, as shown in Figure 16.26. As we are altering vertex coordinates, most 
of the work is done by the vertex shader, shown here. The object is originally 
defined as a sphere, but its texture coordinates (aTexCoord0.st) are used to 

Figure 16.25. Fog, without (left) and with (right) noise.

Figure 16.26. Morphing between a sphere and a disk. From left to right, uBlend is 0.0, 0.5, and 1.0.
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produce the polar coordinates (r,Θ) of the disk. Thus we have two sets of coor-
dinates and use the uBlend variable to mix between them.

uniform float uBlend;

out vec4  vColor;
out float vLightIntensity; 
out vec2  vST;

const float TWOPI    = 2.*3.14159265;
const vec3  LIGHTPOS = vec3( 5., 10., 10. );

void main( )
{
 // original model coords (sphere):

 vec4 vertex0 = aVertex;
 vec3 norm0   = aNormal;

 // circle coords:

 vST = aTexCoord0.st;
 float s = aTexCoord0.s;
 float t = aTexCoord0.t;
 float radius = 1.-t;
 float theta = TWOPI*s;
 vec4  circle = vec4( radius*cos(theta), radius*sin(theta), 
           0., 1. );
 vec3 circlenorm = vec3( 0., 0., 1. );

 // blend:

 vec4 theVertex =  mix( vertex0, circle, uBlend );
 vec3 theNormal = normalize( mix( norm0, circlenorm, uBlend ));

 // do the lighting:

 vec3 tnorm      = normalize( vec3( uNormalMatrix * 
                  theNormal ) );
 vec3 ECposition = vec3( uModelViewMatrix * theVertex );
 vLightIntensity = abs( dot(normalize(LIGHTPOS - 
                  ECposition),tnorm));
 if( vLightIntensity < 0.2 )
  vLightIntensity = 0.2;

 vColor = aColor;
 gl_Position = uModelViewProjectionMatrix * theVertex;
}
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The rightmost image in Figure 16.26 is an interesting way to visualize 
the planet: as a polar disk with the angle corresponding to longitude and the 
radius corresponding to latitude.

We can also go one step more towards general morphing—a general 
shape to a known shape (in this case a cube), shown in Figure 16.27. Again, 
most of the work is done in the vertex shader. The original vertices are blown 
up like a balloon and are then clamped to fixed sides. Again, two sets of 3D 
coordinates are created and then mixed between.

uniform float uBlend;

out vec4  vColor;
out float vLightIntensity; 

const float SIDE    = 2.;
const vec3 LIGHTPOS = vec3( 5., 10., 10. );

void main( )
{
 vec4 vertex0 = aVertex;
 vertex0.xyz *= 4./length(vertex0.xyz);

 vertex0.xyz = clamp( vertex0.xyz, -SIDE, SIDE );

 vec3 tnorm       = normalize( uNormalMatrix * aNormal );
 vec3 ECposition  = vec3( uModelViewMatrix * aVertex );
 vLightIntensity  = abs( dot(normalize(LIGHTPOS - ECposition),
            tnorm));
 if( vLightIntensity < 0.2 )
  vLightIntensity = 0.2;

Figure 16.27. Morphing between a dino and a cube. From left to right, uBlend is 0.0, 0.5, and 1.0.
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 vColor = aColor;
 gl_Position = uModelViewProjectionMatrix *
      mix( aVertex, vertex0, uBlend );

}

In a very similar way, you can also morph between a general object and a 
sphere, as shown in Figure 16.28. All you need to do is leave out the part about 
clamping to the fixed sides.

Algorithmic Art

Algorithmic art is a field in which interesting images are generated through 
the use of computer algorithms. An introduction to the concept may be found 
at [1]. The field is very broad, and many aspects of it are perfect for implement-
ing with shaders, especially those that create images based on the positions of 
pixels on the screen. We have already seen how Mandelbrot and Julia sets are 
generated in this way.

Connett Circles

One particular (and very simple) example of an algorithm that generates what 
are called Connett Circles is the Circle2 algorithm [15], discovered by J. E. 
Connett. In this algorithm, each fragment’s x- and y-coordinates are examined 
to see what circle radius they lie on. That radius is squared and cast to an inte-
ger. If that integer is odd, the fragment is discarded. If it is even, then a color is 
assigned to it and it is plotted in that color.

Figure 16.28.  Morphing between a dino and a sphere. From left to right, uBlend is 0.0, 0.5, and 1.0.
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There are two ways to handle the coordinates for a fragment. One is to 
use the actual screen coordinates, and the other is to handle the coordinates 
on the surface. Both are available to you through GLSL. If you are working 
with glman, you can start with a simple quad with texture coordinates. The 
glman built-in quad has texture coordinates st that each range between 0 and 
1, so if you multiply them by the size of the window and arrange for the quad 
to exactly fill the window, unit steps in the st space will match unit pixels in 
the display. Alternately, you can use the values of vFragCoord.xy to get the 
exact pixel coordinates for each fragment.

The fragment shader code for this is listed below, with the getColor 
(float t) function only stubbed; you can fill that in or use any other color 
function of one variable that you like. The #ifdef SCREEN logic lets you select 
either screen coordinates or screen-equivalent texture coordinates on your 
geometry. The GLIB file and vertex shader files are very much like those 
we saw in Chapter 10, except that no actual texture file is loaded. This code 
works with glman and assumes that the geometry is a simple quad with tex-
ture coordinates. Note that the dot function is a fast way to get the square of 
the radius.

#define SCREENSIZE 1200.
#define SCREEN

uniform float     uSide;
uniform sampler2D uVoidUnit;

in vec2 vST;

out vec4 fFragColor;

vec3
GetColor( float t )
{
 ...
}

void main( )
{
#ifdef SCREEN
 vec2 xy = uSide * gl_FragCoord.xy;
#else
 vec2 xy = uSide * vST;
#endif
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 float t = dot( xy, xy );
 int c = int( t );
 if ( (c % 2) != 0 ) discard;
 t = float( c%360 )/359.;

 vec3 myColor = GetColor( t );
 fFragColor = vec4( myColor, 1.);
}

Some sample images from this shader are shown in Figures 16.29 and 
16.30. Figure 16.29 shows three views with the algorithm above and three dif-
ferent values of uSIDE, showing how much this small change affects the images. 
(When you try this for yourself, you may find different results for these values 

of uSIDE; the algorithm is sensitive to the resolution of your 
image. These were done for a 1200 × 1200 image.) Note the 
very subtle rainbow circles with center at the lower left of 
the image with uSIDE = .875 and the very strong Moiré circles 
in the image with uSIDE = 1.08. These secondary effects are 
common in the images and make them more interesting.

In Figure 16.30, we look at an image that uses the object-
side coordinates, and in order to increase the brightness and 
the effect of this image, we did not use the pixel-discard 
logic. Since we are working on the object side rather than the 
screen side, we can manipulate the object; in this case, we 
rotated the quad a bit so that we are getting an oblique view 
of the quad instead of a straight-on view. This makes a strik-
ing difference in the image, as you can see.

Figure 16.29. Three examples of images generated by the Circle2 algorithm, with uSIDE = .875 (left), 
uSIDE = 1.00 (middle), and uSIDE = 1.08 (right).

Figure 16.30. The Circle2 algorithm 
used on the object side, viewed 
obliquely, with uSIDE = 1.00.
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Making Information Visible Through Motion

We have seen many examples of shader programming being used to create 
effective graphics that communicate information to the user using various geo-
metric methods. However, it may be interesting to think about using graph-
ics to make information visible through motion rather than geometry. Dan 
Sandin explored this concept as long ago as the late 1980s [40] and computer 
graphics shaders give us better tools to illustrate this. Sample shader functions 
to do this are given below.

The vertex shader is simple, merely copying the attribute values of vertex 
location (in model space) and texture coordinates to output variables that are 
then available to the fragment shader, and setting the global gl_Position vari-
able. This is standard but is included for completeness.

out vec3 vMCposition;
out vec2 vST;

void main( )
{
 vMCposition = aVertex.xyz;
 vST         = aTexCoord0.st;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

The fragment shader reads in two textures, a white noise texture and 
a mask texture, and moves pixels from the white noise texture either left or 
right depending on the value in the mask texture. This motion difference lets 
you distinguish areas in the mask texture so you can get information from the 
mask through motion in the white noise. Just what kind of information can be 
distinguished remains an open research question, and we suggest some explo-
rations in this area in one of this chapter’s exercises.

uniform  sampler2D uRandomUnit, uMaskUnit;
uniform  float Timer;  // from glman

in vec3 vMCposition;
in vec2  vST;

out vec4 fFragColor;

void main( )
{
 vec2 st   = vST;



460 16.  Serious Fun

 vec3 Rrgb = texture( uRandomUnit, st ).rgb;
 vec3 Mrgb = texture( uMaskUnit,   st ).rgb;
 vec3 color;

 float T = 1024.*Timer;

 if ( Mrgb.r > 0.5 ) // white part of mask
 {
  st = vec2( st.s + T/1024., st.t );
  color = texture( uRandomUnit, st ).rgb;
 }
 else // black part of mask
 {
  st = vec2( st.s - T/1024., st.t );
  color = texture( uRandomUnit, st ).rgb;
 }
 fFragColor = vec4( color, 1.);
}

We wish we could show you this technique in action, but the key word 
is action: it is the action of motion that shows the content of the mask tex-
ture. Since you are reading this in print, which does a poor job of supporting 
animation, we cannot do this; any freeze-frame capture of the output simply 
shows the white noise texture. Instead we urge you to download the textures 
(random.bmp and mask.bmp) shown in Figure 16.31, see the effect, and then see 
what more you can do, as suggested in an exercise.

Figure 16.31. The white noise texture (left) and a possible mask texture (right).
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An Explosion Shader

We hope you have found the potpourri of examples in this 
chapter as interesting to read as we found it to create, but 
we thought we would like the book to end with a bang—so 
we close with an explosion shader, whose effect is shown in 
Figure 16.32. This example uses a geometry shader to take a 
collection of triangles, subdivides each of them into a number 
of discrete points, and then has the points undergo projectile 
physics motion as if an explosion had driven them all apart. 
The geometry shader uses the same parametric triangle subdi-
vision scheme as was used in Chapter 12, but instead of subdi-
viding triangles into smaller triangles, it subdivides them into 
points. The geometry shader is shown here. 

#version 330
#extension GL_EXT_geometry_shader4: enable
#extension GL_EXT_gpu_shader4: enable

layout( triangles )  in;
layout( points, max_vertices=1024 )  out;

uniform int   uLevel;
uniform float uGravity;  // < 0.is down
uniform float uT;
uniform float uVelScale;

out float gLightIntensity;

const vec3 LIGHTPOS = vec3( 0., 0., 10. );

vec3 V0, vV01, vV02;
vec3 CG;
vec3 Normal;

void
ProduceVertex( float s, float t )
{
 vec3 v = V0 + s*V01 + t*V02;
 gLightIntensity  = dot( normalize(LIGHTPOS - v), 
            Normal );
 gLightIntensity = abs( gLightIntensity );

 vec3 vel = uVelScale * ( v - vCG );

Figure 16.32. Exploding dino-
saur at times 0.0, 0.3, 0.5, and 11.
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 v += vel*uT + 0.5*vec3(0., uGravity, 0.)*uT*uT;
 gl_Position = uProjectionMatrix * vec4( v, 1. );
 EmitVertex( );
}

void
main( )
{
 V01 = ( gl_PositionIn[1] - gl_PositionIn[0] ).xyz;
 V02 = ( gl_PositionIn[2] - gl_PositionIn[0] ).xyz;

 Normal = normalize( cross( V01, V02 ) );

 V0  = gl_PositionIn[0].xyz;
 CG  = ( gl_PositionIn[0].xyz + gl_PositionIn[1].xyz
       + gl_PositionIn[2].xyz ) / 3.;

 int numLayers = 1 << uLevel;

 float dt = 1. / float( numLayers );
 float  t = 1.;

 for( int it = 0; it <= numLayers; it++ )
 {
  float smax = 1. - t;
  int   nums = it + 1;
  float   ds = smax / float( nums - 1 );
  float    s = 0.;

  for( int is = 0; is < nums; is++ )
  {
   ProduceVertex( s, t );
   s += ds;
  }

  t -= dt;
 }
}

Exercises

1. Adapt the CD/DVD shader example to look more realistic by applying 
cube-mapping as well as diffraction to add a reflection of a scene in the 
colored disk. Do the same to add the reflection of sky clouds in the oil 
slick.
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2. Change the uSIDE slider uniform variable in the Circle2 algorithm to be a 
uniform Timer variable and note the effect of this animation on the nature 
of the images.

3. Generalize the previous exercise by taking any shader that includes a 
glman slider variable (for example, the ablation shader from Chapter 9) 
and replacing the slider variable by a variable based on the Timer func-
tion that is modified by a “Fun with One” function. Use several versions 
of the function and notice the different effects.

4. Revisit the rainbow example using the GLIB file with the corresponding 
vertex and fragment shaders. Do your own computation of the param-
eters to match any rainbow photograph of your choice and modify the 
shaders as needed to create a better blending of the raw rainbow with the 
background scene.

5. We saw that the effects of rainbows or glories 
are modified by the environment in which 
they occur. For example, Figure 16.19 is not 
really right because the glory won’t really be 
reflected from those areas where there aren’t 
any clouds. Modify the fragment shader for 
the glory so that the color of the background 
affects the alpha of the glory, thus making 
the composited image more accurate.

6. While rainbows and glories are created by 
reflections from near the contrasolar point, 
coronas are created by reflections from small 
water drops at small angles near the sun. See 
Figure 16.33, [12] or [17] for examples and 
note that you can create simulations of coro-
nas with HaloSim (see [13]). Write a shader 
that creates a corona around a point as if 
that point were the sun.

7. Other solar phenomena are caused by ice 
in the upper atmosphere. These can be 
quite amazing, but here we only consider 
the so-called 22° corona caused by ice crys-
tals in very high thin cirrus clouds. See 
Figure  16.34, [12] or [17] for examples. Write 
a shader that simulates the solar corona.

8. Explain the patterns you see in the Circle2 
algorithm.

Figure 16.33. A solar corona, from [17]. 
Courtesy of Richard Fleet, used by permission.

Figure 16.34. A 22° solar corona. 
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9. In the morphing examples, the “correct” range of values for uBlend is 
[0.,1.].  What happens if uBlend < 0.?  What happens if uBlend > 1.?  Can 
you explain why you end up with these shapes?

10. Experiment with the Circle2 algorithm by using a power other than 2 for 
the distance computation. How does that affect the images?

11. Use texture coordinates on an object to computer a Circle2 texture directly 
on the surface of the teapot.

12. Change the color transfer function in the Circle2 algorithm and notice the 
difference in the images you produce. Compare a relatively monochro-
matic transfer function (a simple grayscale, for example, or a black → red 
→ yellow → white range) to a very chromatic function (a full rainbow 
scale, for example) and note the changes in the patterns.

13. Modify the cube morphing to produce spherical morphing as we showed 
in Figure 16.27.  How many other variations can you come up with?

14. Investigate another kind of algorithmic art (probably 2D) that you can 
find. This can come from the 2D fractal world (look at the literature based 
on the Mandelbrot or Julia sets), from simulating surfaces as described in 
Chapter 7, or from general searches on “algorithmic art.” If it’s really cool, 
let us know via the book’s website.

15. Implement the “moving pixels” shader to see how it works. Create dif-
ferent kinds of mask textures, with different text, different fonts, or with 
different shapes. Try this with a color white noise (available with the 
book’s materials as randomColor.bmp) to test whether color noise carries 
the motion information as well as the monochrome noise.

16. Figure 16.32 doesn’t just show points; it shows light-shaded points. 
Modify the given explosion geometry shader to compute a light intensity 
for each point, which will then be picked up and used by the fragment 
shader.
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GLSLProgram C++ ClassA

The act of creating, compiling, linking, using, and passing parameters to shad-
ers is very repetitive. For some of our own work, we have found it helpful 
to create a C++ class called GLSLProgram that implements this process. This 
class has the tools to manage all the steps of shader program development 
and use, including source file opening, loading, and compilation. Some of the 
individual methods were presented in Chapter 14. It also has methods that 
implement setting attribute and uniform variables. This source is available on 
the book’s website.

The following methods are supported by the class

bool  Create(  char *, char * = NULL, char * = NULL,

           char * = NULL, char * = NULL );

bool  IsValid( );
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void  SetAttribute( char *, int );
void  SetAttribute( char *, float );
void  SetAttribute( char *, float, float, float );
void  SetAttribute( char *, float * );
void  SetAttribute( char *, Vec3& );
void  SetGstap( bool );
void  SetInputTopology( GLenum );
void  SetOutputTopology( GLenum );
void  SetUniform( char *, int );
void  SetUniform( char *, float );
void  SetUniform( char *, float, float, float );
void  SetUniform( char *, float[3] );
void  SetUniform( char *, Vec3& );
void  SetUniform( char *, Matrix4& );
void  SetVerbose( bool );
void  Use( );
void  UseFixedFunction( );

The Create( ) method takes up to five shader file names as arguments. 
From the filename extension, it figures out what type of shader it is, loads it, 
compiles it, and links them all together. All errors are written to stderr. The 
IsValid( ) method can be called if your application wants to know if every-
thing succeeded or not.

The SetAttribute( ) methods set attribute variables, destined for the 
vertex shader. The SetUniform( ) methods set uniform variables, destined for 
any of the shaders.

The Use( ) method makes this shader program active, so that it affects 
any subsequent drawing that you do. UseFixedFunction( ) returns the state 
of the pipeline to use the fixed-functionality (if it’s available).

The SetGstap( ) method is there to give you the option to have the 
gstap.h code included automatically. Just pass true as the argument. Call this 
before you call the Create( ) method.

Here is an example of using the GLSLProgram class.

#include “glslprogram.h”

float   Ad, Bd, NoiseAmp, NoiseFreq, Tol;
GLSLProgram * Ovals;

. . .

// set everything up once:

Ovals = new GLSLProgram( );
Ovals->SetVerbose( true );
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Ovals->SetGstap( true );
bool good = Ovals->Create( “ovalnoise.vert”, “ovalnoise.frag” );
if( ! good )
{
 fprintf( stderr, “GLSL Program Ovals wasn’t created.\n” );
 . . .
}

. . .

// do this in the display callback:

Ovals->Use( );
Ovals->SetUniform( “uAd”, Ad );
Ovals->SetUniform( “uBd”, Bd );
Ovals->SetUniform( “uNoiseAmp”, NoiseAmp );
Ovals->SetUniform( “uNoiseFreq”, NoiseFreq );
Ovals->SetUniform( “uTol”, Tol );
glColor3f( 0., 1., 0. );
glutSolidTeapot( 1. );

Ovals->UseFixedFunction( );

. . .
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Matrix4 C++ ClassB

One of the trends in OpenGL is to have the application developer bear the 
responsibility to manipulate and provide the needed transformation matrices. 
We have created a 4 × 4 matrix class called Matrix4 to handle a lot of this work. 
The following methods are supported by the class

Matrix4( );

Matrix4( const Matrix4& );

Matrix4( float, float, float, float, float, float, float, float,

      float, float, float, float, float, float, float, float );

Matrix4( float [4][4] );

Matrix4& Frustum( float, float, float, float, float, float );

Matrix4& FrustumZ( float, float, float, float, float, float, 

         float );
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float GetDeterminant( );
float GetElement( int, int );
Matrix4 GetInverse( );
Matrix4 GetInverse3( );
void GetMatrix4( float [4][4] );
void GetMatrix43( float [3][3] );
Matrix4 GetTranspose( );
Matrix4 GetTranspose3( );
Matrix4& Invert( );
Matrix4& Invert3( );
Matrix4& LoadIdentity( );
Matrix4& LookAt( float, float, float,  float, float, float, 
        float, float, float );
Vec3 MultBy( Vec3 );
Matrix4& operator=( const Matrix4& );
Matrix4 operator*( float );
Matrix4 operator*( Matrix4& );
Point3 operator*( Point3& );
Vec3 operator*( Vec3& );
Matrix4& operator*=( Matrix4& );
Matrix4& operator*=( float );
Matrix4 operator+( Matrix4& );
Matrix4& operator+=( Matrix4& );
Matrix4 operator-( Matrix4& ); // binary
Matrix4& operator-( );  // unary
Matrix4& operator-=( Matrix4& );
Matrix4& operator-=( float );
Matrix4& Ortho( float, float, float, float, float, float );
Matrix4& Ortho2D( float, float, float, float );
Matrix4& Perspective( float, float, float, float );
Matrix4& PopMatrix4( );
Matrix4& Print( char * = “”, FILE * = stderr );
Matrix4& PushMatrix4( );
Matrix4& Rotatef( float, float, float, float );
Matrix4& Scalef( float, float, float );
Matrix4& SetElement( int, int, float );
Matrix4& SetMatrix4( float [4][4] );
Matrix4& SetMatrix43( float [3][3] );
Matrix4& StereoPerspective( float, float, float, float, float, 
             float );
Matrix4& Translatef( float, float, float );
Matrix4& Transpose( );

The method names have been selected to mimic OpenGL procedure 
names wherever possible, such as

Matrix4& Rotatef( float, float, float, float );
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Matrix4& Scalef( float, float, float );
Matrix4& Translatef( float, float, float );

The default constructor sets the matrix to identity, but you can also 
explicitly do that with the LoadIdentity( ) method.

There are many operator overloads, so that you can use matrices in 
expressions, such as

Matrix4 R;
R.Rotatef( 30., 1., 0., 0. );
Matrix4 T;
T.Translatef( 2., 3., 4. );
Matrix4 P = R * T;

Many of these methods return a reference to the result so that they can be 
chained together, like this:

Matrix4 Comp;
Comp.LoadIdentity( ).Translatef(-A,-B,-C).Scalef(3.,4.,1.). 
Translatef(A,B,C).Print(“Composite = “);

These operations are evaluated left-to-right.
Here are some examples of using the Matrix4 class:

#include “matrix4.h”

Matrix4 I;
I.Print( “I = “ );

Matrix4 R;
R.Rotatef( 30., 1., 0., 0. );
R.Print( “R = “ );

Ovals->SetUniform( “uModelMatrix”, R );

Matrix4 T;
T.Translatef( 2., 3., 4. );
T.Print ( “T = “ );

Matrix4 P = R * T;
P.Print( “P1 = “ );

P = T * R;
P.Print( “P2 = “ );

Matrix4 RI = R;
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RI.Invert( );
RI.Print( “Rinverse = “ );
RI *= R;
RI.Print( “Rinverse * R = “ );

Matrix4 Comp;
Comp.LoadIdentity( ).Translatef(-A,-B,-C).Scalef(3.,4.,1.). 
Translatef(A,B,C).Print(“Composite = “);
Comp.Invert( ).Print( “Composite Inverse = “ );

fprintf( stderr, “Determinant of Composite Inverse = %8.3f\n”, 
Comp.GetDeterminant( ) );



473

Vec3 C++ ClassC

It is also helpful to have a 3-element vector class. Here is one called Vec3. These 
are its methods:

Vec3( float = 0., float = 0., float = 0. );
Vec3( const Vec3& );
Vec3& operator=( const Vec3& );
Vec3& operator*=( float );
Vec3   operator+( const Vec3& );
Vec3&  operator+=( const Vec3& );
Vec3   operator-( const Vec3& );    // binary -
Vec3   operator-( );  // unary -
Vec3&  operator-=( const Vec3& );
Vec3   Cross( Vec3 );
float  Dot( Vec3 );
void   GetVec3( float * );
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float  Length( );
void   Print( char * = “”, FILE * = stderr );
Vec3   Unit( );
Vec3&  Unitize( );

Several operators are overloaded so you can use these vectors in expres-
sions, such as

Vec3 a( 1., 2., 3. );
Vec3 b( 4., 5., 6. );
Vec3 e = a + b;

Another class, Point3, is sub-classed from Vec3. A Point3 variable can 
use all the same methods a Vec3 class variable can, but by using the Point3 
name you are making it clear that the three-element array is meant to be a 
point (with positions) instead of a vector (with directions):

Point3 Q( 1., 2., 0. );
Point3 R( 5., 3., 0. );
Vec3 S = R - Q;

Some of these methods return a reference to the result so that they can be 
chained together, like this:

float i = c.Dot( a.Cross(b) );

Vec3 normal = ( R - Q ).Cross( S - Q );

Here are some examples of using the Vec3 class.

#include “vec3.h”

Vec3 b( 1., 2., 3. );
Vec3 c( 5., 6., 7. );
Vec3 d( c );

Vec3 a = c;
a.Unitize( );
a.Print( “a =” );
b.Print( “b =” );
c.Print( “c =” );
d.Print( “d =” );

a = Vec3( 2., -5., 8. );
a.Print( “a =” );
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Vec3 ma = -a;
ma.Print( “-a = “ );

Vec3 e = a + b;
e.Print( “e =” );

e *= 3.;
e.Print( “e =” );

float f = ( a + b ).Length( );
fprintf( stderr, “f = %8.3f\n”, f );

float g = a.Dot( (b+c).Unit( ) );
fprintf( stderr, “g = %8.3f\n”, g );

Vec3 h = a.Cross(b);
h.Print( “axb =” );

float i = c.Dot( a.Cross(b) );
fprintf( stderr, “c.(axb) = %8.3f\n”, i );

Point3 Q( 1., 2., 0. );
Point3 R( 5., 3., 0. );
Point3 S( 3., 6., 0. );
Vec3 normal = ( R-Q ).Cross( S-Q );
normal.Print( “normal = “ );
float area = normal.Length( ) / 2.;
fprintf( stderr, “triangle area = %8.3f\n”, area );
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OpenGL encourages you to use vertex arrays (VAs) and vertex buffer objects 
(VBOs) instead of glBegin-glEnd for three reasons:

1. VAs and VBOs are much more efficient than using glBegin-glEnd.

2. glBegin-glEnd has been deprecated in OpenGL-desktop from version 
3.0 onward, and might actually go away at some time in the future.

3. glBegin-glEnd has been completely eliminated from OpenGL-ES 2.0 and 
so cannot be used if you want your application to run on both desktop 
and mobile platforms.
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There is no question that using glBegin-glEnd is convenient, especially when 
beginning to learn OpenGL. With this in mind, here is a C++ class1 that looks 
like the application is using glBegin-glEnd, but inside its data structures are 
preparing to use VAs and VBOs when the class’s Draw( ) method is called:

void CollapseCommonVertices( bool );
void Draw( );
void glBegin( GLenum );
void glColor3f( GLfloat, GLfloat, GLfloat );
void glColor3fv( GLfloat * );
void glEnd( );
void glNormal3f( GLfloat, GLfloat, GLfloat );
void glNormal3fv( GLfloat * );
void glTexCoord2f( GLfloat, GLfloat );
void glTexCoord2fv( GLfloat * );
void glVertex2f( GLfloat, GLfloat );
void glVertex2fv( GLfloat * );
void glVertex3f( GLfloat, GLfloat, GLfloat );
void glVertex3fv( GLfloat * );
void Print( FILE * = stderr );
void RestartPrimitive( );
void SetTol( float );
void SetVerbose( bool );
void UseBufferObjects( bool );

The UseBufferObjects( ) method declares whether a VBO should be 
used instead of a VA. As VBOs are stored in the graphics card memory and 
thus only ever need to be transmitted from host memory once, VBOs are 
almost always preferable.

Passing a true to the CollapseCommonVertices( ) method says that you 
want any vertices closer to each other than the distance specified in SetTol( ) 
collapsed to be treated as a single vertex. The advantage to this is that the 
single vertex only gets transformed once. The disadvantage is that the collaps-
ing process takes time, especially for large lists of vertices.

The RestartPrimitive( ) method invokes an OpenGL-ism that restarts 
the current primitive topology without starting a new VA or VBO. This saves 
overhead. It is especially handy for “never-ending” topologies such as triangle 
strips and line strips.

Here is an example of using the VertexArray class and the image it pro-
duces (see Figure D.1):

1. The source for this class is available on the book’s web site: http://www.cgeducation.org
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#include “vertexarray.h”

GLfloat CubeVertices[ ][3] =
{
 { -1., -1., -1. },
 {  1., -1., -1. },
 { -1.,  1., -1. },
 {  1.,  1., -1. },
 { -1., -1.,  1. },
 {  1., -1.,  1. },
 { -1.,  1.,  1. },
 {  1.,  1.,  1. }
};

GLfloat CubeColors[ ][3] =
{
 { 0., 0., 0. },
 { 1., 0., 0. },
 { 0., 1., 0. },
 { 1., 1., 0. },
 { 0., 0., 1. },
 { 1., 0., 1. },
 { 0., 1., 1. },
 { 1., 1., 1. }
};

GLuint CubeIndices[ ][4] =
{
 { 0, 2, 3, 1 },
 { 4, 5, 7, 6 },
 { 1, 3, 7, 5 },
 { 0, 4, 6, 2 },
 { 2, 6, 7, 3 },
 { 0, 1, 5, 4 }
};

VertexArray *VA;

. . .

// this goes in the part of the program where graphics things
// get initialized once:

VA = new VertexArray( );  // create an instance of the class
      // the real “constructor” is in the glBegin method
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VA->CollapseCommonVertices( true );
VA->UseBufferObjects( true );
VA->SetTol( .001f );

VA->glBegin( GL_QUADS );

for( int i = 0; i < 6; i++ )
{
 for( int j = 0; j < 4; j++ )
 {
  GLuint k = CubeIndices[i][j];
  VA->glColor3fv( CubeColors[k] );
  VA->glVertex3fv( CubeVertices[k] );
 }
}

VA->glEnd( );

VA->Print( ); // verify that vertices were really collapsed

. . .

// this goes in the display-callback part of the program:

VA->Draw( );

Figure D.1.  The cube drawn by this code example, with axes added to show how the colors 
correspond to the vertex coordinates.
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This next example shows drawing gridlines on a terrain map. The 
already-defined Heights[ ] array holds the terrain heights. This is a good 
example of using the RestartPrimitive( ) method so that the next grid 
line doesn’t have to be in a new line strip. In this way, the entire grid is 
saved as a single line strip and is drawn by blasting a single VA / VBO into 
the graphics pipeline.

VertexArray *VA;

 . . .

// this goes in the part of the program where graphics things
// get initialized once:

VA = new VertexArray( );  // create an instance of the class
      // the real “constructor” is in the glBegin method

VA->CollapseCommonVertices( true );
VA->UseBufferObjects( true );
VA->SetTol( .001f );

int x, y;  // loop indices
float ux, uy; // utm coords

VA->glBegin( GL_LINE_STRIP );

for( y = 0, uy = meteryMin; y < NumLats; y++, uy += meteryStep )
{
 VA->RestartPrimitive( );
 for( x = 0, ux = meterxMin; x < NumLngs x++, ux += meterxStep 
)
 {
   float uz = Heights[ y*NumLngs + x ];
   VA->glColor3f( 1., 1., 0. ); // single color = yellow
   VA->glVertex3f( ux, uy, uz );
 }
}

for( x = 0, ux = meterxMin; x < NumLngs; x++, ux += meterxStep )
{
 VA->RestartPrimitive( );
 for( y = 0, uy = meteryMin; y < NumLats; y++, uy += 
                       meteryStep )
 {
  float uz = Heights[ y*NumLngs + x ];
  VA->glColor3f( 1., 1., 0. );

The Program Body
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  VA->glVertex3f( ux, uy, uz );
 }
}

VA->glEnd( );

. . .

// this goes in the display-callback part of the program:

VA->Draw( );

Figure D.2.  A wireframe terrain map drawn as a single line 
strip in a vertex buffer object.2

2  If you’re interested in timing, this dataset had 1024 × 569 grid points, and displayed at 1,000 FPS on 
an NVIDIA GTX 480.
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Graphics Shaders: Theory and Practice is intended for a second course in computer graphics at the 
undergraduate or graduate level, introducing shader programming in general, but focusing on the GLSL 
shading language. While teaching how to write programmable shaders, the authors also teach and reinforce 
the fundamentals of computer graphics. The second edition has been updated to incorporate changes in the 
OpenGL API (OpenGL 4.x and GLSL 4.x0) and also has a chapter on the new tessellation shaders, including 
many practical examples.  

The book starts with a quick review of the graphics pipeline, emphasizing features that are rarely taught in 
introductory courses but are immediately exposed in shader work. It then covers shader-specific theory for 
vertex, tessellation, geometry, and fragment shaders using the GLSL 4.x0 shading language. The text also 
introduces the freely available glman tool that enables you to develop, test, and tune shaders separately from 
the applications that will use them. The authors explore how shaders can be used to support a wide variety 
of applications and present examples of shaders in 3D geometry, scientific visualization, geometry morphing, 
algorithmic art, and more.

Features of the Second Edition:
• Written using the most recent specification releases (OpenGL 4.x and GLSL 4.x0) including code 

examples brought up-to-date with the current standard of the GLSL language
• More examples and more exercises
• A chapter on tessellation shaders
• An expanded Serious Fun chapter with examples that illustrate using shaders to produce fun effects
• A discussion of how to handle the major changes occurring in the OpenGL standard, and some C++ 

classes to help you manage that transition
• Source code for many of the book’s examples at www.cgeducation.org

“If you are one of the multitudes of OpenGL programmers wondering about how to get started with 
programmable shaders or what they are good for, this is the book for you. Mike and Steve have filled their new 
edition with such a variety of interesting examples that you’ll be running to your computer to begin writing your 
own shaders.”

—Ed Angel, Chair, Board of Directors, Santa Fe Complex; Founding Director, Art, Research, Technology, and 
Science Laboratory (ARTS Lab); Professor Emeritus of Computer Science, University of New Mexico

“Shaders are an essential tool in today’s computer graphics, from films and games to science and industry. 
In this excellent book, Bailey and Cunningham not only clearly explain the how and why of shaders, but they 
provide a wealth of cutting-edge shaders and development tools.  If you want to learn about shaders, this is 
the place to start!”
  

 —Andrew Glassner

Mike Bailey • Steve CunninghaM
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