

Professional
Automated

Trading

Founded in 1807, John Wiley & Sons is the oldest independent publishing
company in the United States. With offices in North America, Europe, Aus-
tralia and Asia, Wiley is globally committed to developing and marketing
print and electronic products and services for our customers’ professional
and personal knowledge and understanding.

The Wiley Finance series contains books written specifically for finance
and investment professionals as well as sophisticated individual investors
and their financial advisors. Book topics range from portfolio management
to e-commerce, risk management, financial engineering, valuation and finan-
cial instrument analysis, as well as much more.

For a list of available titles, visit our Web site at www.WileyFinance.com.

http://www.WileyFinance.com

Professional
Automated

Trading
Theory and Practice

EUGENE A. DURENARD

Cover image: © iStockphoto.com / ideiados
Cover design: Paul McCarthy

Copyright © 2013 by Eugene A. Durenard. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the Web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley products,
visit www.wiley.com.

ISBN 978-1-118-12985-2 (Hardcover)
ISBN 978-1-118-41902-1 (ePDF)
ISBN 978-1-118-41929-8 (ePub)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

Contents

Preface xv

CHAPTER 1
Introduction to Systematic Trading 1
1.1 Definition of Systematic Trading 2
1.2 Philosophy of Trading 3

1.2.1 Lessons from the Market 3
1.2.2 Mechanism vs. Organism 5
1.2.3 The Edge of Complexity 5
1.2.4 Is Systematic Trading Reductionistic? 6
1.2.5 Reaction vs. Proaction 6
1.2.6 Arbitrage? 7
1.2.7 Two Viable Paths 7

1.3 The Business of Trading 7
1.3.1 Profitability and Track Record 8
1.3.2 The Product and Its Design 10
1.3.3 The Trading Factory 12
1.3.4 Marketing and Distribution 15
1.3.5 Capital, Costs, and Critical Mass 16

1.4 Psychology and Emotions 19
1.4.1 Ups and Downs 19
1.4.2 Peer Pressure and the Blame Game 20
1.4.3 Trust: Continuity of Quality 20
1.4.4 Learning from Each Other 21

1.5 From Candlesticks in Kyoto to FPGAs in Chicago 22

PART ONE
Strategy Design and Testing

CHAPTER 2
A New Socioeconomic Paradigm 33
2.1 Financial Theory vs. Market Reality 33

2.1.1 Adaptive Reactions vs. Rigid Anticipations 33

v

vi CONTENTS

2.1.2 Accumulation vs. Divestment Games 37
2.1.3 Phase Transitions under Leverage 38
2.1.4 Derivatives: New Risks Do Not Project onto

Old Hedges 40
2.1.5 Socio-Political Dynamics and Feedbacks 41

2.2 The Market Is a Complex Adaptive System 42
2.2.1 Emergence 43
2.2.2 Intelligence Is Not Always Necessary 44
2.2.3 The Need to Adapt 45

2.3 Origins of Robotics and Artificial Life 45

CHAPTER 3
Analogies between Systematic Trading and Robotics 49
3.1 Models and Robots 49
3.2 The Trading Robot 50
3.3 Finite-State-Machine Representation of the

Control System 52

CHAPTER 4
Implementation of Strategies as Distributed Agents 57
4.1 Trading Agent 57
4.2 Events 60
4.3 Consuming Events 60
4.4 Updating Agents 61
4.5 Defining FSM Agents 63
4.6 Implementing a Strategy 66

CHAPTER 5
Inter-Agent Communications 73
5.1 Handling Communication Events 73
5.2 Emitting Messages and Running

Simulations 75
5.3 Implementation Example 76

CHAPTER 6
Data Representation Techniques 83
6.1 Data Relevance and Filtering of Information 83
6.2 Price and Order Book Updates 84

6.2.1 Elementary Price Events 85
6.2.2 Order Book Data 85
6.2.3 Tick Data: The Finest Grain 88

6.3 Sampling: Clock Time vs. Event Time 89

Contents vii

6.4 Compression 90
6.4.1 Slicing Time into Bars and Candles 90
6.4.2 Slicing Price into Boxes 96
6.4.3 Market Distributions 97

6.5 Representation 97
6.5.1 Charts and Technical Analysis 99
6.5.2 Translating Patterns into Symbols 101
6.5.3 Translating News into Numbers 102
6.5.4 Psychology of Data and Alerts 104

CHAPTER 7
Basic Trading Strategies 105
7.1 Trend-Following 105

7.1.1 Channel Breakout 106
7.1.2 Moving Averages 106
7.1.3 Swing Breakout 112

7.2 Acceleration 114
7.2.1 Trend Asymmetry 115
7.2.2 The Shadow Index 116
7.2.3 Trading Acceleration 117

7.3 Mean-Reversion 118
7.3.1 Swing Reversal 118
7.3.2 Range Projection 120

7.4 Intraday Patterns 122
7.4.1 Openings 122
7.4.2 Seasonality of Volatility 122

7.5 News-Driven Strategies 124
7.5.1 Expectations vs. Reality 124
7.5.2 Ontology-Driven Strategies 125

CHAPTER 8
Architecture for Market-Making 127
8.1 Traditional Market-Making: The Specialists 127
8.2 Conditional Market-Making: Open Outcry 128
8.3 Electronic Market-Making 129
8.4 Mixed Market-Making Model 131
8.5 An Architecture for a Market-Making Desk 134

CHAPTER 9
Combining Strategies into Portfolios 139
9.1 Aggregate Agents 139
9.2 Optimal Portfolios 141
9.3 Risk-Management of a Portfolio of Models 142

viii CONTENTS

CHAPTER 10
Simulating Agent-Based Strategies 145
10.1 The Simulation Problem 146
10.2 Modeling the Order Management System 147

10.2.1 Orders and Algorithms 148
10.2.2 Simulating Slippage 149
10.2.3 Simulating Order Placement 151
10.2.4 Simulating Order Execution 153
10.2.5 A Model for the OMS 155
10.2.6 Operating the OMS 156

10.3 Running Simulations 158
10.3.1 Setting Up a Back Test 158
10.3.2 Setting Up a Forward Test 160

10.4 Analysis of Results 162
10.4.1 Continuous Statistics 163
10.4.2 Per-Trade Statistics 164
10.4.3 Parameter Search and Optimization 165

10.5 Degrees of Over-Fitting 167

PART TWO
Evolving Strategies

CHAPTER 11
Strategies for Adaptation 173
11.1 Avenues for Adaptations 173
11.2 The Cybernetics of Trading 175

CHAPTER 12
Feedback and Control 179
12.1 Looking at Markets through Models 179

12.1.1 Internal World 179
12.1.2 Strategies as Generalized Filters 180
12.1.3 Implicit Market Regimes 181
12.1.4 Persistence of Regimes 183

12.2 Fitness Feedback Control 184
12.2.1 Measures of Fitness 186

12.3 Robustness of Strategies 192
12.4 Efficiency of Control 193

12.4.1 Triggering Control 193
12.4.2 Measuring Efficiency of Control 194

Contents ix

12.4.3 Test Results 196
12.4.4 Optimizing Control Parameters 197

CHAPTER 13
Simple Swarm Systems 199
13.1 Switching Strategies 199

13.1.1 Switching between Regimes 200
13.1.2 Switching within the Same Regime 200
13.1.3 Mechanics of Switching and Transaction Costs 205

13.2 Strategy Neighborhoods 206
13.3 Choice of a Simple Individual from a Population 208
13.4 Additive Swarm System 210

13.4.1 Example of an Additive Swarm 211
13.5 Maximizing Swarm System 214

13.5.1 Example of a Maximizing Swarm 215
13.6 Global Performance Feedback Control 216

CHAPTER 14
Implementing Swarm Systems 219
14.1 Setting Up the Swarm Strategy Set 220
14.2 Running the Swarm 220

CHAPTER 15
Swarm Systems with Learning 223
15.1 Reinforcement Learning 224
15.2 Swarm Efficiency 224
15.3 Behavior Exploitation by the Swarm 225
15.4 Exploring New Behaviors 227
15.5 Lamark among the Machines 227

PART THREE
Optimizing Execution

CHAPTER 16
Analysis of Trading Costs 231
16.1 No Free Lunch 231
16.2 Slippage 232
16.3 Intraday Seasonality of Liquidity 233
16.4 Models of Market Impact 234

16.4.1 Reaction to Aggression 235
16.4.2 Limits to Openness 235

x CONTENTS

CHAPTER 17
Estimating Algorithmic Execution Tools 237
17.1 Basic Algorithmic Execution Tools 237
17.2 Estimation of Algorithmic Execution

Methodologies 240
17.2.1 A Simulation Engine for Algos 240
17.2.2 Using Execution Algo Results in Model

Estimation 241
17.2.3 Joint Testing of Models and Algos 242

PART FOUR
Practical Implementation

CHAPTER 18
Overview of a Scalable Architecture 247
18.1 ECNs and Translation 247
18.2 Aggregation and Disaggregation 249
18.3 Order Management 250
18.4 Controls 250
18.5 Decisions 251
18.6 Middle and Back Office 251
18.7 Recovery 252

CHAPTER 19
Principal Design Patterns 253
19.1 Language-Agnostic Domain Model 253
19.2 Solving Tasks in Adapted Languages 254
19.3 Communicating between Components 257

19.3.1 Messaging Bus 258
19.3.2 Remote Procedure Calls 259

19.4 Distributed Computing and Modularity 260
19.5 Parallel Processing 262
19.6 Garbage Collection and Memory Control 263

CHAPTER 20
Data Persistence 265
20.1 Business-Critical Data 265
20.2 Object Persistence and Cached Memory 267
20.3 Databases and Their Usage 269

Contents xi

CHAPTER 21
Fault Tolerance and Recovery Mechanisms 273
21.1 Situations of Stress 273

21.1.1 Communication Breakdown 273
21.1.2 External Systems Breakdown 274
21.1.3 Trades Busted at the ECN Level 275
21.1.4 Give-Up Errors Causing Credit Line Problems 276
21.1.5 Internal Systems Breakdown 277
21.1.6 Planned Maintenance and Upgrades 277

21.2 A Jam of Logs Is Better Than a Logjam of Errors 277
21.3 Virtual Machine and Network Monitoring 278

CHAPTER 22
Computational Efficiency 281
22.1 CPU Spikes 281
22.2 Recursive Computation of Model Signals

and Performance 282
22.3 Numeric Efficiency 285

CHAPTER 23
Connectivity to Electronic Commerce Networks 291
23.1 Adaptors 291
23.2 The Translation Layer 292

23.2.1 Orders: FIX 292
23.2.2 Specific ECNs 293
23.2.3 Price Sources: FAST 293

23.3 Dealing with Latency 294
23.3.1 External Constraints and Co-Location 294
23.3.2 Avoid Being Short the Latency Option 295
23.3.3 Synchronization under Constraints 296
23.3.4 Improving Internal Latency 297

CHAPTER 24
The Aggregation and Disaggregation Layer 299
24.1 Quotes Filtering and Book Aggregation 300

24.1.1 Filtering Quotes 300
24.1.2 Synthetic Order Book 301

24.2 Orders Aggregation and Fills Disaggregation 301
24.2.1 Aggregating Positions and Orders 301
24.2.2 Fills Disaggregation 303
24.2.3 Book Transfers and Middle Office 303

xii CONTENTS

CHAPTER 25
The OMS Layer 305
25.1 Order Management as a Recursive Controller 305

25.1.1 Management of Positions 307
25.1.2 Management of Resting Orders 307
25.1.3 Algorithmic Orders 308

25.2 Control under Stress 309
25.3 Designing a Flexible OMS 310

CHAPTER 26
The Human Control Layer 311
26.1 Dashboard and Smart Scheduler 311

26.1.1 Parameter Control 311
26.1.2 Scheduled Flattening of Exposure 312

26.2 Manual Orders Aggregator 313
26.2.1 Representing a Trader by an Agent 313
26.2.2 Writing a Trading Screen 314
26.2.3 Monitoring Aggregated Streams 314

26.3 Position and P & L Monitor 314
26.3.1 Real-Time Exposure Monitor 315
26.3.2 Displaying Equity Curves 315
26.3.3 Online Trade Statistics and Fitnesses 315
26.3.4 Trades Visualization Module 317

CHAPTER 27
The Risk Management Layer 319
27.1 Risky Business 319
27.2 Automated Risk Management 320
27.3 Manual Risk Control and the Panic Button 320

CHAPTER 28
The Core Engine Layer 323
28.1 Architecture 323
28.2 Simulation and Recovery 325

CHAPTER 29
Some Practical Implementation Aspects 327
29.1 Architecture for Build and Patch Releases 327

29.1.1 Testing of Code before a Release 327
29.1.2 Versioning of Code and Builds 328
29.1.3 Persistence of State during Version Releases 328

Contents xiii

29.2 Hardware Considerations 329
29.2.1 Bottleneck Analysis 329
29.2.2 The Edge of Technology 330

Appendix
Auxiliary LISP Functions 333

Bibliography 341

Index 351

Preface

P rofessional Automated Trading, Theory and Practice: comes from several
years of research and practice of successful implementation of automated

systematic trading strategies in the context of proprietary trading at a few
major financial institutions and my own firm.

On one hand, trading is a science that is based on a variety of tech-
niques coming from mathematics, physics, psychology, biology, and various
computer science techniques. On the other hand it is an art of knowing and
respecting the market and equally importantly of knowing oneself. But fore-
most it is a business that hinges on a carefully understood discipline and
process of seeking reward under risk.

This book presents some of the science and some of the process in-
volved in building a scalable diversified systematic trading business. The art
is mostly left to the reader: You are encouraged to find your own way of
crystallizing your intuition about the external world and translating it into
trading models and risk management that fit best your psychology, capital,
and business constraints.

The aim is to provide a set of tools to build a robust systematic trading
business and is mostly directed toward proprietary trading groups, quan-
titative hedge funds, proprietary desks, and market-making businesses at
investment banks, and asset management companies, as well as ambitious
individual traders seeking to manage their own wealth on such principles.

The book is divided into an introductory section and four parts, each
coming with a specific sub-goal. The introductory chapter aims at comparing
the systematic and discretionary trading disciplines from several angles. They
are discussed in the philosophical, business, and psychological contexts. It is
an important analysis as it shows that the two disciplines are equally valid as
far as their raison d’être and business efficiency are concerned. Hence it is
argued that the choice between the two hinges on the psychological makeup
of the trader. An overview of various types of systematic market players and
specific techniques are presented in the historical context.

The book’s central idea is to frame systematic trading in the framework
of autonomous adaptive agents. This framework comes from recent stud-
ies in robotics and artificial life systems. It opens the avenue to implement

xv

xvi PREFACE

concepts of adaptation, evolution, and learning of trading agents. It also
aims at bridging the gap between systematic and discretionary trading by
making those robotic trading agents acquire some animal-like traits. It is
very much research in progress and a fascinating area with a lot of future
potential.

Part One introduces the basic conceptual and programmatic framework
for the design of trading strategies as trading agents. The representation of
the agent’s core decision making by way of reactive finite-state machines is
introduced. The framework also allows the trading agents to communicate
and signal to each other either in a parallel or sequential computational cycle.

The discussion continues with a set of broad types of automatic decision-
making models that perform in various market regimes. In particular ba-
sic trend-following, breakout, mean-reversion, acceleration, and conditional
market-making strategies are discussed.

As diversification of markets and models is most important for success,
a fair amount of emphasis is put on designing tools that enable efficient
treatment of portfolios. The concept of an aggregate agent is introduced for
this purpose.

Detailed implementations of back- and forward-testing engines are pre-
sented and pitfalls associated with curve-fitting and statistical insignificance
are discussed.

The goal of Part Two is to give the reader insights into building ro-
bust trading systems that can gracefully withstand changes of regime. The
agent-based representation of strategies is a handy and natural framework
for making progress toward this goal.

Trading strategies can be seen as filters that help discover implicit market
regimes and changes of regime. When the market regime changes, strategies
that were compatible with the old regime may lose performance whereas
other strategies may start performing better with the arrival of the next
regime. In order to quantify strategy performance and exploit its variability,
absolute and relative fitness measures are introduced.

One avenue to adaptation comes from studying the persistence of per-
formance of parametric sets of nonadaptive strategies. It is realized via the
implementation of an automatic choice mechanism that switches between a
set of nonadaptive strategies. The book introduces swarm systems that are
aggregate agents that embed various types of switching mechanisms.

The discussion encompasses the robustness and effectiveness of the
choice mechanisms underlying the swarm systems. Measures of efficiency
are introduced and ideas from reinforcement learning are used to train the
parameters of the choice algorithms.

This paradigm for adaptation can be explained in the following terms.
The collection of nonadaptive strategies is a set of potential behaviors of the

Preface xvii

aggregate adaptive agent. The adaptive agent runs all those potential behav-
iors in parallel in a simulation mode. It is endowed with criteria to choose
a subset of behaviors that is expected to produce a positive performance
over the next foreseeable future. This is the behavior that the agent imple-
ments in real trading. As time unfolds, the agent learns from experience to
choose its behavior more effectively. Effectiveness means that as the market
goes through various cycles of regime changes, the performance during those
change periods does not degrade.

From this it is evident, because history tends to repeat itself, that it is
wise to endow the swarm system with a large enough set of potential behav-
iors that have proved to be effective at some periods of the past. However a
degree of innovation is also needed, akin to the exploration versus exploita-
tion in reinforcement learning. This aspect is touched upon and constitutes
an active area of my research at present.

Part Three focuses on the important aspect of trading costs and slippage.
It starts with the analysis of the intra-day bid-offer and volume seasonality
in major markets, then explores the volume-price response functions. It dis-
cusses several algorithmic execution strategies designed to help reduce mar-
ket impact once a decision to trade had been made.

Part Four presents the implementation of a scalable and efficient low-
latency trading architecture that is able to support a set of signals generated
by a swarm of adaptive models. The complexity of dealing with real-time
swarm systems leads to design the whole trading architecture on the basis of
feedbacks between a set of distributed concurrent components.

The discussion encompasses design patterns for data and state persis-
tence, the advantages of designing different components in different appro-
priately chosen languages, and a domain model that allows seamless com-
munications between these components via message-passing algorithms.

Efficiency constraints on data representation and complexity for inter-
nal and external communications and various protocols are touched upon.
Details of the order management system (OMS) with its architecture of a
recursive controller are given. The OMS is further optimized by allowing
order aggregation.

Solving the inverse problem of dis-aggregation at the middle-office level
an infrastructure able to support a “dark pool” is discussed.

A variety of real-time human interface controllers that are necessary to
complete various feedbacks in the system are presented. In particular the
real-time risk, P & L, position managers, and the model controllers are
discussed.

As the whole architecture itself is designed to be robust and resilient to
various bottleneck or disconnect issues, emphasis is on advice to architect
the system in a way that ensures fast self-recovery and minimal downtime.

xviii PREFACE

Robustness and continuity also need to be achieved at the level of re-
leases and patches. Solutions are suggested from standpoints of software and
hardware.

Finishing with hardware, the state of my own practical research is dis-
cussed. It applies techniques from parallel processing on one hand and de-
signer chips on the other hand to further improve the efficiency of the orig-
inal design in certain appropriate situations.

The theoretical Parts One to Three can be read independently of the
practical Part Four yet there is a definite logical thread running through
them. Many designs in Part Four were introduced to specifically address
the concepts introduced in Parts One to Three in concrete implementations
that I and my teams performed in practice.

This book aims to provide a methodology to set up a framework for
practical research and selection of trading models and to provide tools for
their implementation in a real-time low-latency environment. Thus it re-
quires readers to have some knowledge of certain mathematical techniques
(calculus, statistics, optimization, transition graphs, and basic operations
research), certain functional and object-oriented programming techniques
(mostly LISP and Java), and certain programming design patterns (mostly
dealing with concurrency and multithreading). Most modern concepts com-
ing from research in evolutionary computing, robotics, and artificial life
are introduced in an intuitive manner with ample references to relevant
literature.

As one sees from this overview this book is first of all a synthesis of
many concepts coming from various domains of knowledge. As an academic
environment, I always feel the importance to institute a creative environment
with little legacy or a priori dogmas that allow for the confluence of various
ideas to bear fruit.

I hope that this book will provide an inspiration to creatively compete
in the fascinating world of automated trading of free markets. In the same
sense that trading is a means-ends process that maximizes the reward-to-risk
ratio, the design of the architecture of the trading technology is a means-ends
process that maximizes the throughput-to-downtime ratio. I aim to demon-
strate that the two concepts are intimately, linked in the modern world.

I am dedicating this book to my parents Alexis and Larissa, who en-
couraged me to start it and to my soulmate Caroline who has supported me
throughout the process of writing it.

I would like to thank the whole team at Wiley, and in particular Bill
Falloon, Meg Freeborn, Tiffany Charbonier and Vincent Nordhaus for all
their help and guidance during the writing and editing process.

CHAPTER 1
Introduction to

Systematic Trading

S ystematic trading is a particular discipline of trading, which is one of
the oldest human activities. Trading and the associated arena set by

the marketplace coevolved in time to become one of the dominant indus-
tries on the planet. At each stage of their development, new efficiencies
were introduced.

Starting as barter where goods were exchanged “on sight,” the first ma-
jor evolutionary step was the introduction of a numeraire (be it gold or fiat
money) that literally allowed comparison between apples and oranges. It
also allowed the storage of value in a compact way. Then the first organized
exchanges in Flanders and Holland introduced several key concepts: first and
foremost the concept of the exchange as a risk disintermediator, then the
concept of standardization so important in comparing bulk commodities,
and finally the technique of open outcry—the famous Dutch Auction at the
basis of the modern exchange mechanism. Despite the fact that the concept
of interest (via grain loans) was introduced by the Egyptians, the effective
leverage in the marketplace only came with the growth of the stock markets
and commodity futures markets in the United States in the early twentieth
century. Also at that point the nascent global banking system spurred the
creation of the money market where short-term loans are traded in a stan-
dardized fashion and help to transfer leverage between counterparties. An
important factor in the stabilization of the market process was the intro-
duction of floor specialists or market-makers who ensured orderly matching
of buyers and sellers. With the advent of increasing computing power, the
co-evolution of the marketplace and the trading associated with it has accel-
erated further. Not only has the banking system evolved into a global net-
work of compensating agents where money can be transferred at the speed
of light, but the whole flow of information has become available to a much

1

2 INTRODUCTION TO SYSTEMATIC TRADING

larger group. The marketplace and trading have become truly global and
gradually more electronic. This evolution has taken its toll on the open out-
cry system and on specialists, with some of them being gradually crowded
out by robotic market-making computer programs and the increasing im-
portance of semi-private matching engines like dark pools and electronic
commerce networks (ECNs).

And this is where we are right now, a world some would say of in-
formation overflow, of competition for microseconds, of over-leverage and
over-speculation. Each evolutionary stage comes with its share of positives
and negatives. A new organism has to keep searching for its boundaries in-
dependently of its forebears and try to learn from its rewards and mistakes
so as to set the stage for its own progress.

This book focuses on a subset of trading techniques that applies to a
subset of the marketplace. It explores the systematic automated trading of
liquid instruments such as foreign exchange, futures, and equities. It is an
activity on the edge of the evolutionary path that also tries to find its current
boundaries, technologically and conceptually.

This introductory chapter sets the philosophical context of trading
and puts on equal footing the seemingly contradictory approaches of sys-
tematic and discretionary trading. They are compared as business activi-
ties by presenting a cost-benefit analysis of each, concluding with the vi-
ability and similarity of both. The psychological implications of choos-
ing one path over the other is analyzed and it is argued that it is the
defining criterion from a rational trader’s perspective. The chapter con-
cludes by putting the theoretical Parts One to Three and the practical Part
Four of the book into the historic context and showing how the evolu-
tion of systematic trading is intimately related to the progress in technology
and science.

1.1 DEF IN IT ION OF SYSTEMATIC TRADING

The majority of successful traders design their trading strategy and trading
discipline in the most objective way possible but cannot be qualified as sys-
tematic, because many of their decisions are based on their perceived state of
the world, the state of their mind, and other factors that cannot be compu-
tationally quantified. The type of trading that is relying on noncomputable
processes will be qualified as discretionary in this book.

As opposed to the discretionary, the qualifier systematic encompasses
the following two concepts:

Introduction to Systematic Trading 3

1. The existence of a rules-driven trading strategy that is based on objec-
tively reproducible (computable) inputs.

2. The application of that strategy with discipline and outside of the human
emotional context.

Systematic trading implies the construction of a mathematical model
of a certain behavior of the market. This model is then encompassed in a
decision-making algorithm that outputs continuously the allocation of ex-
posure to such a model in the context of the trader’s other models’ behavior,
total risk allocation, and other objective and reproducible inputs. The con-
tinuous running of such an algorithm is oftentimes best left to a robot.

Before making further comparisons let us now explore the two trading
approaches in a broader philosophical context of the perceived behavior of
the market and its participants.

1.2 PHILOSOPHY OF TRADING

The philosophy of trading derives from a set of beliefs about the workings
of the human mind, the behavior of crowds of reward-seeking individuals,
and the resulting greed-fear dynamics in the market. Trading is a process,
a strategy, a state of mind. It is the mechanism by which a market par-
ticipant survives and thrives in the marketplace that itself is composed
of such participants and constrained by political and regulatory fads
and fashions.

Choosing a trading style is as much about knowing and understanding
the workings of the market as it is knowing and understanding oneself. The
nonemotional self-analysis of behavior under stresses of risk, reward, and
discipline are part of the personal effort any trader has to evolve through,
most often by trial and error. I will defer comments on this self-analysis to
later and will now focus on the more objective and observable part related
to the market.

1.2.1 Lessons from the Market

Let us first see what conclusions we can derive from observing the market as
a whole and the behavior of its participants. The most relevant observations
can be summarized as follows:

� Macroeconomic information unfolds gradually, therefore prices do not
discount future events immediately. Why is it the case that at the peak

4 INTRODUCTION TO SYSTEMATIC TRADING

of the business cycle asset prices do not discount its next through and
vice versa? Because no one knows when the next through is coming
despite the seeming regularity of business cycles. Things always look so
optimistic on the top and so pessimistic at the bottom. This is why we
observe long-term trends in all asset prices and yields.

� The leverage in the market yields a locally unstable system because in-
dividuals have finite capital and are playing the game so as to survive
the next round. This instability is increased by the asymmetry between
game-theoretic behaviors of accumulation and divestment of risky po-
sitions. When you accumulate a position you have all the incentive in
the world to tell all your friends, and it is a self-fulfilling virtuous circle
as people push prices in “your” direction, thus increasing your profit.
This is the epitome of a cooperative game. On the other hand, when you
divest, you have no incentive to tell anyone as they may exit before you,
pushing prices away from you. This is a classic Prisoner’s Dilemma game
where it is rational to defect, as it is not seen as a repeated game. This
is why we observe a great deal of asymmetry between up and down
moves in prices of most assets, as well as price breakouts and violent
trend reversals.

� There is a segmentation of market participants by their risk-taking
ability, their objectives, and their time frames. Real-money investors
have a different attitude to drawdowns than highly leveraged hedge
funds. Pension fund managers rotate investments quarterly whereas au-
tomated market-makers can switch the sign of their inventory in a quar-
ter of a second. In general, though, each segment reacts in a similar
way to price movements on their particular scale of sampling. This
explains the self-similarity of several patterns at different price and
time scales.

� The market as a whole has a consensus-building tendency, which
implies learning at certain timescales. This is why some strategy
classes or positions have diminishing returns. When people hear of a
good money-making idea, they herd into it until it loses its money-
making appeal.

� The market as a whole has a fair amount of participant turnover, which
implies un-learning at certain longer timescales. A new generation of
market participants very rarely learns the lessons of the previous gen-
eration. If it were not the case why are we going through booms and
busts with the suspicious regularity commensurate to a trading career
lifespan of 15 to 20 years?

� There is no short-term relationship between price and value. To para-
phrase Oscar Wilde, a trader is a person who knows the price of every-
thing but the value of nothing.

Introduction to Systematic Trading 5

1.2.2 Mechanism vs. Organism

The above observations do not reflect teachings of the economic orthodoxy
based on the concept of general equilibrium, which is a fairly static view of
the economic landscape. They become more naturally accepted when one
realizes that the market itself is a collection of living beings and that macro-
economics is an emergent property of the society we live in. The society,
akin to an organism, evolves and so does the market with it. The complexity
of the macroeconomy and of the market is greater than what is implied by
overly mechanistic or, even worse, static models.

In thinking about the market from this rather lofty perspective, one is
naturally drawn into the debate of mechanism versus organism, the now
classic debate between biology and physics. The strict mechanistic view of
economics, where the course of events is determined via an equilibrium con-
cept resulting from the interaction of a crowd of rational agents, has clearly
not yielded many robust predictions or even ex post explanations of real-
ized events in the last 100 years of its existence. Thus despite the elaborate
concepts and complicated mathematics, this poor track record causes me to
reject the mechanistic view of the world that this prism provides.

The purely organistic view of the market is probably a far fetch from
reality as well. First of all, the conceptual definition of an organism is not
even yet well understood, other than being a pattern in time of organized
and linked elements where functional relationships between its constituents
are delocalized and therefore cannot be reduced to the concept of a mecha-
nism (that is, a set of independent parts only linked by localized constraints).
There are clearly delocalized relationships in the market, and stresses in one
dimension (whether geographic location, asset class, regulatory change, etc.)
quickly propagate to other areas. This is in fact one of the sources of vari-
ability in correlations between different asset classes as well as participants’
behaviors. On the other hand, on average these correlation and behavioral
relationships are quite stable. Also, unlike in a pure organism, the removal
or death of a “market organ” would not necessarily imply the breakdown
of the organism (i.e., market) as a whole. For example, the various sovereign
debt defaults and write-downs in the past did not yield the death of the global
bond market.

1.2.3 The Edge of Complexi ty

So, intuitively the market is not as simple as Newton equations nor is it
as complicated as an elephant or a mouse. Its complexity lies somewhere
in between. It has pockets of coherence and of randomness intertwined in
time. A bit like a school of silverside fish that in normal circumstances has an

6 INTRODUCTION TO SYSTEMATIC TRADING

amorphic structure but at the sight of a barracuda spontaneously polarizes
into beautiful geometric patterns.

The good thing is that the market is the most observable and open hu-
man activity, translated into a series of orders, trades, and price changes—
numbers at the end of the day that can be analyzed ad nauseam. The numeric
analysis of time series of prices also yields a similar conclusion. The prices
or returns do not behave as Gaussian processes or white noise but have dis-
tributional properties of mild chaotic systems, or as Mandelbrot puts it, tur-
bulence. They are nonstationary, have fat tails, clustering of volatility that is
due to clustering of autocorrelation, and are non-Markovian. A very good
overview of the real world properties of price time series is given in Theorie
des Risques Financiers by Bouchard and Potters.

1.2.4 Is Systemat ic Trading Reduct ion ist ic?

As per the definition above, systematic trading is essentially a computable
model of the market. Via its algorithmic nature it can appear to be a more
reductionistic approach than discretionary trading. A model reduces the di-
mensionality of the problem by extracting the “signal” from the “noise” in a
mathematical way. A robotic application of the algorithm may appear overly
simplistic.

On the other hand, discretionary traders often inhibit their decision
making by strong beliefs (“fight a trend”) or do not have the physical ability
to focus enough attention on many market situations thus potentially leav-
ing several opportunities on the table. So discretionary trading also involves
an important reduction in dimensionality but this reduction is happening
differently for different people and times.

1.2.5 React ion vs. Proact ion

A common criticism of systematic trading is that it is based on backward-
looking indicators. While it is true that many indicators are filters whose
calculation is based on past data, it is not true that they do not have predic-
tive power. It is also true that many systematic model types have explicitly
predictive features, like some mean-reversion and market-making models.

At the same time one cannot say that discretionary trading or investing
strategies are based solely on the concept or attempts of prediction. Many
expectational models of value, for example the arbitrage pricing theory or
the capital asset pricing model, are based on backward-looking calculations
of covariances and momentum measures. Despite the fact that those models
try to “predict” reversion to some normal behavior, the predictive model is
normally backward-looking. As Niels Bohr liked to say, it is very difficult to
predict, especially the future.

Introduction to Systematic Trading 7

1.2.6 Arbitrage?

Many times I’ve heard people arguing that the alpha in systematic strategies
should not exist because everyone would arbitrage them away, knowing the
approximate models people use. The same could be argued for all the discre-
tionary strategies as most of the approaches are well known as well. Thus
the market should cease trading and remain stuck in the utopian equilibrium
state. Yet none of this happens in reality and the question is why? Probably
exactly because of the fact that people do not believe that other people’s
strategies will work. So as much as it is seemingly simple to arbitrage price
discrepancies away, it is less simple to arbitrage strategies away. Having said
that, the market system in itself is cyclical and, as mentioned above, strate-
gies get arbitraged away temporarily, until the arbitrageurs blow up all at
the same time because of their own sheer concentration of risk and the cycle
restarts with new entrants picking up the very valuable mispriced pieces.

1.2.7 Two Viable Paths

Viewing trading and the market from this level yields a positivist view on the
different ways to profit from it. The discretionary traders see in it enough
complexity to justify their approach of nonmechanizable intuition, insight,
and chutzpah. The systematic traders see in it enough regularity to justify
their approach of nonemotional pattern matching, discipline, and robotic
abidance to model signals.

Which approach is right then becomes a matter of personal taste, as
the edge of complexity the market presents us with does not allow for a
rational decision between the two. In fact both approaches are right, but not
necessarily all the time and not for everyone. Of course the Holy Grail is to
be able to combine the two—to become an übertrader who is as disciplined
as a robot in its mastery of human intuition.

This book of course does not offer the Holy Grail to trading; intuition
and insight are quite slippery concepts and highly personal. There is no
one way. But this work is not interested either in focusing on the same
old mechanistic techniques that appeared at numerous occasions in books
on systematic trading. It aims at moving further afield toward the edge of
complexity, by giving enough structure, process, and discipline to manage
a set of smarter, adaptive, and complex strategies.

1.3 THE BUSINESS OF TRADING

If, as was derived in the last section, there is no a priori rational way to
choose between discretionary and systematic trading paths, one should then

8 INTRODUCTION TO SYSTEMATIC TRADING

aim at objectively comparing the two approaches as business propositions.
Seeing it this way will lead naturally to a choice based on the trader’s own
psychology; that is, which of the two business propositions is the most com-
patible with the inner trust of his own ability to sustain and stand behind
that business activity over time.

The goal of a business is to produce a dividend to its stakeholder. Any
sustainable business is built on four pillars:

1. Capital: provides the necessary initial critical mass to launch the busi-
ness and sustain it through ups and downs

2. Product: the edge of the business, the innovation relative the rest of the
competition

3. Factory: the process by which the products are manufactured, which is
an integral part of the edge itself

4. Marketing: the means by which information about the product reaches
the outside world and helps replenish the capital, thus closing the loop

Both discretionary and systematic trading businesses should be seen in
the context of those necessary contexts. Of course trading is not per se man-
ufacturing of anything other than P & L. So the product is the trader’s edge
or algorithm and the factory is the continuous application of such trading
activity in the market. Marketing is the ability to raise more capital or assets
under management based on performance, regulatory environment, or good
looks. Here the trader can mean an individual, a group, or a corporate body.

So let us do a comparison between systematic and discretionary trading,
keeping in mind the above concepts.

1.3.1 Prof i tab i l i ty and Track Record

Before one even starts looking at the individual pillars of business, can one
say anything about the long-term profitability of the two trading styles?
This is an important question as it may provide a natural a priori choice:
If one type of business is dominantly more profitable than the other then
why bother with the laggard?

Interestingly it is a hard question to answer as the only objective data
that exists in the public domain is on hedge fund and mutual fund perfor-
mance. Any of the profitability data of bank proprietary desks is very hard
to come by as it is not usually disclosed in annual reports. Also the mutual
funds should be excluded on the basis of the fact that their trading style is
mostly passive and index-tracking. This leaves us with comparing discre-
tionary to systematic hedge funds.

Introduction to Systematic Trading 9

0
May-79 Nov-84 May-90 Oct-95

CTA SPTR

Apr-01 Oct-06 Apr-12 Sep-17

5000

10000

15000

20000

25000

30000

35000

F IGURE 1.1 HFR CTA Index versus SP500 Total Return Index

In both camps there is a wide variety of underlying strategies. In the
discretionary camp the strategies are long-short equity, credit, fixed-income
relative value, global macro, special situations, and so on. On the system-
atic side the strategies are commodity trading advisors (CTAs), statistical
arbitrage, high-frequency conditional market-makers, and so on. What is
the right comparison: absolute return, assets under management (AUM)–
weighted return, return on shareholders equity? Because private partnership
is the dominant corporate structure for hedge funds, the return on share-
holders equity is not a statistically significant comparison as far as publicly
available data is concerned. Hence one has no choice but to compare strat-
egy returns. As on average the fee structure is similar in both camps, one
may as well compare net returns to investors.

Figure 1.1 shows the comparative total return on the Hedge Fund Re-
search CTA Index and the total return on the SP500 stock index. Table 1.1
shows the comparative statistics of major Hedge Fund Research strategy in-
dices from 1996 to 2013.

Some of the earliest hedge funds were purely systematic and have sur-
vived until now despite the well-known attrition in the hedge fund indus-
try as a whole. Many commodity trading advisors and managed account
firms have been involved in the systematic trading business for at least
40 years. Their track record represents an interesting testament to the ro-
bustness of the systematic approach, from the performance and process
perspective. Also systematic strategies have in general low correlation to

10 INTRODUCTION TO SYSTEMATIC TRADING

discretionary strategies and to other systematic strategies, especially clas-
sified by time frame.

In conclusion one sees that the major strategy types tend to be quite
cyclical and that there are sizable up-runs and drawdowns in each class,
be it in the discretionary or systematic camps. Thus it is difficult to
draw any conclusions on the dominance of either style on the basis of
profitability alone.

This brings us back to our exploration of how the two styles compare
in the context of the four business pillars mentioned above, in the order of
product, factory, marketing, and capital.

1.3.2 The Product and Its Design

Research and information processing are the crux of the product’s edge for
the trader. A trading strategy is first and foremost an educated idea on how to
profit from certain situations, be they ad hoc or periodic, and how to mitigate
losses from unexpected events. It requires an ability to gather, process, and
research a large quantity of information.

In format ion In the discretionary world, this information is categorized into
the following seven areas and the trader forms an intuiton based on this set
in order to pull the trigger:

1. Macroeconomic
2. Political
3. Asset-class specific
4. Idiosyncratic to a company
5. Specific to a security (share, bond, etc.)
6. Price and transactional
7. Flow and holdings

The majority of the time in the systematic world, the information re-
quired is limited to the price and transactional and in rarer occasions on
the holdings and flows (such as the Commitment of Traders report in the fu-
tures markets). Most of the systematic models base their decision making on
the extraction of repeatable patterns from publicly available data on prices
and executions. The statistical significance of such patterns is derived from
simulation (the action of back- and forward-testing).

Both activities are clearly information-intensive but this intensity mani-
fests itself in quite different dimensions. The discretionary style requires pro-
cessing of a broad scope of nonnumerical data, and traders read and rely on a
range of broker and analyst research along with continuous news and politi-
cal analysis. A lot of useful information is also seen in the flow and holdings

Introduction to Systematic Trading 11

that are obtained via brokers, that is, who are the transacting participants
and how much. This in itself implies that discretionary trading is difficult
to do solo and often requires teams of people to digest all the information
flow. Interestingly, some firms have started creating numerical sentiment in-
dices based on textual and voice news flows, a technique used initially by
intelligence agencies to discover subtle changes in political rhetoric.

For the systematic style, the dimensionality of the information is much
lower; the models are in general only interested in price or tick data but
they require a continuous feed and automated processing of this data at
high speeds, especially in the current context of the ECNs. This means that
from a technological perspective, especially for high-frequency business, the
required connectivity and throughput needs to be large. This in general has
cost implications.

Most systematic models also require prior and continuous recalibration,
thus large databases of historical data need to be kept for research purposes.

Research Information is useless if it cannot be interpreted in context, be
it intuitive or model based. To be able to form such an educated view, some
research needs to be performed on the relevant data.

In the discretionary context, most useful research falls into (1) politi-
cal and regulatory analysis, (2) macroeconomic analysis, (3) asset-specific
research, or (4) quantitative research. Many investment banks and institu-
tions have large departments focused on macroeconomic analysis and asset-
specific research. Discretionary traders or teams have access to such research
via prime brokerage relationships and those costs are implicitly absorbed
into trading and clearing fees. A few smaller private firms run by former
bank or government institutions officials provide political and regulatory
analysis and macroeconomic analysis for fees and also use their former con-
tacts to introduce clients to current central bankers, finance ministers, and
other officials. Such relationships are invaluable for certain strategies such
as global macro, where fund managers constantly try to read between the
lines for changes of moods or rhetoric in order to form their own expecta-
tions on upcoming policy moves. Thus a lot of research that is valuable for
discretionary trading is already out there. It needs to be gathered, filtered,
read, and distilled to be presented to the portfolio managers. Large discre-
tionary hedge funds hire in-house economists and analysts to do such work
but many operate just using publicly available and broker research.

There is a subset of discretionary strategies that is driven by quantita-
tive modeling. Fixed-income relative value, long-short equity, and volatil-
ity strategies are such areas, for example. Each require a fair amount of
advanced mathematical techniques, pricing tools, and risk management
tools. Although there is commercially available software with standard li-
braries for pricing options, interpolating yield curves, or handling large-scale

12 INTRODUCTION TO SYSTEMATIC TRADING

covariance analysis, the vast majority of quantitative discretionary opera-
tions employ in-house quants to write a series of models and pricing tools as
well as to maintain the relevant data and daily process. This has clear cost
implications on such businesses.

The systematic approach is entirely research-driven and in a very direct
sense research innovation is the backbone of the business. The principal ar-
eas of research fall into the following four categories:

1. Individual Models. The goal is to produce a set of diversified robust
trading agents that exploit various repeatable price and trade patterns.
Various techniques of back- and forward-testing are employed for this
goal. It is the key area for the success of the whole business. It is the
focus of Part One.

2. Adaptation of Model Portfolios. The goal is to produce an automated
allocation rule for a portfolio of models by studying the persistence of
behavioral regimes of individual models. It is an important area for in-
tegrated risk management in the high-frequency trading domain. Part
Two is dedicated to some of my findings in the matter.

3. Trading Costs Minimization. The goal is to minimize market impact
from model execution by slicing the trades according to various execu-
tion algorithms that derive mostly from liquidity distributional analysis.
This is explored in Part Three.

4. Trading Process Optimization. The goal is to optimize the trading pro-
cess from the perspective of computational efficiency as well as to ensure
fast recoverability from downtime. It is a vast area to which the prac-
tical Part Four is dedicated. It encompasses the design of low-latency
order management systems and their coupling with various model en-
gines, domain models for state persistence and recovery, distribution of
computational tasks among components, and so on.

These four categories are closely intertwined in automated systematic trad-
ing and demonstrating this concretely is an important feature of this book.

1.3.3 The Trading Factory

Process Designing and implementing a disciplined trading process on the
basis of either computable or subjective signals is key to the success of the
business of trading. The process presupposes an infrastructure and a tech-
nology optimized for the production of the trading widget. It is not enough
to have a good widget idea; one also has to be able to manufacture it ef-
ficiently. Of course, having a great factory producing widgets that no one

Introduction to Systematic Trading 13

wants is a waste of time and money. But as much as great trade ideas or
strategies are necessary, they are not sufficient if not implemented correctly.
The underlying processes of discretionary and systematic businesses present
many similarities but also major differences, as we will show now.

In the discretionary world, choosing the winning set of human traders
is key. The traders have to have at least the following four features, with the
last three criteria being essentially a strong self-discipline:

1. Profitability: Ability to generate revenues in different market conditions
2. Predator Mentality: Proactive trade idea generation stemming from con-

tinuous information processing accompanied by aggressive sizing into
good opportunities

3. Ego Management: Proactive risk management and survival skills
4. Clear Head: Knowing when not to overstay one’s welcome in the market

and take time off when the picture is not clear

Several successful traders have published honest and objective self-analyses
of their occasional failings in instituting such discipline, courage, or focus
and drew lessons for the benefit of the whole trading community. Of course
longer-term survival let alone profitability hinges on the discipline of apply-
ing the trading process as per the last three criteria.

As mentioned in the previous section, the systematic business is research-
driven. The principal goal of that research is to produce a portfolio of prof-
itable models. It implies that the continuous fostering of innovative research
is a key element to the process and to the success of the business. Finding a
set of robust models in the systematic world is equivalent to hiring a desk of
good traders in the discretionary world.

The systematic approach a priori formalizes a lot of the individual
trader’s discipline as models are run continuously, have embedded stop-
losses and profit targets, and can be scheduled to be turned on or off during
certain periods. The trading process is thus run as an algorithm. The key
four features for success are similar in nature to those mentioned above:

1. Profitability: A diversified set of models that are profitable in various
market conditions

2. Continuous Monitoring: The models are continuously processing data
and output either position or order changes, thus opportunities are ex-
ploited to the maximum, 24 hours a day and across many markets

3. Dynamic Risk Management: Portfolios of models have an embedded
dynamic sizing algorithm that controls the exposure as a function of the
performance of each model and the portfolio as a whole

14 INTRODUCTION TO SYSTEMATIC TRADING

4. Model Fitness: A higher-level feedback mechanism compares a portfo-
lio of possible models and dynamically chooses a subset to trade on the
basis of a fitness measure, thus models are demoted and promoted dy-
namically from a prior set of potential candidates

The systematic trading process is much more involved than the discre-
tionary one as by its nature it is automated. The increased complexity comes
from the fact that many things that are second nature to humans are actu-
ally hard to implement in software (for example, automatic recovery mecha-
nisms from data disconnects or loss). It is a technology-driven process as the
technology implements the factory element. Thus from the technology per-
spective, the systematic business requires an investment into software and
hardware much larger than for the discretionary business. We focus in Part
Four on the analysis of the various key elements one needs to master to put
such a process in place.

Cooperat ion We have come to another important aspect of the nature
of communication and cooperation within the two businesses. In a discre-
tionary hedge fund, especially in areas like global macro, there is a tendency
to encourage trade diversification by discouraging communication between
various traders. This is a noncooperative game scenario and some funds push
it even further by encouraging traders to compete for the biggest risk alloca-
tion from the same pot thus creating potential friction, jealousy, and mutual
dislike between people.

Interestingly, on the systematic side such selection is done implicitly by
the higher-order model feedback mechanism. So the noncooperative game
is left to the machine and one does not hear models screaming or squeal-
ing when they get demoted. The research process, though, has to be a co-
operative game where cooperation between team members serves the exact
purpose of creating a diversified portfolio of models. Efficient systematic re-
search has to be run on the examplar of academic institutions where people
are given enough leeway to innovate and learn from communication with
each other, and are driven by the common good of cooperative success.

There is another important cooperative game going on in the systematic
trading business. It is the natural synergy between the research, develop-
ment, technology, infrastructure, and monitoring teams. Research needs an
optimized implementation that in turn needs efficient technology run on a
robust infrastructure that is being monitored continuously. All areas need
research to come up with money-making models to produce cash and sus-
tain the whole food chain. The success of some large systematic funds is
corroborated by my own knowledge of the way such cooperation had been
instituted within them.

Introduction to Systematic Trading 15

1.3.4 Market ing and Distr ibut ion

The differences in the products and processes discussed above imply differ-
ences in the approach to marketing and branding of discretionary and sys-
tematic strategies. One could say that the brand of a discretionary trading
business falls more into the craft category, whereas the brand of a systematic
trading business falls more into an industry category. The last remark could
be justified from our analysis of the process, not the product. Both product
design processes are crafts, coming from accumulated intuition of traders on
one hand and researchers on the other. From a marketing perspective, the
element of skill is crucial in both worlds.

One could argue that it is somewhat easier for a newcomer to launch
a systematic fund rather than a discretionary fund. The crucial point that
comes in all capital raising discussions is the ability to produce a credible
track record. It is difficult for discretionary traders to have a track record
unless they have traded before, which is of course possible only if they
traded their own money or could take their track record from a previous
firm (a very tricky exercise in itself). Thus the majority of discretionary
traders start in market-making and other sell-side careers then graduate
to a proprietary trader status. Only then can they start to build their
independent track record.

The situation is quite different in systematic trading as there is a rea-
sonable degree of acceptance among allocators of back-tested and paper-
traded track records. This of course supposes that the simulated net asset
value (NAV) contains a realistic (or, even better, pessimistic) assessment of
transaction costs, scalability, and sustainability of the market access and the
trading process in general. The discussion then focuses on how this track
record was generated and whether there was a risk of over-fitting and using
future information in the process of building the models.

Once the fund has been launched, let us compare the hypothetical clues
to answer the four main types of questions clients would usually ask while
doing their due-diligence assessment:

1. Can your profitability be sustained? In the discretionary world, every-
thing hinges on the ability of the head trader to keep performing,
whereas in the systematic world, it is all about the quality and inno-
vation of the head of research.

2. Is your market risk management robust? In the systematic world, risk
management is embedded in the model and portfolio processes and
can be explained very clearly. In the discretionary world, it is usually
harder to formalize and a fair amount of due-diligence time goes into
drilling the head trader on the reaction to various past and hypothetical

16 INTRODUCTION TO SYSTEMATIC TRADING

situations, as well as on the discipline with which the trading team
abides by the constraints imposed on them by the risk management
team.

3. What is your operational risk? In the discretionary world, one source
of operational risk is the key man risk. Once the head trader gets run
over by the proverbial bus so goes the fund generally. In the systematic
world, once the automated process has been put in place the focus is on
its sustainability and resilience. One has to show that the process has
live disaster-recovery sites and can be rerouted or delocalized if need be
to protect from data loss and market disconnects. The aspects of accu-
mulated data recovery as well as people relocation in case of premises
incapacitation are the same in both worlds.

4. What is your capacity? This of course depends on the time frame of trad-
ing given the liquidity of products traded. In the systematic world, one
could argue that it is easier to estimate the impact of increased trading
volume on transaction costs because most products are exchange traded
or have excellent price and volume transparency.

In conclusion, I believe that it is somewhat easier to start a systematic
fund but it requires a similar marketing effort as for a discretionary business.

1.3.5 Capita l , Costs, and Crit ica l Mass

Enlightened by the comparison of the three functional parts of the business,
we now come to the crucial questions of necessary initial capital and of run-
ning capital for operations. Of course we need to compare the two businesses
pari passu as far as size and revenue goals are concerned. We use the exam-
ple of hedge funds because they are stand-alone entities where all costs and
revenues can be objectively estimated.

How much is needed to start the business? In 2010, the realistic criti-
cal mass of initial capital needed to start a hedge fund business is north of
$50 million and better at $100 million. The main reason is the structure of
allocators—funds of hedge funds, asset managers, and family offices. Most
of them will rarely look at a target with AUM below $50 million because
they do not want to participate more than 10 percent in any fund. This
helps them to reduce the risk of concentration of other clients in the fund
if, of course, the other clients are also invested less than 10 percent each. As
they get lesser fees than hedge funds themselves, an investment of less than
$5 million is not worth the costs and time of due-diligence process.

It is actually not a bad thing for the fund itself as it forces it to be di-
versified in its client base, so that losing one client will not put the fund in

Introduction to Systematic Trading 17

jeopardy. But then the question comes down to the classic chicken-and-egg:
How would one start a fund in this difficult environment? One needs to find
a set of seed investors, hopefully all at the same time, a lot of performance
luck, and a lot of marketing effort! This is the same across various strategies
and the systematic business is no different from the discretionary in this re-
spect. Thus the barriers of entry are quite high for either type of stand-alone
trading business.

How much is needed to mainta in the operat ions? As the seeders invari-
ably take a cut of the economics, the resulting revenue is probably not
the usual 2 percent management:20 percent performance fees structure but
closer to 1 percent:15 percent. Assuming raising $50 million of AUM the
first year, the realistic management fee revenue is around $500,000.

Certain types of trading styles can be perfectly run on minimal infra-
structure consisting of the head trader (Chief Investment Officer), a middle-
office person (Chief Operating Officer and Chief Risk Officer), and a
marketing and client relationship person who can also hold the title of Chief
Compliance Officer. Those four functions combined into three people tick
the minimally accepted boxes as far as institutional allocators are concerned
in their goal toward reducing operational and key-man risks. Other func-
tions can be outsourced, in particular many back-office functions of control,
fund administration, IT support, and legal support. The costs of renting a
furnished office space plus utilities of course varies but be it offshore or on-
shore, it comes roughly to at least $50,000 per year. The IT and legal support
costs, communications (phone and Bloomberg feed), and directors’ and of-
ficers’ insurance also come to at least $50,000 a year but may be larger.
Adding travel and entertainment costs puts the total pre-salaries expenses at
around $150,000 conservatively. The salary expenses then pretty much take
up the rest of the fees, with usually $150,000 to the COO, $150,000 to the
marketing person, and the rest to the head trader, who probably is the sole
partner working for the upside call option. The business can survive one or
two years on this without making extra trading revenue but if it does not,
clients will usually pull the capital anyway. So the $50 million is indeed the
low end, the necessary but not always sufficient critical initial mass.

There are several styles on the discretionary and systematic sides that
are doable under the above setup. Those styles usually do not require either
a large amount of assets to trade nor a high frequency of trading. Styles that
would be difficult to fit in this minimal mold are, for example, equity statis-
tical arbitrage, high-frequency systematic trading, global emerging markets
strategies, and global credit strategies. These require more people trading
more markets or a more complicated technology that needs to be overseen
and run by more people.

18 INTRODUCTION TO SYSTEMATIC TRADING

For example, the high-frequency systematic business requires at least a
team of two full-time researchers and two full-time technologists in addition
to the minimal model above. From my personal experience in building such
a business, this is required in order to ensure operational stability in a 24-
hour operation. That automatically increases the costs by roughly $500,000
the first year and means that a realistic stand-alone critical mass for such a
business becomes $100 million AUM. The statistical arbitrage style has very
similar features. Of course, one could buy an off-the-shelf integrated solution
that provides in the same package a financial information exchange (FIX)
engine, connectivity setups, a complex event processor, databasing, and an
ability to program in your models. Is this really cheaper than developing all
the infrastructure in-house? Those packages are actually priced not far from
the salary of two technologists. One still needs a technologist to maintain
the system and a researcher for innovation, so the off-the-shelf solutions are
not dissimilar in costs to building everything in-house.

Cost of Capita l and Leverage Another important consideration is the cost
of running trading positions. Here the answer tends to be more clearly in
favor of systematic strategies simply because they tend to use very liquid
low-margin and exchange-traded products. The leverage in the most liquid
products can be up to 50-to-1 even taking into account the extra margin-
ing imposed by prime brokers. On the contrary, many discretionary strate-
gies exploit risk concessions that arise from liquidity premiums and those
strategies essentially benefit from providing liquidity to the market. Some
products, such as emerging market credit instruments and insurance-linked
securities, have no leverage at all and one has to pay the full price to par-
ticipate in them. So in general CTAs and other systematic trading strategies
are quite long cash on which they can earn a premium whereas credit and
arbitrage funds mostly borrow cash which sometimes can be costly.

How much is local ly too much? This means how much capital could be al-
located to a single strategy style above, which the efficiency starts decreasing
because of trading costs? In general scalability is directly proportional to the
liquidity of the market traded and inversely proportional to the frequency of
trading. Many discretionary strategies actually extract alpha by buying risk
concession in illiquid instruments and hence have limited scalability. System-
atic high-frequency price-taking strategies have limited scalability because
they aggress the market and move it in the process. It is difficult to draw gen-
eral conclusions and we will discuss this specifically for strategies on stocks,
futures, and foreign exchange (FX) markets in Part Three.

How much is global ly too much? This means how much global com-
mitment to the same class of strategies yields a decrease of efficiency for

Introduction to Systematic Trading 19

everyone involved? There is no hard answer to this but the study of damage
from various strategy bubbles—the 1997 crash of carry trades, the subse-
quent crash of LTCM, the 2006 crash of Amaranth, the 2007 crash of sta-
tistical arbitrage, the 2008 crash of long carry in credit—all point out that
this number is growing. The monetary inflation and quantitative easing only
add to the fire. The next bubble is probably going to be bigger than the sum
of the previous ones.

* * *

In conclusion, the systematic business has an advantage on the discretionary
from the lower capital usage, but can have a disadvantage of higher up-front
costs if one wants to compete at the cutting edge of technology and research.

1.4 PSYCHOLOGY AND EMOTIONS

The previous section aimed at showing that from an objective business per-
spective the systematic and discretionary trading activities have a lot in com-
mon. They all hinge on finding and maintaining efficient trading agents and
instituting the adequate discipline for the trading process. Also the costs to
start and maintain the businesses are comparable at comparable scales of
revenue. Another section argued that longer-term profitabilities are on av-
erage the same. From a more conceptual and philosophic perspective based
on our analysis of the market complexity, the two approaches are equally
viable.

Thus we come to a subjective and personal point: What is the style of
trading that is compatible with one’s psychological makeup? In this section
we try to suggest what trader psychologies best fit the two trading styles. My
personal choice was made a long time ago in favor of systematic trading.

1.4.1 Ups and Downs

As simple as it sounds, the crucial psychological skill is the ability to deal
with losses and gains. The volatility of the profits on the trading book is a
natural feature of the trading process. The psychological ability to unemo-
tionally deal with the upside and the downside volatility is the crucial aspect
of the maintenance of the trading process.

The systematic approach embeds a sophisticated money management
strategy. Not only does each model have its own sizing, stop-loss, and profit-
taking rules, but the portfolio of models itself is managed on the basis of
global sizing rules that allow it to deal with variability in correlations be-
tween the individual model returns. Also, automatic selection rules based

20 INTRODUCTION TO SYSTEMATIC TRADING

on the fitness of each model can be introduced. Model-specific rules are ex-
plored in Part One and portfolio and fitness rules in Part Two. Part Three
explores the important issue of slippage that must be taken into account to
produce realistic downside expectations during periods of stress.

The discretionary approach does not formalize explicitly any such
money management rules. Traders take a view on how much they can al-
low themselves to lose on a particular position and have expectations of
how much they can gain. The risk manager is then responsible for making
sure that the exposures do not breach certain levels of value at risk (VAR)
or some other measure based on historical covariances.

The unformalized approach presents positives and negatives. On the
negative side, there is no automated stop-loss. Often traders hang on to their
positions because they “know” they are right. It is then only a matter of time
before either the management or the traders themselves throw in the towel,
and the damage is a multiple of what could have been had a hard stop-loss
been respected. Also, because all the VAR calculations are backward-looking
and have a large lag, sudden correlational shocks cannot be dealt with in a
timely fashion. On the positive side, the trader’s human judgment and in-
tuition can sometimes save the position from a stop-loss forced in by silly
market behavior stemming from overreaction to some irrelevant news or ru-
mors. Just as important is the ability to recognize an outsized opportunity
relative to historic data and stick with the position for much longer than by
respecting an a priori computed profit-taking level.

1.4.2 Peer Pressure and the Blame Game

Emotions always are in overdrive in situations of stress. Choosing the sys-
tematic approach exposes the participant to the criticism from his discre-
tionary peers that the approach is formalized in a finite set of rules. When
you lose money, your models must be wrong or too simplistic. On the other
hand, choosing the discretionary approach, which is opaque to a formal
analysis, yields equally strong criticisms from the systematic peers. When
you lose money, you must have a lack of discipline or focus or are a macho,
fighting obvious patterns and thinking you are smarter than the market.

The ensuing soul-searching comes down to a question: What aspect of
your psyche do you trust more, the computational or the intuitive, the right
or the left side of the brain?

1.4.3 Trust : Cont inu i ty of Qual i ty

On what basis does one trust a trading process? Intuitively, we trust based
on two traits:

Introduction to Systematic Trading 21

1. Quality: the ability to deliver and survive in different stress scenarios
2. Continuity: the ability to “wake up every morning and bite the ass

off a bear,” as John Gutfreund allegedly said on the Salomon Brothers
trading floor

On the systematic front, the quality aspect comes down to being able to
organize and deliver solid, innovative research in profitable strategies. The
continuity comes down to being able to automate the application of those
strategies in a dynamic and adaptive portfolio context. So the trust comes
down to the ability to deliver an efficient research and development (R&D)
process. This book’s goal is to provide a very solid base for such a delivery.

On the discretionary front, quality is about the trader’s instinct and dis-
cipline. Continuity is about knowing how to choose quality traders and orga-
nizing a reward/punishment structure that retains the best over time. Quality
nevertheless is a dominant feature as the complexity of the process is lower
relative to the systematic world.

Thus from a psychological perspective the discretionary process is more
individualistic. As we noted above, it does not have to be a cooperative game
at the level of a group of traders as it arguably helps to diversify ideas and
risk. On the systematic side, the process has to be cooperative, first between
researchers themselves, then between different groups—research, technol-
ogy, infrastructure, and monitoring.

1.4.4 Learning from Each Other

Given that we are all competent business people and can organize an ef-
ficient money-making factory, the question then boils down to which we
enjoy more, the thrill of the unexpected just before the non-farm pay-
rolls come out or the quiet humming of our servers crunching terabytes of
tick data? It is basically an affinity to mathematical abstraction versus to
human language.

With different psychological makeups compatible with systematic and
discretionary trading styles, this section suggests what actual elements one
style of trading can learn from the other.

The primary intuition about patterns that can be systematically ex-
ploited comes from the discretionary side. It is ultimately the analysis of
participants’ emotions toward making or losing money that gives clues as
to what patterns are exploitable at different price and time scales. An-
other most important point of adaptation comes from observing human
and animal behavior toward problem solving and Part Two of this book
explores several avenues to systematize it in a broader context. Thus the

22 INTRODUCTION TO SYSTEMATIC TRADING

behavior of the discretionary traders is really useful to understand for the
systematic researchers.

At the same time the inherent discipline toward money management
and the robotic trading process naturally present in the systematic trading
are useful role models for the discipline of discretionary traders. Also, the
knowledge of systematic models is useful for discretionary traders for pre-
dicting stress, trend reversal, and breakout levels.

Thus the two trading disciplines can be seen as a coevolving set. In fact
the whole thing did not start as such because the marketplace was initially
dominated by discretionary traders. But especially since the coming of the
technological mega-trend and computerization of major markets, the land-
scape is changing by the day with more and more automated systematic
trading strategies coming online and in some markets even starting to dom-
inate the traded volume at the expense of discretionary participants.

The question is, who is going to learn faster? The humans with their
zillions of neurons and synapses or the cloud-based parallel supercomputers?
We are definitely living in very exciting times where the arms race of cold
war weaponry has been crowded out by the arms race of trading bots!

1.5 FROM CANDLESTICKS IN KYOTO TO FPGAs
IN CHICAGO

Understanding systematic trading in a historical context is interesting
and important as it sheds light on the natural progress from the very
beginnings of data and pattern representation to the modern highly parallel
adaptive processes connected directly to exchanges and crunching data
in microseconds. An overview of this history is given here that shows its
constant coupling with the developments in the relevant scientific and
technological spheres.

Systematic trading as a style has been in existence since the advent of
organized financial markets and the associated record keeping of prices and
transactions data, long before the introduction of computers and even of the
ticker tape. Its origins can be traced to the sixteenth century rice traders in
Japan who introduced tools to represent price activity in a visual way that
lead to the discovery of certain patterns, often bestowed with poetic names.

Data representation is a very important part of an effective analysis of a
situation. It quite often is achieved through the concept of compression, or
in other words the removal of irrelevant details. Of course the whole concept
of relevance is tightly linked to the goal of the analysis, in other words to the
extraction of the signal from the noise. Part One starts by covering various

Introduction to Systematic Trading 23

ways data can be usefully represented for systematic trading and explaining
which features are retained and which features are compressed away.

The field was then taken to the next level by Charles Dow in the early
1900s in the study of the U.S. stock markets. Driven by the fast expansion of
industry and transportation in the United Sates in the late nineteenth century,
the New York Stock Exchange (NYSE) had aquired a prime position as the
center for organized exchange of risk and price discovery, a position it still
holds. Charles Dow introduced various indicators based on industry and
transportation sub-indices, moving averages, and various other filters, and
was the first to formalize certain trading rules coming from the relationships
between those indicators. Several people refined those trading rules, resulting
in flamboyant trading careers for the likes of Jesse Livermore and W. D.
Gann.

We continue Part One by discussing the concept of an indicator and
various examples of them. Indicators are filters that presuppose a choice
of the data represenation methodology and are the building blocks of the
underlying signals to the systematic trading models.

Risk management rules were formalized from the observations of widths
of trends and extensions of common price patterns. Interestingly, the origins
of the money management rules most commonly used in modern system-
atic trading come from a different crowd than the community of buy-side
speculators and asset managers. Namely, the increasing importance in the
mid-twentieth century of the highly leveraged futures markets in agricul-
tural products in Chicago attracted a large crowd of pit traders who were
mostly scalpers and market-makers, trading hundreds of times per day for a
couple of ticks here and there. By the sheer frequency of their trading they
had to adopt very strict money management rules to survive till the end of
each trading day. Those tricks of the floor trader have been formalized into
numerical rules on stop-loss and profit-taking based on the volatility and
the liquidity of the market and applied with almost robotic discipline of
their implementation.

The design of the indicators is the first step toward building a mecha-
nized strategy. They provide the signals on which the triggers to enter or exit
positions are based. Most of the indicators are filters that have an inherent
lag and may expose the strategy to the risk of being too slow to react to low
probability market moves. Thus a money management overlay is warranted
in the majority of cases to build a better trading strategy but at the expense
of increasing its complexity and potentially its brittleness.

The advent of increasingly cheap computing has created an avenue
to test such more complex strategies. A whole cottage industry of trad-
ing systems, indicators, and methods resulted from this in the 1980s and
1990s. After discussing several strategy types, Part One focuses on some key

24 INTRODUCTION TO SYSTEMATIC TRADING

implementation aspects of the design and testing of trading systems using
the full capabilities of modern computing techniques. In particular, a uni-
fied representation of strategies as finite-state machines is introduced and
scalable back-testing and forward-testing engines are built on that basis.

Starting in the 1960s, new conceptual developments in areas of con-
trol and adaptation gradually coevolved with the uptrend in technology and
culminated in what was labeled in 1990 as artificial life. Initially, the real
defining driving force was the more ambitious endeavor of artificial intelli-
gence (AI) started in the 1950s by John McCarthy, continuing the intellectual
lineage of Alan Turing and John von Neumann. But after an initial jump in
the progress toward building intelligent machines able to emulate and sur-
pass humans, a plateau was reached in the late 1980s. The main approach
at that point was mainly top-down, trying to automatically create a seman-
tic or visual analysis of the surrounding world. It of course brought a lot of
benefits to the progress in pattern recognition, computer vision, and graph-
ics as well as attempts at ontological analysis that ultimately links us now
to the semantic web. But the ultimate goal of programmed intelligence was
still quite far off, so the whole field found itself in a stasis.

A defining moment in progress came from Rodney Brooks at MIT in
the early 1990s. He essentially turned the top-down approach upside-down
and designed very efficient robots based on a new concept of control. His
bottom-up concept of control is based on a subsumption architecture that re-
ceives signals from a set of concurrent sensors, ranks the signals’ importance,
makes the decision, and sends it to the actuators. The control architecture
is itself evolved through trial and error via a genetic algorithm or a rein-
forcement learning scheme that embeds a concept of fitness of the robot’s
behavior. This approach is distributed and reactive in nature rather than
monolithic and proactive. Brooks demonstrated much better results than the
original top-down approach on several important examples. It has yielded
progress in many other fields, the most important ones in my mind being
the distributed agents systems, swarm computing, and of course the opti-
mization of software design patterns and operating systems to tackle parallel
processing, multithreading, and the associated concurrency problems.

Despite the fact that the new approach has not solved the old problem of
artificial intelligence, it refocused the research community on tackling other
no-less-interesting problems and the field was coined articial life (AL) by
Chris Langton in 1990. With a much better understanding of evolutionary
computing techniques such as genetic algorithms, genetic programming, and
reinforcement learning, a whole new door was opened to breed and play with
lifelike creatures that evolve through adaptation and learning and provide a
test bed for both Darwinian and Lamarkian ideas. One of the main observa-
tions from that exercise is the natural emergence of complexity incarnated

Introduction to Systematic Trading 25

into a higher organizational order, an effect already observed through the
study of nonlinear dynamic systems a couple of decades before.

At the same time that these great theoretical advances in adaptation
were happening, the global financial markets were going through their own
technological revolution. Many exchanges, starting with Eurex, were mov-
ing gradually into electronic market access and automated matching engines.
The trend accelerated when the competition to major exchanges came from
new electronic commerce networks (ECNs) in the late 1990s with competing
liquidity at faster access times and lower prices. Exchanges at the end of the
day are money-making institutions that thrive on high volume of transac-
tions. So the initial trickle of business away from traditional open outcry in
the pits to the screens accelerated faster than some exchanges could predict
and sometimes handle. Added to this, technology enabled several cost-saving
exercises for large institutions in the form of dark pools that are explored in
Part Four.

This innovation has increased the share of systematic trading in three
ways, all taking advantage of this technological trend:

1. A new breed of systematic trading strategies appeared mostly in the
higher-frequency domain, driven as much by the then existing players
as by the cohort of locals leaving the pits for the screens.

2. Major sell-side institutions have implemented automated market-
making engines and introduced several new algorithmic execution tech-
niques, replacing many locals.

3. Many hedge funds and bank proprietary desks have increased their
share of electronically executed systematic risk taking as the barriers
to entry have been decreasing thanks to the advent of electronic connec-
tivity providers and price aggregators.

It is difficult to estimate what exact proportion of global electronic
volume is originated by systematic strategies but some anecdotal evidence
suggests that certain specific markets have already passed the 50 percent
mark thanks to the dominance of automated market-makers.

Of course, like any other fad, this technological trend is feeding on itself.
According to Ray Kurzweil, we have not seen anything yet as it is feeding in
a super-exponential fashion! While the singularity is a few years away, we
still need to adapt, but at an increasingly faster pace.

Part Four focuses on the design of an infrastructure that supports ef-
ficient low-latency systematic trading with modern electronic exchanges
and ECNs. That infrastructure parallels the architecture of such exchanges
and also contains an internal matching engine for competing model or-
ders, that is, a mini dark pool. The increasing dominance of fast electronic

26 INTRODUCTION TO SYSTEMATIC TRADING

transactions came in hand with many new technological advances in hard-
ware and software. Namely, we discuss how the following six innovations,
among others, naturally fit into the design of our integrated low-latency trad-
ing infrastructure:

1. Multithreading and concurrency design patterns that allow the emula-
tion of parallel processing

2. Distributed in-memory caching that solves several state persistence and
fast recovery issues

3. Message-passing design patterns that are the basis for a distributed con-
current components architecture and help reduce latency

4. Web server technology that allows remote control of components
5. Universal communication protocols that ensure smooth data passing be-

tween counterparties, such as the FIX protocol
6. FPGAs (Field Programmable Gate Arrays, which are programmable

chips) and GPUs (Graphics Processing Units, which are highly parallel
graphics chips) that help optimize certain algorithms

While the fields of electronic finance and artificial life are both expe-
riencing strong independent growth, one cannot exactly yet call them co-
evolving entities. The fundamental goal of this book is to suggest avenues
to bridge that gap. Philosophically, given that the discretionary world is
driven by humans, why not endow our systematic machines with better
learning and adaptive skills? The artificial life paradigm is giving us a first
genuine step in that direction. It does not yet give us automated foresight,
the holy grail of artificial intelligence. We will need to wait for that one a
bit longer.

Part Two provides several concrete examples where artificial life
techniques can be profitably applied to finance by building robust adaptive
systematic trading strategies. Adaptation is studied both from the viewpoint
of endowing an individual with more complexity (akin to the subsumption
architecture discussed), as well as from an automated choice of individuals
from a population (akin to a genetic algorithm). Appropriate concepts
of strategy fitness are introduced. Higher-frequency systematic strategies
present the best test-bed for such concepts because they quickly generate
large and statistically significant trade samples.

Of course implementing concretely such concepts requires nontrivial
machinery, and the design of an integrated low-latency trading architec-
ture in Part Four is tuned to the task of processing parallel swarms of
adaptive strategies.

Coming back to Earth from musings into the ever-bright future, let us
comment on the less positive features that the electronic trading dominance

Introduction to Systematic Trading 27

has left the world with. As mentioned above, the traditional pits with open
outcry had almost disappeared by the early 2000s. This fundamental evo-
lution of access and reaction to information has changed some of the long-
established features of how the market operates. While increasing efficiency
locally it has also introduced a share of global instability. The resulting dy-
namic is becoming more akin to an arms race where firms compete for speed
of data access and delivery for exchanges and clients.

The main change in some markets is that specialists, that is, appointed
market-makers, have lost a lot of ground to a set of human and auto-
mated agents doing noncommittal conditional market-making and who
are not held to provide a two-way orderly market. Automated conditional
market-makers provide two-way or one-way liquidity as they see fit and can
switch off automatically in situations of stress, leaving the bulk of the flow
to more traditional specialists who cannot normally deal with it.

Such structural change is most likely the main cause behind shocking
self-fulfilling events like the Flash Crash of May 6, 2010, that spurred a lot
of soul-searching as much from the Securities and Exchange Commission
(SEC) as from the algorithmic firms community. After initial talk of fat fin-
ger or other malfunction, none of the subsequent analysis of transactions
and operation logs have managed to pinpoint such kind of cause. It is most
probably the automated conditional market-making engines that pulled bids
when they saw an increasing selling flow from automated portfolio hedgers
and other stop-loss algorithms. It is therefore very difficult to argue that
the nature and cause of the Flash Crash was that different from the 1987
meltdown. Yet the recoil from the bottom was indeed different because it
happened much faster. That fast recovery was probably helped by a set of
automated high-frequency momentum strategies that went long, a feature
that was much less present in 1987.

Of course such events will not go without consequences on regulation
and self-regulation of the markets. It is well known that some participants
do flood the markets with masses of orders outside of the immediate trading
range in order to tilt the market-making engines of others and sometimes
to slow down the whole system. Also the affair of flash orders that create
a false sense of liquidity but cannot be reached by most participants due to
their access latency is still being investigated and debated.

The modern Goulds, Drews, and Fisks shall also be found out either
by people or by algorithms; it is just a matter of time and evolution. Every
new organism has to test its boundaries to adapt and survive. In the current
fashion of detox by regulation that started during the hangover from the
credit bubble, one will probably see a formal response to high-frequency
market abuse soon. The main difficulty will be, as with any other regulation,
to ensure fairness without hampering efficiency.

28 INTRODUCTION TO SYSTEMATIC TRADING

The self-fulfilling nature of the technological uptrend of the marketplace
with its associated growth of the automated systematic strategies lets us won-
der whether it is a bubble ready to burst. As we commented at the begin-
ning, any sector of the market (as well as of human activities more gener-
ally) is quite naturally prone to a boom-bust cycle, and this one should be
no exception!

Currently this market arena presents high hurdles for entry and in conse-
quence there is a fragmented technological landscape giving privileged access
to only a few. There is still a large scope for competition that will invariably
drive further increases in efficiency. This points to the fact that we are not
yet at crunchpoint; the trend is still up, thus it is still rational to participate!

It is now time to move on to the heart of the matter and start exploring in
Part One data representation, indicators, basic model types, and techniques
to test them.

Part

One
Strategy Design

and Testing

P art One sets the stage and the basic concepts for the rest of the book. It
argues that the classic techniques of investing and strategy building are

not fully adequate to tackle the real complexity of the market. The market
is seen as a complex adaptive system that has subtle feedbacks at different
time and price scales.

To make progress in that complex world new methods have to come
into play. Robots operate in the complex “real” world and trading systems
operate in the complex market. The direct analogy between robotics and
trading is striking indeed. It is also the analogy that bears all the fruits when
adaptive behavior is discussed in Part Two.

The progress is set in motion by framing the whole systematic trading ac-
tivity in the language of autonomous adaptive agents. The individual trading
systems are represented by agents that react to informational events. Those
events can be any external events like price and order book changes as well
as communications between agents. This approach yields naturally a high
degree of parallelism and the ability to create complex agents from simple
ones by means of communication and signalling.

In the automated systematic trading arena one of the most desired and
important features is the recoverability from data disconnects and other
faults. This recoverability is facilitated by formalizing the concept of state of
the system and by exhausting the possible state transitions that the system
may undergo. The trading system must always know what state it is in to

30 STRATEGY DESIGN AND TESTING

continue operating. The automated trading agents are hence endowed with
control systems represented by finite state machines (FSM).

This part discusses details of the programmatic framework for this new
paradigm. I chose to present the code in LISP rather than in pseudocode
because it is as easy to understand and can be directly implemented rather
than rewritten. LISP is one of the most advanced and important computer
languages; it has been in active operation since the late 1950s in the academic
and defense communities and is making its way back into the commercial
world. It is a functional language that has also a more powerful object ori-
entation than the specifically designed “OO” languages and ranks second in
speed to C++ and faster than Java.

This part continues with several methods of data representation. This is
a first and elementary step to filter signal from noise. It focuses on the desired
share of time dimension versus price extent in the construction of indicators
and tradable patterns.

The different data representations form the basis to explore a set of clas-
sic and novel trading strategies. Those strategies include price-taking and
price-making techniques, and objective criteria for their applicability in real
trading are formulated. These basic trading strategies are presented in the
context of the agent-based paradigm by their finite-state machine represen-
tations.

Those nonadaptive techniques served well and will probably continue to
do so for certain domains of applicability, namely for long and medium term
trading. Structural reasons stemming from the way authorities manage the
macroeconomy tend to create tradable long-term trends of which the ampli-
tude and duration reflects those of the business cycles. Calendar-driven data
releases and asset auctions tend to create other tradable medium-term os-
cillation patterns. Periodic shortages and overproduction in the commodity
sectors also tend to create repeatable trend and acceleration patterns.

Those trend, oscillation, and acceleration patterns present reasonably
stable statistics and have been successfully exploited by commodity trad-
ing advisors (CTAs) over the last 40 years. As mentioned in the introduc-
tory chapter, CTAs, as a strategy class, have one of the longest track records
among all hedge funds.

With the coming of electronic markets, market making has evolved into
an important activity with the participation and sometimes dominance of
conditional liquidity providers. A framework for market making is presented
that allows the development of conditional liquidity provision in the agent-
based context.

The discussion then moves on to the next level of complexity, namely
optimal portfolio construction of multiple strategies on one asset as well as
the optimization of portfolios of models on a variety of assets. “Idealized”

Strategy Design and Testing 31

equity curves are introduced to help formulate criteria of maximizing ex-
pected return-to-drawdown ratios.

Part One finishes by exploring the framework for simulation and esti-
mation techniques. It introduces forward-testing and shows how to simulate
data by resampling of observed histories as well as with a priori defined dis-
tributional and autocorrelational constraints. Those techniques tend to be
overlooked in many books but they deserve much more attention as they
provide stress-testing and parameter estimation techniques complementary
to the more classic back-testing. The forward-testing will also prove to be
useful for computing the efficiency of dynamic model choice algorithms in
Part Two.

CHAPTER 2
A New Socioeconomic Paradigm

2.1 FINANCIAL THEORY VS. MARKET REALITY

Financial theory has been for a long time based on a top-down approach
dominated by sweeping assumptions on rationality of agents, equal access
to information, completeness of markets, and a coherent formation of ex-
pectations across the marketplace. Those assumptions are, in fact, a set of
constraints that yield the theory to predict static equilibria and the associated
price formation in the markets.

That approach, however, has had a particularly disappointing track
record of explaining market behavior, especially the many nonlinearities ob-
served at various time scales, from the longer term large scale crashes to
the intraday whippy price dynamics of individual securities. Basically there
have been numerous unsuccessful attempts to marry the classical theory to
everyday practice, so to speak.

In the following subsections some plausible behavioral causes for the
existence (and sometimes ubiquity) of market nonlinearities are suggested.
Some classic failures are discussed as a prelude and motivation to dedicate
energy to the study of adaptation, learning, and survivability of trading sys-
tems. To paraphrase the title of the famous book by Sornette (2003), the
hunt is under way for causes as to “Why Markets Crash So Often.”

2.1.1 Adapt ive React ions vs. R ig id Ant ic ipat ions

To illustrate the above, a glance at history is warranted as a first step. Start-
ing from the basics, the Figures 2.1, 2.2, and 2.3 show the lack of station-
arity of return, volatility, and cross-correlation of three fundamental price
indices—the stocks (S&P index), bonds (U.S. 10-year total return index),
and commodities (the CRB index)—over the last 40 years.

The market dynamics are even wilder when considered on an intraday
basis. The intraday price and volatility distributions have more pronounced

33

34 STRATEGY DESIGN AND TESTING

–80%

SPX

Mar-71 Aug-76 Aug-87 Jan-93 Jul-98 Jan-04 Jul-09 Dec-14Fep-82

CCI US10YR

–60%

–40%

–20%

0%

20%

40%

60%

80%

F IGURE 2.1 Rolling 1-Year Returns on SP, 10Y Bonds, and CRB

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Mar-71 Aug-76

SPX CCI US10YR

Aug-87 Jan-93 Jul-98 Jan-04 Jul-09 Dec-14Feb-82

F IGURE 2.2 Rolling 1-Year Volatilities on SP, 10Y Bonds, and CRB

A New Socioeconomic Paradigm 35

–100%

(SPX,CCI)

Mar-71 Aug-76 Aug-87 Jan-93 Jul-98 Jan-04 Jul-09 Dec-14Feb-82

(SPX,US10YR) (CCI,US10YR)

–80%

–60%

–40%

–20%

0%

20%

40%

60%

80%

100%

F IGURE 2.3 Rolling 1-Year Correlations on SP, 10Y Bonds, and CRB

fat tails, and lack stationarity even more than when sampled daily. Fig-
ures 2.4 and 2.5 provide a sample of different price behaviors both in clock
time and in event time.

Figure 2.6 in log-log scale shows the fat tails and a power-law fit of the
absolute returns of the S&P index sampled at time scales from ticks to years.

Overuse of mean-variance optimization on static return and covariance
assumptions has brought to near-banckruptcy several large pension systems
across the world (specifically several municipal and state pensions in the
United States). As seen above, the market returns, variances, and correlations
are quite unstable, and, most important, are not stable on a time frame that
is commensurate with the average timing of pensions payouts. Hence the
overreliance on static efficient frontier optimizations have generated genuine
train wrecks that are very difficult to rectify now.

On the other hand, as pointed out in Chapter 1, systematic commodity
trading advisors have had, so far, the longest successful track record in the
history of money management. Most of their success comes from reacting to
the market fast enough, rather than trying to predict and extrapolate it. This
may mean that although markets are complex, some behavioral patterns can
be exploited systematically.

36 STRATEGY DESIGN AND TESTING

98

5:
55

:0
0

6:
01

:0
0

6:
07

:0
0

6:
13

:0
0

6:
19

:0
0

6:
25

:0
0

6:
31

:0
0

6:
37

:0
0

6:
43

:0
0

6:
49

:0
0

6:
55

:0
0

7:
01

:0
0

7:
07

:0
0

7:
13

:0
0

7:
19

:0
0

7:
25

:0
0

7:
31

:0
0

7:
43

:0
0

7:
37

:0
0

7:
49

:0
0

7:
55

:0
0

8:
01

:0
0

8:
07

:0
0

8:
13

:0
0

8:
19

:0
0

8:
25

:0
0

8:
31

:0
0

8:
37

:0
0

8:
43

:0
0

8:
49

:0
0

8:
55

:0
0

9:
07

:0
0

9:
01

:0
0

9:
13

:0
0

9:
19

:0
0

9:
25

:0
0

9:
31

:0
0

9:
37

:0
0

9:
43

:0
0

9:
49

:0
0

9:
55

:0
0

98.1

98.2

98.3

98.4

98.5

98.6

F IGURE 2.4 AUDJPY Intraday 1-Minute Chart

72.6

72.7

72.8

72.9

73

73.1

73.2

73.3

73.4

73.5

73.6

9:
28

:0
0

9:
32

:0
0

9:
36

:0
0

9:
40

:0
0

9:
44

:0
0

9:
48

:0
0

9:
52

:0
0

9:
56

:0
0

10
:0

0:
00

10
:0

4:
00

10
:0

8:
00

10
:1

2:
00

10
:1

6:
00

10
:2

0:
00

10
:2

4:
00

10
:2

8:
00

10
:3

2:
00

10
:4

0:
00

10
:3

6:
00

10
:4

4:
00

10
:4

8:
00

10
:5

2:
00

10
:5

6:
00

11
:0

0:
00

11
:0

4:
00

11
:0

8:
00

11
:1

2:
00

11
:1

6:
00

11
:2

0:
00

11
:2

4:
00

11
:2

8:
00

11
:3

6:
00

11
:3

2:
00

11
:4

0:
00

11
:4

4:
00

11
:4

8:
00

11
:5

2:
00

11
:5

6:
00

12
:0

0:
00

12
:0

4:
00

F IGURE 2.5 USU1 Intraday Tick Chart

A New Socioeconomic Paradigm 37

10–5

10–1 100

absolute normalized move
101 102

10–4

10–3

10–2

10–1

100

F IGURE 2.6 S&P Absolute Return Distribution: Log-Log Scale

2.1.2 Accumulat ion vs. D ivestment Games

One basic root cause of the market complex dynamics lies in the asymmet-
ric behavior of agents under accumulation and divestment from risk, and
sudden switching of behavior from a cooperative to a noncooperative game.

Accumulation provides oftentimes stabilizing forces to the market.
Namely, learning and/or copying of perceived successful strategies by a herd
of participants may, in certain cases, smooth out the price process by reduc-
ing volatility and discrepancies between related assets. Successful relative-
value strategies have a similar stabilizing effect, with pure arbitrage, when
found, being the extreme lucky case. This herd-like game of accumulation
is cooperative, because it makes sense to openly attract more people to the
trade, in order to generate paper profits on your own book.

But accumulation of risk most often ends in tears. When the price dis-
crepancies come to be arbitraged away or when the price gets over-stretched
relative to value, the game changes to the classic defection in a one-period
prisoner’s dilemma game. The divestment game is noncooperative, because
early entrant participants have no incentive to broadcast to the rest of the
market that they are intending to sell out their positions. If they do, someone
else will go first and widen the prices against their current paper profits.

38 STRATEGY DESIGN AND TESTING

TABLE 2.1 Cooperative Accumulation Two-Person Game

Accumulation Game
(A’s payoff, B’s payoff)

B’s Strategies

A’s Strategies

Accumulate

(3,3) (4,2)

(2,4) (1,1)

Accumulate

Reduce

Reduce

It is useful to see this by examining the classic two-agent matrices for
the accumulation and divestment games. Table 2.1 shows the cooperative
nature of the accumulation game, where it pays to cooperate both in the
one-period and multiperiod cases.

On the other hand, Table 2.2 shows the noncooperative nature of the
divestment game. The Nash equilibrium is a defection for both players (by
selling out of positions) despite the fact that they would have both benefited
more from a cooperative hold strategy.

Despite the fact that (as has been shown by Axelrod 1984) long-term
cooperation is more optimal in a repeated prisoner’s dilemma game, it is
clearly not happening in the real markets where people do not think beyond
the next minute in situations of stress.

2.1.3 Phase Transit ions under Leverage

Most of the market is highly leveraged, and the above game change gets
magnified into large behavioral asymmetry toward gains versus losses that
further increases the nonlinearity of the price process. If and when word
comes out that large players are getting out, the market can spin out of
control pretty brutally with a liquidity air pocket followed by forced stop-
outs, often exacerbating the disconnect between price and value.

As we mentioned before, the market participants are quite segmented,
and each cohort is sensitive to a distinct time and price scale. Thus a small

TABLE 2.2 Noncooperative Divestment Two-Person Game

Get-Me-Out! Game
(A’s payoff, B’s payoff)

B’s Strategies

A’s Strategies

Stay

(3,3) (1,4)

(4,1) (2,2)

Stay

Get Out

Get Out

A New Socioeconomic Paradigm 39

0

10

20

30

40

50

60

M
ar

-0
8

M
ay

-0
8

Ju
l-0

8

S
ep

-0
8

N
ov

-0
8

Ja
n-

09

M
ar

-0
9

M
ay

-0
9

Ju
l-0

9

S
ep

-0
9

N
ov

-0
9

Ja
n-

10

M
ar

-1
0

M
ay

-1
0

Ju
l-1

0

S
ep

-1
0

N
ov

-1
0

Ja
n-

11

M
ay

-1
1

M
ar

-1
1

Ju
l-1

1

S
ep

-1
1

N
ov

-1
1

Ja
n-

12

M
ar

-1
2

M
ay

-1
2

Ju
l-1

2

S
ep

-1
2

N
ov

-1
2

F IGURE 2.7 Silver Spot Daily

shock can create a cascade of events that gets magnified into a genuine phase
transition, often referred to mildly as a risk-on to risk-off switch.

That behavior is also the major source of trends in the market, and ex-
plains part of the asymmetry observed in the dynamics of the uptrends and
downtrends in asset markets. By assets one means securities that are usually
held primarily for long-only investments (like stocks, bonds, and commodi-
ties), as well as auxiliary assets like commodity-linked and high-yielding
currencies. Examples of this asymmetry are given for Silver and Nikkei in
Figures 2.7 and 2.8.

Market crashes are the extreme incarnations of the above. The world has
seen major global crashes of the leveraged market many times: tulips (Hol-
land 1637), the combined South Sea, Mississippi and paper money bubbles
(United Kingdom and France 1720), the Florida Real Estate Bubble (1926),
Great Crash of 1929, Crash of 1987, emerging market currencies (Asian Cri-
sis in 1997), yield curve forwards and volatility (LTCM and Russia in 1998),
Nasdaq in 2001, natural gas forwards (Amaranth in 2007), credit and mort-
gages (Bear Stearns, Lehman, et al. 2007–2008), Flash Crash 2010.

Every time different(ish) assets, every time people saying, “It’s different
this time,” and every time a different trigger. Yet the same game theory and

40 STRATEGY DESIGN AND TESTING

8000
1/1/2011 2/1/2011 3/1/2011 4/1/2011 5/1/2011

8500

9000

9500

10000

10500

11000

F IGURE 2.8 Nikkei Daily

the same physics of phase transitions. I do not doubt such events will occur
again, despite any efforts at new regulation.

Of course, these examples are extreme in their global scale, reach, and
consequences on the world economy and politics. But as shown in the price
graphs above, mini-crashes or milder nonlinearity are happening at smaller
scales with higher frequency, and are partly responsible for the intraday
fat tails alluded to above. This behavior is also one of the sources of non-
stationarity of distributions and correlations of returns.

2.1.4 Derivat ives: New Risks Do Not Project
onto Old Hedges

It is also important to add that yet another, but related, source of nonlinearity
in the market comes from derivatives, usually nonlinear contracts written on
underlying primary traded instruments.

First of all, in the classic theory of no-arbitrage pricing of derivatives,
contracts with negative convexity require increasingly higher hedge activity
as prices move away for any reason, putting further pressure on prices to
move away in the same direction. This reflexive behavior is not present in
the theory.

Second, and most important, this classic theory does not hold most
of the time, and mathematically speaking it holds with probability zero.

A New Socioeconomic Paradigm 41

The main reason is that, for any non-Gaussian price distribution, there is
mathematically no way to project the derivative back to the underlying; that
is, the risk-neutral measure that would do the projection trick does not exist.
This means that derivatives are genuinely novel assets (or rather liabilities),
that cannot be hedged-out via continuous trading in the underlying, as per
the delta-hedging mechanism that the classical theory portends to provide.
Derivatives create new dimensions in the risk space that are orthogonal
to the underlying (in the sense of covariance or any similar measure of
entanglement).

By this token, derivatives yield an incomplete market because in gen-
eral they are sold to end-holders who do not trade in them, and therefore
do not provide a continous and viable price-discovery mechanism. In situ-
ations of stress, the actual convexity of those instruments becomes higher
than expected (i.e., classically estimated), because of lack of viable critical
mass of market-makers for that orthogonal risk. This yields sometimes an
even higher tension on the underlying market due to a more desperate hedg-
ing activity. Recurring examples of such nonlinearities have been seen aris-
ing from hedging mortgages, credit derivatives, equity put options during
crashes, libor-square products, quantos, and so on.

The obvious solution to this problem is to create exchanges for the
derivatives, the same way they exist for the primary instruments like stocks
and futures. Let the market discover the price in function of supply and de-
mand, rather than via an approximate model. The leading example is the
Chicago Board Options Exchange (CBOE) for equity options. It is interest-
ing that the originators of the Black-Scholes formula initially lost a lot of
money trying to arbitrage their model option price to the CBOE market.
They had to recognize that the market was the ultimate pricer of the implied
volatility on options, and their approach had no predictive power as to that
fundamental source of risk for options, which, as mentioned, is orthogonal
to the risk of the underlying stock. To be completely clear on this subject, it
is the variability in implied volatility that the market is discovering, via the
clearing of the supply and demand for implied volatility.

2.1.5 Socio-Pol i t ica l Dynamics and Feedbacks

Looking at the realpolitik of the world, how can one forget the feedbacks
that the socioeconomic dynamics of our society force onto the financial mar-
kets? There are periodic shocks supplied to the markets by events in different
parts of the world as well as political actions from governments.

In particular, wars and revolutions are nonlinear. If they were not, they
probably would be tamed way before they got out of hand! This also points
to the poor predictive power by most people and societies, and the associated
atavism of linear extrapolation. Many of those have been seen before, many

42 STRATEGY DESIGN AND TESTING

will probably be seen in the future. They will probably be expected but with
their timing not predictable. Very little of those feedbacks are tackled in the
classical macroeconomic texts, yet they are an important source of fat tails
in market returns and societal changes.

In the root of all revolutions resides the concept of critical mass. It could
be the relative size of a political party of movement, legitimate or not. Or
it could be the adoption of a new technology that crowds out the old one,
à la Shumpeter. Or it could be a viral spread of a religion. In any case, the
revolutionary phase transition happens in a time frame which is scales of
magnitude lower than the time it took to build the old regime. This dynamic
has been seen in the rise and fall of many societies, like the Romans, as well
as the rise and fall of the use of horses as a means of transportation. In any
event, the socio-political scene exhibits from time to time phase transitions
that affect the marketplace.

Symmetrically, one should also be mindful of the scope of the positive
and negative feedbacks of the riches or rags that financial markets periodi-
cally bestow on the real economy, the society, and people’s behavior. A recent
case in point being the boom and bust dynamics seen in the United States.
Initially the paper profits of the stock market provided extra spending power
to a certain section of the population, and those people rightly invested in
real estate. A larger crowd followed, leveraging themselves into real estate
as prices of homes were rising, with banks providing the bulk of the cheap
credit. When leverage reached 20-1 and the expectations of ever-rising prices
dampened, suddenly there were a lot of people who found themselves hold-
ing negative equity (meaning more real debts than expected revenues). Debts
were not paid, homes foreclosed, and prices fell further. The banking system
went into a collapse and dragged the rest of the economy with it, with equi-
ties falling more than 50 percent at some point. Then came soul-searching,
finger-pointing, and sacrificial-goating, followed by real consequences of the
regulatory fallout on the financial markets and larger tax burdens on the so-
ciety as a whole.

Thus, markets and societies are intertwined into a complex coevolving
set and cannot be seen or understood separately. This Popperian analysis of
market and social revolutions is, in my hope, a stepping stone for a long-
overdue revolution of the classical financial theory.

2.2 THE MARKET IS A COMPLEX
ADAPTIVE SYSTEM

A change of paradigm to challenge the classical theory is clearly needed, and
the beginnings of it have already emerged. The goal of the new paradigm

A New Socioeconomic Paradigm 43

is to be able to rationalize and anticipate a large range of observed market
phenomena. For the purpose of this book, the main goal is to be able to
formulate an approach to survive and thrive in the marketplace.

As the famous AI expert Herbert Simon said, social sciences are the
“hard sciences.” By this he meant that the underlying degree of complex-
ity is far greater than that of, for example, physics. In physics it happens to
be the case that a large set of phenomena in the inanimate universe is repre-
sentable and predictable by a small, albeit tricky, set of equations. Physics is
still living the “dream of the final theory,” as Steven Weinberg put it.

Biology, ecology, and the sciences of societal organization, on the con-
trary, are much harder to mathematize, and even to come up with a set of
concepts that reflect the observed reality. As noticed in the Introduction, the
very concept of organism is not yet fully understood in biology, neither on
theoretical nor practical grounds.

2.2.1 Emergence

The unifying theme behind these hard sciences is the trend toward the emer-
gence and organization of higher order structures from a large set of simpler
interacting elements. That emergence is not fully predictable even though
the systems from which it emerges are deterministic (nonrandom). The emer-
gence is based on a set of positive and negative feedbacks that, at some point,
end up creating coherent meso-scale structures of lower-order elements, and
defining the patterns of behavior and interaction of those meso-scale struc-
tures. Think in terms of the emergence of fashions in a society, organization
of an ant colony, hurricanes in the Atlantic, trends in the market.

One promising approach was initiated at the Santa Fe Institute in the
early 1990s and has been, since then, studied across several institutions
throughout the world. It is based on the investigation of the market as a com-
plex adaptive system. Let me first introduce the concept and phenomenology
behind it. To paraphrase Holland a Complex adaptive system is a dynamic
system with the following four features:

1. Parallelism. It is composed of many elements that interact locally be-
tween each other in parallel and are not driven by a central or coherent
mechanism. In particular, only local rules of interactions are known.

2. Emergence and Self-Similarity. Larger-scale patterns (parts) emerge
from those distributed interactions of elements. The whole system may
exhibit self-similarity, and parts themselves may interact to create pat-
terns at a yet larger scale. Hence, a variety of patterns exist on intermedi-
ate scales (between the scale of the elements and the system as a whole).

44 STRATEGY DESIGN AND TESTING

The system is characterized by its behavior on such meso-scales, and the
feedbacks that larger-scale parts provide to the smaller-scale parts.

3. Adaptation. The dynamics at each scale are characterized by their own
ecology, with parts evolving and adapting to their environment, con-
strained by other parts on the same or larger scales.

4. Anticipation. The system may have anticipatory features where, over
time, expected responses of some parts are learned by other parts, in
order to adapt better.

This concept is abstract, so let me rephrase it in a more suggestive man-
ner, looking at the market. To start with, the preceding section suggested
that the observed complexity of the markets reflects mainly the complexity
of its participants and of their interactions:

1. Parallelism. The market is composed of many participants trading var-
ious assets. They are either humans or trading robots that are based
on strategies written by humans. They trade with each other in parallel
and are not driven by a central or coherent decision-making mechanism
(even though the mechanics of trading may be facilitated by exchanges).

2. Emergence and Self-Similarity. The market participants organize them-
selves into specialized firms, pools, and societies in order to have more
staying power. Those larger-scale coherent organizations have propor-
tionally larger impacts on asset demand and supply, thus yielding the
emergence of larger-scale price patterns.

3. Adaptation. Individuals, firms, and governments compete for market
access, price, and value, and adapt for survival in their own space.
Oligopolies and cooperative behavior emerge at certain scales only to
be offset by competition at other scales.

4. Anticipation. Each participant tries to anticipate the behavior or reponse
of a larger participant, in order to either exploit or survive the price ac-
tion. That behavior is sometimes mimetic, providing a positive feedback
and price accelerations, and sometimes contrarian, yielding a dampen-
ing of amplitude of price moves.

2.2.2 Inte l l igence Is Not Always Necessary

Conceptually, one could say that the predecessor of models of complex adap-
tive systems is the Ising spin-glass model, which has been used by physicists
to study phase transitions. Such models allow for a unified but simplified
framework to study and understand several nonlinearities observed in the
markets. Importantly, it shows that those nonlinearities are a generic fea-
ture of a system that exhibits a minimal degree of complexity. This is one of

A New Socioeconomic Paradigm 45

the reasons why the emergent field of study based on such models had been
called econo-physics.

In relation to the comments on socio-political feedbacks above, many
nontrivial dynamics can be modeled as emergent properties of interactions
between simple agents. By gradually increasing the complexity of agents
from a minimum, more subtle dynamic properties emerge. These increas-
ingly complex social interactions provide a solid basis to study the organi-
zation of societies as seen in Epstein and Axtell, 1996.

Zero-intelligence models of agent behavior explain market microstruc-
ture much better than sophisticated models with utility-maximizing agents
[see Farmer, Patelli, and Zovko, 2005].

2.2.3 The Need to Adapt

In my opinion, the main conceptual lesson from the complex adaptive sys-
tems theory, as pertaining to the market, is that trying to predict the future
by imposing normative views is a futile exercise. As Niels Bohr said, pre-
dicting is difficult, especially the future. And he had no excuse—he was a
physicist!

Seeing the market through this new prism, however, does not mean that
all hope is lost. Prediction is still a valid exercise, but only when established
in a more realistic framework that respects the nature of the complexity of
the markets. Part of this complexity, as discussed above, is coming from the
adaptation patterns of participants.

Adaptation is the essence of life, as without adaptation there is little
chance for survival. Understanding and exploiting adaptation patterns of
other agents is an adaptation strategy in itself.

2.3 ORIG INS OF ROBOTICS AND ARTIF IC IAL L IFE

It is probably fair to say that the nineteenth century was the launchpad for
the era of machines that is epitomized by the incredible acceleration of global
growth and progress in the twentieth century. Machines are now underpin-
ning our civilization, from thermostats in our houses to space probes reach-
ing the edge of our solar system. Machines are systems that can be split
into identifiable parts that are machines in their own right. They can be very
complicated, like the space shuttle, but ultimately composed of simpler iden-
tifiable parts that have specific functions.

The end of the twentieth century saw immense progress in a class of ma-
chines that are designed to compute (process numeric data). Those machines
arose in the 1940s from the necessity of simulating complicated equations

46 STRATEGY DESIGN AND TESTING

related to warfare, but soon became universal numerical simulators. These
computers were based on the theories of universal computation, proposed
originally by Turing and then developed by Church, to be implemented by
Von Neumann. The original and still current design of such a universal dig-
ital computer is called the Von Neumann architecture.

The confluence of computers and ideas from control theory gave rise
to cybernetics, the science of control systems with feedbacks introduced
by Wiener. Cybernetics is one of the building blocks of modern robotics.
Robotics is the science of intelligent mechanisms, machines that could inter-
act with humans and behave on par with them.

Beginning in the 1950s, serious attempts at understanding cognition and
intelligence led to the field of artificial intelligence. Thanks to the work of
Simon, Newell, McCarthy, and Minsky, among others, great progress has
been made in developing general problem solver algorithms, reinforcement
learning, and symbolic knowledge representation systems, which has led to
the development of the LISP and Prolog languages. In parallel, the work of
Pitts, McCulloch, and Rumelhart explored models of the neural connections
and gave rise to progress in supervised learning, pattern recognition, and
computer vision. Despite this immense progress, however, AI has hit a bit of
a roadblock and “true artificial” intelligence remains elusive at the time of
writing this book.

The end of the twentieth century also saw substantial progress in life
sciences. Part of this achievement came from a much deeper mathematical
understanding of some features of biological systems and the ability to model
those features with computers.

Biology has eluded mathematization for a long time because of its in-
herent complexity. An organism is not a machine because it cannot be sub-
divided into independently functioning organs. The degree of interconnect-
edness in an organism is immense, and the whole is definitely much bigger
than the sum of its parts.

Mathematics originally came to biology via the study of population dy-
namics as well as the study of biophysics. The breakthrough came when
mathematical and computer models started being applied to the study of
genetics and evolution.

Evolutionary theories came originally from ideas of Lamark and Dar-
win by observing the adaptations of animals to their environments. A crucial
breakthrough in the understanding of evolutionary processes came from ge-
netics, originating in the work of Mendel. The structure of DNA, intuited by
Heisenberg and discovered by Watson and Crick, spurred the rapid progress
in biochemistry and medicine, and pointed to the dominant influence of the
genotype on the development and survival success of an organism. It also

A New Socioeconomic Paradigm 47

brought to light the immense complexity gap that exists between the organ-
ism’s genotype (i.e., its DNA encoding) and its potential phenotype (i.e., the
final structure of the organism itself).

Moore’s law of super-exponential increase in computing power per unit
of silicon has mirrored the explosion of cheap computing, which led to the
study of more and more complex phenomena within realistic time frames.
Complex phenomena such as deterministic chaos and strange attractors, first
intuited by Poincaré, Julia, and Lorentz, could be studied in the digital lab,
and then displayed as art on the wall like the colorful fractals of Mandelbrot.

Computers started being utilized to model complex genetic phenomena
and this gave rise to a whole class of evolutionary algorithms that could be
used for general optimization tasks. Those algorithms, initially developed
by Holland, Koza, and others, use the basic principles of reproduction, mu-
tation, and selection of the fittest to evolve solutions to various problems.
Those problems usually involve finding optimal phenotypes by the brute
force of Darwinian evolution.

In parallel to the study of the general-purpose evolutionary algorithms, a
new strand of thought has emerged called artificial life, spurred by research
conducted by Langdton and others at the Santa Fe Institute. This science
is about understanding life as it could be rather than what it is as currently
observed on planet Earth. However elusive the concept of life itself, progress
is being made in understanding and modeling proto-life, digital organisms
that coevolve with their environment. It is a science of adaptive autonomous
agents, a paradigm that this book proposes for the research and development
of systematic trading strategies. It is also a science of emergent complexity
of interactions and behaviors.

While artificial intelligence has been stalled, artificial life has made sub-
stantial progress. This progress is concretely seen in modern robotics with
several individuals successfully operating on Earth and Mars. From the
outset, artificial intelligence had a top-down approach where systems were
designed with a central control mechanism that aggregated all the sensor
data, made sense of it, and emitted signals to the actuators in order to in-
fluence the external world. That central control system had to build elabo-
rate internal models of the external world to be able to plan the course of
its actions. This approach proved to be very brittle to unpredicted changes
in the external environment. At the end of the 1980s, Brooks introduced a
bottom-up approach based on a concurrent set of basic behaviors that sub-
sumed each other in certain circumstances. The robot would continuously
run lower-level functions while higher-level functions would take precedence
when needed. Efficient subsumption architectures could then be evolved with
genetic programming techniques in order to discover flexible but robust

48 STRATEGY DESIGN AND TESTING

distributed control systems. Those ideas led me to the design of the swarm
systems introduced in the second part of this book.

In a way, one can say that the understanding of biology and the
understanding of computers continue to coevolve. The modeling of the
evolution of learning systems (or systems with learning) as well as recent
progress in epigenetic phenomena is pointing strongly to the reacceptance of
Lamarkian ideas and some distancing away from the prevailing reductionist
Darwinian dogma. At the same time, the still unsolved problem of protein
folding that the Von Neumann architecture struggles with continues to
encourage fast progress in fundamentally new computing paradigms like
systemic computing.

The complexity of the markets discussed in this chapter naturally led me
to look beyond the physical paradigm purported in economic and financial
theory to date. The fascinating ideas coming from the sciences of complexity
and artificial life are in my mind the right building blocks for the modern
discourse of socioeconomic and financial reality in the years to come. This
book is my attempt to set this trend.

CHAPTER 3
Analogies between Systematic

Trading and Robotics

T his chapter introduces the central concept that underpins the book,
namely the direct analogy between robotics and systematic automated

trading strategies. This approach proves fruitful for an efficient understand-
ing of the field, and opens the door to a much wider scope of research and
development in finance that is naturally suggested by progress in the fields
of complexity, self-organization, artificial life, and artificial intelligence. Part
Two of the book concentrates on that bridge and suggests some future
avenues.

3.1 MODELS AND ROBOTS

Similar to robots thrown into the real world, trading strategies need to sur-
vive the complexity of real markets. It is exactly the success of modern
developments in robotics and artificial life that have inspired me to ap-
ply a variety of such techniques to systematic trading. In this chapter, the
groundwork is set for the approach to building trading strategies that ex-
hibit the features of adaptive autonomous agents (AAA). Part One of the
book focuses on the autonomous feature and Part Two on the adaptive
feature.

An AAA is a physical or software decision-making process that is com-
posed of the following three elements.

1. Sensors: Any device that receives information from the external world.
Robot: cameras, microphones, positioning devices, speed devices, etc.

49

50 STRATEGY DESIGN AND TESTING

Trading strategy: various indicators as well as performance measures of
a range of simulated strategies.

2. Actuators: Any device by which the agent outputs information and acts
on the external world. Robot: wheels, arms, guns, etc. Trading strategy:
order management system that ensures current desired market position
and emits current desired passive or aggressive orders

3. Adaptive Control System: A goal-oriented decision-making system
that reads sensors and activates actuators. Robot: feedback and sub-
sumption architecture that achieves optimal foraging behavior under
constraint of power utilization and minimal damage to machinery.
Trading strategy: feedback and subsumption architecture that achieves
optimal profit under constraints of capital utilization and minimal
drawdown.

In the above list, device is used instead of mechanism to draw a further
and deeeper analogy with living organisms, which are the most sophisticated
AAAs known.

The control system is of course of central importance: It is the brain
of the AAA that achieves the required convergence from the current to the
desired state. It is a goal-oriented system, in the sense that it has a final task in
mind. It tries to achieve that task by balancing between short-term setbacks
and long-term rewards, and closes the feedback loop between the real world
and the internal world of the AAA. By internal world is meant the implicit
or explicit representation of the real world that the AAA achieves via the
input of sensor data into its control system.

3.2 THE TRADING ROBOT

Let us set the stage by introducing a direct parallel between a robot and a
trading strategy by describing the flow of information from an observation
to an action.

First of all, the trading robot has sensors that observe ticks, prices, bars,
or any other compressed or uncompressed market event data. It then assem-
bles this data into a representation that is usually a set of indicators that are
computed via a preprocessor.

The indicators act as the first semantic layer of the robot—they filter
and pre-interpret the data that is hitting the raw sensors. They can be, as
a simple example, moving averages of the data observed. They are passed,
along with the current state of the robot, to the control system that is its
decision-making mechanism.

Analogies between Systematic Trading and Robotics 51

The control system makes the decision as to the position and orders
to have in the market. The decison is enacted into the outside world by
actuators that are typically a set of order management systems (OMS) that
interface between the trading robot and the electronic commerce networks
(ECNs) such as exchanges, dark pools, over-the-counter electronic markets,
and so on.

The OMS sends the trade orders into the ECNs and manages the outputs
from the ECNs. Once the trade is done, the OMS feeds that information back
into the decision-making system of the robot.

Finally a postprocessor mechanism gathers the relevant data to compute
the new state of the robot and makes it ready to observe the next event.

Figure 3.1 illustrates the information flow.

Market Data

Trades
Outgoing

Communications

Other Agents
Incoming

Communications

Sensors
Filters, Indicators

Adaptive Control System
Strategy Logic

Fitness Feedbacks
Learning Feedbacks

Actuators
Order Management System

F IGURE 3.1 Block Diagram of Trading Strategy
as an AAA

52 STRATEGY DESIGN AND TESTING

3.3 F IN ITE-STATE-MACHINE REPRESENTATION
OF THE CONTROL SYSTEM

As per the discussion above, once the incoming data has been preprocessed
and the relevant indicators calculated, the onus of the decision making falls
onto the control system. Once that decision is made, an order is (or is not)
generated and passed to the actuator that manages the interface with the
external world.

What are the desirable features of a control system? Of course, the first
and foremost is its ability to make money! Besides that, the principal feature
is completeness, meaning a clear mechanism that enables the control system
at every point in time to know what the current step should be. This, in
itself, helps ensure recoverability from faults and hence reduces operational
brittleness.

Assume the following real-world situation, where an automated trading
strategy is connected to an ECN but suddenly the connection is lost for sev-
eral minutes due to external unforseen circumstances. The strategy is short
term, so every minute of data may be relevant to its successful operation.
When the connection comes back, what state is the strategy in? Should it
be buying? Selling? The control system should be built on the principle that
whenever a gap in time or data occurs, it should have a defined plan to
proceed with. The same actually holds for the design of the OMS and is
discussed in Part Four.

Built-in completeness is key and should be the central design pattern
for an AAA. Once a structure for completeness has been defined, the AAA
stands on a solid basis, and then efforts can be concentrated on the quest for
profitability.

This section focuses on the efficient representation of the control system
by way of a finite-state machine that ensures completeness of its decision-
making process.

Definition 1. Let S be a finite set of symbols representing abstract states,
E a possibly infinite set of outside observable events. A finite-state machine
FSM(S, F) is defined by its complete set of transitions F (sin, sout, e) with
sin, sout ∈ S. The transition functions are such that ∀e ∈ E and ∀sin ∈ S and
there exists only one sout such that F (sin, sout, e) = TRUE and F (sin, s, e) =
FALSE, ∀s �= sout. The FSM, at any point in time, has a current state sin.
When a new event e arrives it changes to a potentially different state sout, and
that change is completely unambiguous, meaning that only one transition
function is true and all others false. The set of transition functions can be
represented by an N ∗ N-matrix where N = Card(S) is the number of states.

Analogies between Systematic Trading and Robotics 53

To illustrate how an FSM representation is implemented for a trading
strategy, a simple example is discussed here. A set of more complicated real-
world trading strategies is presented in the next chapter.

Consider a simple trend-following trading strategy that is always in the
market. The strategy is long 1 unit when the price is above a simple moving
average of length L, and short when it is below.

Initially, before any position is opened, at least L price update events
P(ei) need to be received to calculate the simple moving average

SMA(L, i) = 1
L

L∑

j=1

P(ei− j)

During that initial time the position of the strategy is zero.
One needs to preprocess the incoming data before presenting it to the

FSM. Let E = {e} the set of incoming market update events received since
inception and � = {P(e)} the set of calculated prices. Here the price calcula-
tion function P(e) returns the relevant price update depending on the nature
of the event received. For example if e is an order book update that does not
change the best bid and the best offer then it would be ignored, and the price
calculation function would not return a value. On the other hand, trades or
changes in the mid-price would be processed and added to �.

Hence, a necessary and sufficient set of states for this strategy is

S = {INIT, LONG, SHORT}

Define the indicators COUNTER and MA that are calculated on each
new addition P to the set of price updates � as follows:

COUNTER = Card(�)

MA = SMA(L, COUNTER − 1) when COUNTER > L

When an event e is received that yields a price update P, the indicators are
recalculated—this is the function of the preprocessor explained above. They
are then passed to the strategy’s F SM as parameters. The FSM’s transitions
are explained here and the corresponding matrix representation is shown in
Figure 3.2. In that matrix, the initial states are in the columns and the final
states are in the rows. For clarity, this particular style of representing the
FSMs has been adopted throughout.

The FSM starts in the INIT state. It continues in that state until L
price updates are gathered. At the next price update P the COUNTER

54 STRATEGY DESIGN AND TESTING

F(INIT, INIT, P) = (COUNTER <= L)
F(INIT, LONG, P) = (AND(COUNTER > L)(P > MA))

F(INIT, SHORT, P) = (AND(COUNTER > L)(P <= MA))
F(LONG, INIT, P) = NIL

F(LONG, LONG, P) = (P > MA)
F(LONG, SHORT, P) = (P <= MA)

F(SHORT, INIT, P) = NIL
F(SHORT, LONG, P) = (P > MA)

F(SHORT, SHORT, P) = (P <= MA)

F IGURE 3.2 FSM Matrix for the Moving-Average Model

indicator becomes L + 1. The preprocessor calculates the MA on the pre-
vious L price updates (not including this one) and passes the result to the
transition matrix. Only the F (I NIT, ∗, P) row is considered by the proces-
sor and it consecutively starts computing the three Boolean functions.

The first one, F (INIT, INIT, P) is false because COUNT > L. Hence
either F (INIT, LONG, P) = TRUE and F (INIT, SHORT, P) = FALSE or
vice versa. Notice the complementarity in the strict and nonstrict inequali-
ties that ensure a nonoverlapping partition of the real line R = {P > MA} ∪
{P <= MA}. This, in plain English, means that there is no chance for the
F SM to fall through the cracks and find itself in an undefined state. This
also means that at each price update there is no possibility for the FSM to si-
multaneously want to transition to two or more different states. There is one
and only one transition possible (that of course may be to the same current
state). Hence, depending on P, the F SM transitions to either the LONG or
the SHORT state. Assume here that the strategy transitions to the LONG
state.

At this point, the final job of the control system is to emit a signal to
the actuator to execute the buy trade. The OMS takes control and sends an
order to the ECN. Once the trade execution confirmation comes back from
the ECN, the OMS passes back control to the sensor, which is allowed to
open its eye again for the next price update.

The actual details of the process of interacting with the ECN are far
more involved and are covered in a later part. The OMS has to embed a
finite-state machine of its own design to deal with complications arising from
situations of partial fills, disconnects, and the like. Here and in Part Two the
idea is to focus on the strategy’s core decision making assuming that all trade
executions are performed without such complications.

When that next price update comes, the process is restarted and the
strategy will either remain LONG or switch to the SHORT state. If that is
the case, the OMS will have to execute a sale of 2 units.

Analogies between Systematic Trading and Robotics 55

There are at least two recovery mechanisms possible in the case of a
disconnect or any other operational problem that keeps the strategy off-line
for a while:

1. The preprocessor takes the next available price P and computes the
COUNTER and MA indicators as if nothing happened, thus ignoring
the gap.

2. The preprocessor queries a historic external database to fill as much
missing data possible, thus repopulating the E and � sets. Once done,
it would use them and the next available P to compute the indicators.

Whichever way the recovery from fault is handled by the preprocessor, the
FSM just takes its input and performs its decision-making work. In sum, the
FSM embeds the core logic behind the trading strategy and disentangles it
from any upstream and downstream operational issues. The FSM is the main
element to focus on when researching and designing potentially profitable
strategies.

Seeing trading strategies in the AAA context makes the representation
of their brains as finite-state machines all the more natural. It puts them
into a framework where a direct analogy with robotics can be exploited. It
also emphasizes the event-driven nature of trading strategies as opposed to
calendar-time driven.

In Part One various simple strategies will be exhibited via their FSMs.
The control mechanism there is simply a position size decision-making ma-
trix, based on the current state and the relationship between an indicator
and the current price. The sensors observe the current price and the indi-
cators are computed on a history of observed prices and other data. The
actuators are not explicit; they will be covered in Part Four when an order
management system and its connectivity to the electronic marketplace are
described.

The representation of the strategy’s core logic by way of a finite-state
machine fosters a necessary degree of discipline for the design process. The
goal is not to complicate that process but to ensure the strategy’s stability
and recoverability. These essential features are key for reducing the opera-
tional and management costs over time, let alone market-related losses. The
less time spent on disentangling recovery problems, the more time spent on
research and development of profitable strategies.

In order to put the above theory into practice, the next chapter
jumps straight into a programmatic implementation of agent-based trading
strategies.

CHAPTER 4
Implementation of Strategies

as Distributed Agents

T he clear analogy between a trading strategy and a robot opens the way to
think further and visualize a set of trading agents coexisting at any point

in time in the computing environment. The trading agents consume events,
update their states, and communicate internally and with the external world.

For each trading agent an efficient top-level code can be designed on the
basis of Figure 4.1. Although additional code is given in the Appendix, this
section provides the detailed explanation of its most important features, and
focuses on the top-level implementation of the chain:

Event → Sensor → Preprocessor → · · ·
· · · → Control System → Postprocessor

4.1 TRADING AGENT

The core class for a trading agent is AGENT:

(defclass AGENT ()
((name

:accessor name
:initarg :name)

(timestamps
:accessor timestamps
:initform NIL)

(revalprices
:accessor revalprices
:initform NIL)

(orders
:accessor orders
:initform NIL)

57

58 STRATEGY DESIGN AND TESTING

AGENT

name
timestamps
revalprices
positions

pls
fitnesses

trades
Specific Agent Subclass data

EVENT

SENSE Method
produces relevant EVENT data

UPDATE: BEFORE Method
updates timestamps and revalprices for AGENT

PREPROCESSOR
computes PRE_INDICATORS for AGENT and stores in

specific Subclass data

FSM
computes State Transition for AGENT and updates

positions

POSTPROCESSOR
computes POST_INDICATORS for AGENT and stores in

specific Subclass data

UPDATE: AFTER Method
updates pls and trades for AGENT

F IGURE 4.1 Top-Level Agent Architecture

Implementation of Strategies as Distributed Agents 59

(positions
:accessor positions
:initform NIL)

(pls
:accessor pls
:initform NIL)

(fitnesses
:accessor fitnesses
:initform NIL)

(trades
:accessor trades
:initform NIL)

(tradestats
:accessor tradestats
:initform NIL)

(incomingmessages
:accessor incomingmessages
:initform NIL)

(outgoingmessages
:accessor outgoingmessages
:initform NIL)

(recipientslist
:accessor recipientslist
:initarg :recipientslist
:initform NIL)))

This class is just a data repository for each individual agent. At incep-
tion, when the class is created, the only input field required is the agent’s
name:

(defparameter *a* (make-instance ’AGENT
:name "MyFirstAgent"))

The data lists appearing in the agent class are divided in three main
categories:

1. Data received from market update events: timestamps and reval-
prices

2. Data calculated through trading activity: orders, positions, pls,
fitnesses, trades, and tradestats

3. Data pertaining to communication with other agents: incomingmes-
sages, outgoingmessages, and recipients, the latter being the
list of agents that are declared as receivers of the agent’s potential com-
munications.

60 STRATEGY DESIGN AND TESTING

4.2 EVENTS

Events can be of different sources and have different natures. They all have
the commonality that they carry information and that this information had
been timestamped by some universal clock when emitted. The EVENT class
reflects that abstract generality and contains slots for a timestamp and a
value that can be anything:

(defclass EVENT ()
((timestamp

:initarg :timestamp
:accessor timestamp)

(value
:initarg :value
:accessor value)))

It is specialized for market update events by the subclass MARKETUPDATE
that contains the name or identifier of the security:

(defclass MARKETUPDATE (EVENT)
((security

:initarg :security
:accessor security)))

This class has child classes PRC for a single quote, TICK, BOOK, and BAR
that are all discussed in Chapter 6, “Data Representation Techniques.” The
generic function price has methods defined to extract the price informa-
tion from each type of market update object. This function also optionally
contains the slippage in the context of a simulation environment as discussed
later.

This section focuses on explaining the mechanics of the consumption
by agents of market update events. More general events that contain the
communication between agents is covered in the next section.

4.3 CONSUMING EVENTS

The top-level function that implements the reaction of an agent to an event
is consume:

(defun consume (a e)
(when (observe a e)

(update a e)))

Implementation of Strategies as Distributed Agents 61

The observe generic function is the primary sensor of the agent and
acts as a filter. The agent is only interested in certain events, for example mar-
ket price updates for a particular security or communications from a partic-
ular other agent. Hence events that do not meet the “observable” criterion
are simply not sensed by the agent. The example below of communicating
agents will show how this method can be implemented. The most generic
method of observe is simply all eyes open:

(defmethod observe ((a AGENT) (e EVENT))
T)

Only relevant events are passed to update, which is the central and most
important method, reponsible for the bulk of the logic of event processing.

4.4 UPDATING AGENTS

This section explains the update method for market update events. The next
section handles inter-agent communication events for which similar meth-
ods apply. The method update is composed of three parts, the :before,
:main, and :after methods that correspond to the preprocessing, main
calculation, and postprocessing stages.

As soon as the agent starts listening to market update events, the
timestamps and prices of the events received are recorded and stored in
the timestamps and revalprices lists. These lists are kept in reverse-
chronological order because their handling is greatly simplified by the use of
the push and pop LISP functions and yields more efficient methods to com-
pute indicators, especially when using recursion. When the above generic
function is called it first calls the :before method:

(defmethod update :before ((a AGENT) (e MARKETUPDATE))
(when (null (timestamps a))

(push 0 (pls a))
(push 0 (fitnesses a)))

(push (timestamp e) (timestamps a))
(push (price e) (revalprices a))
(preprocess a e)
(format T ":BEFORE completed for agent ˜A and event ˜A˜%" a e))

At the initial phase when the agent is receiving its first market update the pls
and fitnesses are initialized to zero. Those lists have the same length as
the timestamps and revalprices.

62 STRATEGY DESIGN AND TESTING

Once this basic housekeeping has been done, the method calls the pre-
processor that is specific to the agent and has to be defined separately. The
preprocessor is responsible for computing indicators to pass to the agent’s
control system.

The agent’s control system is also defined separately and constitutes the
specific main method of the update generic function. Before those details
are discussed, let us first complete the logical loop. Assume that instead of a
robot, a human trader is sitting and watching the price updates. The trader
decides on whether to trade and its main update method would simply be
an input request of the following sort

(defmethod update ((a AGENT) (e MARKETUPDATE))
(format T "Enter New Position for T= ˜A and P= ˜A ˜%"

(timestamp e) (price e))
(let ((newposition (read)))

(push newposition (positions a))))

that simply records the trader’s new desired position in the market (no error
checking is performed—this is just an example).

Once the positions is updated, the control system has done its job.
Now the process needs to complete in order to be open to receiving a new
event. The :after method of the update generic function takes care of
that:

(defmethod update :after ((a AGENT) (e MARKETUPDATE))
(let* ((L (length (timestamps a)))

(lastposition (first (positions a)))
(prevposition (if (< L 2) 0 (second (positions a))))
(tradequantity (- lastposition prevposition))
(lastprice (first (revalprices a)))
(prevprice (if (< L 2) 0 (second (revalprices a))))
(pl (if (< L 2)

0
(* prevposition (- lastprice prevprice)))))

(push pl (pls a))
(unless (zerop tradequantity)
(push (make-TRADE :timestamp (timestamp e)

:price (+ (price e)
(slippage a e tradequantity))

:quantity tradequantity)
(trades a))

(push (compute-tradestats (trades a)) (tradestats a)))
(postprocess a e)
(format T ":AFTER completed for agent ˜A and event˜A˜%"

a e)))

Implementation of Strategies as Distributed Agents 63

This method starts by computing the incremental PL on this price update
and appends it to the pls list. Here it is clear that the reverse-chronological
representation is optimal as only the first and second elements of a list
are traversed, which bears a low computational overhead.

The resulting trade from the change in position is computed and stored
as a structure in the trades list, only if the resulting trade quantity is
nonzero. In that case, the function compute-tradestats is also invoked
to compute trade-by-trade statistics (pecent profitable, win-to-loss ratio,
etc.) and the resulting structure is appended to the tradestats list. The
slippage generic function is by default 0 but could be set to simulate fric-
tional trading costs. The details of slippage and trade statistics calculations
are discussed later in this part.

Finally the specific postprocessor to the agent is called. It may calcu-
late another set of indicators that can only be defined once the position has
changed. It also may or may not include a specific fitness calculation and
update the fitnesses list. The concept of fitness will be relevant to Part
Two and will be revisited there.

4.5 DEF IN ING FSM AGENTS

Having explained the top-level workings of the update method, it is now
time to specialize the agent to contain a finite-state machine (FSM) repre-
sentation of its control system. In the Common Lisp Object System it is a
simple matter thanks to multiple class inheritance:

(defclass FSMAGENT (FSM AGENT)
((states

:accessor states
:initform NIL)))

The class FSMAGENT inherits all the slot definitions from AGENT and FSM
and additionally will contain the history of its states that is updated for each
event processed. Here the class FSM is defined to mirror the definition of the
FSM given at the beginning of the chapter:

(defclass FSM ()
((currentstate

:accessor currentstate
:initarg :currentstate
:initform NIL)

(transitions
:accessor transitions
:initarg :transitions
:initform NIL)))

64 STRATEGY DESIGN AND TESTING

One notices that only the currentstate and transitions are relevant.
The finite set of N possible states is implicit in the complete list of N ∗ N
transitions so it is redundant. The disciplined designs of the FSMs presented
in this book ensure this completeness, hence the redundancy of the list of
states. Each transition is represented as an instance of the TRANSITION
class:

(defclass TRANSITION ()
((initialstate

:accessor initialstate
:initarg :initialstate)

(finalstate
:accessor finalstate
:initarg :finalstate)

(sensor
:accessor sensor
:initarg :sensor
:initform #’(lambda (x) x))

(predicate
:accessor predicate
:initarg :predicate
:initform #’(lambda (x) NIL))

(actuator
:accessor actuator
:initarg :actuator
:initform #’(lambda (x) NIL))

(effected
:accessor effected
:initform NIL)))

Before going into details as to how the FSM is initialized and maintained for
a particular strategy class it is important to understand at the high level how
the FSM is operated. First of all, the consumption of an event by a transition
object is defined by the following perform method:

(defmethod perform ((tr TRANSITION) (e EVENT))
(setf (effected tr) (funcall (predicate tr)

(funcall (sensor tr)
e))))

This method first calls the transition’s sensor function on the event
(e.g., the price method discussed above). The output is passed to the

Implementation of Strategies as Distributed Agents 65

transition’s predicate that either returns T or NIL. NIL is equivalent to False
in LISP whereas True can be represented by T or any non-NIL expression.
This Boolean value is stored in the transition’s effected field.

The consumption of an event by the whole FSM is performed by the
operatefsm method:

(defmethod operatefsm ((fsm FSM) (e EVENT))
(let* ((applicable-transitions

(remove-if-not #’(lambda (x) (equal (initialstate x)
(currentstate fsm)))

(transitions fsm)))
(effected-transition
(car (remove-if-not #’(lambda (x) (perform x e))

applicable-transitions))))
(funcall (actuator effected-transition)

(funcall (sensor effected-transition)
e))

(setf (currentstate fsm) (finalstate effected-transition))
(format T "Transition $ -> S˜%"

(initialstate effected-transition)
(finalstate effected-transition))))

This method works exactly as explained when the FSM concept was
introduced initially. The applicable-transitions variable is initial-
ized to the subset of potential transitions out of the FSM’s current state. The
perform method is applied to all these potential transitions and returns
True or False. The transition for which it is True is stored in the effected-
transition variable. The effected-transition is then made to per-
form some action (e.g., change of the agent’s position) and for this task
the transition’s actuator function is called on the transition’s sensor out-
put. Finally the state of the FSM is changed to the final state of the effected
transition.

To close the loop, here is finally the main method for the update
generic function for the FSMAGENT case:

(defmethod update ((a FSMAGENT) (e MARKETUPDATE))
(setfsm a)
(format T "Set FSM completed for ˜S˜%" (name a))
(operatefsm a e)
(format T "Operate FSM completed for ˜S˜%" (name a))
(push (currentstate a) (states a))
(format T ":MAIN completed for ˜S and new state ˜S added ˜%"

(name a) (currentstate a)))

66 STRATEGY DESIGN AND TESTING

This method overrides the manual main update method discussed for
the hypothetical human agent. Remember that this main method is called
after the :before method that contains all the preprocessing, and before
the :after method that contains all the postprocesing. It initially resets the
agent’s FSM with the setfsm method that will be discussed below. This
implicitly changes the FSM’s parameters (indicators) given the observation
of the event. It then runs the FSM decision matrix that implicity updates the
agent’s positions list. It appends the new state of the agent to the states
list. Then it finally passes control to the :after method.

4.6 IMPLEMENTING A STRATEGY

The code discussed above implements the universal top-level process for con-
sumption of events by FSM-endowed agents. To operate it concretely one
needs to specialize the FSMAGENT class and the setfsm method to a partic-
ular trading strategy.

Here the simplistic trend-following strategy is explained in details. The
next chapter discusses a series of real-world examples that are more compli-
cated but the essentials of the code are the same as for the simple example
here.

The strategy’s class is defined as a subclass of F SMAGENT:

(defclass SIMPLEMODEL (FSMAGENT)
((L

:accessor L
:initarg :L)

(COUNTER
:accessor COUNTER
:initform 0)

(MA
:accessor MA
:initform 0)))

It contains the slot for the initially settable parameter L that is the length
of the lookback period for the moving average calculation. The other slots
are for the counter and moving average indicators that are computed by the
process. To initialize a concrete class instance that has lookback value of 10
one would evaluate the following expression:

(defparameter *mod1* (make-instance
’SIMPLEMODEL
:L 10))

Implementation of Strategies as Distributed Agents 67

The instance of our class will be stored in the *mod1* global variable.
Before the agent is able to consume any events it needs some basic initial-

ization. The initialize method sets the FSM’s original state to :INIT. It
also reflects the value of L in the internal name of the class, which is handy
when one runs several instances at the same time and wants to output results
in a practical format.

(defmethod initialize ((a SIMPLEMODEL))
(with-slots (L states name) a
(when (null states)
(push :INIT states)
(setf name (concatenate ’string

"SIMPLE_MODEL_"
(format NIL "A" L))))))

Assume for simplicity that the SIMPLEMODEL agent consumes all mar-
ket update events that are passed to it. Thus no specific method on the ob-
serve generic function needs to be defined and hence it will always return
True and will immediately pass control to the update method.

The preprocessor method, however, needs to be defined for the SIM-
PLEMODEL class:

(defmethod preprocess ((a SIMPLEMODEL) (e MARKETUPDATE))
(with-slots (L COUNTER MA revalprices) a

(setf COUNTER (length revalprices))
(setf MA (avg-list (sub-list revalprices 0 (- L 1))))))

It sets the counter to the length of the list of revalprices (which is
the same as the length of the timestamps list). These lists are non-NIL
because the preprocessor operates after the first event’s price and timestamp
had been added to them. The preprocessor computes the MA by invoking the
sub-list function that returns the subset of the first L elements (or less if
not available) of the revalprices list.

The setfsm method is the core of the strategy’s decision making:

(defmethod setfsm ((a SIMPLEMODEL))
(with-slots (L COUNTER MA states currentstate

revalprices transitions positions name) a
(setf currentstate (first states))
(setf transitions (list

(make-instance
’TRANSITION
:initialstate :INIT

68 STRATEGY DESIGN AND TESTING

:finalstate :INIT
:sensor #’price
:predicate #’(lambda (p)

(<= COUNTER L))
:actuator #’(lambda (p)

(push 0 positions)
(format T

"˜S INIT->INIT ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :INIT
:finalstate :LONG
:sensor #’price
:predicate #’˜S(lambda (p)

(and (> COUNTER L)
(> p MA)))

:actuator #’(lambda (p)
(push 1 positions)
(format T

"˜S INIT->LONG ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :INIT
:finalstate :SHORT
:sensor #’price
:predicate #’(lambda (p)

(and (> COUNTER L)
(<= p MA)))

:actuator #’(lambda (p)
(push -1 positions)
(format T

"˜S INIT->SHORT ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :LONG
:finalstate :INIT
:sensor #’price
:predicate #’(lambda (p)

NIL)

Implementation of Strategies as Distributed Agents 69

:actuator #’(lambda (p)
NIL))

(make-instance
’TRANSITION
:initialstate :LONG
:finalstate :LONG
:sensor #’price
:predicate #’(lambda (p)

(> p MA))
:actuator #’(lambda (p)

(push 1 positions)
(format T

"˜S LONG->LONG ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :LONG
:finalstate :SHORT
:sensor #’price
:predicate #’(lambda (p)

(<= p MA))
:actuator #’(lambda (p)

(push -1 positions)
(format T
"S LONG->SHORT ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :SHORT
:finalstate :INIT
:sensor #’price
:predicate #’(lambda (p)

NIL)
:actuator #’(lambda (p)

NIL))
(make-instance
’TRANSITION
:initialstate :SHORT
:finalstate :LONG
:sensor #’price
:predicate #’(lambda (p)

(> p MA))

70 STRATEGY DESIGN AND TESTING

:actuator #’(lambda (p)
(push 1 positions)
(format T
"˜S SHORT->LONG ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :SHORT
:finalstate :SHORT
:sensor #’price
:predicate #’(lambda (p)

(<= p MA))
:actuator #’(lambda (p)

(push -1 positions)
(format T
"˜S SHORT->SHORT ˜%"
name)))))))

The setfsm method updates the FSM’s state with the latest state of the
agent (remember that the states list is in reverse chronological order like
all the others). It then updates the transitions list with the parameters
COUNTER and MA that have been computed and stored into the SIMPLE-
MODEL class by the preprocess method above.

There are three states and nine possible transitions. However the
LONG → I NIT and SHORT → I NIT transitions are not allowed and
their predicate functions always return NIL (False). Hence, despite the fact
that those transitions are declared for the sake of completeness, they will
never happen in the course of the computation.

The sensor function for each transition is the price method on a MAR-
KETUPDATE event. Each predicate would take that price as input if it is ever
passed to it.

The actuator of a transition updates the positions list when that tran-
sition occurs, as per the updatefsm method explained above. So one and
only one position update occurs when a market update event is processed.
The actuator also prints which actual transition has occured.

Finally a postprocessor is not really needed here but one could just use
it for outputting the agent’s data at each event consumption:

(defmethod postprocess ((a SIMPLEMODEL) (e MARKETUPDATE))
(with-slots (name COUNTER MA states positions pls) a
(format T "Event ˜S ˜S Consumed for Agent ˜S :˜%"

(timestamp e) (price e) name)

Implementation of Strategies as Distributed Agents 71

(format T "Output: COUNTER= ˜S MA= ˜S State= ˜S
Position= ˜S PL= ˜S˜%" COUNTER MA (first states)
(first positions) (first pls))))

This finishes the explanation of the structure of the basic code that im-
plements the event consumption cycle of an FSM-driven agent.

To run the code and do a simulation of the simple model, suppose a list
of market update events is created and called *events*. That list contains
the consecutive individual event classes in chronological order.

Then to run the *mod1* strategy on that list, one would simply invoke

(dolist (e *events*)
(consume *mod1* e))

and watch the outputs from the existing format calls on the console.
Also, assume we define a list of 100 simple strategies of the kind by

varying the L, storing the result into the *agents* list:

(defparameter *agents* NIL)

(for (i 10 110)
(push (make-instance

’SIMPLEMODEL
:L i)

agents))

Then running all the agents at once on the events list is easy:

(dolist (e *events*)
(dolist (a *agents*)

(consume (a e))))

Here we assume that for each e, the agents consume that event in a single
thread (consecutively). However, it is easy to make each agent run the update
process in a different concurrent thread and synchronize the results before
the next event is consumed. This topic will be covered in Part Four.

CHAPTER 5
Inter-Agent Communications

T he framework of handling market update events extends naturally to a
more general class of communication events. Endowing trading agents

with the ability to communicate with each other opens a whole new avenue
in the design of trading strategies.

The subclass of communication events contains the reference to the orig-
inating entity (an agent) and the list of recipients for which that communi-
cation is addressed to:

(defclass COMM (EVENT)
((originator

:accessor originator
:initarg :originator)

(recipients
:accessor recipients
:initarg :recipients)))

The message of the communication event would be contained in the subclass
value field and it would also be timestamped like any other event.

5.1 HANDLING COMMUNICATION EVENTS

The agent should take into consideration all the communication events di-
rected at it and ignore all the rest. If it is not one of the intended recipients,
the event is not handled by the agent. Also, the agent does not talk to itself
and, just in case, filters out all messages that it emits. Hence the observe
method that implements that primary sensor is

(defmethod observe ((a AGENT) (e COMM))
(and (member a (recipients e))

(not (equal a (originator e)))))

73

74 STRATEGY DESIGN AND TESTING

In the most general case, the handling of the communication event by the
update method goes by exactly the same design pattern as explained above
for handling market events. No new top-level logic needs to be written but
the preprocess and postprocess methods need to be implemented for
a particular agent subclass. The FSM transitions need to handle communica-
tion events independently of market update events while maintaining logical
completeness. Such a complete version is discussed in the context of handling
some inter-market execution algorithms in Part Three.

Here a simpler example is given where one assumes that the handling
of communication events only affects the parameters of the FSM but not
the state of the agent. This reduced version already allows for testing an
interesting range of strategies.

The events that are relevant to the agent are passed initially to the
update preprocessing stage, that is, its :before method:

(defmethod update :before ((a AGENT) (e COMM))
(push e (incomingmessages a))
(preprocess a e)
(format T ":BEFORE completed for agent ˜A and COMM event

˜A˜%" a e))

The preprocessor interprets the meaning of the message that needs to be im-
plemented for any particular agent subclass as is shown in the example later.

In this simplified implementation, the interpretation of the information
contained in the message yields a change of internal parameters of the
trading agent, but not an immediate change of its state. The state can only
change when the next market update is consumed by the agent. Hence the
:main update method for handling a communication event by an FSM
agent is simply

(defmethod update ((a FSMAGENT) (e COMM))
(setfsm a)
(format T "Set FSM completed for ˜S˜%" a)
(format T "MAIN method completed for ˜S and COMM event

˜S ˜%" a e))

So the only thing that happens here is that the FSM of the agent is reset with
the new parameters that the preprocessor has computed from the interpre-
tation of the message. Finally some postprocessing may be done (e.g., saving
the new agent’s internal parameters in some external database for recovery
from fault purposes):

Inter-Agent Communications 75

(defmethod update :after ((a AGENT) (e COMM))
(postprocess a e)
(format T ":AFTER completed for agent ˜A and COMM event

˜A˜%" a e))

In this simplified design pattern the operatefsm method is not called after
the FSM had been reset to the new parameters. Hence the agent does not
change its state when such a communication is handled. Quite a few situa-
tions can be dealt with in this way, in particular in the context of designing
and simulating price-taking strategies (rather than strategies that use limit
orders, like market-making). To perform a trade, the agent needs to wait for
the next price or order book update and would act as soon as that informa-
tion is received.

5.2 EMITTING MESSAGES
AND RUNNING SIMULATIONS

The method that an agent uses to emit a message to its recipients is

(defmethod emit ((a AGENT) msg)
(push (make-instance ’COMM

:originator a
:recipients (recipientslist a)
:timestamp (first (timestamps a))
:value msg)

events-queue)
(push (list (first (timestamps a)) msg)

(outgoingmessages a)))

For simplicity, it uses the last timestamp available to the agent (timestamp
of the last market update received) but this can obviously change to the
system clock time in a real-time implementation. The emit method can
be called from any point in the update chain (preprocessor, transitions,
postprocessor).

The *eventsqueue* is a global list, seen by all the agents, that buffers
all the events being broadcast. In a simulation environment it is initially
populated by the history of market update events. When an agent emits a
message, that message is placed at the top of the queue by the push function,
so this will be the first message to go out unless other agents place their

76 STRATEGY DESIGN AND TESTING

messages on top of this. Once all the agents are done placing their messages
on the queue, the events are broadcast one by one.

Here it is important to note that the handling of a communication event
by an agent precludes the possibility of the agent emitting another communi-
cation event. An agent can only emit a communication event when handling
a market update event. This is done to avoid spamming the broadcast with
inter-agent communication at the expense of handling market price events.
With this in mind, a convergent simulation process is given by the following
function:

(defun run-simulation (events)
(dolist (a *agents*)

(initialize a))
(setf *events-queue* events)
(while *events-queue*

(let ((e (pop *events-queue*)))
(dolist (a *agents*)

(consume a e)))))

After all the agents have been initialized, the *events-queue* is set to the
list of (initially market update) events to handle. The first element is popped
from the queue and distributed for the consumption of all the agents. (pop
lst) is a destructive operation that returns the car of the lst and resets
lst to (cdr lst).

During the consumption process loop on the *agents* list, any agent
can emit one or more messages that are consecutively pushed onto the queue.
These messages are handled one by one by all the agents in the next step, but
as written above, no more communication events can be emitted at this stage.
When all these communication events are processed, the next event will be
a market update event and the whole process restarts until the *events-
queue* gets depleted to the empty list NIL.

5.3 IMPLEMENTATION EXAMPLE

In this section, a concrete example of communicating agents built on the
simplified design pattern is presented. Each agent trades one particular secu-
rity and communicates to the other its state. The agents take each other’s
state into account so as to always be in a situation of opposite trading
positions—either (Long,Short), (Short,Long), or (Flat,Flat). This simulates
a trend-following pairs-trading model where only high conviction trades are
allowed (with one security trading up while the other is trending down).

Inter-Agent Communications 77

The strategy class can be defined as a subclass of SIMPLEMODEL:

(defclass SIMPLEMODELCOMM (SIMPLEMODEL)
((MKT

:accessor MKT
:initarg :MKT)

(UNBLOCKSHORT
:accessor UNBLOCKSHORT
:initform -1)

(UNBLOCKLONG
:accessor UNBLOCKLONG
:initform 1)))

The MKT field is the identifier of the security that a particular instance of
the class is operating on. It is used to filter the market update events via the
implementation of the observe method:

(defmethod observe ((a SIMPLEMODELCOMM) (e MARKETUPDATE))
(equal (MKT a) (security e)))

Before the agent starts processing any events, it needs to be initialized. The
initialize method emits a message communicating the agent’s :INIT
state. This “I’m alive” message will be automatically picked up by the other
agent and vice versa.

(defmethod initialize ((a SIMPLEMODELCOMM))
(with-slots (MKT L states name) a
(when (null states)
(push :INIT states)
(setf name (concatenate ’string

"SIMPLE MODEL "
(format NIL "˜A ˜A" MKT L)))

(emit a :INIT))))

The preprocess generic function now has two distinct methods to han-
dle the different event types. The market updates are handled by the same
method as the superclass, but for clarity it is as follows:

(defmethod preprocess ((a SIMPLEMODELCOMM) (e MARKETUPDATE))
(with-slots (L COUNTER MA revalprices) a

(setf COUNTER (length revalprices))
(setf MA (avg-list (sub-list revalprices 0 L)))))

78 STRATEGY DESIGN AND TESTING

The communication events from the other agent are handled by:

(defmethod preprocess ((a SIMPLEMODELCOMM) (e COMM))

(with-slots (UNBLOCKSHORT UNBLOCKLONG) a

(case (value e)

(:INIT (setf UNBLOCKSHORT 0)

(setf UNBLOCKLONG 0))

(:LONG (setf UNBLOCKSHORT -1)

(setf UNBLOCKLONG 0))

(:SHORT (setf UNBLOCKSHORT 0)

(setf UNBLOCKLONG 1)))))

This function performs the interpretation of the message received from
the other agent. If the other agent is in the :INIT state, it blocks its own
long and short positions. If the other agent is in the :LONG state, it blocks
its own long positions. If the other agent is in the :SHORT state, it blocks
its own short positions. This ensures that the agents are either both flat or
have opposite sign positions at all times.

The setup of the FSM explicitly takes these UNBLOCKLONG and UN-
BLOCKSHORT values to alter the market exposure of the agent:

(defmethod setfsm ((a SIMPLEMODELCOMM))

(with-slots (L COUNTER MA UNBLOCKLONG UNBLOCKSHORT states

currentstate revalprices transitions positions name) a

(setf currentstate (first states))

(setf transitions (list

(make-instance

’TRANSITION

:initialstate :INIT

:finalstate :INIT

:sensor #’price

:predicate #’(lambda (p)

(<= COUNTER L))

:actuator #’(lambda (p)

(push 0 positions)

(format T

"˜S INIT->INIT ˜%"

name)))

(make-instance

’TRANSITION

:initialstate :INIT

:finalstate :LONG

:sensor #’price

:predicate #’(lambda (p)

(and (> COUNTER L)

(> p MA)))

Inter-Agent Communications 79

:actuator #’(lambda (p)

(push UNBLOCKLONG positions)

(emit a :LONG)

(format T

"˜S INIT->LONG ˜%"

name)))

(make-instance

’TRANSITION

:initialstate :INIT

:finalstate :SHORT

:sensor #’price

:predicate #’(lambda (p)

(and (> COUNTER L)

(<= p MA)))

:actuator #’(lambda (p)

(push UNBLOCKSHORT positions)

(emit a :SHORT)

(format T

"˜S INIT->SHORT ˜%"

name)))

(make-instance

’TRANSITION

:initialstate :LONG

:finalstate :INIT

:sensor #’price

:predicate #’(lambda (p)

NIL)

:actuator #’(lambda (p)

NIL))

(make-instance

’TRANSITION

:initialstate :LONG

:finalstate :LONG

:sensor #’price

:predicate #’(lambda (p)

(> p MA))

:actuator #’(lambda (p)

(push UNBLOCKLONG positions)

(format T

"˜S LONG->LONG ˜%"

name)))

(make-instance

’TRANSITION

:initialstate :LONG

:finalstate :SHORT

:sensor #’price

:predicate #’(lambda (p)

(<= p MA))

80 STRATEGY DESIGN AND TESTING

:actuator #’(lambda (p)

(push UNBLOCKSHORT positions)

(emit a :SHORT)

(format T

"˜S LONG->SHORT ˜%"

name)))

(make-instance

’TRANSITION

:initialstate :SHORT

:finalstate :INIT

:sensor #’price

:predicate #’(lambda (p)

NIL)

:actuator #’(lambda (p)

NIL))

(make-instance

’TRANSITION

:initialstate :SHORT

:finalstate :LONG

:sensor #’price

:predicate #’(lambda (p)

(> p MA))

:actuator #’(lambda (p)

(push UNBLOCKLONG positions)

(emit a :LONG)

(format T

"˜S SHORT->LONG ˜%"

name)))

(make-instance

’TRANSITION

:initialstate :SHORT

:finalstate :SHORT

:sensor #’price

:predicate #’(lambda (p)

(<= p MA))

:actuator #’(lambda (p)

(push UNBLOCKSHORT positions)

(format T

"˜S SHORT->SHORT ˜%"

name)))))))

The agents emit their state only when their state changes. This is handled in
the particular transition actuator functions. This communication is par-
simonious (necessary and sufficient).

Finally, there is no need for a postprocess method on a communi-
cation event as the acknowledgment that the event has been processed is

Inter-Agent Communications 81

handled by the update’s :after method. The postprocess on a mar-
ket update can be used (automatically) from the SIMPLEMODEL superclass.

The agents can be instantiated and their recipients lists set by evaluating
the following set of expressions:

(defparameter *a1* (make-instance
’SIMPLEMODELCOMM
:MKT "AAPL"
:L 10))

(defparameter *a2* (make-instance
’SIMPLEMODELCOMM
:MKT "DELL"
:L 10))

(push *a2* (recipientslist *a1*))
(push *a1* (recipientslist *a2*))

(push *a2* *agents*)
(push *a1* *agents*)

Finally a simple simulation can be performed using the run-simulation
function. For this one needs to create a data set with market update events

80
Feb-11 Jun-11

Short DELL Long AAPL Long DELL Short AAPL

Sep-11 Dec-11 Apr-12 Jul-12 Oct-12 Jan-13 May-13

90

100

110

120

130

140

150

F IGURE 5.1 Communicating Agents Example

82 STRATEGY DESIGN AND TESTING

for the two securities. Figure 5.1 is an example of an output that shows the
polar opposite market positions of the two agents.

In this simple example, each agent preserves its state independently of
the other. The state is solely defined by the position of the price P relative
to the MA and is independent of the agent’s position in the market. This
means that each agent is always in sync with its market but varies its position
taking into account both agents’ states.

CHAPTER 6
Data Representation Techniques

I n the Introduction, systematic trading was described as being an art, a
science, and a business. This book focuses primarily on the scientific and

business aspects. The scientific endeavor of systematic trading consists of
discovering persistent and predictable patterns in market activity and the
business aspect consists of efficiently exploiting them.

Any science starts with observational data—the raw materials of re-
search on which concepts and theories are consequently built. However, not
all data is relevant at all times, and more often than not, data overload can
stall scientific progress, as one cannot see the forest for the trees when for-
mulating useful concepts. Hence part of the art of the researcher comes in
the form of an intuitive filter that helps decide what data to focus on. This
chapter introduces the data filter techniques relevant to systematic trading
and forms the basis for data analysis in the book.

6.1 DATA RELEVANCE AND FILTERING
OF INFORMATION

The raw materials for systematic trading are (1) time series of transactions
(price and volume), (2) time series of orders (depth of book), and (3) time se-
ries of news (economic releases, idiosyncratic company news, world events).
Most of the models discussed in this book are based on the first two streams
of data, however the third one is also briefly discussed in this chapter.

The question of what data is relevant is ultimately a function of the
goal of the inquiry. In the world of systematic trading, this translates into
understanding the timescale, price scale, and type of pattern one is trying to
exploit. A data filter is usually formed of three components: (1) a sampling
technique, (2) a compression technique, and (3) a representation technique.

In this book, all the trading strategies are discussed and implemented
within the paradigm of distributed trading agents. In this paradigm, any

83

84 STRATEGY DESIGN AND TESTING

data consumed by the agent is represented by events that the agent observes
and reacts to. This paradigm is the closest model to the real world and has
the significant advantage that the concepts and code developed here apply
equally well to real-time trading and to simulation environments. A compre-
hensive event-driven simulation environment is presented later in Part One.

Events fall into two classes, the MARKETUPDATE representing all exter-
nal market data coming from exchanges and ECNs and the internal COMM
events that carry inter-agent communications.

This chapter focuses on the market update events and the construc-
tion of more elaborate events from the sampling and compression of ele-
mentary ones. These elementary transaction and orders events fall into two
categories:

1. A trade is performed and the price and volume information is commu-
nicated to the world.

2. The order book changes and the new state of the order book is commu-
nicated to the world.

Events are filtered by the trading agent via its observe method that not
only can choose what securities prices to observe but in what format. Hence
this method contains the sampling and compression techniques alluded
to above.

6.2 PRICE AND ORDER BOOK UPDATES

Although introduced in the beginning, it is worth revisiting the object-
oriented design of the main EVENT class.

Throughout Parts One to Three, it is assumed that the raw data that
comes from the ECN (via either the FIX protocol or a more efficient ECN-
specific protocol) is converted by a data adaptor to a class instance that is
broadcast to the trading agents.

The top-level EVENT class contains a timestamp and a value (that can
contain anything):

(defclass EVENT ()
((timestamp

:initarg :timestamp
:accessor timestamp)

(value
:initarg :value
:accessor value)))

Data Representation Techniques 85

It is specialized for a market update event and contains an additional security
identifier field:

(defclass MARKETUPDATE (EVENT)
((security

:initarg :security
:accessor security)))

6.2.1 E lementary Price Events

The most elementary market update events that can be observed from an
ECN are single traded price updates and are represented by instances of the
class PRC, a child class of MARKETUPDATE:

(defclass PRC (MARKETUPDATE)
((lastprice

:accessor lastprice)
(lastvolume
:accessor lastvolume)))

(defmethod initialize-instance :after ((e PRC))
(setf (lastprice e) (first (value e)))
(when (second (value e))

(setf (lastvolume e) (second (value e)))))

PRC’s value field is a list with two elements that are the traded price
and the volume traded at that price (if that information is available and
NIL otherwise). These events basically represent the entries of the quote
recap table, which is a feature available for all exchange-traded securi-
ties. The initialize-instance :aftermethod populates the relevant
fields that can be accessed by the agent. Here the use of the initialize-
instance :after method may seem a bit superfluous but it is actually
quite handy when the raw data is passed to the LISP class as a simple array
from the ECN interface via a foreign-function implementation.

Figure 6.1 shows what a standard quote recap data time series looks like.

6.2.2 Order Book Data

The order book represents at a point in time the set of posted resting orders
for a particular security at an exchange. It is basically two ordered lists of
pairs: the bid side of the book is the collection of bid prices and respective
sizes of aggregate buy orders at those prices; the offer side of the book is

86 STRATEGY DESIGN AND TESTING

Time Size Price

12:32:59 143.62

12:32:55 143.62

12:32:54 143.62

12:32:51 143.56

12:32:41 143.62

12:32:21 143.63

12:32:13 143.63

12:32:04

2

15

4

249

1

10

3

3 143.63

F IGURE 6.1 Quote Recap Data Example

the collection of ask prices with the respective size of aggregate offers to sell
at those prices. The order book data was once the private information of
stock specialists, but with the advent of the electronic markets, it became
completely public and is displayed in real time on all trading applications
(such as Trading Technologies or J-Trader).

Figure 6.2 is an illustration of a change in order book from one instant
to another as well as the associated trade. Note that the trade size (in this
case a buy at the best ask price) does correspond to the change in the best ask

Event 1

143.62

143.61

143.6

143.59

143.58

143.57

143.56

143.55

143.54

143.53

143.62

143.61

143.6

143.59

143.58

143.57

143.56

143.55

143.54

143.53

120

89

388

430

26

489

236

184

303

95

143.62

143.61

143.6

143.59

143.58

143.57

143.56

143.55

143.54

143.53

120

89

388

430

6

489

236

184

303

95

120

89

388

430

76

489

236

184

303

95

Original book

Event 2

Trade: Lift 50 lots at

143.58

Removed best offer

for 20 lots

Event 3

F IGURE 6.2 Order Book Change Example

Data Representation Techniques 87

quantity. At the second instant the best ask quantity is reduced not because
of a trade but because someone pulled an existing sell order (potentially in
response to the trade that just happened). Here it is assumed that all the
events come in the correctly time-stamped order from the ECN, but it has
to be pointed out that in practice this is unfortunately not always the case,
because of technological failings and latency issues that may occur at the
exchange itself.

The state of the order book is represented by the BOOK class. The value
field is a list of two lists lb and la that contain lists of bids and bid sizes and
asks and ask sizes. The BOOK class also has a specific method of initializa-
tion that sets up the best bids, offers, average bid, and offer prices and all
associated sizes:

(defclass BOOK (MARKETUPDATE)
((mid

:accessor mid)
(bidbest
:accessor bidbest)

(bidbestsize
:accessor bidbestsize)

(bidtotsize
:accessor bidtotsize)

(bidavgprc
:accessor bidavgprc)

(askbest
:accessor askbest)

(askbestsize
:accessor askbestsize)

(asktotsize
:accessor asktotsize)

(askavgprc
:accessor askavgprc)))

(defmethod initialize-instance :after ((e BOOK) &key)
(let* ((v (value e))

(lb (first v))
(la (second v)))

(setf lb (sort lb #’(lambda (x y) (> (first x) (first y)))))
(setf la (sort la #’(lambda (x y) (< (first x) (first y)))))
(setf (bidbest e) (first (first lb)))
(setf (bidbestsize e) (second (first lb)))
(setf (bidtotsize e) (sum-list (mapcar #’second

lb)))

88 STRATEGY DESIGN AND TESTING

(setf (bidavgprc e) (/ (sum-list (mapcar #’(lambda (x)
(* (first x) (second x)))

lb))
(bidtotsize e)))

(setf (askbest e) (first (first la)))
(setf (askbestsize e) (second (first la)))
(setf (asktotsize e) (sum-list (mapcar #’second

la)))
(setf (askavgprc e) (/ (sum-list (mapcar #’(lambda (x)

(* (first x) (second x)))
la))

(bidtotsize e)))
(setf (mid e) (* 0.5 (+ (bidbest e)

(askbest e))))
(setf (value e) (list lb la))))

The list of bid-side and ask-side quotes contained in the value field of the
class instance is processed automatically by the initialize-instance
:after method and populates all the relevant fields that can be used by the
agent’s preprocessor and control system.

In practice, the ECN broadcasts the changes to the order book, not the
book itself (unless specifically requested by the application). The DELTA class
is designed to represent the change in the order book from one moment
to the next. Those details are covered in Part Four and here one assumes
that the trading system’s interface to the ECN automatically converts these
book updates into the instance of the BOOK class before broadcasting it to
the agents.

6.2.3 Tick Data: The F inest Grain

The elementary market update events embodied in the PRC and BOOK
events are colloquially called ticks. Tick data is the purest event data. The
systematic trading activities for which tick data is essential are automated
market-making and algorithmic trading. The strategies behind those ac-
tivities use both the trade updates and the full book information to detect
changes in supply and demand. Although a much more difficult task, one
can also attempt to uncover hidden competing algorithms (like iceberg
orders and others).

Collecting, processing, and storing tick data is a daunting task due to
the sheer volume of information. An important tool in that matter is to use
a networked cached memory that automatically saves chunks of data onto
hardware without creating latency bottlenecks due to database read-writes.

Data Representation Techniques 89

Co-locating of trading servers on an ECN for ultrafast market and data
access becomes essential for the efficient implementation of such activities
because latency creates an unwanted sampling limitation. Indeed if the mar-
ket access latency is L then the turnaround from receiving market data, pro-
cessing it, and sending an order is limited from below by 2L, and despite
receiving all the event data, one is still limited in one’s actions by latency-
induced time-sampling. One should also be careful about the ECNs and bro-
kers throttling data, where they do actually filter data at the outset and only
send it by packets in order to not overload the network.

These practical matters are discussed in detail in Part Four of the book.

6.3 SAMPLING: CLOCK TIME VS. EVENT TIME

The two most important sampling techniques for financial data are time
and event sampling. The difference between the commonly used clock time
and the timescale derived from the occurence of elementary market events
is explained here.

In time-interval sampling, one chooses a particular clock time interval
of length T and observes a price at the end of each consecutive interval. For
example, many traders build models using closing or last traded prices at
the end of each trading day and hence react only to daily changes in prices.
Longer-term models use last traded weekly or even monthly prices. Any in-
termediate data is simply omitted or ignored by those models. One can also
sample intraday using sampling every T minutes or seconds.

The markets go periodically through bursts and troughs of activity,
which are characterized by a varying volume of transactions in time. Time
sampling is appropriate for longer term strategies on timescales where such
varying activity is averaged out and is not deemed to influence decision mak-
ing. However, a more event-driven approach is warranted for shorter term
and intraday trading.

In event sampling, instead of sampling every T minutes, one samples ev-
ery Nth event. This means that the sampling naturally accelerates and decel-
erates in clock time in step with the market activity. This difference between
clock and event time is particularly relevant for short-term trading that needs
to react quickly to changing market conditions as it usually exploits patterns
stemming from such waves of activity.

The decision between clock and event sampling is the central decision
for the relevant filtering technique when designing a model. The subsequent
compression and representation techniques are then based on the same prin-
ciples. To illustrate the point, Figure 6.3 shows two price graphs of the same
intraday price action in clock and event time.

90 STRATEGY DESIGN AND TESTING

0 50 100 150 200 250
1.039

1.0395

1.04

1.0405

1.041

1.0415

1.042

1.0425

AUDCAD event-time

40910.085
1.039

1.0395

1.04

1.0405

1.041

1.0415

1.042

1.0425

40910.09 40910.095

AUDCAD clock time

40910.1 40910.105 40910.11 40910.115

F IGURE 6.3 Price Action in Clock vs. Event Time

In the trading agent paradigm introduced in this book, there is no differ-
ence of implementation between models using event or clock time because
clock-driven sampling is a subset of event-driven sampling. From a back-
testing or forward-testing perspective, the processing of a stream of time-
sampled or event-sampled prices is the same. The advantage of the design
presented in the book is that it applies equally well for simulation and real-
time trading environments.

6.4 COMPRESSION

6.4.1 Sl ic ing Time into Bars and Candles

Some models use intermediate information between time or event sampled
data. The most common compression technique is called a bar and carries

Data Representation Techniques 91

information on the beginning (opening), the high, the low, and the last (clos-
ing) price in each time interval. The following figure shows the 10-minute
time-bars and the 1,000-event tick-bars and highlights the difference be-
tween the sampling techniques. The range of the bar is the distance between
the high and the low price.

Bursts of volatility in the market are usually synonymous and concurrent
with bursts in event activity, namely trading and order book changes. These
events seem to accelerate in clock time. Symmetrically, when the markets are
in transitions between time zones or during holidays, the event frequency
comes down and so does volatility. Sampling with constant clock time slices
through such periods of higher or lower activity yields respectively higher or
lower ranges.

A candle is a bar of which the “body,” that is, the range between the
opening and closing price, is either filled, when the closing price is be-
low the opening, or empty, if the closing price is above the opening. This
gives a tool for the trader to represent graphically serial correlation of
moves (short term trends). Figures 6.4 and 6.5 show representative bar and
candle charts.

9200

9300

9400

9500

9600

9700

9800

9900

10000

10100

10200

11
/2

6/
20

12

11
/2

8/
20

12

11
/3

0/
20

12

12
/2

/2
01

2

12
/4

/2
01

2

12
/6

/2
01

2

12
/8

/2
01

2

12
/10

/2
01

2

12
/12

/2
01

2

12
/14

/2
01

2

12
/16

/2
01

2

12
/18

/2
01

2

12
/2

0/
20

12

F IGURE 6.4 Bar Chart Example

92 STRATEGY DESIGN AND TESTING

9200

11
/2

6/
20

12

11
/2

8/
20

12

11
/3

0/
20

12

12
/2

/2
01

2

12
/4

/2
01

2

12
/6

/2
01

2

12
/8

/2
01

2

12
/10

/2
01

2

12
/12

/2
01

2

12
/14

/2
01

2

12
/16

/2
01

2

12
/18

/2
01

2

12
/2

0/
20

12

9300

9400

9500

9600

9700

9800

9900

10000

10100

10200

F IGURE 6.5 Candle Chart Example

The bars and candles are represented as instances of the class BAR:

(defclass BAR (MARKETUPDATE)
((pivot

:accessor pivot)
(O
:accessor O)

(H
:accessor H)

(L
:accessor L)

(C
:accessor C)

(bodyfill
:accessor bodyfill)))

(defmethod initialize-instance :after ((e BAR) &key)
(let ((v (value e)))

(setf (pivot e) (avg-list v))
(setf (O e) (first v))
(setf (H e) (second v))
(setf (L e) (third v))
(setf (C e) (fourth v))
(setf (bodyfill e) (if (>= (C e) (O e))

NIL
T))))

Data Representation Techniques 93

The value field of the class is just the list of the opening, high, low, and
closing prices. The initialize-instance :after method populates
the readable fields and also determines the candle’s body fill field. Hence this
class contains the candle information as well if needed.

The class is further specialized into event-driven and time-driven
sampling:

(defclass TICKBAR (BAR)
((numticks
:accessor numticks
:initarg :numticks)))

(defclass TIMEBAR (BAR)
((numtimeunits
:accessor numtimeunits
:initarg :numtimeunits)

(timeunit
:accessor timeunit
:initarg :timeunit
:initform :MINUTE)))

Bars and candles can be easily generated on the fly given a stream of real-time
or database-read PRC events. The illustration of it is given here for TICK-
BARs and the methodology uses the very same concepts that underpin the
agent-based paradigm introduced in the earlier chapters. Namely the TICK-
BARGENERATOR will be an agent that consumes PRC events and broadcasts
TICKBARs to the top of the *events-queue* stack. The class is defined by:

(defclass TICKBARGENERATOR (FSMAGENT)
((MKT
:accessor MKT
:initarg :MKT)
(N
:accessor N
:initarg :N)
(COUNTER
:accessor COUNTER
:initform 0)
(BUFFER
:accessor BUFFER
:initform NIL)
(OP
:accessor OP
:initform NIL)

94 STRATEGY DESIGN AND TESTING

(HI
:accessor HI
:initform NIL)
(LO
:accessor LO
:initform NIL)
(CL
:accessor CL
:initform NIL)))

The original inputs are the security identifier MKT and the number of events
N to build the bar from. For example one can define two bar generators for
two different securities and event numbers:

(defparameter *b1* (make-instance
’TICKBARGENERATOR
:MKT "AAPL"
:N 5))

(defparameter *b2* (make-instance
’TICKBARGENERATOR
:MKT "MSFT"
:N 7))

(push *b2* *agents*)
(push *b1* *agents*)
(setf (recipientslist *a1*) *agents*)
(setf (recipientslist *a2*) *agents*)

As with any other FSM agent, one needs to define the filter, initialization,
and preprocessor methods:

(defmethod observe ((a TICKBARGENERATOR) (e MARKETUPDATE))
(and
(equal (MKT a) (security e))
(not (equal (type-of e) ’BAR))))

(defmethod initialize ((a TICKBARGENERATOR))
(with-slots (MKT N states name) a
(when (null states)
(push :EMIT states)
(setf name (concatenate ’string

"TICKBARGENERATOR_"
(format NIL "˜A_˜A" MKT N))))))

Data Representation Techniques 95

(defmethod preprocess ((a TICKBARGENERATOR) (e MARKETUPDATE))
(with-slots (COUNTER BUFFER positions) a

(push 0 positions)
(setf COUNTER (length BUFFER))))

In this case the agent is not a trading agent and hence the positions
list only contains zeros. Also as the agent emits the bars to the *events-
queue* it should not observe any bars by definition.

The FSM representation is very simple and contains only 2 states, :CALC
that creates the bar from the stream and :EMIT when it emits it to the
queue:

(defmethod setfsm ((a TICKBARGENERATOR))

(with-slots (MKT N COUNTER BUFFER OP HI LO CL states currentstate
revalprices transitions positions name) a

(setf currentstate (first states))
(setf transitions (list

(make-instance

’TRANSITION
:initialstate :CALC

:finalstate :CALC
:sensor #’price

:predicate #’(lambda (p)

(< COUNTER N))
:actuator #’(lambda (p)

(setf CL p)
(setf HI (max HI p))

(setf LO (min LO p))

(push p BUFFER)
(format T

"˜S CALC->CALC ˜%"
name)))

(make-instance
’TRANSITION

:initialstate :CALC

:finalstate :EMIT
:sensor #’price

:predicate #’(lambda (p)
(equal COUNTER N))

:actuator #’(lambda (p)

(emit a (make-instance
’TICKBAR

:timestamp (first
(timestamps a))

:security MKT

96 STRATEGY DESIGN AND TESTING

:value (list OP HI LO

CL)
:numticks N))

(setf BUFFER NIL)

(format T
"˜S CALC->EMIT ˜%"

name)))
(make-instance

’TRANSITION

:initialstate :EMIT
:finalstate :CALC

:sensor #’price
:predicate #’(lambda (p)

T)

:actuator #’(lambda (p)
(push p BUFFER)

(setf OP p)
(setf HI p)

(setf LO p)
(setf CL p)

(format T

"˜S EMIT->CALC ˜%"
name)))

(make-instance
’TRANSITION

:initialstate :EMIT

:finalstate :EMIT
:sensor #’price

:predicate #’(lambda (p)
NIL)

:actuator #’(lambda (p)

NIL))))))

Finally, there is no need for a postprocessor. The other agents in the
agents list would be able to observe the emitted bar as soon as the last
relevant PRC event is processed by the bar generator and emitted on the
events queue.

6.4.2 Sl ic ing Price into Boxes

A useful and complementary compression technique focuses solely on the
price dimension. One starts with a price or return scale B and the current
price P(0). The intuitive idea is as follows: Whenever the market is in an
uptrend and does not reverse by more than B from its local high, a series

Data Representation Techniques 97

of ascending boxes of height B are drawn on top of each other. When the
market finally reverses by more than B from its top, a new set of descending
boxes is drawn one notch to the right. Figure 6.6 gives the FSM representa-
tion for the box chart agent and Figure 6.7 the resulting chart example:

Box charts remove the time dimension (be it clock or event time) because
each box represents a state of the market where no opposite move occurs
relative to the previous trend state (as measured by the box size, i.e., price
scale B). The market can stay a long time or a little time in that state. The
box charts are useful compression techniques to automate the recognition
of chart patterns as we will see in a subsequent chapter.

The size B of the box dictates the price scale of the patterns that appear
from such a compression and also, indirectly, their time scale. The relation-
ship between the price and time scales is a function of volatility that varies
in time. To produce more consistent price-time scale relationships one can
adapt the box size to volatility V. A linear scaling Bi = αVi−1 is the sim-
plest example where the next box size is chosen as a function of the average
volatility that occured while the market was in the previous box, series of
boxes, or a fixed time period.

6.4.3 Market Distr ibut ions

Another interesting compression technique is the price distribution over a
time period. Namely, one divides the price scale into intervals of length B
and fills a horizontal bar between each division as a function of the frequency
of occurence of the price in that interval during the time period. Usually the
time over which a distribution is accumulated is a trading day.

Figure 6.8 presents the time series of daily price distributions and shows
the occurence of unimodal and bimodal daily price distributions. Bimodal
distributions occur when news moves the market from one level to another
around which the price then oscillates. Using the distributions can be useful
for certain intraday mean-reversion models and for some algorithmic exe-
cution applications.

6.5 REPRESENTATION

Once data has been sliced and diced by appropriate sampling and compres-
sion, different representation techniques can be applied. Representation can
be seen as a coding technique and is different for data fed to humans or to
machines.

FI
GU

RE
6.

6
B

ox
C

ha
rt

Ps
eu

do
co

de

98

Data Representation Techniques 99

1020
1040
1060
1080
1100
1120
1140
1160
1180

O
O
O
O
O
O
O
O

O
O

O
O
O
O

O O

O

O
O
O
O
O
O
O O

O
O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O

O
O
O
O

O
O
O
O
O
O
O
O

O
O
O

O
O

O
O
O
O

O
O
O

O
O
O
O
O
O
O

X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X X

X
X
X
X

X X
X

X
X
X
X
X
X

X
X
X

X
X
X
X

X
X
X

O
O
O

X
X

X
X

X
X
X
X
X
X

X
X
X
X

X
X
X
X
X

X
X

X
X
X
X
X

X
X
X

X
X
X
X
X
X
X
X
X

1200
1220
1240
1260
1280
1300
1320
1340
1360
1380
1400
1420
1440
1460
1480
1500
1520
1540
1560
1580
1600
1620
1640
1660
1680
1700
1720
1740
1760

F IGURE 6.7 Box Chart Example

6.5.1 Charts and Technica l Analys is

Most commonly, representation is of graphical nature and is designed to help
the human trader recognize patterns visually. All the charts shown above are
compressed sampled data represented in a particular way as a time series.

The most important feature of a graphically represented time series is
the memory that is embedded in it. The human eye is very well trained to

100 STRATEGY DESIGN AND TESTING

A
A
A A
B
B

B
B

BB
C C C

C
C

D

D
D
D

D

740
735
730
725
720
715
710
705
700
695
690

F IGURE 6.8 Market Distribution Chart Example

recognize patterns in pictures. Time series are particular pictures that repre-
sent an unfolding history. Part of the game is, given such a history sample, to
predict the next set of events. This is the central focus of technical analysis.

There is a whole plethora of market patterns that have varying predic-
tive power as to the future evolution of the price action (see Bulkowski, The
Encyclopedia of Chart Patterns, 2005). The patterns that have proven to
have superior predictive power and are amenable to coding efficiently are
(1) linear trend channels, (2) breakout from volatility compression (triangles
and pennants), (3) breakout or deceleration around support and resistance

0

M
ar-

08

M
ay

-0
8

Ju
l-0

8

Sep
-0

8

Nov
-0

8

M
ar-

09

M
ay

-0
9

Ju
l-0

9

Sep
-0

9

Nov
-0

9

Ja
n-

09

M
ar-

10

M
ay

-1
0

Ju
l-1

0

Sep
-1

0

Nov
-1

0

Ja
n-

10

M
ar-

11

M
ay

-11
Ju

l-1
1

Sep
-11

Nov
-11

Ja
n-

11

M
ar-

12

M
ay

-1
2

Ju
l-1

2

Sep
-1

2

Nov
-1

2

Ja
n-

12

10

20

30

40

50

60

F IGURE 6.9 Examples of Volatility Compression Patterns

Data Representation Techniques 101

25

Ja
n-

11

Fe
b-

11

Fe
b-

11

Fe
b-

11

Fe
b-

11

M
ar-

11

M
ar-

11

M
ar-

11

M
ar-

11

Apr-
11

Apr-
11

Apr-
11

Apr-
11

M
ay

-11

30

35

40

45

50

F IGURE 6.10 Examples of Linear Patterns

(including double tops and bottoms, head and shoulders), and (4) trend
change via breaking linear trend channels.

The examples given in Figure 6.9 and in Figure 6.10 show several bar
and candle charts in time and event sampling that exhibit some common
behavioral set up patterns and subsequent market activity. Note that when
looking at longer-term charts with large price moves it is more convenient to
use a logarithmic scale, as shown in Figure 6.11. The markets tend to move
in return space rather than price space at those larger scales and trends that
appear nonlinear (exponentially accelerating) on a linear scale become linear
on a logarithmic scale.

6.5.2 Translat ing Patterns into Symbols

Some chart patterns can be recognized algorithmically (examples of code
are provided in the next chapter). This opens the door to study whether
the occurence of patterns is not random but presents certain statistical
rules. One can almost hear the phrase used by some experienced traders:
“Hear the market speak.” To test such serial correlation one can encode
each recognized pattern into a symbol (a letter for example) and study the

102 STRATEGY DESIGN AND TESTING

10

M
ar

-0
3

F
eb

-0
7

Ja
n-

11
D

ec
-1

4
N

ov
-1

8
O

ct
-2

2
S

ep
-2

6
A

ug
-3

0
Ju

l-3
4

Ju
n-

38
M

ay
-4

2
A

pr
-4

6
M

ar
-5

0
F

eb
-5

4
Ja

n-
58

D
ec

-6
1

N
ov

-6
5

Ju
l-8

1
Ju

n-
85

M
ay

-8
9

A
pr

-9
3

M
ar

-9
7

F
eb

-0
1

Ja
n-

05
D

ec
-0

8
N

ov
-1

2

O
ct

-6
9

S
ep

-7
3

A
ug

-7
7

100

1000

10000

100000

F IGURE 6.11 Example of Trend Channel in Log Scale

statistics of words that are thus generated by the time series of patterns.
One can also test for robustness of such analysis by running the test on
different markets at different time and event scales.

Figure 6.12 is an example that illustrates the repeated occurence of the
following most common pattern:

(Volatility Contraction) → (Trend) → (Volatility Expansion) → · · ·
· · · → (Range) → (Volatility Contraction) → · · ·

6.5.3 Translat ing News into Numbers

The modern world is awash with news that hits us from all sides: TV, fi-
nancial news services such as Bloomberg and Reuters, the Internet, and so
on. It is impossible to absorb all this data without some filtering. With the

Data Representation Techniques 103

0

R

R
R

R R

R R
R

C

C

C

T
T

T

T

E

E

T
T

T T

10

20

30

40

50

60

M
ar-

08

M
ay

-0
8

Ju
l-0

8

Sep
-0

8

Nov
-0

8

M
ar-

09

M
ay

-0
9

Ju
l-0

9

Sep
-0

9

Nov
-0

9

Ja
n-

09

M
ar-

10

M
ay

-1
0

Ju
l-1

0

Sep
-1

0

Nov
-1

0

Ja
n-

10

M
ar-

11

M
ay

-11
Ju

l-1
1

Sep
-11

Nov
-11

Ja
n-

11

M
ar-

12

M
ay

-1
2

Ju
l-1

2

Sep
-1

2

Nov
-1

2

Ja
n-

12

F IGURE 6.12 Contraction-Trend-Expansion-Range Pattern

advent of the streaming news services it has become possible to automati-
cally process that data using language recognition techniques. News pieces
are events of a very different nature from prices—they are semantic in na-
ture and communicated to the world in a symbolic language rather than in
numeric format.

Language recognition is an active area of research in artificial intelli-
gence. It is a difficult problem because syntax does not imply semantics and
phrases usually cannot be taken out of context. The field touches on the
most subtle areas of framing and building context (i.e., basic understanding)
through learning. Most of computing is performed on numeric problems,
and symbolic and semantic problems have always been harder to solve on
the prevailing computing architecture. Nontheless languages like LISP (used
here) and Prolog have been specifically developed to deal with symbolic
problems and the most powerful pattern-matchers and context generators
are written in them.

For trading, the most useful understanding of a piece of news is whether
the information embedded in it is going to have a positive or negative im-
pact on the price of a security. Some news affects particular securities (like
corporate announcements for a stock) and some news affects the market as
a whole (like unexpected monetary policy changes). Hence one needs to be
able to correlate a semantic datum with a numeric one.

Some reasonably simple techniques have been developed that compute
a numerical sentiment index for a given stock. Those techniques process in
real time all the news pertaining to that stock and some general news that
may affect the whole market. The output of the process for each piece of

104 STRATEGY DESIGN AND TESTING

news is a number that measures the positiveness of the news for that stock.
The sentiment index is then computed by adding (integrating) these numbers
over time or over a rolling time window.

It is not clear yet how effective such techniques are in systematic trad-
ing and research is in progress in this field. There is a prevailing feeling that
prices tend to move faster and anticipate news generally. When totally unex-
pected events occur (shocks to sentiment about a particular stock or to the
market as a whole), liquidity dries up very quickly and the reaction to prices
can be so violent that one has the impression that the price moves ahead of
the news.

6.5.4 Psychology of Data and Alerts

The representation of data has two goals—informative and psychological—
and so far I have discussed the informative aspect. The psychological goal
is to help traders anticipate better and react to market moves faster. As was
pointed out in the Introduction, trading cannot be seen outside of a risk
management context. Any representation of data that sharpens the mind
with regard to risk management is therefore useful for human traders.

In an open outcry context, the traders could sense the danger and oppor-
tunity by the noise level of the pit and the facial expressions of their fellows.
In an electronic context that information is not available, but there are ways
to substitute it, at least partially.

For example, the increase in market volume and velocity of transactions
can be represented graphically. Also, the transactions can be sent to the loud-
speaker by a voice synthetizer that can simulate nervousness via the speed of
arrival of trades combined with the increase in volume of orders on the book.

Of course, such gadgets may be detrimental to the trader who, instead of
keeping a clear head, could be drawn into the market hysteria and overreact.
Nevertheless, they can present an advantage by helping a human trader to
not be continuously glued to the screen.

One major feature of systematic trading is to remove the psychological
element from the trading decision. This does not mean that the psychology
of the market should not be an input into the decision making—in fact, it is
exactly what makes the various tradable patterns reoccur. Hence measuring
such psychological changes is useful.

CHAPTER 7
Basic Trading Strategies

T rading strategies can be classified into two broad categories: directional
and contrarian. The category of directional strategies benefits from mar-

kets where large moves relative to noise occur regularly. On the other hand,
the contrarian strategies benefit from markets where there is a predominance
of noise and lack of serial correlation.

The trend-following, acceleration, and breakout strategies can be classi-
fied as directional whereas the mean-reversion and market-making strategies
are contrarian.

Directional strategies tend to have a low percentage of profitable trades
but a high win-to-loss ratio and the distribution of their trade returns has a
fat right tail. Contrarian strategies tend to have a high percentage of prof-
itable trades but a low win-to-loss ratio and the distribution of their trade
returns has a fat left tail.

7.1 TREND-FOLLOWING

Trend-following strategies are the most popular and widely used by the sys-
tematic community. As the old investment adage goes, “The trend is your
friend!” Trends have been friends to the CTA community for decades and
this is the major reason behind the continous good performance of that in-
vestment style.

Ironically, the implicit acceptance by the marginal investor of the teach-
ings of the efficient markets school has been of great help to the trend-
followers over the past few decades. Indeed, the less people believe in trends,
the easier it is to exploit them, as most people live in denial of their existence.
The Introduction touched on why major and minor trends do and should

105

106 STRATEGY DESIGN AND TESTING

occur in the market when one understands it from the point of view of a
complex adaptive system.

How does one capture trends? There are various strategies that are ap-
propriate for the task.

7.1.1 Channel Breakout

Channel breakout strategies are simple and robust. The market is deemed
to be in an uptrend if today’s price is higher than the highest price over
the last N observations, and symmetrically for a downtrend. This indicator
is called the Donchian channel after its popularizer, Richard Donchian. A
simple strategy would buy on the break of the upper channel and short-sell
on the break of the lower channel thus always being in the market.

Variations on the strategy can be numerous. For example, the lookback
N can be an increasing function of noise. The logic behind that is that higher
nondirectional noise yields higher whipsaw potential and the larger the look-
back, the larger the spread between the upper and lower channel become,
hence the probability of a whipsaw is reduced.

Another example is a strategy based on two channels, a slow and a fast
one. The slow channel is used for entries and the fast one for exits. This
strategy allows for neutral states and no positions as long as the market
price action is confined within the slow channel. This improvement helps
capture a larger proportion of the amplitude of clean trends, that is, trends
that have a reasonably stable nondirectional noise level. The combination of
those two intuitive ideas is presented here.

Figure 7.1 shows the FSM and the representative statistics of the strategy
for an individual market and a portfolio.

7.1.2 Moving Averages

There are various ways to detect trends with moving averages. The moving
average is a rolling filter and uptrends are detected when either the price is
above the moving average or when the moving average’s slope is positive.

There are various definitions of moving averages. The simple moving
average is defined by

SMA(N, i) =
∑N−1

j=0 P(i − j)

N

An exponential moving average is defined recursively by

EMA(α, 0) = P(0) EMA(α, i) = αP(i) + (1 − α)EMA(α, i − 1)

Basic Trading Strategies 107

CBTR Strategy: Channel Breakout Trend Following

Init

Init

Long

Long

StopFromLong

StopFromLong

StopFromShortProfitFromLong

ProfitFromLong

ProfitFromShort

StopFromShort

ProfitFromShort

Short

Short

L is the Slow Highest High and S is the Slow Lowest Low channelsPFS<S<L<PFL
S<SFS
SFL<L

]S,L[

]PFS,S]]PFS,S]

]-INF,PFS]]-INF,PFS]

[L,PFL[]SFL,PFL[[L,PFL[[L,PFL[[L,PFL[[L,PFL[

]S,L[]S,SFL]NIL

NIL

NIL NIL NIL NIL
NIL

NIL

NIL

NIL

NIL

NIL

NIL
NIL

NIL

NILNILNIL

[PFL,INF[[PFL,INF[

]PFS,S]]PFS,S]]PFS,SFS[]PFS,S]
]S,L[[SFS,L[

]-INF,PFS]]-INF,PFS]]-INF,PFS]]-INF,PFS]]-INF,L[

[PFL,INF[[PFL,INF[[PFL,INF[[PFL,INF[]S,INF[

SFL is the Fast Lowest Low and SFS is the Fast Highest High channels
PFL, PFS are constants defined at the time of a transition from Init, Stop, Profit to Long or to Short

F IGURE 7.1 Channel Breakout Trend-Following Strategy

Finally an adaptive moving average AMA(α(i), i) is an EMA with the α(i)
a function of time, price, volatility, or other factors, and is the most useful
and general concept.

From a filter-theoretic perspective, an SMA has finite memory whereas
EMA and AMA have infinite memory (that decays exponentially in time).
All moving averages are low pass band filters that attenuate any noise above

108 STRATEGY DESIGN AND TESTING

a certain frequency. For example, for a pure sine wave P(ω, t) = Asin(ωt)
the N-period SMA(N, i) is identically zero when ω = 2π/T, that is, when
the sinusoid’s period is equal to the lookback of the moving average. In
fact, SMA(N, i) significantly attenuates any signal P(ω, t) with ω > π/T.
Figure 7.2 shows the attenuation function of a sinusoidal signal of a given
frequency by simple and exponential moving averages of N = 10 and α =
2/11. The attenuation function is shown on a log-scale and represents the
resulting relative amplitude of the filtered versus the original signal.

From a practical standpoint, an SMA(N, i) is very similar to an
EMA(2/(N + 1), i) in the sense that both have approximately a lag of λ =
(N − 1)/2. The lag means the following: Let us assume that the price P is
constant until time tjump then jumps and stays at Q. Both moving averages
will move from value P to value Q and will be close to Q at time tjump + λ

as Figure 7.3 shows.
Given that an SMA can be well approximated by a constant-α AMA,

it makes a lot of sense to adopt the AMA as the principal representative of
this family of indicators. Not only it is potentially flexible in the definition
of its effective lookback but it is also recursive. The ability to compute indi-
cators recursively is a very big positive in latency-sensitive applications like
high-frequency trading and market-making, and this point will be covered in
Part Four.

From the definition of the AMA, it is easy to derive that �AMA > 0 if
P(i) > AMA(i-1). This means that the position of the price relative to an
AMA dictates its slope and provides a way to determine whether the market
is in an uptrend or a downtrend.

Moving averages generally provide a more timely measure of a begin-
ning or end of a trend relative to the channels discussed in the previous
section.1 However, the main issue with moving averages is a potential for
whipsaw during periods of market congestion, something the channels are
less prone to. There are various ways to address it but the principal idea is to
perform a calculation of some signal-to-noise ratio (SNR) and only react to
trend signals when that ratio is above a certain threshold. There is also room
to directly embed that calculation into the AMA so as to vary its sensitivity
to price according to the noise level.

As per its name, the two inputs to SNR are calculations of signal and
of noise. Signal in the trend-following case will represent the strength of the

1This observation is purely based on human visual intuition. This book does not de-
fine a trend other than by a calculation of relevant indicators, so from that perspective
a model sees a trend only through the prism of those indicators and not literally, like
humans would.

Basic Trading Strategies 109

Attenuation of Sinusoid by SMA(10)

A
tt

en
u

at
io

n
 F

ac
to

r

Wave Period

Normalized Nyquist Frequency (2/Period)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

A
tt

en
u

at
io

n
 F

ac
to

r

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2 7 12 17 22 27

F IGURE 7.2 Frequency Attenuation by SMA(10)

trend as computed by the slope of the AMA. Noise can be either a moving
average of volatility or of counter-directional volatility as defined below.

AMATR The first model described here uses a symmetric channel around an
exponential moving average

H(t) = (1 + β)EMA(α, t) L(t) = (1 − β)EMA(α, t)

110 STRATEGY DESIGN AND TESTING

1.2

1

0.8

0.6

0.4

0.2

0
–1 1

Signal SMA(5) Response EMA(1/5) Response

3 5 7 9 11 13 15

F IGURE 7.3 SMA and EMA Response to a Step Function

This indicator allows for the definition of a trend with sensitivity α and
width β. One defines the market to be in an uptrend at time t if P(t) >

H(t) and in a downtrend if P(t) < L(t). The model respects the trends
so defined.

Figure 7.4 shows the pseudocode, the FSM representation, and the rep-
resentative statistics of the strategy for an individual market and a portfolio.

AMATR2 The second model uses the power of adaptive moving averages
to enhance the accuracy of entries and exits as defined by the above simple

AMATR1 Strategy: Adaptive Moving Average Trend Following

Init

Init

Long

Long

StopFromLong

StopFromLong

StopFromShortProfitFromLong

ProfitFromLong

ProfitFromShort

StopFromShort

ProfitFromShort

Short

Short

L is the H(t) channel and S is the L(t) channel defined in the text

Stops and Profits states are never attained
S<L

]S,L[

]PFS,S]]PFS,S]

[L,PFL[[L,PFL[]SFL,PFL[

NIL NIL NIL

NIL

NIL

NIL

NIL NIL

NIL

NIL

NIL

NIL NIL NIL

NIL

NIL

NIL

NIL NIL

NIL

NIL

NIL

NIL NIL NIL NIL NIL NIL NIL

NIL NIL NIL NIL NIL NIL NIL

NIL NIL NIL NIL NIL NIL

]PFS,SFS[

F IGURE 7.4 Adaptive Moving Average Trend-Following Strategy

Basic Trading Strategies 111

model. The intuition about these enhancements comes from the folowing
two observations.

Suppose the market is experiencing a directional move that becomes pro-
gressively cleaner, meaning that the proportion of counter-directional volatil-
ity is decreasing (this is usually the case in short squeezes or asset delever-
aging trades). In this case one would benefit from increasing the sensitivity
of the AMA and decreasing the channel width in order to track the price
move more closely for a profit-taking trade. Usually these type of moves end
in tears, in the sense that they preclude large counter-moves, hence a higher
degree of vigilance and risk management is warranted.

Suppose, on the contrary, that the market is experiencing a directional
move that is becoming progressively messier, meaning that the proportion
of counter-directional volatility is increasing (this is usually the case in trend
continuations or potential trend reversals that are not associated with blow-
out tops or bottoms). In this case, one would benefit from decreasing the
sensitivity of the AMA while increasing the channel width in order to reduce
the probability of a whipsaw once the trade is exited.

To formalize, define the upside and downside deviations as the same
sensitivity moving averages of relative price appreciations and depreciations
from one observation to another

D+(0) = 0 D+(t) = α(t − 1)max
(

P(t) − P(t − 1)
P(t − 1)

, 0
)

+ (1 − α(t − 1))D+(t − 1)

D−(0) = 0 D−(t) = −α(t − 1)min
(

P(t) − P(t − 1)
P(t − 1)

, 0
)

+ (1 − α(t − 1))D−(t − 1)

These deviations represent the noise element in the SNR, but conditional
on the trend state. The signal is represented by the strength of the trend as
computed by the absolute value of the AMA slope.

The AMA is computed by

AMA(0) = P(0) AMA(t) = α(t − 1)P(t) + (1 − α(t − 1))AMA(t − 1)

and the channels

H(t) = (1 + βH(t − 1))AMA(t) L(t) = (1 − βL(t − 1))AMA(t)

112 STRATEGY DESIGN AND TESTING

with now variable functions for sensitivity α(t). For a scale constant β, the
upper and lower channels are defined to be

βH(t) = βD− βL(t) = βD+

The upper channel’s width to the AMA is proportional to the downside de-
viation because the higher the deviation the higher probability that an up-
move will abort. Vice versa for the lower channel. The signal-to-noise ratio
calculations are state dependent:

SNR(t) = (P(t) − AMA(t − 1))/AMA(t − 1)
βD−(t)

I f P(t) > H(t)

SNR(t) = −(P(t) − AMA(t − 1))/AMA(t − 1)
βD−(t)

I f P(t) < L(t)

SNR(t) = 0 otherwise.

Finally the overall sensitivity α(t) is determined via the following func-
tion of SNR(t):

α(t) = αmin + (αmax − αmin) ∗ Arctan(γ SNR(t))

The trick is not only for the moving average and the channel to be adap-
tive to the change of the signal-to-noise ratio but to make the SNR depen-
dent on the state of the model. This means that once the strategy exits after
a protracted up-move (and a buy signal), the channel parameters for the po-
tential subsequent short entry will be wider, thus lowering the probability
of whipsaw if the uptrend were to continue. When a down-move starts, the
lower channel will adapt closer to the price action, thus increasing the prob-
ability of a short entry proportional to the cleanliness of the down-move.
The FSM and representative statistics for the AMATR2 strategy is shown
in Figure 7.5.

7.1.3 Swing Breakout

This strategy is based on the observation that markets have trends, trends
have certain widths around them, and when the market breaks such a trend
channel, the trend usually changes in the direction of the break.

The difficulty is that the volatility tends to persist, so the scale of those
trend channels tends to change. Take α and β, two scale parameters. They
represent, respectively, the expected width and price extension of a move, in
rolling volatility terms and as percentage of price levels.

Basic Trading Strategies 113

AMATR2 Strategy: Adaptive Moving Average Trend Following

Init

Init

Long

Long

StopFromLong

StopFromLong

StopFromShortProfitFromLong

ProfitFromLong

ProfitFromShort

StopFromShort

ProfitFromShort

Short

Short

L is the H(t) channel and S is the L(t) channel defined in the text

SFS, SFL can be introduced as volatility spreads to the AMA

PFL, PFS can be constants defined at the time of a transition from Init, Stop, Profit to Long or to Short

PFS<S<L<PFL
S<SFS

SFL < L

]S,L[

]PFS,S]]PFS,S]

[L,PFL[[L,PFL[[L,PFL[]SFL,PFL[

NIL NIL

NIL

NIL NIL NIL

[L,PFL[[L,PFL[

]PFS,S]

[PFL,INF[[PFL,INF[[PFL,INF[[PFL,INF[[PFL,INF[[PFL,INF[]S,INF[

NIL

NIL NIL NILNIL [SFS,L[

]S,L[]S,SFL[

]S,L[NIL

]-INF,L[]-INF,PFS]]-INF,PFS]]-INF,PFS]]-INF,PFS]]-INF,PFS]]-INF,PFS]

NIL NIL NIL NIL NIL NIL

]PFS,SFS[]PFS,S]]PFS,S]

F IGURE 7.5 Adaptive Moving Average Trend-Following Strategy 2

At time 0, the strategy starts in the INITVOL state and first col-
lects data for an interval of time T to determine the rolling volatility pa-
rameter VT(T). Once done, it moves to the I NIT state and sets up a
symmetric channel

S = P(T)/(1 + V(T)α/2) L = P(T) ∗ (1 + V(T)α/2).

114 STRATEGY DESIGN AND TESTING

Let us assume that at some point t0 > T, the symmetric channel is
breached on the upside, that is, P(t0) > L. Then, the state of the model
changes to LONG. The model will be now seeking to either take profit at

P F L = P(t0) ∗ (1 + VT(t0)β)

or to reverse position to a short at S.
As the price P(t) rises, S(t) ratchets up accordingly:

S(t) = max(P(τ)|τ ∈ [t0, t])/(1 + VT(t0)α)

If the model does not take profit and at some point t1, P(t1) < S(t1) then the
model reverses its position and goes into the SHORT state.

Then it will seek either to take profits on the shorts or go long. The long
entry level becomes

L(t) = min(P(τ)|τ ∈ [t1, t]) ∗ (1 + VT(t1)α)

and the profit from short

PFS = P(t1)/(1 + VT(t1)β)

Suppose, instead, that the model does take profits when it is in the
LONG state, that is, the price P(t1) > P F L. The model goes flat and moves
back to the I NIT state, by resetting a symmetric L, S channel around P(t1).

It is important to note two elements here. First, any allusion to time
should be interpreted as either clock or event time. The strategy can be set
up for both. Second, this strategy is actually independent of any measure of
time, as long as the scaling VT(t) can be computed. In a sense, the strategy
is akin to trading up and down moves in a box chart, where the size of the
box resets at each swing according to VT.

Figure 7.6 shows the FSM representation and the representative statis-
tics of the strategy for an individual market and a portfolio.

7.2 ACCELERATION

Acceleration patterns are relatively rare and can be violent. They are usually
driven by forced stop-outs and feed on themselves. They were explained in
the first chapter as a sudden switch from a cooperative accumulation to a
noncooperative divestment game.

Basic Trading Strategies 115

SWBR Strategy: Swing Breakout

Init

Init

Long

Long

StopFromLong

StopFromLong

StopFromShortProfitFromLong

ProfitFromLong

ProfitFromShort

StopFromShort

ProfitFromShort

Short

Short

L and S are defined in the text

Stop states are never attained

PFL, PFS are constants defined at the time of a transition from Init, Stop, Profit to Long or to Short

PFS<S<L<PFL

]S,L[

]PFS,S]]PFS,S]

[L,PFL[[L,PFL[NIL]SFL,PFL[

NIL NIL

NIL

NIL NIL

[L,PFL[

[PFL,INF[[PFL,INF[NIL[PFL,INF[[PFL,INF[]S,INF[

NIL

NIL NIL NILNIL NIL

NILNIL

NIL

]-INF,L[]-INF,PFS]]-INF,PFS]NIL]-INF,PFS]]-INF,PFS]

NIL NIL NIL NIL NIL

]PFS,SFS[]PFS,S]NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

F IGURE 7.6 Swing Breakout Strategy

7.2.1 Trend Asymmetry

This game-changing dynamic explains trend asymmetry in asset markets.
Equities, high yield bonds and currencies, and other risky assets tend to fall
much faster than they rise. Investment grade bonds tend to do the reverse,
and so do commodities that are prone to shortages.

116 STRATEGY DESIGN AND TESTING

Hence those asymmetries in behavior ought to be taken into account
during strategy building. One should not, in general, expect that parameters
should be the same for, say, a long-only and a short-only trend-following
strategy, when estimated in clock time.

However, the acceleration events are less pronounced when seen in event
time, unless they contain gaps due to liquidity shortages in the market. Hence
there is an avenue of trading the acceleration patterns thanks to this asym-
metry of time versus event representation.

7.2.2 The Shadow Index

For nonlinear trends in time and areas of high probability, how are reversals
detected? To gain intuition, first consider the difference, when looking at a
bar chart, of a linear trend versus a congestion: One observes that, on the
same time interval, there is a divergence between the degree of overlap of
bars, as seen projected onto the price axis (as if a light was shining on them
from the right). For a trending market, that overlap, or shadow, is lighter
than for a congested market. This gives rise to the shadow index

SI(1, N) = 2
∑

i< j Overlap(Bari , Bar j)

N(N − 1)(HH − LL)

Here if a bar is represented by the [L,H] interval, Overlap(Bari , Bar j) =
max(min(Hi , Hj) − max(Li , Lj), 0) is the length of the intersection of the
two intervals, HH is the highest high, and LL is the lowest low. Figure 7.7
shows a representative graph of the Shadow Index under the price bar chart.

When the market is in a strong gappy uptrend, the shadow index is zero.
When the market is in a complete stall, the shadow index is 1. Otherwise it
mean-reverts between those two extremes as trends come and go.

However, to study accelerations in clock time, one needs to filter out
linear trends. For this one can take a moving average Si = SMA(Pivot, N)(i)
of the bar pivot prices and look at the de-trended shadow index:

DSI(1, N) = 2
∑

i< j Overlap(Bar ′
i , Bar ′

j)

N(N − 1)(HH′ − LL′)

where

Bar ′
i = (O′, H′, L′, C′) = (Oi − Si , Hi − Si , Li − Si , Ci − Si)

and HH′ = max(H′) and LL′ = min(L′).

Basic Trading Strategies 117

1.46

1.45

1.44

1.43

1.42

1.41

1.4
1 21 41 51 81

1 21 41 51 81

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

F IGURE 7.7 Shadow Index

Now, when the market is in a linear trend or a congestion, the DSI will
be high. On the other hand, it will be low when the market accelerates away
from a linear trend. So a pattern of mean-reversion exists for the DSI but
the times when it is low are rare, because so are accelerations.

7.2.3 Trading Accelerat ion

Accelerating moves usually end in tears. Someone gets stopped out at the
worst possible price, and then the market mean-reverts. Regret sets in, and

118 STRATEGY DESIGN AND TESTING

players that got burned will not return to the market for a some time, in
either direction. Accelerations tend to drain liquidity for a some interval
and a directionless market sets in for a while after the fallout.

Latching on to an accelerating move is similar to latching on to a trend
(and in event time, pretty much the same). However, one needs to know
when to get out, and this is where the shadow index can play a role.

The de-trended shadow index gives an indicator that an accelerating
move is taking place, and the closer it is to zero, the closer is the potential
violent reversal.

The strategy ACMR, uses both event bars and time bars. It uses time
bars to compute the DSI. It also calculates an AMA on event bar pivots,
to gauge the finer-grained momentum of the price, when the DSI is under a
certain threshold K1. When the DSI falls under another threshold K2 < KI ,
and the event-driven AMA detects a persistent turn away from the accel-
erating move, the strategy initiates a position in the direction of the turn
(counter-trades the acceleration).

As the market is expected to be whippy during the relaxation of the
tension that the accelerating move has created in the market, the position
is then risk-managed on a channel strategy. The stop-loss is proportional to
the extreme point of the accelerating move. The target is a proportion of
the move from that extreme (e.g., around a Fibonacci level). The strategy is
also exited on a time-stop if profit has not been taken and the stop-loss was
not elected.

Figure 7.8 shows the FSM representation and the representative statis-
tics of the strategy for an individual market and a portfolio.

7.3 MEAN-REVERSION

7.3.1 Swing Reversal

This strategy is the mean-reversion counterpart to the SWBR encountered
above. The idea is that even though trends occur at certain time and price
scales, mean-reversion patterns occur at lower time and price scales. Taking
the analogy with box charts when discussing SWBR, this strategy aims at
trading in the box rather than trading breakouts from a box.

The α and β scale parameters now represent, respectively, the expected
width of the mean-reversion box and maximal allowed breakout from the
box (stop-loss level). They are again scaling the rolling volatility and the
percentage of prices.

At time 0, the strategy starts in the I NITVOL state and first collects
data for an interval of time T to determine the rolling volatility parameter

Basic Trading Strategies 119

ACMR Strategy: Acceleration Relaxation Mean Reversion (Long-only version)
DSI, AMA, SLF and PFL are defined in the text

TD is Time in Trade and TMAX is the time stop

SFL<L<PFL

P>AMA

P< AMA P>= AMA

K1>K2

DSI>K2 DSI<=K2

DSI<=K1

TD<TMAX TD<TMAX TD<TMAX
TD>=TMAX

SFL<P<PFL P<SFL P<PFL

DSI<=K1
DSI>K1

Init

SetUpLong

SetupLong

StopFromLong

StopFromLong

ProfitFromLong

ProfitFromLong

TimeStop

TimeStop

T

T

T

Long

Long

NIL NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NILNIL

NIL

NIL

NIL

NIL

Init

Short-only version is defined in a similar way

F IGURE 7.8 Acceleration Relaxation Strategy

120 STRATEGY DESIGN AND TESTING

VT(T), Once done, it moves to the I NIT state and sets up a symmetric
channel

L = P(T)/(1 + V(T)α/2) S = P(T) ∗ (1 + V(T)α/2)

Let us assume that at some point t0 > T, the symmetric channel is
breached on the downside, that is, P(t0) < L. Then, the state of the model
changes to LONG. The model will be now seeking to either stop-loss at

SFL = P(t0)/(1 + VT(t0)β)

or to reverse position to a short at S.
As the price P(t) falls, S(t) ratchets down accordingly:

S(t) = min(P(τ)|τ ∈ [t0, t]) ∗ (1 + VT(t0)α)

If the model does not stop out and at some point t1, P(t1) > S(t1) then the
model reverses its position and goes into the SHORT state.

Then it will seek either to stop-loss from the shorts or go long. The long
entry level becomes

L(t) = max(P(τ)|τ ∈ [t1, t])/(1 + VT(t1)α)

and the stop from short

SFS = P(t1) ∗ (1 + VT(t1)β)

Suppose, instead, that the model does stop out when it is in the LONG
state, that is, the price P(t1) < SFL. The model goes flat and moves back to
the I NIT state, by resetting a symmetric S, L channel around P(t1).

Figure 7.9 shows the FSM representation, and the representative statis-
tics of the strategy for an individual market and a portfolio.

7.3.2 Range Project ion

The range projection model RP MR projects both the average price and the
daily range forward, so as to build a channel that is expected to intersect
tomorrow’s range. The idea is then to always buy the low channel and sell the
high channel. If the market has a steady momentum in its average price, then
the ratchet-up of the projected ranges will compensate for this momentum.

Basic Trading Strategies 121

SWMR Strategy: Swing Mean Reversion

Init

Init

Long

Long

StopFromLong

StopFromLong

StopFromShortProfitFromLong

ProfitFromLong

ProfitFromShort

StopFromShort

ProfitFromShort

Short

Short

L and S are defined in the text

Profit states are never attained

SFL, SFS are constants defined at the time of a transition from Init, Stop, Profit to Long or to Short

SFL<L<S<SFS

]L,S[

[S,SFS[[S,SFS[[S,SFS[

]SFL,L]]SFL,L]]SFL,L]NIL]SFL,PFL[

NILNILNILNILNIL

NIL

[SFS,INF[[SFS,INF[[SFS,INF[[SFS,INF[]L,INF[

NILNILNILNILNIL

]-INF,SFL]]-INF,SFL]]-INF,SFL]]-INF,SFL]]-INF,S[

NIL NIL NIL NIL

]PFS,SFS[

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

F IGURE 7.9 Swing Reversal Strategy

Suppose that one observes bars Bari in clock or event time. Then one
can calculate Si = SMA(Pivot, N)(i) the moving average of bar pivots, and
Ri = SMA(TR, N)(i) the moving average of percent ranges

TR = 2
H − L
H + L

122 STRATEGY DESIGN AND TESTING

One then defines the channel center, high, and low for the next day as

CCi+1 = Openi+1 + (Si − Si−N+1)/N

CHi+1 = CCi+1(1 + TRi/2) CLi+1 = CCi+1/(1 + TRi/2)

SFSi+1 = CCi+1

(
1 + 2

3
TRi

)
SFLi+1 = CCi+1

/ (
1 + 2

3
TRi

)

At the open of each day, limit orders are put in the market to sell at the
CHi+1 and buy at CLi+1. Stop-losses are then set up by an additional 1/6
of the expected range away, at the SFS and SFL levels. If the model is not
stopped out and has not taken profit on the opposite side of the range, it is
exited at the close of the day.

Figure 7.10 shows the FSM representation, and the representative statis-
tics of the strategy for an individual market and a portfolio.

7.4 INTRADAY PATTERNS

7.4.1 Openings

One of the historically popular strategies traded by locals is the opening
range breakout (ORB). The idea is to monitor closely the first few minutes
of an open outcry trading session and go in the direction of the breakout for
a while. The intuition comes from the fact that overnight, when the market
was closed, the information that could not be expressed or risk-managed
would be done so around the open of the new session.

In modern times however, with the 24 hour trading session in almost
all major futures there is less pent-up information for the day session. So in
those markets, it is less obvious as to what the opening means. Individual
equities and several non-U.S. futures still do not trade overnight, so in those
markets the ORB strategy may still make sense.

7.4.2 Seasonal i ty of Volat i l i ty

Throughout the 24-hour trading session, the volatility of intraday prices has
some recurring patterns. This is seen quite clearly in different FX rates where
ranges for each consecutive 5-minute interval in the trading day were sam-
pled and averaged. Figure 7.11 shows the average intraday volatility of a few
different FX rates. One notices that Asian currencies tend to be more active
during the Asian daytime, whereas the Canadian dollar is asleep then, and
wakes up in the North American morning. Some currencies, like the Euro
or the Yen, are active throughout the day but with troughs of activity, just
before Europe starts its day, then just before the United States comes in, then
finally between the U.S. close and the Asian open.

Basic Trading Strategies 123

RPMR Strategy: Range Projection Mean Reversion

Init

Init

Long

Long

StopFromLong

StopFromLong

StopFromShortProfitFromLong

ProfitFromLong

ProfitFromShort

StopFromShort

ProfitFromShort

Short

Short

L is CL(t) and S is CH(T) defined in the text

Profit states are never attained

SFL(t), SFS(t) are defined in the text

SFL<L<S<SFS

]L,S[

[S,SFS[[S,SFS[[S,SFS[

]SFL,L]]SFL,L]]SFL,L]NIL]SFL,PFL[

NILNILNILNILNIL

NIL

[SFS,INF[[SFS,INF[[SFS,INF[[SFS,INF[]L,INF[

NILNILNILNILNIL

]-INF,SFL]]-INF,SFL]]-INF,SFL]]-INF,SFL]]-INF,S[

NIL NIL NIL NIL

]PFS,SFS[

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

NIL

F IGURE 7.10 Range Projection Reversal Strategy

Hence a variation on the ORB strategy in a 24-hour market is a volatil-
ity breakout strategy that re-sets the opening range around the times when
volatility is low (if, at that day and time, the volatility is indeed low). It
then keeps positions at most until the new time zone starts, and re-sets the
ranges again.

Figure 7.12 shows the FSM representation, and the representative per-
formance of the strategy for a portfolio.

124 STRATEGY DESIGN AND TESTING

0.07%

0.06%

0.05%

0.04%

0.03%

0.02%

0.01%
12:00 AM

EURGBP USDMXN JPYUSD EURUSD USDCAD JPYKRW AUDUSD

12:00 AM2:24 AM 4:48 AM 7:12 AM 9:36 AM 2:24 PM 4:48 PM 7:12 PM 9:36 PM12:00 PM

F IGURE 7.11 Examples of Intraday Seasonality of Volatility

7.5 NEWS-DRIVEN STRATEGIES

7.5.1 Expectat ions vs. Real i ty

When an event is expected, the market tries to anticipate it and positions the
risk bearing in a way that is compatible with the expectation being realized
(central scenario). However, when reality ends up different from expecta-
tions, the markets react to adapt to the new information. This is similar
to the well-known Bayesian approach of changing probability assessments
dynamically when observing new events.

Earnings reports, non-farm payrolls, monetary policy changes, elections,
distillate inventories, to name a few, all have market impact if they come at
a significant spread from expectations.

I and Veredas [See “Macro Surprises and Short-Term Behavior in Bond
Futures” CORE 2002-37] have performed a study on the impact of various
economic number releases on the U.S. bond market. The study showed that
there is some significant impact in the first hour from certain data releases,
and that impact is proportional to the gap between the previously expected
number and the release (after adjusting for revisions).

However, it is important to point out that the severity of the impact
for the same expectational gap is a function of the current macroeconomic
context and the focus of the market on this or that particular number. The
non-farm payrolls and the CPI tend to be the most robust as far as the effect

Basic Trading Strategies 125

ORB: Opening Range Breakout Strategy

Rule1: Buy above R1, Take Profits at R2>R1
Rule2: Sell Below S1, Take Profits at S2>S1

S1<P<R1 S1<P<R1 S1<P<R1

S2<P<S1
P>R2

P>S2

MOC MOC

R1<P<R2

S2<P<S1
P>R2

P>S2

S1<P<R2

S2<P<R1
P>R2

P>S2

R1<P<R2

S2<P<S1
P>R1

P<S2

NIL

NIL

R1<P<R2

P>R2

P<S1

Init

Init

Long

Long

FlatFromLong

FlatFromLong

FlatFromShort

FlatFromShort

Short

Short

125

120

115

110

105

100

95
Dec-02 Mar-03 Jun-03 Oct-03 Jan-04 Apr-04 Aug-04 Nov-04 Feb-05

NAV of ORB model traded on 15 Futures
(Realized Statistics: Return=6%,Vol=8%)

F IGURE 7.12 Opening Range Breakout Strategy

of surprises on the short-term reaction of the bond market. But there are
times when no one cares about numbers, and the market is just powering
ahead in one direction or another.

7.5.2 Onto logy-Driven Strategies

It was alluded to in the Introduction that an increasing amount of symbolic
data coming from news agencies is being processed in real time, and is being
used for generating trading signals.

Real-time algorithms for written and spoken language recognition have
been in existence for some time, spurred by the necessity of intelligence agen-
cies to automatically deal with the explosion of information flowing from
the Internet.

126 STRATEGY DESIGN AND TESTING

Language semantic analysis is a very tricky business because of so much
aliasing (using the same words for different meanings and different phrases
for the same meanings). So the context of a discourse is very important to
grasp before attempting to do any mechanical analysis.

Some language-processing algorithms do not pretend to understand the
full semantics of a piece of news, but compute a sentiment index by basi-
cally counting positive and negative news. The interpretation is based on
pre-classifying some patterns of speech and usage of some words into cate-
gories that are robust to context (i.e., they would be considered as positive
or negative independently of the context).

These sentiment indices (and most important, the changes thereof) are
being used for individual equity trading. However, there have not been any
conclusive results one way or the other. Usually prices change before news
comes out (or at least comes out in a way that is unambiguous to under-
stand), hence price-driven strategies generally have an edge on ontology-
driven ones. In whatever context, once a news signal has been given and the
position entered, the position is managed on a pure price-driven strategy,
as one would not want to wait for our favorite TV anchor to suggest us
covering the trade.

CHAPTER 8
Architecture for Market-Making

T he transformation of the marketplace spurred by technological progress
has dramatically changed the operation of liquidity-providing activities.

Open outcry has mostly been replaced by silent matching engines at the
exchanges and the function of a specialist or local has been diluted. In
some markets, hedge funds now provide more liquidity than other mar-
ket participants. Electronic market-making has become a very profitable
game but only for businesses that have superior access to transactions or
to flow.

8.1 TRADIT IONAL MARKET-MAKING:
THE SPECIAL ISTS

Traditionally, the market-maker’s hypothesis is that its client flow is on av-
erage two-way and balanced. The market-maker maintains the order book
by aggregating client requests. One client wants to buy at 50 while the other
wants to sell at 52. As far as the market-maker is concerned, it sees 51 as
mid-price. A third client comes and needs to sell. He asks, “Where is the
market?” without showing his hand, and the market-maker replies 50.5–
51.5, ensuring he’s quoting a fair bid-ask around the mid. The sale is done at
50.5 and the market-maker now carries the stock, while posting the trade on
the tape. Next, the first client gets itchy and sees that the market had moved
his way. He asks, “Where is your best offer?” and the market-maker replies
50.75. Seeing that the price is still close enough, the client says, “Mine!” and
the market-maker sells him the stock for a 25 cent profit.

In the illustration above, the market-maker took the risk of carrying
the inventory, and got paid for it, because the clients had immediacy of ex-
ecution needs. It is a real risk, because the following situation could have

127

128 STRATEGY DESIGN AND TESTING

happened. After the first sale, suppose that the second client panics and sees
50.5 printed. He calls and asks, “Where is your best bid?!” The market-
maker replies 50.25 to which the client shouts, “Yours and cancel my 52
offer!” Now the market-maker is stitched with double inventory at an aver-
age price of 50.375. If a selling panic ensues, he is traditionally obligated to
provide an orderly market no matter what, at his own expense.

The idea is that, over time, those drawdowns are averaged out, and the
market-maker makes an average of a fraction of the bid-offer on each trade.
Hence market-makers are incentivized to trade as much as possible but need
capital behind them to survive drawdowns.

The traditional market-making model is to continuously provide liquid-
ity around a fair mid-price that the market-maker calculates as being the
weighted average of its order book entries or expected client flow. This is a
model that works for specialists, that is, businesses that have the monopoly
on dealing in one security, but may not work for other liquidity-providing
activities.

8.2 CONDIT IONAL MARKET-MAKING:
OPEN OUTCRY

The open outcry model is different from the specialist model. An open outcry
pit is a collection of locals competing for the flow that is generated outside
the pit by the clients of the exchange and internally by the locals themselves.
The order book is not explicitly seen by anyone and specific orders get com-
municated by brokers into the pit as they come from the particular clients
of that broker.

Each local behaves like a conditional specialist. Not a single local pos-
sesses the full information as to the aggregate client order book so every-
one needs to observe what other locals are doing and react accordingly. The
liquidity provision becomes more dis-intermediated and the provision of or-
derly market by one individual is replaced by a self-organizing crowd.

It is useful to learn the pit trading styles from the locals themselves, to
get some further ideas on designing market-making strategies [see Hoffman
and Baccetti, 1999]. Those styles constitute a broader set of strategies than
the specialists’. Indeed, locals used to characterized themselves by several
trading styles, namely edge scalper, transition scalper, momentum scalper,
contrarian scalper, position trader, and spreader.

Edge scalpers use strategies that are the closest to the traditional special-
ist model, where the local tries to extract a fraction of the bid-ask from a high
volume of frequent trades, by joining as many bids and offers as possible.

Architecture for Market-Making 129

Transition scalpers do cross the bid-offer and go to market from time to
time, either to exit their inventory or to take a very short term view on the
direction.

Momentum and contrarian scalpers exploit a larger scale of moves but
go home flat, whereas position traders take longer-term views and may carry
positions overnight or for several days.

Spreaders take relative view positions on pairs of contracts, either be-
tween different future delivery dates or between different assets, and effec-
tively market-make the spread.

The open outcry markets in futures used to have only the pit session
before electronic trading started dominating the marketplace. At that time,
the pit session was it, and a lot of price dynamics was a function of the
time of day, and accordingly, of the number of locals present in the pit. The
opening was a very important time when all the locals would be in the pit,
and many short-term strategies were developed by the locals, based on the
opening range and the behavior of the price breaking that range.

So one sees, by this account, that the pit is actually an amalgam of
traders that provides liquidity to the marketplace in various degrees (or com-
mitments) and sometimes takes liquidity away. Liquidity becomes partially
conditional because not a single individual is obligated to provide orderly
markets, although the exchange has put in place particular incentives. With
the coming of electronic exchanges those incentives have been quantified
more concretely than in an open outcry environment.

8.3 ELECTRONIC MARKET-MAKING

The introduction of computers into the marketplace has changed the liq-
uidity provision mechanisms and the incentive model of the market-making
community. It has improved some aspects of it but in some other ways it has
not, and this has to do with a relative lack of evolutionary time since the
transformation of exchanges into electronic commerce networks.

The main change is that everyone can see the aggregate order book but
the marketplace has become completely anonymous. So everyone gets access
to specialist type of information but no one knows who’s trading.

What is seen in the order book does not represent the true size and liq-
uidity out there. This is because participants can hide their orders via ice-
berg and other algorithms. This is not dissimilar from before, where brokers
would not necessarily disclose all at once the extent of their customers’ in-
terests to the specialist or the pit.

Electronic markets give the possibility to anyone and their broker to post
limit orders, which is the main tool for market-making. However, in order

130 STRATEGY DESIGN AND TESTING

to be able to participate in the flow, the bids and offers need to be very com-
petitive and be top of the market1 for a good proportion of the time. Hence
one has to be fast enough to route orders (new orders and cancel-replaces)
in order not to be out-competed. The technological edge in processing and
connectivity speed has replaced the edge that local traders had by positioning
themselves in advantageous positions in the pit, close to floor brokers.

But it is not just speed that counts in the competitive landscape. Speed
is a factor because of the first in-first out (FIFO) principle that ECN match-
ing engines are based on. However, despite the FIFO, on some exchanges
order priority is given to a group of leading market-makers (LMMs). This
means that if an LMM joins your top-of-the-market bid or offer, it will be
apportioned a certain size ahead of you, even if you’ve placed your order
before.

If X% is the proportion of order priority aggregately given to LMMs
in a market then, on average, their executed volume will be a comparable
percentage. The incentives of LMMs are in the form of reduced or waived
exchange fees (but not clearing fees). The LMM’s level of commitment to
the exchange is calculated as a combination of its participation in terms of
frequency of quoting, volume, and tightness of spreads posted.

In certain markets LMMs enjoy not only the reduced fees and allocation
prioritization, but also the ability to handle (place, cancel, or replace) mass
orders in one message. This is particularly handy in options market-making
where bids and offers for a whole grid of expirations and strikes need to be
re-computed at almost every change of the price of the underlying.

LMMs are usually very well capitalized and technologically savvy, and
hence have come to dominate many trading venues. This means that unless
one is an LMM on an exchange, one’s edge may be greately reduced as far
as profitable pure market-making is concerned, and that edge is inversely
proportional to the share of LMMs’ and one’s speed to market.

In FX and OTC markets (mainly fixed income) the picture is altogether
different. That arena is not centralized, and several ECNs compete for global
transaction volume. Many of these ECNs are either bank market-making en-
gines or amalgamations thereof, and do not provide much leeway for people
to route resting limit orders. This is because there is no incentive for banks
to open up that market, and they continue to take advantage of the edge
provided to them by a whole range of their clients who need immediacy of
execution. Banks have natural FX and fixed income customer flow that helps
them to market-make just on that flow.

1Tightest bid or offer.

Architecture for Market-Making 131

Some trading venues like HotSpotFX and FXAll have created aggre-
gators that allow banks and other participants to compete for transaction
volume, at the same time providing a decent liquidity stream to the end-user.
However, it is still nontrivial to compete for liquidity in such venues because
there are no superior access or lower fee incentives for people who would
be committed to providing continuous two-way markets. Banks do it be-
cause they do it in any case for their customers and their own FX platforms,
so their marginal cost of piping streams to such an ECN is mimimal. For
a non-bank customer the fee structure may be prohibitive because give-up,
clearing, and custody fees are charged as a percentage of the trade value.
The value extracted per trade from a customer’s trading activity should be
more than the sum of these frictional fees, and quite often that sum is larger
than the bid-offer spread. When banks self-clear and self-custody their own
trades, their frictional marginal fee is almost nil.

Hence, to be profitable in the modern market-making arena, one needs
an increasingly subtler approach that takes into account larger-scale factors
in the millisecond-driven pure edge scalping activities. This means that the
market-making model should be overlayed by a longer-term strategy that
would help to tilt the inventory in the direction of the longer-term move as
defined by that strategy.

8.4 MIXED MARKET-MAKING MODEL

Figure 8.1 shows the finite state machine transition matrix (predicates and
actuators) of a stylized market-making agent with 7 states. In plain words,
the agent is continuously quoting a two-way market O = ((b, sb), (a, sa)) of
bid and ask orders (price and size). The sizes and prices depend on its state,
the last quote (trade), and the apparent imbalance in the order book (dif-
ference between either top bid and ask sizes or aggregate bid and ask sizes

SMM Strategy: Simple Market-Making
I is the InventoryS<K

I = 0
I = 0
I = 0

T
I = 0
I = 0

T

I > 0
0 < I < S
0 < I < S

NIL
NIL
NIL
NIL

NIL
S <= I <K
S <= I <K

NIL
NIL
NIL
NIL

NIL
I >= K
I >= K
NIL
NIL
NIL
NIL

I < 0
NIL
NIL
NIL

-S < I < 0
-S < I < 0

NIL

NIL
NIL
NIL
NIL

-K <= I < -S
-K <= I < -S

NIL

NIL
NIL
NIL
NIL

I < -K
I < -K
NIL

S and K are explained in the text
The resulting bid-ask quoting strategy in each state is explained in the text

Init AccumulateLong ReduceLong ReduceShortStopFromLong StopFromShortAccumulateShort

Init

AccumulateLong

ReduceLong

ReduceShort

StopFromLong

StopFromShort

AccumulateShort

F IGURE 8.1 Basic Market-Making Strategy

132 STRATEGY DESIGN AND TESTING

or size-weighted aggregate bid and ask quotes—the reader can experiment
with a number of indicators).

The goal of the agent is to make money by buying at its bid and selling
at its offer as often as possible, while keeping the inventory under control.
For simplicity, assume that the market’s order book is balanced (similar size
on bid and ask). Our agent starts with zero inventory I = 0 in the Init state
by joining the top of the market’s best bid and ask in size S.

Assume the agent has executed part of his bid, and now carries pos-
itive inventory I > 0. It transitions to the AccumulateLong state where
0 < I < S < K, which opens the agent to potentially increase its long
inventory. The agent would join the market bid for the size S − I and
join the market offer with size S. At that point the agent may stay in that
state, or if it’s lucky, flip its inventory and end up in the −S < I < 0 and
AccumulateShort state.

When the agent does not manage to sell out, and its inventory becomes
I > S, then it transitions to the ReduceLong state, where it would quote a
bid below the top bid, and offer I at least at the market offer or more ag-
gressively (if possible). It becomes a more aggressive seller, and if it suddenly
detects that more trades are happening at the previous bid, then it would
attempt to altogether scratch the trade and hit the bid with size I.

Finally, if the above had not worked, and the agent accumulated inven-
tory to its risk-bearing limit of I >= K, it will pull the bid altogether, and
will proceed to hit the market with size K, by crossing the spread. This is the
StopFromLong state that lasts till I = 0 and the agent comes back to the
Init state. The agent had to lose the edge to survive the unfortunate situation
of being long in a fast falling market and preserve its capital.

The agent then returns into the Init state. At that point the optimal
and maximal exposures S and K may be adjusted in function of the PL
of the agent. These numbers may also be adjusted each time the inventory
flips sign.

This basic FSM skeleton of a market-making model with stop-loss has
been the starting point for several of my investigations. It provides a frame-
work to implement the conditional market-making idea alluded to at the end
of the last section that is dubbed the mixed market-making model or simply
the M4.

Namely, the agent’s actuator O(t) = ((b, sb), (a, sa)) becomes not just a
function of the immediate local information coming from the order book,
but also takes into account the location of the price path from a larger-scale
perspective. Intuitively, if one thinks that the market is at a support level,
which, if broken, may lead to a large sell-off, then the agent should endeavor
to position itself as a much better seller, and pull all its bids, when it detects
the break starting to happen.

Architecture for Market-Making 133

That information is not a priori contained in the order book, simply
because the order book does not show the market participants’ stop-loss
orders. When the market breaks support, the hidden stops get triggered but
at that point, even if the order book shows a flurry of at-market sells, it may
be way too late for the agent to pull or reduce its bid. Hence longer-term
models and chart patterns can help in the discovery of stops, or, at least,
point out zones of high probability for market turns or breaks.

Some of the strategies discussed in the previous chapter are good can-
didates as overlay or signalling tools for designing the M4 model. Here an
example is presented demonstrating how a longer-term model interacts with
a market-making model by sending its state and level information.

A market-making strategy is by nature a mean-reversion strategy. This
means that, on average, it will lose money in situations where the market
experiances a breakout or an accelerating trend. Mean-reversion strategies
work best when the market is in a congestion and where the momentum
relative to the noise is small. Hence embedding trend or impulse information
into a market-making model helps to mitigate those situations.

The AMATRadaptive moving average trend-following strategy is a can-
didate for such an addition. This strategy will compute its indicators on the
top of the book mid-price updates mid for every tick. It could also use the
size-weighted mid price (bidavgprc+askavgprc)/2.

The change of state of AMATR is communicated via a COMM event to
the M4 strategy via the procedure described in the Chapter 5 (“Inter-Agent
Communications”). The goal of this signalling is for the M4 strategy be
aligned with the positive or negative momentum detected by AMATR.

If the state of the AMATR is LONG then M4 will be incentivized to be, on
average, in a positive inventory situation I > 0. This means that if it happens
to be in the AccumulateShort or ReduceShort states, it will bid more ag-
gressively and offer less aggressively than if AMATR was in the FLAT state.
If the M4 strategy happens to be in the AccumulateLong or ReduceLong
state, then the procedure by which it posts the two-way orders is unaffected
(neutral). The decision matrix of the bidding and offering behavior of M4 is
a function of its state and the state of AMATR is shown in Figure 8.2.

Signaling Matrix from the AMATR Agent to the M4 Agent

BM and OM are prevailing market best bid and askB<A
BM<AM

Neutral
Neutral

B > BM
B > BM

A > AM
A > AM

Neutral
Neutral

A < AM
A > AM

B < AM
B > AM

Neutral
Neutral

B and A are the quoted bid and ask by the M4 strategy
Init AccumulateLong ReduceLong ReduceShortStopFromLong StopFromShortAccumulateShort

AMATR_SHORT

AMATR_LONG

F IGURE 8.2 Conditional Market-Making Example

134 STRATEGY DESIGN AND TESTING

One sees here the power and flexibility of the agent-based ap-
proach to model design and building. What is important here is that the
combination of the event-driven FSM representation of decision making
with the inter-agent communication paradigm creates a very modular and
scalable approach. The full power of this approach is further clarified in Part
Two, where adaptation within swarm systems of agents is discussed.

8.5 AN ARCHITECTURE FOR A
MARKET-MAKING DESK

This section presents a high-level view of the architecture for conditional
market-making in the context of a large institution that processes customer
flow and has the ability to carry inventory on its books (banks and large
hedge funds).

A flow chart of information, control, and data repositories is given in
Figure 8.3 and the points of application of various quantitative methods are
annotated. All real-time control arrows are shown in bold. The numbers
correspond to the specific quantitative methodologies in the boxes and are
explained as follows:

� The current street-quoted and futures market prices, as well as their
histories, determine, along with some external variables, a market state.
This market state can be quantified as a set of numbers attached to every
traded or quoted asset. Those numbers for example can indicate condi-
tional probabilities of continuation of current trends in price level and
volatility for the next period. For simplicity, one can think of the market
state as over-bought, over-sold, or neutral, both in the price and volatil-
ity spaces. The quantitative models used here include purely price-based
systematic (e.g., momentum, mean-reversion, pattern) methodologies. It
is important that the models help to quantify expected amplitudes and
frequencies of market moves and are used in the calculation of optimal
risk-bearing in the next step. The AMATR model discussed above is an
example. The addition of external variables, for example time of impor-
tant data releases, can subsume certain purely price-based models and
force the optimal risk-bearing to be more or less conservative.

� The market state then allows the determination of a theoretically op-
timal portfolio for the back-book (inventory). It is performed through
a constrained optimization and is essentially a dimensionality reduc-
tion. The objective function is to maximize the overall market-making

Architecture for Market-Making 135

External Variables
(Macro numbers,
Supply Calendar,
Time of Day, etc.)

Futures Prices

Street-Quoted
Cash Prices

Desk
Risk

Limits

Model-
Determined
MARKET
STATE (1)

Client
Trades
History

Analysis
(6)

Desk
ORDER
BOOK

DESK- Quoted
Prices and Sizes

Random Client
Trade (from

Order Book or at
Market) (5)

Real-Time
DESK

INVENTORY
(Positions in

Cash and
Futures)

Model-Determined
OPTIMAL

PORTFOLIO (2)
(= Optimal Inventory)

AUTO-HEDGE
MODULE (5)
Acts to offset

part of the risk to
bring in line with
Optimal Portfolio

Adjustment to
Inventory

QUOTE-
ADJUSTER
MODULE (4)

Real-Time
POSITION

MANAGEMENT
SYSTEM (3)

(Comparator and
Central Control)

F IGURE 8.3 Flow Chart for a Market-Making Business

desk return-to-risk ratio. The return is given by both the expected de-
gree of market re-pricing (determined by the market state and the im-
plied mean-reversion time) and the expected transaction volume for the
desk. The constraints are the overall desk risk limits, sector risk lim-
its, and sector minimal holdings (long or short) that ensure that ex-
pected client demand or supply in that sector can be satisfied over the

136 STRATEGY DESIGN AND TESTING

next time period. For simplicity, if one is in an over-bought state in one
of the sectors, then optimal holdings in that sector should be short,
as the desk positions itself to bid on excess supply as and when the
market turns.

� Once a client performs a trade against the desk, the inventory changes,
in absolute terms and relative terms to the optimal portfolio. The trade
can be either expected, that is, coming from a prior resting order in the
order book, or it can be unexpected and transacted directly by the client
against desk-quoted prices. At this point the information is aggregated
into the position management system, which is essentially a conditional
comparator. Its main function is to decide the degree to which the change
in inventory is wanted relative to the optimal portfolio. It is possible
that the desk wants to accumulate risk in certain sectors and decrease
risk in others. The information about that particular client trade history
may also tilt the degree of optimal risk-bearing of the desk, if the client
is perceived to trade on information successfully and may trade again
in the same direction. The unwanted part of the desk excess inventory
is then dealt with by the auto-hedge module, both in futures and in
cash against the street, if possible. The auto-hedge module would try
to scratch out of the unwanted inventory. The wanted part is kept on
the books, and the models that determine the market state determine
appropriate stop-loss and profit-taking levels that are added to the desk
order book.

� At the same time, and while the auto-hedge is performed, the position
management system alters the state of the desk-quoted prices and sizes.
It does it so as to position itself relative to the street as a better buyer,
better seller, aggressive, neutral, or passive in the particular security, sec-
tor, or spread. The inputs to that quote-adjuster module are real-time
street and future prices, inventory, and market state. The module mon-
itors real-time street bid-offers and sizes in order to gauge liquidity and
flow away from the desk. The example of such a change in quoting was
given in the last section, which discussed the decision matrix of the M4
model in function of the state of the AMATR model.

� Both the auto-hedge and the client trade execution modules are endowed
with classical execution algorithms that enable constraints to be set on
price, volume, and speed of execution. The difference being that the al-
gorithms within the auto-hedge module are controlled directly by the
position management system, whereas the client sets his algorithms in-
dependently.

� Finally every client trade is added to the trade database, then analyzed
via classical data-mining techniques against price history to determine

Architecture for Market-Making 137

which clients are better market-predictors or have predictable behav-
ioral patterns. This analysis is distilled into a set of risk flags that is
input into the position management system, and indirectly influences
the auto-hedge module and the quote-adjuster module.

Although the architecture presented here is an abstract skeleton, the
main important drivers of success of a professional market-making oper-
ation are clearly itemized. The agent-based paradigm along with the imple-
mentation design patterns should give the reader a solid base for building or
bettering such a market-making business.

CHAPTER 9
Combining Strategies

into Portfolios

T here are two main types of portfolio aggregation methods, namely com-
bining strategies that are operating on one security and combining agents

that are operating on different securities.

9.1 AGGREGATE AGENTS

A portfolio of agents ai operating on the same security can be represented
by another trading agent, called the aggregate agent. In real trading, the
aggregate agent is the one that usually emits the trading instructions that are
the result of the aggregation of trading instructions coming from individual
agents. It is defined as a subclass of AGENT by:

(defclass AGGREGATEAGENT (AGENT)
((members

:accessor members
:initarg :members
:initform NIL)))

The members field is just a time series of the list of agents that are aggre-
gated. The reason members is a reverse-chronological list of members is
because the aggregation process may not be static in time. This gives the
flexibility to deal with swarm systems in Part Two.

In order to instantiate a class, assume that ai ’s are collected into the
agents list. Then one would invoke a command similar to:

(defparameter *agag*
(make-instance ’AGGREGATEAGENT

139

140 STRATEGY DESIGN AND TESTING

:name "MyAggregateAgent"
:members (list *agents*)))

(push *agag* *aggregateagents*)

The aggregate agent has no logic by itself, outside of aggregating
all the individual desired market positions and orders. Hence its update
method is:

(defmethod update ((a AGGREGATEAGENT) (e MARKETUPDATE))
(push (reduce #’+

(mapcar #’(lambda (m) (car (positions m)))
(car (members a))))

(positions a))
(setf (orders a) (reduce #’append

(mapcar #’orders
(car (members a)))))

(format T "MAIN complete for agent˜S and event˜S˜%" a e))

In the above, (car (members a)) represents the list of latest members
of the aggregate agent. The resulting desired market position is the sum of
its members’ positions. The outstanding orders is the union of outstanding
orders of the members.

From a computational perspective, the aggregate agent needs to be cal-
culated right after the individual members have been updated. Hence if
one were to parallelize the computation of the consume methods across
agents, the aggregate agents need to wait for the individiual threads
to finish before proceeding to their own consume calculation. This is the
reason why it is better to keep them in two separate lists, *agents* and
aggregateagents.

If one desires to trade a portfolio of agents, the logic of aggregating them
into one single aggregate agent is to:

� Reduce transaction costs
� Be able to automatically generate all relevant trade statistics without

any extra machinery
� Risk manage the portfolio of agents as one

Indeed it could well happen that upon receiving a market update event,
one agent needs to buy and another needs to sell. The net position is un-
changed, so the aggregate agent does not emit any market orders. However,
if there were no aggregation then a buy and a sell order would be generated

Combining Strategies into Portfolios 141

by the individual agents, which would result in the trading system giving
away at least one bid-offer spread to the market.

In Part Four, this aggregation is discussed in the context of the
aggregation/disaggregation layer, which comes with its own subtleties. Once
an execution for the aggregate agent had been received by the OMS, every
single member agent needs to be communicated its respective fill in order to
continue operating and making decisions.

9.2 OPTIMAL PORTFOLIOS

There are various classical and less classical approaches to combine strate-
gies into portfolios. The most classical comes from modern portfolio theory
(MPT) that was originally designed for optimizing long-only static asset al-
location decisions.

The MPT’s idea is, in a nutshell, as follows. Take a set of assets Ai . As-
sume that for the next foreseeable future, their expected total returns vector
E = E(Ri), is constant. The covariance matrix of their returns, K , where
Ki j = Cov(Ri , Rj), is assumed to be constant as well.

The central question is how to choose the allocation vector w = {wi }
so that the portfolio A(w) = ∑

wi Ai has the best expected reward-to-risk
characteristics. This optimality is defined by finding the highest reward for a
given risk, or the lowest risk for the given reward. The MPT defines reward
as total return R(A) and risk as the volatility V(R) of the return. The opti-
mality criterion is equivalent to maximizing the mean-variance functional

F (w) = R(A(w)) − λV(R(w))

where λ > 0 is a risk-aversion parameter. Then the optimal portfolio A∗ =∑
w∗

i Ai is found to be such that w is proportional to K−1 E(R).
As much as assets themselves do not exhibit stable statistics, the trading

strategies have a much better track record than long-only holdings. Hence
there is scope for an application of MPT ideas to portfolios of strategies, be
they operating on one security or across a variety.

I, however, prefer to assemble portfolios of strategies on one security via
nonparametric techniques that take into account particular trade statistics.
As will be seen in the next chapter, the trading agents calculate automatically
the statistics on average win (W), average loss (L), average time in winning
trade (TW), average time in no trade (T0), average loss in losing trade (TL),
probability of win (PW), and probability of loss (PL).

Those statistics can be assembled into the stylized equity curves that
consist of repeating the pattern of fall by −L ∗ PL on an interval of length

142 STRATEGY DESIGN AND TESTING

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

-
0 20 40

TF MR AC

60 80 100

(1.00)

(0.50)

F IGURE 9.1 Stylized Equity Curves

TL, followed by a flat line on the interval of length T0, followed by a rise by
W ∗ PW on an interval of length TW.

As seen in Figure 9.1, the trend-following, mean-reverting, and accel-
eration strategies are all seen to have different patterns of growth of their
stylized equity curves. For example, the time T0 for acceleration models is
usually much larger than for trend-following models, which is itself larger
than for mean-reversion models (which are almost always in a trade).

Combining those stylized equity curves gives a different angle on how
to analyze the expected statistics of a portfolio of models.

9.3 RISK-MANAGEMENT OF A PORTFOLIO
OF MODELS

The MPT has many variations on the theme, but all basically come down to
multiplying the inverse of the covariance matrix by the vector of expected
returns. The main risk in using MPT is getting the expectations vector wrong.
The second risk is getting the covariances wrong.

As mentioned previously, the markets do not exhibit many static statis-
tics to the world, and are continuously changing and evolving. Hence MPT
is only useful for designing portfolios on periods of time when one is certain
that those statistics will not vary.

Combining Strategies into Portfolios 143

The 60-40 Rule for running balanced portfolios has wrecked havoc
in the defined benefit pension fund system in many municipalities and states
in the United States. It came from using MPT on an extrapolation of the
rally in equities since the 1950s, with expectations that equities will go on
returning 10 percent to 12 percent forever. Equities have been in a bear mar-
ket in Japan since 1990 and in the United States and Euroland since 2001,
and registered drawdowns ranging from 40 percent to 90 percent from their
peaks. As a result, some pension funds are now only 60 percent funded,
and this is not even including a correct marking-to-market of their liabili-
ties (discounting by the much lower interest rates the world is experiencing
currently).

Hence risk management of portfolios is of the utmost importance, be
it static mutual fund–like asset holdings or a dynamic portfolio of trading
strategies in leveraged markets.

Part Two will focus on adaptive methods I have developed to mitigate
the downside risk of either individual strategies or portfolios, and that dis-
cussion is deferred to then.

CHAPTER 10
Simulating Agent-Based

Strategies

T he agent-based representation of trading strategies introduced in this
book naturally yields a distributed event-driven approach to simulation.

Each agent consumes events that are relevant to it and potentially emits
messages to other agents. At a cost of added complexity in writing the
disciplined FSMs and inter-agent communication protocols that don’t fall
through the cracks, one can gain a lot of flexibility and freedom. The same
code can be used for backward-testing, forward-testing, and real-world trad-
ing. In the real-trading implementation, the agents also communicate with
the outside world to perform trading and middle-office tasks. An event-
driven approach to simulation is the closest thing to the real world be-
cause the real world works in an event-driven fashion. Most of the code
written for the simulator can be re-used in the real-time implementation
so that when models go live there is no risk of mistakes introduced by
rewriting code.

Before delving into the details of the process, I will first enumerate the
four major types of simulations that can be considered while researching
the suitability of trading strategies. The goal is to find a subset of strategies
that are expected to provide robust profitable results. Hence backward and
forward tests can be run to:

1. Simulate different instances of the same class of agent on one market.
The goal is to find optimal parameters for such a class for that market.

2. Simulate different instances of the same class of agent on different mar-
kets. The goal is to find optimal parameters on average for the collection
of markets.

145

146 STRATEGY DESIGN AND TESTING

3. Simulate instances of different sets of inter-communicating agents for
one market. The goal is to find optimal communication parameters for
such a collection of agents on that market.

4. Simulate instances of different sets of inter-communicating agents for
different combinations of markets. The goal is to find optimal commu-
nication parameters on average for those agents on that selection of
markets.

10.1 THE SIMULATION PROBLEM

It is important to realize that trading agents, be they human or machines,
cannot be seen in isolation from the market, because once they start trading,
they become an integral part of the market and directly influence its future.
The market is the collection of agents.

Hence, if an agent cannot be seen outside of the market, then it can-
not ultimately be simulated without taking into account how the market
would react to that agent. The situation is similar to physics where it is
hard to design experiments on isolated systems. Not many things are ac-
tually isolated in our interconnected universe. Hence physicists create ide-
alized thought experiments to work out certain concepts but it is very diffi-
cult to perform idealized observational experiments. At quantum mechanical
scales, the observer disturbs the object of its observation by the mere fact of
observing it.

Of course, there are simplifying assumptions allowing one to get away
from simulating the whole world in one go. In physics, if an object is large
enough, then shedding light on it will not perceptibly change its momentum,
and one can assume that quantum phenomena could be ignored. In trading,
if an agent is small enough, then one can assume that the impact of its trading
size on the market would be negligible.

Hence the complete simulation framework in the context of automated
trading should strive to model:

� The agent’s reaction to the ECN’s price updates and to agent-to-agent
communications, inclusive of slippage and missed trades.

� The agent’s reaction to a range of technical glitches related to commu-
nications with the ECN, inclusive of order acknowledgment delays and
order rejects.

� The ECN’s reaction to the agent’s trading inclusive of delayed market
impact and other agents’ learning and adaptation behavior.

Simulating Agent-Based Strategies 147

This chapter focuses on the first aspect of simulation, namely the analysis
of the performance of agents when one assumes that the ECN is perfect in
the sense that:

� No Impact: The agents’ action in placing orders and performing trades
does not impact the ECN’s behavior.

� No Delay: The ECN acknowledges immediately any order placement
by the agents.

� No Rejects: The ECN does not reject any of the agents’ orders

The framework presented here is applicable to a wide range of strategies
and data sets. Most price-taking strategies can be simulated to a reasonable
degree of accuracy by modeling partial fills, slippage, and some execution
algorithms (discussed mostly in Part Three).

Limit-order–driven strategies are inherently more difficult to simulate
because of the uncertainty of the time and size of the execution associated
with such orders.

A lot of the real-world complexity can be rendered by connecting to the
test environments provided by the ECNs. These test environments attempt
to create realistic situations related to glitches and latency in the communica-
tions infrastructure. However, prior to connectiong to such an environment,
an order management system needs to be developed to keep track of all the
resting orders and state of the execution. That in itself is a nontrivial task
as shown in Part Four. The complete simulation process that is based on
an FSM representation of the coupled (OMS – Strategy) system is deferred
to there.

10.2 MODEL ING THE ORDER
MANAGEMENT SYSTEM

The simulation environment used here, on the other hand, assumes perfect
ECN behavior. It is handy for back- and forward-testing a whole range of
strategies of which the performance is not severely impacted by the subtle
imperfections in communicating with ECNs.

This chapter presents a simplified version of the OMS that is sufficient
for this context. Here the OMS is endowed with minimal functionality to
handle aggressive orders, algorithms based on aggressive orders, and some
passive orders.

It is assumed here that orders placed by the OMS into the ECN are ac-
knowledged instantaneously and that no orders are ever rejected. The com-
plexity associated with receiving delayed acknowledgments, rejections, and
delayed rejections is discussed in Part Four.

148 STRATEGY DESIGN AND TESTING

10.2.1 Orders and Algorithms

When making decisions after consuming events, the trading agent emits or-
ders to the ECN. Those orders fall into two major categories:

1. Aggressive Orders. These are used to change the agent’s position at a
point in time by taking some of the available liquidity in a security while
paying at least the bid-ask spread. The aggressive orders are executed
via stop, at market, stop-limit, immediate-or-cancel, market-on-open,
and market-on-close orders.

2. Passive Orders. Those are placed by the agent into the security’s order
book at the ECN and are expressed via limit orders.

There are several ways by which an agent may place the order into the
ECN and those ways depend on the ECN’s functionality. Some ECNs are
pure matching engines that mostly accept limit orders from the participants
(this is the case with most exchanges). Some ECNs only accept price-taking
orders because the ECN’s operator is the market-maker (as is the case with
several FX trading venues that originate from banks).

Hence not all types of orders can be placed with just any ECN and the
simulation environment should take this into account. For example, there is
no obvious way, as a client, of placing a limit order into a bank’s FX market-
making stream. The bank makes money from market-making and so all the
agents connecting to that stream are de facto price takers.

The execution algorithms (“algos”) is a layer of functionality that allows
a wide variety of orders to be placed into exchanges.

A simple example of an execution algorithm is the stop order. It does not
naturally exist in a matching engine of an exchange—it is not a resting order.
Stops do not appear in the order book before they are actually executed.
They are in fact limit orders that are placed into the matching engine the
moment a price trigger happens. The limit price is such that the order can
sweep the necessary liquidity in the order book to fill the size. If there is not
enough size or if one wants to limit the price impact, the order is broken into
various tranches until it is filled.

Another example of an algo is a synthetic limit order in an ECN that
does not support passive orders. If one wanted to place a sell limit at a price
P, one could keep placing aggressive sells as long as the ECN is quoting the
bid side at P or better, until all the desired order size is filled.

More sophisticated algos are discussed in Part Three. For example,
large institutional equity and ETF orders are usually placed using volume-
weighted average price (VWAP) or time-weighted average price (TWAP)

Simulating Agent-Based Strategies 149

algos. The agent can decide on what algo to use in placing an order,
hence an algo should be reflected in the information set that constitutes
the order.

The ORDER class is a subclass of MARKETUPDATE and inherits the
timestamp, value, and security fields:

(defclass ORDER (MARKETUPDATE)
((ordertype

:accessor ordertype
:initarg :ordertype)

(orderquantity
:accessor orderquantity
:initarg :orderquantity)

(orderprice
:accessor orderprice
:initarg :orderprice)

(algoinstance
:accessor algoinstance
:initarg :algoinstance)))

The algoinstance field points to the particular instance of the ALGO class
that the agent wants to use:

(defclass ALGO ()
((algotype

:accessor algotype
:initarg :algotype)))

The algotype field identifies the nature of the algo and is useful for the
simulation of slippage. In this particular context, algos can fall into the :AG-
GRESSIVE or :PASSIVE categories.

10.2.2 Simulat ing Sl ippage

The matter of slippage is covered in detail in Part Three where the goal is to
design algos that minimize market impact. Slippage can come from various
sources but it mostly stems from either lack of liquidity or lack of access
to liquidity. Slippage can come from aggressive orders that are not executed
at the expected price or from passive orders that are not executed at the
expected size.

150 STRATEGY DESIGN AND TESTING

In the current simulation environment, slippage models some likely ef-
fects that the agent’s trading implies on the execution price. The SIMUL algo
contains a slippage response function and is defined as the subclass:

(defclass SIMUL (ALGO)
((slippage

:accessor slippage
:initarg :slippage
:initform #’slippagefunction)))

The slippagefunction, in turn, needs to be set up for potentially every
security in the simulation. It could be a function of time of day or other
factors known to affect liquidity. By default it takes the event, the size of the
order, and the order type as arguments. Time information and security name
can be extracted directly from the event. A simple example is:

(defun slippagefunction (e size ordertype)
(* (signum size) 0.01))

This slippage function would bump every price by one percent in the direc-
tion of the trade, independent of the security and order type. The following
function, for example, bumps AAPL 0.2 basis points for limit orders and 2
basis points for all others (stops) in the direction of the trade. It accounts for
twice the above slippage for MSFT:

(defun slippagefunction (e size ordertype)

(let ((s (+ 1 (abs (/ size 100000)))))

(* (signum size)

(case-equal (security e)

("AAPL" (case ordertype

((:LMT :LMT_ON_OPEN :LMT_ON_CLOSE)

(* 0.00002 s))

(otherwise

(* 0.0002 s))))

("MSFT" (case ordertype

((:LMT :LMT_ON_OPEN :LMT_ON_CLOSE)

(* 0.00004 s))

(otherwise

(* 0.0004 s))))

(t 0)))))

This function is applied to adjust the resulting price of the transaction
via the generic function price that takes the optional arguments of the

Simulating Agent-Based Strategies 151

slippage function, the size, and the order type. The price adjustment is made
via the function

(defun adjustprice (p slippagefunc e size ordertype)
(* p (+ 1 (if slippagefunc

(funcall slippagefunc
e
size
ordertype)

0))))

and the price methods are as follows:

(defmethod price ((e PRC) &key (slippagefunc NIL) (size 0)

(ordertype NIL))

(let ((p (car (value e))))

(adjustprice p slippagefunc e size ordertype)))

(defmethod price ((e BAR) &key (slippagefunc NIL) (size 0)

(ordertype NIL))

(let ((p (case ordertype

((:STP_ON_OPEN :LMT_ON_OPEN) (o e))

((:STP_ON_CLOSE :LMT_ON_CLOSE) (c e))

(otherwise (pivot e)))))

(adjustprice p slippagefunc (security e) size ordertype)))

(defmethod price ((e BOOK) &key (slippagefunc NIL) (size 0)

(ordertype NIL))

(let ((p (if (zerop size)

(mid e)

(if (> size 0)

(askbest e)

(bidbest e)))))

(adjustprice p slippagefunc (security e) size ordertype)))

The method BAR allows for execution either on the close or the open of a
bar.

10.2.3 Simulat ing Order Placement

In the simulation environment the agent keeps track of its active orders in
the orders list. When it decides on an order to place, it simply pushes an

152 STRATEGY DESIGN AND TESTING

instance of the ORDER object onto its orders list via the generic function
sendorder:

(defmethod sendorder ((a AGENT) (e MARKETUPDATE) &key opc oqt otp oid)

(push (make-instance

’ORDER

:timestamp (timestamp e)

:value oid

:security (security e)

:ordertype otp

:orderquantity oqt

:orderprice opc

:algoinstance (make-instance

’SIMUL

:algotype (case otp

((:STP :IOC :MOC :MOO) :AGGRESSIVE)

((:LMT) :PASSIVE))))

(orders a)))

Here it emits either a passive or aggressive SIMUL algo. That algo type is
then used by the slippage function to adjust the trade price accordingly.

There are three places in the event consumption cycle by the agent where
orders can be emitted:

1. In the FSM Transitions actuator functions. Passive orders should be
emitted when transitions happen.

2. In the update :after method. The immediate change in the agent’s
desired market position is being generated at the level of the FSM tran-
sition, and the resulting agressive order can be dealt with after the FSM
is processed and before postprocessing.

3. In the aggregator. When several agents are trading in the same security
it is also possible to route all the agents’ positions into an aggregator so
that the slippage is minimized. Such aggregators are discussed in Part
Two.

The following methods are used to change and cancel existing orders and
are most useful for handling passive orders that have not been executed yet:

(defmethod changeorder ((a AGENT) (e MARKETUPDATE) &key new-opc new-oqt

new-otp old-oid)

(let ((o (car (remove-if-not #’(lambda (x) (equal (value x) old-oid))

(orders a))))

(restorders (remove-if #’(lambda (x) (equal (value x) old-oid))

(orders a))))

Simulating Agent-Based Strategies 153

(when new-opc (setf (orderprice o) new-opc))

(when new-oqt (setf (orderquantity o) new-oqt))

(when new-otp (setf (ordertype o) new-otp))

(setf (timestamp o) (timestamp e))

(setf (orders a) (append (list o) restorders))))

(defmethod cancelorder ((a AGENT) old-oid)

(setf (orders a) (remove-if #’(lambda (x) (equal (value x) old-oid))

(orders a))))

Once the agent generates the orders, they are passed to the order man-
agement system simulator for execution.

10.2.4 Simulat ing Order Execut ion

In the real world, an order placed with the ECN generates (generally) a par-
tial fill and a remaining working order that stays at the ECN. The simulation
environment presented here models such effects by introducing the execute
generic function that returns two values, namely the executed trade and the
remaining order.

For the slippage-endowed SIMUL algo there is no remaining working
order but on the other hand the price of the execution is being adjusted by
the slippage function in the direction of the trade:

(defmethod execute ((o ORDER) (l SIMUL) (e MARKETUPDATE))
(values
(list (make-TRADE :timestamp (timestamp e)

:price (price e
:slippagefunc (slippage l)
:size (orderquantity o)
:ordertype (ordertype o))

:quantity (orderquantity o)))
NIL))

If, for example, one has access to order book update events, one can
model an aggressive algo that sweeps the book up to a certain depth (if
needed) until it has finished filling the order. The algo class AGRESSOR con-
tains a field for maximum depth of book sweep:

(defclass AGRESSOR (ALGO)
((maxdepth

:accessor maxdepth
:initarg :maxdepth)))

154 STRATEGY DESIGN AND TESTING

The execute method can be defined as follows for this class:

(defun lift-quotes (quoteslist quantity max-depth)

(let* ((f (first quoteslist))

(q (second f))

(result (list f))

excess)

(for (i 1 (- max-depth 1))

(when (<= q quantity)

(incf q (second (nth i quoteslist)))

(push (nth i quoteslist) result)))

(setf excess (- (sum-list result #’second) quantity))

(when (> excess 0)

(decf (second (first result)) excess))

result))

(defmethod execute ((o ORDER) (l AGRESSOR) (e BOOK))

(let* ((q (orderquantity o))

(bookside (if (> q 0) (second (value e)) (first (value e))))

(sweep (lift-quotes bookside q (maxdepth l)))

(trds (mapcar #’(lambda (x) (make-trade

:timestamp (timestamp e)

:price (first x)

:quantity (* (signum q)

(second x))))

sweep))

(sweepsize (sum-list sweep #’second))

(shortfall (- q sweepsize)))

(values

trds

(if (zerop shortfall)

NIL

(make-instance

’ORDER

:timestamp (timestamp e)

:value (value o)

:security (security e)

:orderprice (orderprice o)

:orderquantity shortfall

:ordertype (ordertype o)

:algoinstance l)))))

The AGGRESSOR algo does not need any explicit slippage functions because,
via its recursive operation, it generates slippage by going beyond the best
bid-offers (according to its order size relative to the order book liquidity).

Simulating Agent-Based Strategies 155

10.2.5 A Model for the OMS

The order management system handles the execution logic of the current
orders of the agent. In the real world the OMS serves two major purposes:

1. It communicates orders from the agent to the ECN.
2. It communicates fills from the ECN back to the agent.

Because of this dual functionality, in the simulation environment the
OMS is called at different points in the event consumption cycle. It takes an
optional argument algocategory that enables it to process only a subset
of the active orders at a point in time. That subset can be all passive or all
agressive orders, for example.

(defmethod oms ((a AGENT) (e MARKETUPDATE) &key (algocategory :ALL))
(let* ((categoryp #’(lambda (x) (if (equal algocategory :ALL)

T

(equal (algotype (algoinstance x))
algocategory))))

(notcategoryp #’(lambda (x) (not (funcall categoryp x))))
(bins (classify (orders a) (list categoryp notcategoryp)))

(categoryorders (first bins))

(noncategoryorders (second bins))
(newcategoryorders NIL))

(dolist (o categoryorders)
(when (equal (security o)

(security e))

(multiple-value-bind
(executions remainingorder)

(execute o (algoinstance o) e)
(when executions

(push-list executions (trades a))

(push (compute-tradestats (trades a)) (tradestats a)))
(when remainingorder

(push remainingorder newcategoryorders)))))
(setf (orders a)

(append newcategoryorders

noncategoryorders))))

The OMS method first classifies all the agent’s active orders into orders
corresponding to the chosen category and the remainder. For every order
in the category of interest the execute method is called when the mar-
ket update event is for the same security as the order was given for. This
method returns the list of partial fills that is appended to the agent’s trades

156 STRATEGY DESIGN AND TESTING

list, and the remaining unfilled order, if any. If there are any new fills, then
the compute-tradestats function adds the trade statistics to the agent’s
tradestats list.

The resulting active orders for the agent become the set of unfilled orders
in the category and the set of orders that were not in the category of interest.
The OMS then passes control back to the agent’s update method.

10.2.6 Operat ing the OMS

When the agent starts a new market update event consumption cycle, the
method update :before is invoked first. At that point the OMS is called,
before any preprocessing begins, to check whether any active orders can be
executed on the new event. Those orders come from the previous cycle and
are the set of unfilled passive and aggressive orders. Hence the oms method
is invoked with algocategory equal to :ALL:

(defmethod update :before ((a AGENT) (e MARKETUPDATE))
(when (null (timestamps a))

(push 0 (pls a))
(push 0 (fitnesses a)))

(push (timestamp e) (timestamps a))
(push (price e) (revalprices a))
(oms a e :algocategory :ALL)
(preprocess a e)
(format T "BEFORE method completed for agent A and event
A %" a e))

During the agent’s decision-making stage of the event consumption cycle, a
new set of orders may be added to the active orders list. This could be directly
at the level of the actuator stage of the FSM transitions or it could be after
the FSM had been processed and the desired market position of the agent
changed via the positions list. The update :aftermethod, by default,
generates an aggressive order if the agent has changed its desired position:

(defmethod update :after ((a AGENT) (e MARKETUPDATE))
(let* ((L (length (timestamps a)))

(lastposition (first (positions a)))
(prevposition (if (< L 2)

0
(second (positions a))))

(tradequantity (- lastposition prevposition))

Simulating Agent-Based Strategies 157

(lastprice (first (revalprices a)))
(prevprice (if (< L 2)

0
(second (revalprices a))))

(pl (if (< L 2)
0

(* prevposition (- lastprice prevprice)))))
(push pl (pls a))
(unless (zerop tradequantity)

(sendorder a e
:opc (price e)
:oqt tradequantity
:otp :STP
:oid :POSCHG)

(format T "generated aggressive order for S for
quantity S %" a tradequantity))

(postprocess a e)
(format T "AFTER method completed for agent A and
event A %" a e)))

When the agent consumes an event and decides to change its market
position, it places the new aggressive order in its orders list. The OMS
will attempt to execute that order when the agent observes the next market
update event.

This is a pessimistic execution model because the agent does not execute
the change in position on the same event that prompted that change, but has
to wait until the next one. One could think that this is overly restrictive;
however, it provides a more realistic framework.

For example, if one wants to model a strategy that trades at the close of
a trading day, then rather than sampling the closing price, one should sample
an interval of prices just before the close. In reality it is difficult to always
trade at the close and not necessarily advisable.

As a second example, if one uses BARs then one could model execution
at the open of the next bar given a change of position computed at the close
of the previous bar. Putting the OMS at the head of the event consumption
cycle is compatible with such realistic execution logic rather than the less
realistic hope to be executing at the close.

It is also important to point out that the modeled OMS is supposed to
operate on a timescale that is an order of magnitude smaller than that of the
potential state changes of the agent. Situations where the OMS cannot be
de-coupled from the FSM of the agent are discussed in Part Four.

158 STRATEGY DESIGN AND TESTING

10.3 RUNNING SIMULATIONS

To set up a simulation environment, assume that a set of strategies have been
coded into trading agents and tested. For example, the strategies discussed
in Chapter 7 are good candidates that can be tested on various parameter
sets, markets, and timescales. The complete simulation process is:

� Instantiate each agent class with the relevant parameters and group them
into the *agents* list.

� Collect a timestamp-ordered list into the *events* list of market up-
date events to be supplied to the simulator. For simplicity, all the events
should be instances of the same subclass of MARKETUPDATE but can
carry information on different securities. In this book at least three ba-
sic subclasses can be handled by the trading agents (PRC, BOOK, and
BAR) but the framework given here gives readers the stepping stone to
extend it at their will.

� Run the run-simulation function on the *events* argument. At
the end of the simulation, all PL and trade statistics time series remain
stored in each agent’s relevant fields (pls, trades, tradestats).

� Run an analysis function analyze that will output relevant statistics
and show optimal parameter combinations.

The run-simulation routine introduced in Chapter 5 is the core gen-
eral process that performs the simulation task:

(defun run-simulation (events)
(dolist (a *agents*)

(initialize a))
(setf *events-queue* events)
(while *events-queue*

(let ((e (pop *events-queue*)))
(dolist (a *agents*)

(consume a e)))))

Given that the central simulation routine is already written, the focus now
is on setting up all the data relevant to the simulation and on the analysis of
simulation results.

10.3.1 Sett ing Up a Back-Test

Assume, for simplicity, that one has collected a time series of prices for a cer-
tain security (here we take AAPL and MSFT for example). Those time series,
for simplicity, are stored in flat files AAPL.txt and MSFT.txt that reside

Simulating Agent-Based Strategies 159

YYYYMMDD, ClosePx, Vol

20090802, 27.45,1894300

20090803, 28.11,2303000

20090804, 27.94,1767480

(setf *data-ts* '(

(20090802 27.45 1894300)

(20090803 28.11 2303000)

(20090804 27.94 1767480)

))

F IGURE 10.1 LISP Quote Recap Data Representation

in the directory represented by the string *data-dir-string*. Each line
is composed of a timestamp, a price, and a transaction volume. These time
series are exactly like quote recap tables that all the major data providers
publish (e.g., Bloomberg, Reuters, or the exchanges themselves). An excerpt
from such a quote recap is given in Figure 10.1.

The goal is to produce from that data a combined time-ordered list of
PRC events for AAPL and MSFT in order to initialize the *events* list.

An efficient way of doing it in LISP is to initially transform the flat data
files into LISP programs in order to use the powerful load function. The
reader is reminded that one of the cardinal strengths of LISP, and a feature
that distinguishes it from all other computer languages written to date, is the
fact that data and programs in LISP have the same structure, namely they
are lists.1

Hence via a scripting language like either PERL or AWK one creates two
new files AAPL.lisp and MSFT.lisp that look like Figure 10.1.

This way an amorphous flat file is transformed into a LISP program that
sets a variable called *data-ts* to a list of lists, each one representing a
timestamp, price, and volume update. All one needs now is to execute that
program by simply loading it:

(defparameter *data-ts* NIL)
(defparameter *data-dir-string* " /datafiles")

(defun create-events-list (data-name &key (data-dir
data-dir-string)
(start-D NIL)
(end-D NIL))

(let ((data-path (make-pathname
:directory data-dir
:name data-name
:type "lisp")))

1This is also true for Scheme, a language based on LISP.

160 STRATEGY DESIGN AND TESTING

(when (probe-file data-path)
(load data-path)
(mapcar #’(lambda (d) (make-instance

’PRC
:timestamp (u-d-h-m (car d))
:value (cdr d)))

(remove-if #’(lambda (x) (or (if start-D
(< (first x) start-D))

(if end-D (>
(first x) end-D))))

data-ts)))))

In order to operate the file loader to create the *events* list one evaluates
the following forms:

(defparameter *MSFT-events* (create-events-list "MSFT"))

(defparameter *AAPL-events* (create-events-list "AAPL"))

(setf *events* (sort (union *MSFT-events* *AAPL-events*)
#’(lambda (x y)

(< (timestamp x) (timestamp y)))))

The last action takes the set union and sorts it chronologically according to
timestamp. The *events* list is now ready to be passed as argument to the
run-simulation routine simply by evaluating the form

(run-simulation *events*)

10.3.2 Sett ing Up a Forward Test

Running simulations forward in time is mechanically the same process as
running back tests. Instead of populating the *events* list by a past history
of events, one needs to produce a possible future path of such events.

In order to generate such possible future paths, one needs to think care-
fully about which elements of the dynamics of the markets one wants to re-
alistically reproduce. A lot of financial theory has been based on overly sim-
plifying assumptions of normality on the distributional side and of Markov
property on the time-interdependence side. Although, by the central limit
theorem, these properties may hold at long timescales, these scales may not
be relevant to any trader’s lifetime. As pointed out several times before, the
market presents features of a complex system that is far from equilibrium.

Simulating Agent-Based Strategies 161

In such a system, features tend to occur according to a power law, and in-
novations are far from being normally distributed and time-independent.

If markets were normally distributed and Markovian, then one could
easily generate paths by a straightforward Monte Carlo method, modeling
a stochastic process

dP(t) = α(P, t) + σ (P, t)dX(t)

where dX ∈ N(0, 1) is a normally distributed innovation. In order to use
such a representation, besides assuming normality, one has to further as-
sume a model of the market dynamics by having a prior idea of the class of
functions that the drift α and the volatility σ belong to. In other words, one
needs to have an a priori idea of the functional and parametric form of those
functions. Then one can proceed to estimate these parameters (up to a cer-
tain accuracy) by standard statistical methods (e.g., maximum likelihood).

In absence of such a priori insight, one can adopt a purely phenomeno-
logical stance and derive a set of paths that have very similar features to the
ones coming from an observed path. This is achieved by reshuffling observed
data in a certain way and these types of methods are sometimes referred to
as bootstrapping. The question is, what may be those features of interest?
They could be:

� Distribution of innovations. As there is no model of the market, there is
no a priori vision as to what the distribution of price innovations should
be, hence one may as well take an observed distribution as starting point,
and assume that this feature remains the same for a possible future path.

� Directional clustering. The market has experienced a certain behavior
in time. Namely, a certain concentration of positive innovations may
have reflected certain uptrends. This serial correlation may be a feature
of interest for modeling possible paths.

� Amplitude clustering. The market may have experienced periods of high
and low volatility. This may be reflected by a feature that the innovations
tend to cluster in time, either on the distribution’s tail or on the distri-
bution’s body, with transitions between body and tail being of lower
probability.

Hence the following phenomenological reshuffling algorithm is introduced,
with aim to generating possible future paths that preserve the above features
relative to a historically observed path.

To set up the reshuffling algorithm, suppose a history of prices Pi where
i = 0..N had been observed. This history yields data that can be used to

162 STRATEGY DESIGN AND TESTING

reproduce the features just enumerated. First one derives the distribution of
percentage innovations:

D = {Ri } Ri+1 = Pi+1 − Pi

Pi
i = 0..N − 1

This distribution can be classified, for example, into 4 subsets

D = T− ∪ B− ∪ B+ ∪ T+

where Ts are the tails and Bs are the bodies of the distribution. The criterion
could be quartiles of the negative and positive subsets of innovations, for
example. Having partitioned the distribution in such a way, one can deal
with directional and amplitude clustering in the following manner. Given
the observed path Pi , one derives the symbolic time series that corresponds
to the location of the innovation relative to the above classification:

{Li } Ri ∈ Li Li ∈ {T−, B−, B+, T+}

This symbolic series shows the path of the history through the distribution
but not the size of the innovation. One can now produce a new time series
Q by randomly drawing from the distribution’s subsets:

Q0 = RND Qi+1 = Qi ∗ Si+1 Si+1 ∈ Li+1

Each path starts at a random point RND > 0. By construction, the time
series Q has the same three features as the original series P, namely the
same distribution and directional and amplitude clustering of returns.

The above algorithm gives a basis to built simulated future paths of
price events (without volume information). Studying the joint distribution
of quotes and volumes one can, in a similar way, forward-simulate full price
and volume quotes PRC. Finally, studying the distribution of mid-prices,
ranges, and locations of open and close relative to the range in percentage
terms, one can forward-simulate a stream of BARs.

10.4 ANALYSIS OF RESULTS

Once the simulation finishes, all the trade statistics and PL data pertaining to
each agent remains saved in the agent’s pls and tradestats fields. Hence

Simulating Agent-Based Strategies 163

an analyzer needs to be provided that extracts that data and repackages it
into a useable format at the end of the simulation run.

The basic statistics that an agent is judged on fall into the continuous and
the per-trade categories. Here the very basic functions are presented, mainly
to show how to extract data from the agents. The reader, no doubt, would
be able, on this basis, to build an analysis package or use other third-party
tools like Matlab.

10.4.1 Cont inuous Stat ist ics

The pls list contains the agent’s history of PL increments that is calculated
for each relevant market update event, in the update :after method.

Metrics like the maximal drawdown, information ratio, and return-to-
drawdown ratio can be easily derived from the pls list. If the agent is com-
pared to a benchmark, then the relative upside and downside capture statis-
tics can also be computed, taking into account the return stream from the
benchmark on the same simulation period.

A joint concurrent simulation of a portfolio of agents opens the
door to the correlation and cointegration analysis of PLs as discussed
in the last chapter, as well as to the overall PL analysis stemming from
the aggregation of the individual information into an instance of the
AGGREGATEAGENT class.

To plot the time series of the statistics, one can use the following method
that calls on the ts-plot function that plots a time series on the users GUI.
This function is implementation dependent and is left to the reader’s design.
Here the what keyword determines the trade statistic to run:

(defmethod graph-stats ((a AGENT) what)
(ts-plot (timestamps a)

(case what
(:cpl (rc-integrate (trunc (pls a))))
(:fit (trunc (fitnesses a)))
(:prc (revalprices a))
(:pls (trunc (pls a)))
(:pos (positions a)))))

The function rc-integrate creates the time-series of a consecutively inte-
grated reverse-chronological vector of real values (see Appendix), and :cpl
stands for plotting cumulative PL since inception. Here the time series are
plot against the same timescale as provided by the *events* stream.

164 STRATEGY DESIGN AND TESTING

10.4.2 Per-Trade Stat ist ics

The tradestats field contains the most important per-trade statistics on
each agent. It is a reverse-chronological timeseries of TRADESTAT structures
containing the statistics at each recalculation of the agent:

(defstruct TRADESTAT
percent-profitable
win-to-loss
average-logret
tot-pl
average-duration
pos-pl
neg-pl
profit-factor)

The function compute-tradestats is responsible for this calculation at
each new trade, and is called in the omsmethod, as soon as order exectutions
are received by it.

Of course, for most purposes of analysis, the first data point (last in
time!) of tradestats is relevant, as it contains the accumulated statistics
on the full simulation run. However, in Part Two, the rolling statistics are
relevant for the agent’s fitness calculation, and that is an integral part of
an adaptive swarm system. Hence the agents have been designed ab initio
for storing the time series of structures representing their trade statistics.

Those statistics ignore the continuous repricing information of the posi-
tion between position changes and focus only on extracting the information
from trade events and prices associated with those events.

The statistics are the percent profitable, the win/loss ratio, the average
logarithmic return per trade, the total, positive, and negative PLs, the profit
factor, and the average trade duration (in clock time or event count time,
depending on the nature of the timestamps associated with the market
update events).

To plot the time series of trade statistics against the timescale provided
by the times of the trades one can use the following method.

(defmethod graph-tradestats ((a AGENT) what)

(with-slots (trades tradestats) a

(ts-plot (mapcar #’trade-timestamp trades)

(case what

(:tpl (mapcar #’tradestat-tot-pl tradestats))

(:lrt (mapcar #’tradestat-average-logret tradestats))

(:prc (mapcar #’trade-price trades))

(:qnt (mapcar #’trade-quantity trades))))))

Simulating Agent-Based Strategies 165

10.4.3 Parameter Search and Opt imizat ion

The traditional methods of model discovery entail a search in the param-
eter space of the model, once the inuition about the dynamic properties
of the model have been implemented in code. All the models considered
in the Chapter 7 are parametric. For example, the lookback periods of
the fast and slow channels in the channel breakout system are the model’s
parameters.

Chapter 3 gave an example on how to define parametric families of
agents stemming from the same class. For example, a one-dimensional fam-
ily was defined for the SIMPLEMODEL agent class:

(for (i 10 110)
(push (make-instance

’SIMPLEMODEL
:L i)

agents))

Once the simulation has been run, the statistics can be retrieved into a list
by a series of simple functions for further analysis. For the above example,
to get the list of parameter and final trade PL pairs, one can invoke the
following form:

(let ((results NIL))
(dolist (a *agents*)

(push (list (L a)
(tradestats-tot-pl (first (tradestats a))))

results))
results)

It was noted above that the first element in the reverse-chronological
tradestats list is the TRADESTAT structure that corresponds to the last
computation of the trades statistics.

This list can be graphed as a function of the parameter L. For mod-
els that have two relevant parameters, a heat map can be displayed
and analyzed for the desired statistics. Of course, visualizing data for
three parameters or more becomes a challenge, but various solutions
such as Matlab provide a reasonably easy-to-use functionality to repre-
sent graphically three-dimensional slices (heat map) through multidimen-
sional data.

Programatically, to find a subset of top-performing agents is relatively
straightforward. The function cluster-agents returns a clustering of any

166 STRATEGY DESIGN AND TESTING

trade statistic according to bins defined by splitting the range of observed
values equally in num-bins intervals.

(defun cluster-agents (agents what num-bins)
(labels ((getstat (a)

(let ((ts (first (tradestats a))))
(case what

(:tpl (tradestat-tot-pl ts))
(:lrt (tradestat-average-logret ts))
(:wtl (tradestat-win-to-loss ts))
(:pcp (tradestat-percent-profitable ts))
(:pff (tradestat-profit-factor ts))))))

(let* ((stats (mapcar #’getstat agents))
(minstats (min-list stats))
(maxstats (max-list stats)))

(multiple-value-bind
(numeric-predicates bins)
(interval-division-predicates-bins
minstats maxstats num-bins)
(let* ((agent-predicates

(mapcar #’(lambda (p)
#’(lambda (a)

(funcall p (getstat a))))
numeric-predicates))

(agent-clusters
(classify agents agent-predicates)))

(values bins agent-clusters))))))

This function would be invoked by evaluating, for example:

(cluster-agents *agents* :tpl 10)

It calculates the minimal and maximal values for the given statistic across
agents and proceeds by splitting that interval in num-bins equal length
bins and computes the associate predicates numeric-predictates to
determine whether a number is in a given bin. The function interval-
division-predicates-bins returns the predictates and the bins (in-
tervals):

(defun interval-division-predicates-bins (min-lvl max-lvl num-bins)
(let ((predicates-list NIL)

(bins-list NIL)

(subdivision (/ (- max-lvl min-lvl) num-bins))
(first-pred #’(lambda (x) (< x min-lvl)))

(first-bin (list :MIN_INF min-lvl))
(last-pred #’(lambda (x) (>= x max-lvl)))

(last-bin (list max-lvl :PLUS_INF)))

Simulating Agent-Based Strategies 167

(list-append predicates-list first-pred)

(list-append bins-list first-bin)
(dotimes (i num-bins)

(let* ((bin-left (+ min-lvl (* i subdivision)))

(bin-right (+ bin-left subdivision)))
(list-append predicates-list #’(lambda (x)

(and (>= x bin-left)
(< x bin-right))))

(list-append bins-list (list bin-left bin-right))))

(list-append predicates-list last-pred)
(list-append bins-list last-bin)

(values predicates-list bins-list)))

Those predicates are then transformed to agent-predicates that calcu-
late whether the agent’s statistic of interest is in a given interval (bin). This
is done by composing the standard numeric predicates by the getstat lo-
cal function. Finally the agents cluster list is computed via the very general
classify function. This function takes a list of things and predicates on
those things, then returns the list of bins that correspond to things to which
a consecutive predicate applies:

(defun classify (objects-list predicates-list)
(let ((bins-list NIL))

(dolist (pred predicates-list)
(let ((p-bin NIL))

(dolist (obj objects-list)
(when (funcall pred obj)

(list-append p-bin obj)))
(list-append bins-list p-bin)))

(values bins-list)))

Because the numeric predicates were defined on nonoverlapping bins
that cover the real line, the resulting bins are nonoverlapping, hence the
classification is exhaustive and without intersections.

The automation of such classification is an important tool for high fre-
quency trading, as will be seen in Part Two.

10.5 DEGREES OF OVER-F ITT ING

However realistic the simulation process adopted, one can never escape a
certain degree of data mining and over-fitting. Over-fitting appears in at

168 STRATEGY DESIGN AND TESTING

least three ways, two of which can be addressed but the third one less
likely:

1. However much data one processes, the choices of optimal parameters
and portfolio combinations are not necessarily stable in time. Market
regimes change sometimes to something that has never been seen before.
To address some of this concern, Part Two develops an adaptive agent
framework that helps mitigate such regime changes and ensure at least
a graceful decay of strategies (rather than blow-ups).

2. Even if the above concern is addressed and confidence in the robustness
of the model is gained, there is no guarantee that the trader (be it au-
tomatic or human) would necessarily perform with the same discipline
in the future. For humans, the learning process comes with time, but
no one is infallible and awake and ready to trade 24 hours a day. Elec-
tronic automated trading environments also experience power downs
and disconnects. Part Four develops a framework for minimizing such
operational problems.

3. Assume now that items 1 and 2 have been addressed and that one
has built a robust adaptive automated trading framework tested on an
ECN’s simulated environment. At that point one is a long way ahead
(and I of course hope that this book contributed to the success!). But
one is not fully there yet because of the fact that the market, as dis-
cussed in the Introduction, is a complex adaptive system. The fact that
the trading system is now a member of the market means that the market
has changed, and will have to adapt to it, in its own unpredictable way.
Of course, such nonlinear feedback is small when the system’s trade size
is small relative to the whole volume turned around by the other par-
ticipants. Part Three presents some trading execution algorithms that
are designed to minimize the market impact. However, the limitation is
inherent in the nature of the market itself, and no one can do anything
about it. One has to accept a certain degree of market uncertainty, how-
ever well-researched and designed is the framework. At the end of the
day, no pain, no gain and no pay, no play!

With this healthy balance of enthusiasm and fatalism it is now time to
attack the topic of adaptation.

Part

Two
Evolving Strategies

W ith the agent-based framework introduced in Part One for the basic
estimation techniques, indicators, and models, we are ready to move on

to the next level of sophistication. Part Two introduces a series of concepts
that help tackle the higher complexity of the markets at lower timescales.
Those timescales have become increasingly dominated by electronic trading
and reflect the growing competition for liquidity and speed of execution.

The arms race unfolding in this area is creating an environment where
patterns are more transient and behavior less stable and participants learn
from each other faster. More efficient computing and execution technologies
are fighting to match the increasing flow of information and orders.

Thus the high frequency world presents novel opportunities and poses
at the same time new challenges. To navigate successfully the ever-evolving
markets, I further draw on concepts that come from evolutionary theory and
learning in order to endow strategies with the characteristics of flexibility
and adaptability.

The crux of the matter lies in designing trading systems that exhibit at
the same time opportunism, robustness, and flexibility. Opportunism means
the ability to continually find new money-making opportunities. Robustness
means to efficiently latch on to those opportunities while they last, and flex-
ibility means to gracefully survive regime changes when these opportunities
go away. The confluence of these three attributes is a difficult task to achieve
in one single design and this part focuses on some of the progress I have made
in this direction.

In reality, the distinctions between the three goals are more blurred than
at first sight. Humans and animals combine them unconsiously. The phrase

170 EVOLVING STRATEGIES

that comes to mind when one thinks about this goal is for the trading sys-
tem to have characteristics of an autonomous adaptive agent (an AAA). The
ideal result is, of course, to have an AAA that generates stable positive per-
formance over time. The framework for autonomous agents has been intro-
duced in Part One and here it is expanded to contain elements of adaptation.

The modern paradigm that I feel is ultimately appropriate to tackle the
problem is artificial life. AL itself is very much a work in progress and a hot
topic of current research. It blends ideas from biology, theory of complex
systems, control theory, and robotics. It allows us to disentangle adaptation
and learning and recombine them at will into evolutionary models that in-
clude shares of Darwinian and Lamarkian ideas. Most and foremost it is
the science of artificial autonomous agents. It does not claim to be solving
or even addressing the hard semantic problems that artificial intelligence is
attempting to tackle. Yet it sheds a lot of light on the emergence of self-
organization and behavioral complexity in animal-like digital creatures and
provides very efficient ways of constructing such creatures.

Coming back to the three fundamental goals of the AAA, opportunism
is the difficult part as it is the most human and nonobjective of the three. It
entails more than a random or blind search for strategies and is based partly
on intuition of what should work and partly on prior knowledge of what has
worked. Some of this prior knowledge is taken in the form of pre-existing
possible strategies from Part One.

Assuming that the set of opportunities is finite and known (and thus does
not need to be continuously discovered), the main challenge then becomes
to design a strategy that will optimally exploit the current best opportunity
or pattern and gracefully transition to the next behavior when needed. The
focus here is to discuss several possible avenues to achieve such control.

This set of opportunities is represented by a set of strategies that are
compatible with certain repeated market regimes. It is argued that the con-
cept of regime (and changes of regime) can be seen through the prism of a
strategy compatible with it. Different classes of trading models can in gen-
eral provide robust indicators of such different types of regimes. To figure
out what regime is most likely to be in force, scale-invariant fitness mea-
sures for strategies are introduced. The concept of fitness feedback control
is the first step toward ensuring graceful degradation of performance of a
single strategy that finds itself negatively affected by a market regime it is
not adapted to.

Building up from the study of regime persistence viewed through those
scale-invariant fitnesses, automated model-switching algorithms are im-
plemented. Those aggregate agents are called swarm systems and pro-
vide an adaptation method that is based on switching decisions within
a parametrized population based on simple individual models. This

Evolving Strategies 171

meta-process is simple from a control-theoretic perspective but provides al-
ready nontrivial gains in performance relative to static choices we explored
in Part One.

The next step comes from embedding more complexity into the switch-
ing strategy itself by explicitly introducing reinforcement learning techniques
into the swarm decision making. We discuss here the main concepts of su-
pervised and reinforcement learning and comment on the subtle interplay
between adaptation and learning in an evolutionary context. The idea be-
hind the concept of the learning swarm is to introduce a continuous explo-
ration versus exploitation activity that searches for the best control param-
eters while the market is cycling through different regimes.

Hence, in a nutshell, instead of embedding complexity into one agent,
one uses a whole swarm of agents to create a set of potential behaviors. The
agent swarm then chooses a subset of the fittest that is then implemented in
real trading.

The strength of this methodology lies in its openness to innovation.
Humans can continuously contribute new ideas to the swarm that it will
or will not decide to allocate some risk to, depending on performance. I am
currently exploring ideas from certain AL techniques to automatically search
for new potential behaviors to add to the swarm.

I hope that this part endows the reader with a solid start for the further
exploration and design of profitable and robust adaptative trading agents.

CHAPTER 11
Strategies for Adaptation

P art One introduced the agent-based representation of a trading strategy
and an architrecture for running concurrently a set of trading agents. In

this framework, the agents are operating autonomously and may communi-
cate with each other. Part Two builds on that design to endow the trading
agents with adaptive features, either as a group or as individuals.

First of all, the problem needs to be framed correctly in order to have
a clear picture of the goals and benefits of an adaptive behavior. Then one
needs to formulate the external constraints or features that the strategies
should be adapting to.

11.1 AVENUES FOR ADAPTATIONS

What, first of all, is adaptation, and to what?
There are three main universal aspects of systems that exhibit adaptive

behavior:

1. The system is endowed with a reserve of potential strategies or tactics.
2. The system is endowed with a set of criteria, driven by internal or ex-

ternal factors, for making choices between these strategies at any point
in time.

3. The system makes those choices in order to achieve a certain goal under
a certain set of constraints.

For a trading agent, be it human or robot, to exhibit adaptive behavior
is to be able to change its trading strategy or tactics when certain market
or PL factors warrant it, while maintaining the goal of profitability under
constraint of maximal allowed drawdown. This reserve of strategies can be,
for example, a parametric family of strategies of the same kind, or a discrete
set of semantically different strategies.

173

174 EVOLVING STRATEGIES

Given the preceding, there are three principal ways to set up an adaptive
trading system:

1. Swarm: Here the different potential strategies are represented by a set
of nonadaptive (constant parameters) agents running in parallel in pa-
per trading mode. Every agent’s performance is assessed in real time
according to a certain criterion, and a subset of well-performing agents
is allowed to trade.

2. Smart: Here the single agent learns to change its internal strategy via a
reinforcement mechanism that rewards it for good behavior and takes
points away for bad behavior.

3. Scary: This is the swarm of smart agents!

An analogy can be drawn with ways that people manage trading busi-
nesses. The swarm model is similar to a large trading operation with lots of
traders with diverse styles. They are all good at certain things, but not at
others. One trader is good at capturing trends in commodities, another is
great at exploiting discrepancies between swaptions and caps, yet another
refuses point blank to take a view on the direction of the stock market and is
only interested in trading the spread between companies in the beverage sec-
tor. But the beer trader cannot tell a cap from a sock, the vol trader thinks
people get life for selling crack spreads, and the sugar trader can’t figure
out why Chablis should cost more than Ribena. So each trader sticks to its
own style.

As it happens, for each style and asset class, there are periods when that
style is profitable and periods when it is not. Commodities do not trend all
the time, correlation is not mispriced that often, and no, unfortunately, juice
is usually not pricier than wine. So the CIO comes in, takes a look at the
relative merits of this or that style, and allocates risk between the traders.
The CIO does not fire traders if they don’t perform all the time, but just
reduces their risk until they become profitable again.

Compare this to a super-smart hedge fund manager. He does not need
anyone around him, just a bunch of screens and donuts. He’s traded lots of
different markets, survived a couple of crashes and his own blow-ups, and
learned when to call and when to fold. Like Mr. Keynes, he’ll change when
the facts change.

Then imagine putting a group of super-smart managers together. They
need to be reined in, from time to time, by an even smarter CIO, who
channels their hyperinflated egos into a cooperative world domination pro-
cess by steering them away from stealing each other’s donuts and risk allo-
cation. This swarm of masters of the universe can quickly become scary, but
at this point it is just, thankfully, science fiction!

Strategies for Adaptation 175

Part Two discusses both the swarm and the smart systems while I con-
tinue my work on the scary ones.

Given the conceptual understanding of these possible approaches to
adaptation, one still needs to formulate the goals and the constraints of an
adaptive trading strategy to be able to implement those ideas.

11.2 THE CYBERNETICS OF TRADING

One of the aims of this book is to demonstrate to the reader that designing
trading strategies based on the autonomous adaptive agent paradigm pro-
vides a basis on which a robust trading business can be constructed. Built-in
robustness should be a key feature of any serious automated trading business
and an important factor of its long-term survivability.

Part One addressed the question of completeness by introducing the
FSM representation of the control system of an agent. Completeness is a
first step toward robustness, as it ensures operational continuity in what-
ever state of the world the agent finds itself in.

The robustness discussed here pertains to the strategy’s performance,
that is, its money-making capability across different market regimes. The
goal is to come up with an architecture that ensures the strategy’s adaptation
or, at worst, graceful decay when the market regime changes.

The AAA approach brings forth concepts of adaptation for the design of
self-correcting strategies that are more robust than the traditional constant
parameter strategies discussed in Part One.

Adaptive and self-correcting systems are characterized by control mech-
anisms that have a series of feedbacks. These feedbacks dynamically change
the parameters of the system in order to achieve certain implicit or explicit
goals. The feedbacks usually compare a current observed external state of
the system with a desired state, and change the internal control parameters so
as to reduce the distance between those states. This concept is at the essence
of cybernetics, and is epitomized by Figure 11.1.

For example, the AGRESSOR algo encountered in Chapter 10 was built
exactly on the above principle of feedback. The desired state is a certain mar-
ket position, the current state is the actual position, and the control mecha-
nism is to issue an order quantity for the difference between the two. When
executions come, either the desire is fulfilled, or there is a shortfall and an-
other order is emitted recursively to cover the shortfall.

In a device, like a thermostat, the goal is very clear and so is the mech-
anism. Even filling a sink involves feedback: There is a source with a tap, a
sink with a plug, and someone tells us the amount of water needed. Easy.

176 EVOLVING STRATEGIES

Desired

State of the

System
Observed

State of the

System

SystemControl Signal

Anticipatory

and

Optimization

Module

Comparator

F IGURE 11.1 General Cybernetic Feedback

But now take a trading strategy. What is its goal? It is to make money.
There is a sink where it can lose money, so it needs to implement a plug. Its
decision-making mechanism may be a source, but it is an uncertain, leaky
tap that can sometimes pour money straight down the sink hole. Although
the principle of feedback is very intuitive, it is not always obvious how to
pose the problem correctly in order to implement it efficiently.

My stance is that capital preservation is a primary goal in trading, and
capital growth is second in line. Of course, there is no free lunch, and there
is no growth without risk. One has to pay to play, but one also needs to
be able to stay in the game long enough in order to have a chance to win.
Managing downside risks relative to potential gains should be the guiding
principle for a successful and robust trading business.

Given that the ultimate goal of the strategy is to make money, and that
the strategy needs some breathing space to take risks, how then one is to
measure the distance between the actual and the desired state? Is the strategy
achieving its goal?

Herein lies part of the problem, but also part of the solution. It is the
vagueness in the definition of external state that lies at the root of the diffi-
culty in designing the control loop.

Strategies for Adaptation 177

In the discussion regarding the swarm paradigm of adaptation, on what
basis would the CIO decide to reallocate risk from a trader who underper-
forms to a trader who performs better? Is it with a concrete performance
goal in mind or a certain benchmark?

From the questions above, the intuition arises that the concept of the
external state of a strategy is related to some criterion that measures its be-
havior. To implement the adaptation feedback loop one then would need to
understand how far the current behavior deviates from the desired behav-
ior. A numeric criterion that measures the behavior of a decision-making
strategy is called a fitness measure.

The concept of fitness comes from the evolutionary ideas of Darwin
and Lamark, and was formalized when genetic algorithms were introduced
into computer science in the 1960s. Ranking simulated organsims by fitness
provides a numeric selection criterion that helps retain the best subset of the
population at each genetic algorithm iteration.

In absence of a guaranteed source of profit, the principles that apply for
designing an adaptive control system for a trading agent are not based on
the concept of optimal goal. One cannot demand from a trader to make a
guaranteed million, unlike a thermostat that will, under most circumstances,
achieve the temperature in the room to be 20◦C. Instead, similar to the evo-
lutionary theory, the design for adaptation is based on a criterion that com-
pares relative behaviors, and dynamically chooses the best.

In the next chapter, various possible fitness measures are discussed for
the purpose of evaluating and comparing trading strategies. A basic adapta-
tion mechanism, the fitness feedback control (FFC), is introduced.

The fitness feedback control mechanism allows the market risk exposure
of a trading agent to be adapted to its own theoretical performance that
comes from paper trading. It creates a simple adaptation of the agent to
the current market state. It is basically a switch that turns the agent’s risk-
taking off when it stops performing, and turns it back on when it starts
performing again.

The idea behind the FFC, although simple, is the first step toward ensur-
ing robustness, because it reduces drawdowns of any trading strategy that
has persistent up-run and drawdown behavior.

The behavior of nonadaptive strategies is closely related to the behavior
of the markets and the implicit market states. Markets often go through
regime changes, and a particular strategy goes in and out of favor, reflecting
subtle changes in a particular market feature that it tries to exploit. Hence it
is argued that the most efficient way of looking at market regimes is through
the prism of a diversified set of nonadaptive models.

Putting the above intuitions together, a swarm trading methodology is
formalized. It works by dynamically supplying risk capital to a subset of

178 EVOLVING STRATEGIES

strategies out of a pool of potentials, based on the feedback provided by
the individual fitnesses. The swarm decision-making process itself can be
evaluated by computing a measure of its efficiency over a wide variety of
model sets and market regime switches.

Further on, concepts are discussed pertaining to the design of a trad-
ing agent using the smart paradigm of adaptation, where a reinforcement
learning mechanism is directly embodied into an agent’s control system.

CHAPTER 12
Feedback and Control

T his chapter introduces the concept of fitness feedback control. It is the
basic adaptation mechanism of a trading agent to its own performance

and forms the basis on which robust trading strategies are built.

12.1 LOOKING AT MARKETS THROUGH MODELS

At any point in time, the central question for a robot is how to optimally use
its actuators in response to a stimulus from a sensor, in order to maximize
the probability of achieving a certain pre-stated goal.

Similarly, for a trading agent, the central question is what position to
have in the market in response to new information arriving, in order to max-
imize the probability of return under a risk constraint.

12.1.1 Internal World

The important point to notice is that the internal world of any AAA can be
quite different from the real world in its fullness. Let us start with humans
who only can sense a small part of the electromagnetic spectrum. Insects
perceive hardly any colors. Plants do not have any eyes so they sense the
light in a very different way than we do, yet many flowers tend to follow
the sun and close themselves at night. Bacteria have chemical sensors that
help them to move in the direction of nutritients. Similarly, robots sense
their position and obstacles from a variety of sonars and cameras. Although
the perceptions and internal represenations of real-world facts are very dif-
ferent in different species, they are nevertheless sufficient to achieve each
organism’s goal.

179

180 EVOLVING STRATEGIES

Trading strategies use a variety of filters, measures, and indicators to
decide on their market positioning. Their internal world representation con-
sists of detecting the current state of the market, according to their vision.
That state is different in nature from what humans would perceive. To give
a concrete example, take the simplest trend-following system based on a sin-
gle moving-average. By merely glancing at the price charts, humans can see
trends very clearly and in their fullness. The trading strategy, on the other
hand, sees only a binary set of states {Downtrend : (P <= MA), Uptrend :
(P > MA)}. There is a definite loss of fidelity from the human visual per-
ception of the full picture of the trend to the binary decision set the
model sees.

In robotics, the description of the world based on the human perception
is called distal, and the one based on the robot’s representation is called prox-
imal. The aim is, of course, to build sensors for the AAAs that closely reflect
the human vision of the world, achieved via our brains’ full information-
processing capabilities. This is the same goal in any advanced technology
that is designed to assist and supersede humans in daily tasks.

In the systematic trading endeavor, several avenues that bring one closer
to that goal are discussed below. Namely, in this and next chapter an implicit
approach is built on a feedback between strategy performance and strategy
behavior. Then later on, an explicit approach based on pattern recognition
and learning algorithms is explored.

12.1.2 Strategies as General i zed F i l ters

As pointed out previously, the dynamics of markets exhibit a fair share of
instability and complexity. The purely statistical analysis of price dynamics
certainly helps in understanding some of that complexity, but gives little clue
as to how to exploit it efficiently. At the end of the day, statistics are statistics
and do not fully answer the immediate fundamental question of control in
trading: “What should my position be right now?”

In order to elucidate the solution to this problem one should first ask,
“What should the strategy observe and adapt to?” Intuitively, one thinks of
observing a market regime and adapting to a regime change, for example
choosing a trend-following approach in a trending market and switching to
a mean-reversion strategy in a sideways market. Hence part of the task is to
elucidate a workable concept of market regime.

Part One explored various types of simple nonadaptive strategies that
are particularly suited to certain market environments. If that environment
changes, the strategies tend to perform poorly and go into drawdown.
Instead of saying, “The market is in a trending regime because I see a

Feedback and Control 181

trend,” one could also say, “My trend-following strategy is performing well
hence the market is in a trending regime.” Thus one could replace a sub-
jective concept of a market regime by a concrete observable performance
measure stemming from a strategy that is tuned to perform well in such
regimes.

Why was the human observation of a trend qualified as being subjec-
tive? Simply because, despite the fact that most people see trends (including
the efficient market theorists even though they won’t admit it), they do not
see them exactly the same, that is, not everyone would agree where exactly
a trend starts or finishes. As alluded to previously, our internal world comes
from observing with our eyes and interpreting, or modeling, the external
world with our minds. Despite the fairly high degree of coherence of per-
ceptions of the external world by our society, it is still the case that inter-
nal representations vary from one individual to another. This is why visual
pattern recognition is difficult to formalize as was discussed in an earlier
chapter.

12.1.3 Impl ic i t Market Regimes

The basic thesis of this section is that a workable concept of market regime
is already embedded in the performance of a simple nonadaptive strategy,
and that regime changes can be inferred from the change in performance of
such a strategy. This implicit approach is efficient in three major ways:

1. It reduces the complexity of the sensing problem by internalizing the
concept of market regime into a suitable numeric fitness measure.

2. It tackles regime changes via the observation of suitable changes in that
fitness measure.

3. It allows implementation of the fitness feedback control on the strategy,
which enhances its reward-to-risk ratio by reducing drawdowns.

Figure 12.1 illustrates the first point, where the fitness measure is simply
the performance equity curve. One observes that the performance over time
of the above strategy exhibits noisy trends. Those trends are reflecting the
fact that the market regime changes, and the strategy goes periodically in
and out of favor. Here it can be clearly seen why that is the case: The market
goes visually from trending to consolidations, and the strategy either latches
on to the trend or gets whipsawed.

On the other hand, analyze Figure 12.2, showing a different strategy.
Here time is event time, that is, new trade. It is much less obvious as to why
the strategy has such swings in performance. It is visually very difficult to

182 EVOLVING STRATEGIES

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F IGURE 12.1 Trend-Following Strategy and Price Action

say that the market behaves differently in periods of up-run and drawdown
of the strategy, yet something subtle is happening. This is a mean-reversion
strategy that is tuned to a certain interval of frequencies, and it happens
that the market has been changing the oscillation frequency in a way barely
perceptible to the human observer.

The second example illustrates well a situation happening in high-
frequency systematic trading. The intraday price action has periodic bursts

0.4
Dec-96 Apr-98 Aug-99 Jan-01 May-02 Oct-03 Feb-05 Jul-06

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

–0.2

–0.1

0.1

0

0.2

0.3

0.4

0.5

0.6

0.8

0.7

F IGURE 12.2 Mean-Reversion Strategy and Price Action

Feedback and Control 183

of volatility and regimes change quickly. It is very difficult to produce a re-
sponsive and timely statistical technique that would efficiently indicate that
a change in regime is happening. On the other hand, a trading strategy gives
one a very clear numeric answer as to whether the market is in a state that
corresponds to the range of regimes compatible with the strategy.

12.1.4 Persistence of Regimes

Let us come back, in the graphs preceding, to the extended up-runs and
drawdowns of the equity curve. This is happening because the losing and
winning trades of the strategies tend to be clustered in time. Each perfor-
mance cluster corresponds to a particular implicit regime of the market, and
the persistence of such a regime is categorized by the size of the respective
cluster (i.e., the cluster’s extent in clock or event time). Figure 12.3 makes
this concept more visual by showing explicitly the clusterings of winning and
losing trades (boxed).

This persistence of regimes implicit in the clustering of winners and
losers is observed across a variety of strategies. In Figure 12.4 the perfor-
mance graphs of various strategies from Part One are shown.

A natural question then arises: If there is a persistence of market regime
that is reflected in the peristence of up-runs and drawdowns of the equity

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

F IGURE 12.3 Clustering of Winning and Losing Trades

184 EVOLVING STRATEGIES

–2.E+05
Oct-95 Mar-97 Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

F IGURE 12.4 Strategies Up-Runs and Drawdowns

curve, how can such persistence be exploited for achieving enhanced perfor-
mance of such a strategy?

12.2 F ITNESS FEEDBACK CONTROL

The fitness feedback control (FFC) is the procedure that turns on or off the
risk-taking of a strategy when its measure of fitness rises or falls relative to
a certain threshold. It aims at exploiting favorable (implicit) market regimes
for the strategy and staying out of trouble during the unfavorable regimes.
The FFC algorithm is described by the block diagram in Figure 12.5.

It is an event-driven control loop that switches the trading on or off
depending on the fitness of the simulated strategy. The events are market
update or trade execution events that update the fitness measure. The FFC
collects statistics from the simulated strategy that has a constant size or risk
allocation per trade. The simulated strategy runs continuously, whether real
trades are allowed or not by the control mechanism. Thus the FFC can be
seen as a switch mechanism between the real-time parallel simulator and the
same strategy traded in the market. For the benefit of later chapters, let us
introduce the following definitions.

Feedback and Control 185

DATA

OMS

MARKET PLACE

STRATEGY
FSM

STRATEGY FITNESS
CALCULATION Φ

DESIRED MARKET
POSITION, ORDERS

FFC STATE: = LIVE FFC STATE: = OFF-LINE

NULL MARKET
POSITION, ORDERS

FFC
STATE

Φ < ϕOFF Φ > ϕON

FITNESS FEEDBACK CONTROL

OFF-LINELIVE

YES

NO NO

YES

F IGURE 12.5 Block Diagram of Trading Strategy as an AAA

Definition 2. Take a strategy S and an FFC based on the fitness function
� resulting in the FFC-controlled strategy FFC(S). A recalculation event ρ

is any event that updates the S’s state and/or the fitness �. A paper trading
event π is a recalculation event that induces a change in the theoretical po-
sition of S. A trading event τ is a recalculation event that induces a change
in the market position in FFC(S).

186 EVOLVING STRATEGIES

Oct-95 Mar-97 Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10

F IGURE 12.6 Some Long-Term CTA Performance

In the case that the measure of fitness is either the raw or smoothed
performance (P&L), the FFC is sometimes called trading the equity curve in
the context of hedge funds. It is used by some fund-of-funds investors to take
profits or enter into new investments, especially within the long-term trend-
following CTA space. Figure 12.6 shows an example of an equity curve of a
long-term trend-following CTA fund.

Indeed, looking at Figure 12.6, it can be seen that after up-runs in equity,
a correction follows, and those drawdowns then resolve themselves into the
next up-run. This corresponds to the alternating trending and congestion
regimes that are correlated across the majority of assets traded by CTAs. As
CTAs can be equally long or short, they tend to latch to both uptrends and
downtrends while getting whipsawed by congestions in between.

The FFC is an important stepping stone for the design of a robust and
efficient systematic trading infrastructure. It is also the first and simplest
example of adaptation, where the strategy adapts to its own performance.
The concrete implementation of it in the context of high-frequency trading
is discussed in Part Four. The next subsection makes explicit the appropriate
fitness measures to use in an FFC.

12.2.1 Measures of F i tness

Coming back to the AAA paradigm, the concept of fitness is any measure
that numerically evaluates the quality of the behavior of an agent. It is used
to rank agents by the quality of their behavior. In a very general sense, a

Feedback and Control 187

fitness should measure a behavioral signal-to-noise ratio, and should aim
to quantify how well the agent performs in an uncertain environment, in
relation to its goal.

In the context of trading strategies, the fitness should provide a reward-
to-risk measure that allows judgement of the current quality of the strategy,
and allows comparison across agents that operate on different time and price
scales. Hence there is a requirement for the fitness measure to be as scale-
independent as possible. This will appear clear in the next chapter, where an
adaptive trading system is designed with, at its core, an FFC implementation
of the switch between individual nonadaptive agents.

Part One discussed various measures of strategy risk, performance, and
reward-to-risk ratio. These statistics broadly fall into two categories:

1. Continuous Statistics: These measures compute statistics by taking a
time interval (e.g., a week) and sampling mark-to-market P&L at regu-
lar subintervals (e.g., minutes or ticks). Examples are continuous NAV,
Sharpe, omega, Sortino, return-to-drawdown, and so on.

2. Per-Trade Statistics: These measures compute statistics by taking a series
of trades (strategy events). Examples are trade NAV, percent profitable,
profit factor, average logarithmic return, and so on.

To gain intuition regarding the choice of the above statistics for candi-
date fitness measures, it makes sense to compare the simplest measure of fit-
ness, the equity curve (NAV or cumulative P&L), in clock time and strategy
event time for a low-frequency and a high-frequency strategy. Such compar-
ison is shown in Figures 12.7 and 12.8.

For the long-term trend-following strategy, the equity curve seems by
and large smoother in event time but the jury is out. The large step up in the
equity curve due to catching the outsize trend in the middle of the graph is
magnified in event time.

For the high-frequency strategy, the equity curve seems much smoother
in event time than in clock time. The main reason is that at those price scales,
the markets experience periodic pockets of activity and increased volatility,
and the amount of events (trades) per unit of clock time varies. This is es-
pecially true for strategies that aim at exploiting such volatility, like this ex-
ample of high-frequency mean-reverting strategy. As seen in Part One, when
one looks at tick charts in tick time versus intraday charts based on a regular
time division, one observes a much greater smoothness in price action.

Thus the appropriate time representation of the performance of the
strategy is a function of its nature. Here are some stylized facts about what
one should expect the equity curves to be for the broad class of trend-
following and mean-reverting strategies. These two are characterized by

188 EVOLVING STRATEGIES

0
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

20 40 60 80 100

F IGURE 12.7 NAV in Clock and Strategy Event Time for TF Strategy

the difference in the win/loss ratios and percentage of profitable trades. TF
strategies tend to have a high win/loss of 2 to 3 and a low percent profitable
of 35 to 45 percent. MR strategies tend to have a low win/loss of 0.8 to
1.2 and a high percent profitable of 55 to 65 percent. Their stylized equity
curves have been discussed in Chapter 9 and are shown in Figure 9.1.

From stochastic control theory it is known that the smoother the pro-
cess, the more effective it is to potentially control [see Astrom, 1996]. The
reason for this is that a higher signal-to-noise ratio gives higher predictabil-
ity of the future path of the process. Hence the smoother the fitness measure,
the more effective the fitness feedback control should be based on that fit-
ness. In my own experience, the appropriate fitness measure to implement
the control is a function of the frequency and nature of the strategy. For
mean-reversion trading, event-driven fitness measures are the most appro-
priate, whereas for momentum trading, clock-time periodically resampled
measures are the smoothest.

Feedback and Control 189

1

Aug-98 Nov-98 Mar-99 Jun-99 Sep-99

–40000

–20000

0

20000

40000

60000

80000

100000

120000

140000

–40000

–20000

0

20000

40000

60000

80000

100000

120000

140000

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

F IGURE 12.8 NAV in Clock and Strategy Event Time for MR Strategy

Some appropriate scale-invariant measures of fitness are given below. To
be clear, call S a trading strategy (agent), e a market update event, τ a trading
event, NAV(S, τ) is the rebased cumulative total return since inception, and
EMA(α, x) is an exponential moving average of a variable x.

Rol l ing Trade NAV One of the first signs of trouble occurs when the NAV
starts to inch down. NAV by itself is a noisy indicator of persistence of per-
formance, because not a single strategy is expected to make money on every

190 EVOLVING STRATEGIES

single trade. Hence some smoothing is warranted. The following expression
computes the difference between the rolling NAV per trade event and its
exponential moving average bumped by a positive percent deviation.

RTNAV(S, λ, τ) = NAV(S, τ) − (1 + λ)EMA(α, NAV(S, τ))

For trend-following and longer-term strategies, instead of RTNAV one
should use the rolling PL fitness recomputed by the same formula but at
each price event. The band above the moving average of the PL or NAV is
a threshold below which the fitness is negative (meaning the PL or the NAV
is losing momentum).

Rol l ing Prof i t Factor The rolling profit factor is taken on a fixed window
of trades (events). Its definition is

RPFF(S, α, τ) = EMA(α, GrossProfit(S, τ))/EMA(α, GrossLoss(S, τ))

where GrossProfit and GrossLoss are respectively the sum of the winning
and losing trades, P&Ls. The rolling profit factor behavior is shown in
Figure 12.9, overlaid on the simple P&L measure in event time for the model
we just discussed.

Path-Length F i tness The path length fitness aims at measuring the de-
viation of the NAV of a trading strategy from a straight line benchmark
that has the same end points, but also takes into account the average

1
0.5

1

1.5

2

2.5

3

101 201 301

F IGURE 12.9 Rolling Profit Factor in Strategy Event Time

Feedback and Control 191

–30000

–20000

–10000

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10000

20000

30000

40000

50000

60000

F IGURE 12.10 Path Length Fitness Measure

return over that period, so that low or negative return is penalized. It can be
computed either at every trade or at every market update event. The defini-
tion is as follows: take the last T event observations (either market updates or
trades), then

PLF(S, 0, T) = (
NAV(S, T)
NAV(S, 0)

− 1)
1
T

√
T2 + (NAV(S, T) − NAV(S, 0))2

L[NAV(S), 0, T]

The first term is the period average return, or the slope of the straight line
between the beginning and end points of the NAV path. The second term is
the ratio of lengths between the straight line path and the realized path, as
shown in Figure 12.10.

The shortest path between two points is a straight line. This is the bench-
mark for an ideal strategy that has the same average period return as the
given strategy. Intuitively, the longer it takes for the strategy to go from one
point to the other, the less in tune it is with the market.

This fitness measure is scale-invariant and allows comparison of strate-
gies operating on different frequencies.

Relat ive Path-Length F i tness Actively traded strategies are usually com-
pared with a static long-only or short-only benchmark (index). The path-
length fitness of such a strategy can be computed by exactly the same formula
as above using the price process P(t) itself instead of the NAV. That fitness
of the price path itself will be denoted by PLF(P, 0, T). When P(T) > P(0),
SPLF is positive and reflects the path-length fitness of a long-only strategy.

192 EVOLVING STRATEGIES

When prices have been falling and P(T) < P(0), −SPLF is positive and re-
flects the fitness of a short-only strategy. Hence the relative path-length fit-
ness to a static benchmark (long or short, as determined ex post facto) is:

RPLF(S, 0, T) = PLF(S, 0, T) − |PLF(P, 0, T)|

With this definition in mind, the relative path-length fitness of a static strat-
egy (benchmark) is always negative or zero. This provides a numeric bench-
mark for strategy acceptance and a scale-invariant method of comparison
between strategies.

12.3 ROBUSTNESS OF STRATEGIES

The relative path-length fitness measures the quality of a strategy S relative
to a static long or short strategy on a given interval of length T (of market
update events).

As markets change, a strategy may go in and out of favor, and this is
reflected by the fact that its fitness, taken on a rolling interval [t, t + T], will
fluctuate.

A measure of robustness of the strategy can be obtained by gathering
the statistics of the fitness measure on a large amount of past or forward-
simulated intervals. Namely, take the set of market update paths on an in-
terval of length T:

� = {Pi (t)|t ∈ [0, T]}

Assume that the set of paths is chosen such that the distribution of P(T) −
P(0) is symmetric around zero (there is the same amount of upward-sloping
as there is downward-sloping paths and the slopes are distributed symmet-
rically). Compute D(S) the distribution of fitnesses RPLF(S, 0, T) on those
paths. Robustness is defined as the difference between the positive and neg-
ative masses of the distribution:

R(S) = D+(S) − D−(S)

By definition, the robustness of a static long-only or short-only strategy is
zero. This implicitly says that static strategies are brittle and this fact has
been tested time and time again in the real world.1

1As mentioned before, pension funds have been the major victims of the fallacy of
the efficient market hypothesis that prophesizes static asset allocations.

Feedback and Control 193

To say that R(S) = 0.5 is equivalent to saying that S outperforms any
static strategy 50 percent of the time.

This measure of robustness is a good starting point for studying adap-
tation of strategies to market conditions.

12.4 EFF IC IENCY OF CONTROL

Given a fitness measure �, the FFC mechanism transforms a strategy S, that
runs continuously in paper trading mode, into a strategy FFC(S,�) that
is executed in the market. The fitness measure triggers the control of the
position size of the traded strategy.

12.4.1 Triggering Control

As seen in Figure 12.5 that shows the FFC decision process, the control is
triggered, and the model FFC(S,�) is stopped from real trading, when the
measure of fitness of S falls under a certain threshold:

FFCOFF = {�(S) < φOFF}

At that point the FFC(S,�) strategy is flattened and no residual orders re-
main in the market. The FFC(S,�) is re-launched on the event when the
fitness of S passes above a threshold:

FFCON = {�(S) > φON}.

Intuitively φON − φOFF corresponds to the volatility of the rolling fit-
ness measure �(S)(t). Spacing the triggers apart by that measure helps avoid
control whipsaws. The difference φON − φOFF > 0 between the two triggers
should be bigger than the absolute value of the marginal fitness that an av-
erage winning or losing trade would generate.

Otherwise, one could be constantly going in and out of the strategy in
situations where the winning and losing trades are of the same magnitude
and follow each other (are intermeshed). This type of situation occurs at the
borders of the clusters of winning and losing trades, that is, at the transition
areas between regimes.

So the FFC control mechanism is not just based on the choice of � but
on the choice of the full control triple
 = (�,φON, φOFF).

194 EVOLVING STRATEGIES

12.4.2 Measuring Ef f ic iency of Control

The question naturally arises as to how efficient the FFC control mechanism
itself is given the control triple
.

Intuitively, for a particular strategy S, one could use the robustness mea-
sure R above to compare the distribution of fitnesses of S and of FFC(S,
),
on the same set of price paths �, namely

Eff (FFC(S,
)) = R(FFC(S,
)) − R(S)

As discussed, the measure of robustness R is based on the particular RPLF
fitness that compares the path of the NAV of a strategy to the path of prices
P on which the strategy operates.

As an example, take S to be a static long-only strategy. It has, by con-
struction, R(S) = 0. Take

 = (RTNAVF(S, 0, α), 0, 0)

Here the control fitness is chosen as the rolling PL fitness with λ = 0. The
thresholding parameters φON and φOFF are both zero. Also choose α and T
in such a way that the effective lookback period N = 2/α − 1 is of an order
of magnitude smaller than T. The FFC(S,
) is basically a long-only trend-
following system that is long when P(t) > EMA(α, P(t)) and flat otherwise.

The following Figure 12.11 shows the distribution D(FFC(S,
)) of the
relative path-length fitness. This compares with D(S) = δ(0) which is the

12%

10% D- = 36% D+ = 64%

8%

6%

4%

2%

0%

–0
.5

–0
.4

5

–0
.4

–0
.3

5

–0
.3

–0
.2

5

–0
.2

–0
.1

5

–0
.1

–0
.0

5 0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

F IGURE 12.11 Fitness Distribution for FFC Applied to Static Strategy

Feedback and Control 195

Dirac mass at 0 by construction. One sees that R(FFC(S,
)) > 0, hence
Eff (FFC(S,
)) > 0.

So a brittle, static, long-only strategy was transformed, via a very sim-
ple FFC process, into something more robust, namely a long-only trend-
following strategy based on an exponential moving average of prices.

Of course, judging the efficiency of a control process on only one be-
havior is not enough. The point about control is that all kinds of behaviors
should be rectifiable, at least to an extent.

Hence, to really judge efficiency of control, one should compute

Eff (FFC(
)) = Average{Eff (FFC(S,
))|S ∈ Strat}
where Strat is a large set of different strategies.

0
Oct-95 Mar-97 Jul-98 Dec-99

MR FITNESS(MR) FFC(MR)

Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10

500000

1000000

1500000

2000000

2500000

3000000

0
Oct-95 Mar-97 Jul-98 Dec-99

TF FITNESS(TF) FFC(TF)

Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10

500000

1000000

1500000

2000000

2500000

F IGURE 12.12 FFC Test Results for a Particular Control Triple

196 EVOLVING STRATEGIES

12.4.3 Test Results

This is of course a daunting task, but it is an important step that I have
performed for studying adaptation. The interesting and encouraging result is
that the FFC is indeed efficient, when � is the RTNAV or the RPFF computed
on a reasonable lookback period (10–20 trade events).

To set up the extensive test, I took five parametric families of strategies,
CBTR(f, s), AMATR(α, β), SWTR(α, β), SWMR(α, β), and PCMR(α, β).
This constituted 100 strategies per parametric family, hence 500 strate-
gies in total. 200 paths were chosen of such a length that each strat-
egy had no less than 100 trades per path. Hence the sample consisted
of 200,000 individual strategy runs (S and FFC(S,
)) and correspond-
ing efficiency of control measures per strategy, Eff (S,
). The fitness triple

 = (RTNAV(0.05, 2/11), 0, 0). This means that FFC control was triggered
when NAV was falling below a 5 percent band above its 10-trade moving
average. The results of this extensive run are shown in Figure 12.12 and
show clearly that Eff (
) > 0.

0.003 0.005 0.008 0.010 0.013 0.015

alpha

Efficiency of Control Heat Map

la
m

b
d

a

0.018 0.020 0.023 0.025
–0.050

–0.045

–0.040

–0.035

–0.030

–0.025

–0.020

–0.015

F IGURE 12.13 Heat Map of Control Efficiency

Feedback and Control 197

12.4.4 Opt imiz ing Control Parameters

The extensive run above was performed for a particular triple
. The
RTNAV fitness function had fixed lookback period α = 2/11 correspond-
ing to averaging 10 trade events, and the λ = 5 percent. Also the trigger to
start and stop FFC were respectively RTNAV < 0 and RTNAV > 0, that is,
φON = φOFF = 0.

The goal is to find the optimal triple
∗ for which the Eff (
∗) is max-
imal. This is of course a very computationally heavy problem because it in-
volves running the above extensive simulation on a whole multidimensional
grid of parameters. Simplifying the problem and keeping the fitness trigger
levels at zero, (φON = φOFF = 0), one is left with a two-dimensional family
of control triples
(α, λ).

A heat map of Eff (
(α, β)) is given in Figure 12.13. It shows that the
area of the peak of control efficiency is reasonably spread out around the
optimal pair (α∗, λ∗).

CHAPTER 13
Simple Swarm Systems

T his chapter presents two versions of automated trading systems that are
direct applications of the research performed on the fitness feedback con-

trol and strategy switching. I nicknamed an original implementation of this
system “The Swarm,” and the name stuck. These systems are the precursors
of more complex methodologies discussed in the next chapters that contain
learning feedbacks at the agent and meta levels. Thus this chapter is just
the starting point, the skeleton upon which a full fledged swarm of scary
trade-bots can be built.

All the architectural subtleties of such systems are discussed in Part Four
and many concepts introduced here are important components for efficient
and robust implementation.

13.1 SWITCHING STRATEGIES

This section introduces the usage of the FFC for managing transitions be-
tween market regimes. The market regime was defined indirectly by putting
the emphasis on the performance of a certain strategy that is supposed to
perform in that regime. If that strategy performs well, then the market is in
the sought-after regime. Thus the strategy acts as a filter to discover what
regime the market happens to be in. More generally, a strategy can be seen
as a filter with the pass-band corresponding to the range of market regimes
where it performs.

If one can identify a diverse enough family of strategies that cover most
of the market regimes, then an automatic switching mechanism between
these strategies can be created, in order to achieve a robust continuous
performance during the transitions from one market regime to another. This
concept lies at the heart of the swarm systems discussed in this chapter. Here

199

200 EVOLVING STRATEGIES

the ground work is laid by discussing the mechanism of switching between
two strategies.

13.1.1 Switching between Regimes

Consider the price chart in Figure 13.1, where one can visually see trends
and congestion phases. Choose a mean-reverting strategy SWMR and one
trend-following strategy AMATR that were introduced in Part One. One
can study the difference in their performances over time, with particular
focus on periods when their RTNAV fitness measures are turning, as seen in
Figure 13.1.

The two strategies have mostly nonintersecting zones of their positive
and negative performance—this exactly fits the intuition that the two strate-
gies are supposed to perform in complementary market regimes.

As seen in the last chapter, the RTNAV can provide an efficient fitness
criterion for the FFC mechanism. This measure can also be used to rank
the strategies, in order to decide which to trade at a given point in time.
This intuition gives rise to the strategy switch algorithm (SSA) described in
Figure 13.2.

Figure 13.3 presents a comparison of the risk-reward statistics of:

� The sum of the original uncontrolled strategies (this is the classic ap-
proach in systematic trading to find a set of negatively correlated strate-
gies and combine them in an independent linear sum)

� The sum of the strategies where FFC is applied individually and inde-
pendently

� The SSA

It can be seen that the result of the FFC provides an improvement over
the linear sum and the switch methodology provides a further improvement.

13.1.2 Switching with in the Same Regime

Consider again the price chart in Figure 13.1 where one can clearly see trends
and congestion phases. If one now takes two mean-reverting strategies of
the same parametric family SWMR discussed in Part One, one can also
study the difference in their performances and the particular times when
their RTNAVs are turning. Figure 13.4 illustrates this.

It can be seen that the two strategies have a large intersection of their
positive and negative performance zones in clock time as measured by the

Simple Swarm Systems 201

0

USDZAR

Fe
b-

97

Fe
b-

98

Fe
b-

99

Fe
b-

00

Fe
b-

01

Feb
-0

2

Fe
b-

03

Fe
b-

04

Fe
b-

05

Fe
b-

06

Fe
b-

07

Fe
b-

08

TrendState RangeState

2

4

6

8

10

12

14

0

Fe
b-

97

Fe
b-

98

Fe
b-

99

Fe
b-

00

Fe
b-

01

Fe
b-

02

Feb
-0

3

Fe
b-

04

Fe
b-

05

Fe
b-

06

Feb
-0

7

Fe
b-

08

1000

2000

3000

4000

5000

6000

0

Fe
b-

97

Fe
b-

98

Fe
b-

99

Fe
b-

00

Fe
b-

01

Fe
b-

02

Fe
b-

03

Fe
b-

04

Fe
b-

05

Fe
b-

06

Fe
b-

07

Fe
b-

08

1000

500

1500

2000

2500

3000

Positive fitness of TF model reveals implicit Trend State

Positive fitness of MR model reveals implicit Range State

F IGURE 13.1 Fitnesses of MR and TF Strategies and Implicit Market
Regimes

202 EVOLVING STRATEGIES

Data

No

FFC Process Strategy 1

Desired Position P1
Fitness Φ1
FFC State K1 (L, O)

(L ≡ Live ; O ≡ Off-line)

SSA
Market
Position = P1

SSA
Market
Position = P2

O M S

Market Place

SSA
Market
Position = O

FFC Process Strategy 2

Desired Position P2
Fitness Φ2
FFC State K2 (L, O)

(L ≡ Live ; O ≡ Off-line)

(K1, K2) = (L, O) (K1, K2) = (L, L)

Φ1 > Φ2

(K1, K2) = (O, L)No

Yes

Yes

Yes Yes

No

No

F IGURE 13.2 Strategy Switch Algorithm

TF

Avg PL 76,393

183,885Avg Vol

Information Ratio 0.42

186,359

160,175

1.16

135,315

175,954

0.77

219,464

140,627

1.56

211,708

236,423

0.90

405,823

207,605

1.95

354,360

186,363

1.90

TF+MRMRFFC(TF)
FFC(TF)+
FFC(MR)

SSA
(TF,MR)

FFC(MR)

F IGURE 13.3 Comparative Statistics of MR and TF Strategies and SSA

Simple Swarm Systems 203

RTNAV, indicating that they see broadly the same market regime and tran-
sitions. Nevertheless, they differ in the timing of their performance turning
points, the absolute value of their equity curves, and in the amount of events
per unit of clock time (which reflects their different mean-reversion speeds).
The statistics of the three combinations are compared in Figure 13.5.

The switch provides an improvment over the individual FFC-filtered
trading strategies. It better exploits the same class of market regimes, namely
the mean-reverting states.

MR_S

Oct-95 Mar-97 Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10
0

500000

1000000

1500000

2000000

2500000

0

500000

1000000

1500000

2000000

2500000

FITNESS(MR_S) FFC(MR_S)

MR_M

Oct-95 Mar-97 Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10

FITNESS(MR_M) FFC(MR_M)

F IGURE 13.4 Fitnesses of MR Strategies from Same Family

204 EVOLVING STRATEGIES

0

500

1000

1500

2000

2500
3000

3500

4000

5000

Positive fitness of MR_S model reveals implicit
Short Term Range State

Positive fitness of MR_M model reveals implicit
Medium Term Range State

4500

Fe
b-

97

Fe
b-

98

Fe
b-

99

Fe
b-

00

Fe
b-

01

Fe
b-

02

Fe
b-

03

Fe
b-

04

Fe
b-

05

Fe
b-

06

Fe
b-

07

Fe
b-

08

0

500

1000

1500

2000

2500

3000

3500

Fe
b-

97

Fe
b-

98

Fe
b-

99

Fe
b-

00

Fe
b-

01

Fe
b-

02

Fe
b-

03

Fe
b-

04

Fe
b-

05

Fe
b-

06

Fe
b-

07

Fe
b-

08

0

AUDJPY

Fe
b-

97

Feb
-9

8

Fe
b-

99

Fe
b-

00

Fe
b-

01

Fe
b-

02

Fe
b-

03

Fe
b-

04

Fe
b-

05

Fe
b-

06

Fe
b-

07

Fe
b-

08

RangeState_S RangeState_M

20

40

60

80

100

120

F IGURE 13.4 (Continued)

Simple Swarm Systems 205

Avg PL

0.37

64,452
176,394

1.33 1.11
116,531
129,303

0.59
229,261
135,650

1.75
170,208
298,672

1.73
143,950
249,60271,198

134,108
0.53

169,368
127,458

MR_S FFC(MR_M)
FFC(MR_S) +
FFC(MR_M)

SSA(MR_S,
MR_M)MR_M MR_S+MR_MFFC(MR_S)

Information Ratio
Avg Vol

F IGURE 13.5 Comparative Statistics of Different MR Strategies and SSA

This idea is generalized below and gives rise to the maximizing swarm
process. It results in switching to the best performer within a parametric
family of strategies in order to increase the performance further.

13.1.3 Mechanics of Switching
and Transact ion Costs

Continuously switching (trading in and out) between strategies can be a
costly exercise if not performed properly and can erase any gains from the
improved methodology. Hence one needs to understand carefully how is it
to be implemented to reduce those costs to a minimum.

The first point to notice is that the methodology always operates in trade
event time and not clock time. The fitness measure, namely the RTNAV,
is only changing when the new realized or simulated trade information
comes in.

The block diagram in Figure 13.6 illustrates the high-level architecture
of the event-driven choice process. The important architectural feature is
that the switch resides between the price feed and the order management
system and gives the net total desired market position. The OMS is a com-
parator that brings in line the existing and desired model positions.

The above feature is particularly important in mean-reversion strategies,
which tend to reverse the whole position in one trade (as opposed to say trade
out of a long then take the short position). Sometimes either the FFC alone or
the switch warrants an exit from the strategy, when a reversal trade needs to
occur. As the FFC and switch operate as a concurrent simulator, they would
give this information on the same price tick as would a stand-alone strategy
trigger a reversal.

In many situations the effect of the switch on the market is nil. In par-
ticular, in the case of switching within the same parametric mean-reverting
set of strategies, one is tuning to subtle changes in mean-reversion frequen-
cies of the market. Very often the new optimal model has the same desired
position as the previously traded (optimal) one.

206 EVOLVING STRATEGIES

Data

SSA Process on
Selection of Strategies

Resulting Desired
Market Position = D1

OMS
Emits Order
For D1 – M0

Market Place

D1 – M0

M0D1

F IGURE 13.6 Diagram
of the Switch Process

13.2 STRATEGY NEIGHBORHOODS

Via the computation of their fitness, individual strategies provide a mech-
anism to decide on the prevailing implicit market regime. The FFC allows
limiting the drawdowns of the strategy when that regime changes, but also
turning the strategy on when the regime comes back.

If one has at one’s disposal enough varied strategies to cover most known
market regimes, one could, theoretically, transition from a strategy to an-
other via the FFC-based switch introduced in the last section. This would
be possible if the time (or number of events) it takes to transition is much
smaller than the extent in time (or events) of the individual regimes, that is,
if the FFC provides efficient enough control for the switch.

There is however a certain amount fuzziness in the behavior of the strate-
gies, as well as in the human perception of regimes. From the human percep-
tion perspective, this was seen when studying the mean-reversion strategy in
the previous section. It was noticed how it went in and out of favor, despite
the fact that changes in the market’s oscillation frequency were not percepti-
ble to the eye. A strategy tuned to a slightly different frequency would have
performed in a similar way, but gone in and out of favor at different times.
On the other hand, the trend-following strategy was shown to perform well

Simple Swarm Systems 207

Space of
Market

Regimes

Strategy 1
Parametric

Family

Strategy 2
Parametric

Family

pN

p1

qN

q1

F IGURE 13.7 Strategy Neighborhoods and Market Regimes

across a series of trending regimes that were perceived differently by the eye
and had different measures of signal-to-noise ratio.

From this one can deduce that the neighborhood of a strategy in the
space of its parameters covers a neighborhood of similar market regimes as
shown in Figure 13.7. Each strategy is a filter with a pass-band correspond-
ing to the set of market regimes where it performs. Intuitively, the mapping
between strategies and regimes that favor those strategies is continuous (in
the topological sense of the word).

Definition 3. Take a parametrically defined strategy S(p1, . . . , pn) and inter-
vals Ii = [pi − ai , p1 + ai] around each parameter value. The neighborhood
of S is the set

N[S] = {S(q1, . . . , qn)|qi ∈ Ii }

For practical computational purposes, a large discrete subset of the hyper-
cube N[S] is chosen, instead of the whole continuous set.

This continuity can be exploited by covering large areas of known mar-
ket regimes by a series of strategy neighborhoods. The different types of

208 EVOLVING STRATEGIES

strategies presented in Part One work in known stylized regimes (trend,
mean-reversion, acceleration, and so on), and their neighborhoods in the
parameter space cover a sizable portion of the set of regimes.

The strategies traded in a swarm system come from a collection of neigh-
borhoods that endeavor to cover a large region of market regimes.

Definition 4. The swarm strategy set is a collection of pairs

SSS = {(N1, �1), . . . , (Nm, �m)}

where each Ni = N[Si] is the respective neighborhood of a collection
{S1, ..Sm} of representative parametric strategies that exploit different
stylized market regimes via FFC based on appropriate control triples
{�1, . . . , �m}. The control triples are �i = (�i , φi

ON, φi
OFF) where �i is a

fitness function and φi
ON,OF F the control thresholds specific to the neighbor-

hood Ni . The swarm agent set S AS = ∪m
i=1 Ni is the collection of all strate-

gies involved.

Notice that for each stylized regime, one can choose the most ap-
propriate fitness function. The appropriatness is based on the efficiency
of the control mechanism discussed previously. For example, for mean-
reversion regimes, fitness functions based on trading events appear to be effi-
cient, whereas for momentum strategies, fitness functions based on time are
efficient.

13.3 CHOICE OF A SIMPLE INDIV IDUAL
FROM A POPULATION

In Figure 13.8, a hypothetical path in time of the unfolding market regime
is indicated. The switching mechanism introduced in the last chapter allows
lifting that path back to the space of strategies. This is the essence of the
swarm systems. They exploit this continuity and covering property, and al-
low for automatically tuning into the prevailing market regime by either
trading all the fit strategies, or continuously switching to the fittest strategy
in each relevant neighborhood.

Of course, as the market is a complex adaptive system, the set of all
possible regimes is not known. This does not mean that the exercise is futile.
It allows performance of real-time risk management that adapts to the new
and unfolding circumstances. If the market regime is not covered by the set
of the swarm’s strategy neighborhoods, then the swarm would stay out of

Simple Swarm Systems 209

Space of
Market

Regimes

Strategy
Parametric
Family

qN

q1

q(t)

R(t)

F IGURE 13.8 Path of Market
Regimes Lifted into the Space of
Strategies

trouble by turning all the strategies off until the regime changes back to one
of the covered ones.

Before moving on, it is useful to define the concurrent versions of the
events defined for a single FFC in the last chapter. Namely, for a single strat-
egy S, the recalculation, paper trading, and trading events were defined.

Definition 5. Take a swarm strategy set SSS. At each market data update
event e the concurrent recalculation event R(e) is the union of concurrent
individual recalculation events ρ(s, e) for each strategy s ∈ S AS. The con-
current paper trading event �(e) is the union of concurrent individual paper
trading events π (s, e).

The following definitions formalize the two sets that define the choice
of strategies used in the two swarm systems presented here.

210 EVOLVING STRATEGIES

Definition 6. Take a swarm strategy set SSS = {(N1, �1), . . . , (Nm, �m)} and
respective FFC thresholds {φON

1 , . . . , φON
m }. At a given concurrent recalcula-

tion event event R(e), the swarm fit subset SF S(R) ⊆ S AS is defined as

SFS = ∪m
i=1

{
s|s ∈ Ni&�i (s) > φON

i

}

The swarm top subset STS(R) ⊆ SF S(R) is the collection of strategies with
maximal fitness

STS = ∪m
i=1

{
s∗
i |s∗

i ∈ Ni&�i (s∗
i) = max(�i (si)|si ∈ Ni)&�i (s∗

i) > φON
i

}

in each neighborhood Ni ⊂ S AS.

13.4 ADDIT IVE SWARM SYSTEM

In an additive swarm, the position in the market is the arithmetic sum of
the individiual model positions from the SFS. This means that a model will
participate in the market as long as its fitness is above its threshold of ac-
ceptability φON. The position thus varies gradually as the SFS changes.

Definition 7. Additive Swarm System. Every member of the SFS is participat-
ing in the trading process. This is just a linear combination of FFC-filtered
strategies independent of which strategy subset they belong to. The sizing
of each strategy is comparatively small (because many would be traded
at the same time) and the overall sizing of the portfolio changes almost
continuously.

Figure 13.9 shows the event-driven diagram of the linear swarm, which
is the simplest of the two systems discussed here.

The four main steps of the algorithm are explained as follows:

1. Each market data update e yields a concurrent recalculation event R(e)
on the set of participating strategies S AS.

2. Each strategy S is an agent that listens to the data update and recalcu-
lates its state and desired position via its FSM. It also updates its fitness
function �. Those two steps constitute an individual recalculation event
ρ(e). This recalculation event is done in parallel, but synchronized so
that all the FSMs and fitnesses of the strategies are updated by the end
of this step.

Simple Swarm Systems 211

OMS

Data

Market Place

FFC Process
Strategy 1

Position P1

FFC Process
Strategy N

Position PN

N

i = 1
PS = ∑Pi

F IGURE 13.9 Diagram of the Linear Swarm

3. The thresholding of the fitnesses is performed and the swarm fit subset
SFS is calculated. It is represented in the system as a synchronized list of
indices of strategies whose fitnesses satisfy the criterion � > φON.

4. All the desired positions of the SFS strategies are summed. This net sum
is broadcast to the order management system, which acts as a recursive
differentiator that aims at bringing this desired net position in line with
the market position of the swarm system.

The last aggregation step is an important design feature that helps re-
duce transaction costs. Even if, following a recalculation event, the SFS has
changed, it could still be that the total net position has not, and hence no
trading event would occur.

13.4.1 Example of an Addit ive Swarm

Presented in Figure 13.10 is an example where the SSS consists only of
one neighborhood N and one fitness function �. The swarm is run on
minute-by-minute data of a continuously traded market, the AUDCAD
exchange rate.

The family of parametric mean-reversion strategies SWMR(α, β, v, τ)
defined in Part One is used to build the neighborhood N1. The dynamic
parameters are α, which represents the minimal swing size multiplier

212 EVOLVING STRATEGIES

UNFOLDING FITNESSES IN TIME OF INDIVIDUALS IN A SWARM
(Time on X axis, Agents on Y axis, Fitness color-coded)

Series121

Time Evolution of Additive Swarm Membership

Series131

Series105

Series97

Series89

Series81

Series73

Series65

Series57

Series49

Series41

Series33

Series25

Series17

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

20
1

20
9

21
7

22
5

23
3

24
1

Series9

Time

In Out

Series1

F IGURE 13.10 Example of Additive Swarm Run

Simple Swarm Systems 213

Additive Swarm PL

Additive Swarm Membership (%)

30

25

20

15

10

5

0

–5

120%

100%

80%

60%

40%

20%

0%

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

F IGURE 13.10 (Continued)

parameter, and β, which represents the trailing stop-loss multiplier parame-
ter. Those parameters multiply a rolling volatility measure to ensure a min-
imal degree of scale invariance. The volatility is calculated by slicing the
lookback period by time intervals of length τ = 15 minutes. The lookback
period v = 1 will be fixed to one trading day to remove intraday seasonality
patterns.

214 EVOLVING STRATEGIES

Agents of the Swarm

Time

0.15

0.1

0.05

0
0 50 100 150 200 250 300

–0.05

–0.1

–0.15

–0.2

–0.25

–0.3

F IGURE 13.10 (Continued)

The following grid is used to define the neighborhood N1:

N1 = {SWMR(α, β, 1, 15)|α = 0.5, 0.75, . . . 3; β = 0.5, 0.75, . . . 3}
and the following event-driven fitness measure:

�1 = RTNAV(2/11, 0.1)

with thresholding criterion φOF F
1 = φON

1 = 0.

13.5 MAXIMIZ ING SWARM SYSTEM

The maximizing swarm is a strictly elitist choice mechanism, and only the
top-performing model is allowed to participate in the market for each strat-
egy type.

Definition 8. Maximizing Swarm System. Only members of the STS are
participating in the trading process, so it is only at most one strategy per
style neighborhood. The transitions between models are based on a switch
mechanism discussed below and can entail substantial changes in the overall
positioning.

Simple Swarm Systems 215

OMS

Data

Market Place

FFC Process
Strategy 1

Position P1
Fitness Φ1

FFC Process
Strategy N

Position PN
Fitness ΦN

Φj = max (Φi)
i = 1...N

PS = Pj where

F IGURE 13.11 Diagram of the Maximizing Swarm

Figure 13.11 is the event-driven diagram of the maximizing swarm. Its
algorithm is very similar to the earlier linear swarm and just differs by one
item. Namely, after the SFS has been calculated in Step 4, the set of strategies
of maximal fitness in each Ni is chosen, giving rise to the swarm top subset
STS. The aggregation in Step 5 is then done on the STS, before the net desired
position is sent to the OMS.

13.5.1 Example of a Maximiz ing Swarm

The example presented in Figure 13.12 takes two strategy neighborhoods,
N1 and N2, where N1 is the mean-reversion set chosen above. For N2

a trend-following set is constructed from the AMATR(α, β) family from
Part One. α represents the AMA’s lookback period and β the width of the
adaptive channel.

The following grid is used to define the neighborhood N2:

N2 =
{

AMATR(α, β)|α = 2
4 + 1

,
2

6 + 1
, . . . ,

2
20 + 1

&β = 0.02, 0.03, . . . , 0.10
}

216 EVOLVING STRATEGIES

Maximizing Swarm
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

F IGURE 13.12 Example of Maximizing Swarm Run

and the following event-driven fitness measure:

�1 = RTNAV(2/11, 0.1)

with thresholding criterion φOF F
1 = φON

1 = 0.

13.6 GLOBAL PERFORMANCE FEEDBACK CONTROL

Every model participating in a swarm system is usually endowed with its own
stop-loss mechanism that is either a function of the PL on the current trade
or on the history of recent trades. If the PL and hence the fitness falls below
a certain threshold of acceptability, the FFC would remove the strategy from
the SFS until its fitness recovers.

Usually the SFS would contain a series of neighborhoods of currently fit
strategies traded in the swarm. It is very possible that, at any given moment,
there is a concentration of positioning in such neighborhoods, meaning that
the majority of the strategies would be either long or short. Figure 13.13,
as an example, shows the time series of the overall exposure of the linear
swarm discussed in the section above.

One sees that this exposure varies over time and sometimes creates a hot
spot from a risk perspective—a concentration of risk and a potentially higher
overall volatility of the PL of the swarm. When swarm systems are traded
on several asset classes, those hot spots may be magnified even further.

Simple Swarm Systems 217

Additive Swarm Exposure
30
25
20
15
10
5
0

–5
–10
–15
–20
–25

1 228 455 682 909 1136 1363 1590 1817 2044 2271

F IGURE 13.13 Example of Additive Swarm Exposure

Data

Off-lineLive

Yes

No No

Yes

Swarm
process

Swarm desired
market position

Desired market
position, orders

GPFC state: = Live

Null market
position, orders

GPFC state: = Off-line

Swarm global fitness
calculation ∏

OMS

Market place

GPFC
state

 ∏ < ∏off ∏ < ∏on

F IGURE 13.14 Global Performance Feedback Control
(GPFC)

218 EVOLVING STRATEGIES

Markets periodically move through periods of stress (and sometimes of
extreme stress), and it is of paramount importance to manage the exposure
and risk dynamically. Situations of stress result in shocks to volatility and
correlation between assets. Despite the FFC operating on every single com-
ponent, swarm systems are still prone to be affected by such shocks, as they
may happen within the time frame of a usual trade and trigger stop-losses
across a large subset of active models.

One methodology to mitigate such shocks is to implement a global per-
formance feedback control that operates on the top level of the swarm, and
reduces overall positioning in situations of stress. It is an event-driven risk
management system that keeps track of the real-time PL of the swarm and
subsumes (overrides) the FFC control loop by resetting the exposure per
strategy. Its block diagram is shown in Figure 13.14.

The risk-reducing methodology is based on calculating rolling volatil-
ity bands around the PL time series of a non–GPFC-controlled swarm that
serves as a reference. The lower band provides the trigger to cut exposure
completely. The exposure is put back on again when the noncontrolled PL
reaches the upper band.

CHAPTER 14
Implementing Swarm Systems

F rom a collection of nonadaptive elementary trading strategies, the swarm
methodology effectively creates a more complex and adaptive agent that

participates in real trading.
The function of this aggregate swarm agent is to make a choice from

a set of potential candidates based on the fitnesses of each individual. Two
types of choices have been introduced, the purely elitist maximizing swarm
and a fitness-thresholded additive swarm.

The individual strategies are all running in parallel but they are not par-
ticipating in the market. It is only the aggregate swarm agent that is effec-
tively trading.

All the building blocks for the programmatic treatment of swarms has al-
ready been introduced before. In fact, the representation of trading agents in-
troduced in Part One has been a priori designed to naturally support swarm
systems.

In order to set up and run the swarm simulation, one has to collect a set
of individuals that constitute the swarm strategy set SSS.

For each event consumed by every member of SSS, the swarm fit subset
SF S is determined via the computation of individual agents’ fitness. This
computation can be greatly optimized by running the agent consume pro-
cesses in parallel (this works best for noncommunicating agents).

The aggregate swarm agent is defined as an instance of AGGRE-
GATEAGENT class. This aggregate swarm agent takes SF S as set of its mem-
bers. The update method on an aggregate agent then simply adds the indi-
vidual positions and emits the resulting order into the market.

Finally the fitness relevant to the aggregate swarm agent itself is com-
puted and stored.

The specific code pertaining to this process is described in the next
sections.

219

220 EVOLVING STRATEGIES

14.1 SETTING UP THE SWARM STRATEGY SET

The first step is to set up the swarm strategy set, represented by the list
SSS. This list is composed of triples (A,�, φ) of the agent’s class instance,
the fitness function that pertains to the FFC control of the agent, and the fit-
ness threshold under which the FFC blocks the agent from trading.

For example, a two-dimensional family of swing breakout SWBR(α, β)
agents is defined below:

(defparameter *SSS* NIL)

(defun create-SWBR-swarm (vollookback alphafactorlist
betafactorlist

&key (fitness-function #’LTDPL)
(fitness-threshold 0))

(dolist (alphafactor alphafactorlist)
(dolist (betafactor betafactorlist)
(let ((a (gensym)))
(setf a (make-instance ’SWBR

:vollookback vollookback
:alphafactor alphafactor
:betafactor betafactor))

(push (list a fitness-function fitness-threshold)
SSS)))))

14.2 RUNNING THE SWARM

Before running the swarm, the aggregate *SWARM-Agent* needs to be set,
as well as data collection lists:

(defparameter *SWARM-Agent* (make-instance
’AGGREGATEAGENT

:name "SWARM-Agent"))
(defparameter *SWARM-Agent-fitnesses* NIL)
(defparameter *SWARM-Agent-LTDPLS* NIL)

In order to perform the simulation of the swarm on a list of events, one
needs to specify the fitness function measure that is appropriate for judging
the quality of the FFC control. The swarm-ff is that function and can be,
for example, the relative path-length fitness discussed in the last chapter.

Implementing Swarm Systems 221

The switch swarm-type chooses between the additive or the maximizing
swarm.

(defun run-swarm (events swarm-ff &key (swarm-type :ADD))
(dolist (e events)

(mapcar #’(lambda (s) (consume (first s) e))
SSS)

(mapcar #’(lambda (s) (fitness (first s) (second s)))
SSS)

(setf *SFS* (remove-if #’(lambda (s)
(<= (first (fitnesses (first s)))

(third s)))
SSS))

(when (equal swarm-type :MAX)
(setf *SFS*

(max-list *SFS* #’(lambda (s)
(first (fitnesses (first s))))))

(push (if *SFS*
(mapcar #’first

SFS)
NIL)

(members *SWARM-Agent*))
(consume *SWARM-Agent* e)
(format T "Update SWARM-Agent completed %")
(fitness *SWARM-Agent* swarm-ff)
(format T "Update Fitness SWARM-Agent completed %")
(format T "SFS for event A is A %"

e
(mapcar #’(lambda (s) (name (first s)))

SFS))
(format T "Fitness for FFC-Agent A %"

(car (fitnesses *SWARM-Agent*))))
(push (funcall swarm-ff *SWARM-Agent*)

SWARM-Agent-fitnesses)
(push (LTDPL *SWARM-Agent*) *SWARM-Agent-LTDPLS*))

While the simulation is running, all the relevant position and PL data
are automatically collected into the *SWARM-Agent* class in order to be
analyzed at will. Finally, the specific fitness function pertaining to the effi-
ciency of the swarm agent is computed. Examples of such runs have been
discussed in the previous chapter.

CHAPTER 15
Swarm Systems with Learning

T he swarm systems presented in the last chapter are a particular way to
look at adaptation. The mechanism of adaptation was essentially the sys-

tematic choice of the fittest strategies among an a priori defined variety in
the swarm set. The strategies themselves were simple and the complexity
was concentrated in the design of the FFC-driven switch mechanism between
strategies at the top level. In analogy with robotics, the fitnesses computed
on all individual strategies were the agents’ sensors that helped to gauge
the likely state of the market. The control mechanism was the choice of
the SF S or STS sets given by the FFC switch and subsumed at a higher
level by the GPFC. The actuator was the OMS reacting to an aggregated
position signal.

The adaptation that a simple swarm system achieves presupposes know-
ing a range of market regimes and strategies that are able to exploit such
regimes. This collection of nonadaptive strategies is the set of the swarm ag-
gregate agent’s potential behaviors. The swarm agent derives its own action
plan from this set of potentials either by averaging (additive swarm) or by
elitism (maximizing swarm).

The persistence and change of market regimes is reflected in the perfor-
mance and decay of potential behaviors. The rate at which the performance
decay happens dictates the probability with which a particular behavior will
be abandoned by the swarm.

The GPFC gives an additional stopgap in the situation where the regime
changes suddenly to an unknown one. Then the system automatically trades
out of the market until a known regime is found again. But the system does
not learn anything nor does it have the ability to adapt to new facts.

This chapter presents ideas on how to make the mechanism of choice
for the swarm more flexible and endow it with a certain amount of learning
and exploration. The learning element is achieved by reinforcement from
rewards gained from choosing appropriate control parameters while the

223

224 EVOLVING STRATEGIES

swarm is going through a cycle of market regimes. The exploration element
is an area of active research for me.

15.1 REINFORCEMENT LEARNING

Learning is a very broad topic that permeates and brings closer many facets
of science. It is studied in neurosciences, psychology, control theory, artificial
intelligence, and artificial life. There are many learning techniques but their
goals fall mostly in two broad categories: recognition of perceptive patterns
and learning of behaviors.

Perception and pattern matching are usually implemented via supervised
learning techniques in which the system is presented with a series of examples
of the pattern to learn. It implicitly supposes a teacher who shows the system
different images of the same pattern and also images of other patterns that
do not belong to the type. For each image, it mentions right then whether
that pattern is of the sought type or not.

The learning of behaviors is a more involved matter. Behaviors unfold
in time, and it is only after the fact that one can judge whether one had done
the right thing or not. Like a child, the system either gets told off or gets a
reward. On the next time period, one changes the behavior so as to increase
the probability of being rewarded at the end of it. In order to do so, the sys-
tem gauges whether to use a previous behavior for which it got rewarded or
to explore a new one for which it may or may not get an even higher reward.
This delayed reward mechanism combined with a degree of exploration ver-
sus exploitation constitutes the essence of reinforcement learning.

15.2 SWARM EFF IC IENCY

In Chapter 12, “Feedback and Control,” a statistical measure of efficiency of
control was introduced. For a given control triple � = (�,φON, φOF F) and
strategy S, the efficiency measure Eff (S, �) is the difference between the ro-
bustness R(S) of the uncontrolled strategy with the robustness R(FFC(S, �))
of the FFC-controlled strategy.

For a particular strategy s, the robustness measure R(s) is determined by
comparing the masses of the left and right distributions of the relative path-
length fitness RPLF(s) computed on a symmetric set of past or forward-
generated market paths. The RPLF measures how well the strategy s per-
forms relative to the best static strategy (either long or short) on a certain
market path Pi (t) on the interval of length T.

Swarm Systems with Learning 225

The FFC is implemented by computing the rolling trade NAV �(s) =
RTNAV(s, λ, α) on the trade-by-trade time series of the strategy. When
� < φOF F the strategy falls out of the swarm fit subset SF S and becomes a
member again when � > φON.

In order to judge the overall efficiency of the FFC independently of the
type of swarm mechanism chosen, a measure Eff (FFC(�)) is computed by
averaging Eff (FFC(s, �)) on a wide set of strategies s. This gives a measure of
universality to the control mechanism over a diversified set of strategies and
time frames. As mentioned previously, it is thanks to this universality that
a swarm system composed of various styles of models can be implemented
using just one control triplet � across all strategies s ∈ SSS.

For swarm systems, the efficiency measure can be refined further. Call
SWARM(�) the aggregate trading agent resulting from the application of
the swarm process. Then one can compute

Eff (SWARM(�)) = R(SWARM(�)) −
∑

s∈SSS

R(s)

for an additive swarm and

Eff (SWARM(�)) = R(SWARM(�)) − Averages∈SSS(R(s))

for a maximizing swarm. This compares the robustness of the swarm agent
to either the sum or the average robustness of strategies in the swarm
strategy set.

To compute those measures, it either supposes running the swarm for
a long time, so that enough different sub-paths can be experienced by ev-
ery single strategy, or alternatively by backward or forward simulation. The
question arises as to what the optimal parameters (λ, α, φON, φOF F) are that
maximize the efficiency of the swarm control mechanism.

Simulation is good as a starting point for discovering the optimal pa-
rameters; however, the risks of over-fitting associated with both backward
and forward simulations have been pointed out. A more dynamic approach
is warranted and is based on reinforcement learning.

15.3 BEHAVIOR EXPLOITATION BY THE SWARM

Assume that a simulation has been performed on the collection of individual
strategies and helped determine the range of efficient enough parameters
for the FFC. This means that a neighborhood N has been found for the
parameter set π = (λ, α, φON, φOF F) where on average Eff (FFC(s, �(π))) >

0 for the collection of strategies s ∈ SSS.

226 EVOLVING STRATEGIES

In order to optimize the search for FFC parameters as the market data
unfolds, it is possible to implement search strategies inspired from reinforce-
ment learning. The following steps are an example:

1. Initialize the parameters by choosing a point π0 ∈ N.
2. Run the swarm with control triplet �(π0) on an interval [0, T] so that

enough statistics are gathered for every strategy s ∈ SSS.
3. Compute fitness measures RPLF(s) and RPLF(SWARM(�)) and deter-

mine the realized incremental rewards on [0, T]

K(SWARM(�(π0))) = RPLF(SWARM(�(π0))) −
∑

s∈SSS

RPLF(s)

for an additive swarm and

K(SWARM(�(π0))) = R(SWARM(�(π0))) − Averages∈SSS(RPLF(s))

for a maximizing swarm.
4. Determine the optimal parameter π0

∗ on the interval [0, T] that, in back-
test over that interval, maximizes K(SWARM(�(π∗

0))). For this the fit-
nesses of the individual strategies need not be recomputed, only the
RPLF of the swarm on a grid of parameters from N. The optimal reward
corresponding to that parameter is K∗.

5. For the next run on [T, 2T], choose the parameter π1 = π∗
0 with proba-

bility 1 − ε and a random parameter set from N with probability ε.
6. Go to Step 3 and run the swarm using the interval [T, 2T] with control

triplet �(π1). This is an ε-greedy algorithm and the probability ε is a
sigmoid function of ‖K − K∗‖.

The above search algorithm assumes that the optimal parameter set for
the next computational episode [T, 2T] is, with high probability, the back-
tested optimal parameter set for the episode [0, T]. However, it contains an
element of exploration by allowing the choice to be elsewhere in the set N
with a small probability ε, that is proportional to the deviation between the
observed reward K and the optimal reward K∗.

Other variations on this theme can be tested. For example, rather than
doing a grid search at Step 4, one could implement a genetic algorithm,
given that even in this relatively simple case, the search space is already four-
dimensional.

One could also use increasingly long episodes, so that instead of [T, 2T]
the interval [0, 2T] could be used at Step 5. The effect of this would be a
gradual averaging of optimal behaviors on longer and longer histories.

Swarm Systems with Learning 227

15.4 EXPLORING NEW BEHAVIORS

The ε-greedy search strategy described above contains a certain element of
exploration. It explores the viability of a new parameter with a certain prob-
ability and sticks to what is known to have worked the best with some other
(larger) probability.

This exploration is confined to the set of parameters of the same class
of strategies. It does not contain any fundamental element of innovation.

Innovation is a tricky part in any endeavor and is the crux for long-
term progress. A true exploration should contain true innovation, not just a
parameter search.

The first avenue toward innovation for the trading busienss is the in-
vention of new trading strategies by the symbiotic interaction of researchers
and traders. As soon as new strategies are found they can be added to the
swarm as new elements of SSS. The swarm then can decide how much risk
to allocate to them based on their rolling performance metrics.

Innovation can also be applied to the FFC mechanism. The choice of the
functional form of the FFC fitness � is the primary driver of the universality
of the method. Although some ideas have been presented in this book, they
should be seen as a starting point for an open field of research.

There have been attempts to use genetic programming techniques for
evolving decision-making strategies, and one hopes that such an approach
may at some point bear fruit for both the underlying strategies and the con-
trol system.

However, at the date of this writing, not much actual result has been
achieved, despite a resounding success of such techniques in other fields.
It may be that the problem at hand is too cumbersome in the way it was
posed, and the raw application of GP never converged to any stable set of
behaviors. I am attempting to evolve finite-state-machine agents, so this is
work in progress.

In any event, the swarm paradigm provides a test-bed for a coevolution
of a robust trading framework with either the human or machine-generated
innovation process of potential new behaviors.

15.5 LAMARK AMONG THE MACHINES

Since the start of evolutionary thinking, there have been two major schools
of thought. The dominant Darwinian ideas of blind nondirected selection
via survival of the fittest over generations have dominated scientific thinking
for a long period.

228 EVOLVING STRATEGIES

On the other hand, Lamarkian ideas of inheritance of learned traits have
been largely criticized and research into those possibilities has not progressed
until the arrival of ideas from computer science, namely artificial life.

However, new discoveries in biology and also in the study of complexity
are chipping away at the reductionistic Darwinian dogma that is centered
on the genotype, and presents the phenotype (i.e., the organism itself) as a
means to an end to carry its genotype forward in time (e.g., see The Selfish
Gene by Richard Dawkins). Subtle feedbacks have been discovered where
the phenotype, via its biochemistry or knowledge, can influence the genotype
going forward, and also influence the phenotype of its progeny (e.g., see
Evolution in Four Dimensions by Lamb and Jablonka 1996 and Artificial
Life by Langton, etc.).

Hence it is not clear whether the Darwinian ideas apply to intelligent
animals to the same extent that they do indeed apply to simple organisms.
Lamarkian ideas that put forth elements of memory, learning, and behavior
are coming back to the fore again.

In this book, the main emphasis is on creating a framework that allows
one to think of trading strategies as autonomous agents. The introduction
of swarm systems allows extension of this idea to adaptive agents. In the last
section, some rudimentary elements of learning were introduced to make the
adaptive agents enhance their adaptation over time. In a nutshell, the goal of
this part of the book is to introduce ideas to make agents smarter by making
them learn to adapt better. It is an active area of research for me in the higher
frequency domain.

The beauty of the concept of artificial life systems is that one is free to
explore a whole universe of ideas and methodologies while designing them.
Learning to adapt and passing that knowledge on to the progeny is one of
them. Had Lamark been among the modern machines, he would have seen
the application of his ideas straight away!

Part

Three
Optimizing Execution

P art Three is an important stepping stone for a market-operational imple-
mentation of the type of trading strategies discussed in the first half of

this book. The research presented in Parts One and Two is only the starting
point and it has to be embodied into a trading business that operates in the
real world.

The practical work of making the transition from the cozy lab to the big
bad world starts here and concludes in Part Four. The nemesis to all free
movement is friction. Friction generates heat, especially when nice mod-
els that back-test to beautiful results start losing money as soon as they
are traded.

This part deals with how to address the biggest sources of friction in
the marketplace that translate into high trading costs. Those are liquid-
ity and market impact costs. These costs can be mitigated via two main
angles of attack—the algorithmic execution method used and the trading
model itself.

Before proceeding, it is important to make a conceptual distinction be-
tween a trading strategy (or just strategy, or model) and an algorithmic exe-
cution methodology (or execution algo or just algo). In essence, the trading
strategy gives the trader the desired position in the market and the algo-
rithmic execution methodology provides the way to get that position on the
trader’s book. This book uses algorithmic execution methodology instead of
the commonly misused algorithmic trading strategy to make this distinction
very clear.

230 OPTIMIZING EXECUTION

This part starts with analyzing the variability in liquidity in the markets
and giving examples of intraday seasonality. Then time-series data of the full
trading book is used to derive information on the impact of transactions on
the book.

It is argued that algo execution methodologies should be adapted, or
at least compatible with the trading strategies they serve. The agent-based
paradigm from Parts One and Two is applied to the testing of algorithmic
execution methodologies and the joint testing of trading strategies and algo-
rithmic execution methodologies.

The part concludes with a discussion of some of the basic algorithmic
execution strategies.

CHAPTER 16
Analysis of Trading Costs

16.1 NO FREE LUNCH

The arithmetic of the impact of trading costs on performance is straight-
forward. If each trade costs you $10 and you make 100 trades, at the end
of it you would need to be in profit by more than $1,000 to break even.
Otherwise all the hard work will result in a loss. It is of course paramount
in the arena of high-frequency trading where expected profits per trade are
commensurate with transaction costs.

The total cost to perform a trade comes from the sum of various com-
ponents. The components can be grouped into two main categories:

1. Deterministic Costs: exchange fees, brokerage fees, clearing fees, give-
up fees

2. Nondeterministic Costs: liquidity costs (bid-offer spreads), market im-
pact (impact of own order on change in price and volume of the secu-
rity), latency costs (missing trades because of delays in communication
of orders), business interruption costs (missing trades because of system
problems at the exchange, broker, or own firm)

The nondeterministic costs are not invoiced directly to the trader but
they show up in different sneaky ways. They usually add up to much
more than the sum of deterministic costs and are therefore very important
to control.

For example, costs associated with latency can be substantial. Some
trading activities like electronic market-making cannot survive if not
implemented within a very low latency infrastructure. This is because a
market-making engine that cannot respond quickly enough to changes in
the order book will be last in the queue to place its orders. This will imply
that it will not be executed on all the size it needs and hence will be forced to
carry unwanted inventory. That inventory can present a substantial market

231

232 OPTIMIZING EXECUTION

risk and make the whole business proposition uneconomic. Part Four pro-
vides guidelines and design patterns to help minimize as much as possible
the latency and business interruption costs.

The focus of this part of the book is on the minimization of liquidity and
market impact costs, and some of the algorithmic execution methodologies
presented here are specifically designed to address these problems.

16.2 SLIPPAGE

Before starting to delve into details, it is important to define a term that will
be used throughout: slippage. Liquidity and market impact costs are often
clumped into the unifying word slippage in the systematic trading world.
This is actually a bit misleading and a concrete definition is needed.

Definition 9. Price slippage is defined as the difference between the average
execution price and the model target execution price for a given trade size.
Size slippage is defined as the difference between the target execution size and
the realized execution at a given trade price. The slippage cost is defined as
the difference between the PL on an executed completed trade in the market
versus the PL on a completed trade at target model prices. Here a completed
trade means an entry followed by a complete exit.

Slippage is hence a two-dimensional opportunity cost. Seen in this light,
slippage becomes a relative concept that puts equal emphasis on model and
execution. The value of the slippage cost is either positive or negative but, of
course, it is unfortunately negative most times. To minimize slippage costs,
one has to focus both on the model and on the execution of the model. This
means that:

� A model should take into account various factors that may impact its
good execution. For example, if the goal is to trade at certain frequen-
cies, the times at which the execution occurs should correspond to pe-
riods of biggest expected liquidity in the relevant markets. If the goal is
to generate revenue by providing liquidity to the market then periods of
lowest expected liquidity are more relevant.

� An execution methodology should be compatible with various implicit
and explicit constraints imposed by the model. For example a daily
VWAP execution algo cannot be applied to a strategy that may gen-
erate trading signals based on entry points that are less than an average
daily price range away from each other.

Analysis of Trading Costs 233

Slippage is intimately related to liquidity and minimization of slip-
page cannot be seen separately from studying liquidity patterns in the
marketplace.

16.3 INTRADAY SEASONALITY OF L IQUID ITY

Liquidity reflects the potential for market transactions in an asset. It is driven
by the availability of market-makers and other market participants at a given
time. It is not a measure of supply or demand for an asset but of the actual
supply of participants willing to post two-way prices at a given spread.

Hence a quantitative measure of liquidity should have the following fea-
tures: (1) increasing function of tradable volume posted, (2) decreasing func-
tion of bid-offer, and (3) decreasing function of book imbalance (volume-
weighted offer minus volume-weighted bid). The liquidity indicator L(t) is
defined as follows.

Definition 10. Let B(t) = {(bi , Vi), (a j , Vj)} the order book for a security at
time t. Let VT be the total outstanding issued volume of the security and τ

the minimal price increment (tick). Let Vb = ∑
Vi , Va = ∑

Vj the total bid
and ask volumes, B = ∑

bi Vi/Vb and A = ∑
a j Vj/Va the volume-weighted

bid and ask prices. Then let us define the bid, offer, total liquidity, and price
pressure as

Lb(t) =
(

Vb

VT

)
∗

(
τ

A− B

)

La(t) =
(

Va

VT

)
∗

(
τ

A− B

)

L(t) = Min(Lb, La)

P P(t) = Lb − La

Figure 16.1 shows by way of example L(t) and the bid-ask spread for
five minute intervals during two days of trading for the front month Comex
copper future. As expected, the liquidity is low in the overnight session and
is the highest in the U.S. morning then after lunch into the close.

The foreign exchange (FX) markets exhibit also intraday seasonal pat-
terns of liquidity. This has been discussed in Chapter 7 in the context of
opening range breakout models (See Figure 7.11). The various FX rates can
be clustered into roughly seven different behavior patterns. For example,

234 OPTIMIZING EXECUTION

160
Liquidity Indicator

Bid-Ask Spread

140

120

100

80

60

40

20

0

0.16

7:12 PM 12:00 AM 4:48 AM 9:36 AM 12:00 AM 4:48 AM 9:36 AM 2:24 PM 7:12 PM2:24 PM 7:12 PM

7:12 PM 12:00 AM 4:48 AM 9:36 AM 12:00 AM 4:48 AM 9:36 AM 2:24 PM 7:12 PM2:24 PM 7:12 PM

0.14

0.12

0.1

0.08

0.06

0.04

F IGURE 16.1 Liquidity and Bid-Ask spread over Two trading days for copper
futures

Asian currencies are mostly active in Asian business hours, and the Cana-
dian dollar in the American time zone.

The above clustering is partly due to the lack of enough market-makers
in certain crosses in certain time zones, but also to the segmented end-
user communities. These patterns present potential opportunities to exploit,
and the opening range breakout strategy applied to different time zones is
one example.

16.4 MODELS OF MARKET IMPACT

Both aggressive and passive orders have an impact. Someone who needs im-
mediate liquidity pays a price because that liquidity is not a priori immedi-
ately present at a desired price. On the other hand, someone who provides

Analysis of Trading Costs 235

liquidity shows its hand and by doing so reduces the probability of transact-
ing at the announced price.

Understanding and figuring out ways to measure those two opposing
forces is an important matter for building both execution algos and market-
making strategies.

16.4.1 React ion to Aggression

The aggressive market impact measure AMI(V) is the quantification of the
change in price P of a security induced by an aggressive trade of a certain
size V. It is an important factor to take into account for the design of algos
that generally aim at splitting a large order so as to minimize the full impact.

In its most general form the impact of an aggressive trade can be con-
ceptually decomposed into

AMI = SI + MI + P I

where SI is the impact of the bid-offer spread, MI is the momentary impact
that is felt short term, and P I is the permanent impact that presents the
information element. This model in general assumes that SI is proportional
to the bid-offer spread, MI to the volatility of the underlying security, and
P I to the ratio of V to the average daily traded volume.

There are several parametric models that have been developed to disen-
tangle and measure these three components [see DB, Almgren, Bloomberg
etc]. Those models are fit with transaction data that ideally contain all of the
order book information.

One of the most promising avenues in understanding AMI is the zero-
intelligence model of the double-continous auction by Farmer, Petelli, and
Zovko. There are no assumptions on intelligence or rationality of agents,
and all that is assumed is that they place orders into the limit order book
randomly, with different arrival frequencies for passive and aggressive or-
ders, as well as cancellations of passive orders.

A nontrivial dynamic results from it, and the model predicts with a high
degree of accuracy both the distributional characteristics of the prices as well
as the aggressive market impact functions observed in real life.

This model, which uses zero intelligence as a benchmark, provides itself
an interesting benchmark to disentangle true information from noise.

16.4.2 L imits to Openness

Trading, like dating, is a frustrating business. If you show your willingness
too much, you are at risk of being snubbed. There is a higher probability that

236 OPTIMIZING EXECUTION

your prospective partner will make the first move and come and get you, if
you don’t act too eagerly. On the other hand, if you wait too long, someone
else will come and steal your partner. After all, there is a market out there.

Placing limit orders into the market is no different. If the order size is too
big then the market participants needing liquidity will have the “come and
get me” attitude. Large limit orders have the repellent effect on potential
liquidity takers, who are then happy to wait and suddenly become more
passive. This morphing of one behavior into another is another reason why
there is so much complexity in the markets.

Several studies attempted at estimating the impact of the size of the limit
order on the probability of its being executed, and also the expected time
to execution. As per common intuition, these studies have found that the
probability of execution depends somewhat on the state of the order book,
market volatility, distance of the order from the mid-price and the size of
the order. However, the predictive power of any modeling that only uses the
trade and visible book information is inherently impeded by the presence
of stealth algos (like icebergs for example). Finding ways of hiding your in-
tentions in the modern electronic world is no different from the tactics of
the large and successful traders of the past and present. Some traders would
hide and spread their size among many brokers, and while appearing to be
“buying” to the trading crowd, in reality they are selling out of their large
positions via the brokers. In this way they are trying to keep the cooperative
accumulation game going while trying to get out of their positions. The in-
formation advantage is money, and like money it is easy to lose. Hence it is
only natural that with all the transparency in the world people will still try to
hide their hand as much as possible within the regulatory constraints. Hence
in my opinion, while many of those studies are interesting from a theoretical
viewpoint, they do not necessarily help to increase profitability.

CHAPTER 17
Estimating Algorithmic

Execution Tools

T his chapter extends the agent-based methodology to the simulation
and optimization of algorithmic execution tools. It starts with a brief

overview of commonly used types of algos.

17.1 BASIC ALGORITHMIC EXECUTION TOOLS

From the outset, it is important to note that some ECNs only support limit
order placement. This is because exchanges and ECNs have at their heart an
order book that accumulates resting limit orders. Trades are consummated
when buy limit orders are placed above sell limit orders and the match-
ing engine is then responsible for routing executions to the owners of those
orders.

Hence all other order types, including algos, may need to be imple-
mented at the trading node level. Sponsoring brokers who give access to
the ECN usually provide an algo layer that can be utilized by the client, and
in most cases such functionality may be sufficient. However for control and
speed efficiency it may sometimes be better to reimplement even the most
basic order types.

Market and Stop-Loss Orders Market (MKT) and stop-loss (STP) orders
are designed to take liquidity out of the order book for immediate execution.
The AGRESSOR algo presented in Part One is an example of such order type
that sweeps the book to fill its liquidity need.

To avoid inducing large price swings when liquidity is insufficient, the
MKT and STP orders usually come with limit prices beyond which the exe-
cution is precluded.

237

238 OPTIMIZING EXECUTION

One has to be very careful when using MKT and STP orders in an auto-
mated trading environment as most overtrading mistakes come from it. The
worst price spikes and losses have been induced historically by aggressive
orders emanating either from a human fat finger or an electronic race con-
dition. The fat finger situations occur when human traders put in the wrong
sizing or mistake economic value for number of contracts. Race condition
situations may happen in a multithreaded environment where one process
inadvertently keeps blocking another while aggressive orders are being gen-
erated. If those aggressive orders are not getting the relevant fill feedback
from the ECN because of the blocking then a trading or execution system
may inadvertantly emit masses of such orders with potentially very expen-
sive consequences. Part Four discusses some of those points.

Icebergs Iceberg orders are designed to hide the full size of a large limit
order. The iceberg would break the original order in several smaller compo-
nents of random size in order to avoid showing any patterns. As soon as a
small portion is done the iceberg would initiate the next order either at the
original price or better.

As an iceberg is usually executed with limit orders, there is no guarantee
that it will complete.

VWAP Given the intraday history of traded prices and volumes associated
with those prices, the volume-weighted average price for the day is defined
as:

VWAP =
∑

vj Pj/
∑

vj

It is the execution benchmark for institutional equity trading, which is the
main reason why it has attracted so much research and attention.

A VWAP algo tries to execute a large order that can be expressed as a
percentage α of the daily expected volume V as close to the day’s VWAP as
possible.

Of course, it is impossible to predict both the daily volume and the as-
sociated VWAP so there is no guarantee on outperforming the VWAP price
on any particular day. If the volume pattern v(t) for the day were known
with certainty in advance, then the VWAP algo would just execute αdv(t) at
the prevailing market price P(t) in the interval [t, t + dt].

Because the volume is not predictable, then the VWAP algo should be set
up so that it outperforms on average, meaning that its expected execution
average price over the history of previous volume paths is better than the
historic VWAPs. One way of doing this is to study the average intraday
volume patterns vavg(t) and execute αdvavg(t) in [t, t + dt].

Estimating Algorithmic Execution Tools 239

A way of improving a VWAP algo is to make a simple procedure based
on the average volume pattern communicate with a trend-following agent.
The idea is to decrease the relative execution volume into downtrends and
increase it into uptrends, for long VWAP orders. This is explained later in
this chapter.

TWAP Time-weighted average price is just the average price throughout a
defined time interval [t, t + T]. The TWAP algo slices the order into N equal
suborders and executes each portion on the subinterval [t + iT/N, t + (i +
1)T/N].

Execut ion of Spreads and Portfo l ios Clean execution of spread or more
generally portfolio trades is very important for the risk management of
such portfolios while execution is under way. Basically the key is to avoid
legging the trades unless such legging is within certain acceptable risk
bounds.

As a simple example, a calendar futures spread (a roll) has to be managed
so as to avoid price exposure to the underlying. This means that the spread
algorithm should not allow situations where the naked net exposure is more
than a certain number of contracts (or certain percentage of total volume to
be executed).

Spreads can be seen as securities that have their own bid and offer.
For example, if security A trades at a market (BI DA, ASK A) and secu-
rity B at (BI DB, ASK B) then the spread A− B would trade at the market
(BI DA − ASK B, ASK A − BI DB). At that worst market, the trader would
achieve immediate execution of either buying or selling the spread. The goal
of the spread algos is to execute as much as possible inside that interval by
taking advantage of the trading noise by placing half of the spread order
(one leg) at a limit price and aggressively executing the other side when the
limit price is filled.

The main reason why it is important to control the net exposure at all
times is to reduce market risk in situations of disconnect and other faults
that may preclude timely processing of fill information.

Inter-market spreads present the next level of complexity. The spreads
need to be treated in a more subtle way because the sizing of each leg is
a function of the nature of the trade. For example, legs may be sized by
economic value or beta for a long-short equity spread, or interest rate or
credit dv01 in fixed income.

If the components of a spread are traded on two different ECNs, another
source of complexity comes from different latencies between ECNs and
the trading node. Some brokers have introduced worldwide networks that
mitigate those latency differentials by warehousing or throttling the fastest

240 OPTIMIZING EXECUTION

connections in order to put all ECN accesses on the same synchronized in-
ternal clock.

17.2 ESTIMATION OF ALGORITHMIC EXECUTION
METHODOLOGIES

As discussed in the previous chapter, it is best to tailor the execution algos
to the models. To estimate and back-test a model to the highest degree of
realism one has to take into account potential execution times and volumes
so that some degree of probability could be assigned to missed or partially
executed signals.

To take into account the execution shortfall, one can adopt two ap-
proaches. One can either jointly test a model and an algo on tick data or
one can derive an average measure of the efficiency of the algo and intro-
duce a probabilistic slippage factor into a model.

The choice between these two approaches depends on the nature of the
model as this dictates how much data is needed. The relevant data may sim-
ply not exist. To give an extreme example, it is probably unwise to perform a
full joint back-test of a long-term trend-following model and a VWAP algo.
That estimation would need data from years ago when no intraday data was
ever collected.

On the other hand testing an intraday opening range breakout model
with an aggressive time-limit execution algo may be much better than to
assume average slippage on all trades. This is because market breakout be-
havior is correlated with volatility spikes that themselves are correlated with
liquidity clumps. Average slippage resulting from average efficiency of a
time-limit aggressive algo may underestimate the transaction costs for such
a model.

This chapter starts by discussing the algo back-test engine. The engine
can be used to estimate the algo efficiency and derive measures of expected
shortfall versus the objective function of the algo. This gives a method to
estimate stand-alone algos and is useful for brokers and electronic market
access providers.

Once an algo has been chosen for a model, the algo’s efficiency measure
can be incorporated to derive the model’s expected performance under an
average transaction process. Price slippage can be incorporated directly into
the test.

17.2.1 A Simulat ion Engine for Algos

The simulation engine for an algo does not differ from the one described for
a trading strategy in Part One.

Estimating Algorithmic Execution Tools 241

An execution algo is represented by an agent or sets of communicating
agents consuming either PRC or BOOK events. This agent usually slices a
large order into a series of smaller suborders that it places into the market
according to its particular strategy.

These suborders can be either limit orders or aggressive orders. In order
to simulate the impact of the suborders on the market, the algo agent uses
itself as an instance of the ALGO class to model the placement and execution
those suborders. This particular class instance of ALGO uses the slippage
estimation and market impact modeling from the previous chapter in order
to realistically reflect the influence that the suborders exercise on the market.
So in the design presented in this book, the algo agent uses its own very
localized ALGO class to simulate its slippage.

The real goal of the simulation is to test the agent’s performance against
an a priori performance metric and optimize the parameters of its F SM
accordingly.

The performance measures are a function of the algo agent itself. The
next chapter presents some classic algos and their objective functions. In
general, these objective functions embed a measure of shortfall of either the
executed price or size relative to the a priori stated goal.

In a VWAP scenario, for example, the objective is to minimize

F (A, M) = VWAP(A)/VWAP(M) = (
∑

(wi (A)Pi (A))/
∑

wi (A))
(
∑

(vj Pj)/
∑

vj)

where wi (A) are the realized trade sizes by the agent at prices Pi (A) and
vj are the realized total traded market volumes at prices Pj during the
same period. The closer that ratio is to 1, the better the quality is of the
VWAP algo.

17.2.2 Using Execut ion Algo Results
in Model Est imat ion

Once the parameters of an appropriate execution algo have been estimated,
the algo’s average performance can be used for the estimation of trading
costs of any trading agents that use this execution method. In order to in-
corporate those results, a new instance of the ALGO class is written that takes
as a parameter the average slippage information from the newly estimated
execution algo.

For the purpose of this exercise, it has to be re-emphasized that the ex-
pected completion time on the algo should be an order of magnitude lower
than the expected time between the repositionings of the trading agent to

242 OPTIMIZING EXECUTION

avoid the intermeshing of the two. The agent needs to be done with the pre-
vious signal before tackling a new one.

17.2.3 Joint Test ing of Models and Algos

It has been shown previously that the overlay of longer-term strategies can
be useful to improve the quality of market-making strategies. It is also the
case that such types of overlay can also be beneficial for improving execution
algos.

When a breakout strategy detects a signal, it could be useful for an ex-
ecution algo to throttle up its order placing in case the price is moving in
the wrong direction. Vice versa, it may want to wait for better prices if the
breakout move happens to be beneficial to the algo.

In the framework presented here, the inter-agent communication
paradigm is the appropriate flexible tool. A set of longer-term strategies
may be run in simulation mode while broadcasting to the algo their state
information.

The joint testing framework is hence naturally available under the agent-
based strategy design paradigm and is an extension to the simulation engine
presented in Part One.

As an example, here is an FSM represenation of a smart VWAP agent
that communicates with an intraday trend-following model TF. The TF
model has three states, F LAT, LONG, SHORT.

Let V(t) be the average volume traded at the time of day t, averaged
over many days. It represents the expected intraday seasonality of liquidity.

Assume that the VWAP’s task is to buy a size S at the daily’s VWAP. Let
α = S/W be the proportion of the order to the expected total daily traded
volume W = ∫

V(t)dt. Normally a dumb VWAP agent would be attempting
to buy U(t) = αV(t) units at time t until it is done. If it is not done within a
certain cut-off time before the market closes, it will start gobbling up more
volume to get the size shortfall done in that remaining time.

Intuitively, if the market is rising at time t, it is safer to buy more than
the prescribed U(t), and if it is falling it is better to buy less and wait for a
better price.

The FSM for the “simple” VWAP agent is presented in Figure 17.1 and
contains three states: I NIT, NORMAL, CONCLUDE.

The FSM for the smart VWAP agent that communicates with TF
is presented in Figure 17.2 and contains five states: I NIT, SLOWER,
NORMAL, F ASTER, CONCLUDE.

In the SLOWER state that occurs when TF is in the SHORT state, the
VWAP agent buys at a rate of (1/k)U(t) where k > 1. In the F ASTER state
that occurs when TF is in the LONG state, the agent buys at a rate kU(t).

Estimating Algorithmic Execution Tools 243

Simple VWAP Agent
Shortfall is the remaining absolute value of original order size

T_O is market opening time

T_C is a certain time before market close

Init

T < T_O OR
Shortfall = 0

Shortfall = 0

Shortfall = 0

T > T_O
Shortfall > 0

T < T_C
Shortfall > 0

T > T_C
Shortfall > 0

T > T_C
Shortfall > 0

NIL

NIL

Init

Normal

Normal

Conclude

Conclude

F IGURE 17.1 Simple VWAP Agent FSM

Communicating VWAP BUY Agent

Init

Init

Normal

Normal

Faster

Faster

Slower

Slower

Conclude

Conclude

Shortfall is the remaining value of original BUY order size

T < T_O OR
Shortfall = 0

T > T_O
Shortfall > 0

T > T_O
Shortfall > 0

T < T_C
Shortfall > 0

T < T_C
Shortfall > 0

T < T_C
Shortfall > 0 T > T_C

Shortfall > 0

T > T_C
Shortfall > 0

T > T_C
Shortfall > 0

T > T_C
Shortfall > 0

T < T_C
Shortfall > 0

T < T_C
Shortfall > 0

T < T_C
Shortfall > 0

T < T_C
Shortfall > 0

AMATR = FLAT

T > T_O
Shortfall > 0

AMATR = LONG AMATR = SHORT

AMATR = LONG AMATR = SHORT

T < T_C
Shortfall > 0

AMATR = LONG AMATR = SHORT

T < T_C
Shortfall > 0

AMATR = LONG AMATR = SHORT

AMATR = FLAT

AMATR = FLAT

AMATR = FLAT

NIL NIL NIL

NIL

Shortfall = 0

Shortfall = 0

Shortfall = 0

Shortfall = 0

SELL agent is obtained by swapping sign of shortfall and faster, slower states

F IGURE 17.2 Smart VWAP Agent FSM

Finally, when TF is in F LAT state, the VWAP agent proceeds at the normal
pace U(t).

The fitness function for each VWAP agent is computed at the end of
each day and is the F (A, M) ratio described above. The goal is, over time,
to reach an average fitness as close to 1 as possible, where averaging is done
over all the daily simulation runs.

Part

Four
Practical Implementation

T his part presents a practical discussion of a real-time low-latency au-
tomated trading infrastructure designed to support a swarm of trading

agents operating on a collection of ECNs.
The focus here is mostly on design patterns rather than on the concrete

implementation in a particular language. The implementation of the core of
the trading engine, namely the swarm of trading agents, has been presented
in detail in LISP and the Common Lisp Object System (CLOS). The choice
of LISP has been driven by its extreme flexibility and parsimony as well as its
dual interpreted and compiled nature. The external communication, persis-
tence, and human interface layers of the trading architecture, however, can
be implemented in any other languages that are the most optimally adapted
to the tasks at hand and are dependent also on the chosen hardware. Com-
munications between the core engine and the external layers are achieved via
foreign function interfaces. Communications between the external layers can
be achieved via object marshalling techniques.

It is important to keep the big picture in mind at all times. Namely, that
the whole trading architecture needs to be designed with the maximal set of
controls possible. The two main types of controls are:

1. Performance Controls: The core trading engine needs to take care of
strategy choice according to their performance and other measures. The
risk management module that operates at the top level of the trading ar-
chitecture needs to take care of the aggregate exposure so as to stabilize
overall PL.

246 PRACTICAL IMPLEMENTATION

2. Operational Controls: The order management system needs to ensure
that the orders have been received by the ECN before allowing any other
event processing and that all fills have been communicated to relevant
agents. The persistence layer needs to ensure that all the market up-
date and communication events can be replayed to the agents in case of
system downtime and ECN disconnects and must be able to switch to
another clone of the whole trading system in extreme cases.

The swarm-based design of the core trading engine goes a long way
toward addressing the robustness of the performance controls and the reader
is encouraged to fully utilize the power of those concepts in conjunction with
personal intuition and research on tradable patterns.

This part focuses mostly on the operational controls and guides the
reader toward a necessary and sufficient design for an automated trad-
ing architecture that embeds them. The efficient design of such controls is
paramount for the survival of the automated trading architecture as a long-
term profitable business.

CHAPTER 18
Overview

of a Scalable Architecture

A top-level view of the architecture for the automated trading front office
infrastructure is shown in Figure 18.1. The trading infrastructure is a

concurrent set of trading nodes that operate independently of each other. In
each node a particular set of trading agents consumes a particular subset of
market events.

The architecture of a trading node is shown in Figure 18.2. It is com-
posed of several layers. It is easiest to explain the layers and the flow of
information between them by following the arrows starting at the very top
of the diagram.

18.1 ECNs AND TRANSLATION

The flow of information starts in the external world, epitomized by the ECN
layer. This is just a collection of connections to various electronic exchange
networks and real-time market data sources. The ECN layer broadcasts
three types of information:

1. Information pertaining to exchange conectivity: heartbeats, sequence
numbers, etc.

2. Market update events: trades, volumes, and order book updates (collec-
tively called ticks)

3. Communications specific to the trading node: acknowledgment of or-
ders sent, rejects, acknowledgments of fills (partial or total)

Usually the ECNs communicate with the world via either the FIX proto-
col or their own specific protocol that is less verbose and more efficient than
FIX. Either way, the messages coming from the ECNs need to be translated

247

248 PRACTICAL IMPLEMENTATION

ECN 1

MIDDLE OFFICE CUSTODIAN

BACKOFFICE

ECN 2 ECN 3

TRADING
NODE 1

TRADING
NODE 2

F IGURE 18.1 Trading Infrastructure

ECN LAYER

TRANSLATION LAYER

TICKS

MARKET
UPDATE

PRICE
AGGREGATOR

AGGREGATE
BOOK

AND PRICE

FILL

FILL

FILLS

FILL

P
E

R
S

IS
T

E
N

C
E

 L
A

Y
E

R

FILLS

OMS LAYER

HUMAN CONTROL

AUTOMATED RISK MGMT

DECISION LAYER

AUTOMATED TRADING AGENTS
SWARM CORE ENGINE

MIDDLE AND BACKOFFICE LAYERS

CONTROL LAYER

FILL
DISAGGREGATOR

ACK ORDER

ORDER

ORDERS

ORDER

ORDER

ORDER
AGGREGATOR

HEARTBEAT

F IGURE 18.2 Trading Node

Overview of a Scalable Architecture 249

into objects that the trading node can interpret and act upon. Symmetrically,
the communications of the trading node to the ECNs need to be encoded
into FIX or the specific protocol. The translation layer is responsible for this
two-way traffic.

As the gateway to the ECN, the translation layer also handles the basic
heartbeat and connectivity logic of the whole trading node to the ECNs.

There are many commercial FIX engines available and some ECNs
provide direct APIs that bypass FIX. Several of those are written in C++ or
Java. In the case that, as presented in this book, the core of the trading node
is written in LISP, the translation layer also contains the foreign function
interface between LISP and Java or C++. That interfacing is light weight and
the only data passed are lists of numbers or strings. Remember that the PRC,
DELTA, and BOOK classes have lists (or pairs of lists) in their value fields.

Once the ECN data is translated into an event object, that object enters
the trading node’s internal world. The whole internal world constitutes the
persistence layer and is implemented as a distributed memory cache that
periodically flushes data to an external physical database. That database
is crucial for the recovery layer and contains the history of market update
events, orders sent, fills received, and the copies of the trading agent classes
that themselves contain histories of states, PLs, trades, and statistics.

18.2 AGGREGATION AND DISAGGREGATION

When the event enters the internal world, it comes directly into the
aggregation/disaggregation layer. The way that the event is dealt with by
that layer depends on its nature:

� Market update event: If it is a traded quote recap PRC it is directly passed
to the next level—the OMS. If it is a DELTA or a BOOK event for a
security S and ECN E it aggregates that information into the full book
for security S across all the ECNs that support that security. This is
particularly relevant for accessing liquidity across various FX market-
makers as well as equity dark pools.

� Fill update: If the ECN sends back a fill (or a list of partial fills), that
information needs to be potentially disaggregated among agents. This
happens because aggressive orders in a particular security are netted out
across agents and only the net order is sent to the ECNs to reduce trans-
action costs. The disaggregator takes the (potentially partial) fill received
from the ECN and apportions it to the set of agents that emitted it.

� Acknowledgments and rejects: ECN responses to orders or cancel/
replaces sent by the OMS are passed back directly to the OMS Layer.

250 PRACTICAL IMPLEMENTATION

18.3 ORDER MANAGEMENT

The order management system layer contains the principal logic to deal with
potential latency and reject problems that can occur while communicating
with the ECN. The way that the OMS deals with incoming information is
as follows:

� Fill updates are passed directly to the control system layer.
� Market update events are passed to the control system layer unless the

OMS is waiting for an acknowledgment or a reject of an order it had
sent previously, in which case those market updates are queued.

� If an acknowledgment is received, the market update channel is re-
opened.

� If a reject is received, either the market update channel stays closed and
the OMS tries to place the order again, or it is reopened and the OMS
passes the reject to the agents that emitted the order, depending on the
nature of the agents.

It is of paramount importance for the stability of the whole trading archi-
tecture to adequately set up the behavior of the OMS in the way it is to deal
with acks and rejects. It is this exact area where the precise coupling between
the OMS and the trading agent needs to be defined. That coupling depends
intimately of the nature of the trading agent.

18.4 CONTROLS

Finally, events reach the control layer that is itself composed of the hu-
man control, the automated risk management, and the automated trading
agents layer.

The human control layer contains all the visual representations of the
state of the trading node (markets view, order and trade recap, agents’ PL
monitor, risk monitor) as well as essential controls. The controls are the
panic button that allows all net positions to flatten as quickly as possible, a
dashboard to set the agents’ sizes (for a potential participation in the swarm),
and a scheduler to shut down and restart the trading activity. The human
control is designed to monitor activity and to deal with unexpected situa-
tions. While the OMS is waiting for an ack on a particular order, the human
control layer flags that order as being in an undefined state. If the order is
rejected and not resubmitted, a clear message would appear. Thus the hu-
man control layer can be designed to visually monitor the state of the OMS,
and it consumes and rebroadcasts downstream all the events that the OMS
is sending.

Overview of a Scalable Architecture 251

The automated risk management layer aggregates positions and PLs
across all active agents and securities. It monitors adverse changes in the
aggregate PL that may be due to correlation and liquidity shocks across
markets. It is designed to reduce the overall position in the subset of money-
losing agents more quickly than the individual or swarm control systems
would. In a multi-security multi-agent trading environment this global risk
control mechanism is very important. The automated risk management layer
consumes and rebroadcasts downstream market update events.

The human control layer subsumes the automated risk management
layer with the help of the panic button. In turn, the automated risk man-
agement layer subsumes the automated trading agents layer via the overall
risk reduction on a subset of agents.

This is how the basic subsumption architecture works within the control
layers. First of all a fill event (actually a set of disaggregated fills) is commu-
nicated directly to the automated trading agents layer so that every agent
adjusts its trades fields accordingly. If the OMS is not waiting on an ack,
and no action is taken by the human supervisor nor the risk management sys-
tem, the next market update event is finally passed to the automated trading
agents layer. This layer can be organized into a set of swarms with their own
meta-methods that automatically choose the subsets of fit strategies.

18.5 DECIS IONS

The consumption of the market update event finally occurs according to the
machinery described in Parts One to Three. The agents (and/or the aggregate
agents representing the swarms) each potentially emits to the OMS layer a
list of passive orders and an aggressive order along with the information on
what algo to use to place those orders. The algo can be internal to the trading
node or external (for example, when the connectivity to an ECN is done via
a broker, who can embed further functionality on the order management).

In turn, the OMS layer aggregates all the aggressive orders by secu-
rity, and sends the net order along with disaggregation instructions to the
aggregator/disaggregator layer. The net aggressive order along with the list
of passive orders (potentially containing external algo information) are then
passed to the translation layer and sent off to the ECN. This completes the
data flow cycle through the trading node.

18.6 MIDDLE AND BACK OFF ICE

The OMS layer is connected to a persistent messaging bus that channels fills
and certain price information to the middle and back office systems. Those

252 PRACTICAL IMPLEMENTATION

systems are physically separate from the trading node and should be run on
a separate server. This helps to optimize the computational efficiency of the
trading node. It is also advisable in some cases to separate the human control
layer onto a different server and use the messaging bus to pass the price and
control information in and out of the trading node. However, the automated
risk management and the trading agents layers should be designed to be in
the same CPU neighborhood so as to minimize event-passing latency.

There are a variety of third-party middle and back office systems avail-
able, so it is important to research them first before attempting to reinvent
the wheel in that space. Many fund administrators have teamed up with such
service providers and offer the technology as a white-label and part of the
package. Most middle office systems have FIX APIs and can automatically
connect to brokers and custodians to perform reconciliations. This book’s
emphasis is on the design of a scalable front office architecture so the back
office issues fall mainly outside of its scope.

18.7 RECOVERY

Periodically all classes of the persistance layer are saved into physical
databases connected to the distributed memory cache. The databases con-
tain crucial recovery information in case of system or network downtimes.
The recovery layer contains the most up-to-date information necessary for
complete cloning of the trading node on any machine connected to the dis-
tributed memory cache.

The steps to recovery of data and re-instantiation of the computational
process depend on the type of fault that occurred. The faults fall into two
main categories—caused by either internal or external issues. A subsequent
chapter is dedicated to some of the intricacies of setting up efficient recovery
mechanisms.

CHAPTER 19
Principal Design Patterns

T his chapter elucidates the principal features of an efficient and robust
design of the automated trading infrastructure. Various options are dis-

cussed for the major computational and architectural features of the com-
ponents of the node. The ultimate goal of the design guidelines is to ensure
that

� The trading infrastructure be scalable via a concurrent clustering of trad-
ing nodes.

� Each trading node be designed in a modular way, so that components
can be written and re-used easily.

� The whole infrastructure be designed in a way that recovery is fast.

This chapter deals with the modularity aspect and the next chapter with
recovery.

19.1 LANGUAGE-AGNOSTIC DOMAIN MODEL

The trading node is a layered computational process that uses a set of objects,
methods, and functions to perform its operation. Each layer takes certain
objects as inputs and outputs another set of objects to be consumed by the
next layer.

A domain model for a process defines the collection of objects and func-
tional relationships between objects that the process uses. It is designed to
be language-agnostic so that the implementation could be performad in any
set of languages.

The set of five object categories necessary and sufficient to design the
trading node consists of:

1. Market updates. The ECNs send various transaction and order book
updates to the trading node. These are respectively translated into the

253

254 PRACTICAL IMPLEMENTATION

PRC and DELTA classes for individual securities. The order book updates
are aggregated by the aggregation layer into the full BOOK class for a
security and transmitted to the control layer.

2. Order updates. The control layer emits orders that are communicated
to the order management system. The OMS may aggregate aggressive
orders across agents in one security to reduce transaction costs. The
ORDER and AGGREGATEORDER classes represent the necessary and suf-
ficient information.

3. Order status updates. When orders are sent to the ECNs, their status
is communicated back to the OMS. They may be accepted (acknowl-
edged) or rejected. The information is translated into the ACK class. This
information may or may not be passed directly to the Control Layer de-
pending on the nature of the agent that generated the original order.

4. Fill updates. When the ECNs send trade executions back to the trading
node they are translated into the AGGREGATETRADE class. The OMS
disaggregates it into the TRADE classes that are sent to the relevant
agents.

5. Agents. Agents contain all the up-to-date historic information on po-
sitions, orders outstanding, performance, and state. The AGENT class
has been discussed at length in the previous parts. All the information
pertaining to agents can be confined to the control and OMS layers.
For certain strategies, only the control layer deals explicitly with agents.
Agents receive aggregated market update events and generate potentially
aggregated orders.

The flow of information exchange is described in Figure 19.1.

19.2 SOLVING TASKS IN ADAPTED LANGUAGES

In my opinion, it is preferable to write certain layers in certain languages
and use the domain model to pass objects between those layers. However,
care should be taken to optimize those language choices while balancing
the complexity associated with inter-language communication. The key is
to make sure that the objects that are passed between layers are simple
so that the marshalling time is minimal. This is the case with the classes
described above.

Some languages are naturally more adapted to certain tasks. For exam-
ple it is easy to manipulate matrices in Matlab (the Mat part of the name
stands for matrix). It is easy to perform all kind of statistics in R. It is easy
to design FSM agents in LISP.

Principal Design Patterns 255

ECN

AGGREGATION
DISAGGREGATION

OMS

BOOK
BAR
PRC

AGENT

AGGREGATE
AGENT

PRC

ACK

DELTA

TRADE

TRADE

TRADE

TRADE

ORDER

ORDER ORDER

ORDER

AGGREGATE
TRADE

AGGREGATE
ORDER

F IGURE 19.1 Trading Node Information Flow

Some languages have unfortunate inherent limitations in their design.
Java and C++ do not have multiple inheritance while LISP does. Multiple
inheritance is a very natural concept and as long as there is a clear method
combination procedure there is no risk of aliasing or circular references. Java
and C++ do not have closures nor continuations, while LISP and Scheme
do. Java has a serialization procedure whereas LISP needs MemCached or
AllegroCache to perform similar tasks.

Of course, despite inherent design limitations, every advanced language
can theoretically perform any task that another language performs more nat-
urally. This is because every advanced language is a universal Turing machine
(when memory is unlimited, of course). Hence some people have spent time
trying to emulate one language in another, and many weird hybrids have
emerged. It is not clear at this point whether those hybrids will survive or
will be relegated to the shelf of digital curiosities, Esperanto-style.

FI
GU

RE
19

.2
C

om
pa

ra
ti

ve
Pe

rf
or

m
an

ce
of

L
an

gu
ag

es

256

Principal Design Patterns 257

My experience in implementing trading nodes points to maximizing the
efficiency of certain tasks in particular languages and focusing on lightweight
interfaces between them to glue the information together. LISP has always
been my primary choice for designing agents because it is a language that al-
lows for a lot of experimentation without many burdens that strongly typed
compiled languages, like C++ or Java, present. It is a language that fosters
research and development.

Hence, in one of the implementations performed by me and my team,
the core engine and risk management layers were written in LISP and the hu-
man control layer, the OMS, the aggregation/disaggregation, and the trans-
lation layers in Java. In another implementation, the human control layer
was written in .NET, the risk management layer in SQL, and everything else
was in Java.

Figure 19.2 shows the difference in computing time of a selection of stan-
dard algorithms, compared in 5 languages and where C++ is the benchmark,
from the comparative study taken from http://norvig.com/python-lisp.html.

It shows that C++ is generally ahead of the pack with LISP in second
place then Java. This is an important comparison table that puts LISP back
to where it ought to be—among the top three languages.

When choosing languages to solve a task, one has to balance, like in
reinforcement learning, exploration versus exploitation. One has to be able
to invent the wheel where it needs to be invented and not reinvent it where
it had already been invented. Java, for example, is a very useful language
because many APIs to software and hardware applications have already
been written by a generation of excellent programmers. This means that
one can benefit from an accumulated expertise and, most important, from
a lengthy debugging process. On the other hand, writing a genetic pro-
gramming algorithm on the agents’ finite state machines is much better
done in LISP.

19.3 COMMUNICATING BETWEEN COMPONENTS

In order to communicate effectively between languages and layers, several
techniques can be used. One technique is to pass reasonably simple serialized
data between languages with a message-passing protocol. Another technique
is invoking foreign functions and remote procedure calls.

In general, whatever approach is used, the idea is to minimize the com-
plexity and size of objects transmitted between processes in order to reduce
the time of marshalling and unmarshalling.

http://norvig.com/python-lisp.html

258 PRACTICAL IMPLEMENTATION

AGENT

EMIT
TOPIC

BUS

SUBSCRIBE
(OBSERVE)

TOPIC

EMIT

EMIT

SUBSCRIBE
SUBSCRIBE

TOPIC
EMIT

TOPIC

OMS ANY
LAYER

F IGURE 19.3 Messaging Bus Architecture

19.3.1 Messaging Bus

The most universal, albeit not necessarily the most efficient, technique is
to embed the whole trading node into a messaging bus environment as per
Figure 19.3.

This enables the layers to be both emitters and receivers of a range of
topics. Every topic is defined a priori and every layer may subscribe or not to
that topic (the specialization of the method observe to a particular agent is
a model of such topic filtering). For example, the aggregation/disaggregation
layer subscribes to the price and order book updates coming from the trans-
lation layer. It also subscribes to the orders and the associated agent aggre-
gation information coming from the OMS. It emits on the topic of partial
fills that is listened to by the OMS.

Several open source and commercial entities provide messaging bus in-
frastructures. These infrastructures would usually contain language APIs to
connect to the bus. Commercial entities also provide the routing hardware
itself that is composed of very fast network switches. The messaging buses
are used extensively by exchanges and brokerages to route a large volume
of market update data.

The messaging bus can be seen as providing the glue between the various
computational entities (layers or components of the trading node). It trans-
lates the information passed between components into a defined format.

The formats and their handling constitute part of the communication
protocol of the bus. The other part of the protocol deals with message
passing itself. Usually buses are designed to queue messages at each receiver
level, so that no information is lost however slow the receiver’s speed of pro-
cessing. The receiver can then decide whether to process the entire queue or
the last incoming element.

The act of translating an object from a computer language to the trans-
mission format of the bus is called marshalling and the reverse is called un-
marshalling. In the object-oriented world that we live in, there is a natural
tendency to pass objects between processes. Objects not only have data but

Principal Design Patterns 259

methods attached to them. Hence marshalling is not just aiming at translat-
ing data but also at providing functionality embedded in the methods.

There are standard communication protocols that are used to imple-
ment the messaging bus. One of the original ones was SOAP (simple ob-
ject access protocol) that is based on encoding and decoding objects into
XML messages. XML, although human readable, is very verbose and not
very efficient. For example, Apache ActiveMQ is a widely used open source
bus software that is based on SOAP. Another implementation, ICE (Internet
communications engine) uses a binary encoding of objects that is more time
and bandwidth efficient.

Messaging buses are essentially media that implement a flow of asyn-
chronous message passing between components that may or may not queue
them. Components can be written in any language as long as they have re-
ceivers and transmitters of standardized format messages.

19.3.2 Remote Procedure Cal ls

The second technique is to use remote procedure calls (RPC) where a client
process invokes a calculation on a host (a.k.a. server) process. The processes
may be running either on the same computer or across a network via sockets.
Usually the RPC call itself is single-threaded and the client process blocks
until it receives the answer from the result of running the procedure on the
host. RPCs over a network are usually implemented via socket connections.

The subtleties surrounding the efficient use of RPCs are numerous and
range from the design of the information to be passed in the call to the
control of garbage collection on the host.

One important consideration is which process should be the host and
which should be the client. The client process is the one that invokes foreign
functions that run on the host process.

The trading node’s computational process is at the outset driven by
events received from the ECNs. The top level of control is performed by
the translation node that sends a market update or an order management
event downstream and needs to receive a response to it from the control
layer before sending another event. That response could be the resulting set
of orders or just the indication that the control and the OMS layers have
stopped processing the information and are passing the thread of control
back to the translation layer.

As mentioned previously, there are several open source and commercial
applications written in Java and C++ that perform the function of the trans-
lation layer, via the implementation of a FIX engine, and also often integrate
elements of an OMS. This FIX engine should be seen as the client process
that would be calling the control layer process as host. If the control layer is

260 PRACTICAL IMPLEMENTATION

written in another language like LISP, this is where the RPCs are invoked at
the client level.

Foreign Funct ions Foreign function interfaces (FFI) are examples of RPC
handling for functional languages. For example, LISP provides several FFIs,
such as CFFI or Allegro’s JLinker library, that allow calls to C and Java
functions from within LISP programs and vice versa.

As an example assume that the translation layer is designed in Java on
one machine. One would have a Java virtual machine (VM) running on that
machine invoking the control layer via an FFI call to a LISP process running
either on the same machine or remotely. The control layer LISP process can
be packaged as a Java Bean via JLinker.

Object-Oriented Middleware With the current dominance of the object-
oriented paradigm, efforts have been ongoing to standardize the way objects
and methods are presented to the outside by the various object-oriented
languages.

An ambitious distributed-object protocol is the CORBA project that
stands for Common Object Request Broker Architecture and aims to cre-
ate a universal middleware between object-oriented languages. This means
that a process written in one language can invoke a method that operates on
another process and that is written in a different language.

In CORBA each object and method have an interface that is exposed
to the outside world via an interface definition language. CORBA provides
the interpretation of that interface in each particular computer language as
well as an automatically generated object request broker (ORB) process that
manages the load on method calls at the host level.

CORBA’s way of remote method invokation is also basically an RPC
but has a wider set of communication protocols. Alongside the synchronous
two-way protocol used by RPCs, it also has the ability to not lock the client
while waiting for the host’s response (either by not locking or by callback
after a certain time or more complicated mediation methodologies). The
communication between client and host is based on binary encoding via the
Internet Inter-ORB Protocol (IIOP) and is faster than XML-based message
passing of SOAP.

19.4 DISTRIBUTED COMPUTING
AND MODULARITY

The combination of the standardization provided by the domain model
with the permeability provided by the messaging bus allows for a flexible,

Principal Design Patterns 261

distributed computing architecture. The various layers can be run concur-
rently on separate machines and address spaces.

Distributed computing presents several advantages but could also come
with some dangers if not architectured properly. For example, in the message
bus scenario, the dangers come from the fact that the message passing is
asynchronous. Once the message has been broadcast, the bus simply controls
the queuing of that message for each receiver, and if a receiver is stuck, the
message can be waiting forever to be processed. There is no natural blocking
of new messages if one of them has not been processed. Hence one needs to
think carefully about which elements of the trading node can be distributed
and which cannot be.

Starting at the top level, the appropriate distributed computing archi-
tecture is a function of the nature of the agents. If each agent only consumes
market update events for one security, then it is best to clone, on an asyn-
chronous basis, as many trading nodes as there are securities. If, on the other
hand, a subset of agents process a subset of securities (e.g., a pairs-trading
strategy or a roll execution algorithm) then that subset of agents should con-
stitute the core of a trading node. This is shown in Figure 19.4.

Each trading node will have its independent translation, aggregator,
OMS, and control layers. However, they can all share the database and re-
covery layers because all this information is less time sensitive and mission
critical.

Also, an overall risk management layer that aggregates PL data across
agents can be designed as an asynchronous process from the trading core. Its
primary function is, on very rare occasions, to short-circuit and potentially
flatten positions for the whole trading operation. The states of the world in
which that eventuality may arise, however, would be such that what matters
is overall survival rather than optimization of execution.

Processes that require synchronization have to be run in a single layer
(and sometimes in a single thread). In general it is better to design the core

SECURITIES SET 1

TRANSLATION
AGGREGATION

PERSISTENCE AND RECOVERY

OMS
CONTROL
DECISION

TRANSLATION
AGGREGATION

OMS
CONTROL
DECISION

ECN LAYER

SECURITIES SET 2

F IGURE 19.4 Distributed Trading Nodes

262 PRACTICAL IMPLEMENTATION

CORE ENGINE
LISP

OMS
JAVA

FFC

HUMAN CONTROLS
• NET

SOAP

BUS

F IGURE 19.5 Distributed Trading Architecture

engine and the OMS to be run in a single thread of control for each security
so that the relationship between the states of the agent and the states of the
OMS is unambiguous.

An example of a distributed trading architecture that uses both the
messaging bus and the remote procedure calls between layers is shown in
Figure 19.5.

19.5 PARALLEL PROCESSING

A matter related to distributed computing is parallel processing. However,
despite sounding similar, their goals in the context of the trading node are
different.

The distributed computing architecture aims at removing as much load
as possible from the core layer, by treating as asynchronous any component
of the node that is not mission- and latency-critical.

The parallel processing architecture, on the other hand, is designed to
optimize the computation within the core layer.

The agent-based design of the core layer presented in this book naturally
fits into a parallel processing architecture.

For purposes of illustration, assume that the overall architecture is such
that every trading node is a consumer of market updates for only one secu-
rity. The trading nodes are therefore distributed and run on different process
clusters, as shown in Figure 19.5.

Focusing on one trading node, when a market update is observed, the
event is then passed to every single agent’s FSM. When a single agent con-
sumes the market update event, it updates its own internal state, desired
position, and orders.

Instead of passing the event consecutively to the *agents* list, one can
pass it in parallel, spawning a new thread per agent’s update method. Once
every agent is updated, the threads join and a single thread then continues the
computation by aggregating the desired position changes for the usage of the

Principal Design Patterns 263

event

SPAWN

THREAD 1

AGENT 1
FSM

CALCULATION

AGENT 1
FITNESS

CALCULATION

JOIN

AGGREGATE AGENT

OMS

AGENT N
FITNESS

CALCULATION

AGENT N
FSM

CALCULATION

THREAD N

F IGURE 19.6 Parallel Processing within the
Trading Node

aggregation and OMS layers. Figure 19.6 shows the diagram of information
flow and the pseudocode.

19.6 GARBAGE COLLECTION AND
MEMORY CONTROL

An important efficiency consideration is the fine-tuning of the Garbage Col-
lection (GC). Unless one uses a very sizable RAM that allows one to run the
trading node uninterrupted for days on end, GC will invariably be occuring.

264 PRACTICAL IMPLEMENTATION

GC, when not controlled, is not a deterministic process, so it can occur
at inopportune moments and cause serious processing downtime that can be
business-critical.

Hence it is very important to make sure that it is not occuring at times
when the trading node may have a heavy computational load (e.g., periods of
high quote volume and volatility bursts). Of course, such periods are hard to
predict but there are some clear patterns. As seen in Part Three, trading vol-
ume for assets have intraday seasonality and those seasonality patterns de-
pend on the asset itself. GC should avoid being run in periods of high trans-
action and quote volume. Economic releases also are associated with bursts
of activity in the market. Thankfully most of the release times are scheduled
and communicated in advance. So GC should be avoided around those times
as well. The GC control mechanisms differ from language to language.

In Java, a reasonably high degree of control over the virtual machine
can be achieved via Java RT (the Java Real Time Environment), which uses
a “metronome” GC algorithm. The calibration of the GC mechanism is done
via an application like Java VisualVM for example.

In LISP, where GC was introduced at the very beginning of the design of
the language, it can be called from within programs by invoking the function
(gc), so several GC algorithms can be explicitly coded if needed.

In C++, objects need to explicitly allocate memory then when destruc-
ted, to clear memory. This introduces a lot more code overhead but is more
precise, so there is no garbage collection per se.

When foreign functions or distributed computing via a messaging bus
are used, it is also very important to coordinate GC activity across processes.
One needs to avoid situations where computational bottlenecks or message
queuing occurs because one process is GC’ing while the others are not.

Fortunately, RAM continues to become cheaper with time, so hardware
solutions are becoming increasingly able to delay the GC to periods that can
be controlled explicitly and where computational downtime presents less
business risk.

An interesting application of the cached memory infrastructure dis-
cussed in the next chapter is its usage to avoid untimely GC’ing. Some open
source and commercial products currently offer up to one terabyte of cached
memory.

CHAPTER 20
Data Persistence

T here are several important goals of persisting data, namely for the back
office and reconciliation with trading counterparties and custodians,

building databases for research and development, and for recovery from sys-
tem and communication downtimes.

In the design of the automated trading infrastructure some serious con-
sideration needs to be given to selecting what database technologies to use
for what purpose.

Data persistence is about saving all the important information. There
are two ways to save, on-the-go caching and physical storage. The best way
to ensure robustness and computational efficiency is to combine the two.

20.1 BUSINESS-CRIT ICAL DATA

In order to figure out what to save, one needs to decide which data is critical
for the operation of business. There are, conceptually, two types of infor-
mation that need to be recoverable at will. If one thinks of the trading in-
frastructure as a finite-state machine interacting with the external world, at
every point in time one should be able to reconstruct the internal and the ex-
ternal states of the machine. Then it would continue operating as if nothing
happened.

Preserving External State The external state is how the trading business
is seen by its trading counterparties: ECNs, prime brokers, custodian, and
administrator.

The ECN sees the history of all the communication traffic (FIX mes-
sages). This consists of orders, acknowledgments, rejects, fills, sequence
number resets, and so on.

265

266 PRACTICAL IMPLEMENTATION

The prime brokers see the executed disaggregated trades reflected in the
various subaccounts that the trading business holds with them.

The custodian and administrator see the aggregate data from prime bro-
kers potentially disaggregated in a set of subaccounts.

From a practical standpoint, the business-critical data needed to pre-
serve external state is the history of executed trades and the current outstand-
ing orders. One does not usually need to keep explicit tab on the history of
FIX messaging although sometimes it is handy for debugging.

Preserving Internal State The internal state of the trading business is in-
timately related to the internal states of every one of its trading agents. The
FSM paradigm for trading agents comes in very handy because it defines
the minimal amount of data that needs to be kept to preserve the overall
internal state.

Indeed, as per the discussions in the previous parts, every trading agent
recomputes its FSM as new data comes in (be it from market updates, fill
updates, or from other agents’ communications). The FSM is computed via a
series of indicators that are based on event histories. Agents need to preserve
these indicators in such a way that at recovery, the state of each agent is
exactly the same as before the power-down.

Let us reiterate that the operation of each agent is path-dependent on the
history of events and potentially on the operations of other agents. This is
where recursion comes into play, because computing indicators recursively
helps greatly to reduce the amount of data that needs to be saved and re-
trieved for each agent at recovery.

Hence agents need to be preserved with their whole class structure for
efficient recovery. They are crucial data items to be persisted and contain in
themselves sufficient information for their own individual recovery. By this
method the agents preserve the history of their individual fitnesses, positions,
trades, and orders.

The swarm also needs to be preserved in its entirety, that is, the histories
of members of the SSS and SFS sets, along with all the global fitness histor-
ical data and the histories of aggregate swarm orders, trades, and positions.

At the level of the OMS and the aggregation/disaggregation layers, it is
crucial to preserve the entirety of current orders outstanding with the dis-
aggregation data.

Finally, at the level of the translation layer, the current sequence numbers
need to be preserved for each ECN.

Anci l lary Data The ancillary data that should be preserved in a different
database consists of ECN market update histories. Those could be either raw

Data Persistence 267

data or aggregated synchronized data by the aggregation layer. The aggre-
gated data is most relevant for FX because many ECNs and banks publish
different streams and the trading business should be aggregating that data
in its own private stream.

This time series tick and book data is very valuable for strategy testing.
It is, however, very bulky and should ideally be saved in another database
(and format) from the business-critical data needed for state preservation
and recovery.

20.2 OBJECT PERSISTENCE AND
CACHED MEMORY

As soon as raw ECN data gets translated by the translation layer into the
trading node, it enters the persistence layer that encompasses the majority
of the node. Every component of the persistence layer is connected to a dis-
tributed memory cache. The memory cache itself is connected to a set of
physical databases discussed in the next section.

Distributed cached memory (or network cached memory) is a shared
RAM resource across a network for short-term persistence and data shar-
ing between concurrent processes. Every object that ultimately needs to be
written into a physical database would live in the cache until the moment it
is actually written.

If one of the nodes (computers) that supports the cached memory goes
down then data is not lost as it is replicated in the other nodes and in the
database. Another very important feature is that caching improves compu-
tation speed because the database writes are asynchronous (and queued).
Those two features make the memory cache an essential feature in the op-
eration of the trading node. Figure 20.1 shows the salient features of a dis-
tributed cache architecture.

Several commercial and open source caching technologies are built
around some design principles introduced by MemCached, an open source
project.

As discussed at length in the book, the most convenient way of de-
signing the trading node’s layers and components is via an object-oriented
methodology where a set of objects interacts via a set of generic functions
and methods. These objects may live on different machines and communi-
cate between each other via bus messaging or remote procedure calls. Some
memory caches have been designed specifically for object-oriented environ-
ments, like AllegroCache for LISP and Terracotta for Java.

268 PRACTICAL IMPLEMENTATION

PROCESS
USES

RECOVERY
PROCESS

RECOVERED
PERSISTENT

CLASS

PERSISTENT
CLASS

PERSISTENT
CLASS

MEMORY
CACHE

DB 2 DB 1

F IGURE 20.1 Memory Cache Architecture

In those object-oriented caches, all objects that need to be persisted
would inherit from a persistant class that automatically manages the writes
into the physical database cluster to which the cache is attached.

In AllegroCache, when a class is specified to be persistent, it will be
automatically storable and retrievable via an indexing system that can be
set in advance. The AllegroCache database has all the features (and more)
of relational databases like Oracle or MySQL. For example to make the
EVENT class persistent one would simply write the following definition:

(defclass EVENT ()
((timestamp

:initarg :timestamp
:accessor timestamp
:index :any)

(value
:initarg :value
:accessor value))

(:metaclass persistent-class))

Here the only differences from the definition given in Part One are the
last line that specifies that the class is persistent and the :index :any ad-
dition to the timestamp slot. This last feature creates an index that would
allow the retrieval from the database of all EVENT objects that have a certain
timestamp.

Data Persistence 269

In Java one of the popular and efficient open source distributed caches is
Terracotta. Terracotta has been developed for clustering of Java virtual ma-
chines. It allows sharing of cached objects and multithreading across JVMs.
Terracotta is connected to a database cluster.

When setting up Terracotta, one needs to specify the clustering config-
uration of the Java processes. By that one defines a priori what objects are
to be shared by the cluster of JVMs and their concurrency characteristics.
Those constitute the shared object graph. That graph is defined a priori via
an XML specification of the root objects, instrumented classes, and locks.
The child classes derived from root objects are the shared classes accessi-
ble from any JVM on the cluster (they are cached). Instrumentation is the
process by which Terracotta sets up the persistence and clustering charac-
teristics when the classes are loaded into the JVMs. Every bytecode of an
instrumented class is modified to include the Terracotta-specific fields and
methods that connect the class to the cache. Locks are specified on the meth-
ods and the relevant bytecode is modified at load time in order to ensure
cluster concurrency.

Terracotta does not require any modification to the native code, un-
like the example given previously for making the EVENT class persistent in
AllegroCache. It requires instead the setting up of a series of XML files that
control the whole instrumentation process.

In addition to the memory caching, Terracotta allows, by its design, for
distributing calculations across JVMs. Assume, for example, that the trad-
ing infrastructure is composed of several trading nodes and that two of those
trading nodes share the market event updates for one security S. The trad-
ing agents in both clusters use S’s price updates (along with other security
price updates that are different between the two clusters). The trading nodes
can be configured in a way that when S is communicated by the transla-
tion layer, the aggregation/disaggregation level implements a master-worker
pattern to distribute the work between the two control layers and gather
the information on the aggregate desired position change and set of orders
pertaining to S. This design would only make sense if the two nodes are not
required to receive synchronous sets of price updates of other securities along
with S.

20.3 DATABASES AND THEIR USAGE

The cached memory is connected to a set of physical databases into which
periodic asynchronous writes are performed. The way data is represented in
the database depends on the nature of the database and the query language
associated with it.

270 PRACTICAL IMPLEMENTATION

Types of Databases All useful databases need to meet the ACID (atomic-
ity, consistency, isolation, durability) tests that ensure referential integrity of
data and mechanisms that prevent multiple concurrent users from commit-
ting data inconsistently. Also, databases should be endowed with efficient
bulk loading mechanisms into the cache as well as the logging of transac-
tions that help in restoring data in case the system crashes while writing
from the cache.

There are basically two broad types of database design, the RDBMS and
the NoSQL databases, and they differ by how data is reflected in them.

The relational database management system (RDBMS) requires a
schema that rigidly defines the format and types of stored data and the
relationships between data. The data in the database is represented by ta-
bles, and relationships between data are defined by tables as well. These
databases are most widely used by the business community, and are usually
set up and queried by the structured query language (SQL). Examples of such
databases are the stand-alone MySQL and the clustered version provided
by Oracle.

The NoSQL databases are a response to the challenge posed by the con-
straints that the overly structured RDBMS design imposes on real-world
data. For example, experimental data (representations of large time series
of visual data or biological data) do not fit the structured table represen-
tation well, as the structure of the data may change in time or depend on
context. The acute need for representing data within its context is found in
the Semantic Web effort. The idea is to design a data representation en-
dowed with local knowledge on how to interpret it, not just a table of
numbers and strings that can be interpreted only by unchanging global
semantics.

For example, Google and Amazon do not use the standard RDBMS
architecture but have designed their own database technologies to address
their business needs. The scientific and defense communities have designed
the Hierarchical Data Format (currently HDF5) to deal with large sets of
unstructured observational data. The data representation of HDF5 is a di-
rected graph of simpler components. AllegroGraph is another example of a
database that uses graph representation of data and a Prolog-based query
language.

Long high-frequency time series of even simple data (like ticks) present
another challenge to the RDBMS model because of bottlenecks associated
with speed of loading and writing. Some proprietary technologies, like
Xenomorph, have emerged to help deal with such problems. One approach
is by storing time series as binary vectors and by bulk loading them directly
into RAM or cache. The Matlab and Mathematica analysis software use
HDF5 for time series representation of data.

Data Persistence 271

AllegroCache is a NoSQL database that stores objects and relations be-
tween them as “b-trees.” This is particularly handy for LISP objects as they
are represented as lists (trees).

Back Off ice Report ing and Give-Ups A copy of the set of executed trades
and their allocations between the trading agents persists independently of
the copy held by the trading node. This database can be an instance of the
RDBMS as the schema for the data is simple.

This middle-office database performs the external reconciliation and
give-ups function. The reconciliation is in two parts, ECN and give-up to
the custodian. Unless errors occur at the ECN (busted trades) or give-up er-
rors occur between the ECN and the prime broker, the execution data is then
deemed clean and passed to the back office database and external adminis-
trator.

If errors occur then a roll-back mechanism needs to be in place between
the middle office and the trading node; this is dicussed below.

State Persistence The database for recovery purposes needs to contain
the minimal information for internal and external state reconciliation. As
mentioned above, the object-oriented agent-based paradigm adopted in this
book calls for efficient storage of agents as objects, as well as other busi-
ness objects like the OMS and the aggregation/disaggregation-related ob-
jects. Those objects contain the accumulated data histories and procedures
needed to recover the range of functionalities.

It is of course possible to use RDBMS again for such purpose but a
NoSQL database of the AllegroCache type is more useful and user friendly,
as it can be reloaded and queried by the same LISP code. The AllegroCache
would restore the whole of the LISP environment as it was before power-
down, so no marshalling and unmarshalling of objects into tables would be
involved.

Research and Development As mentioned above, it is very valuable to pre-
serve the market update data, either in raw form as it comes from ECNs or in
the aggregated in-house format coming from the aggregation/disaggregation
layer.

High frequency tick data can become very bulky (petabytes of data),
so efficient storage and retrieval methods need to be used. It becomes a Big
Data problem that requires big solutions. Data is expensive and all efforts
should be made to preserve it for future research purposes, if it makes sense
from a business prospective.

An assessment needs to be made whether to build your own big data
server or use third-party vendors. The third-party vendors are certainly not

272 PRACTICAL IMPLEMENTATION

cheap, but they provide many advantages, and may end up costing less in
the long term. Several companies have developed “ticker plants” that solve
the in-house filtering, representation, and storage issues.

For example, Thomson’s Velocity Analytics platform not only provides
historical data but also allows the client to contribute its own aggregated
data. Nanex’s NxCore is another example of a very efficiently compressed
data plant, whose visualization and analytic tools have helped to shed light
on the events during the Flash Crash (see Nanex website).

The main point to make sure of is that such third-party platforms inte-
grate seamlessly with the trading infrastructure.

Unlike the necessary focus on the in-house development of the trading
node’s core layer, in my opinion it is better not to reinvent the wheel in
increasingly commoditized services like historical data storage and retrieval.

CHAPTER 21
Fault Tolerance

and Recovery Mechanisms

F ast recovery from systems or communications downtime is a very crucial
aspect of the architectural design for the trading infrastructure. Loss of

data and loss of time can yield a catastrophic failure of the whole trading
and risk-management process, with consequences on the future survival of
the business.

21.1 SITUATIONS OF STRESS

There are several types of situations where a complete or partial recovery is
warranted for the trading infrastructure. This is a complex topic and depends
on the nature of the downtime. The main types of situations are described
below and fall into the external and internal categories.

21.1.1 Communicat ion Breakdown

Communication breakdowns are the most common of all problems.
Whether a disconnect in communications happens because of problems at
the ECN, problems on the network, or problems at the trading business
makes no difference to the problem.

What matters is which data is not being received. There are several ways
communications can break down: one can be disconnected from the ECN’s
price source or order routing or fill updates or a combination thereof.

Suppose that a full communications breakdown occured at T−1 and no
prices or fills have been received since then. However, an alternate price
source exists (e.g., Bloomberg or Reuters) that can be queried to fill a gap of
price history. Assume that the alternate price source also got disconnected
for a while. It is now T0 and both the historical prices and the ECN are

273

274 PRACTICAL IMPLEMENTATION

reconnected. In order to recover from this situation one needs to implement
a process of the following kind:

� Restart trading node off-line now at time T0 and start receiving and
caching all ECN updates. The ECN will send the new sequence numbers
and re-send the fill updates that were lost during disconnect.

� Load from the historical price source all the price data from T−1 into an
event queue and keep adding the real-time ECN updates to that queue
as they come in.

� Also load the time-stamped ECN fill and order updates into the event
queue, respecting the time ordering.

� Re-simulate the whole trading process from T−1 by popping data from
the event queue.

� At some point T1, the queue will be empty because the simulation pro-
cess is faster than the real trading process. That means that the simula-
tion has finally converged back to reality.

� At T1 bring the trading node back online and restart consuming the real-
time market update events as they come. The trading node will have to
reposition itself according to its new correct state as well as replace some
outstanding orders. This is achieved by comparing the existing market
position to the desired market position and the existing orders to the
desired orders.

The above sounds easy, but in reality it is quite complicated. The main
issue is the fact that simulation cannot achieve a waterproof representation
of reality, especially in situations of nonlinear market impact and dealing
with uncertainty of the execution of limit orders.

21.1.2 External Systems Breakdown

External failures and breakdowns do happen—ECNs and broker systems
are not foolproof and have downtimes. This may consist of power-downs
and system failures at the ECN.

It is important for the trading business to continuously save its exter-
nal state, that is, the set of positions and outstanding orders at the trading
venues.

The trading node always keeps its own record of these in the memory
cache and on disk. If there is an external breakdown, then a reconciliation
can be accomplished with the trading venue by requesting a comparison of
trades confirmed and orders sent.

When situations like this happen, there are usually no market updates
coming from the stopped trading venue, so no issues would arise with

Fault Tolerance and Recovery Mechanisms 275

back-filling gaps in data, as those are real gaps with no data. This means
that during those downtime periods, the agents would not change state and
would not emit any orders.

21.1.3 Trades Busted at the ECN Level

ECNs can bust trades in certain situations (e.g., Flash Crash in 2010,
Knight’s overtrading in 2012, etc.) so a confirmed trade from the ECN is not
necessarily the final word. Usually the decision to bust is based on the con-
cept of “clearly erroneous execution,” where the price or quantity traded is
inconsistent with the current trading pattern for the security (e.g., see NYSE
Arca’s guidelines). Usually such busts are decided by the ECN within the first
15 to 30 minutes of the trade.

Although those situations occur very rarely, they nevertheless may cause
serious problems because they change the exposure and risk of the trad-
ing business. It is not nice, and can be very expensive, to suddenly find
out that one leg of a pairs-trading strategy is not there any more, be-
cause the exchange decided to bust it. One now finds oneself in a naked
position that needs to be dealt with immediately, by trading out of the
other leg.

Hence a roll-back mechanism needs to be in place for the middle of-
fice database. And, most critically, a feedback mechanism from the middle
office database back to the trading node database and process needs to be
implemented.

It could be that, after a bust, the ECN sends a confirmation electronically
(trade cancelled but not replaced), but it may not always be the case. Then
this information needs to be input manually into the middle-office database
and communicated back to the trading node.

The frustrating issue with this type of situation is that it is not the
fault of the trading node nor a design flaw of the trading agent logic. The
agent traded on legitimate information provided by the exchange. Even if
one builds in specific stop-gaps to avoid aggressively trading on off-market
prices, those situations may still occur because some resting orders got
triggered.

From a practical point of view, the FSM representation of agents helps
to deal with this situation at the primary logic level. Remember that the FSM
representation is designed to provide logical closure, so that at any point in
time and in any situation the agent knows what to do. If suddenly the agent
finds itself in a naked position then either it will reduce its risk by itself or
the swarm system will do it.

However, what is done is done, and the PL generated from the time the
trade was initially accepted to the time it got rejected is simply not real.

276 PRACTICAL IMPLEMENTATION

Hence the negative of that PL needs to be saved into an error ledger that is
independent of the trading node’s swarm risk management system.

This of course does not mean that this error PL should be hidden; it is
very real and has to be accounted for in the overall risk management layer
by potentially updating exposure limits for the trading infrastructure. But
this should not yield a recalculation of states of individual agents or swarm
because the internal and external path-dependent logic had been resynchro-
nized. It may yield an overall reduction of risk across the trading business,
rather than unnaturally force the agents to change the logic of their states.

Of course not all busts are bad. Sometimes one is stopped out from
a position at a loss. It feels very nice when that loss is reversed. Then the
situation changes the other way. If after the loss the risk management layer
reduced overall exposure, it may re-increase exposure when the stop-loss is
busted and the error ledger is positive.

21.1.4 Give-Up Errors Causing Credit
L ine Problems

Give-up errors occur when the ECN or the broker sends trades to the wrong
account, the wrong prime broker, or the wrong custodian.

Those are usually not business-critical unless the credit line of the prime
broker that is supposed to receive the trade dries up because it fails to receive
it. This may have consequences on being able to trade with that prime broker.

Assume for example that the trading node operates on aggregated FX
price data from an ECN and from a bank’s FX market-making platform. The
bank also happens to be the prime broker for the trading business, and sets
its exposure and credit limits. It will not allow the trading business to trade
through its platform if the credit or exposure limit is seen to be breached.

Banks usually market-make in more currency pairs than ECNs, so there
are pairs that the trading node can trade only through the bank but not the
ECN. In this example we assume that the ECN primarily trades developed
currencies through the ECN and emerging market crosses and NDFs through
the bank.

Assume that at the prime broker account the trading node’s position
happens to be quite short USD against a whole bunch of other currencies
and this short USD position is close to the bank’s limit. However, the ac-
count happens also to be very long USDBRL at that point (short BRL and
long USD).

Suppose now that the trading node gets short a large chunk of EURUSD
via the ECN, hence it is short EUR and long USD. From the trading node’s
perspective, it has reduced its overall short USD risk. Assume, however, that
the ECN mistakenly gives up the EURUSD trade to another account hence

Fault Tolerance and Recovery Mechanisms 277

the bank does not see (or cannot confirm) that the USD short had been
reduced.

Next trade, the trading node wants to reduce its short BRL exposure so
is going short the USDBRL against the bank. This increases the USD short
at the bank and breaches its credit limit. The trade is DK’d by the Bank and
the trading node cannot reduce its short BRL risk, despite having reduced
substantially its short USD risk via the ECN.

This is very dangerous because the trading node is put in a situation
where it cannot risk manage its positions because of a give-up error. This
situation is therefore equivalent to a disconnect from the bank’s liquidity
but not from the bank’s pricing source.

21.1.5 Internal Systems Breakdown

A local server going down may or may not cause a problem for the trading
node. If that server supports part of the cached memory or a database then
the cached data is, by design, still on the network and can be retrieved by
the processes. If the server supports part of the decision-making process then
the problem is more acute.

One has to deal then with the recovery problem in a very similar way
to the situation of a network disconnect and re-simulate the path-dependent
state changes with historical data, as discussed above.

21.1.6 Planned Maintenance and Upgrades

Usually ECN planned maintenance and upgrades occur on weekends or holi-
days when markets are closed, and so should be the maintenance of the trad-
ing infrastructure. There is no recovery per se but just a restart. At restart,
the physical database is reloaded into the memory cache in a way that the
internal states and data of all the agents are the same as before the power-
down. Then the trading infrastructure is connected to the ECNs, respecting
the sequencing numbers and waiting for more fun processing the market
updates.

21.2 A JAM OF LOGS IS BETTER THAN A LOGJAM
OF ERRORS

Not all errors are caused by external sources or local hardware. It may be
that the implementation of the trading infrastructure has bugs. Bugs happen
to everyone, and sometimes cost a hell of a lot of money (and control), as
Knight Capital found out in the summer of 2012.

278 PRACTICAL IMPLEMENTATION

It is very handy to keep generating logs, to be able to disentangle the
sequence of events that caused the system to malfunction.

Logs can be generated and streamed to a compressed format asyn-
chronously thanks to the memory caching architecture. Clearly, if faults
do not occur, old logs can be erased periodically to free up disk space for
new logs.

In general, it is important to create logs that are easily parsed via line-
reading scripts based on Awk, Perl, or similar scripting languages.

Several logging applications are available, like Log4J in Java with its
Chainsaw viewer from Apache.

Logs can also be used for data management. To save processing time or
CPU load, it is sometimes handy to automatically log all the market event
data received from the ECN and then asynchronously extract it into a phys-
ical database from the logs.

21.3 VIRTUAL MACHINE AND
NETWORK MONITORING

One big factor in fault mangement is prevention. Of course, external break-
downs or hardware and communication failures cannot be predicted so ef-
ficient recovery mechanisms, as presented above, need to be in place and
tested thoroughly.

However, other internal problems may occur and create bottlenecks and
latency. For example, assume one of the servers supporting the memory
cache breaks down. It is not a business-interruption situation because the
trading node can keep operating on a lower permeation of the cache across
the network. However, the load on the physical database writes will increase.

From an internal perspective, the problems that may occur, outside of
bugs, are related to computational or communication bottlenecks.

Computational bottlenecks mostly occur when the GC is not tuned cor-
rectly. Chapter 19, “Principal Design Patterns,” mentioned the importance
of tuning and monitoring GC activity across processes. Java, for example,
provides the Java Visual VM tool for this purpose.

Network bottlenecks can occur at the translation layer level and at the
messaging bus level. Most commercial FIX engines provide a way to moni-
tor the FIX traffic in and out of the trading business. Messaging buses also
provide visual monitoring tools.

From my experience, the fine-tuning of the system takes time and is an
evolutionary process in itself. It takes time and mistakes to learn. In gen-
eral, the motto should be “When in doubt, get out!” This is a very well

Fault Tolerance and Recovery Mechanisms 279

tested and good trading motto and extends to tuning the automated trading
process. If for some reason tension appears on the computational or net-
working side, it is a good idea to reduce overall risk and exposure of the
trading node.

This is where the human element comes in, and at the point in time that
this book is being written, it is irreplaceable.

CHAPTER 22
Computational Efficiency

T he swarm systems studied in this book are composed of a sizable num-
ber of individual agents consuming data updates. Especially in the high-

frequency world, where the data comes as bursts of ticks, the design of the
individual agent and of the whole system needs to be computationally effi-
cient. Otherwise, the system would not be able to consume and react to the
data in a timely fashion.

The examples of the swarm systems presented thus far operated only
on one data source. In reality, they are implemented on a series of markets.
For example, in foreign exchange, there are almost a hundred liquid trad-
able pairs on which swarm systems can be implemented. In global equities,
the number of could go easily to a thousand. The swarms discussed above
contained up to 500 individuals so this could translate into half a million
agents across all the markets.

Design patterns for the infrastructure necessary to sustain such scalabil-
ity are based on a distributed computing architecture that is a set of concur-
rent trading nodes. Each trading node uses a parallel processing architecture
at the level of the control layer to update the FSMs of each agent on a single
market data or communication event.

22.1 CPU SPIKES

One of the main computational bottlenecks comes from the fact that com-
puter CPUs operate in clock time, while data update events come in a ran-
dom fashion. The impact of this difference is most visible in the high fre-
quency domain. Clock time between tick arrivals varies greatly as a function
of the activity of the market, and this is what creates the effect of volatility
spikes: measures of volatility are computed in clock time. The strategies that
are most appropriate for the high frequency domain are event driven, and
the market volatility bursts translate directly into computational load bursts
on the CPU.

281

282 PRACTICAL IMPLEMENTATION

To respond to such bursts, the system would either have to queue the
data to process it at a later stage, or ignore all the data updates that come
while the computational cycle is occurring.

The danger of queuing is that, by the time a computational cycle com-
pletes and sends the order to the OMS, the tick on which the OMS needs
to act aggressively is already stale. An order rejection will result and the
desired position will not be synchronized with the position in the market.
The same can happen on the next cycle. Thus the system may be completely
stalled for the whole period of increased market activity, unable to trade in
or out of positions. Those periods are very often associated with large price
moves, and they are exactly the periods when efficient repositioning and risk
management ought to be applied.

Queuing can also be induced by garbage collection, and if the GC is not
tuned properly, it risks being induced by a spike in market update events as
discussed previously.

Another danger of ignoring data updates during a computational cy-
cle is that one could lose the path dependency embedded in certain trading
strategies. Designing each agent as an FSM helps to overcome this problem
somewhat, as the strategy would know which state to transition to at the
next update. But this transition may come with a large slippage cost.

Thus, it is of the utmost importance to ensure that swarm systems are
designed to withstand such computational bursts. I have spent a fair amount
of time optimizing the numeric and algorithmic aspects of this process, and
the major results are presented here.

22.2 RECURSIVE COMPUTATION OF MODEL
SIGNALS AND PERFORMANCE

One of the largest efficiency gains is to avoid loops while computing indica-
tors and performance measures. Most indicators used in systematic trading
are based on price history, and very often on a moving window of data. At
each data update the newest element is added to the window, the oldest is
dropped, and the indicator is recalculated. The CPU time needed to calcu-
late the indicator in this fashion is proportional at least to the length of the
window, but it could also grow as the square of the window length if the
calculation includes standard deviations.

As an example, take a simple moving average

SMA(n, t) = (1/n)
n−1∑

i=0

x(t − i)

Computational Efficiency 283

Calculating it involves a summation of n elements and one division. If at each
step one saved the latest value of the SMA and the oldest element x(t − n + 1)
separately, then one could write

SMA(n, t + 1) = SMA(n, t) + (x(t + 1) − x(t − n + 1))/n

This calculation reduces to two summations and one division and becomes
independent of the length n of the lookback period.

Even more efficient is to use an exponential moving average,

EMA(α, t) = (1 − α)EMA(α, t − 1) + αx(t)

because only its last value needs to be remembered. When α = 2/(n + 1)
the EMA becomes very similar to the SMA in its smoothing and filtering
properties so one can use it instead.

In general, a function that makes a call to itself with a different argument
is called recursive. Suppose one pre-calculates f (0) at step 0. If the calcula-
tion of f can be represented as f (N) = G(f (N − 1), x) then, for step N, one
only needs to remember the last value f (N − 1) to calculate the next value
f (N) via a call to the function G. This sounds like not much, but representing
calculations recursively is very efficient from a computational perspective. In
fact, the theory of recursive functions is a precursor to modern computing
and was initially called λ-calculus by its creator Alonzo Church in the 1930s.
The computer language that naturally emerged from that research is LISP,
which is being used throughout this book.

There is one particular style of writing recursive computational algo-
rithms that gives the best time efficiency. It is called tail-recursion. The fol-
lowing is an example of a (non-tail) recursive function ntrf that calculates
the sum of the consecutive n numbers:

(defun recsum (n)
(cond ((zerop n) 0)

(t (+ n (recsum (- n 1))))))

A tail-recursive version of it is written as follows:

(defun trecsum (n & optional (counter 0))
(cond ((zerop n) counter)

(t (trecsum (- n 1) (+ counter n)))))

Here notice that at each iteration, the tail-recursive version calls itself
last and by this is effectively storing, within itself, the previously calculated
value. The reason why tail-recursion is faster is because the function needs
to descend only n levels to 0 for the result to be calculated instead of 2n

284 PRACTICAL IMPLEMENTATION

in the other case. Here is an example of the difference in CPU times for a
summation of the first two million numbers (under CMU LISP):

* (time (recsum 2000000))

; Evaluation took:
; 1.52 seconds of real time
; 1.398788 seconds of user run time
; 0.085987 seconds of system run time
; 2,261,131,656 CPU cycles
; [Run times include 0.59 seconds GC run time]
; 0 page faults and
; 47,213,832 bytes consed.

2000001000000

* (time (trecsum 2000000))

; Evaluation took:
; 0.93 seconds of real time
; 0.829874 seconds of user run time
; 0.077988 seconds of system run time
; 1,398,247,564 CPU cycles
; [Run times include 0.05 seconds GC run time]
; 0 page faults and
; 47,993,808 bytes consed.

2000001000000

*

If all the FSM calculations for the swarm agents are designed to be re-
cursive in the above sense, the whole swarm can be recalculated in one syn-
chronized cycle. The effect of this computational efficiency can be quantified
and demonstrated. For example, Figure 22.1 shows the comparative statis-
tics on CPU time for the calculations of two swarms of 400 moving-average
crossover models.

SAS1 = {S(a, b)|a, b ∈ {3, 4, . . . , 22}}
based on SMAs with lookback periods a and b, compared to

SAS2 = {E(α, β)|α, β ∈ {2/(3 + 1), 2/(4 + 1), . . . , 2/(22 + 1)}}

Computational Efficiency 285

FIGURE 22.1 Recursion and Computational Efficiency

based on EMAs with equivalent sensitivities as per the preceding formula.
The AMA(2/(n + 1)) can be seen as a tail-recursive version of an SMA(n)
where instead of n additions and one division, the system performs one ad-
dition and two multiplications. The additive swarm uses the NAVMOM(20)
fitness functions on 20 past observations for each agent. 100,000 ticks are
taken to produce the statistics on full calculation time as well as average
time per tick.

22.3 NUMERIC EFF IC IENCY

Another important element is the way data is presented for computations.
As a general rule, floating point operations (FLOPs) are more CPU time-
consuming than the integer (or long integer) operations unless the processor
is designed specifically for floating point manipulations. In the markets, the
prices are by definition discrete. Only a handful of markets are quoted with
more than three digits after the decimal, like the Natural Gas and Silver
futures with three digits, most currencies with either two, four, or five digits,
and US Fixed Income with at most with five digits (1/32).

The author found that programming the strategies so as to calculate all
the indicators with long integers produces a run and simulation time gain
on the order of 20 percent relative to the simpler but naive approach of
using double-precision floating point representation. This is significant both
for simulations and for optimizing the overall latency of the trading node.
For example, here are two routines that add a series of random integer and
floating point numbers. Their time and memory statistics for a run on 1
million numbers follow.

286 PRACTICAL IMPLEMENTATION

(defun inttest (n)
(let ((result 1)

(op 0))
(dotimes (i n)
(setf op (random 2))
(if (zerop op)

(setf result (+ result (+ 1 (random 10))))
(setf result (- result (+ 1 (random 10))))))

result))

(defun floattest (n)
(let ((result 1.0)

(op 0))
(dotimes (i n)
(setf op (random 2))
(if (zerop op)

(setf result (+ result (+ 1 (coerce (random 10) ’double-
float))))

(setf result (- result (+ 1 (coerce (random 10) ’double-
float))))))

result))

* (time (inttest 1000000))
; Evaluation took:
; 18.74 seconds of real time
; 18.308216 seconds of user run time
; 0.287956 seconds of system run time
; 28,035,164,804 CPU cycles
; [Run times include 0.19 seconds GC run time]
; 0 page faults and
; 140,042,304 bytes consed.

-2254

* (time (floattest 1000000))

; Evaluation took:
; 23.96 seconds of real time
; 23.341452 seconds of user run time
; 0.436934 seconds of system run time
; 35,838,935,444 CPU cycles
; [Run times include 0.25 seconds GC run time]
; 0 page faults and
; 204,041,704 bytes consed.

456.0d0

*

Computational Efficiency 287

In order to implement a representation of the agents using long inte-
gers, one has to perform a “quantization” of all the relevant calculations for
indicators and, desirably, for the fitness measures. The FSM representation
also needs to be potentially modified to accommodate such a change as seen
in the following example.

To see how such a “quantization” should be performed on a concrete
model, consider a SWMR swing mean-reversion strategy as introduced in
Part One. This model exhibits counter-trading swings of a certain threshold
that are scaled by a rolling measure of volatility. It depends on four parame-
ters, integers N and M, and floats α and β. Figure 7.9 of Part One is the full
FSM state-transition matrix in traditional floating-point representation.

When the model starts from the INIT state the indicators are initialized
by receiving a time period N ∗ M of prices that is an integer multiple of a
24-hour trading period (so as to remove intraday seasonality of volatility
across time zones). The data is sliced into M-minute bars and the percent
average range is computed via the formula

PAR(0) = (2/N)
N∑

i=1

(Hi − Li)/(Hi + Li)

where Hi and Li are respective high and low traded prices in bar i . This
PAR is recalculated every M minutes and a new value is stored for indicator
calculations when the model transitions states.

At the end of the N ∗ M period, the model transitions to the START
state and the first traded price P0 defines the upper and lower trigger prices

S = P0(1 + 0.5αPAR(0)), L = P0(1 − 0.5αPAR(0))

The model remains in that state until the price breaches this channel. Here,
the situation when the price breaches the lower channel is described in detail.
The opposite situation is symmetric, and the reader would be able to follow
the transitions from the FSM matrix.

In the situation where P < L, the model transitions into the LONG state
and sends a buy order to the OMS at L or better. The following indicators
are calculated

S = L(1 + αPAR(1)) and SL = L(1 − βPAR(1))

and are the respective short reversal and stop from long levels and PAR(1)
is the latest PAR calculated before the state transition.

If the price keeps falling below L, S would ratchet down with it and be
recalculated on every tick down:

S = Pmin(1 + αPAR(1))

288 PRACTICAL IMPLEMENTATION

whereas the SL remains the same. If then at a subsequent stage, the price
trend reverses and P > S > SL, then the model transitions to the SHORT
state and sends an order to the OMS to reverse the position at S or better.
The following indicators are then calculated

L = S(1 − αPAR(2)) and SS = S(1 + βPAR(2))

where PAR(2) is the latest PAR before this transition.
If, on the other hand, the price keeps falling and ticks below SL, then

the OMS is ordered to sell stop at market, the position is flattened, and the
model transitions to the STOP − FROM − LONG state. At that stage, only
short positions are permitted at a trigger level

S = SL ∗ (1 + α ∗ PAR(2))

that ratchets down when the price keeps falling

S = Pmin(1 + αPAR(2))

If subsequently P > S, then the OMS triggers a sale at S or better and the
model transitions to the SHORT state.

Thus, the following four calculations are performed on every tick:

1. The current ith bar updates Hi and Li by storing previous values and
comparing to the current tick. At the end of the M-minute period the
value 0.5(Hi − Li)/(Hi + Li) is stored in an array and the PAR is recal-
culated as an average of that array.

2. Depending on the state, either the L or the S level is updated by the
above formula.

3. The comparisons P < L, P < SL, P > S, or P > SS are performed, de-
pending on the state.

4. If the tick entails a state transition, then additionally either the SS or the
SL levels are calculated until the next state transition.

The quantization method replaces the inequalities that trigger the state
transitions by equivalent inequalities on long integers. For this, first of all,
one will multiply all prices by the necessary power of 10 so as to make
them integer. Thus if Natural Gas futures are received as P = 4.135 by the
translation layer, then they will be at the source transformed into P∗ = 4135
for processing by the trading node.

The next step is to represent all the float numbers f as fractions fn/ fd
up to a certain precision p where | fd| < 10p. For example, if p = 2 and

FI
GU

RE
22

.2
FS

M
fo

r
SW

M
R

U
si

ng
L

on
gs

289

290 PRACTICAL IMPLEMENTATION

α = 1.125 then one can represent it as α = 1125/1000 = 9/8. Then, for
example, the comparison P > S becomes

P∗αdPARd > P∗
min(αdPARd + αnPARn)

and so on and so forth for all the other inequalities that comprise the FSM
transition matrix. The new FSM representation using longs is shown in
Figure 22.2.

The updating of the PAR is happens only every M minutes and should
be done in a separate thread. It could be optimized further by replacing the
N-bar moving average by the corresponding recursive EMA, as discussed in
the last section. It is then passed to the FSM as two long components of the
approximating fraction PARn/PARd with precision p.

In order to implement the quantization of the FSM, one needs to ensure
that no major loss of computational precision occurs. The maximal allow-
able precision p is a function of (1) the maximal long integer representation
given by the compiler and (2) the complexity of the FSM calculations. Cur-
rently, under Java and C++, an 8-byte positive long integer is bound by

Imax = 18,446,744,073,709,551,615 = 264 − 1 = 1.8 ∗ 1019

The quantized FSM inequalities above all contain terms that are multiplica-
tions of three integers. Thus to be safe, each of those integers should be less
than I1/3

max = 2, 642,245 = 2 ∗ 106. Hence the allowable precision is p = 6
and any floats above 0.000001 can be represented without loss of precision.

The approach presented here is usually more than sufficient for a very
wide variety of strategies.

CHAPTER 23
Connectivity to Electronic

Commerce Networks

T he external world of the trading infrastructure consists of the collection
of electronic trading venues to which it is connected. Each electronic com-

merce network (ECN) has specific requirements and subtleties that need to
be taken into account when building the connections.

These subtleties are ironed out during the certification phase that all
ECNs require. Many of them also give access to simulated environments
where no real trading may ever occur, but order placement, cancellation,
disconnects, and all other features can be tested with no risk of losing money.

This chapter focuses on the situation where a certification phase has been
completed and no issues remain as far as the raw connectivity to an ECN is
concerned. The ECN can receive orders, send confirmations, cancellations,
and fills, and, potentially through another channel, send price and order
book updates.

23.1 ADAPTORS

It is important to realize that often the connectivity to the price source of the
ECN and the order placement conduit are two different matters, and may
require two different adaptors.

The adaptor manages the connectivity and maintains the heartbeat with
the ECN. It listens to the heartbeat and emits one as well. If the connection
is lost, both the trading infrastructure and the ECN will be aware of the
disconnect.

To reconnect properly, the adaptor keeps track of the sequence number
that the ECN emits with each message and that pertains to this particular
connection. When the adapter requests a reconnection, it sends its own stale
sequence number to the ECN, which compares it with its current one. It will

291

292 PRACTICAL IMPLEMENTATION

then reconnect and resend all the messages (fills, order cancellations, etc.) to
the adaptor since that stale number. Hence no information is lost and the
adaptor can now resume sending orders to the ECN.

23.2 THE TRANSLATION LAYER

Given the good functioning of the set of adaptors, the information is passed
on to the translation layer. This layer’s top-level architecture is shown
in Figure 23.1.

23.2.1 Orders: F IX

Most ECNs currently support a version of the FIX protocol for passing order
and fill updates, and many use it for price updates as well.

A typical FIX message contains all the necessary fields to unambiguously
identify the transaction. It is a series of (field number, field value) pairs and
only the pairs with non-null values are transmitted for parsimony.

A FIX engine translates the message into an object in the domain model
of the trading node. It also translates particular objects back into FIX mes-
sages to be sent to the specific adaptor that relays it to the ECN for which
that message is intended.

There are several high-performance commercial and open source FIX
engines, and there really is no point in reinventing the wheel in that domain.

The translation from FIX to the domain model is achieved in two stages.
The FIX engine usually comes with a Java, C++, or .NET wrapper that has its
own domain model. This consists of a set of basic classes representing orders,

ECN 1 ECN 3

FIX FAST
ENGINE

FIX
ENGINE

DOMAIN MODEL REPRESENTATION

LAYER - SPECIFIC CLASSES

SPECIFIC
ADAPTOR

ECN 2

F IGURE 23.1 Translation Layer Architecture

Connectivity to Electronic Commerce Networks 293

fills, and prices and gives the first step toward representing the information in
one of the trading infrastructure’s languages. The translation layer, however,
transforms those basic classes into its own domain model and potentially
translates it into an altogether different language from the one provided by
the FIX engine (e.g., Java to LISP).

23.2.2 Speci f ic ECNs

Some ECNs have their own specific adaptors that use a proprietary proto-
col for data transmission. For example, in FX and fixed income, many banks
provide connectivity to their market-making desks without using FIX. These
ECNs provide Java, C++, or .NET adaptors to their streams, and those sup-
port, in one application, the communications pertaining to order routing
and price updates.

From a maintenance perspective, it is more efficient to connect to such
specific trading venues also via FIX, if and when supported. The FIX en-
gines discussed above are designed for aggregating the connections to several
ECNs at once, hence giving a plug-and-play scalability.

23.2.3 Price Sources: FAST

FIX is unfortunately very verbose and quite cumbersome, especially for
transmission of basic data. Cracking FIX messages takes time and can im-
pede the operation of the trading node in situations of market stress and
large message throughput.

Some major ECNs use the ITCH protocol that is adapted to carry very
lean messages for price and order book updates, but it is only a one-way
direct data-feed protocol that does not support order passing.

The FAST protocol, which stands for FIX adapted for streaming, is a
much lighter and more efficient data representation and compression mech-
anism than FIX. It achieves compression rates of 90 percent relative to ei-
ther the original FIX messages or the native proprietary protocols that some
ECNs use.

FAST is particularly adapted for streaming price and order book data,
and decreases the effective latency (which includes the whole roundtrip
ECN→trading node→ECN). Thanks to the higher compression rate, it uses
much less bandwidth.

FAST has been compared and stress-tested against the proprietary ITCH
protocol that is used by some major ECNs (see [fixglobal ITCH-FAST]).
The results are that the bandwidth utilization of FAST is half that of
ITCH, and that the speed of decoding and encoding is the same at roughly
100ns/message.

294 PRACTICAL IMPLEMENTATION

23.3 DEALING WITH LATENCY

There are several sources of latency, some that are within the control of the
designer of the trading architecture and some that are not. The following are
the two main sources:

1. External: Once the message has been sent by the adaptor, it leaves the
trading infrastructure and potentially goes over a wire to a pipe (T1
line), gets processed by the ECN, comes back from the ECN on the T1,
and then on the wire.

2. Internal: Once the message is received by the adaptor, it gets translated
by the translation layer, then processed by the aggregator/disaggregator
layer, by the OMS, and then by the control layer. A decision is potentially
made that goes back to the OMS, aggregator/disaggregator layer, and
back to the translation layer, then finally the adaptor.

23.3.1 External Constraints and Co-Locat ion

The external constraints can be divided into hardware and ECN response
time. Hardware constraints can be solved, but of course at a high cost. They
are minimized by either installing dedicated pipes (T1 or multiple T1 lines),
or even better, going the co-location route.

In the situation of installing dedicated pipes and avoiding any wires in
between, the latency becomes purely a function of the physical length L of
the fiber-optic pipe, hence the communications latency will be 2L/c where c
is the speed of light. So for example, if one were to connect from Wellington,
New Zealand, to the Eurex in Frankfurt, via a T1 line that would go around
half the Earth, the latency would be on the order of 2*20,000/300,000 =
132 ms. Of course, no one is going to lay a T1 all the way from the An-
tipodes, so a satellite would be used, and the latency would become much
larger (to the order of a second), as the telecom satellites are usually on
high orbits.

The co-location option reduces the communications latency to almost
zero. It is a costly exercise and comes with a certain amount of constraints
on the data that can be handled by the server.

Usually the ECNs are guarding the price updates very close to their chest.
It is a big money business selling prices and ticks, and the exchanges make
money on it. So the exchanges prohibit re-broadcasting of ticks outside of
the trading node, unless there are specific licenses in place signed with end-
users (e.g., customers using bank trading platforms).

In a co-location scenario, usually part of the trading node sits physically
at the exchange (or the co-location site that is near). The latency-critical

Connectivity to Electronic Commerce Networks 295

ECN

Translation

Aggregation/disaggregation

Colo connection

OMS

Price

Network connection

Fill

Control

Price

Fill

Control

Recovery

Recovery

Recovery

Recovery

Control

Automated

Human control

Decision

Middle & backoffice

Persistence layer

C
ol

oc
at

ed
 tr

ad
in

g
no

de

M
es

sa
gi

ng
 b

us

E
xt

er
na

l t
ra

di
ng

 n
od

e

Control

F IGURE 23.2 Architecture for Co-Location

translation, aggregation/disaggregation, OMS, and control layers would be
running on machines sitting in the racks of the exchange. However, the phys-
ical elements of the persistence layer would not be, as well as the middle of-
fice, which would be based in the trading business’s offices. Also the human
control layer would be remote as well.

The flexible architecture for the trading infrastructure described in this
book involves the use of memory cache and messaging bus technologies. As
the information has to leave the exchange via those media back to home
base, it is very important that an agreement and thorough understanding is
in place with the exchange as to the nature and function of the data involved.
In my experience dealing with a co-location project, this openness was very
welcomed by the exchange officials, who originally were very uneasy about
allowing the outbound communication of any data that was not directly
related to orders and fills. Figure 23.2. shows an architecture of a co-located
trading node.

23.3.2 Avoid Being Short the Latency Opt ion

Whether a trading node is co-located or not, it is still short an option as
far as the relationship with the ECN is concerned. Namely, the ECN puts

296 PRACTICAL IMPLEMENTATION

constraints on the response-time of the client, but the client cannot put such
stringent constraints on the response-time of the ECN.

Suppose, for example, that the trading node sends an order, and the la-
tency happens at the level of the exchange itself (systems overload or any
other problem that is specific to the timely operation of the matching en-
gine). This can be discovered very quickly because as long as the exchange
is connected, its heartbeat would be visible, and the timestamps remain
objective.

The trading node waits for an acknowledgment that the order had been
received by the exchange. While waiting, the market moves on, and the trad-
ing agents may no longer want that order in the market.

What state does the trading node find itself in, if such a situation occurs?
The OMS design presented in this book is conservative, and would block
further operations of the trading agents that submitted the aggregate order,
until that order is acknowledged or cancelled by the exchange.

Hence time constraints need to be negotiated by the ECN to make sure
that if such time is breached, and no response had been received, the or-
der is automatically cancelled by the exchange and the customer is not
held, in both senses of the word. The exchanges should have no excuse for
making customers wait longer than necessary, given that they have devel-
oped the most sophisticated infrastructures. Hence the management of the
trading business should strive to minimize as much as possible being short
the operational latency option of any trading venue used.

23.3.3 Synchronizat ion under Constraints

Connecting to several ECNs at once comes with its own subtleties, especially
if one wants to implement trading strategies that consume synchronous col-
lections of market update events.

Assume that one is interested in a pair-trading strategy between ex-
changes ECNA and ECNB and assume that the one-way communication
latencies to the trading node are respectively LA and LB. The ECNs give
clients maximal times TA and TB to react to a quote (before it is changed).
Assume that the trading node receives a quote from A at time t. Any quotes
from B received before t − (TB − 2LB) are already stale. Any quotes received
after t + (TA − 2LA) will not be useful for trading against the original quote
from A. Hence for any quote received from B in between those times, the
trading node can implement the pairs strategy, sending respective buy and
sell orders to the two exchanges at the same time.

The above is, of course, a very simple example of a situation that is
quite complicated. Some companies specializing in ECN connectivity and

Connectivity to Electronic Commerce Networks 297

client trading platforms have set up various relay nodes across the world to
facilitate such synchronization between exchanges.

23.3.4 Improving Internal Latency

The internal latency constraints fall into three categories, namely translation,
normal processing, and processing bottlenecks.

Translation has been dealt with above, and the conclusion is, at the time
of the writing of this book, that FAST seems to be the most efficient protocol.
It is efficient both in the cracking of messages at below 100ns/message, and
in the reduced bandwidth usage, thanks to the compactness of its format.

The architecture presented in this book has been designed with the goal
of minimizing the processing time of a translated message (order, fill, or mar-
ket update event). It involves the distributed computing paradigm for run-
ning trading nodes concurrently, parallel processing of the FSMs of a collec-
tion of agents, and numeric efficiency stemming from the representation of
data by long integers, where possible.

Processing bottlenecks can be reduced by a careful tuning of the GC
process (or careful memory management and explicit destruction of un-
wanted instances of objects). The importance of tuning GC correctly cannot
be overemphasized.

There are some further improvements that can be made from the com-
puting hardware side, namely using FPGAs for FAST coding/encoding and
GPUs for parallel processing of the agents’ FSMs, especially in the context
of supporting a swarm system.

CHAPTER 24
The Aggregation and

Disaggregation Layer

T he aggregation/disaggregation layer (ADL) provides an important ele-
ment of efficiency when the trading node is composed of multiple trading

agents per security. Its function is to aggregate orders coming from the OMS
to be sent to the ECNs and disaggregate between the agents the resulting in-
coming fills from the ECNs.

The layer also provides the filtering and aggregation of multiple price
sources for one security, as is often the case in FX and fixed income and
equity dark pools.

Its top-level structure is described in Figure 24.1. It is composed of the
synthetic book aggregator (SBA), order aggregator/disaggregator (OAD),
and fills disaggregator (FD).

It is important to note that in some implementations, the ADL is an
integral part of the OMS layer. Here it is discussed separately for more gen-
erality, but the reader should keep in mind that this layer is effectively the
order management system for the resulting aggregate agent as defined in
Part One.

The ensuing discussion about the OMS in the next chapter focuses on
the control and feedback mechanisms between the OMS and the control
layers, rather than on the specifics of the aggregation of agents’ orders or
price quotes.

299

300 PRACTICAL IMPLEMENTATION

Synthetic Book Aggregator

Order Aggregator

Fill disaggregator

Agent 1
ECN

ECN

(O, OID)

(F,OID)

O1

O2

F1

F2

DB

(OID, O1, O2)

DB

(OID, O1,O2)

O=(O1 + O2),
OID

F = F1 + F2
∝ (O1, O2)

Agent 2

Agent 1

Agent 2

Sync

PRC Size

Ask Emit
Aggregate

Book

Tick 1
ECN 1

ECN 2
Tick 2 Bid

F IGURE 24.1 Aggregation-Disaggregation Layer

24.1 QUOTES FILTERING AND BOOK
AGGREGATION

For the purpose of relaying market update events to the trading node’s con-
trol layer, the aggregation/disaggregation layer acts as the primary filter and
sometimes as an aggregator.

24.1.1 F i l ter ing Quotes

The types of market update events that come from ECNs vary, and are
dealt with by the translation layer. For example, exchanges send order book
updates while banks’ FX market-making desks send a two-way bid-offer
stream with either an implicit or explicit size.

The Aggregation and Disaggregation Layer 301

Sometimes there are errors in the quotes (false spikes or the wrong big
figure printed), sometimes the quotes are too wide to be tradable, and some-
times they are not tradable at all (grayed out). Sometimes they are just stale,
as happened during the Flash Crash of 2010.

The first step is to decide what quotes to relay to the control layer, and a
price filter needs to be implemented by the price aggregator. The filter needs
to monitor the following, at a minimum:

� Price relative to a band around the recent history
� Bid-ask spread relative to a rolling history and the expected average

spread at that time of day
� Timestamp relative to the Universal Time adjusted by the average com-

munications latency for the given ECN

24.1.2 Synthet ic Order Book

Individual filtered quotes and order book updates from various ECNs for
one security can be assembled into a synchronous synthetic order book.

The order book will change with the arrival of any new information,
unless for all price levels, the aggregate size across ECNs is unchanged. The
ADL keeps track of the constituents of the synthetic order book, because
when an aggressive order is given, the execution algo needs to know which
ECNs the order should be routed to, and how it should be split between
them.

Latency was touched on in the previous chapter, especially in regard
to connectivity to various ECNs. In the design and management of the syn-
thetic order book, care should be taken to automatically remove stale quotes
(quotes that would not be tradable because of communications latency).

24.2 ORDERS AGGREGATION AND FILLS
DISAGGREGATION

For the purpose of relaying order status and fill update events to the trading
node’s OMS, the aggregation/disaggregation layer acts as a disaggregator. It
acts as an aggregator on the way out from the trading node to the translation
layer and on to the ECN.

24.2.1 Aggregat ing Posit ions and Orders

Assume the set of trading agents A = {a1, . . . , aN} consumes a particular
market update event e. Each agent re-computes its desired market position

302 PRACTICAL IMPLEMENTATION

in the security from which the event came from (it could be from an aggre-
gated order book from various ECNs). Those computations are done concur-
rently and are synchronized and collected into the list P(e) = {p1, . . . , pN}
by the OMS. Additionally, the OMS collects all the desired orders O(e) =
{O1(e), . . . , ON(e)} where Oi (e) = {oi j} the individual set of orders emitted
by agent i . It then compares the individual desired market positions to the ac-
tual ones, M = {m1, . . . , mN} and computes the vector D = {di } = {pi − mi }
of individual differences per agent.

The OMS sends these lists to the OAD. The OAD proceeds by aggregat-
ing the desired changes in market positions by summing up AD(e) = ∑

di .
In the case that the security is only traded in one trading venue, the OAD im-
mediately sends to that trading venue the aggressive order that corresponds
to AD(e) (via, of course, the translation layer and the specific ECN adaptor).
The aggressive order may or may not be routed to an algo, or would sim-
ply cross the bid-offer spread, like the AGRESSOR algo that was discussed in
Part One.

The set of individual agent’s orders lists O(e) is treated in a similar fash-
ion. Those, to be clear, are lists of limit orders (as all others are worked
via algos, such as stop-losses or time stops). This means that it is a col-
lection of bids below the market and offers above the market. The OAD
module aggregates, if possible, limit orders by limit price. This way, when
they are sent to the ECN, the FIFO principle would apply and there is no
risk that two agents desiring the same price level for their limit would be in
two different places in the ECN queue. Hence the AO(e) = {aok} is sent to
the ECN.

In the case that the security is traded across several trading venues, the
aggressive trade order AD(e), as well as the list of passive orders AO(e), can
be split across those venues according to an algorithm (e.g., gauging the dif-
ferent bid-ask spreads and volumes on those ECNs). This situation presents
further complications, but the idea is the same as for one ECN. This is why
this module is called the order aggregator/disaggregator, the disaggregation
here is between ECNs.

To be clear, in the computational cycle of processing the market update
event e, the OAD needs to wait for the OMS to communicate to it the result
of the consume cycle for all the agents. The results of the potentially parallel
processing of all the FSMs at once are funelled into the D and O lists at the
OMS level, which passes this information to the OAD, along with the choice
of the algo to use.

While this is happening, the arrival of new fills and market update events
are blocked (queued), until the OAD receives acknowledgment that all ag-
gressive orders have been placed. If an order rejection is received then the

The Aggregation and Disaggregation Layer 303

OMS would attempt to replace the rejected order. The logic of dealing with
those situations is deferred to the OMS discussion in the next chapter.

In the LISP implementation, the aggregation performed by the OAD can
be represented by the AGGREGATEAGENT class discussed in Part One. The
OAD itself becomes the order management system that pertains to this ag-
gregate agent. The fills disaggregator presented below is the feedback that
fairly allocates partial fills among the aggregate agent’s members.

24.2.2 F i l ls D isaggregat ion

When a fill comes from a particular aggregated order, be it AD(e) or any
of the aok’s, it needs to be allocated back to the set of agents who partici-
pated in the aggregate order. Very often only partial fills come and need to
be allocated proportionally between agents. Suppose, instead of AD(e), the
ECN only sends μAD(e) where 0 < μ < 1. Then the allocation across agents
should be P = μD = {μd1, . . . , μdN}, with of course the appropriate logic
of rounding fractions down to integers and making sure that the excess from
rounding is allocated correctly. The same would apply to any partial fill on
a resting order aok(e).

In the case when the security is traded across several ECNs, it does not
make sense to aggregate the fills. Any fill that comes from any ECN is dis-
aggregated according to the above discussion. The FD keeps track of the
change in the individual security position across agents so as to treat the
arrival of partials correctly.

The arrival of a fill would block (queue) the arrival of a new market
update, until all agents are allocated that fill.

24.2.3 Book Transfers and Middle Of f ice

It is important to point out that in some situations, no market access is
needed whatsoever when agents change their states. For example, if agent
A goes from a position of 1 to 0 while agent 2, on the contrary, wants to
go from 0 to 1, no net trade results (D = 0) and no AD(e) order is sent
out. From the accounting perspective, the aggregation/disaggregation level
just performs a book transfer, at the mid-price of the market update event e,
between the two agents’ accounts.

In the implementation of the trading architecture, the ECN’s, brokers,
and custodians do not see the allocations or the positions of the individual
agents. The ECNs only see the trades done and orders outstanding, the bro-
kers whatever they need to give-up, and the custodian and administrator the
aggregated trades and positions.

304 PRACTICAL IMPLEMENTATION

However, the trading node needs to keep all the information at the indi-
vidual agent level, in order to track performance and fitness of various trad-
ing strategies. Hence a middle office database needs to be maintained that
reflects exactly the data contained in the agents’ classes. Memory caching
helps to operate that database concurrently without inducing bottlenecks
on the core computational process.

CHAPTER 25
The OMS Layer

I n the present chapter it is assumed, for simplicity, that the control layer
contains only one trading agent and that there is only one ECN to which

the trading node is connected.
The goal is to discuss the possible degrees of interlinkage between the

agent (i.e., the control layer) and the order management system.
The function of the OMS is to ensure that the desired market position

and limit orders of the agent are reflected at the ECN, namely that they agree
with the agent’s market position and orders outstanding.

25.1 ORDER MANAGEMENT AS A
RECURSIVE CONTROLLER

It is best to see the OMS as a recursive controller that has an explicit goal of
making the external exposure state of the agent equal to its desired exposure
state. Here exposure state means the agent’s position in the security and the
limit orders outstanding at the ECN. The external exposure state is what the
ECN and the custodian see, and represents the legal exposure of the agent,
as far as trading counterparties are concerned. The top-level design of the
OMS is presented in Figure 25.1.

The design of the OMS feedback loop for the management of the agent’s
position and resting orders is described separately, and it is useful to consider
two extreme types of control mechanism that agents may exhibit.

At one extreme, the aggressive agent (AA) identifies completely its state
with the position it has in the market. When certain indicators trigger, the
agent will change position at or near the prevailing price. The agent needs to
be in the desired position, otherwise the logic of its operation is thrown, and
it is in an undefined state and cannot process the next market update. By do-
ing so, the agent accepts that it will incur a certain amount of price slippage.

305

306 PRACTICAL IMPLEMENTATION

S (e)A
D

{O (e)}A
D

Agent

Event
e

OMS

EMIT

AO

{CR}
Calculate

B
lo

ck
 n

ew
 E

ve
nt

s
w

hi
le

 W
ai

tin
g

A
C

K
 o

r
fil

l

E
C

N

Desired Exposure

S (e)A
D – S

A
M

Aggressive IOC
Order AO =

Cancel - Replace
Orders on Symbolic
Difference

ACK(CR) or Reject (CR)

or Fill(AO) or Reject (AO)

(1)

(2)

Desired orders

SA
M

{O }A
M

OA
D {O }{CR} = { } – A

M
Market Exposure

Resting Orders

F IGURE 25.1 OMS

Examples of such agents are the trend-following and breakout strategies dis-
cussed in Part One.

At the other extreme, the passive agent (PA) worries about buying
cheaper and selling more expensive every single unit of the security. It does
not care how much stock it carries, as long as each time it buys a unit at
P it aims at selling it above P. So the state of the agent is identified with
its orders outstanding in the market. When the mid-price moves, the agent
adjusts its resting bids and offers accordingly, trying to capture the oscilla-
tions of the market induced by waves of buyers and sellers who need instant
liquidity and are ready to pay for it. In a sense, it is more appropriate to
call this agent a patient agent rather than a passive agent. Example of such
strategies are pure market-making strategies and limit-order–driven mean-
reversion strategies.

The difference between the nature of the two agents needs to be empha-
sized here. The passive agent is not relaxed about price at the expense of
uncertainty in its position, whereas the aggressive agent is not relaxed about
its position at the expense of the uncertainty in price.

Unfortunately, akin to the Uncertainty Principle in physics, there is no
way to be not relaxed about price and quantity at the same time, because it
is inherently limited by the available liquidity.

This means that the design of a strategy needs to reflect the optionality
of the position in the passive case, or the optionality of the execution price
in the aggressive case. The nature of the coupling between the OMS and the
agent is driven by this difference.

The OMS Layer 307

25.1.1 Management of Posit ions

In the aggressive case, the OMS and the agent are de-coupled. The OMS is
basically an executor of the agent’s change in its positions.

Assume that after consuming event e, the AA’s desired position is P0 but
its position in the market is M0. This means that there are no other orders
outstanding (residuals or nearby resting orders) that can change the agent’s
market position in the immediate future. The OMS emits an immediate or
cancel (IOC) aggressive order for P0 − M0 at the current best price or worse.
While it waits for the acknowledgment, the agent cannot process any other
market updates. The acknowledgment comes for a partial fill |F1| < |P0 −
M0|. The OMS then communicates the new position to the agent, and opens
the agent to the consumption of the next market update.

After consumption of the event, the agent determines that now it needs
to have position P1. Its market position is M0 + F1, so the OMS will emit
an aggressive order for P1 − (M0 + F1).

When the OMS acts in the aggressive capacity, it is of utmost impor-
tance to receive the fill information (none, partial, or full) before unlocking
the agent to any further market update event, and that the residual order is
cancelled. This is why an IOC order should be used.

If the ECN does not support IOCs, such logic should be implemented
by the OMS directly, by cancelling the residual immediately after receiving
the partial. However, due to communication latency, such a home-based ap-
proach would not be as good as a native IOC execution. The designer could
also use the fill-or-kill orders (all or none) with no partial fills, if available.

In general, one needs to design the aggressive agents so that the average
time between the agent-generated repositioning signals are more than G =
H + L + K + L + H where L is the one-way communications latency, H is
the home-based complete computational cycle time, and K is the expected
pessimistic response frequency of the ECN. K is an estimate of how long
it takes for the ECN to acknowledge and accept or reject an order, before
sending it back to the trading node.

It is safer to design the aggressive trading strategy so that the potential
changes in desired position are a multiple of the minimal granularity G. This
helps to de-couple the agent from the OMS as much as possible.

25.1.2 Management of Rest ing Orders

In the passive case, the OMS and the agent are completely coupled. In a way
the agent is an OMS endowed with specific logic.

Assume for the sake of illustration that the agent is short inventory I
and is waiting to buy it back at price P. After consuming an event e, the PA’s

308 PRACTICAL IMPLEMENTATION

desired resting order changes. It may either widen to P1 < P or improve to
P2 > P.

The OMS emits a cancel-replace order to change the limit price and the
size, but does not lock the agent from processing any market updates or fills.

While the OMS waits for an acknowledgment of the cancel-replace, the
agent is not allowed to emit any other order changes.

Assume an acknowledgment is received and the OMS managed to per-
form the cancel-replace. Then the agent is allowed to change it again on the
next event update.

Assume now that instead, a rejection is received. This, with high proba-
bility, means that the original order was being partially filled when the OMS
tried cancel-replacing it (at least this is the rule in the FIX protocol specifica-
tion). In either event the inventory is either the same, or most probably had
been reduced, so that the agent carries less risk.

At that point the agent-OMS couple may have various strategies. One
is to do nothing until the earliest of the following information is received:

� Either a partial or full fill, which means that the market was hitting the
agent’s bid, while the price updates are all at its bid P.

� A tick up which means that the agent has been partially filled but has
not yet received the fill information.

� A tick down which means that the agent has to be done on its full size.

It is important to note that the price information sometimes comes faster
than the fill information.

In the third case the agent does not need to wait for the fill confirmation
and would recalculate its state with the certainty that its order was filled. In
the first case there is still uncertainty as to what the fill size is because even if
the first partial has been received, the rest may still be queued by the ECN.

So the second and first cases are similar, and require being relaxed about
time. The conservative approach is to wait until all fills are received and the
price ticked up. Then the remainder of the order can be cancel-replaced when
the market moves away. The fact is that the agent is first in the queue at
price P in the first two cases (however, as discussed in Chapter 8 on market-
making, the LMMs may still have precedence over the agent in certain
exchanges).

25.1.3 Algorithmic Orders

When an agent emits an algorithmic order, be it internal to the trading node,
or external and worked via a broker’s platform, it implicitly assumes that this

The OMS Layer 309

order will take a substantial amount of time. Here substantial means relative
to frequency of arrival of the market update events.

In other words, the strategy of the agent or its willingness to amend
the order is unlikely to change while the order is in force. For example,
institutional investors working TWAP for large stock orders are not likely
to be interested in the tick-by-tick fluctuations of the tape.

Most algo orders are hiding the full order size to the market, and selec-
tively choose when to trade small clips either at market or with limit orders.
Those clips can be pulled out of the market with very low consequences on
slippage, hence that agent would know almost immediately what its resid-
ual unfilled size is. The strategies that use algos should not be sensitive to
those relatively small uncertainties, and the concerns regarding immediacy
of knowledge that were presented for the AAs and PAs should not apply to
the same extent here.

25.2 CONTROL UNDER STRESS

The previous section dealt with the normal OMS-agent operation in the con-
text of the lack of immediate responses or order cancellations from the ECN.
Those issues happen all the time and the logic of dealing with them needs to
be built in both at the OMS and the agent level. During normal operations,
the OMS-agent system achieves coherence between the internal and the ex-
ternal exposure states within a time frame that is acceptable by the agent’s
strategy.

Because of potential internal and external problems, inclusive of power-
downs, disconnects, and computational bottlenecks, it is not always obvi-
ous that the external and internal exposure states of the trading agent are
the same. Those are not normal situations and great care needs to be taken
in dealing with them exhaustively. Chapter 21 on recovery mechanisms al-
ready pointed out avenues to minimize the P&L impact in such unpleasant
situations, from a global architectural standpoint.

The OMS also needs to be designed so that it always knows how to
recover its external state in order to service the agent correctly. After a re-
connect, the external state needs to be known as soon as possible, before
any further processing by the agent can happen.

The OMS needs to have a built-in mechanism to automatically request
the full list of outstanding orders from the ECN, as well as the history of fills
since disconnect (by comparing sequence numbers).

After reconnection, a recovery period may ensue when the agent replays
the history of fills and market updates to regain the correct FSM state. Dur-
ing that replay, the OMS-agent system acts as a simulator. At the time when

310 PRACTICAL IMPLEMENTATION

the recovery simulation run catches up with the real-time market updates,
the agent-OMS system is switched back on and starts performing its recur-
sive differentiator function again as per normal.

In my practical experience it is always better to side with caution when
designing the operation of the OMS. The degree of its interaction (coupling)
with the agent is a function of the agent’s strategy and this coupling presents
an operational constraint that needs to be respected. The design of an effi-
cient recovery mechanism needs to take into account the specific interaction
between the OMS and the agent.

25.3 DESIGNING A FLEXIBLE OMS

The discussion above clearly points out the different levels of coupling be-
tween the OMS and the agent. The OMS is a service to the agent, and in
its task to optimize that service it may sometimes requires a design where it
literally morphs into the agent.

In my experience, to balance flexibility with efficiency, it is better to
design the aggressive and the passive OMS separately and treat them as two
separate but concurrent services for an agent.

A mostly passive agent may need from time to time the aggressive OMS
to stop itself out of excess inventory. A mostly aggressive agent may use the
passive OMS to place profit-taking orders. It is also sometimes useful to dis-
aggregate a mixed agent into a set of aggressive and passive communicating
agents that use the respective OMSs.

It is not necessarily optimal to have a one-size-fits-all OMS, and the
reader needs to assess the business needs first, before either designing one or
shopping for off-the-shelf solutions.

CHAPTER 26
The Human Control Layer

I t is of paramount importance to endow the trading infrastructure with an
extensive set of monitoring tools and manual control mechanisms. The de-

sign of the trading node is complex, and complexity does not usually come
error-free. Even without errors, the era of completely automated systems
is still the stuff of science fiction, and whatever the degree of autonomy
achieved, human control should still take precedence.

The role of the human control layer (HCL) is to provide some invasive
control tools and some noninvasive monitoring tools ranging from the in-
dividual trading agents to the collection of trading nodes across securities.
The HCL also contains the human-controlled component of the risk man-
agement layer that is discussed in the next chapter.

The components of the HCL are distributed and use the messaging bus
to communicate with the rest of the trading infrastructure. They do not con-
sume any of the core layer resources and should preferably be run on dif-
ferent servers altogether. The architecture and components of the HCL are
shown in Figure 26.1.

26.1 DASHBOARD AND SMART SCHEDULER

The dashboard is a manual interface that allows the (re)setting of the agent’s
parameters and states, parameters of the swarm, position limits, and so on.

The smart scheduler helps to manage periodic de-riskings before shut-
downs (e.g., into weekends and holidays).

26.1.1 Parameter Control

This module of the dashboard can directly set or modify the agents’ classes
with new parameters (be they numeric or functional, such as fitness functions
and agents’ algos). It provides the finest grain of monitoring and control over
the whole set of individual agents. An example of it is shown in Figure 26.2.

311

312 PRACTICAL IMPLEMENTATION

ECN
Heart Beat Monitor/Restart

H
ar

dw
ar

e
D

at
ab

as
es

CPU Monitor
RAM/ROM/Network Monitor
Memory Cache Monitor
Message Bus Monitor
DB Monitor

Aggregate Book Monitor

Aggregate Spread Screen

Risk Management Layer

Risk Parameters Control

Exposure Monitor

PL Monitor

Equity Curves Monitor

Trade Visualization

Trading Screen with
Aggregate Book

Agent Scheduler

Agent Parameter Control

Swarm Parameter Control

Trade History Monitor

Middle Office Layer

Translation

Agg/Disagg

OMS

Automated
Risk Mgmt

Decision
Engine

Trader
Agent

Swarm

Agents

Trading Node

Scheduler

Panic
Button

F IGURE 26.1 Components of the Human Control Layer

26.1.2 Scheduled F latten ing of Exposure

The smart scheduler allows the trading node to gracefully exit out of posi-
tions ahead of scheduled events. It could be ahead of the weekend or ahead
of the non-farm payrolls release. The scheduler is to disallow strategies that
are flat from going into new positions, if the average trade duration is longer
than the time left before the event. Also, strategies that flip positions ahead

The Human Control Layer 313

Choose Group of Agents
(Disparate or Swarm)

Display
Parameters

− Numeric
− Symbolic
− Functional

− Manual
− Automatic

− Clock
− Calendar

Modify
Parameters

Schedule
Modification

Reset
Aggregate

Agent Class
Fields at
Runtime

Reset
Agent Class

Fields at
Runtime

Shut Down
or Restart

Trading

Reset
Swarm

Composition
at Runtime

F IGURE 26.2 Trading Node Dashboard

of the event would be flattened instead. The set of agents that are still in
position coming into the scheduled flattening would be exited at the net ag-
gregate exposure.

26.2 MANUAL ORDERS AGGREGATOR

The functionality of the trading infrastructure extends naturally to handle a
desk of human traders who would be internally represented by simple agents
that take instructions from a trading screen application.

26.2.1 Represent ing a Trader by an Agent

A human trader is represented by a series of simple agents, each for a particu-
lar security and a particular strategy that the trader executes. For example, a
good visual pattern trader would use the trading screen to execute, and each
time would select a strategy switch (i.e., daily triangle breakout or weekly
head and shoulders, etc.). The code representation of such a manually traded
strategy would be an AGENT class (not an FSM agent), and the update
method would simply read the position that the human trader has executed
via the trading screen. The agent class contains the positions and or-
ders fields and would automatically be calculating all the trade statistics
and PL, which in turn would be reflected in the position and P&L monitor.

314 PRACTICAL IMPLEMENTATION

Market
Display

– Aggregate Book
– Stream History

– Positions
– Orders
– PL
– Trades History

Click !

Trader
X

– Security M
– Algo A
– Size S

Aggregate
Trading
Agent X

Trading
Agent

(X, M', A', S')

Trading
Agent

(X, M, A, S)

ECN

P
ric

e
A

gg
re

ga
to

r

Activity
Display

(M, A, S)

Order Capture

F IGURE 26.3 Trading Screen

26.2.2 Writ ing a Trading Screen

An example of a trading screen with a strategy switch is given in Figure 26.3.
The actual screen displays the synthetic aggregated book with color-coding
of the ECNs at each price level.

26.2.3 Monitor ing Aggregated Streams

Another tool that helps to see liquidity on various markets visually is to plot
the synthetic aggregated book in time. See Figure 26.4.

26.3 POSIT ION AND P & L MONITOR

Monitoring positions and P&Ls can be done for every single agent but also
for any aggregation thereof. Swarm monitoring is provided by this mod-
ule as well, showing the subset SF S of active agents, the aggregate size,
and P&L.

The Human Control Layer 315

Choose Security

Choose ECN Set

Bids

• Color-Code by ECN • Color-Code by Size

• Aggregate Size
 Across ECNs
 per Quoted Price

• Respect Order in Queue
 by Arrival Time into
 Trading Node (Highest
 Are Latest)

Asks
Clock or

Event Time

PriceSize

Historical
Aggregate

Book Display

Real Time
Aggregate

Book Display

F IGURE 26.4 Stream Viewer

26.3.1 Real -Time Exposure Monitor

This module is designed for visual monitoring and for manual control. It is
discussed in the next chapter constituting an important element of the risk
management layer. It is shown in Figure 26.5.

26.3.2 Disp lay ing Equity Curves

The individual agents contain the histories of their P&Ls and can be dis-
played on an individual or aggregate basis as shown in Figure 26.6.

26.3.3 Onl ine Trade Stat ist ics and F i tnesses

This module is important for understanding the performance of individual
agents as well as for monitoring the swarm in real time. See Figure 26.7.

316 PRACTICAL IMPLEMENTATION

Choose Agents
Subgroup (Default = All)

Display Net or Gross
Aggregate Exposure

Trades out
of Net Asset Exposure
and Disaggregates
Fill Across Agents
so as to Flatten
Them All

Flattens Agents
by ECN, Country
Issuer, or FX

Panic
Button =

Flatten All !

Adds New
Hedging Agent
with Constant
Size = − Exposure

– By Asset (Net)
– By ECN (Gross)
– By FX (Net or Gross)
– By Country (Gross)
– By Issuer (Gross)

Action:
Hedge Exposure

– By Asset (Net)
– By FX (Net)

Action:
Flatten Exposure

– By Asset (Net)

– By ECN (Gross)
– By Country (Gross)
– By Issuer (Gross)
– By FX (Gross)

F IGURE 26.5 Exposure Monitor

Choose Agents Subgroup
(Default = All)

Choose Currency
FX Rate
Source

Display

FX
Database

Calculate
History

for Group

Aggregate Rolling
Equity Curve Expressed

in Currency

F IGURE 26.6 P & L Monitor

The Human Control Layer 317

Choose Agents Subgroup
(Default = Swarm on One Asset

Display
History of
Statistic

per Agent and
for Aggregate

Display

Last Statistics
per Agent
and for
Aggregate

Choose Statistic

– Fitness
– Win-to-Loss
– Trade PL
– Real-Time PL

For Swarm:
Display:

– Swarm Fitness
– Members (SFS)
– Swarm Last
 Statistics

F IGURE 26.7 Fitness Monitor

Choose Agents Subgroup
on One Asset

Choose Starting
Lookback Period

Best BID, ASK
Asset

Aggregated
Book

UpdateAsset
Price
DB

Display

– Price History to Lookback
 Overlaid with Agent’s
 Individual Trades

– Continue with Real-Time
 Data from Aggregated
 Book Updates

F IGURE 26.8 Trades Monitor

26.3.4 Trades Visual i zat ion Module

Trades from either individual or aggregated agents can be visualized in real
time as seen in Figure 26.8.

CHAPTER 27
The Risk Management Layer

R isk management is the essence of self-preservation. In the trading world,
self-preservation is akin to P&L preservation. Risks of losing money in

an automated trading context are numerous, and losses come fast.

27.1 RISKY BUSINESS

The six major risks and ways in which they can be addressed are enumerated
here:

1. Market Risk for Individual Agent. The strategy should be designed
with money management and stop-loss mechanisms to prevent tail-event
losses.

2. Model Risk. Strategies go in and out of favor as a function of the regime
of the market. The adaptation embedded in the design of the swarm
allows it to mitigate such situations.

3. Correlation Shocks. When strategies are deployed on several markets,
sudden increases in the correlation of assets may create clusters of
losses. This happens despite the fact that every single model has money
management and participates in a swarm mechanism. A global ag-
gregate PL monitor and associated money management need to be
implemented.

4. Disconnects. It is always good to keep independent data sources, com-
munication channels, and liquidity access. Good old brokers over
copper phone lines and paper trade tickets can help save the day,
basically.

5. Bottlenecks. Memory, computational, and communications bottlenecks
need to be monitored by systems experts in order to control the infras-
tructure to reduce the particular resource load. Automatic price update
throttling is sometimes a solution.

319

320 PRACTICAL IMPLEMENTATION

6. Race Conditions and Other Bugs. Those are the nastiest ones because
they can lead to over-trading and disastrous losses. Thorough testing
needs to be performed before launch. Red flags should go off when too
many orders are generated by the system per unit of time, position sizes
are breached, and so forth. Work needs to be done in cooperation with
the sponsoring broker or the ECN itself to automatically short-circuit
excess traffic.

Some risks are mitigated by the design of the trading logic, some need
automated feedback mechanisms at the whole portfolio level, and some need
human intervention.

27.2 AUTOMATED RISK MANAGEMENT

Here it is assumed that individual market risks are already addressed by the
logic of the models and the risk of individual model performances by the
design of the adaptive swarm. Therefore, the next risk is at the level of a
porfolio of models across different assets.

Correlation shocks across assets can only be mitigated when the PL on
the full portfolio is computed in real time, and a feedback mechanism exists
between that PL and the aggregate positioning. This feedback mechanism is
called the portfolio risk manager (PRM) and its top-level logic is described
in Figure 27.1.

If the whole portfolio starts suddenly losing money, caused by a subset
of agents, that subset will have its sizing cut down aggressively by the PRM.
Overall, the size would be cut down when the winning agents’ performance
starts turning.

So instead of cutting positions across all agents proportionately, the
PRM cuts the losers first and lets the winners run, in line with the old trading
adage.

The real-time exposure monitor is endowed with an exposure dial-down
control and would conservatively override the automated PRM (meaning
that the manual intervention would only be allowed in the direction of risk
reduction).

27.3 MANUAL RISK CONTROL
AND THE PANIC BUTTON

It is very hard to automate responses to risk that are not market-driven, like
disconnects, bottlenecks, and race conditions.

The Risk Management Layer 321

PL Calculation on all Agents
PLi for Agent i
PL = Σ PLi for Whole Portfolio
λ = {Ai + PLi < Ki} : Losing Agents
ω = {Ai + PLi > Ki} : Winning Agents

No

Yes

PL < Stop-loss

OMS or Voice Order

ECN or Alternative

Flatten All
Losing Agents λ

ECN
Price

Source

Alternative
Price

Source

F IGURE 27.1 Risk Management
Layer

To deal with disconnects from ECNs, at whatever level they happen, it
is key to have access to an external data source in order to keep monitoring
the P&L and risk levels in real time. This data source (like Bloomberg or
Reuters) would bridge the disconnected ECN and keep the various HCL
modules running. The data collected during a disconnect may also be used
for replaying the events during the recovery phase.

In the stress situation when risk needs to be reduced but cannot be done
via the ECN as the connection is down, the trading business would need
to rely on the ability to reduce or hedge the position through a different

322 PRACTICAL IMPLEMENTATION

(e.g., voice) channel. The trading business should always maintain various
broker relationships in the products that the ECN trades.

Race conditions are altogether different because they may block
transaction-critical components like the OMS. Hence dealing with them is
not easy, and the only way is to hit the panic button that shuts down all
communications from the agent to the ECN. Such a panic button appears
on the real-time exposure monitor.

CHAPTER 28
The Core Engine Layer

T he core engine layer consist of the set of trading agents and is the ulti-
mate decision maker for the whole trading node. The central function of

this innermost layer is to implement the consume method for each agent.
Parts One through Three have been dedicated to the discussion of the imple-
mentation of individual agents, and this chapter presents some architectural
guidelines.

28.1 ARCHITECTURE

The top-level diagram of the architecture of the core layer is shown in
Figure 28.1. In the most general setting, the core layer is divided into the
lists agents, ffc-agents, and aggregateagents that may or may not
trade.

The members of the agents list fall into the following six categories:

1. Individual autonomous agents
2. Trader agents manually controlled via a trading screen
3. Hedge agents automatically invoked by the risk management system
4. Non-trading agents that are part of a trading aggregate agent
5. Non-trading agents that are FFC-controlled members of a swarm
6. Non-trading agents that emit events for the benefit of other agents or

applications (e.g., bar generators)

There are various possible ways to implement the core layer. The sim-
plest is to have all the agents run on the same CPU. In a multi-asset environ-
ment, however, this presents serious bottlenecks, so multithreading should
be used in the following two ways:

1. Asynchronous threads: Market update events from different securities
can be forked into individual asynchronous threads, as long as the

323

324 PRACTICAL IMPLEMENTATION

Trading
Screen

Trader
Agent

Hedge
Agent

Agent

Agent

Comm

OMS

Agent

Aggregate
Agent

Aggregate
Swarm Agent

Desired Aggressive
and Resting Orders
for all Active Agents

The Core Engine
Layer Implements

the Consume
Method on all

Agents

Agent

FFC FFC

Agent

Risk Mgmt
Layer

Scheduler Event

F IGURE 28.1 Core Engine Layer

agents do not require information on synchronized pairs or portfolios of
assets. These threads invoke their own instances of the OMS and the
aggregation-disaggregation layer.

2. Synchronized threads: For a particular market update thread, at the level
of the aggregate agents and swarms operating on that asset, a synchro-
nized forking can be implemented for the calculation of the individual
agent’s positioning and fitness. These synchronized threads join before
entering the aggregate agent calculation.

If some subset of agents requires synchronized information on a set of quotes
(pairs or portfolio trading), then the top-level asynchronous thread will be
made to carry information on such a synchronized set of market update
events. As discussed in a previous chapter, this architecture can also be im-
plemented on a set of distributed hardware components. This helps to reduce
the individual CPU overheads, memory usage, and IO bottlenecks. The best
architecture ultimately is to have dedicated hardware for self-contained clus-
ters of agents. Those consume different subsets of market events and do not
communicate between clusters. The clusters may also be composed of dif-
ferent strategy styles. For example, it is always better to separate different

The Core Engine Layer 325

hardware components’ market-making activities from trading agents oper-
ating on a lower frequency.

28.2 SIMULATION AND RECOVERY

The importance of a robust architecture for the trading node cannot be
overemphasized, and in this respect the core engine layer needs to be archi-
tected so as to avoid being the weakest link. It is clearly the layer that con-
tains the most complexity and usually results from a hefty time and money
investment in research and development. This engine, however, can be de-
railed by the malfunctioning of the other parts of the trading node, as dis-
cussed in the chapter on fault tolerance and recovery.

The best way, in my experience, to ensure recoverability is to endow the
core engine layer with a dual purpose of simulator and real-time operation.
This means that in the case of a market data disconnect, the recovery is made
by replaying the recovered historical data in paper trading mode until such
time as the history catches up with the real-time stream. This of course im-
plies that the core engine layer should always operate at a fraction of its full
capacity in the real-time trading mode versus simulated replay mode. The
replay speed needs to be at least an order of magnitude faster than the real-
time operation mode. In simple terms the replay mode should be capable of
processing 10 times the amount of ticks per second as compared to the usual
real-time throughput. During such a simulation replay no orders are being
sent to the market. As soon as the replay catches up with the real-time data
stream, the OMS is turned “live” and works out the difference between de-
sired positions and orders at that time and the positions and orders that are
actually live in the market. It then works to reduce those differences to zero
and the state of the whole system falls in line with its historically desired
state. It has been also emphasized that sometimes human intervention is in-
evitable, and hence it is always wise to keep good market access via voice
brokers.

Another important aspect of the design of the core engine layer as both
a real-time and simulation mechanism is that this approach ensures the clos-
est possible fit between system development and trading. Often researchers
develop trading models in one language or setting and they are then reim-
plemented in another language and a very different setting for the real-time
implementation. Many tests need to be performed during such a transla-
tion phase and it most often wastes valuable time and resources. Access,
however, to a development platform that has the same behavior in simu-
lation as in real-time trading is very valuable and efficient. The approach
taken by the author of being language-agnostic, in the sense that different

326 PRACTICAL IMPLEMENTATION

ideas are best expressed in different languages, is not contradictory to this
stance. Indeed, the various language interfaces, domain models, and for-
eign functions discussed earlier serve exactly the purpose of bridging the
gap between efficient idea development and efficient implementation in the
real world.

The ultimate design of the core engine is left to the reader’s discretion.
This is where the crux of the matter lies for ensuring the long-term prof-
itability of the trading business. The author hopes that this book will help
put the reader on the right path to achieve that ultimate goal.

CHAPTER 29
Some Practical

Implementation Aspects

T his chapter gathers some further miscellaneous ideas and tips for what
one will encounter during the implementation of the low latency trading

architecture. It concludes by discussing the optimization of the design with
specific modern hardware solutions.

29.1 ARCHITECTURE FOR BUILD AND
PATCH RELEASES

The software behind the trading architecture is an evolving beast and even
after several consecutive implementations, it is not necessarily possible to
come up with a version that will remain static. However hard one tries to get
everything spotless, there will always be some chopping and changing along
the way. New ECNs and markets come online, hardware gets upgraded, and
businesses change locations. Hence a degree of resilience needs to be built
into the software to ensure smooth rollouts and, if needed, rollbacks.

29.1.1 Test ing of Code before a Release

It is of paramount importance to test the new version of the code before
releasing it into a production environment. The almost half-a-billion-dollar
error that recently occured at a major brokerage house was probably due to
inadequate testing.

The type of testing involved is a function of the layer of the infrastructure
where the change in code is made. The deepest level occurs at the agent logic.
When new agents are introduced into the swarm, their FSM logic should be
tested first by simulating paths of realistic data with realistic slippage.

As was previously mentioned, it is very difficult to do this for strate-
gies driven by limit orders, like the conditional market-making discussed in

327

328 PRACTICAL IMPLEMENTATION

Part One, because of the fundamental nonlinear nature of the market. The
subtle feedbacks created by the sheer presence of a new strategy are not easy
to model or predict. Hence, sometimes one needs to bite the bullet and re-
lease the new strategy with minimal possible absolute risk exposure, once
connectivity and order-passing have been tested.

Most ECNs and direct market access vendors provide test environments
for their specific connectivity and order management, and those should be
used at all times before any new release.

Creating a realistic testing environment is difficult and cumbersome. It
entails reproducing the set of glitches that can occur along with simulating
normal behavior. An in-house testing environment should be built by inte-
grating various ECN test environments with a simulation of faults occuring
at each layer level. This is especially important in the case of a modular ar-
chitecture where different layers are compiled separately and may reside on
multiple hardware.

29.1.2 Version ing of Code and Bui lds

Once new code had been thoroughly tested, it is ready for production release.
Prior to that it needs to be versioned so that all the changes can be recorded
relative to the previous version.

In a multiple developer situation it is important to disaggregate the prob-
lem in such a way that there are no conflicts while a version of the code is
being modified. The traditional code versioning systems like SVN operate
like a non-recombining tree unless various parallel versions are merged into
one by the group leader. The leader ought to keep track of the parallel ver-
sions and make sure they are tested in their own right.

When the branches are merged back by the head developer, the full test-
ing will have to occur again. Only then can a new build be released into the
wild, as shown in Figure 29.1.

29.1.3 Persistence of State during
Version Releases

Some languages, like C++, require a full recompilation when changes occur.
Some languages do not, and new pieces of code can be injected into either the
Java Virtual Machine or the multithreaded LISP environment to be compiled
on the fly.

However it is safer to stop the system completely and flatten the
aggregate position on the shorter-term models altogether while releasing a
new build.

If the new build contains changes to the agent classes or to any classes
that are persisted in the cache, it is wiser to do a complete cache flush before

Some Practical Implementation Aspects 329

Prod

D
evelop

Original
Production
Code

D
ev

el
op

Prod
a1

Prod

b1
Prod

a1
Prod

b1
Prod b2

Prod

b2
Dev

a2
Dev

a2
Dev

b2
Dev

ProdProd

OK (Merge)

OK
(Merge)

OK TestTest

Test

No

No

No

a2
Prod a2

Prod

b1
Prod

a2
Prod

b2
Dev

F IGURE 29.1 Releasing Code into Production

restart. The distributed memory cache architecture allows the state of the
trading node to be preserved under the assumption that the structure of the
persisted classes will not change at restart.

As a function of the adopted architecture, the restart would be per-
formed according to one of the recovery procedures discussed previously.
In general, it is wiser to perform such releases on the weekend when mar-
kets are closed.

29.2 HARDWARE CONSIDERATIONS

So far in this book, the models, algorithms, and software design patterns
have been discussed independent of the hardware on which they run. A lot
of emphasis has been given to the efficiency and resilience of the software
implementation of the trading node.

The hardware aspect is an important component of the optimization of
the whole process and should be considered carefully before the implemen-
tation. Given the fast evolution of the communications and computing tech-
nology, it is better to discuss the more general principles behind the analysis
of the correct hardware architecture.

29.2.1 Bott leneck Analys is

Before choosing the hardware implementation, it is wise to perform a bot-
tleneck analysis of the full flow of data, from events generated by an ECN

330 PRACTICAL IMPLEMENTATION

to the orders being transmitted back to the ECN by the decision layer. The
five principal bottlenecks and potential solutions are:

1. Transmission Latency: This is usually the largest contributor to the in-
efficiency and several techniques are used to mitigate it. The best but
most expensive one is the co-location of the servers with the ECN. Co-
location helps reduce the communication latency to microseconds from
milliseconds (a factor of 1,000). Co-location is essential for successfully
running market-making algorithms. The second solution is to use a se-
ries of dedicated fiber-optic communication lines (e.g., T-lines) from the
ECNs to the server. This does not solve the problem of latency of com-
munication along that line, which is directly proportional to its length.

2. Computational Load: In order to reduce the computational bottlenecks,
parallel processing should be implemented wherever possible. For exam-
ple, if the trading node runs independent strategies in a series of assets,
it might make sense to distribute each asset computation onto separate
hardware. New chip technologies discussed below could substantially
contribute to the efficiency.

3. Memory Load: The memory bottleneck is related to the amount and
size of objects needed at any point in time for the computational envi-
ronment. The memory usage and its peaks depend on the software im-
plementation. In Java the size of the virtual machine is settable and the
garbage collection will be a function of that. As prices of RAM continue
to go down, it becomes easier to expand the sizes of the computational
environments. In an ideal situation one would like as much RAM as
possible in order to avoid any garbage collection or object destruction,
and flush the memory only at times when the markets are closed.

4. Input-Output Load: Some possible IO bottlenecks are related to com-
munications between layers, between hardware components, and mem-
ory to processor. Some of them can be solved by software solutions,
like the distributed memory caching that enables writing into physical
storage an asynchronous process. Fast switches are used for optimizing
communications between hardware components.

5. Physical Storage Load: The storage and processing of tick data creates
serious demands on disk space. Although still very expensive, the solid-
state disk technology is helping to reduce the IO time. For data used
for off-line research and analysis, it is increasingly wise to use cloud
computing solutions discussed below.

29.2.2 The Edge of Technology

Hardware is constantly evolving and improving and any particular detail
and focus can become obsolete quite quickly. Not only is the traditional

Some Practical Implementation Aspects 331

sequential Von Neumann computer architecture benefiting from the super-
exponential Moore’s Law but new computing paradigms are emerging. Such
new paradigms involve their own hardware and will coevolve with it. The so-
far elusive quantum computing uses detection of elementary particle states
(like spin). The DNA computing uses wetware in the form of a test tube
full of floating DNA molecules. The very promising advances in systemic
computing use reconfigurable chips (FPGAs).

To further increase the efficiency and reduce the latency for automated
electronic trading, the edge of hardware technology is an exciting avenue to
explore and to exploit.

Cloud Comput ing The cloud has essentially been floating around since the
advent of ArpaNet, the defense precursor of the Internet. It is only recently
that cloud computing (actually mostly storage) capabilities have been ac-
cessible to the larger public. The increasing amount of data, useful or use-
less, being generated by the digitization of almost everything has lead to
the necessity of using an outsourced distributed memory cache, which is
the cloud.

Per its design, cloud computing is useful for at least two activities un-
derpinning automated trading: data storage and research. It is not necessary
any more to buy petabytes of disk space to store tick data nor a supercom-
puter to analyze them. One could use a cloud to store it and run simulations
on it remotely and in parallel.

Access to the cloud is performed via the network and is subject to the cor-
responding latency that one cannot control. Theoretically any non–latency-
sensitive layer of the trading node could be outsourced to the cloud. How-
ever, issues remain about security, privacy, and potential loss of data for
clouds operated by third parties. Hence it is better to avoid using public
clouds for storing or processing proprietary information.

Massive Paral le l ism and GPUs The advent of graphics processing units
was spurred by the increasing need for three-dimensional image rendering
in the computer gaming industry. GPUs were introduced to recalculate every
pixel in parallel on the screen so that very high quality video with life-like
motions, shading, and reflections could be achieved.

Since then, general purpose GPUs have been used for other massively
parallel computations. Many problems in a variety of fields ranging from
fluid dynamics to artificial life are amenable to natural parallelization.

The usual architecture of a GPU-endowed computer is simply a nor-
mal computer that has a CPU and an additional GPU processor. APIs are
designed to broker between the CPU and the GPU in such a way that
blocks of code that are marked as parallel are automatically channelled to
the GPU.

332 PRACTICAL IMPLEMENTATION

Swarm systems introduced in this book are a very natural example of
massively parallel processes. The action of event consumption can be paral-
lelized between each member of the swarm.

FPGAs and Programmable Hardware Field programmable gate arrays are
chips that have a large amount of standard binary logic gates (AND, NAND,
OR, XOR) that are all a priori interconnected. There is essentially a potential
wire or an unobstructed path between each component. Any algorithm can
be represented by a combination of memory storage and a series of logical
binary operations.

An FPGA allows physical representation of an algorithm by connecting
the relevant wires between relevant logic gates. This technology replaces the
sequential program where the CPU would call the different logical functions
turn by turn by a specialized hardware solution that embodies the algorithm.
The resulting speed acceleration could be up to 500 times faster on the mod-
ern commercial FPGA chips.

Once the chip is burned for a particular algorithm, it can be subsequently
modified to another algorithm if needed. However, the modification process
is very slow compared to the execution time of the algorithm. Hence it is
better to use FPGAs for algorithms that are not changing from one usage to
another. By this it is meant that the logical (or tree) structure of the algorithm
remains the same but numeric or symbolic parameters could change. The
underlying language used to design the FPGA chip configuration is called
Hardware Definition Language (HDL) and there are various APIs available
for standard programming languages like C++, Java, and LISP.

FPGAs have been entering the finance arena for the last few years and
I expect the trend to continue. For example, they are used for fast (almost
real-time) Monte Carlo simulations of options and other derivative pricing.

For the automated trading architecture presented in this book, FPGAs
have at least two natural places: the FIX and specific ECN translation can be
coded into the FPGA. Hence the whole translation layer can be replaced by
an FPGA purpose-made chip. That chip will have to be reconfigured each
time a new ECN connection that uses a different protocol is needed. The
decision engine, and in particular the swarm system, can be also burned to
a specific FPGA. In the swarm, the collection of nonadaptive agents that
represent the set of potential behaviors does not change often, so the chip
does not need to be reconfigured unless new members are added.

I am currently researching the exciting avenues of GPUs and FPGAs for
designing conditional market-making strategies that change behavior using
a swarm of lower-frequency signaling strategies.

APPENDIX

Auxiliary LISP Functions

T his appendix describes auxiliary functions that were used in the various
functions, generic functions and class definitions in the book. All the other

functions used are the standard ANSI Common LISP functions and come em-
bedded in any open source (e.g. CMUCL, SBCL etc.) or privately developed
(AllegroCL, LispWorks etc.) common LISP environment.

Summation of a list where optionally one can transform each element
by the transformer-function

(proclaim ’(inline sum-list))
(defun sum-list (lst &optional (transformer-
function #’(lambda (x) x)))
(if (null lst)

0
(reduce #’+ (mapcar transformer-function lst))))

Averaging of a list where optionally one can transform each element by the
transformer-function

(proclaim ’(inline avg-list))
(defun avg-list (lst &optional (transformer-
function #’(lambda (x) x)))
(if (null lst)

0
(/ (sum-list lst transformer-function) (length lst))))

General append macro L,e –> L := (L e)

(defmacro list-append (L e)
’(setf ,L (append ,L (list ,e))))

333

334 APPENDIX: AUXILIARY LISP FUNCTIONS

for macro and its auxiliary form

(defmacro for-aux (index-name from-index to-index &rest body)
’(let ((sign (if (>= ,to-index ,from-index) 1 -1)))

(dotimes (counter (+ (abs(- ,to-index ,from-index)) 1))
(let ((,index-name (+ (* counter sign) ,from-index)))

,@body))))
(defmacro for (index-defs-list &rest body)
’(for-aux ,(first ’,index-defs-list) ,(second ’,index-defs-list)
,(third ’,index-defs-list) ,@body))

Sublist function (start-index and end-index are inclusive)

(defun sub-list (lst start-index end-index)
(if (< end-index start-index)

NIL
(let ((result NIL)

(L (length lst)))
(when (< start-index L)

(for (i start-index (min end-index (- L 1)))
(list-append result (nth i lst))))

result)))

case macro with test “equal” instead of standard with test “eq”:

(defmacro case-equal (exp &body clauses)

(let ((temp (gensym)))

’(let ((,temp ,exp))

(cond ,@(mapcar #’(lambda (clause)

(destructuring-bind (keys . clause-forms) clause

(cond ((eq keys ’otherwise)

’(t ,@clause-forms))

(t

(if (atom keys) (setq keys

(list keys)))

’((member ,temp ’,keys

:test #’equal)

,@clause-forms)))))

clauses)))))

Julian Date Utilities and transformation between human-readable time
stamps and Julian Dates.

(defun date-components (YYYYMMDD)
(multiple-value-bind (YYYY MMDD)

Appendix: Auxiliary LISP Functions 335

(truncate YYYYMMDD 10000)
(multiple-value-bind (MM DD)

(truncate MMDD 100)
(values YYYY MM DD))))

Julian date calculator (days from 01-Jan-1900)

(let ((days-in-months ’(31 28 31 30 31 30 31 31 30 31 30 31)))
(defun julian-day (YYYYMMDD)
(multiple-value-bind (YYYY MM DD)

(date-components YYYYMMDD)
(let ((num-years-since-1900 (- YYYY 1900)))

(multiple-value-bind (division-int division-rest)
(truncate num-years-since-1900 4)
(let* ((this-year-leap-p (zerop division-rest))

(num-leap-years-since-1900 (if this-year-leap-p
division-int (+ division-int 1)))

(num-days-since-year-began (+ DD
(sum-list (sub-list

days-in-months 0 (- MM 2)))
(if (and this-year-

leap-p (> MM 2)) 1 0))))
(values (+ num-days-since-year-began

num-leap-years-since-1900
(* 365 num-years-since-1900))

num-days-since-year-began
num-leap-years-since-1900
num-years-since-1900)))))))

Fraction-of-day since midnight

(defun f-h-m (HHNN)
(multiple-value-bind (HH NN)

(truncate HHNN 100)
(/ (+ (* HH 60) NN) (* 24 60))))

Universal timestamp using julian date and fraction of day after midnight

(defun u-d-h-m (YYYYMMDDHHNN)
(multiple-value-bind (YYYYMMDD HHNN)

(truncate YYYYMMDDHHNN 10000)
(coerce (+ (julian-day YYYYMMDD) (f-h-m HHNN)) ’double-float)))

Trade Statistics calculations

Trade data structure

336 APPENDIX: AUXILIARY LISP FUNCTIONS

(defstruct TRADE
timestamp
price
quantity
description)

(defun aggregate-trades (trades-list)
(let* ((trades-list-sorted (sort trades-list #’(lambda (x y)

(>= (trade-timestamp x)
(trade-timestamp y)))))

(agg-timestamp (trade-timestamp (first trades-list-sorted)))
(agg-quantity (sum-list trades-list-sorted #’trade-quantity))
(agg-description (concatenate ’string

"AGG_"
(flatten-list-to-string
(mapcar #’trade-description

trades-list-sorted))))
(agg-price (/ (sum-list trades-list-sorted #’(lambda (x)

(* (trade-price x)
(trade-quantity x))))

agg-quantity)))
(make-trade
:timestamp agg-timestamp
:price agg-price
:quantity agg-quantity
:description agg-description)))

Trade Stats structure (all cumulative numbers)

(defstruct TRADESTAT
percent-profitable
win-to-loss
average-logret
tot-pl
average-duration
pos-pl
neg-pl
profit-factor)

Integrates a vector in a reverse-chronological order.

(defun rc-integrate (rc-vector)
(let ((L (length rc-vector))

(integral 0)

Appendix: Auxiliary LISP Functions 337

(result NIL))
(for (i (- L 1) 0)

(incf integral (nth i rc-vector))
(push integral result))

result))

Routine that calculates trade statistics from a list of trades given either in
reverse-chronological or chronological list. Splits trades by adding dummy
trades so as to keep exact groups. Assumes initial position is zero.

(defun compute-tradestats (trds-list &key (rc T))
(let* ((trades-list (if rc (reverse trds-list) trds-list))

(L (length trades-list))
(num-trades-groups 0)
(trades-groups-list NIL)
(trades-groups-stats-list NIL)
(current-group NIL)
(new-position 0)
(old-position 0)
(ts NIL))

(for (i 0 (- L 1))
(let ((new-trade (nth i trades-list))

(dummy-trade-1 NIL)
(dummy-trade-2 NIL))

(setf new-position (+ old-position (trade-quantity
new-trade)))

(if(zerop new-position)
(progn

(list-append current-group new-trade)
(list-append trades-groups-list current-group)
(setf current-group NIL))

(if (< (* old-position new-position) 0)
(progn
(setf dummy-trade-1 (make-trade :timestamp

(trade-timestamp new-trade)
:quantity (- old-position)
:price (trade-price new-trade)
:description "Dummy1"))

(setf dummy-trade-2 (make-trade :timestamp
(trade-timestamp new-trade)

:quantity new-position
:price (trade-price new-trade)
:description "Dummy2"))

(list-append current-group dummy-trade-1)
(list-append trades-groups-list current-group)
(setf current-group (list dummy-trade-2)))

(if (= i (- L 1))
(progn

338 APPENDIX: AUXILIARY LISP FUNCTIONS

(setf dummy-trade-2 (make-trade :timestamp
(trade-timestamp new-trade)

:quantity (- new-position)
:price (trade-price new-trade)
:description "Dummy2"))

(list-append current-group new-trade)
(list-append current-group dummy-trade-2)
(list-append trades-groups-list current-group))

(list-append current-group new-trade))))
(setf old-position new-position)))

(setf num-trades-groups (length trades-groups-list))
(for (i 0 (- num-trades-groups 1))

(let* ((trades-group (nth i trades-groups-list))
(buys (remove-if #’(lambda (x) (< (trade-

quantity x) 0)) trades-group))
(sells (remove-if #’(lambda (x)

(> (trade-quantity x) 0)) trades-group))
(avg-buy-price (avg-list buys #’(lambda (x) (trade-price x))))

(avg-sell-price (avg-list sells #’(lambda (x)
(trade-price x))))

(avg-buy-index (avg-list buys #’(lambda (x)
(trade-timestamp x))))

(avg-sell-index (avg-list sells #’(lambda (x)
(trade-timestamp x))))

(trade-length (abs (- avg-buy-index avg-sell-index)))
(trade-logret (log (if (equal avg-buy-price 0) 1

(/ avg-sell-price avg-buy-price))))
(trade-pl (sum-list trades-group #’(lambda (x)

(- (* (trade-price x) (trade-quantity x)))))))
(format T "TRDS GRP 'A : 'A '%" i trades-group)
(list-append trades-groups-stats-list (list trade-length

trade-logret trade-pl))
(format T "'A 'A 'A'%" trade-length trade-logret trade-pl)))

(labels ((positive-p (x)
(if (>= (third x) 0) 1 0))

(positivepl (x)
(if (>= (third x) 0) (third x) 0))

(negativepl (x)
(if (< (third x) 0) (- (third x)) 0)))

(let* ((percent-profitable (avg-list trades-groups-stats-
list #’positive-p))

(pos-pl (sum-list trades-groups-stats-list #’positivepl))
(neg-pl (sum-list trades-groups-stats-list #’negativepl))
(win-to-loss (if (<= neg-pl EPSILON) 100 (/ pos-pl neg-pl)))
(average-logret (avg-list trades-groups-stats-list #’second))
(tot-pl (sum-list trades-groups-stats-list #’third))
(average-duration (avg-list trades-groups-stats-list #’first))
(profit-factor (if (<= (+ pos-pl neg-pl) EPSILON) 0

(/ (- pos-pl neg-pl) (+ pos-pl neg-pl)))))
(setf ts (make-TRADESTAT :percent-profitable percent-profitable

Appendix: Auxiliary LISP Functions 339

:win-to-loss win-to-loss
:average-logret average-logret
:tot-pl tot-pl
:average-duration average-duration
:pos-pl pos-pl
:neg-pl neg-pl
:profit-factor profit-factor))

(format T "new tradestat 'S'%" ts)
ts))))

Finally the ts-plot function is implementation dependent and results in plot-
ting a time series graph on a GUI. It can be written directly in AllegroCL or
SBCL using the graphic classes. In CMUCL one can output data to a flat file
then use a script invoking GnuPlot, the open source graphics package.

Bibliography

Abell, Howard. The Day Trader’s Advantage. Chicago: Dearborn, 2000.
Abelson, Harold, Gerald J. Sussman, and Julie Sussman. Structure and Interpretation

of Computer Programs. Cambridge, MA: MIT Press, 1996.
Adamatzky, Andrew, and Macej Komosinski. Eds. Artificial Life Models in Software.

New York: Springer, 2005.
Ainsworth, Ralph. Profitable Grain Trading. Greenville, SC: Traders Press, 1980.
Aldridge, Irene. High Frequency Trading. New York: John John Wiley & Sons &

Sons, 2010.
Aleksander, Igor. How to build a Mind. New York: Columbia University Press, 2001.
Alesina, Alberto, and Enrico Spolaore. The Size of Nations. Cambridge, MA: MIT

Press, 2005.
Alpaydin, Ethen. Introduction to Machine Learning. Cambridge, MA: MIT Press,

2004.
Anderson, Juel. Trading, Sex and Dying. New York: John John Wiley & Sons &

Sons, 1998.
Ansbacher, Max. The New Options Market. New York: John John Wiley & Sons &

Sons, 2000.
Artus, Patrick. Anomalies sur les Marches Financiers. Paris: Economica, 1995.
Astrom, Karl. Introduction to Stochastic Control Theory. New York: Dover, 1970.
Axelrod, Robert. The Evolution of Cooperation. New York: Perseus Books, 1984.
Babcock, Bruce. The Four Cardinal Principles of Trading. New York: McGraw-Hill,

1996.
Bagehot, Walter. Lombard Street. New York: John John Wiley & Sons & Sons, 1999.
Beckey, George, Henrik Christensen, Edmund Durfee, David Kortenkamp, and

Michael Wooldridge. Autonomous Bidding Agents. Cambridge, MA: MIT
Press, 2007.

Bellman, Richard. Dynamic Programming. New York: Dover, 2003.
Bent, Russell, and Pascal van Hentenryck. Online Stochastic Combinatorial

Optimization. Cambridge, MA: MIT Press, 2006.
Bentley, Peter. Evolutionary Design by Computers. San Francisco: Morgan

Kauffmann Inc., 1999.
Bishop, Christopher. Neural Networks for Pattern Recognition. Oxford: Oxford

University Press, 1995.
Bonnabeau, Eric, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence. New York:

Oxford University Press, 1999.
Borsellino, Lewis. The Day Trader. New York: John Wiley & Sons, 1999.

341

342 BIBLIOGRAPHY

Borsellino, Lewis. The Day Trader’s Course. New York: John Wiley & Sons, 2001.
Bouchaud, Jean-Philippe, and Marc Potters. Theorie des Risques Financiers. Paris:

Alea Saclay, 1997.
Brabazon, Anthony, and Michael O’Neill. Biologically Inspired Algorithms for

Financial Modelling. New York: Springer, 1998.
Brockman, John. The Next Fifty Years. London: Phoenix, 2003.
Brockman, John. Life, What a Concept! New York: Edge, 2007.
Brooks, John. The Go-Go Years. New York: John Wiley & Sons, 1973.
Brooks, Rodney. Cambrian Intelligence. Cambridge, MA: MIT Press, 1999.
Brown, Julian. Minds, Machines and the Multiverse. New York: Simon and Schuster,

2000.
Bubnicki, Z. Modern Control Theory. New York: Springer, 2005.
Butz, Martin, and Olivier Sigaudand Pierre Gerard. Eds. Anticipatory Behavior in

Adaptive Learning Systems. New York: Springer, 2003.
Camazine, Scott, Jean-Louis Deneubourg, Nigel R. Franks, James Snade, Guy

Theraulaz, and Eric Bonabeau. Self-Organization in Biological Systems.
Princeton: Princeton University Press, 2001.

Caplan, David. The New Options Advantage. New York: McGraw-Hill, 1995.
Carroll, Terry. NLP For Traders and Investors. London: TTL, 2000.
Chande, Tushar. Beyond Technical Analysis. New York: John Wiley & Sons, 2001.
Charniak, Eugene. Statistical Language Learning. Cambridge, MA: MIT Press, 1993.
Collins, Art. Market Rap. Greenville, SC: Traders Press, 2000.
Collins, Art. When Supertraders meet Kryptonite. Greenville, SC: Traders Press,

2002.
Colman, Andrew. Game Theory and its Applications. Butterworth-Heinemann,

London, 1999.
Connors, Laurence, and Linda Bradford Rashke. Street Smarts. Los Angeles:

M Gordon Publishing Group, 1995.
Conway, Mark, and Aaron Behle. Professional Stock Trading. Waltham, MA: Acme

Trader LLC, 2003.
Covel, Michael. Trend Following. London: Prentice Hall, 2004.
Coveney, Peter, and Roger Highfield. Frontiers of Complexity. New York: Ballantine,

1999.
Crabbe, Paddy. Metals Trading Handbook. Boca Raton, FL: CRC Press, 1999.
Cragg, Richard. The Demographic Investor. London: FT-Pitman Publishing, 1998.
Cristianini, Nello, and John Shalle-Taylor. Support Vector Machines. Cambridge:

Cambridge University Press, 2000.
Davalo, Eric, and Patrick Naim. Des Resaux de Neurones. Paris: Eyrolles, 1989.
David, F.N. Games, Gods and Gambling. New York: Dover, 1998.
Davis, Morton. Game Theory. New York: Dover, 1997.
Dawkins, Richard. The Selfish Gene. Oxford: Oxford University Press, 1976.
DeMark, Thomas. The New Science of Technical Analysis. New York: John Wiley &

Sons, 1994.
DeMark, Thomas. New Market Timing Techniques. New York: John Wiley & Sons,

1997.

Bibliography 343

DeMark, Thomas, and Thomas DeMark Jr. DeMark on Day Trading Options. New
York: McGraw-Hill, 1999.

Distin, Kate. The Selfish Meme. Cambridge: Cambridge University Press, 2005.
Dorigo, Marco, and Marco Colombetti. Robot Shaping. Cambridge, MA: MIT Press,

1998.
Doya, Kenji, Shin Ishii, Alexandre Pouget, and Rajesh P.N. Rao. Bayesian Brain.

Cambridge, MA: MIT Press, 2007.
Dreman, David. Contrarian Investment Strategies. New York: Simon and Schuster,

1998.
Drew, Garfield. New Methods for Profit in the Stock Market. Burlington, VT: Fraser

Publishing, 1966.
Drobny, Steven. Inside the House of Money. New York: John Wiley & Sons, 2006.
Duffie, Darrell. Security Markets: Stochastic Models. London: Academic Press, 1988.
Duffie, Darrell. Dynamic Asset Pricing Theory. Princeton: Princeton University Press,

1992.
Dunbar, Nicholas. Inventing Money. New York: John Wiley & Sons, 2000.
Dyson, Freeman. Origins of Life. Cambridge: Cambridge University Press, 1999.
Ehlers, John. Rocket Science for Traders. New York: John Wiley & Sons, 2001.
Ehlers, John. MESA and trading Market Cycles. New York: John Wiley & Sons,

2002.
Ehlers, John. Cybernetic Analysis of Stocks and Futures. New York: John Wiley &

Sons, 2004.
Eiben, A.E., and J.E. Smith. Introduction to Evolutionary Computing. New York:

Springer, 2003.
Ekbia, Hammond. Artificial Dreams. Cambridge: Cambridge University Press, 2008.
Elder, Alexander. Trading for a Living. New York: John Wiley & Sons, 1993.
Elder, Alexander. Trading For a Living: Study Guide. New York: John Wiley & Sons,

1994.
Eliasmith, Chris, and Charles H. Anderson. Neural Engineering. Cambridge, MA:

MIT Press, 2003.
Ellis, Charles, and James Vertin. Wall Street People (2 volumes). Hoboken, NJ: John

Wiley & Sons, 2003.
Eng, William. Trading Rules. Chicago: Dearborn, 1990.
Eng, William. The Day Trader’s Manual. New York: John Wiley & Sons, 1993.
Eng, William. Trading Rules II. Chicago: Dearborn, 1996.
Engelbrecht, Andries. Computational Intelligence. Hoboken, NJ: John Wiley &

Sons, 2007.
Epstein, Joshua, and Robert Axtell. Growing Artificial Societies. Cambridge, MA:

MIT Press, 1996.
Demange, Gabrielle, and Jean-Charles Rochet. Methodes Mathematiques de la

Finance. Paris: Economica, 1997.
Falloon, William. Charlie D, The Story of the Legendary Bond Trader. New York:

John Wiley & Sons, 1997.
Farmer, Roger. Macroeconomics of Self-Fulfilling Prophecies. Cambridge, MA: MIT

Press, 1993.

344 BIBLIOGRAPHY

Farrell, Christopher. Day-Trade Online. New York: John Wiley & Sons, 1999.
Feldman, David. The Ups and Downs. Burlington, VT: Fraser Publishing, 1997.
Ferguson, Brian, and G.C. Lim. Dynamic Economic Models. Manchester:

Manchester University Press, 1998.
Fisher, Mark. The Logical Trader. Hoboken, NJ: John Wiley & Sons, 2002.
Flake, Gary-William. The Computational Beauty of Nature. Cambridge, MA: MIT

Press, 1998.
Forbes, Nancy. Imitation of Life. Cambridge, MA: MIT Press, 2005.
Forbus, Kenneth, and Johann de Kleer. Building Problem Solvers. Cambridge, MA:

MIT Press, 1993.
Ford, Kenneth, Clark Glymour, and Patrick J. Hayes. Thinking about Android Epis-

temology. Cambridge, MA: MIT Press, 2006.
Fraser, James. Crises and Panics. Burlington, VT: Fraser Publishing, 1965.
Frost, A.J., and Robert Prechter. Elliott Wave Principle. New York: John Wiley &

Sons, 1998.
Galbraith, John-Kenneth. The Great Crash 1929. London: Penguin, 1992.
Gallacher, William. Winner Take All. New York: McGraw-Hill, 1994.
Gallea, Anthony. Bulls Make Money, Bears Make Money, Pigs Get Slaughtered. New

York: New York Institute of Finance, 2002.
Gann, William. 45 Years in Wall Street. Pomeroy, WA: Lambert-Gann, 1976.
Gann, William. Truth of the Stock Tape. Pomeroy, WA: Lambert-Gann, 1977.
Geisst, Richard. Wheels of Fortune. Hoboken, NJ: John Wiley & Sons, 2002.
Glasserman, Paul. Monte Carlo Methods in Financial Engineering. New York:

Springer, 2004.
Glimcher, Paul. Decisions, Uncertainty and the Brain. Cambridge, MA: MIT Press,

2004.
Gold, Gerald. Modern Commodity Futures Trading. New York: Commodity

Research Bureau, 1975.
Graham, Paul. On LISP. New York: Prentice Hall, 1993.
Graham, Paul. ANSI Common LISP. New York: Prentice Hall, 1996.
Graham, Paul. Hackers and Painters. Sebastopol, CA: O’Reilly, 2004.
Graifer, Vadym, and Christopher Schumacher. Techniques of Tape Reading. New

York: McGraw-Hill, 2004.
Grant, James. The Trouble with Prosperity. New York: John Wiley & Sons, 1996.
Grauwe, Paul De, and Marianna Grimaldi. Exchange Rates in a Behavioral Finance

Framework. Princeton: Princeton University Press, 2006.
Greene, Robert. 48 Laws of Power. London: Penguin, 1998.
Greene, Robert. The Art of Seduction. London: Penguin, 2003.
Greene, Robert. The 33 Strategies of War. London: Penguin, 2006.
Gross, William. Bill Gross on Investing. New York: John Wiley & Sons, 1998.
Guillot, Agnes, and Jean-Arcady Meyer. How to Catch a Robot Rat. Cambridge,

MA: MIT Press, 2010.
Gyllenram, Carl. Trading with Crowd Psychology. New York: John Wiley & Sons,

2001.
Hall, J. Storrs. Beyond AI. New York: Prometheus Books, 2007.

Bibliography 345

Hamilton, William-Peter. The Stock Market Barometer. New York: John Wiley &
Sons, 1998.

Hastie, Trevor, Robert Tibsherani, and Jerome Friedman. The Elements of Statistical
Learning. New York: Springer, 2001.

Haug, Espen-Gaarder. Derivatives: Models on Models. New York: John Wiley &
Sons, 2007.

Hecht-Nielsen, Robert. Confabulation Theory. New York: Springer, 2007.
Heilbronner, Robert. The Worldly Philosophers. New York: Simon and Schuster,

1992.
Helweg, Mark, and David Stendahl. Dynamic Trading Indicators. Hoboken, NJ:

John Wiley & Sons, 2002.
Herbst, Anthony. Analysing and Forecasting Futures Prices. Lincoln, NE: Authors

Guild, 2000.
Hill, John, George Pruitt, and Lundy Hill. The Ultimate Trading Guide. New York:

John Wiley & Sons, 2000.
Hirshleifer, Jack, and John G. Riley. The Analytics of Uncertainty and Information.

Cambridge: Cambridge University Press, 1992.
Hoffman, Michael, and Gerald Baccetti. Pit Trading: Do You Have the Right Stuff?

Greenville, SC: Traders Press, 1999.
Holland, John. Emergence. Oxford: Oxford University Press, 1998.
Holzner, Steve. Design Pattern for Dummies. Hoboken, NJ: John Wiley & Sons,

2006.
Homer, Sydney, and Richard Sylla. A History of Interest Rates. New Brunswick, NJ:

Rutgers University Press, 1996.
Huang, Chi-Fu, and Robert Litzenberger. Foundations for Financial Economics.

Englewood Cliffs, NJ: Prentice Hall, 1988.
Hull, John. Options, Futures and other Derivative Securities. London: Prentice Hall,

1997.
Ilinski, Kirill. Physics of Finance. Hoboken, NJ: John Wiley & Sons, 2001.
Jablonka, Eva, and Marion J. Lamb. Evolution in Four Dimensions. Cambridge,

MA: MIT Press, 2006.
Jenks, Philip, and Stephen Eckett. Investing Rules. London: Global Investor, 2001.
Johnston, John. The Allure of Machinic Life. Cambridge, MA: MIT Press, 2008.
Jones, Ryan. The Trading Game. New York: John Wiley & Sons, 1999.
Steele Jr., Guy. Common LISP. New York: Digital Press, 1990.
Wilder Jr., Welles. New Concepts in Technical Trading Systems. North Carolina:

Hunter Publishing Co, 1978.
Kaeppel, Jay. The Four Biggest Mistakes in Furtures Trading. Ellicott City, MD:

Marketplace Books, 2000.
Katz, Jeffrey-Owen, and Donna McCormick. The Encyclopedia of Trading Strate-

gies. New York: McGraw-Hill, 2000.
Kauffman, Stuart. Investigations. Oxford: Oxford University Press, 2000.
Kaufman, Perry. Smarter Trading. New York: McGraw-Hill, 1995.
Kaufman, Perry. Trading Systems and Methods. New York: John Wiley & Sons,

1998.

346 BIBLIOGRAPHY

Kempf, Hubert, and William Marois. Monnaie, Taux d’Interet et Anticipations.
Paris: Economica, 1992.

Kestner, Lars. Quantitative Trading Strategies. New York: McGraw-Hill, 2003.
Khinchin, A.I. Mathematical Foundations of Information Theory. New York: Dover,

1957.
Kiev, Ari. Trading to Win. New York: John Wiley & Sons, 1998.
Kiev, Ari. Trading in The Zone. Hoboken, NJ: John Wiley & Sons, 2001.
Kiev, Ari. The Psychology of Risk. Hoboken, NJ: John Wiley & Sons, 2002.
Kindelberger, Charles. Manias, Panics and Crashes. New York: John Wiley & Sons,

1996.
Kleinfeld, Sonny. The Traders. Greenville, SC: Traders Press, 1983.
Koppel, Robert, and Howard Abell. The Inner Game of Trading. New York:

McGraw-Hill, 1994.
Koppel, Robert, and Howard Abell. The Outer Game of Trading. Chicago: Probus

Publishing, 1995.
Korb, Kevin, and Ann E. Nicholson. Bayesian Artificial Intelligence. New York:

Chapman and Hall CRC, 2004.
Koza, John. Genetic Programming. Cambridge, MA: MIT Press, 1992.
Koza, John. Genetic Programming II. Cambridge, MA: MIT Press, 1994.
Koza, John, Forrest Bennett III, David Andre, and Martin Keene. Genetic Program-

ming III. San Francisco: Morgan Kauffmann Inc., 1999.
Koza, John, Martin Keene, Matthew Streeter, William Mydlowec, Jessen Yu, and

Guido Lanza. Genetic Programming IV. New York: Springer, 2003.
Kreps, David. Game Theory and Economic Modelling. Oxford: Oxford University

Press, 1990.
Krohs, Ulrich, and Peter Kroes. Functions in Biological and Artificial Worlds.

Cambridge, MA: MIT Press, 2009.
Kroll, Stanley. The Professional Commodity Trader. Greenville, SC: Traders Press,

1974.
Kroll, Stanley. Kroll on Futures Trading Strategy. Homewood, IL: Dow Jones-Irwin,

1988.
Krugman, Paul. Currencies and Crises. Cambridge, MA: MIT Press, 1995.
Krustinger, Joe. Trading Systems. New York: McGraw-Hill, 1997.
Kurzweil, Ray. The Age of Spiritual Machines. London: Penguin, 1999.
Kurzweil, Ray. The Singularity is Near. London: Penguin, 2005.
Langdon, William, and Ricardo Poli. Foundations of Genetic Programming. New

York: Springer, 2002.
LeBon, Gustave. The Psychology of Revolution. Burlington, VT: Fraser Publishing,

1989.
Lee, Tim. Economics for Professional Investors. New York: Prentice Hall, 1998.
Lefevre, Edwin. Reminiscences of a Stock Operator. New York: John Wiley & Sons,

1994.
Leinweber, David. Nerds on Wall Street. Hoboken, NJ: John Wiley & Sons, 2009.
Levitt, Steven, and Steven Dubner. Freakonomics. New York: HarperCollins,

2005.

Bibliography 347

Li, Deyi, and Yi Du. Artificial Intelligence with Uncertainty. New York: Chapman
and Hall CRC, 2008.

Lifson, Lawrence, and Richard Geist. The Psychology of Investing. New York: John
Wiley & Sons, 1999.

Livermore, Jesse, and Richard Smitten. How to Trade in Stocks. Greenville, SC:
Traders Press, 2001.

Longstreet, Roy. Viewpoints of a Commodity Trader. Greenville, SC: Traders Press,
1967.

Lowenstein, Roger. When Genious Failed. London: Fourth Estate, 2001.
Josh Lukeman. The Market Maker’s Edge. New York: McGraw-Hill, 2000.
Mackay, Charles. Extraordinary Popular Delusions and the Madness of Crowds.

London: Wordsworth, 1995.
MacKay, David. Information Theory, Inference and Learning Algorithms. New

York: Cambridge University Press, 2003.
Maes, Patti, Maja J. Mataric, Jean-Arcady Meyer, Jordan Pollack, and Stuart Wilson.

Eds. From Animals to Animats 4. Cambridge, MA: MIT Press, 1996.
Magee, Jeff, and Jeff Kramer. Concurrency. Hoboken, NJ: John Wiley & Sons, 2007.
Mak, Don. Mathematical Techniques in Financial Market Trading. Singapore: World

Scientific, 2006.
Malvergne, Yannick, and Didier Sornette. Extreme Financial Risks. New York:

Springer, 2006.
Mamon, Rogemar, and Robert J. Elliott. Hidden Markov Models in Finance. New

York: Springer, 2007.
Mandelbrot, Benoit, and Richard L. Hudson. The (Mis)-Behavior of Markets.

London: Profile Books, 2005.
Mangot, Mickael. 50 Psychological Experiments for Investors. Hoboken, NJ: John

Wiley & Sons, 2007.
Masover, Hal. Value Investing in Commodity Futures. Hoboken, NJ: John Wiley &

Sons, 2001.
Mataric, Maja. The Robotocs Primer. Cambridge, MA: MIT Press, 2007.
Mathis, Jean. Finance Internationale. Paris: ESKA, 1991.
Mayer, Martin. Markets. New York: Norton, 1988.
McCall, Richard. The Way of the Warrior Trader. New York: McGraw-Hill, 1997.
Meadows, Donella. Thinking in Systems. White River Junction, VT: Chelsea Green,

2008.
Medio, Alfredo. Chaotic Dynamics. Cambridge: Cambridge University Press, 1992.
Melamed, Leo. Leo Melamed on The Markets. New York: John Wiley & Sons, 1993.
Melamed, Leo, and Bob Tamarkin. Escape to the Futures. New York: John Wiley &

Sons, 1996.
Menchel, Robert. Markets, Mobs and Mayhem. Hoboken, NJ: John Wiley & Sons,

2002.
Menzell, Peter, and Faith d’Alusio. Robo Sapiens. Cambridge, MA: MIT Press, 2000.
Merton, Robert. Continuous-Time Finance. Cambridge, MA: Blackwell, 1992.
Meyer, Jean-Arcady, Herbert L. Roitblat, and Stuart W. Wilson. From Animals to

Animats 2. Cambridge, MA: MIT Press, 1993.

348 BIBLIOGRAPHY

Minsky, Marvin. The Society of Mind. New York: Simon and Schuster, 1985.
Minsky, Marvin. The Emotion Machine. New York: Simon and Schuster, 2006.
Mintz, Steven. Five Eminent Contrarians. Burlington, VT: Fraser Publishing, 1994.
Mitchell, Melanie. An Introduction to Genetic Algorithms. Cambridge, MA: MIT

Press, 1996.
Mitchell, William. ME++. Cambridge, MA: MIT Press, 2003.
Montier, James. Behavioural Finance. Hoboken, NJ: John Wiley & Sons, 2002.
Moravcsik, Julius. Meaning, Creativity and the Partial Inscrutability of the Human

Mind. Palo Alto, CA: CSLI Publications, 1998.
Moravec, Hans. Mind Children. Cambridge, MA: Harvard University Press, 1988.
Moravec, Hans. Robot. Oxford: Oxford University Press, 1999.
Murphy, John. Technical Analysis of the Financial Markets. New York: New York

Institute of Finance, 1999.
Neill, Humphrey. Tape Reading and Market Tactics. Burlington, VT: Fraser Publish-

ing, 2002.
Niemeyer, Patrick, and Jonathan Knudsen. Learning JAVA. Sebastopol, CA:

O’Reilly2005.
Niemira, Michael, and Gerald Zukowski. Trading the Fundamentals. New York:

McGraw-Hill, 1998.
Noble, Grant. The Trader’s Edge. New York: McGraw-Hill, 1995.
Nolfi, Stefano, and Dario Florentino. Evolutionary Robotics. Cambridge, MA: MIT

Press, 2000.
Norvig, Peter. Artificial Intelligence Programming. San Francisco: Morgan Kauff-

mann Inc., 1992.
Nowak, Martin. Evolutionary Dynamics. Cambridge, MA: Harvard University

Press, 2006.
Padhy, N.P. Artificial Intelligence and Intelligent Systems. New York: Oxford

University Press, 2005.
Pardo, Robert. Design, Testing and Optimization of Trading Systems. New York:

John Wiley & Sons, 1992.
Paris, Alexander. A Complete Guide to Trading Profits. Greenville, SC: Traders Press,

1970.
Pierce, John. An Introduction to Information Theory. New York: Dover, 1980.
Plummer, Tony. The Psychology of Technical Analysis. New York: McGraw-Hill,

1993.
Prechter, Robert. The Wave Principle of Human Social Behavior and the New Science

of Socionomics. Gainesville, GA: New Classics Library, 2002.
Pruitt, George, and John Hill. Building Winning Trading Systems with TradeStation.

Hoboken, NJ: John Wiley & Sons, 2003.
Rapoport, Anatol. 2-Person Game Theory. Dover, New York, 1996.
Rasmussen, Carl-Edward, and Christopher K.I. Williams. Gaussian Processes for

Machine Learning. Cambridge, MA: MIT Press, 2006.
Redmond, George. Stock Market Operators. FT-London: Prentice Hall, 1999.
Resnick, Mitchell. Turtles, Termites and Traffic Jams. Cambridge, MA: MIT Press,

1997.
Rhea, Robert. The Dow Theory. Burlington, VT: Fraser Publishing, 2002.

Bibliography 349

Roehner, Bertrand. Hidden Collective Factors in Speculative Trading. New York:
Springer, 2001.

Rosen, Robert. Life Itself. New York: Columbia University Press, 1991.
Rosen, Robert. Essays on Life Itself. New York: Columbia University Press, 2000.
Rotella, Robert. The Elements of Successful Trading. New York: New York Institute

of Finance, 1992.
Sargent, Thomas. Bounded Rationality in Macroeconomics. Oxford: Clarendon

Press, 1995.
Sasha, Dennis, and Cathy Lazere. Natural Computing. London: Norton, 2010.
Satchwell, Chris. Pattern Recognition and Trading Decisions. New York: McGraw-

Hill, 2005.
Schenider, Eric, and Dorion Sagan. Into the Cool. Chicago: University of Chicago

Press, 2005.
Schleifer, Andrei. Inefficient Markets. Oxford: Oxford University Press, 2000.
Schroedinger, Erwin. What is Life. Cambridge: Cambridge University Press, 1967.
Schultz, Harry, and Samson Coslow. A Treasury of Wall Street Wisdom. Greenville,

SC: Traders Press, 1996.
Schwager, Jack. Market Wizards. New York: Harper Business, 1993.
Schwager, Jack. The New Market Wizards. New York: Harper Business, 1994.
Schwager, Jack. Managed Trading, Myths and Truths. New York: John Wiley &

Sons, 1996.
Schwager, Jack. Stock Market Wizards. Hoboken, NJ: John Wiley & Sons, 2001.
Schwartz, Randall, and Tom Phoenix. Learning Perl. Sebastopol, CA: O’Reilly, 2001.
Seibel, Peter. Practical Common LISP. New York: Apress, 2005.
Shannon, Claude, and Warren Weaver. The Mathematical Theory of Communica-

tion. Chicago: University of Illinois Press, 1963.
Sharp, Robert. The Lore and Legends of Wall Street. Homewood, IL: Dow

Jones-Irwin, 1989.
Shelton, Ronald. Gaming The Market. New York: John Wiley & Sons, 1997.
Smith, Edgar-Lawrence. Tides in the Affairs of Men. Burlington, VT: Fraser

Publishing: 1989.
Smith, John Maynard, and Eros Szathmary. The Origins of Life. Oxford: Oxford

University Press, 1999.
Smitten, Richard. Jesse Livermore. Hoboken, NJ: John Wiley & Sons, 2001.
Smitten, Richard. Trade like Jesse Livermore. Hoboken, NJ: John Wiley & Sons,

2005.
Sole, Rircard, and Brian Goodwin. Signs of Life. New York: Basic Books, 2000.
Sornette, Didier. Why Stock Markets Crash. Princeton: Princeton University Press,

2003.
Soros, George. The Alchemy of Finance. New York: John Wiley & Sons, 1994.
Soros, George. The New Paradigm for Financial Markets. London: Public Affairs,

2008.
Sperandeo, Victor. Trader Vic—Methods of a Wall Street Master. New York: John

Wiley & Sons, 1991.
Sperandeo, Victor. Trader Vic II—Methods of a Wall Street Master. New York: John

Wiley & Sons, 1994.

350 BIBLIOGRAPHY

Steidelmayer, Peter. Steidelmayer on Markets. Hoboken, NJ: John Wiley & Sons,
2003.

Stigum, Marcia. Money Market. New York: McGraw-Hill, 2007.
Stridsman, Thomas. Trading Systems that Work. New York: McGraw-Hill, 2001.
Stridsman, Thomas. Trading Systems and Money Management. New York: McGraw-

Hill, 2003.
Summa, John. Trading Against the Crowd. Hoboken, NJ: John Wiley & Sons, 2004.
Sutton, Richard, and Andrew Barto. Reinforcement Learning. Cambridge, MA: MIT

Press, 1998.
Sweeney, John. Maximum Adverse Excursion. New York: John Wiley & Sons, 1997.
Nassim Taleb. Dynamic Hedging. New York: John Wiley & Sons, 1997.
Taylor, John. Monetary Policy Rules. Chicago: University of Chicago Press, 1999.
Thrun, Sebastan, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.

Cambridge, MA: MIT Press, 2005.
Toghraie, Adrienne. The Winning Edge 4. Greenville, SC: Traders Press, 2001.
Train, John. Famous Financial Fiascos. Burlington, VT: Fraser Publishing, 1995.
Tvede, Lars. The Psychology of Finance. Hoboken, NJ: John Wiley & Sons, 2002.
Voit, Johannes. The Statistical Mechanics of Financial Markets. New York: Springer,

2003.
vonBertalanffy, Ludwig. General System Theory. New York: George Brazillier, 1969.
vonNeumann, John. The Computer and the Brain. New Haven: Yale University

Press, 1958.
Ware, Jim. The Psychology of Money. Hoboken, NJ: John Wiley & Sons, 2001.
Watts, Dickson. Speculation as a Fine Art. Burlington, VT: Fraser Publishing, 1979.
Webb, Robert. Macroeconomic Information and Financial Trading. Oxford:

Blackwell, 1994.
Wei, William. Time Series Analysis. New York: Addison Wesley, 1994.
Weintraub, Neal. Tricks of the Floor Trader. New York: McGraw-Hill, 1996.
Weintraub, Neal. Trading Chicago Style. New York: McGraw-Hill, 1999.
Wiener, Norbert. Cybernetics. Cambridge, MA: MIT Press, 1961.
Wiener, Norbert. God and Golem, Inc. Cambridge, MA: MIT Press, 1964.
Wiener, Norbert. The Human Use of Human Beings. London: FAB, 1989.
Williams, Larry. The Definitive Guide to Futures Trading, 2 Volumes. Brightwaters,

NY: Windsor Books, 1988.
Williams, Larry. Long-Term Secrets to Short-Term Trading. New York: John Wiley

& Sons, 1999.
Winograd, Terry, and Fernando Flores. Understanding Computers and Cognition.

Boston: Addison Wesley, 1986.
Wooldridge, Michael. Multi-Agent Systems. Hoboken, NJ: John Wiley & Sons, 2002.
Wright, Russel. Chronology of the Stock Market. London: McFarland and Co, 2002.
X., Trader, Dancing with Lions. Novato, CA: Portal Publications, 1999.
Yuen, C.K. Prallel LISP Systems. London: Chapman and Hall, 1993.
Zaknich, A. Principles of Adaptive Filters and Self-Learning Systems. New York:

Springer, 2005.
Zweig, Martin. Winning on Wall Street. New York: Warner Books, 1997.

Index

Acceleration trading strategies, 114–117,
118–119, 142

Accumulation, strategy design impacted by,
37–38, 114

Adaptation:
adaptive autonomous agents (see Adaptive

autonomous agents)
adaptive reactions vs. rigid anticipations,

33–37
avenues for, 173–175
definition of, 173
market as complex adaptive system, 42–45
need to adapt, 45
research on adaptation of model

portfolios, 12
strategy evolution as (see Strategy

evolution)
Adaptive autonomous agents (AAA):

adaptation strategies for, 173–178
aggregate agents, 139–141, 152, 170, 324

(see also Swarm systems)
algorithms used by (see Algorithms)
basic trading strategies using, 105–126
consume function of, 60, 64–65, 67,

70–71, 152, 155, 156–157, 323
core engine layer of, 323–326
data representation techniques for, 51,

83–104
elements of, 49–50
events encountered by, 60–63 (see also

“market updates to” subentry)
feedback and fitness measures for (see

Feedback and control mechanisms)
finite-state-machine control system

decision-making by, 52–55, 63–71,
73–82, 157, 275

human traders in lieu of (see Traders)
implementation by (see Systematic trading

implementation)
initialization of, 77, 85

inter-agent communication, 73–82, 84,
133, 134, 145–146, 242

internal world of, 179–180
language recognition in, 102–103, 126
market-making trading strategies using,

127–137
market updates to, 61–63, 65–66, 67,

70–71, 75–82, 84–104, 145–168,
249–250, 253–254, 261–262, 323–324

message emission by, 75–76
observe function of, 61, 73, 77
order management systems of (see Order

management systems)
portfolio aggregation and, 139–143
price and order book updates to, 84–89,

96–99
simulations involving, 75–76, 81–82,

145–168, 184, 225–226, 240–243,
325–326, 327–328

smart system of, 174
strategy design and testing involving,

49–55, 57–71, 73–82, 83–104,
105–126, 127–137, 139–143, 145–168

strategy evolution involving, 169–171,
173–178, 179–196, 197–217, 219–221,
223–228

strategy implementation via, 66–71
(see also Systematic trading
implementation)

swarm system of, 170–171, 174, 177–178,
197–217, 219–221, 223–228, 245–246,
266, 281–290, 332

trading agents as, 57–59
trading robot as, 50–51

Aggregation:
additive swarm system aggregation of

positions, 209
aggregate agents, 139–141, 152, 170, 324

(see also Swarm systems)
manual order aggregation, 313–314

351

352 INDEX

Aggregation (Continued)
order aggregation/disaggregation, 299,

301–304, 313–314
portfolio aggregation by combining

strategies, 139–143
systematic trading implementation

aggregation/disaggregation, 249, 251,
254, 257, 266–267, 271, 299–304

Algorithms:
aggressive order, 147, 148, 153–154, 175,

234, 237–238
algorithmic execution tools, 129, 136,

148–149, 232, 234, 237–243
commonly used, 237–240
data representation relationship to, 88, 98,

101
definition of systematic trading including

use of, 3
FPGAs for physical representation of, 332
history of technological improvements

including, 24, 25, 26, 27, 46, 47, 177
iceberg order, 129, 238
language-processing, 126
limit order, 148, 241, 309
market and stop-loss order, 148, 237–238
portfolio trading, 239
reductionist appearance due to use of, 6
simulations executing, 147, 148–150,

152–156, 161–162, 240–243
spread, 239–240
substantial time associated with

algorithmic orders, 308–309
swarm system, 208–209, 213, 226
switch, 198, 200
time-weighted average price, 239
trading as business consideration of, 8, 12,

13
volume-weighted average price, 238–239,

241, 242–243
AllegroCache, 267, 268, 271
Arbitrage, 7
Artificial life/artificial intelligence. See also

Robots/robotics
adaptive autonomous agents in (see

Adaptive autonomous agents)
Darwinian and Lamarkian ideas in, 24,

46–48, 177, 227–228
data representation techniques for, 51,

83–104

events encountered by, 60–63 (see also
“market updates to” subentry)

feedback and fitness measures for (see
Feedback and control mechanisms)

finite-state-machine control system
decision-making by, 52–55, 63–71,
73–82, 157, 275

history of systematic trading impacted by,
24–25, 26

inter-agent communication in, 73–82, 84,
133, 134, 145–146, 242

internal world of, 179–180
language recognition in, 102–103, 126
market updates to, 61–63, 65–66, 67,

70–71, 75–82, 84–104, 145–168,
249–250, 253–254, 261–262, 323–324

origins of, 45–48
simulations involving, 75–76, 81–82,

145–168, 184, 225–226, 240–243,
325–326, 327–328

strategy implementation via, 66–71
(see also Systematic trading
implementation)

systematic trading analogies with, 49–55
trading agents as, 57–59

Backup of data. See Data persistence
Bars and candles compression technique,

90–96
Behavior, swarm system exploitation and

exploration of, 225–226, 227
Bootstrapping, 161
Box compression technique, 96–97, 98
Brooks, Rodney, 24
Business, trading as:

capital, costs and critical mass in, 16–19
marketing and distribution in, 15–16
overview of, 7–8
product and its design in, 10–12
profitability and track record in, 8–10, 13,

15
trading factory or process focus in,

12–14

Capacity, 16
Capital:

cost of, 18
initial, 16–17
liquidity of (see Liquidity)

Index 353

operational, 17–18
trading as business consideration of,

16–19
Channel breakout trading strategies, 106,

107
Church, Alonzo, 283
Cloud computing, 331
Commodity trading advisors (CTAs):

capital of, 18
profitability and track records of, 30, 35
trend-following trading strategies of, 105,

186
Communications and language:

artificial life language recognition,
102–103, 126

communication breakdowns, 273–274
ECN communication translation, 247,

249, 292–294
inter-agent communication, 73–82, 84,

133, 134, 145–146, 242
inter-component communication, 257–259
language-agnostic domain model,

253–254, 255, 325–326
language-processing algorithms, 126
language selection for solving tasks,

254–256
latency of communication (see Latency)
LISP computer language, 46, 102–103,

159, 249, 254–256, 259, 263, 271, 283
market update communication, 61–63,

65–66, 67, 70–71, 75–82, 84–104,
145–168, 249–250, 253–254, 261–262,
323–324

messaging bus infrastructure, 257–258,
260–261, 278

Prolog computer language, 46, 103
Compression:

bars and candles techniques in, 90–96
box technique in, 96–97, 98
data relevance impacted by, 22
market distribution technique in, 97–99

Computational efficiency, 281–290
Computers and computational abilities:

algorithms used by (see Algorithms)
artificial life/artificial intelligence via (see

Artificial life/artificial intelligence;
Robots/robotics)

build and patch releases for, 327–329
cloud computing, 331

computational efficiency of, 281–290
CPU spikes in, 281–282
databases on, 269–272, 304
distributed computing and modularity,

260–261
electronic trading using (see Electronic

trading)
FPGAs, 26, 297, 332
garbage collection and memory control

for, 263, 278, 282, 297, 330
GPUs, 26, 297, 331
hardware considerations for, 294–295,

329–332
history of systematic trading impacted by,

23–26
LISP computer language, 46, 102–103,

159, 249, 254–256, 259, 263, 271,
283

numeric efficiency of, 285–290
parallel processing by, 261–262, 330,

331–332
preservation and recovery of data in, 252,

265–272, 273–279
Prolog computer language, 46, 103
recursive computation of model signals

and performance, 282–285
systematic trading implementation

computer language issues, 253–259,
325–326

Continuous statistics, 163, 187
Cooperation, 14, 21, 37–38, 114
CORBA (Common Object Request Broker

Architecture) project, 259
Core engine layer, 323–326
Costs:

analysis of trading costs, 231–235
capital and leverage, 18
deterministic vs. non-deterministic,

231–232
latency, 231–232
liquidity, 18, 231, 232–235
management fees as, 17
market-making arena fee management,

130–131
minimization of, 12
operational, 17–18
research on, 12
slippage, 232–233
switching strategies impacting, 203, 209

354 INDEX

Dark pools, 25
Darwinian ideas, 24, 46, 47, 48, 177,

227–228
Dashboards, 311–313
Data persistence:

ancillary data, 266–267
business critical data, 265–267
databases for, 269–272, 304
external data, 265–266, 274–275
fault tolerance and, 273–279
internal data, 266
logs generated for, 277–278
maintenance and upgrades impacting, 277
monitoring and prevention as tools for,

278–279
object persistence and cached memory,

267–269
recovery of data and, 252, 273–279
research and development data, 271–272
systematic trading implementation

dependence on, 252, 265–272,
273–279, 304

Data representation:
bars and candles techniques in, 90–96
box technique in, 96–97, 98
charts and technical analysis in, 99–101
clock time vs. event time in, 89–90
compression in, 22, 90–99
indicators in, 23, 51
market distribution technique in, 97–99
market updates communicated via,

84–104
news into numbers translation in, 102–103
patterns into symbols translation in,

101–102
price and order book updates in, 84–89,

96–99
psychology of data and alerts in, 103–104
relevance and filtering of data in, 22–23,

51, 83–84
representation techniques in, 99–104
sampling in, 89–90
strategy design and testing using, 51,

83–104
tick data in, 88–89

Derivatives, 40–41
Discretionary trading:

arbitrage effects on, 7
business of, 7–19
capital for, 16–19

complexity of, 5–6, 7
cooperation in, 14, 21
costs in, 12, 17–18
information importance in, 10–11
learning from others in, 21–22
marketing and distribution of, 15–16
philosophy of trading for, 3–7
product and design of, 10–12
profitability and track record of, 8–10, 13,

15
psychology and emotions of, 19–22
reactive vs. predictive features of, 6
reductionist aspect of, 6
research role in, 11–12, 13, 14
risk management in, 13, 15–16
systematic trading comparison to, 2, 5–22
traders’ role in, 8–10, 13, 14, 15, 19–22
trading factory or process in, 12–14

Distributed computing and modularity,
260–261

Distribution:
market distribution compression

technique, 97–99
trading as business consideration of,

15–16
Divestment, strategy design impacted by,

37–38, 114
Donchian, Richard/Donchian channel, 106
Dow, Charles, 23

Electronic commerce networks (ECNs):
adaptors for, 291–292, 293
aggregation/disaggregation of information

from, 299–304
communication translation by, 247, 249,

292–294
connectivity to, 291–297
electronic market-making via, 130–131
history of systematic trading impacted by,

25
latency in, 25, 87, 88–89, 147, 239–240,

250, 293, 294–297, 301, 330
order management systems for (see Order

management systems)
systematic trading implementation via,

245–246, 247, 249–251, 253–254,
265–267, 273–278, 291–297, 299–304,
329–330

trading robots’/AAA’s interaction with, 51,
54, 84–89, 146–157

Index 355

Electronic trading:
algorithms used in (see Algorithms)
electronic commerce networks for (see

Electronic commerce networks)
electronic market-making as, 129–131
open outcry/pit trading impacted by, 1–2,

25, 27, 127, 129, 130
systematic trading as (see Systematic

trading)
Emotions and psychology, 19–22,

103–104
Eurex, 25

Feedback and control mechanisms:
efficiency of control in, 193–196,

224–225
fitness feedback control, 177, 184–192,

193–196, 197–217, 219–221, 223–228
fitness measures as, 14, 170, 177,

179–196, 197–217, 219–221, 223–228
global performance, 214–217
implicit market regimes based on,

181–183
internal world view impacting, 179–180
optimization of control parameters for,

196
path-length fitness in, 190–192, 224
persistence of regimes impacting,

183–184
rolling profit factors in, 190
rolling trade NAV in, 189–190, 198–204,

225
in strategy evolution, 170, 175–178,

179–196, 197–217, 219–221, 223–228
strategy performance as, 180–183, 197
swarm system decision-making based on,

197–217, 219–221, 223–228
triggering control in, 193

Financial matters. See Capital; Costs; Price;
Profitability

Financial theory, strategy design and testing
based on, 33–42

Finite-state-machine (FSM) representation:
of AAA control system, 52–55, 63–71,

73–82, 157, 275
initialization of, 67, 77
inter-agent communication via, 73–82
order management system de-coupling

from, 157
strategy implementation using, 66–71

Fitness:
fitness feedback control, 177, 184–192,

193–196, 197–217, 219–221, 223–228
measures of, in strategy evolution, 170,

177, 179–196, 197–217, 219–221,
223–228

of models, 14, 179–184
path-length fitness, 190–192, 224
swarm systems based on, 197–217,

219–221, 223–228
Flash Crash (May 6, 2010), 27, 216–217,

301
Flexibility, as strategy evolution goal, 169
Foreign function interfaces, 259
FPGAs (Field Programmable Gate Arrays),

26, 297, 332

Gann, W. D., 23
Garbage collection, computerized, 263, 278,

282, 297, 330
GPUs (Graphics Processing Units), 26, 297,

331

Hedge funds:
capital and costs of, 16–19
fitness feedback control mechanisms used

by, 186
profitability and track records of, 8–10
research by, 11
systematic vs. discretionary trading by,

8–10, 11, 16–19

ICE (Internet communications engine),
258

Implementation. See Systematic trading
implementation

Indicators, 23, 51, 266
Information:

communication of (see Communications
and language)

news-driven trading strategies based on,
124–126

trading as business reliance on, 10–11
translation into numbers, in data

representation, 102–103
Innovation:

behavior exploration and, 227
simulated distribution of, 161–162
trading as business reliance on, 8, 12, 15,

18, 25, 26

356 INDEX

Intraday trading:
intraday patterns trading strategies,

122–124, 125
intraday seasonality of liquidity, 233–234

Ising spin-glass model, 44

Lamarkian ideas, 24, 46, 48, 177, 228
Langton, Chris, 24, 47
Language. See Communications and

language
Latency:

costs associated with, 231–232
ECN latency issues, 25, 87, 88–89, 147,

239–240, 250, 293, 294–297, 301, 330
external vs. internal, 294–297
systematic trading implementation

impacted by, 250, 252, 293, 294–297,
301, 330

Learning, swarm system, 223–228
Leverage, 18, 38–40
Liquidity:

acceleration events impacting, 116, 117
capacity relationship to, 16
costs related to, 18, 231, 232–235
electronic trading impacting, 25, 27, 127,

129, 131
intraday seasonality of, 233–234
market-making architecture impacting,

127, 128, 129, 131, 136
market news impacting, 103
order management system using, 148,

149–150, 154, 234–235, 237
quantitative measure of, 233
risk management rules based on, 23
slippage relationship to, 149, 154,

232–233
trading as business consideration of, 16,

18
LISP (computer language), 46, 102–103,

159, 249, 254–256, 259, 263, 271, 283
Livermore, Jesse, 23

Market crashes:
Flash Crash (May 6, 2010), 27, 216–217,

301
phase transitions under leverage leading

to, 39–40
Market distribution compression technique,

97–99
Marketing, 15–16

Market-making trading strategies:
architecture for market-making desk,

134–137
conditional or open outcry

market-making, 128–129
electronic market-making, 129–131
leading market-makers in, 130
mixed market-making model, 131–134
traditional market-making, 127–128

Market reality:
accumulation vs. divestment approaches

as, 37–38, 114
adaptive autonomous agent market

updates on, 61–63, 65–66, 67, 70–71,
75–82, 84–104, 145–168, 249–250,
253–254, 261–262, 323–324

adaptive reactions vs. rigid anticipations
to, 33–37

derivative risk and hedging as, 40–41
market as complex adaptive system as,

42–45
market regimes as, 181–184, 197–217,

219–221, 223–228
phase transitions under leverage as, 38–40
socio-political dynamics and feedbacks as,

41–42
strategy design and testing based on,

33–42, 124–125
swarm system adaptation to, 197–217

McCarthy, John, 24
Mean-reversion trading strategies:

computational efficiency for
implementation of, 287–290

strategy design and testing of, 117–122,
133, 142

strategy evolution and fitness of, 182,
187–189, 198–203, 204, 206

Messaging buses, 257–258, 260–261, 278
Models:

fitness of, 14, 179–184
Ising spin-glass model, 44
order management system, 147–157
research on, 12, 13
robots and, 49–50
simulations testing (see Simulations)
strategies for developing (see Strategy

design and testing; Strategy evolution)
trading process optimization of, 13–14
zero-intelligence models of agent behavior,

45

Index 357

Monetary matters. See Capital; Costs; Price;
Profitability

Moving averages trading strategies,
106–112, 113, 133

News. See Information
New York Stock Exchange (NYSE), 23
NoSQL (no structured query language)

databases, 270–271

Object-oriented middleware, 259
Ontology-driven trading strategies, 126
Opening range breakout trading strategies,

122, 124, 125
Open outcry/pit trading:

electronic trading impacting, 1–2, 25, 27,
127, 129, 130

opening range breakout trading strategies
based on, 122, 124, 125

open outcry market-making, 128–129
psychology and emotions in, 103
risk management rules impacted by, 23

Opportunism, as strategy evolution goal,
169, 170

Order book data:
data representation of, 84–89
electronic trading availability of, 129
synchronous synthetic order book of,

301
Order management systems:

aggregation/disaggregation layer
impacting, 299, 301–304

aggressive orders in, 147, 148, 152,
153–154, 157, 175, 234–235, 237–238,
241, 305–307, 310

algorithms used in (see Algorithms)
control of, under stress, 309–310
data preservation and recovery for, 266
ECN connectivity to, 51, 54, 147–157,

234–235, 237, 291–293
flexibility of, 310
iceberg orders in, 129, 238
latency impacting (see Latency)
limit orders in, 148, 235, 241, 309
manual aggregation of, 313–314
market orders in, 237–238
modeling, for simulations, 147–157
models for, 155–156
operational controls for, 246
operation of, 156–157

order execution simulations for, 153–154,
240–243

order placement simulations for, 151–153
orders and algorithms for, 148–149
passive orders in, 148, 152, 234, 306–308,

310
recursive controller role of, 305–309
slippage simulations for, 149–151,

240–241
stop or stop-loss orders in, 148, 237–238
systematic trading implementation using,

246, 250, 251, 254, 257, 261, 262, 266,
271, 291–293, 299, 301–304, 305–310

triggering of, 51, 54, 147–157

Parallel processing, 261–262, 330, 331–332
Per-trade statistics, 164, 187
Phase transitions, 38–40
Pit trading. See Open outcry/pit trading
Political dynamics, 41–42
Portfolios:

modern portfolio theory on, 141–143
research on adaptation of model, 12
risk management of, 13, 142–143, 239,

320
strategies combined into, 139–143
stylized equity curves for, 141–142
trading execution of, 239
trading process optimization of, 13–14,

141–142
Price:

bars and candles compression technique
representing, 90–96

box compression technique representing,
96–97, 98

data representation of price events, 84–89,
96–99

ECN connectivity to price sources,
293–294

market distribution technique
representing, 97–99

slippage of, 149–151, 154, 232–233,
240–241

time-weighted average price, 239
trends in (see Trends)
volume-weighted average price, 238–239,

241, 242–243
Profitability:

marketing of, 15
rolling profit factor, 190

358 INDEX

Profitability (Continued)
strategy evolution to achieve (see Strategy

evolution)
track record of, 8–10, 13, 15, 30, 35

Prolog (computer language), 46, 103
Psychology and emotions, 19–22, 103–104

Range projection trading strategies,
120–122, 123

RDBMS (relational database management
system), 270–271

Regulation of systematic trading, 27
Reinforcement learning, 224
Remote procedure calls, 258–259
Research:

cooperation in, 14
data persistence of, 271–272
data representation techniques in, 22–23,

51, 83–104
simulations as (see Simulations)
trading as business reliance on, 11–12, 13,

14
Risk management:

automated, 251, 320
feedback and fitness measures as tool for

(see Feedback and control mechanisms)
manual risk control, 320–322
marketing of risk management robustness,

15–16
operational, 16
portfolio risk management, 13, 142–143,

239, 320
rule development for, 23
systematic trading implementation control

of, 245, 250–251, 275–276, 309–310,
311–317, 319–322

trading as business consideration of, 13,
15–16

types and mitigation of risk, 319–320
Robots/robotics. See also Artificial

life/artificial intelligence
adaptive autonomous agents in (see

Adaptive autonomous agents)
Darwinian and Lamarkian ideas in, 24,

46–48, 177, 227–228
data representation techniques for, 51,

83–104
events encountered by, 60–63 (see also

“market updates to” subentry)
feedback and fitness measures for (see

Feedback and control mechanisms)

finite-state-machine control system
decision-making by, 52–55, 63–71,
73–82, 157, 275

inter-agent communication in, 73–82, 84,
133, 134, 145–146, 242

internal world of, 179–180
language recognition in, 102–103, 126
market updates to, 61–63, 65–66, 67,

70–71, 75–82, 84–104, 145–168,
249–250, 253–254, 261–262, 323–324

origins of, 45–48
simulations involving, 75–76, 81–82,

145–168, 184, 225–226, 240–243,
325–326, 327–328

strategy implementation via, 66–71
(see also Systematic trading
implementation)

systematic trading analogies with, 49–55
trading agents as, 57–59

Robustness:
of risk management, marketing of, 15–16
as strategy evolution goal, 169, 175,

192–193, 194, 224–225
Rolling profit factors, 190
Rolling trade NAV, 189–190, 198–204, 225

Sampling, 89–90
Santa Fe Institute, 43, 47
Seasonality:

intraday seasonality of liquidity, 233–234
seasonality of volatility trading strategies,

122–124
Securities and Exchange Commission (SEC),

27
Shadow indexes, 116–117
Signal-to-noise ratio (SNR), 108–109,

111–112, 188
Simulations:

adaptive autonomous agent-based, 75–76,
81–82, 145–168, 184, 225–226,
240–243, 325–326, 327–328

algorithms for, 147, 148–150, 152–156,
161–162, 240–243

back-tests in, 158–160, 225, 226, 240
code testing in, 327–328
continuous statistics from, 163
fitness feedback control mechanism in,

184, 225–226
forward-tests in, 160–162, 225
order execution simulations, 153–154,

240–243

Index 359

order management system modeling for,
147–157

order placement simulations, 151–153
orders for, 148–149
over-fitting of, 167–168, 225
overview of, 145–146
parameter search and optimization from,

165–167
per-trade statistics from, 164
problems with, 146–147
results analysis from, 162–167
running of, 75–76, 81, 158–162
slippage simulations, 149–151, 240–241
systematic trading implementation

preparation via, 325–326, 327–328
Slippage:

costs associated with, 232–233
liquidity relationship to, 149, 154,

232–233
slippage simulations, 149–151, 240–241

Smart schedulers, 311–313
SOAP (simple object access protocol),

258
Socio-political dynamics and feedbacks,

41–42
Spreads, trading execution of, 239–240
Strategy design and testing:

acceleration trading strategies in,
114–117, 118–119, 142

accumulation vs. divestment in, 37–38,
114

adaptive autonomous agents in, 49–55,
57–71, 73–82, 83–104, 105–126,
127–137, 139–143, 145–168

adaptive reactions vs. rigid anticipations
in, 33–37

basic trading strategies in, 105–126
channel breakout strategies in, 106, 107
data representation techniques in, 51,

83–104
derivative risk and hedging in, 40–41
directional vs. contrarian strategies, 105
financial theory vs. market reality in,

33–42
finite-state-machine representation of

control system in, 52–55, 63–71, 73–82,
157

inter-agent communication in, 73–82, 84,
133, 134, 145–146

intraday patterns strategies in, 122–124,
125

market as complex adaptive system in,
42–45

market-making strategies in, 127–137
mean-reversion strategies in, 117–122,

133, 142
moving averages strategies in, 106–112,

113, 133
news-driven strategies in, 124–126
ontology-driven strategies in, 126
opening range breakout strategies in, 122,

124, 125
overview of, 29–31
phase transitions under leverage in,

38–40
portfolio aggregation by combining

strategies, 139–143
range projection strategies in, 120–122,

123
robotics and artificial life in, 45–48

(see also “adaptive autonomous agents
in” subentry)

seasonality of volatility strategies in,
122–124

shadow indexes in, 116–117
simulations in, 75–76, 81–82, 145–168
socio-political dynamics and feedbacks in,

41–42
strategy implementation after, 66–71

(see also Systematic trading
implementation)

swing breakout strategies in, 112–114,
115

swing reversal strategies in, 117, 119–120,
121

trend asymmetry in, 115–116
trend-following strategies in, 105–114,

133, 142
Strategy evolution:

adaptation strategies in, 173–178
adaptive autonomous agents in, 169–171,

173–178, 179–196, 197–217, 219–221,
223–228

choosing individual from population in,
206–208

cost implications of, 203, 209
feedback and control mechanisms in, 170,

175–178, 179–196, 197–217, 219–221,
223–228

flexibility in, 169
goals of, 169, 170, 175–176, 192–193,

194, 224–225

360 INDEX

Strategy evolution (Continued)
learning elements and abilities impacting,

223–228
opportunism in, 169, 170
overview of, 169–171
robustness in, 169, 175, 192–193, 194,

224–225
simulations used in, 184, 225–226
smart systems in, 174
strategy neighborhoods in, 204–206
swarm systems in, 170–171, 174,

177–178, 197–217, 219–221, 223–228
switching strategies in, 197–204

Stylized equity curves, 141–142, 188
Swarm systems:

additive swarm system, 208–212, 215,
221, 225, 226

behavior exploitation by, 225–226
behavior exploration with, 227
choosing individual from population in,

206–208
computational efficiency of, 281–290
cost implications of, 203, 209
data preservation and recovery for, 266
efficiency of, 224–225, 281–290
feedback and fitness measures underlying,

197–217, 219–221, 223–228
global performance considered in,

214–217
implementation of, 219–221
learning elements and abilities of,

223–228
maximizing swarm system, 212–214, 221,

225, 226
overview of, 170–171
running swarm, 220–221
setting up swarm strategy set, 220
simple swarm systems, 197–217
simulations used in, 225–226
strategy evolution involving, 170–171,

174, 177–178, 197–217, 219–221,
223–228

strategy neighborhoods in, 204–206
switching strategies via, 197–204
systematic trading implementation using,

245–246, 266, 281–290, 332
Swing breakout trading strategies, 112–114,

115
Swing reversal trading strategies, 117,

119–120, 121

Systematic trading:
algorithms used for (see Algorithms)
arbitrage effects on, 7
business of, 7–19
capital for (see Capital)
communication in (see Communications

and language)
complexity of, 5–6, 7, 42–45
computers and technology in (see

Computers and computational abilities)
cooperation in, 14, 21, 37–38, 114
costs in (see Costs)
data representation in, 22–23, 51, 83–104
definition of, 2–3
discretionary trading comparison to, 2,

5–22
financial theory vs. market reality in,

33–42
history of, 22–28
implementation of (see Systematic trading

implementation)
information importance in, 10–11
learning from others in, 21–22
marketing and distribution of, 15–16
models used in (see Models; Simulations)
overview of, 1–28
philosophy of trading for, 3–7
portfolios in (see Portfolios)
product and design of, 10–12
profitability and track record of, 8–10, 13,

15
psychology and emotions of, 19–22,

103–104
reactive vs. predictive features of, 6
reductionist aspect of, 6
regulation of, 27
research role in, 11–12, 13, 14, 271–272

(see also Data representation;
Simulations)

risk management in (see Risk
management)

robotics analogies with, 49–55
strategies for (see Strategy design and

testing; Strategy evolution)
traders’ role in (see Traders)
trading process in (see Trading process)

Systematic trading implementation:
aggregation/disaggregation layer of,

249, 251, 254, 257, 266–267, 271,
299–304

Index 361

architecture and infrastructure for,
247–252, 253–263, 265–272, 323–326,
327–332

bottleneck analysis for, 329–330
build and patch releases impacting,

327–329
computational efficiency for, 281–290
core engine layer for, 323–326
CPU spikes impacting, 281–282
dashboard and smart scheduler for,

311–313
data persistence for, 252, 265–272,

273–279, 304
decision-making during, 251
design patterns for, 253–263
electronic commerce networks for,

245–246, 247, 249–251, 253–254,
265–267, 273–278, 291–297, 299–304,
329–330

foreign function interfaces for, 259
garbage collection and memory control in,

263, 278, 282, 297, 330
hardware considerations for, 294–295,

329–332
human control layer for, 250, 311–317,

320–322
information translation for, 247, 249,

292–294
inter-component communication for,

257–259
language-agnostic domain model for,

253–254, 255, 325–326
language selection for solving tasks,

254–256
latency impacting, 250, 252, 293,

294–297, 301, 330
messaging bus infrastructure for, 257–258,

260–261, 278
middle and back office systems for,

251–252, 303–304
numeric efficiency for, 285–290
object-oriented middleware for, 259
operational controls in, 246, 254, 263,

309–310
order management system in, 246, 250,

251, 254, 257, 261, 262, 266, 271,
291–293, 299, 301–304, 305–310

overview of, 245–246
parallel processing for, 261–262, 330,

331–332

performance controls in, 245, 250–251
recovery and backup of data in, 252,

265–272, 273–279
recursive computation of model signals

and performance for, 282–285
remote procedure call infrastructure for,

258–259
risk management control for, 245,

250–251, 275–276, 309–310, 311–317,
319–322

simulations prior to, 325–326, 327–328
swarm systems in, 245–246, 266,

281–290, 332

Technology. See Computers and
computational abilities

Terracotta, 267, 269
Tick data, 88–89
Time:

back- and forward-test chronological
sorting, 158–162, 225, 226, 240

clock time vs. event time, 89–90, 281
compression into bars and candles,

90–96
latency as time lag (see Latency)
market distribution technique

representing, 97–99
time-weighted average price, 239

Traders:
cooperation among, 14, 21, 37–38, 114
dashboard and smart scheduler for,

311–313
features or characteristics of successful,

13
human control of systematic trading

implementation via, 250, 311–317,
320–322

learning from others, 21–22
manual order aggregation by, 313–314
manual risk control by, 320–322
monitoring of position and P&L by,

314–317
profitability and track record of, 8–10, 13,

15, 30, 35
psychology and emotions of, 19–22,

103–104
Trading:

arbitrage effects on, 7
business of, 7–19
capital for (see Capital)

362 INDEX

Trading (Continued)
communication in (see Communications

and language)
complexity of, 5–6, 7, 42–45
cooperation in, 14, 21, 37–38, 114
costs associated with (see Costs)
discretionary, 2–22
electronic (see Electronic trading)
implementation of (see Systematic trading

implementation)
information importance in, 10–11
learning from others in, 21–22
marketing and distribution of,

15–16
market lessons in, 3–4
mechanism vs. organism debate

in, 5
models used in (see Models; Simulations)
philosophy of, 3–7
pit (see Open outcry/pit trading)
portfolios in (see Portfolios)
product and design of, 10–12
profitability and track record of, 8–10, 13,

15
psychology and emotions of, 19–22,

103–104
reactive vs. predictive features of, 6
reductionist aspect of, 6
regulation of, 27
research role in, 11–12, 13, 14, 271–272

(see also Data representation;
Simulations)

risk management in (see Risk
management)

strategies for (see Strategy design and
testing; Strategy evolution)

systematic (see Systematic trading)
traders’ role in (see Traders)
trading process (see Trading process)

Trading process:
analysis of trading costs in, 231–235
optimization of, 12–14, 141–142,

229–230, 231–235, 237–243
psychology and emotions impacting,

19–22, 103–104
research on, 12, 13, 14
strategies for (see Strategy design and

testing; Strategy evolution)
trading as business focus on, 12–14

Trends:
channel breakout trading strategies based

on, 106, 107
feedback and fitness measures of,

180–181, 182, 186, 187–188, 198–200,
204–205

moving averages trading strategies based
on, 106–112, 113, 133

phase transitions under leverage creating,
39

signal-to-noise ratio for, 108–109,
111–112, 188

swing breakout trading strategies based
on, 112–114, 115

trend asymmetry, 115–116
trend-following trading strategies,

105–114, 133, 142, 180–181, 182, 186,
187–188, 198–200, 204–205, 242–243

Turing, Alan, 24, 46

Volume-weighted average price, 238–239,
241, 242–243

von Neumann, John, 24, 46

Wars and revolutions, market impacts of,
41–42

Zero-intelligence models of agent behavior,
45

	Professional Automated Trading
	Contents
	Preface
	CHAPTER 1 Introduction to Systematic Trading
	1.1 Definition of Systematic Trading
	1.2 Philosophy of Trading
	1.2.1 Lessons from the Market
	1.2.2 Mechanism vs. Organism
	1.2.3 The Edge of Complexity
	1.2.4 Is Systematic Trading Reductionistic?
	1.2.5 Reaction vs. Proaction
	1.2.6 Arbitrage?
	1.2.7 Two Viable Paths

	1.3 The Business of Trading
	1.3.1 Profitability and Track Record
	1.3.2 The Product and Its Design
	1.3.3 The Trading Factory
	1.3.4 Marketing and Distribution
	1.3.5 Capital, Costs, and Critical Mass

	1.4 Psychology and Emotions
	1.4.1 Ups and Downs
	1.4.2 Peer Pressure and the Blame Game
	1.4.3 Trust: Continuity of Quality
	1.4.4 Learning from Each Other

	1.5 From Candlesticks in Kyoto to FPGAs in Chicago

	PART ONE Strategy Design and Testing
	CHAPTER 2 A New Socioeconomic Paradigm
	2.1 Financial Theory vs. Market Reality
	2.1.1 Adaptive Reactions vs. Rigid Anticipations
	2.1.2 Accumulation vs. Divestment Games
	2.1.3 Phase Transitions under Leverage
	2.1.4 Derivatives: New Risks Do Not Project onto Old Hedges
	2.1.5 Socio-Political Dynamics and Feedbacks

	2.2 The Market Is a Complex Adaptive System
	2.2.1 Emergence
	2.2.2 Intelligence Is Not Always Necessary
	2.2.3 The Need to Adapt

	2.3 Origins of Robotics and Artificial Life

	CHAPTER 3 Analogies between Systematic Trading and Robotics
	3.1 Models and Robots
	3.2 The Trading Robot
	3.3 Finite-State-Machine Representation of the Control System

	CHAPTER 4 Implementation of Strategies as Distributed Agents
	4.1 Trading Agent
	4.2 Events
	4.3 Consuming Events
	4.4 Updating Agents
	4.5 Defining FSM Agents
	4.6 Implementing a Strategy

	CHAPTER 5 Inter-Agent Communications
	5.1 Handling Communication Events
	5.2 Emitting Messages and Running Simulations
	5.3 Implementation Example

	CHAPTER 6 Data Representation Techniques
	6.1 Data Relevance and Filtering of Information
	6.2 Price and Order Book Updates
	6.2.1 Elementary Price Events
	6.2.2 Order Book Data
	6.2.3 Tick Data: The Finest Grain

	6.3 Sampling: Clock Time vs. Event Time
	6.4 Compression
	6.4.1 Slicing Time into Bars and Candles
	6.4.2 Slicing Price into Boxes
	6.4.3 Market Distributions

	6.5 Representation
	6.5.1 Charts and Technical Analysis
	6.5.2 Translating Patterns into Symbols
	6.5.3 Translating News into Numbers
	6.5.4 Psychology of Data and Alerts

	CHAPTER 7 Basic Trading Strategies
	7.1 Trend-Following
	7.1.1 Channel Breakout
	7.1.2 Moving Averages
	7.1.3 Swing Breakout

	7.2 Acceleration
	7.2.1 Trend Asymmetry
	7.2.2 The Shadow Index
	7.2.3 Trading Acceleration

	7.3 Mean-Reversion
	7.3.1 Swing Reversal
	7.3.2 Range Projection

	7.4 Intraday Patterns
	7.4.1 Openings
	7.4.2 Seasonality of Volatility

	7.5 News-Driven Strategies
	7.5.1 Expectations vs. Reality
	7.5.2 Ontology-Driven Strategies

	CHAPTER 8 Architecture for Market-Making
	8.1 Traditional Market-Making: The Specialists
	8.2 Conditional Market-Making: Open Outcry
	8.3 Electronic Market-Making
	8.4 Mixed Market-Making Model
	8.5 An Architecture for a Market-Making Desk

	CHAPTER 9 Combining Strategies into Portfolios
	9.1 Aggregate Agents
	9.2 Optimal Portfolios
	9.3 Risk-Management of a Portfolio of Models

	CHAPTER 10 Simulating Agent-Based Strategies
	10.1 The Simulation Problem
	10.2 Modeling the Order Management System
	10.2.1 Orders and Algorithms
	10.2.2 Simulating Slippage
	10.2.3 Simulating Order Placement
	10.2.4 Simulating Order Execution
	10.2.5 A Model for the OMS
	10.2.6 Operating the OMS

	10.3 Running Simulations
	10.3.1 Setting Up a Back Test
	10.3.2 Setting Up a Forward Test

	10.4 Analysis of Results
	10.4.1 Continuous Statistics
	10.4.2 Per-Trade Statistics
	10.4.3 Parameter Search and Optimization

	10.5 Degrees of Over-Fitting

	PART TWO Evolving Strategies
	CHAPTER 11 Strategies for Adaptation
	11.1 Avenues for Adaptations
	11.2 The Cybernetics of Trading

	CHAPTER 12 Feedback and Control
	12.1 Looking at Markets through Models
	12.1.1 Internal World
	12.1.2 Strategies as Generalized Filters
	12.1.3 Implicit Market Regimes
	12.1.4 Persistence of Regimes

	12.2 Fitness Feedback Control
	12.2.1 Measures of Fitness

	12.3 Robustness of Strategies
	12.4 Efficiency of Control
	12.4.1 Triggering Control
	12.4.2 Measuring Efficiency of Control
	12.4.3 Test Results
	12.4.4 Optimizing Control Parameters

	CHAPTER 13 Simple Swarm Systems
	13.1 Switching Strategies
	13.1.1 Switching between Regimes
	13.1.2 Switching within the Same Regime
	13.1.3 Mechanics of Switching and Transaction Costs

	13.2 Strategy Neighborhoods
	13.3 Choice of a Simple Individual from a Population
	13.4 Additive Swarm System
	13.4.1 Example of an Additive Swarm

	13.5 Maximizing Swarm System
	13.5.1 Example of a Maximizing Swarm

	13.6 Global Performance Feedback Control

	CHAPTER 14 Implementing Swarm Systems
	14.1 Setting Up the Swarm Strategy Set
	14.2 Running the Swarm

	CHAPTER 15 Swarm Systems with Learning
	15.1 Reinforcement Learning
	15.2 Swarm Efficiency
	15.3 Behavior Exploitation by the Swarm
	15.4 Exploring New Behaviors
	15.5 Lamark among the Machines

	PART THREE Optimizing Execution
	CHAPTER 16 Analysis of Trading Costs
	16.1 No Free Lunch
	16.2 Slippage
	16.3 Intraday Seasonality of Liquidity
	16.4 Models of Market Impact
	16.4.1 Reaction to Aggression
	16.4.2 Limits to Openness

	CHAPTER 17 Estimating Algorithmic Execution Tools
	17.1 Basic Algorithmic Execution Tools
	17.2 Estimation of Algorithmic Execution Methodologies
	17.2.1 A Simulation Engine for Algos
	17.2.2 Using Execution Algo Results in Model Estimation
	17.2.3 Joint Testing of Models and Algos

	PART FOUR Practical Implementation
	CHAPTER 18 Overview of a Scalable Architecture
	18.1 ECNs and Translation
	18.2 Aggregation and Disaggregation
	18.3 Order Management
	18.4 Controls
	18.5 Decisions
	18.6 Middle and Back Office
	18.7 Recovery

	CHAPTER 19 Principal Design Patterns
	19.1 Language-Agnostic Domain Model
	19.2 Solving Tasks in Adapted Languages
	19.3 Communicating between Components
	19.3.1 Messaging Bus
	19.3.2 Remote Procedure Calls

	19.4 Distributed Computing and Modularity
	19.5 Parallel Processing
	19.6 Garbage Collection and Memory Control

	CHAPTER 20 Data Persistence
	20.1 Business-Critical Data
	20.2 Object Persistence and Cached Memory
	20.3 Databases and Their Usage

	CHAPTER 21 Fault Tolerance and Recovery Mechanisms
	21.1 Situations of Stress
	21.1.1 Communication Breakdown
	21.1.2 External Systems Breakdown
	21.1.3 Trades Busted at the ECN Level
	21.1.4 Give-Up Errors Causing Credit Line Problems
	21.1.5 Internal Systems Breakdown
	21.1.6 Planned Maintenance and Upgrades

	21.2 A Jam of Logs Is Better Than a Logjam of Errors
	21.3 Virtual Machine and Network Monitoring

	CHAPTER 22 Computational Efficiency
	22.1 CPU Spikes
	22.2 Recursive Computation of Model Signals and Performance
	22.3 Numeric Efficiency

	CHAPTER 23 Connectivity to Electronic Commerce Networks
	23.1 Adaptors
	23.2 The Translation Layer
	23.2.1 Orders: FIX
	23.2.2 Specific ECNs
	23.2.3 Price Sources: FAST

	23.3 Dealing with Latency
	23.3.1 External Constraints and Co-Location
	23.3.2 Avoid Being Short the Latency Option
	23.3.3 Synchronization under Constraints
	23.3.4 Improving Internal Latency

	CHAPTER 24 The Aggregation and Disaggregation Layer
	24.1 Quotes Filtering and Book Aggregation
	24.1.1 Filtering Quotes
	24.1.2 Synthetic Order Book

	24.2 Orders Aggregation and Fills Disaggregation
	24.2.1 Aggregating Positions and Orders
	24.2.2 Fills Disaggregation
	24.2.3 Book Transfers and Middle Office

	CHAPTER 25 The OMS Layer
	25.1 Order Management as a Recursive Controller
	25.1.1 Management of Positions
	25.1.2 Management of Resting Orders
	25.1.3 Algorithmic Orders

	25.2 Control under Stress
	25.3 Designing a Flexible OMS

	CHAPTER 26 The Human Control Layer
	26.1 Dashboard and Smart Scheduler
	26.1.1 Parameter Control
	26.1.2 Scheduled Flattening of Exposure

	26.2 Manual Orders Aggregator
	26.2.1 Representing a Trader by an Agent
	26.2.2 Writing a Trading Screen
	26.2.3 Monitoring Aggregated Streams

	26.3 Position and P & L Monitor
	26.3.1 Real-Time Exposure Monitor
	26.3.2 Displaying Equity Curves
	26.3.3 Online Trade Statistics and Fitnesses
	26.3.4 Trades Visualization Module

	CHAPTER 27 The Risk Management Layer
	27.1 Risky Business
	27.2 Automated Risk Management
	27.3 Manual Risk Control and the Panic Button

	CHAPTER 28 The Core Engine Layer
	28.1 Architecture
	28.2 Simulation and Recovery

	CHAPTER 29 Some Practical Implementation Aspects
	29.1 Architecture for Build and Patch Releases
	29.1.1 Testing of Code before a Release
	29.1.2 Versioning of Code and Builds
	29.1.3 Persistence of State during Version Releases

	29.2 Hardware Considerations
	29.2.1 Bottleneck Analysis
	29.2.2 The Edge of Technology

	Appendix Auxiliary LISP Functions
	Bibliography
	Index

