
Graphics Shaders: Theory and Practice is intended for a second course in computer graphics at the
undergraduate or graduate level, introducing shader programming in general, but focusing on the GLSL
shading language. While teaching how to write programmable shaders, the authors also teach and reinforce
the fundamentals of computer graphics. The second edition has been updated to incorporate changes in the
OpenGL API (OpenGL 4.x and GLSL 4.x0) and also has a chapter on the new tessellation shaders, including
many practical examples.

The book starts with a quick review of the graphics pipeline, emphasizing features that are rarely taught in
introductory courses but are immediately exposed in shader work. It then covers shader-specific theory for
vertex, tessellation, geometry, and fragment shaders using the GLSL 4.x0 shading language. The text also
introduces the freely available glman tool that enables you to develop, test, and tune shaders separately from
the applications that will use them. The authors explore how shaders can be used to support a wide variety
of applications and present examples of shaders in 3D geometry, scientific visualization, geometry morphing,
algorithmic art, and more.

Features of the Second Edition:
• Written using the most recent specification releases (OpenGL 4.x and GLSL 4.x0) including code

examples brought up-to-date with the current standard of the GLSL language
• More examples and more exercises
• A chapter on tessellation shaders
• An expanded Serious Fun chapter with examples that illustrate using shaders to produce fun effects
• A discussion of how to handle the major changes occurring in the OpenGL standard, and some C++

classes to help you manage that transition
• Source code for many of the book’s examples at www.cgeducation.org

“If you are one of the multitudes of OpenGL programmers wondering about how to get started with
programmable shaders or what they are good for, this is the book for you. Mike and Steve have filled their new
edition with such a variety of interesting examples that you’ll be running to your computer to begin writing your
own shaders.”

—Ed Angel, Chair, Board of Directors, Santa Fe Complex; Founding Director, Art, Research, Technology, and
Science Laboratory (ARTS Lab); Professor Emeritus of Computer Science, University of New Mexico

“Shaders are an essential tool in today’s computer graphics, from films and games to science and industry.
In this excellent book, Bailey and Cunningham not only clearly explain the how and why of shaders, but they
provide a wealth of cutting-edge shaders and development tools. If you want to learn about shaders, this is
the place to start!”

 —Andrew Glassner

Mike Bailey • Steve CunninghaM

S E C O N D E D I T I O N

t h e o r y a n d P r a C t i C e

B
a

il
e

y
 • C

u
n

n
in

g
h

a
M

in
Clu

deS

O
pen

G
L

4.
x

Computer graphics/computer games

K13069
G

raph
ics Sh

aders

Graphics Shaders
Second Edition

This page intentionally left blankThis page intentionally left blank

Theory and Practice

Mike Bailey

Steve Cunningham

Graphics Shaders
Second Edition

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 2011913

International Standard Book Number-13: 978-1-4398-6775-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To my parents,
Ted and Anne Bailey,

whose respect for both curiosity and books
made a project like this inevitable sometime.

– MJB

To the other writers in my family:
Judy,

for her collaboration on so many projects
and her patience with my work on this one, and

Rob and Rick,
for their own past and future writing projects.

– SC

This page intentionally left blankThis page intentionally left blank

vii

 Foreword xix

 Preface xxiii

1. The Fixed-Function Graphics Pipeline 1

The Traditional View 2

The Vertex Operation 2
The Fragment Processing Part of the Pipeline 6
State in the Graphics Pipeline 7

Contents

viii Contents

How the Traditional View Is Implemented 8

Vertex Processing 9

Rendering Processing 10

Homogeneous Coordinates in the Fixed-Function Pipeline 14

Vertex Arrays 17

Conclusions 20

Exercises 21

2. OpenGL Shader Evolution 25

History of Shaders 27

OpenGL Shader History 30

OpenGL 2.0/GLSL 1.10 30

OpenGL 3.x/GLSL 3.30 31

OpenGL 4.0/GLSL 4.00 32

OpenGL 4.x/GLSL 4.x0 33

What’s Behind These Developments? 34

OpenGL ES 34

How Can You Respond to These Changes? 35

Our Approach in this Book 36

Variable Name Convention 36

Exercises 37

3. Fundamental Shader Concepts 39

Shaders in the Graphics Pipeline 39

Vertex Shaders 42

Fragment Shaders 47

Tessellation Shaders 50

Geometry Shaders 53

ixContents

The GLSL Shading Language 54

Passing Data from Your Application into Shaders 59

Defining Attribute Variables in Your Application 59

Defining Uniform Variables in Your Application 62

A Convenient Way to Transition to the Newer Versions of GLSL 64

Exercises 67

4. Using glman 69

Using glman 71

Loading a GLIB File 72

Editing GLIB and Shader Source Files 72

GLIB Scene Creation 72

Window and Viewing 73

Transformations 73

Defining Geometry 73

Specifying Textures 76

Specifying Shaders 77

Miscellaneous 78

Specifying Uniform Variables 79

Examples of GLIB Files 81

More on Textures and Noise 82

Using Textures 82

Using Noise 84

Functions in the glman Interface Window 86

Generating and Displaying a Hardcopy of Your Scene 86

Global Scene Transformation 86

Eye Transformation 87

Object Picking and Transformation 87

Texture Transformation 88

Monitoring the Frame Rate 88

Miscellaneous 89

Exercises 90

x Contents

5. The GLSL Shader Language 91

Factors that Shape Shader Languages 92

Graphics Card Capabilities 93

General GLSL Language Concepts 95

Shared Namespace 95
Extended Function and Operator Capabilities 96
New Functions 97
New Variable Types 97
New Function Parameter Types 98

Language Details 98

Omitted Language Features 98
New Matrix and Vector Types 99
Name Sets 100
Vector Constructors 101
Functions Extended to Matrices and Vectors 102
Operations Extended to Matrices and Vectors 105
New Functions 106
Swizzle 112
New Function Parameter Types 112
Const 113

Compatibility Mode 114

Defining Compatibility Mode 114
OpenGL 2.1 Built-in Data Types 114

Summary 120

Exercises 120

6. Lighting 123

The ADS Lighting Model 124

The ADS Lighting Model Function 125

Types of Lights 127

Positional Lights 128
Directional Lights 128
Spot Lights 129

xiContentsContents

Setting Up Lighting for Shading 131

Flat Shading 132

Smooth (Gouraud) Shading 133

Phong Shading 134

Anisotropic Shading 135

Exercises 137

7. Vertex Shaders 139

Vertex Shaders in the Graphics Pipeline 140

Input to Vertex Shaders 140

Output from Vertex Shaders 142

Fixed-Function Processing After the Vertex Shader 145

The Relation of Vertex Shaders to Tessellation Shaders 146

The Relation of Vertex Shaders to Geometry Shaders 146

Replacing Fixed-Function Graphics with Vertex Shaders 146

Standard Vertex Processing 147

Going Beyond the Fixed-Function Pipeline with Vertex Shaders 148

Vertex Modification 148

Issues in Vertex Shaders 151

Creating Normals 152

Summary 153

Exercises 154

8. Fragment Shaders and Surface Appearance 157

Basic Function of a Fragment Shader 158

Inputs to Fragment Shaders 158

Particularly Important “In” Variables for the Fragment Shader 161

Coordinate Systems 162

xii Contents

Fragment Shader Processing 163

Outputs from Fragment Shaders 163

Replacing Fixed-Function Processing with Fragment Shaders 163

Shading 164

Traditional Texture Mapping 165

False Coloring 166

What Follows a Fragment Shader? 168

Additional Shader Effects 169

Discarding Pixels 169

Phong Shading 169

Shading with Analytic Normals 170

Anisotropic Shading 172

Data-Driven Coloring 173

Images Using Other Data 175

Exercises 177

9. Surface Textures in the Fragment Shader 179

Texture Coordinates 180

Traditional Texture Mapping 180

GLSL Texture Mapping 182

The Texture Context 184

Texture Environments in the Fixed-Function World 185

Texture Sampling Parameters 186

Samplers 186

Procedural Textures 187

Bump Mapping 193

Cube Maps 200

Render to Texture 205

Render to Texture for Multipass Rendering in glman 209

Exercises 212

xiiiContentsContents

10. Noise 213

Fundamental Noise Concepts 214

Three Types of Noise: Value, Gradient, and Value+Gradient 214
Cubic and Quintic Interpolation 215
Noise Equations 216

Other Noise Concepts 220

Fractional Brownian Motion (FBM, 1/f, Octaves) 220
Noise in Two and Three Dimensions 221
Using Noise with glman 223
Using Noise with the Built-In GLSL Functions 225
Turbulence 225

Some Examples of Noise in Different Environments 228

Marble Shader 230
Cloud Shader 231
Wood Shader 233

Advanced Noise Topics 235

Using Noisegraph 235

Exercises 237

11. Image Manipulation with Shaders 239

Basic Concepts 240

Single-Image Manipulation 241

Luminance 241
CMYK Conversions 243
Hue Shifting 246
Image Filtering 248
Image Blurring 249
Chromakey Images 251
Stereo Anaglyphs 252
3D TV 256
Edge Detection 259
Embossing 260

xiv Contents

Toon Shader 262
Artistic Effects 264
Image Flipping, Rotation, and Warping 265

The Image Blending Process 270

Blending an Image with a Constant Base Image 271

Color Negative 272
Brightness 273
Contrast 274

Blending an Image with a Version of Itself 275

Saturation 275
Sharpness 276

Blending Two Different Images 277

Other Combinations 278
Image Transitions 281

Notes 286

Exercises 287

12. Geometry Shader Concepts and Examples 291

What Does the Geometry Shader Do? 292

New Adjacency Primitives 294
Layouts for Input and Output Variables 295
New OpenGL API Functions 296
New GLSL Variables and Variable Types 299
Communication between a Vertex or Tessellation Shader
and a Geometry Shader 299

Normals in Geometry Shaders 301

Examples 301

Bézier Curves 301
Shrinking Triangles 303
Sphere Subdivision 305
3D Object Silhouettes 309

Exercises 312

xvContentsContents

13. Tessellation Shaders 315

What Are Tessellation Shaders? 315

Tessellation Shaders or Geometry Shaders? 317

Tessellation Shader Concepts 318

Issues in Setting Tessellation Levels 323

Examples 323

Isolines 324
Bézier Surface 327
Sphere Subdivision 334
Whole Sphere Subdivision while Adapting to Screen Coverage 341
PN Triangles 344

Summary 350

Exercises 351

14. The GLSL API 353

Shaders in the OpenGL Programming Process 353

Handling OpenGL Extensions 355

How Is a GLSL Shader Program Created? 355

Creating and Compiling Shader Objects 357

The CheckGLErrors Function 359

Creating, Attaching, Linking, and Activating Shader Programs 360

Creating a Shader Program and Attaching Shader Objects 361
Linking Shader Programs 361
Activating a Shader Program 362

Passing Data into Shaders 364

Defining Uniform Variables in Your Application 364
Uniform Variables in Compatibility Mode 367
Defining Attribute Variables in Your Application 368
Attribute Variables in Compatibility Mode 370
A C++ Class to Handle Shader Program Creation 371

Exercises 372

xvi Contents

15. Using Shaders for Scientific Visualization 375

Image-Based Visualization Techniques 376

Image Negative 376

Image Edge Detection 377

Toon Rendering 377

Hyperbolic Geometry 378

3D Scalar Data Visualization 381

Point Clouds 383

Cutting Planes 387

Volume Probe 390

Direct Volume Rendering 392

More on Transfer Functions 398

Passing in Data Values with Your Geometry 403

Terrain Bump-Mapping 405

Flow Visualization 408

2D Line Integral Convolution 408

3D Line Integral Convolution 411

Extruding Objects for Streamlines 413

Geometry Visualization 416

Silhouettes 416

Hedgehog Plots 417

Exercises 420

16. Serious Fun 425

Light Interference 426

Diffraction Gratings 427

Oil Slicks 431

Lens Effects 433

xviiContentsContents

Bathroom Glass 438

Atmospheric Effects 440

Rainbows 441
The Glory 445

Fun with One 448

Using the glman Timer Function 449

Disco Ball 449

Fog, with and without Noise 452

Morphing 3D Geometry 453

Algorithmic Art 456

Connett Circles 456

Making Information Visible Through Motion 459

An Explosion Shader 461

Exercises 462

 Appendices

A. GLSLProgram C++ Class 465

B. Matrix4 C++ Class 469

C. Vec3 C++ Class 473

D. Vertex Array Class 477

 References 483

 Index 487

This page intentionally left blankThis page intentionally left blank

xix

Foreword

Excellent! I am glad that you are reading this book. You might want to skip
straight ahead to the good stuff, but as long as you are here…

Computer graphics is a fascinating and fast-changing field that didn’t
even exist when I was born. I was attracted to it because it is a field with a
unique mix of engineering and artistry. In the computer graphics industry,
people with engineering skills design graphics software and hardware prod-
ucts that offer ever-increasing levels of performance and image quality. These
products inspire people with artistic skills to use the resulting products to cre-
ate amazing visual experiences that entertain, teach, or help others create or
design. This in turn inspires the engineers to create even better hardware and
software in order to improve the visual experiences created by artists. This
symbiotic relationship between engineers and artists has never let up and has

xx Foreword

resulted in photorealistic effects for movies and near-cinematic quality experi-
ences for computer games.

You might be reading this book because of your interest in the computer
graphics field. Perhaps you are an engineer looking to develop another tool for
your toolbox of software development skills for computer graphics. Perhaps
you are an artist who is interested in learning a little more about the bits and
bytes of how computer graphics images are created. Perhaps you are that rare
breed, an engineer/artist, and you have in your mind’s eye a vision of what
you want to create, and you need only to develop an understanding of this
new medium in order to bring your vision to reality. If any of these are true,
you have selected an excellent guide book to help you on your journey.

You are holding in your hands a book written by two people who share
two passions. Mike Bailey and Steve Cunningham both love computer graph-
ics, and they are absolutely passionate about teaching. This book allows them
to combine both of these passions into a form that is sure to benefit you, the
reader.

Actually, the word “passionate” understates the impact that Mike and
Steve have had on computer graphics education. Mike is a “lifer” in the com-
puter graphics industry. I met him some 15 years ago when we asked him to
lead an effort to define industry-standard benchmarks for computer graphics
systems (which he graciously agreed to do). He has been teaching or practic-
ing computer graphics for almost 30 years now. He has won numerous awards
as a professor of computer graphics. His dedication to educating people new
to graphics is demonstrated by the fact that he annually prepares and deliv-
ers the “Introduction to Computer Graphics” tutorial at SIGGRAPH (ACM’s
Special Interest Group on Graphics).

Steve is a similarly dedicated, accomplished, and award-winning edu-
cator. He was a co-founder of the SIGGRAPH Education Committee and co-
chaired this activity for many years. He served in countless leadership positions
in the SIGGRAPH organization and for the SIGGRAPH conference itself (the
largest, most prestigious, and longest-lived conference focusing on computer
graphics). For his lifelong efforts, he was given the 2004 ACM SIGGRAPH
Outstanding Service Award. His influence on the computer graphics industry
is global, as witnessed by the fact that he was the first Eurographics Education
Board chair and he has been named a Eurographics Fellow.

So it is certainly the case that these two authors can tell you a thing or two
about computer graphics. But even more importantly, they can tell it to you in
a way that you will understand and remember.

The topic of this book, writing shaders with the OpenGL Shading
Language, is both important and timely. OpenGL and its companion shading

xxiForewordForeword

language are industry standards. This means that they are supported by a vari-
ety of hardware companies on a variety of operating environments. OpenGL
and GLSL are available on Macs, PCs, and Linux systems; on workstations,
towers, desktops, laptops, and handhelds. The goal of a standard is simple: to
make it easy for you, the programmer, to deploy your code on a diverse range
of products without requiring any changes to the source code. The resulting
portability amortizes the cost of the software development by creating a bigger
market for software products based on industry standards.

But the most important part of this book is that while it is teaching you
how to write programmable shaders, it is also teaching and reinforcing the
fundamentals of computer graphics. As a result, you will be able to easily
adapt the lessons learned here to other shading languages and graphics para-
digms. This is becoming increasingly important since the trend for graphics
hardware is to offer more general programmability and less fixed functionality
built into hardware. In other words, we are returning to the days where com-
puter graphics innovation occurs in software. The knowledge and skills that
you learn while reading this book can be adapted to the even more general
graphics programming environments of the future.

At the end of each chapter in this book, you will find some exercises that
will help develop your knowledge of graphics and programmable shading. In
that spirit, here are the exercises that I would prescribe for you:

1.  Read this book.
2.  Use computer graphics and programmable shading to create beauty.
3.  Share your creation and your knowledge with others.

Most importantly,

4.  Have fun!

Randi Rost
December 31, 2008

This page intentionally left blankThis page intentionally left blank

xxiii

Preface

Does this remind you of yourself?

You have lots of great, creative ideas in your head, but can’t seem to get
the right pixels to come out onto your graphics screen. Then, you are our type
of person. And, this is your type of book.

Welcome to the second edition of Graphics Shaders: Theory and Practice. As
the name implies, this book deals with both the theory and equations behind
what shaders do, as well as lots and lots of code examples of putting the theory
into practice. To help you, this book has been printed with color throughout.
That means that the lots of examples have lots of images to go with them to
help understand the concepts. So stop and stay for a while. Put your feet up
and start reading. You are really going to enjoy this.

http://xkcd.com

xxiv Preface

This book has over 100 more pages than the first edition did. Here are the
major improvements:

1. This book is written against the most-recent specification releases:
OpenGL 4.x and GLSL 4.x0.

2. All code examples have been brought up-to-date with the current stan-
dard of the GLSL language.

3. There is an entire chapter (with examples) on the new tessellation shaders.
4. All chapters have more examples and more exercises.
5. Many diagrams have been improved. The ones involving GLSL function-

ality levels have been brought up to 4.x0.
6. The OpenGL Architecture Review Board (ARB) has depecated some por-

tions of OpenGL, but has not eliminated them. This edition discusses that,
and presents a strategy to write your own code with that in mind. All code
examples in this book now follow that strategy. Also, by following that
strategy, you will be prepared for migration to OpenGL-ES 2.0.

7. Appendices have been added showing the use of C++ classes to make
writing OpenGL shader applications easier, and help with the post-dep-
recation strategy.

Programmable computer graphics shaders have had an interesting his-
tory. In not-too-distant memory, at least for some of us, all aspects of computer
graphics were programmable. In fact, “programmable” is probably not a good
term, because that implies that there was a programmability option when cre-
ating an image. There wasn’t. If you wanted anything to happen, you had no
choice but to program it. Yourself. “Involuntary programmability” might be a
better way to put it.

Computer graphics APIs changed that for most graphics practitioners.
With a good API, you could write very good graphics programs much more
easily because you could let the API’s functionality take over large portions of
the graphics process. However, you paid for this in giving up any functional-
ity that the API didn’t know how to handle. A good example is surface shad-
ing, where most of the 1990s APIs could not support anything beyond simple
smooth lighted surfaces.

Fortunately, neither the computer graphics research community nor
advanced graphics practitioners were satisfied with this. First in software and
then in hardware, as graphics processors were developed, specific functional-
ity was developed to support the programming of features that fixed-function
graphics APIs had fenced off. This functionality has now developed its own
standards, including the GLSL shader language that is part of the OpenGL
standard. Programmable graphics shaders, programs that can be downloaded

xxvPreface

to a graphics processor to carry out operations outside the fixed-function pipe-
line of earlier standards, have become a key feature of computer graphics.

This process is now being paralleled in the teaching and learning of
computer graphics. Just as students usually first learned computer graph-
ics through a graphics standard, most often OpenGL, students now need to
understand the role of programmable shaders and to have experience in writ-
ing and using them. One of the remarkable things about shader-level pro-
gramming is that it brings us all back to the same kind of graphics questions
that were being examined in the 1970s. We can now manipulate vertices and
individual pixels while still having the full OpenGL API high-speed support
whenever we want to use it. This gives students and practitioners a wonderful
range of capabilities that can be used in games, in scientific visualization, and
in general graphical communication.

This book is designed to open computer graphics shader programming to
students, whether in a traditional class or on their own. It is intended to com-
plement texts based on fixed-function graphics APIs, specifically OpenGL. It
introduces shader programming in general, and specifically the GLSL shader
language. It also introduces a flexible, easy-to-use tool, glman, which helps you
develop and tune shaders outside an application that would use them.

This book is intended as a text for a second course in computer graphics at
either the undergraduate or graduate level. It is not a textbook for a first course
in computer graphics, because it assumes knowledge of not only OpenGL,
but of general graphics concepts. Knowledge of another graphics API, such as
Direct3D, will work, but we focus on GLSL and will use OpenGL terminology
consistently. Because shader programming lets you work in areas that APIs
might hide from you, sometimes you will need to work at fundamental levels
of geometry, lighting, shading, and similar concepts. You will benefit from
a prior understanding of these. You will also find that shader programming
exposes some areas of API operation that you may not have fully understood,
so you may need to review some of these details.

Our choice of GLSL as the vehicle for teaching shaders is based on its
integration into the widely-used OpenGL multiplatform API and its solid per-
formance. The concepts presented here will also help anyone who works with
other shader APIs such as Cg or HLSL, because the basic ideas of shaders
are all similar. The book is designed to take the student from a review of the
fixed-function graphics pipeline through an understanding of the basic role
and functions of shader programming to solid experience in writing vertex,
fragment, and geometry shaders for both glman and actual applications.

While it might seem logical to treat shaders in the order in which they are
applied in the expanded graphics pipeline, with vertex shaders first, followed

xxvi Preface

by geometry shaders and then fragment shaders, we have chosen to lay out
their order a little differently. Again, it might seem logical to treat shaders in
the order of frequency of use, with fragment shaders first, followed by vertex
shaders and then geometry shaders, but that also does not quite seem to work.
Because many of the operations of a fragment shader depend on things that
come out of a vertex shader, we treat vertex shaders first, followed by frag-
ment shaders, and finally geometry and tessellation shaders.

The overall outline of the text is straightforward. In the first chapters,
which make up the background for the rest of the book, we begin by covering
the fixed-function graphics pipeline of OpenGL in Chapter 1, and OpenGL
shader evolution in Chapter 2. We then present the basic principles of vertex,
fragment, geometry, and tessellation shaders in Chapter 3, including several
examples, using the GLSL shader language. Chapter 4 introduces the glman
tool with a kind of mini-manual on its use. Finally, Chapter 5 presents the
GLSL shader language and discusses its similarities and differences from the
C programming language.

The next set of chapters sets up vertex and fragment shader concepts.
Chapter 6 covers lighting from the point of view of shaders and introduces
the ADS (ambient, diffuse, specular) lighting function that we will use several
times in later chapters. This is fundamental in both vertex and fragment shad-
ers, since vertex shaders often need to compute lighting for each vertex, and
fragment shaders may want to compute lighting for each pixel. In Chapter 7
we cover vertex shaders, emphasizing their inputs and outputs as well as
the ways they can be used to modify vertex geometry. Finally, in Chapter 8
we cover fragment shaders, again emphasizing their inputs and outputs and
showing how they can be used to replace the usual fixed-function fragment
operations.

The next three chapters discuss particular capabilities of fragment shad-
ers. In Chapter 9 we describe the way fragment shaders handle texture map-
ping, including bump mapping, cube mapping, and rendering a scene to a
texture. Chapter 10 discusses noise functions and their role in writing textures
and shaders, and introduces a tool, noisegraph, that lets you experiment with
the properties of 1D and 2D noise functions. Finally, Chapter 11 examines
some ways you can manipulate 2D images, treated as textures, with the tools
that fragment shaders make available.

Chapter 12 presents geometry shaders, including how they are related to
vertex and fragment shaders as well as their own capabilities. Several exam-
ples highlight the way geometry shaders can expand the geometric capability
of your models or show the capability of geometry shaders to handle sim-
ple level-of-detail operations. Chapter 13 discusses tessellation shaders. We

xxviiPreface

show how they are somewhat similar to geometry shaders but have important
enhancements.

The final set of chapters focuses on computer graphics shaders in appli-
cations. Chapter 14 describes the GLSL API that lets you compile, link, and
use shaders in an application. It also discusses passing data and graphics
state information to shader programs and introduces a simple C++ class that
encapsulates the process of incorporating shader programs in an application.
In Chapter 15, we focus on how shaders can be used in scientific visualiza-
tion applications, and show examples of a number of specific visualization
operations. And in Chapter 16 we explore some fun things you can do with
computer graphics shaders, under the guise of getting real work done. (Don’t
tell anyone.)

Four appendices have been added showing the use of C++ classes to help
write OpenGL applications and handle some of the post-deprecation chal-
lenges.

While many of the topics in this text are straightforward, some are
tricky or deserve special attention. We have followed the lead of the Nicholas
Bourbaki mathematics texts of the early 20th century and have highlighted
these with a “dangerous curves ahead” sign as shown to the right. We hope
this will help you notice these points.

Because shader functions are changing, there are times when we want to
highlight things that have evolved or things we introduce to deal with these
changes. We have used a second sign, shown at right, to draw your attention
to these points.

We are confident that the tools and capabilities we describe in this book
will both make you a better graphics programmer and make graphics pro-
gramming a much more interesting experience for you. As OpenGL evolves
toward the future and shaders become the only way that geometry and ren-
dering are handled, we believe that you will find this text to be an invaluable
guide.

Thanks

The authors of this book owe thanks to a number of people, primarily on Mike
Bailey’s side.

To faculty colleagues at Oregon State University for their support and
camaraderie: Ron Adams, Bella Bose, Terri Fiez, Karti Mayaram Ron Metoyer,
Eric Mortensen, Cherri Pancake, Sinisa Todorovic, and Eugene Zhang.

xxviii Preface

To the superbly talented UCSD and OSU graphics students who have
shared this shader expedition: Tim Bauer, William Brendel, Guoning Chen,
Matt Clothier, John Datuin, Will Dillon, Jonathan Dodge, Chuck Evans,
Nick Gebbie, Kyle Hatcher, Nick Hogle, Chris Janik, Ankit Khare, Vasu
Lakshmanan, Adam Leibel, Jessica McGregor, Daniel Moffitt, Chris Moore,
Patrick Neill, Jonathan Palacios, Nadia Payet, Randy Rauwendaal, Dwayne
Robinson, Avneet Sandhu, Nick Schultz, Sudarshanram Shetty, Evon Silvia,
Ian South-Dickinson, Madhu Srinivasan, Michael Tichenor, Christophe Torne,
Ben Tribelhorn, Ben Weiss, and Alex Wiggins.

To professional colleagues: Ryan Bailey, Mike Gannis, Jenny Orr, Todd
Shechter, and Justin Spencer.

To the folks at NVIDIA for their support, especially Gary Brown, Greg
Gritton, Jen-Hsun Huang, David Kirk, Dave Luebke, and David Zier.

To the folks at AMD/ATI for their support, especially Bill Licea-Kane.
To Randi Rost, for his support from positions at both 3D Labs and Intel,

and for writing his “Orange Book,” from which so much of what went into this
book was learned.

To Paramount Pictures for their permission to reprint the image in
Figure 2.2. and to Pixar for providing the original image.

To xkcd.com for the comic used at the front of this Preface.
We also thank Alice Peters and Sarah Cutler for their advice and assis-

tance in developing this project, and the reviewers for helping us refine some
key points in the text.

 Mike Bailey Steve Cunningham
 Corvallis, Oregon Coralville, Iowa

1

The Fixed-Function
Graphics Pipeline1

In your first course in computer graphics, you probably used a graphics API
to help you create your projects. Because this book focuses on graphics using
OpenGL, we assume that your API was OpenGL, and in this chapter we
review the graphics pipeline as it is expressed in OpenGL versions 1.x. If you
used a different API, especially in a first graphics course, your experience was
probably very close to the OpenGL approach. These APIs used a fixed-function
pipeline, or a pipeline with a fixed set of operations on vertices and fragments.
In the rest of this book, we will look at the shader capabilities of OpenGL ver-
sions 2.x and how you can use them to create effects that are difficult or impos-
sible with the fixed-function pipeline.

2 1. The Fixed-Function Graphics Pipeline

The Traditional View

When you develop a graphics application with the OpenGL API, you define
geometry, viewing, projection, and a number of appearance properties.
Objects’ geometries are defined by their vertices, their normals, and their
graphics primitives, specified by glBegin-glEnd pairs that encompass points,
lines, geometry-compressed groups, or polygons. Viewing and projection are
each defined with a specific function. Appearance is specified by defining
color, shading, materials, and lighting, or texture mapping. This information
is all processed in a very straightforward way by the fixed-function OpenGL
system, acting either in software or in a graphics card.

The simplest way to view OpenGL’s operations is to think of it as using
two connected operations: a vertex-processing operation and a pixel-processing
operation. Each operation in fixed-function OpenGL has a pre-determined set
of capabilities. It is important to understand how the geometry and appear-
ance directives you give are carried out in the pipelines. When you work with
shaders, though, it is more than important to understand the pipelines; your
shaders will actually take over part of these operations, so you absolutely must
understand them.

The Vertex Operation

To create the geometry of a scene, you specify primitives and vertices, and
operations that act on each vertex and create its pixel coordinates in screen
space. The primitive you specified then determines the pixels that must be
filled to represent it, and any appearance information you specified is used to
determine how those pixels are to be colored in the pixel-processing operation.
The geometry part of the vertex processing follows the flow in Figure 1.1. The
geometry processing is carried out for each vertex independently of any infor-
mation on grouping in your specified primitive; the grouping information is
only used after the vertices finish the vertex processing.

The first stage of the vertex operation defines the fundamental geom-
etry of your scene. The input to this stage is the set of vertex definitions (your
glVertex*, glNormal*, and glTexCoord* function calls) and the grouping defi-
nition (your glBegin(...) and glEnd() function calls) that you set for the
scene. Each piece of geometry is created, or modeled, in its own model space.
This coordinate space can be anything that makes it easy for you to define
the vertices and relationships for your model. Modeling functions include any
operations you may need to create these definitions and often use mathemati-
cal functions operating in the model space. As we noted, the geometry might

3The Traditional View

Figure 1.1. Vertex processing in the OpenGL pipeline.

include normal vectors and texture coor-
dinates, as well as vertex coordinates. It
also includes primitive specifications that
specify how pixels are to be assembled
from your vertices. It may also include
lights when you want the lights to have
specific relationships with your geometry.
You are probably used to including other
definitions, such as colors and material
properties, as you define your geometry.
These are appearance factors for the scene
and are used later in the vertex pipeline,
as we will see. The output of this stage is a
set of vertices in model coordinates, with
other geometric information and with
primitive information.

The second stage of the vertex opera-
tion defines the world space that will hold
the entire scene and puts all your individ-
ual models in that space. Each geometric primitive is placed into world space
by modeling transformations such as scaling, rotation, or translation transfor-
mations, so the input to this stage is your set of modeling transformation spec-
ifications (your glRotatef(...), glTranslatef(...), and glScalef(...)
function calls). These transformations convert the individual model space
coordinates into a single set of world or application space coordinates. They
do not affect color or material definitions, texture coordinates, or groupings,
but they do modify vertices, normals, and the geometry of lighting. Often,
lights are defined directly in world space when you think of lighting a whole
scene instead of a single object. Light geometry, such as position or direction,
is affected by whatever modeling is in effect when the light is defined. The
output of this stage is a modified set of vertices and normals, representing the
original geometry in a different space.

The third stage of the vertex operation defines the eye space that is created
when you specify viewing information for your scene. The input to this stage
is your definition of the viewing environment, often using the GLU function
gluLookAt(...). This defines the viewing transformation that modifies your
scene to create the standard eye view of a scene, a coordinate system with the
eye at the origin, and the x-, y-, and z-axes in their familiar right-handed 3D ori-
entations. This transformation modifies vertex, normal, and light information,
so the output of this stage is the modified geometry with the original primi-

4 1. The Fixed-Function Graphics Pipeline

tive information, with the geometry representing a standard viewing space. All
depth information for later processing comes from the z-coordinates in this eye
space. The ModelView matrix is defined at this point, and is used to transform
the vertices for geometric computations, as well as to transform the values of
the normals, light positions, and light directions for lighting computations.

Once you are in eye space, other information comes into play. As part
of defining each vertex, you probably also provided some appearance infor-
mation (e.g., glColor3f) or other information (e.g., lights or materials). This
information can be used here to set the vertex color. The color of each vertex
can be set as your color statements are implemented or any lighting operations
you specified are carried out. If lighting is enabled, the light parameters, light
position and direction, normal vectors, and material specification are used to
determine a color for each vertex. Each vertex is assumed to have a color value
from this point on in the process.

The fourth stage of the vertex operation defines the clip space that is cre-
ated when you specify the projection of your scene to the viewplane. The input
to this stage is your projection definition, either perspective or orthographic.
This projection definition defines a projection transformation that is to be
applied to the eye space. Your projection definition creates a view volume, and
the projection transformation is applied to this view volume to create a rectan-
gular 3D space that can easily be used for the next stage.

The final stage of the vertex operation uses your specified viewport infor-
mation to create pixel-space representations for each vertex in screen space.
There are two primary operations here. One is clipping the geometry you spec-
ified on the clip space boundaries in your projection definition; if any clipping
is done, it may create new or modified primitives as vertex pixels are added or
deleted. When there is clipping, the new vertex pixels will need to have their
new colors or texture coordinates interpolated in the same way as edges are
interpolated in the rendering process. The second is converting the 3D clip
space coordinates into the 2D integer coordinates of the specified viewport.
This is a simple proportion operation in the x- and y-coordinates plus homoge-
neous division, followed by a truncation of these real values to integers. At the
same time, the z-coordinates are converted to depth values (usually integers)
that can be used in rendering. The output of this stage, and thus the output of
the entire vertex pipeline, is a set of vertices in integer pixel x- and y-coordi-
nates with grouping, normals, depth, texture coordinates, and color.

While Figure 1.1 describes the actions of the vertex pipeline, it can also
be useful to see the effects of these actions. In Figure 1.2 we describe this by
showing how the overall graphics pipeline works on a simple triangle rep-
resented by the three (blue) vertices. These are sent to the vertex pipeline by

5The Traditional View

the CPU, are transformed into screen space by the vertex processor, are
assembled to go into the rasterizer, and are turned into pixels by the fragment
processor.

The graphics pipeline as described above includes a number of transfor-
mations noted in Figure 1.1: several modeling transformations, the viewing
transformation, and the projection transformation. The actual OpenGL imple-
mentation of the pipeline uses a more unified version of these transforma-
tions, however; the modeling and viewing transformations are combined into
the ModelView transformation, and new modeling transformations are multi-
plied into this as they are defined. A transformation stack is maintained for the
ModelView and Projection transformations, with the current version at the top
of the stack. The glPushMatrix() and glPopMatrix() operations let you save
and restore modeling environments. The ModelViewProjection transformation is
the product of the ModelView and Projection transformations, and is updated
whenever the ModelView transformation or Projection Transformation is
updated. The ModelViewProjection transformation is applied to individual
vertices to place them into clip space. The system also maintains another trans-
formation, the Normal transformation, calculated as the inverse of the transpose
of the ModelView transformation, which handles the problem of ensuring that
the normal can be correctly used for lighting and other operations. Later in the
chapter we will describe how this is done.

Figure 1.2. The actions of the overall graphics pipeline.

6 1. The Fixed-Function Graphics Pipeline

Figure 1.3. A simplified view of the OpenGL render-
ing pipeline.

The Fragment Processing Part of the Pipeline

OK, a moment ago we called it “pixel-processing,” but the fact is that it is really
called “fragment-processing.” What is a pixel? A pixel, in GLSL terminology,
is a set of appearance information (usually red, green, blue, alpha, z-depth,
etc.) that is about to be written to the framebuffer. Then what is a fragment? A
fragment is a pixel-to-be; that is, it is a pixel’s worth of information necessary
to compute that pixel’s red, green, blue, alpha, z-depth, etc. The operation is
called “fragment processing” because its job is to take all that information and
produce the pixel appearance. We will now see how that operation fits in with
the entire graphics pipeline.

The graphics pipeline takes the vertices in screen space and constructs
the regions you defined in your grouping with the appearance you specified
in the OpenGL rendering commands. This is described in the somewhat sim-
plified diagram of the rendering pipeline shown in Figure 1.3. This takes as its
input the output of the last step of the vertex pipeline in Figure 1.1.

Looking at this as we did at the vertex operation, we ask about the inputs
and outputs for each stage. We start with the output of the vertex operation:
vertices in screen coordinates with groupings, colors, depths, and texture
coordinates. (Normals are not considered here; the fixed-function pipeline
does not need them for fragment processing because lighting is computed per-
vertex and only the resultant color intensities are interpolated per-fragment.)
The first rendering stage takes the ordered vertices and creates the edges of the
primitive. The colors, depths, and texture coordinates at the vertices are inter-
polated to define these same properties along the edges and are then interpo-
lated left-edge-to-right-edge for each fragment.

The next rendering stage processes
fragments. It takes that “pre-information”
we just talked about and creates the appear-
ance information that will be written into the
framebuffer.

In the final stage of the graphics pipe-
line, the color of the pixel is integrated into
the framebuffer by functions such as depth
testing, blending, and masking that assem-
ble the final framebuffer content. These pro-
cesses might ignore the pixel (depth test-
ing, masking) or might change the color of
the pixel (blending). The final output of this
stage is the actual color in the framebuffer.

7The Traditional View

Figure 1.4. The OpenGL state as a graphics context object.

There are, of course, many details in these operations, and we have only
sketched the overall process here. Many of these should be familiar from your
experience with graphics programming using OpenGL. Later in this chapter
we will review some of these details and discuss some others that may not be
quite as familiar. And in the later chapters that describe fragment shaders and
show how you can use them, you will see how to control most of the details
yourself.

State in the Graphics Pipeline

In order to manage the large number of OpenGL operations and all of the
options they need, OpenGL sets and maintains a set of state information that
is used in the vertex and rendering operations. A large number of OpenGL
functions have as their only operation the setting of information in the graph-
ics state. As these operations are carried out, they get their information from
the state.

We need to be very aware of the OpenGL state in working with shaders,
because we will have to replace some critical fixed-function operations. It will
be useful to have a comfortable language and notation to talk about OpenGL
state. We introduce the notion of a graphics context to describe the OpenGL
state, and introduce a diagram of this context in Figure 1.4.

The initial graphics context has a number of default values (e.g., lines
are white and one pixel wide, the background color is black, and there are no
active textures.) When we set values with functions such as glColor3f(...),
we will say that we “dock” the color value to the slot that holds the primary
color value in the OpenGL state. If we change that color with another function
call, then the slot holds the new value and the old value is lost. Thus, each
“docking point” holds a unique state value that is used in the graphics process,
and most values can be queried as well as set. We will see this from time to
time as we discuss shader operations.

8 1. The Fixed-Function Graphics Pipeline

Figure 1.5. The OpenGL pipeline in graphics hardware.

How the Traditional View Is Implemented

In the OpenGL system, the actual processes that implement the pipeline are
grouped into different kinds of functionality. A block diagram of these func-
tional groups in a generic graphics system is shown in Figure 1.5.

The first functional group handles the vertex processing that is shown in
Figure 1.1. The input to this group includes vertices, normals, primitive defini-
tions, colors, lights (and their parameters), materials, and texture coordinates.
The output is a set of vertices as pixels with their color, depth, and texture
coordinates, and perhaps as revised primitives.

The next step is rasterizing. This implements the Vertices-to-Fragments
step in the rendering pipeline of Figure 1.3. The input to the rasterizer is the set
of vertices in screen coordinates with their depth, color, and texture coordinates,
along with how the vertices are to be connected. The rasterization process inter-
polates the vertices to create fragments, and the same interpolation is applied to
determine the depth, color, and texture coordinates for each fragment.

The second functional group is fragment processing. The input to this
group is a fragment rasterized from
a graphics primitive. The frag-
ment’s color is determined by pro-
cessing its color, depth, and texture
coordinate information. The out-
put of fragment processing is a set
of completed pixels, the “RGBAZ
Pixels” of Figure 1.5, with color
(RGB), blending (A, for alpha), and
depth (Z) values, ready to be inte-
grated into the color buffer.

The final step is this integration
of pixels into the color buffer. This
corresponds to the Fragments-to-
Pixels section of the rendering pipe-
line of Figure 1.3. The pixels from
the fragment processor are inte-
grated into the color buffer by ras-
ter operations that merge the frag-
ment with the pixels in the frame-
buffer. This is the same for both
fixed-function and shader-based
graphics.

9How the Traditional View Is Implemented

Vertex Processing

There are many details of this fixed-function vertex pipeline process that must
be understood in terms of the hardware pipeline in order to work with shad-
ers. The first is probably the ModelView matrix, the matrix that implements the
ModelView transformation.

Whenever any vertex V is sent to the vertex processor, it is multiplied by
the ModelView matrix M as V′ = M * V to convert it to eye space and begin its
processing.

The second detail of the vertex pipeline process is the role of the pro-
jection and viewport transformations. After vertices are transformed from
model space to eye space by applying the ModelView transformation, they
are further transformed by applying the projection transformation (set by the
functions glOrtho(), glFrustum(), or gluPerspective()) into clip space,
and the clipping is done by a separate operation. In fact, the ModelView and
Projection transformations are combined to create the ModelViewProjection
transformation that takes your model into clip space in one operation. The
name “clip space” is used because the projection transformation maps the ver-
tices into a coordinate space in which clipping is easily done. Finally, homoge-
neous division and the viewport transformation convert vertices in clip space
to their integer screen coordinates.

Why is the normal matrix the transpose of the inverse of the ModelView matrix? Let’s
consider a normal vector N to a surface at a point P, and let’s choose a point Q so that
the vector T = Q − P is tangent to the surface at P. Then N × T = 0 or, using matrix
multiplication, NT * T = 0 (recall that if vertices and normals are expressed as column
vectors, a transpose is a row vector, so this is a product of a 1 × 3 and a 3 × 1 matrix, or
a scalar). Then if we apply the transformation M so that P′ = M * P and Q′ = M * Q,
the new tangent vector is T′ = Q′ − P′ = M * Q − M * P = M * (Q − P) = M * T. Now
if we define N′ to be the normal in the transformed space, (N′)T * T′ must be zero. So
if R is the matrix that transforms the normal N to the new normal N′, we have

0 = N′T * T′ = (R * N)T * T′ = (NT * RT) * (M * T) = NT * (RT * M) * T.

Since NT * T = 0, the middle term RT * M must be the identity, so RT * M−1 and finally
R = (M−1)T.

In fact, this process is less mysterious than it might seem, because if only rotation
is done, the matrix is orthonormal. One property of an orthonormal matrix is that its
inverse is equal to its transpose. In that case, the normal is transformed by the same
rotation that transforms the vertices.

10 1. The Fixed-Function Graphics Pipeline

With this processing for vertex coordinates, what is done for normals? In
order to compute normals accurately, OpenGL uses a Normal transformation
that maintains the normal property: if the normal vector is transformed by the
normal transformation, the result is still normal to the transformed surface.
This is implemented by the normal matrix, computed by taking the transpose
of the inverse of the upper-left 3 × 3 submatrix of the ModelView matrix. The
normal matrix is updated automatically whenever the ModelView matrix is
changed, so it does not need to be re-created each time a normal is processed.

We want to remind you that vertex lighting color computation is han-
dled in the vertex processor. This is not always obvious. If you generate colors
for your scene by using lighting and materials specification instead of simply
specifying colors for each vertex, you define a number of parameters for the
lights and for the materials of each object. This information is available to the
vertex processor, and the lighting model you specify is applied to compute a
color for each vertex. In any case, whether you use a lighting model or not, the
color of each vertex is passed into the rendering process, not calculated while
rendering.

Rendering Processing

In the rendering process, the vertex data from the vertex pipeline (pixel posi-
tion, depth, color, and texture coordinate) is used to define the set of pixels that
make up a graphical object and to calculate the color for each of these pixels.
This process associates the graphics primitive specification, the appearance
information you specify for each vertex, such as the actual texture to be used,
and directions on how appearance processing is to be done, to create the actual
image.

Primitive specifications define the way a sequence of vertices is to be used
to define a geometric object, and this quickly reduces to the question of defining
a single polygon. Polygons are defined to be planar and non-self-intersecting

(though OpenGL does not check this). Further, in
OpenGL a polygon is always assumed to be convex,
that is, to have the property that any line segment
whose endpoints are inside the polygon must itself
lie completely within the polygon. This is shown in
Figure 1.6 (although to be strict with the definition,
the rightmost figure isn’t really a polygon, since it
self-intersects). If you should define a non-convex
polygon, it is usually processed in a way that is
inconsistent with your intent.

Figure 1.6. A convex (allowed) polygon (left)
and two non-convex (not allowed) polygons
(middle and right).

11How the Traditional View Is Implemented

Any convex polygon can be triangulated, or broken
up into triangles, by choosing any vertex and constructing
a triangle fan by processing the vertices in order, starting
with that vertex. (A non-convex polygon does not have that
property, even though you might be able to find a way to
make up the polygon from triangles, as is the case with the
middle example of Figure 1.6.) This concept also extends
to other geometry constructors, such as quad strips; an
OpenGL quad strip is defined in such a way that it can
as easily be viewed as a triangle strip. Since OpenGL only
handles convex polygons, we can assume polygons are
convex, and so we can simply use triangles as our model
for polygon processing.

A key concept in rendering is interpolation. Given a
set of vertices in screen coordinates and a polygon defined
by their grouping, interpolation is needed to determine the
edges that bound the polygon, and interpolation is again
needed to fill the interior of the polygon. The interpolation
not only creates locations to be filled, but also interpolates
all the accompanying properties, such as depth, color, and
texture coordinates. Interpolation is supported by graph-
ics hardware; in the fixed-function rendering pipeline, this
handles simple interpolation (needed for depth or smooth
shading) and perspective interpolation (needed for accu-
rate coordinates, especially texture coordinates).

The interpolation for smooth-shaded color or for
depth is linear interpolation of these values at the vertices or the endpoints of
an edge. This interpolation first interpolates the vertex colors along the edges
of the object and then interpolates the edge colors across the interior of the
object. This interpolation may not be exactly as you imagined it would be.
Figure 1.7 (top) shows a simple quad having one blue, one green, and two red
vertices, with fixed-function color interpolation across the interior. You see
that the shading looks as though there were two triangles that were interpo-
lated separately, one including the top right vertex and the other including the
bottom left vertex, as shown in the bottom image in the figure.1 This is obvi-
ously a weakness in simple interpolation shading that we would like to be able
to deal with, as we will discuss in Chapter 15.

1. You can tell that something is not right in the way this quad is being rendered because the upper-left
to lower-right diagonal has just green-blue colors on it. There is no evidence of red on the diagonal
despite there being two vertices colored red.

Figure 1.7. Linear color interpola-
tion across a polygon.

12 1. The Fixed-Function Graphics Pipeline

There is also an interpolation for texture coordinates.
The texture coordinates for each vertex are interpolated to
get the texture coordinates for the boundary pixels, and
the texture coordinates of the endpoints of a fragment are
interpolated to get the texture coordinates for each pixel in
the fragment. After the texture coordinates for each pixel
are computed, the texture coordinates are sent to the tex-
ture space and texel values are returned to be combined
with other pixel information as specified in your texture
specifications.

The kind of interpolation done for texture coordi-
nates depends on your texture quality hint. If you ask for
“fastest” you might get a simple linear interpolation, but if
you ask for “best” the texture coordinates are interpolated
based on a perspective interpolation. Figure 1.8 shows the
difference between linear and perspective interpolation
for texture coordinates applied to a single quad seen as
two triangles. Many graphics systems do not distinguish
between “fastest” and “best,” so you may not see this dif-
ference on your own system.

Simple linear interpolation is a familiar technique.
Given a general data value f with values fa and fb at the
two endpoints a and b of a line segment, linear interpo-
lation with linear parameter t is typically given by the
function

1−() +t f t fa b .

If the data values f are in homogeneous coordinates (r, s, t, q) with q ≠ 1, then
you must convert the coordinates into standard form by dividing each f by the
values of q and interpolate the f/q values:

1−() +t f q t f qa a b b .

This last case clearly is the same as the first case if fa and fb are already in stan-
dard homogeneous form.

As usual in interpolations, we notice that if t = 0, the function has value fa,
while if t = 1, the function has value fb. The value of the interpolating parameter
t that would give a particular pixel in the interpolating line can be computed by

t
p p p p

p p

p p p p
p p p p

r a b a

b a

r a b a

b a b a

=
−() • −()

−
=

−() • −()
−() • −()2

Figure 1.8. Texture mapping a check-
erboard pattern on a quad without
perspective correction (top) and with
perspective correction (bottom).

13How the Traditional View Is Implemented

where pr = (xr, yr) gives the coordinates of the pixel in pixel space and pa = (xa, ya)
and pb = (xb, yb) give the screen coordinates of the endpoints in pixel space of
the line segment containing the pixel.

Simple linear interpolation like this is readily supported by graphics
hardware and is used to interpolate simple values such as depth and smooth-
shading color. But it has some problems if we use simple linear interpolation
in model space when the real graphical meaning of those values is determined
in clip space. For interpolating these kinds of values, such as texture coordi-
nates, we need to do the actual interpolation in clip space. That is more inter-
esting. For these values, instead of linear interpolation, OpenGL uses a modi-
fied interpolation function (using the same parameter t as above) given by

1
1
−() +
−() +
t f w t f w
t w t w

a a b b

a a b bα α
,

where α = 1 unless you are interpolating textures and the texture coordinates
(s, t, r, q) have q ≠ 1; in that case αa = qa and αb = qb. Further, wa and wb are the
fourth coordinate of the endpoints a and b in homogeneous clip space. Again, if
t = 0, we simply get the value fa and if t = 1, we get fb (or their homogenized value
if f is a texture coordinate). We may call this a perspec-
tive interpolation, because it is really only different from
linear interpolation when clip space is different from
eye space, which happens with a perspective projection.
This interpolation can be quite non-linear if the original
endpoints a and b have different z-values, because the
values of wa and wb are generally the reciprocals of those
z-values. Figure 1.9 shows how a value (in this case one
of the coordinate values) is interpolated by this process
between two endpoints; notice that this is not linear.

Although we think of depth in terms of the z-val-
ues in clip space, depth computations are not done with
these values. That is, the depth buffer is not a traditional
z-buffer. The depth value for a pixel in screen space is
represented in fixed-point form (effectively as an inte-
ger) with at least as many bits as are in the depth buffer,
and the depth buffer stores these values, truncated if nec-
essary, for depth comparisons. Thus, the depth value is
aliased, and to minimize aliasing problems, you want to
define your near and far clipping planes so the distance
between them is as small as possible. The near clipping

Figure 1.9. Interpolating the x-coordi-
nates of two points in 2D eye space. The
points are (-3, -1, 3, 1) and (3, -1, 5, 1) in
3D eye space.

14 1. The Fixed-Function Graphics Pipeline

plane has the smallest depth value, while the far clipping
plane has the largest. The linear interpolation calculation
based on the depth value of the endpoint of a line seg-
ment or fragment gives the depth for a given pixel.

In the final phase of pixel processing, these pixels
are sent to the final stage of the rendering pipeline after
they are computed, but before they are written to the
framebuffer. These final stages handle several opera-
tions, including masking, depth testing, and alpha
blending. The integer depth value is used in depth test-
ing, and pixels are ignored if their depth exceeds the
depth of that pixel already in the depth buffer. If the
aliased depth values of two pixels are the same, only
one of them can be used. This can lead to unusual sur-
face behaviors such as uneven boundaries between
objects that intersect at a very shallow angle; this is

called z-fighting. This is illustrated in Figure 1.10, which shows two quads that
differ in depth by only a very small amount; you can see that there is no con-
sistent calculation of depth priority for the polygons. Blending uses the alpha
value for each pixel, from the color setting, material definition, or alpha com-
ponent of the texture, and should be familiar to you. Masking is handled by
scissors testing, alpha testing, stencil comparison, or other logical operations.

So the overall geometry and rendering processing includes many steps,
but OpenGL organizes them in a reasonable and manageable order and gives
the programmer the tools to do sound basic computer graphics while work-
ing at a relatively high level. The success of OpenGL in making high-quality
computer graphics accessible to the general computing environment is one of
the true success stories in computing—but it has gone about as far as it can
go, and this book is about the next step in making ever-better graphics widely
accessible.

Homogeneous Coordinates in the Fixed-Function Pipeline

Homogeneous coordinates are often treated lightly, if at all, in a beginning
graphics course, but it can be very important to understand them in more
advanced work because they affect the way OpenGL works. Homogeneous
coordinates refers to vectors in 4-dimensional real space whose fourth coor-
dinate is often unitary. The components of a vertex have the name conven-
tions (x, y, z, w), and a vertex in standard form has w = 1. You may have
used 2D or 3D vertices in your graphics programs, but internally in OpenGL

Figure 1.10. An illustration of z-fighting,
with the area where two polygons inter-
sect having depth aliasing problems.

15How the Traditional View Is Implemented

these are always treated as points in 4-space. If you specified a vertex with
glVertex2f(x,y), then the point (x, y, 0, 1) was used. If you specified a ver-
tex with glVertex3f(x,y,z) then the point (x, y, z, 1) was used. And if you
specified a vector with glVertex4f(x,y,z,w), but the 3D point you specified
was really (x/w, y/w, z/w, 1). For example, the homogeneous points (1, 2, 3, 1),
(2, 4, 6, 2), and (−1, −2, −3, −1) all represent the same (1, 2, 3) 3D point.

This apparent confusion between 3D and 4D space, and the apparently
arbitrary decision to always want a unit value for w seem awkward; why do
it this way? One reason is that it allows for perspective division within the
matrix mechanism. The OpenGL call

glFrustum(left, right, bottom, top, near, far)

creates this matrix:

′
′
′
′

=

∗
−

+
−

x
y
z
w

2 0near
right left

right left
right lefft

near
top bottom

top bottom
top bottom

far near
far

0

0 2 0

0 0

*
−

+
−

− +()
−−

−
−

−

near
far near

far near
2

0 0 1 0

1* *

x
y
z

.

This gives w’ = –z, which is the necessary divisor for perspective.
This approach also gives us a way to work with a more general geom-

etry than simple 3D space. As another way of thinking about homogeneous
coordinates, consider the four homogeneous points (1, 2, 3, 1), (1, 2, 3, 0.1),
(1, 2, 3, 0.01), and (1, 2, 3, 0.001). In standard form, these points are (1, 2, 3, 1),
(10, 20, 30, 1), (100, 200, 300, 1), and (1000, 2000, 3000, 1). In mathematical terms,
the homogeneous coordinates of a point in 4-space are the representation in
three-dimensional projective space of the line through the point and the origin,
and the point (1, 2, 3, 0) is the “point at infinity” in the (1, 2, 3) direction.

We will sometimes find it important to consider vectors defined by their
two endpoints, and we often think of these as being defined by simply doing
a vector subtraction of the coordinates of the endpoints. This is not exactly the
case for vertices in 4-space, or more specifically, for vertices in homogeneous
coordinates. In this case, as well as addition in homogeneous coordinates, we
must think a little more carefully about the question.

To compute the difference between two points in 3-space when they are
represented in 4-space, we start with the vectors in 4-space, convert them to

16 1. The Fixed-Function Graphics Pipeline

3-space, take the difference, and find an appropriate representation of that dif-
ference. We have

x y z w x y z w
x y z
w

x y z
w

w x

b b b b a a a a
b b b

b

a a a

a

a b

, , , , , ,
, , , ,

() − () = ()
−
()

=

,, , , ,
.

w y w z w x w y w z
w w

a b a b b a b a b a

a b

() − ()

Now the denominator in the right-hand side is a scalar, so if we only want a
unit direction vector, we can simply normalize the numerator as

 v w x w x w y w y w z w za b b a a b b a a b b a= − − −()normalize , , .

If both of the original vectors were already in homogeneous form with wa and
wb both equal to one, this reduces to the standard form for the difference of two
vectors.

Light position is specified in homogeneous coordinates with four values
that actually position the light in projective 4-space. If the w component is not
zero, the light position is an ordinary point in 3D world space whose x-, y-,
and z-values are given when the point is converted to standard homogeneous
form. But if you use a light position whose homogeneous coordinate w is zero,
the light is treated as a directional light, because the position is the “point at
infinity” of projective space. Modeling and viewing transformations affect the
direction of the light, but they do not affect light’s position.

Texture coordinates are also stored as real 4-vectors, just like vertices, but
they also include the possibility of a one-dimensional case. Texture coordinate
components have name conventions, just as vertices do; for textures, these are
(s, t, p, q). (The letter p is used for the third texture coordinate instead of r in
order to avoid confusion with the letter for the color red.) If you specify a 1D
texture with a value of s, the t and p values are set to 0 and the q value is set to 1.
The 2D and 3D texture coordinates are set in the same way.

Color is also stored internally in four dimensions in RGBA form, and if
you only specify a color in RGB form, its alpha component is set to 1. Normal
vectors are always defined to be three-dimensional, as in glNormal3f(x,y,z),
so there are no homogeneous-coordinate issues with normals.

Graphics cards’ reliance on 4-vectors lets them adopt a uniform data path
that is four floats wide. This lets cards become, in effect, array processors, and
is part of the reason that graphics cards can speed up the pipeline processes
so effectively.

17Vertex Arrays

Vertex Arrays

Throughout this chapter, in order to keep the concepts clear, we have been
talking about the graphics pipeline as it operates on simple vertices and
primitives. In actual applications, however, there are techniques that greatly
increase the speed of graphics processing. One such technique is called vertex
arrays. You may have already met this in an earlier computer graphics course,
but if you have not, we want to give you a quick look at it here.

Vertex arrays are created on the host CPU to store vertex coordinates
and vertex attributes. These arrays are transmitted to the graphics card along
with indices that tell what vertex numbers need to be connected in graphics
primitives. This way, each vertex is only transformed once, and there are fewer
overall function calls.

Vertex arrays are activated with the command

glEnableClientState(type)

where type includes

GL_VERTEX_ARRAY
GL_COLOR_ARRAY
GL_NORMAL_ARRAY
GL_SECONDARY_COLOR_ARRAY
GL_TEXTURE_COORD_ARRAY

This function lets you enable all the vertex arrays you need to describe vertex
data.

To deactivate a vertex type, use

glDisableClientState(type)

Once you have activated the vertex state(s) you need, you can fill the
arrays by simple array operations, such as these for vertex data:

static GLfloat Vertices[][3] = {
{
 { 1., 2., 3. },
 { 4., 5., 6. },
 . . .
};

Similar operations could fill arrays for colors, normals, and texture coor-
dinates, as noted above. To specify that an array will be used as a vertex array,
you use the functions

18 1. The Fixed-Function Graphics Pipeline

glVertexPointer(size, type, stride, array);
glColorPointer(size, type, stride, array);
glNormalPointer(type, stride, array);
glSecondaryColorPointer(size, type, stride, array);
glTexCoordPointer(size, type, stride, array);

that let you specify that an array is to be used for vertex
coordinates, colors, normals, etc. Here, size is the dimen-
sion of a vertex and can be 2, 3, or 4; type can be any of
GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE; and array is
the name of the corresponding data array. The variable
stride is the byte offset between consecutive entries in the
array (0 means tightly packed) and is most easily set with
the sizeof() function.

As an example, let’s draw the standard RGB cube
whose vertices are indexed in Figure 1.11 by specifying its
vertex coordinates and vertex colors. We set vertex 0 to be
black, its adjacent vertices 1, 2, and 4 to be red, green, and
blue respectively, vertices 3, 6, and 5 to be yellow, cyan, and
magenta respectively, and vertex 7 to be black.

The following statements set up these arrays:

 static GLfloat CubeVertices[][3] =
 {
 { -1., -1., -1. },
 { 1., -1., -1. },
 { -1., 1., -1. },
 { 1., 1., -1. },
 { -1., -1., 1. },
 { 1., -1., 1. },
 { -1., 1., 1. },
 { 1., 1., 1. }
 };

 static GLfloat CubeColors[][3] =
 {
 { 0., 0., 0. },
 { 1., 0., 0. },
 { 0., 1., 0. },
 { 1., 1., 0. },
 { 0., 0., 1. },
 { 1., 0., 1. },
 { 0., 1., 1. },
 { 1., 1., 1. },
 };

Figure 1.11. A cube with vertices
numbered to match the RGB cube.

19Vertex Arrays

Then we can draw the RGB cube using the glArrayElement() function
and simply list all the vertices by their index. The geometry and color for each
vertex is used as if the glVertex() and glColor() statements were given for
each vertex.

 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_COLOR_ARRAY);
 glVertexPointer(3, GL_FLOAT, 0, CubeVertices);
 glColorPointer(3, GL_FLOAT, 0, CubeColors);
 glBegin(GL_QUADS);
 glArrayElement(0);
 glArrayElement(2);
 glArrayElement(3);
 glArrayElement(1);
 glArrayElement(4);
 glArrayElement(5);
 glArrayElement(7);
 glArrayElement(6);
 glArrayElement(1);
 glArrayElement(3);
 glArrayElement(7);
 glArrayElement(5);
 glArrayElement(0);
 glArrayElement(4);
 glArrayElement(6);
 glArrayElement(2);
 glArrayElement(2);
 glArrayElement(6);
 glArrayElement(7);
 glArrayElement(3);
 glArrayElement(0);
 glArrayElement(1);
 glArrayElement(5);
 glArrayElement(4);
 glEnd();

This feels rather long and inelegant, and not very productive. But we
can also define an array that holds the indices of the vertices on each of the six
faces of the cube and use the glDrawElements() function.

 static GLuint CubeIndices[][4] =
 {
 { 0, 2, 3, 1 },
 { 4, 5, 7, 6 },
 { 1, 3, 7, 5 },
 { 0, 4, 6, 2 },
 { 2, 6, 7, 3 },
 { 0, 1, 5, 4 }
 };

20 1. The Fixed-Function Graphics Pipeline

 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_COLOR_ARRAY);

 glVertexPointer(3, GL_FLOAT, 0, CubeVertices);
 glColorPointer(3, GL_FLOAT, 0, CubeColors);
 glDrawElements(GL_QUADS, 24, GL_UNSIGNED_INT, CubeIndices);

which is certainly shorter and feels somewhat more elegant.
Notice that the CubeIndices array is never named by a pointer-
specifying function; it is simply an ordinary array of indices.
The result is shown in Figure 1.12.

This is a very simple example, but in applications it is not
uncommon to have these arrays contain hundreds, if not thou-
sands, of vertices, and to have large portions of scenes cap-
tured in single arrays. This is sound data encapsulation and
re-use, and it makes scenes much faster to render.

Vertex arrays are stored on the client, or host, side of the
bus. That means that they are not as efficiently accessible to the
graphics card as they could be. Vertex buffer objects (VBOs),
which operate just like vertex arrays but live on the graphics
card side, are a more efficient way to encapsulate graphics

geometry. VBOs are created and used almost identically to vertex arrays, with
a few small differences. See the OpenGL “Red Book” [41] for details.

Conclusions

The fixed-function graphics pipeline has shown itself to be very valuable in
creating a model for computer graphics that has become widely used. It can be
implemented in both software and hardware with predictable results across
all computing platforms. Its fully determined processing lets most graphics
operations be optimized and moved into silicon. These well-designed data
paths let graphics use parallel processing to handle vertex data uniformly, and
the parallel architecture of graphics cards lets the rendering processor handle
many pixels simultaneously. The number of vertex and fragment processors
on a card is continually growing, and as of this writing has reached as high
as 128. This speeds fragment processing significantly.

As we go through the traditional fixed-function pipeline, however, we
see that there are some kinds of graphics operations we would like to do that
are simply hard to handle. All of these have been done in specially built com-
puter graphics systems, often in research environments, and it is a goal of the

Figure 1.12. The RGB cube
produced by the code above
(with axes added).

21Exercises

evolving computer graphics APIs to provide more and more of these abilities.
Among these are

• Eye-space-dependent modeling, in which objects are only defined relative
to the eye. A good example of this is a rainbow, which depends critically
on objects (water droplets) that define a particular angle between the eye
and the light.

• Ability to work in world space as well as model space and eye space.
• Phong shading, in which the normal vector is interpolated across poly-

gons, and the color of a pixel is determined by the standard lighting
model applied pixel-by-pixel rather than by interpolating the colors of
the vertex pixels.

• Anisotropic shading, in which light is reflected from objects differently
than the assumptions on which the ambient-diffuse-specular lighting
model is based.

• Texture effects that are completely scale-independent, for which you can
zoom in on textured geometry and always get a texture that is exactly
right for the scale being used.

• Nonphotorealistic rendering, in which the rendering creates effects that are
not explicit in the geometry and appearance information.

• Image processing techniques that take advantage of the ability to access and
work with individual values in a texture.

• Creating geometry as needed with the geometry shader to create effects
such as level of detail that adapt themselves based on the nature of the
screen space for the image.

• Creating detailed tessellations of an object based on relatively simple object
definitions.

We will see all of these things as we move through the rest of the book.

Exercises

1. The perspective transformation into clip space is performed simply by
dividing each of the x- and y-coordinates (as well as the w-coordinate,
actually) by the z-coordinate for each point. Create a model that you will
view with perspective, and hand-compute an alternate model by carrying
out the perspective transformation yourself. That is, create a new model
in which the old model’s clip space is the new model’s world space. Then
draw both models and compare the results.

22 1. The Fixed-Function Graphics Pipeline

2. In this chapter, we claimed that it was easy to create the inverse of any
transformation that is built with only rotation, scaling, and translation.
Verify this symbolically and use the OpenGL matrix operations to verify
it numerically.

3. When we use flat shading for a graphic object, we usually set the color
before we define the first vertex. In principle, though, we could set a
separate color for each vertex. Try this, creating a graphics object and
calling glColor3f(...) with a different color before each vertex. What
conclusions can you draw about when the color value is set for an
object? For example, is it set the last time glColor3f is called? The first
time? Compare your results with others to see if this is consistent across
OpenGL systems.

4. The way the colors in Figure 1.7 are interpolated suggests that the quad
is actually drawn as two triangles. First, verify this for your own OpenGL
system, because your system may implement quads differently from
ours. Second, extend this by adding more vertices in different colors to
create polygons by extending the quad, and see if you can identify the
way the polygon is implemented. (Our systems seem to implement poly-
gons as triangle fans.)

5. Experiment with non-convex polygons by defining such a polygon with
color or lighting information at each pixel and seeing what your OpenGL
system actually draws. Carefully describe what you see, and develop an
explanation for it.

6. While polygons are defined to be planar, you can readily give OpenGL
a set of non-planar vertices within a GL_QUADS or GL_POLYGON primitive.
Experiment with what happens when you give a set of non-planar ver-
tices to a quad or a polygon, and discuss why your results are plausible.

7. Experiment with z-fighting by drawing two polygons that meet at a very
shallow angle, as shown in Figure 1.10. When you get an example of
this problem, look at the depth of your projection’s viewing volume, and
adjust its front and back planes to make the depth as small as possible.
Does this reduce the z-fighting problem? Does it eliminate the problem?

8. Create a model with vertices, vertex colors, and normals and store it using
vertex arrays. Display it without shading, using the vertex colors, with the
glDrawElements() technique instead of the usual glBegin()-glEnd()
approach. Then change the model to use a single color and the normals
and use smooth shading to display it.

23Exercises

9. Experiment with rendering efficiency benchmarks. Create a reasonably
large amount of geometry and render it using

 glBegin-glEnd in immediate mode
 glBegin-glEnd in a display list
 Vertex Arrays
 Vertex Buffer Objects

What do these results tell you about your graphics card and its driver?

This page intentionally left blankThis page intentionally left blank

25

OpenGL Shader Evolution2

In its early days, computer graphics had no standard programming models.
Vendors provided a low-level interface to their hardware, and each person or
group then developed their own approach to taking geometry and appear-
ance information and applying their particular algorithms to create a screen
display. It was fun (in a geeky sort of way), but not very efficient or portable.
While many of the images created in this period might seem very simple by
today’s standards, a lot of work went into them, and the basic ideas generated
in those days still impact us today.

Early attempts to reduce the amount of development work needed for
production focused on building graphics standards, but the standards gener-
ally provided only a least-common-denominator level of functions. However,
as standards developed, they led to a growing understanding of the funda-
mental operations needed in the graphics process and provided a rising level

26 2. OpenGL Shader Evolution

of expectations for the quality of images they could produce. In turn, these led
to the graphics engines developed by companies like Evans and Sutherland
(E&S) and Silicon Graphics (SGI) and others that began to implement basic
graphics processes in hardware. These again increased the expectations of per-
formance and quality. A part of the “family tree” of public, non-proprietary
graphics standards is shown in Figure 2.1.

Originally, graphics standards were meant to solve portability problems.
That is, graphics standards enabled programmers to re-deploy existing appli-
cations on different hardware systems with a minimal amount of work. But as
hardware acceleration became more common, graphics standards also became
a blueprint for what operations needed to be accelerated.

For example, in order to take advantage of the SGI graphics engines,
the engineers at SGI also developed a graphics API that mapped well to the
engines’ processes. This was Iris GL, and it made developing graphics applica-
tions so much more straightforward that an industry-wide version was cre-
ated. The resulting OpenGL API can be said to have been one of the key factors
that has made graphics so ubiquitous in the computing world. Of course, oth-
ers have looked at OpenGL and have believed they could do better by match-
ing the API more closely to their particular platforms or by extending the func-
tionality of the API in different ways, so we continue to find ourselves in a
world with many competing “standards.”

OpenGL makes no assumptions of hardware support. The spec only says
what should be done, not how it should happen, or how fast. It is possible
to implement OpenGL entirely in software without affecting the applications
in any way except speed. However, many—perhaps most—graphics appli-
cations need to create images at interactive speeds. This is particularly true

Figure 2.1. Some graphics standards that led to OpenGL.

27History of Shaders

for real-time applications such as games and simulation. So simple “graphics
cards”—cards that contained a graphics memory and acted as a simple frame-
buffer—were replaced by cards that included onboard graphics operations
and eventually the full fixed-function graphics pipeline that we discussed
in the previous chapter. These provided a great increase in graphics speed,
but the graphics audience wanted more. It’s a truism is that you can never be
too thin or too rich—but in computer graphics you can never have too much
speed or too much resolution or too many colors. As a community, we are very
greedy—and proud of it!

While simple graphics cards were a great improvement over software
rendering, they were restricted to what the fixed-function pipeline could do,
and they did not support many effects and capabilities that a creative graphics
programmer might want. The next step, where we are now, was to make the
cards programmable so that extra functionality could be added as needed. With
emerging systems such as OpenGL ES (for embedded systems such as PDAs
and cell phones) having no fixed-function pipeline, and with core OpenGL
4.0 replacing the fixed-function approach with a shader-required approach, it
seems clear that shaders are increasingly central to computer graphics appli-
cations and that anyone planning to do serious graphics work will need to
become skilled in shader programming and development.

History of Shaders

Even though GPU-based shaders are a relatively recent phenomenon, the
overall history of shaders goes back about 30 years. Looking back, it could be
considered to have started in 1977, with the release of a low budget movie that
was to grow into a cult phenomenon: Star Wars Episode IV: A New Hope.

Star Wars IV was revolutionary in using models and robotic-controlled
cameras to create the illusion of actual moving space ships in a fierce battle. It
did use computer graphics, but not much. What it did use was well below the
capabilities of that time, but the astonishing box office success of the movie
demonstrated that special effects sell tickets. But for future movies, it was real-
ized that it would be difficult to greatly scale up the use of physical models.
However, George Lucas was a man with a vision—and, more importantly, the
movie had given him the funds to implement that vision.

Turning to computer graphics, Lucas hired Ed Catmull and others from
the New York Institute of Technology around 1980 to become the Computer
Division of Lucasfilm. Their efforts at Lucasfilm had three thrusts:

28 2. OpenGL Shader Evolution

• Digital editing and compositing.
• Hardware for 2D image processing.
• Hardware for 3D graphics rendering.

In 1983, Lucasfilm spun off the 2D and 3D groups into their own com-
pany, called Pixar, and sold it to Steve Jobs in 1986. The 2D Image Processing
group produced the Pixar Image Computer (PIC), a hardware device to perform
image processing. The PIC used 4-way SIMD (single instruction multiple data)
operations to perform image processing on all four RGBA components simul-
taneously. Thus, when we say in GLSL

vec4 rgba;
. . .
rgba *= 0.5;

we are using the modern-day evolution of the PIC SIMD paradigm. Despite
its technical success, Pixar eventually discontinued work on the PIC to focus
on 3D rendering.

The Pixar rendering group’s intention was to create a hardware render-
ing device. But first, a software prototype of that device needed to be devel-
oped. This was known as the REYES system, a tribute to Point Reyes in north-
ern California, and also an acronym for Renders Everything You Ever Saw.

Figure 2.2. The Stained Glass Knight from Young Sherlock Holmes. (Copyright Paramount
Pictures; used by permission. Image courtesy of Pixar Inc.)

29History of Shaders

In 1984, Rob Cook from Pixar published his landmark “Shade Trees” paper
[10], in which he showed how the rendering process could be user-manipulated
by writing “scripts” and inserting them in the proper places in the rendering
pipeline. His paper’s abstract says it all, and is still appropriate today:

Shading is an important part of computer imagery, but shaders have
been based on fixed models to which all surfaces must conform. As
computer imagery becomes more sophisticated, surfaces have more
complex shading characteristics and thus require a less rigid shading
model. This paper presents a flexible tree-structured shading model
that can represent a wide range of shading characteristics.

The Shade Tree concept allowed developers to create many different
effects without having to constantly be adding new code permanently into the
renderer. One of the first commercial uses of these shaders was in the movie
Young Sherlock Holmes in 1985, which created the Stained Glass Knight shown
in Figure 2.2. (If you’ve never seen this movie—egad!—you really need to go
rent it! No computer graphics background is complete without having seen it.)

In the meantime, work on hardware rendering continued along with the
REYES software prototype. Someone made the comment that someday every-
one will carry a small rendering box around on their belt with them. It will
be like a Sony Walkman, they said, but instead would be called a RenderMan
[38] [43], and a name was born. Eventually, the hardware idea was dropped
in favor of a general-purpose software solution, which became the package
Photorealistic RenderMan (prman).

In the meantime, others took the idea of shaders and developed differ-
ent software and hardware approaches to creating graphics scenes. In 1985,
Perlin [34] published his landmark Image Synthesizer paper. His use of a pro-
cedural noise function to make surfaces more interesting probably did more to
promote the use of shaders than any other development. However, it is often
overlooked that this work created surface shading functions with expressions
and flow control, and thus also showed the graphics community how much
could be done with procedural languages in the graphics pipeline.

In 1998, Olano and Lastra [31] developed a shading language for the
PixelFlow graphics system. PixelFlow was a very innovative approach to fast
graphics developed at the University of North Carolina. Some of its ideas on
parallelism can be seen to have influenced today’s graphics hardware. Their
shading language achieved 30 frames/sec update rates—a first for a shading
language. In 2001, Proudfoot et al. [39] at Stanford developed a higher-level
shading language that could transparently spread its operations to a combina-
tion of CPU and GPU, wherever it made most sense. It was important because it
allowed a graphics programmer to ride the hardware acceleration capabilities

30 2. OpenGL Shader Evolution

curve without changing code. There were many others working in hardware
shaders at that time, and we apologize to anyone whose work we omitted.

By the early 2000s, graphics hardware had become sophisticated and fast
enough that people started thinking that it needed the same sort of flexible
shading capability that Rob Cook had described nearly 20 years before. The
first implementations of this were Cg [29] [16] and HLSL (High Level Shader
Language) [33], which, while separate products, were developed in lockstep
and thus look very similar. Cg was developed by NVIDIA Corporation, while
HLSL was developed by Microsoft as part of its Direct3D graphics API. Close
behind came GLSL (OpenGL Shading Language), created by the OpenGL
Architecture Review Board (ARB).

These three hardware-oriented shader languages do things a little differ-
ently, but all have the same basic functionality: vertex, geometry, and fragment
(or pixel) shaders, a C-like language, and access to key data values within the
graphics pipeline. This book bases all its application examples on GLSL, but
the same underlying concepts are common to all three languages, and the code
can be readily translated between them. If you know one of the three, learning
the other two isn’t hard.

OpenGL Shader History

To understand the nature of OpenGL
shaders, we need to look more
deeply at OpenGL’s evolution, and
particularly to the evolution of shad-
ers and shader technology in the last
few years. Table 2.1 shows the time-
line for OpenGL’s versions.

OpenGL 2.0/GLSL 1.10

This version of OpenGL introduces
shader-based graphics program-
ming, including programmable ver-
tex and fragment shaders and the
GLSL language. Each of these is the
subject of a later chapter in this book.
These shaders restore an enormous
amount of flexibility and creativity

OpenGL Release GLSL Release When
1.0 --- 1993
1.1 --- 1997
1.2 --- 1998
1.3 --- 2001
1.4 --- 2002
1.5 --- 2003
2.0 1.10 2004
2.1 1.20 2006
3.0 1.30 July 2008

3.1, 3.2, 3.3 3.30 July 2009
4.0 4.00 March 2010
4.1 4.10 July 2010
4.2 4.20 August 2011

Table 2.1. Evolution of OpenGL and GLSL.

31OpenGL Shader History

to OpenGL graphics programming, and in some sense all the later OpenGL
developments are mainly evolutions of this approach. This version includes a
few of these evolutionary steps, including

• Vertex buffer objects let you store vertex arrays in graphics memory to
reduce the amount of communication needed between the CPU and card.

• Occlusion queries let you ask how many pixels a particular scene element
would occupy if displayed.

• Texture-mapped point sprites let you create many small 2D objects for
uses such as particle systems.

• Separate stencil operations for front and back faces give you better sup-
port for shadowing.

OpenGL 3.x/GLSL 3.30

OpenGL 3.0 and GLSL 3.00 is a major revision in the standard that reflected
the growing processing power in graphics cards. It introduces geometry shad-
ers, the next development in shader technology and the subject of Chapter 12.
It also includes several new types of objects to store structured data on the
graphics card.

• Frame buffer objects let you render into non-displayable buffers for such
uses as render-to-texture.

• Texture buffer objects allow you to use much larger texture arrays.
• Uniform buffer objects let you define a collection of uniform variables so

that you can quickly switch between different sets of uniform variables
(typically different ways to present a set of primitives) in a single pro-
gram object or share the same set of uniform variables between different
program objects.

All OpenGL buffer objects share the capability to replace a range of data in the
buffer instead of having to replace the data one item at a time.

The OpenGL 3.* and GLSL 3.30 standards also add several new capabili-
ties not available in earlier versions:

• For textures, you can now define a texture array (sometimes called an
array texture) that contains a sequence of 1D or 2D textures of the same
size, so you can use different textures without having to do multiple tex-
ture bindings. You can use rectangular textures, which can be useful for
video processing, though these do not have bias or level-of-detail capabil-
ity. You can also query the size of a texture with the new textureSize()
function.

32 2. OpenGL Shader Evolution

• When variables are interpolated in the fragment shader, you can choose
different interpolation techniques with the interpolation qualifiers cen-
troid, flat, invariant, or nonperspective. The differences are discussed in
Chapter 8.

• There is now a layout qualifier that can be applied to either in or out vari-
ables for some shaders. This qualifier’s effect varies considerably between
shader types, but it includes specifying the position of a vertex shader
input variable in an array, defining the input and output properties for a
geometry shader, or the input coordinates of a pixel in a fragment shader.

• 16-bit floats and 16-bit floating point variables are added, which have less
precision than 32-bit floats but are more compact and faster to compute.

This version also includes significant revisions of the GLSL standard,
moving it away from fixed-function OpenGL by deprecating a number of
capabilities that mirrored fixed-function operations. Because of the large num-
ber of applications that were built with earlier versions of OpenGL and GLSL,
however, this version also supports compatibility mode operation that lets
you use these earlier versions. This book uses GLSL 4.1, but we include several
notes in the appropriate chapters that describe compatibility-mode alterna-
tives. These notes are marked with flags like the one in the margin. Among the
capabilities that have been deprecated are

• any use of the fixed-function vertex or fragment operations; you now
need to use shaders for everything,

• the use of glBegin / glEnd to define primitives; you now need to use ver-
tex arrays and vertex buffers for your geometry,

• use of quad or polygon primitives; you now only use triangles,
• use of display lists; you now use vertex arrays and vertex buffers,
• use of most of the built-in attribute and uniform variables in GLSL; you

now need to define all these in your application and pass them all into
your shaders.

While these features are deprecated, and are thus not guaranteed to be avail-
able in all future versions, you really need not be afraid to use them. They are
said to be going away “at some future time,” but there is some feeling that this
might end up meaning, “when the sun burns itself out.”

OpenGL 4.0/GLSL 4.00

OpenGL 4.0 introduces the final kind of shaders discussed in this book: tessel-
lation shaders. These let you generate new geometry to provide greater detail
in your geometry, and are covered in Chapter 13. One object of this version

33OpenGL Shader History

is to implement shader model 5 by applying more of an object model to the
GLSL shader language. This includes such features as shader subroutines, giv-
ing you runtime selection of the particular function to be called so you can
keep multiple ways of doing things in a single shader.

GLSL 4.00 includes significant developments for geometry shaders,
which are discussed in more detail in Chapter 12. You can now have mul-
tiple iterations of a single geometry shader to create multiple instances of the
shader, letting you recursively subdivide geometry primitives. You can also
create multiple vertex streams from a geometry shader, with the first stream
being the normal output to primitive assembly and the rasterizer, and with
additional streams going to transform feedback objects.

Texture interpolation is enhanced in GLSL 4.00. It includes the texture
gather operation, returning the four texel values that would be returned by
standard texel interpolation so that you can apply your own interpolation to
them.

The GLSL compiler is designed to optimize expressions for the sake of
efficiency, but the optimization makes it impossible to know exactly how an
expression is implemented. GLSL 4.00 introduces the invariant qualifier for
a variable that requires the compiler to compute the same variable expression
the same way in two different shaders. This lets you maintain computational
consistency in multipass algorithms.

With GLSL 4.00, the shader language becomes even more C-like. You
finally get the functionality of the #include statement, you get full 64-bit IEEE
floating point variables with the keyword double, function overloading, and
you get a wider set of implicit type conversions, including float → double,
int → double, uint → double, and int → int. You also get a new operator,
the fused multiply-add, written as fma(a,b,c); this performs the operation
(a*b)+c with a single operation and no loss of precision.

OpenGL 4.x/GLSL 4.x0
OpenGL 4.x and GLSL 4.x0 are probably best characterized by the way they
increase the generality of shader operations. They support shader binaries, pre-
compiled shaders that can be written to a file and loaded separately to save
recompilation, as well as separable shader pipeline stages, linking shaders to
a shader program at runtime so you can select different shader stages then.
This standard level also supports viewport arrays, supporting drawing into
multiple viewports by allowing the geometry shader to select which viewport
to render into.

One of the newest features in OpenGL 4.x and GLSL 4.x0 is the ability to
generate “side effects.” GLSL programs can now read and write to image tex-

34 2. OpenGL Shader Evolution

tures and can perform atomic arithmetic operations in uniform buffers. (This
should keep algorithm developers busy for some time!)

The other key feature of this standard is its relation to OpenGL ES 2.0.
The growing importance of OpenGL ES has made it important to support
application development for both desktop and embedded systems, and this
standard release makes desktop OpenGL a proper superset of OpenGL ES 2.0.
That is, if you develop for OpenGL ES 2.0, your application will run correctly
with OpenGL 4.x and GLSL 4.x0.

Finally, this standard extends the 64-bit floating point capability to vertex
shader input variables (that is, to attribute and uniform variables), allowing
you to do your application computation in double precision and maintain that
precision when your data is sent to the shaders.

What’s Behind These Developments?
This continuing evolution of the OpenGL and GLSL standards is driven by
several factors. One is the continuing emphasis on speed by applications such
as games, and several of the new OpenGL/GLSL features reduce the need for
communication between the CPU and the graphics card or move computa-
tions from the CPU to the card. Another is the increasingly general architec-
ture of graphics cards that corresponds to the increasing use of these cards
for general-purpose computing with tools such as CUDA or OpenCL. These
changes will continue to drive OpenGL and GLSL for the foreseeable future.

OpenGL ES

OpenGL ES 2.0 is designed to support high-quality graphics on embedded
systems such as cell phones. It is based on OpenGL 2.0, but does not support
any fixed-function operations—all the vertex and fragment processing must
be done with shaders. It also does not support tessellation and geometry shad-
ers, just vertex and fragment shaders.

The key issue with embedded systems is the need to operate with limited
memory sizes and limited computing capabilities. Supporting the full set of
fixed-function operations requires a significant memory overhead, but using
shaders only requires memory for the data and operations you actually use.
Only vertex and fragment shaders are supported, however, because geometry
and tessellation shaders may expand the input geometry and require addi-
tional memory.

The OpenGL ES shading language is more restrictive than the GLSL 1.10
that is associated with OpenGL 2.0, however. It does not include the set of

35How Can You Respond to These Changes?

built-in attribute and uniform variables of GLSL 1.10, but requires you to cre-
ate your own variables as needed. This is similar to GLSL 3.30, and in fact
GLSL 4.10 is a proper superset of the OpenGL ES shader language 1.10—if you
write a shader program in OpenGL ES, it will run with OpenGL 4.1.

How Can You Respond to These Changes?

There are two ways you can respond to the continuing evolution of the
OpenGL shader standards.

1. Follow the standards and make continuing changes to your code to use
the latest versions. Do everything the core profile requires. At the top of
your shader sources, put the line

 #version 4.00 core

The advantages of using the latest shader standards are performance
and generality, and by using the right subset of the core profile you can
be compatible with OpenGL ES 2.0. The disadvantage is that the latest
graphics hardware is needed to use these standards and you must com-
mit to continuing code maintenance to keep current as the standards
evolve.

2. Adopt as much of the evolving standards as you want, to take advantage
of ways the changes provide more performance without making your life
too difficult, and use compatibility mode for the capabilities you want to
keep from earlier standards. At the top of your shader sources, put the
line

 #version 4.00 compatibility

This will let you use whatever you like from any earlier version of the
standard.

For example, you may want to target an audience that could not
be expected to have the latest graphics hardware. Or perhaps you may
want to simplify your shaders by using built-in attribute or uniform vari-
able names from OpenGL 2.1, but may want to use tessellation shaders,
or perhaps vertex buffer objects because they are much more efficient
than begin-end primitive definition and they can be disguised to look
like begin-end.

Your code will run at least as fast on the newer cards as it did on
older ones, it may be easier to get people productive with the earlier ver-
sions, and you will not have to rework your existing code.

36 2. OpenGL Shader Evolution

Our Approach in this Book

In this book we take something of a hybrid approach to the question of OpenGL
standard levels. We generally use GLSL at the 1.50 level, but do use many
of the more advanced constructions of OpenGL 3.* and 4.*. We do cover tes-
sellation shaders and geometry shaders, and we use the most current syntax
for passing data between shaders. For the most part, we don’t use the depre-
cated built-in variable names in our sample code. However, to make life easier,
later on we will show you a file we’ve created for our own use, gstap.h, which
#defines the un-deprecated names to the deprecated names. In this way, you
can get the best of both worlds—your code looks cleaner and more modern,
but underneath you are still using the easy-to-get-at built-ins.

Variable Name Convention

As we will discuss in the next chapter, variables take on a number of different
roles for shaders. Two kinds of variables are provided by your application (or
by the OpenGL system, if you are using older OpenGL standards): attribute
and uniform variables. Attribute variables are used to describe individual ver-
tices, while uniform variables are used to define whole graphics primitives
or larger-scale graphics concepts. Other variables are used to pass variables
between shaders: out and in variables. Each shader passes data to other shad-
ers or other OpenGL stages as out variables, and each shader takes data from
other shaders or the application program as in variables.

In this text we will adopt a convention for variable names that are passed
between the application and the various shaders that we will present. This
convention is entirely arbitrary, but it helps us keep track of the source of vari-
ables that come into each of the shaders. We will use the convention in the

Prefix Stage that wrote it Example
a Attribute (from application) aColor

u Uniform (from application) uModelViewMatrix

v Vertex Shader vST

tc Tessellation Control Shader tcRadius

te Tessellation Evaluation Shader teNormal

g Geometry Shader gNormal

f Fragment Shader fFragColor

Table 2.2. Our initial letter naming convention.

37Exercises

shader sources throughout the book, and we hope you will not found it con-
fusing. This convention is shown in Table 2.2.

Thus at the beginning of a vertex shader (for example) we might find data
declarations such as

 in vec4 aVertex;
 in vec4 aTexCoord0;

 uniform mat4 uModelViewProjectionMatrix;

 out vec4 vST;

to pass the vertex coordinates (in model space), texture coordinates, and mod-
elviewprojection matrix into the shader and the texture coordinates from the
vertex shader to be used by the fragment shader. This kind of declaration set
will become quite familiar as you read the examples throughout the book.

Exercises

1. Rent one of the movies mentioned in this chapter and look at the effects
we discussed. You will only see them in TV resolution, but step through
the stained glass knight or the Genesis effect (Star Trek II: The Wrath of
Khan) sections frame by frame and note how each works. For the stained
glass knight, notice the effect of a colored dirty surface that transmits
light from behind it.

2. Take one of the simple vertex shader source files that we use to intro-
duce the shader concepts. You will find some of the data coming from
vertex attributes, some hard-coded, and some coming from uniform vari-
ables defined through glman. For each of these data, identify an original
OpenGL function that would define the data, if possible (some of the
uniform variables do not fit this), and identify the OpenGL 2.1 built-in
variable that would contain the data.

This page intentionally left blankThis page intentionally left blank

39

Fundamental Shader
Concepts3

Shaders in the Graphics Pipeline

Let’s have another look at the graphics pipeline, but let’s break it out in a little
different way than we did in the previous chapter. Let’s add into the pipe-
line the five shaders we are considering in this book: vertex shaders, tessella-
tion control shaders, tessellation evaluation shaders, geometry shaders, and
fragment shaders. This expanded view of the pipeline is shown in Figure 3.1,
where the positions of the shaders in the pipeline suggest the functions that
each provides. While it is not obvious from the diagram, each shader block is
in an alternate branch of the pipeline; they are optional capabilities that may or
may not be used for any application. You may use any combination of vertex,
tessellation, geometry, or fragment shaders in your program; you do not have
to use any particular combinations, although, in general, if you use any shad-

40 3. Fundamental Shader Concepts

ers, you usually are required to include a vertex
shader, too.

When you’re developing shaders, however,
you don’t necessarily need to think of the entire
graphics pipeline like this. For each individual
shader, it is helpful to understand what data
comes into this shader, what this shader can do
with it, and what new data gets transmitted to
the next stage. For this, it’s interesting to consider
how the graphics pipeline looks to shaders; this
is shown in Figure 3.2, with an emphasis on how
data moves among the shader stages. Of course,
if you choose not to include any shader stage, the
in/out variables from the previous stage simply
skip the omitted stage and go on to the subsequent
stage.

Notice in Figure 3.2 that all attribute variables
are input to the vertex shader, and all uniform vari-
ables are input to whatever shader needs them.
Uniform variables are written by the application;
none of them can be written by any shader. Any
computation that needs to pass data on to the next
shader must do so through an out variable, and
that variable must be read (as an in variable) and
passed along (as an out variable) by intermediate
variables until it is used.

Let’s consider how the separate functional-
ities of the graphics pipeline might be enhanced by
using shaders. To begin, let’s look at the modeling
functions that begin the geometry pipeline. In the
standard pipeline, you define the vertices of your

model either by using specific statements, such as glVertex3f(2.0, -1.0, 3.0),
or by using a computation to create the vertex coordinates. You can add other
geometric information such as normals and texture coordinates as you need
them and as they are available. You can also add appearance information.
This may be done while the geometry is defined, as you might do with colors
through the glColor*(...) function. Another approach to appearance defines
and enables environments such as lighting, with its associated materials defi-
nition, or textures, with their associated texture parameters, texture environ-
ment, and texture image.

Figure 3.1. The expanded graphics pipeline,
with programmable stages shown in green
and fixed-function stages shown in orange.

41Shaders in the Graphics Pipeline

The geometry operations in
the fixed-function pipeline can be
replaced and possibly expanded by
any (or all) of the GLSL vertex shad-
ers, tessellation shaders, or geom-
etry shaders. A vertex shader only
operates on one vertex at a time and
can take the initial vertex definition
and alter it by changing the values
of the position, normal, or texture
coordinates. As we will see, the ver-
tex shader must set the transformed
position of each vertex. It may also
set the color for the vertex, espe-
cially if per-vertex lighting is used.

The tessellation shaders take
a set of points called a patch, which
can represent anything, and inter-
polate the points to create a new
geometry. You get to define what
meaning these points have. The
tessellation shaders will then assist
you in creating new geometry from
them.

A geometry shader can take a graphics primitive from a vertex shader
and create one or more new primitives. Geometry shaders can do the same
computation as a vertex shader to compute the full geometry and color of each
new vertex. They can also prepare variables for later use by a fragment shader.

The final shader capability is fragment processing, done by the fragment
shader. This takes the information developed by vertex processing (vertex
shader, tessellation shader, or geometry shader) and expands the traditional
fragment operations by letting you operate on each fragment individually to
generate the color of its pixel. This is a highly parallel operation that can apply
traditional or procedural textures; special coloring, such as pseudocolor trans-
fer functions; and advanced kinds of shading, such as Phong or anisotropic
shading. The operation can also determine whether its pixel is to be retained
or discarded for the final image. The fragment shader has the strongest impact
on the visual effect of your images.

In the next few sections, we will look at the functionality of each shader
by looking at simple examples. For reference, a sphere with only standard

Figure 3.2. The shader’s-eye view of the pipeline.

42 3. Fundamental Shader Concepts

fixed-function processing is shown in Figure 3.3. In each sec-
tion, we will outline the shaders’ operations and give a short
example of a vertex and a fragment shader that produce the
figure; we will then give a brief description of the GLSL shader
language, so you can see the language features that we use in
the examples. A more complete discussion of GLSL will come
in Chapter 5.

In the next chapter, we’ll describe the glman tool that lets
you create and experiment with shaders without having to
write a complete application; here, it is useful if you see how
you could define this image with glman. Here is the GLIB file
that sets up the image and specifies the shaders to be used:

Vertex Sphere.vert

Fragment Sphere.frag

Program Sphere

Color 1 0.5 0
Sphere 2.0 100 100

We will provide the vertex and fragment shader files for this example
later in this chapter.

Vertex Shaders

A GLSL vertex shader takes the vertex and environment information that is
stored by the OpenGL system and makes it available to you through a set
of uniform and attribute variables, so that you can do your own vertex com-
putations. Later in this chapter, we will outline some of the highlights of the
GLSL shader language, including these commonly used uniform and attribute
variables. Vertex shaders act on geometry that is usually given in model space
coordinates and produce geometry that is output in 3D clip space; all projec-
tion and clipping is done later in the graphics pipeline. Vertex shaders must
do much more than that, however. A GLSL vertex shader replaces these opera-
tions in the fixed-function geometry pipeline:

• Vertex transformations.
• Normal transformations.
• Normal normalization (i.e., turn it into a unit vector).
• Handling of per-vertex lighting.
• Handling of texture coordinates.

Figure 3.3. A sphere with sim-
ple color, diffuse lighting, and
smooth shading.

43Shaders in the Graphics Pipeline

These are very important operations. Fortunately, the necessary informa-
tion is readily available, and the operations you need to perform are expressed
well in the GLSL language, which handles vector and matrix operations with
ease.

However, a GLSL vertex shader does not replace all of the operations in
the geometry pipeline. In particular, it does not replace the operations that
take the clip space to the final pixel space. The specific functions that are still
done by the fixed-function pipeline are

• View volume clipping.
• Homogeneous division.
• Viewport mapping.
• Backface culling.
• Polygon mode.
• Polygon offset.

A key function of a vertex shader is to take all attribute variables and
either use them or copy them into out variables for later shaders to use.

Vertex shaders have several kinds of output. The most important are the
transformed vertices and the color associated with each vertex. Of course, the
vertex shader can compute or re-compute normals and texture coordinates as
well as vertex coordinates. If you use a fragment shader, the vertex processing
can develop variables that let the fragment shader interpolate these properties
as each fragment is developed. By setting up color, normals, or textures with
variables from vertex processing, the fragment shader can carry out sophisti-
cated operations on each fragment.

The vertex shader for
the smooth shading on the
simple sphere of Figure 3.3
is shown below. This
shader code, and the other
shader code examples in
this chapter, will be better
understood when we have
discussed GLSL in more
depth later in the book. For
now, though, note that this
shader calculates per-vertex
light intensity by the stan-
dard diffuse lighting com-

The shader code in this chapter uses the name
prefix conventions we introduced in Chapter 2.
Variable names start with a character that indicates
who created it:

a attribute variable
f variable from a fragment shader
g variable from a geometry shader
tc variable from a tessellation control shader
te variable from a tessellation evaluation shader
v variable from a vertex shader
u uniform variable

As in C/C++, constants are generally written in all
caps.

44 3. Fundamental Shader Concepts

putation using the normal, vertex eye coordinates, and light position, and
that it sets the required output gl_Position from the uModelViewProjection
matrix and the vertex coordinates.

uniform mat4 uModelViewMatrix;
uniform mat4 uModelViewProjectionMatrix;
uniform mat3 uNormalMatrix;

in vec4 aVertex;
in vec4 aNormal;
in vec4 aColor;

out vec4 vColor;
out vec3 vMCposition;
out float vLightIntensity;

const vec3 LIGHTPOS = vec3(3., 5., 10.);

void main()
{
 vec3 transNorm = normalize(uNormalMatrix * aNormal);
 vec3 ECposition = vec3(uModelViewMatrix * aVertex);
 vLightIntensity = dot(normalize(LIGHTPOS - ECposition),
 transNorm);
 vLightIntensity = abs(vLightIntensity);

 vColor = aColor;
 vMCposition = aVertex.xyz;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

The example for Figure 3.3 did not do one important thing that a vertex
shader can do, however: modify the application-supplied vertex coordinates.
As an example of geometry modification, let’s start with a simple plane (rep-
resented by a 200 × 200 mesh of quads) considered as the domain of a func-
tion, and let the vertex shader apply that function. The GLIB file is essentially
the same as that for the Figure 3.3 example, except that the specified geometry
is a 200 × 200 set of quads in the XY-plane, instead of a sphere, specified like
this:

 QuadXY -2. 1. 200 200

The vertex shader will apply the function

z x y x y, . sin() = ∗ +()0 3 2 2

45Shaders in the Graphics Pipeline

to the x and y coordinates of each vertex to calculate the z-coordinate, and will
calculate the normals to each vertex by using an analytic computation, since
the derivative is known. This uses the fact that the tangent vectors are given by
taking the derivatives of z with respect to x and y:

∂
∂
∂
∂

z
x

x x y

z
y

y x y

= ∗ ∗ +()

= ∗ ∗ +()

2 0 3

2 0 3

2 2

2 2

.* . cos ,

.* . cos .

After the vertices and normals are set up, the usual computations for eye
coordinates (ECposition) and light intensity are done. The resulting function
surface is shown in Figure 3.4.

The vertex shader for the rippled surface in Figure 3.4 is given below. The
operations for the diffuse light intensity are those for standard ambient and dif-
fuse lighting, based on the eye-space coordinates of each vertex (the ECpos vari-
able), the normal (myNorml) computed from the analytic partial derivatives,
and a fixed light position (LIGHTPOS) that would ordinarily be passed into the
shader from the application as a uniform variable. The actual display coordi-
nates gl_Position are set by multiplying by uModelViewProjectionMatrix to
apply the model, view, and projection transformations. The output of this ver-
tex shader includes two variables: the light intensity and color values defined
in the vertex shader. None of this is difficult, but it requires you to work with
your objects at a lower level than the usual OpenGL.

Figure 3.4. A rippled surface generated by a vertex shader; still with simple color, ambient
plus diffuse lighting, and smooth shading.

46 3. Fundamental Shader Concepts

in vec4 aVertex;

in vec4 aColor;

uniform mat4 uModelViewMatrix;

uniform mat4 uModelViewProjectionMatrix;

out float vLightIntensity;

out vec3 vMyColor;

const vec3 LIGHTPOS = vec3(0., 10., 0.);

void main()

{

 vec4 thisPos = aVertex;

 vMyColor = aColor.rgb;

 // create a new height for this vertex:

 float thisX = thisPos.x;

 float thisY = thisPos.y;

 // the surface is z = 0.3 * sin (x^2 + y^2)

 thisPos.z = 0.3 * sin(thisX*thisX + thisY*thisY);

 // now compute the normal and the light intensity

 vec3 xtangent = vec3(1., 0., 0.);

 xtangent.z = 2. * 0.3 * thisX * cos(thisX*thisX +

 thisY*thisY);

 vec3 ytangent = vec3(0., 1., 0.);

 ytangent.z = 2. * 0.3 * thisY * cos(thisX*thisX +

 thisY*thisY);

 vec3 thisNormal = normalize(cross(xtangent, ytangent));

 vec3 ECpos = vec3(uModelViewMatrix * thisPos);

 vLightIntensity = dot(normalize(LIGHTPOS - ECpos),

 thisNormal);

 vLightIntensity = 0.3 + abs(vLightIntensity); // 0.3 ambient

 vLightIntensity = clamp(vLightIntensity, 0., 1.);

 gl_Position = uModelViewProjectionMatrix * thisPos;

}

47Shaders in the Graphics Pipeline

Fragment Shaders

Sometimes called pixel shaders (e.g., in Cg), fragment shaders operate on a frag-
ment to determine the color of its pixel. We know that rasterization opera-
tions interpolate quantities such as colors, depths, and texture coordinates.
Fragment shaders use these interpolated values, as well as many other kinds
of information, to determine the color of each fragment’s pixel.

The rasterizer interpolates any variables that have been defined in the
geometry processing stages and passed to the fragment shader. These inter-
polated values may be used in any kind of fragment computation you want.
These computations are performed on several fragments in parallel, with the
width of the parallelization depending on the particular graphics card you
use. This parallelization lets a fragment shader operate with the same kind of
acceleration as graphics cards do for the fixed-function pipeline.

As we saw for vertex shaders, many operations that were automatically
handled by the fixed-function pipeline are now the responsibility of the shader
programmer. A GLSL fragment shader replaces or adds the following operations:

• Color computation.
• Texturing.
• Per-pixel lighting.
• Fog.
• Discarding pixels in fragments.

A Comment on Shader Code Efficiency

GLSL gives you some clever ways to make your code execute super efficiently on
graphics hardware. As with many such things in computing, however, it often makes
the code harder to read. For example, rather than creating two separate variables above,
thisX and thisY, and then squaring each to compute thisPos.z as shown previously, it
would be more efficient to say

 vec2 thisXY = thisPos.xy;
 thisPos.z = 0.3 * sin(dot(thisXY, thisXY));

Similarly, the computation for the tangent vectors could be expressed more efficiently as
 xtangent.z = 2. * 0.3 * thisX * cos(dot(thisXY, thisXY));
 ytangent.z = 2. * 0.3 * thisY * cos(dot(thisXY, thisXY));

But, at least for some, this would make the code less readable. For this book, we have
often taken our own code and re-written it to be more readable, even though that may
make it less efficient. We’re sure you will find lots of examples of this. Don’t email us
about it—we already know.

48 3. Fundamental Shader Concepts

However, a fragment shader does not replace
all the operations in the rasterization process. In
particular, a GLSL fragment shader does not replace
several raster operations, including

• Blending.
• Stencil test.
• Depth test.
• Scissor test.
• Stippling operations.
• Raster operations performed as a pixel is being

written to the framebuffer.

Figure 3.5 shows the sphere with some parts
made invisible by discarding pixels in the fragment
shader instead of drawing them. Its fragment shader,
which is listed after the figure, takes the three input

variables for light intensity, color, and model coordinates, as well as three uni-
form variables that were set externally to the program (in this case, in the GLIB
file needed by glman). It also receives texture coordinates that were passed
from the application. It uses the scaled and truncated texture coordinates in the
model to create a screen effect, and pixels that are not within a given distance
of the screen lines are discarded. If a pixel is kept, any alpha value in the color
is ignored and the pixel is lit with standard diffuse lighting.

The vertex shader for this figure is straightforward. It simply calculates
the normal and eye-coordinate position, from which it gets the light intensity,
and then passes the attribute variable aTexCoord0 along to the fragment shader.

uniform mat4 uModelViewMatrix;
uniform mat4 uModelViewProjectionMatrix;
uniform mat3 uNormalMatrix;

in vec4 aVertex;
in vec4 aTexCoord0;
in vec4 aColor;
in vec3 aNormal;

out vec4 vColor;
out float vLightIntensity;
out vec2 vST;

const vec3 LIGHTPOS = vec3(0., 0., 10.);

Figure 3.5. A sphere with a positional
screen pixel-discard fragment shader.

49Shaders in the Graphics Pipeline

void main()
{
 vec3 transNorm = normalize(vec3(uNormalMatrix * aNormal)
);
 vec3 ECposition = vec3(uModelViewMatrix * aVertex);
 vLightIntensity = dot(normalize(LIGHTPOS-ECposition),
 transNorm);
 vLightIntensity = clamp(.3 + abs(vLightIntensity), 0., 1.
);

 vST = aTexCoord0.st;
 vColor = aColor;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

Below is the fragment shader for Figure 3.5. It takes the s and t coor-
dinates provided by the vertex shader and uses them to decide whether to
discard a pixel.

uniform float uDensity;
uniform float uFrequency;

in vec4 vColor;
in float vLightIntensity;
in vec2 vST;

out vec4 fFragColor;

void main()
{
 float sf = vST.s * uFrequency;
 float tf = vST.t * uFrequency;

 if(fract(sf) >= uDensity && fract(tf) >= uDensity)
 discard;

 fFragColor = vec4(vLightIntensity*vColor.rgb, 1.);
}

Again, a more efficient implementation that takes advantage of the paral-
lelism in graphics hardware would be

 vec2 stf = vST * uFrequency;

 if(all(fract(stf) >= vec2(uDensity, uDensity)))
 discard;

50 3. Fundamental Shader Concepts

Tessellation Shaders

Tessellation shaders follow the vertex shader in the
shader pipeline. They take vertex data and can inter-
polate the original vertices to create additional ver-
tices in your geometry. (Note that this interpolation
is quite different from the interpolations in fragment
shaders.) Among other things, tessellation shaders let
you perform adaptive subdivision of your geometry
to increase the quality of your images, manage level-
of-detail (LOD) image quality, or apply displacement
maps without defining detailed geometry.

There are actually two kinds of tessellation shad-
ers, as you saw in Figures 3.1 and 3.2: tessellation con-
trol shaders let you set up the parameters for the inter-
polations to be carried out, and tessellation evaluation
shaders let you define the computation that will be
used in creating the actual output geometry.

Figure 3.6 illustrates the subdivision capability
of tessellation shaders. It shows a surface built from

a single 4 × 4 vertex patch, with each triangle in the surface shrunken slightly
so you can see how the surface is created.1

Two key concepts in tessellation shaders are the patch, or basic geometry
the shader is to work on, and the tessellation level, or the number of subdivi-
sions into which a patch is divided. The vertices in the patch for this figure are
set in the glib file for the example using glman, and are available on the book’s
website. The tessellation control shader for the figure is shown below. It speci-
fies the number of vertices in a patch and passes the input geometry in gl_in
to the geometry gl_out for the tessellation evaluation shader to use. It also
takes tessellation levels as uniform variables and sets up the required variables
gl_TessLevelOuter and gl_TessLevelInner.

#version 400
#extension GL_ARB_tessellation_shader : enable

uniform float uOuter02, uOuter13, uInner0, uInner1;

layout(vertices = 16) out;

Figure 3.6. A Bézier surface interpolated
from a 4 × 4 patch by tessellation shaders.

1. This example is explained in more detail in Chapter 13.

51Shaders in the Graphics Pipeline

void main()
{
 gl_out[gl_InvocationID].gl_Position =
 gl_in[gl_InvocationID].gl_Position;

 gl_TessLevelOuter[0] = gl_TessLevelOuter[2] = uOuter02;
 gl_TessLevelOuter[1] = gl_TesslevelOuter[3] = uOuter13;
 gl_TessLevelInner[0] = uInner0;
 gl_TessLevelInner[1] = uInner1;
}

In this example, the amount of tessellation is set by uniform variables for
simplicity. But, in fact, those levels could also have been set by examining the
geometry’s coordinate size, screen extent, zoom factors, curvature, etc. That’s
the advantage of placing this capability in the pipeline as a programmable
shader.

The tessellation evaluation shader defines the way interpolation com-
putations are to be done, and the tessellation evaluation shader for the figure
is shown below. Part of a long set of assignments is omitted, but you should
think of pij as the [i,j] entry in the 2D control points array that is passed in
from the tessellation control shader. The real function of this particular shader
is to set up the Bézier basis functions and the computations for position and
normal for any point in an interpolated patch. This should be familiar to those
who have written their own Bézier patch code. The vertices of the patch are
computed with fixed-function computations based on the tessellation levels
from the tessellation control shader, and the output of this shader is a set of
triangle vertices that are assembled for the next piece of the pipeline.

#version 400
#extension GL_ARB_tessellation_shader : enable

layout(quads, equal_spacing, ccw) in;

out vec3 teNormal;

void main()
{
 vec3 p00 = gl_in[0].gl_Position;
 ...
 vec3 p33 = gl_in[15].gl_Position;

 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;

52 3. Fundamental Shader Concepts

 // the Bezier basis functions and their derivatives:

 float bu0 = (1.-u) * (1.-u) * (1.-u);

 float bu1 = 3. * u * (1.-u) * (1.-u);

 float bu2 = 3. * u * u * (1.-u);

 float bu3 = u * u * u;

 float dbu0 = -3. * (1.-u) * (1.-u);

 float dbu1 = 3. * (1.-u) * (1.-3.*u);

 float dbu2 = 3. * u * (2.-3.*u);

 float dbu3 = 3. * u * u;

 float bv0 = (1.-v) * (1.-v) * (1.-v);

 float bv1 = 3. * v * (1.-v) * (1.-v);

 float bv2 = 3. * v * v * (1.-v);

 float bv3 = v * v * v;

 float dbv0 = -3. * (1.-v) * (1.-v);

 float dbv1 = 3. * (1.-v) * (1.-3.*v);

 float dbv2 = 3. * v * (2.-3.*v);

 float dbv3 = 3. * v * v;

 // finally we get to compute something

 gl_Position = bu0 * (bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03)

 + bu1 * (bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13)

 + bu2 * (bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23)

 + bu3 * (bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33);

 vec4 dpdu = dbu0 * (bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03)

 + dbu1 * (bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13)

 + dbu2 * (bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23)

 + dbu3 * (bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33);

 vec4 dpdv = bu0 * (dbv0*p00 + dbv1*p01 + dbv2*p02 +

 dbv3*p03)

 + bu1 * (dbv0*p10 + dbv1*p11 + dbv2*p12 +

 dbv3*p13)

 + bu2 * (dbv0*p20 + dbv1*p21 + dbv2*p22 +

 dbv3*p23)

 + bu3 * (dbv0*p30 + dbv1*p31 + dbv2*p32 +

 dbv3*p33);

 teNormal = normalize(cross(dpdu.xyz, dpdv.xyz));

}

53Shaders in the Graphics Pipeline

Geometry Shaders

The geometry shader is another kind of shader available with OpenGL and the
GLSL shader language. This shader’s operations change or expand the origi-
nal geometry sent to the shader by developing new vertices and vertex groups.
As an example, each triangle in a model could be replaced by a triangle shrunk
about its centroid, as shown in Figure 3.7.

The source code for this geometry shader is more complicated, and it
involves more new concepts than the previous vertex and fragment shaders do,
but it is still worth seeing as a way to understand where we are headed. The basic
idea is that all the vertices in each triangle primitive are being passed together
(vec4 gl_PositionIn[i]). From these, a centroid is computed, and all
three vertices are shrunk about it and emitted to become a new triangle. A
more complete discussion is found in Chapter 12.

layout(triangles) in;
layout(triangle_strip, max_vertices=32) out;

uniform float uShrink;
uniform mat4 uModelViewProjectionMatrix;

in vec3 vNormal[3];

out float gLightIntensity;

const vec3 LIGHTPOS = vec3(0., 10., 0.);

Figure 3.7. Triangles in different models shrunk with a geometry shader (this is useful for
examining how fine the triangularization of a particular model is).

54 3. Fundamental Shader Concepts

vec3 V[3];
vec3 CG;

void
ProduceVertex(int vi)
{
 gLightIntensity = dot(normalize(LIGHTPOS - V[vi]), \
 vNormal[vi]);
 gLightIntensity = abs(gLightIntensity);

 gl_Position = uModelViewProjectionMatrix *
 vec4(CG + uShrink * (V[vi] - CG), 1.);
 EmitVertex();
}

void
main()
{
 V[0] = gl_PositionIn[0].xyz;
 V[1] = gl_PositionIn[1].xyz;
 V[2] = gl_PositionIn[2].xyz;
 CG = (V[0] + V[1] + V[2]) / 3.;
 ProduceVertex(0);
 ProduceVertex(1);
 ProduceVertex(2);
}

The GLSL Shading Language

The GLSL shader language is a C-like language with some extensions and
some limitations. From a pure language point of view, it has some charac-
teristics that recall features of early programming languages. For example,
there are special variables that give you access to the data set by an OpenGL
application into on-card registers, several special-purpose operations on
vectors and matrices that are designed specifically for graphics, special vari-
able types to reflect the different kinds of operations that will be done with
variables, and shared name spaces that provide communication between
applications, vertex shaders, and fragment shaders. We will describe the
language in full detail in Chapter 5.

One way to think about GLSL, or any computer language, is to con-
sider some of the basic attributes of the language. For GLSL, some of these
are given in the following table.

55The GLSL Shading Language

Goals Primary: speed; secondary: image quality

Shader Types Vertex, Tessellation Control, Tessellation Evaluation,
Geometry, Fragment

Shader Variables Attribute, Uniform, Constant, Out, In
Coordinate Systems Model, World, Eye, Clip
Noise Either as a texture or using the built-in function
Compile Shaders Done by the driver

GLSL shader code looks much like C, with the usual operators and logic.
Preprocessor commands such as #define, #ifdef, and the like are available.
GLSL has some extensions to support graphics operations. These include a
number of new types, including some built-in vector and matrix types that are
probably new to you, but that make life in graphics much easier.

• Integer scalar and vector types: int, ivec2, ivec3, ivec4.
• Real-valued scalar and vector types: float, vec2, vec3, vec4.
• Matrix types for square real-valued matrices: mat2, mat3, mat4.
• Matrix types for non-square real-valued matrices: mat3x2, etc.
• Boolean scalar and vector types: bool, bvec2, bvec3, bvec4.
• A sampler type to access textures.

The new vector and matrix types in GLSL require some new kinds of
access and operations. Many familiar operators are overloaded to handle vec-
tors and matrices . The familiar multiplication operator * has some new mean-
ings. For the statement m*n, we have four new meanings:

• If m is a scalar and n is a vector or matrix, then m*n is a vector or matrix of
the same size as n whose entries are the original vector or matrix entries,
each multiplied by m.

• If m and n are both vectors of the same size, then m*n is the scalar prod-
uct (component-by-component product) of the vectors, not their dot
product.

• If m is a matrix and n is a vector of compatible size, then m*n is a vector of
the appropriate size that is the usual matrix*vector product.

• If m and n are both matrices of compatible sizes, then m*n is a matrix of the
appropriate size that is the usual matrix*matrix product.

A number of other operations have been added, and many operations
have been extended to operate on entire vectors or matrices.

Access to components of vectors involves another set of new operations.
Vector components may be accessed with the familiar [index], or they may use
symbolic names, called name sets, that are familiar for the meanings of different

56 3. Fundamental Shader Concepts

vectors: .rgba (for vectors as color), .xyzw (for vectors as geometry), and .stpq
(for vectors as texture coordinates). You can also use any subset of the symbolic
names to access parts of a vector. For example, aVertex.xyz gets you the first
three components of a vertex. aVertex.rgb looks wrong, but would get you
the same thing. Another new kind of vector access involves rearranging their
components, or “swizzling” them. Components can be swizzled by giving the
symbolic names of the components in changed order (e.g., c1.rgba = c2.abgr)
to rearrange their order.

GLSL shaders also extend the normal C functionality in adding new kinds
of type qualifiers for variables. The new qualifiers, and their meanings, are

• const—a variable that is a compile-time constant and cannot be refer-
enced outside the shader that defines it. These variables cannot be used
on the left-hand side of an assignment operation under any circum-
stances. (This is the same as the C++ const.)

• attribute—a variable, only used in a vertex shader, that is set by the
application per-vertex and is generally sent from the application to the
graphics card by OpenGL functions. Attribute variables may include the
traditional per-vertex values of model coordinates, color, normal, normal
matrix, or texture coordinates, but an application may define additional
attribute variables when needed.

• uniform—a variable that is set outside a shader and can be changed at
most once per primitive.

• in or out—variables used to communicate results from one shader
to another. An out variable is to get its value in the shader where it is
defined and be passed from that shader to the next shader further along
in the shader pipeline. It is a write-only variable in the shader where it
is defined. An in variable is to be received from a previous shader in the
shader pipeline and used in the shader where it is defined. It is a read-only
variable in the shader where it is defined. An in variable in a fragment
shader will be interpolated across the fragments in a graphics primitive.
This interpolation will be done in a perspective-corrected fashion; see [14].

Shaders can create their own functions, just like in C/C++, with their own
parameters and local variables. Another set of type qualifiers is used for func-
tion parameters for shaders. These are keyed to the role of the parameters in
the function, and are

• in—a parameter of this type is intended to have a value when it is passed
into a function but is not to be changed in the function. It functions much
as a const variable would. Such parameters are intended to communicate
only from the calling function to the called function.

57The GLSL Shading Language

• out—a parameter of this type is not assumed to have an initial value the
first time it appears in the function, but it is assumed that a value will be
assigned before the function returns. Such parameters are intended to
communicate only from the called function to the calling function.

• inout—a parameter that is intended to have a value when it is passed
into a function and to have a value, possibly different, when the function
returns. Such parameters are intended to provide two-way communica-
tion between the called function and the calling function.

One final additional capability in fragment shaders that should be men-
tioned is the discard operator. This is used to discard pixels so they will not be
passed to the framebuffer. Note that this is quite different from having the pix-
els made transparent by setting their alpha color value to zero. Pixels with zero
alpha still have a depth value and are recorded in the depth buffer, so they
mask any pixel that might lie behind them. As you can clearly see in Figure 3.5,
discarded pixels do not mask anything.

The GLSL shader language is missing some of the properties of C that
you may be used to using. Remember that shaders operate in the graphics pro-
cessor, not in a general-purpose processor, and that this limits the operations
that it makes sense for the language to support. Many of these can be worked
around (type casts) and some do not fit the concept of graphics processing (no
enums or strings)—and some you simply will need to live without or will need
to do outside the shader. Some of the differences include

• No type casts (use constructors instead).
• No automatic promotion (although some GLSL compilers handle this).
• No pointers.
• No strings.
• No enums.
• Can only use 1D arrays (no bounds checking).
• No file-based pre-processor directives.

There are several attribute variables that you will use a lot in your vertex
shaders. These variables are defined in your application and give you access to
per-vertex OpenGL state information for your shader. In the examples above,
you saw some key values taken from these attribute variables, such as model
coordinates, normals, and color, and these values (possibly modified) were
turned into out variables so they could be used by tessellation or geometry
shaders or interpolated later by a fragment shader. Using our variable name
convention, and noting that you may use other names instead of those we
chose here, these variables include

58 3. Fundamental Shader Concepts

• vec4 aVertex—the coordinates of the current vertex in model coordi-
nates.

• vec3 aNormal—the coordinates of the current vertex normal in the origi-
nal coordinates.

• vec4 aColor—the color defined for the current vertex, if one has been
defined.

• vec4 aTexCoordi (i = 0, 1, 2, ...)—the level i texture coordinates associ-
ated with the vertex.

There are also some uniform variables that you will use a lot. These vari-
ables are also defined in your application and are available to all your shaders.
In the examples above you saw some of these variables involved in the coor-
dinate computations. Again, these use our name convention and, noting that
these names are chosen for clarity of presentation, we have

• mat4 uModelViewMatrix—the ModelView matrix, the product of the
viewing and modeling transformation matrices, that is active for the par-
ticular vertex.

• mat4 uProjectionMatrix—the matrix of the projection transformation
that is active for the particular vertex.

• mat4 uModelViewProjectionMatrix—the product of the ModelView
matrix and the Projection matrix.

• mat3 uNormalMatrix—the normal matrix that is active for the particular
vertex (as we will see, this is the inverse transpose of the ModelView
matrix).

Other important uniform variables you will define in your application
define lights and materials. These are described in the discussion of uniform
variables below.

The built-in vertex shader output variable gl_Position is a particularly
key variable, because you set it as the final vertex position for the remain-

ing geometry processing. Another vertex
shader output variable you may use is
gl_PointSize.

There are two fragment shader vari-
ables you will use a lot. These are, in a
sense, the primary output variables from
a fragment shader; you give them values
to set the properties of each pixel as the
fragment is processed. They let you set the
color and depth for a pixel, respectively.

Technically, none of the coordinate
systems are part of GLSL, but
they are available by applying
GLSL operations. World space is
not available with fixed-function
OpenGL but requires the ability to
define your own transformations,
which, of course, shaders let you do.

59Passing Data from Your Application into Shaders

All the operations of a fragment shader—color computation, texturing, color
arithmetic, and fog—come together to set these variables. They are

• vec4 fFragColor—the color of the pixels.
• float gl_FragDepth—the depth of the pixels.

Passing Data from Your Application into Shaders

As you write any program with the OpenGL API, even if you don’t intend
that program to use GLSL shaders, you create data that the system will use in
creating a scene. This is generally graphical data that describes the scene. For
example, you can specify the color for each vertex, or you can create an array
of vertices and a parallel array with data such as elevations, temperature, or
any measured data. The data could be used in fixed-function operations by
manipulating primitives based on your data, or with shader-based operations
by putting the data into user-defined attribute or uniform data that you can
access within the shader function(s). In these sections, we describe how you
can create attribute or uniform data for shaders, and we give some examples
that show these in action. In Chapter 9, we describe how you can create sam-
pler data for shaders.

Defining Attribute Variables in Your Application

Attribute variables are a way to provide per-vertex data to a vertex shader.
These are only available to a vertex shader. If any vertex-specific attribute data
needs to be used by a later shader, the vertex shader must first convert it to an
out variable so the later shader can take it as an in variable. Here we describe
the general approach to defining variables that describe properties of an indi-
vidual vertex in your model.

Besides the usual attribute data such as the coordinates, normal, color,
or texture coordinates of a vertex, you may also need to define other data to
associate with a vertex. OpenGL lets applications define custom attributes to
pass to a vertex shader. Each vertex attribute has an indexed location and can
contain up to four values.

As with uniform variables, you need to determine the symbol table loca-
tion of an attribute variable before you can set it:

GLuint glGetAttribLocation(GLuint program,

 GLchar * attribName);

60 3. Fundamental Shader Concepts

where attribName is a character string of the name of the variable.
An application can set a per-vertex attribute using one of the functions:

void glVertexAttrib{i}{t}{v}(GLuint index, TYPE val)

The value of i can be 1, 2, 3, or 4, depending on the dimension of the
data to be given to that attribute. The value of t specifies the data type for the
data to be given to the attribute; this can be b (byte), s (short), i (int), f (float),
d (double), ub (unsigned byte), us (unsigned short), or ui (unsigned int). The
suffix v means that the data is in vector form rather than as a list of scalars.
These are consistent with the format of the glVertex* functions.

The parameter index is the particular
symbol table index of the attribute vari-
able you are setting, and the parameter or
parameters val are the value(s) to be writ-
ten to the attribute variable at that index.
All the glVertexAttrib functions are
expected to be used between glBegin and
glEnd, just as the built-in attribute setting
functions are.

The type of the data val is expected
to match the type specified in the function

name. However, since the vertex attributes are always stored in an array of
type vec4, any byte, short, int, unsigned byte, unsigned short, or unsigned int
will be converted into a standard GLfloat before it is actually stored.

In the short application code fragment below, which uses compatibil-
ity mode for clarity, we assume that the attribute named abArray has been
defined in the vertex shader as, say,

vec3 aMyArray[N]:

and we want to set the values of that attribute for each vertex of a triangle.
The values to be assigned to that attribute for the vertices are the values of
a0, b0, and c0 (respectively a1, b1, and c1, or a2, b2, and c2). The role of the
glVertexAttrib3f() function is to set these values for the attribute.

GLint myArrayLoc = glGetAttribLocation(program, “aMyArray”);
if(myArrayLoc < 0)
 fprintf(stderr, “Cannot find Attribute variable
 ‘aMyArray’\n”);
else
{

Notice that the glVertexAttrib*
routines do not take a program
handle as one of their arguments.
Since you set the attribute variables
as you do the drawing, it is assumed
that the intended shader program
has already been made active when
glVertexAttrib* is called.

61Passing Data from Your Application into Shaders

 glBegin(GL_TRIANGLES);
 glVertexAttrib3f(myArrayLoc, a0, b0, c0);
 glVertex3f(x0, y0, z0);
 glVertexAttrib3f(myArrayLoc, a1, b1, c1);
 glVertex3f(x1, y1, z1);
 glVertexAttrib3f(myArrayLoc, a2, b2, c2);
 glVertex3f(x2, y2, z2);
 glEnd();
}

A very simple visualization per-vertex attribute example would display
pressure data on a surface. The usual way this would be programmed with
the fixed-function OpenGL would be to use the pressure to define the color at
each vertex in the surface, and then—assuming a continuous pressure func-
tion on the surface—to send the surface’s graphics primitives into the render-
ing stages, to be drawn with smooth shading color interpolation. However, we
could also define pressure to be an attribute variable with each vertex, and use
that directly for drawing the surface, giving us more options in using color to
present the pressure data.

Attribute Variables in Compatibility Mode

In compatibility mode, GLSL defines a number of built-in attribute variables for a
vertex shader to use directly or to pass along to other shaders. Each of the standard
OpenGL functions that define a vertex (those you can call within a glBegin-glEnd
pair) defines a built-in attribute variable that can be used by a vertex shader. Each
time one of these functions is invoked, the corresponding attribute variable’s value is
updated. These variables are defined fully in Chapter 5 on the GLSL language, and are
shown in Table 3.1.
 attribute vec4 gl_Color;;

 attribute vec3 gl_Normal;

 attribute vec4 gl_Vertex;

 attribute vec4 gl_MultiTexCoord0;

Standard OpenGL Function Built-in Attribute Variable Our Name
glVertex*(...) gl_Vertex aVertex

glColor*(...) gl_Color aColor

glNormal*(...) gl_Normal aNormal

glMultiTexCoord*(i, ...) gl_MultiTexCoordi, i=1..N aTexCoord0

Table 3.1. Attribute variables defined by compatibility-mode OpenGL vertex functions.

62 3. Fundamental Shader Concepts

The steps in doing this are as follows:

• Define the attribute variable in the application and set the variable to its
appropriate value for each vertex as you define the vertex geometry.

• Pick up the value of the attribute variable in the vertex shader and write it
to an out variable so it can be interpolated smoothly across each graphics
primitive.

• Use the variable as an in variable to any shader that needs it and, if appro-
priate, use its value to determine the color to be used in filling pixels.

This could let us add pressure contour lines, or could let us color differ-
ent pressure regimes in distinct colors, or create other displays as needed. This
idea will be explored more fully in Chapter 15.

Defining Uniform Variables in Your Application

GLSL uniform variables contain information that can change at most with
each graphics primitive. You can think of these uniform variables as a sort of
“global variables” that are available to all the shaders currently being used.
If you want a shader to have data and that data isn’t directly available from
OpenGL, you can define your own uniform variables to give that data to a
shader. Uniform variables are used within a shader, and their values are set by
the application. Uniform variables can hold any kind of data, including structs
and arrays, as we saw with the built-in uniform variables.

The mechanism for defining and using your own uniform variables is
indirect and somewhat unusual. When you define a uniform variable in your
shader program, you simply declare the variable in the usual way:

uniform type name;

This associates a name and a type with the variable, but does not associate an
address. An address is only assigned when the shader program is linked. Once
linking has been done, an address is available for each variable. You query the
address and then use it to set the variable from your application.

But how does the application get the address for a variable it does not
know about? The application must know the name of the uniform variable
in a linked shader program. It can then get the location (or address) with the
function

GLint glGetUniformLocation(GLuint program, const GLchar *name);

Here program is the value returned from the glCreateProgram() func-
tion, and name is the name (a text string) of the uniform variable. This function

63Passing Data from Your Application into Shaders

returns the address of the named variable within the named program object,
so it can be used in the application. The uniform variable must be a simple
variable, not an array or struct; these are handled differently. A uniform vari-
able (either built-in or user-defined) is called active if the link operation finds
that it can be accessed during program execution; a link operation must have
been done (though it might not have succeeded) before the uniform variables
in the shader program can be active.

You can think of this as creating a pipe from your application to the
shader. The location you get from glGetUniformLocation() is the place the
pipe goes. You then use one of the glUniform*() functions to put data into
the pipe to get it to the shader.

The application can set the value of a uniform variable whose location is
known in three ways. The first way sets scalar or simple vector data with the
function

glUniform{i}{t}(GLint location, TYPE val)

where i can be 1, 2, 3, or 4, depending on the dimension of the variable, and
t can be either f or i, depending on whether the type’s base is floating-point
or integer. The function causes the value of the parameter val to be loaded into
the location indicated. This parameter can be a simple vec1, vec2, vec3, vec4,
ivec1, ivec2, ivec3, or ivec4, but not an array of these types.

The second way sets array (vector) data with

glUniform{i}{t}v(GLint location, GLuint length, const TYPE
 *val)

where the meanings i and t are the same, but the data in val is a vector of the
specified type (including vec* and ivec*) whose length is length.

Finally, the third way sets matrices, and is

glUniformMatrix{i}fv(GLint location, GLuint count,
 GLboolean transpose, const GLfloat *val)

If i has the value 2, *val must be a 2 × 2 matrix; if 3, a 3 × 3 matrix; and if 4, a
4 × 4 matrix. If transpose has value GLfalse, the matrix is taken to be in stan-
dard OpenGL column matrix order, while if transpose has value GLtrue, the
matrix is taken to be in row-major order. The value of count is the number of
matrices that are being passed, so if you are only passing a single matrix, that
value is 1.

When you develop vertex shaders, it is sometimes nice to be able to
separate the Model and the Viewing matrices, instead of having them pre-
combined into one ModelView matrix, as OpenGL does. If you are willing

64 3. Fundamental Shader Concepts

to manipulate the contents of those matri-
ces yourself, then you can accomplish this
using matrix uniform variables.

If you have defined a struct as a uni-
form variable, you cannot set the entire
struct at once; you must use the functions
above to set each field individually.

As an example, suppose you wanted
to pass a light location into your shaders.
The following very short code fragment, to
be used in your application, wants to store
a value in your shader’s vec3 uniform vari-
able named uLightPos.

The glGetUniformLocation function
lets you find the location of the uniform
variable in the shader program’s symbol

table. The glUniform3fv function lets you set that uniform variable. Note also
how location is checked to ensure that the variable is actually found.

float LightPos[3] = { 0., 100., 0. }; // values to store

GLint lightPosLoc = glGetUniformLocation(program,
 “uLightPos”);
 // where in the shader symbol table to store them
if(lightPosLoc < 0)
 fprintf(stderr, “Uniform variable ‘uLightPos’ not found\n”);

 . . .

glUseProgram(program);

if(lightPosLoc >= 0)
 glUniform3fv(lightPosLoc, 3, lightPos);

A Convenient Way to Transition to the Newer Versions of GLSL

The GLSL specification has been in transition. Many (most) of the built-in
GLSL variables have been deprecated in favor of defining and using your
own variable names. Although it is not clear if the GLSL deprecated features
will completely go away, it is clear that they might. We believe that graphics
programmers should start transitioning to the new way of doing things. This
is further supported by that fact that OpenGL ES 2.0 requires the transition

Notice that none of these glUniform*
routines take a program handle as
one of its arguments. Those routines
set uniform variables in the currently
active shader program. So be sure
that you call glUseProgram() on
the correct program before setting
that program’s variables.

However, there is another set
of GLSL API routines that let you
specify the program. They look like
this:

glProgramUniform*(program,
 loc, count, value(s));

65Passing Data from Your Application into Shaders

Uniform Variables in Compatibility Mode
In compatibility mode, GLSL defines a number of built-in uniform variables that
give you access to OpenGL states for primitives, as we describe fully in Chapter 5
on the GLSL language. There are a number of built-in uniform variables, including
the ModelView, Projection, and Normal matrices and all texture, light, and materials
data. Your applications set these values through standard OpenGL functions and can
use the associated uniform variables in your shaders. These give you access to all the
OpenGL state values or values derived from these states. When a program object is
made current, the built-in uniform variables that track the OpenGL state are initialized
to the current value of those states, and any later OpenGL calls that modify state values
update the built-in uniform variable that tracks those states. The most commonly-used
of these are shown in Table 3.1.

Standard OpenGL Function Built-in Uniform Variable

transformations mat4 gl_ModelViewMatrix

mat4 gl_ModelViewProjectionMatrix

mat4 gl_ProjectionMatrix

mat3 gl_NormalMatrix

materials struct gl_MaterialParameters {

 vec4 emission;

 vec4 ambient;

 vec4 diffuse;

 vec4 specular;

 float shininess;

} gl_Frontmaterial; gl_BackMaterial;

lights struct gl_LightSourceParameters {

 vec4 ambient;

 vec4 diffuse;

 vec4 specular;

 vec4 position;

 vec4 halfVector;

 vec3 spotDirection;

 float spotExponent;

 float spotCutoff;

 float spotCosCutoff;

} gl_LightSource[gl_MaxLights];

Table 3.2. Some common uniform variables defined by OpenGL functions in compatibility
mode.

66 3. Fundamental Shader Concepts

to the new approach. Compare the installed base for OpenGL desktop to
the installed base for OpenGL ES (mobile), and you realize that develop-
ing applications that run only on OpenGL desktop is short-sighted. As the
standard continues to evolve, you will have a huge advantage if you develop
applications that can run both on the desktop and on the ubiquitous mobile
devices.

For our own work, we have developed a way to start a smooth transition
to the new approach through the use of a set of #defines in a file called gstap.h,
shown here and also available at this book’s website:

#ifndef GSTAP_H
#define GSTAP_H

// gstap.h -- useful for glsl migration
// from:
// Mike Bailey and Steve Cunningham
// “Graphics Shaders: Theory and Practice”,
// Second Edition, AK Peters, 2011.

// we are assuming that the compatibility #version line
// is given in the source file, for example:
// #version 400 compatibility

// for OpenGL-ES compatibility:

precision highp float;
precision highp int;

// uniform variables:

#define uModelViewMatrix gl_ModelViewMatrix
#define uProjectionMatrix gl_ProjectionMatrix
#define uModelViewProjectionMatrix
 gl_ModelViewProjectionMatrix
#define uNormalMatrix gl_NormalMatrix
#define uModelViewMatrixInverse gl_ModelViewMatrixInverse

2. “gstap” stands for the book title, Graphics Shaders: Theory and Practice.

67Exercises

// attribute variables:

#define aColor gl_Color
#define aNormal gl_Normal
#define aVertex gl_Vertex

#define aTexCoord0 gl_MultiTexCoord0
#define aTexCoord1 gl_MultiTexCoord1
#define aTexCoord2 gl_MultiTexCoord2
#define aTexCoord3 gl_MultiTexCoord3
#define aTexCoord4 gl_MultiTexCoord4
#define aTexCoord5 gl_MultiTexCoord5
#define aTexCoord6 gl_MultiTexCoord6
#define aTexCoord7 gl_MultiTexCoord7

#endif // #ifndef GSTAP_H

These #defines allow you to
use new names for things, without
having to (yet) define them and pass
them in yourself. Then, when the
time comes to complete your migra-
tion to the new approach, you don’t
need to make massive code changes
to your shaders. Note that these
names use our variable naming stan-
dard descsribed earlier in this chap-
ter.

Exercises

The code for all the shaders discussed in this chapter is available on the book’s
website, and this chapter’s exercises are mostly concerned with experiments
on this code using the glman application. Details on glman are discussed in the
next chapter, so you may want to use it as a reference while you work on these
exercises.

1. Experiment with shape: in this chapter we only used spheres for our
examples, but glman allows you to use a number of other kinds of shapes.
In the GLIB file for any of these examples, replace the sphere by other

To make life even easier for you, the
gstap.h code has been built-in to the glman
software, so that every shader source that
you load automatically has it included.
Just include a line in your .glib file with the
word gstap.h on it. If you use glman, there is
no reason not to transition away from the
deprecated built-in variables right away.

68 3. Fundamental Shader Concepts

shapes, and see how the effects change. Other shapes you may use are
cylinders, boxes, cones, tori, and teapots.

2. Experiment with color: change the color of the simple figures in these
examples to other colors. You may do this with the GLIB file, or you may
add color as a uniform variable set through the glman parameter interface
described in the next chapter.

3. Compute with color: you can use color as data and base your computa-
tions on it. For example, in a fragment shader you can include a state-
ment like

 if (color.b > 0.5) color.r = 1.0;

 This can be a very useful technique for debugging shaders, since you can-
not instrument your shader code with print statements or other familiar
techniques.

4. Compare pixel blending with pixel discarding: instead of discarding pix-
els as in the example of Figure 3.5, change the alpha value of the color of
each pixel that would have been discarded to zero and see what happens.
Don’t be satisfied to observe the results from a single viewpoint; rotate
the sphere (or other object) to view it from all angles, and note when an
alpha of zero has, and when it does not have, the same effect as a discard.

5. Figure 3.5 showed a very regular pattern of discards because of the logic
in the fragment shader. Change that logic and see what kind of patterns
you can make on the sphere. For example, apply a trigonometric function
to some combination of coordinates, and see if you can discard sinusoidal
ribbons around the sphere.

6. Get the GLIB file for the tessellation shader example in Figure 3.6, and
experiment with this example by changing the vertices in the patch and
by changing both the inner and outer tessellation levels. (Use any conve-
nient fragment shader to finish creating the image.)

7. Add the geometric shrink shader to the previous exercise so you can see the
individual triangles in the patch you produce, as was done in Figure 3.6.

69

Using glman4

Shaders, like many other areas in graphics, have many complexities in their
structure and options, and one of the best ways to learn them is simply to try
out ideas, choices, and different parameters in the shaders you write. However,
exploring shaders in this way can be time-consuming when you have to go
through the entire edit-compile-link-run cycle for each change you want to test
in the shader. In order for you to try out many options and ideas for shaders
with a very short turnaround cycle, the glman tool provides a handy OpenGL
program substitute that lets you change shader code and see the results very
quickly, especially since it also lets you experiment with the values of uniform
variables as shader parameters. The cycle of experimentation for developing
shaders with and without glman is shown in Figure 4.1.

To use glman, you need to create a GLIB file. The name GLIB stands for
“GL Interface Bytestream,” and a GLIB file is a scene description script whose

70 4. Using glman

details are described later in this chapter. This is an ASCII-encoded input file
inspired by the Photorealistic RenderMan RIB file. You need to have both a
vertex shader and a fragment shader to use glman; you can also have a tessel-
lation shader or a geometry shader if you want, and if your system supports it.

You start by writing a GLIB file that describes your geometry and speci-
fies your vertex, tessellation, geometry, and fragment shaders. The GLIB file
can define uniform variables, including variables that can be changed using
sliders or color pickers. You can edit GLIB and shader files from within glman,
so you can start adding effects to the shaders, or geometry to the GLIB file, to
get incremental results. The glman system will return error messages if you
have compile errors in your shaders, which is very helpful as you begin to
learn to develop them. This experimental approach and incremental develop-
ment of shaders gives you good feedback on what works and lets you create
some very interesting images along the way.

While glman will let you make some very interesting images that illus-
trate how your shaders work, you should realize that it is not a production
tool for creating general graphics applications. There were conscious design
decisions to support only a limited geometry and interaction set, for example.
What it does is give you a tool to develop shaders easily and fairly quickly and
to experiment with shader parameters, and it does that very well.

When you are satisfied that the shaders you have developed do the things
you want, you can be confident that they will be useable for your other work.
Later chapters discuss how to use shaders for applications, so the shaders you
develop here will be useful there.

You can get glman from this book’s website at http://www.cgeducation
.org/glman. It runs on Windows, even if you do not have a compiler and pro-
gramming environment on the system. Linux and Macintosh versions are

Figure 4.1. The cycle of experimentation without glman (left) and with glman (right).

71Using glman

being worked on and will be announced on the book’s webapge when ready.
It does, however, require that the OpenGL system be available on your com-
puter and that your system graphics card supports programmable shaders.
The glman distribution includes some additional files that you need to have
on your system and has instructions on how to install them. If your computer
and OpenGL systems have the geometry shader capability, those are also sup-
ported by glman. Our plans are to keep glman’s capabilities up with wherever
the GLSL shader specification goes.

Using glman

The glman application is started in the usual way an application
is started on your machine. When it begins, it presents a user
interface window, as shown in Figure 4.2. (All of these figures
are from a Windows environment.) This window has several
parts that will be discussed as we go through the chapter. The
key parts are loading a GLIB file, editing files, handling screen
dumps, supporting scene and eye transformations, enabling
object picking and transformations, and a few others; the inter-
face is not particularly complex and is easy to understand.

The first thing glman does is query your graphics card’s
driver to see what shader types it supports. There will be up
to six user interface “Edit a XXX File” buttons, depending on
what is supported. If a button is left out, it means your system
can’t handle that type of shader anyway.

Following OpenGL’s standard, glman’s eye position is
at the origin looking in the −Z direction. When your scene is
loaded, you should push it back a little bit in the −Z direction
using the Eye Transformation Trans Z widget to make it vis-
ible.

In addition to this interface window, glman opens a small
console window on the screen. This window gives you some
information about your system, as well as the operation of the
application and your shaders, but most of the time it can be
safely ignored—or even minimized. On the other hand, you
may want to get very detailed information about your opera-
tions through this window by using verbose mode. Other pro-
gram windows may also be opened up if you request them, as
described later in this chapter.

Figure 4.2. The full glman inter-
face window.

72 4. Using glman

Loading a GLIB File

The file areas of the glman interface are shown in Figure 4.3.
You load a GLIB file with the load or reload buttons; the load
button brings up a file browser to select the file. This area lets
you load a new file or reload the file you have been using; the
latter is how you would reload an image when you had been
experimenting with the shaders or changing the geometry.
It also shows the full path name of the file you have loaded,
although sometimes this is really too long for appropriate
display.

The GLIB file supports a modest set of geometry and
texture specifications. The full set of commands available
in GLIB files is listed below, along with their parameters.
The commands themselves are case-insensitive, but any text
arguments are case-sensitive. Numbers in square brackets
[] show the default values if the parameters are not set. If no
default is given, then this command does not do anything
without parameters.

Editing GLIB and Shader Source Files

The .glib, .vert, .tcs, .tes, .geom, and .frag files can be
edited any way you want. If you want to open a WordPad
(on Windows) or TextEdit (on Macintosh) editing window on
a file, click on one of the buttons in the Editing section of the
interface, and then select the file from the given file browser.
You can have as many of these editing windows open at one
time as you wish, and this can be a good way to copy func-
tionality from one shader to another.

GLIB Scene Creation

GLIB includes a number of commands that you will use to control your dis-
play. These include commands about the window and viewing, about trans-
formations, about creating geometry to display, about textures, about the
shaders to use and their uniform variables, and about a few miscellaneous

Figure 4.3. The file area of the
interface panel

73GLIB Scene Creation

things. While we always write commands with an initial capital letter, they are
case-insensitive. Some commands have default parameters. These are given
with the command description.

Window and Viewing

WindowSize wx wy Specify the initial graphics window size in pixels. [600. 600.]
Ortho xl xr yb yt Set the current projection to orthographic with the given

parameters. [-1. 1. -1. 1.]
Persp fov Set the current projection to perspective with the given field

of view (angle in degrees). [50.]
Color r g b a Set the current rendering color to (r, g, b, a). If no alpha value

is given, alpha is set to 1.0. 0. ≤ r, g, b, a ≤ 1. (glman can also
take Colour to make it look more international.)

Transformations

Like OpenGL itself, these transformations take effect in the reverse order in
which they are listed; the one nearest to the geometry is performed first.

Translate tx ty tz Pre-concatenate a translation by the given translation
values onto the current matrix.

Rotate angle ax ay az Pre-concatenate a rotation by the given angle around
the line with the given direction onto the current matrix
(angle in degrees).

Scale sx sy sz Pre-concatenate a scale by the given scale factors onto
the current matrix.

Scale s Uniformly scale by (s, s, s,)
PushMatrix Push the current matrix on the matrix stack.
PopMatrix Pop the current matrix from the matrix stack.

Defining Geometry

The geometry options let you select enough shapes to see how your shaders
will perform on a variety of different objects. The .obj file option lets you use a
large number of shapes that you can get from different sources.

74 4. Using glman

Box dx dy dz Create a 3D box. If specified, (dx, dy, dz) are the lengths of
the sides. [2. 2. 2.]

Cylinder radius

height

Create a solid cylinder. [1. 1.]

Cone radius height Create a solid cone. [1. 1.]

DiskXY Create a unit disk parallel to the XY plane and passing
through Z = 0.

LinesAdjacency [v0]

[v1] [v2] [v3]

Create an instance of the OpenGL geometry shader
GL_LINES_ADJACENCY primitive. This only works with
geometry shaders. Each vertex consists of an x, y, and z,
given in square brackets. So, for instance, [v0] might be:
[1. 2. 3.]

glBegin topology

glVertex x y z

…

glEnd

Specify the vertices for different OpenGL tropologies,
including LinesAdjacency, TrianglesAdjacency, and the
new GL_PATCHES topology, discussed in Chapter 13.

Linewidth N Set the width of individual lines to N pixels.

PointCloud numx

numy numz

Create a 3D point cloud, a regular point grid in three
dimensions. The parameters num* are the number of points
to use in each direction.

JitterCloud numx

numy numz

Create a 3D point cloud as above, with the position of each
point jittered (moved randomly) from its regular position.

Pointsize size Define the size of points in your scene.

QuadBox numquads Create a series of numquads (quadrilaterals parallel to the
XY plane). The XYZ coordinates run from (-1.,-1.,-1.) to
(1.,1.,1.). The 3D texture coordinates run from (0.,0.,0.) to
(1.,1.,1.). This is a good way to test 3D textures. [10]

QuadXY z size nx ny Create a quadrilateral parallel to the XY plane, passing
through Z = z. If given, size is the quadrilateral’s dimen-
sion, going from (-size, –size) to (size, size) in X and
Y. If given, nx and ny are the number of sub-quads this
quadrilateral is broken into. This is a good way to test 2D
textures. [0 1 4 4]

QuadXZ y size nx nz Creates a quadrilateral parallel to the XZ plane, passing
through Y = y. If given, size is the quadrilateral’s dimen-
sion, going from (-size, –size) to (size, size) in X and Z.
If given, nx and nz are the number of sub-quads this quad-
rilateral is broken into. [0 1 4 4]

75GLIB Scene Creation

QuadYZ x size ny nz Creates a quadrilateral parallel to the YZ plane, passing
through X = x. If given, size is the quadrilateral’s dimen-
sion, going from (-size, -size) to (size, size) in Y and Z.
If given, ny and nz are the number of sub-quads this quad-
rilateral is broken into. [0 1 4 4]

Soccerball radius Creates a geometric soccer ball from 12 pentagons and
20 hexagons. As part of this, two uniform variables are
defined:
FaceIndex: which face are we on right now. 0–11 are the
pentagons, 12–31 are the hexagons.
Tangent: vec3 pointing in a consistent tangent direction,
same as the Sphere uses.
In addition, the s and t texture coordinates are filled with
good values for mapping an image to each face. The p
value is filled with a normalized radius from the center.
The seam is located at p = 1. [1.]

Sphere radius

slices stacks

Create a solid sphere. This primitive sets the vertex coor-
dinates, the vertex normals, and the vertex texture coordi-
nates. In order to align bump-mapping, it also sets a vec3
called Tangent at each vertex. The vectors Tangent are all
tangent to the sphere surface and always point in a consis-
tent direction, towards the North Pole. [1. 60. 60.]

Teapot Create a solid teapot. The default teapot is approximately
1.6 units high and 3 units long.

Torus innerradius

outerradius

Create a solid torus. [.2 1.]

Wiresphere radius Create a wireframe sphere. [1.]

Wirecylinder radius

height

Create a wireframe cylinder. [1. 1.]

Wirecone radius

height

Create a wireframe cone. [1. 1.]

Wirecube L Create a wireframe cube [1.]

Wiretorus

innerradius

outerradius

Create a wireframe torus. [.2 1.]

Wireteapot Create a wireframe teapot.

Xarrow numslices Create an arrow along the X-axis, from X = 0. to X = 1. If
specified, numslices is the number of individual slices to
use along the arrow. [100]

76 4. Using glman

The .obj file format was developed by Wavefront years ago to store
geometric information, including lines and polygons (and more). The glman
application supports a subset—but a very useful subset—of the format. A full
description of the file format is found in [30], and there are various public-
domain sources for .obj files that you can import. You will find several .obj files
in the book’s Web resources. If you have a particular geometry on which you
want to test your shader(s), creating an .obj version of the geometry could be
useful, and it is not difficult to create.

Obj filename Reads a list of GL_TRIANGLES from an .obj file named filename. If
a filename is not given, glman will prompt you for it. The full
.obj format can be quite complex, but glman just supports verti-
ces, normals, texture coordinates, and faces.

WireObj filename Same as Obj, but creates a wireframe object.

ObjAdj filename Reads a list of GL_TRIANGLES_ADJACENCY from an .obj file named
filename. Triangles with adjacency are described in Chapters 5
and 12, and this command is useful for working with geometry
shaders. If you don’t have a real need to use triangle adjacency,
use Obj instead of ObjAdj. The file will read faster, and the
resulting geometry will display faster. If no filename is given,
glman will prompt you for it. As with the Obj command, this
feature just supports vertices, normals, texture coordinates, and
faces.

In order to work with tessellation shaders, glman must support the con-
cept of a patch. This requires one new command and a construction to define
the patch geometry.

NumPatchVertices N Specify the number of vertices in a patch.

glBegin gl_patches

glVertex X Y Z

...

glVertex X Y Z

glend

Define the vertices that make up the patch. The total num-
ber of glVertex statements must match the number of ver-
tices specified for the patch.

Specifying Textures

These commands let you load a 1D, 2D, or 3D texture from a file to use with
your shaders.

77GLIB Scene Creation

Texture1D texture_unit

filename

Read a 1D texture from a file in a raw format, which
consists of one 4-byte integer giving the dimension of
the texture and then four components per texel speci-
fying the red, green, blue, and alpha of that texel as
either unsigned bytes or 32-bit floating point numbers.

Texture2D texture_unit

filename

Read a 2D texture from a file. Don’t use texture units
2 or 3 unless you want to override the 2D and 3D
noise textures. If the filename ends in a .bmp suffix,
an uncompressed BMP image file is assumed, with
red, green, and blue read from the file (no alpha). Any
other filename pattern implies a “raw” file format,
which is described later. The four components can be
all unsigned bytes or all 32-bit floating point.

Texture3D texture_unit

filename

Read a 3D texture from a file in a raw format, which
consists of three binary 4-byte integers giving the X,
Y, and Z dimensions of the volume, and then four
components per texel specifying the red, green, blue,
and alpha of that texel. The four components can be all
unsigned bytes or all 32-bit floating point.

CubeMap texture_unit \

posxfile negxfile

posyfile negyfile

poszfile negzfile

Generate a cubemap texture on texture unit
texture_unit with the six BMP image face files, as
specified

Specifying Shaders

These commands specify the shaders that are to be compiled and linked with
your geometry to produce the image. For geometry shaders they also include
specifications of the input and output geometry types they will use.

Vertex file.vert Specify a vertex shader filename.

TessControl file.tcs Specify a tessellation control shader filename.

TessEvaluation file.tes Specify a tessellation evaluation shader filename.

Geometry file.geom Specify a geometry shader filename.

Fragment file.frag Specify a fragment shader filename.

78 4. Using glman

Program

programname

uniformvariables

...

Compile and link the vertex, fragment, and possi-
bly geometry (see below), shaders into a program,
and specify the uniform variables for that program
(see below). The program command must come
last in this group. It links together the current ver-
tex shader, the current fragment shader, and pos-
sibly the current tessellation shaders and geometry
shader. This lets you reuse a shader in another
shader program by simply not redefining another
shader of that type. If you want to unspecify a
shader in a program (that is, no longer use it), just
give its vertex, fragment, tessellation, or geometry
command with no arguments.

If you use a geometry shader, you can also use the geometry commands
in the table below in your GLIB file before the Program statement.

Geometryinputtype Specify what type of topology this geometry shader
expects to find as input. This can be: GL_POINTS,
GL_LINES, GL_LINES_ADJACENCY, GL_TRIANGLES, or
GL_TRIANGLES_ADJACENCY.

Geometryoutputtype Specify what type of topology this geometry shader will
be emitting. This can be GL_POINTS, GL_LINE_STRIP, or
GL_TRIANGLES_STRIP.

Like the vertex, tessellation, geometry, and fragment shader specifications,
these must come before the program command.

Miscellaneous

The miscellaneous information for GLIB files includes two important func-
tions—creating noise textures and setting a timer for animations. It also includes
several commands that are useful in defining the presentation to the user.

Noise2d res Create a 2D noise texture (see below).

Noise3d res Create a 3D noise texture (see below).

Timer numsecs Set the timer period from the default of 10 seconds
per cycle to numsecs per cycle.

Background color Define the background color for your image. This
duplicates the function of the background slider in
the interface window.

79GLIB Scene Creation

MessageBox An informative

text message

Put up a Message Box with the text message in it so
you can show an informative message to the user.

Verbose Sets the system to output all actions to the console
window, overriding the function in the interface
window.

The text conventions in GLIB files are

• Multiple whitespace characters in a row are treated as a single whitespace
character.

• A # causes the rest of the line to be treated as a comment and ignored.
• A / causes the rest of the line to be treated as a comment and ignored (so

that // will act as expected).
• A backslash (\) at the end of a line causes the carriage return to be

ignored. The current line is continued onto the next line. This must be the
last character on that line before the return.

You can see that the available geometry in glman is good, but it is prob-
ably not rich enough to support many real applications. That is deliberate—
glman is only intended to give you a testbed to support your experimentation
with shaders. From the experience of students and others who have used it, it
does that well.

Specifying Uniform Variables

Uniform variables are specified on the Program command line in a tag-value
pair format. The values may be scalars, arrays, range variables, or colors.

• Scalar variables are just listed as numbers.
• Array variables are enclosed in square brackets, as [].
• Range variables are enclosed in angle brackets, as < >. These are scalar

variables, and glman automatically generates a slider in the Uniform
Variable user interface for each range variable, so that you can then
change this value as glman executes. The three values in the brackets are
<min current max>, e.g., <0. 5. 10.>. To decide if this range variable should
be a float or an int, glman will look into your shader program’s symbol
table, and will create a slider of the appropriate type.

• Boolean variables can also end up in your user interface as well. In the
GLIB file, a Boolean variable has a name, and then the word true or the
word false inside angle brackets, e.g., “<true>.” The glman user interface
will automatically create a checkbox in the user interface window. The
value in the brackets is the initial setting of the checkbox.

80 4. Using glman

Figure 4.4. A GLIB file that specifies parameter and color interaction, and the uniform vari-
able interface window and color picking window it creates.

Most OpenGL shader compilers are
heavily optimizing, so if you define
a uniform variable but don’t use it to
make some part of the scene display,
the variable will likely be eliminated
and not seen by the loader. This can
generate an error that will make no
sense to you because you are pretty
sure you actually typed the uniform
variable name into your shader. The
message looks like this:

So be careful to use all the uniform
variables you define!

• Color variables are enclosed in curly
brackets, as { }. Color variables may be
either RGB or RGBA, as
{red green blue}
or
{red green blue alpha}
This will generate a button in the UI
panel that, when clicked, brings up a
color selector window. The color selec-
tor allows you to change the value of
this color variable as glman executes.

• Multiple vertex-geometry-fragment-
program combinations are allowed
in the same GLIB file. If there is more
than one combination, they will appear
as separate rollout panels in the user
interface. The first program rollout will

81GLIB Scene Creation

be open, and all the others will be closed. Open the ones you need
when you need them.

As an example of how the uniform variable selectors are presented, the
parameter interface window and color selection window shown in Figure 4.4
were created as a result of the lines in the GLIB file shown in that figure.

Examples of GLIB Files

In Chapter 3 we saw some examples of vertex and fragment shaders and the
images they create with glman. In this section we present the GLIB files that
correspond to these examples, so you can see how they were set up. These
example GLIB files are pretty simple, but they will help you get started on
writing your own as you start developing shaders using glman.

We’ll see the example GLIB file from the screen shader example of the
previous chapter. In this example, you will see the following features:

• The perspective is identified, with a field of view.
• Eye position information is provided (eye position, look-at position, up-

vector).
• The vertex and shader files ovalnoise.vert and ovalnoise.frag are

specified.
• Uniform variables are set up.
• The geometry is a standard teapot.

##OpenGL GLIB

Perspective 70

LookAt 0 0 3 0 0 0 0 1 0

Vertex ovalnoise.vert

Fragment ovalnoise.frag

Program OvalNoise \

 uAd <.05 .1 .5> uBd <.05 .1 .5> \

 uNoiseAmp <0. 0. 3.> uNoiseFreq <0. .25 1.> \

 uAlpha <0. 1. 1.> \

 uTol <0. 0. .25> \

 uUseChromaDepth <false> \

 uChromaBlue <-5. -2.4 -1.> \

 uChromaRed <-3. 1.1 2.> \

 uDotColor {1. .5 0.}

Teapot

82 4. Using glman

Another example GLIB file comes from the function graphing shader of
Chapter 2; in this example, you will see the following features:

• Perspective is identified, with a field of view of 70°.
• The vertex and fragment shaders ripple.vert and ripple.frag are

specified.
• The color is specified with RGB of (1.0, 0.5, 0.0).
• A QuadXY is specified with range −5 to 5 and with 200 sub-quads in each

direction (this makes the function graph show up very smoothly).

You should be able to see something of these in Figure 3.4 in the earlier
chapter.

##OpenGL GLIB
Perspective 70

Vertex ripple.vert
Fragment ripple.frag
Program Ripple

Color 1. 0.5 0
QuadXY .2 5. 200 200

More on Textures and Noise

Textures and noise are two important concepts for fragment shaders, and
glman gives you good access to them. This section covers a few important ideas
in working with them.

Using Textures

As indicated above, there are two ways to input a 2D texture in glman: as a
BMP file or as a raw texture file. If you input the texture as a BMP file, the file
must be 24-bit RGB, uncompressed. If you want this texture to be useable on
any graphics card, even an older one,, be sure the image dimensions are pow-
ers of two. Some graphics cards quietly don’t require this to be true, but many
still do.

The 2D raw texture format is very simple. The first 8 bytes are two
4-byte integers, declaring the S and T image dimensions. The next bytes are
the RGBA values for each texel. These RGBA values can be unsigned bytes or
floats. Either way, glman will look at the size of the file and do the right thing.

83More on Textures and Noise

Do not confuse this format with the raw format from Photoshop; that is simply
a list of colors that does not include any dimensions.

If you write code to produce a raw 2D floating point texture file, it should
be organized like this:

int nums, numt;

. . .

fwrite(&nums, 4, 1, fp); // nums is the S dimension of the file
fwrite(&numt, 4, 1, fp); // numt is the T dimension of the file

for(int t = 0; t < numt; t++)
{
 for(int s = 0; s < nums; s++)
 {
 float red, green, blue, alpha;
 . . .
 // set red, green, blue, and alpha for the texel at
 // (s, t)
 fwrite(&red, 4, 1, fp);
 fwrite(&green, 4, 1, fp);
 fwrite(&blue, 4, 1, fp);
 fwrite(&alpha, 4, 1, fp);
 }
}

The 3D texture raw format is analogous to this and is just as simple. The
first 12 bytes are three 4-byte integers, declaring the S, T, and P volume dimen-
sions. The following bytes are the RGBA values for each texel. These RGBA
values can be unsigned bytes or floats. Again, glman will look at the size of the
file and do the right thing.

If you write code to produce a raw 3D texture file, it should be organized
like this:

int nums, numt, nump;
. . .

fwrite(&nums, 4, 1, fp); // S dimension
fwrite(&numt, 4, 1, fp); // T dimension
fwrite(&nump, 4, 1, fp); // P dimension

for(int p = 0; p < nump; p++)
{
 for(int t = 0; t < numt; t++)
 {
 for(int s = 0; s < nums; s++)
 {

84 4. Using glman

 float red, green, blue, alpha;
 . . .
 fwrite(&red, 4, 1, fp);
 fwrite(&green, 4, 1, fp);
 fwrite(&blue, 4, 1, fp);
 fwrite(&alpha, 4, 1, fp);
 }
 }
}

Note that glman expects the binary byte-ordering in a raw texture file to
be consistent with the Intel x86 architecture. If you write raw texture files from
a pre-Intel Macintosh, you must reverse the byte ordering yourself.

The second argument in the Texture2D and Texture3D commands is
the OpenGL texture unit to assign this texture to. You then need to tell your
shaders what that texture number is. For example, the GLIB Texture command
might specify that a texture is to use texture unit 7 by

Program Texture uTexUnit 7

and your fragment shader might include code that picks up the value of
uTexUnit as the unit for the sampler2D texture with

uniform sampler2D uTexUnit;
in vec2 vST; // from the vertex shader
out vec4 fFragColor;

void
main()
{
 vec4 rgba = texture(uTexUnit, vST);
 fFragColor = vec4(rgba.rgb, 1.);
}

You should not hard-code the value 7 in the Texture2D function call—the
compiler won’t let you! Furthermore, don’t use texture units 2 and 3 yourself;
glman uses these as default values to tell your shaders about its built-in 2D and
3D noise textures.

Using Noise

As we will see in Chapter 10, glman automatically creates a 3D noise texture
and places it into Texture Unit 3. Your vertex, tessellation, geometry, or frag-
ment shader can get at it through the pre-created uniform variable called
Noise3. You can reference it in your shader as

85More on Textures and Noise

uniform sampler3D Noise3;
. . .
vec3 stp = ...
vec4 nv = texture(Noise3, stp);

The noise texture is a vec4 whose components have separate meanings,
described in Table 4.1. The [0] component is the low frequency noise. The [1]
component is twice the frequency and half the amplitude of the [0] component,
and similarly for the [2] and [3]
components. Each component is
centered around a value of .5, so
that if you want a plus-or-minus
effect, subtract .5 from each
component. To get a nice four-
octave noise value between 0
and 1 (useful for noisy mixing),
add up all four components,
subtract 1, and divide the result
by 2, as shown in the follow-
ing table and GLSL code. More
details on this can be found in
Chapter 10.

float sum = nv.r + nv.g + nv.b + nv.a; // range is 1. -> 3.
sum = (sum - 1.) / 2.; // range is now 0. -> 1.

By default, the glman 3D noise texture has dimensions 64 × 64 × 64. You
can change this by putting a command in your GLIB file of the form

 Noise3D 128

to get size 128, or choose whatever resolution you want (up to around 400).
Remember that for the most general use, the resolution should be a power of
two. The first time glman creates a 3D noise texture for you, it will take a few
seconds. But glman then writes it to a file, and the next time this 3D texture is
needed it is read from the file, which is a lot faster.

A 2D noise texture works the same way, except you get at it with

 uniform sampler2D Noise2;
 . . .
 vec2 st = ...

 vec4 nv = texture(Noise2, st);

Component Term Term Range Term Limits
0 nv.r 0.5 ± .5000 0.0000 → 1.0000
1 nv.g 0.5 ± .2500 0.2500 → 0.7500
2 nv.b 0.5 ± .1250 0.3750 → 0.6250
3 nv.a 0.5 ± .0625 0.4375 → 0.5625

sum 2.0 ± ~ 1.0 ~ 1.0 → 3.0
sum – 1 1.0 ± ~ 1.0 ~ 0.0 → 2.0

(sum – 1) / 2 0.5 ± ~ 0.5 ~ 0.0 → 1.0
(sum – 2) 0.0 ± ~ 1.0 ~ −1.0 → 1.0

Table 4.1. The range of the four octaves of noise and some useful
combinations.

86 4. Using glman

Functions in the glman Interface Window

The glman user interface window includes a number of other functions besides
loading GLIB files, which we saw at the beginning of this chapter. In this sec-
tion, we will look at them so you can use them easily in your work.

Generating and Displaying a Hardcopy of Your Scene

Generating a hardcopy. Because you will be doing cool things with glman,
you will often want to write your output to an image file. The Hardcopy and
Display button shown in Figure 4.2 expands as shown in Figure 4.5. This gives
you a Create Hardcopy File button that will write output (at the resolution you

specify in the resolution window) to a BMP file and will
bring up a file browser window that lets you specify the
name of the BMP file to write into. This does not just do a
raw pixel dump of the graphics window area; it generates
the scene into a separate framebuffer and writes that buf-
fer into the file, which means you can ask for a hardcopy
image that has higher resolution than your screen has. This
is useful when generating hardcopy for high-quality pub-
lications and large posters.

Display the hardcopy file. To confirm the hardcopy file you got, and perhaps
to send it to a printer, click on the Display the Hardcopy File button.

Global Scene Transformation

The Global Scene Transformation widgets at the top of the transformation
group in Figure 4.6 let you transform the entire scene in the graphics window.
There are mouse button shortcuts; the scene can be rotated by holding down
the left mouse button and moving the cursor in the graphics window, or it can
be scaled by holding down the middle mouse button (if you have one) and
moving the cursor in the graphics window.

It is important to realize that, unlike what is normally done in an OpenGL
program, these transformations do not end up in the ModelView matrix. In
glman, they end up in the Projection matrix, so they have no impact on any-
thing your shaders do in eye coordinates. For example, these scene transfor-
mations can be used to see the back side of a scene without changing the eye
coordinate behavior of the shaders.

Figure 4.5. The expanded screen
capture and display area.

87Functions in the glman Interface Window

Eye Transformation

These widgets are the second set of transformation widgets
in Figure 4.6. They let you transform the entire scene in the
graphics window. Unlike the Global Scene Transformation
widgets above, however, these transformations do end up in
the ModelView matrix, just as if the OpenGL gluLookAt()
routine had been called. That is, these scene transformations
change the Eye Coordinate behavior of the shaders.

To repeat something we said at the start of this chapter,
unless you initially translate your geometry in the negative Z
direction in the GLIB file, your first move upon opening up
a new GLIB scene is probably to use the “Trans Z” widget in
the Eye Transformation group to push the scene back into
the viewing volume, where it is more visible. You can use the
.glib LookAt command to do this as well.

Object Picking and Transformation

Individual objects in the scene can be picked and indepen-
dently transformed. This is a good way to test shaders that
operate in eye coordinates rather than in model coordinates.
In order to use this functionality, just click on the “+” sign
in the “Object (Individual Matrix) Transformation” button to
bring it up. To remove it, click on the “–” sign in the button.

To be able to select an object, you must enable object
picking by turning on the Enable Object Picking checkbox
shown in Figure 4.7. Then clicking on a 3D object in the scene
with the left mouse button will cause that object to be selected,
as shown in Figure 4.8. A large 3D cursor becomes centered
on the object to show that it is selected.

When an object has been
selected, the Object Transformation
widgets shown in Figure 4.7 will
become active. These widgets will
apply transformations to the selected
object separately from all other
objects in the scene. The object trans-
formations go into the ModelView
matrix for the one picked scene
object, where they will impact any

Figure 4.6. The interface win-
dow with the transformation
functions.

Figure 4.7. The expanded Texture and
Object Transformation area in the inter-
face window.

88 4. Using glman

shader that performs operations in
eye coordinates. When object picking
has been enabled, mouse motions in
the window noted above are applied
only to the selected object.

To deselect an object, click in an
open area of the graphics window,
uncheck the Enable Object Picking
checkbox, or close the object trans-
formation area by clicking on the “–”
sign in the button.

Texture Transformation

In addition, glman gives you a way to change the texture transformation
matrix (mat4 gl_TextureMatrix[0]). As this is not something that is done
often, glman has hidden it in a user interface “rollout.” Just click on the “+”
sign in the “Texture (Texture Matrix) Transformation” button to bring it back
out. The Texture Transformation widgets work the same as the Global Scene
Transformation, Eye Transformation, and Object Transformation coordinate
transforms. Note that using these widgets will not automatically transform
texture coordinates as in the fixed-function OpenGL pipeline. These widgets
just set the gl_TextureMatrix[0] matrix. What you do with that is up to you.

Monitoring the Frame Rate

It is sometimes useful to get an idea of how much certain shader operations
affect the overall speed of the graphics pipeline. For example, certain math
functions are implemented in hardware, some in software; if-tests often cause
a slowdown; and low-count for loops often give better performance if they are
unrolled. To see what your current frame rate is, click the Display Frame Rate
checkbox in the middle of the user interface window. This makes glman time
your display as you interact with it. After you turn this option on, you will
see two things: (1) a frames-per-second (FPS) number will be presented in the
graphics window, and (2) your display speed will drop sharply. This speed

Figure 4.8. A picked object with both axes
and the 3D cursor.

89Functions in the glman Interface Window

drop is caused by glman looping through multiple instances of your display to
get more precise timing. Your speed will go back to normal once you turn off
this option. The timing does not include the initial setting and clearing of the
framebuffers, nor does it include swapping of double buffers. It measures the
display speed of just your scene.

Miscellaneous

At the top of the user interface window there are two check-
boxes and one slider, shown in Figure 4.9.

• Axes. When this checkbox is selected, the three coordi-
nate axes in eye space are shown. Each of the axes is
labeled and is two units long in the appropriate direc-
tion.

• Perspective. When this checkbox is selected, you are tog-
gled between perspective and orthogonal viewing, irre-
spective of your specification in the GLIB file.

• Background Intensity. This slider lets you set the back-
ground intensity for your image.

At the bottom of the user interface window you will see
an area with a checkbox and two buttons, also shown in
Figure 4.9. The options given in this area are described below.

• Verbose. Normally, the messages in the console window
are things that you might really need to know. If you
would like to see more of what is really going on behind
the scenes, click this checkbox on—but at times this can
be voluminous, so be sure you really want to see all this.
Don’t say we didn’t warn you!

• Reset. This button returns the scene to its original form
before any global or eye transformations have been
made, and before any selections. However, any changes
that were made in the uniform variables declared in the
GLIB file are retained.

There is one more checkbox in another window that you
should know about:

• Show Variable Labels. This checkbox shows up at the bot-
tom left of the Uniform Variable user interface window
shown in Figure 4.4. When you click it, the values of the
uniform variables will be superimposed on top of your
graphics scene. This is very handy for doing screen cap-

Figure 4.9. The Axes, Perspective,
and background color sections
(top), the Display Frame Rate box
(middle), and the Verbose check-
box and Reset and Quit buttons
(bottom).

90 4. Using glman

tures of your graphics scene and documenting the uniform variable value
settings that made this scene.

Exercises

The exercises in this chapter will give you some experience in working with
the glman application, which should make it easier for you to do the work
on shaders in later chapters. Exercises in later chapters will ask for you to do
things in glman to work with the functionality of different shader types.

1. In the previous chapter we gave some examples of shaders to create some
of the chapter’s figures, and in this chapter we showed the GLIB files that
worked with them to create the figures. For at least one of these, identify
each of the GLIB file commands and show how it led to features of the
figure(s) it helped create.

2. The glman interface panel has a number of functions, and you should
take a moment to exercise as many of those as you can. In particular, use
the eye transformation, hardcopy, object selection and manipulation, and
frame rate options, and analyze and note what each of these does.

3. Use the editing functions of glman to make small changes in the GLIB
file and the vertex and fragment shader files and note the effect of the
changes. Do this by first loading a GLIB file and noting the image, and
then editing one or more of the files and using the Reload function. This
cycle should become very familiar to you as you develop your shaders.

4. The glman tool provides a number of different graphics primitives. Use
several primitives in a single scene (described in a GLIB file) to see how
each looks. Use translations so they won’t all be drawn on top of each
other, and use a different color for each.

5. Create a scene with at least two objects whose color is set by a glman uni-
form color variable. (You can do this as part of Exercise 4.)

6. Create a scene with an object whose properties (for example the density
and frequency of the screen in the pixel-discard shader in the previous
file) are set by a glman uniform slider variable. (You can do this as part of
Exercise 4.)

7. Create a scene that includes a graphics object defined by an .obj file. You
can get such files from the book’s website, or you can get such files from
the book’s website http://www.cgeducation.org.

8. Create a scene that uses texturing on a graphics primitive. You may need
to refer to Chapter 8 for some details.

91

The GLSL Shader
Language5

As shader capabilities in graphics hardware have become more flexible, shader
languages have been developed to give the graphics programmer access to
these capabilities. The GLSL shading language was designed to be device inde-
pendent and has been part of the OpenGL standardfrom OpenGL 2.0 forward.
It accomplishes its device independence by having compilers built into the
graphics card driver translate the GLSL code into the specific device instruc-
tions for that card. The actual process of attaching shaders to shader programs,
compiling them, and linking them to be downloaded into the graphics card is
part of the GLSL API, covered in Chapter 14.

GLSL is a very C-like language, with most of the same fundamental
code structure and operators that are found in that language. Thus, there
are no challenges to the graphics programmer in understanding the control
flow, basic operations, or basic data types in the language. However, there
are some areas where GLSL extends the capabilities of C, some areas where

92 5. The GLSL Shader Language

GLSL omits some of the capabilities
of C, and some areas where GLSL
has language features that remind
us of the best of earlier generations
of computer languages. This chap-
ter focuses on these differences and
discusses why they are needed for
the shader environment. There is a
tendency for any discussion like this
to have a strong flavor of a language
manual, and you might find that
you use this chapter more as a refer-
ence than as general reading.

We introduced a number
of GLSL language features in

Chapter 3, but here we take a more thorough approach to the language and
describe it more formally. We are working from the GLSL language specifica-
tion [23] and include those features and capabilities that we believe are most
useful to you, but we are not absolutely complete in our coverage. Once you
are familiar with a good working set of GLSL, you probably should read the
GLSL specification to see what else is there—especially since the language will
continue to evolve over time.1

We are indebted to the GLSL Shader Language Specification document
both for the overall information it contains and for its excellent tables of GLSL
functions and operations that we have borrowed from extensively.

Factors that Shape Shader Languages

Shader languages operate in a different environment and with different goals
than general-purpose languages. Their environment is the processing capabil-
ity of graphics cards, which differs in some important ways from the capability
of a general CPU, and their goals are tightly focused on supporting graphics
operations, rather than more general kinds of computations. These capabilities
shape the language in significant ways, and it is important that you under-
stand their impacts as you write shaders.

GLSL shader capabilities are very much
a moving target. This chapter and all
our examples are based on GLSL 4.1.
However, we also include many features
that are deprecated in that standard but are
available in compatibility mode, because
they may be helpful to someone learning to
work with shaders for the first time.

In order to keep current on GLSL,
you should consult [32] from time to time.1

You will not need a new copy of glman,
however, because OpenGL will compile
only the GLSL shaders, but you may need
to get a new OpenGL driver.

1. Good resources: “OpenGL.” Khronos. Available at http://www.khronos.org/opengl/.
“OpenGL 4.2 API Quick Reference Card.” Khronos. Available at http://www.khronos.org/files/

opengl42-quick-reference-card.pdf, 2010.
“OpenGL Shading Language.” OpenGL. Available at http://www.opengl.org/documentation/glsl/,

2011.

93Factors that Shape Shader Languages

Graphics Card Capabilities

The first thing we should understand when we think of a language to support
graphics shaders is that graphics cards, or GPUs, are not like standard CPUs in
several ways. In some ways they are much more advanced than most proces-
sors, and in some ways they are more restricted. GPUs are meant to operate on
streaming data, transforming it and passing it along a pipeline of processing
stages. They hate exceptions, and exceptions can force a whole pipeline to be
flushed and restarted. The GLSL shader language has added features that take
advantage of graphics card capabilities, especially features that come from the
increasingly general-purpose architecture of these cards. These changes are
described throughout this chapter.

Parallelism in Graphics Cards

One of the main differences between graphics cards and standard processors is
that graphics cards can be parallel processors. Certainly there are some kinds
of data-level parallelism in modern processors and, in fact, it has become com-
mon for systems to offer parallelism through multiple processors or cores. But
these are different kinds of parallelism. Today’s graphics cards typically per-
form parallelism at four levels:

1. Device-Level Parallelism—multiple processors or multiple graphics
cards can exist in the same system.

2. Core-Level Parallelism—each processor typically has multiple cores that
are capable of independent execution.

3. Thread-Level Parallelism—each core can run multiple threads, that is, can
have multiple instruction streams.

4. Data-Level Parallelism—
many instructions can act on mul-
tiple data elements at once.

Much of the time, the details of
these modes of parallelism are abstracted
away from the application programmer,
and are used as shown in Figure 5.1. This
is a good thing. Most of the time, we
don’t care where or how the processing
takes place, just that it happens with suf-
ficient parallelism to handle the increas-
ing demands of today’s complex render-
ing tasks. Figure 5.1. Abstracted parallelism in graphics processors.

94 5. The GLSL Shader Language

The Need to Support Graphics Operations

Another key fact about graphics cards is that they must carry out a large num-
ber of matrix operations at high speeds, so matrix and vector operations are
native to the language, and most likely supported at some level in your hard-
ware. Thus, the GLSL language is shaped by its goal of supporting the opera-
tions needed for computer graphics. This is done by adding specific support
for matrix and vector data types and operations, including both operations
and useful functions; supporting functions that are frequently used for geo-
metric operations; adding language support for noise functions; and adding
functions for texture and fragment operations. Some of these are included
so they can be optimized, and some are included in anticipation of higher-
level operations moving onto graphics cards. GLSL developments so far have
extended the original scope of the language, and there is every reason to
believe that when additional graphical capabilities are available, such as the
recent development of geometry shaders, the language will be extended to
support them.

Built-In Data

General-purpose processors have registers that can be used for many kinds
of variables, so each must be capable of any kind of operation. Graphics cards
designed as OpenGL 2.1 was being released, on the other hand, have a num-
ber of special-purpose registers that are loaded with specific data when infor-
mation is received from the general OpenGL application program. This gives
these graphics cards known environments that can be read or written by a
shader program, leading to the use of specific names for variables that have
particular information.

This aspect of the graphics environment is primarily handled in GLSL
by a number of built-in variables that let you access standard data passed to
the graphics card from the OpenGL API. This data describes geometry, light-
ing, transformations, and textures. By using the appropriate GLSL variables,
you can use this information for computation in your shaders.

More recently, however, graphics cards have become much more gen-
eral processors, and these special-purpose registers have been deprecated. A
few specific variables have been retained, but the task of building the graph-
ics environment has been passed to the graphics programmer. This increases
the programmer’s task, but returns significant improvements in performance
and in the generality of graphics operations you can create. These changes are
described below and in the chapters on each kind of shader.

95General GLSL Language Concepts

General GLSL Language Concepts

GLSL is designed to be similar to C and maintains many of the familiar con-
ventions of that language. The overall syntax is the same, with the same con-
ventions for literals and identifiers, and the same preprocessor capabilities.
You have have the full set of integer and unsigned integer operations, most
of the same operators, and the same operator precedence. The looping and
conditional structures are the same, including the switch statement. Overall,
if you know C, you will find the basic nature of GLSL to be quite comfortable.

However, there are differences between GLSL and C that are driven by
the differences in the special environment and the goals of the language, rather
than by limitations of C. There are five fundamental ways in which GLSL dif-
fers from most conventional languages:

1. The range of conventional operators and functions is extended beyond
those usually found in C or similar languages.

2. The language contains some capabilities, such as name sets and shared
data namespaces that are implicit in the language, rather than explicitly
specified.

3. Data passing between shaders is handled by specifically declaring which
variables are input and which are output, and some variables must be
explicitly passed along from a shader to subsequent shaders.

4. Function parameters are passed by value-return, rather than by value
alone.

5. Some general-purpose language capabilities are omitted.

In GLSL, some conventional operators and functions have extended capa-
bilities, and some new functions and operations are introduced that are con-
venient for graphics. GLSL has two new implicit capabilities that come from
extending the variable types to include types that carry specific capabilities
and from using a shared namespace to communicate between shaders. The
GLSL function parameters and omitted capabilities from C come from changes
in the processing environment. All these differences are described fully later in
this chapter, but are briefly discussed in the sections below.

Shared Namespace

Shaders operate independently of each other, so an application can use any
shader independently of any other. In order for shaders to communicate, they

96 5. The GLSL Shader Language

must use memory on the graphics card, so the application and its shaders must
create names for variables in on-card memory. Sharing these names between
shaders that are linked into a single shader program then creates the between-
shader communication that shaders need. The set of names of variables used
by a set of shaders is called a shared namespace.

A namespace may hold attribute variables, created by the appliction to
define per-vertex data and available only to the vertex shader as in variables;
uniform variables, created by the application to be used as read-only variables
by any shader; and shader-defined variables, created as out variables to pass on
as in variables to later shaders. (The concept of out and in variables is dis-
cussed later in this chapter.) Some variables created in vertex-processing shad-
ers are intended to be used by fragment shaders by being interpolated across
a fragment as a geometric primitive is processed.

You can define attribute variables in your application through the
OpenGL API function glVertexAttrib*() and make them accessible to the
vertex shader. This lets you define per-vertex data that can be used to define
colors or other properties of vertices. You can also define uniform variables to
communicate from your OpenGL application to vertex or fragment shaders.
Because of limitations on the memory on the graphics card, there is a limit
to the total amount of uniform data available to you. Defining and accessing
user-defined attribute and uniform variables will be discussed when we pres-
ent the GLSL API in Chapter 14.

The types and initializers of variables with the same name must match
across all shaders that are linked into a single executable. It is legal for some
shaders to provide an initializer for a particular variable, while other shaders
do not, but all provided initializers must be equal. This is checked as the pro-
gram is linked.

There are a few specific variables that GLSL uses for very specific capa-
bilities; these may be seen as basic parts of the namespace for one or more
kinds of shader. These are described in the chapters on the different shaders.

Extended Function and Operator Capabilities

GLSL extends some of the operators and functions of C to act on vectors and
matrices. The standard scalar arithmetic operators are extended to vectors by
applying the original operation componentwise. The additive operators are
also extended to componentwise operations on matrices, but the multiply
operator is taken to mean the standard linear algebra matrix multiplication.
Many familiar functions on scalars are similarly extended to vectors by acting
componentwise.

97General GLSL Language Concepts

GLSL also adds several new vector and matrix operators. There are
name set conventions for vectors that let you name components in computer-
graphics ways, and there are operations to construct vectors and matrices, and
to reorder vector components that give you much more flexible control over
these data objects. Overall, GLSL treats vectors and matrices much more like
data primitives than does C.

New Functions

GLSL includes many numeric functions that might be relatively easy to
write for yourself, but that when included, make their capabilities more
standardized across the developer world. These include floor, ceil, fract,
mod (a generalized version of the familiar function), min, max, clamp, mix,
step, and smoothstep. GLSL also includes several vector and matrix func-
tions to support common operations in a uniform way. These include the
dot and cross product for vectors, functions for the reflection and refrac-
tion vectors, and the transpose and outer product for matrices. These are
described fully later.

New Variable Types

GLSL introduces some new variable types: const, attribute, and uniform.
Const variables act as constants, much as if they were set with a #define state-
ment, only more strongly typed as they are in C and C++. Attribute variables
are per-vertex values passed to the vertex shader. Uniform variables let you
define graphics variables that do not vary across a primitive and make them
accessible to all shaders.

Shaders create a shared namespace, described above, by specifying the
variables to be included in the namespace. They do this by declaring out vari-
ables, treated as write-only and used to give variables values to be used in the
next shader in the pipeline, and in variables, treated as read-only and used
to read values in from the previous shader in the pipeline. An out variable
declared in, say, a vertex shader, can be used to set a value to be read in an in
variable of the same name declared in, say, a fragment shader.

There are some keywords that modify the behavior of in variables for a
fragment shader; these are flat, noperspective, and centroid. The keyword
flat indicates that values of the input variables are not to be interpolated
across a primitive. The usage is

flat in float variable_name;

98 5. The GLSL Shader Language

as discussed in Chapter 8. The keyword noperspective indicates that these
variables are interpolated in screen space, rather than being interpolated in a
perspective-correct way. The usage is

noperspective in float variable_name;

The keyword centroid indicates that values are to be centroid sampled,
that is, sampled at an implementation-defined position in the intersection of
a pixel and a primitive, for the purpose of determining what value to apply to
the pixel. This is an advanced topic, but it could be useful if you are applying
functions across a primitive that may be discontinuous or highly non-linear.

New Function Parameter Types

GLSL function parameters are passed by value-return, rather than by value. This
allows two-way communication between the calling function and the called
function by copying values into and out of function parameters. Parameters
are modified by the keywords in, out, and inout. The parameter keyword in
describes the traditional pass-by-value of C, while the parameter keywords
out and inout, described later in this chapter, replace the need for reference
parameters. GLSL does not use pointers.

Language Details

In the sections below, we discuss specific features of the GLSL shader lan-
guage. In most cases, it should be clear how these features support the kinds
of computation needed for shaders. In a few cases, however, we will briefly
discuss some examples, such as swizzle operations where the language fea-
tures make capabilities possible that go beyond those implicit in the nature of
the language.

Omitted Language Features

Because GLSL is not a general-purpose language, it does not have some capa-
bilities we are used to seeing in C and other languages. In fact, it cannot have
some of these features because the graphics processor does not support all the
operations that a general-purpose processor must. The features that are omit-
ted are probably less important for most processing than they are convenient,
so you will probably not miss them too much. They include

99Language Details

• There are no char, char *, or string data types, and GLSL has no string-
manipulation functions.

• There is no sizeof() operator, because there is no need to deal with data
in various sizes. There are standard constructors for arrays and matrices
of all needed sizes.

• No implicit type conversions are allowed in GLSL. Conversions are sup-
ported by explicit type constructors.

Instead of implicit conversions, or type casts, there are three explicit con-
structors for simple types, as follows:

• int(arg): converts the argument to an int; the argument may be a float
or a bool.

• float(arg): converts the argument to a float; the argument may be an
int or a bool.

• bool(arg): converts the argument to a boolean; the argument may be a
float or an int.

The usual conversion operations are used: conversions from float to int
simply drop the fractional part, nonzero floats or ints convert to the Boolean
true, etc. This is a different syntax from the familiar cast operations, but it gives
you the same functionality if you need it.

New Matrix and Vector Types

GLSL supports a number of predefined data types for vectors and matri-
ces. Vectors may have a real, integer, or Boolean base type, but matrices
must be real. Many familiar vector and matrix operations and functions can
be applied to variables of these types, and a number of useful new func-
tions are also provided. These are discussed in several sections later in this
chapter.

GLSL’s built-in floating-point scalar and vector types are float, vec2,
vec3, and vec4. The storage for a variable of type vecN is simply that of a tra-
ditional array, but you want to use the built-in type rather than the traditional
array type. Using the vecN types explicitly makes a much larger number of
operations available for the data, and these operations can then take advan-
tage of graphics card parallelism to work at a much higher speed.

GLSL’s built-in integer, scalar, and vector types are int, ivec2, ivec3, and
ivec4. Again, the storage for an ivec variable is the same as that for a tradi-
tional array, but the explicit ivec type can take a much larger set of operations.

100 5. The GLSL Shader Language

GLSL’s built-in Boolean scalar and vector types are bool, bvec2, bvec3,
and bvec4. The main value in Boolean vectors is their ability to support logical
operations on vectors, and thus to parallelize some logical tests.

GLSL supports a number of matrix types. For square matrices, mat2, mat3,
and mat4 can be used for square floating-point matrices of dimension 2 × 2,
3 × 3, or 4 × 4, respectively. Using explicit matrix types rather than simple arrays
lets you take advantage of GLSL’s many matrix operations and functions.

There are also matrix types that define the dimensions explicitly by listing
both dimensions in the declaration. Thus, GLSL has mat2x2, mat2x3, mat2x4,
mat3x2, mat3x3, mat3x4, mat4x2, mat4x3, and mat4x4 floating-point matrix
types. When the two dimensions are equal, this is the same as the declarations
above (mat2x2 is the same as mat2, for example). Using these matrix types lets
you use GLSL’s matrix operations on non-square matrices. Note that there is
no declaration of mat1xN or matNx1 arrays; when a one-dimensional array is
needed, you can usually use a simple vecN in its place.

Name Sets

GLSL supports some standard name sets for vector components that are used
for notational convenience. For a vec4 variable, you can use (x, y, z, w) if you
want to refer to components for geometry, (r, g, b, a) if you want to refer to
components for color, or (s, t, p, q) if you want to refer to components for tex-
ture coordinates. The name set you choose need not depend on the context;
you can use (x, y, z, w) to refer to colors if you like, for example. (Note that the
letter r for texture coordinates has been replaced by p to avoid confusion with
the letter r for red.) In general, you should be careful to avoid name sets that
imply such meanings when choosing name sets for vectors other than geom-
etry, RGBA color, or texture.

The component selection syntax allows multiple components to be
selected by appending their names (which must be from the same name set)
after the period (.). So with a declaration vec4 v4, for example, we have the
examples given in the table below.

v4.rgba Is a vec4 and is the same as just using v4.
v4.rgb Is a vec3 made from the first three components of v4.
v4.b Is a float whose value is the third component of v4; also v4.z or v4.p.
v4.xz Is a vec2 made from the first and third components of v4; also v4.rb or

v4.sp.
v4.xgba Is illegal because the component names do not come from the same set.

101Language Details

Vector Constructors

GLSL has a number of constructors that let you create new vectors from a mix
of scalars and other vectors. These constructors have the same name as the
vector types and serve to construct a vector of the named type. Some examples
are given in the table below.

vec3(float, float, float) Initializes each component of a vector with the
explicit floats provided.

vec4(ivec4) Makes a vec4 with component-wise conversion.
vec2(float) Initializes a vec2 with the float value in each posi-

tion.
ivec3(int, int, int) Initializes an ivec3 with three ints.
bvec4(int,int,float,float) Performs four Boolean conversions.
vec2(vec3) Drops the third component of a vec3.
vec3(vec4) Drops the fourth component of a vec4.
vec3(vec2, float) vec3.xy = vec2

vec3.z = float

vec3(float, vec2) vec3.x = float

vec3.yz = vec2

vec4(vec3, float) vec4.xyz = vec3

vec4.w = float

vec4(float, vec3) vec4.x = float

vec4.yzw = vec3

vec4(vec2a, vec2b) vec4.xy = vec2a

vec4.zw = vec2b

To initialize a matrix by using specified vectors or scalars, we recall that
matrices are stored in column-major order (unlike in C), so the components are
assigned to the matrix elements in that order.

mat2(vec2, vec2)

mat3(vec3, vec3, vec3)

mat4(vec4, vec4, vec4, vec4)

mat3x2(vec2, vec2, vec2)

Each matrix is filled using one column per
argument.

mat2(float, float, float, float) Rows are first column and second column,
respectively.

102 5. The GLSL Shader Language

mat3(float, float, float,

 float, float, float,

 float, float, float)

Rows are first column, second column, and
third column, respectively.

mat4(float,float,float,float,

 float,float,float,float,

 float,float,float,float,

 float,float,float,float)

Rows are first column, second column, third
column, and fourth column, respectively.

mat2x3(vec2, float,

 vec2, float)

Rows are first column and second column,
respectively.

Even though GLSL offers these 2D matrix formats, it is sometimes convenient
to use simpler 1D arrays. For example, we can represent a 3 × 3 matrix M as three
separate vec3 variables and then multiply M by a matrix V by using three dot
products.

There are many other ways to construct a matrix from vectors and scalars,
as long as there are enough components to initialize the matrix. The construc-
tion acts as though the matrix begins as an identity matrix (or a subset of an
identity matrix), and the new elements that are specified replace the originals.
For example, to construct a matrix from a matrix we might have the possibili-
ties given in the following table.

mat3x3(mat4x4) Uses the upper-left 3 × 3 submatrix of the mat4x4 matrix.

mat2x3(mat4x2) Takes the upper-left 2 × 2 submatrix of the mat4x2, and sets
the last column to vec2(0.).

mat4x4(mat3x3) Puts the mat3×3 matrix in the upper-left submatrix and sets
the lower right component to 1 and the rest to 0.

Functions Extended to Matrices and Vectors

Standard programming languages tend to have a number of numeric func-
tions and operators, including trigonometric functions, exponential functions,
number manipulation functions, and relational operators. In GLSL, most of
these can operate on vectors, as well as on scalar values.

The familiar bitwise integer functions <<, >>, %, &, |, ^, and ~ are all avail-
able in GLSL and apply to both simple integer and ivecN data.

In the lists of functions below, we use the term genType to refer to any
scalar or vector data type that is appropriate for each function. In general, these
functions use float or vecN data, but you can use an integer type anywhere a
float type is needed, because GLSL allows that implicit type conversion.

103Language Details

GLSL supports the familiar set of trigonometric and inverse trigonomet-
ric functions. As with all the other functions, these can operate componentwise
on vectors. Arguments identified with angle are assumed to be in radians.

genType radians(genType degrees) Converts degrees to radians: (π/180)*degrees.
genType degrees(genType radians) Converts radians to degrees: (180/π)*radians.
genType sin(genType angle)

genType cos(genType angle)

genType tan(genType angle)

The standard trigonometric sine, cosine, and tangent func-
tions, with the argument angle in radians.

genType asin(genType x) Arc sine. Returns the primary radian value of the angle
whose sine is x. The range of returned values is [−π/2,π/2].
Undefined if |x|>1.

genType acos(genType x) Arc cosine. Returns the primary radian value of the angle
whose cosine is x. The range of returned values is [0,π].
Results are undefined if |x|>1.

genType atan(genType y, genType x) Arc tangent. Returns the primary radian value of the angle
whose tangent is y/x. The signs of x and y determine the
angle’s quadrant. The range of returned values is [−π,π].
Undefined if x and y are both 0.

genType atan(genType y_over_x) Arc tangent. Returns the primary radian value of the angle
whose tangent is y_over_x. The range of returned values is
[−π/2,π/2].

GLSL also supports the full range of hyperbolic trigonometric functions,
sinh, cosh, and tanh, and their inverses.

GLSL has the usual exponential, logarithmic, and square root functions,
including exponential and logarithmic functions of base 2. These can also
operate componentwise on vectors.

genType pow(genType x, genType y) Power function. Returns x raised to the y power, xy.
Undefined if x < 0, or if x = 0 and y ≤ 0.

genType exp(genType x) Returns the natural exponentiation of x, ex.
genType log(genType x) Returns the natural logarithm of x, the value y for which

x = ey. Undefined if x ≤ 0.
genType exp2(genType x) Returns 2 raised to the x power: 2x.
genType log2(genType x) Returns the base 2 logarithm of x, the value y for which

x = 2y. Undefined if x <= 0.

genType sqrt(genType x) Returns the nonnegative square root of x. Undefined if x < 0.
genType inversesqrt(genType x) Returns 1/ .x Undefined if x ≤ 0.

104 5. The GLSL Shader Language

GLSL supports a familiar set of common
functions, as well as some that are not as familiar.
Among the less-familiar functions are some that are
very useful in combining colors or geometry. These
functions can all operate componentwise on any
vector. Note that the mod function is generalized to

real numbers as well as integers. The functions abs, clamp, min, max, and sign
can be applied to integers as well as to real numbers.

Don’t use inversesqrt()
to normalize a vector! Use
normalize() instead.

genType abs(genType x) Returns x if x ≥ 0, otherwise returns –x.
genType sign(genType x) Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if x < 0.
genType floor(genType x) Returns a value equal to the nearest integer that is less than

or equal to x.
genType ceil(genType x) Returns a value equal to the nearest integer that is greater

than or equal to x.
genType fract(genType x) Returns the fraction part of x: x – floor(x).
genType truncate (genType x) Returns the integer closest to x whose absolute value is not

larger than abs(x).
genType round(genType x) Returns the integer closest to x.
genType mod(genType x, float y)

genType mod(genType x, genType y)

Generalized modulus. Returns x – y * floor(x/y).

genType min(genType x, genType y)

genType min(genType x, float y)

Minimum. Returns y if y < x, otherwise returns x.

genType max(genType x, genType y)

genType max(genType x, float y)

Maximum. Returns y if x < y, otherwise returns x.

genType clamp(genType x,

 genType minVal,

 genType maxVal)

genType clamp(genType x,

 float minVal,

 float maxVal)

Clamped value; Returns min(max(x, minVal), maxVal).
Undefined if minVal > maxVal.

genType mix(genType x,

 genType y,

 genType a)

genType mix(genType x,

 genType y,

 float a)

Proportional mix. Returns a linear combination of x and y:
a * x + (1 – a) * y.

genType mix(genType x,

 genType y,

 bool b)

Select the value of either x or y, depending on the value of
b.

105Language Details

Operations Extended to Matrices and Vectors

The traditional primitive operators, sum (+), difference (–), product (*), and
quotient (/), operate only on scalar data in most languages. In GLSL, this is
extended in a natural way to vector and matrix data. There are two different
cases to consider here.

Sums, differences, and quotients act componentwise when

• One operand is a scalar and one is either a vector or matrix, or
• Both are vectors or matrices.

Products act componentwise when

• One operand is a scalar and one is either a vector or matrix, or
• Both are vectors.

Note that if u and v are vectors, u*v is not a dot product! This product u*v
is just a componentwise product and is still a vector. If you are trying to get
a dot product, use dot() instead. In order to compute a product of vectors
or matrices, of course, both operands must have the same dimensions and
appropriate types. The result is a vector or matrix of the appropriate size and
type.

Products of a vector and a matrix, or of two matrices, are different; they
do not perform scalar operations, but perform the correct linear algebra opera-
tions on their operands. For vectors u, v and matrices m, n, r (always assuming
appropriate dimensions so the operations make sense),

genType step(genType edge,

 genType x)

genType step(float edge,

 genType x)

Step function at the value of edge. Returns 0.0 if x < edge,
otherwise returns 1.0.

genType smoothstep(genType edge0,

 genType edge1,

 genType x)

genType smoothstep(float edge0,

 float edge1,

 genType x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1, and performs
smooth Hermite interpolation between 0. and 1. when
edge0 < x < edge1. This is useful in cases where you would
want a threshold function with a smooth transition. This is
equivalent to
 genType t;

 t = clamp((x – edge0)/

 (edge1 – edge0), 0., 1.);

 return 3.*t*t – 2.*t*t*t;

Results are undefined if edge0 > edge1.

106 5. The GLSL Shader Language

• We can write u = v * m; this treats v as if it were a 1 × d matrix and per-
forms the correct operation of the dot product of v with each column of m.

• We can write u = m * v; this treats u and v as if they were d × 1 matrices
and performs the correct operation of the dot product of v with each row
of m.

• We can write r = m * n; this performs the dot product of each row of m
with each column of n to produce the matrix r.

In addition, the assignment operator = and relational equality and inequal-
ity operators == and != can be applied to entire arrays or structs, but the oper-
ands must be of the same size and, for structs, the same declared types. Other
relational functions are available for vectors, but they differ from the familiar
built-in relational operators. These are described later in this chapter.

Other familiar vector operations, the dot and cross products, are avail-
able through the built-in dot and cross product operations that are described
fully later in this chapter when we present GLSL’s matrix functions. These
include several other useful capabilities. For example, if you should want the
componentwise scalar product of two matrices, you will need to use the new
matrix function matrixCompMult. Or if you should want to do an outer product
of two vectors (the outer product of two vectors u, v of dimension n is defined
as though u has dimension n × 1 and v has dimension 1 × n and you are com-
puting the matrix product [u times v]), you can use the new matrix function
outerProduct.

New Functions

As described in previous sections, many common functions from C are also
available in GLSL. However, languages such as C do not focus on graphics and
so have few functions to handle geometry and matrix data. GLSL provides
several new functions to do this. The list here is long, but is broken out into
several different areas, as they are in the language specification.

Geometric Functions

GLSL supports a number of functions to support geometric operations. These
have an obvious application for graphics, since many of the basic graphical
operations basically manipulate geometry. These functions include the famil-
iar scalar functions for length and dot product, and the familiar vector opera-
tions for cross product and normalization. They also include less familiar vec-
tor operations for reflection, refraction, and faceforward that can be very use-
ful.

107Language Details

float length(genType x)
Returns the length of the vector x, ([] [] ...).x x0 12 2+ +

float distance(genType p0,

 genType p1)

Returns the distance between p0 and p1: length(p0 – p1).

float dot(genType x,

 genType y)

Returns the dot product of x and y: x[0]*y[0]+x[1]*y[1]+... .

vec3 cross(vec3 x, vec3 y) Returns the cross product of x and y,
x y y x
x y y x
x y y x

[] [] [] []
[] [] [] []
[] [] [] []

1 2 1 2
2 0 2 0
0 1 0 1

−
−
−

.

genType normalize(genType x) Returns a vector in the same direction as x, but with a length of 1,
or x

x
 .

genType faceforward(

 genType N,

 genType I,

 genType Nref)

Make N face in the direction of Nref. If dot(Nref, I ) < 0 return N,
otherwise return –N.

genType reflect(genType I,

 genType N)

For the incident vector I and surface orientation N, returns the
reflection direction: I − 2 * dot(N,I ) * N. The normal vector N must
already be normalized in order to achieve the correct result.

genType refract(genType I,

 genType N,

 float eta)

For the incident vector I and surface normal N, and the ratio of
indices of refraction eta, return the refraction vector. The result is
computed by
k=1.0-eta*eta*(1.0-dot(N,I)*dot(N,I))

if (k < 0.0)

 return genType(0.0)

else

 return eta*I-(eta*dot(N,I)+sqrt(k))*N.

The incident vector I and the normal vector N must already be
normalized in order to achieve the correct result.

108 5. The GLSL Shader Language

Matrix Functions

GLSL has several useful functions for matrices, including componentwise
multiplication, the outer product, and the transpose. If no matrix type is other-
wise specified, mat is used for any matrix type.

mat matrixCompMult(mat x, mat y) Multiply matrix x by matrix y compo-
nent-wise, so that result[i][j] is the scalar
product of x[i][j] and y[i][j]. Note: to get
linear algebraic matrix multiplication,
use the multiply operator (*).

mat2 outerProduct(vec2 c, vec2 r)

mat3 outerProduct(vec3 c, vec3 r)

mat4 outerProduct(vec4 c, vec4 r)

mat2x3 outerProduct(vec3 c, vec2 r)

mat3x2 outerProduct(vec2 c, vec3 r)

mat2x4 outerProduct(vec4 c, vec2 r)

mat4x2 outerProduct(vec2 c, vec4 r)

mat3x4 outerProduct(vec4 c, vec3 r)

mat4x3 outerProduct(vec3 c, vec4 r)

Treats the first parameter c as a column
vector (matrix with one column) and
the second parameter r as a row vector
(matrix with one row) and does a linear
algebraic matrix multiply c * r, yielding
a matrix whose number of rows is the
number of components in c and whose
number of columns is the number of
components in r.

mat2 transpose(mat2 m)

mat3 transpose(mat3 m)

mat4 transpose(mat4 m)

Returns a matrix that is the transpose of
m; m need not be square, as is shown.
The input matrix m is not modified.

mat2x3 transpose(mat3x2 m)

mat3x2 transpose(mat2x3 m)

mat2x4 transpose(mat4x2 m)

mat4x2 transpose(mat2x4 m)

mat3x4 transpose(mat4x3 m)

mat4x3 transpose(mat3x4 m)

Relational Functions for Vectors

GLSL extends the familiar relational operators for scalars to a set of relational
functions for vectors. These compare vectors componentwise and return a
bvec result that can be used for parallel comparisons. There are also several
functions that can convert a bvec result to a single Boolean scalar. In these
descriptions, vec is a real vector, ivec is an integer vector, and bvec is a Boolean
vector, and their lengths are arbitrary except that in each case the lengths are
equal.

109Language Details

bvec lessThan(vec x, vec y)

bvec lessThan(ivec x, ivec y)

Returns the component-wise compare of x < y.

bvec lessThanEqual(vec x, vec y)

bvec lessThanEqual(ivec x, ivec y)

Returns the component-wise compare of x <= y.

bvec greaterThan(vec x, vec y)

bvec greaterThan(ivec x, ivec y)

Returns the component-wise compare of x > y.

bvec greaterThanEqual(vec x, vec y)

bvec greaterThanEqual(ivec x, ivec y)

Returns the component-wise compare of x >= y.

bvec equal(vec x, vec y)

bvec equal(ivec x, ivec y)

bvec equal(bvec x, bvec y)

Returns the component-wise compare of x == y.

bvec notEqual(vec x, vec y)

bvec notEqual(ivec x, ivec y)

bvec notEqual(bvec x, bvec y)

Returns the component-wise compare of x != y.

bool any(bvec x) The vector equivalent of the logical or, |—returns true if
any component of x is true.

bool all(bvec x) The vector equivalent of the logical and, &—returns true
only if all components of x are true.

bvec not(bvec x) The vector equivalent of the logical not, !—returns the
component-wise logical complement of x.

Texture Lookup Functions

The built-in texture lookup functions give you access to textures through sam-
plers, as set up through the OpenGL API. A texture sampler is a GLSL uniform
variable that has been previously associated with a particular texture unit. The
texture unit acts as a pointer to the texture data itself and its sampling informa-
tion, such as size, pixel format, number of dimensions, filtering methods, and
number of mip-map levels. These texture properties are taken into account as
the texture is accessed.

Texture lookup functions can be used by both vertex and fragment shad-
ers. However, level of detail is not computed by fixed functionality for vertex
shaders, so there are some differences in operation between vertex and frag-
ment texture lookups.

110 5. The GLSL Shader Language

The additional functions support texture lookups for shadow textures or
for level-of-detail (“LOD”) in shaders. Functions whose names include Lod are
allowed only in vertex shaders. The bias term is optional for fragment shaders,
but is not accepted for vertex shaders. If it is included, it is added to the level
of detail before the texture access.

vec4 texture(sampler1D sampler,

 float coord [, float bias])

vec4 textureProj(sampler1D sampler,

 vec{2,4} coord [, float bias])

vec4 textureLod(sampler1D sampler,

 float coord, float lod)

vec4 textureProjLod(sampler1D sampler,

 vec{2,4} coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the 1D texture currently
bound to sampler. For the projective
(Proj) versions, the texture coordinate
coord.s is divided by the last component
of coord.

vec4 texture(sampler2D sampler,

 vec2 coord [, float bias])

vec4 textureProj(sampler2D sampler,

 vec{3,4} coord [, float bias])

vec4 textureLod(sampler2D sampler,

 vec2 coord, float lod)

vec4 textureProjLod(sampler2D sampler,

 vec{3,4} coord, float lod)

Use the texture coordinate coord to do
a texture lookup in the 2D texture cur-
rently bound to sampler. For the projec-
tive (Proj) versions, the texture coordi-
nate (coord.s, coord.t) is divided by
the last component of coord. The third
component of coord is ignored for the
vec4 coord variant.

vec4 texture(sampler3D sampler,

 vec3 coord [, float bias])

vec4 textureProj(sampler3D sampler,

 vec4 coord [, float bias])

vec4 textureLod(sampler3D sampler,

 vec3 coord, float lod)

vec4 textureProjLod(sampler3D sampler,

 vec4 coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the 3D texture currently
bound to sampler. For the projective
(Proj) versions, the texture coordinate is
divided by coord.q.

vec4 texture(samplerCube sampler,

 vec3 coord [, float bias])

vec4 textureLod(samplerCube sampler,

 vec3 coord, float lod)

Use the texture coordinate coord to do a
texture lookup in the cube map texture
currently bound to sampler. The direc-
tion of coord is used to select in which
face to do a two-dimensional texture
lookup.

111Language Details

Fragment Processing Functions

GLSL fragment shaders can antialias procedural textures using a variety of
techniques, including analytic prefiltering. To support this, GLSL includes
functions that let you calculate the gradient of any parameter in screen space,
and a function that gives you a value for the upper bound of the width of the
sampling filter needed to eliminate aliasing.

genType dFdx(genType p) Returns the derivative in x using local differencing for the input
argument p.

genType dFdy(genType p) Returns the derivative in y using local differencing for the input
argument p.

These two functions are commonly used to estimate the filter width used to antialias procedural tex-
tures. It is assumed that the expression is being evaluated in parallel on a SIMD array, so that at any
given point in time the value of the function is known at the grid points represented by the array.
Local differencing between array elements can therefore be used to derive dFdx, dFdy, etc.

genType fwidth(genType p) Returns the sum of the absolute derivative in x and y using local
differencing for the input argument p,
abs(dFdx(p)) + abs(dFdy(p));

vec4 shadow1D(sampler1DShadow sampler,

 vec3 coord [, float bias])

vec4 shadow2D(sampler2DShadow sampler,

 vec3 coord [, float bias])

vec4 shadow1DProj(sampler1DShadow sampler,

 vec4 coord [, float bias])

vec4 shadow2DProj(sampler2DShadow sampler,

 vec4 coord [, float bias])

vec4 shadow1DLod(sampler1DShadow sampler,

 vec3 coord, float lod)

vec4 shadow2DLod(sampler2DShadow sampler,

 vec3 coord, float lod)

vec4 shadow1DProjLod(sampler1DShadow sampler,

 vec4 coord, float lod)

vec4 shadow2DProjLod(sampler2DShadow sampler,

 vec4 coord, float lod)

Use the texture coordinate coord to do a
depth comparison lookup on the depth
texture bound to sampler, as described
in Section 3.8.14 of Version 1.4 of the
OpenGL specification. The third compo-
nent of coord (coord.p) is used as the R
value. The texture bound to sampler must
be a depth texture, or results are unde-
fined. For the projective (Proj) version
of each built-in, the texture coordinate
is divided by coord.q, giving a depth
value R of coord.p/coord.q. The second
component of coord is ignored for the 1D
variants.

112 5. The GLSL Shader Language

Noise Functions

GLSL includes the built-in noise func-
tions below, which can be used by both
fragment and vertex shaders. The noise
functions are pseudo-random stochas-
tic functions that are C1 continuous with
range [–1., 1.] and mean 0.0, and they
are deterministic for a given input. The
output has the same statistical character
if the domain is rotated or translated.
The noise functions can readily be used
to create textures that add to the visual
complexity of a scene.

float noise1(genType x) Returns a 1D noise value based on the input value x.
At this time, this function is not available in GLSL.

vec2 noise2(genType x) Returns a 2D noise value based on the input value x.
At this time, this function is not available in GLSL.

vec3 noise3 (genType x) Returns a 3D noise value based on the input value x.

vec4 noise4 (genType x) Returns a 4D noise value based on the input value x.

Swizzle

An operation that is probably new to you is the swizzle operation. This lets you
rearrange or reorganize the components of a vector in any way you want. This
operation is specified by simply writing the components of a vector in any
order you want, using one of the component name sets. For example, if m is a
vec4, you can reverse the order of the components of m by writing m.wzyx, or
you can duplicate some of the components of m by writing m.rrbb.

New Function Parameter Types

GLSL function parameters differ from the standard C “pass by value” approach.
GLSL parameters are passed by value-return. This means that parameters’ val-
ues may be copied into a function or may be returned by the function, or both,
but unlike with “pass by reference” variables, there is no change to any of the
actual parameters until the function returns. The function parameters are pre-
ceded by one of the keywords in, out, or inout; this comes before the type of
the parameter.

The GLSL language specification
defines the noise functions shown here,
but at this writing, it has not actually
been implemented in all GLSL systems.
While everyone agrees that there need
to be built-in noise functions available,
not everyone agrees on what would be
the best specific implementation. This
is why glman builds them in using 2D
and 3D textures.

113Language Details

The keywords’ meanings are
• const: The value of the input parameter is copied to the formal param-

eter, but no change to the formal parameter is allowed in the function.
• in: The value of the actual parameter is copied to the formal parameter,

but no changed value will be returned. The actual parameter may be an
expression that sets the value to be copied into the function. The formal
parameter may be changed during the execution of the function. The key-
word in may be preceded by const, in which case the formal parameter
will be treated as a const in the function.

• out: The formal parameter must be an lvalue and will have no value
until it is set inside the function. Any function operations may use this
parameter, but a value must be set in the function. The value of the for-
mal parameter in the function is copied to the actual parameter when the
function terminates.

• inout: The formal parameter must be an lvalue and is assumed to have
a value when it is copied to the function, and this value may be used or
changed during the function execution. When the function terminates,
the value of the formal parameter is copied to the actual parameter.

Const

The const data type lets you declare named compile-time constants. Any vari-
ables qualified by const are read-only variables for that shader and must be
initialized when declared; the initial values must be constant expressions. The
const qualifier can be used with any of the basic data types. As in C++, using
const is good programming style because it is strongly typed and it will cause
the compiler to throw an error if you attempt to re-assign a value to something
you originally expected should never get reassigned.

GLSL has several built-in const variables for vertex and fragment shad-
ers. The values given for initialization are implementation-dependent and are
the minimum values allowed.

 const int gl_MaxLights = 8;
 const int gl_MaxClipPlanes = 6;
 const int gl_MaxTextureUnits = 2;
 const int gl_MaxTextureCoords = 2;
 const int gl_MaxVertexAttribs = 16;
 const int gl_MaxVertexUniformComponents = 512;
 const int gl_MaxVaryingFloats = 32;
 const int gl_MaxVertexTextureImageUnits = 0;
 const int gl_MaxCombinedTextureImageUnits = 2;
 const int gl_MaxTextureImageUnits = 2;
 const int gl_MaxFragmentUniformComponents = 64;
 const int gl_MaxDrawBuffers = 1;

114 5. The GLSL Shader Language

Compatibility Mode

OpenGL 4.1 has replaced a number of features of the 2.x and 3.x standards with
much more general functionality. This has increased the power, efficiency, and
generality of the standard, but requires much more planning and setup than
the earlier standard. If you are maintaining OpenGL code that was based on
the 2.x and 3.x standards, or if you simply want to write quick shaders to test
out some ideas, you may want to work in what is called compatibility mode: a
mode in which you can use the earlier OpenGL functionality.

Defining Compatibility Mode

It is quite straightforward to specify that a shader is to be run in compatibility
mode. If you are working in OpenGL 4.x, you can simply put the line

#version 400 compatibility

at the top of any shader source. If you are working in OpenGL 3.3, a similar
command can be used:

#version 330 compatibility

Then you can use any functionality you like from the OpenGL 2.1 standard.
Among the things you might find most useful from the earlier standard

is the set of built-in data. These let you pick up attribute and uniform variables
that are defined by OpenGL 2.1 functions so you can use them easily in your
shaders.

OpenGL 2.1 Built-in Data Types

GLSL originally included some completely new data types that correspond to
functions needed to manage data flow across the spectrum of an application,
the OpenGL API, the onboard data on a graphics card, and the needs of vertex
and fragment shaders. These types are available in OpenGL 2.1 or in compat-
ibility mode for later versions, and are named attribute, uniform, and varying.
Their function is described in this section.

In general, you can differentiate these data types by how often the data
they represent change. Uniform data changes infrequently and never within
a graphics primitive; attribute data changes frequently, often as frequently as
each vertex; and varying data changes most frequently, with each fragment as
it’s interpolated by the rasterizer.

115Compatibility Mode

Attribute

The attribute data qualifier lets you access per-vertex data passed to the graph-
ics card by the OpenGL API functions. Attribute variables have only float, vec,
and mat data types, and cannot be declared as arrays or structs. Attribute vari-
ables are only accessible in a vertex shader and are read-only for that shader.
They must have global scope and must be declared outside of function bodies
before they are first used.

Originally, GLSL had built-in variable names for all the standard OpenGL
vertex attributes to give you easy access to data defined by OpenGL vertex
functions. These are

 attribute vec4 gl_Color;
 attribute vec3 gl_Normal;
 attribute vec4 gl_Vertex;
 attribute vec4 gl_MultiTexCoordi; // i = 0..7

Uniform

The uniform qualifier identifies global variables whose values are constant
across a graphics primitive. This can be used with any of the basic data types,
or when declaring a variable whose type is a structure, or an array of any of
these. Uniform variables are read-only for all shaders and are initialized exter-
nally either at link time or through the OpenGL API.

GLSL has a large set of built-in uniform variables that let you access the
graphics states set by the OpenGL API in your application. These are listed
below in groups that access similar states.

Primary matrices. OpenGL maintains four primary matrices that are available
to your shaders:

 uniform mat4 gl_ModelViewMatrix;
 uniform mat4 gl_ProjectionMatrix;
 uniform mat4 gl_ModelViewProjectionMatrix;

 uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];

Derived matrices. OpenGL computes a number of other matrices that are used
in various geometry processing steps. Some of these are inverses or transposes
of the primary matrices, and you should be aware that if the primary matrix
is poorly conditioned, the inverses may have unpredictable values. These
derived matrices are available to your shaders:

116 5. The GLSL Shader Language

 uniform mat3 gl_NormalMatrix; // transpose of inverse of

 // the upper leftmost 3x3 of

 // gl_ModelViewMatrix

 uniform mat4 gl_ModelViewMatrixInverse;

 uniform mat4 gl_ProjectionMatrixInverse;

 uniform mat4 gl_ModelViewProjectionMatrixInverse;

 uniform mat4 gl_TextureMatrixInverse[gl_MaxTextureCoords];

 uniform mat4 gl_ModelViewMatrixTranspose;

 uniform mat4 gl_ProjectionMatrixTranspose;

 uniform mat4 gl_ModelViewProjectionMatrixTranspose;

 uniform mat4 gl_TextureMatrixTranspose

 [gl_MaxTextureCoords];

 uniform mat4 gl_ModelViewMatrixInverseTranspose;

 uniform mat4 gl_ProjectionMatrixInverseTranspose;

 uniform mat4 gl_ModelViewProjectionMatrixInverseTranspose;

 uniform mat4 gl_TextureMatrixInverseTranspose

 [gl_MaxTextureCoords];

Normal scaling. If your application does its own normal scaling instead of
relying on the normalization operation, you can access that normal scaling
factor:

 uniform float gl_NormalScale;

Front and back clipping planes. When you specify your projection in OpenGL,
you specify the front and back clipping planes, and hence the depth of these
planes. This data is available to your shaders:

 struct gl_DepthRangeParameters

 {

 float near; // n

 float far; // f

 float diff; // f – n

 };

 uniform gl_DepthRangeParameters gl_DepthRange;

Clip planes. OpenGL allows you to define clipping planes in your scene by
specifying the equation of the plane as four real numbers. This data is avail-
able to your shaders:

 uniform vec4 gl_ClipPlane[gl_MaxClipPlanes];

117Compatibility Mode

Point parameters. In OpenGL you can specify the properties of a geometric
point. This data is available to your shaders:

 struct gl_PointParameters
 {
 float size;
 float sizeMin;
 float sizeMax;
 float fadeThresholdSize;
 float distanceConstantAttenuation;
 float distanceLinearAttenuation;
 float distanceQuadraticAttenuation;
 };
 uniform gl_PointParameters gl_Point;

In the items below, we introduce some shortcut names for a number
of properties of materials and lights. These are used to show how the later
derived materials states are computed.

Materials. When you use the OpenGL lighting model, you specify properties
of the materials that make up a graphics primitive. This data is available to
your shaders:

 struct gl_MaterialParameters
 {
 vec4 emission; // Ecm
 vec4 ambient; // Acm
 vec4 diffuse; // Dcm
 vec4 specular; // Scm
 float shininess; // Srm
 };
 uniform gl_MaterialParameters gl_FrontMaterial;
 uniform gl_MaterialParameters gl_BackMaterial;

Lights. When you specify a light in OpenGL, you specify a number of proper-
ties, from the light’s colors to the light’s position, to the type of light it is to be.
You also specify the kind of light model to be used. This data is available to
your shaders:

 struct gl_LightSourceParameters
 {
 vec4 ambient; // Acli
 vec4 diffuse; // Dcli
 vec4 specular; // Scli

118 5. The GLSL Shader Language

 vec4 position; // Ppli
 vec4 halfVector; // Derived: Hi
 vec3 spotDirection; // Sdli
 float spotExponent; // Srli
 float spotCutoff; // Crli

// (range: [0.0,90.0], 180.0)
 float spotCosCutoff; // Derived: cos(Crli)
// (range: [1.0,0.0],-1.0)
 float constantAttenuation; // K0
 float linearAttenuation; // K1
 float quadraticAttenuation; // K2
 };
 uniform gl_LightSourceParameters gl_LightSource
 [gl_MaxLights];

 struct gl_LightModelParameters
 {
 vec4 ambient; // Acs
 };
 uniform gl_LightModelParameters gl_LightModel;

Derived materials state. These states are products of the light and material
that are used for actual color computations:

 struct gl_LightModelProducts
 {
 vec4 sceneColor; // Derived. Ecm + Acm * Acs
 };
 uniform gl_LightModelProducts gl_FrontLightModelProduct;
 uniform gl_LightModelProducts gl_BackLightModelProduct;

 struct gl_LightProducts
 {
 vec4 ambient; // Acm * Acli
 vec4 diffuse; // Dcm * Dcli
 vec4 specular; // Scm * Scli
 };
 uniform gl_LightProducts gl_FrontLightProduct
 [gl_MaxLights];
 uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights];

Texture environment. This set of GLSL built-in uniform variables gives you
the colors that are produced by each texture unit and the coordinates of the
eye plane or object plane for eye-linear or object-linear textures, respectively.

119Compatibility Mode

 uniform vec4 gl_TextureEnvColor[gl_MaxTextureUnits];
 uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords];
 // eye linear
 uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords];
 uniform vec4 gl_EyePlaneR[gl_MaxTextureCoords];
 uniform vec4 gl_EyePlaneQ[gl_MaxTextureCoords];
 uniform vec4 gl_ObjectPlaneS[gl_MaxTextureCoords];
 // object linear
 uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords];
 uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords];
 uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords];

Fog. All the GLSL fog parameters set by the graphics API are available to your
shaders:

 struct gl_FogParameters
 {
 vec4 color;
 float density;
 float start;
 float end;
 float scale; // Derived: 1.0 / (end - start)
 };

Varying

GLSL’s varying variables provide communication from vertex shaders to frag-
ment shaders. Vertex shaders compute information for each vertex and write
them to varying variables to be interpolated across a graphics primitive and
then used by a fragment shader. GLSL specifies that default interpolations of
varying variables must be done in a perspective-correct manner, so the prob-
lems of perspective correction that we saw in Chapter 1 are not part of GLSL.
Only those varying variables used in the fragment shader must be written by
the previous shader in the shader pipeline, but that previous shader may also
declare other varying variables. A fragment shader cannot write to a varying
variable.

The varying qualifier can be used only with float variables, floating-point
vectors, matrices, or arrays of these. Structures cannot be varying. Varying vari-
ables must have global scope and must be declared outside of function bodies.

Varying variables may be defined using a modifier that describes how they
are interpolated across a fragment. These modifiers are flat, noperspective,
and centroid, and were discussed earlier in this chapter.

120 5. The GLSL Shader Language

Summary

We have seen that GLSL is a language that looks familiar enough to be used
easily, but that it has a significant number of new features that make writing
shaders possible—and that are easy enough to use that it’s straightforward to
get started by writing shaders that do interesting things. Like OpenGL, it has
enough capability that you will likely never run out of ways to add sophistica-
tion and new features to your shaders, or to create every effect that it can give
you. This chapter should familiarize you with the basic operation of GLSL and
should be a useful reference for you, but only when you actually begin to use
the language to write shaders will you really understand the graphical power
it gives you.

Exercises

1. For the following table of operator and operand type, indicate which
operator can legally operate on the operands given. For each one that is
legal, create an example of the two operands and show the result of the
operation.

Operator Left Operand Right Operand Result
+ mat2 float :

+ vec3 ivec3 :

* vec2 mat2 :

* mat3x4 mat4x3 :

2. For the following table of functions and parameter type(s), indicate
whether the function can legally act on the parameter(s) given. For each
case where the function can legally act, identify the type of the return
value, give an example of the function applied to the parameter(s) and
show the returned value of the function.

Function name Parameter(s)

a. pow vec4, vec4

b. mod vec3, float

c. cross vec3, vec3

d. outerProduct mat2x3, mat3x4

e. notEqual float, vec4

121Exercises

3. Use GLSL operators to write three different ways to calculate the distance
between two points.

4. Diagram the data flow that describes how geometric data gets from an
application, through the OpenGL API, to the graphics card, to a vertex
shader, to a fragment shader, and finally to a single pixel that is output to
the graphics color buffer.

5. Write constructors to create new variables from old ones, using either the
scalar, vector, or matrix constructors described in this chapter.

a. Construct an integer I from a float F.

b. Construct a vec3 from three ints.

c. Construct a vec2 as the middle two components of a vec4.

d. Construct a mat4 with the first row a set of four floats and with the
remaining part of each column given by a vec3.

6. Write statements you could use in a GLSL shader to convert a vec4 color
to a grayscale color with the same alpha value. Is there a difference in
how you would do this for a vertex shader and for a fragment shader?

This page intentionally left blankThis page intentionally left blank

123

Lighting6

The simplest way to perform lighting is by computing it per-vertex, which
would place responsibility for most of the work squarely on the shoulders of
the vertex shader. If lighting is performed this way, the color is computed based
on light and material properties that determine the color of each vertex based
on the standard ambient-diffuse-specular (ADS) lighting model. This per-vertex
color can be used for either flat or smooth shading. However, if a more complex
shading model is to be used, such as Phong or anisotropic shading, the color
computation will probably be deferred until the fragment shader, where per-
pixel color can be computed.

In this chapter, we will discuss both per-vertex and per-fragment lighting
methods.

124 6. Lighting

The ADS Lighting Model

This lighting model is the basis for fixed-function OpenGL lighting, and we
want to see how to handle this in shaders you write yourself. You were prob-
ably introduced to this in your beginning computer graphics course, but let’s
review it to be sure we’re all using the same terminology and notation. The
three kinds of light used in this model are

• Ambient light, or light that is always present at all points in a scene.
• Diffuse light, or light that comes directly from a light source.
• Specular light, or light that is reflected in a “shiny” way from a light source

by an object.

Each of these kinds of light contributes to the overall lighting at any
point in a separate way. The general context for these contributions is shown
in Figure 6.1, which illustrates a point on a surface with normalized (unit) vec-
tors from the point to the eye, Ê ; from the point to a light source, L̂ ; the normal
to the surface at the point, N̂ ; and the reflected light direction R̂ .

Ambient light contributes to the lighting as a product of the ambient light
itself AL and the ambient light color of the material being lighted :AM

A AA L M= * .
Diffuse light contributes to the lighting as a product of the diffuse light

itself ,DL the diffuse light color of the material being lighted ,DM and the
cosine of the angle Θ between the light and the normal, (L̂•N̂):

D = LD * MD * (L̂•N̂).

Figure 6.1. The setup for ADS lighting.

125The ADS Lighting Model

Specular light contributes to the lighting as a product of the specular
light itself ,SL the specular light color of the material being lighted ,SM and a
power (the “shininess” coefficient SH) of the cosine of the angle Φ between the
eye vector and the light reflection vector, (R̂•Ê)SH :

S = LS * MS * (R̂•Ê)SH.

Then the total lighting at the point is the sum of these:

A + D + S = LA * MA + LD * MD * (L̂•N̂) + LS * MS * (R̂•Ê)SH.

The reflection vector R is calculated by R = 2(N̂•L̂)N̂ − L̂ . Details on how
these individual formulas are derived may be found in any introductory graph-
ics text, such as [14]. Also, GLSL has a built-in function called reflect(),
which will do this for you.

This model can also take into account attenuation, or the reduction in
light intensity with distance. OpenGL models this with three factors: a con-
stant attenuation AC , a linear attenuation AL , and a quadratic attenuation AQ. If
a point is at a distance D from a light, the overall attenuation A is calculated as

A
A A D A DC L Q

=
+ +

1
2 .

The distance can be calculated from the light and vertex positions in eye
space, and this value of A then multiplies the diffuse and specular terms above.

In the ADS lighting function in the next section, we use the reflected-light
formulation because we have access to the reflection for each pixel, using the
GLSL function reflect() to compute the reflection vector. However, fixed-
function OpenGL uses the half-angle formulation for specular light because it
is easier to compute for each vertex.

The ADS Lighting Model Function

Below is a function that computes the color at a vertex based on the ADS light-
ing model with standard light and material definitions. It is intended for use
with glman, so it uses stubs for the values it would get from another source.
These stubbed values would come from system uniform variables, as noted in
the function’s comments.

You can use this function in a vertex shader if you are computing the
color at each vertex, as you would if you were planning to interpolate the color
across the graphics primitive, as in smooth shading, or you can use it in a frag-

126 6. Lighting

ment shader if you are computing the color at each pixel for Phong shading.
These two kinds of shading were discussed earlier in this chapter. Because we
have not yet talked about the GLSL programming API, we have stubbed in the
light and materials definitions in the function, indicating where they would
come from if this were part of a graphics application.

// Assumed context:
// uniform variables uLightsource[i] and uFrontMaterial are
// stubbed with constant values below. These would probably be
// passed into the shader function if used in an application.
//
// variables myNormal and myPosition are passed in; in a vertex
// shader these would be computed and used directly, while in a
// fragment shader these would be set by the associated vertex
// shader.
//
// the ADS color is returned from the function

vec3 ADSLightModel(in vec3 myNormal, in vec3 myPosition)
{
 const vec3 myLightPosition = vec3(1. , 0.5, 0.);

 const vec3 myLightAmbient = vec3(0.2, 0.2, 0.2);
 const vec3 myLightDiffuse = vec3(1. , 1. , 1 .);
 const vec3 myLightSpecular = vec3(1. , 1. , 1.);

 const vec3 myMaterialAmbient = vec3(1. , 0.5, 0.);
 const vec3 myMaterialDiffuse = vec3(1. , 0.5, 0.);
 const vec3 myMaterialSpecular = vec3(0.6, 0.6, 0.6);

 const float myMaterialShininess = 80.;

// normal, light, view, and light reflection vectors
 vec3 norm = normalize(myNormal);
 vec3 lightv = normalize(myLightPosition - myPosition);
 vec3 viewv = normalize(vec3(0.,0.,0.) - myPosition);
 vec3 refl = reflect(vec3(0.,0.,0.) - lightv, norm);
// ambient light computation
 vec3 ambient = myMaterialAmbient*myLightAmbient;

// diffuse light computation
 vec3 diffuse = max(0.0, dot(lightv, norm)) * myMaterialDiffuse
 *myLightDiffuse;

// Optionally you can add a diffuse attenuation term at this
//point

127Types of Lights

// specular light computation
 vec3 specular = vec3(0.0, 0.0, 0.0);
 if(dot(lightv, viewv) > 0.0)
 {
 specular = pow(max(0.0, dot(viewv,refl)),
 myMaterialShininess)*myMaterialSpecular*
 myLightSpecular;
 }
 return clamp(ambient + diffuse + specular, 0.0, 1.0);
}

This calculation does not take into account lighting attenuation. If you
want to include attenuation, you can enhance this computation by computing
the distance to the light and getting the light’s constant, linear, and quadratic
attenuation terms as uniform variables, and then computing

 1./(constant + linear*distance + quadratic*distance*distance)

as a multiplier of the diffuse and specular components, as described above.
(Attenuation does not act on the ambient light component.)

These computations use simple vector addition and subtraction, not
homogeneous addition and subtraction, because we want to keep this sim-
ple. If you want to make them fully general, you would need to replace these
with homogeneous vector addition and subtraction, as we discussed in Chap-
ter 1. This would be necessary, for instance, if you have a directional light
source (which acts as if it were placed at infinity).

Types of Lights

Since the fixed-function pipeline does all the color computations at the vertex
processing stage, whenever you use shaders to replace fixed-function opera-
tions, you must handle lighting yourself. Besides the full ADS lighting model,
there are other issues in lighting because OpenGL supports spot lights and
directional lights, as well as positional lights. To be able to replace fixed-func-
tion lighting computations, you must have ways to handle all the options that
you plan to use. If you are using lighting, you are probably using material
properties as well.

Overall, the OpenGL API gives you ways to define color, lights, and mate-
rial properties that are treated globally in the graphics system. So you may define
a light position, a color, etc. using the API calls to set their global properties, so
that any shader can pick them up. We have often used an alternate approach of

128 6. Lighting

setting discrete uniform variables
in our examples, because we can
then put them on sliders so that
you can experiment with them. In
applications, though, you should
probably take the more global
OpenGL API approach. This will
be described in Chapter 14.

Positional Lights

The most common kind of lighting in OpenGL scenes is with positional lights.
Each light has position, color, and a number of other values.

For positional lights, the primary consideration is the direction from a
vertex to the light source, and you can get that by a simple vector subtraction
so you can make it an out vector in the vertex shader and pass it to the frag-
ment shader. Alternately, you can make the vertex position in eye space an
out variable so the fragment shader can use the ADS lighting function. Your
choice will probably depend on the effect you are trying to achieve. As we will
see in examples below, you can get traditional smooth shading by computing
the light direction at each vertex and defining the color as an out variable in a
vertex (or tessellation) shader, while you can get Phong shading by defining
the normal as an out variable and interpolating either the vertex position or
the light direction for each pixel.

Lighting
Method

Vertex Shader
Does

Rasterizer
Interpolates

Fragment
Shader Does

Per-vertex Lighting model Color Applies color

Per-fragment Setup Normal and EC
position

Lighting model

Directional Lights

If you use directional lights or spot lights, the necessary data for using
these kinds of lights can be found in the components of the built-in uniform
uLightSource[i] struct. Directional lights, also called parallel light sources, are

Recall our assumption that in our example
shader code, we use general attribute and
uniform variables with our first-letter naming
convention instead of the built-in OpenGL
variable names. These names are close enough
to the built-in variable names that you can
easily convert them if you are working in
compatibility mode.

129Types of Lights

treated in almost the same way as positional lights, except that the direction to
the light is always the same, regardless of the position of a point. This simpli-
fies the light direction in any lighting computation by letting you use the light
direction directly, instead of computing the direction between the point and
the light position. Conceptually, for a directional light, you simply treat the
light as a homogeneous point at infinity.

Spot Lights

Spot lights include specifications for the direction, cutoff, and attenuation. To
use a spot light, you must compute the angle between the light direction and
the direction from the light to the vertex. By comparing that to the light’s cutoff
angle and using the light’s attenuation, you can then determine the value of
the light at the vertex. This requires the vertex shader to send both the light
position and the light direction to the fragment
shader, and the fragment shader must calculate
the angle between the light direction and the
vector from the light to the point in order to see
whether to use the light in the color computa-
tion.

In the vertex shader example below, you
can see the kind of computation that is needed
to compute the light intensity for a spot light.
The color always includes the ambient light, and
it uses diffuse and specular light for the particu-
lar light source only if the point is close enough
to the light direction. The effect of spot lighting
is shown in Figure 6.2, where the light shines
on only part of the geometric primitive, but we
omit the specular contribution in this case to
simplify the computation.

A vertex shader for lighting with a spot
light or directional light (or both) requires us
to manage that lighting function ourselves. The
fixed-function OpenGL spot light on the stan-
dard teapot is shown in Figure 6.2 (top), while
we can use the capabilities of GLSL and the ver-
tex shader to create the “fuzzy” spot light shown
in Figure 6.2 (bottom). The vertex shader for this
example has only three things to do:

Figure 6.2. The effect of a spot light on a teapot
that lies on the edge of the light’s illumination
area. Traditional OpenGL spot light (top) and a
spot light with a fuzzy edge (bottom).

130 6. Lighting

• Copy the color from the attribute variable aColor to an out variable such
as vColor.

• Set an out variable such as vLightIntensity with the light intensity
based on diffuse lighting computations at this vertex.

• Set an out variable such as vECposition with the eye coordinates of the
vertex.

The fragment shader carries out all the interesting computations that
simulate spot lighting for glman use. The positions of the light, the eye, and a
focal point of the light are set in eye space to define two vectors that meet at the
focal point, and uniform slider variables are used to set the angle of the light
and the horizontal location (the variable LeftRight) of the light focal point.
The cosine of the angle set by the vectors is compared with the cosine of the
cutoff angle in a smoothstep() function to determine the amount of diffuse
light to include for each pixel. The simulation uses a number of parameters
that would normally be taken from the uniform lighting variables provided by
the system. See the GLSL API for more details.

uniform float uAngle;
uniform float uLeftRight;
uniform float uWidth;

in vec4 vColor;
in float vLightIntensity;
in vec3 vECposition;

out vec4 fFragColor;

const vec4 LIGHTPOS = vec4(0.,0.,40.,1.);
const float AMBCOEFF = 0.5;
 // simulate ambient reflection coefficient
const float DIFFCOEFF = 0.6;
 // simulate diffuse reflection coefficient

void main()
{
 // stubs for data in system attribute variables
 // simulate MC light position

 vec3 ECLightTarget = vec3(uModelViewMatrix *
 vec4(uLeftRight, 0., 1.5, 1.));
 vec3 LightDirection = normalize(ECLightTarget - LIGHTPOS);
 vec3 EyeDirection = normalize(vECposition - LIGHTPOS);

 // Ambient only

131Setting Up Lighting for Shading

 fFragColor = vLightIntensity*AMBCOEFF*vColor;

 // Add diffuse light based on spotlight
 float myAngleCosine = dot(LightDirection, EyeDirection);
 float CutoffCosine = cos(radians(uAngle));
 float BlendFactor = smoothstep(CutoffCosine - uWidth,
 CutoffCosine + uWidth, myAngleCosine);

 fFragColor += DIFFCOEFF*BlendFactor*vColor*vLightIntensity;
}

Of course, in an application, uAngle and uWidth would be passed to the
shader as uniform variables from the application, and it would be better to
compute the value of CutoffCosine there, instead of for each pixel. We do it as
above in order to take advantage of glman.

Setting Up Lighting for Shading

Shading is the process of determining the color of each pixel in each primitive
in your scene. This is actually carried out in the fragment processing part of
the graphics processor that we described in Figure 1.5, but the vertex proces-
sor must set up the right environment for the kind of shading that you will
implement. In this section, we will discuss some kinds of shading and how
they are set up. In our discussion, we will draw on several shader concepts
from Chapter 2.

The standard shading models available in fixed-function OpenGL are
limited. They are flat shading, where a polygon is given a single color, and
smooth shading, where the colors at the vertices of the polygon are interpo-
lated to fill its interior. These are far from the only kinds of shading that have
been used in the graphics field, but they are enough for many kinds of graph-
ics work. More sophisticated shading is discussed later in this chapter and in
Chapter 8.

Recall from the discussions in Chapter 1 that the fixed-function vertex
processor must set a color for each vertex, and that the fragment processor can
only interpolate vertex colors. This gives us our first two kinds of shading: flat
shading and smooth shading. However, if we have vertex and fragment shad-
ers, we can set up out variables in the vertex shader so that the fragment shader
can interpolate other information and compute each pixel’s color directly.
This gives us two other kinds of shading: Phong shading and anisotropic
shading.

132 6. Lighting

Flat Shading

Flat shading is a type of per-vertex color computation. In order to use flat
shading for a graphics primitive, the vertex shader will determine a color for
a particular vertex (called the provoking vertex) and pass it forward to the frag-
ment processor. The color will not be interpolated across the fragments. The
color can come from an aColor attribute variable, or it could come from a light-
ing calculation, as described below.

In early versions of GLSL, it was not possible to specify flat shading, and
flat shading was seen as an operation that would be done by fixed-function
processing outside the GLSL shaders. However, GLSL has added a keyword

flat to the GLSL language, defining a vari-
able type called flat out variables. These vari-
ables may be passed to a fragment shader and
call for the variable’s value not to be inter-
polated across a graphics primitive during
fragment processing. Our familiar teapot is
shown in Figure 6.3 with flat shading, a look
that may be familiar from your own begin-
ning graphics work.

Vertex shaders that use flat out vary-
ing variables differ little from those you are
already familiar with. An example vertex
shader is shown below, which computes light
intensity from the standard diffuse technique

and passes this intensity to a fragment shader through the flat out variable
vLightIntensity. Compare this with the vertex shader you saw early in the
book to create Figure 2.2.

uniform vec3 uLightPos;

flat out float vLightIntensity;

void main()
{
 vec3 transNorm = normalize(uNormalMatrix * aNormal);
 vec3 ECposition = (uModelViewMatrix * aVertex).xyz;
 vLightIntensity = dot(normalize(uLightPos-
 ECposition),transNorm);
 vLightIntensity = abs(vLightIntensity);
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

Figure 6.3. The familiar teapot with flat shading.

133Setting Up Lighting for Shading

Smooth (Gouraud) Shading

Smooth shading is another kind of per-vertex color computation. In order to
use smooth shading (also known as Gouraud shading) for a graphics primi-
tive, the vertex shader must determine a color for each vertex as above and
pass that color as an out variable to the fragment processor. The color can
be determined from the ADS lighting model
by using the function we gave earlier in this
chapter, or it can simply be defined in an
application through a color attribute vari-
able. Because the color is passed to the frag-
ment shader as an in varying variable, it is
interpolated across the fragments that make
up the primitive, thus giving the needed
smooth shading. Below, we see a very sim-
ple vertex shader that computes the out vari-
able vColor using the ADSLightModel func-
tion and makes it available to a fragment
shader. Figure 6.4 shows the familiar teapot
with Gouraud shading; it is clear that this is
the smooth shading we are used to seeing in
fixed-function shading.

out vec3 vColor;

// use vec3 ADSLightModel here

void main()
{
 vec3 transNorm = normalize(uNormalMatrix * aNormal);
 vec3 ECpos = (uModelViewMatrix * aVertex).xyz;

 vColor = ADSLightModel(transNorm, ECpos);

 gl_Position = uModelViewProjectionMatrix * aVertex;
}

The specular highlight in Gouraud-shaded figures are often not smooth,
but show the typical smooth-shading effect of differing interpolations across
neighboring primitives that leads to Mach banding on polygon edges. We
will see much better results in the next section when we develop Phong
shading.

Figure 6.4. The familiar teapot with smooth
(Gouraud) shading.

134 6. Lighting

Phong Shading

Phong shading is a per-fragment color computation, and is a capability missing
from the fixed-function OpenGL system. In true Phong shading, the vertex
normals are interpolated across a graphics primitive, and the ADS lighting
model is applied separately at each individual pixel. In order to do that, the

lighting model’s key variables must be evalu-
ated and set up as out variables during vertex
processing. The vertex shader code below sets
up the normal and position data for the ADS
lighting model function in out variables, so that
a fragment shader can interpolate these vari-
ables and use them in the ADSLightModel()
function to compute the color. The actual frag-
ment shader that implements this lighting is
shown in Chapter 8. In Figure 6.5, you can see
the smooth specular highlight that you expect
from Phong shading.

out vec3 vNormal;
out vec3 vECpos;

void main()
{
 vNormal = normalize(uNormalMatrix * aNormal);
 vECpos = (uModelViewMatrix * aVertex).xyz;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

This specular computation uses the unit reflection vector, R̂ , which
changes with each pixel. An alternative approach computes the “half angle”—
the vector Ĥ halfway between the light L̂ and the eye Ê vectors—and uses the
cosine of the angle Φ between Ĥ and the normal N̂ . If the angle Φ is zero, the
cosine is 1 and the light is reflected directly to the eye. As the angle increases,
the cosine decreases. Again, a power of that cosine is used to control the size
of the specular highlight. So we could replace the specular term in the model
by the expression

S = LS * MS * (N̂•Ĥ)SH.

The half angle vector Ĥ is computed as the average of the unitized L and
E vectors, which in GLSL is expressed as normalize(L + E), and the term
(N̂•Ĥ)SH that provides the shiny appearance of specular light is slightly differ-

Figure 6.5. The familiar teapot with Phong
shading.

135Setting Up Lighting for Shading

ent from the similar term in the reflection vector formulation. In general, the
half-angle formulation for specularity gives a slightly less-focused specular
highlight than the reflected-light version. Since the shininess coefficient SH is
simply an approximation that is adjusted for visual effect anyway, the differ-
ence is only qualitative. You can see this qualitative difference in Figure 6.6,
which shows the half-angle formulation on the left, and the full-angle formu-
lation on the right.

In fact, it is sometimes possible to get even better shading than Phong
shading. For some kinds of applications, it is possible to compute exact normals
at each pixel instead of simply interpolating vertex normals. We call this exact
shading, and we discuss it further in Chapter 8.

Anisotropic Shading

Anisotropic shading is another per-pixel color computation that is not available
in fixed-function OpenGL. Anisotropic shading is shading in which specular
light is not reflected equally in all directions from the surface. An example of
this is shown in Figure 6.7, which simulates a sphere for which light is reflected
more strongly in a direction perpendicular to the arc from the poles through
the point. Note that the bright spot in the figure is not circular because the
material has different properties in different directions. Materials such as fur,
hair, and brushed metal behave this way [22].

If you are writing shaders to implement anisotropic shading, the vertex
shader must send the usual information, such as the normal, the eye position,
and the light position, into the fragment shader, in the same way as would be

Figure 6.6. Specular lighting with the half-angle formulation (left) and full-angle formulation (right).

136 6. Lighting

done for Phong shading. In addition, the fragment shader must get whatever
extra information is needed to describe the directional reflection; in this case,
that is the tangent vector to the sphere normal to the polar arc through the
point. The fragment shader then carries out the ambient and diffuse light com-
putations for regular ADS lighting and computes the specular part of the light
based on the new light direction.

The particular kind of anisotropic shading shown in Figure 6.7 is a com-
puter graphics “classic,” going back to the late 1980s. The specular reflection is
not given by the usual term

S = LS * MS * (R̂•Ê)SH,
but by the term

dl = T̂•L̂ ,

de = T̂•Ê ,

dl T L
de T E

S L M dl de dl dl de deS S
SH

= •

= •

= ∗ ∗ ∗ + − ∗ ∗ − ∗

,

,

(() ()) ,1 1

where T̂ is the tangent vector (the direction of the brushing or hair), L̂ is the
light vector, Ê is the eye vector, and SH is the shininess. In the code snippet
below, taken from the fragment shader, the values of the tangent, light, and
eye vectors, and the value of vColor, are assumed to have been computed
separately in the associated vertex shader. The anisotropic shading param-
eters uKa, uKd, and uKs are assumed to be passed into the shader, and the color
vColor is used for all three components of the ADS lighting model.

Figure 6.7. Anisotropic lighting in human hair (left); a sphere with anisotropic shading
(right).

137Exercises

 vec3 ambient = vColor.rgb;

 float dl = dot(That, Lhat);
 vec3 diffuse = sqrt(1. - dl*dl) * vColor.rgb;

 float de = dot(That, Ehat);
 vec3 spec = uLightColor * pow(dl * de +
 sqrt(1. - dl*dl) * sqrt(1. - de*de), uShininess);

 fFragColor = vec4(uKa*ambient + uKd*diffuse + uKs*spe, 1.);

Exercises

1. Compare the tradeoffs between granularity and shading quality, spe-
cifically between smooth and Phong shading. Create a model with a
granularity you can adjust, and see if you can identify the granularity of
smooth shading that is indistinguishable from Phong shading.

2. In the text, we say that the specular light computation using the reflec-
tion vector gives you a smaller specular highlight than the computation
using the half-angle vector when the same specularity exponent is used.
Modify the ADS lighting function in the text to use the half-angle formu-
lation, and verify this statement. Add a slider for the shininess exponent
to the GLIB file for the Phong shader, and see if you can quantify the rela-
tion between the exponents for the two formulations that give the same
look.

3. Modify the ADS light function to use homogeneous vector computations
throughout. Is this enough to make it work with directional as well as
positional lights? If not, modify it further to support directional lights.

4. In the spotlight example in the text, we simply used ambient and dif-
fuse light. Modify this shader to use the ADS light function and compute
specular light as well.

5. Suppose that you had a material that reflected light from a sphere differ-
ently from the anisotropic example above: the light is reflected in a direc-
tion tangent to the sphere toward the poles. Write a shader to implement
this kind of lighting.

This page intentionally left blankThis page intentionally left blank

139

In fixed-function OpenGL, the vertex processing in the graphics pipeline is
responsible for taking the model-space geometry you define, along with what-
ever color, lighting, materials, shading, and texture information you specify,
and creating a set of vertices in clip space that have color, depth, normal,
and texture associated with each. The role of the vertex shader is shown in
Figure 7.1. The vertex shader replaces much of the fixed-function vertex pro-
cessing, and possibly changes the vertex coordinates as well. It also sets up
the shader environment for any further vertex processing by tessellation and
geometry shaders and for the rasterization and fragment shader processing.

In this chapter, we will discuss the vertex shader from a functional
approach: what it does, what its inputs are, what its outputs are, and what
kind of operations it can perform. We will also see several examples of vertex
shaders that carry out many of these shaders’ different operations.

7 Vertex Shaders

140 7. Vertex Shaders

Vertex Shaders in the Graphics Pipeline

As we consider in detail how the
vertex shader works in the graph-
ics pipeline, we need to look at the
inputs to a shader and the outputs
from a shader, as well as the kinds
of processing that can go between
the input and the output.

In the discussions below, we
will often refer to aspects of the
GLSL shader languages that were
presented in Chapter 5, because
vertex processors deal with attri-
bute variables, uniform variables,
and variables that are passed to
other shaders for their work. If you
are working through this book in
chapter order, this material should
be fresh, but if you are picking it up
bit by bit, you should at least skim
Chapter 5 to understand the basic
ideas of GLSL variables.

Input to Vertex Shaders

Vertex shaders take the inputs that would ordinarily go to the vertex process-
ing stage of the graphics pipeline, along with other data that the application
might want to send to the shaders. This lets the vertex shader replace key parts
of the standard vertex processing. Vertex shaders can take attribute and uni-
form variables as inputs, and produce other variables as outputs. Both attri-
bute and uniform variables are treated as read-only variables by vertex shad-
ers. (Vertex shader out variables are treated as write-only variables destined
for the next stage in the pipeline.)

Attribute variables can take on a different value for each vertex in your
model and are considered to be read-only to the vertex shader. Some of the
attribute variables are built-in to GLSL, such as vertex coordinates, vertex
color, vertex normal, and vertex texture coordinates.

Figure 7.1. The place of vertex shaders in the pipeline.

141Vertex Shaders in the Graphics Pipeline

 You can also create your own per-vertex attribute variables. These can
be used to send per-vertex data values, as well as geometry, into the graphics
pipeline so that the graphics functions can use the data in developing images.
This might include per-vertex application-specific data such as elevation, tem-
perature, density, or speed, which can be used in computing the image. We
will see some examples of the use of application-defined attribute variables in
Chapter 15.

Uniform variables are constant across a graphics primitive and are read-
only to all shader types. As with attribute variables, uniform variables come
from the OpenGL application program.

The GLSL built-in uniform variables reflect the kind of information that
an application would specify, including such items as

• The primary OpenGL matrices, such as the ModelView matrix, the
Projection matrix, and the Texture matrix.

• The derived OpenGL matrices, such as the Normal matrix, the
ModelViewProjection matrix, and the ModelViewInverse matrix.

• The front and back clipping planes and the user-defined clipping planes.
• The material properties: ambient, diffuse, specular, shininess, and emis-

sion.
• The full set of light properties, including colors, position, direction, cut-

off, and attenuation properties.
• The texture environment.
• The fog data, such as color, density, start, and end.

Besides the built-in uniform variables, an application can provide user-
defined uniform variables as needed through the GLSL API. The mechanics of
defining and initializing these variables will be described in Chapter 14. These
variables can be used in similar ways as the system-defined attribute variables
if you are working with data that is constant over a graphics primitive.

Another vertex shader input can come from texture coordinates that are
defined in modeling operations. Textures can be used in vertex shaders for a
variety of applications, such as displacement maps. However, the most com-
mon use of texture coordinates in a vertex shader is to pass them along as out
variables so they can be interpolated by the rasterizer for use by the fragment
shader, as we see in the next section.

Vertex shaders can also accept uniform sampler variables to access several
kinds of textures. We discuss sampler variables in more detail in Chapter 9.

The inputs to the vertex shader are not just data but can also affect the
kind of processing that will be done. Those that determine different kinds of

142 7. Vertex Shaders

processing include the choice of projection, the shading to be used, whether
color is specified or computed, and what kind of lighting and material will be
used to set the color of a vertex.

Output from Vertex Shaders

The output from a vertex shader is much the same kind of output as would
come from the vertex processing in the fixed function graphics pipeline. A ver-
tex shader can create and set variables for later use in tessellation, geometry,
or fragment shaders. The vertex shader must also create certain variables that
are needed for rasterization and fragment processing.

The primary responsibilities for the vertex shader in the fixed-function
environment are to compute and pass forward the coordinates of the model,
transformed into clip space, and to compute and pass forward the color of
each vertex.

The special variables that are output for the geometry of the model
include the required variable gl_Position (which holds the 4D vertex position
in clip coordinates), and gl_PointSize (which optionally holds a point size
in pixels). If texturing is to be used, the texture coordinate attribute variables
gl_MultiTexCoordi must be converted into out variables so that they can be
used in subsequent pipeline stages, including being interpolated by the raster-
izer for the fragment shader.

The vertex shader can also compute the color of each vertex and pass it
along to the fragment processor to use.

A uniform variable could contain any information that should be con-
stant across a geometric primitive. That is a uniform variable’s scope. Uniform
variables may be read in the vertex shader, in a tessellation shader, in a geome-
try shader, or in a fragment shader. Examples of such variables include glman’s
range variables, which you define in GLIB files.

Other variables may be defined by the vertex shader to transfer any
kind of per-pixel data to the tessellation, geometry, or fragment processing
stage. These may include transferring the value of user-defined attribute vari-

ables to variables defined in the ver-
tex shader, for example. It may also
include creating appearance informa-
tion such as pixel colors, or geometric
information such as normals or light
direction, which can later be used in
tessellation, geometry, or fragment
processing.Figure 7.2. The inputs and outputs for a vertex shader.

143Vertex Shaders in the Graphics Pipeline

These inputs and outputs for the vertex shader are summed up in
Figure 7.2.

Geometry

If you are planning to use computed colors or textures for your final image,
based on the vertex coordinates of your graphical objects, it can be impor-
tant for your vertex shader to enable these coordinates to be passed to your
fragment shader so they can be used there. There are two kinds of geometry
that you can use for this: model-space geometry or eye-space geometry. We use a
prefix convention to show these; the MC prefix corresponds to model-space
geometry while the prefix EC corresponds to eye-space geometry. These are,
of course, two of the main 3D spaces you work with in computer graphics. We
can compute these primary kinds of geometry as follows.

• For model-space geometry, you simply use the space in which your
model was defined: vec3 MCposition = aVertex.xyz;

• For eye space coordinates, you want to work with the geometry after all
modeling has been applied. This is straightforward using the ModelView
matrix: vec3 ECposition = (uModelViewMatrix*aVertex).xyz;
In Figure 7.3, we see how a shader can use the model coordinate (left) or

eye coordinate (right) values to generate colors. The fragment shaders for both
images create stripes that are parallel to the YZ plane, but the vertex shaders
differ in sending either model coordinates or eye coordinates to the fragment
shader to be used to determine the colors. The geometry in both cases has been

Figure 7.3. The teapot with model coordinates determining the colors (left) and with eye coordinates deter-
mining the colors (right).

144 7. Vertex Shaders

rotated to show that the model coordinates stay with the object’s geometry,
but the eye coordinates stay fixed relative to the viewing space. That is, on the
left, the stripes are parallel to the YZ plane of the model coordinates, and on
the right, the stripes are parallel to the YZ plane of the rotated (eye) coordinate
space.

Below is the vertex shader for Figure 7.3, with a Boolean switch to choose
whether you want to send the eye-space or model-space coordinates on to
the fragment shader. The lighting computation in this shader is very simple,
merely handling the diffuse light intensity that would be part of a full light-
ing model, as we will discuss later in this chapter. In Chapter 8, we will show
a simple fragment shader that handles the coordinates that this vertex shader
develops.

uniform bool uUseModelCoords;
out vec4 vColor;
out float vX, vY, vZ;
out float vLightIntensity;

void
main()
{
 vec3 TransNorm = normalize(uNormalMatrix * aNormal);
 vec3 LightPos = vec3(0., 0., 10.);
 vec3 ECposition = (uModelViewMatrix * aVertex).xyz;
 vLightIntensity = dot(normalize(LightPos - ECposition),
 TransNorm);
 vLightIntensity = abs(vLightIntensity);

 vColor = aColor;
 vec3 MCposition = aVertex.xyz;
 if(uUseModelCoords)
 {
 vX = MCposition.x;
 vY = MCposition.y;
 vZ = MCposition.z;
 }
 else
 {
 vX = ECposition.x;
 vY = ECposition.y;
 vZ = ECposition.z;
 }
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

145Vertex Shaders in the Graphics Pipeline

This vertex shader shows other useful techniques. It picks up the object’s
color from the attribute aColor variable and passes it on as a new variable to
be used by the fragment shader, computes the light intensity using a standard
diffuse lighting technique and passes that on as well, so that the lighting can be
used in the fragment shader. However, if you want to use the full ADS light-
ing model, you must take into account much more than just the light intensity.
This is covered in Chapter 6.

Fixed-Function Processing after the Vertex Shader

Some parts of the graphics pipeline usually associated with the vertex process-
ing are not subsumed by a vertex shader. These include

• all clipping, including view volume clipping and user-defined clipping,
• homogeneous division,
• viewport processing,
• depth range scaling.

Finally, primitive assembly is done after all vertex processing is finished
and before the assembled vertices are sent to later shaders (such as tessellation
or geometry shaders) and finally to the rasterization stage.

OpenGL and World Coordinates

World Coordinates are what you get when Model Coordinates are transformed into the
scene but are not yet transformed into the eye’s coordinate space. Why don’t we have
an example here of colors determined by world-space coordinates? Because OpenGL
doesn’t capture world coordinates in a way that shaders can get access to them
through built-in variables. We can use the model coordinates because we can access
the vertex coordinates through the OpenGL variable aVertex, and we can use the eye
coordinates because we can access the model view matrix through the OpenGL variable
uModelViewMatrix. But the world coordinates are not available to us using OpenGL
fixed-function matrices. However, you can manage your own model transformations
and create world-space vertices in your vertex shader using code such as

 uniform mat4 uWorldMatrix; // created and passed in by app

 . . .

 vec3 WCposition = (uWorldMatrix * aVertex).xyz;

146 7. Vertex Shaders

The Relation of Vertex Shaders to Tessellation Shaders

Tessellation shaders can optionally follow vertex shaders in the shader pipe-
line Their primary function is to expand an original geometric primitive into a
set of primitives that expresses the geometry in more detail. This can be done
by, for example, performing adaptive subdivision, refining coarse models into
finer ones, applying displacement maps, and carrying out level-of-detail adap-
tations to improve the visual quality of an image.

The input to the tessellation shaders consists of the assembled primi-
tives from a vertex shader together with data that controls the subdivision to
be performed. The output from the tessellation shaders consists of the collec-
tion of vertices for the new geometry, ready for the next primitive assembly
step. This is all discussed more fully in Chapter 13.

The Relation of Vertex Shaders to Geometry Shaders

Geometry shaders have many of the same capabilities as tessellation shaders,
but with two very important differences:

1. Besides some standard primitives, they may take as input a different
kind of graphics primitive, which includes not only vertices in the primi-
tive but also vertices adjacent to the primitive—the “geometry with adja-
cency” primitive type—and they produce standard graphics primitives
as output.

2. In creating the output, they are allowed to create new topologies. For
example, a geometry shader can take points in and produce triangles out,
or can take triangles in and produce lines out.

In either case, both tessellation and geometry shaders can rely on vertex
shaders to preprocess vertices and manage attribute variables for the benefit of
the rest of the pipeline This is all discussed more fully in later chapters.

Replacing Fixed-Function Graphics
with Vertex Shaders

On general principle, it should be possible to write a vertex shader to carry
out any of the non-reserved vertex processing functions of the fixed-function

147Replacing Fixed-Function Graphics with Vertex Shaders

graphics pipeline. This is underscored by the fact that some graphics devices
are starting to use OpenGL ES 2.0, which omits all fixed-function operations.
In this section, we will look at some familiar functionality and develop vertex
shaders to carry out those functions. We will look at standard kinds of opera-
tions, including several kinds of lighting and shading, and will show a vertex
shader for each. In Chapter 8, we will develop fragment shaders to go with
many of these vertex shaders, so that you can see a full solution. The full solu-
tion will be included with the materials available for the book.

Standard Vertex Processing

The vertex and primitive grouping information for a vertex shader comes
directly from the graphics application as attribute variables or as user-defined
uniform or other variables, as described above. The original vertex geometry
is in model space, so the normal and vertex position need to be set into world
space and then eye space, the built-in gl_Position variable needs to be defined,
and the light intensity and color need to be defined as new variables and made
available to later fragment shader processing. This is very straightforward, as
shown in the simple vertex shader below. This shader comes from a glman
example that defines the light position in the vertex shader, rather than taking
it as an attribute variable from the application. It also does not compute the
fragment colors itself, but sends the variables vColor and vLightIntensity to
be used to determine the pixel colors in the fragment shader, as we have seen
in earlier examples.

out vec4 vColor;
out float vLightIntensity;

void
main()
{
 const vec3 LIGHTPOS = vec3(3., 5., 10.);
 vec3 TransNorm = normalize(uNormalMatrix * aNormal);
 vec3 ECposition = (uModelViewMatrix * aVertex).xyz;
 vLightIntensity = dot(normalize(LIGHTPOS - ECposition),\
 TransNorm);
 vLightIntensity = abs(vLightIntensity);

 vColor = aColor;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

148 7. Vertex Shaders

Going Beyond the Fixed-Function
Pipeline with Vertex Shaders

So far, we have focused on how you can use vertex shaders just to replace fixed-
function capabilities. While that may seem redundant, it may have helped you
to understand how to keep some of the kinds of graphics you want when you
move to using shaders. It may also become the only way to get your graph-
ics on devices that do not support the fixed-function pipeline in their built-in
graphics systems.

Shaders have the capability to add new functionality to the standard
fixed-function kind of graphics. We have seen that techniques such as Phong
shading, long missing from OpenGL graphics, are now possible using the
combined capabilities of vertex and fragment shaders. Similarly, the vertex
shader can be set up to take user-defined per-vertex attribute data to a vertex
shader, so that an image can be directly derived from application data.

When we discussed the inputs to the vertex shader, we noted that an
application can define its own attribute variables for use by shaders. As we
pointed out earlier, however, only a vertex shader can read an attribute vari-
able, so one of a vertex shader’s tasks is to transfer the necessary attribute val-
ues to other variables, so they can be used in whatever ways the application
has in mind. Of course, a vertex shader can modify the values in the process.
These attribute variables may also be used in the vertex shader itself. This lets
you define shaders that respond to data in different ways, a critical capability
that will be exploited when we discuss scientific visualization in a later chapter.

Vertex Modification

A vertex shader can modify the coordinates it receives. The vertex shader is
a one-vertex-in, one-vertex-out process, and it cannot create more vertices—
that’s what tessellation and geometry shaders are for. The main application
of vertex shaders is to change the vertices of the primitives you already have
defined, and to set up variables such as lighting that depend on the vertices.
Some of this could take user-defined attribute or uniform variables and use
them to define the changes to be made.

Dome Geometry Example

The fixed function pipeline is limited to performing linear transformations on
vertices. A very interesting use for vertex shaders is to transform vertices in
ways that the fixed function pipeline cannot. One such application is to per-

149Going Beyond the Fixed-Function Pipeline with Vertex Shaders

form the transformations needed to display a 3D scene on a dome. A dome
projector is capable of expanding the displayed image to nearly a 180º field of
view, using a large fisheye lens. From a graphics point of view, there is a circle
on the display screen that the lens
maps to the dome circumference.
If you look directly at the center
of projection, the circumference of
the circle is what you see when you
look 90º to the left, right, down,
and up, as shown in Figure 7.4.

Imagine a line drawn out
from the center of the dome projec-
tor to the center of the dome wall.
Now imagine a line drawn from the
dome projector to the (x,y,z) point
being plotted. The angle between
these two lines is Φ, and the angle around that center line is Θ. The dome
projection strategy is to leave Θ alone and treat Φ as a radius, with Φ = π/2 rep-
resenting the maximum radius of 1.0. This situation is shown in Figure 7.5 [3].

The dome projection can be demonstrated with glman. Here is the dome
GLIB file:

##OpenGL GLIB
Ortho -1. 1. -1. 1. .1 1000.
Vertex dome.vert
Fragment dome.frag
Program Dome
Color 1. .5 0.

Figure 7.4. The dome projection viewing volume.

Figure 7.5. Dome projection diagrams.

150 7. Vertex Shaders

PushMatrix

 Rotate -90 1 0 0

 WireTeapot

PopMatrix

Notice that this uses an orthographic projection. That seems strange,
because we would expect to use perspective for most of the images we would
want to display. The perspective is actually here—it is created as part of the
dome equation in the vertex shader. This happens through the use of the
point’s z-coordinate in computing the angle Φ. That dome equation makes
geometry appear to reach a vanishing point as it gets farther away and maps
everything to be inside the unit circle. This orthographic projection is there to
handle the display of the unit circle and to set up the depth clipping.

The dome vertex shader code actually does all the work of converting
spaces that is shown in Figure 7.5. As is often the case when working with
glman, we have hardcoded a variable, the light position that would be picked
up from the OpenGL environment in a real application.

const float PI = 3.14159265;

out vec4 vColor;

void

main(void)

{

 vColor = aColor;

 vec4 pos = uModelViewMatrix * aVertex;

 float lenxy = length(pos.xy);

 if(lenxy != 0.0)

 {

 float phi = atan(lenxy, -pos.z);

 pos.xy = normalize(pos.xy);

 // pos.xy is now equal to (cos theta, sin theta)

 float r = phi / (PI/2.); // radius <= 1.

 pos.xy *= r; // same theta, different radius

 // pos.z is left alone so that it can participate in depth

// clipping

 }

 gl_Position = uProjectionMatrix * pos;

}

151Issues in Vertex Shaders

Figure 7.6 shows the effect that this shader gives vertices as you zoom
into the object. These images are from the monitor and so will look distorted,
but they will look correct when projected through the projector’s fisheye lens.
As you can see in the left-hand image of Figure 7.6, from a distance the teapot
looks about the same as it always does. But as you get closer, you can see in the
middle image of the figure that the geometry starts to get squeezed against the
unit circle. This makes sense in the dome world, because as you zoom through
a scene, objects never actually disappear to the left, right, bottom, or top, as
they would in a normal Cartesian zoom. If you think of yourself as sitting in
the center of the dome and flying through a scene, objects close to you just get
more even with you. Finally, in the right-hand image of Figure 7.6, you are in
the exact center of the teapot. From there, you can see the handle, spout, lid,
and base of the teapot all at the same time. But objects can get behind you or
too far in front, and so the only clipping that actually takes place in a dome
projection is Z clipping.

Issues in Vertex Shaders

There are always some things in any new capability that can trip people up.
This is also true of vertex shaders. Here, we talk about a few of those potential
pitfalls you might run into.

Figure 7.6. Zooming in on a dome projection.

152 7. Vertex Shaders

Creating Normals

First, when you change the geometry that came from your model, how do you
create accurate normals? You may have defined the normals in your original
model, but now the geometry has changed, and you need to compute the new
model’s normals. How you can do this depends on the way your geometry is
defined.

In case you have an analytic description of the modified surface or
graphical object, you can compute the surface normal by analytic means. If
you have any two non-collinear vectors in the tangent plane to the surface

at a point, then their cross product (in the
right order) is normal to the surface. So if
you have the surface as an explicit function
surface, z(x,y), the two partial derivatives
define tangent vectors dx z x= 1 0 ∂ ∂
and dy z y= 0 1 ∂ ∂ that lie in the plane,
and their cross product dx × dy can be com-
puted and normalized to get an analytic
normal. Figure 7.7 shows the function sur-
face of Figure 3.4 with specular lighting
added as discussed in the previous chap-
ter. An exercise at the end of this chapter
encourages you to explore this idea more
generally.

An even more interesting case of this is the general surface, defined
on a rectangular domain with points in 3D space. As an example, consider
Enneper’s surface, defined by

We will omit the shader code here, but it is straight-
forward to compute the u and v partial derivatives of
each component, build the tangent vectors in the u and
v directions, and use the cross product to compute the
normal to the surface at any point. A full set of applica-
tion and shader code is available for this on the book’s
website. Figure 7.8 shows the surface.

Figure 7.7. A function surface with analytic normals.

It’s nice to create exact
normals at vertices of
analytic objects, but it’s
even better to do that for
each pixel in the object.
This exact shading is
discussed in Chapter 8.

x u v u u uv
y u v v u v v
z u v u v

(,) / ,
(,) / ,
(,) .

= − +

= − − +

= −

3 2

2 3

2 2

3
3

153Summary

If the surface is analytic, but implicit rather than explicit,
so that the surface equation is given by S(x,y,z) = 0, then its
normal vector is given byN S x S y S z= ∂ ∂ ∂ ∂ ∂ ∂ and
again, this needs to be normalized. The overall computation
is not otherwise significantly different.

On the other hand, if your surface or object is given
by simply setting vertex values, the normal cannot be
found analytically, and we must resort to computations
based on cross products of edges at vertices. This may be
made difficult, because the vertex shader can only access
coordinates of the vertex being processed; it cannot access
the coordinates of other vertices in the primitive. In case all
the vertex computations can be known without the actual
coordinates, this can be sidestepped. An example would be when a texture
map is used to compute vertex offsets, because adjacent texture coordinates
can be read from the vertex being processed, so the adjacent vertex coordinates
can be inferred.

But what if the computation does not let us infer coordinates? There
really is nothing the vertex shader can do in that case. However, geometry
shaders give you a way around this. In Chapter 12, we will show how you can
access the data from all the vertices in a primitive so you can compute a vertex
normal based on the cross product of edges, and at least get flat shading. If
your primitives also have adjacency information, you can get access to some
adjacent primitives as well, so you may be able to do just a bit better than flat
shading. See Chapter 12 for more information.

Summary

You can do several kinds of computation in either the vertex or fragment
shader. For example, you can calculate the direction from a vertex to a light
in a vertex shader and make it a variable to be interpolated in the fragment
shader, or you can use the interpolated pixel position and calculate the direc-
tion from that in a fragment shader. How do you decide exactly what you do
in the vertex shader and what you do in the fragment shader?

As you write vertex shaders, it can be tempting to write a separate shader
for each application. However, the lessons of code reuse suggest that you
should think about creating very general vertex shaders that can be used with
several different fragment shaders. This offers a very good place to include
appropriate #ifdef statements, so you can turn specific shader operations

Figure 7.8. Enneper’s surface.

154 7. Vertex Shaders

on or off very easily. This might mean that you would need to create more
variables in your vertex shader than you would need for any one particular
fragment shader, because other versions of the same shader might need them.
Most shader compilers are fiercely optimizing, and you will likely not find that
there is a penalty for including variables that don’t affect the generation of the
scene detail.

Exercises

1. Replace the simple fixed-function vertex processing for a straightforward
example with a vertex shader. Use the shader to compute each vertex
position and vertex color, and pass on the color values as new variables
to a fragment shader to get smooth shading. If your implementation of
GLSL supports flat shading, implement that as well.

2. Take a straightforward vertex shader such as one you would use for
smooth shading, and design two different ways to organize informa-
tion that you would pass on to a fragment shader to complete an image.
Sketch out the fragment shader you would use, and discuss how your
choices would affect the design of the fragment shader.

3. Look at the section of Chapter 14 that covers user-defined attribute and
uniform variables. Think of an application that can use this kind of attri-
bute or uniform data, and assuming that these have been designed, write
a vertex shader that takes this data and prepares it for a fragment shad-
er’s use. Sketch how the fragment shader would use that data in setting
pixel colors.

4. Create a simple scene that is made up of a few primitives, each with its
own modeling transformation. Create a model-space shader similar to
that used for Figure 7.3, applying the appropriate modeling transforma-
tions to each vertex as it is used.

5. Implement the Cartesian hyperbolic vertex shader, described in the
Hyperbolic Geometry section of the Scientific Visualization shader. Do it
using glman, so that you can make the parameter K a uniform slider vari-
able and experiment with the effect of different values of K.

6. As we did in the discussion in Chapter 3 around Figure 3.4, define a 2D
grid on a plane, and display any surface defined by analytic expressions
by writing a vertex shader to compute the position and normals at the
domain points. The vertex shader shown with the example in Chapter 3
will be a good starting point, and you might consider implementing the
Enneper surface whose equations are given in this chapter.

155Exercises

7. Your goal is to simulate wringing out a sponge object. Design an object
with a texture that easily shows deformation, and write a glib file that
provides a uniform Twist slider variable. As the Twist slider goes from 0.
to 1., the object should

• twist about the Y (vertical) axis,
• get squished to zero in the Y direction, and
• shrink by 30% in the horizontal (X and Z).

It should look something like the example below.

This page intentionally left blankThis page intentionally left blank

157

Fragment Shaders and
Surface Appearance8

Just as with vertex shaders, there are specific roles for fragment processing in
the fixed-function graphics pipeline. Their task is to take state variables, plus
the values that are interpolated across a polygon, and produce a final color for
each pixel. In the fixed-function world there are few things to interpolate: posi-
tion, depth, color, and texture coordinates. The classical graphics literature
contains many more things that can be done with interpolations, however,
and the fragment shader in GLSL can do a great number of them. This chapter
describes the basics of fragment shaders, including some fun techniques you
can’t do with fixed-function OpenGL graphics.

Once again, we consider the role of fragment processing in the graphics
pipeline, just as we did for the role of the vertex shader. The general place of
this functionality is shown in Figure 8.1, which recalls Figure 7.1. We see that
fragment processing takes the interpolated values within a graphics primitive
in screen space and produces pixels with color and depth to be incorporated
into the framebuffer.

158 8. Fragment Shaders and Surface Appearance

Basic Function of a Fragment Shader

The basic function of a fragment shader is to take uniform variables and the
output from the rasterizer and compute the color of the pixel for each frag-
ment. Figure 8.2 illustrates this process, showing first how the distinct verti-
ces of a primitive are processed by the rasterizer to form the set of fragments
that make up the primitive.

Of course, many other built-in properties of vertices besides color and
light intensity can be interpolated in fragment processing. The two most
important of these are texture coordinates and pixel depth. If you are using
texturing, as the texture coordinates are interpolated, you can use these coor-
dinates to sample a texture (or multiple textures) to help determine the colors
of each pixel. We will focus on textures and their contribution to fragment
processing in the chapter on texturing, and will keep our focus on other frag-
ment processing here.

Inputs to Fragment Shaders
There are many different kinds of inputs to a fragment shader from an appli-
cation, from the OpenGL system, or from a vertex shader. By now, these are

Figure 8.1. The place of the fragment shader in the pipeline.

159Basic Function of a Fragment Shader

quite familiar, but we want to remind our-
selves of them in the fragment shader context.

Uniform Variables

Fragment shaders can use uniform variables
that are provided by the system or by the
application. Because uniform variables do
not change within a graphics primitive, they
will not change during the interpolations that
the rasterizer performs. However, they can
be used for any computations that might be
needed in fragment processing.

As a preview, there is a special kind of
uniform variable for textures that is avail-
able to both vertex and fragment shaders,
but which is particularly important for frag-
ment shaders: the uniform sampler variable.
The uniform sampler variables correspond to
textures, so with the 1D, 2D, and 3D textures,
we have sampler types sampler1D, sampler2D,
and sampler3D. Since GLSL also allows cube
mapping textures, we have the additional
sampler type samplerCube. The particular
sampler type that you use must correspond to
the texture type that was defined in your application. The value associated with
a sampler variable is the texture image number associated with the texture it
represents, which is also set up in the texture definition functions in your appli-
cation. The texture() function will be used with the texture unit and texture
coordinates to return the texture value at those coordinates, as in the line

vec4 textureValue = texture(TexUnit, coordinateVector);

We will see examples of this use in texture-based fragment shader code later
in this chapter.

Input and Output Variables

Perhaps the most important inputs to fragment shaders are the variables that
are passed to the fragment shader as out variables by the pipeline stage that
occurs right before the rasterizer and fragment processor. This could be a
vertex, geometry, or tessellation shader. These variables are the data that are
interpolated across a graphics primitive in order to give the fragment shader
enough information to set the colors of each pixel.

Figure 8.2. The vertices of a graphics primitive
and the fragments that are processed to make up
the primitive being displayed.

160 8. Fragment Shaders and Surface Appearance

The fragment shader must use an output vec4 variable to declare what
color should be placed in its pixel. In OpenGL 3 and beyond, you declare this
yourself, something like

 out vec4 fFragColor;

In pre-OpenGL 3 systems, there is a built-in vec4 variable, called gl_FragColor,
for this purpose. Our examples here will use the standard in OpenGL 3 and
beyond.

You can declare other out vec4 variables in your fragment shader and
write color data to it in order to send your graphics output to another buffer or
a texture. You simply declare these variables to be the appropriate kind.

Other variables can also be provided by the previous pipeline stage
to give the fragment shader any data or information that could be used in
developing the pixel colors. Among the things these variables might provide
are

• Light intensity, for scenes that use per-vertex lighting.
• Geometric coordinates in model or eye coordinates, as discussed later in

this chapter.
• Texture coordinates, used as indices into the texture array to a per-frag-

ment lighting model.
• Per-vertex reflection vectors, for use in environment mapping, cube map-

ping, or any other computation that involves reflections.
• Per-vertex refraction vectors, for use in cube mapping or any other com-

putation that involves refractions.
• Vectors from vertices to the light source(s), for dealing with spot lighting

or Phong shading.
• Data, for other computations that may depend on application-specific

information that has been passed through the vertex processor.
• The coordinates (x, y, z, 1/w) of each fragment in window-relative space,

from the built-in variable gl_FragCoord.

These variables are not required,
but they might be written by the previous
shader in the pipeline in case the applica-
tion using the shaders needs them for its
particular use.

The overall input and output opera-
tions of fragment shaders are shown in
Figure 8.3.Figure 8.3. Inputs and outputs for a fragment shader.

161Basic Function of a Fragment Shader

Additional Output Variables

A fragment shader program can also write a value to the built-in variable
float gl_FragDepth so that the depth can be used in later depth process-
ing. Setting this overrides the fragment depth that the graphics pipeline keeps
around for use in the depth buffer. This would be a way, for example, for you
to offset pixels’ depth values to alter the scene’s z-fighting behavior.

Particularly Important “In” Variables for the Fragment Shader

The most important of the vary-
ing variables are those that give the
position, color, texture coordinates,
depth, and user-defined values.
These are described in more detail
below.

Colors

Computing the color for each frag-
ment can be done in many differ-
ent ways. The fixed-function role
includes operations to interpolate
colors that are passed in for each
vertex, to interpolate texture coordi-
nates and use textures to calculate colors, and to use the interpolated color and
texture color to develop a final pixel color. Once the color is developed, it is
written to your output vec4 color variable (fFragColor in our case) to store the
pixel’s color for further work before the fragment is written to the color buffer.

From now on, we are going to use the vec4 variable fFragColor to indi-
cate we are assigning the final pixel RGBA to. You, of course, are free to use
whatever variable name you want, or to continue to use gl_FragColor in the
compatibility profiles.

Texture Coordinates

If your graphics primitives have been assigned texture coordinates, you can
get the texel coordinates for each vertex from whatever texture coordinates
variable you have interpolated through the rasterizer. As most of our exam-
ples in this chapter use just a vertex and fragment shader, we will call this vec2
variable vST.

Once you have the texture coordinates interpolated through the raster-
izer, you get the actual texel color from the texture() function. You can then

If you are working in compatibility mode,
there are built-in versions of several of the
input variables we discuss in this chapter:
 gl_Vertex

 gl_Normal

 gl_MultiTexCoordi

 gl_NormalMatrix

 gl_ModelViewMatrix

Here we use the variable name conventions
we introduced earlier, but the conventions
are basically the same as the built-in names
without the gl_ prefix.

162 8. Fragment Shaders and Surface Appearance

use that color for any further texture processing, including multitexturing or
managing the texture mode. This is described fully in the chapter on texture
mapping.

Other Data

In the previous chapter, we saw that an application can create attribute data
for each vertex, and that a vertex shader can take this attribute data and cre-
ate variables for the tessellation and geometry shaders that eventually pass
them on to be used in creating colors. Later in this chapter, we will see some
examples showing how this can be done. This is a particularly important capa-
bility for visualization that will be discussed in more detail in the visualization
chapter.

Coordinate Systems

If you will be using geometric information that has been passed into the frag-
ment shader as in variables, as we discussed in the last chapter, you will get
different effects, depending on the coordinate system that is used to develop
the geometric information for your fragment shader’s use. In the next few sec-
tions, we will talk about how some of these coordinate systems affect your
images.

Model Coordinates

Model coordinates are directly available to the vertex shader from the per-ver-
tex variable we called aVertex (or gl_Vertex in compatibility mode), but must
be moved into output variables in the vertex shader before they can be passed
along to the tessellation or geometry shader and finally used in a fragment
shader. Similarly, the model-coordinate normal is available from the attribute
variable we called aNormal (or gl_Normal) but must be moved into an output
variable by a vertex shader before it can be used in a fragment shader.

You are most likely going to want to use model coordinates for develop-
ing an appearance for your objects when you want that appearance to depend
on the object itself, and not on the location or orientation of the object in space.
For example, this could be the basis for a procedural texture that moved with
the object, as we will discuss later in this chapter. Another example of model-
coordinate textures could come from building a rectangular space with the
same dimensions as a 3D data texture and using slices of the space to view the
data in the texture, yielding a kind of volume visualization. Another example
of the use of model coordinates could be to create an object-linear one-dimen-
sional texture. This is discussed in the stripes example later in this chapter.

163Fragment Shader Processing

Eye Coordinates

Eye coordinates are what model coordinates become when they have been
transformed into the scene where they belong and then transformed so that they
are given with respect to the eye’s viewing coordinate system. The eye coor-
dinates for a vertex can be computed from the per-vertex variable aVertex by

uModelViewMatrix * aVertex

and the eye coordinate version of the normal vector is computed from aNormal
by

uNormalMatrix * aNormal

Both of these computations were used in early glman examples in the
chapter on shader concepts.

You might use eye coordinates in case you want to present information
from the viewer’s point of view, and in that case you might develop a pro-
cedural texture based on eye-coordinate information. Textures based on eye
coordinates can include eye-linear one-dimensional textures, discussed in the
ChromaDepth example later in this chapter. This idea will also be used to cre-
ate a 3D “data probe” in the visualization chapter.

Fragment Shader Processing

Outputs from Fragment Shaders

The primary output from the fragment shader is the same as that from the
fragment-processor in the fixed-function pipeline: pixel color, ready to be pro-
cessed by the remaining pixel operations and then written into the framebuf-
fer. The fragment shader can also produce a depth value for each pixel, which
can be useful if you want to compute a depth that is different from the usual
interpolation of the vertex depths.

Replacing Fixed-Function Processing
with Fragment Shaders

Before we start thinking of developing sophisticated kinds of fragment shad-
ing, we should stop to ask how we would implement the fixed-function kinds
of shading we get from ordinary OpenGL. Sometimes this is easy, but some-

164 8. Fragment Shaders and Surface Appearance

times it involves more computation than we might expect. In these sections,
we will review the primary kinds of work of the fixed-function fragment pro-
cessor and ask how we can do them with a fragment shader.

Shading

In the world of fixed-function OpenGL, shading means one of the standard
ways to apply colors to the pixels in a graphics primitive. For fixed-function
operations, all the processes that develop a color from lighting models are done
during vertex processing, so if we simply replace the fixed-function process-
ing with fragment shaders, we can assume that the key inputs to the fragment
shader are the color values, depths, and texture coordinates of each vertex in
each graphics primitive. The simple flat and Gouraud shading were described
in the earlier chapter on lighting.

Flat Shading

Flat shading is a standard, and very simple, way to give a color to a polygon.
It takes a single color and applies it identically to each pixel in the polygon.
To use flat shading, we usually specify a single color first and then define the
vertices of the primitive. If you should specify a separate color for each vertex
but still specify flat shading, the color that is used will be the color of the last
vertex specified in the primitive.

We noted in the chapter on vertex shaders that GLSL did not originally
support non-interpolating rasterization behavior, but that it has now added
the keyword flat for output variables headed to the fragment shader as well
as for the corresponding input variables in the fragment shader, so that those
variables are not interpolated across the polygon. In the previous chapter, we
introduced this concept and gave an example of a vertex shader to support flat
shading. Below, we show some fragment shader code that does this.

in flat float vLightIntensity;
uniform vec4 uColor;
out vec4 fFracColor;

void main()
{
 fFragColor= vec4(vLightIntensity * uColor.rgb, 1.);
}

The effect of this code is to use the familiar diffuse lighting computa-
tion that computes the light intensity in the vertex shader and sends it as a
flat variable instead of as a regular variable. The light intensity then is treated
as a constant for the primitive, yielding the same color for the entire primitive.

165Replacing Fixed-Function Processing with Fragment Shaders

Note that flat variables can also be used as a way for a vertex shader to
pass “global” values down to a fragment shader.

Smooth (Gouraud) Shading

Smooth shading (or Gouraud shading) is a very helpful tool in creating attrac-
tive images with OpenGL, but it has some rather severe shortcomings. It does
not handle specular highlights well, because specular highlights do not lin-
early interpolate well on the interior of a polygon. Also, smooth shading is
vulnerable to Mach bands, meaning it shows the boundaries of polygons more
than it should. Its implementations may also do strange things for quads and
polygons that have very different colors at their vertices, because it is usu-
ally implemented by breaking the object into triangles and handling each tri-
angle separately. Unfortunately, implementing smooth shading in a fragment
shader will likely not solve these problems, but it may well be something you
would want to have in your shader arsenal.

An extremely simple fragment shader to do smooth shading is shown
below. This simply takes the color that has been computed for each vertex,
using whatever process the vertex shader has needed and saved there as
vmyColor. A vertex shader that does this was shown in the chapter on light-
ing, and a Gouraud-shaded teapot was shown in Figure 5.4. The computed
color is passed to the fragment shader and is interpolated across the primi-
tive and saved as the fragment color in fFragColor. Of course, this is a very
simple example, but it does everything that fixed-function smooth shading
does.

in vec3 vmyColor;
out vec4 fFracColor

void main()
{
 fFragColor = vec4(vmyColor, 1.0);
}

Traditional Texture Mapping

Texture mapping is another fixed-function operation that can be readily han-
dled by fragment shaders. Texture coordinates are easily set up as input vari-
ables, so they are interpolated for each fragment, and sampler functions can
look up coordinates in a texture map to get the actual texels to be used in
determining each pixel’s color. Rather than covering texture mapping in this
chapter, we discuss it fully in the next chapter.

166 8. Fragment Shaders and Surface Appearance

False Coloring

Color is important in creating realistic images, but it has other functions as well.
If you want to display information that has more than three dimensions, for
example, you can use traditional geometry to show up to three dimensions and
then use color for the fourth. You can also use color to emphasize the third

dimension when your geometry is
projected to the two dimensions of a
screen or of paper. This use is shown
in Figure 8.4; this same figure was
used in the discussion of false coloring
(or pseudocolor) in [14], but here the
figure has been generated using ver-
tex and fragment shaders and is much
more effective. The technique is much
more general than this, of course. We

will examine this approach and the more general concept of transfer functions
in the later chapter on shaders in scientific visualization.

The vertex shader is much like the one we illustrated when we created
Figure 6.7 in the previous chapter, so we won’t include it here. The function
in the figure is a Coulomb function. If we have an array of vec3 data and each
entry’s x- and y-coordinates represent a position in the plane, while the z-coor-
dinate represents the charge at that point, the function is

value x y
Q i z

x Q i x y Q i y
(,)

.

. .
,=

[]
− []() + − []()()

∑
2 2

where the sum is over all the entries in the plane. This function is written in
the vertex shader as

float Value = 0.0;

for(int i=0; i<3; i++)

{

 float dist=sqrt((x-Q[i].x)*(x-Q[i].x)+(y-Q[i].y)*(y-
 Q[i].y));

 Value += Q[i].z/dist;

}

Note that the dist computation could have been expressed, probably
more efficiently, as

Figure 8.4. A surface whose elevation is coded with color.

167Replacing Fixed-Function Processing with Fragment Shaders

 float dist = distance(vec2(x,y), Q[i].xy);

The fragment shader simply uses the z-coordinate of the interpolated
model-space coordinates for each vertex, computed in the fragment shader,
as the input to a color-determining function, and colors the pixel accordingly.
This use of data to determine color is known as a transfer function. We use it
here, and will use it a lot more in the chapter on visualization.

in float vLightIntensity;
in float vMyHeight;
out vec4 fFragColor;

uniform float uVertical;
uniform float uScale;

vec3 Rainbow(in float zval)
{
 vec3 myColor;

 if (zval < 0.) // black if below bound
 { myColor.r = 0.; myColor.g = 0.; myColor.b = 0.; }

 else if ((zval >= 0.) && (zval < 0.2)) // purple to blue
 // ramp
 { myColor.r=0.5*(1.0-zval/0.2); myColor.g=0.0;
 myColor.b=0.5+(0.5*zval/0.2); }

 else if ((zval >= 0.2) && (zval < 0.40)) // blue to cyan
 // ramp
 { myColor.r= 0.0; myColor.g=(zval-0.2)*5.0;
 myColor.b = 1.0; }

 else if ((zval >= 0.40) && (zval < 0.6)) // cyan to green
 // ramp
 { myColor.r= 0.0; myColor.g= 1.0;
 myColor.b = (0.6-zval)*5.0; }

 else if ((zval >= 0.6) && (zval < 0.8)) // green to yellow
 // ramp
 { myColor.r= (zval-0.6)*5.0; myColor.g= 1.0;
 myColor.b = 0.0; }

 else if (zval >= 0.8) // yellow to red
 // ramp
 { myColor.r= 1.0; myColor.g= (1.0-zval)*5.0;
 myColor.b = 0.0; }

168 8. Fragment Shaders and Surface Appearance

 else // white if above bound
 { myColor.r = 1.; myColor.g = 1; myColor.b = 1.; }

 return myColor;
}

void main()
{
 vec3 color = Rainbow(vMyHeight);

 fFragColor = vec4(color, 1.);
}

Another example of using false color is to provide contour lines for sur-
face displays. To do that, you would create and display the surface however
you like, but if the model-space elevation at a particular pixel is within a cer-
tain tolerance of one of the contour line elevations, you color the pixel with
the contour line color, instead of the ordinary surface color. If you are already
using false coloring for your figure, you can include this contour information
in your transfer function; if you are not, you can make a special contour-only
transfer function and apply it in your fragment shader after your other color-
ing operations. See Chapter 15 for more details. This kind of application is
similar to the model-space coloring example shown in Figure 6.3 and is left as
an exercise for the reader.

What Follows a Fragment Shader?

The fragment shader is not the last word on the color of pixels that are written
to the color buffer. Several steps in the fixed-function graphics pipeline fol-
low the fragment shader. These include depth comparisons if depth testing is
enabled, alpha blending, stencil testing, masking, dithering, and logical raster
operations. Because these are standard fixed-function operations, we won’t
go into them further. These operations use information that is not available
to the fragment shader, such as the existing contents of the color and depth
buffers, and are tightly controlled as pixels are finally written to the color buf-
fer. The fragment shader has some role in these operations, even if it does not
perform them. Depth testing uses the depth output from the fragment shader,
for example, and alpha blending uses the alpha channel that is the fourth coor-
dinate of the fFragColor value.

169Additional Shader Effects

Additional Shader Effects

The main value in fragment shaders, of course, lies in the capabilities that go
beyond the functionality that is available from the fixed-function graphics
pipeline. In the sections below, we’ll talk about some of these capabilities and
give examples of fragment shaders that support them.

Discarding Pixels

A unique capability of fragment shaders (that
is, unavailable with standard fixed-function
processing) is the ability to discard pixels.
This function is much stronger than sim-
ply setting the alpha value of pixels to zero,
because it makes the pixel disappear in any
view. We mentioned this in the earlier chapter
on general shader concepts, so here we simply
remind ourselves of this capability, shown in
Figure 8.5. The key factor is the discard key-
word in the fragment shader that instructs the
shader to stop processing the pixel and not
record it in the framebuffer.

Phong Shading

In the previous chapter we introduced a function that computes the ambient-
diffuse-specular lighting model from a set of light and material properties. In
that chapter, we showed how that function could be used in a vertex shader to
set colors for each vertex, so that the rasterizer could smoothly interpolate the
colors or intensities across a polygon. Here, we want to see how to do lighting
at each fragment, instead of at each vertex. This is known as Phong shading.

A Phong shading fragment shader takes the normal as a varying variable
from the vertex shader, has it interpolated in the rasterizer, and uses the inter-
polated normals to compute the ADS color at each fragment. The fragment
shader that created the right hand image in Figure 8.6 is shown below. This
uses the ADSLightModel() function introduced in the lighting chapter.

in vec3 vNormal; // interpolated from the vertex shader
in vec4 vPos; // interpolated from the vertex shader
out vec4 fFragColor;

Figure 8.5. The standard teapot with some pixels
discarded by a noise process.

170 8. Fragment Shaders and Surface Appearance

// Assumed context:
//
// variables myNormal and myPosition are passed in and
// the ADS color is returned from the function

vec3 ADSLightModel(in vec3 myNormal, in vec4 myPosition)
{
// use the function from the Lighting chapter
}

void main()
{
 vec3 color = ADSLightModel(vNormal, vPos);
}

The figures from the lighting chapter showing how Phong shading dif-
fers from smooth shading are repeated here as Figure 8.6. Notice that the jag-
ged per-vertex artifacts in the smooth-shaded example are eliminated by using
Phong shading.

The specular highlight in the right image is much more effective than that
in the left image. The reason is that in the left image, the specular highlight is
computed at each vertex and interpolated across the polygon. If a polygon’s
vertices don’t get much specular lighting, then the pixels in that polygon won’t
have much either, even if the specular lighting is supposed to be high in the
interior.

Shading with Analytic Normals

As good as Phong shading is, it is still not exact, because it interpolates nor-
mals linearly across each primitive, so if there is any nonlinear variation in that

Figure 8.6. The smooth- (left) and Phong-shaded (right) teapots from Chapter 5.

171Additional Shader Effects

region, it is not seen. Sometimes we can do
better. In the previous chapter, we showed
that we could create an analytic height-
field function surface with a vertex shader,
computing the normal at each vertex by
using partial derivatives. We can also cre-
ate the normals at each pixel in a fragment
shader by the same technique.

We begin by interpolating the points
in the horizontal plane of the function in
the rasterizer. It is straightforward to get
these from the aVertex values in the ver-
tex shader, and then create a vec2 varying
variable for the fragment shader’s use. You also need to pass the actual pixel
position as a varying variable, because that is needed in the ADSLightModel()
function. You then compute the normal from the interpolated domain coordi-
nates and pass that value and the position to the lighting function to get the
pixel color.

The result is shown in Figure 8.7, which should be compared with
Figure 7.7 in the previous chapter. Notice how much more smoothly this sur-
face moves from one primitive to another, especially in the area along each of
the foreground ridges. Is this better than Phong shading? Theoretically, yes,
because it is analytic. Visually, it will probably depend on the nature of the
surface. This is explored in an exercise.

The fragment shader for this figure is shown below. It uses the
ADSLightModel() function given above, so that function has been abridged.
The surface is given by the function f x y x y(,) . sin= ∗ +()0 3 2 2 with partial
derivatives

∂
∂
∂
∂

f
x

x x y

f
y

y x y

= ∗ ∗ +()

= ∗ ∗ +()

2 0 3

2 0 3

2 2

2 2

.* . cos ,

.* . cos .

 You will see these in the fragment shader code below, where we assume
that the two input variables vMyXY and vPos come from a vertex shader.

in vec2 vMyXY;
in vec4 vPos;
out vec4 fFragColor;

Figure 8.7. The rippled surface with exact shading.

172 8. Fragment Shaders and Surface Appearance

vec3 ADSLightModel(in vec3 myNormal, in vec4 myPosition)
{
 ...
}

void main()
{
 float dfdx = 2.*0.3*vMyXY.x*cos(vMyXY.x*vMyXY.x +
 vMyXY.y*vMyXY.y);
 float dfdy = 2.*0.3*vMyXY.y*cos(vMyXY.x*vMyXY.x +
 vMyXY.y*vMyXY.y);
 vec3 xtangent = vec3(1., 0., dfdx);
 vec3 ytangent = vec3(0., 1., dfdy);
 vec3 thisNormal = normalize(cross(xtangent, ytangent));

 vec3 color = ADSLightModel(thisNormal, vPos);
 fFragColor = vec4(color, 1.);
}

As a quick aside, the code above was written to correspond closely to the
equations that it represents. But one could be a little more cryptic, and a little
more efficient, by coding the expression

vMyXY.x*vMyXY.x + vMyXY.y*vMyXY.y

as
dot(vMyXY.xy, vMyXY.xy)

Anisotropic Shading
The examples of shading above have all been isotropic, that is, the light reflected
from the surface at a point has been assumed to be the same in all directions.
However, this is not true of all surfaces. Anisotropic shading models light
that is reflected differently in different directions [19]. This is a property of a
surface, and examples include hair (see the left image in Figure 8.8), brushed
metallic surfaces, scored surfaces, or surfaces made up of oriented threads. A
fur-covered surface can also be treated as an isotropic surface.

Anisotropic shading does not simply use the usual angles, the angle from
the normal of the diffuse reflection and the angle from the reflected light in the
specular reflection. Instead, it computes the angle with which light is reflected
from a surface. This may be a direct calculation, as it is in the example below,
or it may use a function called the bidirectional reflection distribution function (or
BRDF) to determine how much light is reflected toward the eye. This function
typically depends on both the latitude Θ and longitude Φ angle of the eye and

173Additional Shader Effects

of the light from the point being lighted: ρ Θ Φ Θ Φe e l l, , , .() The BRDF may also
take into account behaviors that differ for different wavelengths (or different
colors) of light.

None of the shading models in the fixed-function graphics pipeline of
OpenGL handle anisotropic shading at all, but we can do this within a frag-
ment shader, as described in the chapter on lighting. In the right image in
Figure 8.8, we see an example of a sphere that uses an anisotropic fragment
shader, discussed below. The light returned by the surface is clearly not the
circular spot we would have expected to see from normal (that is, isotropic)
shading; its shape reflects the behavior of brushed metal or threads that all go
through the poles of the sphere.

Data-Driven Coloring
One of the really significant capabilities that GLSL shaders give you is the ability
to pass data to the shaders, where it can be used to derive the colors of individ-
ual pixels. We have already alluded to the fact that an application can provide
data to shaders by defining uniform and attribute variables that can be used
freely in developing an image. This idea is also important in scientific visualiza-
tion and will be covered in detail in that chapter, but we describe it briefly here
because this capability is an important part of the idea of the fragment shader.

As an example of using data to color an image, we can get a number of
different kinds of weather data. Say that we want to be able to draw some con-
clusions about the weather from this data. Figure 8.9 shows three images from
the GOES (Geostationary Operational Environmental Satellites) system, dis-
playing a visible light image at the left, a data map of infrared (temperature) in
the center, and a data map of water vapor concentration at the right.

Figure 8.8. Anisotropic lighting in human hair (left); a sphere with procedural anisotropic
shading (right).

174 8. Fragment Shaders and Surface Appearance

Suppose we wanted to ask for the areas in which snow is most likely.
We would infer that these areas are where the water vapor concentration is
high and the infrared is low. It is difficult to eyeball this from the images in
Figure 8.9, but if you read the visible, infrared, and water vapor from three
textures into visibleLightColor, infraredInten and watervaporInten, and
read two thresholds, InfraRedThreshold and WaterVaporTheshold, as uni-
form variables, it is straightforward to write these criteria into a fragment
shader, as shown in the fragment shader here:

vec3 rgb = visibleLightColor;
. . .
if(infraredInten < InfraRedThreshold && // cold
 watervaporInten > WaterVaporThreshold) // damp
 rgb = vec3(0., 1., 0.); // “likely snow” = green

fFragColor = vec4(rgb, 1.);

The image generated from this shader
is shown in Figure 8.10. Note that this
gives a fairly obvious representation of
the three major storm systems that were
moving through the United States that
day. Making this a real weather forecast-
ing tool would require applying more
science to determine what the appropri-
ate cutoff values for moisture and infra-
red should be, along with studying other
factors that might be included. But this
image by itself is very useful.

Figure 8.9. Three GOES satellite views from space: visible light (left); infrared (center); water vapor concen-
tration (right).

Figure 8.10. Using a fragment shader
to locate all areas with high water
vapor concentration and low infrared.

175Additional Shader Effects

Images Using Other Data

An important use of computer graphics is to create images that show how data
or other information is distributed over some concrete or abstracted geometry.
This use, and how it is facilitated by shaders, is discussed in the later chapter
on scientific visualization. Here we want to give a simple example of how the
eye coordinates can be used to modify the colors in an image.

The example we present is ChromaDepth coloring [2]. This computes the
color for each vertex in your model by the depth of the vertex in your scene;
that is, by the distance from the vertex to the eye
plane. The purpose of this is to give the illusion
of depth when the scene is viewed while wear-
ing special ChromaDepth glasses.

Because we are working with shaders,
we can obtain a vertex’s eye coordinate depth
easily as the z-coordinate of its eye coordinate,
and can map that distance into a range that the
ChromaDepth() function below can use: typi-
cally 0 to 1, though the function will clamp the
value into that range. The ChromaDepth() func-
tion implements a transfer function, a function
that computes a color from a real number. This
can be called from a fragment shader to set the
color of each fragment as it is interpolated. This
function was used to create the image shown in
Figure 8.11.

uniform float uChromaBlue; // z-depth corresponding to blue
uniform float uChromaRed; // z-depth corresponding to red

in float vLightIntensity; // from lighting model
in float vZ; // depth in eye coordinates
out vec4 fFragColor;

vec3
ChromaDepth(float t)
{
 t = clamp(t, 0., 1.);

 float r = 1.;
 float g = 0.0;
 float b = 1. - 6. * (t - (5./6.));

Figure 8.11. A dinosaur with ChromaDepth col-
oring and erosion.

176 8. Fragment Shaders and Surface Appearance

 if(t <= (5./6.))
 {
 r = 6. * (t - (4./6.));
 g = 0.;
 b = 1.;
 }

 if(t <= (4./6.))
 {
 r = 0.;
 g = 1. - 6. * (t - (3./6.));
 b = 1.;
 }

 if(t <= (3./6.))
 {
 r = 0.;
 g = 1.;
 b = 6. * (t - (2./6.));
 }

 if(t <= (2./6.))
 {
 r = 1. - 6. * (t - (1./6.));
 g = 1.;
 b = 0.;
 }

 if(t <= (1./6.))
 {
 r = 1.;
 g = 6. * t;
 }

 return vec3(r, g, b);
}

void
main()
{
 float t = (vZ - uChromaRed) / (uChromaBlue - uChromaRed);
 vec3 theColor = ChromaDepth(t);
 fFragColor = vec4(vLightIntensity*theColor, 1.);
}

177Exercises

Exercises

1. Hand-code a polygon with different colors at each vertex and draw it,
specifying flat shading using only the fixed-function pipeline. Describe
the result, and discuss why this result may happen.

2. Hand-code a polygon having more than three vertices with different col-
ors at each vertex and draw it, specifying smooth shading using only the
fixed-function pipeline. Describe the result, and discuss why this result
may happen. It may help to try several examples where the vertex order
or the color at each vertex is changed.

3. Create a simple surface of your choosing and color it, based on the
model-space elevation of each pixel. You may either color the whole sur-
face based on elevation, or you may use a lighting model to display the
surface and create contour lines based on elevation.

4. Write the necessary shaders to create a Phong-shaded version of the
ripple surface of Figure 8.7, and compare it to the exact-shaded surface
shown there. Can you see a difference? What if you zoom in very closely
to the surface?

5. Take the fragment shader for round bumps on a sphere and adapt it from
a purely diffuse lighting and shading model to a Phong lighting and
shading model.

6. Identify another analytic surface besides that of Figure 8.7; you may find
examples from mathematics, physics, chemistry, or other sources. Create
the surface and calculate exact shading for it as described in this chapter.
Compare that with smooth or Phong shading for the surface.

7. Add the ChromaDepth() function to any program you have written, such
as the surface of the previous exercise, in order to use the ChromaDepth
coloring to present a three-dimensional image to the viewer.

This page intentionally left blankThis page intentionally left blank

179

Surface Textures in
the Fragment Shader9

Texture mapping is a special activity within shader programs. In can be used
in vertex, geometry, tessellation, or fragment shaders, although most of the
time it seems to find its most fun use in fragment shaders. In texture map-
ping, texture coordinates from the original model are used as an index into a
1D, 2D, or 3D texture. Textures can hold any piece of information. Most of the
time, they hold information related to determining the color of a pixel during
fragment processing. However, more and more, textures are finding them-
selves being used to hold general-purpose data for a variety of shader-based
computations. However, in this chapter, we will discuss the use of textures for
image creation. While this should be familiar from your introduction to graph-
ics, you have much more control over the use of textures when you’re using
fragment shaders. We will go well beyond the traditional texture mapping
and will cover other techniques, such as bump mapping and cube mapping,

180 9. Surface Textures in the Fragment Shader

that take texture coordinates as their starting point. And later, in Chapter 15
on scientific visualization, we will show how textures can be used to pass data
to shaders.

Texture Coordinates

Texture coordinates specify the coordinates in texture space for each vertex of a
graphics primitive. Texture coordinates are not part of the basic geometry of
a primitive, but rather are an attribute attached to each vertex. In the vertex
shader, the per-vertex texture coordinates are typically assigned to variables
that can be interpolated by the rasterizer across the entire polygon and then
given to the fragment shaders.

In the previous chapter on fragment shaders, you saw that you access the
interpolated texture coordinates with the texture coordinate variables we have
been calling vST in the vertex shader, and that you can get the RGBA color of
a texel from one of the texture() functions. You are not limited to using just
the single texels at those given texture coordinates, however. You can also use
any texture coordinates you need in developing the color of the pixel. As an
example, in the chapter on scientific visualization, we will describe the line
integral convolution (LIC) process that probes the texture map along specific
function streamlines to compute the color of each pixel. You can use a great
deal of creativity in how you use textures.

Traditional Texture Mapping

Traditional OpenGL texture mapping uses a number of functions that define
the way a texture is read, stored, accessed, and processed. The apparent com-
plexity comes mostly from the flexibility that a generalized graphics API must
have in order to be used so widely. If you are writing your own texture func-
tions in a fragment shader, you can implement just those operations you need,
which should make the task less intimidating than it might appear.

Your experience is that fixed-function OpenGL supports four kinds of
textures: 1D, 2D, and 3D textures, and cube maps. It also supports multitextur-
ing. Our goal is to see how you can create each of these standard functional-
ities with fragment shaders.

When you first encounter texturing in OpenGL, you find that to use tex-
tures, you must first set up a number of texture properties. You must associate

181Traditional Texture Mapping

a texture identifier (an integer generated by glGenTextures(); this is texA in
Figure 9.1) with a texture, you must set a number of texture parameters (such
as texture wrap and filter), and you must set the texture image parameters that
interpret the texture (color model, dimensions, size of texture component, and
texture data). This is illustrated in Figure 9.1, which shows how the usual set of
texture functions specify texture properties. The texture unit is the number of
the “docking port” in the graphics context, with default zero, and the texture
identifier texA acts as a pointer to a specific area in GPU memory.

In a fixed-function program, you must also associate a texture name with
the texture identifier, enable textures, and specify the texture environment.
Overall, the setup for a single fixed-function texture that has been loaded into
an array texImage looks like this:

GLuint texA;

glGenTextures(1, &texA);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texA);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexImage3D(GL_TEXTURE_2D,0,GL_RGB8,TEX_WIDTH,TEX_HEIGHT,
 0,GL_RGB,GL_UNSIGNED_BYTE,texImage);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_BLEND);

Figure 9.1. Docking texture parameters with the OpenGL system.

182 9. Surface Textures in the Fragment Shader

As we will see in a moment, the setting of the texture image and the
sampling parameters still need to happen when using shaders. However, the
setting of the texture environment is replaced by your fragment shader.

GLSL Texture Mapping

With GLSL, your application still needs to set up the texture array texImage
and the associations from Figure 9.1, but you must create your own associa-
tion of the texture with the texture unit. You must set up the uniform vari-
able texLoc, give it the name uImageUnit that you will see throughout this
chapter’s examples, and set its value to to something (0, in this example). This
associates the name uImageUnit with the texture GL_TEXTURE0, and you can
use any of the fragment shaders in this chapter with your application.

glActiveTexture(GL_TEXTURE0);

glBindTexture(GL_TEXTURE_2D,texA);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D,0,GL_RGB8,TEX_WIDTH,TEX_HEIGHT,
 0,GL_RGB,GL_UNSIGNED_BYTE,texImage);

GLuint texLoc = glGetUniformLocation(program, “uImageUnit”);
glUniform1i(texLoc, 0);

The GLSL built-in texture lookup functions give you access to textures
through samplers, set up through the OpenGL API. A texture sampler is a GLSL
uniform variable that has been previously associated with a particular texture
unit (e.g., Texture0 in Figure 9.1). The texture unit acts as a “docking port” for
the texture object itself. The texture object contains sampling information, such
as size, pixel format, number of dimensions, filtering methods, and number of
mip-map levels. These texture properties are taken into account as the texture
is accessed. Regardless of all of these settings, though, texture sampler func-
tions in GLSL always return a vec4 (RGBA) value.

The actual look of the texture mapping result is familiar, but seeing some
straightforward texture mapping code and the resulting image is instructive.

183GLSL Texture Mapping

An example texture, and that texture applied to the familiar teapot, are shown
in Figure 9.2. The fragment shader code for this image follows.

In the shader code below, the linking of the uImageUnit sampler with the
actual texture object has already happened in the application, and the map-
ping from the original texture attribute to the variable vST has been done in
the vertex shader. In this example we are using the multitexture at index 0, or
glTexCoord2f in traditional OpenGL API. The 2D texture coordinates for the
individual texture have been interpolated as the .st components of the texture
variable, and the texture() function has returned the value from the texture
unit at those coordinates. Finally, we note that the texture has been set up to
wrap.

Below we give the GLIB file, the vertex shader, and the fragment shader for
this example. The GLIB file sets the texture object to come from the apples.bmp
file and links that to texture unit 5. It also assigns a value of 5 to a uniform
variable called uImageUnit and
tells the shader program about
it. The vertex shader sets the tex-
ture coordinate and the value of
gl_Position, and the fragment
shader reads the color of the
texture from uImageUnit and
assigns it to the pixel.

Figure 9.2. A texture and the familiar teapot with this texture.

Here we use the function texture() in place
of the texture1D, texture2D, texture3D, and
textureCube functions used in compatibility
mode. In the newer versions of OpenGL, the
texture() function takes its dimension from
the dimension of the sample variable.

184 9. Surface Textures in the Fragment Shader

GLIB File

##OpenGL GLIB
Perspective 70

Texture 5 apples.bmp

Vertex brightness.vert
Fragment brightness.frag
Program Brightness uImageUnit 5

Teapot

Vertex Shader
out vec2 vST;

void main()
{
 vST = aTexCoord0.st;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

Fragment Shader
uniform sampler2D uImageUnit;
in vec2 vST;
out vec4 fFragColor;

void main()
{
 vec3 color = texture(uImageUnit, vST).rgb;
 fFragColor = vec4(color, 1.);
}

The Texture Context

In Figure 9.1, we saw an area identified as “Context” without much explana-
tion. In fact, this is an important idea, and when working with textures, it can
be very helpful to look at the idea of the OpenGL rendering context in more
detail.

When you set up a texture in fixed-function OpenGL, you first get the
identifier for the texture, representing the location where the texture informa-
tion will be. This is done by the two statements

GLuint texA;
glGenTextures(1, &texA);

185GLSL Texture Mapping

You can then assign a number of values to properties of the texture, as is also
shown in the functions in Figure 9.1. The set of values to be assigned is the
same for each texture. If you were implementing this in C++, you could use a
class as a way to envision it:

class TextureObject
{
 enum minFilter, maxFilter;
 enum storageType;
 int numComponents;
 int numDimensions;
 int numS, numT, numP;
 void *image;
};

When you want to make that texture object current, you can dock the
texture with the texture port in the context as shown in Figure 9.1. That is, in
C++ you would make that port in the context point to the address of the proper
texture object. The texture parameters would then “flow” from your program
through the context to the actual texture object. From then on, any time you
want to use that texture, the values in its texture object will have been retained,
so you only need to bind (“dock”) it again:

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texA);

Texture Environments in the Fixed-Function World

Fixed-function OpenGL includes several standard texture operations to deter-
mine how a texture is used in deciding colors for each fragment. Some of the
standard OpenGL options include the texture modes blend, decal, modulate,
and replace. In the OpenGL documentation or standard textbooks (for example
[14]) you will see the exact operation that is required for each of these texture
modes, depending on the kind of data the texture represents. For example, if
the texture is RGB color and the mode is blend, then you would

1. Compute the color of the pixel Cf without texture considerations.
2. Compute the color of the pixel Ct from pure texture operations.
3. Compute the color component product C Cf t∗ −()1 as the color of the

pixel.

If you are using multitexturing, more than one texture is used to compute
the texture color Ct.

186 9. Surface Textures in the Fragment Shader

The other texture operations are similar. If the mode is modulate, you
would replace the third step by

3. Compute the color component product Cf * Ct as the color of the pixel.

And finally, if the mode is either decal or replace, the third step is replaced by
3. Use the color Ct as the color of the pixel.

There are other definitions of these texture modes for RGBA color, alpha,
or luminance, but the examples above are enough to show you that the com-
putations for these modes are simple. In the fixed-function world, you need to
know what all of these options are. In the shader world, you set this yourself
by what you write in the shader.

Texture Sampling Parameters

Texture sampling parameters are an intrinsic part of using textures, whether
you are in the fixed-function world or the shader world. For example, what
do you do if your texture coordinates lie outside the normal [0., 1.] range? The
options are to wrap or clamp these coordinates. Computing a wrapping or
clamping operation is straightforward; if you want to use clamp operations,
any value larger than 1 is simply replaced by 1, while any value smaller than
0 is simply replaced by 0. If you want to use wrap operations, replace any
texture coordinate c out of the standard range by c – floor(c) to get only the
fractional part of the coordinate.

Also, what do you do if an individual pixel’s texture coordinates don’t
correspond to exact integer indices of a texel in your texture? This can happen
if you have many texels within one pixel (minification) or if you have many
pixels that correspond to one texel (magnification). You need to define the fil-
ter operations that OpenGL is to perform when this happens. The two filter
options are to use nearest (GL_NEAREST) or linear interpolation (GL_LINEAR)
with neighboring texels to get the particular pixel color. The actual operations
are straightforward for either minification or magnification. The nearest filter
is defined by simply picking the texel that is nearest the texture coordinates
(in x y+ measure), while the linear filter is defined by taking the weighted
average of the four texels that are nearest (in the same measure) to the texture
coordinates.

Samplers

Samplers are special kinds of functions that are used to access a particular tex-
ture map using the sampling parameters that you have set. Typically, they

187GLSL Texture Mapping

are implemented in hardware for speed. The values passed into the sampler
should be the number of the texture unit to be used to access the texture and
the texture coordinates. The type of the sampler defines the kind of texture
map that will be accessed. The available types are

• sampler1D, sampler2D, and sampler3D are used to access standard 1D,
2D, and 3D textures, respectively.

• samplerCube is used to access textures in a cube map.
• sampler1DShadow or sampler2DShadow are used to access 1D or 2D

shadow textures when depth comparisons are enabled.
Samplers should be considered an opaque data type within a shader. The

suffix on the sampler type indicates the texture type to be accessed: 1D, 2D,
3D, cube map, 1D shadow, or 2D shadow. In OpenGL, a texture object of each
of the first four texture types can be bound to a single texture unit. This suffix
allows the desired texture object to be chosen. A 1D shadow sampler is used to
access the 1D texture when depth comparisons are enabled, and a 2D shadow
sampler is used to access the 2D texture when depth comparisons are enabled,
but we do not discuss shadow textures here. If two uniform variables of differ-
ent sampler types contain the same value, an error is generated when the next
rendering command is issued.

The function glUniform1i loads a uniform variable defined as a sampler
type with a texture unit number. Attempting to load a sampler with any other
function is an error. All shader types (vertex, tessellation, geometry, and frag-
ment) can use texture samplers.

Procedural Textures

We can use the term procedural texture for any process of developing textures
by programming rather than by getting textures as data arrays, and is a stan-
dard computer graphics technique. In the fixed-function OpenGL graphics
API, texture techniques are limited to computing data arrays to be used as
textures. With the advent of fragment shaders, however, we can compute color
values for each pixel during the fragment processing stage.

Computing the color value for each pixel has several advantages. One
advantage is resolution. When you use fixed-size data arrays for textures, the
texture dimensions are limited to the size of the data array. If you zoom into
your geometry enough, the fixed-size texture runs out of resolution and starts
looking “blocky.” However, if you compute the texture values for each pixel
in the fragment processor, you compute as much resolution as your equations
can create, and you avoid any blockiness. Another advantage of computing

188 9. Surface Textures in the Fragment Shader

texture values is that you need not use precious texture memory to store the
texture, since you are computing the values on the fly.

In this section, we give some examples of procedural texturing that take
advantage of this per-pixel computation, showing some techniques that you
will find useful. You can take different approaches to this process. In one
approach, you do not use any texture coordinates at all, but work directly
from the geometry and use model, world, or eye coordinates as the basis for
your computation. Examples of this kind of texturing include computing level
lines or geodesic lines as textures. In another approach, you include texture
coordinates in your modeling, but rather than serving as indices into a texture,
the texture coordinates are used as the input to the texture computation func-
tion. Examples of this approach can include computed brick and checkerboard
textures, such as are often found in beginning graphics texts, as well as more
exotic kinds of textures. We use one of the more exotic examples in this section.

Using Model or Eye Coordinates

In the chapter on vertex shaders, we saw how different coordinate systems
could be used to determine object coloring using both model-space and eye-
space coordinates, and we saw a vertex shader that could send either set of
coordinates to the fragment shader. These colorings weren’t treated formally
as texture operations, but because their computations can determine the color
of individual pixels, they can be thought of in that way. The figure in the ver-
tex shader chapter showing the results of these two colorings is repeated as
Figure 9.3, and the fragment shader for these two figures is shown below.

Notice how the fragment shader below simply picks up the varying vari-
able vX from the vertex shader, without caring which set of geometry produced

Figure 9.3. The teapots with model-space (left) and eye-space (right) colors, repeated from Chapter 7.

189GLSL Texture Mapping

it. In the left-hand image, you see that the
stripes follow the value of vX in model
space (running from the tip of the spout to
the handle), while in the right-hand image,
you see that the stripes follow the value of
vX in eye space (from right to left). It then
uses these variables to compute the color of
each pixel, either the original color of the
object or the color white, based on a simple
calculation—essentially computing the tex-
ture based only on the object’s geometry in
the space that is passed to it. This fragment
shader function is designed for glman and
uses three uniform slider variables, uA, uP,
and uTol, that let you experiment with the
frequency and width of the stripes, and the
blurring of the stripe edges, respectively.

uniform float uA;
uniform float uP;
uniform float uTol;

in float vX;
in vec4 vColor;
in float vLightIntensity;

out vec4 fFragColor;

const vec4 WHITE = vec4(1., 1., 1., 1.);

void
main()
{
 float f = fract(uA*vX);

 float t = smoothstep(0.5-uP-uTol, 0.5-uP+uTol, f)
 - smoothstep(0.5+uP-uTol, 0.5+uP+uTol, f);
 fFragColor = vec4(vLightIntensity*mix(WHITE, uColor, t).rgb,
 1.);
}

Combining two smoothstep() functions like this
 smoothstep(0.5-uP-uTol, 0.5-uP+uTol,f)
 - smoothstep(0.5+uP-uTol, 0.5+uP+uTol,f);

Figure 9.4. The graph of the smoothpulse function.

190 9. Surface Textures in the Fragment Shader

is known as a smooth pulse function and is very useful in smoothly blending a
new color or value in a given tolerance (here uTol) of a given value range (here
0.5 – uP to 0.5 + uP). This function is shown in Figure 9.4.

Using Texture Coordinates

The texture coordinates that you define with your model can be used for more
than simple texture lookup. In the fragment processor, they appear as inter-
polated variables whose values can be used to compute a procedural texture
directly. One example of doing this is a simple brick texture, in which the val-
ues of the texture coordinates are scaled up and tested for position. The code
that determines the color of a pixel might look like that below. (This example
assumes that a test for position is done in the Boolean colorTest() function.)

 vec3 theColor;
 vec2 st = vST;
 st.s = fract(st.s * s_Mag_Factor);
 st.t = fract(st.t * t_Mag_Factor);
 if (colorTest(st))
 theColor = vec3(0.8, 0.3. 0.0); // color of brick
 else
 theColor = vec3(0.9, 0.6, 0.4); // color of mortar
 fFragColor = vec4(theColor, 1.);

And, as before, we quickly note that the lines

 st.s = fract(st.s * s_Mag_Factor);
 st.t = fract(st.t * t_Mag_Factor);

could be written more efficiently as

 st = fract(st * vec2(s_Mag_Factor,t_Mag_Factor));

A more sophisticated example of a procedural texture computes the
Mandelbrot function [28] given by the texture coordinates of each vertex,
using an iterative process. For a particular complex number c, we can define a
sequence f zk (){ } recursively by setting f z z c0

2() = + and f z f z cn n+ () = () +1

2
for a complex number z. If we start with the initial value z = 0 + 0i, this sequence
will converge for some values of c and not for others. If it converges, the num-
ber c is said to be in the Mandelbrot set. Of perhaps more interest are those
numbers c for which the sequence does not converge. Because the sequence
will always converge if it is bounded, the usual computational approach is to
iterate it a large number of times to see if the magnitude of fk(z)2 ever exceeds
some limit. If it does, the number of iterations it takes to reach that magnitude
is said to be the Mandelbrot number of c. The sketch below shows the way this
is computed and used to color a space.

191GLSL Texture Mapping

// Initial input is a complex number (real, imag)
// Set x = real and y = imag

Iterate until we reach a max # of iterations or x*x+y*y >= some
limit
{
 float newx = x*x - y*y + r;
 float newy = 2.*x*y + c;
 x = newx; y = newy;
}

if x*x+y*y < some limit // the process has converged
 color the fragment blue
else
 color the fragment based on the number of iterations

You see this implemented in the fragment shader code below. In this
code, you see two variables that are set by the vertex shader; one provides the
2D texture coordinates from the graphics primitive’s surface, and the other is
the light intensity, so that diffuse lighting can be used. The 2D texture coordi-
nates are used as the real and imaginary parts of the complex number above,
and are adjusted to get the texture centered and sized correctly for effect. In
the vertex shader, the 2D varying variable ST is created by taking the texture
coordinates for the vertices, originally in [0., 1.], and mapping them into the
standard Mandelbrot complex domain [-1., 1.] where they can be interpolated
by the fragment shader. All the uniform variables are set in the GLIB file, and
most are glman slider variables, so you can experiment with the parameters for
the texture.

uniform int uMaxIters;
uniform float uTS; // texture coordinate scaling
uniform float uCS; // color scaling
uniform float uS0; // starting texture value in S
uniform float uT0; // starting texture value in T
uniform float uLimit; // how large before stop iterations
uniform vec3 uConvergeColor;
uniform vec3 uDivergeColor1;
uniform vec3 uDivergeColor2;

in vec2 vST;
in float vLightIntensity;
out vec4 fFragColor;

void main()
{

192 9. Surface Textures in the Fragment Shader

 float real = vST.s * uTS + uS0;
 float imag = vST.t * uTS + uT0;
 float real0 = real;
 float imag0 = imag;
 float newr;
 int numIters;
 vec4 color = vec4(0., 0., 0., 1.);

 for(numIters = 0; numIters < uMaxIters; numIters++)
 {
 float newreal = real0 + real*real - imag*imag;
 float newimag = imag0 + 2.*real*imag;
 newr = newreal*newreal + newimag*newimag;
 if(newr >= uLimit)
 break;
 real = newreal;
 imag = newimag;
 }

 // choose the color
 if(newr < uLimit)
 color = uConvergeColor;
 else
 color = mix(uDivergeColor1, uDivergeColor2,
 fract(numIters/uCS));

 color.rgb *= vLightIntensity;
 fFragColor = color;
}

This works by choosing the color for each pixel in the fragment based on
the way the Mandelbrot sequence converges at the point in texture space, vST,
offset into the teapot’s surface. If the pixel is in the area where the Mandelbrot
process converges (i.e., newr < uLimit), it is colored with uConvergeColor; if it
does not converge it is colored by a color that blends two other colors, using
the built-in mix() function, depending on the number of iterations needed.
Notice that the resolution just keeps increasing as the image is zoomed. An
advantage of procedural texturing in fragment shaders is that the texture can be
computed at the pixel level, no matter what size that pixel actually represents
in the model. The potentially large number of iterations for the Mandelbrot
sequence gives us the opportunity to illustrate the power of double preci-
sion in shaders. Figure 9.5 shows two views of a highly-zoomed region of the
Mandelbrot set. The top figure shows this region with single-precision compu-
tation, while the bottom figure shows it with double precision.

193GLSL Texture Mapping

Similar kinds of textures can be created with other
iterative processes [36]. An example would be a Julia set
texture that uses a slightly different kind of computa-
tion. For the function sequence as defined above,

f z z c0
2() = + and f z f z cn n+ () = () +1

2 ,

we change the focus and start with the point z as the
input and some fixed complex number c as a constant.
This yields a rather different kind of image, but one
related to the Mandelbrot set image by whether the
complex number c is in the Mandelbrot set, and if so,
where it is. The fragment shader code to implement this
is quite similar to the code given above, and is left as an
exercise to the reader.

Bump Mapping

Bump mapping is a technique that simulates variations in
a surface by manipulating the surface normals, allow-
ing the lighting process to create the appearance of the
variations. The key is to think about normals, not ver-
tices, and to realize that in a fragment shader, you are
touching each pixel individually. This technique can
use an analytic approach and compute normals as func-
tion derivatives, as we will see with the ripple example
below, or it can use a more geometric approach and
compute normals based on location and the slopes of
the shape of the bump pattern, as we will see in the pyr-
amid map example.

Height Fields with Bump Mapping

Many effects can be created by bump mapping. One important use is in dis-
playing height fields. For example, bump mapping can create the ripples on a
surface, as shown in Figure 9.6; the figures also include a coordinate system
for a particular pixel on the surface. Notice the difference between the ripples
made by bump mapping, where the ripples do not, in fact, have any height,
and ripples made in a vertex shader, as shown in Figure 3.4 of Chapter 3.

To analyze these bumps so that we can design appropriate mappings of
normals, let’s start working in 2D, where we can draw figures more easily. If a

Figure 9.5. A region of the Mandelbrot
set computed with single precision
(top) and double precision (bottom).

194 9. Surface Textures in the Fragment Shader

line segment has slope m dy
dx

= , we can express the slope as the vector [1, m], as
shown in the diagrams below.

The normal to any line with slope m has slope 1
−m (the negative recipro-

cal of the original slope), so the normal can be expressed as the vector (–m, 1.).
Notice that the dot product is (1,m) × (−m,1) = 0, as must be true if the vectors
are perpendicular. So if we want to model a moving “bump” on the surface
with height a, period Pd , and time t, we have

z a x
P

t
d

= − ∗ −

cos 2 2π

π

and its slope, or derivative with respect to x, is

dz
dx

a
P

x
P

t
d d

= ∗ ∗ −

2 2 2π π
πsin

so the vector slope, s, is

s a
P

x
P

t
d d

= ∗ ∗ −

1 0 2 2 2., ., sin .π π
π

Figure 9.6. Ripples by bump mapping.

195GLSL Texture Mapping

Following the same pattern as before, we see that the normal vector, n, is

n a
P

x
P

t
d d

= − ∗ ∗ −

2 2 2 0 1π π
πsin , ., . .

This is true along just the X axis. Because the ripples are propagating out
in a circular pattern, we need to rotate the normal vector into where it really is.
Because we are just talking about a rotation, the transformation is the same as
if we were rotating a vertex. Noting that the unrotated Ny is equal to 0., we get

 Nx Nx Ny Nx
Ny Nx Ny Nx

Nz

′ = ∗ − ∗ = ∗
′ = ∗ + ∗ = ∗

′ =

cos sin cos
sin cos sin

Θ Θ Θ
Θ Θ Θ

NNz =1.

As we said at the beginning, so far we have been working in 2D, not 3D;
for the final version of the fragment shader in the ripples case above, you need
to think in polar coordinates, so you need to substitute R, the polar coordinate
radius, for x in the slope equation.

uniform float uTime;
uniform float uAmp0, uAmp1;
uniform float uPhaseShift;
uniform float uPd;
uniform float uLightX, uLightY, uLightZ;
uniform vec4 uColor;

in vec3 vMCposition;
in vec3 vECposition;

out vec4 fFragColor;

const float TWOPI = 2.*3.14159265;

void main()
{
 const vec3 C0 = vec3(-2.5, 0., 0.);
 const vec3 C1 = vec3(2.5, 0., 0.);

 // first set of ripples:

 float rad0 = length(vMCposition - C0); // ripple center 0
 float H0 = -uAmp0 * cos(TWOPI*rad0/uPd - TWOPI*uTime);

 float u = -uAmp0 * (TWOPI/uPd) * sin(TWOPI*rad0/uPd -
 TWOPI*uTime);

196 9. Surface Textures in the Fragment Shader

 float v = 0.;
 float w = 1.;

 float ang = atan(vMCposition.y - C0.y,
 vMCposition.x - C0.x);
 float u1 = dot(vec2(u,v), vec2(cos(ang), -sin(ang)));
 float v1 = dot(vec2(u,v), vec2(sin(ang), cos(ang)));
 float w1 = 1.;

 // second set of ripples:

 float rad1 = length(vMCposition - C1); // ripple center 1
 float H1 = -uAmp1 * cos(TWOPI*rad1/uPd - TWOPI*uTime);

 u = -uAmp1*(TWOPI/uPd)*
 sin(TWOPI*rad1/uPd-TWOPI*uTime-uPhaseShift);
 v = 0.;
 ang = atan(vMCposition.y - C1.y, vMCposition.x - C1.x);
 float u2 = dot(vec2(u,v), vec2(cos(ang), -sin(ang)));
 float v2 = dot(vec2(u,v), vec2(sin(ang), cos(ang)));
 float w2 = 1.;

 // the sum is the normal:

 vec3 normal = normalize(vec3(u1+u2, v1+v2, w1+w2));

 float LightIntensity =
 abs(dot(normalize(vec3(uLightX,uLightY,uLightZ)-
 vECposition),normal));
 if(LightIntensity < 0.1)
 LightIntensity = 0.1;

 fFragColor = vec4(LightIntensity*uColor.rgb, uColor.a);
}

And, of course, there is the usual comment about the efficiency thing. The
lines

float ang = atan(vMCposition.y - C0.y, vMCposition.x - C0.x);
float up = dot(vec2(u,v), vec2(cos(ang), -sin(ang)));
float vp = dot(vec2(u,v), vec2(sin(ang), cos(ang)));

were written for clarity, but could have been written more efficiently by just
using x and y components for the trigonometric functions:

vec2 d = vMCposition.xy - C0.xy;
vec2 cossin = normalize(d);

197GLSL Texture Mapping

float up = dot(vec2(u,v), vec2(cossin.x, -cossin.y));
float vp = dot(vec2(u,v), cossin.yx));

In fact, this is a good programming lesson in general. Don’t ever call the
atan function and then turn around and use the resulting angle to compute a
sine or cosine. You already had the sine and cosine when you called the atan
function (albeit, possibly with a little manipulation).

Generalized Bump Mapping

Height fields are a special, and simplified, case of bump-mapping. Now, let’s
look at it in the general case. For this, we will define a surface local coordinate
system at each fragment with components N, T, B (Normal, Tangent, and
Bitangent B = T × N). Figure 9.7 shows the pyramid map example, and the
vertex and fragment shaders used to create it are shown below.

The pyramid bump map example needs special vertex and fragment
shaders. The vertex shader sets up the surface coordinate system discussed
above, taking the tangent and normal from the geometric object and comput-
ing the varying variable vLightDir that is used in the fragment shader, along
with the computed normal, to determine the diffuse light component for the
pixel. In this example, we convert everything into the eye coordinate system.
It can also work to convert everything into the surface local coordinate system,
but the surface local coordinate system changes at each location in the geome-
try. By using a “universal” coordinate system, such as eye coordinates, we can
make surface coordinates, light positions and directions, reflection directions,
and refraction directions all interoperate.

Figure 9.7. A sphere with
pyramid bump map-
ping (left) and the right-
handed BTN coordinate
system for one particular
location (right).

198 9. Surface Textures in the Fragment Shader

attribute vec3 aTangent; // from glman Sphere primitive
 // points towards north pole

uniform float uLightX, uLightY, uLightZ; // from sliders

out vec3 vBTNx, vBTNy, vBTNz;
out vec3 vLightDir; // light direction in TNB coords
out vec2 vST;

// N is the direction of the surface normal
// T is the direction of “Tangent”, which is (dx/dt, dy/dt,
// dz/dt)
// B is the TxN, which is the direction of (dx/ds, dy/ds, dz/ds)

void main()
{
 vST = aTexCoord0.st;

 // B-T-N form an X-Y-Z-looking right handed coordinate system:
 vec3 N = normalize(uNormalMatrix * aNormal);
 vec2 T = normalize(vec3(uModelViewMatrix*vec4(aTangent,0.)
));
 vec3 B = normalize(cross(T, N));

 // the light direction, in eye coordinates:
 vec3 lightPosition = vec3(uLightX, uLightY, uLightZ);
 vec3 ECpos = (uModelViewMatrix * aVertex).xyz;
 vLightDir = normalize(lightPosition - ECpos);

 // Produce the transformation from Surface coords to
 // Eye coords:

 vBTNx = vec3(B.x, T.x, N.x);
 vBTNy = vec3(B.y, T.y, N.y);
 vBTNz = vec3(B.z, T.z, N.z);

 gl_Position = uModelViewProjectionMatrix * aVertex;
}

The fragment shader is shown below. This uses several uniform glman
slider variables to experiment with the surface appearance. The primary func-
tion of the shader code is to take the value of the variable vLightDir and
develop the normal based on the normal that’s developed by pixel position
to create the appearance of the pyramids. The angle uAng is used to rotate the
pyramids in place.

199GLSL Texture Mapping

uniform float uAmbient;
uniform float uBumpDensity; // glman slider uniform variables
uniform float uBumpSize;
uniform vec4 uSurfaceColor;
uniform float uAng;
uniform float uHeight;

in vec3 vBTNx, vBTNy, vBTNz;
in vec3 vLightDir;
in vec2 vST;

out vec4 fFragColor;

const float PI = 3.14159265;

float Cang, Sang;

vec3
ToXyz(vec3 btn)
{
 float xp = btn.x*Cang - btn.y*Sang; // rotate by +Ang
 btn.y = btn.x*Sang + btn.y*Cang;
 btn.x = xp;
 btn = normalize(btn);

 vec3 xyz;
 xyz.x = dot(vBTNx, btn); // convert surface local to
 // eye coords
 xyz.y = dot(vBTNy, btn);
 xyz.z = dot(vBTNz, btn);
 return normalize(xyz);
}

void main()
{
 vec2 st = vST; // locate the bumps based on (s,t)

 float Swidth = 1. / uBumpDensity;
 float Theight = 1. / uBumpDensity;
 float numInS = floor(st.s / Swidth);
 float numInT = floor(st.t / Theight);

 vec2 center;
 center.s = numInS * Swidth + Swidth/2.;
 center.t = numInT * Theight + Theight/2.;
 st -= center; // st is now wrt the center of the bump

 Cang = cos(uAng);

200 9. Surface Textures in the Fragment Shader

 Sang = sin(uAng);
 vec2 stp; // st’ = st rotated by -Ang
 stp.s = st.s*Cang + st.t*Sang;
 stp.t = -st.s*Sang + st.t*Cang;
 float theta = atan(stp.t, stp.s);

 // this is the normal of the parts of the object
 // that are not in a pyramid:
 vec3 normal = ToXyz(vec3(0., 0., 1.));

 // figure out what part of the pyramid we are in and
 // get the normal there; then transform it to eye cords
 if(abs(stp.s) > Swidth/4. || abs(stp.t) > Theight/4.)
 {
 normal = ToXyz(vec3(0., 0., 1.));
 }
 else
 {
 if(PI/4. <= theta && theta <= 3.*PI/4.)
 {
 normal = ToXyz(vec3(0., uHeight, Theight/4.));
 }
 else if(-PI/4. <= theta && theta <= PI/4.)
 {
 normal = ToXyz(vec3(uHeight, 0., Swidth/4.));
 }
 else if(-3.*PI/4. <= theta && theta <= -PI/4.)
 {
 normal = ToXyz(vec3(0., -uHeight, Theight/4.));
 }
 else if(theta >= 3.*PI/4. || theta <= -3.*PI/4.)
 {
 normal = ToXyz(vec3(-uHeight, 0., Swidth/4.));
 }
 }

 float intensity = uAmbient + (1.-uAmbient)*
 dot(normal, vLightDir);
 vec3 litColor = uSurfaceColor.rgb * intensity;
 fFragColor = vec4(litColor, uSurfaceColor.a);
}

Cube Maps

Cube maps are textures that simulate the effect of an environment that sur-
rounds the 3D scene, and are usually used to create reflection or refraction

201GLSL Texture Mapping

effects. Textures developed using cube maps operate
differently from standard textures on the surface of an
object. A cube map consists of six 2D textures, each one
corresponding to the face of a cube (+X,−X,+Y,−Y,+Z,−Z)
surrounding the scene. A cube map is indexed with
three texture coordinates: s, t, and p. You can think of
(s,t,p) as being a vector that points toward one wall of
the cube map, as shown in Figure 9.8.

When you index into a cube map with (s,t,p), the
texture-mapping hardware does the following:

1. Determines which of s, t, and p has the largest
absolute value:

Val s t p= ()max , , .

This determines which face image (+X,−X,+Y,−Y,+Z,−Z) of the cube map
to index into. In Figure 9.8, this would be s, corresponding to the −X face.

2. Divides the remaining two coordinates (called a and b here) by that larg-
est absolute value:

′ =

′ =

s a
Val

t b
Val

,

.

In Figure 9.8, a and b would be the texture coordinates p and t.

3. Uses (s′,t′) as the 2D texture coordinates to use for the lookup on that face
image.

To use cube maps, you must create six square texture maps of the same
size that correspond to the sides of a cube. These individual texture maps are
often visualized as a flattened or folded-up cube, as shown in Figure 9.9. The
cube map images are created by rendering or photographing each of the six
principle directions from the center of the cube, each with a 90° field of view.

Cube maps can be used to create reflection effects using the built-in GLSL
reflect() function to compute an (s,t,p) reflection vector to look up in the
cube map. Cube maps can also be used for refraction; for example, with a
lens or a glass object in a scene. To do this, you use the built-in GLSL function
refract()to compute the (s,t,p) refraction vector, and use it to look up in the
cube map.

Figure 9.8. A cube map and the (s,t,p)
vector that indexes into it.

202 9. Surface Textures in the Fragment Shader

Figure 9.9. The six faces of a
cube that can be used for cube
mapping: unfolded (top) and
folded (bottom).

203GLSL Texture Mapping

Figure 9.10 shows what you can do with this: a view of both a reflective
teapot in the cube (left), using reflection maps, and a glass teapot in the cube,
using refraction maps (right). These figures use the NVIDIA lobby cube map.
(A rich source of other cube maps can be found at [9].)

A single fragment shader will produce both these images, which come
from glman and use the uniform slider variable uMix to control whether reflec-
tion or refraction is to be computed. They assume that a vertex shader has
already computed the eye position and has set up the normal and normal
matrix, and that all are varying variables, so they can be interpolated. The
other computations simply use the reflection and refraction functions from
GLSL and mix the color components in a familiar way.

uniform float uMix;
uniform samplerCube uTexUnit;
uniform float uIofR; // index of refraction

in vec3 vECposition;
in vec3 vTheNormal;

out vec4 fFragColor;

const vec4 WHITE = vec4(1., 1., 1., 1.);

void main()
{
 vec3 normal = normalize(uNormalMatrix * vTheNormal);

Figure 9.10. A reflecting (left) and refracting (right) teapot.

204 9. Surface Textures in the Fragment Shader

 // the reflect and refract functions assume the normal is
 // pointing toward the eye, that is, normal.z > 0.
 // if that’s not true, make it true:

 if(normal.z < 0.)
 {
 normal = -normal;
 }

 vec3 ReflectVector = reflect(normalize(vECposition),normal);
 vec3 RefractVector = refract(normalize(vECposition),
 normal,uIofR);

 vec4 reflectcolor = texture(uTexUnit, ReflectVector);
 vec4 refractcolor = mix(texture(uTexUnit,RefractVector),
 WHITE,0.2);

 fFragColor=vec4(mix(reflectcolor.rgb,
 refractcolor.rgb,uMix),1.);
}

Note that both the reflect() and refract() functions use the argu-
ment

normalize(vECposition)

What is this? The GLSL reflect() and refract() functions want that
argument to be the incoming vector from the eye to the point that is being
reflected from or refracted through. Remember that in OpenGL, once the
viewing transformation has been applied, the eye ends up at the origin. So,
those arguments could have been listed more clearly by making it obvious
that we were creating that vector as a difference between two points, like this:

normalize(vECposition – vec3(0.,0.,0.))

Also, note that the refraction result mixes in some white. This is because
most refractive-transparent objects have a small amount of “milky” appear-
ance to them, as light is somewhat attenuated as it passes through the mate-
rial.

The second mix() is blending the refraction with some reflection, as is
usually the case with real objects.

Are these accurate reflections and refractions? They look good, but they
are not perfect, at least not in the ray-tracing sense. For one thing, each of

205Render to Texture

the six images in the cube map is determined from an eye position at the
center of the cube, thus forever “baking in” that direction’s spatial relation-
ships from just a single eye position. This imperfection is true for both cube
map reflections and refractions. Also, when doing cube map refractions, the
refraction only takes place at the front surface of the object, not both front
and back, as would be the case with a real object. In 3D graphics, the back
surface’s behavior gets z-buffered out.

Note that you can also combine cube mapping with bump mapping,
as shown in Figure 9.11. This is one of the reasons that, when doing bump
mapping, it is better to convert the surface local coordinates of the bumps to
eye space, instead of the other way around. This allows the bump mapping
normals to interoperate with the cube map reflect() and refract()
functions.

Render to Texture

Textures need not come only from files or from computation, as our previous
examples have done. You can also render an image into a texture and then use
that image as a texture. For example, you could render a wireframe teapot into
a texture and use that on a moving surface, as shown in Figure 9.12.

Figure 9.11. A reflecting (left) and refracting (right) bump-mapped teapot.

206 9. Surface Textures in the Fragment Shader

The render-to-texture operation uses the framebuffer extension, that is,
GL_framebuffer_object, so you need to be sure this is supported on your
system.

The steps to render an image to a texture involve creating the formal buf-
fers needed for output, creating a texture, and assigning the output buffers to
the texture. You then carry out a set of bindings of properties to the buffers and
texture and render a scene; this scene is then a texture, and you can use it in
rendering another scene. The details are below.

1. You will be changing the display destination. Generate a handle for a
framebuffer object, and generate handles for a (depth) renderbuffer
object and for a texture object. (These will later be attached to the frame-
buffer object.)

2. Bind the framebuffer object to the context.
3. Bind the depth renderbuffer object to the context.

Assign storage attributes to it.
Attach it to the framebuffer object.

4. Bind the texture object to the context.
Assign storage attributes to it.
Assign texture parameters to it.
Attach it to the framebuffer object.

5. Render as normal.
6. Un-bind the framebuffer object from the context.

Figure 9.12. Two views of a rotating teapot on a rotating plane.

207Render to Texture

To implement these operations, our code closely follows the outline
above. The code is presented in three groups. The first code group implements
the first four points and would typically be found in your InitGraphics()
function. This is independent of the particular teapot and quad example of the
figure.

// generate FrameBuffer handle, RenderBuffer handle, Texture
// handle
GLuint FrameBuffer;
GLuint DepthBuffer;
GLuint Texture;

glGenFramebuffers(1, &FrameBuffer);
glGenRenderBuffers(1, &DepthBuffer);
glGenTextures(1, &Texture);

// set up the size for the rendered texture
int sizeX = 2048;
int sizeY = 2048;

// Bind the offscreen framebuffer to be the current output
// display
glBindFramebuffer(GL_FRAMEBUFFER, FrameBuffer);

// Bind the Depth Buffer to the context, allocate its storage,
// and attach it to the Framebuffer
glBindRenderbuffer(GL_RENDERBUFFER, DepthBuffer);
glRenderbufferStorage(GL_RENDERBUFFER,
 GL_DEPTH_COMPONENT, sizeX, sizeY);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
 GL_RENDERBUFFER, DepthBuffer);

// Bind the Texture to the Context
glBindTexture(GL_TEXTURE_2D, Texture);

// Set up a NULL texture of the size you want to render into
// and set its properties
glTexImage2D(GL_TEXTURE_2D, 0, 4, sizeX, sizeY, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
 GL_REPLACE);

208 9. Surface Textures in the Fragment Shader

// Tell OpenGL that you are going to render into the color
// planes of the Texture

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
 GL_TEXTURE_2D, Texture, 0);

// see if OpenGL thinks the framebuffer is complete enough to
// use:

GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if(status != GL_FRAMEBUFFER_COMPLETE)
 fprintf(stderr, “FrameBuffer is not complete.\n”);

The next code group implements the last two points in the list above, and
would typically be found in the Display() callback function. The first part of
this code is very familiar modeling code, but it renders the wireframe teapot
into the texture framebuffer. After that is finished, the rendering is returned
to the usual hardware framebuffer. This is the last point in the list above. We
have highlighted two points in the code to remind you that the dimension of
the texture you are creating must be the same as the size you defined, and to
note that framebuffer 0 is the standard hardware buffer.

// render as normal; be sure to set the viewport to match the
// size of the color and depth buffers
glClearColor(0.0, 0.2, 0.0, 1.);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_FLAT);
glViewport(0, 0, sizeX, sizeY);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(90., 1., 0.1, 1000.);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0., 0., 3., 0., 0., 0., 0., 1., 0.);

glTranslatef(TransXYZ[0], TransXYZ[1], TransXYZ[2]);
glMultMatrixf(RotMatrix);
glScalef(scale, scale, scale);
glColor3f(1., 1., 1.);

glutWireTeapot(1.);

209Render to Texture for Multipass Rendering in glman

// Tell OpenGL to go back to rendering to the hardware
// framebuffer:

glBindFramebuffer(GL_FRAMEBUFFER, 0);

// if you want, have OpenGL create the multiple mipmap layers
// for you
glGenerateMipmap(GL_TEXTURE_2D);

The third code group is straightforward graphics programming with tex-
tures , using the vertex coordinate and texture coordinate functions in compat-
ibility mode for clarity’s sake. The texture that was just computed is used in
rendering the scene (here, the simple textured quad).

// now render the rest of the scene as normal, using the Texture
// as you normally would:
. . .

glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, Texture);
glBegin(GL_QUADS);
 glTexCoord2f(0., 0.);
 glVertex2f(-1., -1.);
 glTexCoord2f(1., 0.);
 glVertex2f(1., -1.);
 glTexCoord2f(1., 1.);
 glVertex2f(1., 1.);
 glTexCoord2f(0., 1.);
 glVertex2f(-1., 1.);
glEnd();

glDisable(GL_TEXTURE_2D);
. . .

Render to Texture for Multipass Rendering in glman

One of the main reasons to do render-to-texture is for multipass rendering
algorithms. To make this easier to experiment with, glman has setup a mecha-
nism make it easy to ask for. The following .glib file shows you how this is
done:

##OpenGL GLIB
Perspective 90

210 9. Surface Textures in the Fragment Shader

Texture 6 1024 1024

RenderToTexture 6

Background 0. 0.1 0.
Clear

Vertex filter.vert
Fragment filter.frag
Program Filter1 \
 uAd <.01 .2 .5> uBd <.01 .2 .5> \
 uNoiseAmp <0. 0. 1.> uNoiseFreq <0. 1. 2.> \
 uTol <0. 0. 1.>

Teapot

RenderToTexture

Background 0. 0.0 0
Clear
LookAt 0 0 2.5 0 0 0 0 1 0

Vertex image.vert
Fragment image.frag
Program Filter2 uInUnit 6 \
 uEdgeDetect <true> \
 uTEdge <0. 0. 1.> \
 uTSharp <-3. 1. 10.>

Translate 0 0 0.
QuadXY .2 2.

For once, the interesting detail is in the .glib file. The vertex and frag-
ment files used here (two of each) are standard effects that you have already
seen. The steps in the .glib file are as follows:

1. The Texture2D glib command normally looks for a file name, but it can
also take an s and t resolution. In this case, it sets up an empty texture
of that size in graphics memory and assigns it to the given texture unit.

2. The RenderToTexture sets up the rendering output mechanism (just dis-
cussed) to that texture unit.

3. The teapot is rendered with a shader program that creates a procedural
noisy-ellipse texture.

4. The empty RenderToTexture returns rendering to go to the normal screen
framebuffer.

211Render to Texture for Multipass Rendering in glman

5. Another shader program is made current. This one is a 2D image filter-
ing program like we have seen before. It can do blur-sharpen or edge
detection. The texture unit into which we just rendered the 3D scene is
supplied to this program as uInUnit.

6. A quad is drawn. You know that it is drawing a 2D quad, but because it is
using the results of the previous 3D render as the quad’s texture, the user
thinks that a 3D object is being drawn here.

7. The Filter2 shader changes the appearance of the 3D render.

Figure 9.13 shows this shader in action.

Figure 9.13. Render-to-texture and multipass in action: the original, unmodified, teapot
(top left); teapot with the noise turned on (top right); noise teapot, sharpened (bottom left);
noise teapot, edge detected (bottom right).

212 9. Surface Textures in the Fragment Shader

Exercises

1. Duplicate the work shown in Figure 9.5 above for Mandelbrot sets to cre-
ate a texture via a Julia set computation.

2. Fixed-function OpenGL has its own texture environment functions, but
when you write your own shaders for textures you implement what you
need. In the chapter, we mentioned the four standard texture modes.
Ignoring for now the effect on the alpha channel, implement these modes:
a. For replace or decal mode, the color of a pixel is replaced by the color

of the texel.

b. For modulate mode, the color of a pixel is replaced by the product of the
color of the object pixel and the color of the texel.

c. For blend mode, the color of a pixel is replaced by the product of the
color of the object pixel and 1 – the color of the texel.

3. Continuing with texture modes, which of these modes would prob-
ably be the most useful if you were applying more than one texture to
an object? Why? Might this be different if you were including the alpha
channel in your textures?

4. Develop vertex and fragment shaders for a bump map that simulates
small partial spheres placed regularly on a surface, much like the pyra-
mid shader simulates pyramids.

5. One of the problems in cube mapping is creating a good set of textures
for the faces of the cube. You can do this from digital photographs if you
are careful to match the edges of the faces. Do this for some familiar envi-
ronment, such as your room or a campus quad.

6. Create a combined bump-map / cube-map image as shown in Fig-
ure 9.11.

7. Add other image processing effects to the multipass rendering example.

8. Find an excuse to change the two-pass example above to a three (or more)
pass example.

213

Noise10

One of the perpetual challenges of computer graphics has been to create images
that are not only geometrically correct, but are also visually interesting. Texture
mapping of real images is commonly used in this way. Another technique
involves adding procedural “random” effects such as are seen in natural phe-
nomena (clouds, fire, smoke), natural materials (marble, wood, granite, sand),
small-scale randomness (random textures in materials), and many other things,
through the use of noise functions. In this chapter we discuss noise functions
and their use in shaders, specifically fragment shaders, in creating images.

The topic of noise is not necessarily associated with shaders, and you
may have encountered it in another computer graphics course. We describe it
separately from the details of shaders because it has interest on its own, and
we will certainly find that it adds very interesting opportunities for shaders to
use in creating some very attractive images.

214 10. Noise

Fundamental Noise Concepts

A noise function is a real-valued function that takes on values between 0. and 1.
over some domain.1 A noise function is often generated by determining pseudo-
random numbers (PRNs) at each of a number of fixed points in a domain and
processing those values to generate a function across the entire domain. If the
domain is an interval, we have one-dimensional noise; if the domain is a plane
region, we have two-dimensional noise; if the domain is a region in three-dimen-
sional space, we have three-dimensional noise. The values of the noise function
can be used to modify values of such things as the pixel properties in a fragment
shader. In this section we will briefly introduce some kinds of noise functions
and their properties, based on one-dimensional noise operations for simplicity.

There are some choices we will need to make as we design a shader that is
to use noise functions. Below we discuss some of those choices. If you are using
glman with your study of shaders, you will find the noisegraph application as
part of the distribution, and you can use that to experiment with many of the
noise concepts you will find in this chapter. All the 1D noise function graphs
that you will see as figures in this chapter were developed with noisegraph.

Three Types of Noise: Value, Gradient, and Value+Gradient

One choice you will need to make is whether you want to use value noise or
gradient noise. The value and gradient noise functions produce results that have
qualitative differences. Both kinds of noise functions are based on piecewise
interpolating their definitions at a fixed set of points in their domain, usually
regularly spaced. Both kinds of noise need values at each point; these are given
by using system-generated pseudo-random numbers. In value noise, the pseudo-
random values at each fixed point are used as the noise function values, and the

1. Some noise functions prefer the range –1. to 1. It doesn’t really matter. It just means that you will
transform the noise return values differently.

The GLSL specification lists a built-in noise function. However, at the time of this
writing, its exact behavior has not yet been universally decided upon. So, while it is in
the spec, you might not be able to use it. This chapter will discuss the fundamentals
of noise for graphics shaders, and will show how glman uses 2D and 3D textures to
get around the absence of a working GLSL noise function. Even if you are not using
glman, you will see how to computationally generate noise, which you can then use by
embedding it in your own texture.

215Fundamental Noise Concepts

slope of the function at each point is set to be zero or
to a natural slope (more on this later). These properties
are directly interpolated to generate a piecewise cubic
or quintic function across the entire domain. In gradient
noise, the function value is set at each fixed point, and
the pseudo-random values at that fixed point are used
as the gradient (slope) of the curve through the point.
Gradient noise with the fixed values set to zero is the
type of noise originally defined for the Photorealistic
RenderMan package [37]. It is also popular to set both
the value and the gradient at the fixed points with
pseudo-random numbers, the value+gradient noise.
Noise that is based on pseudorandom number (PRN)
gradients is often called Perlin noise [34], [35]. For both
kinds of noise, these values are used to determine the
equation of a piecewise cubic noise function between
the two points, as described later in this chapter.

The noisegraph application is a tool that lets you
test out these different noise types and parameters for
yourself. It produces line graphs of 1D noise functions
and pseudocolor regions for 2D noise. The application
is driven by a menu with choices for the kind of noise,
the number of octaves, and the kind of pseudocolor
display; it also lets you make other choices for options
discussed in this chapter.

All three types of continuous noise functions are
illustrated by noisegraph displays in Figure 10.1. As you
can tell from these graphs, value noise can, by chance,
have regions of similar values, while gradient-only
noise always passes through zero at regular points.
This affects the kind of control you would have with
each. This distinction forms a kind of dual relationship between the functions
and is the key to how they are defined. We will see how it affects the actual
function expressions when we consider those a little later in the chapter.

Cubic and Quintic Interpolation

We can use several different options as we create the piecewise interpolation
of the initial pseudo-random values that is needed to create the overall noise
function. Two common ones are to use a cubic interpolation or to use a quin-

Figure 10.1. A one-dimensional value-
only noise function (top), a gradient-only
function (middle), and value+gradient
noise function (bottom).

216 10. Noise

tic interpolation. Quintic interpolations are similar, but
they use a fifth-degree polynomial basis rather than
a cubic polynomial basis. The difference between the
two interpolations may be subtle; you will need to look
closely at the two value+gradient noise functions from
noisegraph in Figure 10.2 to see any difference. Cubic
interpolations are C1 continuous (the curve has con-
tinuous slope), while quintic interpolations are C2 con-
tinuous (the curve has both continuous slope and con-
tinuous curvature) and thus are smoother. One way to
think of the difference is that quintic functions main-
tain the curvature continuity at each connection point
by enlarging the overshoot there, not unlike racing past
second base in baseball. See [35] for a more complete
discussion.

Noise Equations

The key to understanding the derivation of the noise
functions is realizing that they are polynomial func-
tions whose coefficients are determined by the noise
properties you are using. Let’s begin with cubic noise

functions and then go on to quintic functions.
Any cubic function of a single variable is given by a general cubic expres-

sion as
N t A Bt Ct Dt() = + + +2 3.

This expression gives the value, or position, of the function for any para-
metric value t. Because this expression has four unknowns, we need four
known quantities to determine them.

Now if we take the derivative of this expression, we get the gradient

G t dN
dt

B Ct Dt() .= = + +2 3 2

If we consider the values of the function and gradient at the endpoints of
the interval [0,1] in the parameter t,

N N t N N t
G G t G G t

0 1

0 1

0 1
0 1

= =() = =()
= =() = =()

Figure 10.2. Cubic (top) and quintic
(bottom) value+gradient interpolations
on the same basis.

217Fundamental Noise Concepts

then you can see that you have four values that you can use to compute the
four unknown coefficients for the noise function. We can put these values into
a system of four equations in the four unknowns, and we get

N
N
G
G

A
B
C
D

0

1

0

1

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

=

.

We can invert this matrix and get an exact matrix expression for A, B, C, and D:

A
B
C
D

N
N
G
G

=
− − −

−

1 0 0 0
0 0 1 0
3 3 2 1

2 2 1 1

0

1

0

11

.

This will give us the values of the coefficients in terms of the positions
and gradients. To simplify this, we gather the coefficients and get an expres-
sion like this:

N t B N B N B G B GN N G G() = + + +0 0 1 1 0 0 1 1.

When we do this, the coefficients are

B t t
B t t B
B t t t
B t t

N

N N

G

G

0
2 3

1
2 3

0

0
2 3

1
2 3

1 3 2

3 2 1

2

= − +

= − = −

= − +

= − +

,

,

,

.

Some value-only noise functions choose to set the gradients to zero at
each of the noise points, but this is highly arbitrary. A better approach is to
choose the gradients intelligently, based on the positions of the surrounding
points. A good way to do this is with the gradients that one would use for
a Catmull-Rom spline [8]. Because the noise points are all unit-spaced, the
Catmull-Rom gradient simplifies to

G N Ni i i= −()+ −

1
2 1 1 .

218 10. Noise

That is, to get the parametric slope at noise point i, draw a vector from the
previous point to the next point, and take half of it. Figure 10.3 shows how this
changes the overall shape of the noise curve, making it a lot smoother.

Since all four coefficients are spelled out above, you now have the full
cubic polynomial functions for any combinations of values and gradients you
want in a noise function. Using the same conditions for t = 1 at the end of one
segment and t = 0 at the beginning of the next segment will ensure that the
functions are differentiable at the point between them, giving you an overall
C1 noise function.

What about quintic noise functions? Here we need to place additional
conditions on the function at the given points in order to derive the six coef-
ficients on the general quintic polynomial function

N t A Bt Ct Dt Et Ft() .= + + + + +2 3 4 5

We already have the function value N and the gradient G at each point,
giving us four conditions. The two additional necessary conditions are given
by specifying the curvature C of the function at the points. The curvature is
given by the second derivative, so we now have three expressions to evaluate.
Besides the N(t) function above, we have

G t dN
dt

B Ct Dt Et Ft

C t d N
dt

C Dt Et

() ,

()

= = + + + +

= = + + +

2 3 4 5

2 6 12 20

2 3 4

2

2
2 FFt3.

Figure 10.3. Forcing the gradients to zero (left) and computing the gradients from the dis-
tribution of points (Catmull-Rom, right). Notice how much more natural the curve appears
as it passes through the connections when a reasonable slope is computed instead of artifi-
cially set to zero.

219Fundamental Noise Concepts

As we did before, we substitute the end values at t=0 and t=1 to get the
six conditions

N N t N N t
G G t G G t
C C t C C t

0 1

0 1

0 1

0 1
0 1
0 1

= = = =
= = = =
= = = =

(), (),
(), (),
(), ()).

As before, this gives us a system of six equations in six unknowns, and
we can express that in matrix form as

N
N
G
G
C
C

0

1

0

1

0

1

1 0 0 0 0 0
1 1 1 1 1 1
0 1 0 0 0 0
0 1 2 3 4

=
55

0 0 2 0 0 0
0 0 2 6 12 20

A
B
C
D
E
F

.

As above, we can invert this matrix and gather all the coefficients of N0 , N1, G0 ,
G1, C0 , and C1 together. In the end, this lets us express the quintic noise func-
tion as

N t B N B N B G B G B C B CN N G G C C() = + + + + +0 0 1 1 0 0 1 1 0 0 1 1

as we did for the cubic case. The coefficients are quintic functions of t:

B t t t
B t t t B
B t t t

N

N N

G

0
3 4 5

1
3 4 5

0

0
3 4

1 10 15 6

10 15 6 1

6 8

= − + −

= − + = −

= − + −

,

,

33

4 7 3
1
2

3 3

1
2

2

5

1
3 4 5

0
2 3 4 5

1
3 4

t
B t t t

B t t t t

B t t t

G

C

C

,

,

,

= − + −

= − + −()

= − + 55().

These equations define a quintic function for any combination of value,
gradient, and curvature at the two endpoints of the parameter interval.

As with the cubic case, if we ensure that these six conditions are the same
at the t = 1 end of one interval and at the t = 0 end of the next interval, the
combined function is not only differentiable at the point, but is also C2 at the

220 10. Noise

point, that is, has a continuous second derivative. We can actually simplify this
further if we artificially choose to have the C2 continuity be flat (that is, have
zero curvature).

Both here and for cubic noise, we have left the final function expressions
in symbolic form; for either the cubic or quintic case, and for either value or
gradient noise, it is a simple matter to put back in the polynomials for the BXX
coefficients and complete the function expressions. You can do this easily if
you want to work out the details or code these functions yourself.

Other Noise Concepts

Now that we have the fundamental concepts of noise in hand, let’s look at
some other very useful concepts in noise functions. These are derived from the
basic noise functions discussed above, and in practice, are probably used more
often than pure noise functions.

Fractional Brownian Motion (FBM, 1/f, Octaves)

Fractional Brownian motion, or 1/f noise, is useful because it models an opera-
tion that has many different frequencies and magnitudes. It is relatively easy
to obtain this from simple noise functions. For each of several simple noise
functions that are defined at different frequencies, the magnitude of the noise
is divided by the frequency multiplier. It is usual to use powers of two for the
frequency multipliers, so in a given domain you would have multipliers of 2,
4, 8, 16, and so on. Each of these frequency doublings is called an octave. The
division of the magnitude by the frequency is the source of the name 1/f noise.
Code to create such a noise function is shown below, and Figure 10.4 shows
the noisegraph presentation of the effect as noise at different scales is summed
to get the final values.

float sum = 0.;

float size = 1.;

for(int i = 0; i < 4; i++)

{

 sum += noise(size * PP) / size;

 size *= 2.0;

}

float y = P.y + Amplitude * sum;

221Other Noise Concepts

Noise in Two and Three Dimensions

For two-dimensional noise, we define a function on the [0, 1] × [0, 1] unit square
with values between zero and one. Figure 10.5, from the noisegraph applica-
tion, shows this in pseudocolor. You can see the same kind of differences in

Figure 10.5. Two dimensional noise as pseudocolor; one octave (left) and four octaves (right).

Figure 10.4. Four types of 1D piecewise cubic value+gradient noise functions: one octave
(top left); two octaves (top right); three octaves (bottom left); four octaves (bottom right).

222 10. Noise

the 2D image that you saw in the simple 1D noise graphs: the four-octave noise
has the same general shape, but much more high-frequency variation. (The
noise is quintic value+gradient type.) The appearance is that the higher-octave
noise has more detail and is consequently visually richer. Figure 10.6 shows a
4-octave 2D noise function represented as a height field.

When we look at 3D noise, we have
a little more difficult visualization prob-
lem. A 3D noise function is visualized as
a pseudocolored volume in Figure 10.7.
Even without seeing specific interior
details, you can still see that there is
some familiar-looking variation in color
within the cube.

We could look at this in several
ways, including explorations through
some standard visualization techniques,
as shown in Figure 10.8. This shows an
isosurface with its isovalue equal to the
midrange value of the 3D noise, and we
can easily see the greatly increased com-
plexity that comes with the additional
octaves of noise.

Figure 10.7. Three-dimensional one-
octave noise viewed as pseudocolor in
a direct volume rendering.

Figure 10.6. Four octaves of 2D noise represented as a pseudocolored height field.

223Other Noise Concepts

Using Noise with glman

The glman tool automatically creates a 3D noise texture and places it into
Texture Unit 3. Your vertex, geometry, or fragment shader can access it through
the pre-created uniform variable called Noise3. You can reference it in your
shader as

uniform sampler3D Noise3;
. . .
vec3 stp = ...
vec4 nv = texture(Noise3, stp);

The “noise vector” texture nv is a vec4 whose components have separate
meanings. We will access these components through the rgba nameset, though
you can use indices or any other nameset if you wish. The .r component is
the low frequency noise. The .g component is twice the frequency and half
the amplitude of the .r component, and so on for the .b and .a components.
Each component is centered around the middle value of .5, so that if you want
a plus-or-minus effect, subtract .5 from each component. To get a nice four-
octave noise value between 0 and 1, useful for features such as noisy color
mixing, add up all four components, subtract 1, and divide the result by 2, as
shown in Table 10.1.

Figure 10.8. Three-dimensional noise visualized by isosurfaces through the middle value;
one octave (left) and four octaves (right).

224 10. Noise

Component Term Term Range Term Limits
0 nv.r 0.5 ± .5000 0.0000 → 1.0000
1 nv.g 0.5 ± .2500 0.2500 → 0.7500
2 nv.b 0.5 ± .1250 0.3750 → 0.6250
3 nv.a 0.5 ± .0625 0.4375 → 0.5625

sum 2.0 ± ~ 1.0 ~1.0 → 3.0
sum – 1 1.0 ± ~ 1.0 ~0.0 → 2.0

(sum – 1) / 2 0.5 ± ~ 0.5 ~0.0 → 1.0
(sum – 2) 0.0 ± ~ 1.0 ~1.0 → 1.0

So, if you would like to have a four-octave noise function that ranges
from 0. to 1, then do this:

float sum = nv.r + nv.g + nv.b + nv.a;
 // range is 1. -> 3.
 sum = (sum - 1.) / 2.;
 // range is now 0. -> 1.

If you would like to have a four-octave noise function that ranges from -1
to 1, then do this instead:

float sum = nv.r + nv.g + nv.b + nv.a;
 // range is 1. -> 3.
 sum = (sum - 2.);
 // range is now -1. -> 1.

By default, the glman 3D noise texture has dimensions 64 × 64 × 64. You
can change this by putting a command in your GLIB file of the form

Noise3D 128

to get dimension 128 × 128 × 128, or choose whatever resolution you want (up
to around 400 × 400 × 400). Remember that for the most general use, the resolu-
tion should be a power of two. The first time glman creates a 3D noise texture
for you, it will take a few seconds. But glman then writes it to a local file, and
the next time this 3D texture is needed it is read from the file, which is a lot
faster.

A 2D noise texture works the same way, except you get at it with

 uniform sampler2D Noise2;
 ...
 vec2 st = ...
 vec4 nv = texture(Noise2, st);

Table 10.1. The range of the four octaves of noise and some useful combinations.

225Other Noise Concepts

Note that the table above still applies to convert the values from the noise
texture into something useful. The only difference is that a 2D noise texture is
indexed by a vec2 while the 3D noise texture is indexed by a vec3. But both
return a vec4.

Using Noise with the Built-In GLSL Functions

If you are using a system where the GLSL built-in noise functions work, here
is how you would use them. There are four built-in GLSL noise functions:
noise1(), noise2(), noise3(), and noise4(). They each return a float,
vec2, vec3, and vec4 , respectively, whose values are between −1. and 1. They
each can accept as their single argument any of those four types of inputs,
depending on how you want to index into the noise. Thus, where we might
have said

uniform sampler3D Noise3;
. . .
vec3 stp = ...
vec4 nv = texture(Noise3, stp);
float sum = nv.r + nv.g + nv.b + nv.a;
sum = (sum - 2.);

for glman, using the GLSL built-in noise functions we could accomplish the
same thing by saying

float sum = 0.;
float size = 1.;
for(int i = 0; i < 4; i++)
{
 sum += noise1(size*stp) / size;
 size *= 2.;

}

Turbulence

Turbulence is a special effect created from a noise function.2 It can give you
a “sharper” appearance than a simple noise function. Turbulence is created
by taking the absolute value of each noise octave about the midpoint before
summing them. It is simple to produce if you have a good noise function.
Introducing the absolute value operation can add sharp changes in the func-

2. Turbulence is the term used in computer graphics for what we are about to describe. Note, however,
this is not the same as fluid turbulence. The overloading of the term is unfortunate.

226 10. Noise

tion. For example, the noise functions shown by noisegraph in Figure 10.9, a
one-octave and a four-octave 1D cubic noise+gradient noise function and their
absolute values, along with the four-octave 2D examples, illustrate the differ-
ence between these two kinds of noise. It is possible to have more than four
octaves of noise, and noisegraph can provide up to eight octaves. Because the

Figure 10.9. Comparing the appearance of a 1D 1-octave noise function (top left), with the
turbulence function derived from it (top right); a 1D 4-octave noise function (middle left),
with the turbulence function derived from it (middle right); and the same comparison with
a 2D 4-octave noise function (bottom left and right).

227Other Noise Concepts

glman noise comes from a texture, we will only be using four octaves here,
which will be plenty for our discussion.

As we noted for two- and three-dimensional noise, the real effect of tur-
bulence does not lie in the pure 1D functions shown in Figure 10.9, but in the
appearance of images that use it. In Figure 10.10, we show the simple sphere
with ordinary noise (left) and turbulence (right) to illustrate the additional
complexity that turbulence usually presents.

To get a turbulence function in glman, take the absolute value of each of
the four components minus the mid-value 0.5. This gives us Table 10.2.

Component Term3 Term Range
0 abs(nv.r − .5) 0.0000 → 0.5000
1 abs(nv.g − .5) 0.0000 → 0.2500
2 abs(nv.b − .5) 0.0000 → 0.1250
3 abs(nv.a − .5) 0.0000 → 0.0625

sum 0.0000 → ~ 1.0000

3. In GLSL, the abs() function is overloaded to take either the integer or floating point absolute value
depending on what type was passed in. There is no fabs() function for floating point absolute
value like there is in C and C++.

Figure 10.10. Noise as a surface texture on the simple sphere (left) and the same noise
treated as turbulence on the sphere (right).

Table 10.2. The four noise octaves converted to turbulence.

228 10. Noise

The terms can be summed and the sum used directly, as shown in the
following fragment shader code that was used to produce the images in Fig-
ure 10.10.

uniform sampler3D Noise3;
uniform float uNoiseScale;
uniform float uNoiseMag;
uniform vec4 uColor1;
uniform vec4 uColor2;

in float vLightIntensity;
in vec3 vMCposition;

out vec4 fFragColor;

void main()
{
 vec4 nv = texture(Noise3, vMCposition * uNoiseScale);

 float sum = abs(nv.r-.5) + abs(nv.g-.5) +
 abs(nv.b-.5) + abs(nv.a-.5);

 sum = clamp(uNoiseMag * sum, 0.0, 1.0);
 vec3 color = mix(uColor1.rgb, uColor2.rgb, sum)*
 vLightIntensity;

 fFragColor = vec4(color, 1.0);
}

Note that, unlike C and C++, GLSL overloads the abs() function name for
taking the absolute value of both integers and floats.

Some Examples of Noise in Different Environments

A traditional use of noise is to provide interesting textures, often mimicking
natural phenomena, to use in our images. These use several different tech-
niques, including using only one or two of the available octaves of noise, or
manipulating noise or turbulence so that the function values lie in only a lim-
ited range or are shifted. We include code for these examples, so you can see
examples of some manipulations you might use.

As a first example of the use of noise to create a rich image, we illustrate
noise to simulate surface erosion using pixel discards. In Chapter 3, we used the
texture coordinates directly to determine the pixels to discard, and the result

229Some Examples of Noise in Different Environments

was shown in Figure 3.5, repeated here as the left-hand image in Figure 10.11.
We can take a different approach by using 2D texture coordinates to generate
a noise value that will determine which pixels should be discarded. When this
is applied to a sphere, the resulting figure is shown as the right-hand image in
Figure 10.11—a very different kind of image. The erosion shader operates by
generating a pattern from a noise function, but instead of using it to change
the color of the surface, the values are used to decide whether or not to discard
pixels. The shader uses two uniform variables, Min and Max, that determine the
range of values that allow pixels to be kept, and the kept pixels are colored as
if the sphere had no texture.

The fragment shader for the erosion example is given below. The two
uniform variables for the noise frequency and cutoff values would probably
be defined as slider variables in the glman GLIB file, and you can experiment
with them to achieve the look you want.

uniform sampler3D Noise3;
uniform float uMin, uMax;
uniform float uNoiseScale;

in vec4 vColor;
in float vLightIntensity;
in vec3 vMCposition;

out vec4 fFragColor;

void main()

Figure 10.11. The discard-based screen of Chapter 2 (left) and noise-based discard to simu-
late erosion (right).

230 10. Noise

{
 vec4 nv = texture(Noise3, uNoiseScale*vMCposition);
 float sum = nv.r + nv.g + nv.b + nv.a;
 sum = (sum - 1.) /2.; // range: 0. -> 1.

 if(sum < uMin)
 discard;

 if(sum > uMax)
 discard;

 fFragColor = vec4(vLightIntensity*vColor.rgb, 1.);

}

We look at some other examples of using noise in the sections below. These
show the use of noise to simulate some natural materials, where a noise texture
can add some of the complexity that is found in nature. This is a very rich subject,
and our relatively simple examples can only suggest how much can be done.

Noise effects begin by choosing the domain that is to be used for the noise
function, and the way the noise is to be used. The domain can be 1D, 2D, or 3D,
depending on whether you want linear, surface, or solid effects. It can also be
chosen to come from model space, eye space, or texture space. So you have a
variety of choices that can affect the way the noise effects are generated. There
are also several ways to use the noise values that you generate. You can use
them directly, as we saw in the erosion example above, or you can use them to
select how different colors are to be blended; the examples below all use noise
to determine how blends are to be done.

Marble Shader
Marble is a material that exhibits noisy-looking
veins in a base-color stone, and the nature of the
veins makes it a natural material to model with
a noise-based texture. The marble fragment
shader whose effects are shown in Figure 10.12
implements this kind of modeling. Its domain is
the 3D model coordinates of the geometry being
textured, and it uses all four octaves of noise.
The resulting value, along with the position of
the point in model space, is then taken as input
to a sine function, making the texture somewhat
periodic, as the veins in marble tend to be.Figure 10.12. The teapot with a marble texture.

231Some Examples of Noise in Different Environments

The fragment shader below implements this modeling approach to simu-
late a marble texture. It uses three uniform variables: two colors, the color of
the marble base and the color of the marble vein, and one scale that changes
the general texture of the noise values that could be set up with glman, so you
could experiment with the texture to get the effect you want.

uniform sampler3D Noise3;
uniform vec4 uMarbleColor;
uniform vec4 uVeinColor;
uniform float uNoiseScale;
uniform float uNoiseMag;

in float vLightIntensity;
in vec3 vMCposition;

out vec4 fFragColor;

void main()
{
 vec4 nv = texture(Noise3, vMCposition * uNoiseScale);
 float sum = abs(nv.r - 0.5) + abs(nv.g - 0.5)
 + abs(nv.b - 0.5) + abs(nv.a - 0.5);
 sum = clamp(uNoiseMag * sum, 0.0, 1.0);

 float sineval = sin(vMCposition.y*6.0+sum*12.0)*0.5 + 0.5;
 vec3 color = mix(uVeinColor.rgb, uMarbleColor.rgb,
 sineval) * vLightIntensity;
 fFragColor = vec4(color, 1.0);
}

Cloud Shader

Clouds are another effect that can be readily created using a fragment shader.
There are so many different kinds of clouds that one shader cannot begin to
capture them, but a very simple model is that clouds occur in the sky with
a noise-like pattern that mixes cloud color and sky color, with gradations
between them. A cloud shader might produce effects like those shown in
Figure 10.13, with a parameter determining the way the clouds thin out so the
sky color can be seen. Other kinds of cloud models might assume a particular
geometry for cloud patterns and density and then use noise to determine what
happens at the cloud region boundaries, but they could have similarities to
this shader if you use the geometry to drive the mix() function and use the
noise effects at the boundaries.

232 10. Noise

A fragment shader for cloud effects is given below. The noise octaves
are not uniformly weighted, because clouds seem to have more structure at
a larger scale, and the intensity is modified with a cosine function to achieve
even wider cloud and sky regions. This shader uses four uniform variables
that set the foreground and background colors for clouds and that control the
scale of the domain and shift the noise either toward the foreground or the
background color. If you use this shader with glman, the uniform variables
would need to be defined as slider or color chooser variables in a GLIB file, so
that you can adjust the values to tune the look of the cloud effect.

uniform vec4 uSkyColor;
uniform vec4 uCloudColor;
uniform float uBias;
uniform float uNoiseScale;
uniform sampler3D Noise3;

in float vLightIntensity;
in vec3 vMCposition;

out vec4 fFragColor;

const float PI = 3.14159265;

void main()

Figure 10.13. The teapot shown with a cloud texture (left) and a cloud texture on a plane
(right) as it might be done for a sky background.

233Some Examples of Noise in Different Environments

{
 vec4 nv = texture(Noise3, uNoiseScale * vMCposition);
 float sum = (3.* nv.r + nv.g + nv.b + nv.a - 2.) / 2.;
 sum = (1. + cos(PI * sum)) / 2.;
 float t = clamp(uBias + sum, 0., 1.);

 vec3 color = mix(uSkyColor.rgb, uCloudColor.rgb, t);
 color *= vLightIntensity;

 fFragColor = vec4(color, 1.0);
}

Wood Shader

Wood is characterized by the rings that form as
trees grow. These rings are something like the
veins in marble, but rings have clearly defined
edges between the light and dark wood, and
the variation lies in the shape of the rings
themselves. These are approximately cylindri-
cal, with variation in their width and spacing.
A wood fragment shader must try to capture
those kinds of variations. In Figure 10.14, we see
an example of a wood shader applied to a tea-
pot. This solid-texture wood shader operates by
adding a noise value (based on the model-space
coordinates of a point) to the distance from the
modeling Y-axis, and uses that distance to mix
the light and dark wood colors.

A wood fragment shader that implements this approach is shown below.
This uses five uniform variables, three shader parameters and two color vari-
ables that control the ring colors and the parameters that simulate the rings.
These could be used with glman as slider or color selection variables in a GLIB
file to let you experiment with the colors and parameters to achieve the look
you want in your shader. For example, you could use light colors and wide
and fairly regular ring spacing to simulate pine.

uniform sampler3D Noise3;
uniform vec4 uLightWoodColor;
uniform vec4 uDarkWoodColor;
uniform float uRingFreq;
uniform float uNoiseScale;
uniform float uNoiseMag;

Figure 10.14. The teapot shown with a wood
texture.

234 10. Noise

in float vLightIntensity;

in vec3 vMCposition;

out vec4 fFragColor;

void main()

{

 vec4 nv = uNoiseMag * texture(Noise3, uNoiseScale*vMCposition

);

 vec3 location = vMCposition + nv.rgb;

 float dist = length(location.xz)

 dist *= uRingFreq;

 // create an up-down ramp:

 float t = fract(dist + nv.r + nv.g + nv.b) * 2.0;

 if(t > 1.0)

 t = 2.0 - t;

 vec4 color = mix(uLightWoodColor, uDarkWoodColor, t);

 color *= vLightIntensity;

 fFragColor = vec4(color.rgb, 1.);

}

One of the most common uses of a wood shader is to cre-
ate wood surfaces that model the look of wooden furniture or
the like. We can see in Figure 10.15 that we can modify this
shader to create the texture of a wood surface (or, more pre-
cisely, a bookmatched veneer surface). This is done by chang-
ing the expression for the dist variable by adding terms as

 sqrt(location.x*location.x+location.z*location.z)+

 sqrt(8.+location.y)+sqrt(8.+abs(location.x));

and, as before, note that

 sqrt(location.x*location.x + location.z*location.z)

can be written more efficiently as

length(location.xz)

Figure 10.15. The wood
shader applied to a flat surface.

235Advanced Noise Topics

This gives roughly parallel structures on each side of the middle of the
surface. Other techniques for surfaces would consider the surface as a side of
a board (a modified cube) and would pick up the texture of the side as part of
the wood-textured solid.

Advanced Noise Topics

The topic of noise in computer graphics is a very large one. We have just touched
on it here in order to give you enough information to appreciate these func-
tions and to get started using them. However, there are many more advanced
issues that have not been covered here. One of the biggest is the issue of band
limiting noise functions. Value, gradient, and value+gradient noise functions
in two and three dimensions have problems with high fre-
quencies creeping in to them. This can result in aliasing
problems in the final image. Some solutions have been pro-
posed, including an elegant approach using wavelets. See
[11] for more details.

Using Noisegraph

The noisegraph tool has been designed to let you experi-
ment with a number of different parameters used to gener-
ate computer graphics noise, and to give you a qualitative
feel for how those parameters affect the nature of the noise
function. The noisegraph tool is controlled by a user inter-
face panel (shown in Figure 10.16), which is fairly simple
to use, and it displays both a 1D and a 2D noise function
with the properties set up in the panel.

Note that noisegraph can produce three different types
of noise: value-only, gradient-only, and value+gradient. In
the example shown here, the selections in the top part of
the interface panel are for a four-octave value+gradient
noise function with quintic interpolation. You can see this
in the 1D noise function window. Multiple octaves can be
summed. Each octave is twice the frequency and half the
amplitude of the octave below it, as we discussed earlier in
the chapter.

Figure 10.16. The noisegraph user
interface panel.

236 10. Noise

The order of the noise curve can be either
cubic or quintic. The cubic curve is C1 (slope)
continuous everywhere, while the quintic curve
is C2 (curvature) continuous.

If value noise is used, the slope at each
noise point can be artificially set to zero (hori-
zontal) or can be smoothed using a Catmull-
Rom slope.

Notice that one of the control points for the
1D noise function is highlighted in green in the
1D noise function shown in Figure 10.17. When
a point is selected (by pointing to it and click-
ing the left mouse button), its information can
be edited as follows:

• The point can be moved up and down using the mouse, if the type of
noise is value-only or value+gradient.

• The Gradient slider can be adjusted if the noise type is gradient-only
or value+gradient. If the noise uses quintic interpolation, the Curvature
slider can also be adjusted.

The other important option for noise is the Turbulence check box. When
this is checked, the individual octaves’ absolute values are summed to deter-
mine the noise function’s value.

Figure 10.17. The four-octave value+gradient
1D noise function with quintic interpolation
described above.

Figure 10.18. The 2D noise function defined above with rainbow (left), sky (center), and fire (right) color
scales.

237Exercises

This 1D noise function makes up the bottom edge of the 2D noise func-
tion shown in the 2D noise window in Figure 10.18. As you interactively make
changes in the 1D noise function, the changes also show up in the 2D func-
tion window. The 2D noise function can be displayed with your choice of
four color transfer functions according to the 2D Noise Texture radio buttons.
Figure 10.18 shows the same 2D noise function with a rainbow scale (blue-to-
green-to-red), sky scale (blue-to-white), and fire scale (red-to-yellow).

Exercises

1. Experiment with noise: in the fragment shader for any of the chapter’s
examples, use the different octaves of noise in different ways, as we did
with the cloud shader, to see how that can affect the texture. For example,
you might use

 nv.r + 2.*(nv.g-.5) + 4.*(nv.b-.5) + 8.*(nv.a-.5) + 1.5

 to use all four of the octaves at the same amplitude.
2. Illustrate a 2D noise function as a surface in the same way one would

develop a surface as the graph of a simple function of two variables. Use
a rather fine mesh in the domain to capture the shape of the function. Do
this for one-octave noise and four-octave noise, and compare the relation
between the shapers to the relation between the pseudocolor 2D noise
functions in Figure 10.5.

3. Use glman to examine the nature of the four individual octaves of noise by
creating a very simple fragment shader similar to that in the turbulence
shader shown in Figure 10.9. For each octave, write a shader that derives
a texture from that octave and uses a uniform slider variable to discard
pixels whose value is less than that slider’s value. From that, determine
the smallest and largest value of the octave of noise.

4. Explore the difference between transparency and pixel discarding.
Instead of discarding pixels in the erosion shader, set the alpha value of
the pixels you would discard to zero. Describe what happens when you
rotate the scene, and why that happens.

5. Most of the examples in this chapter have used noise to set or modify
the color of a fragment, but you can also use it in other ways. Modify
the previous exercise to set the alpha component of each pixel with the
noise function so that the “transparency” is noisy, and note the effect.
(The effect might be best observed if you have two planes of different

238 10. Noise

color, draw the back plane first, and then draw the front plane with this
noisy transparency.)

6. There are many places where you can find “noisy” behavior that you can
simulate with noise-based shaders. In one of these, create an “asphalt”
shader, based on your observation of asphalt in streets and parking lots,
by starting with an appropriate gray color and darkening it randomly
using noise. Apply this to a rectangle and see how close the results are to
actual asphalt.

7. Of course, the random behavior of an “asphalt” shader as above doesn’t
really capture the nature of a street or parking lot. For these you need
to show the dirtier areas where tires travel or where cars drip oil. These
are also noisy, but the noise is confined to particular areas. You can take
a noise function and trim it to specific areas (define a region where the
noise is to be applied and use the smoothstep() function to handle the
edges or the region). Then add this to the color from the simple asphalt
shader.

239

Image Manipulation
with Shaders11

The OpenGL computer graphics API is primarily intended for rendering 3D
synthetic scenes from geometric primitives, but some capabilities for manipu-
lating images were built into the system from the beginning. With the addition
of shader capabilities, OpenGL can now use texture access and manipulation
operations to carry out a number of new image functions. In this chapter, we
describe some of these functions. Our main tools will be the ability to get texels
directly from a texture and the ability to do arithmetic on texel values.

The general form of the GLIB file is as below, including a uniform slider
variable T, used in case you use a parameterized operation such as image
blending, and variables for the resolution of the image file. Each texture needs
to be assigned to a texture unit. Here we have set up the GLIB file for two
textures, because some of the later examples in this chapter operate on two

240 11. Image Manipulation with Shaders

images. Of course there will be changes if we work on a single image (using
only one file, sample.bmp), if we use a different image (replacing the name of
the image file), or if we include additional uniform variables to support other
computations.

##OpenGL GLIB

Ortho -1. 1. -1. 1.

Texture 5 sample1.bmp
Texture 6 sample2.bmp

Vertex sample.vert
Fragment sample.frag
Program Sample uT <0. 0. 5.> \
 uImageUnit 5 uImage2Unit 6

QuadXY .2 5.

This GLIB file puts the two texture images on
texture units 5 and 6. You can arbitrarily pick which
texture units to use, up to the total number sup-
ported by your graphics card.

The vertex shader is short and uses our familiar
conventions for variable names:

out vec2 vST;

void main()
{
 vST = aTexCoord0.st;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

Throughout this chapter we will be looking at different image manipula-
tion functions that we can build into fragment shaders.

Basic Concepts

GLSL deals with images by treating them as textures and using texture access
and manipulation to set the color of each pixel in the color buffer. This color
buffer may then be displayed, letting you see the effect of your manipulation,

If you are using glman,
do not use texture units 2
and 3, because glman uses
those to hold its built-in
2D and 3D noise textures.

241Single-Image Manipulation

or it may be saved as another texture or output as
a file.

In Figure 11.1, we see a texture image as
it might have been read from an image file. This
texture file may be treated as an image raster by
working with each texel individually. A built-in
GLSL function textureSize() will tell you the
resolution of the texture, called ResS and ResT in
Figure 11.1.

There are two ways to access a single texel in
a texture. Since any OpenGL texture has texture
coordinates ranging from 0.0 to 1.0, the coordinates
of the center of the image are vec2(0.5,0.5) and
you can increment texture coordinates by 1./ResS
or 1./ResT to move from one texel to another hori-
zontally or vertically, respectively. Alternately, if
you are working with GLSL 1.50 (OpenGL 3.2) or
higher, you can access any texel with the texelFetch() function. We will use
these GLSL texture-access capabilities in the fragment shader to identify and
calculate colors for pixels in the color buffer.

In order to be as general as possible, we will address and increment tex-
ture coordinates with real numbers rather than integers, in spite of the weak-
ness in this approach, since it can lead to some unintentional interpolations of
pixel values.

Single-Image Manipulation

In the next several sections, we work with an individual image and compute
the color of output pixels by using information contained in the image. This
is in contrast to some later sections in this chapter, when we use two different
images as textures loaded into different texture units in our computation.

Luminance

The luminance of a color is the overall brightness of the color, with no reference
to the color’s hue. Luminance is a more complex property than it might seem,
because our eyes respond to different primary colors differently. Luminance
has been studied because of the need to give luminance cues to persons who
have deficient color vision, as described in [15, Chapter 5], and because it was

Figure 11.1. A texture raster that could be
created from an image file.

242 11. Image Manipulation with Shaders

necessary to consider luminance when creating a color system that could sup-
port both black-and-white and color television.

The sRGB specification (also known as IEC 61966-2-1) is emerging as a
standard way to define colors across various monitors and applications [42].
In sRGB, luminance is defined as a linear combination of red, green, and blue.
The weight vector for luminance in sRGB is

 const vec3 W = vec3(0.2125, 0.7154, 0.0721);

We use this set of weights in much of the upcoming sample vertex shader
code to compute the luminance of a pixel by taking the dot product of the vec-
tor .rgb with this weighting vector as follows:

 vec3 irgb = texture(uImageUnit, vST).rgb;
 float luminance = dot(irgb, W);

Note that these numbers in the weight vector W sum to 1.0000 so that
dotting this vector with a legitimate RGB vector will produce a luminance
between 0 and 1. We will find luminance to be an important concept in several
image manipulation techniques, such as grayscale. Grayscale conversion of an
image is accomplished by replacing the color of each pixel with its luminance
value. When you compute each pixel’s luminance, as shown in the code frag-
ment above, you can create a grayscale representation of the image by setting
the pixel color to a vector of the luminance value:

 fFragColor = vec4(luminance, luminance, luminance, 1.);

A conversion from a color image to grayscale in this way is shown in
Figure 11.2.

Figure 11.2. A supermarket fruit image (left) and its grayscale equivalent (right).

243Single-Image Manipulation

CMYK Conversions

A common function when you are doing graphics that will be published using
standard printing process is converting your RGB-color images to CMYK-
color. The RGB color model is based on emissive colors, adding color com-
ponents to black, as used by computer monitors. The CMYK color model is
a transmissive model, created by subtracting color components from white.
Standard printing uses four subtractive color components: cyan, magenta, yel-
low, and black. Converting RGB colors to CMYK colors and outputting the
four single-color images is called creating CMYK separations. The single-color
images are used to create four printing plates. The conversion from the RGB
color space to the CMYK color space is straightforward, although there are dif-
ferent approaches. The examples shown here are taken from [5].

RGB to CMYK conversion works like this. First, convert RGB to CMY
by subtracting the RGB color from white. Then calculate the amount of black
in each color and segregate it out as the K value, then adjust each of the CMY
colors to reflect the fact that this K is present. Sample fragment shader code
to convert a variable vec3 color to a variable vec4 cmykcolor is shown here.

 vec3 cmycolor = vec3(1., 1., 1.) – color;
 float K = min(cmycolor.x, min(cmycolor.y, cmycolor.z));
 vec3 temp = (cmycolor – vec3(K,K,K,))/(1.0 – K);
 vec4 cmykcolor = vec4(temp, K);

A more complex, but much more satisfactory, conversion scales the values
of cmycolor above by modifying the value of K used to convert to cmykcolor.
This approach, which yields a good approximation of the Adobe Photoshop
CMYK conversion, is given by

′
′
′
′

=

−
−
−

C
M
Y
K

C f K
M f K
Y f K
f K

UCR

UCR

UCR

BG

()
()
()

()

where the functions fUCR and fBG are given by

f K S K

f K
K K

K K K
K

K K

UCR K

BG

()

()
max

= ∗

=
<

∗
−
−

≥

0

1

0

0

0
0

244 11. Image Manipulation with Shaders

where SK = 0.1, K0 = 0.3, and Kmax = 0.9. This approach is used in developing
Figure 11.3.

A separation is a grayscale image that captures one of the C, M, Y, or K
components of the image. These are output as files to be used in printing either
on film or digitally. To create a separation, you use code such as that above
and replace each pixel’s color with the single-color grayscale. For example, to
create the magenta separation, we could use

fFragColor = vec4(cmykcolor.yyy, 1.);

Since there is no “cmyk” nameset, and since namesets pay no attention to
the meaning of the components, we have used the xyzw nameset for the vec4
cmykcolor in this example.

An example of creating separations is shown in Figure 11.3, which shows
an original color image and four separations created with this technique. The
separations are shown in grayscale to emphasize the amount of ink that would
be required to print each; darker values in the separations indicate that more
ink of that color will be used at that point. The most obvious effect in this fruit
image is the yellow tones in the fruits and the foliage, along with the magenta
tones from the red fruit colors.

The fragment shader for this CMYK conversion is shown below, with the
variables in the discussion hard-coded for this example.

Figure 11.3. A color image (top) and the four CMYK separations (shown in grayscale) in C-M-Y-K order.

245Single-Image Manipulation

#define CYAN

#undef MAGENTA

#undef YELLOW

#undef BLACK

uniform sampler2D uImageUnit;

in vec2 vST;

out vec4 fFragColor;

void main()

{

 vec3 irgb = texture(uImageUnit, vST).rgb;

 vec3 cmycolor = vec3(1., 1., 1.) - irgb;

 float K = min(cmycolor.x, min(cmycolor.y, cmycolor.z));

 vec3 target = cmycolor - 0.1 * K;

 if (K < 0.3) K = 0.;

 else K = 0.9 * (K - 0.3)/0.7;

 vec4 cmykcolor = vec4(target, K);

#ifdef CYAN

 fFragColor = vec4(vec3(1. - cmykcolor.x), 1.);

#endif

#ifdef MAGENTA

 fFragColor = vec4(vec3(1. - cmykcolor.y), 1.);

#endif

#ifdef YELLOW

 fFragColor = vec4(vec3(1. - cmykcolor.z), 1.);

#endif

#ifdef BLACK

 fFragColor = vec4(vec3(1. - cmykcolor.w), 1.);

#endif

}

246 11. Image Manipulation with Shaders

Hue Shifting

Along with the conversion to CMYK color, you can also convert among the
other major color models. We assume that you are familiar with the HLS and
HSV color models [14], and we will implement hue shifting by converting
RGB to either HLS or HSV color, changing the hue in the new color model, and
then shifting back to RGB. The effect of this kind of image shifting is shown in
Figure 11.4.

Some sample fragment shader code to do this is shown below, using
the HSV color model. This color model is used because the hue is an angular
function, and you can shif color easily by adding a numeric value to the hue
and taking the result mod 360. The color conversions from RGB to HSV and
back from HSV to RGB use two functions from [18]. The hue-shifting shader
is written to use the glman slider variable T, with range [0., 360.], to control the
amount of the hue shift.

uniform float uT;
uniform sampler2D uImageUnit;

in vec2 vST;

out vec4 fFragColor;

vec3
convertRGB2HSV(vec3 rgbcolor)

Figure 11.4. A color image and the same image with hue shifted by 240 degrees.

247Single-Image Manipulation

{
 float h, s, v;

 float r = rgbcolor.r;
 float g = rgbcolor.g;
 float b = rgbcolor.b;
 float v = float maxval = max(r, max(g, b));
 float minval = min(r, min(g, b));
 if (maxval==0.) s = 0.0;
 else s = (maxval – minval)/maxval;

 if (s == 0.)
 h = 0.; // actually h is indeterminate in this case
 else
 {
 float delta = maxval – minval;
 if (r == maxval) h = (g – b)/delta;
 else
 if (g == maxval) h = 2.0 + (b – r)/delta;
 else
 if (b == maxval) h = 4.0 + (r – g)/delta;
 h *= 60.;
 if (h < 0.0) h += 360.;
 }
 return vec3(h, s, v);
}

vec3
convertHSV2RGB(vec3 hsvcolor)
{
 float h = hsvcolor.x;
 float s = hsvcolor.y;
 float v = hsvcolor.z;
 if (s == 0.0) // achromatic– saturation is 0
 {
 return vec3(v,v,v); // return value as gray
 }
 else // chromatic case
 {
 if (h > 360.0) h = 360.0; // h must be in [0, 360)
 if (h < 0.0) h = 0.0; // h must be in [0, 360)
 h /= 60.;
 int k = int(h);
 float f = h - float(k);
 float p = v * (1.0 – s);
 float q = v * (1.0 - (s * f));
 float t = v * (1.0 - (s * (1.0 - f)));

248 11. Image Manipulation with Shaders

 if (k == 0) return vec3 (v, t, p);
 if (k == 1) return vec3 (q, v, p);
 if (k == 2) return vec3 (p, v, t);
 if (k == 3) return vec3 (p, q, v);
 if (k == 4) return vec3 (t, p, v);
 if (k == 5) return vec3 (v, p, q);
 }
}

void main()
{
 vec3 irgb = texture(uImageUnit, vST).rgb;
 vec3 ihsv = convertRGB2HSV(irgb);
 ihsv.x += uT;
 if (ihsv.x > 360.) ihsv.x -= 360.; //add to hue
 if (ihsv.x < 0.) ihsv.x += 360.; //add to hue
 irgb = convertHSV2RGB(ihsv);
 fFragColor = vec4(irgb, 1.);
}

This example includes an implicit conversion between the RGB color
representation and the HSV color representation, showing how more general
color conversions may be done.

Image Filtering

A number of image manipulations are based on filtering images. A filter is a
process that convolves a pixel with its neighbors by using a matrix to weight
neighboring pixels. The size of the filter, the values in the filter, and the mean-
ing of different values that are returned when a filter is applied, all vary from
algorithm to algorithm.

As two examples of filters, consider the following. One is a three-by-three
Sobel filter that is used to detect horizontal edges. The other is a five-by-five
blur filter that can be used to smooth (or blur) an image:

− − −

1 2 1
0 0 0
1 2 1

,

1
273

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

∗

.

The filters are used as weights in creating a weighted sum of the values in
an adjacent set of pixels. For pixel values Pij and filter elements Fij and a filter

249Single-Image Manipulation

width of 2 * 1,n+ we can express this weighted sum as

F Pij ij
j n

n

i n

n

*
=−=−
∑∑

There are some general properties that filters may have. Filters are often
square matrices, usually of odd size, so we can often talk about a 3 × 3 or
5 × 5 filter. The sum of the weights in the filter is often one, especially when the
overall content of an array is to be preserved, so applying a filter usually does
not change the overall magnitude of whatever the filter is applied to.

Image Blurring

Image blurring can be done by applying a simple symmetric filter to the image,
so that each pixel’s color is influenced by the color of each of its neighbors. You
can use a simple 3 × 3 blur convolution filter like the one below or a larger 5 × 5
blur convolution filter like the 5 × 5 example shown above:

1
16

1 2 1
2 4 2
1 2 1

* .

Figure 11.5. An original image (left) blurred by a 3 × 3 filter (center) and a 5 × 5 filter (right).

250 11. Image Manipulation with Shaders

Examples of these two filters’ effects are shown in Figure 11.5 and are
compared with an original unblurred image, both to show you the blurred
images and to let you compare the amount of blurring generated by each of
these filters. Because blurring is not very easy to see in reduced-size natural-
istic images, we have chosen an original visualization image whose edges are
particularly pronounced.

Below is a fragment shader that applies the 3 × 3 blur convolution filter
above to a set of pixels to blur an image. The computation is done without
formal matrix multiplication as the pixels with weight 1.0 are gathered, as are
those with weight 2.0 and the single pixel with weight 4, and the result is
divided by the overall weight. The code for a 5 × 5 blur filter would look quite
similar, and both are included with the resources for this book; the difference
is that four additional pixel addresses are needed, and 25 individual pixel col-
ors are generated, instead of the nine shown here.

uniform sampler2D uImageUnit;

in vec2 vST

out vec4 fFragColor;

void main()
{
 ivec2 ires = textureSize(uImageUnit, 0);
 float ResS = float(ires.s);
 float ResT = float(ires.t);
 vec3 irgb = texture(uImageUnit, vST).rgb;

 vec2 stp0 = vec2(1./ResS, 0.); // texel offsets
 vec2 st0p = vec2(0. , 1./ResT);
 vec2 stpp = vec2(1./ResS, 1./ResT);
 vec2 stpm = vec2(1./ResS, -1./ResT);

// 3x3 pixel colors next

 vec3 i00 = texture(uImageUnit, vST).rgb;
 vec3 im1m1 = texture(uImageUnit, vST-stpp).rgb;
 vec3 ip1p1 = texture(uImageUnit, vST+stpp).rgb;
 vec3 im1p1 = texture(uImageUnit, vST-stpm).rgb;
 vec3 ip1m1 = texture(uImageUnit, vST+stpm).rgb;
 vec3 im10 = texture(uImageUnit, vST-stp0).rgb;
 vec3 ip10 = texture(uImageUnit, vST+stp0).rgb;
 vec3 i0m1 = texture(uImageUnit, vST-st0p).rgb;
 vec3 i0p1 = texture(uImageUnit, vST+st0p).rgb;

251Single-Image Manipulation

 vec3 target = vec3(0.,0.,0.);
 target += 1.*(im1m1+ip1m1+ip1p1+im1p1); //apply blur filter
 target += 2.*(im10+ip10+i0m1+i0p1);
 target += 4.*(i00);
 target /= 16.;
 fFragColor = vec4(target, 1.);
}

Chromakey Images

Chromakey image manipulation is used in “green
screen” or “blue screen” image replacement. This lets
you take any image and replace any regions that have
the same color as the key color or are very near the key
color with a background texture or portions of another
image. The chromakey replacement effect is shown in
Figure 11.6.

For chromakey computation, two textures are
required, an “image texture” and a “before texture.”
The “image texture” is the one that may contain pixels
in the color key that would need to be replaced, and
the “before texture” is the one that would replace any
color-keyed pixels. The process then is relatively simple:
read the image texture, and for each pixel, either keep
this pixel, or if the pixel color is sufficiently near the key
color, replace the pixel with the corresponding pixel in
the before texture. The code fragment below uses pure
green as the color key, simulating a green-screen pro-
cess. The value of uT is a tolerance, or a measure of how
near a color must be to the color key before its pixel will
be replaced. This is typically very small, so that only col-
ors very near green, vec3(0., 1., 0.), will pass the
limit test and will be replaced by the “before” texture
color.

A fragment shader for this process is shown below,
with uniform slider variables uT and uAlpha from a GLIB
file. The foreground image comes from the BeforeUnit
and the background image is from the AfterUnit. The
uAlpha variable controls the alpha value for the fore-
ground image as seen in the figure.

Figure 11.6. A synthetic image (top)
and the result of green-screen chro-
makey processing to replace the green
color and blend the foreground image
with a background with an alpha value
of 0.7 (bottom).

252 11. Image Manipulation with Shaders

uniform float uT;
uniform float uAlpha;
uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

out vec4 fFragColor;

void main()
{
 vec3 brgb = texture(uBeforeUnit, vST).rgb;
 vec3 argb = texture(uAfterUnit, vST).rgb;
 vec4 color;

 float r = brgb.r;
 float g = brgb.g;
 float b = brgb.b;
 color = vec4(brgb, 1.);
 float rlimit = uT;
 float glimit = 1. - uT;
 float blimit = uT;
 if(r <= rlimit && g >= glimit && b <= blimit)
 color = vec4(argb, 1.);
 else
 color = vec4(uAlpha*brgb + (1.-uAlpha)*argb, 1.);

 fFragColor = color;
}

Stereo Anaglyphs

A very interesting and fun use for image-based fragment shaders is to produce
stereo anaglyphs. These have long been used in comic books and movies, and
are still popular today. These are sometimes called “red-blue stereo,” although
today most glasses are actually red-cyan, with the convention that the red filter
is over the left eye and the cyan filter is on the right.

Before writing the shader, we need to see how the glasses actually work.
Our shader will produce a composite image that incorporates both the left and
right eye views. When the composite image is viewed through the red filter,
we want to see just the left eye image. The right eye image needs to be blocked,
or in image terms, it needs to be blacked out. Similarly, when the compos-
ite image is viewed through the cyan filter, we want to see just the right eye
image, so the left eye needs to be blocked. Since a red filter passes red light and
blocks cyan light, this means that the left eye image needs to be coded in red

253Single-Image Manipulation

and the right eye image needs to be coded in cyan (i.e., greens and blues). The
cyan filter on the right eye blocks red and passes green and blue, so the reverse
needs to happen for the right eye. Thus, the final composite image needs to get
its red component from the left eye image and its green and blue components
from the right eye image.

An example of doing this is shown in Figure 11.7. You need to have some
red-cyan glasses to see the effect.

Figure 11.7. A pair of stereo images (top) and the composite anaglyph (bottom).

254 11. Image Manipulation with Shaders

The strategy for creating anaglyph images, then, is this:

1. Start with left and right images of a 3D scene. These can be produced
with a camera or by separately rendering two views of the same scene.
Much of this is discussed in [27]. For photographs, take two pictures
from points about 4 inches to 6 inches apart that frame the same area,
preferably in the photos’ foregrounds or middlegrounds.

2. Create a composite image using the red from the left eye image and the
green and blue from the right eye image.

3. Because there is often vertical disparity between stereo images, espe-
cially when shot with a handheld camera, allow one image to be repo-
sitioned vertically.

4. Whatever objects appear in the same location in the two images will
appear to live in the plane of the screen or paper. This depth is known
as the plane of zero parallax. While it is cool to place the plane of zero
parallax towards the back of the scene so that most of the scene seems to
hover in midair, it is awkward. Here’s why. In our everyday existence,
things can appear in midair in front of us, a flying bird for example.
Graphics scenes get clipped on the left, right, bottom, and top, but that
midair bird doesn’t. So, a graphics scene hovering in front of us has the
potential to look rather unworldly when it gets clipped in midair for
no apparent reason. A more natural-looking approach is to place the
plane of zero parallax in the front, so that most of the 3D scene appears
to live inside the monitor or book. If we were watching the midair bird
through a window, and the bird suddenly got clipped against the win-
dow sides, we would think nothing of it. So a graphics scene that goes
into the page and gets clipped will look like something we are used to
seeing. So, in producing this anaglyph, it is also a good idea to allow
one image to be repositioned horizontally to change the plane of zero
parallax.

5. Because the red and cyan filters are not usually perfectly balanced, allow
the color components to be scaled to compensate for any inequities.

The GLIB file needs to bring in both image files and set up the sliders:

##OpenGL GLIB

Texture 5 left.bmp
Texture 6 right.bmp

Vertex anaglyph.vert

255Single-Image Manipulation

Fragment anaglyph.frag
Program Anaglyph \
 uOffsetS <-.25 0. .25> \
 uOffsetT <-.25 0. .25> \
 uRed <0. 1. 5.> \
 uGreen <0. 1. 5.> \
 uBlue <0. 1. 5.> \
 uLeftUnit 5 uRightUnit 6

QuadXY .2 5.

Like the other examples in this chapter, most of the work is in the frag-
ment shader:

uniform sampler2D uLeftUnit, uRightUnit;
uniform float uOffsetS, uOffsetT;
uniform float uRed, uGreen, uBlue;

in vec2 vST;

out vec4 fFragColor;

void main()
{
 vec4 left = texture(uLeftUnit, vST);
 vec4 right = texture(uRightUnit,vST+vec2(uOffsetS,
 uOffsetT));

 vec3 color = vec3(left.r, right.gb);
 color *= vec3(uRed, uGreen, uBlue);
 color = clamp(color, 0., 1.);

 fFragColor = vec4(color, 1.);
}

Notice that the fragment shader uses five uniform slider variables that
are set up in the GLIB file. The variables uOffsetS and uOffsetT control the
offset in the right image, to make up for differences in registering the images,
and the three uniform variables uRed, uGreen, and uBlue let you adjust the
color balance to make up for variations in the colors in the glasses. When you
create an anaglyph image, you may want to adjust the image with these vari-
ables to get the best effect.

Figure 11.8 shows another example of creating stereo anaglyphs.

256 11. Image Manipulation with Shaders

3D TV

While we are on the subject of stereographics, let’s go one step farther. One pro-
posal for 3D television (“3DTV”) has been a technique called “SmoothPicture”
[21] which transmits a single stereo image by spatially interlacing the left and
right images into it, as shown in Figure 11.9. Each separate image is deci-
mated in complementary checkerboard patterns before being combined. A

Figure 11.8. An anaglyph made from stereo pairs of images of Mars, from NASA's
website [7]. Note that in the top of this figure, the left eye view is on the right and the
right eye view is on the left. This makes it possible to free-view these images if you are
good at crossing your eyes. If you are good at parallel free-viewing, try the top of Fig-
ure 11.7.

 Right Left

257Single-Image Manipulation

Figure 11.9. Left and right eye views being
combined into a single spatially interlaced
image.

3D-enabled digital television decomposes the single
image back into decimated left and right images,
doubles its refresh rate to 120 Hz, and alternately
displays the images: left-right-left-right-… Viewers
wear shutterglass stereo eyewear to channel the
proper image into the proper eye.

Fortunately, existing programs can be adapted
fairly easily to produce this spatially-interlaced sig-
nal. A left eye and right eye view would need to
be rendered, each to its own texture. A fragment
shader, shown below, would then create the check-
erboard interlace pattern. A simple way to do that
would be to use the built-in gl_FragCoord window-
relative pixel-space coordinates, to decide whether
this fragment should receive the left eye image or
the right.

uniform sampler2D uLeftUnit, uRightUnit;

in vec2 vST;

out vec4 fFragColor;

void main()
{
 int row = int(gl_FragCoord.y);
 int col = int(gl_FragCoord.x);
 int sum = row + col;

 vec4 color;
 if((sum % 2) == 0)
 color = texture(uLeftUnit, vST);
 else
 color = texture(uRightUnit, vST);

 fFragColor = vec4(color.rgb, 1.);

}

Here is an example of what this looks like. Figure 11.10 shows left and
right eye images. (In this case they were taken with a stereo camera, but they
could just have easily been computer-generated.) The spatially interlaced
image is also shown as part of Figure 11.10, along with a zoomed-in view more
clearly showing the checkerboard interlacing pattern.

258 11. Image Manipulation with Shaders

Figure 11.10. Left and right eye images, top, and the spatially interlaced result and a zoom-in view, bottom.

259Single-Image Manipulation

Shutterglass stereo , in which each eye sees an image separately through
polarized lenses, has been a visualization mainstay for many years, finding
important applications in architecture, biology, chemistry, computer-aided
design, geology, etc. In addition to the obvious entertainment applications,
3DTV should become an important tool for science and engineering.

Edge Detection

Edge detection is a classic image processing technique, and is relatively easy to
do in a fragment shader. The edge detection process we present uses a pair of
Sobel filters, one for horizontal components and one for vertical components.
The horizontal Sobel filter was shown above. The vertical Sobel filter is the
same, but rotated 90 degrees. Specifically, the horizontal and vertical filters
are, respectively,

− − −

1 2 1
0 0 0
1 2 1

 and
−
−
−

1 0 1
2 0 2
1 0 1

.

The effect of the Sobel filters is to compare two columns (or rows, depend-
ing on which filter you are using) that are one column (or row) apart; if there
is no edge, the colors should be quite close and the filter should return a very
small value. If the returned value or values are “large”, the process infers that
an edge is present. The test may be done on the original image or the lumi-
nance-only image.

Notice that in the rightmost image of Figure 11.11, the filter results are
interpreted as colors. Where there is no edge, the output figure is very dark;

Figure 11.11. The edge detection operation, with the edge-showing image combined with the original image
in proportions 0.0 (left), 0.5 (middle), and 1.0 (right).

260 11. Image Manipulation with Shaders

where there is an edge, the output color is light. This visually validates the con-
cept of detecting edges, though in many applications you would go on to make
processing decisions based on these edges rather than simply displaying them.

Below, you see an example of some fragment shader code that imple-
ments these ideas. The colors of the 3 × 3 set of pixels are retrieved from the
image texture, a dot product of each is done with the luminance weight vector
to convert the 3 × 3 image to grayscale, and then the Sobel filters are applied
and the two results combined to set a single grayscale output value. Finally,
that output value is mixed with the original color according to a glman uniform
slider variable, uT.

ivec2 ires = textureSize(uImageUnit, 0);
float ResS = float(ires.s);
float ResT = float(ires.t);
vec3 irgb = texture(uImageUnit, vST).rgb;

vec2 stp0 = vec2(1./ResS, 0.);
vec2 st0p = vec2(0. , 1./ResT);
vec2 stpp = vec2(1./ResS, 1./ResT);
vec2 stpm = vec2(1./ResS, -1./ResT);

const vec3 W = vec3(0.2125, 0.7154, 0.0721);
float i00 = dot(texture(uImageUnit, vST).rgb, W);
float im1m1 = dot(texture(uImageUnit, vST-stpp).rgb, W);
float ip1p1 = dot(texture(uImageUnit, vST+stpp).rgb, W);
float im1p1 = dot(texture(uImageUnit, vST-stpm).rgb, W);
float ip1m1 = dot(texture(uImageUnit, vST+stpm).rgb, W);
float im10 = dot(texture(uImageUnit, vST-stp0).rgb, W);
float ip10 = dot(texture(uImageUnit, vST+stp0).rgb, W);
float i0m1 = dot(texture(uImageUnit, vST-st0p).rgb, W);
float i0p1 = dot(texture(uImageUnit, vST+st0p).rgb, W);
float h= -1.*im1p1-2.*i0p1-1.*ip1p1+1.*im1m1+2.*i0m1+1.*ip1m1;
float v= -1.*im1m1-2.*im10-1.*im1p1+1.*ip1m1+2.*ip10+1.*ip1p1;

float mag = length(vec2(h, v));
vec3 target = vec3(mag, mag, mag);
fFragColor = vec4(mix(irgb, target, uT), 1.);

Embossing

We can modify the idea of edge detection to include replacing color by lumi-
nance and highlighting images differently depending on the edges’ angles.
The result is the emboss operation that is commonly found in image manipu-
lation programs. The result of an emboss operation is shown in Figure 11.12,
and the code for a fragment shader to accomplish this is shown below. This

261Single-Image Manipulation

code includes #define statements to create grayscale or color embossing; both
are shown in the figure.

#define GRAY

uniform sampler2D uImageUnit;

in vec2 vST;

out vec4 fFragColor;

void main()
{
 ivec2 ires = textureSize(uImageUnit, 0);
 float ResS = float(ires.s);
 float ResT = float(ires.t);
 vec3 irgb = texture(uImageUnit, vST).rgb;

 vec2 stp0 = vec2(1./ResS, 0.);
 vec2 stpp = vec2(1./ResS, 1./ResT);
 vec3 c00 = texture(uImageUnit, vST).rgb;
 vec3 cp1p1 = texture(uImageUnit, vST + stpp).rgb;

 vec3 diffs = c00 - cp1p1; // vector difference
 float max = diffs.r;
 if (abs(diffs.g)) > abs(max)) max = diffs.g;
 if (abs(diffs.b)) > abs(max)) max = diffs.b;

 float gray = clamp(max + .5, 0., 1.);
 vec3 color = vec3(gray, gray, gray);
 fFragColor = vec4(color, 1.);
}

Figure 11.12. An original photo (left) along with the emboss operation results (right).

262 11. Image Manipulation with Shaders

Toon Shader

There are various kinds of shader that are known as toon shaders. One is a
shader for 3D graphics, in which the colors are quantized, and the edges

are enhanced by coloring them black. This is the “toon
shader” used by many commercial 3D graphics packages,
so named because the resulting images look like a hand-
drawn cartoon.

This shader operates in a relatively simple fashion
and uses the edge-detection filtering discussed above
and some color quantization. This models both kinds of
enhancement seen in the 3D toon shader. At a high level,
the 2D toon shader’s operations are

1. Calculate the luminance of each pixel.
2. Apply the Sobel edge-detection filter and get a mag-

nitude.
3. If magnitude > threshold, color the pixel black
4. Else, quantize the pixel’s color.
5. Output the colored pixel.

This is shown in the following fragment shader,
which is set up with uniform slider variables MagTol and
Quantize to manipulate the image through glman. Notice
that this gets the nine texture values needed for a 3 × 3 fil-
ter, converts each to its saturation value, and then applies
both horizontal and vertical Sobel filters and tests their
combination for edges The color is then quantized to simu-
late the behavior of hand-drawn cartoons.

uniform sampler2D uImageUnit, uBeforeUnit, uAfterUnit;

uniform float uMagTol;
uniform float uQuantize;

in vec2 vST;

out vec4 fFragColor;

Figure 11.13. The original fruit
image (top) and with toon shading
applied (bottom).

263Single-Image Manipulation

void main()

{

 ivec2 ires = textureSize(uImageUnit, 0);

 float ResS = float(ires.s);

 float ResT = float(ires.t);

 vec3 irgb = texture(uImageUnit, vST).rgb;

 vec3 brgb = texture(uBeforeUnit, vST).rgb;

 vec3 argb = texture(uAfterUnit, vST).rgb;

 vec3 rgb = texture(uImageUnit, vST).rgb;

 vec2 stp0 = vec2(1./uResS, 0.);

 vec2 st0p = vec2(0. , 1./uResT);

 vec2 stpp = vec2(1./uResS, 1./uResT);

 vec2 stpm = vec2(1./uResS, -1./uResT);

 const vec3 W = vec3(0.2125, 0.7154, 0.0721);

 float i00 = dot(texture(uImageUnit, vST).rgb, W);

 float im1m1 = dot(texture(uImageUnit, vST-stpp).rgb, W);

 float ip1p1 = dot(texture(uImageUnit, vST+stpp).rgb, W);

 float im1p1 = dot(texture(uImageUnit, vST-stpm).rgb, W);

 float ip1m1 = dot(texture(uImageUnit, vST+stpm).rgb, W);

 float im10 = dot(texture(uImageUnit, vST-stp0).rgb, W);

 float ip10 = dot(texture(uImageUnit, vST+stp0).rgb, W);

 float i0m1 = dot(texture(uImageUnit, vST-st0p).rgb, W);

 float i0p1 = dot(texture(uImageUnit, vST+st0p).rgb, W);

 // next two lines apply the H and V Sobel filters at the pixel

 float h= -1.*im1p1-2.*i0p1-1.*ip1p1+1.*im1m1+2.*i0m1+1.*ip1m1;

 float v= -1.*im1m1-2.*im10-1.*im1p1+1.*ip1m1+2.*ip10+1.*ip1p1;

 float mag = length(vec2(h, v)); // how much change

 // is there?

 if(mag > uMagTol)

 { // if too much, use black

 fFragColor = vec4(0., 0., 0., 1.);

 }

 else

 { // else quantize the color

 rgb.rgb *= uQuantize;

 rgb.rgb += vec3(.5, .5, .5); // round

 ivec3 intrgb = ivec3(rgb.rgb); // truncate

 rgb.rgb = vec3(intrgb) / Quantize;

 fFragColor = vec4(rgb, 1.);

 }

}

264 11. Image Manipulation with Shaders

Artistic Effects

If you use a commercial image manipulation program such as Photoshop or a
general-distribution version such as GIMP, you will find a number of “artistic
filters” that you can use to make an image look more like a painting or as if any
of several other kinds of thing had been done to it. It is interesting to consider
how you might be able to create such artistic effects with a GLSL fragment
shader.

A general approach might be to select a region of several texels from the
image relative to the current texel, and apply some sort of process that results
in a single color value. For example, you might choose the texel in the region
that has the greatest luminance. In Figure 11.14 we have done that to create a
painting effect for the familiar cherry blossom figure of this chapter. The pro-
cess is fairly straightforward; we develop a full 5 × 5 texel rectangle R around
an individual pixel, as well as a 5 × 5 mask rectangle M whose values are sim-
ply zero or one. We then look at the luminance values of each texel in the set

*R M and use the texel with the highest luminance value in the place of the
particular pixel. The code is rather long because, at this writing, GLSL does not
allow variables to be used as array indices, so we will not include it here. It is
available with the resources for the book.

It is straightforward to choose which values are zero and which are one
in the mask, and changing the “shape” of the mask will change the effect of the
filter. You can use other criteria besides the maximum luminance to select the
color for the pixel. There is ample ground here for fruitful experimentation!

Figure 11.14. An image (left) with a painting-effect filter applied (right).

265Single-Image Manipulation

Image Flipping, Rotation, and Warping

In the previous examples of single-image manipulation, we worked with each
pixel in place. However, we can also compute the color for a pixel by manipu-
lating the coordinates of the pixel to get that pixel’s color from another place
in the image.

While we create image warps to achieve particular effects on specific
images, it can be useful to have some kind of uniform benchmark image for
warps. There are many such benchmark images, depending on just what
effects you want to see, but in Figure 11.15 we see a simple rect-
angular grid that we will use to examine the details of changes in
the images.

We will work with images by treating them as texture maps,
as we have throughout this chapter so far. When we compute the
source address for a pixel, we are applying a function from the
pixel address space to itself. Since the texture space is the unit
square, [0, 1] × [0, 1] we are looking for functions that map that
space to itself. Sometimes, however, we may want to double the
size of that space and shift it so that the space we are working with
is [−1, 1] × [−1, 1] to make it convenient to apply familiar functions
(such as trigonometric functions) to the space. Examples and exer-
cises will help clarify what we mean by this.

One of the simplest kinds of address-based image manipulation is image
flipping. There are two kinds of flipping: horizontal and vertical. In vertical
image flipping, you exchange the top pixels in the image with the bottom
pixels, effectively mirroring the image around a horizontal line. In horizontal
image flipping, you exchange the left and right pixels in the image, effectively
mirroring it around a vertical line.

You can flip an image by a very simple calculation on the texture coor-
dinates. Since the texture coordinates are in the interval [0, 1], the function
t = 1 − t will reverse the order of the coordinate t in this interval. If this is
applied to the texture coordinates in the fragment shader (with the common
glman setup) as

vec2 st = vST;
st.t = 1. - st.t;
vec3 irgb = texture(uImageUnit, st).rgb;

fFragColor = vec4(irgb, 1.);

then the resulting image will be displayed “upside down” or flipped verti-
cally. It is quite easy to see how a horizontal flip could be implemented by
manipulating the s texture coordinate.

Figure 11.15. The rectan-
gular grid image.

266 11. Image Manipulation with Shaders

Simple image rotation (that is, rotation through a multiple of 90 degrees)
can be done similarly. If you want to rotate an image by 90 degrees counter-
clockwise, for example, you can simply replace the s-coordinate of the tex-
ture by the original texture t-coordinate, and the t-coordinate of the texture
by one minus the s-coordinate. (See if you can quickly figure out why the
“one minus” is needed.) In terms of functions of two variables, the function
f (st) = (t, 1 − s) captures this operation. The other simple rotations are simi-
larly easy. More general rotations are straightforward applications of the usual
graphics rotation operations, but are complicated by the need to preserve
the rectangular form factor in the domain and are thus not considered here.

Filling a pixel with a pixel from somewhere else in the image is more
interesting. You can apply any function or procedure that you like to manip-
ulate the address of any particular pixel, so long as it stays within the unit

Figure 11.16. The grid (above) and cherry blossom image (below), manipulated to magnify
(left) or compress (right) the center part of the image.

267Single-Image Manipulation

square of the pixel space. The process of manipulating the image by applying
a function to the pixel address space is called image warping [46] and has many
potential uses.

In most image warping applications, the effect of the function can vary
quite a bit if different parameter values are used in the function. Fortunately,
glman is easy to set up so you can create uniform slider variables for these
parameters. For example, if we consider the image warping with the function
x = x + t * sin(π * x) applied to both coordinates of the texel, we see in Fig-
ure 11.16 the effect of two different values of the parameter t for this warping
on both the grid above and on the cherry blossom image.

The fragment shader that defines this effect is shown below.

const float PI = 3.14159265;

uniform sampler2D uImageUnit;
uniform float uT;

in vec2 vST;

out vec4 fFragColor;

void main()
{
 vec2 st = vST;
 vec2 xy = st;
 xy = 2. * xy - 1.; // map to [-1,1] square
 xy += uT * sin(PI*xy);

 st = (xy + 1.)/2.; // map back to [0,1] square
 vec3 irgb = texture(uImageUnit, st).rgb;
 fFragColor = vec4(irgb, 1.);
}

Other kinds of image warping apply more complex kinds of operations
to pixel coordinates. The twirl transformation is one example, and others are
explored in the exercises. For the twirl transformation, we work in pixel coor-
dinates, so we start by transforming texture coordinates to pixel coordinates,
apply the twirl transformation, and then come back to texture coordinates to
select the actual pixel colors.

The twirl transformation rotates the image around a given anchor point
(xc  , yc) by an angle that varies across the space from a value α at the center,
decreasing linearly with the radial distance as it proceeds toward a limiting
radius rmax. The image remains unchanged outside the radius rmax. The nota-
tion has (x′, y′) as the original pixel coordinates and (x, y) as the coordinates

268 11. Image Manipulation with Shaders

of the pixel whose color you use; look for this in the shader code. The inverse
mapping function for this transformation is given by

T x
x r r r
x r r

T y
y r

x
c

y
c

−

−

=
+ ≤
′ >

=
+

1

1

:
cos()

:
sin(

max

max

β

β

for
for

)) max

max

for
for

r r
y r r

≤
′ >

with

d x x r d d

d y y d d
r r
r

x c x y

y c y x

= ′ − = +

= ′ − = +
−

2 2

2β αarctan (,) ()max

max

The resulting image effect is shown in Figure 11.17 for the rectangular
grid and for the cherry blossom image.

In the twirl transformation fragment shader below, look for the changes
to and from pixel coordinates, and note the two parameters (angle α and limit-
ing radius rmax) that are set up as uniform variables, so they can be defined as
glman uniform slider variables.

const float PI = 3.14159265;

uniform sampler2D uImageUnit;
uniform float uD, uR;

in vec2 vST;

Figure 11.17. The twirl transformation on the grid (left) and on the cherry blossom image
(right).

269Single-Image Manipulation

out vec4 fFragColor;

void main()
{
 ivec2 ires = textureSize(uImageUnit, 0);
 float Res = float(ires.s); // assume it’s a square
 // texture image
 vec2 st = vST;
 float Radius = Res * uR;
 vec2 xy = Res * st; // pixel coordinates from
 // texture coords

 vec2 dxy = xy - Res/2.; // twirl center is (Res/2, Res/2)
 float r = length(dxy);
 float beta = atan(dxy.y,dxy.x) + radians(uD)*
 (Radius-r)/Radius;

 vec2 xy1 = xy;
 if (r <= Radius)
 {
 xy1 = Res/2. + r * vec2(cos(beta), sin(beta));
 }
 st = xy1/Res; // restore coordinates

 vec3 irgb = texture(uImageUnit, st).rgb;
 fFragColor = vec4(irgb, 1.);
}

Image warping need not be uniform, of course, and you can readily use
noise functions, as described in the previous chapter, to modify the address
of a source pixel in an image. Some code for a fragment shader to do this is
below, and the result is shown in Figure 11.18.

Figure 11.18. The grid (left) and cherry blossom image (right) with noise as pixel offset.

270 11. Image Manipulation with Shaders

uniform sampler2D uImageUnit;
uniform float uT;
uniform sampler3D Noise3;

in vec3 vMCposition;
in vec2 vST;

out vec4 fFragColor;

void main()
{
 vec2 st = vST;
 float x = st.x;
 float y = st.y; // extract coordinates
 vec4 noisevecx = texture(Noise3, vMCposition);
 vec4 noisevecy = texture(Noise3,
 vMCposition+vec3(noisevecx));
 x += uT*(noisevecx[.r]-noisevecx[.g]+noisevecx[.b]
 +noisevecx[.a]-1.);
 y += uT*(noisevecy[.r]-noisevecy[.g]+noisevecy[.b]
 +noisevecy[.a]+1.);
 st = vec2(x, y); // restore coordinates
 vec3 irgb = texture(uImageUnit, st).rgb;
 fFragColor = vec4(irgb, 1.);
}

You can also see image morphing, the transition over time from one
image to another, as a combination of image warping and image blending.
The image blending part of this is discussed in the sections below, while the
image warping for morphing is a very specialized process where a fixed set
of points on one image are mapped to a fixed set in another, and the image
blending is parameterized so that at the beginning, the geometry of one
image is fixed, and at the end, the geometry of the second image is achieved.
This is well beyond the scope of our discussion here, however; you can read
more in [46].

The Image Blending Process

There are several kinds of image manipulation in which you create a linear
combination of the pixels from one image with those from a constant or from
another image. This kind of combination is shown in Figure 11.19. In the next
few sections, the base value will be a constant color or a value derived directly
from each pixel, so only the image being manipulated is used. Later in this

271Blending an Image with a Constant Base Image

chapter, we will present examples where one of these images is a particular
base image, and the other is an image that you want to manipulate. The gen-
eral form of the linear combination is

I T I T Iout base source= −() ∗ + ∗1. .

We are used to equations such as this being limited by having the param-
eter Τ restricted to the range [0., 1.]. However, for some of these applications,
we don’t make any such limitation, because for some effects it is easier to ask
for what you don’t want than to ask for what you do. Going outside the [0., 1.]
range will allow us to extrapolate to the effect we want to achieve.

The parameter in the blend can be varied to get different results, and here
glman’s ability to attach a uniform variable to a slider can be very helpful in
experimenting with the effects of a parameter. The built-in GLSL mix() func-
tion supports the actual blending sum.

Blending an Image with a Constant Base Image

There are several image-manipulation processes that involve blending each
pixel of an image with a constant value. The operations that result are quite
common and are very useful. Many of the examples below have been set up
for the glman environment with a uniform slider variable T that performs the
blending operation shown in Figure 11.19.

Figure 11.19. The meaning of the parameter T in the blending process.

272 11. Image Manipulation with Shaders

Color Negative

The color negative models the way photographic negatives work. A photo-
graphic negative blocks the complement of a color from getting to photo-
graphic paper, so the negative of an image is computed by subtracting the
color of each pixel from white:

 vec3(1.0, 1.0, 1.0) - color.rgb

If you use that negative as the base image, you get an image that looks
just like the photographic negative, as shown in Figure 11.20.

The following code for the negative fragment shader sets up a color and
its negative so you can blend between them with the variable uT. At uT = 0
you have the original image, and at uT = 1 you have the negative.

uniform sampler2D uImageUnit;
uniform float uT;

in vec2 vST;

out vec4 fFragColor;

void main()
{
 vec3 irgb = texture(uImageUnit, vST).rgb;
 vec3 neg = vec3(1.,1.,1.) - irgb;
 fFragColor = vec4(mix(irgb, neg, uT), 1.);
}

Figure 11.20. An image (left) and its color negative (right).

273Blending an Image with a Constant Base Image

Brightness

Informally, brightness can be thought of as the amount of not-black in a color.
For RGB color, “less” black means that the color components are nearer to 1.0,
and “more” black means that the components are nearer to 0.0. To manipulate
the brightness of an image, use a black image with color

target = vec3(0.0, 0.0, 0.0)

as the base. Values of uT less than 1.0 will darken each component of the color,
while values greater than 1.0 will brighten each component of the color up to
the point where the color is clamped. This can, of course, wash out colors if
the colors are already bright or if you use uT too large. This is shown in Fig-
ure 11.21.

Sample code for a very simple fragment shader that adjusts brightness
is shown below. In effect, brightening the image is done by subtracting black
from it.

uniform sampler2D uImageUnit;
uniform float uT;
in vec2 vST;
out vec4 fFragColor;

void main()
{
 vec3 irgb = texture(uImageUnit, vST).rgb;
 vec3 black = vec3(0., 0., 0.);
 fFragColor = vec4(mix(black, irgb, uT), 1.);
}

Figure 11.21. Brightness manipulation in a photograph from a prehistoric French tomb with uT = 0.0 (left),
1.0 (middle), and 2.0 (right).

274 11. Image Manipulation with Shaders

Contrast

The contrast in an image describes how much the colors stand out from gray.
To manipulate the contrast in an image, use as a base image a constant 50%
gray image, which is easily computed as

 target = vec3(0.5,0.5,0.5);

Parameter values of T less than 1 will move each color component toward
0.5, reducing the contrast in the image, while values greater than 1 will move
each color component away from 0.5, increasing the contrast, as shown in
Figure 11.22.

Sample code for a very simple fragment shader that adjusts either bright-
ness or contrast is shown below. In effect, brightening the image is done by
subtracting black from it, and contrast is increased by subtracting 50% gray
from it.

#define BRIGHTNESS
#undef CONTRAST

uniform sampler2D uImageUnit;
uniform float uT;

in vec2 vST;

our vec4 fFragColor;

void main()
{
 vec3 irgb = texture(uImageUnit, vST).rgb;

Figure 11.22. Contrast manipulation in a photograph of a ruined French abbey with T = 0.0 (left), 1.0 (middle),
and 2.5 (right).

275Blending an Image with a Version of Itself

#ifdef BRIGHTNESS
 vec3 target = vec3(0., 0., 0.);
#else
 vec3 target = vec3(0.5,0.5,0.5);
#endif
 fFragColor = vec4(mix(target, irgb, uT), 1.);
}

Blending an Image with a Version of Itself

Another common kind of image manipulation involves creating a base value
that is computed from the image itself. This might be a grayscale image or a
blurred image in the examples below. Again, these are common and very use-
ful kinds of manipulation. And again, we show examples that have been set up
for glman as described above.

Saturation

We think of color saturation as a description of the “purity” of the color, or how
far the color is from gray. This is consistent with the notion of saturation in the
HLS color system, where saturation is the distance from the pure grays that
are at the center of the HLS double cone. If saturation is reduced, the color is
more gray; if it is increased, the color is purer and more vivid.

To manipulate the saturation of an image, you create a grayscale base
image by replacing the color at each point by its luminance that we defined
earlier in this chapter:

 target = vec3(luminance, luminance, luminance);

and mix the color with this target, as we have seen. Values of uT less than 1
will move each color component toward its luminance, making the color less
saturated, while values greater than 1 will move each color component away
from the luminance, making it more saturated, as shown in Figure 11.23.

A simple fragment shader to manipulate saturation is shown below.

const vec3 W = vec3(0.2125, 0.7154, 0.0721);

uniform sampler2D uImageUnit;
uniform float uT;

in vec2 vST;

276 11. Image Manipulation with Shaders

out vec4 fFragColor;

void main()
{
 vec3 irgb = texture(uImageUnit, vST).rgb;
 float luminance = dot(irgb, W);
 vec3 target = vec3(luminance, luminance, luminance);
 fFragColor = vec4(mix(target, irgb, uT), 1.);

}

Sharpness

We think of sharpness as the degree of clarity in both coarse and fine image
detail in an image. Alternately, you could think of sharpness as the opposite
of blurred. Manipulating the sharpness of the image takes advantage of this
fact by creating an extrapolation from a blurred version of the image through
the image itself. The blurred image is created by the blurring process dis-
cussed earlier in the chapter. An example of sharpening an image is shown
in Figure 11.24; the left and middle images are larger versions of those of
Figure 11.5.

A fragment shader to manipulate sharpness would contain code some-
thing like the following. The code uses the same filter and computation
described in the image blur example earlier in the chapter, except that it ends
by mixing the blurred image (“target”) and the original image (“irgb”). The
shader files are included in the materials with this book.

 ...
 fFragColor = vec4(mix(target, irgb, uT), 1.);

Figure 11.23. Saturation manipulation of the supermarket fruit image with uT = 0.0 (left), 1.0 (middle), and
2.0 (right).

277Blending Two Different Images

This is a special case of unsharp masking, a standard image manipulation
technique to sharpen photographic images for printing. The general technique
uses a blur filter of adjustable radius and an adjustable blend; this example
uses radius 1 and a limited adjustable blend.

Blending Two Different Images

The two-image manipulations in the sections above have really been about
creating effects in a single image, using another reference image as a tool.
However, sometimes you have two images that each have content, and you

Figure 11.25. Two sample images we will use to illustrate blending: Washington cherry
blossoms (left) and Xidi, an ancient Hong village in Anhui province, China (right).

Figure 11.24. The result of the sharpness operation with the 5 × 5 blurred image (T = 0, left), the original image
(T = 1, middle), and the sharpened image (T = 5, right).

278 11. Image Manipulation with Shaders

want to blend both images. There are a number of different common kinds of
blends. In the sections below, we will sketch a few of them and show examples.
It should be straightforward for you to complete any implementations that we
do not give completely. In addition, we have included a few more blends as
chapter exercises. Figure 11.25 shows two sample images that we will use to
illustrate many of the blending operations we discuss.

Other Combinations

Complex and interesting interpolations of two images are possible because
you can use any function that takes two RGB color values and returns another
RGB color value. The function could act on entire RGB vectors or it could act
on the individual color components separately. We explore a few of these
below, and there are a few more in the exercises.

Cosine Interpolation

As an example, consider a cosine-based interpolation from [20] that looks
interesting; Figure 11.26 shows the effect. The same pixel from both images is

read, and the color components of the two pixels are com-
bined, using cosine multipliers. The cosine is applied to
each component, so components nearer one are increased.
If we take Argb as the color of the “after” image and Brgb as
the color of the “before” image, as above, then the blended
color is given by

color Argb Brgb= − ∗ () − ∗ ∗()ρ α π β πcos * cos

where ρ is a base color, basically an overall luminance, and
α and β are chosen to weight the two images (and either
ρ α β+ + cannot exceed 1 or you must clamp the result).

Sample fragment shader code for this operation is
given below. Notice that we have used values of 0.5 and
–0.25 as the base value and cosine multiplier, respectively;
in an exercise, we encourage you to experiment with these

(and we suggest that you use glman uniform slider variables to do so).

const float PI = 3.14159265;

uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

Figure 11.26. The cosine interpola-
tion of the two sample images.

279Blending Two Different Images

out vec4 fFragColor;

void main()
{
 vec3 brgb = texture(uBeforeUnit, vST).rgb;
 vec3 argb = texture(uAfterUnit,vST).rgb;
 vec3 target = 0.5 - 0.25*cos(PI*brgb) - 0.25*cos(PI*argb);
 fFragColor = vec4(target, 1.);
}

Multiply

The multiply operation does exactly as the name suggests. You read a pixel
from each image and multiply the color components together to get the final
color of the pixel. In this way, one image is being used as a subtractive filter
for the other.

Since all the color components are less than or equal to one, the final
image will likely be darker than either original. In order to account for that,
you can balance the colors by computing the luminance of the original colors,
argb, brgb, and target, and adjusting the final output color of each pixel so its
luminance is the average of the two input pixels’ colors. Some sample frag-
ment shader code for this is shown below. The result, both without and with
the color balancing, is shown in Figure 11.27.

const vec3 W = vec3(0.2125, 0.7154, 0.0721)

uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

out vec4 fFragColor;

void main()
{
 vec3 brgb = texture(uBeforeUnit, vST).rgb;
 vec3 argb = texture(uAfterUnit, vST).rgb;
 vec3 target = argb * brgb;

 float alum = dot(argb, W);
 float blum = dot(brgb, W);
 float tlum = dot(target, W);
 target = (alum + blum)/(2.*tlum);
 fFragColor = vec4(target, 1.);
}

280 11. Image Manipulation with Shaders

Darken and Lighten

The darken and lighten operations are very similar, so we discuss them together.
The darken operation on two images uses one image to darken the other. You
read a pixel from each image, and you take the smaller of the values of each
color component for each pixel. Some sample fragment shader code for this is
shown below.

The lighten operation is the converse of the darken operation above; you
read a pixel from each image, and you take the larger of the values for each
color component for each pixel. The fragment shader code for this is left as an
exercise. The result for both operations is shown in Figure 11.28.

uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

out vec4 fFragColor;

void main()

{

 vec3 brgb = texture(uBeforeUnit, vST).rgb;

 vec3 argb = texture(uAfterUnit, vST).rgb;

 vec3 target = min(argb, brgb); // alternately max(...)

 fFragColor = vec4(target, 1.);

}

Figure 11.27. The results of the multiply without the color balancing (left) and with the
color balancing (right) operations on our sample images.

281Blending Two Different Images

Image Transitions

In addition to combining two images into one, we should think about ways to
move from one image to another over time. One example of this is the set of
slide transitions in Powerpoint, but the control we have with fragment shaders
lets us go well beyond the options available there.

The basic principle is that we start with each pixel from one image, which
we will call the Before image, and we manipulate each pixel in a way that fin-
ishes with a second image, which we will call the After image. We can replace
Before pixels with After pixels in any way we like, and we will try to create
some interesting effects in doing so. In all our examples in this section, we start
with the two images of Figure 11.25, the Washington cherry blossoms and the
Hong village.

Horizontal Replace

The first transition we will consider moves the Before image off the display to
the right while simultaneously moving the After image onto the display from
the left. However, as we go through the transition, both images are displayed
in their entirety; each is simply compressed into the part of the display that
is available to it. An example of the transi-tion partly completed is shown in
Figure 11.29.

The .glib file and vertex shader source are essentially identical to the
image blending examples above, so we will focus on the fragment shader
source, shown below.

Figure 11.28. The result of the darken (left) and lighten (right) operations on our sample
images.

282 11. Image Manipulation with Shaders

uniform float uT; // 0. <= uT <= 1.
uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

out vec4 fFragColor;

void main()
{
 vec2 st = vST;
 vec3 brgb = texture(uBeforeUnit, st).rgb;
 vec3 argb = texture(uAfterUnit, st).rgb;
 vec3 color;

 if (st.x < uT)
 {
 st = vec2(st.x/uT, st.y);
 vec3 thisrgb = texture(AfterUnit, st).rgb;
 color = thisrgb;
 }
 else
 {
 st = vec2((st.x-uT)/(1.-uT), st.y);
 vec3 thatrgb = texture(BeforeUnit, st).rgb;
 color = thatrgb;
 }

 fFragColor = vec4(color, 1.);
}

Here the two halves of the if statement repre-
sent the two halves of the display: the side where the
s-component of the texture coordinate is less than
uT and the side where it is greater than uT. For each
pixel coordinate, the s-component of the appropri-
ate image (i.e., texture) is calculated by a propor-
tional computation, and the resulting texture coor-
dinate is used to select the texel to be displayed.

As uT goes from 0. to 1., the effect in this
example is to create the transition from the Before
image to the After image over that same period.
No static figure can capture the full effect; an exer-
cise invites you to create your own transition and
see it work.

Figure 11.29. The Hong village image
replacing the cherry blossom image.

283Blending Two Different Images

Dissolve

The image dissolve operation computes a weighted aver-
age of the Before and After images that determines how
much of each image’s color is used in the output image.
This weight can be given by a parameter that changes
over time, giving the effect of moving from one image
to another, as can be done for slideshows. This is shown
in Figure 11.30 and in the weighted-average fragment
shader code below. As the value of uT ranges from 0. to
1., the Before image dissolves into the After image.

uniform sampler2D uBeforeUnit, uAfterUnit;
uniform float uT;

in vec2 vST;

out vec4 fFragColor;

void main()
{

 vec3 brgb = texture(uBeforeUnit, vST).rgb;
 vec3 argb = texture(uAfterUnit, vST).rgb;
 fFragColor = vec4(mix(argb, brgb, uT), 1.);
}

Burn-Through

Another transition can be made where the After image
“burns through” the Before image; that is, where the
parts of the After image with the strongest luminance
replace the same parts of the Before image. We will
leave this exact transition for the exercises, but we
will consider an example where we approximate the
luminance by the average of the R, G, and B colors in
the After image. The effect of this transition is almost
like the After image burning through the Before image,
which is why we have chosen this name for it. In
Figure 11.31 we see this transition partway through. It
is not difficult to see some of the darker architectural
features of the village scene coming through the cher-
ries image.

Figure 11.30. A dissolve of the two
sample images with uT = 0.5.

Figure 11.31. The Hong village
image burning through the cherry
blossom image.

284 11. Image Manipulation with Shaders

Again, the .glib file and vertex shader are essentially the same as previ-
ous ones, and the fragment shader is shown below.

uniform float uT;
uniform sampler2D uBeforeUnit, uAfterUnit;

in vec2 vST;

out vec4 fFragColor;

void main()
{
 vec3 brgb = texture(uBeforeUnit, vST).rgb;
 vec3 argb = texture(uAfterUnit, vST).rgb;
 vec3 color;

 if ((argb.r + argb.g + argb.b)/3. < uT)
 color = argb;
 else
 color = brgb;

 fFragColor = vec4(color, 1.);
}

There is even less computation in this fragment shader; the average of
the After color components is calculated and compared with the parameter
uT, and the After color is used instead of the Before color when the color values
are low (that is, when the colors are dark). As the value of uT moves from 0.
to 1., more and more of the texels in the After image satisfy the condition and
become part of the final display.

Break-Through

What if we had some other way for the After image to replace the Before
image over time? What if, for example, we generated a random texture with
a Noise() function and used the values of that random texture to determine
whether the Before or After image is used for each pixel? An example of this
kind of transition is shown in Figure 11.32. This is something like the burn-
through transition, but the image that controls the pixel selection is hidden
and there is no apparent relation between this intermediate image and either
of the two original images.

Because this process uses noise operations, the .glib and vertex shader are
somewhat different from the ones we have seen before in this chapter. The .glib
file simply selects a 3D noise texture and proceeds as in previous examples.

285Blending Two Different Images

##OpenGL GLIB

Noise3D 128
Ortho -1. 1. -1. 1.

Texture 6 cherries.bmp
Texture 7 Hong.village.bmp

Vertex transition.vert
Fragment transition.frag
Program Transition uBeforeUnit 6 uAfterUnit 7

QuadXY .2 5.

The vertex shader adds an input variable, the familiar
MCposition, that holds the model coordinates for each ver-
tex in the initial quad and, when it is interpolated across
the quad, will hold the model coordinates for each pixel in
the display.

out vec3 vMCposition;
out vec2 vST;

void main()
{
 vMCposition = vec3(aVertex);
 vST = aTexCoord0.st;
 gl_Position = uModelViewProjectionMatrix * aVertex;

}

Finally, the fragment shader gets the pixel colors for each image as usual,
but then gets a noise value (the variable nv) for the pixel by querying the 3D
sampler function Noise3 at a position determined by the pixel’s model coordi-
nates. Since the original quad was 10 units across, we divide the model coordi-
nates by 10 to get the actual texture coordinate for the pixel. The octaves of the
noise value are then used to compute a numeric value whose fractional value
is used for the comparison that selects the image.

uniform float uT;
uniform sampler3D Noise3;
uniform sampler2D uBeforeUnit, uAfterUnit;

in vec3 vMCposition;
in vec2 vST;

Figure 11.32. A break-through tran-
sition with the Hong village image
replacing the cherry blossom image
under the control of a noise function.

286 11. Image Manipulation with Shaders

out vec4 fFragColor;

void main()
{
 vec3 brgb = texture(uBeforeUnit, vST).rgb;
 vec3 argb = texture(uAfterUnit, vST).rgb;
 vec3 color;

 vec4 nv = texture(Noise3, vMCposition/10.);
 float sum = nv.r + nv.g + nv.b + nv.a;
 sum = (sum - 1.) / 2.; // 0. to 1.
 sum = fract(sum);
 if (sum < uT)
 color = argb;
 else
 color = brgb;

 fFragColor = vec4(color, 1.);
}

Although we do not save it for any other use, this
numeric value sum actually provides a noise texture that
acts as the controller for the transition; if we set

 color = vec3(sum, sum, sum);

instead of setting color in the if statement, we can see that
texture, shown in Figure 11.33.

There are obviously many other ways you could con-
trol which image contributes the actual value for any pixel.
For example, almost any of the image blending operations
that involves taking part of one image and part of another
image under control of a parameter could be used to create
a transition by varying that parameter. Further develop-
ments are left for the curious reader.

Notes

These sections have discussed a number of techniques that are all rather simi-
lar, but that differ in how an image is processed on its own, is compared with
a reference image, or is combined with a different image. The techniques are

Figure 11.33. The grayscale texture
used in the break-through transition.

287Exercises

straightforward; choosing the right one to use when you want to create a par-
ticular effect takes experience and some time.

Exercises

1. Complete the work of the CMYK separation example by presenting the
four separations in their actual color, instead of in grayscale. You may
use any image you like, but the file Figure-11.3.tif is included in the
resources for the book so that you may compare your work to that in this
chapter.

2. Create an anaglyph of a familiar scene, such as part of your home or cam-
pus, by taking two digital photographs from nearby points that frame the
same portion of the middle ground of the scene, and combining them as
described in this chapter.

3. Implement image rotation by any multiple of 90° by taking the original
texture coordinates and applying trigonometric functions to them.

4. Implement image flipping or image inversion, the process where the top and
bottom of an image are reversed. Do the same for reversing the left and
right sides of an image.

5. Implement some different image warping approaches than the one we
discussed in the chapter. Consider how you might use trigonometric
functions in only one direction, exponential functions, or other kinds of
manipulations to the texture coordinates.

6. Implement selective coloring. Using the luminance value, it is simple to
convert an image to grayscale, but this can be done selectively. Get an
image for which one thing stands out in a different color (for example, an
apple on a windowsill) and make everything grayscale except that one
thing. Use color testing on each pixel to decide whether or not to change
it.

7. In the discussion of the interpolation operation, we use the equation
below to combine the two colors we are blending:

 vec3 target = vec3(0.5) – 0.25*cos(PI*brgb) -

 0.25*cos(PI*argb);

Experiment with the values used to control the blending. As a first try,
you might vary the base color b and the subtractive terms s in the equation

 vec3 target = b – s*cos(PI*brgb) - s*cos(PI * argb);

288 11. Image Manipulation with Shaders

with the relationship s = (1 − b)/2. Make b a slider uniform variable in
a GLIB file and use glman to experiment with this concept. Record and
comment on your results.

8. You can combine the manipulation techniques described in this chapter
to achieve other specific effects. For example, if you have a photograph
of a green apple but you want an image of a red apple, you can use the
technique from the chromakey to select the greens of the apple and then
use the hue shifting operation to change the green to red, while retaining
some of the character of the green apple. Pick one of your images that has
a strong area of some color, and change that color to another color.

9. Combine some of the effects from this chapter and see what you get. For
example, you can sharpen images with one technique and then make
them grayscale with another. (Does it matter in which order you do that?)
You can take the image output of one technique and use it as the input to
the next. If you push some of the techniques beyond their logical bounds
(for example, take a very large mixing factor for sharpness) you may get
some images that could effectively be taken into another technique (for
example, grayscale). See what you can do!

The next two exercises consider other examples of image warping, simi-
lar to the example shown in Figure 11.16. Like that example, these come
from [6, Chapter 16].

10. The ripple transformation displaces pixels in waves in both the x- and
y-directions. This transformation has four parameters: the period lengths
τ τx y, ≠ 0 (in pixels) and the wave magnitudes ax, ay (in pixels) in both
directions:

 x x a yx x= ′ + ′()sin 2π τ and y y a xy y= ′ + ′()sin 2π τ .
Create a shader that implements the ripple transformation, and apply
it to both a grid image and a natural image. In [4] an example uses the
parameters (in pixels) τx = 120, τy = 250, ax = 10, and ay = 15, so you might
use these.

11. The spherical transformation simulates viewing the image through a
hemispherical lens. If we assume that the lens is centered on the image,
the parameters of this transformation are the radius of the lens rmax and its
refraction index η. The functions that implement this transformation are

x x
z r r

r r

y y
z r r

x

y

= ′ −
≤
>

= ′ −
≤

tan()

tan()

max

max

max

β

β

for
for

for

0

0 ffor r r>

 max

289Exercises

with

d x x r d d

d

d z

d

x c x y x
x

x

y

= ′ − = + = −

+

= ′

, , arcsin2 2

2 2
1 1

β
ρ

yy y z r r
d

d z
c y

y

y

− = − = −

+

, , arcsinmax
2 2

2 2
1 1

β
ρ

Implement the spherical transformation and apply it to a grid image and
to a natural image. A good value for the refraction index is η = 1.8.

The next few exercises ask you to examine some operations on pairs of images
and see the results.

12. The screen operation is similar to the multiply operation, but you take the
complement of each pixel’s color components, multiply the components
together, and take the complement of the result. Implement this opera-
tion. The result will be lighter than either original; explain why. As we
did in the multiply example in the text, use a luminance computation to
balance the screen operation results with the originals.

13. The difference between two images is defined by the absolute value of the
color difference between the images’ pixels. Implement this image opera-
tion.

14.  Negation and exclusion are similar to difference, but treat the colors some-
what differently. For the negation operation, the color target is

 vec3 target = vec3(1.,1.,1.) - abs(1. - argb - brgb);

while for the exclusion operation, the color target is
 vec3 target = argb + brgb – 2.0 * argb * brgb;

Implement both the negation and the exclusion operations. The target for
the negation operation is automatically in the legal range for color, but
the target for exclusion may not be; you will probably want to clamp it
to [0., 1.].

15. Color burn and dodge are two other related operations. The color burn
operation is given by

 vec3 target = vec3(1.,1.,1.) – (1.-argb)/brgb;

Since you are dividing by the value of color components that are no larger
than one, you may get results greater than one, so you may need to clamp
this result to [0., 1.]:

 vec3 result = clamp(target, 0., 1.);

290 11. Image Manipulation with Shaders

The color dodge operation involves a divide instead of a multiply and
involves the inverse rather than the original of the second image. Again,
some clamping may be needed.

 vec3 target = argb/(vec3(1. - brgb);

Implement both the color burn and dodge operations.
16. Modify the burn-through transition to replace the RGB average value

with the computed luminance. Can you see any subjective difference
between these two transitions? Discuss why you think the difference, or
lack of difference, you see is reasonable.

17. In a variation on the break-through transition, create a systematic gray-
scale pattern texture and use that to control the selection of the image for
each pixel. Look at the selection of transitions available in Powerpoint
and identify the transitions that can be implemented by this approach.

18. In the break-through transition discussion, we said that you could actu-
ally display the noise texture used to control which image is presented
at each stage of the transi-tion. Do this. Then capture one frame part way
through the transition and compare that capture to the noise texture to
see if you can identify the texture’s action in the transition.

19. In the break-through transition discussion, Figure 11.33 shows how you
can create an output image from the noise texture, by assigning the same
value to all three color components. What if you assign nv[0] to red,
nv[1] to green, and nv[2] to blue? What do you get? Why?

20. If you declare a variable

 uniform float Timer;

then glman will fill it with a value from 0. to 1. over the course of 10 sec-
onds. Try using Timer instead of uT in the image transitions to create an
animated effect.

291

Geometry Shader
Concepts and Examples

The geometry shader is a new capability in shaders, introduced in late 2006
with the release of Shader Model 4 to take advantage of the ever-growing
capability of high-end graphics cards. It adds to the programmer’s graphics
capabilities by providing tools to expand the basic model geometry to include
more or different graphics primitives than were initially defined. Thus, geom-
etry shaders should really be called “geometry creators” or “geometry expand-
ers.” The place of the geometry shader in the graphics pipeline is shown in Fig-
ure 12.1, where “vertex processing” can include a vertex shader, tessellation
control shader, or tessellation evaluation shader.

The geometry expansion that is provided by the geometry shader has
many uses. One is in using the input geometry to create additional geome-
try, such as silhouette edges, shrunk triangles, or hedgehog plots. Another is
in managing level of detail (LOD). The LOD, shrunk triangles, and silhouette
edges examples are discussed later in this chapter, and hedgehog plots are
discussed in Chapter 15.

12

292 12. Geometry Shader Concepts and Examples

What Does the Geometry Shader Do?

If you use a geometry shader, your application or your vertex shader can gen-
erate all the familiar topology types plus a few new ones that we will cover
below:

• Points.
• Lines.
• Line strips.
• Line loops.
• Lines with adjacency.
• Line strips with adjacency.
• Triangles.
• Triangle strips.

Figure 12.1. The geometry shader in the graphics pipeline.

293What Does the Geometry Shader Do?

• Triangle fans.
• Triangles with adjacency.
• Triangle strips with adjacency.
• Quads.
• Quad strips.

Any of these topologies can be used by
the application, but geometry shaders have
a limited number of topologies that they can
accept. These are points, lines, lines with
adjacency, triangles, or triangles with adja-
cency.

Thus, the primitives used by the appli-
cation sometimes need to be internally con-
verted. You, the application programmer, don’t need to know about this. But,
you, the shader writer, do.

On the output side, the geometry shader then generates points, line strips,
or triangle strips, and feeds them on to the rest of the graphics pipeline.

There needn’t be any correlation between geometry shader input type
and geometry shader output type. Points can generate triangles, triangles
can generate triangle strips, and so on. In the silhouette example later on in
this chapter, the input is the new “triangles with adjacency” graphics primi-
tive, while the output is simply lines. This is described more visually in Fig-
ure 12.2.

Figure 12.2. The kinds of processing geometry shaders can do.

Geometry shaders are not intended
to provide a general-purpose LOD
capability because (1) they have
a limit to the number of new
vertices that they can create, and
(2) they have limited access to the
surrounding vertex information
that would be needed for, say,
subdivision surfaces. Tesselation
shaders are meant for this and are
described in the Chapter 13.

294 12. Geometry Shader Concepts and Examples

Geometry shaders can access uniform variables, just like vertex and frag-
ment shaders can. They can also access all of the standard OpenGL-defined
variables, such as the transformation matrices. Thus, you can transform the
original vertices in the vertex shader, or transform them as they are being emit-
ted from the geometry shader, whichever is more convenient.

New Adjacency Primitives

As we saw in the brief discussion above, the geometry shader language intro-
duces some new geometric primitives to support the expansion capabilities in
this shader. These primitives add adjacency information to the fundamental
primitive, so that the additional adjacent vertices can be used in the primitive
expansion. At the OpenGL API level, these are reflected in additional argu-
ments to the familiar glBegin() function:

• GL_LINES_ADJACENCY
• GL_LINE_STRIP_ADJACENCY
• GL_TRIANGLES_ADJACENCY
• GL_TRIANGLE_STRIP_ADJACENCY

These arguments reflect the new adjacency primitives that are defined
with geometry shaders. The additional primitives, and the number and mean-
ing of the vertices that are used in implementing them if no geometry shader
is used, are listed below. If you use a geometry shader, you will define what
the vertices mean by the action of your shader.

• Lines with adjacency. 4N vertices are given (where N is the number of line
segments to draw). For each set of four vertices, a line segment is drawn
between vertex 1 and vertex 2. Vertices 0 and 3 are not part of the draw-
ing, but provide adjacency information.

• Line strip with adjacency. N+3 vertices are given (where N is the number of
line segments to draw). A line segment is drawn between vertices 1 and
2, vertices 2 and 3, ..., and vertices N and N+1. Vertices 0 and N+2 are not
part of the drawing, but provide adjacency information.

• Triangles with adjacency. 6N vertices are given (where N is the number of
triangles to draw). For each triangle, vertices 0, 2, and 4 define the tri-
angle, while vertices 1, 3, and 5 tell where adjacent triangles are.

• Triangle strip with adjacency. 4+2N vertices are given (where N is the num-
ber of triangles to draw). Vertices 0, 2, 4, 6, 8, 10, ... define the triangles,
while vertices 1, 3, 5, 7, 9, 11, ... tell where adjacent triangles are.

These primitives are described graphically in Figure 12.3. This shows the
sets of input vertices and the way those vertices define the primitives for lines,

295What Does the Geometry Shader Do?

line strips, triangles, and triangle strips. In all these cases, the vertices are listed
in the order given, and are interpreted as described above. Notice that for the
line primitives, the first and last vertices are the adjacent primitives, while for
the triangle primitives, the vertices begin with one in the actual primitives and
the adjacent vertices are interleaved with the vertices in the primitive.

There is also a new GLSL built-in variable for geometry shaders. The
variable

int gl_PrimitiveIDIn

holds the number of primitives processed since the last time glBegin() was
called. Its value is zero for the first primitive after the glBegin() function,
and calling a vertex array function counts as an implied glBegin(). Geometry
shaders can set the value of gl_PrimitiveID to send a primitive number to the
fragment shader.

Layouts for Input and Output Variables

A geometry shader must be told something about its input and output vari-
ables. As you can see in Figure 12.1, a geometry shader is always preceded by a
primitive assembly step, which groups multiple vertices into a single topologi-
cal primitive before handing them to the geometry shader. Thus, on the input
side, geometry shaders need to know what that topology is. This is done with
a GLSL layout statement, which goes at the top of the code:

layout(topology) in;

Figure 12.3. The four new geometric primitives with their adjacent points: lines with adja-
cency (top left), line strip with adjacency (top right), triangles with adjacency (bottom left),
and triangle strip with adjacency (bottom right).

296 12. Geometry Shader Concepts and Examples

where topology must be one of the following:

points
lines
lines_adjacency
triangles
triangles_adjacency

Figure 12.1 also shows you that the geometry shader is followed by another
primitive assembly step. Thus, on the output side, a geometry shader needs to
tell that step what topology to use to assemble the emitted vertices. To do this,
a second layout statement is included at the top of the code:

layout(topology, max_vertices=num) out;

where topology must be one of the following:

points
line_strip
triangle_strip

and num is the maximum number of vertices that this geometry shader will
emit. All graphics cards have a maximum that num can be, usually around 1024.

New OpenGL API Functions

It is a little clumsier, but you can also choose not to use the layout identi-
fiers and instead use glProgramParameteri() calls. The OpenGL function
glProgramParameteri() sets various parameters concerning the operation of
the geometry shader. There are three primary uses of this function

1. The number of vertices the geometry shader will be emitting is given by

 glProgramParameteri(progname,

 GL_GEOMETRY_VERTICES_OUT, intvalue)

where intvalue is that number. For many of the current graphics boards
(as of this writing), invalue can be as much as 1024. (1024 sounds like a
lot, but if you are trying to smooth a pyramid into a hemisphere, it isn’t
nearly enough. This is one of the reasons that geometry shaders are not
intended for general level-of-detail work.)

297What Does the Geometry Shader Do?

2. The primitive type that is to be sent to the geometry shader is given by

 glProgramParameteri(progname,

 GL_GEOMETRY_INPUT_TYPE, intvalue)

where intvalue is a symbolic parameter for the primitive type that this
geometry shader will be receiving. This parameter can take on any one of
the five symbolic values

• GL_POINTS
• GL_LINES
• GL_LINES_ADJACENCY
• GL_TRIANGLES
• GL_TRIANGLES_ADJACENCY

The kind of graphics primitive that can be passed to the geometry
shader depends on the kind of geometry that the shader is to emit.

• If GL_LINES is chosen, the lines could actually come from GL_LINES,
GL_LINE_STRIP, or GL_LINE_LOOP.

• If GL_LINES_ADJACENCY is chosen, the lines with adjacency could
actually come from GL_LINES_ADJACENCY or GL_LINE_STRIP_

ADJACENCY.
• If GL_TRIANGLES is chosen, the triangles could actually come from

GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS, or
GL_QUAD_STRIP.

• If GL_TRIANGLES_ADJACENCY is chosen, the triangles with adja-
cency could actually come from GL_TRIANGLES_ADJACENCY or GL_
TRIANGLE_STRIP_ADJACENCY.

3. The actual primitive type that is to be emitted from the geometry shader
is given by

 glProgramParameteri(progname,

 GL_GEOMETRY_OUTPUT_TYPE, intvalue)

where intvalue is a symbolic parameter for the primitive type that the
geometry shader will be emitting. This parameter can take on the sym-
bolic values

• GL_POINTS
• GL_LINE_STRIP
• GL_TRIANGLE_STRIP

298 12. Geometry Shader Concepts and Examples

If you are using the glProgramParameteri() functions instead of the
layout identifiers, those functions must be called, and all these parameters set,
before the shaders are linked in the application.

There are some additional new GLSL functions for geometry shaders.
These are

• EmitVertex(): send the vertex you have been developing on to the sec-
ond primitive assembly step.

• EndPrimitive(): take all the vertices that have been sent to primitive
assembly and create a geometric primitive to send on for further process-
ing.

There is an issue about using the function glProgramParameteri() in a display
list, which may not be obvious but which can cause some difficulties. Consider the
following example of using a geometry shader within a display list:

GLuint dl = glGenLists(1);

glNewList(dl, GL_COMPILE);

. . .

program = glCreateProgram();

. . .

glProgramParameteriEXT(program,GL_GEOMETRY_INPUT_TYPE,

 inputGeometryType);

glProgramParameteriEXT(program,GL_GEOMETRY_OUTPUT_TYPE,

 outputGeometryType);

glProgramParameteriEXT(program,GL_GEOMETRY_VERTICES_OUT,101);

glLinkProgram(program);

glUseProgram(program);

. . .

glEndList();

These glProgramParameteri() and glUseProgram(program) function calls will
be deferred until the list is executed by the execution of glCallList(l), but the
glCreateProgram() and glLinkProgram(program) calls that are highlighted will
be executed immediately when they are processed, even though the rest of the list is
deferred. So while the parameter setting function can be placed inside a display list
definition, this is usually a bad idea, because that would defer the execution of the
function until glCallList() is called for the list you are defining. Then the geometry
shader would be called with the wrong parameters, giving incorrect results. Our ad-
vice is to defer both the setting of program parameters and the linking of the shader
program until after the display list is complete, or, more likely, create the program and
then put just the glUseProgram() and drawing commands in the display list. There is
rarely a good reason to have calls to glProgramParameteri() in a display list.

299What Does the Geometry Shader Do?

These are illustrated in the examples below, but they are pretty self-explan-
atory. You should expect to have several instances of EmitVertex() as you go
through the shader program, but you may or may not call EndPrimitive(),
depending on whether you are emitting only one primitive from the shader,
or several. There is no need to call EndPrimitive() at the end of the geometry
shader; this is implied.

New GLSL Variables and Variable Types

There are new kinds of variables that can be used in the geometry shader. If
there is a geometry shader, output variables from the vertex shader are col-
lected by the primitive assembly step and passed to the geometry shader once
enough vertices have been collected for the current primitive’s topology type.
The user-defined variables that are input to the geometry shader from the ver-
tex shader are declared in the vertex shader as out and in the geometry shader
as in. The geometry shader’s output variables, emitted to be interpolated in
the rasterizer, are declared as out.

Geometry shaders use GLSL variables just like the vertex, tessellation, and
fragment shaders. Geometry shaders can access uniform variables, just like the
other shaders, and geometry shaders can access all the uniform variables from
the application (as well as the standard OpenGL-defined variables, such as the
transformation matrices, if you are working in compatibility mode). Thus, you
can transform the original vertices in the vertex shader, or transform them as
they are being emitted from the geometry shader, whichever is more conve-
nient. However, there are several new GLSL variables to describe the data that
comes to the geometry shader from the vertex or tessellation shader. These are
described in detail in the next section.

Communication between a Vertex or Tessellation Shader
and a Geometry Shader

If there is a geometry shader, variables from the vertex or tessellation shader
are collected by a primitive assembly step and passed to the geometry shader
once enough vertices have been collected for the current topology type.

The geometry shader will take all the products of the vertex or tessel-
lation shader, from the geometric parts (gl_Position, ...) to the appearance
parts (vColor, vST, ...) and use them as parts of the primitives it assembles.
Notice that a vertex shader does not change the geometric primitive that is
defined in your application, but is free to write out values as needed for the
primitives it assembles.

300 12. Geometry Shader Concepts and Examples

If a vertex or
tessellation shader
writes variables as

Then the geometry shader
will read them as

And will write the
new variables as

gl_Position gl_PositionIn[•] gl_Position

gl_PointSize gl_PointSizeIn[•] gl_PointSize

gl_Layer gl_LayerIn[•] gl_Layer

gl_PrimitiveID gl_PrimitiveIDIn[•] gl_PrimitiveID

In the geometry shader, the dimensions indicated by [•] are given by the
variable gl_VerticesIn, although you will already know this by the type of
geometry you are inputting. The dimensions are shown in the following table.

Input Topology Type # Vertices in Arrays
GL_POINTS 1

GL_LINES 2

GL_LINES_ADJACENCY 4

GL_TRIANGLES 3

GL_TRIANGLES_ADJACENCY 6

The geometry shader can assign values to any of the GLSL variables in the right-
hand column to define the properties of the vertices it emits. When the geometry shader
calls EmitVertex(), this set of variables is copied to a slot in the shader’s prim-
itive assembly step. So when the geometry shader calls EndPrimitive(), or
when the geometry shader ends (which implies that the primitive has ended),
the vertices that have been saved in the primitive assembly step are assembled,
rasterized, and further processed in the remainder of the standard graphics
pipeline.

You may wonder why, if there is an EndPrimitive() function, we have
not mentioned a BeginPrimitive() function. In fact, there is no such func-
tion; a primitive is deemed to begin at the start of the geometry shader or
at the return from any EndPrimitive() call. There is also no need to call
EndPrimitive() at the end of the geometry shader; this is implicit in the
shader’s end, and ending any active primitive is part of the shader finishing
process. If it feels wrong to you to have no BeginPrimitive() function, it’s
simple enough to create an empty function by

 #define BeginPrimitive() ;

301Normals in Geometry Shaders

Normals in Geometry Shaders

When we discussed vertex shaders, we recognized that handling only one ver-
tex at a time made it difficult to compute normals based on cross products of
edges. If we did not have enough information to compute analytic normals
from the changed vertex geometry, we could not get the normals we needed
for the ambient-diffuse-specular lighting model.

Working with geometry shaders, we still want to use normals computed
from the original geometry whenever we can, because that is better informa-
tion than normals computed from cross products of edges. However, geometry
shaders do give us access to all the information in all the vertices of an input
triangle or triangle with adjacency, and this can let us compute cross-product
normals. In fact, it may well be worth adding a geometry shader to an applica-
tion that uses a vertex or tessellation shader but that does not support analytic
normals, simply to be able to compute the cross-product normals for lighting.

Examples

Perhaps the best way to become familiar with geometry shaders is to consider
several examples that operate in different ways. Below we have four examples,
with the first two examples showing the use of geometry shaders to create lim-
ited LOD effects, and the next two examples showing instances where geom-
etry shaders create new geometry to add extra meaning to a figure. The first
example takes four vertices (two vertices with adjacent vertices) and produces
a Bézier spline curve. The second example takes a triangle and outputs the
same triangle, but shrunk about its centroid. The third example takes a single
triangle and expands it into an octant of a sphere. The fourth example takes a
3D object and develops the silhouette of the object.

Bézier Curves

In our first geometry shader example, we will show how you can expand four
points into a Bézier curve with a variable number of line segments. The GLIB
file shown sets up the example in the same way we saw in Chapter 3, with
some additions for geometry shaders. These are

• Specifying the types of input and output geometry.
• Specifying the geometry shader to be used.
• Setting the input values for the LinesAdjacency primitive.

302 12. Geometry Shader Concepts and Examples

Note the use of the LinesAdjacency primitive. Figure 12.3 shows the
fixed-function handling of this primitive—a line from point #1 to point #2. But
with a geometry shader turned on, this primitive is really just a way of getting
four grouped points into the shader. What you do with them after that is up to
you. So, in this case, the geometry shader will turn those four points into a line
strip. The vertex and fragment shaders are not given, because they are very
simple and very standard; the vertex shader simply sets gl_Position from
the ModelViewProjection matrix and the vertex position, and the fragment
shader simply sets the vec4 fFragColor.

Bezier.glib

Vertex bezier.vert
Geometry bezier.geom
Fragment bezier.frag
Program Bezier uNum <2 10 50>

LineWidth 3.
LinesAdjacency [0. 0. 0.] [1. 1. 1.] [2. 1. 2.] [3. -1. 0.]

The geometry shader is the key point of this example. It calculates the
standard Bézier curve by using the standard basis on the four points in the
input line with adjacency and then calculates the vertices on that curve by tak-
ing evenly spaced points in the parameter space:

P t t P t t P t t P t P() = −() + −() + −() +1 3 1 3 1
3

0

2

1
2

2
3

3 .

Each point that is generated is emitted into a line strip. When the geom-
etry shader ends, there is an implicit EndPrimitive() that sends the line strip
on to the rest of the graphics pipeline.

Bezier.geom
#version 330
#extension GL_EXT_geometry_shader4: enable
uniform int uNum;

layout(lines_adjacency) in;
layout(line_strip, max_vertices=1024) out;

void main()
{
 float dt = 1. / float(uNum);
 float t = 0.;
 for(int i = 0; i <= uNum; i++, t += dt)
 {

303Examples

 float omt = 1. - t;
 float omt2 = omt * omt;
 float omt3 = omt * omt2;
 float t2 = t * t;
 float t3 = t * t2;
 vec4 xyzw = omt3 * gl_PositionIn[0] +
 3. * t * omt2 * gl_PositionIn[1] +
 3. * t2 * omt * gl_PositionIn[2] +
 t3 * gl_PositionIn[3];
 gl_Position = xyzw;
 EmitVertex();
 }
}

The result of this shader’s operation is shown in Figure 12.4
for two different values of the glman slider variable uNum. You can
see the granularity of the curve for a small number of segments
and the smoothness for a large number, as you would expect.

Note that it would have made no difference if the matrix
transformation had been made in the geometry shader with

 gl_Position = uModelViewProjectionMatrix*xyzw;

as the last statement before EmitVertex() instead of multiplying
by uModelViewProjectionMatrix in the vertex shader. The inter-
polations that are done for the Bézier curve are the same in clip-
ping space as they are in the original world space. In either case, the vertices
are multiplied by the ModelViewProjection matrix and are then ready for pro-
cessing further down the graphics pipeline.

Shrinking Triangles

An interesting question about any 3D object is how many triangles were used
to create it. In the shrinking triangles example, shown in Figure 12.5, each tri-
angle in the model is shrunken slightly about its centroid before it is displayed.
This opens up a gap between the triangles, so each one is visible. Notice that
the light on each triangle is exactly in agreement with its usual diffuse lighting,
and you can see through the gaps between the triangles to the triangles on the
back side of the model.

This geometry shader is shown below. It calculates the centroid of each
triangle, calls the ProduceVertex() function to compute the light intensity,
and moves each vertex toward the centroid, based on a uniform slider variable
uShrink:

V′ = Centroid + uShrink * (V − Centroid).

Figure 12.4. The Bézier
curve (top), with uNum = 5,
and the Bézier curve (bot-
tom), with uNum = 25.

304 12. Geometry Shader Concepts and Examples

When uShrink is 1., the vertices are unaltered. When uShrink is 0., all
vertices are moved to the centroid. Clearly, neither of these is very valuable,
so a value somewhere in between is called for. Notice that computing the cen-
troid requires knowledge of the entire triangle, and so using a vertex shader
by itself would not work.

#version 330
#extension GL_EXT_geometry_shader4: enable

layout(triangles) in;
layout(triangle_strip, max_vertices=32) out;

uniform float uShrink;

in vec3 vNormal[3];

out float gLightIntensity;

const vec3 LIGHTPOS = vec3(0., 10., 0.);

vec3 V[3];
vec3 CG;

void
ProduceVertex(int v)
{
 gLightIntensity = dot(normalize(LIGHTPOS-V[v]), vNormal[v]);
 gLightIntensity = abs(gLightIntensity);

Figure 12.5. Two geometric figures with their component triangles shrunken.

305Examples

 gl_Position = uModelViewProjectionMatrix *
 vec4(CG + uShrink * (V[v] - CG), 1.);
 EmitVertex();
}
void
main()
{
 V[0] = gl_PositionIn[0].xyz;
 V[1] = gl_PositionIn[1].xyz;
 V[2] = gl_PositionIn[2].xyz;
 CG = (V[0] + V[1] + V[2]) / 3.;
 ProduceVertex(0);
 ProduceVertex(1);
 ProduceVertex(2);
}

Sphere Subdivision

In this sphere subdivision example, we will start with a single
triangle in the first octant of the sphere whose vertices lie on the
positive coordinate axes. This triangle will be viewed as param-
eterized by two variables, which are multiplied by two adjacent
edges of the triangle to determine all the interior points of the
triangle. The triangle with this parameterization is shown in
Figure 12.6, where the coordinates shown represent the values
of the parameter pair.

This triangle is subdivided by choosing values of s and t
for appropriate points and using them to define new triangles.
A parametric form of this is given by

V s t V s V V t V V(,) () (),= + ∗ − + ∗ −0 1 0 2 0

with
s, t ≥ 0

and
s + t ≤ 1.

For example, in the triangles shown in Figure 12.7, the transition from
level 0 to level 1 is obtained by taking the three parameter pairs (0.5, 0), (0, 0.5),
and (0.5, 0.5) to define the three added points needed for the subdivision.

The vertex shader is straightforward and simply passes the aVertex
value through to gl_Position. The fragment shader takes the input color and
calculates fFragColor by multiplying the light intensity by the color, as we
saw in earlier chapters. Neither of these needs to be presented further.

Figure 12.6. A triangle
parameterized by two edges.

306 12. Geometry Shader Concepts and Examples

spheresubd.geom

The geometry shader has three parts: some header information, a function that
produces a vertex from a pair (s,t) of parameters, and the main shader func-
tion. The header information for the shader is below; this supplies the level
that is set in the GLIB file, the light intensity that the geometry shader will
develop to pass on to rasterization, and the values of the three vertices of the
triangle that we will subdivide.

#version 330

#extension GL_EXT_geometry_shader4: enable

layout(triangles) in;

layout(triangle_strip, max_vertices=1024) out;

uniform int uLevel;

out float gLightIntensity;

vec3 V0, V01, V02;

The function ProduceVertex() below produces a vertex from the param-
eters s and t in the parameterized definition of a triangle as shown above.
The position computation uses the point v, derived from the parameters and
normalized as a unit vector to give it a unit distance from the center of the
sphere, as the suface normal. That position is then multiplied by the radius of
the sphere to place it on the surface of the sphere. Thus, when the triangle is

Figure 12.7. The original triangle (left) is subdivided into four triangles (middle),
and then each of these four is subdivided again into four (right).

307Examples

subdivided, the results are triangles whose vertices are on the surface of the
sphere. The variables V0, V01, and V02 are, respectively, vertex 0, the vector
from vertex 0 to vertex 1, and the vector from vertex 0 to vertex 2, as shown in
Figure 12.7. The rest of the computations of light intensity and actual projected
position are familiar because they are the same as would be made in a vertex
shader. We saw the EmitVertex() function above; it passes the vertex on to
be collected into a geometric primitive and then to go the rest of the graphics
pipeline.

void ProduceVertex(float s, float t)
{
 const vec3 LIGHTPOS = vec3(0., 10., 0.);
 vec3 v = V0 + s*V01 + t*V02;
 v = normalize(v);
 vec3 n = v;
 vec3 TransNorm = normalize(uNormalMatrix*n);
 vec4 ECposition = uModelViewMatrix*vec4((Radius*v), 1.);
 gLightIntensity = dot(normalize(LIGHTPOS-ECposition.xyz),
 TransNorm);
 gLightIntensity = abs(gLightIntensity);
 gl_Position = uProjectionMatrix * ECposition;
 EmitVertex();
}

The main() function in the geometry shader is given below. It incre-
ments through the t and s parameters, in that order, and emits a triangle from
each set of three vertices it computes with the function above. Notice that the t
parameter is used to control the primary direction of subdivision through the
triangle, and the s parameter to control the secondary direction. The level of
subdivision that is shown in Figure 12.8 is used to set the increments in t and
the number of the t increment is used to set the increment in s. This nested
incrementing is a bit obscure when you first look at it, but it’s soon understood
if you look carefully.

void
main()
{
 V0 = gl_PositionIn[0].xyz;
 V01 = (gl_PositionIn[1] - gl_PositionIn[0]).xyz;
 V02 = (gl_PositionIn[2] - gl_PositionIn[0]).xyz;

 int numLayers = 1 << uLevel;
 float dt = 1. / float(numLayers);

308 12. Geometry Shader Concepts and Examples

 float t_top = 1.;
 float t_bot = 1. - dt;
 for(int it = 0; it < numLayers; it++, t_top = t_bot,
 t_bot -= dt)
 {
 float smax_top = 1. - t_top;
 float smax_bot = 1. - t_bot;

 int nums = it + 1;
 float ds_top = smax_top / float(nums - 1);
 float ds_bot = smax_bot / float(nums);

 float s_top = 0.;
 float s_bot = 0.;

 for(int is = 0; is < nums; is++,
 s_top += ds_top, s_bot += ds_bot)
 {
 ProduceVertex(s_bot, t_bot);
 ProduceVertex(s_top, t_top);
 }

 ProduceVertex(s_bot, t_bot);
 EndPrimitive();

 }
}

The results of this shader, when you start with two four-sided pyra-
mids, are shown in Figure 12.8. The figure shows the resulting approxima-
tions for several different subdivision levels. Level 3 is a reasonable approxi-
mation of a sphere, and it would not take many more levels to make this
sphere look very good indeed. The fact that this expansion can include a
varying number of subdivisions makes it a good candidate for LOD opera-
tions and the like.

However, there is one subtle problem with using geometry shaders for
general LOD work. For speed, emitted vertices are meant to be carried in mem-
ory on the graphics chip. Thus, there is a limited amount of space to hold them.
As of this writing, most graphics cards limit geometry shaders to 1024 emitted
vertices. This is good for line LOD, such as the Bézier curve, but surface LOD,
such as the sphere, consumes those 1024 very quickly. The tessellation shader
is probably a better way to do actual surface LOD.

309Examples

3D Object Silhouettes

A clever way to detect an edge in a 3D silhouette is that a silhou-
ette edge is shared by adjacent triangles, with one facing toward
the eye and the other facing away from the eye. You can deter-
mine the way each triangle faces by calculating the dot product
of the triangle surface normal and the eye vector and testing if its
sign is positive or negative. In the triangle with adjacency shown
in Figure 12.9, this test is applied to the central triangle and each
of the triangles adjacent to it. One such pair of triangles is high-
lighted in the figure.

Figure 12.9. The structure
of triangles that gives a line
segment of the silhouette.

Figure 12.8. A single triangle in the first octant (level = 0) expanded to approximate section
of a sphere in that octant, with level = 1 at the top right, level = 2 at the bottom left, and level
= 3 at the bottom right.

310 12. Geometry Shader Concepts and Examples

The input and output geometry types for this geometry shader are tri-
angles with adjancey and line strip, respectively. The glman ObjAdj command
is similar to the Obj command, but it parses the original Obj file to determine
adjacency information, so that triangle-with-adjacency primitives are avail-
able to the geometry shader.

As before, the vertex and fragment shader files are omitted. The vertex
shader only performs the ModelViewProjection transformation, and the frag-
ment shader only sets the pixel color; these are completely routine.

The geometry shader works by taking a triangle with adjacency and cal-
culating the face normal to each of the four triangles, making sure that each
normal faces correctly with the standard triangle conventions. The vertex
shader has already placed the vertices into 3D eye space, so the normals can
be compared by simply comparing their z components. If there is a sign dif-
ference between the z component of the normal of the center triangle and the
z component of the normal of an adjacent triangle, then their common edge
is drawn by emitting two vertices and ending the primitive. Notice that each
edge of the middle triangle is checked because, in principle, the silhouette
could include any of them. The result of this shader is shown in Figure 12.10.

Geometry Shader silh.geom
#version 330
#extension GL_EXT_geometry_shader4: enable

Figure 12.10. Three views of the bunny, with minimal lighting from below, showing the silhouette edges.

311Examples

layout(triangles_adjacency) in;
layout(line_strip, max_vertices=32) out;

void main()
{
 vec3 V0 = gl_PositionIn[0].xyz;
 vec3 V1 = gl_PositionIn[1].xyz;
 vec3 V2 = gl_PositionIn[2].xyz;
 vec3 V3 = gl_PositionIn[3].xyz;
 vec3 V4 = gl_PositionIn[4].xyz;
 vec3 V5 = gl_PositionIn[5].xyz;

 vec3 N042 = cross(V4-V0, V2-V0);
 vec3 N021 = cross(V2-V0, V1-V0);
 vec3 N243 = cross(V4-V2, V3-V2);
 vec3 N405 = cross(V0-V4, V5-V4);

// rashly assume all 4 normals are really meant to be
// within 90 degrees of each other:

 if(dot(N042, N021) < 0.)
 N021 = -N021;

 if(dot(N042, N243) < 0.)
 N243 = -N243;

 if(dot(N042, N405) < 0.)
 N405 = -N405;

 // look for a silhouette edge between triangles 042 and
 // 021:

 if(N042.z * N021.z < 0.)
 {
 gl_Position = uProjectionMatrix* vec4(V0, 1.);
 EmitVertex();
 gl_Position = uProjectionMatrix* vec4(V2, 1.);
 EmitVertex();
 EndPrimitive();
 }

 // look for a silhouette edge between triangles 042 and
 // 243:

 if(N042.z * N243.z < 0.)
 {
 gl_Position= uProjectionMatrix* vec4(V2, 1.);
 EmitVertex();

312 12. Geometry Shader Concepts and Examples

 gl_Position= uProjectionMatrix* vec4(V4, 1.);
 EmitVertex();
 EndPrimitive();
 }

 // look for a silhouette edge between triangles 042 and
 // 405:

 if(N042.z * N405.z < 0.)
 {
 gl_Position= uProjectionMatrix* vec4(V4, 1.);
 EmitVertex();
 gl_Position= uProjectionMatrix* vec4(V0, 1.);
 EmitVertex();
 EndPrimitive();
 }
}

Exercises

1. Implement the silhouette for new geometry as specified by your instruc-
tor, and implement variations for both, such as

a. Vary the color of the silhouette edge to reflect the direction of the edge.

b. Vary the color of the silhouette lines to reflect the primitive ID of each
segment.

2. Create a surface of various degrees of smoothness from four 3D vertices
using bilinear interpolations. Use GL_LINES_ADJACENCY to input the ver-
tices together. For the collection of vertices, break them up into an arbi-
trary number of triangles like this:

 using the bilinear equation

Q s t s t Q s t Q s tQ stQ s t, , , .() = −() −() + −() + −() + ≤ ≤1 1 1 1 0 10 1 2 3

313Exercises

So instead of drawing a non-planar quad as two creased triangles
(Figure 12.11 (left)), it would be drawn as a smooth bilinear surface
(Figure 12.11 (right)).

Notice that you can also interpolate vertex colors this way. This
is useful in data visualization, where we affectionately call this object a
“superquad.”

3. In Figure 12.10 we showed the silhouette edges of the Stanford bunny.
Take another .obj file that describes an object with adjacency and imple-
ment the silhouette edges of that object. What happens to the silhouette
edges as you move the object around?

4. In the Chapter 15 we describe the hedgehog plot application of geometry
shaders. Work through this example and apply it to an object of your
choice. See if you can create a more realistic version of hair (color, light-
ing, shading) than the very simple one given there.

Figure 12.11. Two images created from four vertices.

This page intentionally left blankThis page intentionally left blank

315

Tessellation Shaders

Tessellation in computer graphics is a process that divides a surface into a
smoother mesh of triangles. An example of this kind of tessellation is shown
in Figure 13.1.

What Are Tessellation Shaders?

Tessellation shaders are one of the stages available in OpenGL to create the
geometry for a scene. New with OpenGL 4.0, they interpolate geometry to cre-
ate additional geometry that can

13

316 13. Tessellation Shaders

• Let you perform adaptive subdivision based on a variety of criteria such
as size or curvature,

• Let you provide coarser models that can be refined in the GPU, giving
you a kind of geometric compression,

• Let you apply detailed displacement maps without supplying equally
detailed geometry,

• Let you adapt visual quality to the required level of detail,

• Let you create smoother silhouettes, or

• Let you perform skinning more easily.

Overall this lets you increase the quality of your final images. So why not
just add more geometric detail right in your application program? The best

answer is that tessellation shaders have access
to all the information in the graphics pipe-
line, and thus can adapt to the display situa-
tion. Tessellation shaders are at their very best
when they choose tessellation parameters, not
statically but dynamically, based on the current
transformations, curvatures, screen coverage,
etc.

How does the tessellation shader fit into
our overall shader world? The tessellation
stage is applied between the vertex shader
(Chapter 7) and the next shader stage in the
pipeline, which could be either the geometry
shader (Chapter 12) or the fragment shader
(Chapter 8). This makes intuitive sense, because
the vertex shader modifies vertices individu-
ally with no reference to the primitives they lie
in. The tessellation shader amplifies a single
primitive, and the geometry shader can pro-
vide additional primitives based on the original
primitive. The GLSL view of the graphics pipe-

line is shown here in Figure 13.2 with the tessellation stage highlighted.
When we say “tessellation shader,” we generally mean both the tessella-

tion control shader (TCS) and the tessellation evaluation shader (TES), unless
we say otherwise.

Figure 13.1. A polygon-interpolating mesh tes-
sellation from a GLSL shader.

317What Are Tessellation Shaders?

Tessellation Shaders or Geometry Shaders?

Both geometry shaders and tessellation shaders are capable of creating new
geometry from existing geometry, and both have uses in giving you level-of-
detail support, so you might be confused about when to use each type. While
their capabilities are in some ways similar, there are distinct differences. A
tessellation shader gives you more geometry, but all the new geometry is of
the same sort as you started with—you can get more segments for a line, more
triangles for a triangular patch, or more isolines or quads for a quad patch, but
you always get the same geometry. You should use a tessellation shader when
you need to generate many new vertices and one of the tessellation topologies
will suit your needs, or if your required patch input involves many (more than
six1) vertices.

On the other hand, a geometry shader gives some different capabilities.
You must use a geometry shader when you need to convert to different geom-
etry topologies, such as presented in the silhouette and hedgehog shaders (tri-

Figure 13.2. The full shader pipeline showing the place of the tessellation shaders.

1. Why six? The input to a geometry shader can have as many as six vertices when you use the
triangles-with-adjacency topology.

318 13. Tessellation Shaders

angles → lines) or the explosion shader (triangles → points), or if you need
some sort of geometry processing to come after the tessellation shader (such
as the shrink shader you saw earlier, which we will use here to show what the
tessellation stages are actually doing).

Finally, the fact that geometry shaders follow tessellation shaders in the
vertex pipeline creates a limitation on using tessellation shaders. A tessellation
shader can only emit line segments and triangles; it cannot emit any geometry
with adjacency. If you need to create new geometry in a geometry shader and
this geometry requires adjacency, the geometry shader cannot follow a tessel-
lation shader and so you cannot use tessellation shaders.

Tessellation Shader Concepts

Tessellation shaders are conceptually simple but, like textures, require quite a
bit of detail to set up.

Input to the tessellation shaders uses a new graphics primitive: the patch.
This is specified in your OpenGL program with

glBegin(GL_PATCHES);
 glVertex3f(. . .);
 glVertex3f(. . .);
glEnd();

Even if you are using vertex arrays or buffers instead of glBegin–glEnd,
the topology type is still GL_PATCHES. There is no implied order in the list of
vertices. The meaning of the order is up to you. You just need to pick a consis-
tent convention for the type of geometry you are tessellating. As we will see in
some later examples, the vertex values need not even be actual coordinates;
we can even use them as geometric parameters. You also need to set up some
data that describes the patch. The function

glPatchParameteri(GL_PATCH_VERTICES, num);

defines the number of vertices in the patch. Like other OpenGL topologies,
you don’t need a glEnd–glBegin to start a new primitive. Just keep listing
vertices. In this case, one patch is complete after num vertices, and a new one
gets started.

As you see in Figure 13.2, there are two tessellation shader types that
work together. The first is the tessellation control shader (TCS). Its function is
to prepare the final control points and to determine how much to tessellate.
It is invoked once for each output control point and takes as input num trans-

319Tessellation Shader Concepts

formed patch vertices from the vertex shaders. It gets to see the entire set of
patch data. It transforms the input coordinates to a regular surface representa-
tion, and computes the required tessellation level based on distance to the eye,
screen space spanning, hull curvature, displacement roughness, or whatever
criteria make most sense for your application.

The TCS takes as input an array gl_in[] of structures, one structure per
control vertex, that contain

vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

as well as these single variables:

• int gl_InvocationID, which tells you which output vertex you are work-
ing on. This must be the value used to index a write into the gl_out[]
array. You can read all other gl_out array values, but you can only write
your own.

• int gl_PatchVerticesIn is the number of vertices in each patch and the
dimension of gl_in[]

• int gl_PrimitiveID is the number of primitives since the last glBegin()
(the first one is #0)

The TCS must let the pipeline know how many final control points will be
output.2 This is done with the layout qualifier as follows:

 layout(vertices = N) out;

The output from the TCS includes gl_out[], an array of structures that
is the same size as the N that is specified by the layout qualifier. Each structure
contains

vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

as well as the additional output variables

• patch out float gl_TessLevelOuter[4], an array containing up to four
levels of tessellation at the outer edges, and

 2. The number of output control points has to do with the geometric equations you are using for this
patch. It has nothing to do with how many output primitives will eventually be produced. That
specification is called setting the “tessellation levels,” and is coming up in a moment.

320 13. Tessellation Shaders

• patch out float gl_TessLevelInner[2], an array containing up to two
levels of tessellation at the inner edges.

The outer and inner tessellation levels define the number of subdivisions for
the perimeter and the interior of the input primitive, respectively, and also
control the output of the TES. A TCS can also access the output data for its
processing. You can also have other output variables from a TCS. User-defined
variables defined per-vertex are qualified as “out,” while user-defined vari-
ables defined per-patch are qualified as “patch out.”

TCS instances run mostly independently, with undefined relative execu-
tion order. The built-in barrier() function provides some control over TCS
relative execution order by causing all instances of TCSs to wait. This allows
synchronization points where no TCS shader invocation will continue until all
TCS shader invocations have reached the barrier. This is important because an
instance of a TCS can read variables from other TCS instances that might not
yet have been written. The barrier() function may only be called inside the
main entry point of the TCS and may not be called in potentially divergent
flow control. In particular, barrier() may not be called inside a switch state-
ment, in either sub-statement of an if statement, inside a do, for, or while loop,
or at any point after a return statement in the function main().

The tessellation patch generator (TPG) is not a user-programmable shader
stage, but a new fixed-function pipeline stage; you can’t change its operation
except by setting parameters. It is invoked one time per patch. It looks at the
tessellation levels set by the TCS and creates the right number of tessellated tri-
angles, quads, or lines, and outputs their positions as parametric coordinates
in semi-regular barycentric (u,v,w) coordinates.

The second tessellation shader type is the tessellation evaluation shader
(TES). It reads the (u,v,w) coordinates from the TPG and the output vertex coor-
dinates from the TCS, and then determines output (x,y,z) coordinates, interpo-
lates any attributes, and applies any displacements. There is one instance of a
TES invoked per output vertex being generated. If you are using the TES but
no TCS, your main program needs to set up some of the data that the TCS
would normally provide. This is done with the functions

glPatchParameterfv(GL_DEFAULT_OUTER_LEVEL, float [4]);
glPatchParameterfv(GL_DEFAULT_INNER_LEVEL, float [2]);

that define the outer and inner levels of divisions for the interpolations, as we
saw in the discussion of the TCS. The outer and inner levels define the number
of subdivisions for the perimeter and the interior of the input polygon, respec-
tively.

321Tessellation Shader Concepts

The interpolation pattern generated by the TPG is defined by a layout
qualifier in the TES.3 When used for defining the TES production, it has the
form

layout(
triangles
quads
isolines

,
equal_spacing

fract

iional_even_spacing
fractional_odd_spacing

,
ccw
cw

, point_mode) in;

The first parameter specifies the tessellation pattern: should the tessellation
primitive generator subdivide a triangle into smaller triangles, a quad into
triangles, or a quad into a collection of line segments, respectively? The second
parameter specifies the spacing of the segments, the third the orientation of
the triangles (if any) that are produced; specifying point_mode tells the TES is
to produce a point at each output vertex rather than triangles or lines. Equal
spacing and counterclockwise orientation are the defaults.

A typical invocation of this layout line might be
layout(triangles, equal_spacing, ccw) in;

The TES has access to an input variable gl_in[], which is identical to the
gl_out[] from the TCS, as well as the single variables

in int gl_PatchVerticesIn;
in int gl_PrimitiveID;
in vec3 gl_TessCoord;

It writes the information for the one vertex it is computing to the three output
variables

vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistance[];

The write to gl_Position is required. The write to the other two is optional.
In addition to the built-in variables mentioned, both the TCS and the TES

can take user-defined variables. User-defined variables that are defined per-
vertex are qualified as out or in, while user-defined variables defined per-
patch are qualified as patch out or patch in.

3. This seems confusing, having the TES essentially “pass information upstream” to the TPG. Don’t let
it worry you. The shader compile and linking process takes care of this.

322 13. Tessellation Shaders

Outer and Inner Division Levels

While we have seen that the outer and inner division
levels represent the number of divisions of the boundary
and interior of a primitive, respectively, we should look at
this in a little more detail. The outer level is set by a four-
element floating point array, while the inner level is set
by a two-element floating point array. These are han-
dled differently by the output interpolation patterns as
follows.4

For the quad output interpolation pattern, the divi-
sion levels are shown in Figure 13.3. The key point in
the figure is the sequence in which the outer level (OL0,
OL1, OL2, OL3) and the inner level (IL0, IL1) elements are
applied.

The triangle output inter-
polation is specified in terms of barycentric coordi-
nates. This coordinate system gives a unique repre-
sentation for any point in terms of three coordinates
(u,v,w), as described in Figure 13.4.

For the triangles interpolation pattern, the
division levels are shown in
Figure 13.5. The key point in the
figure is the sequence in which
the outer level (OL0, OL1, OL2) and
the inner level (IL0) elements are
applied. (The components that are not used are not shown
in the vectors and need not be set.)

For the isolines pattern, the division levels are shown
in Figure 13.6. The outer level has only two values (OL0,
OL1), and the inner level is not used at all. Again, the com-
ponents that are not used need not be set. If OL0 is set
to 1, only a single curve will be drawn. Essentially, OL0
determines how many isolines are to be drawn, while OL1
determines how many components are to be in each iso-
line.

Figure 13.3. The division levels for
the quad output interpolation.

Figure 13.4. Barycentric
coordinates in a triangle.

Figure 13.5. The division levels for
the triangles output interpolation.

4. In the interest of not making you run away screaming from excruciating detail, we discuss what the
tessellation levels mean only in very general terms. It is easiest to get a feel for what this actually
means by experimenting with the example code. The full (excruciating) detail can be found in the
OpenGL specification at http://opengl.org → Documentation → Specifications → OpenGL 4.2 core
specification, in the tessellation section. Don’t say we didn’t warn you.

323Examples

Issues in Setting Tessellation Levels

GLSL will let you set any tessellation levels you like for the inner and outer
levels of your patches, but you need to pay attention to your overall scene
as you set these levels. One reason is aesthetic—you want to set your levels
high enough to achieve a satisfactory image, but no higher. There is a more
important reason, however. If you have two pieces of geometry with patches
that share an edge, using different outer tessellation levels for the edge in the
different patches will clearly lead to cracks where the edges of the patches
meet. Keeping the tessellation levels the same is only a necessary condition, of
course; you must also ensure that the computations on the patches in the TES
are the same so that the edges align.

Examples

In this section we’ll look at four examples: one with output using an isolines
pattern, one with output using a quads pattern, one with output using a tri-
angles pattern, and one that implements point-normal (PN) triangles. These
will show you how many of the tessellation shader operations fit together and
should help you get started on your own work. Each example is set up to work
with glman, so a .glib file is presented along with the shader files; it should be
straightforward to see how to pass the same information to the shaders from
an application.

Figure 13.6. The division levels for the isolines output interpolation.

324 13. Tessellation Shaders

Isolines

The first example uses tessellation shaders with isolines to create a familiar
Bézier cubic curve with four control points, as shown in Figure 13.7. This curve
is given by the equation

 P(u) = (1 − u)3P0 + 3u(1 − u)2P1 + 3u2(1 − u)P2 + u3P3, (1)

where u is the single curve parameter and the polynomials (1 − u)3, 3u(1 − u)2,
3u2(1 − u), and u3 are the standard Bernstein basis functions for Bézier curves.

The tessellation control shader (TCS)
figures out how much to tessellate the curve
based on screen area, curvature, or other
factors. The tessellation primitive genera-
tor (TPG) generates u (or [u,v,w]) values for
as many subdivisions as the TCS asked for,
and the tessellation evaluation shader com-
putes the (x,y,z) coordinates based on the
TPG’s u values, using the equation derived
by expanding (1):

P(u) = u3(−P0 + 3P1 − 3P2 + P3) + u2(3P0 − 6P1 + 3P2) + u(−3P0 + 3P1) + P0. (2)

The final result is to be the familiar curve shown in Figure 13.8.
To show how to generate the tessellated figure

from the given control points, we will show several
pieces of code: the first is some code you would place
in your main program, the second is the .glib file you
would use to set up this example through glman, the
third is the TCS shader file, and the fourth is the TES
shader file.

Some code you might place in your main program is

 glPatchParameteri(GL_PATCH_VERTICES, 4);

 glBegin(GL_PATCHES);
 glVertex3f(x0, y0, z0);
 glVertex3f(x1, y1, z1);
 glVertex3f(x2, y2, z2);
 glVertex3f(x3, y3, z3);
 glEnd();5

Figure 13.7. A Bezier curve with four control points.

Figure 13.8. The Bézier curve with its
positions at uniform values of u.

5. You can also use GL_PATCHES with vertex arrays and vertex buffer objects.

325Examples

Alternately, if you are developing your shaders through glman, you could use
the .glib file below, which uses specific values for the four patch vertices.

 ##OpenGL GLIB
 Perspective 70
 LookAt 0 0 3 0 0 0 0 1 0

 Vertex beziercurve.vert
 TessControl beziercurve.tcs
 TessEvaluation beziercurve.tes
 Fragment beziercurve.frag
 Program BezierCurve uOuter1 <3. 5. 50.>

 Color 1. 1. 0.

 NumPatchVertices 4
 glBegin gl_patches
 glVertex 0. 0. 0.
 glVertex 1. 1. 1.
 glVertex 2. 1. 0.
 glVertex 3. 0. 1.
 glend

The vertex and fragment shaders would be the minimal shaders you have
seen in the chapters on these shaders, and the TCS shader beziercurve.tcs
could be

 #version 400
 #extension GL_ARB_tessellation_shader: enable

 uniform float uOuter1;

 layout(vertices = 4) out; // same size as input,
 // (but doesn’t have to be)

 void main()
 {
 gl_out[gl_InvocationID].gl_Position =
 gl_in[gl_InvocationID].gl_Position;

 gl_TessLevelOuter[0] = 1.;
 gl_TessLevelOuter[1] = uOuter1;
 }

A new detail in this code is the gl_InvocationId value. This value is the
output vertex number that corresponds to this instance of the TCS shader. In

326 13. Tessellation Shaders

this case, the components of the gl_in array are simply copied to the gl_out
array, where they will serve as inputs to the TES shader. The other new detail
is the gl_TessLevelOuter[] array that is to set the tessellation levels for the
outer level in the TES.

Finally, we see the TES shader beziercurve.tes that uses the isolines
pattern for its layout. Notice that the gl_Position value is computed with
vector arithmetic since the p[0-3] parameters from the TCS are all vec4 val-
ues. And, because vec4 arithmetic is being used, this code will also work for
rational Bézier cubic curves.

In this example, the variable gl_TessCoord is the (u,v,w) value of the ver-
tex being processed by the TES, and the value of the curve parameter u is
derived from the x-coordinate of this variable. Other ways of developing the
single parameter u are also possible.

 #version 400
 #extension GL_ARB_tessellation_shader: enable

 layout(isolines, equal_spacing) in;

 void main()
 {
 vec4 p0 = gl_in[0].gl_Position;
 vec4 p1 = gl_in[1].gl_Position;
 vec4 p2 = gl_in[2].gl_Position;
 vec4 p3 = gl_in[3].gl_Position;

 float u = gl_TessCoord.x;

 // the basis functions:
 float b0 = (1.-u) * (1.-u) * (1.-u);
 float b1 = 3. * u * (1.-u) * (1.-u);
 float b2 = 3. * u * u * (1.-u);
 float b3 = u * u * u;

 gl_Position = b0*p0 + b1*p1 + b2*p2 + b3*p3;
 }

We assign the intermediate p[0-3] variables here to make the code more
readable. In general, the GLSL compiler will optimize this away rather than
creating temporary variables it doesn’t really need. Similarly, we can safely
write out the b[0-3] variables in full detail for readability, and the GLSL com-
piler will assemble like terms rather than re-compute them.

Figure 13.9 shows the coordinate axes as well as two examples of the
curve generated by these shaders. In the left image, you can easily see the five

327Examples

segments that correspond to that value for outer1; in the right image you can-
not see the individual segments because of the much larger outer1 value.

We will see a little more about the isolines layout when we work through
the Bézier surface example in the next section.

Bézier Surface

A bicubic Bézier surface patch is defined by 16 control points P i jij 0 3≤ ≤{ }, .
The patch is a function of two parameters, u and v, with basis functions given
by the products of the basis functions for Bézier curves, and is given by

P u v u u u u u u

P P P P
P P P

,() = −() −() −()

1 3 1 3 1
3 2 2 3

00 01 02 03

10 11 12 PP
P P P P
P P P P

v

v v
v

13

20 21 22 23

30 31 32 33

3

2

1

3 1
3

−()
−()

22

3

1−()

v
v

.

An example of a Bézier patch is shown in Figure 13.10. This shows the
familiar way that the surface responds to the position of the control points and
how the surface can be said to interpolate these points. Thus we can consider
that a tessellation shader could interpolate the quad defined by P00, P03, P33,
and P30 with the interpolation defined by the other control points.

The code components for this example are similar to those for the Bézier
curve, but involve more control points and a more complex set of outer and
inner subdivision parameters. If you begin this from an OpenGL applica-
tion, you might have code like this in the application. The order of the control
points is unimportant, but must be consistent with your uses in the TCS and
TES; pick a convention yourself and stick to it!

Figure 13.9. Two Bézier curves with outer1 = 5 (left) and outer1 = 50 (right).

328 13. Tessellation Shaders

glPatchParameteri(GL_PATCH_VERTICES, 16);

 glBegin(GL_PATCHES);

 glVertex3f(x00, y00, z00);

 glVertex3f(x10, y10, z10);

 glVertex3f(x20, y20, z20);

 glVertex3f(x30, y30, z30);

 glVertex3f(x01, y01, z01);

 glVertex3f(x11, y11, z11);

 glVertex3f(x21, y21, z21);

 glVertex3f(x31, y31, z31);

 glVertex3f(x02, y02, z02);

 glVertex3f(x12, y12, z12);

 glVertex3f(x22, y22, z22);

 glVertex3f(x32, y32, z32);

 glVertex3f(x03, y03, z03);

 glVertex3f(x13, y13, z13);

 glVertex3f(x23, y23, z23);

 glVertex3f(x33, y33, z33);

 glEnd();

Alternately, if we are developing the tessellation shaders using glman, we
could use a .glib file like the one below to set this up. Note that this sets up a

Figure 13.10. A bicubic Bézier patch with 16 control points.

329Examples

uniform slider variable uShrink that would be used by a geometry shader to
produce shrunken triangles to show the tessellation structure. Again, we use
specific values for the 16 control points.

##OpenGL GLIB
Perspective 70

Vertex beziersurface.vert
TessControl beziersurface.tcs
TessEvaluation beziersurface.tes
Geometry beziersurface.geom
Fragment beziersurface.frag
Program BezierSurface \
 uOuter02 <1. 10. 50.> \
 uOuter13 <1. 10. 50.> \
 uInner0 <1. 10. 50.> \
 uInner1 <1. 10. 50.> \
 uShrink <0. 1. 1.> \
 uLightX <-10. 0. 10.> \
 uLightY <-10. 10. 10.> \
 uLightZ <-10. 10. 10.>

Color 1. 1. 0.

NumPatchVertices 16
glBegin gl_patches
 glVertex 0. 2. 0.
 glVertex 1. 1. 0.
 glVertex 2. 1. 0.
 glVertex 3. 2. 0.

 glVertex 0. 1. 1.
 glVertex 1. -2. 1.
 glVertex 2. 1. 1.
 glVertex 3. 0. 1.

 glVertex 0. 0. 2.
 glVertex 1. 1. 2.
 glVertex 2. 0. 2.
 glVertex 3. -1. 2.

 glVertex 0. 0. 3.
 glVertex 1. 1. 3.
 glVertex 2. -1. 3.
 glVertex 3. -1. 3.
glEnd

330 13. Tessellation Shaders

The TCS shader beziersurface.tcs is similar to the TCS shader in the
Bézier curve example. In the TCS shader for the patch we pick up the values of
the uniform slider variables uOuter* and uInner* and use them to set up the
standard variables gl_TessLevelOuter[] and gl_TessLevelInner[].

#version 400
#extension GL_ARB_tessellation_shader : enable

uniform float uOuter02, uOuter13, uInner0, uInner1;

layout(vertices = 16) out;

void main()
{
 gl_out[gl_InvocationID].gl_Position =
 gl_in[gl_InvocationID].gl_Position;

 gl_TessLevelOuter[0] = gl_TessLevelOuter[2] = uOuter02;
 gl_TessLevelOuter[1] = gl_TesslevelOuter[3] = uOuter13;
 gl_TessLevelInner[0] = uInner0;
 gl_TessLevelInner[1] = uInner1;
}

Figure 13.11 reminds us of the meaning of the outer and inner tessella-
tion levels for a quad interpolation pattern. In this TCS, the variables uOuter*
and uInner* are copied to the elements of gl_TessLevelOuter[] and gl_
TessLevelInner[] so that opposite sides of the exterior and the interior of the
patch have the same value. This need not be the case, and an exercise suggests
that you experiment with the tessellation levels.

The TES beziersurface.tes is similar to that for the Bézier curve, but
only because it involves more control points and more
basis functions. The most important thing to note in this
shader is the parameters to the layout qualifier. While we
used an isolines pattern in the curve example, here we
use a quads pattern and must also specify the orientation
of each quad. When you see the output in Figure 13.12,
you will see that the tessellation is a collection of quads,
each of which is actually being drawn as two triangles. So
specifying the quads pattern does not give you quads; it
gives you triangles based on a quad interpolation pattern.

Finally, this TES not only outputs the required gl_
Position but also computes the partial derivatives of
the surface in both the u and v directions and, by a cross
product, the out variable normal—the normal to the sur-

Figure 13.11. The outer and inner
levels for a quad interpolation pattern.

331Examples

face at that position. This normal is then used to produce the light intensity for
the shaded patch shown in the figures.

#version 400
#extension GL_ARB_tessellation_shader : enable

layout(quads, equal_spacing, ccw) in;

out vec3 teNormal;

void main()
{
 vec3 p00 = gl_in[0].gl_Position;
 vec3 p10 = gl_in[1].gl_Position;
 vec3 p20 = gl_in[2].gl_Position;
 vec3 p30 = gl_in[3].gl_Position;
 vec3 p01 = gl_in[4].gl_Position;
 vec3 p11 = gl_in[5].gl_Position;
 vec3 p21 = gl_in[6].gl_Position;
 vec3 p31 = gl_in[7].gl_Position;
 vec3 p02 = gl_in[8].gl_Position;
 vec3 p12 = gl_in[9].gl_Position;
 vec3 p22 = gl_in[10].gl_Position;
 vec3 p32 = gl_in[11].gl_Position;
 vec3 p03 = gl_in[12].gl_Position;
 vec3 p13 = gl_in[13].gl_Position;
 vec3 p23 = gl_in[14].gl_Position;
 vec3 p33 = gl_in[15].gl_Position;

 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;

 // the basis functions and their derivatives:

 float bu0 = (1.-u) * (1.-u) * (1.-u);
 float bu1 = 3. * u * (1.-u) * (1.-u);
 float bu2 = 3. * u * u * (1.-u);
 float bu3 = u * u * u;

 float dbu0 = -3. * (1.-u) * (1.-u);
 float dbu1 = 3. * (1.-u) * (1.-3.*u);
 float dbu2 = 3. * u * (2.-3.*u);
 float dbu3 = 3. * u * u;

 float bv0 = (1.-v) * (1.-v) * (1.-v);
 float bv1 = 3. * v * (1.-v) * (1.-v);
 float bv2 = 3. * v * v * (1.-v);
 float bv3 = v * v * v;

332 13. Tessellation Shaders

 float dbv0 = -3. * (1.-v) * (1.-v);
 float dbv1 = 3. * (1.-v) * (1.-3.*v);
 float dbv2 = 3. * v * (2.-3.*v);
 float dbv3 = 3. * v * v;

 // finally we get to compute something

 gl_Position =
 bu0 * (bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03)
 + bu1 * (bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13)
 + bu2 * (bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23)
 + bu3 * (bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33);

 vec4 dpdu =
 dbu0 * (bv0*p00 + bv1*p01 + bv2*p02 + bv3*p03)
 + dbu1 * (bv0*p10 + bv1*p11 + bv2*p12 + bv3*p13)
 + dbu2 * (bv0*p20 + bv1*p21 + bv2*p22 + bv3*p23)
 + dbu3 * (bv0*p30 + bv1*p31 + bv2*p32 + bv3*p33);

 vec4 dpdv =
 bu0 * (dbv0*p00 + dbv1*p01 + dbv2*p02 + dbv3*p03)
 + bu1 * (dbv0*p10 + dbv1*p11 + dbv2*p12 + dbv3*p13)
 + bu2 * (dbv0*p20 + dbv1*p21 + dbv2*p22 + dbv3*p23)
 + bu3 * (dbv0*p30 + dbv1*p31 + dbv2*p32 + dbv3*p33);

 teNormal = normalize(cross(dpdu.xyz, dpdv.xyz));
}

Figure 13.12. The shader output for different outer and inner tessellation levels: outer = inner = 5 (left); outer
= 10, inner = 5 (middle); outer = inner = 10 (right).

333Examples

The output of these shaders using glman is shown in Figure 13.12.
An important question about tessellation levels is how to use them for

making effective images. When a patch edge is visible, you may find that a tes-
sellation level that is perfectly adequate for a patch interior may look clumsy
on the edge. We illustrate this in Figure 13.13, where the same patch shown in
Figure 13.12 is examined in more detail at an edge where there is rapid change.
Here the value of a larger outer tessellation level is clear from the appearance
of the edge.

In the image on the left, the lower-left corner has outer tessellation level
ten, which is not enough and so the lower boundary looks coarse. In the image
on the right, the outer tessellation level has been changed to 30, resulting in a
smooth-looking boundary. In both images, the inner tessellation levels were
set to 10 which, in this case, were enough for standard smooth shading.

Finally, we return to the isolines pattern and use the Bézier patch exam-
ple to extend the Bézier curves example and produce multiple isolines. First, in
the .glib file you replace the layout qualifier by one that specifies the isolines
pattern instead of the quad pattern, as in the code

layout(isolines, equal_spacing) in;

Figure 13.13. A tessellated surface (left) with outer tessellation level 10, showing facets
along the edges, and (right) with outer tessellation level 30, showing a smooth edge.

334 13. Tessellation Shaders

Second, note that the two outer tessellation param-
eters are the number of isolines and the number of points
in each isoline, respectively, while the inner tessellation
parameter is ignored, as in Figure 13.14.

Some different values of inner and outer spacing for
isolines is shown in Figure 13.15. Of course to produce
these you must eliminate the shrink geometry shader in
the .glib file, since you will not be producing any triangles
for it to shrink. You will also need to move the lighting and
the multiplication by the projection matrix from the geom-
etry shader to the tessellation evaluation shader.

Sphere Subdivision

Spheres offer some interesting display challenges. The simplest kind of
sphere display is the GLUT sphere; this subdivides the sphere along latitude
and longitude. There are times when you want to display a sphere while con-
trolling the number and layout of the triangles to achieve an appropriately
smooth surface. In this example we use the triangles pattern for the tessella-
tion layout.

Figure 13.14. The effect of the two
outer tessellation parameters.

 Figure 13.15. The Bézier surface shown as a collection of isolines. uOuter0 = uOuter1 = 5
(left); uOuter0 = 5., uOuter1 = 50 (middle); uOuter0 = uOuter1 = 50 (right).

335Examples

Sphere Octants

As a first example, let’s consider a single octant of a sphere. This has a tri-
angle at its base with vertices on each coordinate axis. If we take this as our
base geometry and interpolate it with a triangle pattern, we can see some of
the essential features of a triangle tessellation. The .glib file for this example,
octantsubd.glib, is straightforward, with uniform slider variables for the tes-
sellation levels for you to experiment with. The geometry here is simply the
three-vertex patch in the first octant.

##OpenGL GLIB

Vertex octantsubd.vert
TessControl octantsubd.tcs
TessEvaluation octantsubd.tes
Geometry octantsubd.geom
Fragment octantsubd.frag
Program OctantSubd \
 uRadius <0. 1. 3.> \
 uOuter0 <1. 25. 50.> \
 uOuter1 <1. 25. 50.> \
 uOuter2 <1. 25. 50.> \
 uInner <1. 10. 50.> \
 uShrink <0. 1. 1.>

Color 1. 1. 0.

NumPatchVertices 3
glBegin gl_patches
 glVertex 1. 0. 0.
 glVertex 0. 1. 0.
 glVertex 0. 0. 1.
glEnd

The vertex shader applies the modelview matrix to the vertex geometry.
The corresponding TCS file, octantsubd.tcs, copies the gl_Position values
from the gl_in[] array to the gl_out[] array for each vertex of the primitive
and calculates the tessellation levels from the .glib values.

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

uniform float uOuter0, uOuter1, uOuter2, uInner;
uniform float uRadius;

336 13. Tessellation Shaders

layout(vertices = 3) out;

void main()

{

 gl_out[gl_InvocationID].gl_Position =

 gl_in[gl_InvocationID].gl_Position;

 gl_TessLevelOuter[0] = uRadius * uOuter0;

 gl_TessLevelOuter[1] = uRadius * uOuter1;

 gl_TessLevelOuter[2] = uRadius * uOuter2;

 gl_TessLevelInner[0] = uRadius * uInner;

}

The TES shader created by the file octantsubd.tes below interpolates
the input vertices with the tessellation coordinates gl_TessCoord[] using the
triangles pattern. It applies the modelview matrix to get the position of each
vertex in the tessellated output.

#version 400 compatibility

#extension GL_ARB_tessellation_shader : enable

uniform float uRadius;

layout(triangles, equal_spacing, ccw) in;

void main()

{

 vec3 p0 = gl_in[0].gl_Position.xyz;

 vec3 p1 = gl_in[1].gl_Position.xyz;

 vec3 p2 = gl_in[2].gl_Position.xyz;

 float u = gl_TessCoord.x;

 float v = gl_TessCoord.y;

 float w = gl_TessCoord.z;

 gl_Position = uModelViewMatrix *

 vec4(uRadius*normalize(u*p0+v*p1+w*p2),1.);

}

The expression uRadius*normalize(...) is in the gl_Position compu-
tation to “puff” out the points to be a constant-radius spherical surface instead
of a planar triangle.

337Examples

Because this is the first triangle-pattern tessellation we
have seen, we should remind ourselves about the outer and
inner tessellation levels in this example. Figure 13.16 recalls
the meaning of outer and inner tessellation levels for trian-
gles; the first inner tessellation level controls the number of
subdivisions along each triangle except the outermost, and
the first three outer tessellation levels control the number
of subdivisions along the three outer edges. The examples
shown here use the tessellation levels rather conservatively,
but in an exercise you are encouraged to try out different
variations on these levels.

In the images created by this example, we can see the
effect of different tessellation levels. Figure 13.17 shows the sphere quadrant
with two different tessellation levels; on the left we have outer = 10 and inner =
5, while on the right we have outer = inner = 10. You can see that in both cases,
each outer edge has ten subdivisions while the inner edge (each line parallel to
an outer edge) of the left image has five subdivisions and the inner edge of the
right image has ten. In an exercise you are invited to experiment with using
different tessellation levels for the three outer edges of the octant.

When you include the radius in setting the tessellation levels as in the
TCS, you see that the larger the sphere radius is, the larger the tessellation level.
This gives you a level-of-detail capability that is illustrated in Figure 13.18.
Note that the individual triangles in the tessellations are of similar size across
all the images.

Figure 13.16. The meaning of
tessellation levels for triangles.

Figure 13.17. Two sphere octants with different tessellation levels: outer = 10, inner = 5.
(left); outer = inner = 10 (right).

338 13. Tessellation Shaders

Whole-Sphere Subdivision

A second sphere-subdivision example shows a different way to develop
geometry from a tessellation shader. This example creates three spheres, each
of which is defined by a single vertex in the patch vertex list. Each vertex is a
vec4 value with center at (x,y,z) and with radius w, which is sufficient to define
a sphere. We will see how this is handled in the TES. The .glib file for this
example defines a set of uniform slider variables and is

##OpenGL GLIB

Vertex spheresubd.vert
TessControl spheresubd.tcs
TessEvaluation spheresubd.tes
Geometry spheresubd.geom
Fragment spheresubd.frag
Program SphereSubd \
 uDetail <1. 30. 200.> \
 uScale <0.1 1. 10.> \
 uShrink <0. 1. 1.> \
 uLightX <-10. 5. 10.> \
 uLightY <-10. 10. 10.> \
 uLightZ <-10. 10. 10.>

NumPatchVertices 1

Figure 13.18. Three sphere octants with radius 1.0, 1.5, and 2.0 respectively. Regardless of tessellation level,
each triangle is about the same size because the tessellation levels depend on the sphere radius.

339Examples

glBegin gl_patches
 glVertex 0. 0. 0. .2 # x, y, z sphere center; w radius
 glVertex 0. 1. 0. .3
 glVertex 0. 0. 1. .4
glEnd

The vertex shader for this example, spheresubd.vert, gets the center and
radius of the sphere from the input vertex value; it simply sets the output
variables Center and Radius and sets the required gl_Position to the origin.

#version 400 compatibility

out vec3 vCenter;
out float vRadius;

void main()
{
 vCenter = aVertex.xyz;
 vRadius = aVertex.w;

 gl_Position = vec4(0., 0., 0., 1.);
}

The TCS, defined in spheresubd.tcs, takes the input from the vertex shader as
two arrays, vRadius[] and vCenter[]. Each array has only one element in it,
because the number of patch vertices was set to 1. The TCS sets up the tessel-
lation levels for the primitive generator. It uses the uniform variable uDetail
and the value of the radius to set the tessellation levels. Levels uOuter[0] and
uOuter[2] are the number of divisions at the poles, uOuter[1] and uOuter[3]
are the number of divisions at the vertical seams, and uInner[0] and uIn-
ner[1] give the real internal sphere detail.

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

in vec3 vCenter[];
in float vRadius[];

patch out vec3 tcCenter;
patch out float tcRadius;

uniform float uDetail, uScale;

layout(vertices = 1) out;

340 13. Tessellation Shaders

void main()
{
 gl_out[gl_InvocationID].gl_Position =
 gl_in[0].gl_Position; // (0,0,0,1)

 tcRadius = vRadius[0];
 tcCenter = vCenter[0];

 gl_TessLevelOuter[0] = 2.;

// use scale and radius to help set the tessellation level

 gl_TessLevelOuter[1] = uScale*tcRadius*uDetail;
 gl_TessLevelOuter[2] = 2.;
 gl_TessLevelOuter[3] = uScale*tcRadius*uDetail;
 gl_TessLevelInner[0] = uScale*tcRadius*uDetail;
 gl_TessLevelInner[1] = uScale*tcRadius*uDetail;
}

The TES, given by spheresubd.tes, turns the tessellation coordinates u and v
into angles, thus tessellating the sphere in spherical coordinates, and converts
those into rectangular coordinates that are scaled and translated to get the
actual triangle output coordinates. The normal is also computed as the radius
vector.

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

uniform float uScale;
layout(quads, equal_spacing, ccw) in;

patch in vec3 tcCenter;
patch in float tcRadius;

out vec3 teNormal;

const float PI = 3.14159265;

void main()
{
 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;
 float w = gl_TessCoord.z;

 // -pi/2 <= phi <= pi/2
 // -pi <= theta <= pi

341Examples

 float phi = PI * (u - .5); // spherical coordinates

 float theta = 2. * PI * (v - .5);

 float cosphi = cos(phi);

 vec3 xyz = vec3(cosphi*cos(theta), sin(phi),

 cosphi*sin(theta));

 teNormal = xyz;

 xyz *= (uScale * tcRadius);

 xyz += tcCenter;

 gl_Position = uModelViewMatrix * vec4(xyz,1.);

 // the shrink GS will multiply by the Projection matrix

}

The output of these shaders is shown in Figure 13.19, where the same three
spheres have different levels of detail and different scale. As in the sphere
octant example, notice that the first image has larger triangles, while the sec-
ond and third images have roughly the same level of detail since the radius is
used in defining the tessellation levels.

Whole Sphere Subdivision while Adapting to Screen Coverage

This is good as far as it goes, but having to use uScale is restrictive. We would
much rather use our usual user interface (whatever that is) to arbitrarily scale,
rotate, and translate, and have the shader figure out what the right tessellation

Figure 13.19. Three spheres as above with different values of detail and scale: uDetail = 30., uScale = 1. (left);
uDetail = 50., uScale = 1. (center); uDetail = 50., uScale = 2.5 (right).

342 13. Tessellation Shaders

levels should be. This would be especially useful in computer aided design
and scientific data visualization, where smooth surfaces should stay smooth
no matter how much you zoom in on them.

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable
in vec3 vCenter[];
in float vRadius[];
patch out vec3 tcCenter;
patch out float tcRadius;
uniform float uDetail;
layout(vertices = 1) out;

void main()
{
 tcCenter = vCenter[0];
 tcRadius = vRadius[0];

 // get the extreme points of the sphere:
 vec4 mx = vec4(vCenter[0] - vec3(vRadius[0], 0., 0.), 1.);
 vec4 px = vec4(vCenter[0] + vec3(vRadius[0], 0., 0.), 1.);
 vec4 my = vec4(vCenter[0] - vec3(0., vRadius[0], 0.), 1.);
 vec4 py = vec4(vCenter[0] + vec3(0., vRadius[0], 0.), 1.);
 vec4 mz = vec4(vCenter[0] - vec3(0., 0., vRadius[0]), 1.);
 vec4 pz = vec4(vCenter[0] + vec3(0., 0., vRadius[0]), 1.);

 // get the extreme points in clip space:
 mx = uModelViewProjectionMatrix * mx;
 px = uModelViewProjectionMatrix * px;
 my = uModelViewProjectionMatrix * my;
 py = uModelViewProjectionMatrix * py;
 mz = uModelViewProjectionMatrix * mz;
 pz = uModelViewProjectionMatrix * pz;

 // get the extreme points in NDC space:
 mx.xy /= mx.w;
 px.xy /= px.w;
 my.xy /= my.w;
 py.xy /= py.w;
 mz.xy /= mz.w;
 pz.xy /= pz.w;

 // how much NDC do the extreme points subtend?
 float dx = distance(mx.xy, px.xy);
 float dy = distance(my.xy, py.xy);
 float dz = distance(mz.xy, pz.xy);
 float dmax = sqrt(dx*dx + dy*dy + dz*dz);

343Examples

 // set the tessellation levels from that information using
 // uDetail to make the conversion from NDC to screen space:
 gl_TessLevelOuter[0] = 2.;
 gl_TessLevelOuter[1] = dmax * uDetail;
 gl_TessLevelOuter[2] = 2.;
 gl_TessLevelOuter[3] = dmax * uDetail;
 gl_TessLevelInner[0] = dmax * uDetail;
 gl_TessLevelInner[1] = dmax * uDetail;
}

The big trick here is that the TCS is performing projection matrix mul-
tiply and homogeneous division itself. This is so that it can gain a sense of
how large a region these points will subtend in normalized device coordinates
(NDC), and thus how large the spheres will be when rendered on the screen.
The outer and inner tessellations are then derived from that information. Here
uDetail acts as a scale factor, and would normally be set by the application
to reflect the size of the display window in pixels as well as some measure of
your idea of what “pleasingly smooth” is.

The TES looks like this, which is the same as before except that there is
no uScale:

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable

layout(quads, equal_spacing, ccw) in;

patch in float tcRadius;
patch in vec3 tcCenter;

out vec3 teNormal;

const float PI = 3.14159265;

void main()
{
 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;
 float w = gl_TessCoord.z;

 float phi = PI * (u - .5);
 float theta = 2. * PI * (v - .5);

 float cosphi = cos(phi);
 vec3 xyz = vec3(cosphi*cos(theta), sin(phi),
 cosphi*sin(theta));

344 13. Tessellation Shaders

 teNormal = xyz;

 xyz *= tcRadius;
 xyz += tcCenter;

 gl_Position = uModelViewMatrix * vec4(xyz, 1.);
}

In Figures 13.20 and 13.21, notice that the number of tri-
angles adapts to the screen coverage of each sphere, and that the
size of the tessellated triangles stays about the same, regardless
of radius or transformation.

PN Triangles

This example shows how you can tessellate triangles with vertex normals, or
point-normal (PN) triangles, to achieve significant levels of smoothness. This
work is based on [45] and implements the techniques discussed there.

Figure 13.20. The original
scene (left); with triangles
shrunk to show tessellation
(middle); zoomed out (right).

Figure 13.21. The screen zoomed in (left) and rotated (right).

345Examples

The left-hand image in Figure 13.22 shows the original triangle with three
corner vertices and normals at those vertices. The general concept is to use this
information to turn each PN triangle into a triangular Bézier patch, and create
the Bézier control points. The Bézier patch equation can then be interpolated
to any level of tessellation. The right-hand image in Figure 13.22 shows the
Bézier control points of the curved PN triangle.

Now the geometry of a curved PN triangle that is defined by a triangu-
lar bicubic Bézier patch, which can be tessellated as shown in the images in
Figure 13.23.

Below we give a complete set of shaders that handle PN triangles. They
take input from a .glib file with uniform variables uScale, a scaling factor,
uShrink, a shrinking factor for the geometry shader, and uInner and uOuter,
inner and outer tessellation levels respectively. A white light is assumed, and
its position is set in the geometry shader when the light intensity is computed.
All these could easily be replaced to use these shaders from an application.

Figure 13.23. A tessellated PN triangle showing the individual tessellations (left) and shown as one smooth
surface (right).

Figure 13.22. A PN triangle (left) and the Bézier control points of the curved PN triangle (right).

346 13. Tessellation Shaders

The vertex shader, pntriangles.vert, is straightforward, taking its ver-
tex location and normal from the standard variables and applying the Scale
value.

#version 400 compatibility
uniform float uScale;
out vec3 vNormal;

void main()
{
 vec3 xyz = aVertex.xyz;
 xyz *= uScale;
 gl_Position = uModelViewMatrix * vec4(xyz, 1.);
 vNormal = normalize(uNormalMatrix * aNormal);
}

The TCS shader, pntriangles.tcs, is straightforward; it takes the posi-
tion and normal values as arrays from the primitive assembly following the
vertex shader, passes these on to the TES shader, and sets the required tessel-
lation level values for the TES operation.

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable
uniform float uOuter, uInner;
uniform float uScale;

layout(vertices = 3) out;
in vec3 vNormal[];
out vec3 tcNormals[];

void main()
{
 tcNormals[gl_InvocationID] =
 vNormal[gl_InvocationID];
 gl_out[gl_InvocationID].gl_Position =
 gl_in[gl_InvocationID].gl_Position;

 gl_TessLevelOuter[0] = uScale * Outer;
 gl_TessLevelOuter[1] = uScale * Outer;
 gl_TessLevelOuter[2] = uScale * Outer;
 gl_TessLevelInner[0] = uScale * Inner;

}

The TES shader, pntriangles.tes, is the most complex piece of the pro-
cess because it sets up and executes the Bézier patch for the triangle, produc-
ing not only the position but also the normal for each vertex in the patch.

347Examples

#version 400 compatibility
#extension GL_ARB_tessellation_shader : enable
in vec3 tcNormals[];
out vec3 teNormal;

layout(triangles, equal_spacing, ccw) in;

void main()
{
 vec3 p1 = gl_in[0].gl_Position.xyz;
 vec3 p2 = gl_in[1].gl_Position.xyz;
 vec3 p3 = gl_in[2].gl_Position.xyz;

 vec3 n1 = tcNormals[0];
 vec3 n2 = tcNormals[1];
 vec3 n3 = tcNormals[2];

 float u = gl_TessCoord.x;
 float v = gl_TessCoord.y;
 float w = gl_TessCoord.z;

 vec3 b300 = p1;
 vec3 b030 = p2;
 vec3 b003 = p3;

 float w12 = dot(p2 - p1, n1);
 float w21 = dot(p1 - p2, n2);
 float w13 = dot(p3 - p1, n1);
 float w31 = dot(p1 - p3, n3);
 float w23 = dot(p3 - p2, n2);
 float w32 = dot(p2 - p3, n3);

 vec3 b210 = (2.*p1 + p2 - w12*n1) / 3.;
 vec3 b120 = (2.*p2 + p1 - w21*n2) / 3.;
 vec3 b021 = (2.*p2 + p3 - w23*n2) / 3.;
 vec3 b012 = (2.*p3 + p2 - w32*n3) / 3.;
 vec3 b102 = (2.*p3 + p1 - w31*n3) / 3.;
 vec3 b201 = (2.*p1 + p3 - w13*n1) / 3.;

 vec3 ee = (b210 + b120 + b021 + b012 + b102 + b201) / 6.;
 vec3 vv = (p1 + p2 + p3) / 3.;
 vec3 b111 = ee + (ee - vv) / 2.;

 vec3 xyz = 1.*b300*w*w*w + 1.*b030*u*u*u + 1.*b003*v*v*v +
 3.*b210*u*w*w + 3.*b120*u*u*w + 3.*b201*v*w*w +
 3.*b021*u*u*v + 3.*b102*v*v*w + 3.*b012*u*v*v +
 6.*b111*u*v*w;

348 13. Tessellation Shaders

 float v12 = 2. * dot(p2-p1, n1+n2) / dot(p2-p1, p2-p1);
 float v23 = 2. * dot(p3-p2, n2+n3) / dot(p3-p2, p3-p2);
 float v31 = 2. * dot(p1-p3, n3+n1) / dot(p1-p3, p1-p3);

 vec3 n200 = n1;
 vec3 n020 = n2;
 vec3 n002 = n3;
 vec3 n110 = normalize(n1 + n2 - v12*(p2-p1));
 vec3 n011 = normalize(n2 + n3 - v23*(p3-p2));
 vec3 n101 = normalize(n3 + n1 - v31*(p1-p3));

 teNormal = n200*w*w + n020*u*u + n002*v*v +
 n110*w*u + n011*u*v + n101*w*v;

 gl_Position = vec4(xyz, 1.);
}

Following the TES shader is the geometry shader, which takes a triangle
as input and computes the light intensity and position for each vertex of the
output triangle.

#version 400 compatibility
#extension GL_EXT_gpu_shader4: enable
#extension GL_EXT_geometry_shader4: enable

layout(triangles) in;
layout(triangle_strip, max_vertices=32) out;

uniform float uShrink;
in vec3 teNormal[];
out float gLightIntensity;
const vec3 LIGHTPOS = vec3(5., 10., 10.);
vec3 V[3];
vec3 CG;

void
ProduceVertex(int v)
{
 gLightIntensity =
 abs(dot(normalize(LIGHTPOS - V[v]),
normalize(teNormal[v])));
 gl_Position = uProjectionMatrix *
 vec4(CG + uShrink * (V[v] - CG), 1.);
 EmitVertex();
}

void
main()

349Examples

{
 V[0] = gl_PositionIn[0].xyz;
 V[1] = gl_PositionIn[1].xyz;
 V[2] = gl_PositionIn[2].xyz;

 CG = (V[0] + V[1] + V[2]) / 3.;

 ProduceVertex(0);
 ProduceVertex(1);
 ProduceVertex(2);
}

And finally we have the fragment shader, pntriangles.frag, which
takes the light intensity and applies it to the surface color.

#version 400 compatibility

in float gLightIntensity;
out vec4 fFragColor;

const vec3 COLOR = vec3(1., 1., 0.);

void main()
{
 fFragColor = vec4(gLightIntensity*COLOR, 1.);
}

The result of this treatment of PN triangles is shown in the treatment of a
face defined as a triangle mesh, from [45]. Different treatments of the model’s
triangles yield different kinds of output quality. You should be careful when
you use a technique such as this; you may end up creating an image that is too
smooth to represent the reality your model has. Not all interpolations repre-
sent a reasonable approximation of reality!

A good example of the effect of using this tessellation on PN triangles is
given by a detail of the cow model we saw in Chapter 12 on geometry shad-
ers. In Figure 13.24 we see the detail at the base of the tail in the cow model.
In the top row, the left-hand image is the simple Gouraud shading of the tri-
angles in the tail, while the right-hand image improves the outer tessellation
(outer = 2, inner = 1). Notice how much improvement there is just by increasing
the outer tessellation. This is because smooth shading already helps the inner
parts of triangles, but does nothing for the silhouettes. In the lower left image,
the inner tessellation is also improved (outer = 2, inner = 2), while the lower
right image shows the triangle structure by slightly shrinking all the triangles.

350 13. Tessellation Shaders

Summary

Like many sophisticated features, tessellation shaders are very useful. There
are many times when you would like to be able to specify a small amount of
geometric detail and end up with a much larger amount. Those who have
used RenderMan are already used to this because of RenderMan’s automatic
“microfaceting” feature. While OpenGL’s tessellation shaders are not exactly
the same as automated microfaceting, they are useful in many of the same
ways. Thus, we can now perform some of the same surfacing and displace-
ment mapping for which RenderMan has been so successfully used, but at
interactive speeds.

Figure 13.24. The cow’s tail. Top row: smooth shading (left), improved outer tessellation
(right). Bottom row: improved outer and inner tessellation (left), and detail (right).

351Exercises

Exercises

1. In the uniform variables in the .glib file for the Bézier curve, you will
note that the variables uOuter0 and uOuter1 are slider uniform variables
and can be set to a range of values. Experiment with these variables and
note the result. Change the limits on the range of each and repeat the
experiment.

2. Deliberately break the rules of good sense on tessellation levels to see the
results. First, create two patches that share an edge and tessellate each
with different outer tessellation levels to create holes between the two
tessellated patches. Second, use wildly different inner and outer tessella-
tion levels on a rectangular patch to see what the result looks like and to
get a sense of how much difference between these might be reasonable.

3. Complete the Bézier surface example by supplying vertex, geometry,
and fragment shaders for it. Experiment with the tessellation levels;
start by giving different values to the two outer or two inner levels and
note the result. Then add more uniform slider variables so that each of
the four outer or inner levels is set separately, and note the result. It is
quite possible to get really strange (and essentially unusable) results for
some values of these levels; don’t worry about that. It is useful to use the
shrink geometry shader with this exercise so you can see the triangles
more easily.

4. For a triangle tessellation, use a variety of values for the outer and inner
tessellation levels. In particular, try out different values for the three
outer levels and observe the results. It is useful to use the shrink geom-
etry shader with this exercise so you can see the triangles more easily.

5. We have seen both sphere octant and whole-sphere examples in this
chapter, but we have not compared their operation. Create a whole
sphere from eight sphere octants and compare the quality of the result-
ing sphere with the whole-sphere quality. Can you say anything about
the speed of drawing spheres these two ways?

6. Take one of your models based on triangles with vertex normals, or cre-
ate a model of this sort, and apply the set of shaders given here for VN
triangles. Examine the result carefully to see how it improves, or fails to
improve, the concept you had in mind when you developed the model.

7. One of the historic uses of tessellation is to create a pattern of regu-
lar polygons or figures that fills a plane without any gaps or overlap-
ping, like you see in the works of M.C. Escher. An example is shown in
Figure 13.25.

352 13. Tessellation Shaders

Apply this pattern to a surface tessellation like some of the
ones shown in this chapter. Hint: you will need to create
a single repeatable rectangular tile with boundaries that
match up, as in the figure at the right, so that it can be repli-
cated across the surface like this:

Another hint: it’s not the GLSL tessellation that you need to worry about.
That doesn’t change from the examples. Mostly you need to figure out where
in the whole 5-shader process you determine and assign the proper texture
coordinates.

Figure 13.25. A pattern of Moorish tiles that creates a plane-covering tessellation.

353

The GLSL API14

We have spent a lot of time talking about shaders outside the context of graph-
ics applications that would use them. This is, of course, not the way the real
world works, and in Chapter 15, we will see a number of exciting and impor-
tant ways that shaders can contribute to creating meaningful images. To do
that, however, you must integrate shader programming with your other
graphics programming.

Shaders in the OpenGL Programming Process

So far, this book has focused on just writing the shader code itself, and not on
the API boilerplate that goes around it. If you have been following along using

354 14. The GLSL API

glman, you probably realize that glman is handling a lot of infrastructure for
you. Well, it’s time to pull back the curtain and talk about how to hook GLSL
shaders into an application.

As we have seen, shader programs replace fixed-function graphics opera-
tions that handle vertex, geometry, and fragment processing. When we use
shaders, we must not only provide these files, but we must also carry out sev-
eral steps, diagrammed in Figure 14.1, to integrate the shaders with our appli-
cation. These steps are

1. Create the necessary shader source file(s).
2. Read each shader source file into a null-terminated text string to be com-

piled.
3. Create an empty shader object for each shader.
4. Give each shader object the text string of its shader source.
5. Compile each shader object.
6. Create an overall shader program.
7. Attach the shader objects to the program.
8. Link the shader program.
9. Specify that the shader program is to be used in place of the fixed-func-

tion pipeline.

When these are done, OpenGL will replace the fixed-function processing
with your shaders until the application finishes or you deactivate or delete the
shader program.

Figure 14.1. The GLSL shader-creation process from shader source to shader use.

355How Is a GLSL Shader Program Created?

Handling OpenGL Extensions

At this time, shader programming with GLSL is new enough that many of the
GLSL API calls are handled through OpenGL extensions. In order to manage
extensions in a cross-platform way, we can use the OpenGL Extension Wrangler
Library (GLEW). GLEW provides efficient run-time mechanisms for determin-
ing which OpenGL extensions are supported on the target platform. OpenGL
core and extension functionality is exposed in a single header file. GLEW
changes often to keep up with OpenGL developments. You can download
GLEW from http://glew.sourceforge.net—you should check for new GLEW
releases frequently.

In this chapter, we will refer to some GLSL functions that may be either
EXT or ARB functions (that is, may not yet be fully integrated into the OpenGL
standard), but GLEW will handle that and will replace a function name like
glCreateProgram() with glCreateProgramEXT() or glCreateProgramARB()
if either of those is the appropriate one for your system. In this chapter, we will
only use the general function names and will leave EXT or ARB details up to
GLEW.

You need to initialize GLEW in your application, probably in the func-
tion where you initialize your OpenGL system. The code below will do that
for you.

#include “glew.h“

. . .

GLenum err = glewInit();
if(err != GLEW_OK)
{
 fprintf(stderr, “glewInitError\n”);
 exit(1);
}

fprintf(stderr,“GLEW initialized OK\n”);
fprintf(stderr,”Status: Using GLEW %s\n”,glewGetString(GLEW_
 VERSION));

How Is a GLSL Shader Program Created?

The usual way of creating shader functionality is to create a collection of differ-
ent types of shaders (e.g., vertex, tessellation, geometry, fragment) and collect

356 14. The GLSL API

them into a shader “program.” This program will then be invoked (“used” in
OpenGL terminology) during the rendering process to have this combination
of shaders replace the fixed-function pipeline. An individual GLSL shader is
exactly what you have been working with when you write vertex, geometry,
or fragment shader files for glman. The only functional difference is in how you
incorporate shaders in your application. A GLSL shader is written and stored
as a plain text file to be incorporated into an OpenGL-based application, as we
indicate above. You can use any kind of text-editing application to create the
source file.

As you saw in Figure 14.1, there are a number of steps needed to incor-
porate shaders in an OpenGL application. The first step in this process is to
read the shader source file into an ordinary null-terminated text string. This
should be a familiar programming operation, but for completeness, the fol-
lowing example is a C++ source code fragment that reads a file into a null-ter-
minated string whose address is str. From there, it can be compiled, attached
to a shader program, and linked, so it can be used in your application.

#include <stdio.h>

FILE *fp = fopen(filename, “r”);
If (fp == NULL) {...} // report failure to open, and fail
 // gracefully
fseek(fp, 0, SEEK_END);
int numBytes = ftell(fp); // length of file

GLchar * str = new GLchar[numBytes+1];

rewind(fp);
fread(str, 1, numBytes, fp);
fclose(fp);

str[numBytes] = ‘\0‘; // end byte string with NULL

The code fragment above uses the C++ new() operator, and in general
we use C++ conventions in this chapter. If you are using C, you replace that
line with the two lines

 GLchar *str;
 . . .
 str = (GLchar *) malloc(numBytes + 1);

and anywhere we use the C++ delete[] operator, you should use the C func-
tion free(...).

357Creating and Compiling Shader Objects

Creating and Compiling Shader Objects

Shader objects are unique objects: code groups that are downloaded from your
application to the appropriate section of your graphics processor, where they
can be used. There is a bit of processing involved in setting up a shader object.
We cover that in this short section.

The process of creating a compiled shader object has three steps:

1. You must first create empty vertex, tessellation, geometry, or fragment
shader objects. These will be identified with GLuint variables called han-
dles that let you access them later. (The actual value of the handle has no
meaning to your graphics application. Print it if you’re curious. Just keep
track of it and don’t ever change it.)

2. You must next read the shader source string into the shader object. We
described how you could create this string in the previous section.

3. Finally, you compile the shader object and check that the compilation
was successful. This checking step is needed because shader compilation
is not like standard language compilation; there is no automatic report-
ing of compilation problems.

The code fragment below shows how this is done for a vertex shader.
The code to create and compile a geometry or fragment shader is made by
simply replacing every reference to vertex shader by a reference to geometry
or fragment shader, as you will see in the examples later in this chapter. This
is a simpler version of the same operations in the full GLSLProgram class source
listed in Appendix A; it shows the flow of activities needed to create and com-
pile shaders.

int status;
int logLength;

// create an empty shader object

GLuint vertShader = glCreateShader(GL_VERTEX_SHADER);

// read the string into shader object
glShaderSource(vertShader, 1, (const GLchar **)&str, NULL);

// str is no longer needed and the memory can be freed
delete [] str;

// compile the shader object
glCompileShader(vertShader);

358 14. The GLSL API

// check for OpenGL errors so far
CheckGlErrors(“Vertex Shader 1”);

// see if we had compilation errors
glGetShaderiv(vertShader, GL_COMPILE_STATUS, &status);
if(status == GL_FALSE)
{
 fprintf(stderr, “Vertex shader compilation failed.\n”);
 glGetShaderiv(vertShader, GL_INFO_LOG_LENGTH, &logLength
);
 GLchar *log = new GLchar [logLength];
 glGetShaderInfoLog(vertShader, logLength, NULL, log);
 fprintf(stderr, “\n%s\n”, log);
 delete [] log;
 exit(1);
}

CheckGlErrors(“Vertex Shader 2”);

In the call to glCreateShader(), the argument, GL_VERTEX_SHADER  , has
been highlighted. This is to emphasize that this is the only place that identi-
fies what type of shader this is. Additional legal values are GL_TESSELLATION_
CONTROL_SHADER, GL_TESSELLATION_EVALUATION_SHADER, GL_GEOMETRY_

SHADER and GL_FRAGMENT_SHADER. This shader type is then stored in the shader
object for later use. Other than this, each shader is compiled and attached the
same way. It is important, of course, to set the shader type correctly so that
the handling of the overall shader program knows what to do with each indi-
vidual shader. Also, the compiler will sometimes produce different errors,
depending on the type of shader; this is because certain things are legal in one
type of shader but not others.

You will notice the construction (const GLchar **)&str for the shader
source string. You can, of course, use a simpler construction for this and only
read in a single string, but GLSL lets you construct a shader from a collec-
tion of source fragments that are stored in an array of strings and are only
assembled at compile time. This gives you extra flexibility and lets you build
a shader toolkit that is much finer grained than only having full shader source
files.

As an example of taking this approach, you could use the same shader
source, and insert the appropriate #define statements at the beginning by hav-
ing each set of #defines in its own text file, letting you avoid time-consuming
if tests. You can insert a common header file (a standard .h file) in the source
if you like, or you can simulate the #include to re-use common pieces of code,
such as frequently used functions.

359Creating and Compiling Shader Objects

As an idea of how this is done, consider the code fragment

 GLchar *ArrayOfStrings[3];
 ArrayOfStrings[0] = “#define SMOOTH_SHADING”;
 ArrayofStrings[1] = “ . . . some commonly-used procedure
 . . . ”;
 ArrayofStrings[2] = “ . . . the real vertex shader code
 . . . ”;
 glShaderSource(vertShader, 3, (GLchar **)ArrayofStrings,
 NULL);

This includes a #define statement, a common function, and the basic
shader source.

If you want to prepare your shader source in a single file and still use this
approach, you can either read the source into a string in a one-dimensional
array, as

 GLchar *buffer[1];
 buffer[0] = “ . . . the entire shader code . . . ”;
 glShaderSource(vertShader, 1, (GLchar **)buffer, NULL);

Or you can read the shader source into a single buffer, but cast its address
as

 GLchar *buffer = “ . . . the entire shader code . . . ”;
 glShaderSource(vertShader, 1, (const GLchar **)&buffer,
 NULL);

The CheckGLErrors Function

The CheckGlErrors function is critical, because OpenGL does not report errors,
so you need to ask. The CheckGlErrors function is shown below. It is an excel-
lent idea to include this in all your OpenGL programs, not just shader pro-
grams, and to call it frequently. Simply knowing that errors occurred (as you
would find when you checked GL_COMPILE_STATUS) is not enough; you need
to get the list of errors from the compilation info log. Sometimes, errors occur
well before their effects are felt, and with judicious use of this error checking
function, you should be able to narrow down what the real error is and where
it occurs.

void
CheckGlErrors(const char* caller)
{
 unsigned int gle = glGetError();

360 14. The GLSL API

 if(gle != GL_NO_ERROR)
 {
 fprintf(stderr,“GL Error discovered from caller %s:”,
 caller);
 switch (gle)
 {
 case GL_INVALID_ENUM:
 fprintf(stderr, “Invalid enum.\n”);
 break;
 case GL_INVALID_VALUE:
 fprintf(stderr, “Invalid value.\n”);
 break;
 case GL_INVALID_OPERATION:
 fprintf(stderr,“Invalid Operation.\n”);
 break;
 case GL_STACK_OVERFLOW:
 fprintf(stderr, “Stack overflow.\n”);
 break;
 case GL_STACK_UNDERFLOW:
 fprintf(stderr, “Stack underflow.\n”);
 break;
 case GL_OUT_OF_MEMORY:
 fprintf(stderr, “Out of memory.\n”);
 break;
 case GL_INVALID_FRAMEBUFFER_OPERATION;
 fprintf(stderr, “Framebuffer object is not
 complete.\n”);
 break;
 }
 return;
 }
 return;
}

Creating, Attaching, Linking,
and Activating Shader Programs

Once you have created the shader object(s) you want to use, you must create
an overall shader program and attach the individual shaders to it. The shader
program is the vehicle for making shader objects available to the OpenGL sys-
tem, and activating a shader program tells the graphics card to use it to replace
the appropriate parts of the fixed-function graphics operations.

361Creating, Attaching, Linking, and Activating Shader Programs

Creating a Shader Program and Attaching Shader Objects

The glCreateProgram() function is used to create an empty shader program:

GLuint program = glCreateProgram();

The variable program is just a handle and has no numerical significance to
the application. To attach a shader to this program, use both the program and
shader handles in glAttachShader() like this:

glAttachShader (program, vertShader);
glAttachShader (program, tesscontrolShader);
glAttachShader (program, tessevaluationShader);
glAttachShader (program, geomShader);
glAttachShader (program, fragShader);

You don’t need to have all these types of shaders in every program. The
program will just consist of the shaders you have attached. This code should
be placed in an initialization section of your application program. You can also
create more than one shader program if you want to use different shaders in
different parts of your application.

Linking Shader Programs

Before you can actually use the shader program you have just created, you
must link the individual shader objects together, resolve their common vari-
ables, and link with any built-in support code. The linking uses the function

glLinkProgram(program)

If any shader objects are not included, the shader program will let the
fixed-function processor continue to take on those functions.

Like compilation, linking a shader program can fail, and you should rou-
tinely check that linking is successful before assuming that the program is use-
able. The function

glGetProgramiv(program, GL_LINK_STATUS, &linkStatus)

returns a linkStatus of GL_TRUE if the program linked successfully; otherwise
it returns GL_FALSE. Just as was the case when you compiled shader objects,
you not only need to check for success, you also need to report any errors. The
whole process looks like this:

362 14. The GLSL API

int
LinkProgram(GLuint program)
{
 glLinkProgram(program);
 CheckGlErrors(“LoadShader:Link 1”);

 GLchar* infoLog;
 GLint infoLogLen;
 GLint linkStatus;
 glGetProgramiv(program, GL_LINK_STATUS, &linkStatus);
 CheckGlErrors(“LoadShader:Link 2”);

 if(linkStatus == GL_FALSE)
 {
 glGetProgramiv(program, GL_INFO_LOG_LENGTH,
 &infoLogLen);
 fprintf(stderr,”Failed to link program--Info Log
 Length = %d\n”, infoLogLen);
 if(infoLogLen > 0)
 {
 infoLog = new GLchar[infoLogLen+1];
 glGetProgramInfoLog(program, infoLogLen,
 NULL, infoLog);
 infoLog[infoLogLen] = ‘\0’;
 fprintf(stderr, “Info Log:\n%s\n”, infoLog);
 delete [] infoLog;

 }
 glDeleteProgram(program);
 return 0;
 }

 return 1;
};

If the linking operation is successful, each of the program object’s active
uniform and attribute variables is assigned a location that can be queried with
glGetUniformLocation and glGetAttributeLocation, as discussed later in
this chapter.

Activating a Shader Program

Once a shader program is available, it must be activated. Activating the shader
program switches the action of the graphics card so that your shader program
takes over the necessary operations from the fixed-function processing. To

363Creating, Attaching, Linking, and Activating Shader Programs

make the program active, you use the statement

glUseProgram(program);

in your application. From this point until you
next call glUseProgram(), all graphics process-
ing will use the shader code in this shader pro-
gram.

To go back to using the fixed-function
graphics pipeline, you simply tell the system to
use a null shader program, like this:

glUseProgram(0);

If you want to change shader programs, as you may well want to do if
you want to use different shader programs for different parts of your display,
you need not deactivate one shader before you activate another. Simply acti-
vate the new shader program at the point where you want to begin using it.
The shader program being used is simply an attribute of the system; that is,
another part of the OpenGL state.

You may create, compile, link, and activate shader programs at any point
in your application, as long as the resulting active shader programs are com-
plete before you actually use them. In practice, you may want to make this
part of the initialization process for your application, the part that is usually
executed only once when your application begins, and where you set up the
application’s graphics environment. You can then activate or deactivate your
shaders whenever you like.

Finally, you can not only deactivate a shader program; you can actually
delete it and all its components. This frees up the memory on the graphics
board for other shader programs or other uses. All of the functions that build
up a shader program have functional inverses, so you can

• Detach a shader object from a shader program with
glDetachShader(shader).

• Delete a shader program with glDeleteProgram(program).
• Delete a shader object with glDeleteShader(shader).

You have some protection from incorrect ordering of these functions,
because the actual effect of the function is delayed until it makes sense. If you
ask for a program object to be deleted, but it is part of the current rendering
state, it is not deleted until it is no longer part of the rendering context. If you
ask for a shader to be deleted, but it is still attached to a program object, it is

Do not try to create or link
shader programs within a dis-
play list, because these func-
tions are executed immediately
when they are processed,
rather than being deferred
until the list is called. You
can, however, embed a call to
glUseProgram() in a display
list.

364 14. The GLSL API

not deleted until after it has been detached. But it is probably much better to
be systematic in removing program and shader objects, both to make your
code easier to understand, and to avoid instances where the system might not
adequately protect you.

Passing Data into Shaders

As you write any program with the OpenGL API, even if you don’t intend
that program to use GLSL shaders, you create data that the system will use in
creating a scene. This is generally graphical data that describes the scene. For
example, you can specify the color for each vertex, or you can create an array
of vertices and a parallel array with data such as elevations, temperature, or
any measured data. The data could be used in fixed-function operations by
manipulating primitives based on your data, or with shader-based operations
by putting the data into user-defined attribute or uniform data that you can
access within the shader function(s). In these sections, we describe how you
can create attribute, uniform, or sampler data for shaders, and we give some
examples that show these in action.

Defining Uniform Variables in Your Application

GLSL uniform variables contain information that can change at most with
each graphics primitive. You can think of these uniform variables as a sort of
“global variables” that are available to all the shaders currently being used.
If you want a shader to have data and that data isn’t directly available from
OpenGL, you can define your own uniform variables to give that data to a
shader. Uniform variables are defined within a shader, and their values are
set by the application. Uniform variables can hold any kind of data, including
structs and arrays, as we saw with the built-in uniform variables.

The mechanism for defining and using your own uniform variables is
indirect and somewhat unusual. When you define a uniform variable in your
shader program, you simply declare the variable in the usual way:

uniform type name;

This associates a name and a type with the variable, but does not asso-
ciate an address. An address is only assigned when the shader program is
linked. Once linking has been done, an address is available for each variable.
You query the address and then use it to set the variable from your application.

365Passing Data into Shaders

But how does the application get the address for a variable it does not
know about? The application must know the name of the uniform variable
in a linked shader program. It can then get the location (or address) with the
function

GLint glGetUniformLocation(GLuint program, const GLchar *name);

Here program is the value returned from the glCreateProgram() func-
tion, and name is the name (a text string) of the uniform variable. This function
returns the address of the named variable within the named program object,
so it can be used in the application. The uniform variable must be a simple
variable, not an array or struct; these are handled differently. A uniform vari-
able (either built-in or user-defined) is called active if the link operation finds
that it can be accessed during program execution; a link operation must have
been done (though it might not have succeeded) before the uniform variables
in the shader program can be active.

You can think of this as creating a conduit from your application to the
shader. The location you get from glGetUniformLocation() is the place the
conduit gets plugged into. You then use one of the glProgramUniform*()
functions to put data into the conduit to get it to the shader.

The application can set the value of a uniform variable whose location is
known in three ways. The first way sets scalar or simple vector data with the
function

glProgramUniform{i}{t}(GLuint program, GLint location, TYPE val)

where i can be 1, 2, 3, or 4, depending on the dimension of the variable, and t
can be either f or i, depending on whether the type’s base is floating-point or
integer. The function causes the value of the parameter val to be loaded into
the location indicated. This parameter can be a simple vec1, vec2, vec3, vec4,
ivec1, ivec2, ivec3, or ivec4, but not an array of these types.

The second way sets array (vector) data with

glProgramUniform{i}{t}v(GLuint program, GLint location,

 GLuint length, const TYPE *val)

where the meanings i and t are the same, but the data in val is a vector of the
specified type (including vec* and ivec*) whose length is length.

Finally, the third way sets matrices, and is

glProgramUniformMatrix{i}fv(GLuint program, GLint location,

 GLuint count, GLboolean transpose, const GLfloat *val)

366 14. The GLSL API

If i has the value 2, val must be a 2 × 2
matrix; if 3, a 3 × 3 matrix; and if 4, a 4 x 4
matrix. If transpose has value GL_FALSE,
the matrix is taken to be in standard
OpenGL column major order, while if
transpose has value GL_TRUE, the matrix
is taken to be in row-major order. The
value of count is the number of matrices
that are being passed, so if you are only
passing a single matrix, that value is 1.

In Chapter 7 we talked about how it would sometimes be nice to be able
to separate the Model and the Viewing matrices, instead of having them pre-
combined into one ModelView matrix, as OpenGL does. If you are willing to
manipulate the contents of those matrices yourself, then using matrix uniform
variables is a good way to accomplish this.1

If you have defined a struct as a uniform variable, you cannot set the entire
struct at once; you must use the functions above to set each field individually.

As an example, let’s suppose that you wanted to pass a light location into
your shaders. The following very short code fragment, to be used in your appli-
cation, stores a Cfloat[3] variable named lightLoc in an application-defined
uniform vec3 variable whose name is “uLightLocation”. Note the use of the
glGetUniformLocation function to find the location of the uniform variable
and of the glProgramUniform3fv function to set that uniform variable, as well
as the check to ensure that the variable was actually found.

// in the shader:

 uniform vec3 uLightLocation;

// in the C / C++ application (after linking
// the shader program):

 float lightLoc[3] = { 0., 100., 0. };

 GLint location = glGetUniformLocation(program,
 “uLightLocation”);
 if(location < 0)
 fprintf(stderr, “Uniform variable ‘uLightLocation’ not
 found\n”);
 else
 glProgramUniform3fv(program, location, 3, lightLoc);

1. Appendix B shows a C++ class that allows you to easily manipulate your own matrices.

Notice that none of the glUniform*
routines take a program handle as
one of its arguments. Those routines
set uniform variables in the currently
active shader program. So, be sure
that you call glUseProgram() on
the correct program before setting
that program’s variables.

367Passing Data into Shaders

Uniform Variables in Compatibility Mode

In compatibility mode, GLSL defines a number of built-in uniform variables
that give you access to OpenGL state information, as we described in Chapter 5.
There are a number of built-in uniform variables, including the ModelView,
Projection, and Normal matrices, and all texture, light, and materials data.
Your applications set these values through standard OpenGL functions and
can use the associated uniform variables in your shaders.

In the discussion of the GLSL language, you saw a list of built-in uni-
form variables. Their names begin with gl_ and they give you access to all the
OpenGL state values or values derived from these states. When a program
object is made current, the built-in uniform variables that track the OpenGL
state are initialized to the current value of those states, and any later OpenGL
calls that modify state values update the built-in uniform variable that tracks
those states. The most commonly used of these are shown in Table 14.1.

Standard OpenGL Function Built-in Uniform Variable
transformations mat4 gl_ModelViewMatrix

mat4 gl_ModelViewProjectionMatrix

mat4 gl_ProjectionMatrix

mat3 gl_NormalMatrix

materials struct gl_MaterialParameters {

 vec4 emission;

 vec4 ambient;

 vec4 diffuse;

 vec4 specular;

 float shininess;

} gl_Frontmaterial; gl_BackMaterial;

lights struct gl_LightSourceParameters {

 vec4 ambient;

 vec4 diffuse;

 vec4 specular;

 vec4 position;

 vec4 halfVector;

 vec3 spotDirection;

 float spotExponent;

 float spotCutoff;

 float spotCosCutoff;

} gl_LightSource[gl_MaxLights];

textures gl_TextureMatrix[i]

368 14. The GLSL API

fog struct gl_FogParameters {

 vec4 color;

 float density;

 float start;

 float end;

 float scale;

} gl_Fog

Table 14.1. Uniform variables defined by compatibility-mode OpenGL functions.

Defining Attribute Variables in Your Application

Attribute variables are a way to provide per-vertex data to a vertex shader.
These are only available to a vertex shader. If any vertex-specific attribute data
needs to be used by a shader, the vertex shader must first convert it to an out
variable so the later shader can take it as an in variable. Here we describe the
general approach to defining variables that describe properties of an individ-
ual vertex in your model.

Besides the usual attribute data such as the coordinates, normal, color,
or texture coordinates of a vertex, you may also need to define other data to
associate with a vertex. OpenGL lets applications define custom attributes to
pass to a vertex shader. Each vertex attribute has an indexed location and can
contain up to four values.

As with uniform variables, you need to determine the location of an attri-
bute variable before you can set it:

GLint glGetAttribLocataion(program, GLchar * attribName);

where attribName is a character string of the name of the variable.
An application can specify a per-vertex attribute value using one of the

functions

void glVertexAttrib{i}{t}{v}(GLuint location, TYPE val)

The value of i can be 1, 2, 3, or 4, depending on the dimension of the
data to be given to that attribute. The value of t specifies the data type for the
data to be given to the attribute; this can be b (byte), s (short), i (int), f (float),
d (double), ub (unsigned byte), us (unsigned short), or ui (unsigned int). The
suffix v means that the data is in vector form rather than as a list of scalars.
These are consistent with the format of the glVertex* functions.

The parameter location is the particular symbol table location of the
attribute variable you are setting, and the parameter or parameters val are

369Passing Data into Shaders

the value(s) to be written to the attri-
bute variable at that index. All the
glVertexAttrib functions are expected
to be used between glBegin and glEnd,
just as the built-in attribute setting func-
tions are.

The type of the data val is expected
to match the type specified in the func-
tion name. However, since the vertex
attributes are always stored in an array of
type vec4, any byte, short, int, unsigned
byte, unsigned short, or unsigned int
will be converted into a standard GLfloat
before it is actually stored.

In the short application code fragment below, we want to assign a vec2
attribute to each vertex of the triangle being drawn. The values to be assigned
to that attribute for the three vertices are u0 and v0, u1 and v1, and u2 and v2.
The role of the glVertexAttrib2f() function is to set these values for the
attribute.

// in the vertex shader:
in vec2 aUV; // a per-vertex attribute

// in the C / C++ global variables:

GLint UVloc;

// in the C / C++ graphics setup code (after linking the shader
// program):

UVloc = glGetAttribLocation(program, “aUV”);

if(UVloc < 0)
 fprintf(stderr, “Cannot find Attribute variable ‘aUV\n”);

// in the C / C++ display callback

if(UVloc > 0)
{
 glBegin(GL_TRIANGLES);
 glVertexAttrib2f(UVloc, u0, v0);
 glVertex3f(x0, y0, z0);
 glVertexAttrib2f(UVloc, u1, v1);
 glVertex3f(x1, y1, z1);

Notice that the glVertexAttrib
routine does not take a program
handle as one of its arguments. This
routine sets attribute variables in the
currently active shader program. So, be
sure that you call glUseProgram() on
the correct program before setting that
program’s variables. (Presumably you
would already have done this because
to use glVertexAttrib() functions,
you would be drawing something.)

370 14. The GLSL API

 glVertexAttrib2f(UVloc, u2, v2);
 glVertex3f(x2, y2, z2);
 glEnd();
}

A visualization per-vertex attribute example could display pressure data
on a surface. The usual way this would be presented with the fixed-function
OpenGL would be to use the pressure to define the color at each vertex in the
surface, and then—assuming a continuous pressure function on the surface—
to send the surface’s graphics primitives into the rendering stages, to be drawn
with smooth shading. However, we could also define pressure to be an attri-
bute variable with each vertex, and use that directly for drawing the surface,
giving us more options on using color to present the pressure data.

The steps in doing this are as follows:

• Define the attribute variable in the application and set the variable to its
appropriate value for each vertex as you define the vertex geometry.

• Pick up the value of the attribute variable in the vertex shader and write
it to a varying variable so it can be interpolated smoothly across each
graphics primitive.

• Use the varying variable’s value to determine the color to be used in fill-
ing pixels.

This would let us add pressure contour lines, or would let us color differ-
ent pressure regimes in distinct colors, or create other displays as needed. This
idea will be explored more fully in Chapter 15.

Attribute Variables in Compatibility Mode

If you are working in compatibility mode, you may have a number of built-in
attribute variables for a vertex shader to use directly or to pass along to other
shaders. Each of the standard OpenGL functions that define a vertex (those
you can call within a glBegin–glEnd pair) defines a built-in attribute variable
that can be used by a vertex shader. These include

attribute vec4 gl_Color;
attribute vec3 gl_Normal;
attribute vec4 gl_Vertex;
attribute vec4 gl_MultiTexCoord0;

These variables correspond to the standard OpenGL vertex functions, as
shown in Table 14.2.

371Passing Data into Shaders

Standard OpenGL Function Built-in Attribute Variable
glVertex(...) gl_Vertex

glColor(...) gl_Color

glNormal(...) gl_Normal

glSecondaryColor(...) gl_SecondaryColor

glMultiTexCoord(i, ...) gl_MultiTexCoordi, i=1..N

glFogCoordf(...) gl_FogCoord

Table 14.2. Attribute variables defined by compatibility-mode OpenGL vertex functions.

A C++ Class to Handle Shader Program Creation

Appendix A shows a C++ class that is handy for shader creation and use. As a
preview, here is how such an application would look:

#include “glslprogram.h”

float Ad, Bd, NoiseAmp, NoiseFreq, Tol;
GLSLProgram * Ovals;

During setup:

Ovals = new GLSLProgram();
Ovals->SetVerbose(true);
Ovals->SetGstap(true);
bool good = Ovals->Create(“ovalnoise.vert”, “ovalnoise.frag”);
if(! good)
{
 fprintf(stderr, “GLSL Program Ovals wasn’t created.\n”);
 <<handle the fact that the shaders did not compile or link>>
}

In the display callback:

Ovals->Use();
// we assume the user has interactively changed the uniform
// vars:
Ovals->SetUniform(“uAd”, Ad);
Ovals->SetUniform(“uBd”, Bd);
Ovals->SetUniform(“uNoiseAmp”, NoiseAmp);
Ovals->SetUniform(“uNoiseFreq”, NoiseFreq);
Ovals->SetUniform(“uTol”, Tol);

372 14. The GLSL API

// draw something:
glColor3f(0., 1., 0.);
glutSolidTeapot(1.);

// go back to the fixed-function pipeline:
Ovals->UseFixedFunction();
. . .

// draw some items with the fixed-function pipeline:
. . .

Notes

• This example does not use a geometry shader but it could, just by listing
the name of the .geom file. The Create() method accepts any number
of shader file names, up to five.

• The handles for the individual shaders are hidden in the class. You really
don’t need to know them yourself.

• The handle for the overall shader program is hidden in the class. You
really don’t need to know it yourself.

• The uniform variable locations are also hidden in the class. They are
determined once, and then looked up whenever they are needed.

• All compiler and linker error messages are sent to standard error. The
application can determine if something failed, because the return from
the GLSLProgram constructor is NULL.

The structure of this class can be found in the appendix, and the class code can
be found in the online materials for the book.

Exercises

1. Take a project you wrote for fixed-function OpenGL and rewrite it with
shader programs replacing the fixed-function vertex and fragment pro-
cessing. Choose a straightforward program, not one that uses sophisti-
cated graphics, because the goal of this exercise is simply to get shader
programs working for you. Add something in the shaders that is not
available in the original program, though.

2. We gave a general example of creating a user-defined attribute variable
that holds the value of the pressure (a one-dimensional value) at each

373Exercises

point on a surface, so that a shader could color the surface in ways that
communicate that pressure. Implement another visualization of the pres-
sure besides the one(s) that we described in the text.

3. While OpenGL is a fully general graphics API that can be used by almost
everyone who needs graphics, you can write shaders that only use the
capabilities that you need. For example, the texture mapping functions in
fixed-function OpenGL can work with a very large number of input for-
mats for texture maps. Review the standard OpenGL texture map func-
tions and list all the possible options for texture map inputs, and identify
the set of operations that you would yourself expect to use.

This page intentionally left blankThis page intentionally left blank

375

Using Shaders for
Scientific Visualization15

So far, we have been cutting through the shader world in one direction—exam-
ining different capabilities of GLSL. In this chapter, we try cutting in another
direction for a while—looking at an application focus. We will describe several
ways in which shader programming can enhance the display of data. Clearly,
there are many more ways to do this than just the few we illustrate, but the
point is to show how different aspects of shader programming can be brought
to bear on a single problem grouping.

There is much more to scientific visualization than we could begin to
cover in this chapter, of course. Our approach will be to consider how some
shader techniques from the previous chapters can be used for visualization.
These will include image manipulation, geometry modification with vertex
shaders, applications of textures, using fragment shaders to implement trans-

376 15. Using Shaders for Scientific Visualization

fer functions and to carry out flow visualization, and using geometry shader
techniques. This includes the whole range of shader techniques in the book,
showing just how deeply shader programming has affected computer graph-
ics applications.

Image-Based Visualization Techniques

The first few visualization techniques we describe are image based. They have
already been covered in Chapter 10 on image manipulation, but it is useful to
repeat them again here as we look at how they impact the understanding of
data.

Image Negative

The first method displays the negative of an image. This is the most simple of
the image shaders, but its use in visualization is surprisingly useful. Figure 15.1
shows a visualization image (a volume rendering, actually) of a mouse verte-
bra. The left-hand image in the figure is the original, and the right-hand one is
the negative. Notice how the negative brings out subtle details that were not
obvious in the original, especially the “pock marks” on the wall of the bone.
Many visualization programs have a “display negative” button in their user
interface for just this reason.

Figure 15.1. The original (left) and negative (right) of an image, showing how the negative
often brings out new features.

377Image-Based Visualization Techniques

Image Edge Detection

Another useful image shader in data visualization is the edge
detection Sobel filter. As seen in Figure 15.2, the Sobel filter
emphasizes the parts of the image where shading is changing
quickly, usually the sharp edges. In this figure, the edges have
been colored and superimposed on the original image, but it
is sometimes also useful just to display the edges alone, as we
did in Chapter 11.

Both the image negative and edge detection examples
were implemented by looking at a static image, but in fact
they can also become a post-process to any dynamic 3D ren-
dering. To do this, use the OpenGL render-to-texture capabil-
ity described in Chapter 9 to produce a texture image of the
3D scene, and then render a quadrilateral with this texture on
it, using one of the image shaders.

Toon Rendering

Toon rendering, covered in Chapter 11, starts with edge detec-
tion and adds color quantization. It is sometimes an excellent
way to perform architectural visualization, because it strongly
brings out a building’s key edges, while retaining the col-
ors but de-emphasizing them. This is shown in Figure 15.3,
which shows the Smithsonian Castle in Washington, DC both
without (left) and with (right) toon shading.

Figure 15.2. Edge detection
emphasizes certain features.

Figure 15.3. Toon rendering for architectural visualization.

378 15. Using Shaders for Scientific Visualization

Hyperbolic Geometry

Often when you display highly detailed data, such as a large map, you want
to be able to zoom into an area of interest. This usually forces much of the rest
of the display off the screen, as it does in Figure 15.4.

What if you wanted to simply force the rest of the display to the edges of
the screen, but not off it? One answer is to use hyperbolic geometry, which can
be implemented very effectively in a vertex shader.

The reason for using hyperbolic geometry is to create a mathematical
process that moves the parts of the scene farthest from the area of interest,
asymptotically towards the edges of the display. One straightforward way of
doing this uses polar coordinates. For a given (x,y) coordinate that has already
been translated, you convert it into a polar (r,Θ) pair. You leave the angle Θ
alone and manipulate the radius as follows:

′ =
+

r r
r k

,

where k is a constant. As r increases, the theme of “something divided by
something a little bigger” makes this fraction asymptotically approach 1. You
then recombine this new radius with the original Θ to produce a new (x′,y′)
that will always lie within a unit circle.

What does the constant k do? If k were 0, then all r′ would be 1, that is,
the entire scene would be forced to the edges. If k were ∞, then all r′ would be
0, that is, the entire scene would be forced to a dot in the center. So adjusting

Figure 15.4. Linear zooming in Euclidean space.

379Hyperbolic Geometry

the value of k is a way to control how much of the scene is
zoomed in upon and how much ends up at the edges. The
images in Figure 15.5 show how this looks when applied to
a street map of San Diego, while Figure 15.6 shows a hyper-
bolic rendering of a map of Corvallis, Oregon, that includes
overlays for streets, buildings, and parks.

When doing shader programming, there is always a
concern that needing to compute a handful of transcenden-
tal functions per vertex will kill performance. After all, turn-
ing an (x,y) into (r,Θ) involves using a square root and an
arctan. Producing the final (x′,y′) involves using a sine and
cosine. Fortunately, the equations simplify out all of these
transcendantal functions except the square root:

r x y= +2 2 ,

′ = ′ =
+

 = +

x r r
r k

x
r

x
r k

cos .Θ

And, similarly,

′ = ′ =
+

 = +

y r r
r k

y
r

y
r k

sin .Θ

Figure 15.5. Zooming in polar hyperbolic space.

Figure 15.6. Hyperbolic geom-
etry display of Corvallis, Oregon,
showing streets (orange), build-
ings (yellow), and parks (green).

380 15. Using Shaders for Scientific Visualization

The vertex shader code to perform this is quite concise and looks like this:

uniform float uK;
uniform float uTransX;
uniform float uTransY;

void main()
{
 vec2 pos = (uModelViewMatrix * aVertex).xy;
 pos += vec2(uTransX, uTransY);
 float r = length(pos);
 vec4 pos2 = vec4(pos/(r + uK), 0., 1.);
 gl_Position = uProjectionMatrix * pos2;
}

In this case, a separate set of translations is explicitly being passed in,
although the translations encapsulated in the ModelView matrix will work
just fine. Also, it turns out that the scale factor encapsulated in the ModelView
matrix can be used as another way to zoom in and out. If a uniform scale factor
s is applied to the scene using glScalef(), the resulting hyperbolic geometry
equation would be

′ =
+

=
+

r sr
sr k

r
r k s

.

Thus, what we just thought of as k can actually also be thought of as 1/s.
One other thing to notice is the use of the built-in GLSL length() func-

tion. Even though that same line could be written as

float r = sqrt(pos.x*pos.x + pos.y*pos.y);

it is always better to take advantage of built-in functions if they are available.
At the worst, they will be the same speed as your own version. At best, though,
they could take advantage of some features you don’t have access to, and could
be much faster.

If you are not comfortable with this fish-eye type of zoom, you could look
at a Cartesian hyperbolic zoom, as shown in Figure 15.7. In this case, we do not
go to polar coordinates, but use hyperbolic transformations for the rectangular
coordinates, as

′ =
+

′ =
+

x x
x k

y y
y k

2 2

2 2

,

.

3813D Scalar Data Visualization

Again, as k goes to zero, the transformations approach the identity, but
as k increases, the hyperbolic effect increases. This approach makes the vertex
shader code simpler, because you do not need to go through the polar coordi-
nate conversion. The Cartesian hyperbolic vertex shader is left as an exercise.

3D Scalar Data Visualization

In this section, we are going to consider passing a 3D volume of data values
into a shader in the form of a 3D texture, so that we can examine the volumet-
ric data. There is a format setup in glman to make this easy for you to do, but
you need to write your data in this file format yourself. To make this easier,
below we give you an example of a short C++ program that writes a 32 × 32 × 32
texture file. This format is actually made to hold a floating-point 4D texture, as
you can see in the actual file write statements, but here we are just using one
of the four components, and leaving the other three empty. Instead of storing
red, green, blue, and alpha (for example), we are just using the red component
to hold a single value.

#include <stdio.h>
#include <math.h>
float ScalarValue(float, float, float);

const int NUMS = 32;
const int NUMT = 32;
const int NUMP = 32;
int
main(int argc, char *argv[])

Figure 15.7. Zooming in Cartesian hyperbolic space.

382 15. Using Shaders for Scientific Visualization

{
 FILE *fp = fopen(“vis3dtexture.tex”, “wb”);
 if(fp == NULL)
 {
 fprintf(stderr,
 “Cannot create the output 3D texture file\n”);
 return 1;
 }

 fwrite(&NUMS, 4, 1, fp);
 fwrite(&NUMT, 4, 1, fp);
 fwrite(&NUMP, 4, 1, fp);

 float zero = 0.;
 for(int p = 0; p < NUMP; p++)
 {
 float z = -1. + 2. * (float)p / (float)(NUMP-1);
 for(int t = 0; t < NUMT; t++)
 {
 float y = -1. + 2. * (float)t / (float)(NUMT-
 1);
 for(int s = 0; s < NUMS; s++)
 {
 float x = -1. + 2. * (float)s / (float)
 (NUMS-1);
 float value = HOWEVER YOU COMPUTE IT,
 LOOK IT UP, ETC
 fwrite(&value, 4, 1, fp);
 fwrite(&zero, 4, 1, fp);
 fwrite(&zero, 4, 1, fp);
 fwrite(&zero, 4, 1, fp);
 }
 }
 }

 fclose(fp);
 return 0;
}

In the examples below, we will use the texture-file format to hold data
that is a summation of decaying exponentials, approximating a temperature
distribution in a room with individual heat sources, and whose walls are a heat
sink. This data is available in the file vis3dtexture.tex with the resources
for this book. In practice, up to four data components could be encapsulated
at the same time, giving you more flexibility in what combinations you can
visualize.

3833D Scalar Data Visualization

Point Clouds

A 3D texture is just data and needs a geometry to map
itself to. A good start is to map it to a 3D point cloud, a
uniform mesh of 3D points. When you map the temper-
ature distribution dataset above to a point cloud, you
get the image in Figure 15.8.

One of the interesting aspects of this approach is
that the resolution of the point cloud does not have to
exactly match the resolution of the dataset. Because this
example uses texture mapping to access the data, the
OpenGL display process will interpolate the data values
to the cloud’s point locations. Making the resolution of
the point cloud less than that of the data is usually a bad
idea, since some of the data values will be completely
skipped over in the display. But you can easily give the
point cloud a higher resolution and get a nicer-looking
display.

Using a higher point cloud resolution assumes, of course, that interpola-
tion makes sense for the particular data you have. It doesn’t always. For exam-
ple, suppose the data values represent integer-only data, such as the number
of children per family. Even though a point cloud dot could exist between two
data values, it makes no sense to combine half of one with half of the other
to produce a data point that represents a fraction of a child. In this case, the
resolution of the point cloud should be the same as the resolution of the data.

The GLIB file used to produce the point cloud above is

Texture 5 vis3dtexture.tex
Vertex pointcloud.vert
Fragment pointcloud.frag
Program PointCloud \
 uTexUnit 5 \
 uMin <0. 0. 100> \
 uMax <0. 100. 100.>

PointCloud 50 50 50

The vertex shader is also very short, since it just sets up the interpolation
of the texture coordinates and performs the matrix transformation:

out vec3 vMCposition;

Figure 15.8. Uniform point cloud.

384 15. Using Shaders for Scientific Visualization

void main()

{

 vMCposition = aVertex.xyz;

 gl_Position = uModelViewProjectionMatrix * aVertex;

}

The fragment shader shown below does all the work. Because the x coor-
dinates go from −1 to 1, and the required s texture coordinates go from 0 to 1,
the linear mapping is

 s
x

=
+1
2

.

The same mapping applies to y and z to create the t and p texture coordinates.
Once we have the s-t-p texture coordinates, we can look up the data value at
this location, which is then used to set the color for this fragment.

const float SMIN = 0.;
const float SMAX = 100.;

uniform int uTexUnit;
uniform float uMin, uMax;

in vec3 vMCposition;

out vec4 fFragColor;

void
main()
{
 vec3 stp = (vMCposition + 1.) / 2.; // maps [-1.,1.] to
 // [0.,1.]
 vec4 rgba = texture(uTexUnit, stp);
 float scalar = rgba.r;

 if(scalar < uMin)
 discard;

 if(scalar > uMax)
 discard;

 float t = (scalar - SMIN) / (SMAX - SMIN);
 vec3 rgb = Rainbow(t);

 fFragColor = vec4(rgb, 1.);
}

3853D Scalar Data Visualization

Notice the use of the Rainbow() function. This sets
up the transfer function that defines the mapping between
each scalar value and its assigned color. Routines like this
are often written to accept a normalized input, in this case
the variable called t. The value of t is 0 when the scalar value
is a minimum and 1 when it is a maximum. In this way,
the color mapping routine does not need to know anything
about the nature of the scalar values. We cover transfer func-
tions in more detail later in this chapter.

Also notice the use of the uniform variables uMin and
uMax in the fragment shader. They are assigned by sliders
in the glman user interface, and are used to cull the display
based on data values. In the image in Figure 15.9, the small-
est values in the dataset have been culled.

This isn’t a visualization book, but as we discuss visualization shaders,
we need to talk about some fundamental visualization concepts. A disadvan-
tage of the uniform point cloud is that it can create severe display artifacts.
In orthographic projection mode, sometimes the dots line up, creating the
“row of corn problem.” In perspective projection mode, the alignment creates
annoying (but often interesting) Moiré patterns. These two kinds of artifact are
shown in Figure 15.10.

What can you do to avoid these artifacts? A common answer is to use a
different type of point cloud, known as a jitter cloud. In a jitter cloud, the dots
are randomly shifted by small amounts in x, y, and z, and the data values

Figure 15.9. Culling dots based on
scalar value.

Figure 15.10. Artifacts in uniform point clouds; the “row of corn” problem, left, and Moiré
patterns (right).

386 15. Using Shaders for Scientific Visualization

are reinterpolated to those new points. To support this approach, glman has
another GLIB file geometry option:

JitterCloud 50 50 50

In glman, a jitter cloud has its points (and thus its texture stp coor-
dinates) perturbed. Results from using a JitterCloud in orthographic and
perspective are shown in Figure 15.11. These are exactly the same as those in
Figure 15.10, except for the jittercloud change. Note that the data values at the
perturbed points are correct because they are looked up in the data texture
based on their coordinates.

Another useful technique is to use the fragment shader’s knowledge of
the data values it is seeing to alter the appearance of the dots by changing

Figure 15.12. Changing a point’s size to emphasize its scalar value.

Figure 15.11. A JitterCloud display in orthographic (left) and perspective (right) pro-
jection.

3873D Scalar Data Visualization

their size. This is done by setting the gl_PointSize variable in the fragment
shader. Setting this value has the same effect as calling the OpenGL function
glPointSize(). This allows you to emphasize data points with large data
values by making them more visible. An example of doing this is shown in
Figure 15.12.

Cutting Planes

Now that we have created this 3D texture of data values, is there anything else
we can do with it? Yes! One of the most useful ways to visualize 3D data is
with cutting planes. When you pass a cutting plane through a 3D dataset, you
focus on specific planes of interest and leave out other areas that you don’t
care about right now. Also, a cutting plane display is a lot less cluttered than
a point cloud.

There are two kinds of cutting planes. In one, you interpolate data values
(and thus colors) at each pixel, and in the other, you create contour lines at
a reduced set of pixels. As before, the color interpolation approach requires
some sort of geometry to hang the data on. In this case, we will use the glman
QuadXY primitive, which draws a quadrilateral in the X-Y plane from [–1,–1] to
[1,1], by default at z = 0 (although we will change the z location with a slider).
The vertex shader reads a z value from a slider uniform variable and sets up
the model coordinates of the quadrilateral to be interpolated through the ras-
terizer:

uniform float uZ;

out vec3 vMCposition;

void main()
{
 vMCposition = aVertex.xyz;
 vMCposition.z = uZ; // slide the cutting plane in Z
 gl_Position = uModelViewProjectionMatrix*
 vec4(vMCposition,1.);
}

The fragment shader uses those model coordinates to determine where
each fragment is in texture coordinate space. This process reuses much of the
fragment code from the pointcloud shader:

const float SMIN = 0.;
const float SMAX = 100.;

388 15. Using Shaders for Scientific Visualization

uniform sampler2D uTexUnit;
uniform float uMin, uMax;

in vec3 vMCposition;

out vec4 fFragColor;

void main()
{
 vec3 stp = (vMCposition + 1.) / 2.;
 // maps [-1.,1.] to [0.,1.]

 if(any(lessThan(stp, vec3(0.,0.,0.))))
 discard;

 if(any(greaterThan(stp, vec3(1.,1.,1.))))
 discard;

 float scalar = texture(uTexUnit, stp).r;

 if(scalar < uMin)
 discard;

 if(scalar > uMax)
 discard;

 float t = (scalar - SMIN) / (SMAX - SMIN);
 vec3 rgb = Rainbow(t);

 fFragColor = vec4(rgb, 1.);
}

Using the same 3D dataset as before, this process pro-
duces an image like that shown in Figure 15.13.

Notice the use of the lessThan(), greaterThan(),
and any () functions. This also could have been expressed,
equally correctly, as
 if(stp.s < 0. || stp.s > 1.)
 discard;

 if(stp.t < 0. || stp.t > 1.)
 discard;

 if(stp.p < 0. || stp.p > 1.)
 discard;

Figure 15.13. Interpolated color
cutting plane.

3893D Scalar Data Visualization

but that code would not have been able to exploit the inherent parallelism of
the GPU.

Now, let’s change the fragment shader to create contour lines. There are
geometric ways to create contour lines with real OpenGL line segments, but
for this example, we will use almost the same fragment shader code as we did
above. Let’s say we want contour regions at each 10 degrees of temperature.
Then the main difference in the shader will be that we need to find how close
each fragment’s interpolated scalar data value is to an even multiple of 10. To
do this, we say

 float scalar10 = float(10*int((scalar+5.)/10.));
 if(abs(scalar - scalar10) > uTol)
 discard;

Notice that this uses a uniform variable called uTol, which is read from
a slider and has a range of 1 to 5. uTol is used to determine how close to an
even multiple of 10 degrees we will accept, and thus how thick we want the
contours to be. Various values for uTol produce the individual images in Fig-
ure 15.14.

Take a close look at what this fragment-based approach to contours gets
you compared with a line-based approach. Notice that the contours have dif-
ferent thicknesses. This is an indication of how much area was within uTol of a
10-degree value. In addition to what the contour lines usually tell us, this type
of display also lets us see how fast the data field is changing, i.e., the gradient.
Thus, we can tell that the data is changing slower at the blue areas than at the
red areas. This two-pieces-of-information-for-the-price-of-one-display feature
is always appreciated in visualization.

Figure 15.14. Contour lines using uTol values of 1, 4, and 5.

390 15. Using Shaders for Scientific Visualization

Also, notice that when uTol = 5., the uTol if-statement always fails, and
we end up with the same display as we had with the interpolated colors. Thus,
we don’t actually need the separate cutting plane shader at all. Shaders that can
do double duty are always appreciated!

It is also important to notice that the shaders maintain the mapping from
the coordinates of the cutting planes to the texture coordinates that hold the
data. This means that the cutting planes do not need to be oriented parallel to
principal axes, but can be rotated into any orientation. It also means that the
cutting geometry does not need to be a plane at all. It can be any shape for
which you can produce the coordinates-to-texture mapping.

Volume Probe

Sometimes a cutting plane is too restrictive, that is, it is thin and flat. What if
we want to map a colored representation of the scalar data to something that
is not so thin and flat? What if we want to map it instead to something that is
3D? A variation on the cutting plane is to pass a 3D object through the scene
and map data values to it. This called a volume probe. This technique uses a
simple vertex shader and does most of its work in the fragment shader. The
vertex shader, shown below, keeps track of the eye coordinates of each vertex.

out vec4 vECposition;

void main()
{
 vECposition = uModelViewMatrix * aVertex;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

The eye coordinates are then interpolated through the rasterizer, con-
verted to s-t-p texture coordinates by the fragment shader, and finally looked
up in the data texture. A fragment shader that does this is shown below.

const float SMIN = 0.;
const float SMAX = 120.;

uniform float uMin, uMax;
uniform sampler3D uTexUnit;

in vec4 vECposition;

out vec4 fFragColor;

3913D Scalar Data Visualization

void main()
{
 vec3 stp = clamp((vECposition.xyz + 1.) / 2., 0., 1.);

 float scalar = texture(uTexUnit, stp).r;

 if(scalar < uMin)
 discard;

 if(scalar > uMax)
 discard;

 float t = (scalar - SMIN) / (SMAX - SMIN);
 vec3 rgb = Rainbow(t);

 fFragColor = vec4(rgb, 1.);
}

Of course, some choices of probe geometry make more sense than others.
Two examples of volume probes are shown in Figure 15.15.

Figure 15.15. Volume probes through the 3D data-
set: sphere, torus, torus with pixels discarded around
even multiples of 10, and teapot, as was also shown in
Figure 15.14.

392 15. Using Shaders for Scientific Visualization

Direct Volume Rendering

So far, we have been visualizing 3D volumetric data with reduced geometry—
3D points or 2D planes. What if we want to peer into the entire volume at once?
This is known as direct volume rendering. There are a number of ways to do this.
One of the most common is to create many parallel interpolated color cutting
planes and composite (blend) them back-to-front. This works well as long as
you keep two things in mind:

1. As the eye moves, the planes need to be reoriented to always be per-
pendicular to the viewing direction, so that you never see the sides of a
plane.

2. If you want OpenGL to do the compositing for you, you must draw the
planes scene-back-to-scene-front, relative to the eye position, regardless
of how the scene is oriented.

Instead of using that technique, we will describe a ray-casting approach,
because it’s a more interesting use of shaders. Once again, we will use dummy
quadrilaterals, not because we want to display quadrilaterals, but because we
want to compute some display colors and need a place to put them. We posi-
tion six quadrilaterals, looking like a cube, all one unit away from the origin, to
become the faces on which we will display the resulting fragments.

So envision the process this way. The volume data is in a 3D texture,
which you can think of as being bounded by the six quadrilaterals.1 You are sit-
ting on an arrow at one of the 3D fragments. Your task is to “fly” through the 3D
volume texture in a straight line, compositing colors as you go. You will paint
the final composited color onto the fragment at which you started your flight.

Starting at each fragment, we then need to choose a ray-casting direction.
We will start by choosing it in eye coordinates and will then convert it to tex-
ture coordinates, so that we can “fly” through the 3D texture. If we are using
an orthographic (parallel) projection, producing this direction is easy. Because
we are viewing the scene from the front, the direction will be (0, 0, –1) for all
fragments. If we are using a perspective projection, the tracing direction will
be a vector from the eye through the fragment being processed. We will use the
vertex shader to compute this vector for each vertex being processed, and then
let the rasterizer interpolate those vectors into each fragment.

1. This is only a loose analogy. The quadrilaterals, and thus the fragments, are in the 3D world coor-
dinate system. The volume data scalar values are in texture coordinates. We are going to force the
data volume inside the quadrilaterals with an equation that relates the quadrilaterals’ [–1.,+1.] world
space to the texture coordinates’ [0.,1.] space. Even though the quadrilaterals and the 3D volume
texture are in two different coordinate spaces, it is useful to think of them as being in the same space
with an equation that connects them.

3933D Scalar Data Visualization

After being multiplied by the ModelView matrix, each vertex lives in the
Eye Coordinate space in which the viewer’s eye position has been transformed
to (0,0,0). We convert both the eye and the vertex coordinates into texture space
like this:

vec4 vxyz = uModelViewMatrix*aVertex; // vertex -> eye coords
vec3 vstp = (vxyz.xyz + 1.) / 2.; // vertex -> tex coords
vec3 eye = (vec3(0.,0.,0.) + 1.) / 2.; // eye -> tex coords

So, a vector from the eye through the vertex will be
stpvec = vstp - eye;

Depending on how the volume has been rotated and translated, vstp
and eye could be well outside the range [0.,1.], even though they are supposed
to be in texture coordinates. This is OK. We really aren’t going to use their
values, except to get the vector between them, which we will eventually scale
to something smaller.

Now comes the tricky part. The vertex shader, shown below, takes its
scene rotation from the ModelView matrix. It uses this in two ways. It rotates
the cube quadrilaterals forward. This makes sense—we want the faces of the
volume to appear to rotate.

But the tricky part is that the vertex shader also rotates the casting
direction backward. Why is this? When we rotate the volume, we want it to
appear that the 3D data texture is rotating along with the cube faces. But in
OpenGL, textures themselves don’t transform; only the texture coordinates
do. Fortunately, transforming the texture is the inverse of transforming the
texture coordinates. So, if you want to make it look like the data texture is
rotating forward, you need to transform its texture coordinates backward.
Since the casting direction is in texture coordinate space, its coordinates must
be changed by the inverse of the desired texture transformation. In GLSL, to
rotate the casting direction backward, we multiply it by the inverse of the
ModelView matrix, encoded in the mat4 variable, uModelViewMatrixInverse.
This multiplication is operating on a vector, which has direction and magni-
tude, but no position. So, during that multiplication, we force the w compo-
nent of the casting direction to be zero, so that we don’t pick up any of the
uModelViewMatrixInverse translations.

The longest possible flight path through the 3D data texture is from cor-
ner to opposite corner, which would be 3 long in texture coordinates, so the
normalized casting distance is multiplied by 3. Then vDirSTP is divided by
uNumSteps, the number of steps that we want to take samples at along the cast-

394 15. Using Shaders for Scientific Visualization

ing flight path. So, now vDirSTP is how much s, t, and p will change with each
casting step in the fragment shader’s flight path.

const float SQRT3 = 1.73205; // longest path through a volume
 // that is 1x1x1 in texture coords

uniform int uNumSteps; // # of steps to take through the
 // volume

out vec3 vSTP0; // starting location in texture coords
out vec3 vDirSTP; // tracing step in texture coords

void main()
{
 vSTP0 = (aVertex.xyz + 1.)/2.; // Convert [-1.,+1.]->[0.,1.]

 // leave the STP alone, rotate the position forward,
 // rotate the Dir backward

 vec3 stpvec; // the vector to take through the volume
 // in texture coords

 if(<<we’re using orthographic projection >>)
 stpvec = vec3(0., 0., -1.); // all point in the
 // same direction

 if(<<we’re using perspective projection >>)
 { vec4 vxyz = uModelViewMatrix * aVertex;
 // where this vertex is in eye space
 vec3 vstp = (vxyz.xyz + 1.) / 2.;
 // where the vertex is in texture coords
 vec3 eye = (vec3(0.,0.,0.) + 1.) / 2.;
 // where the eye is in texture coords
 stpvec = vstp - eye;
 // in perspective, the direction is a vector from
 // the eye to the vertex
 }

 vDirSTP = normalize((uModelViewMatrixInverse *
 vec4(stpvec, 0.));
 vDirSTP *= SQRT3;
 vDirSTP /= float(uNumSteps);

 gl_Position = uModelViewProjectionMatrix * aVertex;
}

3953D Scalar Data Visualization

The fragment shader is where
all the interesting graphics hap-
pens. Its arrow starts “flying” at the
rotated model coordinate position of
its fragment and steps through the
data in the 3D volume, one vDirSTP at a time. If a step takes it outside the
volume, it ignores that value. At each step, it samples the data from the 3D
texture. Each of these samples is like a pixel with thickness, and so is called a
volume element, or voxel. If that scalar value is outside the desired [Min,Max]
range, the fragment shader doesn’t discard the fragment as we did before,
but sets the alpha value to 0. to indicate that this voxel makes no contribu-
tion to the final blended color along this flight path. Otherwise, it sets the
alpha value to some value read from a glman slider variable.2 If this voxel
does make a contribution to the final blended color, the scalar value from the
3D volume texture is converted into an RGB color, in this case using a rainbow
scale color transfer function.

The fragment shader composites data colors, as shown in Figure 15.16.
While the fragment shader will do the compositing front-to-back, it is

more intuitive to derive the equations by looking at the situation from back-
to-front. For the simple three-voxel example above, let’s see what color will
ultimately get displayed in this fragment, by breaking each step into its own
equation. The arrow starts at the back of the volume, in this case voxel #2. It
uses voxel #2’s alpha value to blend the black background color with voxel
#2’s own color. It then moves forward and uses voxel #1’s alpha value to blend
the current color with voxel #1’s own color. It then moves forward and contin-
ues the process:

color12 = α2 * color2 + (1 − α2) * black,

color01 = α1 * color1 + (1 − α1) * color12,

color* = α0 * color0 + (1 − α0) * color01,

We can algebraically combine these equations into one equation, like this:

 color color color
color colo

∗ = ∗ + −() ∗{ }
= ∗ + −() ∗ ∗
α α
α α α

0 0 0 01

0 0 0 1

1
1 rr color

color color

121 1

0 0 0 1 1 1

1

1 1

+ −() ∗[]{ }
= ∗ + −() ∗ ∗ + −() ∗

α

α α α α α22 2 21∗ + −() ∗ { }color blackα .

2. Using one alpha value for all voxels is a concession to keeping this code segment small and read-
able. Normally, you would get the proper alpha as a function of the scalar value to reflect what data
ranges you are most interested in seeing.

Figure 15.16. Determining the overall blending equation for
multiple colored voxels.

396 15. Using Shaders for Scientific Visualization

Expanding everything gives

color* = α0 * color0 + (1 − α0) α1 * color1 + (1 − α0)(1 − α1) α2

 * color2 + (1 − α0)(1 − α1) (1 − α2)black.

There’s a pattern here, so let’s look at how this appears when we move
front-to-back. The fragment shader keeps a running alpha value called α* (astar
in the code below) and a running RGB color value called color* (cstar). The
variable α* is the transparency factor that the next voxel’s contribution will be
multiplied by, and color* is the combined color so far. These get updated with
every step taken. The final value of color*

 is then displayed at that fragment.
Why do it front-to-back when back-to-front seems more intuitive? The

reason is that we can usually obtain significant time savings this way. If α* ever
becomes 0., this means that the arrow has encountered a completely opaque
voxel and, thus, no data beyond that point will count toward the final color,
so the code can safely break out of the loop. This may not sound like much,
but over the course of thousands of fragments and hundreds of steps at each
fragment, it can really add up!

const float SMIN = 0.;
const float SMAX = 120.;

uniform float uMin;
uniform float uMax;
uniform sampler3D uTexUnit;
uniform float uTol;
uniform int uNumSteps;
uniform float uAmax;

in vec3 vSTP0; // starting texture location
in vec3 vDirSTP; // tracing step

out vec4 fFragColor;

void main()
{
 float astar = 1.;
 vec3 cstar = vec3(0., 0., 0.);
 vec3 STP = vSTP0;

 for(int i = 0; i < uNumSteps; i++, STP += vDirSTP)
 {
 // keep looping if we’re out of bounds:

 if(any(lessThan(STP, vec3(0.,0.,0.))))

3973D Scalar Data Visualization

 continue;

 if(any(greaterThan(STP, vec3(1.,1.,1.))))
 continue;

 float scalar = texture(uTexUnit, STP).r;

 float alpha = uAmax;

 if(scalar < uMin)
 alpha = 0.;

 if(scalar > uMax)
 alpha = 0.;

 float t = (scalar - SMIN) / (SMAX - SMIN);
 vec3 rgb = Rainbow(t); // transfer functions like this
 // will be covered in the next
 // section

 cstar += astar * alpha * rgb;
 astar *= (1. - alpha);

 // break out if the rest of the tracing won’t matter:

 if(astar == 0.)
 break;
 }

 fFragColor = vec4(cstar, 1.);
}

Figure 15.17. The data volume shown with all colors present (left) and with the lower val-
ues culled and a reduced alpha (right).

398 15. Using Shaders for Scientific Visualization

Figure 15.17 shows the results of this shader.
In the left-hand image, uMin and uMax are set to
show all data values. Because you are looking at
everything, some key parts of the volume might be
obscured. It would then be very helpful if you cull
away the values you really have no interest in. In
the right-hand image, the low (blue) values have
been culled, giving us a much better view of the
shape of the middle-to-high values.

This same shader can be modified to pro-
duce isosurfaces as well. An isosurface is the locus
of points corresponding to a specific scalar value
in the volume, referred to as S*. All you have to

do is change the volume rendering fragment shader to consider, in its march
through the volume, only the first scalar value that is within a certain tolerance
of S*. An example of this is shown in Figure 15.18. The actual code to do this is
left as an exercise. (You knew that was coming, right?)

More on Transfer Functions

The mapping of a scalar value to its color was introduced in Chapter 8. This
mapping was glossed over in the shaders that we discussed earlier in this
chapter with the call to the Rainbow() routine. We should now look closer

Figure 15.19. Two different transfer functions applied to tsunami data off the coast of the
Aleutian Peninsula in Alaska. (Image courtesy of Chris Janik.)

Figure 15.18. Isosurface.

399More on Transfer Functions

at this. The mapping of data values to appearance
(i.e., color and transparency) is known as a color
mapping, and in the visualization world, the function
that applies this mapping is more generally called a
transfer function, color map, or color ramp. The appro-
priate use of transfer functions is a very important
issue. By using different transfer functions, you can
create very different mental models of patterns in
the data.

For example, in the tsunami wave simulation
display in Figure 15.19, the patterns in the data come
across quite differently, depending on the color
mapping.

Often, visualization programs have a user inter-
face for sculpting a transfer function. An example of
such a sculpted function is shown in Figure 15.20. In
this figure, the horizontal axis represents the range
of scalar values. The red, green, and blue lines show
how those color components change with respect
to scalar value (in this case implementing a heated
object scale). The white line is how alpha changes
with respect to scalar value. The background shows
a histogram of the data value frequency.3

Figure 15.21 shows how the temperature dis-
tribution point cloud of Figure 15.8 looks with the
heated object transfer function instead of the rain-
bow scale.

If you do not have a user interface for sculpting a transfer function, you
can easily write your own transfer function. The sources for functions that
implement the rainbow transfer function and the heated-object transfer func-
tion are shown here:
3.  Actually, we usually use the logarithm of the frequency, because often some of the data values, espe-

cially the lowest values, occur much more often than all the others. Without the log function, the
other values would scarcely be visible on the same set of axes. Many visualization programs have a
similar looking user interface for sculpting a transfer function.

Figure 15.20. Red, green, blue, and alpha
transfer function with the colors applied to
a data histogram.

Figure 15.21. Previously seen volume with
a different transfer function.

Same data + different mapping = different insights.

400 15. Using Shaders for Scientific Visualization

vec3
Rainbow(float t)
{
 t = clamp(t, 0., 1.);

// b -> c
 vec3 rgb = vec3(0., 4. * (t - (0./4.)), 1.);

 // c -> g
 if(t >= (1./4.))
 rgb = vec3(0., 1., 1. - 4. * (t - (1./4.)));

 // g -> y
 if(t >= (2./4.))
 rgb = vec3(4. * (t - (2./4.)), 1., 0.);

 // y -> r
 if(t >= (3./4.))
 rgb = vec3(1., 1. - 4. * (t - (3./4.)), 0.);

 return rgb;
}

vec3
HeatedObject(float t)
{
 t = clamp(t, 0., 1.);

 vec3 rgb = vec3(3. * (t - (0./6.)), 0., 0.);

 if(t >= (1./3.))
 {
 rgb.rg = vec2(1., 3. * (t - (1./3.)));
 }

 if(t >= (2./3.))
 {
 rgb.gb = vec2(1., 3. * (t - (2./3.)));
 }

 return rgb;
}

Figure 15.22 shows a gallery of common themes for color transfer func-
tions. Left to right and going down the gallery, these themes and some of their
common uses are described in Table 15.1.

401More on Transfer Functions

Figure 15.22. A gallery of color mappings.

Color Mapping Comments

Grayscale Black on one end and white on the other. It is simple and unambiguous. An
example use is in x-rays.

Brightness Black on one end and a solid color on the other.
Saturation Gray on one end and a solid color on the other. Sometimes this is used to rep-

resent the validity or confidence of the data. The grayest areas are the areas of
least confidence.

Two-color Interpolation between multiple colors. This is often used on maps to show
transitions from, say, desert to vegetation.

Rainbow Mimics the visible portion of the electromagnetic spectrum. This is very com-
mon to anyone who learned the ROYGBIV color mnemonic in grade school.

Two-color with a
neutral crossing

Common where crossing from one side to the other needs to convey a sense
of neutrality, such as electrical charge in a molecule.

Heated object The range of colors that you would see if you continuously heated a piece of
metal. It goes from black to red to yellow to white. Star temperatures work
this way too.

Contours Involves artificially adding a set of lines into a color scale. This then shows up
in your data as a set of contour lines.

Table 15.1. Some common color mappings and their common meanings.

402 15. Using Shaders for Scientific Visualization

For more examples, see [14], where transfer functions are called color
ramps and are discussed in some detail.

In the example shown in Figure 15.20, the fragment shader has taken a
data value from the 3D texture and applied the transfer function before dis-
playing it. But wouldn’t it just be easier to set the colors when the 3D texture
was first created and then read them directly from the texture? After all, this
would avoid a lot of per-fragment computation, wouldn’t it?

While this would work, there are two reasons we don’t like to do it this
way:

1. It forces us to recreate the 3D color texture every time we want to change
the transfer function.

2. The graphics color interpolation can turn out wrong.

The first reason is pretty obvious. By passing raw data through the graph-
ics pipeline, the fragment shader can instantly start using a new color transfer
function, depending on the value of an integer uniform variable. The input 3D
data texture never changes.

But the second reason is more subtle, and has to do with how the graph-
ics system interpolates through the rasterizer. Suppose we want to display a
heated metal bar that has a temperature of 0° at the left end and a temperature
of 100º at the right, as shown in Figure 15.23.

Figure 15.23. A bar with endpoints of different temperatures.

Figure 15.24. The bar above, but with a rainbow scale from left to right.

Figure 15.25. The bar above, but with colors interpolated from the end colors.

403Passing in Data Values with Your Geometry

Now suppose we want to use a rainbow scale, so that the left end is
blue, the right end is red, and the locations in between are colored as in Fig-
ure 15.24.

But suppose we take the naïve approach and draw the bar as a single
quadrilateral with blue at the left end and red at the right end, drawing the bar
using OpenGL smooth shading. Figure 15.25 shows what we would get. You
see that you have no control over what lies between the two ends.

Because OpenGL interpolates each color component separately, it has
no way to get the rainbow scale. In interpolating the left (r,g,b) to the right
(r,g,b), the red component would go from 0 to 1, the green component would
always be 0, and the blue component would go from 1 to 0. But if, instead, the
temperatures at the corners were given as variables to be interpolated, then
the interpolated temperatures throughout the quadrilateral could be mapped
to colors using your transfer function in the fragment shader, exactly as you
wanted.

Passing in Data Values with Your Geometry

So far we have dealt with data values that are just sort of “there” and have
created artificial underlying geometry in order to view them. But there are a
multitude of visualization problems in which data is
attached to a very specific underlying geometry. How
do we end up with the right colors being displayed
on the geometry as easily and as efficiently as pos-
sible? How would we know if the colors chosen for
Figure 15.26 are right?

The first approach is the non-shader way of
doing things with fixed-function OpenGL. It amounts
to doing the color mapping in the CPU part of the
application and using the rasterizer to interpolate the
colors. This is probably clearest if we use compatibil-
ity mode to describe the geometry:

 glBegin(GL_QUADS);
 < convert s0 to r0,g0,b0,a0 >
 glColor4f(r0, g0, b0, a0);
 glVertex3f(x0, y0, z0);
 . . .
 glEnd();

Figure 15.26. Example of assigning a sca-
lar value and its corresponding color, per
vertex. being drawn. (Image courtesy of
Chris Janik.)

404 15. Using Shaders for Scientific Visualization

This approach has worked for a long time with more or less success,
but for the reasons just discussed, it is not as good as it could be. The next
approach passes the original value with the vertex, rather than converting it
to a vertex color. This takes advantage of the GLSL attribute variables, which
can be attached to vertices and interpolated through the rasterizer:

 glBegin(GL_QUADS);

 glVertexAttrib1f(location, s0);

 glVertex3f(x0, y0, z0);

 . . .

 glEnd();

This ends up giving the fragment program the actual data values, which
can then be mapped into colors with the transfer function. Because there are
actually several different attribute-setting glVertexAttrib* routines, several
data values can be passed in for each vertex.

A variation on this approach is to be a little sneaky. You can also pass the
scalar data value in with one call to glVertex4f():

 glBegin(GL_QUADS);

 glVertex4f(x0, y0, z0, s0);

 . . .

 glEnd();

Normally the fourth element of glVertex4f() is defined to be the homo-
geneous coordinate, w. In this case, though, we have used the fourth element
to hold the scalar value at this vertex. However, the graphics pipeline still
wants that element to be the homogeneous w when the coordinates are multi-
plied by the ModelView and Projection matrices, so the first thing we need to
do in the vertex shader is to re-assign it to a varying variable and replace the w
coordinate with something sensible:

out float vScalar;

void main()

{

 ...

 vScalar = aVertex.w;

 gl_Position =uModelViewProjectionMatrix*vec4(aVertex.xyz, 1.);

}

405Terrain Bump-Mapping

Terrain Bump-Mapping

Terrain mapping is a visualization use of the height-field bump-mapping
we’ve seen before. Like the ripple bump-map shader we saw before, the idea
is to create the illusion of lots more geometry detail than we really have. In
fact, like the ripple example, the entire geometry is typically a single quad.

The geometry is a square quad, scaled to match the aspect ratio of the real
terrain area. That part of the .glib file looks like this:

Scale 1.2569 1. 1.
QuadXY .1 1.

This code shows the vertex shader. It sets up two variables for the frag-
ment shader: the texture coordinates and the model coordinate position. The
texture coordinates will be used to look up the terrain heights in a texture map.
The model coordinates will be used for lighting. (We use model coordinates
for lighting because we assume that, in the case of terrain, the light moves, but
the geometry doesn’t.)

out vec3 vMCposition;
out vec2 vST;

void main()
{
 vST = aTexCoord0.st;
 vMCposition = aVertex.xyz;
 gl_Position = aModelViewProjectionMatrix * aVertex;
}

This code shows the fragment shader. The heights are sampled from a data
texture. Like the ripple shader, it generates a normal by taking the cross prod-
uct of two tangent vectors. It uses the normal in a lighting model that applies
to a color that is selected based on elevation. The results of this shader, with
two different height exaggerations, are shown in Figure 15.27.

uniform float uLightX, uLightY, uLightZ; // light pos
uniform float uExag; // height exaggeration
uniform sampler2D uHgtUnit; // where to find heights
uniform float uLevel1; // green-to-brown
uniform float uLevel2; // brown-to-white
uniform float uTol; // soften the transition

in vec3 vMCposition;

406 15. Using Shaders for Scientific Visualization

in vec2 vST;

out vec4 fFragColor;

const float DELTA = 0.001;

const vec3 BLUE = vec3(0.1, 0.1, 0.5);
const vec3 GREEN = vec3(0.0, 0.8, 0.0);
const vec3 BROWN = vec3(0.6, 0.3, 0.1);
const vec3 WHITE = vec3(1.0, 1.0, 1.0);

const float LNGMIN = -579240./2.;
const float LNGMAX = 579240./2.;
const float LATMIN = -419949./2.;
const float LATMAX = 419949./2.;

const float HGTMAX = 2891;

#define FP_TEXTURE // if we are using a floating point texture
 // to contain the elevations, instead of a byte-texture

void main()
{
 vec2 stp0 = vec2(DELTA, 0.);
 vec2 st0p = vec2(0. , DELTA);

 float west = texture(uHgtUnit, vST-stp0).r;
 float east = texture(uHgtUnit, vST+stp0).r;
 float south = texture(uHgtUnit, vST-st0p).r;
 float north = texture(uHgtUnit, vST+st0p).r;

#ifndef FP_TEXTURE
 west *= HGTMAX;
 east *= HGTMAX;
 south *= HGTMAX;
 north *= HGTMAX;
#endif

 vec3 stangent = vec3(2.*DELTA*(LNGMAX-LNGMIN), 0.,
 uExag * (east - west));
 vec3 ttangent = vec3(0., 2.*DELTA*(LATMAX-LATMIN),
 uExag * (north - south));
 vec3 normal = normalize(cross(stangent, ttangent));
 float LightIntensity =
 (dot(normalize(vec3(uLightX,uLightY,uLightZ)-
 vMCposition),normal));
 if(LightIntensity < 0.1)
 LightIntensity = 0.1;

407Terrain Bump-Mapping

 float here = texture(uHgtUnit, vST).r;
#ifndef FP_TEXTURE
 here *= HGTMAX;
#endif
 vec3 color = BLUE;
 if(here > 0.)
 {
 float t = smoothstep(uLevel1-uTol, uLevel1+uTol, here);
 color = mix(GREEN, BROWN, t);
 }
 if(here > uLevel1+uTol)
 {
 float t = smoothstep(uLevel2-uTol, uLevel2+uTol, here);
 color = mix(BROWN, WHITE, t);
 }
 fFragColor = vec4(LightIntensity*color, 1.);
}

We need to talk a little more about the elevation data-texture. Every so
often, you see a line that looks like this:

#ifndef FP_TEXTURE

In our case, we hid the elevations in an OpenGL floating-point texture.
This is a handy way to do it, because you can store the elevations exactly as
their actual decimal values. When you sample that texture, you get correct
values back out. However, some graphics systems cannot handle float-point
textures, or handle them slowly. In that case, you would store the eleva-

Figure 15.27. Terrain map of Oregon, USA. Height exaggeration = 1. (left) and 5. (right)

408 15. Using Shaders for Scientific Visualization

tions in an unsigned-byte texture, but in doing so,
you would first need to quantize the entire range of
heights into the range 0–255. When GLSL samples
this type of texture, it returns a range of 0. (corre-
sponding to the unsigned byte 0) to 1. (correspond-
ing to 255). To un-quantize these elevations, they
must be multiplied by the maximum height. By
using pre-processor directives, this shader code can
handle it both ways.

As we discussed before, one of the great things
about bump-mapping is that it is performed per-
pixel. This means that as you zoom in, you just keep
sampling the elevation texture finer and finer. In this
example, we used a 2048 × 1152 texture, so we are
able to zoom in quite a bit, as shown in Figure 15.28.4

Flow Visualization

Flow visualization is a common problem in scientific visualization that arises
when simulating moving fluids or particles. In these cases, it is useful to
show the paths that are being taken as the fluid or particles move through the
volume.

2D Line Integral Convolution

Cabral and Leedom were the first to demonstrate the line integral convolution
(LIC) technique [6] that smears the pixels of an image in the direction of a 2D
flow field and thus shows the entire flow field at a glance. This algorithm can
be implemented well in a fragment shader. Typically, this fragment shader
takes two input image textures, one for the base image and one that has had
the flow field function encoded in it. Let’s look at this base image texture first.

The base image is going to be smeared in the direction of the flow at each
pixel. We almost don’t care what this base image is. It is usually white noise,
but it can also be your favorite personal photo as well. The biggest concern is
that there are no distinct patterns in it that might be mistaken for flow informa-
tion. This is why white noise is such a good choice.

4. To create this texture, we wrote a software tool that takes a longitude-latitude range from the US
Geological Survey National Elevation Dataset (USGS-NED) [44] and creates the .tex file.

Figure 15.28. Zooming on the Willamette
Valley, Oregon, USA.

409Flow Visualization

The second texture is to encode the flow field. A 2D flow field has a (vx,vy)
velocity component pair at every point in the field. A good way to capture this
is with a 2D texture, letting the y component be represented by red and the
y component by green. With floating point textures, the exact (vx,vy) can be
stored in each texel’s (r,g).

There is an unfortunate nuance here, though. Many graphics cards do not
yet accelerate bilinear sampling of floating point textures. However, nearest-
neighbor sampling of data such as a flow field often results in a very “chunky”
looking display. If you are using such a graphics card, then a better solution is
to represent the flow velocities in an unsigned byte texture. For example, a 2D
circular flow field would be represented by a red scale that shows black for a
negative x component and red for positive, and black for a negative y
component and green for positive, as shown in Figure 15.29.

When these components are combined, the resulting 2D texture
field looks like Figure 15.30. For example, the lower-right corner is yel-
low because it has both a positive x and y velocity component. The
arrows in this figure show the direction that a circular LIC visualiza-
tion would take.

In practice, we don’t actually care what the texture looks like, and
we rarely look at it except for fun. In fact, it is usually very difficult to
tell from the image just what the flow field really is. We don’t care. We
just care about the data that is hiding in it.

Most of the work of LIC is in the fragment shader shown here:

uniform int uLength;
uniform sampler2D uImageUnit;
uniform sampler2D uFlowUnit;

in vec2 vST;

out vec4 fFragColor;

void main()
{

Figure 15.29. Example color components for a 2D flow field.

Figure 15.30. Using
color components to
encode flow velocities.

410 15. Using Shaders for Scientific Visualization

 // starting location:

 vec2 v = texture(uFlowUnit,vST).xy;

 vec3 color = vec3(texture(uImageUnit, vST));

 vec2 st = vST;
 for(int i = 0; i < uLength; i++)
 {
 st += v;
 st = clamp(st, 0., 1.);
 color += vec3(texture(uImageUnit, st));
 }

 st = vST;
 for(int i = 0; i < uLength; i++)
 {
 st -= v;
 st = clamp(st, 0., 1.);
 color += vec3(texture(uImageUnit, st));
 }

 color /= float(uLength + uLength + 1); // divide by # of
 // samples
 fFragColor = vec4(color, 1.);
}

Figure 15.31 shows how this fragment shader works when applied to a
noise image.

Figure 15.31. The circular LIC applied to a noise image. Left: length = 0 (the original image).
Right: length = 50.

411Flow Visualization

3D Line Integral Convolution

The same process can be used in 3D. Here, we have generated a 3D positional
noise texture and a floating point 3D flow texture in which the x, y, and z flow
directions have been encapsulated in the r, g, and b components of the texture,
simply extending the 2D approach above. Again, most of the work is done in
the fragment shader:

uniform int uLength;
uniform float uTol;
uniform float uScale;
uniform sampler3D uImageUnit;
uniform sampler3D uFlowUnit;

in vec3 vSTP;

out vec4 fFragColor;

void main()
{
 float Res = float(textureSize(uFlowUnit, 0).s);

 // flow field direction:

 vec3 v = texture(uFlowUnit, vSTP).xyz;
 v *= uScale;
 v /= Res;

 // starting location:

 vec3 stp = vSTP;
 vec3 color = texture(uImageUnit, stp).rgb;

 for(int i = 0; i < uLength; i++)
 {
 stp += v;
 stp = clamp(stp, 0., 1.);
 vec3 new = texture(uImageUnit, stp).rgb;
 color += new;
 }

 stp = vSTP;
 for(int i = 0; i < uLength; i++)
 {
 stp -= v;
 stp = clamp(stp, 0., 1.);
 vec3 new = texture(uImageUnit, stp).rgb;
 color += new;
 }

412 15. Using Shaders for Scientific Visualization

 color /= float(uLength + uLength + 1);
 fFragColor = vec4(color, 1.);
}

The geometry used here was a 3D box, containing only noise, to show the
flow field on the outside of the volume. Volume rendering techniques could
(and should) be used to see inside the volume. (This is left as an exercise.)
Figure 15.32 shows the resulting image for four different convolution lengths.

The flow field equation used here is flow around a corner [24]:

 v x x y z
v x x z z
v x x y z

x

y

z

= − + − +() −
= − − +
= + − +() − +

3 6 4 1 4
12 4 12 4
3 4 4 1 6

2 2

,
.

44 1y z+() .

Figure 15.32. 3D line integral convolution (top left: length = 0, top right: length = 5, bottom
left: length = 10, bottom right: length = 20).

413Flow Visualization

Extruding Objects for Streamlines

If you place a weightless ping-pong ball in a 3D flow field and trace where it
goes, the result will be a 3D streamline. Streamlines are useful in visualization
because they give an animation “snapshot” of what is happening in the field
and thus are good for helping viewers discern flowfield patterns. Now imag-
ine that you are driving a small car along the streamline. The car has a direc-
tion in which it is traveling, and it feels like the centrifugal force is pushing
you to the outside of the curve you are currently traveling through. There are
mathematical terms for these directions. Let’s name the curve you are driving
on in the original flow field P(t). The direction you are traveling is called the
tangent and is denoted by T(t). The direction that points to the center of the
curve is the normal, denoted by N(t), and a vector perpendicular to both of
these is the binormal, denoted by B(t). If you have the function P(t) describing
the curve and the function has first and second derivatives, you can get all
three of these quantities with the Frenet equations:

T t P t

B t P t P t

N t B t

() = ′()()
() = ′()× ′′()()
() =

normalize

normalize

,

,

(()× ()T t .

If you have a discrete series of points for the curve instead of a continu-
ous curve, then you can still approximate P(t) by treating the curve as piece-
wise linear or perform some other interpolation through the points. For each
point on the curve, then, the parameter t is the fraction of the total distance that
this point is along the combination of linear pieces.

Together, these three vectors constitute a moving coordinate system, or
frame, along the curve. Knowing these characteristics of this curve, we can take a
simple object and extrude it along the curve with the following transformation:

′
′
′

=

x
y
z

Tx Nx Bx X
Ty Ny By Y
Tz Nz Bz Z

1 0 0 0 1

x
y
z
1

.

In this matrix, (x,y,z) are the points on the original (unwarped) object and
Tx, Nx, Bx, etc., are the components of the tangent T, normal N, and binormal
B that make up the coordinate frame at (X,Y,Z). The point (X,Y,Z) is the point
in 3-space where we want the point (x,y,z) to be translated to after it has been
reoriented.

414 15. Using Shaders for Scientific Visualization

When you apply this warp operation to a geometric object such as a cylin-
der, you get a representation of the path an object would take in the flow field.
We call this general warped object a streamtube. We will show the behavior of this
warp operation on the glman geometric arrow object defined with the command

 Xarrow 200

This defines an arrow with 200 slices from left to right,
aligned with the x axis, as shown in Figure 15.33. This large num-
ber of slices gives the arrow enough vertices for the vertex shader
to produce a smooth warp.

In an application, you would normally pass in details about
the flow field through a texture or other data structure. To simplify
things here, we will just hard code the vertex shader to twist the
arrow into a spiral. The properties of the spiral are defined by the
glman uniform slider variables uN and uK that control the number
of twists in the warped arrow and the total x-length of the warped
arrow, respectively. Here is the vertex shader code to do this:

const float R = 2.;
const float PI = 3.14159265;
const float TWOPI = 2.*PI;
const float HALFWIDTH = 0.10;

uniform float uN;
uniform float uK;
uniform float uPeristaltic;
uniform float uSpeed;
uniform float Timer;

out float vColor;
out float vLightIntensity;

const vec3 LIGHTPOS = vec3(5., 5., 10.);

void main()
{
 vColor = aColor;

 vec3 vertex = aVertex.xyz;

 float t = (vertex.x + 1.) / 2.; // change [-1.,1.]
 // to [0.,1.]

 float timer = fract(uSpeed*Timer);
 if(timer-HALFWIDTH <= t && t <= timer+HALFWIDTH)

Figure 15.33. The original,
unwarped arrow object.

415Flow Visualization

 {
 float mag = 1.+uPeristaltic*(1.+cos(PI*(t-timer)/
 HALFWIDTH))/2.;
 vertex.yz *= vec2(mag,mag);
 }

 float x = R*cos(TWOPI*uN*t);
 float y = R*sin(TWOPI*uN*t);
 float z = uK * t;

 float xd = -R*TWOPI*uN*sin(TWOPI*uN*t);
 float yd = R*TWOPI*uN*cos(TWOPI*uN*t);
 float zd = uK;

 float xdd = -(TWOPI*TWOPI*uN*uN) * x;
 float ydd = -(TWOPI*TWOPI*uN*uN) * y;
 float zdd = 0.;

 vec3 T = normalize(vec3(xd,yd,zd));
 vec3 B = normalize(cross(vec3(xd,yd,zd),
 vec3(xdd,ydd,zdd)));
 vec3 N = normalize(cross(B,T));

 vec3 xyz = vec3(0., vertex.y, vertex.z);

 float xp = dot(vec3(T.x,N.x,B.x), xyz);
 float yp = dot(vec3(T.y,N.y,B.y), xyz);
 float zp = dot(vec3(T.z,N.z,B.z), xyz);

 vec3 newposition = vec3(x+xp, y+yp, z+zp);
 vec3 tpos = vec3(uModelViewMatrix *
 vec4(newposition, 1.));

 float nxp = dot(T, aNormal);
 float nyp = dot(N, aNormal);
 float nzp = dot(B, aNormal);
 vec3 newnormal = vec3(nxp,nyp,nzp);
 vec3 tnorm = normalize(uNormalMatrix * newnormal);

 vLightIntensity = dot(normalize(LIGHTPOS - tpos), tnorm);
 vLightIntensity = abs(vLightIntensity);

 gl_Position = uModelViewProjectionMatrix *
 vec4(newposition, 1.);
}

This vertex shader and a very standard fragment shader give you the warped
arrow object shown in Figure 15.34.

416 15. Using Shaders for Scientific Visualization

You may have noticed the uniform variable called uPeristaltic. This
glman uniform slider variable lets us create a dynamic visualization trick that’s
much easier to achieve with shaders. This shader uses the glman built-in Timer
variable to cause part of the arrow to bulge, and the bulge travels with time.
This is another example of two-pieces-of-information-for-the-price-of-one
display. The full arrow shows the entire streamtube, and the moving bulge
shows relative velocity, as shown in Figure 15.35. This is definitely one exam-
ple worth running! It has a pig-in-the-python look to it, and is either one of
the most interesting shader applications you will ever see, or one of the most
disgusting.

Geometry Visualization

The GLSL geometry shader makes some additional techniques available for
visualization applications. Here we discuss only two, but as the geometry
shader capability becomes more widely available, we recognize that many
more will be developed.

Silhouettes

Techniques for creating silhouettes were discussed earlier in Chapter 12. They
are included again here because silhouettes are a valuable technique for visual-
izing 3D geometry. Figure 15.36 shows a carbon-50 molecule without and with
silhouettes. Notice how the silhouettes make the outside edges of individual
atoms a lot crisper and serve to help define the overall shape of the object.

Figure 15.34. The warped arrow. Figure 15.35. The warped arrow
with the peristaltic bulge.

417Geometry Visualization

Hedgehog Plots

The hedgehog plot is a visualization technique that uses a series of spikes per-
pendicular to a surface to give a sense of the shape of that surface. In computer
graphics, we often use flat surfaces with different normals at the vertices, com-
bined with smooth shading, to give the appearance of smooth surfaces. Using
a geometry shader, we can also use the same input to create these spikes and
produce a hedgehog plot of the surface.

The basic idea is shown in Figure 15.37. A triangle with separate normals
at its vertices is passed to a geometry shader. The geometry shader then subdi-
vides the triangle and interpolates the normals for each vertex in the new tri-
angles, and also creates the line segments for the spikes. This is progressively
shown from left to right as additional subdivisions are created.

Figure 15.37. The original triangle with vertex normals (left) and with additional normals as the triangle is
subdivided.

Figure 15.36. A carbon-50 (buckyball) molecule without (left) and with (right) silhouettes.

418 15. Using Shaders for Scientific Visualization

The hedgehog plot geometry shader is shown below. It takes triangles
as inputs and outputs line strips. As these are single line spikes, it would be
more efficient to output line segments, but these are not allowed as the output
from a geometry shader. For fun, a uDroop variable has been added so that this
shader can also do simple hair.

#version 330
#extension GL_EXT_geometry_shader4: enable

layout(triangles) in;
layout(line_strip, max_vertices=1024) out;

uniform int uDetail;
uniform float uDroop;
uniform int uLength;
uniform float uStep;

in vec3 vNormal[3];
in vec4 vColor[3];

out vec4 gColor;

vec3 Norm[3];
vec3 N0, N01, N02;
vec4 V0, V01, V02;

void
ProduceVertices(float s, float t)
{
 vec4 v = V0 + s*V01 + t*V02;
 vec3 n = normalize(N0 + s*N01 + t*N02);

 for(int i = 0; i <= Length; i++)
 {
 gl_Position = uProjectionMatrix * v;
 gColor = vColor[0];
 EmitVertex();
 v.xyz += Step * n;
 v.y -= uDroop * float(i*i);
 }
 EndPrimitive();
}

void main()
{
 V0 = gl_PositionIn[0];
 V01 = (gl_PositionIn[1] - gl_PositionIn[0]);
 V02 = (gl_PositionIn[2] - gl_PositionIn[0]);

419Geometry Visualization

 Norm[0] = vNormal[0];
 Norm[1] = vNormal[1];
 Norm[2] = vNormal[2];

 if(dot(Norm[0], Norm[1]) < 0.)
 Norm[1] = -Norm[1];

 if(dot(Norm[0], Norm[2]) < 0.)
 Norm[2] = -Norm[2];

 N0 = normalize(Norm[0]);
 N01 = normalize(Norm[1] - Norm[0]);
 N02 = normalize(Norm[2] - Norm[0]);

 int numLayers = 1 << uDetail;

 float dt = 1. / float(numLayers);
 float t = 1.;

 for(int it = 0; it <= numLayers; it++)
 {
 float smax = 1. - t;

 int nums = it + 1;
 float ds = smax / float(nums - 1);

 float s = 0.;
 for(int is = 0; is < nums; is++)
 {
 ProduceVertices(s, t);
 s += ds;
 }

 t -= dt;
 }
}

In Figure 15.38 we see the hedgehog shader applied to the cow dataset,
which has normals at each vertex. You can see that indeed, when the spikes
are short, they do give insight into the shape variations (for example, look at
the cow’s nose). Note also that each vertex has multiple spikes, corresponding
to different triangles in the modeling. However, you can also see that when
the normals are too long, the image turns from something insightful into a
frightening Chia Pet.

420 15. Using Shaders for Scientific Visualization

Exercises

1. You have been given the Rainbow() and HeatedObject() color mapping
routines. Now write: GrayScale(), BlackGreen(), GrayGreen(),
GreenBrown(), BlueWhiteRed(), and RainbowWithContours().

2. Sometimes it is useful to not show the scalar value as a continuous range
but as a series of stepped values. This is called quantizing. Redo the vol-
ume tracing, but with quantized scalar values. The results should look
something like the right-hand image in Figure 15.39.

3. Add a tolerance, uTol, to the volumetrace shader, as shown in Fig-
ure 13.40.

4. Add lighting to the volumetracing shader, as shown in Figure 15.41.
Hint: to do this, you need to have surface normals, but a volume has
no surface, so it shouldn’t have normals. Fortunately, volume data has
pseudo-normals, which can be used like real surface normals. You com-
pute a pseudo-normal at a particular location by taking the gradient
there,

n S
x

S
y

S
z

=

∂
∂

∂
∂

∂
∂

, , ,

 that is, by sampling scalar values around the point where you are now.

Figure 15.38. A cow’s head showing detailed surface normals (left) compared with the “Chia Pet” cow (right).

421Exercises

Figure 15.39. Volume rendering with quantized scalar values.

Figure 15.40. Volume rendering with tolerances on the scalar values.

Figure 15.41. Volume rendering with lighting.

422 15. Using Shaders for Scientific Visualization

5.  Set the tolerance in the lighted volume shader, as shown in Figure 15.42.
6. Redo the 3D line integral convolution example with a solenoid flow vol-

ume:
v yz x y

v xz x z

v xy x y

x

y

z

= +()
= +()
= +()

2 2

2 2

2 2

,

,

.

 This is shown in Figure 15.43.

Figure 15.42. Volume rendering with lighting and tolerances.

Figure 15.43. 3D line integral convolution.
(Image courtesy of Vasu Lakshmanan.)

Figure 15.44. A decimated line integral convo-
lution. (Image courtesy of Vasu Lakshmanan.)

423Exercises

7. Redo the 3D line integral convolution example to perform volume ren-
dering instead of just showing the outside of the volume.

8. Volume-rendered 3D line integral convolutions are very cluttered. Find
ways to selectively decimate the volume so that the entire volume is not
filled, as shown in Figures 15.43 and 15.44.

9. Adapt the direct volume rendering shader to render isosurfaces as shown
in Figure 15.18, repeated above. Let the user give the S* value on a slider.
Use lighting as discussed in Exercise 4 above.

This page intentionally left blankThis page intentionally left blank

425

Serious Fun16

One of the great things about computer graphics is that it gives you the ability
to create exciting images by simulating a number of special effects. It’s a way
to have fun and still convince people that you are doing serious work, which is
why we have entitled this chapter “Serious Fun.” We think you will find these
effects to be both interesting and informative.

This chapter is something of a potpourri—or perhaps a bag of magic
effects. The first area we will explore is light interference, through both a dif-
fraction grating and an oil slick. The interaction of light with different parts of a
surface creates some exciting surface effects that we explore with shaders. The
next area is lenses that bend light as it passes through them, and we explore the
way a lens affects our view of space by looking at lenses within a cube map.
The third area is atmospheric effects and how they capture and distribute light

426 16. Serious Fun

within a scene, and we consider the familiar rainbow and the common, but
perhaps less familiar, glory effect by simulating them with shaders and putting
them in the context of scenes. We go on to note the various ways you can cre-
ate an interesting path from zero to one and how we can manipulate motion
with these techniques. Fog is next on the list, and we show how we can make
fog more interesting by applying noise techniques to vary the fog’s density.
We then look at morphing (some might say “abusing”) 3D geometry. A short
excursion into a different kind of exploration gives us algorithmic art, where
we operate on either pixels or texels to create some new kinds of 2D images.
We then consider the concept of information in an image and explore a way
we can provide information with pure motion. We close with a bang, with an
explosion shader that the geometry shader makes possible. This gives you an
indication of just how many things you can do with shaders, and we would
love to hear from you, via the book’s website, about your own creations.

Light Interference

The general concept of light interference is that two light waves can interfere
with each other, reinforcing each other at times or canceling each other at

Figure 16.1. How a CD or DVD acts as a diffraction grating.

427Light Interference

times. This effect can vary across a surface, changing the colors we see at dif-
ferent points. There are many ways this can happen, but we will look at two:
diffraction gratings, such as the grooves on a CD or DVD, and oil slicks.

Diffraction Gratings

A diffraction grating is a surface containing a set of parallel lines that are very
close together, as illustrated in Figure 16.1. One common example of this is the
surface of a CD or DVD, in which case the “parallel lines” are concentric rings.
On a CD, the distance d between adjacent tracks is 1600 nm, while on a DVD,
d is 740 nm.

In this figure, we see that light arrives at a surface containing a diffrac-
tion grating with distance d between the grooves. The light arrives with an
incident angle Φi with respect to the plane of the surface. It bounces in all
directions, and some of it reflects toward the eye with a reflective angle Φr.
Because the distance d between the grooves is very small with respect to
the light and viewing distances, we will treat multiple rays as if they were
parallel.

On the way to the surface, the light along path B travels d * cos(Φi) farther
than the light along path A, while on the way from the surface to the eye, the
light along path A travels d * cos(Φr) farther than along path B. The absolute
difference between the lengths of the paths is

∆ Φ Φ= ∗ −()d i rcos cos .

If the difference ∆ is a multiple of the light’s wavelength λ, mλ, then the
waves of the two paths are in phase and that wavelength is reinforced. So the
wavelengths λ* that we see in this type of situation are all defined by

λ∗ =
∗ −()d

m
i rcos cos

.
Φ Φ

 We know the values of Φi , Φr , and d. We just need to see what, if
any, integer values of m would give us wavelengths in the visible spectrum.
The following code shows the vertex shader. The eye coordinate position
is retained, as well as the transformed tangent vector. Because the grooves
are circular, the tangent vector to the grooves at a point (x, y) on the cir-
cle is (–y, x). This is computed by the vertex shader to use in the fragment
shader.

out vec3 vECposition;
out vec3 vTransfTangent;

428 16. Serious Fun

void
main()
{
 vECposition = (uModelViewMatrix * aVertex).xyz;
 vTransfTangent = uNormalMatrix * vec3(-aVertex.y,
 aVertex.x, 0.);
 vTransfTangent = normalize(vTransfTangent) ;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

The fragment shader for the CD/DVD simulation is shown here:

uniform float uLightX, uLightY, uLightZ; // from a slider
uniform float uD; // from a slider

in vec3 vECposition;
in vec3 vTransfTangent;

out vec4 fFragColor;

const float LAMBDAMIN = 400.; // blue
const float LAMBDAMAX = 600.; // red
const vec4 GRAY = vec4(.2, .2, .2, 1.);

int
AssignRGB(in float lambda, out vec3 color)
{
 if(lambda < LAMBDAMIN || lambda > LAMBDAMAX)
 return 0;

 float t = (lambda - LAMBDAMIN) / (LAMBDAMAX - LAMBDAMIN);
 color = Rainbow(t);
 return 1;
}

void main()
{
 vec3 ToLight = normalize(vec3(uLightX,uLightY,uLightZ)
 -vECposition);
 vec3 ToEye = normalize(vec3(0.,0.,0.)
 -vECposition);

 float sum = dot(ToLight,vTransfTangent)
 +dot(ToEye,vTransfTangent);
 float delta = uD * abs(sum);

 int mmin = int(floor(delta / LAMBDAMAX));

429Light Interference

 int mmax = int(ceil(delta / LAMBDAMIN));

 fFragColor = GRAY;
 if(mmin > 0)
 {
 vec3 color = vec3(0., 0., 0.);
 int count = 0;
 for(int m = mmin; m <= mmax; m++)
 {
 float lambda = delta / float(m);
 vec3 col;
 int status = AssignRGB(lambda, col);
 if(status > 0)
 {
 color += col;
 count++;
 }
 }

 if(count > 0)
 fFragColor = vec4(color / float(count), 1.);
 }
}

Two vectors are created in this
fragment shader. One vector goes from
the fragment toward the light position
(which is specified externally on sliders
when this is used with glman), and one
goes toward the eye position (which
is at (0., 0., 0.)). Each of these is dotted
with vTransfTangent, the tangent vec-
tor to the groove, which is parallel to the
grooves at this fragment and acts like the
“light channel” there.

These dot products tell us how
much of each of these vectors lies in the
direction of the transformed tangent.
Because of the direction of these three vectors, one of the dot products will be
positive and one will be negative. Because our equation calls for a subtraction
and an absolute value,

∆ Φ Φ= ∗ −()d i rcos cos ,

Since the dot product distributes
over vector addition, the first line of
code could have been simplified as

float sum = dot(

ToLight+ToEye,

TransfTangent);

We didn’t do that here, because this
construct looks confusingly like
the “halfway vector” often used in
the specular lighting equation. It’s
not. Remember this distinction, so
you are not tempted to add them
together and normalize the result.

430 16. Serious Fun

we can simply add the two dot products together.

float sum = dot(ToLight, TransfTangent) + dot(ToEye,

 TransfTangent);

float delta = D * abs(sum);

From this, Δ is computed and the wavelength equation is inverted to give
us the required integer multipliers as a function of wavelength:

m
d i r=
∗ −()cos cos

.
Φ Φ

λ

When the minimum and maximum wavelengths are substituted into this
equation, we have the maximum and minimum integer multipliers, mmax and
mmin respectively, for visible light. The fragment shader loops through these inte-
ger multipliers and computes a color for each one using the Rainbow() function

that we used in the transfer function discussion in Chapter 15.
That function is a reasonably good approximation of the visible
portion of the electromagnetic spectrum, and it gives us a color
distribution that looks like Figure 16.2.

It may be the case that for some points on the surface,
mmin ≠ mmax. In those cases, we compute the colors for each
wavelength and average the results. When we put all of this
together, we get a final effect that looks like Figure 16.3.

This kind of diffraction effect is found in many places in
nature, such as bird feathers and butterfly wings. Our ability to
model the effect does not make it any less wonderful in nature!

Figure 16.2. Hue spectral changes.

Figure 16.3. CD diffraction
shader.

431Light Interference

Oil Slicks

An oil slick is caused by a thin film of oil on top of water. It is
very common to see these in streets and parking lots, espe-
cially right after a rain when it has not rained in a while. As
shown in Figure 16.4, the light is partially reflected from
the top surface of the oil and partially refracted down
into the oil. At the oil-water interface, the light is reflected
upward, and the reflected light then passes through the
oil surface back into the air. The interference between the
directly reflected and the refracted-then-reflected light
causes the oil slick’s visual effect.

Here we see a similar computation of the wave-
lengths, but there is an interesting twist because the light
undergoes a 180° phase change at the oil-water interface.
The light that comes from the interface has a slightly lon-
ger path, which we will assume is simply 2d longer. The
refractive index η of the oil means that the light in the oil has wavelength
λout = λ/η, and the phase change means that the light coming out of the oil is a
half wavelength out of phase with light that went in. The two light waves will
then cancel if the added distance is a multiple of the wavelength of the light in
the oil, 2d = m * λout. The light waves will reinforce each other if the distance is
a half wavelength off such a multiple, 2d = (m + 0.5) * λout. So the wavelengths
that we see in an oil slick are all defined by

λ
λ∗ =

+
2

0 5
d

m .
.

We know d and η. We just need to see what, if any, integer values of m
would give us wavelengths in the visible spectrum. We will assume that the oil
on top of the water is in the shape of decaying exponential “hump,” perturbed
with a noise function. The vertex shader, then, records the current position in
that hump and the location of the center center of the hump.

out vec3 vMCposition;
out vec3 vCenter;

void main()
{
 vCenter = vec3(0., 0., 0.);
 vMCposition = aVertex.xyz;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

Figure 16.4. Light interacting with a
thin oil film over water.

432 16. Serious Fun

The fragment shader computes the height, applies the noise function to
the radius of the current point, and uses it to compute the decaying-exponen-
tial hump height, d. It then inverts the equation

λ
λ∗ =

+
2

0 5
d

m .

to become

m d
= −

2 0 5η
λ

.

so that, like the DVD example, a minimum and maximum multiple can be
computed. Those multiples are looped through, computing a wavelength at
each, which is then turned into an RGB:

uniform sampler3D Noise3;
uniform float uMaxHeight; // variables from sliders
uniform float uNoiseMag;
uniform float uA;

in vec3 vMCposition;
in vec3 vCenter;

out vec4 fFragColor;

const float ETA = 1.4; // oil index of refraction
const float LAMBDAMIN = 400.; // blue
const float LAMBDAMAX = 600.; // red
const vec4 BLACK = vec4(0., 0., 0., 0.);

int
AssignRGB(in float lambda, out vec3 color)
{
 if(lambda < LAMBDAMIN || lambda > LAMBDAMAX)
 return 0;

 float t = (lambda - LAMBDAMIN) / (LAMBDAMAX - LAMBDAMIN);
 color = Rainbow(t);
 return 1;
}

void
main()

433Lens Effects

{
 vec4 nv = texture(Noise3, vMCposition);
 float rad = distance(vMCposition.xy, vCenter.xy) +
 uNoiseMag * (nv.r - 0.5);

 float d = uMaxHeight * exp(-uA*rad*rad);
 int mmin = int(floor(2.*d*ETA/LAMBDAMAX - .5));
 int mmax = int(ceil(2.*d*ETA/LAMBDAMIN - .5));

 fFragColor = BLACK;
 if(mmin > 0)
 {
 vec3 color = vec3(0., 0., 0.);
 int count = 0;
 for(int m = mmin; m <= mmax; m++)
 {
 float lambda = 2.*d*ETA / (float(m) + .5);
 vec3 col;
 int status = AssignRGB(lambda, col);
 if(status > 0)
 {
 color += col;
 count++;
 }
 }

 if(count > 0)
 fFragColor = vec4(color / float(count), 1.);
 }
}

Figure 16.5 shows the effect of this function. As you would
expect, the appearance of the oil slick can be changed dramati-
cally by changing the values of uA and uNoiseMag, which, of
course, is part of the fun!

Lens Effects

It can be very interesting to add lenses to a scene and to see how the scene
looks through a lens. In this section, we will review the way light interacts
with a single lens (more lenses takes us deeply into optics) and see how that
can be used to create the effect of a lens in the scene.

Figure 16.5. Results of the
oil-slick shader.

434 16. Serious Fun

For any lens made of a material with a higher refractive index than air, as
a ray of light from the eye to a point P enters the lens, it is bent toward the line
of the normal to the lens at that point. As it then leaves the lens, it is bent away
from the normal to the lens at the point where it leaves. Exactly what happens
to the light depends on the directions of these normals and, of course, on the
exact refractive index of the lens material relative to the air.

For a convex lens, normals point away from the centerline of the lens,
–z in Figure 16.6, and so a light ray from the eye is bent back toward the
centerline. This has the effect of focusing light from the eye point on the cen-
terline, which generally magnifies the appearance of any object on that. The

image that is seen can either be seen upright or inverted,
depending on its distance from the lens, as we will see
later.

The focal length f of such a lens is given by the lens-
maker’s equation,

1 1 1 1

1 2f R R
= −

 −

η
η

lens

env

,

where the values of η are the refractive indices of the lens
and the environment. The way the light rays and the nor-
mals behave at the points where the rays enter and leave
the lens is shown in more detail in Figure 16.7.

Figure 16.6. A diagram of a convex lens.

Figure 16.7. Light rays and inter-
sections with a (convex) lens.

435Lens Effects

For a concave lens, shown in Figure 16.8, the normals point towards
the centerline –z, and so rays of light from the eye are directed farther from
the centerline rather than toward it. This has the effect of making things seen
through the lens seem smaller.

In the next few figures, we will show how these lens behaviors are trans-
lated into actual images by GLSL shaders. In Figure 16.9, we see a scene in
which the object we are looking at is in front of the lens’s convergence point.
The objects we see through the lens are upright and are magnified.

In contrast to Figure 16.9, we see in Figure 16.10 that if an object lies
behind the convergence point, it is inverted when viewed through the lens.
The magnification effect is not as strong here, and you begin to see some fish-
eye magnification lens effect within the area of the lens.

For a concave lens, as shown in Figure 16.11, we see an upright image,
but the area within the image is seen as smaller than its actual size. We also see
a fish-eye lens effect in this lens that reduces objects’ size as rays toward the
edge of the lens are bent more than rays toward its center.

The actual shader code for vertex and fragment shaders is shown below.
First we include the vertex shader code, because it must compute the refraction
vector for the lens as well as the familiar gl_Position value. In this example,
you could let uR1 and uR2 be glman slider variables so you could experiment
with the effect of lenses with different shapes.

Figure 16.8. A diagram of a concave lens.

436 16. Serious Fun

Figure 16.9. Convex lens (R1 > 0, R2 > 0) with the object in front of the convergence point.

Figure 16.10. Convex lens (R1 > 0, R2 > 0) with the object behind the convergence point.

Figure 16.11. Concave lens (R1 < 0, R2 < 0).

437Lens Effects

uniform float uR1, uR2;

out vec3 vRefractVector;
const float ETA = 0.66; // eta=in/out

void main()
{
 vec3 P = (uModelViewMatrix * aVertex).xyz;
 vec3 Eye = vec3(0., 0., 0.); // just to make it clearer
 vec3 FromEyeToPt = normalize(P - Eye); // vector from eye
to pt

 vec3 Center1 = vec3(0., 0., P.z - uR1);
 vec3 Normal1 = normalize(sign(uR1) * (P - Center1));

 vec3 v1 = refract(FromEyeToPt, Normal1, ETA);
 v1 = normalize(v1);

 vec3 Center2 = vec3(0., 0., P.z + uR2);
 vec3 Normal2 = normalize(sign(uR2) * (Center2 - P));

 vec3 v2 = refract(v1, Normal2, 1./ETA);

 vRefractVector = v2;

 gl_Position = uModelViewProjectionMatrix * aVertex;
}

The fragment shader, by contrast, is much simpler. It simply computes
the texture from the cube map based on the refraction vector returned by the
vertex shader and blends that with white to get the effect of the lens not pass-
ing along all the light it receives. This also helps to make the lens visible in the
scene.

uniform samplerCube uRefractUnit;

in vec3 vRefractVector;

out vec4 fFragColor;

const vec4 WHITE = vec4(1.,1.,1.,1.);

void main() {
 vec4 refractcolor = textureCube(uRefractUnit,
 vRefractVector);
 fFragColor = mix(refractcolor, WHITE, .3);
}

438 16. Serious Fun

Bathroom Glass

We can combine noise with bump-mapping and cube map refractions to simu-
late the effect of “bathroom glass”; that is, glass that has a wobbly enough
surface that you can’t exactly discern the detail of what is on the other side
of it. To do this, we are going to use a single quad as our input geometry.
Remember that one of the beauties of bump-mapping is that you can use fairly
coarse geometry but make it look quite detailed because the computations
take place per-pixel.

Here is the fragment shader. Because the input geometry is a single quad
in the XY-plane, each fragment starts out with a normal vector of (0,0,1). That
normal vector is going to be perturbed twice, by rotating it around X and then
around Y. That’s the purpose of the RotateNormal() function. The angles to
rotate about are generated by calling the noise function twice, using the frag-
ment’s model coordinates as an index.

uniform samplerCube uTexUnit;
uniform float uNoiseAmp;
uniform float uNoiseFreq;
uniform sampler3D Noise3;

in vec3 vMCpos;
in vec3 vECpos;

out vec4 fFragColor;

const float ETA = 1.4; // index of refraction
const vec4 WHITE = vec4(1.,1.,1.,1.);

vec3
RotateNormal(float angx, float angy, vec3 n)
{
 float cx = cos(angx);
 float sx = sin(angx);
 float cy = cos(angy);
 float sy = sin(angy);

 // rotate about x:
 float yp = n.y*cx - n.z*sx; // y’
 n.z = n.y*sx + n.z*cx; // z’
 n.y = yp;

 // rotate about y:
 float xp = n.x*cy + n.z*sy; // x’
 n.z = -n.x*sy + n.z*cy; // z’

439Bathroom Glass

 n.x = xp;

 return normalize(n);
}

void main()
{
 vec3 eye = vec3(0., 0., 0.);
 vec3 eyeToPt = normalize(vECpos - eye);

 vec4 nvx = texture(Noise3, uNoiseFreq*vMCpos);
 vec4 nvy = texture(Noise3,
 uNoiseFreq*vec3(vMCpos.xy,vMCpos.z+0.5));

 float angx = nvx.r + nvx.g + nvx.b + nvx.a; // 1. -> 3.
 angx = angx - 2.; // -1. -> 1.
 angx *= uNoiseAmp;

 float angy = nvy.r + nvy.g + nvy.b + nvy.a; // 1. -> 3.
 angy = angy - 2.; // -1. -> 1.
 angy *= uNoiseAmp;

 vec3 N = vec3(0., 0., 1.); // unperturbed normal
 N = RotateNormal(angx, angy, N);
 N = normalize(uNormalMatrix * N);
 // force the normal to point towards us:
 if(N.z < 0.)
 N = -N;

 vec3 reflectVector = reflect(eyeToPt, N);
 vec4 reflectColor = textureCube(uTexUnit, reflectVector);

 vec3 refractVector = refract(eyeToPt, N, ETA);
 vec4 refractColor = textureCube(uTexUnit, refractVector);
 refractColor = mix(refractColor, WHITE, .3);

 if(all(equal(refractVector, vec3(0.,0.,0.))))
 refractColor = reflectColor;

 fFragColor = mix(refractColor, reflectColor, uMix);
}

It is possible that the refract() function will fail and will tell us that
it failed by returning the vector (0,0,0). Why could it fail? Like real refraction,
it is possible that the angles will become such that, instead of refraction, you
get internal reflection. You can detect this in Snell’s law of refraction by being
forced to take an arcsin of a value greater than 1. or less than −1. You can see

440 16. Serious Fun

this phenomenon in action if you lie at the bottom of a swimming pool and
look up. Straight up, you will see the sky. As you look away from the straight-
up vector you will still see the sky, but at some angle (about 50˚) you will start
to see the bottom of the pool reflected instead. To handle this properly, we
check for that case and set the color to be what would have been reflected from
the fragment rather than refracted. Figure 16.12 shows this in action.

Atmospheric Effects

There are many wonderful effects from sunlight (and even moonlight) in the
atmosphere. In this section, we consider two effects, both caused by light inter-
acting with water droplets in the atmosphere. The rainbow is probably the most
familiar and has been important to people for all known history. The glory,

caused by backscattering from much smaller water droplets
such as clouds (near 10 µm in diameter), was once known pri-
marily to mountain climbers because it depends on looking
at a point immediately opposite the direction of light. Now
it is most often seen when you are flying. Figure 16.13 shows
the general concept of light being refracted at the surface of
a water droplet and reflected internally within the droplet,
including the fact that this varies slightly for different wave-
lengths of light. There are many other amazing atmospheric
effects, such as halos, sunpillars, and sundogs; for a remark-

Figure 16.12. The unperturbed normal (left), a small value of uNoiseAmp (middle), and a larger value of
uNoiseAmp (right).

Figure 16.13. General light
backscattering process, showing
the different paths for different
wavelengths of light.

441Atmospheric Effects

ably complete and detailed discussion, see [12] or [26]. You should be able to
adapt the techniques developed here to simulate them.

The approach we take to simulating these effects come from [4]. We take
a Lee diagram, computed by the MiePlot application [25], showing the color
of scattered light at different angles based on the radius of water droplets, and
use that as a look-up map. The color of the effect at each point on a quad is then
determined by the angle of that point from the eye, and that color is added to
whatever color is already present. You can compute Lee diagrams that cor-
respond to each of the effects we will discuss, so this approach works for each
of our effects.

Rainbows

Everyone is familiar with rainbows. In Figure 16.14, we see a photograph of a
rainbow at sunrise. Note the structure of the rainbow: from the outside, we see
the common spectrum of light that we also see from a prism, with red going
through orange, yellow, green, blue, indigo, and then violet. Then further
inside, we see a general lightening in color as a white tint seems to be added to
the scene. Although this figure does not show it, there can also be a secondary
rainbow outside the primary one, with its colors reversed. In theory, though
very rarely seen, there may even be further rainbows.

The structure of a rainbow comes from the reflection of light from the
interior of water droplets in the air, as shown in Figure 16.13. This is examined
in more detail in Figure 16.15, showing that the particular angles for a plain
water droplet are approximately 41° ± 1°.

Figure 16.14. A rainbow photograph showing the way it affects light in the atmosphere.

442 16. Serious Fun

Table 16.1 shows these approximate angles for different wavelengths of
light that correspond to the main colors we see in a rainbow. The angle Θ rep-
resents the main rainbow, and ΘΘ represents the secondary rainbow.

Color λ η Θ cosΘ ΘΘ cosΘΘ

Red ≈ 650 nm 1.510 42° 0.743 50.0° 0.643

Green ≈ 500 nm 1.519 41° 0.755 51.5° 0.623

Blue ≈ 400 nm 1.528 40° 0.766 53.0° 0.602

Table 16.1. The approximate angles for a rainbow.

The actual computation of color for a rainbow in a scene could be done
using angle computations in the fragment shader, as we did for the spotlight
simulation in Chapter 8. This would involve creating a one-dimensional tex-
ture whose colors span the rainbow and using that texture with the angle val-
ues as texture coordinates. However, we have other resources, so it is probably
simpler to use the approach of [4], with the Lee diagram for light scattering in
the rainbow region, computed by MiePlot and shown in Figure 16.16.

We have created a texture map from this Lee diagram and have used it as
a look-up table to return the color of the rainbow for various angles in a dis-
play. This is done by sampling a vertical line in the Lee diagram at a fixed value
of the droplet radius. In Figure 16.17, we see the effect of this fragment shader
computation for a plain gray quad (left), for a natural scene with the rainbow
added (middle), and for the natural scene with an actual rainbow (right). In
the first two cases, the color returned from the texture map is simply added to
the color of the pixel to get the displayed color, though of course some of the

Figure 16.15. The path of light through a water droplet.

443Atmospheric Effects

image techniques discussed earlier could improve
the blending. Additional effects like the secondary
rainbow in the natural scene are not included in
the simulation.

Note that we’ve manipulated the alpha com-
ponent of the rainbow colors to smooth the out-
side edge of the rainbow and to show the lightened
color inside the rainbow. These effects are not as
strong as you might like, and an exercise invites
you to work with the fragment shader to improve
them. However, a significant problem in this simu-
lation is that conditions are much more complex
than simply creating a rainbow. In the real image,
there was a rain squall about 100 yards from the
camera but the camera location had no rain, so
the tree in the foreground is much darker in the
actual image because it was not in the rain. The
background in the actual image is obscured by the
heavy rain that causes the rainbow, but simulating
that is not part of simulating the rainbow. We also have not included the sec-
ondary reflection in the raindrop that gives us the faint secondary rainbow in
the photo. Without using this additional information, the simulated image in
the middle of Figure 16.17 is about all we can do.

Figure 16.16. The Lee diagram of the color
of a rainbow for different angles and water
droplet radii.

Figure 16.17. A computed rainbow against a gray quad (left), against a natural scene (middle), and compared
with an actual photo of the scene with a rainbow (right).

444 16. Serious Fun

The fragment shader code for this simulation is given below, and it uses a
number of uniform variables that come from glib sliders. These let you “tune”
the rainbow to match real conditions, since the critical angles from the con-
trasolar point are not available in the plain photograph. These variables have
been tuned to get the computed rainbow to align fairly well with the actual
photograph, as shown, but the tuned values are not included here. See the
exercises for more on tuning.

uniform float uUpDown, uLeftRight, uInOut;
uniform float uALF, uWhere;
uniform sampler2D uImageUnit, uRainbowUnit;

in vec2 vST;

out vec4 fFragColor;

const float PI = 3.14159265;
const float outAngle = 41.
const float inAngle = 39.
const vec4 LIGHTPOS = vec4(0., 0., 40000., 1.);

void
main()
{
// simulate directional light

// set up eye and texture coordinates
 vec3 irgb = texture(uImageUnit, vST).rgb;
 vec4 irgba = vec4(irgb, 0.5);
 vec2 xy = 100. * vST - 50.;
 // set initial eyepoint to [-50, 50]
 vec3 EyePos = vec3(xy.x + uLeftRight, xy.y + uUpDown, uInOut);

// Compute angles
 float num = length(EyePos.xy - LIGHTPOS.xy);
 float rAngle = atan(num, uInOut); // angle in radians
 float angle = degrees(rAngle); // angle in degrees
 float myAngle = angle;

// Convert myAngle to rainbow range
 if (angle > outAngle)
 {
 myAngle = outAngle;
 }
 if (angle < inAngle)
 {
 myAngle = inAngle;

445Atmospheric Effects

 }
 float v = (outAngle - myAngle)/(outAngle - inAngle);

// Get colors by sampling RainbowUnit at the fixed value:
 vec2 Rainbowst = vec2(v, uWhere);
 vec3 rrgb = texture(uRainbowUnit, Rainbowst).rgb;

// Set alpha components of color for blending
 vec4 rrgba = vec4(rrgb, uALF);

 // 0.5 degree dropoff band at outside edge of rainbow
 if ((angle > outAngle - 0.5)) {
 rrgba.a = uALF*(1. - smoothstep(outAngle-0.5,
 outAngle, angle));
 }

 // lighter color inside rainbow
 if (angle < inAngle)
 {
 rrgba.a = uALF*cos((inAngle - angle)/PI);
 }
 float alpha = rrgba.a;

// Approximation of the background
 if (alpha < 0.3)
 alpha = 0.3;

 vec3 colorOut = (1. - alpha) * irgb + alpha * rrgb;
 fFragColor = vec4 (colorOut, 1);
}

The Glory

A glory is the effect of seeing a bright spot with a
rainbow fringe at a point exactly opposite the sun.
An example is shown in Figure 16.18. Note that you
can actually see exactly where you are in the reflec-
tion (as the center of the halo) and that you can see
several color fringes centered at that point.

Glories are caused by interference between
frequencies of light backscattered toward the light
source (the sun) from atmospheric water droplets,
but the exact way this happens is obscure. Instead
of trying to simulate this directly, we look for simu-
lations that compute the color associated with the

Figure 16.18. The glory as seen from an air-
plane. You can tell where the photographer
was sitting by the center of the glory.

446 16. Serious Fun

effect. A Lie diagram for the glory is shown in Figure 16.19,
computed from MiePlot for a range of water drop sizes.
Notice that the sizes are much smaller—about an order of
magnitude—than the sizes for the rainbow; the rainbow and
the glory do not occur in the same atmospheric conditions.
You will also note that there are, in fact, several bands of simi-
lar color. We will use this diagram as a look-up map as we
did in the rainbow example, taking the radius as a constant
set by the slider variable Radius and looking up the color
based solely on the angle.

When we apply this approach to compute a glory, we
see the effects shown in Figure 16.20 against a solid quad
(left) and against a photograph of a cloud surface (right).

The code for the fragment shader that was used to cre-
ate the right-hand image of Figure 16.20 is shown below;
it is quite similar to the rainbow fragment shader. The
background cloud image is loaded and associated with the
uImageUnit in the GLIB file as was done in Chapter 9. The
angle is set up relative to the direction to the sun, not the
angle into the scene; these angles are complementary, so the
computed angle must be subtracted from 180° for the tex-
ture look-up (recall the angles shown in Figure 16.15).

Figure 16.19. A Lee diagram of
the color of the glory for different
angles and water droplet radii.
The radii are in µm.

Figure 16.20. The glory effect, seen mixed against a solid white quad (left) and as added
into a photograph of a cloud surface (right).

447Atmospheric Effects

uniform float uUpDown, uLeftRight, uInOut;

uniform float uMix, uRadius;

uniform sampler2D uImageUnit, uGloryUnit;

in vec2 vST;

out vec4 fFragColor;

const float THEANGLE = 160.; // cutoff angle for our

 // look-up texture

const vec4 LIGHTPOS = vec4(0., 0., 40000., 1.);

void main()

{

// Simulate directional light

// Get texture coordinates of fragment and convert to [-50, 50]

 vec3 irgb = texture(uImageUnit, vST).rgb;

 vec2 xy = 100. * vST - 50.;

// Compute angle from the light direction

 vec3 EyePos = vec3(xy.x + uLeftRight, xy.y + uUpDown,

 uInOut);

 float dist = length(LIGHTPOS.xy - EyePos.xy);

 float rAngle = atan(dist, uInOut); // angle to point in

 // radians

 // the angle is measured from the direction to the sun; this

 // is 180 degrees at the contrasolar point and we avoid 180

 float angle = 180. - degrees(rAngle);

 if(angle < THEANGLE)

 angle = THEANGLE;

 float v = (180. – angle)/(180. – THEANGLE);

 if (v > .99)

 v = .99; // avoiding 180

// get the glory texture color

 vec2 Gloryst = vec2(v, uRadius);

 vec3 Gloryrgb = texture(uGloryUnit, Gloryst).rgb;

// mix the glory and background colors

 vec3 colorOut = uMix * irgb + (1. - uMix) * Gloryrgb;

 fFragColor = vec4(colorOut, 1);

}

448 16. Serious Fun

Fun with One

Many GLSL variables range linearly from 0. to 1., such
as texture components, the noise function, color compo-
nents, etc. But just because a variable ranges linearly from
0. to 1. doesn’t mean that you have to actually use it that
way. There are a number of ways you can manipulate the
range [0.,1.] to get different effects. This is especially fun
with the glman Timer function, introduced in Chapter 4
and discussed in the next section. Some of the possibili-
ties are shown in Table 16.2, and the shapes of some of
these functions are shown in Figures 16.21 to 16.23.

Figure 16.21. Comparison of shapes
of tn functions.

Effect Code
Collection of curves from
0. to 1.

float tm = Timer;

float tm = Timer*Timer;

float tm = Timer*Timer*Timer;

float tm = 3.*Timer2 – 2.*Timer3;

float tm = 10.*Timer3 – 15.*Timer4 + 6.*Timer5

Ramp from 0. to 1. and back
to 0.

float tm;

if(Timer <= .5)

 tm = 2.*Timer;

else

 tm = 2. – 2.*Timer;

Smooth oscillation from –1.
to 1. and back to –1.

float tm = sin(2.*π*Timer);

Faster oscillation with
parameter S.

float tm = sin(2.*π*S*Timer);

Bigger oscillation with
parameter M.

float tm = M * sin(2.*π*S*Timer);

Smooth oscillation from 0.
to 1. and back to 0.

float tm = .5 + .5*sin(2.*π*Timer);

Table 16.2. Some effects of different functions with range between 0 and 1.

449Using the glman Timer Function

Using the glman Timer Function

The glman tool has a built-in Timer function that ranges from 0. to 1. in 10 sec-
onds, by default, though you can make that interval any length you choose.
All you have to do is declare a uniform floating-point variable named Timer:

uniform float Timer;

in your shader, and it will magically be assigned a number that repeatedly
ramps from 0. to 1. over time. We can use the Timer function within a shader
to create moving effects, using the “Fun with One” ideas in the previous sec-
tion to get many different kinds of motion. You can get similar effects in your
applications using the GLUT timer events.

Disco Ball

You can also take advantage of the Timer in many kinds of animation pro-
cesses. As an example of this, consider the disco ball example shown in Fig-
ure 16.24, where several geometric objects are lit by a set of moving lights.

The scene uses a variable number of lights, controlled by a uniform slider
variable in the fragment shader. The vertex shader for the disco example sim-
ply sets up the usual normal, eye coordinate position, light intensity, and
gl_Position. This is familiar and so is not included here, but we do show the
fragment shader for the disco example. It uses the uniform Timer variable, in
the highlighted statement in the code below. This controls the offset angle of

Figure 16.22. Comparison of shapes of tn, sin, and
cubic functions.

Figure 16.23. Comparison of shapes of sin(2πst)
functions.

450 16. Serious Fun

the lights—the only animated part of the scene—so that they swirl around the
space.

It might look like there are multiple light sources, but there really is just
one. A real disco ball appears to be multiple light sources because of the flat
mirrored facets on the ball itself. The fragment shader below looks at the angle
between the fragment, the disco ball, and the single light source. It then quan-
tizes that angle to see how close one of the simulated mirrored facets comes
to reflecting the light source to that fragment. It then uses that light intensity,
combined with a raise-to-a-power dropoff, to illuminate the fragment.

uniform int uNum; // # of mirrors in each spherical direction
uniform float Timer; // built-in glman timer function

in vec3 vECpos;
in vec4 vColor;
in float vLightIntensity;

out vec4 fFragColor;

const float DMIN = 0.980; // minimum cosine for no light
const vec3 BALLPOS = vec3(0., 2., 0.);
const vec3 LIGHTPOS = vec3(2., 0., 0.);
const vec3 LIGHTCOLOR = vec3(1., 1., 1.);
const float PI = 3.14159265;

void main()
{
 int numTheta = uNum;
 int numPhi = uNum;
 float dtheta = 2. * PI / float(numTheta);
 float dphi = PI / float(numPhi);

Figure 16.24. The disco light effect.

451Disco Ball

 vec3 BP = vECpos - BALLPOS;
 float angle = radians(Timer*360.);
 float c = cos(angle);
 float s = sin(angle);
 vec3 bp;
 bp.x = c*BP.x + s*BP.z;
 bp.y = BP.y;
 bp.z = -s*BP.x + c*BP.z;

 vec3 BL = LIGHTPOS - BALLPOS;
 vec3 H = normalize(normalize(BL) + normalize(bp));
 float x = H.x;
 float y = H.y;
 float z = H.z;
 float xz = length(H.xz); // = sqrt(x^2 + z^2);
 float phi = atan(y, xz);
 float theta = atan(z, x);

 int itheta = int(floor((theta + dtheta/2.) / dtheta));
 int iphi = int(floor((phi + dphi/2.) / dphi));

 float theta0 = dtheta * float(itheta);
 float phi0 = dphi * float(iphi);

 vec3 N0;
 N0.y = sin(phi0);
 xz = cos(phi0);
 N0.x = xz*cos(theta0);
 N0.z = xz*sin(theta0);

 float d = max(dot(N0, H), 0.);
 if(d < DMIN)
 d = 0.;
 d = pow(d, 5000.); // much quicker drop-off

 fFragColor = vec4(vColor.rgb * vLightIntensity +
 d * LIGHTCOLOR, vColor.a) ;
}

Figure 16.24 (left) shows how this would look if a group of GLUT solids
were on the dance floor together. Of course, lighting equations can apply to
the inside of objects just as well as the outside, if you want them to (as you usu-
ally do). Figure 16.24 (right) shows the inside of the teapot. If the SIGGRAPH
conference ever creates a nightclub venue, we have no doubt it will look like
this!

452 16. Serious Fun

Fog, with and without Noise

OpenGL allows you to create the appearance of fog and haze in the background
of your scene. This is used to good effect, especially in games and simulators,
to hide the far clipping plane. Objects can be clipped from the scene as they
recede into the background without them appearing to “pop” out of view.
However, the standard OpenGL fog looks too uniform. That is, everything at
the same depth gets the same amount of fog blended into it. Real fog doesn’t
behave that way. This example fragment shader shows how using a 3D noise
function to modulate a fragment’s Z depth can be used to create a less uniform
fog effect. This is shown in Figure 16.25 that we call “Dinos in the Mist.”

uniform float uNoiseScale;

uniform float uNoiseFreq;

uniform float uDepthFront, uDepthBack;

uniform sampler3D Noise3;

in float vZ; // equal to -EC.z (dist in front of the eye)

in vec4 vColor;

in vec3 vMCposition;

in float vLightIntensity;

out vec4 fFragColor;

const vec4 FOG = vec4(0.5, 0.5, 0.5, 1.);

void

main()

{

 vec4 nv = texture(Noise3, uNoiseFreq * vMCposition);

 float size = nv.r + nv.g + nv.b + nv.a; // [1.,3.]

 size -= 2.; // [-1.,+1.]

 float deltaz = uNoiseScale * size;

 float fogFactor =

 ((vZ+deltaz) - uDepthFront)/(uDepthBack – uDepthFront);

 fogFactor = clamp(fogFactor, 0., 1.);

 fogFactor = smoothstep(0., 1., fogFactor);

 vec3 rgb = mix(vColor.rgb * vLightIntensity, FOG.rgb,

 fogFactor);

 fFragColor = vec4(rgb, 1.);

}

453Morphing 3D Geometry

Morphing 3D Geometry

Ever since the movie Willow (1988), morphing 3D geometry has been a main-
stream topic in computer graphics. It would be fun to use shaders to do this
in a general way. Unfortunately, morphing one general 3D object to another
general 3D object is quite difficult because you need to create a careful corre-
spondence between both sets of vertices, which is hard to do in an automated
way. However, we can morph between two known shapes, such as a sphere to
a disk, as shown in Figure 16.26. As we are altering vertex coordinates, most
of the work is done by the vertex shader, shown here. The object is originally
defined as a sphere, but its texture coordinates (aTexCoord0.st) are used to

Figure 16.25. Fog, without (left) and with (right) noise.

Figure 16.26. Morphing between a sphere and a disk. From left to right, uBlend is 0.0, 0.5, and 1.0.

454 16. Serious Fun

produce the polar coordinates (r,Θ) of the disk. Thus we have two sets of coor-
dinates and use the uBlend variable to mix between them.

uniform float uBlend;

out vec4 vColor;
out float vLightIntensity;
out vec2 vST;

const float TWOPI = 2.*3.14159265;
const vec3 LIGHTPOS = vec3(5., 10., 10.);

void main()
{
 // original model coords (sphere):

 vec4 vertex0 = aVertex;
 vec3 norm0 = aNormal;

 // circle coords:

 vST = aTexCoord0.st;
 float s = aTexCoord0.s;
 float t = aTexCoord0.t;
 float radius = 1.-t;
 float theta = TWOPI*s;
 vec4 circle = vec4(radius*cos(theta), radius*sin(theta),
 0., 1.);
 vec3 circlenorm = vec3(0., 0., 1.);

 // blend:

 vec4 theVertex = mix(vertex0, circle, uBlend);
 vec3 theNormal = normalize(mix(norm0, circlenorm, uBlend));

 // do the lighting:

 vec3 tnorm = normalize(vec3(uNormalMatrix *
 theNormal));
 vec3 ECposition = vec3(uModelViewMatrix * theVertex);
 vLightIntensity = abs(dot(normalize(LIGHTPOS -
 ECposition),tnorm));
 if(vLightIntensity < 0.2)
 vLightIntensity = 0.2;

 vColor = aColor;
 gl_Position = uModelViewProjectionMatrix * theVertex;
}

455Morphing 3D Geometry

The rightmost image in Figure 16.26 is an interesting way to visualize
the planet: as a polar disk with the angle corresponding to longitude and the
radius corresponding to latitude.

We can also go one step more towards general morphing—a general
shape to a known shape (in this case a cube), shown in Figure 16.27. Again,
most of the work is done in the vertex shader. The original vertices are blown
up like a balloon and are then clamped to fixed sides. Again, two sets of 3D
coordinates are created and then mixed between.

uniform float uBlend;

out vec4 vColor;
out float vLightIntensity;

const float SIDE = 2.;
const vec3 LIGHTPOS = vec3(5., 10., 10.);

void main()
{
 vec4 vertex0 = aVertex;
 vertex0.xyz *= 4./length(vertex0.xyz);

 vertex0.xyz = clamp(vertex0.xyz, -SIDE, SIDE);

 vec3 tnorm = normalize(uNormalMatrix * aNormal);
 vec3 ECposition = vec3(uModelViewMatrix * aVertex);
 vLightIntensity = abs(dot(normalize(LIGHTPOS - ECposition),
 tnorm));
 if(vLightIntensity < 0.2)
 vLightIntensity = 0.2;

Figure 16.27. Morphing between a dino and a cube. From left to right, uBlend is 0.0, 0.5, and 1.0.

456 16. Serious Fun

 vColor = aColor;
 gl_Position = uModelViewProjectionMatrix *
 mix(aVertex, vertex0, uBlend);

}

In a very similar way, you can also morph between a general object and a
sphere, as shown in Figure 16.28. All you need to do is leave out the part about
clamping to the fixed sides.

Algorithmic Art

Algorithmic art is a field in which interesting images are generated through
the use of computer algorithms. An introduction to the concept may be found
at [1]. The field is very broad, and many aspects of it are perfect for implement-
ing with shaders, especially those that create images based on the positions of
pixels on the screen. We have already seen how Mandelbrot and Julia sets are
generated in this way.

Connett Circles

One particular (and very simple) example of an algorithm that generates what
are called Connett Circles is the Circle2 algorithm [15], discovered by J. E.
Connett. In this algorithm, each fragment’s x- and y-coordinates are examined
to see what circle radius they lie on. That radius is squared and cast to an inte-
ger. If that integer is odd, the fragment is discarded. If it is even, then a color is
assigned to it and it is plotted in that color.

Figure 16.28. Morphing between a dino and a sphere. From left to right, uBlend is 0.0, 0.5, and 1.0.

457Algorithmic Art

There are two ways to handle the coordinates for a fragment. One is to
use the actual screen coordinates, and the other is to handle the coordinates
on the surface. Both are available to you through GLSL. If you are working
with glman, you can start with a simple quad with texture coordinates. The
glman built-in quad has texture coordinates st that each range between 0 and
1, so if you multiply them by the size of the window and arrange for the quad
to exactly fill the window, unit steps in the st space will match unit pixels in
the display. Alternately, you can use the values of vFragCoord.xy to get the
exact pixel coordinates for each fragment.

The fragment shader code for this is listed below, with the getColor
(float t) function only stubbed; you can fill that in or use any other color
function of one variable that you like. The #ifdef SCREEN logic lets you select
either screen coordinates or screen-equivalent texture coordinates on your
geometry. The GLIB file and vertex shader files are very much like those
we saw in Chapter 10, except that no actual texture file is loaded. This code
works with glman and assumes that the geometry is a simple quad with tex-
ture coordinates. Note that the dot function is a fast way to get the square of
the radius.

#define SCREENSIZE 1200.
#define SCREEN

uniform float uSide;
uniform sampler2D uVoidUnit;

in vec2 vST;

out vec4 fFragColor;

vec3
GetColor(float t)
{
 ...
}

void main()
{
#ifdef SCREEN
 vec2 xy = uSide * gl_FragCoord.xy;
#else
 vec2 xy = uSide * vST;
#endif

458 16. Serious Fun

 float t = dot(xy, xy);
 int c = int(t);
 if ((c % 2) != 0) discard;
 t = float(c%360)/359.;

 vec3 myColor = GetColor(t);
 fFragColor = vec4(myColor, 1.);
}

Some sample images from this shader are shown in Figures 16.29 and
16.30. Figure 16.29 shows three views with the algorithm above and three dif-
ferent values of uSIDE, showing how much this small change affects the images.
(When you try this for yourself, you may find different results for these values

of uSIDE; the algorithm is sensitive to the resolution of your
image. These were done for a 1200 × 1200 image.) Note the
very subtle rainbow circles with center at the lower left of
the image with uSIDE = .875 and the very strong Moiré circles
in the image with uSIDE = 1.08. These secondary effects are
common in the images and make them more interesting.

In Figure 16.30, we look at an image that uses the object-
side coordinates, and in order to increase the brightness and
the effect of this image, we did not use the pixel-discard
logic. Since we are working on the object side rather than the
screen side, we can manipulate the object; in this case, we
rotated the quad a bit so that we are getting an oblique view
of the quad instead of a straight-on view. This makes a strik-
ing difference in the image, as you can see.

Figure 16.29. Three examples of images generated by the Circle2 algorithm, with uSIDE = .875 (left),
uSIDE = 1.00 (middle), and uSIDE = 1.08 (right).

Figure 16.30. The Circle2 algorithm
used on the object side, viewed
obliquely, with uSIDE = 1.00.

459Making Information Visible Through Motion

Making Information Visible Through Motion

We have seen many examples of shader programming being used to create
effective graphics that communicate information to the user using various geo-
metric methods. However, it may be interesting to think about using graph-
ics to make information visible through motion rather than geometry. Dan
Sandin explored this concept as long ago as the late 1980s [40] and computer
graphics shaders give us better tools to illustrate this. Sample shader functions
to do this are given below.

The vertex shader is simple, merely copying the attribute values of vertex
location (in model space) and texture coordinates to output variables that are
then available to the fragment shader, and setting the global gl_Position vari-
able. This is standard but is included for completeness.

out vec3 vMCposition;
out vec2 vST;

void main()
{
 vMCposition = aVertex.xyz;
 vST = aTexCoord0.st;
 gl_Position = uModelViewProjectionMatrix * aVertex;
}

The fragment shader reads in two textures, a white noise texture and
a mask texture, and moves pixels from the white noise texture either left or
right depending on the value in the mask texture. This motion difference lets
you distinguish areas in the mask texture so you can get information from the
mask through motion in the white noise. Just what kind of information can be
distinguished remains an open research question, and we suggest some explo-
rations in this area in one of this chapter’s exercises.

uniform sampler2D uRandomUnit, uMaskUnit;
uniform float Timer; // from glman

in vec3 vMCposition;
in vec2 vST;

out vec4 fFragColor;

void main()
{
 vec2 st = vST;

460 16. Serious Fun

 vec3 Rrgb = texture(uRandomUnit, st).rgb;
 vec3 Mrgb = texture(uMaskUnit, st).rgb;
 vec3 color;

 float T = 1024.*Timer;

 if (Mrgb.r > 0.5) // white part of mask
 {
 st = vec2(st.s + T/1024., st.t);
 color = texture(uRandomUnit, st).rgb;
 }
 else // black part of mask
 {
 st = vec2(st.s - T/1024., st.t);
 color = texture(uRandomUnit, st).rgb;
 }
 fFragColor = vec4(color, 1.);
}

We wish we could show you this technique in action, but the key word
is action: it is the action of motion that shows the content of the mask tex-
ture. Since you are reading this in print, which does a poor job of supporting
animation, we cannot do this; any freeze-frame capture of the output simply
shows the white noise texture. Instead we urge you to download the textures
(random.bmp and mask.bmp) shown in Figure 16.31, see the effect, and then see
what more you can do, as suggested in an exercise.

Figure 16.31. The white noise texture (left) and a possible mask texture (right).

461An Explosion Shader

An Explosion Shader

We hope you have found the potpourri of examples in this
chapter as interesting to read as we found it to create, but
we thought we would like the book to end with a bang—so
we close with an explosion shader, whose effect is shown in
Figure 16.32. This example uses a geometry shader to take a
collection of triangles, subdivides each of them into a number
of discrete points, and then has the points undergo projectile
physics motion as if an explosion had driven them all apart.
The geometry shader uses the same parametric triangle subdi-
vision scheme as was used in Chapter 12, but instead of subdi-
viding triangles into smaller triangles, it subdivides them into
points. The geometry shader is shown here.

#version 330
#extension GL_EXT_geometry_shader4: enable
#extension GL_EXT_gpu_shader4: enable

layout(triangles) in;
layout(points, max_vertices=1024) out;

uniform int uLevel;
uniform float uGravity; // < 0.is down
uniform float uT;
uniform float uVelScale;

out float gLightIntensity;

const vec3 LIGHTPOS = vec3(0., 0., 10.);

vec3 V0, vV01, vV02;
vec3 CG;
vec3 Normal;

void
ProduceVertex(float s, float t)
{
 vec3 v = V0 + s*V01 + t*V02;
 gLightIntensity = dot(normalize(LIGHTPOS - v),
 Normal);
 gLightIntensity = abs(gLightIntensity);

 vec3 vel = uVelScale * (v - vCG);

Figure 16.32. Exploding dino-
saur at times 0.0, 0.3, 0.5, and 11.

462 16. Serious Fun

 v += vel*uT + 0.5*vec3(0., uGravity, 0.)*uT*uT;
 gl_Position = uProjectionMatrix * vec4(v, 1.);
 EmitVertex();
}

void
main()
{
 V01 = (gl_PositionIn[1] - gl_PositionIn[0]).xyz;
 V02 = (gl_PositionIn[2] - gl_PositionIn[0]).xyz;

 Normal = normalize(cross(V01, V02));

 V0 = gl_PositionIn[0].xyz;
 CG = (gl_PositionIn[0].xyz + gl_PositionIn[1].xyz
 + gl_PositionIn[2].xyz) / 3.;

 int numLayers = 1 << uLevel;

 float dt = 1. / float(numLayers);
 float t = 1.;

 for(int it = 0; it <= numLayers; it++)
 {
 float smax = 1. - t;
 int nums = it + 1;
 float ds = smax / float(nums - 1);
 float s = 0.;

 for(int is = 0; is < nums; is++)
 {
 ProduceVertex(s, t);
 s += ds;
 }

 t -= dt;
 }
}

Exercises

1. Adapt the CD/DVD shader example to look more realistic by applying
cube-mapping as well as diffraction to add a reflection of a scene in the
colored disk. Do the same to add the reflection of sky clouds in the oil
slick.

463Exercises

2. Change the uSIDE slider uniform variable in the Circle2 algorithm to be a
uniform Timer variable and note the effect of this animation on the nature
of the images.

3. Generalize the previous exercise by taking any shader that includes a
glman slider variable (for example, the ablation shader from Chapter 9)
and replacing the slider variable by a variable based on the Timer func-
tion that is modified by a “Fun with One” function. Use several versions
of the function and notice the different effects.

4. Revisit the rainbow example using the GLIB file with the corresponding
vertex and fragment shaders. Do your own computation of the param-
eters to match any rainbow photograph of your choice and modify the
shaders as needed to create a better blending of the raw rainbow with the
background scene.

5. We saw that the effects of rainbows or glories
are modified by the environment in which
they occur. For example, Figure 16.19 is not
really right because the glory won’t really be
reflected from those areas where there aren’t
any clouds. Modify the fragment shader for
the glory so that the color of the background
affects the alpha of the glory, thus making
the composited image more accurate.

6. While rainbows and glories are created by
reflections from near the contrasolar point,
coronas are created by reflections from small
water drops at small angles near the sun. See
Figure 16.33, [12] or [17] for examples and
note that you can create simulations of coro-
nas with HaloSim (see [13]). Write a shader
that creates a corona around a point as if
that point were the sun.

7. Other solar phenomena are caused by ice
in the upper atmosphere. These can be
quite amazing, but here we only consider
the so-called 22° corona caused by ice crys-
tals in very high thin cirrus clouds. See
Figure 16.34, [12] or [17] for examples. Write
a shader that simulates the solar corona.

8. Explain the patterns you see in the Circle2
algorithm.

Figure 16.33. A solar corona, from [17].
Courtesy of Richard Fleet, used by permission.

Figure 16.34. A 22° solar corona.

464 16. Serious Fun

9. In the morphing examples, the “correct” range of values for uBlend is
[0.,1.]. What happens if uBlend < 0.? What happens if uBlend > 1.? Can
you explain why you end up with these shapes?

10. Experiment with the Circle2 algorithm by using a power other than 2 for
the distance computation. How does that affect the images?

11. Use texture coordinates on an object to computer a Circle2 texture directly
on the surface of the teapot.

12. Change the color transfer function in the Circle2 algorithm and notice the
difference in the images you produce. Compare a relatively monochro-
matic transfer function (a simple grayscale, for example, or a black → red
→ yellow → white range) to a very chromatic function (a full rainbow
scale, for example) and note the changes in the patterns.

13. Modify the cube morphing to produce spherical morphing as we showed
in Figure 16.27. How many other variations can you come up with?

14. Investigate another kind of algorithmic art (probably 2D) that you can
find. This can come from the 2D fractal world (look at the literature based
on the Mandelbrot or Julia sets), from simulating surfaces as described in
Chapter 7, or from general searches on “algorithmic art.” If it’s really cool,
let us know via the book’s website.

15. Implement the “moving pixels” shader to see how it works. Create dif-
ferent kinds of mask textures, with different text, different fonts, or with
different shapes. Try this with a color white noise (available with the
book’s materials as randomColor.bmp) to test whether color noise carries
the motion information as well as the monochrome noise.

16. Figure 16.32 doesn’t just show points; it shows light-shaded points.
Modify the given explosion geometry shader to compute a light intensity
for each point, which will then be picked up and used by the fragment
shader.

465

GLSLProgram C++ ClassA

The act of creating, compiling, linking, using, and passing parameters to shad-
ers is very repetitive. For some of our own work, we have found it helpful
to create a C++ class called GLSLProgram that implements this process. This
class has the tools to manage all the steps of shader program development
and use, including source file opening, loading, and compilation. Some of the
individual methods were presented in Chapter 14. It also has methods that
implement setting attribute and uniform variables. This source is available on
the book’s website.

The following methods are supported by the class

bool Create(char *, char * = NULL, char * = NULL,

 char * = NULL, char * = NULL);

bool IsValid();

466 A. GLSLProgram C++ Class

void SetAttribute(char *, int);
void SetAttribute(char *, float);
void SetAttribute(char *, float, float, float);
void SetAttribute(char *, float *);
void SetAttribute(char *, Vec3&);
void SetGstap(bool);
void SetInputTopology(GLenum);
void SetOutputTopology(GLenum);
void SetUniform(char *, int);
void SetUniform(char *, float);
void SetUniform(char *, float, float, float);
void SetUniform(char *, float[3]);
void SetUniform(char *, Vec3&);
void SetUniform(char *, Matrix4&);
void SetVerbose(bool);
void Use();
void UseFixedFunction();

The Create() method takes up to five shader file names as arguments.
From the filename extension, it figures out what type of shader it is, loads it,
compiles it, and links them all together. All errors are written to stderr. The
IsValid() method can be called if your application wants to know if every-
thing succeeded or not.

The SetAttribute() methods set attribute variables, destined for the
vertex shader. The SetUniform() methods set uniform variables, destined for
any of the shaders.

The Use() method makes this shader program active, so that it affects
any subsequent drawing that you do. UseFixedFunction() returns the state
of the pipeline to use the fixed-functionality (if it’s available).

The SetGstap() method is there to give you the option to have the
gstap.h code included automatically. Just pass true as the argument. Call this
before you call the Create() method.

Here is an example of using the GLSLProgram class.

#include “glslprogram.h”

float Ad, Bd, NoiseAmp, NoiseFreq, Tol;
GLSLProgram * Ovals;

. . .

// set everything up once:

Ovals = new GLSLProgram();
Ovals->SetVerbose(true);

467 The Program Body

Ovals->SetGstap(true);
bool good = Ovals->Create(“ovalnoise.vert”, “ovalnoise.frag”);
if(! good)
{
 fprintf(stderr, “GLSL Program Ovals wasn’t created.\n”);
 . . .
}

. . .

// do this in the display callback:

Ovals->Use();
Ovals->SetUniform(“uAd”, Ad);
Ovals->SetUniform(“uBd”, Bd);
Ovals->SetUniform(“uNoiseAmp”, NoiseAmp);
Ovals->SetUniform(“uNoiseFreq”, NoiseFreq);
Ovals->SetUniform(“uTol”, Tol);
glColor3f(0., 1., 0.);
glutSolidTeapot(1.);

Ovals->UseFixedFunction();

. . .

This page intentionally left blankThis page intentionally left blank

469

Matrix4 C++ ClassB

One of the trends in OpenGL is to have the application developer bear the
responsibility to manipulate and provide the needed transformation matrices.
We have created a 4 × 4 matrix class called Matrix4 to handle a lot of this work.
The following methods are supported by the class

Matrix4();

Matrix4(const Matrix4&);

Matrix4(float, float, float, float, float, float, float, float,

 float, float, float, float, float, float, float, float);

Matrix4(float [4][4]);

Matrix4& Frustum(float, float, float, float, float, float);

Matrix4& FrustumZ(float, float, float, float, float, float,

 float);

470 B. Matrix4 C++ Class

float GetDeterminant();
float GetElement(int, int);
Matrix4 GetInverse();
Matrix4 GetInverse3();
void GetMatrix4(float [4][4]);
void GetMatrix43(float [3][3]);
Matrix4 GetTranspose();
Matrix4 GetTranspose3();
Matrix4& Invert();
Matrix4& Invert3();
Matrix4& LoadIdentity();
Matrix4& LookAt(float, float, float, float, float, float,
 float, float, float);
Vec3 MultBy(Vec3);
Matrix4& operator=(const Matrix4&);
Matrix4 operator*(float);
Matrix4 operator*(Matrix4&);
Point3 operator*(Point3&);
Vec3 operator*(Vec3&);
Matrix4& operator*=(Matrix4&);
Matrix4& operator*=(float);
Matrix4 operator+(Matrix4&);
Matrix4& operator+=(Matrix4&);
Matrix4 operator-(Matrix4&); // binary
Matrix4& operator-(); // unary
Matrix4& operator-=(Matrix4&);
Matrix4& operator-=(float);
Matrix4& Ortho(float, float, float, float, float, float);
Matrix4& Ortho2D(float, float, float, float);
Matrix4& Perspective(float, float, float, float);
Matrix4& PopMatrix4();
Matrix4& Print(char * = “”, FILE * = stderr);
Matrix4& PushMatrix4();
Matrix4& Rotatef(float, float, float, float);
Matrix4& Scalef(float, float, float);
Matrix4& SetElement(int, int, float);
Matrix4& SetMatrix4(float [4][4]);
Matrix4& SetMatrix43(float [3][3]);
Matrix4& StereoPerspective(float, float, float, float, float,
 float);
Matrix4& Translatef(float, float, float);
Matrix4& Transpose();

The method names have been selected to mimic OpenGL procedure
names wherever possible, such as

Matrix4& Rotatef(float, float, float, float);

471 The Program Body

Matrix4& Scalef(float, float, float);
Matrix4& Translatef(float, float, float);

The default constructor sets the matrix to identity, but you can also
explicitly do that with the LoadIdentity() method.

There are many operator overloads, so that you can use matrices in
expressions, such as

Matrix4 R;
R.Rotatef(30., 1., 0., 0.);
Matrix4 T;
T.Translatef(2., 3., 4.);
Matrix4 P = R * T;

Many of these methods return a reference to the result so that they can be
chained together, like this:

Matrix4 Comp;
Comp.LoadIdentity().Translatef(-A,-B,-C).Scalef(3.,4.,1.).
Translatef(A,B,C).Print(“Composite = “);

These operations are evaluated left-to-right.
Here are some examples of using the Matrix4 class:

#include “matrix4.h”

Matrix4 I;
I.Print(“I = “);

Matrix4 R;
R.Rotatef(30., 1., 0., 0.);
R.Print(“R = “);

Ovals->SetUniform(“uModelMatrix”, R);

Matrix4 T;
T.Translatef(2., 3., 4.);
T.Print (“T = “);

Matrix4 P = R * T;
P.Print(“P1 = “);

P = T * R;
P.Print(“P2 = “);

Matrix4 RI = R;

472 B. Matrix4 C++ Class

RI.Invert();
RI.Print(“Rinverse = “);
RI *= R;
RI.Print(“Rinverse * R = “);

Matrix4 Comp;
Comp.LoadIdentity().Translatef(-A,-B,-C).Scalef(3.,4.,1.).
Translatef(A,B,C).Print(“Composite = “);
Comp.Invert().Print(“Composite Inverse = “);

fprintf(stderr, “Determinant of Composite Inverse = %8.3f\n”,
Comp.GetDeterminant());

473

Vec3 C++ ClassC

It is also helpful to have a 3-element vector class. Here is one called Vec3. These
are its methods:

Vec3(float = 0., float = 0., float = 0.);
Vec3(const Vec3&);
Vec3& operator=(const Vec3&);
Vec3& operator*=(float);
Vec3 operator+(const Vec3&);
Vec3& operator+=(const Vec3&);
Vec3 operator-(const Vec3&); // binary -
Vec3 operator-(); // unary -
Vec3& operator-=(const Vec3&);
Vec3 Cross(Vec3);
float Dot(Vec3);
void GetVec3(float *);

474 C. Vec3 C++ Class

float Length();
void Print(char * = “”, FILE * = stderr);
Vec3 Unit();
Vec3& Unitize();

Several operators are overloaded so you can use these vectors in expres-
sions, such as

Vec3 a(1., 2., 3.);
Vec3 b(4., 5., 6.);
Vec3 e = a + b;

Another class, Point3, is sub-classed from Vec3. A Point3 variable can
use all the same methods a Vec3 class variable can, but by using the Point3
name you are making it clear that the three-element array is meant to be a
point (with positions) instead of a vector (with directions):

Point3 Q(1., 2., 0.);
Point3 R(5., 3., 0.);
Vec3 S = R - Q;

Some of these methods return a reference to the result so that they can be
chained together, like this:

float i = c.Dot(a.Cross(b));

Vec3 normal = (R - Q).Cross(S - Q);

Here are some examples of using the Vec3 class.

#include “vec3.h”

Vec3 b(1., 2., 3.);
Vec3 c(5., 6., 7.);
Vec3 d(c);

Vec3 a = c;
a.Unitize();
a.Print(“a =”);
b.Print(“b =”);
c.Print(“c =”);
d.Print(“d =”);

a = Vec3(2., -5., 8.);
a.Print(“a =”);

475 The Program Body

Vec3 ma = -a;
ma.Print(“-a = “);

Vec3 e = a + b;
e.Print(“e =”);

e *= 3.;
e.Print(“e =”);

float f = (a + b).Length();
fprintf(stderr, “f = %8.3f\n”, f);

float g = a.Dot((b+c).Unit());
fprintf(stderr, “g = %8.3f\n”, g);

Vec3 h = a.Cross(b);
h.Print(“axb =”);

float i = c.Dot(a.Cross(b));
fprintf(stderr, “c.(axb) = %8.3f\n”, i);

Point3 Q(1., 2., 0.);
Point3 R(5., 3., 0.);
Point3 S(3., 6., 0.);
Vec3 normal = (R-Q).Cross(S-Q);
normal.Print(“normal = “);
float area = normal.Length() / 2.;
fprintf(stderr, “triangle area = %8.3f\n”, area);

This page intentionally left blankThis page intentionally left blank

477

Vertex Array ClassD

OpenGL encourages you to use vertex arrays (VAs) and vertex buffer objects
(VBOs) instead of glBegin-glEnd for three reasons:

1. VAs and VBOs are much more efficient than using glBegin-glEnd.

2. glBegin-glEnd has been deprecated in OpenGL-desktop from version
3.0 onward, and might actually go away at some time in the future.

3. glBegin-glEnd has been completely eliminated from OpenGL-ES 2.0 and
so cannot be used if you want your application to run on both desktop
and mobile platforms.

478 D. Vertex Array Class

There is no question that using glBegin-glEnd is convenient, especially when
beginning to learn OpenGL. With this in mind, here is a C++ class1 that looks
like the application is using glBegin-glEnd, but inside its data structures are
preparing to use VAs and VBOs when the class’s Draw() method is called:

void CollapseCommonVertices(bool);
void Draw();
void glBegin(GLenum);
void glColor3f(GLfloat, GLfloat, GLfloat);
void glColor3fv(GLfloat *);
void glEnd();
void glNormal3f(GLfloat, GLfloat, GLfloat);
void glNormal3fv(GLfloat *);
void glTexCoord2f(GLfloat, GLfloat);
void glTexCoord2fv(GLfloat *);
void glVertex2f(GLfloat, GLfloat);
void glVertex2fv(GLfloat *);
void glVertex3f(GLfloat, GLfloat, GLfloat);
void glVertex3fv(GLfloat *);
void Print(FILE * = stderr);
void RestartPrimitive();
void SetTol(float);
void SetVerbose(bool);
void UseBufferObjects(bool);

The UseBufferObjects() method declares whether a VBO should be
used instead of a VA. As VBOs are stored in the graphics card memory and
thus only ever need to be transmitted from host memory once, VBOs are
almost always preferable.

Passing a true to the CollapseCommonVertices() method says that you
want any vertices closer to each other than the distance specified in SetTol()
collapsed to be treated as a single vertex. The advantage to this is that the
single vertex only gets transformed once. The disadvantage is that the collaps-
ing process takes time, especially for large lists of vertices.

The RestartPrimitive() method invokes an OpenGL-ism that restarts
the current primitive topology without starting a new VA or VBO. This saves
overhead. It is especially handy for “never-ending” topologies such as triangle
strips and line strips.

Here is an example of using the VertexArray class and the image it pro-
duces (see Figure D.1):

1. The source for this class is available on the book’s web site: http://www.cgeducation.org

479 The Program Body

#include “vertexarray.h”

GLfloat CubeVertices[][3] =
{
 { -1., -1., -1. },
 { 1., -1., -1. },
 { -1., 1., -1. },
 { 1., 1., -1. },
 { -1., -1., 1. },
 { 1., -1., 1. },
 { -1., 1., 1. },
 { 1., 1., 1. }
};

GLfloat CubeColors[][3] =
{
 { 0., 0., 0. },
 { 1., 0., 0. },
 { 0., 1., 0. },
 { 1., 1., 0. },
 { 0., 0., 1. },
 { 1., 0., 1. },
 { 0., 1., 1. },
 { 1., 1., 1. }
};

GLuint CubeIndices[][4] =
{
 { 0, 2, 3, 1 },
 { 4, 5, 7, 6 },
 { 1, 3, 7, 5 },
 { 0, 4, 6, 2 },
 { 2, 6, 7, 3 },
 { 0, 1, 5, 4 }
};

VertexArray *VA;

. . .

// this goes in the part of the program where graphics things
// get initialized once:

VA = new VertexArray(); // create an instance of the class
 // the real “constructor” is in the glBegin method

480 D. Vertex Array Class

VA->CollapseCommonVertices(true);
VA->UseBufferObjects(true);
VA->SetTol(.001f);

VA->glBegin(GL_QUADS);

for(int i = 0; i < 6; i++)
{
 for(int j = 0; j < 4; j++)
 {
 GLuint k = CubeIndices[i][j];
 VA->glColor3fv(CubeColors[k]);
 VA->glVertex3fv(CubeVertices[k]);
 }
}

VA->glEnd();

VA->Print(); // verify that vertices were really collapsed

. . .

// this goes in the display-callback part of the program:

VA->Draw();

Figure D.1. The cube drawn by this code example, with axes added to show how the colors
correspond to the vertex coordinates.

481

This next example shows drawing gridlines on a terrain map. The
already-defined Heights[] array holds the terrain heights. This is a good
example of using the RestartPrimitive() method so that the next grid
line doesn’t have to be in a new line strip. In this way, the entire grid is
saved as a single line strip and is drawn by blasting a single VA / VBO into
the graphics pipeline.

VertexArray *VA;

 . . .

// this goes in the part of the program where graphics things
// get initialized once:

VA = new VertexArray(); // create an instance of the class
 // the real “constructor” is in the glBegin method

VA->CollapseCommonVertices(true);
VA->UseBufferObjects(true);
VA->SetTol(.001f);

int x, y; // loop indices
float ux, uy; // utm coords

VA->glBegin(GL_LINE_STRIP);

for(y = 0, uy = meteryMin; y < NumLats; y++, uy += meteryStep)
{
 VA->RestartPrimitive();
 for(x = 0, ux = meterxMin; x < NumLngs x++, ux += meterxStep
)
 {
 float uz = Heights[y*NumLngs + x];
 VA->glColor3f(1., 1., 0.); // single color = yellow
 VA->glVertex3f(ux, uy, uz);
 }
}

for(x = 0, ux = meterxMin; x < NumLngs; x++, ux += meterxStep)
{
 VA->RestartPrimitive();
 for(y = 0, uy = meteryMin; y < NumLats; y++, uy +=
 meteryStep)
 {
 float uz = Heights[y*NumLngs + x];
 VA->glColor3f(1., 1., 0.);

The Program Body

482 D. Vertex Array Class

 VA->glVertex3f(ux, uy, uz);
 }
}

VA->glEnd();

. . .

// this goes in the display-callback part of the program:

VA->Draw();

Figure D.2. A wireframe terrain map drawn as a single line
strip in a vertex buffer object.2

2 If you’re interested in timing, this dataset had 1024 × 569 grid points, and displayed at 1,000 FPS on
an NVIDIA GTX 480.

483

References

[1] “Algorithmic Art.” Wikipedia. Available at http://en.wikipedia.org/wiki/Algorithmic_
art, 2011.

[2] M. J. Bailey and D. Clark. “Using OpenGL and ChromaDepth to Obtain Inexpensive
Single-Image Stereovision for Scientific Visualization.” Journal of Graphics Tools. 3:3
(1999), 1–9.

[3] Mike Bailey, Matt Clothier, and Nick Gebbie. “Realtime Dome Imaging and
Interaction: Towards Immersive Design Environments.” Proceedings of ASME 2006
International Design Engineering Technical Conference, DETC2006-99155. New York:
ASME, September 2006.

[4] Clint Brewer. “Rainbows and Fogbows: Adding Natural Phenomena.” NVIDIA SDK
White Paper, 2004.

[5] Wilhelm Burger and Mark J. Burge. Digital Image Processing: An Algorithmic Introduction
using Java. New York: Springer, 2007.

484 ReferencesReferences

[6] Brian Cabral and Leith (Casey) Leedom. “Imaging Vector Fields Using Line Integral
Convolution.” In Proceedings of SIGGRAPH ’93, Computer Graphics Proceedings, Annual
Conference Series, edited by James T. Kajiya, pp. 263–270. New York: ACM Press, 1993.

[7] California Institute of Technology. “Mars Exploration Rovers.” Jet Propulsion
Laboratory. Available at http://marsrovers.jpl.nasa.gov/gallery, 2011.

[8] Edwin Catmull and Raphael Rom. “A Class of Local Interpolating Splines.” In
Computer Aided Geometric Design, edited by R. E. Barnhill and R. F. Riesenfeld, pp.
317–326. New York: Academic Press, 1974.

[9] Codemonsters. http://www.codemonsters.de/home/content.php?show=cubemaps
[10] Robert L. Cook. “Shade Trees,” Proc. SIGGRAPH ’84, Computer Graphics 18:3 (1984),

223–231.
[11] Robert L. Cook and Tony DeRose. “Wavelet Noise.” Proc. SIGGRAPH ’05, Transactions

on Graphics 24:3 (2005), 803–811.
[12] Les Cowley. “Atmospheric Optics.” Available at http://www.atoptics.co.uk/, 2008.
[13] Les Cowley. “HaloSim3 Software.” Atmospheric Optics. Available at

http://www.atoptics.co.uk/halo/halfeat.htm.
[14] Steve Cunningham. Computer Graphics: Programming in OpenGL for Visual

Communication. Upper Saddle River, NJ: Pearson Prentice Hall, 2007.
[15] A. K. Dewdney. The Armchair Universe. New York: W. H. Freeman, 1988.
[16] Randima Fernando and Mark Kilgard. The Cg Tutorial: The Definitive Guide to

Programmable Real-Time Graphics. Boston: Addison-Wesley Professional, 2003.
[17] Richard Fleet. Glows, Bows, and Haloes. Available at http://www.dewbow.co.uk/, 2008.
[18] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer

Graphics: Principles and Practice, Second edition. Boston: Addison-Wesley Professional,
1996.

[19] Andrew S. Glassner. Principles of Digital Image Synthesis. San Francisco: Morgan-
Kaufman, 1995.

[20] Jens Gruschel. “Blend Modes.” Pegtop Software. Available at
http://www.pegtop.net/delphi/articles/blendmodes/, 2006.

[21] David Hutchison. “Introducing DLP 3-D TV.” Texas Instruments White Paper, 2007.
[22] James Kajiya and Timothy Kay. “Rendering Fur with Three Dimensional Textures,”

Proc. SIGGRAPH ’89, Computer Graphics 23:3 (1989), 271–280.
[23] John Kessenich, Dave Baldwin, and Randi Rost. “The OpenGL Shading Language.”

OpenGL. Available at
http://www.opengl.org/registry/doc/GLSLandSpec.Full.1.20.u.pdf, 2006.

[24] David Knight and Gordon Mallinson. “Visualizing Unstructured Flow Data Using
Dual Stream Functions.” IEEE Transactions on Visualization and Computer Graphics 2:4
(1996), 355–363.

[25] Philip Laven. MiePlot. Available at http://www.philiplaven.com/mieplot.htm, 2011.
[26] Philip Laven. “The Optics of a Water Drop: Mie Scattering and the Debye Series.”

Applied Optics 44:27 (2005), 5675–5683.

485 References

[27] Lenny Lipton. The CrystalEyes Handbook. StereoGraphics Corporation, 1991.
[28] Benoit Mandelbrot. The Fractal Geometry of Nature. New York: W H Freeman, 1977.
[29] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. “Cg: A System

for Programming Graphics Hardware in a C-like Language.” Proc. SIGGRAPH ’03,
Transactions on Graphics 22:3 (2003), 896–907.

[30] James D. Murray and William Van Ryper. Encyclopedia of Graphics File Formats, 2nd
edition. Sebastopol, CA: O’Reilly & Associates, 1996.

[31] Marc Olano and Anselmo Lastra. “A Shading Language on Graphics Hardware: The
PixelFlow Shading Language.” In Proceedings of SIGGRAPH ’98, Computer Graphics
Proceedings, Annual Conference Series, edited by Michael Cohen, pp. 159–168.
Reading, MA: Addison-Wesley, 1998.

[32] “OpenGL Registry.” OpenGL. OpenGL Language and Reference Pages,
http://www.opengl.org/registry/, 2011.

[33] Craig Peeper and Jason Mitchell. “Introduction to the DirectX 9 High-Level Shader
Language.” In ShaderX2: Shader Programming Tips and Tricks with DirectX 9.0, edited
by Wolfgang Engel, pp. 1–61. Plano, TX: Wordware Publishing, 2003.

[34] Ken Perlin. “An Image Synthesizer.” Proc. SIGGRAPH ’85, Computer Graphics 19:3
(1985), 287–296.

[35] Ken Perlin. “Improving Noise.” Proc. SIGGRAPH ’02, Transactions on Graphics 21:3
(2002), 681–682.

[36] Heinz-Otto Pietgen and Dietmar Saupe, editors. The Science of Fractal Images. New
York: Springer-Verlag, 1988.

[37] Pixar. “Properties of RenderMan Noise Functions.” PhotoRealistic RenderMan,
SIGGRAPH ’96 Course Notes.

[38] Pixar. “The RenderMan Interface Specifications, version 3.2.” Renderman. Available at
https://renderman.pixar.com/products/rispec/index.htm, 2000.

[39] Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov, and Pat Hanrahan. “A Real-
Time Procedural Shading System for Programmable Graphics Hardware.” In
Proceedings of SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference
Series, edited by E. Fiume, pp. 159–170. Reading, MA: Addison-Wesley, 2001.

[40] Dan Sandin. “Random Dot Motion,” SIGGRAPH Video Review 42, 1989.
[41] Dave Shreiner, et al., OpenGL Programming Guide, eighth edition. Reading, MA:

Addison-Wesley, 2011.
[42] Maureen Stone. A Field Guide to Digital Color. Natick, MA: A K Peters, 2003.
[43] Steve Upstill. The RenderMan Companion. Reading, MA: Addison-Wesley, 1990.
[44] U.S. Geological Survey. “National Elevation Dataset.” U.S. Geological Survey. Available

at http://ned.usgs.gov, 2006.
[45] Alex Vlachos, Jörg Peters, Chas Boyd, and Jason Mitchell, “Curved PN Triangles,”

Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp.159–166. New York:
ACM, 2001.

[46] George Wolberg. Digital Image Warping. Los Alamitos, CA: IEEE Computer Society
Press, 1990.

This page intentionally left blankThis page intentionally left blank

Graphics Shaders: Theory and Practice is intended for a second course in computer graphics at the
undergraduate or graduate level, introducing shader programming in general, but focusing on the GLSL
shading language. While teaching how to write programmable shaders, the authors also teach and reinforce
the fundamentals of computer graphics. The second edition has been updated to incorporate changes in the
OpenGL API (OpenGL 4.x and GLSL 4.x0) and also has a chapter on the new tessellation shaders, including
many practical examples.

The book starts with a quick review of the graphics pipeline, emphasizing features that are rarely taught in
introductory courses but are immediately exposed in shader work. It then covers shader-specific theory for
vertex, tessellation, geometry, and fragment shaders using the GLSL 4.x0 shading language. The text also
introduces the freely available glman tool that enables you to develop, test, and tune shaders separately from
the applications that will use them. The authors explore how shaders can be used to support a wide variety
of applications and present examples of shaders in 3D geometry, scientific visualization, geometry morphing,
algorithmic art, and more.

Features of the Second Edition:
• Written using the most recent specification releases (OpenGL 4.x and GLSL 4.x0) including code

examples brought up-to-date with the current standard of the GLSL language
• More examples and more exercises
• A chapter on tessellation shaders
• An expanded Serious Fun chapter with examples that illustrate using shaders to produce fun effects
• A discussion of how to handle the major changes occurring in the OpenGL standard, and some C++

classes to help you manage that transition
• Source code for many of the book’s examples at www.cgeducation.org

“If you are one of the multitudes of OpenGL programmers wondering about how to get started with
programmable shaders or what they are good for, this is the book for you. Mike and Steve have filled their new
edition with such a variety of interesting examples that you’ll be running to your computer to begin writing your
own shaders.”

—Ed Angel, Chair, Board of Directors, Santa Fe Complex; Founding Director, Art, Research, Technology, and
Science Laboratory (ARTS Lab); Professor Emeritus of Computer Science, University of New Mexico

“Shaders are an essential tool in today’s computer graphics, from films and games to science and industry.
In this excellent book, Bailey and Cunningham not only clearly explain the how and why of shaders, but they
provide a wealth of cutting-edge shaders and development tools. If you want to learn about shaders, this is
the place to start!”

 —Andrew Glassner

Mike Bailey • Steve CunninghaM

S E C O N D E D I T I O N

t h e o r y a n d P r a C t i C e

B
a

ile
y

 • C
u

n
n

in
g

h
a

M

in
Clu

deS

O
pen

G
L

4.
x

Computer graphics/computer games

K13069

G
raphics Shaders

	Front Cover
	Dedication
	Contents
	Foreword
	Preface
	1. The Fixed-Function Graphics Pipeline
	2. OpenGL Shader Evolution
	3. Fundamental Shader Concepts
	4. Using glman
	5. The GLSL Shader Language
	6. Lighting
	7. Vertex Shaders
	8. Fragment Shaders and Surface Appearance
	9. Surface Textures in the Fragment Shader
	10. Noise
	11. Image Manipulation with Shaders
	12. Geometry Shader Concepts and Examples
	13. Tessellation Shaders
	14. The GLSL API
	15. Using Shaders for Scientific Visualization
	16. Serious Fun
	Appendices
	References

