
TEAMFL
Y

Team-Fly®

Programming
Role Playing
Games with

DirectX®

This page intentionally left blank

Programming
Role Playing
Games with

DirectX®

Jim Adams

© 2002 by Premier Press, Inc. All rights reserved. No part of this book may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including photocopying, recording, or
by any information storage or retrieval system without written permission from Premier Press, except
for the inclusion of brief quotations in a review.

The Premier Press logo, top edge printing, and related trade dress are trade-
marks of Premier Press, Inc., and may not be used without written permission.
All other trademarks are the property of their respective owners.

Publisher: Stacy L. Hiquet Editorial Assistant: Margaret Bauer
Marketing Manager: Heather Buzzingham Technical Reviewer: Ernest Pazera
Managing Editor: Sandy Doell Interior Layout: Shawn Morningstar
Acquisitions Editor: Emi Smith Illustrator: Susan Honeywell
Series Editor: André LaMothe Cover Design: Phil Velikan
Project Editor: Melba Hopper Indexer: Katherine Stimson

Proofreader: Jenny Davidson

DirectX, DirectPlay, DirectSound, DirectMusic, DirectInput, Direct3D, DirectDraw, and Windows are
registered trademarks of Microsoft. MilkShape 3-D is a registered trademark of chUmbaLum sOft.
GoldWave is a registered trademark of GoldWave Inc. trueSpace is a registered trademark of Caligari
Corporation. Poser is a registered trademark of Curious Labs, Inc. Paint Shop Pro is a trademark of
Jasc Software, Inc.

Important: Premier Press cannot provide software support. Please contact the appropriate software
manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trade-
marks from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the Internet is an ever-chang-
ing entity. Some facts may have changed since this book went to press.

ISBN: 1-931841-09-8

Library of Congress Catalog Card Number: 2001096217

Printed in the United States of America

02 03 04 05 06 RI 10 9 8 7 6 5 4 3 2 1

To my wife 2E:

The love of my life and best friend till the end—
you are my sunshine.

Publishing a book takes considerable work and dedication on the part of every-
one involved. First and foremost, I want to thank my family—my wife, 2E, for

all her loving support; my mother, Pam, and my brother John for giving me moral
support; the kids, Michael, John, and Jordan, for letting me play their video games
and for giving me great ideas; and my sister, Jennifer, for irking me enough to show
her that writing is a job worth pursuing.

I extend special thanks to the book’s technical editor and fellow programmer-at-
large, Ernest Pazera, for dropping my name into the mix and for ensuring that the
technical material in this book is accurate. I’m particularly grateful to the book’s
acquisitions editor, Emi Smith, for her voice of calmness and for understanding
that things sometimes become delayed. Thanks also to the project editor, Melba
Hopper, undoubtedly the best editor with whom I’ve had the pleasure of working.

I offer sincere appreciation to Chris Taylor, president of Gas Powered Games, for
writing the book’s Foreword; to Wayne Peters (aka Scarecrow) for the great models
in the book’s demos; and to Andrew Russell for the cool music that fits the game
demos perfectly.

I would be remiss not to also thank Susan Honeywell for her artistic renditions
of my drawings, Shawn Morningstar for the excellent interior layout of the book,
Katherine Stimson for the book’s fine index, and the book’s proofreader, Jenny
Davidson, for her keen eyes.

Finally, I want to acknowledge friends and family members who were with me along
the way, if only in spirit: To my brother Jeff—I wish you could have been here to
see this; to Ian McArdle—as you can see, the motivation to write this book never
wore out; to the rest of my friends and family—thanks for being there!

Acknowledgments

Jim Adams’ current career, and his passion for programming, began at the age of
nine when using an Atari computer and a few lines of code, he discovered that he
could do just about anything his young mind imagined.

Over the years, with the help of increasingly advanced books on programming—
and countless hours molding together small games—he moved from computer to
computer until he finally discovered the world of IBM PCs. At the same time, he
was progressing through the emerging programming languages—going from
BASIC, to assembly, to PASCAL, to C, and finally to C++.

Thanks to Jim’s knowledge and experience in programming games and business
applications, he has led a satisfying career in game-making, writing, and consulting.
He has written numerous articles and is coauthor of several books on consumer
electronics and computer programming.

Jim is currently owner of The Collective Mind, a programming and consulting
business. You can find Jim cruising the Internet and hanging out at various game-
related Web sites.

About the Author

Foreword . xxxvi

Introduction . xxxix

Part One
An Introduction to Role-Playing Games 1
Chapter 1 A World of Role-Playing 3

Part Two
Role-Playing Game Design 19
Chapter 2 Exploring RPG Design Elements 21

Chapter 3 Story-Writing Essentials 35

Part Three
Programming Basics 61
Chapter 4 Starting with C++ 63

Chapter 5 Programming with Windows
and Application Basics 97

Chapter 6 Drawing with DirectX Graphics 159

Chapter 7 Interacting with DirectInput. 261

Chapter 8 Playing Sound with DirectX Audio. . . . 293

Chapter 9 Networking with DirectPlay. 351

Chapter 10 Creating the Game Core. 399

Contents at a Glance

ixContents at a Glance

Part Four
Role-Playing Game Programming 465
Chapter 11 Using 2-D Graphics 467

Chapter 12 Creating 3-D Graphics Engines. 501

Chapter 13 Mixing 2-D and 3-D Graphics Engines. . 561

Chapter 14 Implementing Scripts 579

Chapter 15 Defining and Using Objects 613

Chapter 16 Controlling Players and Characters . 653

Chapter 17 Working with Maps and Levels 761

Chapter 18 Creating Combat Sequences. 819

Chapter 19 Getting Online with Multiplayer Gaming. 843

Part Five
The Finishing Touches 907
Chapter 20 Putting Together a Full Game 909

Chapter 21 Marketing and Publishing Your Game . . 967

Epilogue . 980

Part Six
Appendixes. 983
Appendix A Setting Up DirectX 8.0 and

Configuring the Compiler 985

Appendix B Getting Help on the Web 995

Appendix C Recommended Reading 999

Appendix D Glossary. 1003

Appendix E What’s on the CD 1017

Index . 1021

Foreword . xxxvi

Introduction xxxix

Part One
An Introduction to Role-Playing Games 1
Chapter 1
A World of Role-Playing. 3
A Story of Role-Playing . 4
The Concepts of Role-Playing . 6

The Basic Concepts . 6
Playing Traditional Pen-and-Paper Games . 7
Going Live with Role-Playing Games. 10
Role-Playing on the Computer . 10

The Evolution of Gaming . 12
Wrapping Up with a Look into the Future. 17

Part Two
Role-Playing Game Design 19
Chapter 2
Exploring RPG Design Elements. . . 21
General Game Design Issues. 22

The Importance of Design Documents. 22
Creating Your Design Document . 23

Starting with the Table of Contents. 28
Adding the Topics . 28

The Perfect Design Document . 30

Contents

TEAMFL
Y

Team-Fly®

xiContents

RPG Design Aspects . 31
Turning to the Technical Side . 32
Knowing Your Role. 33
Wrapping Up Design. 34

Chapter 3
Story-Writing Essentials. 35
The Art of Telling Stories . 36

The Five Components of a Story . 37
The Story Ladder and the Three Acts. 37

Act 1:The Beginning . 38
Act 2:The Middle . 39
Act 3:The End. 39

Characters . 40
Know Your Roles . 40
Building Three-Dimensional Characters. 41
Dialogue . 42

Setting Mood and Atmosphere . 42
The Point of View . 43
Your Narrative Voice. 44
Plots, Subplots, and Twists . 44

Plot Twists . 45
Subplots . 45

The Writing Process . 46
Eight Rules to Writing. 46
Six Steps to Writing . 47

Thought and Planning . 48
Shaping Your Thoughts. 49
Writing a Draft . 49
Revising the Story . 50
Editing . 51
Proofreading . 51

Writing the Three Drafts . 51
The Rough Draft . 51

The Revision Draft . 52
The Cut-and-Polish Draft . 52

Tips for Better Stories . 52
Back-Stories . 53
Flashbacks and Cut-Scenes . 53
Foreshadowing . 53
Don’t Say It—Experience It . 54
Harnessing Emotion . 54
Studying the Greats . 55

Applying Stories to Games . 56
Enveloping the Player . 57
Breaking Up the Plot . 57
Linear and Nonlinear Story Lines . 58
Dialogue . 59
Involving the Design Document . 60

Wrapping Up Stories . 60

Part Three
Programming Basics 61

Chapter 4
Starting with C++ 63
Introducing C++. 64
Moving from C to C++. 65

Working with Functions . 66
Function Prototyping. 66
Default Function Argument Values. 67
Function Overloading . 68
Inline Functions . 70

Working with Variables . 71
Variable Declaration . 71
Scope and Precedence . 72
Static Variables. 73
Protecting with Const . 74

xii Contents

New Keywords and Enhancements. 75
Memory Allocation . 76
NULL and Enum . 77

Classes . 78
Class Visibility . 80
Class Variables and Functions . 81

Using Static Variables and Functions . 83
The Constructor and Destructor . 85
Operator Functions . 86

Using the this Keyword . 88
Class Friends . 89
Derived Classes . 90

Virtual Functions . 93
Using Const with Classes . 95
Advanced Structures . 95

Wrapping Up C++ . 96

Chapter 5
Programming with Windows
and Application Basics. 97
Programming with Windows. 99

Coding Conventions . 99
Hungarian Notation . 99
Win32 Data Types. 99
Function Naming . 100

Working Inside a Window . 102
Including the Headers . 103
The WinMain Function . 103
Events and Messages . 104
Registering a Windows Class. 105
Creating a Window . 108
The Message Pump . 111
The Window Message Procedure . 113
Common Messages . 115
An Application Shell . 116

xiiiContents

Advanced Features . 119
Using Message Boxes . 119
Dialog Boxes . 121
Resources . 122

Attaching Resources to an Application . 123
Retrieving Resource Data . 124

Threads and Multithreading . 125
Critical Sections . 128
Using COM. 128

Initializing COM . 129
IUnknown . 130
Initializing and Releasing Objects. 131
Querying Interfaces . 131

DirectX . 132
Downloading and Installing DirectX . 134
Including DirectX in Your Project . 134

Understanding the Program Flow. 134
Modular Programming . 136
States and Processes . 137

Application States . 137
Processes . 141

Handling Application Data . 144
Using Data Packaging . 144
Testing the Data Package System . 146

Building an Application Framework . 148
Structuring a Project. 155
Debugging Your Program . 155
Wrapping Up Windows and Application Basics 157

Chapter 6
Drawing with DirectX Graphics. . . 159
The Heart of 3-D Graphics . 160

Coordinate Systems . 162
Constructing Objects . 164

xiv Contents

Lists, Strips, and Fans. 165
Vertex Ordering . 166
Coloring Polygons. 167
Transformations . 167

Getting Started with DirectX Graphics . 168
Direct3D Components . 169
Initializing the System . 170

Obtaining the Direct3D Interface . 170
Selecting a Display Mode. 171
Setting the Presentation Method . 174
Creating the Device Interface and Initializing the Display 176
Losing the Device . 177

Introducing D3DX . 178
The Math of 3-D . 178

Matrix Math . 178
Matrix Construction . 179
Combining Matrices . 181
The Steps from Local to View Coordinates . 182

Getting Down to Drawing . 184
Using Vertices . 184

Flexible Vertex Format . 184
Using Vertex Buffers . 186

Creating a Vertex Buffer . 187
Locking the Vertex Buffer . 188
Stuffing in Vertex Data . 189

Vertex Streams . 190
Vertex Shaders . 190

Transformations . 191
The World Transformation . 192
The View Transformation. 193
The Projection Transformation . 195

Materials and Colors . 197
Clearing the Viewport. 198
Beginning and Ending a Scene . 199
Rendering Polygons. 199
Presenting the Scene. 201

xvContents

Using Texture Maps . 202
Using Texture-Mapping with Direct3D . 204
Loading a Texture . 204
Setting the Texture . 206
Using Texture Filters . 208
Rendering Textured Objects . 210

Alpha Blending . 211
Enabling Alpha Blending. 212
Drawing with Alpha Blending . 212
Transparent Blitting with Alpha Testing . 213

Loading Textures with Color Keying . 214
Enabling Alpha Testing . 215
A Transparent Blitting Example . 215

Lighting . 217
Using Point Lights . 220
Using Spotlights . 220
Using Directional Lights . 222
Ambient Light . 223
Setting the Light . 223
Using Normals . 224
Let There Be Light! . 227

Using Fonts . 227
Creating the Font . 228
Drawing with Fonts . 230

Billboards . 231
Particles . 233
Depth Sorting and Z-Buffering . 237
Working with Viewports . 240
Working with Meshes . 241

The .X Files . 241
The .X File Format . 241

Templates Galore . 241
Using a Frame Hierarchy. 242

Creating .X Meshes. 244
Parsing .X Files . 244

xvi Contents

Meshes with D3DX . 248
The ID3DXBuffer Object . 248
Standard Meshes . 249
Rendering Meshes . 251
Skinned Meshes. 253

Loading Skinned Meshes . 253
Updating and Rendering a Skinned Mesh . 254

Using 3-D Animation .X Style . 255
Key Frame Techniques . 256
Animation in .X. 257

Wrapping Up Graphics . 259

Chapter 7
Interacting with DirectInput. 261
Introducing Input Devices . 262

Interacting via the Keyboard . 263
Dealing with the Keyboard in Windows . 264

Playing with the Mouse . 265
Jammin’ with the Joystick . 266

Using DirectInput . 268
Presenting DirectInput Basics . 269
Initializing DirectInput. 270

Employing DirectInput Devices. 271
Obtaining a Device GUID. 272
Creating the Device COM Object . 276
Setting the Data Format . 277
Setting the Cooperative Level. 277
Setting Special Properties . 278
Acquiring the Device . 280
Polling the Device . 282
Reading In Data . 282

Using DirectInput with the Keyboard . 283
Using DirectInput with the Mouse . 285

xviiContents

Using DirectInput with Joysticks . 287
Wrapping Up Input . 291

Chapter 8
Playing Sound with
DirectX Audio 293
Sound Basics . 294

Recording Digital Sounds . 295
Musical Madness . 296

Midi. 297
DirectMusic. 297

Understanding DirectX Audio. 298
Using DirectSound. 298

Initializing DirectSound . 300
Setting the Cooperative Level. 301
Setting the Playback Format . 302

Creating the Primary Sound Buffer Object . 303
Setting the Format . 305

Jump-Starting the Primary Sound Buffer . 307
Using Secondary Sound Buffers . 308
Lock and Load—Loading Sound Data into the Buffer 310
Playing the Sound Buffer . 313
Altering Volume, Panning, and Frequency Settings 313

Volume Control . 314
Panning . 314
Frequency Changes . 315

Losing Focus . 316
Using Notifications . 317
Using Threads for Events . 321
Loading Sounds into the Buffers . 323
Streaming Sound. 327

Working with DirectMusic . 329
Starting with DirectMusic . 330
Creating the Performance Object. 332

xviii Contents

Creating the Loader Object . 333
Working with Music Segments . 334

Loading Music Segments . 334
Loading Instruments . 337
Configuring for Midi . 340
Setting Up the Instruments . 340
Using Loops and Repeats . 341
Playing and Stopping the Segment . 342
Unloading Segment Data . 343

Altering Music. 344
Volume Settings. 344
Tempo Changes. 347
Grabbing an Audio Channel. 347

Finishing Up Sound . 349

Chapter 9
Networking with DirectPlay 351
Understanding Networking . 352

Network Models . 353
Lobbies . 355
Latency and Lag . 355
Communication Protocols . 355
Addressing . 356

Introducing DirectPlay . 357
The Network Objects . 358
Working with Players . 359
Networking with Messages . 359

Asynchronous and Synchronous . 360
Security . 362
Guaranteed Delivery . 362
Throttling . 362

From Small Bytes to Big Words . 363
Identifying Applications with GUIDs . 364

Initializing a Network Object . 364

xixContents

Using Addresses. 367
Initializing the Address Object . 367
Adding Components. 368
Setting the Service Provider . 370
Selecting a Port. 370
Assigning a Device . 371

Using Message Handlers . 374
Configuring Session Information. 376

Server Session Data . 376
Client Session Data . 378

Working with Servers . 378
Handling Players . 381

Dealing with Create-Player Messages . 382
Retrieving a Player’s Name . 383
Destroying Players. 385

Receiving Data . 386
Sending Server Messages . 387
Ending the Host Session . 390

Working with Clients. 391
Sending and Receiving Messages . 396
Terminating the Client Session . 396

Wrapping Up Networking. 397

Chapter 10
Creating the Game Core. 399
Understanding the Core Concept. 400
The System Core. 401

Using the cApplication Core Object . 402
State Processing with cStateManager . 405
Processes and cProcessManager . 408
Managing Data with cDataPackage . 410

The Graphics Core . 410
The Graphics System with cGraphics . 411

xx Contents

TEAMFL
Y

Team-Fly®

Images with cTexture . 415
Colors and cMaterial . 417
Light It Up with cLight . 418
Text and Fonts Using cFont . 420
Vertices and cVertexBuffer . 422
World Transformations with cWorldPosition . 425
View Transformations and cCamera . 427
Loadable Meshes using cMesh. 430
Drawing Objects Using cObject . 431
Making Meshes Move with cAnimation . 434

The Input Core . 436
Using DirectInput with cInput. 437
Input Devices with cInputDevice . 437
Using the Input Core . 440

The Sound Core . 441
Using DirectX Audio Control with cSound. 441
Using Wave Data and cSoundData . 444
Blasting Sounds with cSoundChannel . 447
Listening to Music with cMusicChannel . 450
Mixing Up the Instruments with cDLS . 452

The Network Core . 454
Querying for Adapters with cNetworkAdapter . 454
Servers with cNetworkServer . 455
Working with Clients and cNetworkClient . 459

Wrapping Up the Game Core . 462

Part Four
Role-Playing Game Programming 465

Chapter 11
Using 2-D Graphics 467
Understanding Tiles and Maps. 468

Tile Graphics . 469
Angled Tiles. 469

xxiContents

Using Tiles with DirectX . 470
Building a Tile-Handler Class. 474

cTiles::Create . 476
cTiles::Free . 476
cTiles::Load . 477
cTiles::Free . 479
cTiles::GetWidth, cTiles::GetHeight, and cTiles::GetNum 479
cTiles::SetTransparent . 480
cTiles::Draw . 480

Using the Tile Class . 482
A Basic Tile Engine . 483

Drawing Basic Maps . 483
Using Multiple Layers . 484
Adding Objects. 485
Smooth Scrolling. 486
The Map and the Mouse . 489
Creating a Map Class . 490

Angled Tile Engine. 497
Big Bitmap Engines . 498

Creating Big Tiles . 499
A Big Example . 499

Wrapping Up 2-D Graphics. 500

Chapter 12
Creating 3-D Graphics Engines. . . 501
Meshes as Levels . 502

Loading Levels . 503
Drawing the Rooms . 504
Improving on Basic Techniques . 506

Introducing the Viewing Frustum . 507
Planes and Clipping . 508

Checking for Visibility with the Plane. 510
Checking the Entire Frustum. 511

The cFrustum Class . 511

xxii Contents

cFrustum::Construct . 512
cFrustum::CheckPoint, CheckCube, CheckRectangle, and CheckSphere . . 514

Developing an Advanced 3-D Engine. 517
Introducing the NodeTree Engine . 518

Creating Nodes and Trees . 519
Scanning and Drawing the Tree . 521
Working with Texture Groups. 522

Creating the cNodeTree Class . 522
cNodeTreeMesh::Create and cNodeTreeMesh::Free 526
cNodeTreeMesh::SortNode. 531
cNodeTreeMesh::IsPolygonContained and
cNodeTreeMesh::CountPolygons. 533
cNodeTreeMesh::AddNode. 535
cNodeTreeMesh::Render. 538

Using cNodeTree . 540
Adding 3-D Objectsto the World . 541

Computing the Bounding Sphere . 542
Bounding Spheres and the Frustum . 543

Collision Detection with Meshes. 543
Colliding with the World . 544

Casting a Ray. 544
Blocking the Path . 545
Moving Up and Down . 547
Fast Intersection Checking . 549
Collisions with the cNodeTreeMesh Class . 549

When Meshes Collide . 549
Mouse Clicks and Meshes. 551

Using Sky Boxes. 553
Creating a Sky Box Class . 554

cSkyBox::Create and cSkyBox::Free. 555
cSkyBox::LoadTexture . 557
cSkyBox::Rotate and cSkyBox::RotateRel . 558
cSkyBox::Render . 559

Using the Sky Box. 560
Wrapping Up 3-D Graphics. 560

xxiiiContents

Chapter 13
Mixing 2-D and
3-D Graphics Engines 561
Mixing the Two Dimensions. 562
Using 2-D Objects in a 3-D World. 563

Drawing Tiles in 3-D. 563
Loading the Level Mesh . 565
Loading the Tiles . 565
Preparing to Draw . 566
Drawing the Level Mesh . 566
Drawing 2-D Objects . 566

Moving in the 3-D World . 567
Adding 3-D Objects to a 2-D World . 568

Dealing with 2-D Backdrops . 570
Dealing with the Scene Mesh . 572
Rendering the Scene. 574
Adding 3-D Objects . 576
Collisions and Intersections . 576

Wrapping Up Mixed Engines. 576

Chapter 14
Implementing Scripts 579
Understanding Scripts . 580
Creating a Mad Lib Script System . 582

Designing the Mad Lib Script System . 582
Programming the Mad Lib Script System. 584

Working with Action Templates. 584
Creating Script Entries . 588
Putting Together the cActionTemplate Class . 595

Working with the MLS Editor . 603
Executing Mad Lib Scripts. 606
Applying Scripts to Games . 611
Wrapping Up Scripting . 611

xxiv Contents

Chapter 15
Defining and Using Objects 613
Defining Objects for Your Game . 614

Using Form in Objects . 615
Defining the Functions of Objects . 616

Weapons . 618
Armor. 619
Accessories . 619
Edibles. 619
Collections . 619
Transportation . 619
Others . 620

Adding Function to Objects . 620
Item Categories and Values . 620
Assigning Value to Items . 621
Item Flags . 621
Usage Restrictions. 622
Attaching Scripts to Items . 623
Meshes and Images . 624
The Final Item Structure . 624

The Master Item List. 626
Constructing the MIL . 626
Using the MIL Editor . 628
Accessing Items from the MIL. 630

Managing Items with Inventory Control Systems 631
Developing a Map ICS. 633

cMapICS::Load, cMapICS::Save, and cMapICS::Free. 636
cMapICS::Add and cMapICS::Remove . 640
cMapICS::GetNumItems, cMapICS::GetParentItem,

and cMapICS::GetItem. 642
Using the cMapICS Class. 643

Developing a Character ICS . 644
Defining the cCharICS Class . 645
Using the cCharICS Class . 649

Wrapping Up Objects and Inventory . 650

xxvContents

Chapter 16
Controlling Players
and Characters 653
Players, Characters, and Monsters, Oh My! . 654

Defining Characters in Your Game . 655
Character Abilities. 656
Character Attributes . 658
Status Ailments in Characters . 659
Character Classes . 661
Character Actions . 661

The Player Character . 663
Player Navigation. 663
Resource Management . 663
Increasing in Experience and Power . 664

Non-Player Characters . 665
Monster Characters . 666
Character Graphics . 667

Navigating Characters. 667
Controlling Player Characters. 669

Using Directional Control . 669
Rotational Control . 671
First Person Control . 672

Controlling Non-Player Characters . 673
Standing Still . 674
Wandering an Area . 674
Walking a Route . 675

Using Route Points . 675
Walking from Point to Point . 677
Faster than the Speed of Pythagoras . 677
Walking the Route . 679

Following Another Character . 681
Evading Another Character . 682

Automatic Control of Characters. 683

xxvi Contents

Conversation among Characters . 683
The Talking Dummy . 684

Script-Driven Talking Dummies . 684
Displaying Conversational and Other Text . 685

The cWindow Class . 686
cWindow::cWindow and cWindow::~cWindow . 688
cWindow::Create and cWindow::Free . 688
cWindow::SetText. 689
cWindow::Move . 690
cWindow::GetHeight . 693
cWindow::Render. 693

Using cWindow. 694
Scripting and Characters. 695

The Script Class . 695
Creating a Derived Script Class . 696

The Derived Class. 697
Using the Derived Class . 700

Resource Management . 701
Using Items. 701
Using Magic . 702
Shops and Bartering . 703

Working with Magic and Spells . 703
Spell Graphics . 704
The Function of Spells . 705

Alter Health and Mana . 707
Cure and Cause Ailment . 708
Raise Dead and Instant Kill . 708
Dispel Magic . 709
Teleport . 709

Spell Targeting, Cost, and Chances . 709
The Master Spell List . 709

The Spell List . 712
Defining Spells with the MSL Editor . 713

xxviiContents

Creating a Spell Controller . 715
Meshes with sSpellMeshList. 715
Tracking Spells Using sSpellTracker . 716
The cSpellController Class . 717

cSpellController::cSpellController and cSpellController::~sSpellController 720
cSpellController::Init and cSpellController::Shutdown . 720
cSpellController::Free . 720
cSpellController::GetSpell. 720
cSpellController::Add . 720
cSpellController::SetAnimData . 721
cSpellController::Update. 721
cSpellController::Render. 721

Determining Victims and Processing Spell Effects. 721
Using the Spell Controller . 721

Combat and Characters . 722
Using Combat Rules for Attacking . 723

Taking a Swing . 723
Dodging an Attack. 724
Dealing Damage . 725

Spells in Combat. 727
Intelligence in Combat . 728

Building the Master Character List. 729
The MCL Editor . 733
Using the Character Definitions . 735

Creating a Character Controller Class . 735
Meshes with sCharacterMeshList . 735
Animation Loops and sCharAnimationInfo . 736
Moving with sRoutePoint . 736
Tracking Characters with sCharacter . 737
The cCharacterController Class. 742
Using cCharacterController . 755

Demonstrating Characters with the Chars Demo 757
Wrapping Up Characters . 759

xxviii Contents

Chapter 17
Working with Maps and Levels . . . 761
Placing Characters on the Map . 762

Character Map Lists . 762
Loading Character Map Lists . 763
Using Character Map Lists in Your Game . 765

Script Placement . 765
Using Map Triggers . 766

Sphere Triggers . 766
Box Triggers . 767
Cylinder Triggers. 768
Triangle Triggers . 768
Triggering a Trigger . 768
Creating a Trigger Class . 769

cTrigger::cTrigger and cTrigger::~cTrigger . 773
cTrigger::Load and cTrigger::Save. 773
cTrigger::AddTrigger . 777
cTrigger::AddSphere, cTrigger::AddBox,

cTrigger::Cylinder, and cTrigger::AddTriangle 777
cTrigger::Remove and cTrigger::Free . 780
cTrigger::GetTrigger . 782
cTrigger::GetEnableState and cTrigger::Enable 785
cTrigger::GetNumTriggers and cTrigger::GetParentTrigger 786

Using Triggers . 787
Defining a Trigger File . 787
Loading a Trigger File. 788
Touching a Trigger . 788

Blocking the Path with Barriers . 788
cBarrier::SetMesh and cBarrier::SetAnim . 792
cBarrier::Render . 794
Adding Barriers with cBarrier . 795
Using the Barrier Class. 796

Creating the Barrier Data File . 796
Loading the Barrier Data. 796

xxixContents

Checking Barrier Collisions. 797
Rendering Barriers . 797

Using Auto Maps . 797
Auto Maps in Action . 798
Big Map, Small Map . 798
Loading and Displaying Auto Maps . 802
Creating the Auto Map Class . 803

cAutomap::cAutomap and cAutomap::~cAutomap 805
cAutomap::Create and cAutoMap::Free. 806
cAutomap::Load and cAutomap::Save . 811
cAutomap::GetNumSections and cAutomap::EnableSection 812
cAutomap::SetWindow and cAutomap::Render. 813

Using cAutomap . 815
Wrapping Up Maps and Levels . 816

Chapter 18
Creating Combat Sequences. 819
Designing External Combat Sequences . 820

The Technical Side. 822
Developing the Combat Sequence . 824

Global Data . 826
cApp::cApp . 827
cApp::Init . 827
cApp::Shutdown . 831
cApp::Frame . 832
cApp::GetCharacterAt . 838

Using Battle Arrangements. 841
Wrapping Up Combat Sequences . 841

Chapter 19
Getting Online with
Multiplayer Gaming. 843
Maddening Multiplayer Mayhem . 844

xxx Contents

TEAMFL
Y

Team-Fly®

Multiplayer Game Design . 845
The Network Demo. 847

Creating a Multiplayer Game Architecture. 849
Working Together:The Client and the Server . 850
Looking at the Server . 854
Looking at Clients. 856

Working with Game Servers. 857
Storing Player Information . 859
Handling Messages . 860

DirectPlay Messages to Game Messages . 863
The Message Queue . 867
Processing Game Messages . 869

cApp::PlayerID . 871
cApp::AddPlayer . 871
cApp::RemovePlayer . 875
cApp::PlayerInfo . 876
cApp::PlayerStateChange. 877

Updating Players . 881
Updating the Network Clients . 884
Calculating Latency . 884
The Hard Part Is Over! . 885

Working with Game Clients . 886
Handling Player Data. 886
The Network Component . 889
Message Handling . 891

cApp::AssignID . 892
cApp::CreatePlayer . 892
cApp::DestroyPlayer . 893
cApp::ChangeState . 894

Updating the Local Player . 896
Updating All Players . 902
The Client’s Full Glory . 905

Wrapping Up Multiplayer Gaming . 905

xxxiContents

Part Five
The Finishing Touches

Chapter 20
Putting Together a Full Game. . . 909
Designing the Sample Game. 910

Writing the Game’s Story. 910
The Purpose of The Tower Game . 912
Designing the Levels . 912
Defining the Characters . 916
Assigning Characters . 919
Creating the Items and Spells . 919
Developing the Scripts . 922
Defining the Controls . 925
Laying Out the Flow . 927

Programming the Sample Game . 928
Structuring the Application . 931

The cApp Constructor . 933
The Application Init Function . 934
The Shutdown Function . 936
Processing Frames with the Frame Function . 937

Using State-Based Processing . 938
Dealing with Maps . 945
Using Barriers and Triggers . 949
Controlling Characters . 949
Handling Bartering . 956
Playing Sounds and Music . 958
Rendering the Scene. 960
Processing Scripts . 961
Assembling the Pieces. 965

Wrapping Up Creating Games . 965

xxxii Contents

Chapter 21
Marketing and
Publishing Your Game 967
Submitting Your Game . 968

Writing the Proposal Letter . 969
Performing Marketing Analysis . 969
Including Your Design Document . 970
Calculating Budgets and Determining Schedules . 970
Including a Game Demo . 971

Communicating with Companies . 972
Dealing with Rejection . 973
Receiving the Acceptance Letter. 973
Negotiating Your Contract . 973

Considering Which Publishers to Contact . 974
Do-It-Yourself Publishing . 976

Advertising . 977
Using a Try-Before-You-Buy Approach . 977
Selling Your Product . 978

Wrapping Up Marketing and Publishing . 979

Epilogue. 980
Looking Back . 980
What’s Next? . 981

Part Six
Appendixes

Appendix A
Setting Up DirectX 8.0 and
Configuring the Compiler. 985
Setting Up DirectX 8.0 . 986

Using Run-Time Libraries and the SDK . 987

xxxiiiContents

Using the Debug Version Versus the Retail Version 987
Installing DirectX 8.0 . 987
Installing DirectMusic Producer . 988
Include Files and Libraries. 989

Setting Up the Compiler. 989
Directory Settings for DirectX . 990
Linking to Libraries . 990
Setting Default char Behavior . 992
Release and Debug Versions . 993
Multithreaded Libraries. 993

Appendix B
Getting Help on the Web 995

Programming Role-Playing Games with DirectX . 996
www.GameDev.net . 996
XTreme Games . 996
Flipcode . 996
MilkShape 3-D Home Page . 997
Agetec . 997
Wizards of the Coast . 997
White Wolf Publishing. 997
Steve Jackson Games . 997
Polycount . 998
RPG Planet . 998
RPG Host . 998
www.gamedev.net/reference/articles/frpg/site . 998
www.excite.com/games/role_playing . 998

Appendix C
Recommended Reading 999

Dragon Magazine . 1000
Dungeon Adventures . 1000
Dungeons & Dragons 3rd Edition Player’s Handbook 1000

xxxiv Contents

Dungeons & Dragons 3rd Edition Dungeon
Master’s Guide Handbook. 1001

Isometric Game Programming with DirectX 7.0 1001
lex & yacc . 1001
Multiplayer Game Programming . 1001
Programming Windows, Fifth Edition. 1002
Schaum’s Quick Guide to Writing Great Short Stories 1002
Swords & Circuitry: A Designers

Guide to Computer Role-Playing Games . 1002
The Zen of Direct3D Game Programming . 1002

Appendix D
Glossary 1003

Appendix E
What’s on the CD 1017
DirectX 8.0 SDK . 1018
GoldWave 4.23 Demo . 1019
MilkShape 3D 1.56 Demo . 1019
Paint Shop Pro Trial Version . 1020
Poser 4 Demo . 1020
trueSpace5 Demo . 1020

Index 1021

xxxvContents

Foreword

When Jim asked me to write a foreword for this book, my first reaction was
that he must be crazy to take on a task of this magnitude! After marveling

over his ambition, however, I realized how fantastic a book like this would be for
those who see their PC not only as a tool for doing e-mail, surfing the Internet or
playing store bought games, but also as a device that allows them to create some-
thing fantastic—their own RPGs! This, of course, immediately had me reminiscing
about the “good ole days.” I remember when I hauled my first PC out of a box back
in 1980. Actually, it was technically a PC, but nothing like the computers available
today. It was a Radio Shack TRS-80 Model 1 level 2 personal computer with 16K of
memory (yes, 16K, which is about 32,000 times less memory than I have on my cur-
rent computer). Although that little state-of-the-art wonder had no real graphics to
speak of, it was all I needed.

My imagination took flight. I was going to create video games like no one had ever
seen. With really no idea about how or where to begin, I quickly discovered how
thrilling, and how frustrating, this was going to be. I wanted to start creating worlds,
but knew little more than how to switch the darn computer on!

I wanted to know what to do next, what to design, what to code, what sort of art-
work to make. The reality was that I didn’t have these answers, and nobody I knew
could help me. Back at the store where I purchased my computer, I tracked down
the salesman who, I thought, had the answers. He led me to a single book on pro-
gramming the computer’s central processing unit (CPU), the Z80 microprocessor.
This technically complex book was not what I was looking for. It did not cover
video games about monsters or missiles. It was just the details on how to program
the machine in its native tongue, Z80 assembly language. Learning how to create
games was going to take more than that, much more.

It was a long time before I managed to find what I was looking for, and much of my
education on the subject of game creation came from hours of investigation and
sweat over the computer, along with any and all information that I could scratch
together on the topic. In fact, it was years before I truly started to understand the
craft of making games.

xxxviiForeword

Role-playing games (RPGs) are the mother of all video games because of the huge
worlds and massive amounts of game content (artwork, sound, and animations).
If you intend to make an RPG and you have never created a video game, be aware
that this enormous task will be like battling a dragon with nothing more than an
attitude and some cheap bathroom humor (which I can fix you up with if you need
some). As you might guess, you’ll need a little more in your back pocket than that.

I can only imagine how incredible it would have been to have found this book when
I made that fateful trip to the computer store back in 1980. Consider yourself imme-
diately ahead of the game!

Today, things have changed quite a bit. When you haul a new PC out of the box, you
get a CPU that will execute billions of instructions per second. You get ultra power-
ful graphics cards that have dedicated microprocessors that draw amazing visuals
and outrageous special effects on the screen. You get more system memory (at an
affordable price) than I could ever have imagined for things like graphic textures,
sound, and animation. And now you can communicate over the Internet to any-
where in the world! The list of features doesn’t stop there. In many ways, all this
power ought to make the task of creating an RPG a simple one; unfortunately, that’s
not the case. It’s just as complex as it’s ever been.

Besides what we can do technically with the powerful machines that are available
today, let me add that RPGs are a very special form of entertainment. They not
only provide the player with a fun and exciting gameplay experience, but also they
allow the creators to do something very unique—create their very own world for
people to explore and become completely immersed in. Being able to create a
unique fantasy world is a very powerful form of art and entertainment, and for me,
an RPG was one of the first things that I wanted to create when I got my first com-
puter. Today I am finally fulfilling that dream. All of us have a different world
inside of our heads that we want to bring to life on the computer, and it is up to
each of us to find a way to bring that world to life!

Having said all that, creating a role-playing game is a crazy and outrageous amount
of work. It requires a team of many dedicated and courageous individuals giving it
all they’ve got. Our current endeavor at Gas Powered Games is called Dungeon Siege,
a vast project that is packed with so many features that it boggles my mind.

First, we decided to make an RPG that exists completely in 3-D using a custom state-
of-the-art engine. Achieving this goal would be a huge challenge, but we wanted
many more features that would push the boundaries. We wanted to completely elim-
inate loading screens by creating something we call a “continuous world.” Naturally,
we wanted to include multiplayer gaming over the Internet and allow the player to

xxxviii Foreword

create a party of up to eight characters. It became a huge game, with a ton of chal-
lenges. These challenges ultimately translated into a next-generation experience
that provides both the single player and the multi-player game experience that play-
ers have not seen before. This is what makes the art and science of creating RPGs so
fantastic. We are not only creating something new, but also we are doing it with tools
and technology that were unavailable until now. Every day is a new and fantastic day
for people who create RPGs.

I can say one thing for sure. Even though I often joke about getting into the “mess”
of making an RPG, I’m glad that I did. Once past the technically challenging stuff,
such as creating the core engine, setting up the combat systems, and ultimately
putting all the different pieces together, we have a remaining and very different
challenge—making the game fun to play! We do this by playing the game over and
over again, watching people play, studying reports from the quality assurance labs
and the play test experts. It’s the home stretch in making an RPG!

Throughout this testing and tuning phase, the less exciting areas are trimmed back,
new areas and ideas are added, while the game is continuously tested and balanced.
So much goes into creating a game that the creation never really stops; even up to
the release date, we will be adding or changing elements of the game with the latest
information, the latest test data—all to make sure that the entire gaming experience
is just right.

Now it’s your turn to make that journey, the long and fantastic adventure to creat-
ing your own game. Don’t be dismayed by the bumps and scrapes along the way.
Once you get past the hard stuff, you’ll have one of the greatest and most creatively
challenging adventures of your life. You will find that this book will guide you,
teach you, and answer many of the questions that you have about making an RPG.
It will get you started planning, designing, and building. It will introduce you to the
wonderful world of making your very own RPG.

I salute Jim for taking on this enormous task, and I thank him also for his desire to
share what he knows, and to share so much.

Good luck! I can’t wait to take a walk through your world!

— Chris Taylor

Chris Taylor, president of Gas Powered Games, is the lead designer of the upcom-
ing and highly anticipated game Dungeon Siege. With past titles such as Hardball 2,
Triple Play Baseball, and Total Annihilation, Chris continues to create games that
shape the computer gaming world.

Introduction

With fingers blistered and eyes bloodshot, all your hard work is about to pay
off. After one hundred hours of playing the newest computer-based role-

playing game, you’ve managed to reach the end. All that stands between you and
victory is a very large, very angry dragon. Not to worry though—you have a couple
of tricks up your sleeve to show this sucker who’s boss. After a final climatic battle,
your mission is over—the game is defeated.

Your quest was long and difficult, but when all is said and done, it was a very enjoy-
able quest. The story was compelling, the graphics eye-popping, the sound and
music superb. Sitting back, you might be wondering how you could create such a
masterpiece. Something with a snappy title, a great story, and that neat-o battle
engine from that newest game with
the kick-butt graphics engine. “Yes,”
you say, “I can do that!”

Programming Role Playing Games with
DirectX is your ticket to bringing your
ideas to life. Within these pages, I
have crammed enough information
about general programming and role-
playing game topics to give you the
help you need to create your own
game. In this book, you find out how
to create cool graphics and combat
engines, handle players in your game,
use scripts and items, and make your
game multiplayer-capable.

What This Book Is About
This book is for programmers who want to go into the specialized field of program-
ming role-playing games (RPGs). I think RPGs are some of the best games to play.

NOTE
Before working with the code or exam-
ples in this book, you need to properly
install DirectX 8.0 and set up your
compiler accordingly.You can find the
DirectX 8.0 installation program on this
book’s CD-ROM, or you can download
the program from Microsoft’s Web site
at http://msdn.microsoft.com/directx/.
Please turn to Appendix A,“Installing
DirectX and Configuring the Compiler,”
for the details.

xl Introduction

I also think that RPGs are the hardest to create. Information on RPG game program-
ming is hard to come by, so to fill that need, I wrote this book.

In this book, I break a role-playing game into its essential components. I take those
components one by one, giving you a detailed look at each and showing you how
to use all of them in your game project. To see exactly what components I’m talk-
ing about, scan ahead to the section “How This Book Is Organized.”

Within these pages and on the accompanying CD-ROM, you’ll find example programs
that were created using the information in each chapter. I constructed these example
programs so that you can easily transfer the various general and RPG-specific game
components into your projects. For the specifics on running the example programs,
check out Appendix E, “What’s on the CD.” In fact, I recommend checking out the
demo programs before reading the book. That way, you’ll know what to expect in
the book.

Who Should Read This Book
If you want to put extra oomph in your game, this book is for you. You will find
helpful hints and ideas and all the information you need to embark on your career
as an RPG programmer.

I wrote this book for beginning- to intermediate-level RPG programmers. The
information is clear and to the point, and regardless of your programming experi-
ence and skills, you will find that this book is a valuable tome.

I wrote this book on the assumption that you have a working knowledge of C. A good
deal of the code is in C++, but I lead you through it in such a way that you will be
able to fully comprehend the information.

So, if you’re interested in programming a role-playing game or just want help on a
specific gaming component, this is the book for you.

How This Book Is Organized
The book is split into the following six parts, each one dealing with a different set
of topics:

■ Part One, “An Introduction to Role-Playing Games,” describes role-playing
games and their fundamental operation.

TEAMFL
Y

Team-Fly®

xliIntroduction

■ Part Two, “ Role-Playing Game Design,” discusses game design topics and
provides help for writing your game’s story. This part begins with fundamen-
tal concepts and continues with RPG-specific design issues from a program-
mer’s point of view.

■ Part Three, “Programming Basics,” is where things really heat up. This hefty
part offers you the basics on using C++, getting a Windows application up
and running, and utilizing DirectX in your game programming projects.

■ Part Four, “Role-Playing Game Programming,” contains all the RPG-specific
gaming code that I could pack into those pages. Topics include creating 2-D
and 3-D graphics engines, controlling your game’s characters, using scripting
and inventory, and multiplayer gaming.

■ Part Five, “The Finishing Touches,” helps you wrap up your project. In this
part, you find out how I created a complete game using the information in
this book. In addition, you learn how to promote, market, and publish your
game.

■ Part Six, “Appendixes,” starts by showing you how to install DirectX and
configure your compiler to use DirectX. You will find a list of recommended
books and Web sites. Part Six ends with an appendix describing how to use
this book’s CD-ROM.

What’s on the CD
Appendix E, “What’s on the CD,” contains a list of the programs on this book’s
CD-ROM; however, I can’t resist giving you a glimpse of what you’ll find there. First
and foremost are Microsoft’s DirectX 8.0 software developer’s kit and the complete
source code to every demo program in this book.

DirectX is the leader among game development libraries, and it’s the library I use
in this book. Before reading this book, take a moment to install DirectX on your
system. Appendix A tells you exactly how to install DirectX and prepare your com-
piler to use DirectX.

In addition to DirectX and the source code, the CD-ROM contains a plethora of
useful programs. “Which programs,” you ask? How about Calgiari’s trueSpace4
trial edition and Curious Lab’s Poser 4 demo! That’s right; you get to test drive the
newest, most powerful modeling programs out there! But there’s more. The com-
plete DirectX 8.0 SDK, chUmbaLum’s MilkShape 3D, a Paint Shop Pro demo, and
much more—all packed into that little round disc!

Conventions Used
in This Book
This book has the following special features, called icons, that point you to impor-
tant or interesting information.

What You Need to Begin
Before beginning, you need to install the Microsoft DirectX 8.0 Software Developer’s
Kit, which is on this book’s CD-ROM (or you can download it from Microsoft at
http://msdn.microsoft.com/directx). Appendix A provides the steps for installing
DirectX.

You also need a C++ compiler; I recommend Microsoft’s Visual C/C++ compiler.
Even though you can compile the code and examples in this book with almost any
C++ compiler, the DirectX-specific code was targeted for Visual C/C++ version 6.0
or higher.

Beyond those two items, you just need dedication and motivation! Although creating
any game is a daunting task, with this book, you will have all the knowledge you need
to do just that—and, remember, players are waiting for your masterpiece!

xlii Introduction

CAUTION
Cautions tell you how to avoid
problems.

NOTE
Notes provide additional helpful or
interesting information.

TIP
Tips often suggest techniques and short-
cuts that make programming easier.

Part One

An
Introduction
to
Role-Playing
Games

1 A World of Role-Playing

CHAPTER 1

A World
of

Role-Playing

Playing games is a perfect way to escape the rigors of a long, hard day—board
games, video games, card games, all of us have preferences. For me and millions

of other players, role-playing games present the perfect medium for relaxation and fun.

My instinct is to begin this book by giving you the long and interesting history of
role-playing games. However, that’s not the purpose of this book, so I will move
right along and share with you the concepts and information that you need to cre-
ate your own role-playing games.

The chapter begins with a short, mood-setting story—just for ambience and maybe
to tweak your appetite for writing stories—and continues with a brief excursion
into the world of role-playing games and what they have to offer.

In this chapter, you encounter the following:

■ A succinct, delightful narrative
■ Role-playing concepts
■ Role-playing games—past, present, and future

A Story of Role-Playing
The night’s heavy blanket had long since covered the dense jungle, extinguishing
all light. Our trek through the jungle had become treacherous, with each step an
adventure of its own. The mysterious loss of two more guides made all of us edgy,
and we huddled together like scared children.

This is not how I envisioned a treasure hunt with a bunch of war-torn adventurers.
And the inane chatter of cute little Deliah the elf was beginning to get on my last
nerve. While admitting that we all probably needed something to keep calm, I
wished Deliah had another means.

As the seemingly endless night dragged on, we stumbled upon our goal—the tomb
of the ancient Myracs. Tales of untold wealth lying behind its grim, disfigured entry-
way had driven us here. We approached its massive doors, which were carved from
some cursed quarry and erected as a warning to those foolish enough to enter.

Abruptly, our last guide fled, and we were left with the echo of his warning ringing
in our ears. “What a bunch of superstitious fools,” I thought. “That treasure is as
good as ours; no curse is going to scare me away!”

4 1. A World of Role-Playing

I realized what a fool I was upon my first step into the tomb. An odor as nauseous
as death filled my lungs, causing me to retch uncontrollably. Dark images began
to race through my mind; sights of nameless demons ravaged my helpless body.
Torturous devices held me down, tearing me limb from limb. My mind was slip-
ping, and reality seemed beyond my grasp. I was now truly cursed. Blind greed had
guided me here to my ultimate doom.

However, with each passing moment, my body adjusted to the sickly innards of this
accursed place. Slowly, I came back to my senses—the initial onslaught of visions
cleared. I was lucky to have survived nearly unscathed. Corpus, our half-orc strong
arm, had collapsed, and no matter how hard we tried, we could not get him to
budge. His mind was gone, most likely consumed by the same images that tore
through my mind. With heavy hearts, those of us remaining struggled on.

As our party climbed its final set of gnarled stairs, I saw a pattern of countless
faces etched into the walls—each face disfigured by a unique and personal agony.
Nevertheless, the faces beckoned us forward, to enter this dark domain and join
their countless ranks. Beyond the faces stood a single open door.

As the last one of us passed through the door, it slammed shut with a tremendous
boom. The sound reverberated though my head, tearing the dark veil away from
my stricken mind. At last, I was able to concentrate on my actions and gather
enough power to cast a single spell.

With an effort, I flicked my withering hand, and a channel of power emanated
from my body. I was able to touch the minds of my teammates, freeing them from
the personal hells that had overtaken their pathetically weak minds.

My power also triggered something within this dark domain. The room suddenly
flared into vision. Momentarily losing my ability to see, I staggered backwards and
fell. My hands grasped at the ground, only to feel cold clanking metal. Focusing
intently, however, I was able to see that I had landed on a large pile of gold coins!

Immediately, I realized that we had fallen upon the treasure trove of our wildest
dreams. Gold, silver, platinum—all those colors gleaming off hordes of coins, the
likes of which we had never beheld. Elegant armor, swords, and chests carved from
gold lined every wall. I was truly in heaven.

With almost reckless lust, I scrambled toward the heart of the room. A rotting smell
pressed forth, blasting me back. Again, I was overcome with nausea. From the
opposite corner of the room, I beheld what I sensed—a pile of rotting, decom-
posed bodies of past adventurers, who weren’t so lucky. With a scream, I rushed
back to the door, but it was securely locked. We were trapped.

5A Story of Role-Playing

Suddenly, energy erupted from the pile of corpses. Our group spread out and pre-
pared for the worst. From the pile of flesh arose five of the ugliest skeletons we had
ever seen. Their scanty clothing was torn and tattered, and we had full view of the
rotten flesh hanging from their bones. Death was the price they had paid for their
attempt to rob this tomb. Now, because of the spell I had cast, they will live forever
as walking tributes to the powers that resurrected them.

Their leader drew close to me, a cynical laugh emanating from his empty jaw. Leaping
forward with weapon drawn, I swung. A miss! My companions yelled at me to watch
out, but, alas, it was too late. The skeleton took advantage of my mistake and swung
back.

A quick roll of the dice told me, unfortunately, that the skeleton’s blow would
strike me head on, killing me instantly. As my sight grew dim, I could just make out
the silhouettes of my fellow adventurers fighting for their lives. Soon enough, our
bodies would be raised from the dead to join these creatures in their timeless duty
as protectors of the tomb’s treasure trove.

All in all, it was a long adventure that ended badly, but it was all in good fun. The
good thing, my friends, is that I can retry the tomb-raiding adventure again after a
quick break.

The Concepts of Role-Playing
A series of simple concepts lies at the root of every role-playing game. These con-
cepts are strung together into a feasible set of rules that are used to conduct a
game. In this section, I discuss those concepts and give you a brief glimpse at the
history of role-playing games, from the pen-and-paper roots to the modern com-
puterized versions.

The Basic Concepts
Those of you who have already discovered the incredible world of Dungeons &
Dragons and similar games might have realized that such games changed your life.
In those games, you can drop your daily worries and assume an alter ego in a uni-
verse full of monsters and magic. You can embark on epic quests to save the world,
or take it over if that’s your fancy.

That’s what makes role-playing so great—taking on the role of another person.
Remember when you were a kid and pretended to be a mighty warrior, slaying
hordes of evil creatures that held the beautiful princess captive? A role-playing

6 1. A World of Role-Playing

game (RPG) is much like your imagination—you still assume the role of that big
tough warrior. However, when you move into a RPG some rules apply, just as they
might in real life. You have to be a little realistic; not everybody can be a superhu-
man at the start.

For that reason, games have specific rules, plus a referee or judge that enforces
them. In Dungeons & Dragons, the referee is called a Dungeon Master (DM) or Game
Master (GM). This person is the overseer of the world and controls everything the
players can’t, such as the monsters and other non-playable characters. The players
control only their character(s). When needed, players inform the GM of their
intentions—what actions their characters perform.

It’s the GM’s job to take these actions, apply the rules, and determine the outcome.
Situations will occur that require a decision dependent on the abilities of the character.
For example, in my earlier scenario, if I had swung at the skeletons, would my swing
have hit them? If my swing did hit them, what kind of damage would I have done?

When situations such as combat occur, the GM and players roll dice to decide the
outcome. Characters have a set of attributes that are used in conjunction with the
dice rolls; these attributes include factors such as a character’s strength, agility,
intelligence, and so on. The higher the attributes, the more damage the character
can cause, the faster the character can move, and the more spells he can learn.

As characters become more experienced, they begin to become more powerful.
Their attributes increase, making them stronger, faster, and smarter. As characters
grow in strength, they are able to get into bigger and tougher battles, gaining more
experience and, in turn, becoming stronger, thus continuing the cycle. This aspect
of increasing a character’s abilities (and experiences) over time is called character
building —it is the driving force of most RPGs.

By making their characters more powerful, players are able to enjoy more vigorous
quests. With each new game bringing you spectacular weaponry with amazing capa-
bilities, potent spells worthy of accolades, and story after story blending it all
together, who wouldn’t be hooked?

Playing Traditional
Pen-and-Paper Games
Pen-and-paper games are named as such because to play these games, you only need
reference books, pens, and paper. Most traditional pen-and-paper games also make
use of a set of dice, which works as a random number generator. (RPGs such as
Dungeons & Dragons are traditional pen-and-paper games.)

7The Concepts of Role-Playing

You typically play a traditional pen-and-paper game something like this: The players
enter a locality looking for an adventure. The GM has a previously laid-out path for
the game and gradually manipulates everything so that the players become hope-
lessly involved in the adventure.

As the characters move along the path, they might come upon some planned or
chance encounters that lead to combat. Entering combat slows everything down
and game-play becomes turn-based, in which players take turns deciding what to
do. Each turn of play represents a few seconds of game time. Players then must
decide what actions to perform within a single turn. When they’ve decided, the
GM takes these actions, applies the rules, rolls the dice, checks the players’ abilities
and determines the outcome. This usually results in players and monsters harming
each other until some or all die.

Surviving players then collect their trea-
sure and continue until the adventure is
done. At this point, characters receive
experience points that gauge how well
they did. These experience points are later
tallied—once a character’s experience
reaches a certain point, his abilities are
increased slightly.

You can further enhance this gaming
experience using miniaturized models
of the land, characters, monsters, and
many other things. Typical game sessions
employing models involve a large table
being pulled out and decorated with the
scenario’s landscape and small figurines that represent the characters being placed
in their respective positions. Being able to see everything laid out on the table
helps you get into the game.

A plethora of traditional pen-and-paper games are out there, each centering on a
different genre. Here’s a short list of some of the most popular ones:

■ Dungeons & Dragons by Wizards of the Coast, Inc. The granddaddy of fantasy
pen-and-paper role-playing games. Embark on mythical quests full of magic
and monsters to do whatever your little heart desires. Take the form of a
human, elf, dwarf, or any of the other many races this game provides and stock
up with magic, weapons, and armor. Originally developed by TSR, Inc.,
Dungeons & Dragons is now maintained by Wizards of the Coast, Inc.

8 1. A World of Role-Playing

TIP
Resources for such games are
immense—the Dungeons & Dragons
franchise has reached its third
edition.There are even a few
dedicated magazines for it: Dragon
Magazine and Dungeon Adventures,
as well as a full-length motion
picture (with a few more in the
works). Check out Appendix C,
“Recommended Reading,” for
more references to books and
magazines on the subject.

TEAMFL
Y

Team-Fly®

■ Cyberpunk 2020 by R. Talsorian Games. The future is a dark place, and this
game does a brilliant job of immersing gamers into it. Imagine the world of
Blade Runner, and you’re halfway there. This game has so much going on,
from massive weaponry, bionic implants, and chemical boosters, that you’ll
have your hands full taking it all in.

■ Traveller by Game Designers’ Workshop. Dating back to 1977, the Traveller
RPG was quickly adapted as the sci-fi RPG that others modeled. Explore the
galaxy, from the biggest spaceports to the lowliest outposts. Become raveled
in an intriguing history that dates back thousands of years—all from the
comfort of your own home!

■ Generic Universal Role-Playing System (GURPS) by Steven Jackson Games.
This role-playing system applies to
pretty much any game you can think
of. Shown in Figure 1.1, this gaming
system comes with a single set of rules
that you can apply to any setting. With
so many resources out there, this one
is quickly becoming a contender to
the Dungeons & Dragons empire.

9The Concepts of Role-Playing

NOTE
A gaming system is the underlying
set of rules and instructions used
to play a game such as GURPS
and Dungeons & Dragons.

Figure 1.1

Currently in its third reprint, the GURPS Basic Set (by
Steve Jackson Games) is your guidebook to the generic
role-playing game rule set.

Going Live with Role-Playing Games
LARP (or Live-Action Role-Playing) games moved traditional RPGs up a notch.
While maintaining their pen-and-paper roots, a LARP game has participants actu-
ally dressing for their parts and having parties in which they play their alter ego.
(I’ll admit that it does take a little bit—well, a lot—of imagination to get all dressed
up and attend one of these parties.)

Even though RPG players have been dressing their alter-ego parts for as long as
RPGs have existed, one game in recent history has really made LARP mainstream.
That game, Vampire: The Masquerade (by White Wolf Publishing), takes players
through a secret world full of blood-sucking demons bent on human conquest.
This time, however, players assume the role of a “creature of the night.” This game
revolves around the wars among the brooding clans. With a political structure
behind the game, there’s bound to be dissension in the ranks and plenty of oppor-
tunities to make your clan come out ahead.

Players attack each other (proverbially speaking), using weapons just like in any
other RPG. When the going gets tough, the tough pull out their special abilities
(sort of like spells). Combat continues until one player becomes the victor by
destroying his or her opponent, causing the opponent to surrender or making the
opponent flee.

I’ll admit, pretending to be a flying demon of the night, slashing and hacking at
each other takes quite a bit of imagination. Players of Vampire: The Masquerade are
comparable to Trekies, so some take their game-play quite seriously. Have a look-
see on the Web (starting at White Wolf’s Web site at http://www.white-wolf.com),
and you’re likely to find dedicated groups in every major city. Just remember that
above all, the idea is to have fun!

Role-Playing on the Computer
Breaking out of the pen-and-paper mold, computer RPGs first became mainstream
back in 1980s. At that time, classic games such as Ultima and Wizardry burst onto
the scene, bringing gamers a whole new type of gaming.

Gone were the hassles of getting a group of friends together to play. Also, the
computer took the role of the GM, so players could jump in and start playing by
themselves. Of course, the excitement of a group is sorely missed, but you have to
make some sacrifices. It’s still just as addictive to be crouched in front of your mon-
itor, searching through ruins for a magic amulet, only to be surprised by a demon
in hiding!

10 1. A World of Role-Playing

Now the computer takes care of everything for you. No need to write anything
down; the game stores it all, and it can be saved for later play. You can view maps
of any place you’ve visited, with each corner opening up new areas to explore.

Of course, the game-play is a bit more constrictive than the pen-and-paper type, where
you have a human who can make some decisions better than the computer can, but
with every new release of a computer RPG, the designers get a little bit closer.

The most impressive (and sometimes limiting) factor of these games are the stories.
Again, with a game like Ultima, you have an entire history to learn as you play the
game. You find out how the world was formed and what shaped it, and you take
part in it all.

The only problem is that these games usually lead you through a planned route
with very little variation, so there’s really no need to play the game more than
once. No matter how many times you play it, the story remains the same, events
occur like last time, and very few surprises are left.

These are issues to consider, and over time, games continue to be more advanced,
thus solving many of these issues. Here’s a short list of games that have shaped the
world of computer RPGs:

■ Ultima series by Origin Systems. An entire history of a world (and other
worlds in spin-off titles) spreads out before you to discover and participate
in. Take the part of the Avatar, a visitor from another dimension where time
goes at a slower pace (Earth), who must save a foreign land from the evil
clutches of countless bad guys. The storyline has been refined and even has
its own religious sects. The latest game of this series has become the model
on which other online RPGs are created.

■ Wizardy series by Sir-Tech. Another classic game series that helped revolu-
tionize computer role-playing. Although the first game was constructed of
simple line-drawn 3-D mazes, each subsequent game release has progressed
into today’s deeply intriguing games. The latest games in this series boast an
artificial intelligence so advanced that other characters in the game can actu-
ally perform their own quests, interfering with yours!

■ Might and Magic by 3DO. A true classic that spun off multiple game genres.
The original RPGs series is actually the only that can boast features such as
linking worlds together over multiple versions. That’s right; if you own a
certain version, you can install the next one in the series and play in both
worlds in the same game!

11The Concepts of Role-Playing

■ Baldurs Gate by Interplay. This gaming series is backed by the Advanced
Dungeons & Dragons rules sets and gives the players a true-to-life vision
of Dungeons & Dragons game-play at its best. Link up with other players or
battle the evil minions by yourself. This game has all the ingredients of a
RPG masterpiece.

■ EverQuest by Verant Interactive. As the current reigning champion of online
RPGs, this game is so vast that it would take a lifetime to conquer. With new
add-ons coming out every few months, this game keeps it freshness for even
long-time players. This game also has the distinction of being the first one in
which players actually auction super weapons and artifacts on Web-based auc-
tion sites. A definite must for those seeking online gratification for their
gaming addiction.

The Evolution of Gaming
From its meager pen-and-paper roots, role-playing has progressed, or rather
evolved, into the definitive gaming genre it is today. The floodgates have opened
and the industry has surged forth—each new game title advancing the style and
features of RPGs. In this section, you take a look back at the games that help to
innovate the RPG world.

Again, take a look at a classic game such as Ultima I. With such simple graphics
(see Figure 1.2) and controls, what power did it hold over players? An immense
world for one; ability to play hero-to-the-world for another. This is one of the first
games I’ve seen in which you’re actually allowed to attack anybody, even innocent
villagers (of course, the guards don’t take a liking to that—but, hey, you pay a price
for your evil deeds).

As the series matured, each release brought new features, including improved
graphics, physics, and larger environments. The latest offers in the Ultima series,
Ultima Online (Figure 1.3 shows a scene from the game) links thousands of players
together to live out their digital lives in a world that doesn’t revolve around them.
You leave your game and then come back only to realize that the world has gone
on without you.

Another such game in production is Dungeon Siege, by Gas Powered Games (see a
scene from the game in Figure 1.4). Dungeon Siege allows players to join forces
online, while at the same time, allowing game designers to alter the game in many
ways. Dungeon Siege’s lead game designer, Chris Taylor, was kind enough to lend his
services and write this book’s Foreword.

12 1. A World of Role-Playing

13The Evolution of Gaming

Figure 1.2

The first in the
series of Origin’s
Ultima games,
Ultima I blazed
to the screen in
16-color glory.

Figure 1.3

Origin’s Ultima
Online still uses
2-D graphics, but
the game-play
makes up for the
lack in graphics
beauty.

The ability to join forces over the Internet has to be the biggest improvement in
RPGs in years because it brings back the glory days of having a group of people
play together, not a couple of programmed artificial characters. Whole in-game
societies (generally called clans) have been formed from players around the world.

Although not as subtle, over time, there has also been an increase in the games’
features, making the games more realistic. Games like Ultima Pagan (my favorite)
now apply physics to everything in the world. Throw an item like a ball, and it will
arch (as it would in the real world), bounce a few feet, roll down a hill, and plop
down into a pond.

Do RPGs really need this level of complexity? Physics in a game makes the experience
truer-to-life, but at the cost of added complications. If you have to depend on chal-
lenges like rolling a ball into a hole, you need to keep them simple enough not to
aggravate the player. Provide too little a challenge, and players get bored quickly.
Provide too great a challenge, and you run the risk of aggravating your audience.

Only time will tell how much realism players will take before the point of gaming is
lost. I mean, who wants to play a game in which you do everything you would in
your daily life? With the release of home-gaming consoles such as the Nintendo
Entertainment System (NES) in 1985, consumers of all ages were able to get into

14 1. A World of Role-Playing

Figure 1.4

Dungeon Siege (by
Gas Powered Games)
brings players
together throughout
the world for some
hardcore action
role-playing as never
seen before.

the digital age of RPGs. No need for an advanced computer hardware package
here, just a TV set, a console, and a game.

Probably the most notable console gaming series to date is Final Fantasy by Squaresoft.
From the simple graphics of the first version to the beautiful rendered graphics and 3-
D characters of the ninth, this game remains a top contender in today’s market.

Although I consider this game the best console series of all time, other games cur-
rently take the lead for playability and all out fun. The number one contender at
this time has got to be Sega’s Phantasy Star Online (PSO). (You can see a scene from
the game in Figure 1.5.) Online interaction with real people and the host of secrets
involved in playing the game make this game an instant classic.

Although I don’t want to take a biased stand, some games just make the cut better
than others do. Take a look at my pick of the best past and current console gaming
legends:

■ Final Fantasy series by SquareSoft. The definitive RPG series for consoles.
Final Fantasy includes massive stories that have to be experienced by any die-
hard role-playing gamer, memorable battles full of super weapons, powerful
spells, and monsters so warped that you’ll be wondering what kind of person
could have dreamed them. Currently up to its ninth in the series, with the
tenth one on the way, this game is bound to be better with each release.

15The Evolution of Gaming

Figure 1.5

Sega’s Phantasy Star Online
offers gamers an action-
packed experience while
maintaining a role-playing
feel.

■ Phantasy Star series by Sega. Another golden oldie that was way ahead of its
time from the first game in the series. A truly massive story that revolves
around the history and future of a dying race forced to leave its planet in
search of another one. Things would go good for them if not for a ruthless
demon that dogs them every thousand years. The latest, Phantasy Star Online,
joins players from every nation, for the first time, on the Internet for some
massive multiplayer mayhem.

■ Legend of Zelda by Nintendo. Although not a true die-hard RPG, it does
contain many RPG elements. It appears that the world is a treacherous place,
and your hero (Link) must defend the world against the evil tyranny of one
unusually relentless, bad dude named Ganondorf (aka Ganon). Definitely
worth getting if you own any of the Nintendo gaming systems.

■ Breath of Fire series by Capcom. Currently in its fourth release; this is another
example of a series worth checking out. Although the graphics are a bit dated,
being blocky and brightly colored (see a scene from the game in Figure 1.6),
the game-play is top-notch. This is a classic game true to the old days of con-
sole RPGs.

16 1. A World of Role-Playing

Figure 1.6

Breath of Fire by
Capcom retains older
2-D graphics styles,
but in such a way
that it impresses
even hardcore
gamers.

Wrapping Up with
a Look into the Future
What does the future hold for us gamers? It’s hard to say, but Internet gaming is
going to be a standard for all games to live up to. Some companies have a great
head start, but that will soon change as others get into the groove.

Imagine being able to design a single online character that you can tailor to any
online game. That’s right! That grizzly, battle-scarred warrior from the fantasy-line
games can be suited up with a mechanized combat suit. You will be able to main-
tain experience, weapons, spells, and all other character aspects that make charac-
ter building worth it.

In addition, how about being able to stake out some prime new land in an online
world as big as your own? Sounds cool, doesn’t it? Form societies, define your laws
(and enforce them), populate your land—the possibilities are endless!

Not only will game-play improve, but also as technology improves, the gaming plat-
forms will be even better—with graphics cards pumping out millions of 3-D images
per second, sound systems jamming out the beat, and enough game controllers out
there to fill your every fantasy and need. There’s so much waiting for us in the
future of RPGs, but remember that the future is what we make it. Read on to learn
how you can help mold these future adventures.

17Wrapping Up with a Look into the Future

This page intentionally left blank

TEAMFL
Y

Team-Fly®

Part Two

Role-Playing
Game
Design

2 Exploring RPG Design Elements

3 Story-Writing Essentials

CHAPTER 2

Exploring
RPG Design

Elements

The crucial part of a movie is its script. The script contains every spoken word
and special effect and all other details that describe the movie. It’s then up to

the director and actors to take the script and bring it to life in the best way that they
can.

Just as a script is important to a movie, so is a design document important to a
game. Any serious game project should have a design document, especially large
projects such as a role-playing game (RPG). Beginning your project by planning
and designing all aspects of the game will provide you with a guide to follow from
the beginning to the end of the project. This planning will ensure that the infor-
mation you need is readily available to you and others involved in the project. To
that end, please consider this chapter a guide to creating your own design docu-
ment.

In this chapter, you learn about the following:

■ How to start your game design
■ Creating a design document
■ What information to include in the document

General Game Design Issues
At the core of every game project lies a simple design that is blown to huge propor-
tions. The best place to start your game project is with the general game design,
and the best place to culminate your ideas is in a design document.

The Importance of Design Documents
The design document is the instruction manual for your game. Within the document’s
pages are all aspects of the game: the story line, characters, dialogue, graphics style
and engine, and all other details important to describing the game (as those you see
in Figure 2.1).

All participants in the project should be able to refer to this document and pro-
ceed with their jobs based on the information they find there. For example, a
programmer needing to know what type of combat engine will be used in a game
might refer to the document and find that the game uses a 3-D engine that utilizes

22 2. Exploring RPG Design Elements

a moving camera, 3-D textured characters, and eye-pleasing graphics effects. Maybe
he will even see a few concept pictures drawn by the designers.

Not only does a design document contain information about a game’s design, but
also it should contain marketing information if you are planning on selling the
game. This information includes product highlights, estimated completion dates,
and other information pertinent to making your game available commercially.

Although the design document cannot possibly contain all the minute information
about your game, a design document does help ease the process of the game’s
development. Just as producers and actors interpret their scripts in different ways,
so do people creating a game interpret the design document differently—and
remember that it’s up to them to mold the game into a masterpiece.

Creating Your Design Document
For large projects, such as RPGs, I find that using a multiple document format is
essential. This means that each component of the design (art, design, music, and
so on) is broken down by category and listed in separate documents that are
referred to as books or bibles. I recommend using a total of six documents, as follows:

23General Game Design Issues

Design Document

Marketing

Graphics

Story

Dialogue

Figure 2.1

The design document is packed with all
the information you need to create your
game.

■ Master bible
■ Art bible
■ Story bible
■ Design bible
■ Sound bible
■ Tech bible

Each document contains only the information pertinent to its own topic; for exam-
ple, all the artwork goes into the art bible, and all the design issues go into the

24 2. Exploring RPG Design Elements

Table 2.1 Master Bible Contents

Section Description

Table of contents Lists all sections contained within this document.

Proposal The game submission proposal if you are trying to submit
your game to a publishing company. Check out Chapter 21,
“Marketing and Publishing Your Game,” for more informa-
tion about what information to include in the proposal.

Introduction Introduction to the design document and what it contains.

Concept Game concept and idea (using brief and concise text).This
includes the game title and genre.

Story summary Short summary of the game story highlighting key points.

Character introduction At-a-glance list of the game’s main characters.

Highlights Key elements of your game, such as story plot points,
licensed engines or technology, and graphics styles used to
create the game.

Game description Description of how the game looks and feels.

Game elements Lists actual gaming elements divided into topics such as
game-play, characters in the game, computer A.I., and so on.

Hardware specifications Information such as system requirements (required CPU,
graphics acceleration, and so on).

Schedule Milestone and time-of-completion schedule for marketing
purposes.

25General Game Design Issues

Table 2.1 Master Bible Contents (continued)

Section Description

Budget Breakdown of the estimated cost of production.You see
more about this in Chapter 21.

Team members List of your team members or a list of people needed
to work on the project (including required skills such
as artist, C++ programmer, and so on).

Marketing Marketing information such as competitive analysis, target
audience, projected sales, and so on. Again, Chapter 21
contains more information about this.

Table 2.2 Art Bible Contents

Section Description

Table of contents Lists all sections contained within this document.

Concept Sketches and idea drawings that might or might not be
included in the final game.

Storyboard Story sequences are drawn out for the designers to follow.

Character Pictures of the game characters.

Items Pictures of the game items.

Levels and terrain Pictures and suggested layouts of maps and terrain features
(such as trees, buildings, and so on).

Magic effects Drawings of the game’s magic effects (usually in combat
sequences).

Combat Drawings of combat scenes (terrain, effects, and so on).

26 2. Exploring RPG Design Elements

Table 2.3 Story Bible Contents

Section Description

Table of contents Lists all sections contained within this document.

Idea The “Plain-Jane” game idea, written in a couple paragraphs.

Summary Summary of the entire game, highlighting key points such as combat
features, game engines, look and feel of game, and so on.

Game story Linear game story.

Plots Lists plots and descriptions.

Dialogue Full script of every spoken word.

Character history Story behind each character.

Prelude The introductory story to your game that helps prepare the player
(manual story) for playing the game.This story is usually written for the game manual.

Table 2.4 Design Bible Contents

Section Description

Table of contents Lists all sections contained within the document.

Ideas All general ideas that designers might like to see in the game.

Game-play Description of how the game is played.

General control Control features such as moving your characters through the levels
and issuing commands during combat.

Characters Description of the players and their vital information, such as their
HP, experience, allowable weapons, and so on.

Items Lists all items in the game and the data related to them that are
needed for the game (such as usage, description, and so on).

Magic spells Lists all magic spells in the game and the information about them
(magic points used, effects, and so on).

Levels Level-by-level breakdown of the game, what it features, how the
levels are laid out, what to place where, and so on.

27General Game Design Issues

Table 2.5 Sound Bible Contents

Section Description

Table of contents Lists all sections contained within this document.

Sound effects All sound effects other than voice.

Music All musical compositions.

Voice overs All voice recordings (such as spoken dialogue).

Table 2.6 Tech Bible Contents

Section Description

Table of contents Lists all sections contained within the document.

System engine Describes the basics of the entire system that runs the
game.

Graphics engine Describes the graphics engine(s).

Sound engine Describes the sound engine.

Input engine Describes the input engine.

Network engine Describes the network engine.

General system Shows all general system information not listed elsewhere.

GUI system Shows the GUI (menu) system.

Game system Shows the layout and flow of the game system.

Scripting engine Describes the scripting system.

Character control engine Shows how the characters control engine works.

AI engine Talks about the AI system used in the game.

Combat system A breakdown of the combat engine.

design bible. Tables 2.1 through 2.6 list some major topics that each design bible
might contain, as well as the type of information each section should contain.

At this point, you can decide to include all the design documents in one file or in
multiple files. For large projects, it makes sense to divide the documents into multi-
ple files. If you have many people working on a game, you can control which team
members get which documents.

If you use a single document for your design, and thus a single file to save it, name
the file by the tentative game name, appending _DesignDoc at the end. For exam-
ple, if you name your game RolePlayingGame, the filename might be
RolePlayingGame_DesignDoc.doc.

If you decide to split the document into multiple bibles, you need to create a file-
naming convention for those documents. For example, you might want to append
the bible name to the end of each document: RolePlayingGame_Art.doc,
RolePlayingGame_Design.doc, RolePlayingGame_Master.doc, and so on.

Starting with the Table of Contents
Regardless of the type of design document you use, the place to start is with the
table of contents (TOC for short). Take your time to flesh out the TOC; it’s a major
part of your design document (see Figure 2.2). You might use the layouts that I
showed you earlier in section “Creating Your Design Document” to get started.

People need to be able to quickly find exactly what they are looking for in the
design document. For example, a marketing representative might want to see only
projected sales figures. At a glance, he can see that this information is in the master
bible, on page 5 (yes, you need to number the pages).

Starting with the TOC ensures that you have a firm grasp on how you want to lay
out your project. In fact, the design document is one of the first things a publishing
company wants to see. For that reason, create an easy-to-follow indexing system,
with page numbers, appendixes, and so on.

Adding the Topics
At this point, start asking yourself questions about the game. Answer every question
that is conceivably related to the game and include the answers in the design docu-
ment (see Figure 2.3). For example, what engine do you use for the combat? Put

28 2. Exploring RPG Design Elements

TEAMFL
Y

Team-Fly®

29General Game Design Issues

Design Document

Table of Contents

� Graphics
�� Characters 2�
� Marketing
�� Sales Figures 8
� Dialogue. 20

Sales

Dialogue

Character Graphics

Figure 2.2

A table of contents
makes looking up
specific information
in your bibles easier.

Design Document

Graphics Engine?

Solution

Figure 2.3

If you have a question
about your game, find
an answer and insert
it into your design
document.

the answer in the document. What happens when you push the joystick to the right
while playing the game? That answer goes in the document.

Classify each question and answer (the design) by the various topics that you lay out in
the TOC for each design bible. Art topics go in the art bible, design issues go in the
design bible. Continue doing this until you have a fleshed-out series of documents.
At this point, go through each document, adding more detail to each topic. You want
your game’s design document to be clear-cut and concise. Remember that you will be
following this instruction manual when it comes time to create your game.

Notice I’m not going into a great deal of detail here. It’s your game, and it is
impossible for me to tell you how to design it. Instead, this chapter helps you create
a shell, which you then fill with your own words. Upcoming chapters in this book
cover the various topics that are included in a design document—topics such as the
various engines, RPG elements, marketing information, and much more.

As you go through this book, keep tabs on your design document, adding the infor-
mation you need as you come across it. By the end of this book, you should have
enough information to complete your design document and program your game.

The Perfect Design Document
Although I wish that I could give you the complete layout for a perfect design doc-
ument, I just can’t do so. The fact is that no one uses a standard design document;
they’re all different in one aspect or another. What works for some project teams
doesn’t work for others. As a result, you must go with your own flow and create a
design document that fits your needs.

With that said, here’s a little secret. You can find a plethora of information about
design documents on the Internet. First, go to http://www.gamedev.net and check
out the resources section (or go directly to the design documents section at
http://www.gamedev.net/reference/list.asp?categoryid=23#Design Documents).

Next, go to http://www.gamasutra.com and search for “design document.” You’ll
be surprised what turns up! A number of free design-document templates are out
there, which you can download and tailor to your own needs.

Although this book is geared more toward the programming side of RPGs, I recom-
mend that you check Appendix C, “Recommended Reading,” for information on
Swords and Circuitry, a book that examines the design side of RPGs in greater detail
than I can do in this book. Before that, however, take a closer look at the design of

30 2. Exploring RPG Design Elements

RPGs, or at least the design issues you deal with in this book.

RPG Design Aspects
RPGs are a funny lot. Ask ten different game companies what a RPG is, and you’ll
most likely get ten different answers. The simple fact is that the aspects that make an
RPG what it is are really undefined. If you tell me that a RPG is all about character
building, I can show you 100 different games that fit into that category and that are
not called RPGs. The same goes for other supposedly RPG features—story telling,
exploring, resource management, and so on.

The fact is that as the gaming industry evolves, so do the concepts of games. The
characteristics of different styles of games become mixed. Take, for example, the
popular game Phantasy Star Online by Sega, inc., a habit-forming action game with
character-building aspects. Is it a RPG or not? You make the call.

The reality is that any one of the typical RPG features can be mixed into your game
design, each useful in its own way. For that matter, what features are considered
role-playing ones? Take a look:

■ Character building. Your virtual alter ego, started from scratch, is usually the
weakling in the bunch. With hard work, you build this character into a pow-
erhouse that strikes fear into the hearts of his enemies. Character building
is the term used to describe the character’s upbringing.

■ Exploration. What game doesn’t include a bit of exploration? RPGs usually
take this feature to the extreme with a large world to explore, dungeons to
crawl through, and secrets to uncover.

■ Resource management. Items, treasures, spells, and other gaming commodities
abound in RPGs, and part of the fun comes from dealing with those commodi-
ties. Items have purposes, and it’s the player’s job to discover those purposes.

■ Problem-solving. What better way to challenge your brain than with every
mind-bending puzzle that you can design. RPGs generally send players on a
wild chase to solve one puzzle or another as they save the world.

■ Story involvement. The player, in all his trials and tribulations, typically takes
center-stage during the game, with the entire story revolving around the
player. With gripping plots and twists, the player needs to be driven on until
the end.

■ Combat. Though you probably already know this, every RPG devotes a major
portion of time to combat. Weapons swinging, spells erupting, and creatures
dying, all in the name of good as the player strives for justice in a world of

31RPG Design Aspects

evil. Combat is a major contributor to character building; the more creatures
killed, the stronger the player character becomes.

The list could go on, but I’ve hit upon some of the most important aspects. From a
designer’s point of view, each of the preceding aspects deserves an entire chapter,
but unfortunately, this book (and my publisher) does not allow for that kind of
space. Besides, that is not the purpose of this book. My aim is to show you how the
just-
mentioned aspects fit into the programming side of role-playing games.

Turning to the Technical Side
The design issues that I cover relate specifically to the technical side of RPGs, such
as the graphics engine, item handling, and character control. Concentrating on
this technical side of the design, note the following components that are needed
for your game:

■ Core technical engines. These engines are the guts to your game. They
handle drawing graphics, playing sounds, and processing device input.

■ Graphics engines. As the users’ viewports into the world, the graphics
engines are major workhorses that display what is happening in your game.

■ Scripting. To expand the functionality of your game, you can use external
scripts (external to the game’s source code) to quickly change game-play
without the hassles of dealing with a C/C++ compiler. Instead, you use a
custom-built script editor that works hand-in-hand with the finished game
engine.

■ Items and inventory control. Game players need “stuff” to play with, so as
the game’s developer, you need to create these items and develop ways for
players to manage them.

■ Character control. What’s a game without a hero? Controlling all characters
in your game is issue numero uno.

■ Maps and levels. What is a game world without places to explore? Your map
and level engines maintain the world around your characters.

■ Multiplayer gaming. Be sure to link players over the Internet for some major
gaming action. The multiplayer component of your game is just what you
need.

32 2. Exploring RPG Design Elements

In case you didn’t notice, the preceding list of components is almost dead-on with
this book’s table of contents; the major components of a RPG are all there, and
you will need each of them at one point or another.

Within the pages of this book, you find every component you need to make your
own RPG. Although basic in nature, the majority of the components are powerful
enough to drive your largest project. It all starts with a little understanding.

Knowing Your Role
When you begin creating your game, you must understand just what you’re getting
into. You need to be aware of the minimal system requirements, the current tech-
nological capabilities and trends, and the available resources.

Minimal system requirements aren’t as big an issue as they used to be because com-
puter systems are continually becoming more powerful. It’s safe to say that you can
create a game and rest assured that it will run decently on the majority of systems,
assuming that you keep things compatible, which is where technical capabilities
and trends come in.

If you lived in a strictly non-techie cave during the past five years, you probably
missed the introduction of the DirectX gaming libraries by Microsoft. Merging all
the functionality you’ll ever need into a set of programming libraries, Microsoft
managed to wipe clear all compatibility issues among varying hardware setups,
thereby giving all programmers an equal opportunity to create great games (from a
technical point of view, that is). Using DirectX, you can be further assured that
your game will run on any computer that utilizes the DirectX libraries.

With DirectX, you have the following at your disposal:

■ 3-D graphics. Now you can wander around immense worlds from a 3-D per-
spective. Powerful new graphics hardware takes care of the hard work. You’re
left with the easy job of laying out your virtual world. Graphics, at a mini-
mum, will use resolutions from 640 x 480 and up, harnessing 16-bit to 32-bit
color resolutions.

■ A high-quality sound system. Music and sound effects never sound so great,
blasting the user with high quality playback. Use 16-bit, 22 KHz, stereo play-
back features to ensure that your game sounds are crisp and effective.

■ Access to virtually all input devices. Using DirectX- and DirectInput-capable
drivers, any input device is usable for your projects, from that old dusty ana-
log joystick to the futuristic jumpsuit that’s just around the corner.

33Knowing Your Role

■ Networking gaming at its finest. No more dealing with overwhelming techni-
cal issues of networking; with DirectX on your side, network gaming becomes
a reality for your game, via an easy-to-use set of libraries.

As for available resources, you’re limited only by the tools that you have available for
your game project. Need 3-D modeling programs to lay out your game characters
and world? No problem, because each day brings more tools. No longer are you lim-
ited by the availability of high-quality, high-cost programs. Now you can get your
hands on some great tools at a low cost. In fact, the CD-ROM that comes with this
book is packed with useful programs (see Appendix E, “What’s on the CD-ROM,”
for more information).

Now you can model in 3-D, construct music and sound effects, and dish out almost
any materials you need to finish your game. With this book at your side, nothing
will slow you down!

Wrapping Up Design
As I noted earlier in this chapter, this book is geared more to the programming
aspects of RPGs. If you’re interested in the design side of gaming, check out
Appendix C at the back of this book for the information about a book on that topic.

Throughout this book, I incorporate an overall design ideology—to keep things
simple. The simpler you keep things, the faster things get done, and contrary to
popular belief, those awesome features you see in games are not hard to duplicate;
they just seem that way. At the same time, I discuss quite a few of the RPG design
aspects, especially when it comes to the technical side of things. With that in mind,
it’s time to move on to a design aspect that is important to role-playing games—
writing stories.

34 2. Exploring RPG Design Elements

CHAPTER 3

Story-Writing
Essentials

In order to produce a first-class role-playing game, you need a story that immerses
the players in a world of danger and deception—a game that constantly chal-

lenges the protagonist (the hero who plays the role of the main character) in his
quest to win the day.

Just as with a movie, the storyline is what makes a game memorable. What was
the best thing about the movie The Matrix? I still remember the massive blow
I received when Neo woke up inside his battery compartment in the far future.
Or how about in Final Destination in which a group of high schools kids realize
that their adversary is death itself? The players of your game can have similar expe-
riences. You can create a storyline that will sweep players off their feet when they
least expect it!

In this chapter, you find out how to create such a game by doing the following:

■ Brushing up on story basics
■ Understanding the writing process
■ Improving your writing with some helpful tips
■ Applying stories to games

The Art of Telling Stories
The ancient art of storytelling is based on the ability to structure and communicate
events that occur during the resolution of a situation. Put another way, a story
reveals the details about what happened while someone endeavored to achieve
a goal (essentially, who, what, why, where, when, and how).

The real art, however, is relating those events in an entertaining way. Some authors
are adept at telling stories, relating them in a way that pulls you in and changes
your perception in some way. These writers are the ones who keep you up late at
night reading just one more page. Their stories exist in a world in which every
detail and character is alive, a world that you feel privileged to experience.

You, of course, want to achieve the same reaction with your stories. However, the
ability to write such stories doesn’t come at the snap of a finger. You have to work
your way up, first learning the basics, then coming up with ideas. You need to
develop characters and the situations that drive them through the story. Before

36 3. Story-Writing Essentials

doing any of these things, however, you must understand how stories are structured
so that you can later piece everything together in logical order.

The Five Components of a Story
All stories follow a basic format (called the story structure) that can be broken into
five components: the inciting incident, complications, plot points, climax, and
denouement.

The inciting incident is the event that triggers a major event and drives the story. The
incident forces the main characters’ involvement and gives them a reason to resolve
a situation. Complications are the obstacles that stand in the way of reaching a reso-
lution.

Along the way, the story experiences plot points, which are major turning points in
the story. These events affect the flow of the story. Plot points are also called plot
twists because they can change the outlook of the story.

The climax is the point where excitement builds and everything is resolved in a
blaze of glory. Last is the denouement, the point where everything winds down and
the story concludes.

The Story Ladder
and the Three Acts
You can almost think of a storyline as a ladder, as illustrated in Figure 3.1. As you
climb the ladder, you reach specific components of a story. At the bottom of the
ladder is the inciting incident. Moving up, you have the complications mixed in
with the plot points. At the top of the ladder, you reach the climax. Although the
climax is at the top of the ladder, the climax is not the end of your climb. At this
point, the point of denouement, you jump down and into the story’s downfall;
here the story “comes down” to its end.

Although the story ladder gives you a way to visualize the story’s progress
(the rise in action), you can think of the whole story as a play, complete with acts.
Traditionally, a story is split into three acts, the beginning, the middle, and the
end. Even if a book has 24 chapters, it still has a beginning, a middle, and an end.

Each act has a purpose: to introduce the characters, the conflict, the plot points,
and finally the conclusion. Now, take a closer look at each act in detail and outline
what occurs in each.

37The Art of Telling Stories

Act 1: The Beginning
The beginning represents approximately the first 25 percent of the story. Here, you
introduce the important characters. You don’t have to introduce all the characters
here, but this part of the story should introduce the protagonist and other charac-
ters that help support the story. You need to start building a relationship between
the reader and the protagonist of the story as soon as possible.

Along the way, you introduce the inciting incident, which presents the protagonist
with a situation that needs to be resolved. This situation might play a minor role in
the beginning. At any rate, the situation gives the protagonist a reason to be
involved; that is, it presents him with something that must be resolved.

It’s this situation (and the underlying inciting incident) that conveys the story’s con-
flict. The conflict builds into a crisis that fully involves the protagonist over time.
This crisis marks the first plot point (turning point) that leads into the second act.

38 3. Story-Writing Essentials

Climax

Plot Point

Complications

Inciting Incident

Plot Point

D
enouem

ent

S
to

ry
 F

lo
w

Figure 3.1

The story ladder can be broken into components.

TEAMFL
Y

Team-Fly®

Act 2: The Middle
Here’s where all the fun happens! The middle story represents about 50 percent of
the story and is where most of the reader and character relationship building takes
place. Here, the reader needs to fully understand the main character, including his
personality, history, and purpose. The reader needs to “experience” everything the
main character does, says, and feels.

In the second act, the main character attempts to resolve the crisis introduced in
the first act. Because the story would not be intriguing if the protagonist solved the
problems too easily, you present obstacles that stand in his way, including conflicts
and plot twists that are eventually overcome. The action continues to build up as
you near the end of the second act. You don’t want the story to slow down in any
way; you want to keep the reader excited.

The overall crisis still remains (seemingly a hopeless cause), and constant
reminders of it should occur throughout the story. The protagonist must prevail,
and soon it will be time. But first, another complication pokes it head up and the
main character is rushed into the final act.

Act 3: The End
Alas, all good stories must come to an end. The third act represents the final 25
percent of the story. Now is when the protagonist overcomes the crisis and prevails.
This is the moment of truth. You can’t dilly-dally—the readers are counting on you.

The climax continues to build until it’s ready to pop. The excitement rises, the
obstacles mount, all seems doomed. The goal is within reach, but it seems unobtain-
able. The protagonist seemingly reaches the point of no return, but finally, through
thick and thin, blood and sweat, the hero makes a final push, and then. . . .

Sorry, but you wouldn’t want me to give away the ending, would you? Just kidding.
As you can guess, the hero destroys the bad guy, rescues the damsel, saves the world—
that is, he achieves the desired goal. Notice that I said “desired goal.” Even though the
outlook of the story might be grim, the protagonist’s personal goal is reached.

For example, consider the Second Chronicles of Thomas Covenant by Stephen R.
Donaldson, which details the adventures of Thomas Covenant, the Unbeliever. In
the third book of these chronicles (White Gold Wielder), the protagonist of the story,
Thomas Covenent, reaches his goal of defeating the bad guy, but at the cost of his
own life. The ending comes as a surprise and leaves you in awe. Even though
Thomas’s death is a shock, his original goal is achieved.

39The Art of Telling Stories

At the conclusion of the climax comes the denouement. Things wind down—
because the day was won. The readers see the aftereffects of all that occurred. At
this point, you want the reader to know that all the struggles were worth it and that
everything is better, now that the crisis is over. Life goes on; all is well.

Characters
The characters are the lifeblood of your story. For that reason, character creation
is the single most important step in writing stories. Every story has two types of
characters, major and minor. Just like in the movies, characters in your story can
play a major role (such as the protagonist (hero) or a supporting character) or
a minor role (extras and those guys who get killed within the first five minutes of
every “Star Trek” episode).

Know Your Roles
First and foremost is the lead character (or rather the character, or sometimes
characters, that the story revolves around). This person is the protagonist. The pro-
tagonist is the most important character in your story, so you need to describe this
person in as much detail as possible.

Opposing the protagonist is the antagonist (the bad character or factor), the second
most important character in your story. The protagonist of your story has a vested
interest in the antagonist, even if the antagonist is not a person. In reality, stories
don’t need an antagonist—the story is really about the protagonist.

What good is a world with only one or two people? For that reason, you create many
character roles in your game’s story. But be careful not to mix up your characters’
roles—either they play a major part in your story or they don’t. Minor characters
require very little attention, except when they are needed to add some support.
Characters who play a major role (the protagonist, antagonist, and supporting
characters) in the story require the most detail, the most attention. Figure 3.2
illustrates the interaction of the three most important character roles.

Your protagonist tops the list of major roles and, as such, requires the most atten-
tion. That is not to say that the antagonist gets little attention, just not as much as
the protagonist. You want the reader to form an emotional bond with the hero. In
addition, you want believable characters to play your main roles. In order to create
a believable character, you must make them three-dimensional characters.

40 3. Story-Writing Essentials

Building Three-Dimensional Characters
The three dimensions of a character, physical, sociological, and psychological, are
described in the following list. These characteristics are the most common ones
that you can use to describe a person, and in order to be complete, your story char-
acters should have these traits.

■ Physical. Traits that describe the physical nature of a character and his life,
including body type, health, and appearance. Appearances include how they
carry themselves, the manner in which they walk, how they dress, and so on.

■ Sociological. A character’s name, age, residence, job, and beliefs; his educa-
tional, intellectual, social, and economic status; and all other details regard-
ing his social development and social life.

■ Psychological. A character’s personality, manner of speech, attitude, abilities,
and emotions.

As an exercise in developing three-dimensional characters, prepare a comprehen-
sive list of your own characteristics (at least those in the preceding list); then using
this information, compose a few paragraphs that describe you—in terms of how
you perceive yourself. Don’t be afraid; you’ll be doing a lot of this kind of work
when you develop your story’s characters.

Treat these three characteristics as a set of “rules” when it comes to describing
characters. Try to assume the roles that you create, and check to see whether what
is being said and what is occurring are consistent with the characters’ traits.

41The Art of Telling Stories

Supporting Roles

Protagonist Antagonist

Figure 3.2

Supporting roles help the major characters move
along in the story.

Dialogue
They walk, they talk, and they even have feelings! That’s right, your characters are
real—at least, they are in your mind. In order for your readers to believe in them,
too, you have to write about your characters as though they are real people; give
them feelings, purpose, and history.

What’s the principal thing that you can write to help readers relate to a character?
The dialogue, of course. What your characters say has a crucial effect, just as in real
life. By listening to what people say, you can judge what type of people they are, what
they believe in, like, or hate, and sometimes even what they ate for dinner last night.

In the best stories, characters speak clearly (or at least understandably). No jive
talk, slang, or otherwise confusing lingo that’s bound to get in the way of compre-
hension. This is important, because you want your readers to understand what is
going on. Ideas are brought out in clear, concise words and get right to the point;
there’s no idle chitchat.

In addition to verbal dialogue, there’s inner dialogue, which is a person’s thoughts.
Readers need insight into the minds of characters, including their fears, objectives,
lusts, and other driving forces. Nothing is sacred in script.

Both verbal and inner dialogues are important to your story; they represent two-
thirds of how people, including your characters, are perceived (the other one-third
being visual perception or body language). Develop each character according to
his beliefs and thoughts, and be sure that they all react to each other accordingly.

Setting Mood and Atmosphere
It was a dark, stormy night. A flash of light and an ear-splitting boom rupture forth
from the gloom, illuminating the fields in a slight hue of blue and white. With each
flash of lightning, the sickly form of the approaching invader becomes more appar-
ent. Its long face, sharp fangs, and slinky red body covered in matted, bloody hair
dredge up thoughts of long forgotten nightmares. As it nears, you can feel its pur-
pose burning down to your soul—it has come for you!

Eerily, the last paragraph describes a scene you might see only in your worst night-
mares (or in your imagination). The setting is dark and foreboding, a perfect
mood for nightmarish stories. The atmosphere is heavy, creating a feeling of fear.
The poor hapless soul has bland, dark surroundings, the lightning providing brief
glimpses of an approaching horror.

42 3. Story-Writing Essentials

Those elements are very important ones in a story—mood and atmosphere.
Although only a minute portion of what could be conceivably a love story (yeah,
right), that short paragraph presents a grim mood setting and manages to set the
atmosphere perfectly. Typically, a story will maintain the mood and atmosphere it
sets early on, but those elements can change as the story progresses (from good to
bad or vice versa!). Be sure to express the mood and atmosphere in a concise and
exact way so that your readers can experience it themselves.

The Point of View
All stories are related through a particular point of view (or perspective), and an
author describes a given story’s events from that story’s particular point of view. A
story can be told from the point of view of the protagonist. Say that the character is a
woman who hears a knock on her front door; she answers it and sees a door-to-door
salesman standing on her porch. Turning him away, she returns to her activities.

An outside source able to view the entire scene sees things from a broader perspec-
tive. The tired salesman has failed to make a successful pitch all day. He stumbles
along from house to house, only to reach a pretty, small one-story abode. Inside,
Mrs. Jones is relaxing after a hard day of work. The salesman approaches the door,
rings, and soon comes Mrs. Jones to answer. As the salesman is turned away yet again
(only to trot along to the next house), Mrs. Jones returns to her previous activities.

In this second example, you can see the perspective of both characters. The form
in which you relay your story is the same; just be sure to select one point of view
and stick with it.

Generally, stories are written either in first person (the “I” perspective) or third person
(the he/she perspective). When writing in first person, you tell the story from a
character’s point of view or from the perspective of a narrator who is an eyewitness
to the events of the story—note that this narrator is not the author and might or
might not be reliable.

When writing in third person, you generally write from the point of view of the
effaced narrator or the omniscient narrator. The effaced narrator can have a fixed
point of view (focusing on the perspective of only one character) or a broad per-
spective. The omniscient narrator intrudes into the story with editorial comments,
judgments, forecasts, and so on. The primary difference between the effaced narra-
tor and the omniscient narrator is intrusion.

Be careful not to switch the point of view mid-story; doing so can cause confusion
for the reader. Even though you should not switch the point of view, it is perfectly

43The Art of Telling Stories

plausible to switch the focus from one character to another—but do so sparingly
because that might also cause confusion.

Your Narrative Voice
The language you use, the style you employ, and the details you describe are all a
matter of choice. This is the power of prose, and the manner in which you relate
your story is called your narrative voice. Authors with a strong narrative voice bring
life to their imaginary worlds, describing the details in a special way, making you
believe their stories are real. You, too, need to develop a strong narrative voice.
Here are a few tips for doing so:

■ Choose descriptive words. The reader wants to understand what is occurring, in
the least number of words. Choose descriptive words and don’t be redundant.

■ Use clear and concise language. Don’t fill the text with jargon and slang that
only a limited number of people will understand. The members of your
intended audience should all be able to understand and enjoy your story.

■ Balance the flow. Action, adventure, love scenes, and dialogue—there’s a
place for all of these elements in your story, but space and balance them
appropriately. Don’t overload too many scenes with too much of one ele-
ment, or too little of another.

■ Keep a good pace. To keep your readers interest, try to maintain a pace that
keeps them on the edge of their seats at all times.

■ Use emotion. Just as in real life, emotions cannot be underestimated.
Emotions cause wars and create peace. The bottom line—use emotions
freely and portray them just as they happen in real life.

■ Maintain one point of view. If you begin relaying a story from the main char-
acter’s point of view, don’t switch to another point of view (don’t switch from
a first-person perspective to a third-person perspective).

Plots, Subplots, and Twists
The plot is your story’s bread and butter. It carries the story from beginning to
end. The plot is sometimes confused with the premise, which is a quick, simple
description of the story—“The good guy gets mad at the bad guy and hunts him
down.”

The plot, on the other hand, consists of the major points of the story. Remember
the story ladder I mentioned in the section “The Story Ladder and the Three

44 3. Story-Writing Essentials

Acts,” earlier in this chapter? The inciting incident, obstacles, and climax are all
part of the plot. As an example, try to describe your day. Although much of it
might be dull and drab, the major experiences are what make it count and are
what you want to concentrate on.

Plot Twists
Along the way, a story presents the reader with the turn of events—the turning
points. As I mentioned earlier, these are called plot twists and are essential to good
storytelling. You don’t want readers to be wondering what will happen next. You
want that to come as a surprise. Change the way the story flows much as Figure 3.3
illustrates. When the “twist” of the story events finally hits them, everything they
know and understand about the story changes.

You can pack your story with twists; however, don’t use so many that readers wind
up continually scratching their heads trying to figure out what is going on. The
path from crisis to resolution is still there, but twists change things a bit, sometimes
they even introduce the real crisis or resolution. Just don’t let readers lose sight of
the real goal once it is introduced.

Subplots
Although not essential, a subplot is an “off-to-the-side” series of events that occur
during the main plot. Think of the subplot as a story within a story, one that doesn’t
take away from the main plot. You can use subplots to build the reader’s relation-
ships with the characters or to reveal the characters’ past.

45The Art of Telling Stories

Plot Point

Story Flow

Plot Twist

Plot Point

Plot Point

Figure 3.3

Plot twists are great for shaking up a story
or for turning a story in a different direction.

The Writing Process
While I’m in no way a literary prodigy, I found that by following some simple rules
and guidelines, I’m able to better structure, develop, and finish writing my stories.
Time-tested and proven, the following information is no secret—it’s fairly standard
in the writing industry. As you read the following guidelines, try to relate them to
your story (whether that story is on paper or still in your mind).

Eight Rules to Writing
In my experiences, there really are no ironclad rules to writing—the most creative sto-
ries come from unhindered thought. However, you can follow guidelines that will help
make your stories more appealing. I find that by adhering to at least a few of the follow-
ing guidelines, I’m better able to convey my story, make it more to the point (without
losing clarity), and write so that the story appeals to a wider audience.

■ Don’t overwrite. The number one guideline is don’t overwrite. At the begin-
ning of the writing process, let your creative juices flow and write anything that
comes to mind. As your story takes shape and nears its final draft, begin cutting
out the “dead-weight,” leaving only the content that actively conveys the story.

■ Don’t explain too much. The mind’s world is a wondrous place; every little
pebble has a story behind it. You’re bursting at the seams to flood the reader
with every minute detail about this fantasy world you’ve created, but wait!
Too much of anything can diminish the experience. Even though details
add to an experience, too many can hurt your story. You must decide which
aspects of the story are important enough to require extra details—even
then, try to keep the details to a minimum. The tension is always between
what the readers need to know and what they don’t need to know.

■ Be consistent. You’ve already selected your narrative voice, character bios,
story atmosphere, and all the other little facets that construct the base of
your story. Here’s a word of advice—stick to them! Nothing can ruin all your
hard work more than straying from your intended path. Don’t switch scenes
at inopportune moments, don’t present facts at improper times, don’t
change the characters’ personalities, and don’t change the narrative voice.

■ Use good language structure. When writing your first draft, use shorthand,
abbreviated words, symbols, and simple phrases to speed up your writing.
When writing the second draft, however, be sure to replace those words and
symbols, being sure to use proper spelling, grammar, and punctuation—
unless you’re striving for a particular effect.

46 3. Story-Writing Essentials

■ Don’t over or under spice. Although spicing a story with elaborate words can
sometimes give the story a certain creative flare, there is a fine line that you
don’t want to cross. If readers have to rely on their dictionaries more than
once per page, they might put your story down and move on. If you are an
aspiring writer, just remember that cooks spend a good deal of time testing
spices in their recipes before achieving the perfect taste. You, too, will want
to spend a bit of time achieving the perfect balance in your writing. Work
with your text until you’ve added just the right amount of spice. The text
should be neither bland nor overpowering; it should be just right.

■ Be clear, concise, and to the point. This guideline comes into play after your
first draft. Read your text and see if you can make your point in, say, half the
number of words that are in your first draft. Cut out unnecessary words and
make sure that the remaining text gets to the point.

■ Don’t force your opinions or views. Life is hard enough without someone
constantly telling you what to do, say, think, or feel. Readers are intelligent
and capable of choosing their own paths, so don’t force your opinions or
views on unsuspecting readers. Specifically, you don’t want to feed readers
your opinions on matters that do not directly relate to the story. Allow read-
ers to develop their own opinions and points of view. In other words, write
your story so that you stimulate readers to use their own opinions and views.

■ Have fun. I can’t say this enough. If you are not enjoying what you’re writ-
ing, why are you writing it? Your attitude is reflected in your work, and if you
are enjoying what you are writing, your words will reflect that pleasure. The
journey you take as a writer is wrought with many perils, but the rewards are
great. At the end, you will have a “masterpiece” to call your own!

Six Steps to Writing
I have found that by following six easy steps, I’m able to maintain flow and order in
the chaos called creative writing. While not comprehensive by any means, these six
steps help form a base from which to work:

1. Begin with thought and planning. Think about what you want in the story;
take notes, brainstorm, write down little blurbs that come to mind, and keep
a running document of everything you can think of. It doesn’t matter how
big or small your ideas are, write them down!

2. Shape your thoughts. Using the information from the first step, begin to
mold your ideas into a plausible structure. Introduce major topics before

47The Writing Process

talking about them, and introduce characters and give them purpose. Bring
together everything that you intend to include in your story.

3. Write a draft. This is the first big step you’re going to take in actually writing
your story. Take the thoughts and ideas that you’ve begun to shape and write
about them. Follow the standard flow for writing stories: introduce characters
and provide back-story (the who, what, why, where, and how that got them to
that point in the story), introduce the conflict, establish and lay out the plot
and the plot twists, and finally lead up to the conclusion.

4. Revise your work. Writing a good story is an ongoing process of writing,
updating and revising, writing some more, revising some more—you get the
picture. There’s never an end (especially for perfectionists like me!), but you
will reach a point when you’re happy with what you’ve molded. After one
more draft, you’ll reach a point where you want to remove the unnecessary
parts and polish your text to perfection!

5. Edit your work. When you complete your story, edit it to make sure that
you’re using proper punctuation, look for misspelled words, check for
proper grammar, and look for other kinds of errors.

6. Proofread your work. At last it is time to share your story with others! Give
your story a complete reading, keeping in mind your intentions for the story.
Imagine that you are reading it for the first time. Now, ask a friend to read
it and to give you his reaction to the story. Don’t feel badly about constructive
criticism; it helps you gain a better perspective. If needed, rewrite portions of
the story. Remember, you want a great story!

The preceding steps and their descriptions are meant strictly to serve as a quick
reference. Now, I want to describe each step in greater detail.

Thought and Planning
The first step is to pick a topic for your game’s story. This topic is usually the basis
of the game. Imagine that your “topic” is that an evil wizard is terrorizing a small
town and the hero needs to destroy the wizard.

However, that topic is fairly broad, so you need to narrow it a bit. Why is the wizard
doing this evil deed? What led to his actions, and how is the hero involved? There
must be a purpose for everything that happens. Even though many games don’t tell
you why, a hero needs a reason to be there (even as generic as showing up and feel-
ing justified in helping the needy).

48 3. Story-Writing Essentials

TEAMFL
Y

Team-Fly®

You don’t have to include the specifics for every detail yet; just keep writing all your
thoughts. To expand on the wizard story, imagine that you’ve brainstormed and
determined the hero was a child at the time the wizard was banished; it’s the hero’s
village that is being tormented by the now vengeful sorcerer. Just write that down as
a note and move on.

This stage in the writing process might take a while. It’s time well spent, however,
because it is where you’ll have the most fun fleshing out what occurs throughout
your story. Keep adding notes until you feel you have enough information to pro-
ceed to the next step.

Shaping Your Thoughts
After you have a sufficient collection of ideas (all written down, of course!), you are
ready to put them together. Your goal here is to clarify the generalized information
contained in your notes. For example, characters in your story need a history and a
reason for being involved (the back-story). What events led them to their present
situations?

Situations such as the evil wizard terrorizing a town need a purpose as well. Most
things don’t just happen, they happen for a reason, and you need to reveal and
“build up” those reasons. For example, why is the town being attacked? Why was
the wizard banished in the first place? What in the child’s past causes him to
defend the village?

The bottom line is that you must make your story plausible; the reader must be
able to believe that the story could happen in real life (if not in their lives, then
in the life of the hero). Even if you base your story on fantasy, the world needs to
seem plausible. Although you don’t want to go into explicit detail about everything,
remember that the little details are what make your story believable.

Writing a Draft
This is your first chance to begin actually writing your story. Taking your notes and
ideas from the previous two steps, begin writing your story. Start at the beginning
and make it all flow together. It helps to create a timeline of major events that
occur in your story, filling in the gaps between those events as you write.

Make sure that you lead up to major topics; you don’t want to introduce them too
quickly. For example, if you’re writing a story about the evil wizard that takes over
the village, be sure to describe his history and the events leading up to that point
(even if that point is not at the beginning of the story). If you jump right into the

49The Writing Process

attack on the village, you rob your readers of crucial background information that
might help them actually care why the wizard is attacking the village or what is
motivating the hero.

You need to describe important characters in great detail. Give them traits with
which the reader is sure to associate, weave a history that brings the reader and
characters closer together, and provide the characters with a personality that gives
them a foundation from which you can build.

Continuing with the wizard story, say that the hero was an innocent child who fell
victim to the wizard’s previous misdeeds
and that the wizard was banished from
the village for his actions. These mis-
deeds could conceivably have been the
invocation of an evil spell that led to the
destruction of the hero’s family, home,
and farmland.

As you develop the history of the child
(now alone in life since the loss of his
family), readers should understand (and believe) that the child’s upbringing
molded him into a strong person-of-the-land with a snappy attitude. Although life
was hard, the hero remains of good heart and doesn’t want the home village to fall
into the hands of the wizard, the very character who years ago harmed the hero.

Revising the Story
Just because you’ve written the last page of your story doesn’t mean that it’s com-
plete. Now it’s time to go back and fix all the inconsistencies, all the drawn out sec-
tions, and the portions that have nothing to do with the situations at hand.
Basically, you want all the pieces to fall into place, and you want your story to
“sound” just right.

You can do many things to improve your story. Read and evaluate each sentence.
Does it relate correctly to the story or does it need to be cut? Is it dull or boring?
The best way to dress up a dull sentence is to give it a little spice! Add some color-
ful language that preserves the meaning of the sentence. One resource for such
words is a thesaurus.

Once you’ve gone through the story and think that every sentence sounds just
right, you are ready to edit your work.

50 3. Story-Writing Essentials

NOTE
Don’t go overboard on developing the
characters’ personalities. Remember
that players of games generally like to
develop those personalities.

Editing
Here comes the dirty part! Now you get to have fun going over your work and mak-
ing sure that you are using proper punctuation, spelling, and grammar. Basically,
you get your story into a presentable form.

I hate to sound like your high school English teacher, but using proper sentence
structure is essential. Use proper noun, verb, and adjective placement and agree-
ment while writing in order to maintain clarity. Your best tools here are a dictio-
nary and a thesaurus (which are usually built into word-processing programs, such
as Microsoft Word).

You’re close to being finished, so don’t give up. You have only one more step to go!

Proofreading
At this point, take a break for a day or two. Move on to some other portion of your
project and get the story off your mind. The purpose here is come back with a
fresh mind. Read the story slowly. Authors tend not to see their own mistakes, so
scrutinize every word of every sentence. Again, does the story flow logically? Are
major topics introduced too quickly or without a proper build up?

Let others read and judge your story as well. Have them tell you exactly what they
think about the story. Is anything missing, confusing, or unneeded? Don’t be
offended by their criticism; every little bit helps. In the end, you’ll thank your
friends for helping you create your literary masterpiece!

Writing the Three Drafts
No writer can sit down and write a story all in one round. Small inconsistencies
emerge, dead-ends occur, and drab portions make the text sluggish. For those rea-
sons, you should write a minimum of three drafts. As illustrated in Figure 3.4, those
three drafts have a definite purpose of their own.

The Rough Draft
You write the first draft just to get everything in there. This draft gives you a good
understanding about how your story will unfold, bonds you with the characters,
and pretty much ensures that you have a firm grip on the story. Don’t worry too
much about this draft; just write until you reach the end.

51The Writing Process

The Revision Draft
Here’s where you get to clean up the problems with the story. Now, you can edit
and add better details, introduce topics at the appropriate times, remove inconsis-
tencies, and basically brush up all that you’re not happy with. By the end of this
draft, everything is in order and no unanswerable questions regarding the story
should come up.

The story is almost finished—don’t undercut yourself here; think of this draft as
your last opportunity to add or revise your text. Be sure that you’re completely
happy with the results before moving on.

The Cut-and-Polish Draft
The final draft represents your story honed to perfection. Now you remove irrele-
vant portions, shorten long sections (while maintaining meaning), and polish the
details. You basically are checking to see whether you can convey your story in
fewer words, but with more flare, all the while maintaining its integrity. When you
finish this draft, your story is complete. Congratulations!

Tips for Better Stories
Stories are rarely clean-cut, beginning to end ordeals. Breaks in action occur, the
focus of the story might shift from one character to another, and some out-of-the-
way bits of information might need to be blended in to fully develop the story. How
you deal with the details is entirely up to you, but by using techniques in the follow-
ing sections, you can breathe new life into an otherwise drab story.

52 3. Story-Writing Essentials

The Three Drafts

Rough Draft Revision Draft(s) Cut-and-Polish Draft

Figure 3.4

The three drafts
separate your writing
process into three helpful
steps.

Back-Stories
Have you ever noticed that owners of antique shops have a tendency to trap you for
what seems like hours, telling you the story behind every piece of furniture in their
shops, adding proof to the notion that there’s a story behind everything. This
should certainly be true for your story.

Your characters have a past—the reasons for the who, why, what, and where of their
lives—that needs to be explored. Everyone (and everything) has a back-story. It’s
your job to explore and relate these back-stories in a structured and useful way.

Flashbacks and Cut-Scenes
Anytime action is taking place outside the current point of view (in location or
time), it’s appropriate to cut to another scene, hence the name cut-scenes. A flash-
back is a cut-scene of a special type, usually in the form of a memory from a differ-
ent point of view. For example, the character might remember something that
happened in the past, something that is relevant to his quest. Think of a flashback
as a momentary break in the action of the main story.

However, cut-scenes can break the flow of the story to a greater degree. Think of
a cut-scene like this: While describing your day to a person, you stop midway and
allow your buddy to tell you about his day up to the time that you two met. The
story continues with the two of you together for the remainder of the day.

By taking two different points of view (yours and your friend’s), you have most
effectively used cut-scenes. By relating the stories of individual major characters,
you can weave their individual stories together as the climax approaches and
develop a strong relationship between the characters and reader.

Foreshadowing
Remember back to when you were a child. Perhaps you were playing in a field and
tripped over a small rock, only to come face to face with a huge, scary garden
snake (remember, you were a kid then, so every creature was huge and scary). You
were so frightened by the experience that you could never look at a snake again
without fear. Now, you find yourself standing knee deep in a pit of snakes (garden
snakes at that), paralyzed and praying for some higher power to save your life.

Another person might not understand your fear—they’re just garden snakes. But
they are witnessing the scene from their perspective; they did not have the horrible
experience of your childhood. That’s where foreshadowing comes in handy. You

53Tips for Better Stories

can use foreshadowing to reveal the reason behind something (in this case, you
might show the person standing in the pit of snakes, remembering his childhood
experience through the use of cut-scenes).

Here’s another example of foreshadowing. Imagine that a story’s main character is
standing in front of a bomb, wire cutters in hand. Two wires stand between victory
and death. Thinking back (foreshadowing), the hero remembers the bomb-diffusing
class he took last year at the YMCA; thankfully, he chooses the correct wire (thanks,
the reader assumes, to the class).

Don’t Say It—Experience It
You need to immerse readers in the details of a story. You want readers to see the
whole scene; you want them to imagine that they are experiencing what they are read-
ing.

Here is an example of what I’m talking about: Jane opens the front door. There is
a light wind, and she can smell the flowers in her garden. She remembers planting
those flowers many years ago. The sun begins to rise, and she shades her eyes as
she looks across the street at something that is moving.

Now, read this next paragraph, which is a rewrite of the previous one: As Jane
opens the door, a slight breeze caresses her, carrying with it the light scent of roses.
The soft, sweet smell triggers long lost memories of when she and her young
daughter worked together to plant those lovely flowers. Those days are long past;
her daughter is grown and has moved on with a life of her own. The morning sun
begins to peek over the horizon, casting a glorious shade of yellow over the street.
Jane, lost in her memories, instinctively raises her hand to shield her eyes. From
across the way, she catches a glimpse of a figure moving behind the bushes.

Although both paragraphs say basically the same thing, the second one provides
more detail. As you can see, in a small space, you can convey numerous details
about a character’s past and bring the reader closer to “experiencing” the events
(you can build the reader’s relationship with the character as well).

Harnessing Emotion
Emotion plays a major part in our daily lives, and in order to write a compelling
story, you need to use emotions to their full potential. If you’re having trouble
doing so, just image yourself in the same situation that your story’s character is in.
Don’t worry, no one will see you doing this, so just get out of that seat and into the
role! If your character is angry, experience it yourself and then make that emotion

54 3. Story-Writing Essentials

obvious in the story (don’t be afraid to do the same with a sad or gloomy emotion).

Anger and sorrow are two of the most powerful emotions you can harness, and
learning to use them correctly is essential. To see what I mean, consider the movie
Titanic. Now, truthfully, how many of you teared up when the hero, Jack, was finally
released into his watery resting place?

Take the movie The Fifth Element. In that movie, the sly and villainous Zorg was so
evil that you gritted your teeth every time you saw his ugly mug. If this guy were for
real, you’d be jumping in line with everyone else to kick him in the rear! Now,
imagine that same evil guy, only a little kinder—he doesn’t provoke as much emo-
tion, does he?

The major emotions you’ll want to use in your story are as follows:

■ Anger

■ Sorrow

■ Happiness

■ Fear

■ Excitement

■ Humiliation

■ Depression

Studying the Greats
Before embarking on your story-writing journey, I first suggest you do a little
research. The best way to learn how to write a good story is to read stories written
by other people, stories by authors who understand how important it is to use emo-
tion, concentrate on detail and realism, and who present it all to you in a manner
that keeps you glued to a book until you read the last page.

Which authors, you ask? Since I am stuck on the fantasy theme, how about J.R.R.
Tolkien and Thomas Donaldson. Their writing methods are so ingenious that they
can make the tiniest details explode into life, filling your head with wondrous
images of distant lands filled with magic and mayhem.

Each author has his own style. J.R.R. Tolkien effectively uses cutaways to slowly
introduce you to the story’s characters one by one and to lead them (and you)
through their trials and tribulations all the way to a major event. At that point, he
immediately switches to the next major character, leaving you wondering what hap-
pened to the first (in a cliffhanger sort of way). Once the characters are introduced

55Tips for Better Stories

and you’re left wondering what happened to them all, he brings them together and
explains what has occurred.

This method of writing keeps readers guessing all the time, plus it forces them to
always be wondering what happened to the other characters. If you haven’t had a
chance to read any of Tolkien’s works, do yourself a favor and find a copy of The
Hobbit or The Lord of the Rings trilogy.

The next author, whom I highly recommended earlier, is Stephen R. Donaldson.
His style of dressing up even the smallest details creates a story so intriguing that
you can actually imagine you’re there along with the hero, struggling with this
character until the final moment of glory when the story comes to its ultimate con-
clusion. One of his greatest fantasy forays is the Chronicles of Thomas Covenant series,
mentioned earlier in this chapter.

It’s hard to relate these stories to games at times, and it goes without saying that
some games have better stories than others do. Look at the Final Fantasy series
created by Squaresoft; they all have huge and intriguing stories, plus the benefit
of having the player act as the hero (or at times multiple heroes). Their method of
cutaway storytelling is similar to Tolkien’s: Introduce a character, then switch to the
next, and later come back to end the story with all the characters together. You,
too, can write amazing stories using cutaway techniques.

Applying Stories to Games
While writing a story is one thing, applying it to your game is another. Game stories
don’t progress in the same way; instead, they progress section by section. The
player of the game becomes the hero, and it becomes harder to create the story
from an outside viewpoint.

For this reason, you need to write your stories based around the player (a first-per-
son viewpoint). Keep in mind that if you write a story in a different point of view
(which for all purposes is better for the story), you must decide later on how to
change it to a first-person point of view.

Dialogue is also different. Whereas a story has a set dialogue, a game can have dia-
logue that changes, depending on the choices of the player. These choices might
even change the outcome of your story, in either a minor or a major way.

The best way to convert your story (or even start the story) for game use is to take a
small portion and experiment. First, break it into its major components: dialogue,
plot, and flow. Remember, the flow of a story in a game is based on the actions the

56 3. Story-Writing Essentials

player takes, not on a flow developed by the author.

Enveloping the Player
The biggest thing to remember is that the story must wrap around the player—that
is, the player should be involved in all aspects of story. This means that you should
write from a first-person point of view. Everything happens around the player, and
you should never let the player experience anything beyond his own perceptions.

It does help, however, to relate those portions of the story outside the player’s per-
ceptions within a cut-scene. Although the player, in all reality, does not have a way
of knowing what is happening across the world, a cut-scene might reveal the actions
of another character (one who plays a major or supporting role).

Remember that the player’s actions are the driving force behind the story’s move-
ment, so make sure that the player experiences all aspects of the story.

Breaking Up the Plot
The plot represents the major events in a story. However, how different players
move from plot point to plot point might differ. As illustrated in Figure 3.5, it does-
n’t matter what the player does, just as long as he reaches the plot points. If you
properly convey the story’s situations, players can experience the whole story just as
though it was created at their own pace.

One way to accomplish this is to use scenes, which are a preset series of events. For

57Applying Stories to Games

Plot Point

Story Flow

Plot Point Plot Point Plot Point

Game Story Flow

Skipped
Plot Point

Plot Point

Plot Point

Plot Point

Figure 3.5

Although the story plots are linear, the
author can break them up and separate
them as the game develops.

example, after you open the locked chest hidden in the temple, a scene begins in
which you must escape the now-crumbling temple. This scene covers an entire plot
point—the point at which you found the chest and must escape the device of the
self-destructing template. Every player must go through the same sequence, as it is
a major plot point.

Not to confuse you, but scenes can also be cinematic cut-scenes that reveal portions
of the story. For example, if you open the hidden chest, the game-play stops, and
the player is treated to a full-motion movie of his or her character narrowly escap-
ing death from the collapsing temple.

Linear and Nonlinear Story Lines
Games rarely have a clean-cut beginning-to-end story line. Although the main plot
is always there, subplots are introduced that pepper up the experience, even
though they might have nothing to do with the main plot. The player might not
experience these subplots, but adding them gives your game the added replay
value it needs to keep players coming back for more.

Also, stories can be dynamic. That is, the story can change as the game goes on,
based on the player’s actions. Heck, there can even be multiple endings to a story
that always starts the same. How do you handle these multiple ends? By writing
them, of course!

If you’re writing a story from scratch, keep notes and mark positions in the story
that represent a change in the plot. You then follow this branch, conveying the
viewpoint created by the player’s potential decisions. As you branch off, continue
to write the story, keeping in mind that the player will alter something or other
that will change the remainder of the story.

During the course of writing a nonlinear (or even a linear) storyline, you might
find it helpful to track the branches, much like I did in Figure 3.6. At every plot
point, I branch off to possible outcomes. This branching outline continues until all
the plot points are outlined.

Of course, I’m assuming that the story is linear, flowing from beginning to end,
and that it is pretty much laid out by the author. Nonlinear stories, on the other
hand, don’t depend on a beginning-to-end flow. In these stories, the end can always
be within range, but not yet achievable (or it’s too difficult to handle at this point).
With nonlinear stories, the games twist in ways that don’t provide a good story

58 3. Story-Writing Essentials

TEAMFL
Y

Team-Fly®

experience unless all aspects of the game are searched for and discovered.

Dialogue
Unlike in a book, dialogue in a game is usually verbal; there’s very little (if any)
inner dialogue. For that reason, a story that uses more verbal dialogue is essential.
You can effectively convey feelings or thoughts to the player through the use of
foreshadowing and flashbacks.

When it does come time for verbal dialogue, you need to separate it from the text
of the main story. The purpose here is to form a movie-script–like breakdown of
every possible conversation that can take place in your game. If you’re creating a
clear-cut game, where everything is the same every time the game is played, this
separation of dialogue is a simple task—the dialogue remains the same no matter
what happens.

But what about dynamic dialogue? The conversation changes based on the possible
decisions made by the player. Just as your story can branch off, so can the dialogue.
At every conversational point in the game, it pays to write the text based on the
choices that were made earlier.

59Applying Stories to Games

Plot Point

Plot Point

Plot Point

Plot Point

Plot Point

Plot Point Plot Point

Beginning of Story

End of Story End of Story

Figure 3.6

It helps to track the plot points in your story, especially
if they branch off.

Imagine that in a game, you meet a conceited store clerk. You praise him about his
charm, and you purchase a rare weapon at a good price. However, your language
offends him, and rather than receive your praise and purchase, he prefers to teach
you a few, new words in his native tongue. He becomes so offended by your further
choice of words that he has you arrested! How will that change your story?

Involving the Design Document
Don’t forget about your design document! Remember those story-related sections
you have to fill in? Now is the time to take the story, individual plot points, and dia-
logue, and put those into their appropriate positions within the design document.

Later on in the game’s creation (specifically when it comes to map design, script-
ing, and characters conversing), you’ll need to start referencing these story compo-
nents from the design document. The locations in which the players can visit
during their travels need to be related using graphics that help convey their respec-
tive descriptions in the story. Using a 3-D engine such as the one developed in
Chapter 12, “Creating 3-D Graphics Engines,” and Chapter 13, “Mixing 2-D and
3-D Graphics Engines,” is perfect for your map needs.

As for scripting and characters’ dialogue, using the methods developed in Chapter 14,
“Implementing Scripts,” and Chapter 16, “Controlling Players and Characters,” is
perfect for relaying the dialogue and controlling the flow of the story in the game.

Wrapping Up Stories
Stories play a major part in role-playing games, and a good story is what makes
certain games stand out more than others. Think back to the two best role-playing
games you’ve played and compare the stories to the two worst games you’ve played.
I’ll bet many of the differences are related to the stories! You want your game to be
one that players fondly remember.

In this chapter, you discovered the basic structure and guidelines for writing stories
and how to convey those stories in your game. As I said earlier, a good story is what
makes certain games, and using the information in this chapter, you can enhance
your stories. In addition to using the information in this chapter, I suggest picking
up a book on writing short stories. I find that short stories get right to the point of
the story, thus holding my interest (refer to Appendix C, “Recommended
Reading,” for one such book).

60 3. Story-Writing Essentials

Part Three

Programming
Basics

4 Starting with C++

5 Programming with Windows and
Application Basics

6 Drawing with DirectX Graphics

7 Interacting with DirectInput

8 Playing Sound with DirectX Audio

9 Networking with DirectPlay

10 Creating the Game Core

CHAPTER 4

Starting
with C++

You’ve been reading the newest books, browsing the latest magazines, and
downloading all the code from the Internet that you can get your hands on.

With so many resources out there, you’ve finally decided to take the plunge and
learn C++. Let met tell you, it’s going to be one heck of a ride, but it’ll be worth
every penny of it.

With C++, you’re thrown into a whole new dimension of programming. Don’t
worry, you’re still able to rely on the standard C code you’ve grown to know and
love (C++ merely builds on C), but you now have at your fingertips the enhanced
features that C++ provides.

Features like object-oriented programming enable you to create modular code
you can use over and over in your different projects, all with little to no recoding.
Other features include useful new keywords, enhanced function-calling capabilities,
structure handling, and so many more additions that I could go on forever!

While most beginners look at the most advanced features of C++ first, the only real
way to learn is to start at the bottom with what you already know in C. With the
help of this chapter, you can use C++ in a step-by-step manner, getting the easiest
stuff first and then moving on to the more advanced topics. Before you know it,
you’ll be a C++ expert!

In this chapter, you do the following:

■ Learn about object-oriented programming
■ Work with functions and variables
■ Take advantage of new keywords and features
■ Find out about constructing and using classes
■ Use advanced structures

Introducing C++
C++ is an object-oriented language, so you need to think in those terms. Object-oriented
programming, or OOP for short, involves creating program code that enables you to
group sets of instructions into packages known as objects. An object can represent
anything: your player character, a weapon, or even the world. Although these

64 4. Starting with C++

objects “know” only about themselves, they are constructed so that outside objects
can work with them. That is, the data within these objects is self-contained and is
shared only through exposure, which means that an object hides its data, except
for the data that outside sources are allowed to access (as illustrated in Figure 4.1).

A world object, for example, takes care of only itself, but if I want to know the tem-
perature at a specific point on the globe, I ask the world object for this informa-
tion. A player character object, on the other hand, might be able to tell me its
health or its position in the world.

Object-oriented programming introduces a whole new way of structuring your code,
and learning how to cope with this change does take time. You’re not only dealing
with OOP, but also with C++ in general. With so much to take in, where can you
start? How about with what you already know, C, and building up from that.

Moving from C to C++
C++ is considered a superset of C, with C++ bringing you a bunch of new object-
oriented features and enhancements to existing C coding methods. You don’t have
to use the new features, but it helps a lot to be familiar with them.

First, instead of using the .c extension,
C++ source files use the .cpp extension
(as do all the source files included with
this book). All header files still use the .h
extension. Most compilers will automati-
cally compile the code as C++ because of
the extension, but please make sure this
is the case with your specific compiler.

Probably the most obvious place to start
is with the new features that C++ gives
you when working with functions.

65Moving from C to C++

Outside Sources Private Data Visible Data

Object

Outside Sources
OK!

Figure 4.1

An object contains
internal information
that outside sources
can, or cannot, access.

NOTE
At this point, I’m assuming that you
are familiar with the C programming
language. Although you don’t need
to know all the idiosyncrasies of C,
you should understand its basic pro-
gram flow, structure usage, pointers,
and other general information.

Working with Functions
C++ brings a whole new world of defining and calling functions. The improvements
are handy, but you’re not required to use them all. Take your time and get familiar
with these new features; they’re powerful assets in your programming arsenal.

Function Prototyping
The most important rule when working with functions in C++ is that you should
provide a prototype for each one (for reasons that will soon become apparent).
Appropriately, this method is called function prototyping.

Typically, function prototypes are placed
in a header file (.h), with each source
file including the header as needed. For
example, say that you want a function
that adds two numbers. It takes two
numbers as arguments and returns a
summed number, all using a long data
type. Here’s what your function proto-
type and code might look like:

// Function prototype - placed inside a header file (.h)
long AddNumbers(long Argument1, short Argument2);

// The actual function - placed inside a source file (.cpp)
long AddNumbers(long Argument1, short Argument2)
{

return Argument1 + Argument2;
}

Instead of declaring variable names in the function prototypes, you can specify only
their data types, leaving the variable naming to the actual function code, as in the
following:

// Function prototype
long AddNum(long, long);

// Function code
long AddNum(long Num1, long Num2)
{

return Num1 + Num2;
}

66 4. Starting with C++

NOTE
Function prototyping is the method of
predefining a function-calling conven-
tion so that other program code calling
on that function knows how to use it.
This function prototype includes return
data types and calling arguments.

Previously with C, you didn’t really have to prototype a function in order to call it.
The compiler merely created the prototypes, figuring out the arguments and return
types as best it could. Why then do you have to prototype all your functions? There
are a few reasons why, the first being something called default function argument values.

Default Function Argument Values
Function arguments can now have default values assigned to them, which saves you
time and space because you don’t have to type frequently used argument values.
For example, say that you have a financial program that takes a loan amount and
adds an interest percentage to it.

Suppose that the standard loan amount is $10,000 and the interest rate is normally
set at eight percent. You’ll want to prototype the function to use the default values
for the arguments. Here’s what the sample prototype looks like:

float AddInterest(float Amount=10000.0, float Interest=0.08);

You can see in the preceding function proto-
type that Amount has a default value of 10000.0
and Interest has its default value set at 0.08,
both of which the compiler will substitute if
the calling function does not include it.

Here’s the function in use, along with the
different methods of calling it:

// Function prototype
float AddInterest(float Amount=10000.0, float Interest=0.08);

// The actual function - no need to add default values to line
float AddInterest(float Amount, float Interest)
{

return Amount * Interest;
}

main()
{

float Amount;
Amount = AddInterest(30000.0, 0.07); // Figure $30,000 at 7%
Amount = AddInterest(20000.0); // Figure $20,000 at 8%
Amount = AddInterest(); // Figure $10,000 at 8%

}

67Moving from C to C++

TIP
Place default argument values
only in the function prototype.
You don’t need to place them
in the actual function.

Function Overloading
While assigning default argument values is a good reason why you should prototype
all functions, probably the biggest reason is the introduction of function overloading.

With function overloading, you can provide
many functions that share the same name
but differ in their arguments. In this way,
you can construct two (or more) functions
that share the same name but accept data
provided in different ways.

For example, you can construct one func-
tion that takes a few individual variables as
arguments, or those variables can be
wrapped in a structure and have a
pointer to that structure passed to a sec-
ond function of the same name.

Overloading ensures that the compiler
knows what functions to call. In Figure 4.2,
notice that the object in the middle
(compiler) poses questions and the
arrows show possible functions to call
with the same name.

68 4. Starting with C++

CAUTION
If you omit a value, leaving the compiler to use the default, you have
to omit the remaining values as well. In the AddInterest example, if you
omit Amount, you must also omit Interest (and any other arguments
that follow).

The only problem with this is that all following arguments must also
have default values assigned, or the compiler will complain.Take the
following function prototype, for example:

float AddInterest(float Amount = 10000.0f, float Interest);

Because no default value for Interest is provided, the compiler will
again complain if you call AddInterest with less than two values:

AddInterest(10.0f);

NOTE
Function overloading is the method
of providing multiple prototypes
of the same function, each with a
different set of calling arguments.

NOTE
Internally, compilers encode function
names with a list of their argument
types as a way to easily distinguish
one function from another of the
same name.This encoding is called
name decoration or name mangling.

TEAMFL
Y

Team-Fly®

Look at the following bit of code, which prototypes and defines two functions that
add numbers, both using the same function name (with different arguments):

// Function prototypes

// Add 2 numbers
long AddNumbers(long Num1, long Num2);

// Add an array of numbers
long AddNumbers(long *NumArray, long NumOfNums);

// Function code
long AddNumbers(long Num1, long Num2)
{

return Num1 + Num2;
}

long AddNumbers(long *NumArray, long NumOfNums)
{

long Result, i;

Result = 0;
while(NumOfNums—)

Result += NumArray[i];

return Result;
}

69Moving from C to C++

FunctionCall (#,#); FunctionCall (#);

FunctionCall (1,2)?

FunctionCall (*ptr);

Compiler

? ?

?

Figure 4.2

Functions can have the same
name but different argument lists.
Prototyping functions ensures
that the compiler doesn’t get
them mixed up.

These two functions can coexist in a C++ program because of function overloading.
The compiler will distinguish which function to call based on the arguments you
pass to the function. So, the following two functions calls are valid:

Result = AddNumbers(10, 20); // Result = 30
long Array[5] = { 10, 20, 30, 40, 50 };
Result = AddNumbers(Array, 5); // Result = 150

Inline Functions
Programmers are stuck with the old expression, to gain speed you must sacrifice
space, and vice versa. You can give your code a slight increase in speed a couple of
ways—but at the cost of a bigger executable. One of these ways is to signify func-
tions as inline.

By preceding your function declarations with the keyword inline, the compiler will
place an actual copy of the function code at the calling location rather than push
everything on the stack and call the function (as in Figure 4.3). This means that if
you call the function five times, the function code will be inserted into the exe-
cutable five times at the calling locations.

Here’s an example that uses an inline function to add two numbers:

inline long AddNumbers(long Num1, long Num2);

long AddNumbers(long Num1, long Num2)
{

return Num1 + Num2;
}

main()
{

long Result;
Result = AddNumbers(10, 20); // Code to AddNums inserted here
Result = AddNumbers(11, 6); // Code to AddNums inserted here
Result = AddNumbers(1, 13); // Code to AddNums inserted here

}

Although this method increases the execution speed a little, sometimes it’s just not
worth implementing. Besides, some compilers will cut inline declarations out during
the optimization process, so there’s not much call for them.

70 4. Starting with C++

Working with Variables
Along with adding new function-calling capabilities, variables were also given a leg-
up in C++. Although not as handy as some of the previous features might seem to
be, these enhancements to variables hold their own.

Variable Declaration
The biggest improvement is that you can now declare a variable anywhere in your
code rather than at the beginning of the code block. With this capability, you can also
declare a variable data type while you are setting its value, as in the following example:

long SomeFunction(long Num1, long Num2)
{

long Result; // accessible to entire function

if(Num1 < Num2) {
long AddResult; // accessible to next two lines
AddResult = Num1 + Num2;
Result = AddResult;

} else {
long SubResult = Num1 - Num2; // accessible to next line
Result = SubResult;

}

71Moving from C to C++

Inline CodeProgram
.

Inline Code
.
.
.
.

Inline Code

.

.

.

Inline Code

Inline Code

Inline Code

Figure 4.3

Inline functions are inserted into the
compiled code, thus increasing the speed
of execution and the resulting file size.

SubResult = 0; // ERROR - out of declaring code-block

return Result;
}

You can see that I declared AddResult in the conditional block right before using it,
and I declared and set the SubResult variable as well. Both are valid methods and
completely allowable, except for the one line I commented. You can see from my
remark that there’s an error, which I explain next.

Scope and Precedence
The preceding example introduces variable scope. Variables declared are retained
only inside the scope of their declaration. So a variable declared at the start of a
function is accessible throughout it, while one declared inside a conditional block
is invalid outside the block (as shown in Figure 4.4). A declaration must precede its
usage and remain in scope.

In the preceding example, Result is declared at the top of the function, making
Result accessible throughout the entire function. But AddResult and SubResult are
not. Those variables are accessible only within the conditional blocks in which they
are defined. Trying to access either of those values outside their scope will cause an
error, as seen in the comment line in the preceding function.

72 4. Starting with C++

Function ()

if (1 == 1)
� long variable;
� variable = 128;

if (2 == 2)
� variable = 256; Error!

F
un

ct
io

n

C
onditional

B
lock

C
onditional

B
lock

Figure 4.4

The variable is valid only within its declaring
conditional block.Trying to access it outside this
block causes an error.

Because of variable scope, at times you might have a global variable with the same
name as a local variable. Just as in C, the local variable takes precedence. In C++,
you can explicitly tell the compiler to use the global variable by using the scope res-
olution operator (defined as two consecutive colons) prefixed to the variable in
question, as in the follow example:

long Result; // Global variable

long SomeFunction(long Num1, long Num2)
{

long Result; // Local variable
Result = Num1 + Num2; // Local variable = Num1 + Num2
// Note the two colons in the next line of code
::Result = Num1 + Num2; // Global variable = Num1 + Num2
Result += ::Result; // Local = Global

return Result;
}

Precedence also works with functions, but it may not be readily apparent why at
this point. Just keep the idea of precedence in mind until later in this chapter.

Static
Variables
Variables take space, and you
want to preserve as much space
as you can, but what about
those times when you need to
keep track of a variable over
multiple function calls?
Because of scope issues, a vari-
able loses its value whenever its
scope is lost. Take a look at this
example:

long IncreasePeopleCount()
{

long NumberOfPeople = 0;
NumberOfPeople += 1;
return NumberOfPeople;

}

73Moving from C to C++

CAUTION
The only drawback is that you can’t have mul-
tiple variables with the same names in differ-
ent scopes and use those variables together.
For example, if you have a global variable
called Result and you define Result at the top
of a function and then again within a condi-
tional block, only the conditional block and
global Result are accessible.

For this, you might find it easier to prefix a
global variable with g_ to indicate the variable
as such.This is part of a coding standard called
Hungarian Notation, which is the method of
prefixing a variable name with specific letters
to signify its data type and/or scope.

main()
{

long Num;
Num = IncreasePeopleCount(); // Num = 1;
Num = IncreasePeopleCount(); // Num = 1;

}

This example has a function that tries to keep track of a number (some number
of people to be exact). The only problem is that NumberOfPeople is always reset to 0
whenever the function is called. Of course, you could define that variable globally,
but since you only want that variable associated with that specific function, you
could instead declare the variable as static:

static long NumberOfPeople = 0;

By prefixing the variable declaration with the keyword static, you informed the
compiler to maintain the variable’s value, even after losing scope. The value you
assigned the variable during the declaration is the starting value, and you are
allowed to modify it in any way after that.

Now, each time you call IncreasePeopleCount (this time with a static variable), you get
an incremental count, as in the following:

main()
{

long Num;
Num = IncreasePeopleCount(); // Num = 1;
Num = IncreasePeopleCount(); // Num = 2;
Num = IncreasePeopleCount(); // Num = 3;

}

Protecting with Const
What about those unscrupulous functions that try their best to mess with your vari-
ables? For those guys, you have the power of const at your disposable. By declaring
a variable (or even function!) with the const keyword, you tell the compiler that the
variable is strictly read-only, as illustrated in Figure 4.5.

The only way to write a value to a variable protected by the const keyword is when
you actually declare the variable, as in the following (notice the error trying to set
the value afterwards):

const long ReadOnlyVariable = 10; // Assign the value 10
ReadOnlyVariable = 20; // Error! Read-only!

74 4. Starting with C++

Using const also pertains to function arguments, so when you pass a non-const vari-
able to a function, that function in return can classify the variable as const and thus
protect it, but only within the function’s code block. Here are a couple of examples
to get you going:

main()
{

const long Var = 10;
long i;

Var = 20; // Error! Is read-only
SomeFunction(i);

}

void SomeFunction(const long Val)
{

Val = 10; // Error! Is read-only
}

New Keywords and Enhancements
Past frustrations with C features led to some great enhancements and additions that
were included in C++. The biggest problems were allocating and deallocating mem-
ory, referencing enumerated lists, and depending on NULL being a consistent value
among different compilers. The list goes on, but these are the major problems that
I want to address.

Again, although you do not have to use these enhancements, they sure do make
your coding easier. With the enhancements you’re about to learn, you’ll have no
reasons to ever go back to the old methods!

75Moving from C to C++

Variable

const Variable

Write OK! Read

Read-Only!

Source
Code

Figure 4.5

Variables protected by const in their
declaration can only be read, not written to.

Memory Allocation
The computer’s memory is where everything is held, program code, graphics,
sound effects, and what have you. Now, it’s time for you to get a piece of the pie
and grab hold of some memory for your own use.

Allocating memory is new in C++. You now have access to the super-intelligent new
and delete operators. These two babies will allocate any type of memory, whether
it’s a single data type (such as char, long, or float), class, or structure—and all with
the same call!

To allocate memory, use the new operator, which takes this form:

void *Ptr = new DataType; // for a single element
void *Ptr = new DataType[NumElements]; // for multiple array

Ptr is the pointer to the memory you are allo-
cating, while DataType is the type of data you
are requesting (as well as an optional array
size). The pointer can be cast into anything,
usually the same as the data type you are
requesting.

For example, say that you want to
allocate an array of 10 long values, 100 struc-
tures (called sMyStruct), a single float value,
and an array of 20 pointers:

long *Ptr1 = new long[10];
sMyStruct *Ptr2 = new sMyStruct[100];
float *Ptr3 = new float; // single float value
char *Ptr4 = new char*[20];

76 4. Starting with C++

NOTE
If it was unable to allocate
memory, new will return a NULL
value. If non-NULL, new returns the
pointer to the newly allocated
memory, which is cast to the
data type allocated.

NOTE
C++ isn’t just some add-ons to an existing language; it’s a com-
plete standard adopted by every company that markets C++
compilers.Although you can still find a little discrepancy in some
compilers, it’s safe to assume that they all stick to the standard.

All memory you allocate using new needs to be released in order to free the system
resources. You accomplish freeing this memory with the delete operator. Since C++ is
doing the hard work for you, just call delete with the pointer to the allocated memory.

The only catch here is that, if the memory allocated was an array, you need to append
a pair of open and close square brackets after the delete keyword. Take a look at the
following code bit, which shows how to release the preceding allocated memory:

delete[] Ptr1; // long[10]
delete[] Ptr2; // sMyStruct[100]
delete Ptr3; // float - no brackets
delete[] Ptr4; // char*[20]

As an added bonus
and to make your
life a little easier, it
becomes possible to
call delete on a
memory pointer
that is set to NULL.
Doing so saves you
the trouble of hav-
ing to check the
pointer before free-
ing it. For example,
the following code
bit is valid:

char *DataPtr = NULL;
delete DataPtr;

NULL and Enum
While not readily apparent, some other smaller changes have occurred with exist-
ing C functions. Previously, NULL could have been any variable that the compiler’s
manufacturer picked, but with C++, NULL is always 0 (although it still helps to use
the macro NULL).

Also, an enumerated list is even easier to work with because you don’t have to prefix
the usage with the enum keyword anymore. For example, you can do the following:

enum Numbers {
First = 1,

77Moving from C to C++

TIP
In order to allocate a multidimensional array, such as
long[5][10][20], you must declare the pointer a little
differently:

long (*Ptr)[10][20];

Ptr = new long[5][10][20]; // allocate

delete[] Ptr; // free

If you’re trying to allocate an array of pointers, then simply
do this:

char **Pointers = NULL;

Pointers = new char*[10]; // array of 10 char * pointers

delete [] Pointers; // make sure to delete it!

Second,
Third,
Tenth = 10

};
short Value = Second; // equals 2

You can see that the last line does not cast to
the enumeration because the compiler figured
the enumeration part out for you. What a boon!

Classes
Drum roll please . . . introducing the biggest feature in C++—classes! Being an
object-oriented language, C++ deals with classes as objects. These objects are self-
contained, each one having its own set of data and functions with which to work,
thus making these objects portable and highly reusable.

You can think of a class as being
a C structure on steroids. You
declare a class much like a struc-
ture, first with the keyword class
and then with the actual name
of the class you are defining.
The class data is then enclosed
within a pair of brackets. Here’s
an example of an empty class
declaration:

class cClassName
{
};

One of the major differences between a class and a structure is that with a class,
you can protect the data within from being exposed (visible to outside code), as
Figure 4.6 shows.

For example, if I create the following, you can see that the three declared variables
are accessible from anywhere:

struct sMyStructure
{

78 4. Starting with C++

NOTE
As always, enum values are of
the int data type, so be sure
to cast to the appropriate
data type when storing one.

NOTE
Notice that I prefix all class names with
the lowercase letter c. Notice too that
Hungarian Notation (and thus Microsoft)
uses an uppercase C instead. I find this style
confusing with certain class names, such as
CHitPoints, because the C blends in with the
first letter of the class name.The same goes
for my structure names; they are prefixed
with a lowercase letter s, as in sMyStructure.

TEAMFL
Y

Team-Fly®

long Var1, Var2, Var3;
};

main()
{

sMyStructure TestStruct;

TestStruct.Var1 = 1;
TestStruct.Var2 = 2;
TestStruct.Var3 = 3;

}

Although doing this might seem desirable,
what about those times when you have a
crucial value stored in a variable that you
don’t want anything to mess with? With C++,
you can tell exactly what data can be accessed
from outside the class.

79Classes

TIP
I suggest that you always
forward-reference classes
(just as you would any variable)
inside a header file (.h). Do this
by inserting the keyword class,
followed by the name of the
class, as shown here: class
cClassName;.

In this manner, the compiler
knows that a class by that
name does exist and can be
used before it is declared.

Structure

Class

Data

Data

Data

Data

Data

Data

Outside
Source
Code

Outside
Source
Code

OK!

Figure 4.6

Structures allow free access to internal data, while
classes do not.

Class Visibility
You limit access to class contents (class visibility) by using three keywords: public,
private, and protected. Public data is freely accessible from outside the class. Private
data is restricted to the class itself; nothing outside can access it.

Last is protected data, which is almost the same as private—nothing outside the class
can access the data, but classes derived from it can. Ooops! I’m getting ahead of
myself again; I’ll get to derived classes in a moment.

When referring to the data enclosed within a class, I’m referring to variables and
functions. Yes, that’s right—functions as well. Internal functions can be executed by
outside program code or used internally only from within the class.

Look back at the empty class (cClass) I created; you can add the visibility keywords,
plus start listing variables and functions under them:

class cClassName
{

public:
// Place public variables and functions here
long m_PublicVar;
long PublicFunction();

private:
// Place private variables and functions here
long m_PrivateVar;
long PrivateFunction();

protected:
// Place protected variables and functions here
long m_ProtectedVar;
long ProtectedFunction();

};

You can now instance this class just like a structure and begin accessing data within
it, but remember that some of the data is protected. The following code bit shows
you what can and can’t be accessed:

cClassName MyClass;

MyClass.m_PublicVar = 10; // OK!
MyClass.PublicFunction(); // OK!
MyClass.m_PrivateVar = 11; // Not acceptable

80 4. Starting with C++

MyClass.PrivateFunction(); // Not acceptable
MyClass.m_ProtectedVar = 12; // Not acceptable
MyClass.ProtectedFunction(); // Not acceptable

How do you then access those protected functions
and variables? Only code from within the same
class can access those protected variables and
functions (as shown in Figure 4.7). Some exam-
ples of this are coming up.

Class Variables and Functions
There’s not much to defining a variable or function inside a class, as you previously
saw. For variables, just inserting the variable declaration under the appropriate
access keyword handles it. In the preceding class declaration, you can see that I
defined three variables.

Only the public data is accessible to outside code, such as the case with m_PublicVar
and PublicFunction. Attempting to access anything else from outside will generate an
error. The only way to access the other data is within the class, which is usually in
the form of a function.

Just as you define the visibility of variables in the class, so do you with functions.
Function declarations are identical to all other declarations; they just belong to the
class only. From the prior example class, you can call only PublicFunction, but inter-
nally you have access to all three functions.

From here, the next step is to write the code to the functions themselves in the .cpp
source file belonging to the class. Each function you write must have the class
name prefixed by two colons, as shown here:

long cClassName::PublicFunction(void)

81Classes

TIP
Just as you prefix global
data with g_, you prefix
class variables with m_ to
signify that they belong to
a class. Again, this is stan-
dard Hungarian Notation.

MyFunction1 ();

MyFunction2 ();

MyFunction3 ();

Class

Outside
Source
Code

Figure 4.7

A class can access its own functions, but can
determine which functions can’t be accessed
from code outside the class.

This addition of the colons informs the compiler that the upcoming function is
part of that class. A source file might or might not contain functions contained
within a class, so adding the two colons is the only way to link the functions to their
respective classes (as illustrated in Figure 4.8).

The preceding function takes no arguments and returns a long value. Not too hard
so far, so let’s go on. Taking the sample class again, have each function return its
respective variable, with the public function returning the sum of the three (by
adding the public variable, private variable, and the return value of the protected
function).

long cClassName::PublicFunction()
{

return m_PublicVar + ProtectedFunction() + m_PrivateVar;
}

long cClassName::ProtectedFunction()
{

return m_ProtectedVar;
}

long cClassName::PrivateFunction()
{

return m_PrivateVar;
}

As you can see, the public function is freely accessing the other data and functions
inside the class. In this way, you can alter the way a class accesses its internal data,
but still present it in the same manner to outside code.

82 4. Starting with C++

MyFunction1 ()

MyFunction2 ()

Class
Class : : MyFunction1 ()

AnotherFunction ()

SomeFunction ()

Class : MyFunction2 ()

Source Code

Figure 4.8

Source files can contain many
functions, but those functions
related to classes need to be
linked via colons.

Another bonus to using functions in classes is that you can define the function
inside the class declaration. Doing so is useful for smaller functions that you don’t
need to waste space with in the source file. The following example, which is based
on the preceding code, shows what I mean:

class cClass
{

public:
long PublicFunction(void) { return m_PublicVar + \

ProtectedFunction() + m_PrivateVar; }
// rest of class declaration

};

Using Static Variables and Functions
Normally, class instances have access to their own copy of internal data. If you
instance a class, it has no knowledge of any other instances of it. In order to share
data between classes, you must use a static variable or function, which makes it
global to all instances of the class.

Start by prefixing the variable or function with the keyword static:

class cClassName
{

public:
static long m_Variable;
static long Function();

};

A default value should be set for static variables in the class code portion (declared
globally):

long cClassName::m_Variable = 100;

Now, just access the variable as you
normally would inside an instance
of that class. It will be the same
value for all instances of the class,
and any instance modifying it will
change it for the rest (as shown in
Figure 4.9).

83Classes

CAUTION
Notice that static is used a little different-
ly than it was previously.These differences
can get confusing at times, so take care
not to get the two mixed up.

As for functions, declaring one as static makes it accessible to all instances, but the
function itself has no knowledge of the calling class instance. For this, you might
want to provide the static function with a pointer to the calling class.

This example program declares both a static variable and function and then
demonstrates their use.

class cClassName
{

public:
static long m_Var;
static long Function();

};

// declare the default value of static variable
long cClassName.m_Var = 10;

long cClassName::Function()
{

m_Var++; // increase static value
return m_Var; // return it

}

main()
{

cClassName Class1, Class2;
printf(“%lu\r\n”, Class1.Function()); // prints 11
printf(“%lu\r\n”, Class2.Function()); // prints 12

}

84 4. Starting with C++

Class Instance

Class Static Variable

Class Instance Class Instance

Class Instance

Figure 4.9

A static class variable remains
fixed, no matter how many
class instances access the
variable.

CAUTION
Remember that static
functions have no knowl-
edge of the class instances
themselves. Keep that in
mind while coding your
classes. You can see how to
use these methods effec-
tively in later chapters.

The Constructor and Destructor
Along with the functions you provide, every class contains two built-in functions
called the constructor and destructor, which are called when an instance is created
and destroyed, respectively. These declarations can be overloaded (remember
function overloading!) for your use under public visibility, and they always have
the same name as the class (with the deconstructor prefixed by a tilde character),
as shown here:

class cClassName
{

public:
cClassName(); // default constructor
cClassName(long Var1, long Var2); // overloaded constructor
cClassName(char *Data); // overloaded constructor
~cClassName(); // destructor

};

cClassName::cClassName()
{

// do whatever class initialization here
}

cClassName::cClassName(long Var1, long Var2)
{

// do whatever class initialization here with two variables
// even call on the other constructor or other functions!
cClassName();

}

cClassName::cClassName(char *Data)
{

// And again - do whatever here
}

cClassName::~cClassName()
{

// free whatever used data here
}

85Classes

A constructor is called whenever the class is instanced or allocated (with new) and
can be overloaded to provide multiple ways of setting up the internal data when
instanced. A destructor does not take arguments and is called when out of scope
or deleted. Neither of the two returns values. Here are some examples of using
constructors and destructors:

cClassName MyClass; // default constructor called when program
// is first started

main()
{

cClassName SomeClass(10, 22); // 1st overloaded constructor
// called when main start

cClassName My2ndClass(“Hello”); // 2nd constructor called
// when main starts

cClassName *ClassPtr; // not yet

ClassPtr = new cClassName; // now constructor called

delete ClassPtr; // destructor called now
// My2ndClass destructor called when this function exits

}
// MyClass called now that program has terminated

Operator Functions
Class functions can also take the form of operators. No, not those nice people you
get when you press 0 on the phone, but operators such as add, subtract, multiply,
and divide (along with others found in Table 4.1).

You need to know a few things in order to use operators. First, the return type must
be the class name (using operators such as + = or = that return a value to another class
of the same type) or a standard data type (= for comparing a value). Second, you
must use the operator keyword, followed by the operator to use. Last is the standard
function argument list.

Here’s a sample that uses two operators (= and +=) to manipulate an internal number:

class cClassName
{

public:
cClassName operator=(long Val);

86 4. Starting with C++

cClassName operator+ (long Val);
long Value() { return m_Value; } // return protected value

protected:
long m_Value;

};

// No need for return value
cClassName::operator=(long Val)
{

m_Value = Val;
}

// returns value to another class of same type
cClassName cClassName::operator+=(long Val)
{

m_Value += Val;
}

main()
{

cClassName MyClass;
MyClass = 10;
MyClass += 20;
printf(“%lu\r\n”, MyClass.Value()); // prints 30

}

87Classes

Table 4.1 Overloadable Operators

+ - * / % ^

+= -= *= /= %= ^=

++ — < > ! =

& | << >> != ==

&= |= <= >= () []

&& || <<= >>= new delete

Using the this Keyword
At times, a class needs to know a pointer to itself, and that’s the purpose of the this
keyword. The this keyword is a reserved pointer that every class has; as a matter of
fact, it is inserted into every class function call (although invisible to you). To see
what I mean, take this typical C++ class function:

long cClassName::SomeFunction(long Val)
{

return Val + 10;
}

This function, when compiled and with the hidden argument added, looks like this:

long cClassName::SomeFunction(cClassName *this, long Val)
{

return this->Val + 10;
}

The biggest use of this is with static
functions or other functions that need
a pointer to the calling class. Just pass
the this pointer to a function, and use
it as a reference, as shown here:

class cClassName
{

public:
cClassName() { SomeFunction(this); }
long m_PublicVar;

};

void SomeFunction(cClassName *Ptr)
{

Ptr->m_PublicVar = 10;
}

main()
{

cClassName c1; // c1.m_PublicVar now equals 10
}

88 4. Starting with C++

NOTE
You can use the this keyword in
order to access internal data, but
there’s really no need to because the
compiler does it for you. Static func-
tions are the only functions inside a
class that do not have the this key-
word inserted into the argument list.

TEAMFL
Y

Team-Fly®

Class Friends
When declaring multiple classes, it sometimes becomes necessary to share informa-
tion between them, but still limit their visibility to outside code. For example, if you
have a protected variable in Class1 that Class2 needs access to, how do you go about
using that variable without having to write a public function? And in that instance,
how do you make sure that no outside code takes advantage of this newly created
public function?

One simple way is by classifying variables, functions, or even entire classes as
friends. You do this within the class from which you want to share data. However,
this sharing of data is not mutual—a class can share data only with other functions
and classes that it knows about.

For example, if the first class declares a second class as a friend, the second class
has free access to the first. This does not give the first class access to the second,
however, because the first class needs to be declared as a friend in the second class
(as shown in Figure 4.10).

Code is worth a thousand words, so check this following bit to see what I mean:

class cClass1
{

friend cClass2; // cClass2 can access my data

protected:
long m_Value;

public:
// next line not acceptable as cClass2
// has not declared me as a friend
cClass1() { cClass2 MyClass; MyClass.m_Value = 1; }

};

class cClass2
{

// cClass1 cannot access me as it’s not declared as a friend
protected:

long m_Value;
public:

// next line acceptable
cClass2() { cClass1 MyClass; MyClass.m_Value = 2; }

};

89Classes

You can see that cClass2 can access cClass1 because it is a friend, but it’s not neces-
sarily mutual. cClass1 has no access rights to cClass2 unless cClass2 defines cClass1 as
a friend. You’ll see many examples of using this “friendly” feature throughout the
book.

Derived Classes
When it comes time to add functionality to an existing class, you merely piggy-back
onto it, borrowing its foundation of data and then adding your own or improving
on existing functions and variables. This method of creating a new class based on
an existing class’s data is called inheritance.

With inheritance, you are actually deriving a new object from an existing one. The
original class you use is called the base class, while the new class you are creating is
called the derived class, as illustrated in Figure 4.11.

When you want to derive a class, define it in the following way:

class cDerivedClass : public cBaseClass
{

// Derived Class Data goes here
// This data is in addition to data already in cBaseClass

};

Because the original data already exists in cBaseClass, there’s no need to duplicate it
here; just add the new data. You can still access the base class’s variables and func-
tions, except for those in the base declared as private.

90 4. Starting with C++

Class1

Class2 is friend.
Class3 is not.

Only Class1
is friend.

Only Class2 is
my friend.

Class2

Class3

Figure 4.10

Classes can allow free access to
each other, but they need to be
declared as friends first.

Here’s an example of a derived class
being created from a base class:

class cBaseClass
{

public:
long m_PublicVar;

};

class cDerivedClass : public cBaseClass
{

public:
long m_PublicVar2;

};

main()
{

cBaseClass BClass;
cDerivedClass CClass;
BClass.m_PublicVar = 10;
DClass.m_PublicVar2 = 100;
DClass.m_PublicVar = 11;

}

91Classes

cCharacter

(Base Class)

cMonster

(Derived)

cBoss Monster

(Derived)

cNPC

(Derived)

cPlayer

(Derived)

Figure 4.11

Derived classes are
constructed from a base
class. You can also derive
a class from a previously
derived class.

NOTE
By prefixing the cBaseClass class
name with the public keyword, I am
telling the compiler that any further
derived classes from cDeriveClass
can freely access the base class’s
data.To protect the base class’s data
from further derived classes, I can
use the private or protected keyword
instead of public.

CAUTION
Private data in the base class does
not become visible to a derived class,
but it still exists.You accomplish this
by using private visibility, and it is
useful when there is a piece of crucial
data that you absolutely do not want
to get modified, not even by a
derived class.

Functions that use a base class as an argument can use derived classes as well.
Such functions simply treat the derived class as the base class and can access only
the data defined in the base class, as shown here:

class cBase
{

public:
long m_Var;

};

class cDerived : public cBase
{

public:
cDerived(long Var) { m_Var = Var; } // using m_Var from

// inherited cBase
};

long AddValue(cBase *Base, long ToAdd)
{

m_Var += ToAdd; // Add the specified value to cBase m_Var
// even though passed class might be
// derived from it

}

main()
{

cDerived MyClass(50); // instance class, set m_Var to 50
AddValue(&MyClass, 100); // MyClass.m_Var now equals 150

}

As I previously noted, a
base class’s data can be
protected from further
derived class access by
specifying the private or
protected keyword in the
derived class declaration,
as in the following:

class cBaseClass { private: long Var; };
class cDerivedClass : private cBaseClass { private: long Var2; };

92 4. Starting with C++

TIP
From the last example, you can see the derived
class has been passed by reference to a function,
which is completely acceptable. But in order to pro-
tect data in the class from the calling function, you
need to specify the class argument as a const vari-
able in the calling function.

NOTE
This ability to call a base
function from any derived
(or base class) is called
polymorphism. You’ll see
many examples of this
throughout the book.

class cDerivedAgainClass : public cDerivedClass
{

public:
long GetValue() { return Var; } // Error - can’t access

};

In the preceding code, by declaring the cDerivedClass from cBaseClass (this time
declaring the base class access as private), only instances of the cDerivedClass (and
not cDerivedAgain) can access Var.

Virtual Functions
With derived classes, there will be times when you will want to overwrite the
functionality of a base class function using the derived class’s function instead.
For example, if you want a class to print a specific number, do the following:

class cBaseClass
{

public:
void PrintIt() { PrintNum(1); }
void PrintNum(long Num) { printf(“%lu”, Num); }

};

When you call the cBaseClass’s PrintIt function, it will print the number 1. To add
better features to the base class, say print the number with a little text, you can
derive a class and declare the new PrintNum function:

class cDerivedClass : public cBaseClass
{

public:
void PrintNum(long Num) { printf(“The number is %lu”,Num); }

};

If you were to instance cDerivedClass and call the PrintIt function (which in turn
calls PrintNum), you might expect the output to be as follows:

The number is 1

However, instead of seeing the preceding line of text, you’ll see only the number 1,
which means that the base class’s PrintNum function is being called instead of the
derived class’s PrintNum function. This is correct, because the compiler doesn’t really
know about the derived class’s version of the PrintNum function—after all, the
base class knows only about itself, not derived classes of it.

93Classes

To remedy this problem, let me introduce you to virtual. By marking the function
in the base class declaration as virtual, you inform the class that a derived class may
or may not override the function. If the function is overridden, the class is to use
the derived version.

Knowing this, you can rewrite the base class declaration as follows:

class cBaseClass
{

public:
void PrintIt() { PrintNum(1); }
virtual void PrintNum(long Num) { printf(“%lu”, Num); }

};

Declaring your derived class (no need to declare anything as virtual) and calling
PrintIt will now have the desired effect of printing the whole line of text shown
previously. The compiler is merely seeing that the function has been overridden
in the derived class and uses that version (as illustrated in Figure 4.12).

Later in the book, you see virtual functions put to some great use. By creating a
skeleton class of sorts (one that contains the bare-bones code to define the class),
you can derive the class and add better features to it.

94 4. Starting with C++

Base Class

Function

Derived Class

Function

Base Class

Function

Derived Class

Function

Derived Class : : Function

Derived Class : : Function

Not the function I wanted!

Ahh, there it is!

Figure 4.12

Using virtual, the compiler can
scan the functions in the base class
and derived class looking for the
proper one to call, which in this
case, is the derived class’s version.

Using Const with Classes
I’ve mentioned how the const keyword protects variables by declaring them as read-
only, so now is the time to show you how you can use classes. The first way is by
declaring the entire class as const, as follows:

const cClass MyClass(Var);

From now on, even the class itself can modify nothing in that class. On the other
hand, if you want to declare a function as one that reads only class data, declare it
as const by appending it to the function declaration:

long cClass::ReadValue() const
{

return m_Value; // Only returning the value
}

In fact, if you declare a class as const and then declare a function as const, the com-
piler will not complain as much. Doing this ensures that the compiler knows the
function is not trying to modify any of the class data, thus allowing the function
access to this data.

Advanced Structures
It might seem as though structures were given the old boot with the invention of
classes, but don’t throw them out yet. Even structures can have functions embed-
ded within them (including constructors and destructors), just like a class!

This point (of using embedded functions) becomes handy when you want to use a
structure to contain information, but set the variables to a default value. For exam-
ple, I can create the following structure that allocates its own memory and then
deallocates it when destroyed:

typedef struct sMyStruct {
char *Ptr;
sMyStruct() {

Ptr = new char[100];
}
~sMyStruct {

delete[] Ptr;
}

} sMyStruct;

95Classes

NOTE
In fact, structures are C++ classes.
The only difference between a class
and structure is that a structure
specifies its data as public by default.

main()
{

sMyStruct *MyStruct;

MyStruct = new sMyStruct;
MyStruct->Ptr[50] = 10;
delete MyStruct;

}

Just follow the ways of the classes, and you should fully understand using advanced
structures!

Wrapping Up C++
Whew! There’s a lot to C++, but at least now you have a fighting chance. As you go
through the book, you’ll see that I make heavy use of the techniques discussed in
this chapter, so it pays to fully understand all the material. If you find yourself hav-
ing trouble with code, you can always refer to this chapter.

96 4. Starting with C++

CHAPTER 5

Programming
with

Windows
and

Application
Basics

Many moons ago, developers had to rely on their DOS skills to milk their com-
puter systems for every last drop of processing power in order to get their

games to run smoothly. At that time, Windows was a business-oriented application
platform, but not a viable platform for gaming.

As time went on, Windows 95 was released, and then with the release of DirectX
(a product that aids programmers in the development of games), Windows blasted
onto the scene of game development. With no reason to deal with the restrictions
of DOS, programmers slowly worked their way to writing only Windows-supported
games. So, my programming friend, you need to know the basics for programming
Windows in order to survive as a programmer of games.

Tackling the subject of Windows programming is by no means an easy task, espe-
cially in this limited space. Entire volumes have been written on this topic (such as
Charles Petzold’s Programming Windows, Fifth Edition, by Microsoft Press), and I’ll
leave it to them to give you the level of detail that you need to fully understand the
topic. In this chapter, you can find the basic information that you need to get a
Windows program up and running.

In addition, because you need to start your projects on the “right foot,” I cover the
basics for structuring an application and tell you how to make your programming
tasks a little easier.

In this chapter, you learn how to do the following:

■ Think in Windows’ terms
■ Create your windows and deal with messages
■ Use advanced Windows features
■ Prepare yourself for using DirectX
■ Organize the program flow of execution
■ Do modular programming
■ Use states and processes and handle application data
■ Build an application framework and debug your programs

98 5. Programming with Windows and Application Basics

TEAMFL
Y

Team-Fly®

Programming with Windows
You program Windows using the Win32 SDK (Windows 32-bit software develop-
ment kit) and a compiler (typically C/C++). The development kit has been around
as long as Windows, so the SDK is packed to the brim with functions that ease the
development of both business and gaming applications.

Microsoft wanted to provide a stable development platform that everybody could
understand. To that end, Microsoft created and maintains the Win32 SDK, which is
a set of standards to which all its applications and development kits abide. One of
the most notable things that Microsoft worked on was its coding conventions.

Coding Conventions
Microsoft’s coding conventions are vast (and esoteric at times), but the ones you’re
likely to notice are those that dictate the naming of variables and functions and
that declare data types.

Hungarian Notation
Microsoft’s coding conventions include specifications on declaring variables, called
Hungarian Notation. Named after its Hungarian creator, Charles Simonyi, this seem-
ingly ingenious method involves prefixing variable names with specific characters
that define what data type the variable is: a char, byte, long, const, class member,
global variable, and so on. Table 5.1 shows several common Hungarian prefixes
and an example of how to use them.

Although using Hungarian Notation might seem like a good idea, doing so makes
the variable names appear unreadable at times. When dealing with Windows-
related programming in this book, I tend to maintain this convention, but I don’t
stick to it consistently.

Win32 Data Types
The Win32 SDK also uses predefined data types. These are just macros that you
substitute for a standard data type when declaring variables, making your code
smaller and at times more readable. Table 5.2 lists several of the common data
type macros that you’ll encounter during your programming endeavors.

99Programming with Windows

To use one of these data type macros, just replace the macro with your variable
data type:

BOOL bValue; // Holds the value TRUE or FALSE
DWORD dwValue; // an unsigned long value

Function Naming
Typical function naming consists of words
packed together, with no underscores or
spaces between words, and each word is
capitalized in order to separate it from
other words, as in the following:

DWORD MyFunctionName();

At times, however, you’ll notice that this convention is broken by leaving the first
letter of the function name in lowercase, as shown here:

DWORD myFunctionName(); // notice m in my is lowercase

100 5. Programming with Windows and Application Basics

Table 5.1 Typical Hungarian Notation Prefixes

Prefix Data Type Example

f Boolean BOOL fFlag;

b Byte char bVariable;

dw Double word (long) long dwValue;

h 32-bit handle long hWindow;

i Integer int iNumber;

p Pointer void *pData;

I Interface IUnknown *IInterface;

g_ Global char g_GlobalVariable;

m_ Member short m_MemberData;

NOTE
You will find the standard data
types and these data macros
throughout the book. Because they
are interchangeable, you don’t
have to worry about your compiler
complaining or the code breaking.

I personally prefer (and use in this book) the method of every word beginning with
an uppercase letter; doing so makes the code cleaner and easier to read. Another
problem arises with function arguments (and sometimes data structures) in which
the notation method is used in some variables and not in others, as shown here:

HRESULT MyFunction(
DWORD Variable, // where’s dw?
DWORD dwVariable2); // here it is!

That’s right, even Microsoft isn’t able to stick to Hungarian Notation at times,
which is readily apparent when you browse its SDK. You see this lapse of using the
notation in Chapters 6 through 9 when you use DirectX; it’s no big deal.

101Programming with Windows

Table 5.2 Common Win32 Data Types

Macro Description

BOOL A Boolean value (TRUE or FALSE)

BYTE An 8-bit integer that is not signed (unsigned char)

DWORD A 32-bit unsigned integer (unsigned long)

LONG A 32-bit signed integer (signed long)

LPARAM A 32-bit value passed as a parameter to a window procedure or
callback function

LPCSTR A 32-bit pointer to a constant character string

LPSTR A 32-bit pointer to a character string

LPVOID A 32-bit pointer to an unspecified type

LRESULT A 32-bit value returned from a window procedure or callback function

UINT A 32-bit unsigned integer on Win32

WNDPROC A 32-bit pointer to a window procedure

WORD A 16-bit unsigned integer (unsigned short)

WPARAM A value passed as a parameter to a window procedure or callback
function

Working Inside a Window
The majority of programs operate inside a window, the area onscreen in which text,
pictures, animation, scroll bars, menus, and many other objects and information
are displayed, as illustrated in Figure 5.1.

One great advantage to working with a
window is that Windows does much of the
lower-level processing. Most of the controls
(such as buttons and edit boxes) update and
draw themselves, so their content and the
user’s interaction with them are all that you
have to worry about.

Generally, with little effort on your part, you can minimize or maximize windows
(shrink them so that they appear as an icon on the Windows desktop or taskbar
or enlarge them so that they fill up the entire screen); you can also drag them to
different locations within the screen and resize them.

The whole idea of programming for Windows is to design the look of your pro-
gram first (by laying out windows, buttons, edit controls, and so on) and then add
the functionality. To start your own programming escapades, you’ll need to first
understand the basics of every Windows program—from what files need to be
included with your project to what is expected of you as the programmer and
from Windows’ maintenance of the application.

102 5. Programming with Windows and Application Basics

Figure 5.1

A typical Windows application is
contained within a window and has
everything you need to interface with
the application—from menus and icons
to toolbars and scrollbars.

NOTE
A window can consume the
entire screen, and this is the
typical display used for games.

Including the Headers
When developing applications for Windows, you need to include header files to
ensure that your compiler knows what is going on. Here is the most typical header
file of the bunch (and the one you’ll always use):

#include <windows.h>

It’s rarely necessary to include additional library files because the default project
space that Visual C/C++ creates at the start of every new application does a decent
job of including the proper library files. Throughout the book, I let you know
when it’s time to link in additional library files or include additional header files.

The WinMain Function
When working with a C program in DOS, the entry point of an application is the
main function. This function begins executing the program. For Windows, this entry
function is WinMain, which looks like this:

int WINAPI WinMain(
HINSTANCE hInstance, // Instance handle of application
HINSTANCE hPrevInstance, // Unused
LPSTR lpCmdLine, // Command line options (if any)
int nCmdShow); // Show window flag

Whenever your application is executed, it is assigned an instance handle (hInstance)
that you can use to refer to the process running your program. The biggest reason
for using and maintaining an instance handle is that you can have multiple
instances of the application running at once, so at times, you must be able to
refer to each one by its handle.

A Windows application can receive command-line options (as do DOS programs).
Your application receives these command-line options in the form of a string
pointer (lpCmdLine), which you can parse to your liking. You’ll rarely deal with the
command line when using Windows applications, however.

Last is nCmdShow, which tells you how the user configured the application to open
when executed: minimized, maximized, normal size, and so on. These configura-
tions are not mandatory; you can do what you like with the nCmdShow variable.

103Programming with Windows

At this point, you can create an empty WinMain function as follows:

int WINAPI WinMain(HINSTANCE hInstance, \
HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow)

{
return 0;

}

From this point on, you have complete control of execution, and you’re now about
to start hacking away at that code and creating a Windows application. Before
going any further, however, you need to understand how Windows communicates
vital information to your application.

Events and Messages
Old-school programmers probably remember the DOS days in which you had
complete control of everything. Although good in some aspects, this usually meant
that you spent a major chunk of your processing time scanning the input, sound,
and graphics devices to see whether they needed updating.

On the flip side, Windows introduced the idea of letting the operating system
inform the application when something comes up. Say that the user moves the
mouse. This action creates an event, which Windows receives and processes. In
turn, Windows sends this event to the application in the form of a message.

Windows has a global queue in which it stores all messages; Windows slowly weeds its
way through them and sends them off to the applications that are running, stuffing
the various messages into an application message queue. Inside your program is some-
thing called a message pump (or message loop) that continually scans the message
queue looking for messages to process.

The message pump pulls out application
messages and sends them to a function
called the window message procedure,
which is located within your program.
This function processes individual mes-
sages. You don’t have to deal with every
message though. Some messages are
discarded or passed back to Windows,
where it handles the message with a
default set of functions.

104 5. Programming with Windows and Application Basics

NOTE
All messages have an ID associated
with them, such as WM_, which stands
for window message (the majority
of messages are prefixed with WM_).
For example, when a user closes
your application, your message
procedure eventually receives a
WM_DESTROY message.

Figure 5.2 demonstrates the path a message takes from the moment it is created as
an event to the moment you process it via the event handler.

Once executed, your application starts receiving many messages, including just
about every type that you can think of: device input, multimedia functions,
Windows operations, menu navigation, buttons clicked—the list goes on. In the
section “Common Messages,” later in this chapter, you will learn about the mes-
sages you need to deal with at this point in your life as a programmer.

Registering a Windows Class
Every Windows object (such as the window, button, text field, and so on) is orga-
nized and controlled by means of classes. Every class of objects has special proper-
ties and methods of processing, much like you see in Figure 5.3.

Many of these classes are already built into Windows, such as the push button class
or edit box class. For your Windows application, you need to create a custom class
structure that describes the application and basically how Windows should treat it.

105Programming with Windows

Windows Event Handler

Windows Global Queue

Application Message Queue

Message Pump

WindowProc (. . .);

WM_MOUSEMOVE

Event

Figure 5.2

A message has a long way to
go from creation to completion.

Filling in a special structure called WNDCLASSEX with the information about your custom
class and registering it with Windows does this:

typedef struct _WNDCLASSEX {
UINT cbSize; // Size of this structure
UINT style; // Style of window
WNDPROC lpfnWndProc; // Window message procedure
int cbClsExtra; // 0
int cbWndExtra; // 0
HANDLE hInstance; // Instance handle from WinMain
HICON hIcon; // Handle to application icon
HCURSOR hCursor; // Handle to application cursor
HBRUSH hbrBackground; // Handle to background brush
LPCTSTR lpszMenuName; // Handle to application menu
LPCTSTR lpszClassName; // Class name
HICON hIconSm; // Handle to small application icon

} WNDCLASSEX;

To simplify this process of creating your custom class, let me explain the basic way
to use this structure. First and foremost is to set the style variable with the desired
method of dealing with the application window. This field has a selection of about
11 flags that you can combine and use, but realistically you’ll use only three.

These three flags are CS_CLASSDC, CS_HREDRAW, and CS_VREDRAW. The second and third flags
tell Windows that you want the window redrawn anytime it’s horizontal (CS_HREDRAW) or
vertical (CS_VREDRAW) size changes. You commonly use CS_HREDRAW and CS_VREDRAW when
creating a non-DirectX game.

CS_CLASSDC tells Windows to share the drawing resources with all windows that use
the same class. This way, a single process finishes what it is drawing before the next
process begins to draw. This is the flag you use when working with DirectX for
graphics.

106 5. Programming with Windows and Application Basics

Figure 5.3

Most Windows objects are classified by . . . classes! Each class
is specific in its control of the object or objects it represents.

Next, you see the pointer to your message procedure (lpfnWndProc). This message
procedure is a function you’ll write later on, and one that you see in the later sec-
tion “The Window Message Procedure.” Moving on, you see that hInstance is the
variable you set to the instance handle of your program (which you received from
the WinMain function). Skipping ahead a bit, you see lpszClassName, which is a pointer
to a string that holds the name of the class you are creating.

Throughout the WNDCLASSEX structure, you see several handles: the background
brush, application icon, menu, and cursor. These are the default objects Windows
uses to draw your application’s window and associated controls. For example, if you
assign an hourglass cursor in hCursor, your application will use the hourglass icon
until the cursor is specifically changed.

Normally, the only handle that you provide is one to an application icon (you use a
standard Windows object for the other handles). If you’re not creating a game, the
only other handle you have to worry about is the background brush, which will be
the window’s background color when it is redrawn.

Because you bought this book in order to learn how to create games—not learn
the intricacies of Windows programming—here is the basic (and seemingly stan-
dard) setup that you use for the WNDCLASSEX structure. Actually, the following code
shows two structures, one for games and the other for standard applications:

// for DirectX games, use:
WNDCLASSEX wcex = { sizeof(WNDCLASSEX), CS_CLASSDC, \

WindowProc, 0L, 0L, hInstance, \
NULL, NULL, NULL, NULL, \
“GameClass”, NULL };

// for standard applications, use:
WNDCLASSEX wcex = { sizeof(WNDCLASSEX), \

CS_HREDRAW | CS_VREDRAW, \
WindowProc, 0L, 0L, hInstance, \
LoadIcon(NULL, IDI_APPLICATION), \
LoadCursor(NULL, IDC_ARROW), \
(HBRUSH)GetStockObject(LTGRAY_BRUSH), \
NULL, “AppClass”, NULL };

Registering your window’s class is accomplished via the RegisterClassEx function, which
takes a single parameter—the WNDCLASSEX structure that you’ve already created:

ATOM RegisterClassEx(CONST WNDCLASSEX *lpwcx);

107Programming with Windows

When you finish with the application, you can (and should) unregister the class as
follows:

BOOL UnregisterClass(
LPCTSTR lpClassName, // Class name to unregister
HINSTANCE hInstance); // Instance handle

Using the preceding information, you can rework your
WinMain function to look something like this:

int WINAPI WinMain(HINSTANCE hInstance, \
HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow)

{
WNDCLASSEX wcex = { sizeof(WNDCLASSEX), CS_CLASSDC, \

WindowProc, 0L, 0L, hInstance, \
NULL, NULL, NULL, NULL, \
“GameClass”, NULL };

// Register the class and exit on error
if(!RegisterClassEx(&wcex))

return FALSE;

// Do other application stuff here

// Unregister class
UnregisterClass(“GameClass”, hInstance);

// Exit application
return 0;

}

Creating a Window
Now that you’ve created and registered your class, it is time to create the actual
window, which you do using the CreateWindow function:

HWND CreateWindow(
LPCTSTR lpClassName, // Class to use
LPCTSTR lpWindowName, // Window name (caption)
DWORD dwStyle, // Style of window
int x, // x coordinate of window
int y, // y coordinate of window
int nWidth, // width of window

108 5. Programming with Windows and Application Basics

NOTE
If it succeeds, the
RegisterClassEx
function returns a
non-zero value; if it
does not succeed,
it returns 0.The
ATOM return value
is rarely needed.

TEAMFL
Y

Team-Fly®

int nHeight, // height of window
HWND hWndParent, // NULL
HMENU hMenu, // NULL (or menu handle)
HANDLE hInstance, // instance handle from WinMain
LPVOID lpParam); // NULL

This function returns a HWND variable, which is the handle to your newly created
window, or NULL if there was an error. As for lpClassName, use the name of the class
you’ve already registered and set lpWindowName with the string you want displayed as
the window caption (the title of the application).

To size and position the window, fill in the nWidth, nHeight, x, and y fields; they are
measured in pixels. For example, you can create a 640 x 480 window at x=0,y=0. Be
sure to also set the hInstance field to the instance handle you received from WinMain.

I saved the best for last. The dwStyle field holds the settings that determine your
window’s appearance. The dwStyle variable can be a combination of the flags in
Table 5.3.

If you want to create a window that is sizable
(you can drag the edges to resize the win-
dow), use the WS_OVERLAPPEDWINDOW style. On
the other hand, if you don’t want the user
to resize the window, use a WS_BORDER style.

You can expand the previous WinMain function
by adding the following:

// ... previous WinMain code

// Register the class and exit on error
if(!RegisterClassEx(&wcex))

return FALSE;

// Create the window (320x240 at 0,0 using overlapped style)
HWND hWnd; // our window’s handle
hWnd = CreateWindow(“GameClass”, “My Game Title”, \

WS_OVERLAPPEDWINDOW, 320, 240, 0, 0, \
NULL, NULL, hInstance, NULL);

// Return on error creating the window
if(hWnd == NULL)

return FALSE;

109Programming with Windows

NOTE
Typically, in games (and the
majority of this book), you use
WS_OVERLAPPEDWINDOW (DirectX
Graphics resizes the view as it
is displayed).

// Show the window
ShowWindow(hWnd, SW_SHOWNORMAL);
UpdateWindow(hWnd);

// Do other application stuff here

// ... go on with WinMain

New in this code are the ShowWindow and UpdateWindow functions. These ensure that
your window appears where you want it to be and that all visible objects within the
window are drawn.

110 5. Programming with Windows and Application Basics

Table 5.3 CreateWindow’s dwStyle flags

Flag Description

WS_BORDER Creates a window with a thin border.

WS_DLGFRAME Creates a window with a dialog box border.

WS_THICKFRAME Creates a window with a thick sizable border.

WS_CAPTION Creates a window with a caption (title).

WS_SYSMENU A system menu is displayed at top of the window.

WS_MINIMIZEBOX Window displays a minimize box.

WS_MAXIMIZEBOX Window displays a maximize box.

WS_HSCROLL Creates a horizontal scroll bar in the window.

WS_VSCROLL Creates a vertical scroll bar in window.

WS_MINIMIZE Window is minimized on creation.

WS_MAXIMIZE Window is maximized on creation.

WS_OVERLAPPED Creates an overlapped window.

WS_POPUP Creates a pop-up window.

WS_OVERLAPPEDWINDOW Same as using the WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX flags.

WS_POPUPWINDOW Same as using the WS_BORDER, WS_POPUP, and WS_SYSMENU flags.

The Message Pump
You’re getting down to the nitty-gritty of a Windows application now—the message
pump. Here’s where your application is going to enter an endless loop, waiting for
Windows to start throwing messages at you. As your application receives these mes-
sages from the message queue via a call to GetMessage or PeekMessage, you send them
off to your message procedure to handle, much as shown in Figure 5.4.

The code to a standard message pump that you’ll use in an application looks some-
thing like this:

// ... previous RegisterClass and CreateWindow function calls
MSG Msg;
while(GetMessage(&Msg, NULL, 0, 0)) {

TranslateMessage(&Msg);
DispatchMessage(&Msg);

}

First you see the MSG declaration, which is a structure that Windows uses to store
message-related information. The GetMessage function fills the MSG structure with
waiting messages (or waits until a message is available).

After the call to GetMessage, you give the message structure to the TranslateMessage
function, which in turn translates key presses into message information. At long last
is the call to the DispatchMessage function, which sends the message off to your applica-
tion’s message procedure. This loop continues until the GetMessage function receives a
quit message (signified by a return value of 0), which will cause the loop to break.

111Programming with Windows

WM_COMMAND
WM_MOUSEMOVE

WM_KEYDOWN

Windows Message Queue

Application Message Queue

WindowProc(. . ., . . .);

PeekMessage(. . ., . . .);

Figure 5.4

The application
message pump
continuously asks
Windows whether any
messages are waiting
to be processed. If so,
the message makes its
way to the window’s
message procedure to
be processed.

Here’s the WinMain function in its entirety (it uses all that you’ve learned up to this
point about creating the application window and filtering through the messages
using a message pump):

int WINAPI WinMain(HINSTANCE hInstance, \
HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow)

{
WNDCLASSEX wcex = { sizeof(WNDCLASSEX), CS_CLASSDC, \

WindowProc, 0L, 0L, hInstance, \
NULL, NULL, NULL, NULL, \
“GameClass”, NULL };

// Register the class and return on error
if(!RegisterClassEx(&wcex))

return FALSE;

// Create the Window (320x240 at 0,0 using overlapped style)
HWND hWnd; // our window’s handle
hWnd = CreateWindow(“GameClass”, “My Game Title”, \

WS_OVERLAPPEDWINDOW, 320, 240, 0, 0, \
NULL, NULL, hInstance, NULL);

// return on error creating the window
if(hWnd == NULL)

return FALSE;

// Show the window
ShowWindow(hWnd, SW_SHOWNORMAL);
UpdateWindow(hWnd);

// Enter the message pump
MSG Msg;
while(GetMessage(&Msg, NULL, 0, 0)) {

TranslateMessage(&Msg);
DispatchMessage(&Msg);

}

// Unregister class
UnregisterClass(“GameClass”, hInstance);

// Exit application
return 0;

}

112 5. Programming with Windows and Application Basics

When creating games, your use of the message pump changes a bit. With the previ-
ous method, the application waited until a message came along and then handled it.
For games, you can’t just sit there and wait—input must be processed, graphics must
be drawn, sound must be played, all in real time. You can change the way you deal
with Window’s messages by creating the following new-and-improved message
pump:

MSG Msg;

// Clear out the message structure
ZeroMemory(&Msg, sizeof(MSG));

// Loop endlessly until you receive a quit message
while(Msg.message != WM_QUIT) {

// Peek into the queue and see if there’s a message waiting
if(PeekMessage(&Msg, NULL, 0, 0, PM_REMOVE)) {

// There’s a message! Handle it normally.
TranslateMessage(&Msg);
DispatchMessage(&Msg);

} else {
// No messages waiting. Go ahead and do time-crucial
// stuff here, such as rendering the game’s graphics.

}
}

Wow! That’s a lot bigger, but in essence it’s simple. You start out with a zeroed out
MSG structure, then enter a loop that scans for a specific message (WM_QUIT), which
then breaks the loop. Instead of using GetMessage, you use PeekMessage, which looks in
the message queue to see if a message is waiting.

If there is a message, PeekMessage pulls it out and handles it with TranslateMessage and
DispatchMessage. If there are no messages waiting, then the flow is passed on to what-
ever time-crucial processing you need to perform, such as processing your per-
frame game information.

The Window Message Procedure
Because of the Windows “Don’t call me, I’ll call you” scheme, you are required to
supply your application with a window message procedure (aka, the window procedure)
that receives the incoming flow of messages. You declare the procedure as follows:

LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, \

113Programming with Windows

WPARAM wParam, LPARAM lParam);

Not many parameters are being passed here, but you can do plenty with what you
receive. The hWnd argument is the handle to the window to which the message
belongs. The uMsg is the generated message that needs to be processed, whereas
wParam and lParam contain information that is pertinent to the message (they could
be values or pointers).

What you do inside this function is essential to your application. As the messages
roll in, you must determine whether you want to process them. If a message is
important to your application and you want to process it, do so and then allow
Windows to resume its operations by returning a value of 0 (signifying that you
have processed the message). If the message in question is not required by your
application, let Windows deal with it, using the following line of code:

return DefWindowProc(hWnd, uMsg, wParam, lParam);

Let me show you a common window procedure that takes a message and uses a
switch...case statement to determine what to do with the message—either handle
it here by yourself or let Windows handle it:

LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, \
WPARAM wParam, LPARAM lParam)

switch(uMsg) {
case WM_DESTROY:

PostQuitMessage(0); // Tell Windows to close application
break;

// Pass remaining messages to the default message handler
default: return DefWindowProc(hWnd, uMsg, wParam, lParam);

}

return 0;
}

The preceding is one of the most common window procedures you will use—it
looks for a single message that tells you to shut down your application and passes
all other messages to the default window procedure function for Windows to handle.
As you can see, processing messages is a simple task; it just requires knowing which
messages you need to process.

114 5. Programming with Windows and Application Basics

Common Messages
I can’t possibly deal with all the Windows messages in this book. Instead, I’ll just go
over the ones that you are most likely to encounter while programming your games
(see Table 5.4 for this list of messages). Again, the majority of the messages that
you must work with are assigned macros that begin with WM_.

When Windows sends you a message, you need to know the type of parameters and
the extra information that Windows is sending with the message. This extra data is
stored in the wParam and lParam arguments of the message procedure. For the specifics
on each message (plus a list of all Windows messages), consult the Win32 SDK.

115Programming with Windows

Table 5.4 Standard Windows Messages

Message Description

WM_CREATE Sent whenever a window is created via CreateWindow or
CreateWindowEx.

WM_DESTROY Sent whenever a window is destroyed.

WM_RESIZE Sent when the application window is resized.

WM_ACTIVATE Sent when your window has been activated or deactivated.

WM_PAINT Sent when a portion of the window needs to be redrawn.

WM_COMMAND Sent when a user selects a command item (such as a menu item
or when the user clicks a button).

WM_MOUSEMOVE Periodically sent to inform the application that the mouse has
been moved.

WM_LBUTTONDOWN Sent when the left mouse is pressed.

WM_LBUTTONUP Sent when the left mouse is released.

WM_RBUTTONDOWN Sent when the right mouse is pressed.

WM_RBUTTONUP Sent when the right mouse is released.

WM_KEYDOWN Sent when a key is pressed.

WM_KEYUP Sent when a key is released.

As a quick example, examine the WM_MOUSEMOVE message. According the Win32 SDK,
the low-word value (lowest 16-bits) of the lParam contains the X-coordinate of the
mouse cursor, although the high-word value (highest 16-bits) of the lParam contains
the Y-coordinate of the mouse cursor. To extract the low- and high-word values,
use the LOWORD and HIWORD macros, as you see here:

int XCoordinate = LOWORD(lParam);
int YCoordinate = HIWORD(lParam);

In order to deal with the messages inside your message procedure, you can borrow
from my previous example and use a switch...case statement:

LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, \
WPARAM wParam, LPARAM lParam)

switch(uMsg) {
case WM_CREATE:

// handle window creation information here
break;

case WM_DESTROY:
PostQuitMessage(0); // Tell Windows to close application
break;

case WM_COMMAND:
// handle user-defined operation here
break;

default: return DefWindowProc(hWnd, uMsg, wParam, lParam);
}

return 0;
}

Throughout the book’s demo programs, you will find many of the Windows mes-
sages that I present in this chapter, so I’ll make sure to comment the code so you
know how the window procedure’s parameters are being used when processing the
various messages.

An Application Shell
The following code is the complete code for a shell application, an application that cre-
ates only a window (such as the one in Figure 5.5) and that enters the message pump
(a game-style message pump, that is).

116 5. Programming with Windows and Application Basics

The only message that needs processing at this point is WM_DESTROY, which informs you
that the application is being closed (quit).

#include <windows.h>

// Function prototypes
int WINAPI WinMain(HINSTANCE hInstance, \

HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow);
LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, \

WPARAM wParam, LPARAM lParam);

int WINAPI WinMain(HINSTANCE hInstance, \
HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow)

{
HWND hWnd;
MSG Msg;
WNDCLASSEX wcex = { sizeof(WNDCLASSEX), CS_CLASSDC, \

WindowProc, 0L, 0L, hInstance, \
NULL, NULL, NULL, NULL, \
“GameClass”, NULL };

// Register the class and exit on error
if(!RegisterClassEx(&wcex))

return FALSE;

117Programming with Windows

Figure 5.5

A simple window shell, as shown here, will form the basis
for all the demos and the game I create in this book.

// Create the window (400 x 400 at 0,0 using overlapped style)
hWnd = CreateWindow(“GameClass”, “My Game Title”, \

WS_OVERLAPPEDWINDOW, 0, 0, 400, 400, \
NULL, NULL, hInstance, NULL);

// return on error creating the window
if(hWnd == NULL)

return FALSE;

// Show the window
ShowWindow(hWnd, SW_SHOWNORMAL);
UpdateWindow(hWnd);

// Clear out the message structure
ZeroMemory(&Msg, sizeof(MSG));

// Loop endlessly until you receive a quit message
while(Msg.message != WM_QUIT) {

// Peek into queue and see if there’s a message waiting
if(PeekMessage(&Msg, NULL, 0, 0, PM_REMOVE)) {

// There’s a message! Handle it normally.
TranslateMessage(&Msg);
DispatchMessage(&Msg);

} else {
// No messages waiting. Go ahead and do time-crucial
// stuff here, such as a rendering graphics.

}
}

// Unregister class
UnregisterClass(“GameClass”, hInstance);

// Exit application
return 0;

}

// The message procedure
LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, \

WPARAM wParam, LPARAM lParam)
{

switch(uMsg) {

118 5. Programming with Windows and Application Basics

TEAMFL
Y

Team-Fly®

case WM_DESTROY:
PostQuitMessage(0); // Tell Windows to close application
break;

// Handle every other message
default: return DefWindowProc(hWnd, uMsg, wParam, lParam);

}

return 0;
}

Although there’s much more to Windows programming, you really don’t need to
go into much greater detail when using DirectX to create games. However, you do
need to know about a few advanced features, which I introduce in the next section.

Advanced Features
Although I couldn’t possibly cover the vast range of advanced features here, let me
show you a few that you’re most likely to use in your game-programming endeavors
—features such as using simplified windows to relay quick bits of information,
attaching data to the application’s executable file, and ways to execute multiple
sections of code simultaneously.

Using Message Boxes
Conveying information to the user is at times a difficult task. The text that you out-
put must be in a window, and creating a window is somewhat involved. You must
register a window class, create a window, and monitor the message queue; it’s
almost not worth it.

This is where a message box comes in handy. A message box is a window that contains a
caption, a message, an optional icon, and up to three buttons (as illustrated in Figure
5.6). Once displayed, a message box simply waits for the user to click on a button, at
which point, the message box closes and returns execution to the calling code.

The message box function is easy to use. Take a look at its prototype:

int MessageBox(
HWND hWnd, // Parent window or NULL for none
LPCTSTR lpText, // Message to display in box
LPCTSTR lpCaption, // Caption of window to use
UINT uType); // Buttons and icon settings

119Programming with Windows

uType is a combination of flags determining which buttons to display, as well as
optional icons to display with the window’s text. You can compose the uType variable
from a combination of the flags shown in Table 5.5 (consult the Win32 SDK for a
complete list of flags).

After selecting the type of buttons and icons (if any) to use, set the caption
(lpCaption) and message (lpText). As one final step, pass the handle to the parent
window that owns the message box, or use NULL to specify no owner.

120 5. Programming with Windows and Application Basics

Figure 5.6

A message box is the simplest window you can work with. It’s useful
for relaying small bits of information that might be crucial to the
program’s execution.

Table 5.5 MessageBox Display Flags

Flag Description

MB_OK Displays an OK button.

MB_OKCANCEL Displays OK and CANCEL buttons.

MB_RETRYCANCEL Displays RETRY and CANCEL buttons.

MB_YESNO Displays YES and NO buttons.

MB_YESNOCANCEL Displays YES, NO, and CANCEL buttons.

MB_ABORTRETRYFAIL Displays ABORT, RETRY, and FAIL buttons.

MB_ICONEXCLAMATION An exclamation icon is displayed.

MB_ICONINFORMATION An icon with an encircled lowercase i is displayed.

MB_ICONQUESTION An question-mark icon is displayed.

MB_ICONSTOP A stop-sign icon is displayed.

MB_DEFBUTTON1 The first button is clicked when the user presses enter.

MB_DEFBUTTON2 The second button is clicked when the user presses enter.

MB_DEFBUTTON3 The third button is clicked when the user presses enter.

MB_DEFBUTTON4 The fourth button is clicked when the user presses enter.

After a button is selected, the MessageBox function returns one of the values shown
in Table 5.6.

Here’s an example using the message box function that directs users to click on YES
or NO when they are asked if they want to exit the program without saving. For
added visual appeal, a question mark icon is displayed inside the message box:

int Result = MessageBox(
NULL,
“Exit program without saving changes?”
“Exit Program”,
MB_YESNO | MB_ICONQUESTION);

If the user clicks the YES button, MessageBox returns IDYES. If the user clicks NO, a value
of IDNO is returned.

Dialog Boxes
Dialog boxes are another advanced feature of Windows. A dialog box is an applica-
tion window created by using a template designed through utilizing a dialog box
resource editor. The reasons for using a dialog box are many. First, layout of the
controls is a breeze. You just point and click where you want a control to be placed
in the application window.

121Programming with Windows

Table 5.6 Return Values from MessageBox

Value Reason

IDABORT ABORT button was clicked.

IDCANCEL CANCEL button was clicked.

IDIGNORE IGNORE button was clicked.

IDNO NO button was clicked.

IDOK OK button was clicked.

IDRETRY RETRY button was clicked.

IDYES YES button was clicked.

Second, with a dialog box, you can quickly create an application window or multi-
ple windows using the same template. These dialog box windows are identical to a
regular window—they all use a window message procedure to process messages.
With dialog boxes, however, some of the messages change. Instead of receiving a
WM_CREATE message when the application window is created, a dialog box receives a
WM_INITDIALOG message. These differences in messages from a regular application
window and a dialog box window are shown in the Microsoft Win32 SDK help files.

As for this book, I tend to use dialog boxes to quickly construct application win-
dows full of controls ranging from push buttons to text boxes. When you’re brows-
ing through the book’s projects, you’ll sometimes notice an attached dialog box
resource. If this resource exists, that project creates the application window using
the dialog box template.

To create an application window from a dialog box template, use the following
function:

HWND CreateDialog(
HINSTANCE hInstance, // Handle to application instance
LPCTSTR lpTemplate, // Dialog box template name pointer
HWND hWndParent, // Handle to owner window
DLGPROC lpDialogFunc); // Dialog box’s message procedure

Even though you haven’t learned about them yet, a resource file contains the dialog
box template. A unique identifier names each template. To create the window from a
dialog box template, you need to pass this unique identifier along with the applica-
tion’s instance handle and message procedure function to the CreateDialog function.
After calling CreateDialog, you receive a handle to the newly created application window.

You’ve already seen how a window processes messages using the message procedure
in the section “Working Inside a Window,” so let’s move on and look at how to
store a dialog box template using resources.

Resources
Resources are data appended to the end of an application’s executable file. These
resources can range from program-specific data to icons, menu definitions, and
even bitmap images (see Figure 5.7, which shows a breakdown of an application’s
executable file).

By packaging these resources together inside the file, you save space and ensure
that the data exists when your program needs it. You can save any type of data in a

122 5. Programming with Windows and Application Basics

resource—bitmaps, sound files, icons, and even game-related data such as dialogue.
You just have to know how to insert that data as resources into your application.

Attaching Resources to an Application
Visual C/C++ comes with a built-in resource manager that makes attaching
resources to your program a breeze. To attach a resource file, open your project
and choose Insert, Resource. A list of typical resource types, such as menus and
dialog boxes, appears.

Windows comes with a set of default resources, such as bitmaps and icons, but aside
from those, you must do a little work in order to use your custom resources (the
resources you’re interested in at this point):

1. To attach a custom resource, click IMPORT, select your file, and, if asked,
give it a resource type name. (For example, if you were to attach a custom
file named MYMAP.MAP, you might use the name GameMaps. From then on,
anytime you attach a *.MAP file, it would be placed under the GameMaps
listing of resources inside the project editor.)

2. Enter the resource list inside your project navigator. The resources are listed
by their types, with each resource having a different name. These names
might begin with IDC_ (for cursors), IDB_ (for bitmaps), or IDM_ (for menus).
Use your prefix-naming convention here, with the default custom resource
using IDR_.

123Programming with Windows

Windows
Application

.EXE

Program
Code

Resource:
Bitmap

Resource:
Icon

Resource:
Custom

D
isk

S
torage

M
em

ory

OXOOOOOOOO

OXFFFFFFFFF

Figure 5.7

Resources such as bitmaps and menus are appended to
the program’s executable file.

3. To rename a resource, right-click it and choose Properities (or press
Alt+Enter). Go ahead and change the name of the resource in the ID box as
you see fit. Just remember this name, because you’ll use it later to access the
resource. (I’ll name the map resource IDR_MAP1 and use that name in upcom-
ing examples.)

Retrieving Resource Data
After a custom resource is attached to an application, you can access the resource
directly with a memory pointer that is obtained by using the three functions shown
in Table 5.7.

The first function, FindResource, locates the resource attached to your application
and returns a handle to it that is used during the LoadResource call. As you might
guess, the LoadResource call loads the resource into memory and returns yet another
handle used to access the resource with the LockResource function. At long last, you
can lock the resource memory, thus retrieving a data pointer to it for your own use.

Here are the function prototypes for FindResource, LoadResource, and LoadResource:

HRSRC FindResource(
HMODULE hModule, // Module handle from WinMain
LPCTSTR lpName, // Resource name
LPCTSTR lpType); // Type of resource

Using the hModule field is easy—set it to the instance handle received from WinMain.
lpName is the name of your resource (such as IDR_MAP1), and lpType is the name of
your custom resource (GameMaps). Be sure to include the parentheses as I’ve done
here (the compiler usually adds those for you in the resource type name).

124 5. Programming with Windows and Application Basics

Table 5.7 aResource Handling Functions

Function Description

FindResource Finds an attached resource and returns a handle to it.

LoadResource Loads a resource into global memory and returns a handle to it.

LockResource Locks the resource memory and returns a memory pointer to it.

HGLOBAL LoadResource(
HMODULE hModule, // here’s the module handle again!
HRSRC hResInfo); // handle from FindResource call

There’s not too much to explain here; you can actually combine the LoadResource
function with the FindResource function into one call:

HGLOBAL hResource = LoadResource(hInstance, FindResource(\
hInstance, MAKEINTRESOURCE(IDR_MAP1), “GameMaps”));

At long last is the LockResource function, which takes only one parameter; the handle
received from the LoadResource function call (the return value from the LockResource
value is a void pointer that you can cast to any data type you like):

LPVOID LockResource(HGLOBAL hResData);

As an example of loading your own resource, say that you attach a text file called
readme.txt and give it a resource type of “TEXT”. Say that you name the resource IDR_TEXT1.
This short code will load the resource for you and display it within a message box:

HGLOBAL hResource = LoadResource(hInst, FindResource(hInst, \
MAKEINTRESOURCE(IDR_TEXT1), “TEXT”));

if(hResource != NULL) {
char *pText = (char*)LockResource(hResource);
MessageBox(NULL, pText, “Text”, MB_OK);

}

Threads and Multithreading
Windows 95 introduced programmers to the idea of using a multitasking system
(even though Windows really isn’t a true multitasking system because it uses pre-
emptive multitasking, which processes small bits of many programs, one at a time).
The idea is that you can have multiple processes (applications) operating at the
same time, each taking a portion of processing time (called a time slice).

125Programming with Windows

CAUTION
The MAKEINTRESOURCE macro converts the resource’s name into a
string pointer that is used by certain functions. For example, you
obtain the IDR_MAP1 resource pointer with the following code:

LPTSTR *ResourcePointer = MAKEINTRESOURCE(IDR_MAP1)

Multitasking also enables each process to split into separate processes, called
threads. Each thread has its own purpose, such as scanning for network data, han-
dling user input, or playing sounds when required. Using more than one thread
in an application is called multithreading.

Creating additional threads within your application really isn’t difficult. To create a
thread, you create a function (using a special function prototype) that contains the
code you want to execute. The prototype to use for the thread function looks like this:

DWORD WINAPI ThreadProc(LPVOID lpParameter);

The lpParameter argument is a user-defined pointer that you provide when you cre-
ate the thread, which you accomplish with a call to CreateThread:

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAbilities, // NULL
DWORD dwStackSize, // 0
LPTHREAD_START_ROUTINE lpStartAddress, // thread function
LPVOID lpParameter, // user supplied pointer- can be NULL
DWORD dwCreationFlags, // 0
LPDWORD lpThreadId); // receives thread identifier

This is a complex function, so I will not go into the details here, other than to give
you an example to follow. Here’s a simple thread function and the call to initialize it:

// The custom thread function
DWORD WINAPI MyThread(LPVOID lpParameter)
{

BOOL *Active;

Active = (BOOL*)lpParameter;
*Active = TRUE; // flag thread as active

// Insert custom code here

126 5. Programming with Windows and Application Basics

CAUTION
The return value of this function is a handle, which must be closed
when you’re done, or the system resources will not be released.
Release the resources used by the thread with a call to CloseHandle:

CloseHandle(hThread); // use handle received from CreateThread

// Terminate the thread
*Active = FALSE; // flag thread as no longer active
ExitThread(0); // special call to close thread

}

void InitThread()
{

HANDLE hThread;
DWORD ThreadId;
BOOL Active;

// Create the thread, passing a user-defined variable that
// is used to store the status of the thread.
hThread = CreateThread(NULL, 0, \

(LPTHREAD_START_ROUTINE)MyThread, (void*)&Active, \
0, &ThreadId);

// Wait for the thread to complete by continuously
// checking the state of the flag.
while(Active == TRUE);

// Close the thread handle
CloseHandle(hThread);

}

The preceding code creates a thread,
which executes immediately when the
CreateThread function completes. During
the creation call, you supply a pointer to
a BOOL variable that tracks the state of the
thread; the flag signifies when the thread
is active by storing a value of TRUE (the
thread is active) or FALSE (the thread is
not active).

When the thread’s execution is complete,
you flag the thread as being no longer
active (by storing a value of FALSE in the
previously mentioned BOOL variable) and terminate it with a call to ExitThread, which
has a single parameter—the termination code of the thread, or rather the purpose for
which the thread was closed. It’s safe to just use a value of 0 in the call to ExitThread.

127Programming with Windows

NOTE
ExitThread is not the only way to
stop a thread’s execution. Any func-
tion outside the thread can call
TerminateThread, which will immedi-
ately stop the thread’s execution.
This is really not desirable; it wastes
system resources in most cases and
can cause a system crash. Only use
TerminateThread if you absolutely
must.To call TerminateThread, provide
two arguments—the first parameter
being the thread handle and the
second being the termination code
to return):

TerminateThread(hThread, 0);

Basically, a thread is just a function that runs concurrently with your application.
In Chapter 8, “Playing Sound with DirectX Audio,” you find more about how to use
threads.

Critical Sections
Because Windows is a multitasking system, Windows applications can really get in
the way of each other, especially applications using multiple threads. For example,
what if one thread is filling a data structure with some crucial data when suddenly
a second thread alters or accesses that very data?

There is a way to make sure that only one thread (called a process) has complete
control when needed, and this is by using critical sections. When activated, a critical
section will block all processes from trying to access shared memory (the applica-
tion’s memory that all threads utilize), thus allowing each process to individually
alter the application data without having to worry about other processes interfer-
ing. To use a critical section, you must first declare and initialize one:

CRITICAL_SECTION CriticalSection;
InitializeCriticalSection(&CriticalSection);

At this point, you can enter a critical section, process your crucial data, and leave
the critical section, as done in the following example:

EnterCriticalSection(&CriticalSection);
// Do crucial data processing here
LeaveCriticalSection(&CriticalSection);

When you finish with the critical section (such as when the application is closing),
you release it with a call to

DeleteCriticalSection(&CriticalSection);

Although I’d like to go into more detail about the use of critical sections, there
really isn’t a need to. Using them is easy and a must for multithreaded applications.
The only rule to remember is to make sure that the code contained within a criti-
cal section executes quickly; you’re locking up the system’s processes, and that
could lead to a system crash if your program takes too long.

Using COM
COM, or Component Object Module, is a programming technique adopted by Microsoft.
With COM, you can create software components so that their functionality is compat-
ible with all programs. Take Internet Explorer v4+, for example. I bet you didn’t

128 5. Programming with Windows and Application Basics

TEAMFL
Y

Team-Fly®

know that the toolbar and browser window are COM objects. What’s more, you can
use those objects in your applications!

Although that is a cool reason to start using COM, the biggest reason is DirectX;
DirectX is composed entirely of COM-based components.

Initializing COM
You’ll have to initialize the COM system in order to use COM objects. To initialize
COM, you use these two functions:

// For single-threaded applications
HRESULT CoInitialize(

LPVOID pvReserved); // NULL

// For multithreaded applications
HRESULT CoInitializeEx(

void *pvReserved, // NULL
DWORD dwCoInit); // concurrency model

Either of the two preceding functions will work, but when you’re using multi-
threaded applications, you must use the second function, CoInitializeEx because
you must specify the COINIT_MULTITHREADED flag in dwCoInit in order for the COM
system to work correctly.

When you finish with the COM system, you shut it down with a call to CoUninitialize,
which takes no parameters:

void CoUninitialize();

You follow each call to CoInitialize and CoInitializeEx with an equal number of calls
to CoUninitialize. If you call CoInitialize twice (which is allowed), you need to follow
with two calls to CoUnitialize. You can see this in the following code:

// Initialize the COM system
CoInitialize(NULL);

// Initialize COM with a multithreaded concurrency
CoInitializeEx(NULL, COINIT_MULTITHREADED);

// Release the COM (twice)
CoUninitialize();
CoUninitialize();

129Programming with Windows

IUnknown
IUnknown is the base class for all COM interfaces. It contains only three functions:
AddRef, Release, and QueryInterface. AddRef initializes whatever it needs and increases
the reference count of the number of times this class has been instanced. You must
match the number of reference counts with the same number of Releases, which
frees all the data that the object instance is using.

You use the third function, QueryInterface, to obtain the interfaces to contained
objects, including newer interfaces. Such is the case when objects can span through
multiple versions, as in DirectX. You can still use an older interface, but to get a
newer one, query for it. If a newer interface exists, the object pointer is passed;
otherwise, QueryInterface returns NULL to represent no interface or an error.

In order to build on functions, an object will need to derive a class from the IUnknown
object and insert the extra functions into the derived class declaration. It’s interest-
ing to note that the COM standard that Microsoft maintains states that objects can-
not expose their variables—only functions.

Functions are required to return an HRESULT value that represents an error or success
code. To retrieve any type of value from a COM object, you pass a pointer to a
variable (which must be a word or double word—no bytes are allowed here) to
a function used to retrieve the value contained within the object.

As an example, you can create a simple object (derived from IUnknown) that takes two
numbers, adds them together, and returns the result in a third provided variable:

class IMyComObject : public IUnknown
{

public:
HRESULT Add(long *Num1, long *Num2, long *Result);

};

HRESULT IMyComObject::Add(long *Num1, long *Num2, long *Result)
{

// Add the numbers and store in result
*Result = *Num1 + *Num2;

// return a success code
return S_OK;

}

130 5. Programming with Windows and Application Basics

NOTE
Notice that all COM objects begin
with an uppercase I rather than the
letter C.This is to signify that the
object is a COM interface.

Initializing and Releasing Objects
To use a COM object, you must create it (and the code library loaded by Windows)
using the CoCreateInstance function:

STDAPI CoCreateInstance(
REFCLSID rclsid, // Class identifier of object
LPUNKNOWN pUnkOuter, // NULL
DWORD dwClsContext, // CLSCTX_INPROC
REFIID riid, // Reference to interface identifier
LPVOID *ppv); // Pointer to received object

To make use of CoCreateInstance, you have to know the object’s class and interface
identifiers. The class identifier, prefixed with CLSID_, is the class of object that you
are creating, and the reference, prefixed with IID_, is the exact interface for which
you are looking.

Say that you have a class called Math that has a class identifier of CLSID_MATH. The
Math class contains three objects: IAdd (reference identifier IID_IAdd), ISubtract
(IID_ISubtract), and IAdd2 (IID_IAdd2). To reference the IAdd2 object, a call to
CoCreateInstance looks like this:

IAdd2 *pAdd2;

if(FAILED(CoCreateInstance(CLSID_MATH, NULL, CLSCTX_INPROC, \
IID_IAdd2, (void**)&pAdd2))) {

// Error occurred
}

All COM objects you create must eventually be released. This is the purpose of the
IUnknown::Release function, which takes no parameters:

HRESULT IUnknown::Release();

After you finish with the IAdd2 interface, you need to release it with the following:

IAdd2->Release();

Querying Interfaces
One of the best things about COM is that it is backward-compatible. If you have a
newer COM object (containing new interfaces), you still have full access to old
interfaces through the object. This method of keeping old interfaces ensures that
your code will not break if the end user has newer COM objects installed.

This also means that older interfaces will be able to query for newer interfaces.

131Programming with Windows

This is done by using the IUnknown::QueryInterface method:

HRESULT IUnknown::QueryInterface(
REFIID iid, // Reference identifier of new interface
void **ppvObject); // New object pointer

Because the original object calling the query function has already been created,
there’s no need to worry about class identifiers here, just the reference identifier
of the new interface that you want. Going back to the Math class object, say that you
want to obtain an IAdd interface and then query for the IAdd2 interface:

IAdd *pAdd;
IAdd2 *pAdd2;

// Get the IAdd interface first
if(FAILED(CoCreateInstance(CLSID_MATH, NULL, CLSCTX_INPROC, \

IID_IAdd, (void**)&pAdd))) {
// Error occurred

}

// Query for the IAdd2 interface
if(SUCCEEDED(pAdd->QueryInterface(IID_IAdd2, (void**)&pAdd2))) {

// Interface obtained, release the first
IAdd->Release();

}

Although there’s much more information on COM, I’ve covered the information
that you need to start using DirectX. Speaking of DirectX, now is the time to take
a quick look at it.

DirectX
According to the introduction in the DirectX Software Development Kit (DX SDK)
documents:

Microsoft® DirectX® is a set of low-level application programming inter-
faces (APIs) for creating games and other high-performance multimedia
applications. It includes support for two-dimensional (2-D) and three-
dimensional (3-D) graphics, sound effects and music, input devices, and
support for networked applications such as multiplayer games.

132 5. Programming with Windows and Application Basics

As stated in the SDK, DirectX is a set of programming interfaces that will help you
create high-performance games and applications. Now let me tell you what DirectX
is not.

DirectX is not a game-creation package; it merely aids in the development of your
applications through the use of APIs designed to interface directly with your com-
puter’s hardware. If the hardware is equipped with DirectX drivers, you have access
to the accelerated functions that device provides. If no accelerated functions exist,
DirectX will emulate them.

This means that you will have a consistent interface with which to work, and you
will not have to worry about things such as hardware features. If a feature doesn’t
exist on the card, it’s still likely that the feature will work through DirectX’s emula-
tion functions. No fuss, no muss; just program the game and rest assured that it will
work on the majority of systems.

New versions of DirectX are frequently released, with each new version adding
newer features and improving older ones. At the time of this writing, version 8 has
been released and that is the version on which this book is based. The following
major components are included in DirectX 8:

■ DirectX Graphics. A complete 3-D graphics system
■ DirectX Audio. Includes sound and music systems
■ DirectPlay. Network (Internet) functionality at its simplest
■ DirectInput. Easy access to keyboards, mice, and joysticks

Version 8 represents a major change for DirectX. Gone is DirectDraw, the 2-D
graphics library. Instead, it has been merged with Direct3D to create a single,
easier-to-use graphics interface called DirectX Graphics. The same goes for
DirectSound and DirectMusic—these have been merged into DirectX Audio.

DirectX 8 gives you an interface that is streamlined for beginners, while still
remaining powerful enough to give advanced users full control. You might com-
pare its ease of use to that of OpenGL.

The DirectX SDK also comes with various helper classes and libraries, such as
D3DX, which makes using DirectX easier by giving you some handy classes with
which to work. D3DX is a great library, and I tend to use it as much as possible
throughout this book.

I don’t want to make DirectX out to be something that it is not. As I’ve mentioned,
it is only a method of accessing low-level functions, not a game-creation package.

133DirectX

Also, it does lack some features as of version 8. DirectDraw is sorely missed, which
means that if you want straight 2-D functionality, you’ll have to use the version 7
interface of DirectDraw.

This means that you cannot mix DirectX 8’s 3-D capabilities with DirectX 7’s 2-D
functions. Although this might seem like a major drawback, don’t worry—I’ll work
around it. By using 3-D functions for emulating 2-D, you’ll get the benefit of extra
features, as you see in Chapter 11, “Using 2-D Graphics.”

Downloading and Installing DirectX
If you haven’t already, go ahead and install DirectX 8.0 on your system. The SDK is on
the CD-ROM at the back of this book. You can find the installation instructions for
DirectX in Appendix A, “Installing DirectX and Configuring the Compiler.” You can
also download the DirectX SDK straight from Microsoft’s Web site. Just point your
browser to http://msdn.microsoft.com/directx and look for the download section.

Including DirectX in Your Project
Including DirectX in your project takes a little set-up work. Again, refer to
Appendix A for instructions on installing DirectX and configuring your compiler.

Understanding
the Program Flow
When immersing yourself in a major project, it becomes all too easy to be over-
whelmed with house-keeping chores such as modifying the code to work with some-
thing that you’ve added, modified, or removed. These chores take precious time
that could be better spent working on your game.

By starting with a solid understanding of what your needs are, you’ll be able to
structure your program’s flow of operation (called the program flow) and ensure
that you can make changes easily. Because you’ve already written a design docu-
ment (you did, didn’t you?), there is little left to do but build a structure of the
processing flow.

A typical program begins by initializing all systems and data and then entering the
main loop. The main loop is where the majority of things happen. Depending on
the game state (title screen, menu screen, in-game-play, and so on) that is occur-
ring, you’ll need to process input and output differently.

134 5. Programming with Windows and Application Basics

Here are the steps that you follow in a standard game application:

1. Initialize the systems (Windows, graphics, input, sound, and so on).

2. Prepare data (load configuration files).

3. Configure the default state (typically the title screen).

4. Start with the main loop.

5. Determine state and process it by grabbing input, processing, and outputting.

6. Return to Step 5 until application terminates and then go to Step 7.

7. Clean up data (release memory resources, and so on).

8. Release the systems (windows, graphics, input, and so on).

Steps 1 through 3 are typical for every game: set up the entire system, load the nec-
essary support files (graphics, sound, and so on), and prepare for the actual game
play. Your application will spend the majority of time handling the in-game process-
ing (Step 5), which can be broken into three parts: pre-frame processing, per-frame
processing, and post-frame processing.

The pre-frame processing deals with small tasks, such as getting the current time
(for timed events such as synching) and other details (such as updating the game
elements). The per-frame processing deals with updating objects (if not already
done in the pre-frame stage) and rendering the graphics. The post-frame process-
ing deals with the remaining functions, such as synching by the time or even dis-
playing the graphics already rendered.

Here’s a kicker for you. In your game, you might have multiple per-frame states:
one that handles the main menu, one that handles the in-game play, and so on.
Maintaining multiple states like that can lead to some messy code, but employing
something known as state-processing can help ease the burden a bit. You learn more
about state processing in the section “Application States,” later in this chapter.

Cleaning data and shutting down the system (Steps 7 and 8) release the system and
resources that you allocated when you started up the game. Graphics need to be
freed from memory, the application window destroyed, and so on. Skipping these
steps is a definite no-no, as it would leave your system in a wacky state that could
lead to a system crash!

Every step in the program flow is represented by an associated block of code, so
the better the structure of that code, the easier your application will be to create.
To aid in better structuring your program code, you can utilize a common pro-
gramming technique known as modular programming.

135Understanding the Program Flow

Modular Programming
Modular programming is the basis for many techniques used in programming today,
including C++ and COM. Modular programming creates independent code mod-
ules that are fully self-sustaining; they need no external help and, in a lot of cases,
can be used on a multitude of operating platforms. Imagine a true modular pro-
gramming system in which a program you write will work on all existing computers!
You may not have to wait long—such things are on their way (or are already here).

You can think of a modular program as a C++ class. It contains its own variables
and functions. If the code is written properly, the class needs no outside assistance.
Given your class, any application can utilize the features within the class only by
knowing how to call the functions (through the use of function prototypes).
Calling a class function is as simple as instancing a class and calling its functions:

cClass MyClass; // Instance the class
MyClass.Function1(); // Call a class function

To obtain true modularity, your code must protect its data. Doing so is easy because
using C++, you can classify variables as protected. To gain access to those class vari-
ables, you have to write public functions that outside code can use. This is actually
the basis of COM.

Take a look at some code that demonstrates what I’m talking about. Here a class
holds a counter. You can increment the counter, set it to a specific number, and
retrieve the current counter value, all by using the following class:

class cCounter
{

private:
DWORD m_dwCount;

public:
cCounter() { m_dwCount = 0; }
BOOL Increment() { m_dwCount++; return TRUE; }
BOOL Get(DWORD *Var) { *Var = m_dwCount; return TRUE; }
BOOL Set(DWORD Var) { m_dwCount = Var; return TRUE; }

};

The cCounter class sets the m_dwCount variable as private. In that way, even derived
classes can’t access it. The other functions are pretty much self-explanatory. The
only notable function is Get, which takes a pointer to a DWORD variable. The function

136 5. Programming with Windows and Application Basics

stores the current count value in that variable and returns TRUE (as all functions in
the cCounter class).

That is a pretty basic example of modular programming. A more complex example
is DirectX, which is completely modular. If you want to use only a single feature of
DirectX, say DirectSound, then you need only include the proper DirectSound
objects. DirectSound does not depend on other DirectX components in order
to operate.

Throughout the book, I incorporate modular coding techniques, most notably to
create a core of gaming libraries, each independent of one another. To use these
libraries, just include them in your project and hack away!

States and Processes
Trying to optimize the program flow should be one of your top priorities from the
get-go. While small, your application’s code is easy to manage. However, once that
application grows in size, it becomes increasingly difficult to work with, requiring a
major rewrite to change even the slightest bit.

Think of this—your game project is well under way, and you decide to add a new
feature to the game that opens an inventory display screen whenever the user
presses the I key. The inventory display screen can be displayed only while playing
the game, not while viewing the main menu screen. This means that you must
embed the code that detects when the I key is pressed, and when pressed, it must
render the inventory display screen instead of the normal game-play screen.

If you’ve locked yourself into using a single function that renders each display
screen out depending on what the user is doing in the game (such as viewing the
main menu or playing the game), you’re going to quickly come to the realization
that the rendering function can become quite large and complicated, having to
encompass all possible states in which the game can exist.

Application States
Did I just mention states—what are those? A state is short for a state of operation,
which is the current process your application is involved in executing. The main
menu to your game is a state much like the in-game-play state is. The inventory
display you want to add to the game is a state as well.

137States and Processes

When you start adding the various states to your application, you’ll also need to
provide a way to determine how to process those states based on the current state
of operation (which changes during project execution). Deciding which state your
application needs to process each frame can result in something as horrible looking
as this:

switch(CurrentState) {
case STATE_TITLESCREEN:

DoTitleScreen();
break;

case STATE_MAINMENU:
DoMainMenu();
break;

case STATE_INGAME:
DoGameFrame();
break;

}

Ack! You can tell something like that won’t do, especially when your game has a
truckload of states to work with, and even worse, trying to process a state for each
frame! Instead, you can use something I like to call state-based programming, or SBP
for short. In essence, SBP branches (directs) execution based on a stack of states.
Each state represents an object or set of functions. As you require functions, you
can add them to the stack. When you’re done with the functions, remove them
from the stack. You can see this demonstrated in Figure 5.8.

You add, remove, and process states by using a state manager. When a state is added,
it is pushed into the stack, thus having current control when the manager is
processed. Once popped, the topmost state is discarded, leaving the next highest
state to be processed next.

For the preceding reasons, you need to implement a state manager that accepts
pointers to functions (which represent the states). Pushing a state adds the func-
tion pointer to the stack. It’s your job to call the state manager, which will process
the topmost state on the stack. The state manager is really easy to work with, so let
me quickly show you the state manager object that does it all:

class cStateManager
{

// A structure that stores a function pointer and linked list
typedef struct sState {

void (*Function)();

138 5. Programming with Windows and Application Basics

TEAMFL
Y

Team-Fly®

sState *Next;
} sState;

protected:
sState *m_StateParent; // The top state in the stack

// (the head of the stack)

public:
cStateManager() { m_StateParent = NULL; }

~cStateManager()
{

sState *StatePtr;

// Remove all states from the stack
while((StatePtr = m_StateParent) != NULL) {

m_StateParent = StatePtr->Next;
delete StatePtr;

}
}

139States and Processes

State:
User Options

In-Game
State

Title Screen
State

Main State
State

State:
User Options

First In First Out

Figure 5.8

A stack lets you push and
pop states as needed.

// Push a function on to the stack
void Push(void (*Function)())
{

// Don’t push a NULL value
if(Function != NULL) {

// Allocate a new state and push it on stack
sState *StatePtr = new sState;
StatePtr->Next = m_StateParent;
m_StateParent = StatePtr;
StatePtr->Function = Function;

}
}

BOOL Pop()
{

sState *StatePtr = m_StateParent;

// Remove the head of stack (if any)
if(StatePtr != NULL) {

m_StateParent = StatePtr->Next;
delete StatePtr;

}

// return TRUE if more states exist, FALSE otherwise
if(m_StateParent == NULL)

return FALSE;
return TRUE;

}

BOOL Process()
{

// return an error if no more states
if(m_StateParent == NULL)

return FALSE;
// Process the top-most state (if any)
m_StateParent->Function();
return TRUE;

}
};

140 5. Programming with Windows and Application Basics

You can see that the class is tiny, but don’t let it fool you. With the cStateManager
object, you can continually add states as needed, and during the frame-rendering
function, you can call only the Process, resting assured that the proper function will
be called. Here’s an example:

cStateManager SM;

// Macro to ease the use of MessageBox function
#define MB(s) MessageBox(NULL, s, s, MB_OK);

// State function prototypes - must follow this prototype!
void Func1() { MB(“1”); SM.Pop(); }
void Func2() { MB(“2”); SM.Pop(); }
void Func3() { MB(“3”); SM.Pop(); }

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

{
SM.Push(Func1);
SM.Push(Func2);
SM.Push(Func3);
while(SM.Process() == TRUE);

}

With the preceding little program, you can track three states, each displaying a
message box with a number. Each state pops itself from the stack and gives the next
state in the stack a turn, until finally all the states are exhausted, and the program
exits. Pretty neat, huh?

Think of the preceding more as being embedded in the per-frame message pump
now. Say that you need to display a message to the user, but darn it, you’re in the
middle of the in-game screen routines. No problem, just push the message display
function on the stack and call the process function next frame!

Processes
Moving on, allow me to introduce you to another technique that simplifies the use
of per-frame function calling. If you’re using separate modules to handle the medial
functions (called processes) such as input, network, and sound processing, instead
of calling each individually, you can create an object that handles it all for you.

141States and Processes

class cProcessManager
{

// A structure that stores a function pointer and linked list
typedef struct sProcess {

void (*Function)();
sProcess *Next;

} sProcess;

protected:
sProcess *m_ProcessParent; // The top state in the stack

// (the head of the stack)

public:
cProcessManager() { m_ProcessParent = NULL; }

~cProcessManager()
{

sProcess *ProcessPtr;

// Remove all processes from the stack
while((ProcessPtr = m_ProcessParent) != NULL) {

m_ProcessParent = ProcessPtr->Next;
delete ProcessPtr;

}
}

// Add function on to the stack
void Add(void (*Process)())
{

// Don’t push a NULL value
if(Process != NULL) {

// Allocate a new process and push it on stack
sProcess *ProcessPtr = new sProcess;
ProcessPtr->Next = m_ProcessParent;
m_ProcessParent = ProcessPtr;
ProcessPtr->Function = Process;

}
}

142 5. Programming with Windows and Application Basics

// Process all functions
void Process()
{

sProcess *ProcessPtr = m_ProcessParent;

while(ProcessPtr != NULL) {
ProcessPtr->Function();
ProcessPtr = ProcessPtr->Next;

}
}

};

Again, this is a simple object much like the cStateManager object, with one major
difference. The cProcessManager object only adds processes; it does not remove them.
Here’s an example using cProcessManager:

cProcessManager PM;

// Macro to ease the use of MessageBox function
#define MB(s) MessageBox(NULL, s, s, MB_OK);

// Processfunction prototypes - must follow this prototype!
void Func1() { MB(“1”); }
void Func2() { MB(“2”); }
void Func3() { MB(“3”); }

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

{
PM.Add(Func1);
PM.Add(Func2);
PM.Add(Func3);
PM.Process();
PM.Process();

}

Note that every time Process is called, all processes on the stack are called (as
demonstrated in Figure 5.9). This is very useful for calling frequent functions
quickly. You can maintain a different process manager object for different situa-
tions—for example, one that handles input and network processing and one
that handles input and sound.

143States and Processes

Handling Application Data
All applications use data in some form or another, especially in games. You know
that game character you’ve been playing in your favorite game for the last three
weeks? Every little bit of information about that character is application data—his
name, hit points, experience level, and armor and weapons the character is carry-
ing. Every time you quit the game, your character’s data is saved, only to be waiting
for you to load later.

Using Data Packaging
The easiest way to deal with application data is to create a data packaging system
that handles saving and loading the data. By creating an object that contains a
buffer of data, you can add a few functions that save and load it for you. To see
what I mean first, take a look at this class:

class cDataPackage
{

protected:
// Data buffer and size
void *m_Buf;
unsigned long m_Size;

144 5. Programming with Windows and Application Basics

Per Frame Function

Execute Processes

Process Stack

Read Keyboard
Process

Read Mouse
Process

Read Joystick
Process

Read Network
Process

Update Data
Process

Continue Program Execution

Process’s Flow

Figure 5.9

A process stack is composed
of frequently called functions.
Every function added to the

manager is subsequently executed
when cProcessManager::Process
is called.

public:
cDataPackage() { m_Buf = NULL; m_Size = 0; }
~cDataPackage() { Free(); }

void *Create(unsigned long Size)
{

// Free a previously created buffer
Free();

// Allocate some memory and return a pointer
return (m_Buf = (void*)new char[(m_Size = Size)]);

}

// Free the allocated memory
void Free() { delete m_Buf; m_Buf = NULL; m_Size = 0; }

BOOL Save(char *Filename)
{

FILE *fp;

// Make sure there’s something to write
if(m_Buf != NULL && m_Size) {

// Open file, write size and data
if((fp=fopen(Filename, “wb”)) != NULL) {

fwrite(&m_Size, 1, 4, fp);
fwrite(m_Buf, 1, m_Size, fp);
fclose(fp);
return TRUE;

}
}

return FALSE;
}

void *Load(char *Filename, unsigned long *Size)
{

FILE *fp;

// Free a prior buffer
Free();

145Handling Application Data

if((fp=fopen(Filename, “rb”))!=NULL) {
// Read in size and data
fread(&m_Size, 1, 4, fp);
if((m_Buf = (void*)new char[m_Size]) != NULL)

fread(m_Buf, 1, m_Size, fp);
fclose(fp);

// Store size to return
if(Size != NULL)

*Size = m_Size;

// return pointer
return m_Buf;

}

return NULL;
}

};

The cDataPackage class contains only four functions that you can use (actually six
including the constructor and destructor). The first function you’ll want to call is
Create, which allocates a block of memory according to the size you give it. The Free
function frees this block of memory. As for Save and Load, they do just that—save
the data block and load it from hard drive, using the filename you supplied.

Notice that the Create and Load functions each return a pointer. That pointer is to
the data buffer, so you can use it to cast your own data pointer.

Testing the Data Package System
Imagine that you want to create a data package that stores a list of names, and you
want to use a custom structure to work with the names. By creating a data package
and casting the return pointer to a structure, you can quickly work with the name,
as in the following:

// A structure to contain a name
typedef struct {

char Name[32];
} sName;

146 5. Programming with Windows and Application Basics

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

{
cDataPackage DP;
DWORD Size;

// Create the data package (w/64 bytes) and get the
// pointer, casting it to an sName structure type.
sName *Names = (sName*)DP.Create(64);

// Since there are 64 bytes total, and each name uses
// 32 bytes, then I can have 2 names stored.
strcpy(Names[0].Name, “Jim”);
strcpy(Names[1].Name, “Adams”);

// Save the names to disk and free the data buffer
DP.Save(“names.dat”);
DP.Free();

// Load the names from disk. Size will equal 64
// when the load function returns.
Names = (sName*)DP.Load(“names.dat”, &Size);

// Display the names
MessageBox(NULL, Names[0].Name, “1st Name”, MB_OK);
MessageBox(NULL, Names[1].Name, “2nd Name”, MB_OK);

// Free up the data package
DP.Free();

}

Looking more closely at the data buffer in use, you see that out of the 64 bytes
used, two blocks of 32 bytes each are used to store the names, as illustrated in
Figure 5.10.

The possibilities for using data packing are enormous. By creating a few small data
package objects, you can cast all the pointers you want, keeping all your application
data in a single, contained object that can save and load itself.

147Handling Application Data

Building an
Application Framework
I’m sure you’ll agree that having to retype the same code again and again—the
code to create a window, draw graphics, play sounds . . . you get the idea—every
time you start a new project is bothersome. Why not just create a main library of
those functions that you can plug into your new project, leaving you more time to
program the actual application.

That’s the idea behind an application framework. At the basic level, a framework
should contain the code to initialize the application window, various engines
(graphics, input, network, and sound), handle initialization, per-frame routines,
and shutdown functions. Using modular-coding techniques also helps because the
major components, such as the engines, can be contained in individual objects.

The goal at this point is to build a
simple project that you can use as a base
for your applications. Start with a new
project and name it framework (or some
other descriptive name). Within this
project, you create a file, called
WinMain.cpp. This file represents the
entry point of your application.

148 5. Programming with Windows and Application Basics

64-Byte
Data char Data[64];

char Name[32];

32 Bytes

N a m e 1 N a m e 2
32 Bytes

char Name[32];

Figure 5.10

The data buffer is
large enough to
store every instance
of a person’s name.
In this case, two
names are stored,
each using 32
bytes, giving the
total buffer a size
of 64 bytes.

NOTE
In the project settings, be sure to
include the proper search paths for
the various headers (such as DirectX)
and to link in all the libraries you are
likely to use, such as D3DX8.LIB (the
DirectX helper library).

TEAMFL
Y

Team-Fly®

The WinMain.cpp source code will be very minimal, containing only the code needed
to initialize the window. Take a look at the WinMain.cpp source file that I typically use
for my base framework:

// Include files
#include <windows.h>
#include <stdio.h>
#include <stdarg.h>

// Main application instances
HINSTANCE g_hInst; // Global instance handle
HWND g_hWnd; // Global window handle

// Application window dimensions, type, class and window name
#define WNDWIDTH 400
#define WNDHEIGHT 400
#define WNDTYPE WS_OVERLAPPEDWINDOW
const char g_szClass[] = “FrameClass”;
const char g_szCaption[] = “FrameCaption”;

// Main application prototypes

// Entry point
int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \

LPSTR szCmdLine, int nCmdShow);
// Function to display an error message
void AppError(BOOL Fatal, char *Text, ...);

// Message procedure
long FAR PASCAL WindowProc(HWND hWnd, UINT uMsg, \

WPARAM wParam, LPARAM lParam);

// Functions to register and unregister windows’ classes
BOOL RegisterWindowClasses(HINSTANCE hInst);
BOOL UnregisterWindowClasses(HINSTANCE hInst);

// Function to create the application window
HWND CreateMainWindow(HINSTANCE hInst);

// Functions to init, shutdown, and handle per-frame functions
BOOL DoInit();

149Building an Application Framework

BOOL DoShutdown();
BOOL DoPreFrame();
BOOL DoFrame();
BOOL DoPostFrame();

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

{
MSG Msg;

// Save application instance
g_hInst = hInst;

// Register window classes - return on FALSE
if(RegisterWindowClasses(hInst) == FALSE)

return FALSE;

// Create window - return on FALSE
if((g_hWnd = CreateMainWindow(hInst)) == NULL)

return FALSE;

// Do application initialization - return on FALSE
if(DoInit() == TRUE) {

// Enter the message pump
ZeroMemory(&Msg, sizeof(MSG));
while(Msg.message != WM_QUIT) {

// Handle Windows messages (if any)
if(PeekMessage(&Msg, NULL, 0, 0, PM_REMOVE)) {

TranslateMessage(&Msg);
DispatchMessage(&Msg);

} else {
// Do pre-frame processing, break on FALSE return value
if(DoPreFrame() == FALSE)

break;

// Do per-frame processing, break on FALSE return value
if(DoFrame() == FALSE)

break;

150 5. Programming with Windows and Application Basics

// Do post-frame processing, break on FALSE return value
if(DoPostFrame() == FALSE)

break;
}

}
}

// Do shutdown functions
DoShutdown();

// Unregister window
UnregisterWindowClasses(hInst);

return TRUE;
}

BOOL RegisterWindowClasses(HINSTANCE hInst)
{

WNDCLASSEX wcex;

// Create the window class here and register it
wcex.cbSize = sizeof(wcex);
wcex.style = CS_CLASSDC;
wcex.lpfnWndProc = WindowProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = hInst;
wcex.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
wcex.hbrBackground = NULL;
wcex.lpszMenuName = NULL;
wcex.lpszClassName = g_szClass;
wcex.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
if(!RegisterClassEx(&wcex))

return FALSE;

return TRUE;
}

BOOL UnregisterWindowClasses(HINSTANCE hInst)
{

151Building an Application Framework

// Unregister the window class
UnregisterClass(g_szClass, hInst);

return TRUE;
}

HWND CreateMainWindow(HINSTANCE hInst)
{

HWND hWnd;

// Create the Main Window
hWnd = CreateWindow(g_szClass, g_szCaption,

WNDTYPE, 0, 0, WNDWIDTH, WNDHEIGHT,
NULL, NULL, hInst, NULL);

if(!hWnd)
return NULL;

// Show and update the window
ShowWindow(hWnd, SW_NORMAL);
UpdateWindow(hWnd);

// Return the window handle
return hWnd;

}

void AppError(BOOL Fatal, char *Text, ...)
{

char CaptionText[12];
char ErrorText[2048];
va_list valist;

// Build the message box caption based on fatal flag
if(Fatal == FALSE)

strcpy(CaptionText, “Error”);
else

strcpy(CaptionText, “Fatal Error”);

// Build variable text buffer
va_start(valist, Text);
vsprintf(ErrorText, Text, valist);
va_end(valist);

152 5. Programming with Windows and Application Basics

// Display the message box
MessageBox(NULL, ErrorText, CaptionText, \

MB_OK | MB_ICONEXCLAMATION);

// Post a quit message if error was fatal
if(Fatal == TRUE)

PostQuitMessage(0);
}

// The message procedure - empty except for destroy message
long FAR PASCAL WindowProc(HWND hWnd, UINT uMsg, \

WPARAM wParam, LPARAM lParam)
{

switch(uMsg) {
case WM_DESTROY:

PostQuitMessage(0);
return 0;

}

return DefWindowProc(hWnd, uMsg, wParam, lParam);
}

BOOL DoInit()
{

// Perform application initialization functions here
// such as those that set up the graphics, sound, network, etc.
// Return a value of TRUE for success, FALSE otherwise.

return TRUE;
}

BOOL DoShutdown()
{

// Perform application shutdown functions here
// such as those that shut down the graphics, sound, etc.
// Return a value of TRUE for success, FALSE otherwise

return TRUE;
}

153Building an Application Framework

BOOL DoPreFrame()
{

// Perform pre-frame processing, such as setting up a timer.
// Return TRUE on success, FALSE otherwise.
return TRUE;

}

BOOL DoFrame()
{

// Perform per-frame processing, such as rendering.
// Return TRUE on success, FALSE otherwise.
return TRUE;

}

BOOL DoPostFrame()
{

// Perform post-frame processing, such as time synching, etc.
// Return TRUE on success, FALSE otherwise.
return TRUE;

}

The preceding framework code will initialize a window and enter a message pump
waiting for the destruction of the application. All the functions are in place to handle
all aspects of setting up and shutting down the application. Note that the application
window created has no background; it is suitable for using with DirectX Graphics,
which you learn about in Chapter 6, “Drawing with DirectX Graphics.”

To alter any of the window settings, such as the width, height, or type, you can
change the definitions at the top of the code. The same goes for the window class
and caption, which are defined in two const variables declared at the beginning of
the code.

Notice that I added a function that doesn’t appear to be called anywhere. That
function is AppError, which I like to use to display error messages to the user.
Passing a value of TRUE as the Fatal parameter forces Windows to close the applica-
tion window, whereas a value of FALSE allows the program to continue.

In each function, you see the comments on what each function does—it’s your job
to insert the code that handles the initialization of objects, loading graphics, per-
frame processing, and so on.

154 5. Programming with Windows and Application Basics

Structuring a Project
At the start of each project, many options are available to you. All the various func-
tions that compose your application can be combined into a single source file, or
split into separate files by their individual functionality. For example, graphics func-
tions go into a graphics source file, sound functions go into a sound source file,
and so on. As long as you include those files in your project and provide a source
header file for each, there’s nothing to worry about.

I always start my programs with the WinMain.cpp file. This file contains the entry
point for the application. It initializes the window and calls all the necessary setup,
per-frame, and shutdown functions (which might be located in separate source
files). In fact, I use that methodology throughout the book.

Chapter 10, “Creating the Game Core,” introduces a series of class objects that
I use to speed the development of my games. You can include these files, all sepa-
rated by their functionality (graphics, sound, network, and so on), in your project
(as well as their respective include files). All you have to do is create a class
instance of the individual objects you want to use and hack away.

The bottom line is this: Arrange your entire project in easy-to-use modules that will
not overwhelm you.

Debugging Your Program
A perfect programmer is indeed rare, so you will spend part of your coding time
tracking down those awful bugs that love to crash your programs. Getting to know
your way around a debugging program helps in the long run, but don’t spend too
much time on it. Although the debugger can help a lot, there are those times when
you can pull out your hair trying to figure out what is going wrong.

Typical bugs are misspelled variables, incorrect values, and use of uninitialized
pointers. The first mistake you can make when programming is to give variables
similar names, such as the following:

char *MyName;
char *MyNames;

The simple addition of the letter s creates the possibility of getting the two vari-
ables mixed up at an inopportune time. Be sure to avoid this mistake.

You can use the assert function to track incorrect values and uninitialized pointers.

155Debugging Your Program

The sole purpose of the assert function is to evaluate an expression. When the eval-
uation returns a value of FALSE, a debug message is displayed (much like the mes-
sage seen in Figure 5.11), and the application aborts.

By placing assert function calls at strategic positions in your code, you can verify
that a variable is set appropriately or that a pointer is initialized. If that is not the
case, you’ll be notified and can track down the nasty bugs. What’s cool is that after
you fix the bug, you can leave the assert function calls in place and have the com-
piler skip them just by defining a macro at the top of your code.

First, though, check out this code, which shows you how to work with assert:

// Include assert header - a must!
#include <assert.h>

// Instance a variable and pointer to work with
long dwValue = 10;
char *pPtr = NULL;

// check variable (looking for 20)
assert(dwValue == 20);

// check pointer (must not be NULL)
assert(pPtr != NULL);

Note that at each assert function call, an error message is displayed because neither
expression is true. The dwValue is initialized with a value of 10, but the call to assert
wants to make sure that a value of 20 is stored, which is not the case. The same goes
for pPtr, which needs to be non-NULL. At each point, an error is displayed, and the
program aborts.

156 5. Programming with Windows and Application Basics

Figure 5.11

The assert error message is useful for
tracking down uninitialized or incorrectly set
variables. As seen here, assert has informed
me what the error is, which file the error is
in, and the line number in which I can expect
to see the problem.

Now, assume that you’ve worked out the bugs and don’t want assert to work its magic
anymore. Going through your source code and clipping out all the assert statements
that you’ve added is a lot of work. Not to worry; the addition of this single line of
code at the beginning of your source code will
cause the compiler to skip all assert calls:

#define NDEBUG
// Follow NDEBUG definition with include statements
// ...

// Include assert header - a must!
#include <assert.h>

Other than using your compiler’s debugger
features, that’s it folks.

Wrapping Up Windows and
Application Basics
Getting Windows to work in your game project is really a simple chore. By knowing
only the basics to creating a window and processing the window’s messages, you’re
able to begin concentrating on the real task at hand—creating your game.

Speaking of creating your game, using the information in this chapter, such as
state-based processing and data packaging, you’ll be able to manage any size pro-
ject with minimal effort. Correctly structuring your project is your first and highest
priority. Take advantage of the techniques in this chapter and see just how quickly
you can get a game project up and running.

157Wrapping Up Windows and Application Basics

TIP
I like to track bugs by using
assert and occasionally
displaying the value of the
variables and pointers using
the MessageBox procedure.
Find what works best for
you, and for goodness sakes,
don’t pull out your hair!

158 5. Programming with Windows and Application Basics

Programs on the CD-ROM

Programs that demonstrate the code discussed in this chapter are
located on the CD-ROM at the back of this book.You can find the
following demo programs in the \BookCode\Chap05\ directory:

◆ State. Demonstrates using the state stack methods used
in this chapter. Location: \BookCode\Chap05\State\.

◆ Process. Demonstrates using a process stack, as shown
in this chapter. Location: \BookCode\Chap05\Process\.

◆ Data. A data packaging example application.
Location: \BookCode\Chap05\Data\.

◆ Shell. A complete shell application used to create a window
and call various functions in order to ease development time.
Location: \BookCode\Chap05\Shell\.TEAMFL

Y

Team-Fly®

CHAPTER 6

Drawing
with

DirectX
Graphics

Recent games have dazzled us with their remarkable graphics and awesome
effects. It’s those graphical effects that catch most players’ eyes, so graphics

are a major component in your projects. Fortunately, most graphics engines and
the concepts behind them are straightforward and easy to understand. By applying
the basics of drawing graphics, you can re-create the awesome effects you see in
games and also create some new effects of your own.

Now that it’s time to create your own graphics engine, you can turn to DirectX
Graphics, the graphical component of DirectX. In this chapter, I show you how
to use DirectX Graphics, including basic drawing techniques and the DirectX
Graphics advanced features such as texture-mapping and alpha blending. By the
end of this chapter, you’ll be a graphics-programming pro!

In this chapter, you learn about the following:

■ DirectX graphics
■ How to work in 3-D
■ Matrix math

■ Using the D3DX Library

■ Drawing with vertices and polygons

■ Working with texture maps

■ Using alpha blending

■ Billboarding and particles

■ Working with meshes

■ Using .X files

■ Animating meshes

The Heart of 3-D Graphics
Although jumping to a topic as advanced as 3-D at this point in the book might not
seem logical, doing so is actually very logical. Specifically, the entire graphics sys-
tem of DirectX is based on Microsoft’s 3-D foray, which is Direct3D. For that rea-
son, everything you do with DirectX Graphics is couched in 3-D terminology and
usage.

160 6. Drawing with DirectX Graphics

Everything, and I mean everything,
drawn with Direct3D is composed of poly-
gons. A polygon is typically a triangular
shape composed of three points, called
vertices. A vertex is the smallest unit in 3-D;
it is a single point (coordinate) located in
2-D or 3-D space. You create edges (lines)
by joining two vertices together, with
three edges forming a polygon.

You can think of this relationship of
vertices, edges, and polygons as a sort
of connect-the-dots game. The dots are vertices, and the lines you draw are edges.
The connected edges form a polygon face, and the whole picture is called a mesh (a
mesh is the culmination of all basic drawing objects—vertices, edges, and polygons)
or a model. You can see the relationship of vertices, edges, polygons, and meshes
demonstrated in Figure 6.1.

161The Heart of 3-D Graphics

NOTE
In this section, I want to introduce
you to 3-D terminology and the
theory of drawing with 3-D graphics.
In the section “Getting Down to
Drawing,” later in this chapter, you
apply theory to practice by beginning
to draw using DirectX Graphics.

Edges

Vertex

Polygon Faces

Mesh

Figure 6.1

Connect-the-dots to create
a 3-D object.

In order to present a more realistic looking 3-D object, Direct3D uses what is called
materials to fill the empty polygons of a mesh with colors you designate. A material
is represented by a combination of color components, as well as an optional bitmap
image, known as a texture, that is stretched onto the surface of a polygon when the
polygon is being rendered.

Coordinate Systems
You might already be familiar with using 2-D coordinates when dealing with images;
they have a width and height, measured in pixels. The horizontal span of the width
is considered the X-coordinate, while the vertical span is the Y-coordinate. Each coordi-
nate is measured from its offset from the upper-left corner of the image.

In Figure 6.2, you can see the coordinates in place. The X-coordinate runs left to
right, with the origin (X-coordinate = 0) at the far left. The Y-coordinate runs top to
bottom, with the origin (Y-coordinate = 0) at the very top. These coordinates extend
in a positive direction to the other end of their respective spans. In Direct3D, 2-D
coordinates are commonly referred to as transformed coordinates because they repre-
sent the final coordinates used to draw
objects to the display.

In 3-D, an additional coordinate is
added, the Z-coordinate. Typically, the Z-
coordinate represents the depth of the
image. More importantly, the Y-coordi-
nate is flipped, running from bottom to
top (the positive direction moving up).
You can see this layout of the three coor-
dinates in Figure 6.3.

You can use the Z-coordinate two ways:
with the positive direction going from
the origin forward (away from you) or
backward (towards you). These two ways
are commonly called left-handed and
right-handed coordinate systems, respec-
tively. In this book, I use the left-handed
coordinate system.

162 6. Drawing with DirectX Graphics

NOTE
The left- and right-handed coordinate
systems got their names from the fact
that you can determine in which
directions the three coordinates run
by using your hands. Stick your left
hand out with your palm facing
upward. Point your thumb forward
away from you (your fingers should be
pointing right).Your thumb is pointing
in the positive Z direction, and your
fingers are pointing in the positive X
direction. Now, point your fingers up
(without moving your hand), and
they’ll be pointed in the positive Y
direction.This is the left-handed coor-
dinate system. Do the same with the
right hand (with your fingers pointed
right) to achieve the right-handed
coordinate system layout.

Everything in the 3-D world is measured in those coordinate systems—2-D for
images and video display and 3-D for everything else. So, if you were to define a
point in space (using 3-D coordinates) that is in front of you (along the Z-axis),
slightly to your right (along the X-axis), and at about eye-level (along the Y-axis),
you would state those coordinates as X=100, Y=50, Z=200. Those coordinates would
represent a coordinate that is 100 units to your right, 50 units above the ground,
and 200 units in front of you, respectively.

163The Heart of 3-D Graphics

X-Coordinate

Y-C
oordinate

H
eight

Width

Image

_

+

+
Figure 6.2

You measure an image by the width and height in
pixels.You reference coordinates in the image by
using the appropriate X- and Y-coordinates.

Origin
0,0,0

+

+

+

H
ei

gh
t

Y-
C

oo
rd

in
at

e

Z-C
oo

rd
ina

te

Dep
th

X-Coordinate
Width

Figure 6.3

The three dimension coordinates: X,Y, and Z.
X and Y are analogous to the display, while
the Z-coordinate represents the depth of the
display, or rather the depth of a displayed
image.

As for 2-D coordinates, you would say that a picture on the wall is 200 units wide
by 200 unit in height. The center of that picture would be at X=100, Y=100, and the
upper-left corner of the picture would be at X=0, Y=0.

Those 3-D coordinates are referred to as untransformed coordinates because they do
not represent the final coordinates that are used to render an object to the display.
On the other hand, 2-D coordinates are referred to as transformed coordinates, as
they map directly to the display’s coordinates. Later in this chapter, in the section
“The Math of 3-D,” you find out how to convert an untransformed coordinate into
a transformed coordinate, but for now let’s focus on how to define objects using
the coordinates you just read about.

Constructing Objects
When constructing objects such as meshes and models (and even flat 2-D images),
you begin at the vertex level. Each vertex has an X-, Y-, and Z-coordinate assigned
to it. You can specify these coordinates in three ways: screen space (using trans-
formed coordinates), model space (using untransformed coordinates), and world
space (also using untransformed coordinates).

You use screen space to map vertices to the actual screen coordinates. Model space
(also called local space) refers to coordinates you place around an arbitrary origin
that represents the center of a model. The vertices in local space belong to a
model, and you can move them with the object in order to draw it appropriately.

You convert the vertices contained in local space into world space before rendering
the object. When rendering the object, you convert the world space coordinates
into screen space coordinates.

Vertices placed in world space represent the final position used to render an object.
World space is the actual position around a fixed point in the 3-D world. For exam-
ple, consider yourself a mesh. Your joints are vertices that are defined in local space,
because they can be defined with coordinates from the center of your chest.

As you move around your house (which is world space), the coordinates of your
joints move around in the world but remain local to your body, as demonstrated in
Figure 6.4.

After deciding on the type of coordinates to use to draw an object (in screen, local,
or world space), you then place the vertices (numbering them by the order in
which they are placed). You then join these vertices in groups of three to create
triangular polygon faces. Figure 6.5 shows a couple of polygon faces being con-
structed by grouping vertices.

164 6. Drawing with DirectX Graphics

Lists, Strips, and Fans
Something you must consider when constructing the polygon faces is the sharing
of vertices (that is, a polygon can use the same vertex, or vertices, as another poly-
gon). A set of polygon faces can fall into three categories: triangle lists, triangle
strips, and triangle fans.

A triangle list is a set of faces with no common vertices, so each polygon gets its own
trio of vertices. A triangle strip is a set of faces with common vertices, so each poly-
gon shares an edge with another polygon. A triangle fan occurs when a number of
faces share a single vertex, almost like a fan does at its base. These three categories
are shown in Figure 6.6.

165The Heart of 3-D Graphics

Your House

Y

X

World Coord
X Y

10, 30

World Coord
 X Y

100, 30

Y

X

Y

X

Figure 6.4

Rarely do you refer to an
object’s vertex coordinates
directly when moving the object
around the world. Instead, you
specify an object’s placement by
its world space coordinates and
let Direct3D worry about the
placement of the vertices.

0

1

2

3

4

5

Figure 6.5

You use six vertices to draw two
polygons. Each polygon must be
triangular, so each polygon uses
only three vertices.

Vertex Ordering
Later, when you get into rendering the
polygons, the order of the vertices you
use to define a face becomes important
because you must determine which side
of the face is the front and which is the
back. For your current purposes, you
want to order the vertices that define a
face in a clockwise fashion (when viewed
from the front side of the polygon), as
shown in Figure 6.7. This way, you know
you’re looking at the front of the face if
the vertices constructing the face are
defined in a clockwise order.

Astute readers probably noticed that the
triangle strip in Figure 6.7 has every
other one of the face’s vertex order
reversed. This reversal of vertex ordering
is a requirement for drawing triangle
strips using Direct3D.

166 6. Drawing with DirectX Graphics

List Strip

Fan

Figure 6.6

Triangle lists don’t allow vertices
to be shared, unlike triangle
strips and fans. Using strips
and fans reduces the number
of vertices, thus saving on
memory and increasing
rendering speeds.

NOTE
Even lines and pixels can be drawn
with Direct3D using vertices and poly-
gons. Pixels are polygons that use one
vertex, whereas lines are polygons
that use two vertices. Both pixels and
lines are created using triangle lists.

NOTE
In a 3-D engine, the backside of a face
is normally not drawn, so it is skipped
during the rendering process.This is
known as backface culling and is a
major optimization that should be
performed. If you are using a right-
handed coordinate system, this clock-
wise order is reversed and all polygon
faces need to be ordered in a
counter-clockwise manner.

Coloring Polygons
Once you define a group of polygons or a mesh, you are ready to color the polygon
faces. Direct3D has two simple techniques that I discuss in this book. The first tech-
nique involves defining materials, which are basically single colors. Materials are
defined by their diffuse, ambient, and specular color components. The diffuse
and ambient colors are typically the same color—the color that represents the actual
color of the object. Specular is the color of the highlight that appears when a nearby
light brightens an object. (See the section “Materials and Colors,” later in this chap-
ter, for more on these color components.)

The second technique, called texture-mapping, involves painting the polygon with an
image. Texture maps are images that are typically loaded from a bitmap file. These
bitmap images are stretched or tiled (repeated) across the face of a polygon.

Transformations
After you define a model (or even just a set of polygons), you are ready to place it
into the world at the desired location. Figure 6.8 shows a couple of models that are
placed inside the 3-D world. You can move, scale, and rotate any object as you see fit,
so you can use the same model to draw a bunch of objects in different orientations.

167The Heart of 3-D Graphics

List Strip

Fan

0

2

1

4

3

5
0

1

2

3

4

5

0 1

2

3

4

Figure 6.7

Watch how you order
the vertices, because
you’ll need to construct
the triangle lists, strips,
and fans using a specific
order of those vertices.

You refer to these actions of moving (also called translating), rotating, and scaling
as transformations. A number of transformations are required to take an object from
its model space into a set of coordinates ready to view.

First, there is the world transformation, which is a transformation used to convert
from the local coordinates to world coordinates. This includes scaling, rotation on
the X-, Y-, and Z-axis, and translating (specifically in that order). The second trans-
formation is the view transformation, which orients all objects around a viewing posi-
tion within the 3-D world, thus converting world coordinates into view coordinates.

The last important transformation is the projection transformation, which is the trans-
formation used to flatten the 3-D world into a 2-D image. It acts almost like a cam-
era lens, with different zooms, short and wide-angles, and various other effects such
as fisheye distortion.

Getting Started with
DirectX Graphics
Now that you’re acquainted with the basics on drawing 3-D graphics, it is time to start
applying that knowledge. Before you can move on, however, you need to understand

168 6. Drawing with DirectX Graphics

Y

X

Y

X
Y

X

Y

X

Y

X

World

Objects
Figure 6.8

Although you define 3-D objects
in their own local space, you can
position them within world space.

TEAMFL
Y

Team-Fly®

how to prepare the graphical system for your use. In this section, I introduce you to
the components of DirectX graphics that I use throughout this book and to how to
get the graphics system running and ready for drawing. Prior to DirectX version 8,
programmers were able to draw 2-D graphics using the DirectDraw component of
DirectX. With the release of DirectX 8, however, DirectDraw was merged into
Direct3D, resulting in DirectX Graphics.

Even DirectX veterans might need a bit
of time getting accustomed to all the new
and altered features in the latest version
of DirectX. Don’t let this fact daunt you,
however, because Microsoft did simplify
the use of the graphics system.

To begin, always be sure to include
D3D8.H in your source code and link in
the D3D8.LIB library. (Appendix A, “Installing DirectX and Configuring the
Compiler,” has information on how to link in files. Consult that appendix to find
out how to link in D3D8.LIB.) These are the essential files you need to start using
Direct3D. You’ll notice that your project begins adding many different external
include files when using Direct3D; but you’ll never have to worry about them—
just let Direct3D do its thing to get you up and running.

Direct3D Components
Direct3D separates the graphics func-
tionality into a multitude of COM
objects. Each object has its own purpose,
such as an IDirect3D8 object used to con-
trol the overall graphics system, or an
IDirect3DDevice8 object used to control
how graphics are rendered to the dis-
play. In this book, I show you only those
objects listed in Table 6.1; those are the
objects that you’re most likely to use in
your game development project.

169Getting Started with DirectX Graphics

NOTE
Even though the new graphics com-
ponent is called DirectX Graphics,
I commonly refer to it as Direct3D,
as all 3-D graphics objects utilize it.

NOTE
Although there are a few more
Direct3D components to deal with,
they are beyond the scope (and
usefulness) of this book.You can
refer to the DirectX SDK docu-
ments for more information on
those additional objects.

Initializing the System
Starting to use the graphics system is an easy task, thanks to the simplification of
Direct3D. Here are the four general steps for setting up and running the graphics
system:

1. Obtain an interface to Direct3D.

2. Select a display mode.

3. Set the presentation method.

4. Create the device interface and initialize the display.

That’s a pretty sparse list! I told you that getting the graphics system up and run-
ning is a simple task, so let’s get a move on and find out how to handle each step.

Obtaining the Direct3D Interface
The first step to using graphics is to initialize an IDirect3D8 object. Using the
Direct3DCreate8 function does this for you:

IDirect3D8 *Direct3DCreate8(
UINT SDKVersion); // D3D_SDK_VERSION

170 6. Drawing with DirectX Graphics

Table 6.1 The Major Direct3D Components

Component Description

IDirect3D8 Use this object to gather information about the graphics
hardware and setup device interfaces.

IDirect3DDevice8 Deals directly with the 3-D hardware.With it, you ren-
der graphics, handle image resources, create and set
render states and shade filters, and so much more.

IDirect3DVertexBuffer8 Contains an array of vertex information used to draw
polygons.

IDirect3DTexture8 Utilize this object to store all images used to paint the
faces of 3-D (and 2-D) images.

The one and only argument to this
function should be D3D_SDK_VERSION, which
signifies the version of the SDK that you
are using. The return variable is a
pointer to the newly created IDirect3D8
object that you need, or the return vari-
able is NULL if an error occurred during
creation of the Direct3D interface.

Using this function is as simple as
instancing an IDirect3D8 object and calling
the create function:

IDirect3D8 g_D3D; // global IDirect3D8 object

if((g_D3D = Direct3DCreate8(D3D_SDK_VERSION)) == NULL) {
// Error occurred

}

Selecting a Display Mode
After the IDirect3D object is created, you can begin querying it for information
about the graphics system, which includes the display modes that Direct3D can
handle. In fact, you can also query the IDirect3D object for information about the
current display mode if you want to use that format.

Display modes are categorized by their dimensions (width and height in pixels),
color depth (number of displayable colors), and refresh rate. For example, you
might want to use a 640 x 480 resolution with a 16-bit color depth display mode
and the adapter default for the refresh rate.

This display mode information is stored in a D3DDISPLAYMODE structure:

typedef struct _D3DDISPLAYMODE {
UINT Width; // Screen width in pixels
UINT Height; // Screen height in pixels
UINT RefreshRate; // Refresh rate (0=default)
D3DFORMAT Format; // Color format

} D3DDISPLAYMODE;

You can see the width, height, and refresh rate, but what about the color format?
In graphics, you usually have a choice of the number of bits to use per pixel
(16, 24, or 32) to store color information. The more bits you use, the more colors
you’re able to display (and the more memory you use).

171Getting Started with DirectX Graphics

NOTE
The majority of DirectX functions
(as well as all COM objects) return
an HRESULT value. Every now and
then, you’ll see functions (such as
Direct3DCreate8) return a non-HRESULT
value, so keep a close watch!

You commonly refer to color modes by the number of bits each color component
(red, green, blue, and sometimes alpha) takes. For example, say that I want a 16-bit
color mode—5 bits for red, 5 bits for green, 5 bits for blue, and 1 bit for an alpha
value. With 5 bits of storage, each color component can use 32 shades. The alpha
value has one bit, meaning that it’s either off or on.

When you refer to a color mode, you don’t say 16-bit, but the number of bits per
color component, as in 1555 (1 alpha, 5 red, 5 green, and 5 blue). Standard colors
modes are 555 (5 red, 5 green, 5 blue, no alpha), 565 (5 red, 6 green, 5 blue), and
888 (8 bits per color component). Notice that the alpha value isn’t required at times.

Direct3D defines these color modes as enum values, which you can see in Table
6.2.

At this point, say that you want to start setting up a display mode that is 640 x 480
and uses the D3DFMT_R5G6B5 color format. Here’s how you set up the D3DDISPLAYMODE
structure:

D3DDISPLAYMODE d3ddm;
d3ddm.Width = 640;
d3ddm.Height = 480;
d3ddm.RefreshRate = 0; // use default

172 6. Drawing with DirectX Graphics

Table 6.2 Direct3D Color Mode Macros

Value Format Description

D3DFMT_R8G8B8 (24-bit) 8 red, 8 green, 8 blue

D3DFMT_A8R8G8B8 (32-bit) 8 alpha, 8 red, 8 green, 8 blue

D3DFMT_X8R8G8B8 (32-bit) 8 unused, 8 red, 8 green, 8 blue

D3DFMT_R5G6B5 (16-bit) 5 red, 6 green, 5 blue

D3DFMT_X1R5G5B5 (16-bit) 1 unused, 5 red, 5 green, 5 blue

D3DFMT_A1R5G5B5 (16-bit) 1 alpha, 5 red, 5 green, 5 blue

d3ddm.Format = D3DFMT_R5G6B5;

To check whether the display adapter can handle the color format you want, fill
the D3DDISPLAYFORMAT structure with the required information and give a call to

// g_pD3D = pre-initialized Direct3D object
// d3ddm = pre-initialized D3DDISPLAYMODE structure

// Check if display mode exists
if(FAILED(m_pD3D->CheckDeviceType(D3DADAPTER_DEFAULT, \

D3DDEVTYPE_HAL, &d3ddm, &d3ddm, FALSE))) {
// Error occurred - color mode not supported

}

Setting the display mode information assumes that you are using a full screen.
If, on the other hand, you want to support windowed mode (such as a standard
Windows application), you have Direct3D fill in the display mode information for
you. You accomplish this with the following call:

// g_pD3D = pre-initialized Direct3D object
D3DDISPLAYMODE d3ddm;
if(FAILED(g_pD3D->GetDisplayMode(\

D3DADAPTER_DEFAULT, &d3ddm))) {
// Error occurred

}

Upon success, the preceding call to IDirect3D8::GetDisplayMode will return a valid
D3DDISPLAYMODE structure.

173Getting Started with DirectX Graphics

CAUTION
Certain display adapters are unable
to use specific display modes. It’s
your job to determine whether an
adapter can or cannot support the
various modes. If you are using
windowed mode, this is not a big
problem because Direct3D handles
the color mode settings for you.

NOTE
As do all COM interfaces, Direct3D
returns an HRESULT value.A value of
D3D_OK means that the function call
was successful; anything else is a fail-
ure.You can use the standard FAILED
or SUCCEEDED macros to easily test
the return codes.

Setting the Presentation Method
The next step to setting up Direct3D is to decide how to present the graphics to
the user. Do you want to do so within a window, a full screen, or a backbuffer
(see the upcoming note for more on backbuffers)? What refresh rate will you use?
All this information (and more as you’ll see) is stored with a D3DPRESENT_PARAMETERS
structure:

typedef struct _D3DPRESENT_PARAMETERS {
UINT BackBufferWidth; // Width of backbuffer
UNIT BackBufferHeight; // Height of backbuffer
D3DFORMAT BackBufferFormat; // Same as display mode format
UINT BackBufferCount; // 1
D3DMULTISAMPLE_TYPE MultiSampleType; // 0
D3DSWAPEFFECT SwapEffect; // how to display backbuffer
HWND hDeviceWindow; // NULL
BOOL Windowed; // TRUE for windowed mode

// FALSE for fullscreen mode
BOOL EnableAutoDepthStencil; // FALSE
D3DFORMAT AutoDepthStencilFormat; // 0
DWORD Flags; // 0
UINT FullScreen_RefreshRateInHz; // 0
UINT FullScreen_PresentationInterval; // 0

} D3DPRESENT_PARAMETERS;

Although this operation
might seem involved, you
really don’t have to deal
with the majority of the
fields in the
D3DPRESENT_PARAMETERS

structure; however, you do
need to understand the
fields related to the back-
buffer.

174 6. Drawing with DirectX Graphics

NOTE
A backbuffer is an off-screen drawing surface
(the same size as a window or video screen) that
receives all drawing operations. In order to view
the graphics drawn on a backbuffer, you use an
operation known as a flip, which displays the con-
tents of the backbuffer on the video screen or
window.This operation displays smooth updates—
the user never sees what is being drawn until you
are ready to display it.

You can see this concept demonstrated in Figure
6.9, which shows the front (display) and back (off-
screen) screens.You draw on the back screen, and
when you finish drawing, you flip the two screens
to display the back one.

Here are two possible setups that you can use, depending on whether you are using
a windowed or a full-screen graphics mode:

// d3ddm = pre-initialized D3DDISPLAYMODE structure
D3DPRESENT_PARAMETERS d3dpp;

// Clear out the structure
ZeroMemory(&d3dpp, sizeof(D3DPRESENT_PARAMETERS));

// For windowed mode, use:
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = d3ddm.Format; // use same color mode

175Getting Started with DirectX Graphics

Display

Display

Backbuffer

Backbuffer

Draw Graphics
to Backbuffer

Flip

Figure 6.9

Drawing on the backbuffer keeps things out
of view until you flip the two screens.

// For fullscreen mode, use:
d3dpp.Windowed = FALSE;
d3dpp.SwapEffect = D3DSWAPEFFECT_FLIP;
d3dpp.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;
d3dpp.FullScreen_PresentationInterval = \

D3DPRESENT_INTERVAL_DEFAULT;
d3dpp.BackBufferFormat = d3ddm.Format; // use same color mode

Creating the Device Interface
and Initializing the Display
At last you’re able to create the Direct3D device interface, which is the workhorse
of the 3-D system. Using the D3DDISPLAYMODE and D3DPRESENT_PARAMETERS structures that
you previously set up, call the IDirect3D8::CreateDevice function to create and initial-
ize the display interface:

HRESULT IDirect3D8::CreateDevice(
UINT Adapter, // D3DADAPTER_DEFAULT
D3DDEVTYPE DeviceType, // D3DDEVTYPE_HAL
HWND hFocusWindow, // window handle to use for rendering
DWORD BehaviorFlags, // D3DCREATE_SOFTWARE_VERTEXPROCESSING
D3DPRESENT_PARAMETERS *pPresentationParameters, // d3dpp
IDirect3DDevice8 *ppReturnedDeviceInterface); // device object

In the CreateDevice function, you see where to pass the presentation structure that
you created, plus the handle to the window that belongs to your application (and
which Direct3D will use to display the rendered graphics). The rest of the argu-
ments are pretty standard fare, and you rarely change them. The last argument
is the pointer to the Direct3D device object that you are creating. A call to the
IDirect3D8::CreateDevice might look something like this:

// g_pD3D = pre-initialized Direct3D object
// hWnd = window handle to use for rendering
// d3dpp = pre-initialized presentation structure
IDirect3DDevice8 *g_pD3DDevice;

if(FAILED(g_pD3D->CreateDevice(D3DADAPTER_DEFAULT, \
D3DDEVTYPE_HAL, hWnd, D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &g_pD3DDevice))) {

// Error occurred
}

176 6. Drawing with DirectX Graphics

Losing the Device
Normally, the device interface operates as expected, and everything works great;
graphics are drawn, and memory resources are maintained. Although it would be
great to think that your device will stay in this operational state, there will be times
when it just can’t. Enter the world of lost devices.

A lost device is one that has lost control of the graphics resources for one reason
or another. It could be that another application gained control of the graphics
adapter and dumped all the memory that contained your application’s graphics
data. It could be that Windows powered down the system while entering sleep
mode. Whatever the reason, your control of the graphics device is gone, and you
need to get it back.

How do you know when control is lost? By examining the return calls to any device
function that you call! For example, in the section “Presenting the Scene,” later in
this chapter, you see how to display graphics to the video display. During that call,
if the device object returns a value of D3DERR_DEVICELOST, you’ll know that the device
is lost.

Regaining control of the device is a drastic step, in a manner of speaking. It’s all
done through the following function:

HRESULT IDirect3DDevice8::Reset(
D3DPRESENT_PARAMETERS *pPresentationParameters);

The one and only parameter is the presentation structure that you used when you
initialized the device:

// g_pD3DDevice = pre-initialized device object
// d3dpp = pre-setup presentation structure
g_pD3DDevice->Reset(&d3dpp);

I’d like to say that this is a magic function that handles everything for you when
restoring a device, but I’m sorry to convey some bad news. Calling the reset
function resets the device and wipes out all resources—which really isn’t too bad,
because there’s a chance they’ve already been lost (because the device was lost).

The bottom line is that you’ll need to reload all resources that have to do with the
graphics (such as textures), and you’ll need to restore the device states (the set-
tings). Much of what is lost is data you haven’t yet learned about, so now I’ll bring
you up to speed.

177Getting Started with DirectX Graphics

Introducing D3DX
Dealing with Direct3D is at times a major task. Although Microsoft has simplified
many of the interfaces, you still have a bit of work to do. To help speed up applica-
tion development time, Microsoft created the D3DX library.

The D3DX library is packed to the brim with useful functions for dealing with
graphics, such as meshes, textures, fonts, math, and so on. Throughout this book,
you will see how to utilize the D3DX library in order to make your game-program-
ming quest a little smoother.

To use the D3DX library in your project, you include only D3DX8.H and link
in D3DX8.LIB. All D3DX functions start with the prefix D3DX (for example,
D3DXCreateFont). Not only does the D3DX library contain functions, but it also
contains COM objects, such as ID3DXBaseMesh.

The Math of 3-D
As you can probably tell by now, using 3-D graphics involves considerable math,
and dealing with so many numbers can bog things down quickly. Many years ago,
real-time 3-D graphics were a dream rather than a reality. Computers just couldn’t
handle the computations fast enough.

Of course, things got better with time, and now we’re able to achieve some awe-
some effects. Advancements in the math involved with 3-D graphics is one reason
for this change.

Matrix Math
No, this section is not about Keanu Reeves and his next movie in which he is stuck
inside a calculator. Matrix math is a form of linear algebra that simplifies and
reduces certain calculations. For your current purposes, the calculations are the
3-D transformations I just mentioned.

Because each 3-D object is composed of many vertices, Direct3D’s job is to trans-
form those vertices into coordinates that are ready to render the graphics to the
display. You could transform thousands of vertices that construct a scene for each
frame. That’s some serious math—enough to choke any college math professor.

Direct3D deals with all the transformations by using matrices. A matrix is a grid of
numbers, with each element in the grid having a specific meaning. For your current

178 6. Drawing with DirectX Graphics

TEAMFL
Y

Team-Fly®

purposes, the numbers repre-
sent the transformations you
want to apply to the vertices.
By combining all the necessary
calculations into a packed
form, such as a matrix, the
math is greatly simplified.

Matrix Construction
A matrix comes in many sizes, but as far as you need to be concerned right now,
its size is 4 x 4, which means that you have a grid with four rows and four columns.
Direct3D stores a matrix as a D3DMATRIX structure:

typedef struct _D3DMATRIX {
D3DVALUE _11, _12, _13, _14;
D3DVALUE _21, _22, _23, _24;
D3DVALUE _31, _32, _33, _34;
D3DVALUE _41, _42, _43, _44;

} D3DMATRIX;

In order to fill a matrix with the transformation data you’ll use, you can actually
use the D3DX library. Instead of using the D3DMATRIX structure, make use of the
D3DXMATRIX object, which contains the same variables as D3DMATRIX, along with a
number of useful functions.

Each transformation you will use has its own matrix to start with, whereas the rota-
tion takes three matrices (one for each axis). This means that you need five trans-
formation matrices: X-rotation, Y-rotation, Z-rotation, translation, and scaling. The
first set of functions is used to set up the rotation matrices:

D3DXMATRIX *D3DXMatrixRotationX(
D3DXMATRIX *pOut, // output matrix
FLOAT Angle); // X angle around center

D3DXMATRIX *D3DXMatrixRotationY(
D3DXMATRIX *pOut, // output matrix
FLOAT Angle); // Y angle around center

D3DXMATRIX *D3DXMatrixRotationZ(
D3DXMATRIX *pOut, // output matrix
FLOAT Angle); // Z angle around center

179The Math of 3-D

CAUTION
Note that matrix math is involved only when
you work with 3-D coordinates. If you’re using
transformed coordinates (coordinates in
screen space), you do not have to apply
further transformations to them.

NOTE
D3DVALUE is a macro that expands to
a float data type.

By passing each of the
preceding functions with
a matrix and providing a
rotational value (in radians
representing the angle
along the axis origin), you
obtain the values with
which you need to work.
The next function creates
a translation matrix, which
is used to move objects:

D3DXMATRIX *D3DXMatrixTranslation(
D3DXMATRIX *pOut, // output matrix
FLOAT x, // X coordinate offset
FLOAT y, // Y coordinate offset
FLOAT z); // Z coordinate offset

The coordinates are actually offsets based on the origin of the object. The transla-
tion values are used to convert an object from local space coordinates to world space
coordinates. Next in line is the function that scales objects around their origin:

D3DXMATRIX *D3DXMatrixScaling(
D3DXMATRIX *pOut, // output matrix
FLOAT sx, // X scale
FLOAT sy, // Y scale
FLOAT sz); // Z scale

An object’s scale is normally 1.0. To double the size of an object, specify a value of
2.0; to make the object half its size, use 0.5.

You’ll also use a special type of matrix called an identity matrix. It has all but a few
values set to zero; the others are set to one. When applied to another matrix, the
identity matrix has no effect and leaves the resulting values the same as the original
ones. Identity matrices are useful when you have to combine two matrices but don’t
want the original one altered.

In order to create an identity matrix, you can use the following function (which
takes only the output matrix as a parameter):

D3DXMATRIX *D3DXMatrixIdentity(D3DXMATRIX *pOut);

180 6. Drawing with DirectX Graphics

NOTE
Notice that all the matrix functions used by D3DX
also return a D3DXMATRIX pointer.This is a pointer to
the output matrix, and it enables you to use the
matrix functions inline with another function, as
shown here:

D3DXMATRIX matMatrix, matResult;

matResult = D3DXMatrixRotationZ(&matMatrix, 1.57f);

Although the function prototypes are not much to look at, here are some examples:

D3DXMATRIX matXRot, matYRot, matZRot;
D3DXMATRIX matTrans, matScale;

// Setup the rotations at 45 degrees (.785 radians)
D3DXMatrixRotationX(&matXRot, 0.785f);
D3DXMatrixRotationY(&matYRot, 0.785f);
D3DXMatrixRotationZ(&matZRot, 0.785f);

// Setup the translation to move to 100,200,300
D3DXMatrixTranslation(&matTrans, 100.0f, 200.0f, 300.0f);

// Scale object to twice the size in all directions
D3DXMatrixScaling(&matScale, 2.0f, 2.0f, 2.0f);

Combining Matrices
After filling the various matrices with the values used in transformations, you can
apply them to each individual vertex. In fact, to make it even easier, you can com-
bine the separate matrices that contain the values for translating, rotating, and
scaling into a single matrix by multiplying them together. This procedure is known
as matrix concatenation, and it is the heart of optimizing all matrix calculations.

By constructing a single matrix once per frame, you can then use this matrix for
every vertex in the scene. When applied to a vertex, this single matrix has the same
effect as applying the separate matrices in succession.

Matrices are not hard to use. They just take a little understanding. In fact, with the
power of D3DX, you’re able to combine the matrices effortlessly with the use of the
D3DXMatrixMultiply function:

D3DXMATRIX *D3DXMatrixMultiply(
D3DXMATRIX *pOut, // output matrix
CONST D3DXMATRIX *pM1, // Source matrix 1
CONST D3DXMATRIX *pM2); // Source matrix 2

By passing two matrices as pM1 and pM2, you get a resulting matrix (pOut) calculated
from multiplying the first two matrices. To expand on the example scaling, rota-
tion, and translation matrices created in the previous section, combine them all
into a single matrix that represents all the transformations:

D3DXMATRIX matResult; // The resulting matrix

181The Math of 3-D

// Clear the resulting matrix to identity
D3DXMatrixIdentity(&matResult);

// Multiply in the scaling matrix
D3DXMatrixMultiply(&matResult, &matResult, &matScale);

// Multiply in rotation matrices
D3DXMatrixMultiply(&matResult, &matResult, &matXRot);
D3DXMatrixMultiply(&matResult, &matResult, &matYRot);
D3DXMatrixMultiply(&matResult, &matResult, &matZRot);

// Multiply in translation matrix
D3DXMatrixMultiply(&matResult, &matResult, &matTrans);

Notice that the order in which you combine the matrices is essential. In the preced-
ing example, I combined them in this order: scale, X-rotation, Y-rotation, Z-rotation,
and translation. If you were to combine the matrices in any other order, the resulting
matrix would be different and would cause some future undesirable results.

The Steps from Local to View Coordinates
In order for a vertex to be used to render a face, the vertex must be converted
from its local coordinates (untransformed coordinates) to world coordinates.
The world coordinates are then converted to view coordinates, and then finally
projected into 2-D coordinates (transformed coordinates).

You convert local coordinates to
world coordinates using a world
transformation matrix (or world
matrix for short). This matrix con-
tains the transformations used to
position the object in the 3-D
world (local to world). The second
transformation matrix, which is
used to transform the object into
viewing coordinates, is called the
viewing matrix. Last is the projection
matrix, which converts 3-D coordi-
nates from the viewing coordinates
into transformed vertices that are
used to render graphics.

182 6. Drawing with DirectX Graphics

NOTE
When working with the view transforma-
tion, you must use the reverse values of
the viewing position to orient objects into
view.You do so because a viewing position
actually stays locked at coordinates 0,0,0.
When the view “moves,” the world and all
objects in it are actually moving around
you. For example, if you want to walk for-
ward 10 units, move the world’s objects
10 units back toward you instead. Look
left 10 degrees, and the world’s objects
rotate 10 degrees right around you.

When constructing the world matrix and the view matrix, you must pay close atten-
tion to the order in which you combine the individual matrices. For a world trans-
formation, you combine the individual transformation matrices in this order:

R = S * X * Y * Z * T

R is the resulting matrix, S is the scale matrix, X is the X-axis rotation matrix, Y is
the Y-axis rotation matrix, Z is the Z-axis rotation, and T is the translation matrix.

The view matrix must combine the individual transformation matrices in this order
(using only translating and rotation):

R = T * X * Y * Z

The projection matrix is a special case and is a little harder to work with. You must
take many things into consideration when building a projection matrix because it
doesn’t work with transformations such as translation, scaling, or rotation. I’ll be
using the D3DX library to help construct the projection matrix later on in the
section “The Projection Transformation.”

Figure 6.10 shows the path that a vertex takes through the various transformations
to its final set of drawing coordinates.

183The Math of 3-D

Un-transformed
Vertex

World
Transformation

Matrix

View
Transformation

Matrix

Projection
Matrix

Output
Transformed

Vertex

Figure 6.10

An untransformed vertex passes through various
transformation matrices in order to obtain its final
rendering coordinates.

Getting Down to Drawing
Enough of the basics; it’s time to check out how Direct3D actually draws graphics.
In this section, I cover the basics on using vertices and polygons to draw graphics.
You learn about the various ways Direct3D uses vertices to draw polygons, how to
color those polygons, and finally how to present those graphics to the user.

It’s the little things that make it count, so check out how to deal with vertices and
move up from there.

Using Vertices
Direct3D gives you the freedom to define a vertex in many different ways. For
example, if you’re using 2-D graphics, you can specify coordinates in 2-D screen
coordinates (transformed coordinates).

On the other hand, if you’re using local or world space coordinates, you can specify
coordinates in 3-D (untransformed coordinates). How about using colors and tex-
tures? You can choose to include that information as well in your vertex definitions.

How do you keep track of all that information and make sure that Direct3D knows
what you’re doing? Behold the flexible vertex format.

Flexible Vertex Format
The flexible vertex format (or FVF for short) is used to construct the custom vertex
data for use in your applications. With FVF, you get to decide what information to
use for your vertices; information such as the 3-D coordinates, 2-D coordinates,
color, and so on.

You construct the FVF using a standard structure in which you add only the
components you want. There are some restrictions of course, as you must list the
components in a specific order, and certain components cannot conflict with others
(such as using 2-D and 3-D coordinates at the same time). Once the structure is
complete, you construct a FVF descriptor, which is a combination of flags that
describe your vertex format.

The following code bit contains a vertex structure using the various variables
allowed with FVF (or at least those I use in this book). The variables in the struc-
ture are listed in the exact order they should appear in your own structures; if you
cut any variables, make sure you maintain the order as shown:

184 6. Drawing with DirectX Graphics

typedef struct {
FLOAT x, y, z, rhw; // 2-D coordinates
FLOAT x, y, z; // 3-D coordinates
FLOAT nx, ny, nz; // Normals
D3DCOLOR diffuse; // Diffuse color
FLOAT u, v; // Texture coordinates

} sVertex;

As you can see, the only conflicting variables are those for the coordinates, includ-
ing the normals. Normals are coordinates that define a direction and can be used
only in conjunction with 3-D coordinates. You need to pick which set of coordi-
nates (either 2-D or 3-D) to keep and which to discard. If you are using the 2-D
coordinates, you cannot include the 3-D coordinates, and vice versa.

The only real difference between the 2-D and 3-D coordinates is the addition of the
rhw variable, which is the reciprocal of the homogeneous W. In English, this typi-
cally represents the distance from the viewpoint to the vertex along the Z-axis. You
can safely set rhw to 1.0 in most cases.

Notice also that the sVertex structure uses the data type FLOAT (which is a floating-
point value), but what about D3DCOLOR? D3DCOLOR is a DWORD value you use to store color
values in Direct3D. To construct a color value to use for D3DCOLOR, you choose from
two functions: D3DCOLOR_RGBA and D3DCOLOR_COLORVALUE:

D3DCOLOR D3DCOLOR_RGBA(Red, Green, Blue, Alpha);
D3DCOLOR D3DCOLOR_COLORVALUE(Red, Green, Blue, Alpha);

Each function (actually they are macros) takes four parameters, which are the
amount of each color component to use, including an alpha value (transparency).
These values can range from 0 to 255 for the D3DCOLOR_RGBA macro and 0.0 to 1.0
(fractional) for D3DCOLOR_COLORVALUE. If you are using solid colors (opaque), always
specify 255 (or 1.0) for the alpha value.

As an example, say that you need to include only the 3-D coordinates and a diffuse
color component in your own vertex structure:

typedef struct {
FLOAT x, y, z;
D3DCOLOR diffuse;

} sVertex;

The next step in constructing your FVF is to create the FVF descriptor using any
combination of the flags listed in Table 6.3.

185Getting Down to Drawing

In order to describe a FVF descriptor, you combine all the appropriate flags into a defi-
nition (assuming that you’re using the 3-D coordinates and diffuse color component):

#define VertexFVF (D3DFVF_XYZ | D3DFVF_DIFFUSE)

Just make sure that all the flags match the components that you added to your ver-
tex structure, and everything will go smoothly.

Using Vertex Buffers
After you construct your vertex structure and descriptor, you create an object that
contains an array of vertices. Direct3D gives you two objects with which to work:
IDirect3DVertexBuffer8 and IDirect3DIndexBuffer8. The object that I’ll use for this book
is IDirect3DVertexBuffer8, which stores the vertices used to draw triangle lists, triangle
strips, and triangle fans.

Used with triangle lists, the IDirect3DVertexBuffer8 object stores at least three vertices
for each polygon to be drawn (with the vertices arranged in a clockwise order).
With triangle strips, the first polygon to be drawn uses three vertices, while each
subsequently drawn polygon uses one additional vertex. As for triangle fans, there
is one central vertex stored, while each polygon to be drawn has two additional
vertices stored.

Figure 6.11 should help you better understand how you use stored vertices and in
which order you arrange those vertices. In the figure, there is a square that can be
defined in one of three ways. In the first way, using a triangle list, you need to use

186 6. Drawing with DirectX Graphics

Table 6.3 Flexible Vertex Format Descriptor Flags

Flag Description

D3DFVF_XYZ 3-D coordinates are included.

D3DFVF_XYZRHW 2-D coordinates are included.

D3DFVF_NORMAL Includes normals (a vector).

D3DFVF_DIFFUSE A diffuse color component is included.

D3DFVF_TEX1 Texture coordinates are included.

six vertices to define the square—three
vertices for each of the two triangles.

The second way of ordering the square
is to use a triangle strip. The triangle
strip uses only four vertices, defined
expressly as shown in the figure. The
first three vertices construct the first
face, and the last polygon defines the
second face. As for the third method of
ordering, the triangle fan, you again use
only four vertices. With a fan, however, the first vertex you define becomes the base
of the fan, while additional vertices define the faces.

Creating a Vertex Buffer
You create a vertex buffer object by using the initialized IDirect3DDevice8 object:

HRESULT IDirect3DDevice8::CreateVertexBuffer(
UINT Length, // # of bytes to use

// in multiples of vertex structure size
DWORD Usage, // D3DCREATE_WRITEONLY
DWORD FVF, // FVF descriptor
D3DPOOL Pool, // D3DPOOL_MANAGED
IDirect3DVertexBuffer **ppVertexBuffer); // the buffer

187Getting Down to Drawing

NOTE
A polygon can use one, two, or three
vertices, depending on what you’re
drawing. Pixels need only a single
vertex, lines take two, and a triangle
polygon takes three.Throughout this
book, I mainly deal with and refer to
triangular polygons.

0

12

3 4

5
01

2 3

0 1

23

List:
6 Vertices

Strip:
4 Vertices

Fan:
4 Vertices

Figure 6.11

You can store a simple
polygon like this box
(with four vertices
and two polygons)
a number of ways.
Depending on the
vertex storage, you can
use up to six vertices
to define the square.

The only real parameter you want to change in the CreateVertexBuffer call is the
Usage flag, which tells Direct3D how to treat the memory. You will rarely need to
set Usage to a value other than D3DCREATE_WRITEONLY, but if you do, you can use
D3DCREATE_SOFTWAREPROCESSING as an alternative. I explain those special cases as they
arise in the book.

Here’s a quick example (building on my earlier vertex format—in the section
“Flexible Vertex Format”—that uses only the 3-D coordinates and diffuse color
component) for constructing a vertex buffer containing four vertices:

// g_pD3DDevice = pre-initialized device object
// sVertex = pre-defined vertex structure
// VertexFVF = pre-defined Vertex FVF descriptor
IDirect3DVertexBuffer8 *pD3DVB = NULL;

// Create the vertex buffer
if(FAILED(g_pD3DDevice->CreateVertexBuffer(\

sizeof(sVertex) * 4, D3DCREATE_WRITEONLY, VertexFVF, \
D3DPOOL_MANAGED, &pD3DVB))) {

// Error occurred
}

Locking the
Vertex Buffer
Before you can add vertices to the vertex
buffer object, you must lock the memory
that the buffer uses. This ensures that
the vertex storage memory is in an accessible memory area. You then use a mem-
ory pointer to access the vertex buffer memory. You lock the vertex buffer’s mem-
ory and retrieve a memory pointer by calling the buffer object’s Lock function:

HRESULT IDirect3DVertexBuffer8::Lock(
UINT OffsetToLock, // offset to lock buffer, in bytes
UINT SizeToLock, // how many bytes to lock, 0=all
BYTE** ppbData, // pointer to a pointer (to access data)
DWORD Flags // 0

);

Here you have the offset into the buffer at the position you want to access (in
bytes), as well as the number of bytes you want to access (0 for all). Then all that

188 6. Drawing with DirectX Graphics

NOTE
As always, be sure to release the
vertex buffer COM objects when
you are done with them by calling
their Release function.

TEAMFL
Y

Team-Fly®

you need to do is give the function the pointer to the memory pointer that you’re
going to use to access the vertex buffer (cast to a BYTE data type). Here’s a sample
call that locks the entire vertex buffer:

// pD3DVB = pre-initialized vertex buffer object
BYTE *Ptr;

// Lock the vertex buffer memory and get a pointer to it
if(FAILED(pD3DVB->Lock(0, 0, (BYTE**)&Ptr, 0))) {

// Error occurred
}

After you finish accessing the vertex buffer, always follow up every call to Lock with a
call to IDirect3DVertexBuffer8::Unlock:

HRESULT IDirect3DVertexBuffer8::Unlock();

Stuffing in Vertex Data
Now you have your vertex structure, description, and buffer, and you’re locked and
ready to store vertex data. Because you’ve already received the data pointer to the
vertex buffer memory from the call to Lock, all you need to do is copy the appropri-
ate number of vertices into the vertex buffer.

Continuing my example and using the vertex format I’ve defined (using 3-D coor-
dinates and the diffuse color components), I create a local set of vertex data inside
an array:

sVertex Verts[4] = {
{ -100.0f, 100.0f, 100.0f, D3DCOLOR_RGBA(255,255,255,255) },
{ 100.0f, 100.0f, 100.0f, D3DCOLOR_RGBA(255, 0, 0,255) },
{ 100.0f, -100.0f, 100.0f, D3DCOLOR_RGBA(0,255, 0,255) },
{ -100.0f, -100.0f, 100.0f, D3DCOLOR_RGBA(0, 0,255,255) }

};

Lock the vertex buffer, thus getting a pointer to the vertex buffer memory, and then
copy over the local vertex data (and unlocking the vertex buffer when complete):

// pD3DVB = pre-initialized vertex buffer object
BYTE *Ptr;

// Lock the vertex buffer memory and get a pointer to it
if(SUCCEEDED(pD3DVB->Lock(0, 0, (BYTE**)&Ptr, 0))) {

189Getting Down to Drawing

// Copy local vertices into vertex buffer
memcpy(Ptr, Verts, sizeof(Verts));

// Unlock the vertex buffer
pD3DVB->Unlock();

}

That’s all there is to constructing a vertex buffer and filling it with vertex data!
Now you only have to assign a stream source and vertex shader in order to use the
vertex information.

Vertex Streams
Direct3D 8 enables you to feed the vertices to the renderer through a series of mul-
tiple streams called vertex streams. You can create very impressive results by merging
multiple streams of vertex data into a single stream, but in this book, I use only a
single stream because the complexity of using multiple streams is beyond this
book’s scope.

In order to assign your vertex data to a stream, you use the
IDirect3DDevice8::SetStreamSource function:

HRESULT IDirect3DDevice8::SetStreamSource(
UINT StreamNumber, // 0
IDirect3DVertexBuffer8* pStreamData, // Vertex buffer object
UINT Stride); // Size of vertex structure

All you do now to set the vertex stream source is call this function with the pointer
to the vertex buffer object and supply the number of bytes used to store the vertex
structure (using sizeof). From my example of storing vertices in a vertex buffer in
the previous section, you can use the following:

// g_pD3DDevice = pre-initialized device object
// pD3DVB = pre-initialized vertex buffer
if(FAILED(g_pD3DDevice->SetStreamSource(0, \

pD3DVB, sizeof(sVertex)))) {
// Error occurred

}

Vertex Shaders
As a final step in using vertices to draw graphics, you need to understand the con-
cept of vertex shaders. A vertex shader is a mechanism that handles the loading and

190 6. Drawing with DirectX Graphics

processing of vertices; which includes modifying vertex coordinates, applying color
and fogging, and numerous other vertex components.

A vertex shader can take two forms. It can be a fixed vertex shader (in which all the
functionality needed for typical functions is already built in), or it can be a program-
mable vertex shader (in which you can customize routines to modify vertex informa-
tion before rendering to the display).

Trying to explain programmable vertex shaders, which involves programming in
a low-level assembly-like language, is beyond the scope of this book. Instead, I con-
centrate on using fixed vertex shaders because they contain all the functionality
that you will ever need.

In order to use a fixed vertex shader on your vertices, you pass your custom vertex
FVF descriptor to the IDirect3DDevice8::SetVertexShader function:

HRESULT IDirect3DDevice8::SetVertexShader(
DWORD Handle); // Custom vertex FVF

Using the preceding function is as easy as this:

// g_pD3DDevice = pre-initialized device object
// VertexFVF = pre-defined vertex FVF descriptor
if(FAILED(g_pD3DDevice->SetVertexShader(VertexFVF))) {

// Error occurred
}

You’ve now set up the vertex information. The next step is to set up the various
transformations needed to position the vertices (in local space) to their world
space coordinates. Of course, that is the case only if you are using 3-D coordinates.

Transformations
So far, you’ve learned how to initialize the graphics system and create vertices.
If you’re dealing with 3-D objects, such as polygons, the vertices are likely to be
defined in local space. If so, you pass the vertices through a few transformations
(the world, view, and projection) to make sure that they are positioned correctly
when you render the objects.

Each transformation requires the construction of a special matrix that represents
the appropriate orientation (or projection) values. The next few sections show you
how to construct and use each of those three transformations, starting with the
world transformation.

191Getting Down to Drawing

The World Transformation
Vertices that are defined in local space need to be oriented into their respective
coordinates within world space. For example, if you create a box from vertices (in
local space) and you want it to appear at a specific location in the world, you apply
a world transformation to it (as illustrated in Figure 6.12).

Use your old friend, the D3DX library, to help construct the world transformation
matrix. In order to orient an object, you need to construct three rotation matrices
(one for each axis), a translation matrix, and a scaling matrix:

D3DXMATRIX matWorld;
D3DXMATRIX matRotX, matRotY, matRotZ;
D3DXMATRIX matTrans;
D3DXMATRIX matScale;

// Create the rotation matrices
D3DXMatrixRotationX(&matRotX, XAngle);
D3DXMatrixRotationY(&matRotY, YAngle);
D3DXMatrixRotationZ(&matRotZ, ZAngle);

// Create the translation matrix
D3DXMatrixTranslation(&matTrans, XPos, YPos, ZPos);

// Create the scaling matrix
D3DXMatrixScaling(&matScale, XScale, YScale, ZScale);

Next, you combine all the matrices into the world transformation matrix. They
must be combined in this order: scale, X-rotation, Y-rotation, Z-rotation, and then
translation:

// Set matWorld to identity
D3DXMatrixIdentity(&matWorld);

// Combine all matrices into world transformation matrix
D3DXMatrixMultiply(&matWorld, &matWorld, &matScale);
D3DXMatrixMultiply(&matWorld, &matWorld, &matRotX);
D3DXMatrixMultiply(&matWorld, &matWorld, &matRotY);
D3DXMatrixMultiply(&matWorld, &matWorld, &matRotZ);
D3DXMatrixMultiply(&matWorld, &matWorld, &matTrans);

192 6. Drawing with DirectX Graphics

You’re just about done. Now, you just tell Direct3D to use the world transformation
matrix that was just created. You do this through the following function:

HRESULT IDirect3DDevice8::SetTransform(
D3DTRANSFORMSTATETYPE State, // D3DTS_WORLD
CONST D3DMATRIX *pMatrix); // World matrix to set

Notice that the second parameter is a pointer to a D3DMATRIX structure, but thankfully,
you can use the D3DXMATRIX object that you constructed. Setting the first parameter as
D3DTS_WORLD tells Direct3D that the matrix is used for the world transformation and
that anything drawn afterward needs to be oriented by the supplied matrix.

If you have more than one object to orient in the world, simply construct a new
world transformation matrix for each one (in their respective orientations) and
then call SetTransform again, being sure to draw the object before going to the next
world transformation.

The View Transformation
In basic terms, the view transformation acts as a camera (called the viewpoint). By
creating a matrix that contains the offsets in which you orient vertices in the world,
you can align the entire scene around the viewpoint. All vertices must be oriented
(using the view transformation) around the center of the world at the same relative
position in which they are located around the viewpoint.

To create the view transformation, you build a matrix from the viewpoint position
and rotation, this time going in this order: translation, Z-rotation, Y-rotation, and
X-rotation. The trick, however, is that you use the opposite values for the position
and rotation. For example, if the viewpoint is at X=10, Y=0, Z=-150, you use the
values X=-10, Y=0, Z=150.

193Getting Down to Drawing

Y

X

World Space

Y

X

Z
Local Space

World Transformation

Figure 6.12

A box created in local
space needs to be
oriented in world
space before
rendering.

Here’s the code that builds the view transformation matrix:

D3DXMATRIX matView;
D3DXMATRIX matRotX, matRotY, matRotZ;
D3DXMATRIX matTrans;

// Create the rotation matrices (opposite values)
D3DXMatrixRotationX(&matRotX, -XAngle);
D3DXMatrixRotationY(&matRotY, -YAngle);
D3DXMatrixRotationZ(&matRotZ, -ZAngle);

// Create the translation matrix (opposite values)
D3DXMatrixTranslation(&matTrans, -XPos, -YPos, -ZPos);

// Set matView to identity
D3DXMatrixIdentity(&matView);

// Combine all matrices into view transformation matrix
D3DXMatrixMultiply(&matView, & matView, &matTrans);
D3DXMatrixMultiply(&matView, & matView, &matRotZ);
D3DXMatrixMultiply(&matView, & matView, &matRotY);
D3DXMatrixMultiply(&matView, & matView, &matRotX);

To have Direct3D use the view transformation matrix you created, use the
IDirect3DDevice8::SetTransform function again, this time specifying D3DTS_VIEW for the
State parameter:

// g_pD3DDevice = pre-initialized device object
if(FAILED(g_pD3DDevice->SetTransformat(D3DTS_VIEW, &matView))) {

// Error occurred
}

You can see that setting the view transformation is easy; it’s constructing the view
matrix that is a problem. To make things easier, D3DX comes with a function that,
in a single call, sets up the view transformation matrix:

D3DXMATRIX* D3DXMatrixLookAtLH(
D3DXMATRIX* pOut, // output view transformation matrix
CONST D3DXVECTOR3* pEye, // coordinates of viewpoint
CONST D3DXVECTOR3* pAt, // coordinates at target
CONST D3DXVECTOR3* pUp); // up direction

194 6. Drawing with DirectX Graphics

At first glance, the D3DXMatrixLookatLH function doesn’t make too much sense. You
can see the typical output matrix pointer, but what are the three D3DXVECTOR3 objects?
D3DXVECTOR3 is much like a D3DXMATRIX object, except that it contains only three values—
in this case, three coordinates values. This D3DXVECTOR3 object is called a vector object.

pEye represents the coordinates of the viewpoint, and pAt represents the target
coordinates at which the viewpoint is looking. pUp is the vector that represents the
upward direction of the viewpoint. Normally, pUp can be set to 0,1,0 (meaning that
up is in a positive direction along the Y-axis), but since the viewpoint can tilt
(much like you tilt your head side to side), the upward direction can point in any
direction and along any axis.

In order to use the D3DXMatrixLookAtLH function, you can use the following bit of code
(assuming that viewpoint is at XPos, YPos, ZPos and that it’s looking at the origin):

D3DXMATRIX matView;
D3DXVECTOR3 vecVP, vecTP, vecUp(0.0f, 1.0f, 0.0f);

vecVP.x = XPos;
vecVP.y = YPos;
vecVP.z = ZPos;
vecTP.x = vecTP.y = vecTP.z = 0.0f;
D3DXMatrixLookAtLH(&matView, &vecVP, &vecTP, &vecUp);

The Projection Transformation
Last comes the projection transformation, which converts 3-D vertices (untrans-
formed) into 2-D coordinates (transformed) that Direct3D uses to draw your
graphics to the display. Think of the projection transformation as a way of squish-
ing the 3-D graphics onto your display (as illustrated in Figure 6.13).

A number of aspects come into play when dealing with the projection transforma-
tion, such as the aspect ratio of the viewport, field of view, and the near and far
clipping ranges.

The clipping what? When drawing 3-D graphics, sometimes objects are too near or
too far from the viewpoint; you let Direct3D know when to clip out those sections
(in order to speed things up). In order to construct the projection matrix and
define the area in which objects are seen and not clipped out, you use the
D3DXMatrixPerspectiveFovLH function:

D3DXMATRIX* D3DXMatrixPerspectiveFovLH(
D3DXMATRIX* pOut, // Output matrix

195Getting Down to Drawing

FLOAT fovy, // Field of view, in radians
FLOAT Aspect, // Aspect ratio
FLOAT zn, // Z-value of near clipping plane
FLOAT zf); // Z-value of far clipping plane

The fovy parameter indicates the width of the projected view, so the higher the
number, the more you see. This is a double-edged sword, however, because the view
becomes distorted if you use a value too
small or too large. A typical value for fovy
is D3DX_PI/4, which is one-fourth of pi.

The next important parameter is Aspect,
which is the aspect ratio of the viewing
area. If you have a window that is 400 x
400 pixels, the aspect ratio is 1:1, or 1.0
(because it is square). If you have a win-
dow that is 400 x 200 (twice as wide as it
is high), the aspect ratio is 2:1, or 2.0. To
calculate this value, divide the width of
the window by the height of the window:

FLOAT Aspect = (FLOAT)WindowWidth / (FLOAT)WindowHeight;

The zn and zf parameters are the values for the near and far clipping plane and are
measured in the same units that you used for defining the 3-D vertices. Typical val-
ues for the near and far clipping are 1.0 and 1000.0, respectively. These two values

196 6. Drawing with DirectX Graphics

Projection
Matrix

Figure 6.13

A projection transformation makes
it possible to see objects defined by
using 3-D coordinates on a flat, 2-D
display.

NOTE
The D3DXMatrixPerspectiveFovLH func-
tion builds a perspective transfor-
mation matrix using a left-handed
coordinate system. If you are using
right-handed coordinates, use the
D3DXMatrixPerspectiveFovRH function
instead (which uses the same argu-
ment as the left-handed version).

mean that polygons closer than 1.0 units (and 1000.0 units away) to the viewpoint
are not drawn. You might want to set zf to a higher value in your own projects if
you need to draw objects further than 1000.0 units away.

After you construct the projection matrix, you set the projection transformation
matrix using the IDirect3DDevice8::SetTransform function, this time specifying
D3DTS_PROJECTION as the State parameter:

// g_pD3DDevice = pre-initialized device object
D3DXMATRIX matProj;

// Create the projection transformation matrix
D3DXMatrixPerspectiveFovLH(&matProj, D3DX_PI/4, \

1.0f, 1.0f, 1000.0f))) {

// Set the projection matrix with Direct3D
if(FAILED(g_pD3DDevice->SetTransform(D3DTS_PROJECTION, \

&matProj))) {
// Error occurred

}

Materials and Colors
You’ve already seen how to declare colors in the vertex information, but when
it comes to polygons, they too can have special color attributes assigned to them.
Colors that you apply to a polygon face are called materials. Before drawing a poly-
gon using Direct3D, you have the option of assigning a material to be used (if you
choose not to use materials, you can use the vertex colors, if any exist).

Each material has a number of color values to describe it. With Direct3D, the color
values that define a material are stored in a structure:

typedef struct _D3DMATERIAL8 {
D3DCOLORVALUE Diffuse; // Diffuse color component
D3DCOLORVALUE Ambient; // Ambient color component
D3DCOLORVALUE Specular; // Specular color component
D3DCOLORVALUE Emissive; // Emissive color component
float Power; // Sharpness of specular highlights

} D3DMATERIAL8;

Realistically, you want to deal with only one color component: Diffuse. You can set
the Ambient value to the same value as Diffuse, and you can set Specular to 0.0 or 1.0

197Getting Down to Drawing

(with Power set to 0.0). I suggest that you work with the values a bit, just to get an
idea about the effect each component produces.

For current purposes, you apply the Diffuse color to a polygon face; the material’s
color can take the place of the vertex diffuse color component. If you were to apply
a material’s color to a polygon face that also uses colored vertices, you would cause
a perceivable (and usually unwanted) change in the polygon’s color. So, it’s best to
use either materials or vertex colors, not both.

When dealing with the material color components, you set the color component
directly instead of using a macro such as D3DCOLOR_RGBA. Not to worry though—each
color component is represented by its first letter (r for red, g for green, b for blue,
and a for alpha) and by its range in value (from 0.0 to 1.0). If you were to create a
material to use as the color yellow, you would set up the material structure as follows:

D3DMATERIAL8 d3dm;

// Clear out the material structure
ZeroMemory(&d3dm, sizeof(D3DMATERIAL8));

// Fill Diffuse and Ambient to Yellow color
d3dm.Diffuse.r = d3dm.Ambient.r = 1.0f; // red
d3dm.Diffuse.g = d3dm.Ambient.g = 1.0f; // green
d3dm.Diffuse.b = d3dm.Ambient.b = 0.0f; // blue
d3dm.Diffuse.a = d3dm.Ambient.a = 1.0f; // alpha

How you set up the material structure is your choice, but once that structure is set
up, you need to tell Direct3D to use it before rendering a polygon. This is the job
of the IDirect3DDevice8::SetMaterial function, which only takes a pointer to your
material structure as a parameter:

IDirect3DDevice8::SetMaterial(CONST D3DMATERIAL8 *pMaterial);

Once called, all polygons rendered afterward will use the material settings. Here’s
an example that sets the previously defined yellow material:

g_pD3DDevice->SetMaterial(&d3dm);

Clearing the Viewport
You need to wipe the backbuffer clean in order to prepare it for drawing, thus
clearing graphics that might exist there. This is a simple chore using
IDirect3DDevice8::Clear:

198 6. Drawing with DirectX Graphics

TEAMFL
Y

Team-Fly®

HRESULT IDirect3DDevice8::Clear(
DWORD Count, // 0
CONST D3DRECT* pRects, // NULL
DWORD Flags, // D3DCLEAR_TARGET
D3DCOLOR Color, // Color to clear to
float Z, // 1.0f
DWORD Stencil); // 0

The only parameter to worry about at this time is Color, which is the color you want
the backbuffer cleared to. The color value to use can be constructed using the typi-
cal D3DCOLOR_RGBA or D3DCOLOR_COLORVALUE macros that you’ve grown to love. Say that
you want to clear the backbuffer to a light blue:

// g_pD3DDevice = pre-initialized device object
if(FAILED(g_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET, \

D3DCOLOR_RGBA(0,0,192,255), 1.0f, 0))) {
// Error occurred

}

Beginning and Ending a Scene
Before you can render anything, you must tell Direct3D to prepare itself. This is the
purpose of the IDirect3DDevice8::BeginScene function (which takes no parameters):

HRESULT IDirect3DDevice8::BeginScene();

When you finish rendering a scene, you need to inform Direct3D using the EndScene
function:

HRESULT IDirect3DDevice8::EndScene();

You don’t have to embed the Clear function call between BeginScene and EndScene;
you can do so before you call the BeginScene. The only thing that must be sand-
wiched between the beginning and ending scene calls are the function calls that
render the polygons.

Rendering Polygons
At long last, you are ready to render the polygons! A typical frame of your game
engine will clear the backbuffer, begin the scene, set the material to use, draw the
polygons, and end the scene. You’ve seen how to do all of this, except for drawing
the actual polygons.

199Getting Down to Drawing

You draw with an IDirect3DVertexBuffer8 object using the following function (after
the calls to set the vertex stream and shader, of course):

HRESULT IDirect3DDevice8::DrawPrimitive
D3DPRIMITIVETYPE PrimitiveType, // Primitives to draw
UINT StartVertex, // Vertex to start with (0)
UINT PrimitiveCount); // # of primitives to draw

The first parameter, PrimitiveType, tells Direct3D what type of polygons to draw
(which can be one of those listed in Table 6.4). The StartVertex enables you to
decide from which vertex to start drawing (typically 0). You set PrimitiveCount to
the total number of primitives (polygons) that you want to draw.

The primitive type you use depends on how you stuff the vertex data into the buffer.
If you use three vertices per polygon, you use the D3DPT_TRIANGLELIST type. If you use
a more efficient type, such as triangle strips, use the D3DPT_TRIANGLESTRIP type.

The only thing to remember at this point is that you must start a scene with
IDirect3DDevice8::BeginScene before rendering polygons; otherwise, the DrawPrimitive
function call will fail.

Say that you’ve created a vertex buffer that contains six vertices that construct two
triangle polygons that form a square. Rendering them (with the addition of the

200 6. Drawing with DirectX Graphics

Table 6.4 DrawPrimitive Primitive Types

Type Description

D3DPT_POINTLIST Draws all vertices as pixels.

D3DPT_LINELIST Draws a list of isolated lines using two vertices each.

D3DPT_LINESTRIP Draws a list of lines connected to each other.

D3DPT_TRIANGLELIST Draws polygons using three vertices per polygon face.

D3DPT_TRIANGLESTRIP Draws a strip of polygons using the first three vertices for
the first polygon and then an additional vertex for each
subsequently drawn polygon.

D3DPT_TRIANGLEFAN Draws polygons as a fan using the first vertex as the
handle (all polygons are attached to it).

BeginScene and EndScene functions as well as setting the vertex stream and shader)
looks something like this:

// g_pD3DDevice = pre-initialized device object
// pD3DVB = pre-initialized vertex buffer
// sVertex = pre-constructed vertex structure
// VertexFVF = pre-constructed FVF descriptor

// Set the vertex stream and shader
g_pD3DDevice->SetStreamSource(0, pD3DVB, sizeof(sVertex));
g_pD3DDevice->SetVertexShader(VertexFVF);

if(SUCCEEDED(g_pD3DDevice->BeginScene())) {
// Render the polygons
if(FAILED(g_pD3DDevice->DrawPrimitive(D3DPT_TRIANGLELIST, \

0, 2))) {
// Error occurred

}

// End the scene
g_pD3DDevice->EndScene();

}

Presenting the Scene
At long last, you’re ready to flip the backbuffer to the viewport and show the user
your graphics, which you do using the following function:

HRESULT IDirect3DDevice8::Present(
CONST RECT* pSourceRect,
CONST RECT* pDestRect,
HWND hDestWindowOverride,
CONST RGNDATA* pDirtyRegion);

You can safely set all arguments in the IDirect3DDevice8::Present function to NULL,
which tells Direct3D to update the entire screen (because this function is capable
of displaying small portions at a time), as in the following code:

// g_pD3DDevice = pre-initialized device object
if(FAILED(g_pD3DDevice->Present(NULL, NULL, NULL, NULL))) {

// Error occurred
}

201Getting Down to Drawing

That’s it! In order to create more realistic scenes, you use a multitude of different
vertex buffers used to draw the various 3-D objects in your world. Another way to
increase the realism of your graphics is to use texture-mapping.

Using Texture Maps
Although you’ve learned to draw 3-D objects to the display, the plain colored poly-
gons are rather bland. It’s time to spice things up a bit and add a little detail. One
of the easiest ways to increase the detail of 3-D objects is to use a technique known
as texture-mapping. Texture-mapping is the technique you use to paint a polygon
face with an image (as shown in Figure 6.14), thus increasing the visual appearance
of rendered objects. Bitmaps are generally referred to as textures, so I use the two
terms interchangeably when discussing 3-D rendering.

With texture-mapping, you assign each vertex in the polygon a pair of coordinates.
These coordinates (called the U,V coordinates) define a point inside the texture
image. The U,V coordinates are analogous to the texture image’s X,Y coordinates,
but instead of specifying the coordinates based on the texture image’s width and
height in pixels, you specify the coordinates in a range from 0.0 to 1.0.

202 6. Drawing with DirectX Graphics

Texture Map

Polygons

Figure 6.14

With texture-mapping, you
can take plain polygons and
paint pictures on their
surfaces.

Typically, the X- and Y-coordinates range from zero to the image’s width and
height, respectively, so if you have an image 640 x 480 in size, X will range from 0
to 639, and Y will range from 0 to 479. To access a pixel in the middle of the image,
you specify X=319 and Y=239.

The U- and V-coordinates range in the value
from 0 (the top or left edge of an image) to
1 (the right or bottom edge of an image), as
shown in Figure 6.15. To access a pixel in
the center of a 640 x 480 image, you use the
coordinates X=0.5 and Y=0.5.

The U- and V-coordinate arrangement
might seem a little strange at first. However,
it works great because you can quickly swap
out textures that are different sizes without
having to worry about their dimensions.

Textures can be anything you want,
although they are almost always bitmap
images. Recent advances in video hardware
have added bump-mapping technology, which takes a texture and treats it as a
rough surface, making the rendered 3-D object appear as though it has bumps on it.

Using bump maps is a little too advanced for our current purposes, so to keep
things simple, I’m only going to show you how to apply texture images to a polygon
surface to enhance the visual appearance of your graphics system.

203Using Texture Maps

TIP
Here’s a nifty trick.You can specify
a U- or V-coordinate value over
1.0.This will cause the texture to
wrap around as it’s being rendered
to the polygon. For example, if you
use a U value of 2.0, the texture
will be drawn twice (wrapped
around once) horizontally.A
U value of 3.0 means that the
texture is wrapped around three
times.The same goes for the
V-coordinate.

U-Coordinate
V

-C
oordinate

0,0

1,0

1,0

 Texture

Sizes: 64 x 64
� 128 x 128
� 256 x 256
 . . .

Width

H
eight

Figure 6.15

The U- and V-coordinates of a texture image are
constant, regardless of the size of the image.

Using Texture-Mapping with Direct3D
Textures are controlled with Direct3D via an IDirect3DTexture8 object. This object
holds the texture information and provides access to the texture information
(including a pointer to the pixel data of the texture image).

When you first use textures, you begin to realize some of the restrictions placed
on them by Direct3D and the various hardware manufacturers. First, a texture is
limited in its dimensions, which must be a power of two (such as 8, 32, 128, and
256). Normally, you would use the same size for the texture’s width and height,
such as 128 x 128 or 256 x 256. Watch out, however, as there is a catch when using
3-D graphics: Quite a few video cards don’t allow differing widths and heights of a
texture (such as 128 x 64 or 32 x 256).

For those reasons, you should always try to use textures with the same width and
height. In addition, you should ensure that your textures don’t exceed 256 x 256
in size, which seems to be the maximum size that most video cards can handle
(and you want to make sure that your game is as compatible as possible).

Finally, don’t use too many textures. Although the process of rendering a texture-
mapped polygon is easy for the graphics hardware to handle, preparing the texture
for use is not easy. Every time the hardware
needs a texture, Direct3D and your video
card must do a little work to prepare
themselves for the texture.

This work includes copying the texture
into the appropriate memory (if it is not
already there) and setting up the color
format to match the display mode (as well
as its internal color mode usage). This
process is a time-consuming one, and the
less you use it, the better.

Loading a Texture
To obtain texture images, you generally load them from a disk or another resource.
In fact, the D3DX library contains a number of functions to load and manage tex-
tures for you, making your job much easier. These D3DX texture-loading functions
are shown in Table 6.5.

204 6. Drawing with DirectX Graphics

TIP
To alleviate the setup time that a
graphics card uses when preparing
a texture, you can pack multiple
images into a single-texture
image. Doing so ensures that the
texture needs to be set up only
once; then all images can be pulled
from the textures as needed.You
see examples of this technique
throughout the rest of this book.

You can see from Table 6.5 that the texture-loading functions each have two versions,
one is the quick-and-easy version of loading textures, whereas those ending with Ex
are advanced versions that give greater control over the texture creation process.

To start your texture-mapping odyssey, check out D3DXCreateTextureFromFile, the first
and easiest function to use:

HRESULT D3DXCreateTextureFromFile(
IDirect3DDevice8 *pDevice, // pre-initialized device object
LPCSTR pSrcFile, // filename of bitmap to load
IDirect3DTexture8 **ppTexture); // texture object to create

Again, this function is not difficult to deal with; just pass it the pre-initialized 3-D
device object you created, the filename of the bitmap image you want to load, and
the pointer to the IDirect3DTexture8 object you are creating. Here’s an example
using the D3DXCreateTextureFromFile function to load a bitmap titled texture.bmp into
a texture object:

// g_pD3DDevice = pre-initialized 3-D device object
IDirect3DTexture8 *pD3DTexture;

205Using Texture Maps

Table 6.5 D3DX Texture-Loading Functions

Function Description

D3DXCreateTextureFromFile Loads a texture image from a bitmap file.

D3DXCreateTextureFromFileEx A more advanced version of the
D3DXCreateTextureFromFile function.

D3DXCreateTextureFromFileInMemory Loads a texture image from a file already
loaded in memory.

D3DXCreateTextureFromFileInMemoryEx An advanced version of the
D3DXCreateTextureFromFileInMemory
function.

D3DXCreateTextureFromResource Loads a texture image from a resource.

D3DXCreateTextureFromResourceEx An advanced version of the
D3DXCreateTextureFromResource function.

if(FAILED(D3DXCreateTextureFromFile(g_pD3DDevice, \
“texture.bmp”, (void**)&pD3DTexture))) {

// Error occurred
}

The great thing about this function is that it handles all initialization for you and
“sticks” the texture in the D3DPOOL_MANAGED memory class, which means that the tex-
ture remains in memory (lost textures were a major pain that pre-DX8 program-
mers had to deal with).

Setting the Texture
As noted in the earlier section “Using Texturing-Mapping with Direct3D,” a 3-D
device needs to prepare itself to use a texture for rendering. This preparation must
be done before a polygon is rendered using the texture. If you have 1,000 polygons
with each polygon using a different texture, you loop through each polygon, set its
texture, and render it.

You repeat this process until each polygon is rendered. If multiple polygons use the
same texture, to be efficient, set the texture and then render all the polygons that
use it, rather than use the set-then-render loop for each polygon.

To set a texture, use the IDirect3DDevice8::SetTexture function:

HRESULT IDirect3DDevice8::SetTexture(
DWORD Stage, // Texture stage 0-7
IDirect3DBaseTexture8 *pTexture); // Texture object to set

You can see where to pass the texture object you created (as pTexture), but what is
the Stage parameter? This is called texture stages, and it is one of the most exciting
Direct3D texture-mapping techniques.

Texture-mapping with Direct3D is highly versatile. A texture does not have to come
from a single source, but can be built from as many as eight different sources.
These sources, called texture stages, are numbered from 0 to 7.

When rendering polygons, for each pixel to be drawn, Direct3D starts at stage 1
and queries for a texture pixel. From there, Direct3D moves to stage 2 and asks
for another texture pixel or allows you to modify the previous texture pixel. This
process continues until all 8 stages are processed.

Each stage can alter the texture pixel however it wants, including blending the
pixel with a new texture pixel, increasing or decreasing the color or brightness, or
even performing a special effect known as alpha blending (a technique that blends

206 6. Drawing with DirectX Graphics

the colors of multiple pixels). You can see this process illustrated in Figure 6.16, in
which an input pixel goes through each stage, starting with stage 0 in which the dif-
fuse color component (the red, green, and blue color levels) of a pixel is pulled
from the texture. From there, the pixel is alpha-blended and then darkened, lead-
ing to the final output pixel that is rendered to the display.

With texture stages, the possibilities are endless, and unfortunately I don’t have the
space to go into detail about them. In this book, I use only a single texture stage
that will pull the pixel color from the texture, apply the polygon color information,
and render the resulting colored pixel onto a polygon.

The following code bit selects a texture to use in stage 0 and tells the renderer to grab
a texture pixel, apply the vertex color information to it, and disable alpha blending:

// g_pD3DDevice is a pre-initialized 3-D Device object
// pD3DTexture is a loaded texture object

// Set texture in stage 0
g_pD3DDevice->SetTexture(0, pTexture);

// Set stage parameters - only need to do this once in program
g_pD3DDevice->SetTextureStageState(0, \

D3DTSS_COLOROP, D3DTOP_MODULATE);
g_pD3DDevice->SetTextureStageState(0, \

D3DTSS_COLORARG1, D3DTA_TEXTURE);
g_pD3DDevice->SetTextureStageState(0, \

D3DTSS_COLORARG2, D3DTA_DIFFUSE);
g_pD3DDevice->SetTextureStageState(0, \

D3DTSS_ALPHAOP, D3DTOP_DISABLE);

207Using Texture Maps

Input Pixel

Texture
Stages

Output Pixel
Diffuse
Color

Alpha
Blend

Darken
Color. . .

Figure 6.16

Each texture stage
modifies the final
output pixel in a
number of ways.
Here an input pixel
goes through a
number of alterations
to arrive at the final
output pixel.

This is the basic set of texture operations, so you’re likely to see it quite a bit. Note
that you set the stage state parameters only once and then just rely on the SetTexture
call from then on. For more information on using stage state parameters, consult
the DX SDK.

When you finish using a texture (after rendering the polygons), you call the
SetTexture function once more, specifying NULL as the pTexture argument as follows:

g_pD3DDevice->SetTexture(0, NULL);

This releases the texture from memory and the hardware processor. Failing to do
so can cause a memory leak and maybe even cause your game to crash.

Using Texture Filters
Every now and then, you will see references to texture filtering. Texture filtering
comes into play when rendering polygons with textures. Because the display has a
finite resolution, images tend to have little visual anomalies, such as jagged edges
when drawing diagonal lines or pixilated (oversized) samples of a texture image
when it is scaled up.

For these reasons (plus many more), filters were created to smooth out these little
imperfections. Direct3D uses a number of filters that seamlessly ensure that your
graphics have a cleaner look. In order for Direct3D to use a filter, you must make
use of the IDirect3DDevice8::SetTextureStageState function:

HRESULT IDirect3DDevice8::SetTextureStageState(
DWORD Stage, // Texture State 0-7
D3DTEXTURESTAGESTATETYPE Type, // State to set
DWORD Value); // Value to use

Again, you see the use of the texture stages, but the second and third arguments
are of concern here. The Type argument is the state of the texture stage that you
are modifying; in this case, it is either D3DTSS_MAGFILTER or D3DTSS_MINFILTER.

Both of these states determine how Direct3D blends surrounding pixels inside a
texture before outputting a pixel to the display. You use the first state, D3DTSS_MAG-
FILTER, when magnifying a texture (enlarging it) on a polygon, whereas you use
D3DTSS_MINFILTER when minimizing a texture (shrinking it).

The Value argument can be one of those listed in Table 6.6.

208 6. Drawing with DirectX Graphics

TEAMFL
Y

Team-Fly®

Typically, you would use the D3DTEXF_POINT or D3DTEXF_LINEAR filter modes; they are
quick, with the linear mode producing a smoother output. In order to use either
filter mode, just use the following code:

// g_pD3DDevice = pre-initialized device object

// Set magnification filter
if(FAILED(g_pD3DDevice->SetTextureStageState(0, \

D3DTSS_MAGFILTER, D3DTEXF_POINT))) {
// Error occurred

}

// Set minification filter
if(FAILED(g_pD3DDevice->SetTextureStageState(0, \

D3DTSS_MINFILTER, D3DTEXF_POINT))) {
// Error occurred

}

209Using Texture Maps

Table 6.6 Direct3D Texture Stage State Filter Values

Value Description

D3DTEXF_NONE Don’t use a filter.

D3DTEXF_POINT The fastest mode of filtering. Uses a single pixel color from
the texture map.

D3DTEXF_LINEAR Bilinear interpolation mode.This mode combines four
pixels from the texture map to produce a blended output
pixel.A fairly quick mode of texture-mapping that produces
nice, smooth pixels.

D3DTEXF_ANISOTROPIC Anisotropic filtering compensates for angular differences from
the screen and the texture-mapped polygon. Nice but slow.

Rendering Textured Objects
Before an object (a polygon or series of polygons) can be drawn with a texture, you
must ensure that the polygon vertices include a pair of U,V coordinates. A custom
vertex structure that contains only a set of 3-D coordinates and texture coordinates
is as follows:

typedef struct {
D3DVECTOR3 Position; // vertex position vector
float tu, tv; // Adding texture coordinates here!

} sVertex;

At this point, you have to construct your flexible vertex format macro to inform
Direct3D of the vertex components you are using, and in this case those compo-
nents are the untransformed 3-D coordinates and a pair of texture coordinates.
Using the D3DFVF_XYZ and D3DFVF_TEX1 values accomplishes this:

#define VERTEXFMT (D3DFVF_XYZ | D3DFVF_TEX1)

Now for the fun part—placing your graphics onscreen. With the addition of a few
lines of code, you can expand a simple polygon drawing function to include your tex-
ture. Assuming that you’ve initialized the device, defined the vertex buffer with the
texture information, and have the world, viewing, and projection matrices set, here’s
an example of loading a texture and using it to draw a triangle list of polygons:

// g_pD3DDevice = pre-initialized device object
// NumPolys = number of primitive polygons to draw
// g_pD3DVertexBuffer = pre-created vertex buffer w/polygon info
IDirect3DTexture8 *pD3DTexture; // Texture object

// Load the texture
D3DXCreateTextureFromFile(g_pD3DDevice, “texture.bmp”, \

(void**)&pD3DTexture);

if(SUCCEEDED(g_pD3DDevice->BeginScene())) {
// Set the texture
g_pD3DDevice->SetTexture(0, pD3DTexture);

// Set the stream source and vertex shader
g_pD3DDevice->SetStreamSource(0, g_pD3DVertexBuffer, \

sizeof(sVertex));
g_pD3DDevice->SetVertexShader(VERTEXFMT);

// Draw triangle list

210 6. Drawing with DirectX Graphics

g_pD3DDevice->DrawPrimitive(D3DPT_TRIANGLELIST, 0, NumPolys);

// End the scene
g_pD3DDevice->EndScene();

// Free the texture resources
g_pD3DDevice->SetTexture(0, NULL);

}

Alpha Blending
Imagine standing inside one of the world’s tallest buildings, walking up to a win-
dow, and peering out over the vast city below. The slight blue hue of the colored
window gives everything a peaceful shade similar to that of the morning sky.

Imagine the same scene, this time in the language of 3-D graphical. The entire
world is constructed from polygons, which for all practical purposes are solid
objects. You can’t see through them. What if you want a see-through window in
your game? What about the nice hue that the window gave everything?

Not only do you want cool effects like those just mentioned, but how about things such
as transparent blits (that is, you want to draw a polygon with portions completely trans-
parent). Think of drawing as a partially transparent object in terms of a wall with a hole
in its center. The hole is completely transparent, even though the wall is solid; your
view through the hole is unobstructed.

These effects are possible using a technique
known as alpha blending. Using alpha blend-
ing, you can alter the transparency of a poly-
gon so that you can see through it. If the
polygon is colored, that color will blend with
anything behind the polygon. What’s better,
you can even use a texture on the polygon
to create some awesome effects!

An object’s degree of transparency is known
as an alpha value. As you might have already
noticed, Direct3D uses an alpha value in a
number of ways. Using textures, for exam-
ple, you can specify a format that uses an
alpha value. The alpha values are stored in
what’s called an alpha channel.

211Alpha Blending

NOTE
An alpha channel is a value
much like a color component
(red, green, blue). It specifies the
amount of transparency to apply,
with each pixel of a surface hav-
ing an alpha channel of its own.

This alpha channel can range
anywhere from 1 to 8 bits. If you
have an 8-bit alpha channel, you
can specify 256 alpha values
(0–255).A 4-bit alpha channel
uses 16 alpha values (0–15).

Enabling Alpha Blending
Enabling the Direct3D alpha-blending functions is as easy as setting the proper ren-
der states using the IDirect3DDevice8::SetRenderState function. The first render state,
which actually enables the alpha blending, is D3DRS_ALPHABLENDENABLE:

// g_pD3DDevice = pre-initialized 3-D device object

// To enable alpha-blending, use:
g_pD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

// Set the type of alpha blending
g_pD3DDevice->SetRenderState(D3DRS_SRCBLEND, \

D3DBLEND_SRCALPHA);
g_pD3DDevice->SetRenderState(D3DRS_DESTBLEND, \

D3DBLEND_INVSRCALPHA);

// To disable alpha-blending, use:
g_pD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);

Note the two additional render states (D3DRS_SRCBLEND and D3DRS_DESTBLEND) in the pre-
ceding code. Those two tell Direct3D that you want to specify the alpha values to use
when rendering. At times, you’ll see that the D3DRS_DESTBLEND value is set to D3DBLEND_ONE
rather than D3DBLEND_INVSRCALPHA. I’ll point that out to you whenever it occurs.

Drawing with Alpha Blending
The only other information you need in order to use alpha blending is how to add
the alpha values to your custom vertex information. You accomplish this by adding
the diffuse color component to the custom vertex structure and descriptor. When
you define the diffuse color, you must then specify the alpha value.

The following example sets up a simple vertex structure that stores the 3-D coordi-
nates, plus the diffuse color component (that now includes an alpha value):

// The custom vertex structure and descriptor
typedef struct {

FLOAT x, y, z;
D3DCOLOR diffuse;

} sVertex;
#define VertexFVF (D3DFVF_XYZ | D3DFVF_DIFFUSE)

212 6. Drawing with DirectX Graphics

// Define 3 vertices in a local array
sVertex Verts[3] = {

{ 0.0f, 100.0f, 0.0f, D3DCOLOR_RGBA(255,0,0,64) },
{ 100.0f, -100.0f, 0.0f, D3DCOLOR_RGBA(0,255,0,128) },
{ -100.0f, -100.0f, 0.0f, D3DCOLOR_RGBA(0,0,255,255) }

};

The first vertex is set to a red color and is 1⁄4 translucent (1⁄4 of the color will blend
through). The second vertex is green, using 1⁄2 translucency (1⁄2 of the color will
blend through). The third vertex is blue and fully opaque, meaning that no color
will blend through.

If you add texture map coordinates and set a valid texture, you can set the diffuse
color to full (255 for red, green, and blue) and then specify the alpha value to
blend the texture.

Transparent Blitting
with Alpha Testing
Alpha testing is a technique of testing the alpha values of pixels before they are
drawn to the display. Pixels that have alpha values that do not fall into a specified
range are rejected and, therefore, do not reach the rendering stage. Similarly to
the way you achieve semi-transparent effects in the preceding section, you can use
alpha testing to render polygons that contain completely transparent sections.

Using the hole-in-the-wall example in the preceding section, imagine that the wall
is a polygon and you want to draw a hole in its center. You want the polygon to be
completely opaque (solid) except for the hole. You want the hole to be completely
transparent. To accomplish that effect, you use a technique called transparent blit,
which enables you to exclude portions of a texture while rendering, thereby allow-
ing background graphics to peek through the blank spots.

The secret to transparent blitting is to set up your texture and assign a single color as
the color key. The color key is the color that will not be drawn when the polygon is ren-
dered. For example, if you have a texture that has a circle in the middle surrounded
by black (as illustrated in Figure 6.17), you can set the color key to black. When the
texture is applied to a polygon and that polygon is drawn, Direct3D will not draw
those black pixels, thereby leaving only the circle in the middle to be rendered.

In actuality, it’s not the color key that marks pixels as being transparent, but the
pixels’ alpha values. In order for a pixel to be completely transparent, its alpha
value must be set to zero. In order for the pixel to be drawn, the alpha value must

213Alpha Blending

be at its highest, which is typically 255. As you might guess, pixels that match the
color key have an alpha value of 0; all others use a higher alpha value.

Loading Textures with Color Keying
When using alpha testing in this manner, you don’t have to specify the diffuse
color component in your custom vertex structure or descriptor. The alpha values
are stored directly in the texture pixel data. In order to set the alpha values in the
texture pixel data, you load the texture using the expanded version of the
D3DXCreateTextureFromFile function, which is as follows:

HRESULT D3DXCreateTextureFromFileEx(
LPDIRECT3DDEVICE8 pDevice, // device object to create with
LPCSTR pSrcFile, // filename of texture to load
UINT Width, // D3DX_DEFAULT
UINT Height, // D3DX_DEFAULT
UINT MipLevels, // D3DX_DEFAULT
DWORD Usage, // 0
D3DFORMAT Format, // color format to use
D3DPOOL Pool, // D3DPOOL_MANAGED
DWORD Filter, // D3DX_FILTER_TRIANGLE
DWORD MipFilter, // D3DX_FILTER_TRIANGLE
D3DCOLOR ColorKey, // Color key to use!
D3DXIMAGE_INFO* pSrcInfo, // NULL
PALETTEENTRY* pPalette, // NULL
LPDIRECT3DTEXTURE8* ppTexture); // texture object to create

214 6. Drawing with DirectX Graphics

Figure 6.17

A texture with a circle in the middle can use transparent
blitting to exclude the dark surrounding area.

Most of the parameters use the default settings shown. The only things that you
need to supply are the filename of the bitmap to load, which 3-D device object to
use when creating the texture, which color format to use when loading the texture
(D3DFMT_* type, which must use an alpha value such as D3DFMT_A8R8G8B8), and the color
key (in a D3DCOLOR format).

When specifying the color key value, use the D3DCOLOR_RGBA or D3DCOLOR_COLORVALUE
macros to specify the color you want. For example, if you want to exclude the color
black from being drawn, load the texture using a color key value:

D3DCOLOR_RGBA(0,0,0,255);

Notice the value of 255 for alpha. This is very important! When loading bitmap files
(.BMP), you must also specify a value of 255 for the alpha value. If you are dealing
with non-bitmap files (such as .TGA) that already include alpha channel values, you
must match the alpha value with the alpha values already stored in the image file.
In this book, I use only bitmap files, so just remember to use an alpha value of 255.

After setting the alpha values for each pixel in the texture, it’s a simple matter of
using alpha testing to reject the pixels based on their alpha values.

Enabling Alpha Testing
Once the texture is loaded (and the color key and alpha values are set), you can
enable alpha testing by adding the following code during your initialization or
rendering loop:

// g_pD3DDevice = pre-initialized device object
g_pD3DDevice->SetRenderState(D3DRS_ALPHATESTENABLE, TRUE);
g_pD3DDevice->SetRenderState(D3DRS_ALPHAREF, 0x08);
g_pD3DDevice->SetRenderState(D3DRS_ALPHAFUNC, \

D3DCMP_GREATEREQUAL);

The D3DRS_ALPHAREF state is the magic one because it tells Direct3D which alpha values
to allow (ranging from a value of 0 to 255). After the three functions just shown are
called, all pixels with an alpha value lower than 8 are rejected. If you set your color
key up correctly, the three function calls will force all textures with an alpha value of
zero to be excluded from the rendering stage, thereby making them transparent!

A Transparent Blitting Example
Enough talk; it’s time for some code! Here’s a small example that loads a button
image and displays it onscreen. The black pixels of the texture are excluded,
allowing the background color to peek through.

215Alpha Blending

// g_pD3DDevice = pre-initialized device object

// Custom vertex structure and descriptor
typedef struct {

FLOAT x, y, z, rhw; // Screen coordinates
FLOAT u, v; // Texture coordinates

} sVertex;
#define VertexFVF (D3DFVF_XYZRHW | D3DFVF_TEX1)

// Vertex buffer and texture
IDirect3DVertexBuffer8 *g_pVB = NULL;
IDirect3DTexture8 *g_pTexture = NULL;

// Set up the vertex buffer and texture
// assuming a 400x400 window
BYTE *Ptr;
sVertex Verts[4] = {

{ 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f },
{ 399.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f },
{ 0.0f, 399.0f, 0.0f, 1.0f, 0.0f, 1.0f },
{ 399.0f, 399.0f, 0.0f, 1.0f, 1.0f, 1.0f }

};

// Create vertex buffer and stuff in data
g_pD3DDevice->CreateVertexBuffer(sizeof(sVertex)*4, 0, \

VertexFVF, D3DPOOL_DEFAULT, &g_pVB))) {
g_pVB->Lock(0,0, (BYTE**)&Ptr, 0)))
memcpy(Ptr, Verts, sizeof(Verts));
g_pVB->Unlock();

// Get texture
D3DXCreateTextureFromFileEx(g_pD3DDevice, “button.bmp”, \

D3DX_DEFAULT, D3DX_DEFAULT, D3DX_DEFAULT, 0, \
D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, D3DX_FILTER_TRIANGLE, \
D3DX_FILTER_TRIANGLE, D3DCOLOR_RGBA(0,0,0,255), NULL, \
NULL, &g_pTexture);

// Set alpha testing
g_pD3DDevice->SetRenderState(D3DRS_ALPHATESTENABLE, TRUE);
g_pD3DDevice->SetRenderState(D3DRS_ALPHAREF, 0x01);
g_pD3DDevice->SetRenderState(D3DRS_ALPHAFUNC, \

216 6. Drawing with DirectX Graphics

D3DCMP_GREATEREQUAL);

// Clear device backbuffer
g_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET, \

D3DCOLOR_RGBA(0,128,128,255), 1.0f, 0);

if(SUCCEEDED(g_pD3DDevice->BeginScene())) {
// Set stream source to particle vertex buffer
g_pD3DDevice->SetStreamSource(0, g_pVB, sizeof(sVertex));

// Set vertex shader to particle type
g_pD3DDevice->SetVertexShader(VertexFVF);

// Set texture
g_pD3DDevice->SetTexture(0, g_pTexture);

// Draw vertex buffer
g_pD3DDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);

g_pD3DDevice->EndScene();

// Clear texture
g_pD3DDevice->SetTexture(0, NULL);

// Turn off alpha testing
g_pD3DDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);

}

// Flip surfaces to display work
g_pD3DDevice->Present(NULL, NULL, NULL, NULL);

Lighting
Next on the list of advanced graphics techniques is the use of lighting. Unlike in
real-life, most games fully illuminate the scene, which does make graphics look
sharp, albeit unrealistic. To get a more true-to-life scene, and to give your graphics
those subtle lighting effects that players will go ga-ga over, you need to utilize
Direct3D’s lighting capabilities. You can use four types of light in Direct3D:
ambient, point, spot, and directional.

217Lighting

Ambient light is a constant source of light that illuminates everything in the scene
with the same level of light. Because it is part of the device component, ambient
light is the only lighting component handled separately from the lighting engine.

The other three lights (illustrated in Figure 6.18) have unique properties. A point
light illuminates everything around it (like a light bulb does). Spotlights point in a
specific direction and emit a cone-shaped light. Everything inside the cone is
illuminated, whereas objects outside the cone are not illuminated. A directional light
(a simplified spotlight), merely casts light in a specific direction.

Lights are placed in a scene just as other 3-D objects are—by using X-, Y-, and Z-
coordinates. Some lights, such as spotlights, also have a direction vector that deter-
mines which way they point. Each light has an intensity level, a range, attenuation
factors, and color. That’s right, even colored lights are possible with Direct3D!

With the exception of the ambient light, each light uses a D3DLIGHT8 data structure
to store its unique information. This structure is defined as follows:

typedef struct _D3DLIGHT8 {
D3DLIGHTTYPE Type; // Type of light
D3DCOLORVALUE Diffuse; // Diffuse color
D3DCOLORVALUE Specular; // Specular color
D3DCOLORVALUE Ambient; // Ambient color
D3DVECTOR Position; // Position of light
D3DVECTOR Direction; // Direction light is pointing
float Range; // Range of light
float Falloff; // Falloff of spotlight
float Attenuation0; // Light attenuation 0
float Attenuation1; // Light attenuation 1
float Attenuation2; // Light attenuation 2
float Theta; // Angle of inner cone
float Phi; // Angle of outer cone

} D3DLIGHT8;

Wow! That’s a big puppy, but it contains all the information you need in order
to describe a light. Although the lights don’t necessarily use every variable in the
D3DLIGHT8 structure, all the lights share a few common fields.

The first variable you set is Type, which is the type of light you are using. This can be
D3DLIGHT_POINT for a point light, D3DLIGHT_SPOT for a spotlight, or D3DLIGHT_DIRECTIONAL
for a directional light.

218 6. Drawing with DirectX Graphics

TEAMFL
Y

Team-Fly®

Next in line is the color of the light. You’ll use the Diffuse field most often; it deter-
mines the color of the light emitted. Notice that the color fields are in the form
D3DCOLORVALUE, which is a structure that looks like this:

typedef struct _D3DCOLORVALUE {
float r; // Red value (0.0 to 1.0)
float g; // Green value (0.0 to 1.0)
float b; // Blue value (0.0 to 1.0)
float a; // Alpha value (Unused)

} D3DCOLORVALUE;

You can set each color component in the
structure in the range of 0.0 (off) to 1.0
(full). A red light will be r=1.0, g=0.0,
b=0.0, and a white light will be r=1.0, g=1.0,
b=1.0. Because you’re dealing with lights,
the alpha value is not used here.

The Specular and Ambient light fields in the D3DLIGHT8 structure determine the high-
light color and ambient color, respectively. You can safely set both fields for each
color component to 1.0 (except for Specular, which you can set to 0.0 values if you
don’t want to use highlights).

219Lighting

Point Light

Directional

Spotlight

Figure 6.18

Point lights, spotlights, and directional
lights cast light in different ways.

TIP
In addition to using the color lev-
els of a light to illuminate an
object, you also can use them to
darken the object. Instead of using
positive color values, use negative
values and watch the results!

As I mentioned previously, each light can be positioned in the 3-D scene using an
XYZ-coordinate (the world coordinates), which is stored in the vector Position. The
Direction is also a vector, but is used to point the light in a specific direction. You
can find more on using the direction vector in the section “Using Spotlights.”

The Range variable determines how far the light can travel before falling off (falloff
is the value used to determine how quickly a light fades from the inner to outer
cone). Typically, a falloff value of 1.0 creates a smooth transition.) No objects
beyond this distance are illuminated by the light. The trio of attenuation fields
determines how fast the light falls off over distance—those three attenuation fields
are typically all set at zero. Whether you use the rest of the variables depends on
the type of light you are using.

Using Point Lights
Point lights are the easiest lights with which to work; you just set their positions,
color components, and ranges. To set up a point light, instance the D3DLIGHT8 struc-
ture and fill it with the required information:

D3DLIGHT8 PointLight;

// Clear out the light data
ZeroMemory(&PointLight, sizeof(D3DLIGHT8));

// Position the light at 0.0, 100.0, 200.0
PointLight.Position = D3DVECTOR3(0.0f, 100.0f, 200.0f);

// Set the diffuse and ambient colors to white
PointLight.Diffuse.r = PointLight.Ambient.r = 1.0f;
PointLight.Diffuse.g = PointLight.Ambient.g = 1.0f;
PointLight.Diffuse.b = PointLight.Ambient.b = 1.0f;

// Set the range to 1000 units
PointLight.Range = 1000.0f;

Using Spotlights
Spotlights work a little differently than the other lights do because spotlights cast
light in a cone shape away from the source. The light is brightest in the center,
dimming as it reaches the outer portion of the cone. Nothing outside the cone is
illuminated.

220 6. Drawing with DirectX Graphics

You define a spotlight by its posi-
tion, direction, color components,
range, falloff, attenuation, and the
radius of the inner and outer
cone. You don’t have to worry
about falloff and attenuation, but
you do need to think about both
radiuses of the cone.

The Phi variable in the D3DLIGHT8 structure determines the size of the outer cone.
Phi, as well as Theta, are represented as angles (in radians). The farther the light
travels from the spotlight source, the wider the projected radius becomes.
Programmers determine which values to use, and you’ll just have to play around
until you find the values you like.

The following creates a spotlight that sets up the position, color, range, falloff, and
cone radiuses:

D3DLIGHT8 Spotlight;

// Clear out the light data
ZeroMemory(&SpotLight, sizeof(D3DLIGHT8));

// Position the light at 0.0, 100.0, 200.0
SpotLight.Position = D3DVECTOR3(0.0f, 100.0f, 200.0f);

// Set the diffuse and ambient colors to white
SpotLight.Diffuse.r = SpotLight.Ambient.r = 1.0f;
SpotLight.Diffuse.g = SpotLight.Ambient.g = 1.0f;
SpotLight.Diffuse.b = SpotLight.Ambient.b = 1.0f;

// Set the range
SpotLight.Range = 1000.0f;

// Set the falloff
SpotLight.Falloff = 1.0f;

// Set the cone radiuses
Spotlight.Phi = 0.3488; // outer 20 degrees
Spotlight.Theta = 0.1744; // inner 10 degrees

221Lighting

CAUTION
Spotlights are the most computational
light source you can use, so it’s a good idea
not to have too many of them in the scene.

Now, you point the spotlight in a specific direction. D3DX comes to the rescue
again with a duo of functions that help you point the spotlight (and any light for
that matter). One function is the D3DXVECTOR3 object’s overloaded constructor that
lets you specify the three coordinates.

For these three coordinates, you use world space coordinates to define the distance
from the origin. If you have a spotlight anywhere in the scene and you want it to
point upward at a target 500 units above the light, you set the vector object’s values
to X=0, Y=500, Z=0 (notice that these three coordinates are relative to the light’s
position). For example, the following code sets the vectors values:

D3DXVECTOR3 Direction = D3DXVECTOR3(0.0f, 500.0f, 0.0f);

The only problem with the preceding
Direction vector declaration is that
Direct3D likes the vectors to be normal-
ized, which means that the coordinates
need to be in the range 0 to 1. No prob-
lem, because the second D3DX function,
D3DXVec3Normalize, handles this for you:

D3DXVECTOR3 *D3DXVec3Normalize(
D3DXVECTOR3 *pOut, // normalized vector
CONST D3DXVECTOR3 *pV); // source vector

When you pass the original vector (for example, the preceding one that
contains the coordinates X=0, Y=500, Z=0) and the pointer to a new vector, the
D3DXVecNormalize function converts the coordinates into values that range between
0 and 1. The new vector now contains the directional values you can use for light
direction field in the D3DLIGHT8 structure.

Continuing with the previous example, set up the direction of the spotlight by
pointing it up and normalizing the vector and storing it in the D3DLIGHT8 structure:

D3DXVECTOR3 Dir = D3DXVECTOR3(0.0f, 500.0f, 0.0f);
D3DXVec3Normalize((D3DXVECTOR3*)&Spotlight.Direction, &Dir);

Using Directional Lights
In terms of processing, directional lights are the fastest type of light that you can use.
They illuminate every polygon that faces them. To ready a directional light for use,
you just set the direction and color component fields in the D3DLIGHT8 structure.

222 6. Drawing with DirectX Graphics

CAUTION
A light’s directional vector must
contain at least one value that is
not 0. In other words, you cannot
specify a direction of X=0, Y=0, Z=0.

If you’re wondering why a position vector isn’t used, the answer is logical. Think of a
directional light as an infinitely large river flowing in one direction. Regardless of the
position of objects in the river, the flow of the water remains the same; it’s the direc-
tion of the flow that makes a difference. Using this analogy with lighting, the water
represents the light’s rays, and the direction that the water flows represents the angle
of the light. Any object in the world, regardless of its position, receives light.

Recalling the techniques for the previous two types of light, take a look at this
example, which sets up a yellowish light that is cast down on your scene:

D3DLIGHT8 DirLight;

// Clear out the light data
ZeroMemory(&DirLight, sizeof(D3DLIGHT8));

// Set the diffuse and ambient colors to yellow
DirLight.Diffuse.r = DirLight.Ambient.r = 1.0f;
DirLight.Diffuse.g = DirLight.Ambient.g = 1.0f;
DirLight.Diffuse.b = DirLight.Ambient.b = 0.0f;

D3DXVECTOR3 Dir = D3DXVECTOR3(0.0f, 500.0f, 0.0f);
D3DXVec3Normalize((D3DXVECTOR3*)&Dirlight.Direction, &Dir);

Ambient Light
Ambient lighting is the only type of light that Direct3D handles differently. Direct3D
applies the ambient light to all polygons without regard to their angles or to their
light sources, so no shading occurs. Ambient light is a constant level of light, and like
the other types of light (point, spot, and directional), you can color it as you like.

You set the ambient light level by setting the render state D3DRS_AMBIENT and passing
the D3DCOLOR (using the D3DCOLOR_COLORVALUE macro, specifying the red, green, and
blue levels to use in a range from 0.0 to 1.0) value that you want to use:

g_pD3DDevice->SetRenderState(D3DRS_AMBIENT, \
D3DCOLOR_COLORVALUE(0.0f, Red, Green, Blue));

Setting the Light
After you set up the D3DLIGHT8 structure, you pass it to Direct3D using the
IDirect3DDevice8::SetLight function:

HRESULT IDirect3DDevice8::SetLight(

223Lighting

DWORD Index, // Index of light to set
CONST D3DLIGHT8 *pLight); // D3DLIGHT8 structure to use

You can see that pLight passes the D3DLIGHT8 structure, but the Index field is some-
thing different. Direct3D allows you to set multiple lights in a scene, so Index is the
zero-based index of the light you want to set. For example, if you are using four
lights in a scene, index 0 is the first light, index 1 is the second, index 2 is the
third, and index 3 is the fourth and last.

There doesn’t seem to be a limit to the number of lights that you can use in a
scene with Direct3D 8, but I recommend keeping the number of lights to four or
less. Each light that you add to the scene increases the complexity and the time
required for rendering.

Using Normals
In order for Direct3D to properly illuminate polygon faces from the lights that you
provide, you must first provide each vertex in the polygon with a normal. A normal
is a 3-D vector that defines the direction in which an object (such as a vertex or
polygon) that a vector is attached to is facing. You generally use normals in a com-
plex calculation that determines how much illumination the object receives from
any given light.

If you take a close look at a polygon face (similar to the one in Figure 6.19), you’ll
see that the three vertices have a direction, which is the normal. When light hits
these vertices, it bounces off at an angle based on the normals. Using normals
ensures that all polygon faces are illuminated correctly and shaded according to
their angle relative to the viewer and the lights.

224 6. Drawing with DirectX Graphics

Vertex Normals

Figure 6.19

Each vertex has a normal that points in a
particular direction.You use the angle of the
normal to determine how light bounces off the
polygon’s face and how to perform shading
calculations.

Adding a normal to your custom vertex information is as easy as providing texture
information. You just insert the normal as a D3DVECTOR3 type and redefine the cus-
tom flexible vertex format (including D3DFVF_NORMAL), as shown here:

typedef struct {
D3DVECTOR3 Position; // Vector coordinates
D3DVECTOR3 Normal; // Normal
D3DCOLOR Color; // Color

} sVertex;
#define VERTEXFMT (D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_NORMAL)

You calculate a normal the same way that you created a directional vector when work-
ing with lights, in the earlier section “Using Spotlights.” When you begin to deal with
3-D models, the task of calculating normals is taken off your hands—because the 3-D
modeling programs used to generate the models typically calculate the normals.

The following function (borrowed from the DirectX SDK examples) generates
a cylinder and gives each vertex a normal that points away from the middle of the
cylinder (see also Figure 6.20):

// g_pD3DDevice = pre-initialized 3-D device object
IDirect3DVertexBuffer8 *GenerateCylinder()
{

IDirect3DVertexBuffer8 *pD3DVertexBuffer;
sVertex *pVertex;
DWORD i;
FLOAT theta;

// Create the vertex buffer
if(SUCCEEDED(g_pD3DDevice->CreateVertexBuffer(\

50 * 2 * sizeof(sVertex), 0, VERTEXFMT, \
D3DPOOL_DEFAULT, &pD3DVertexBuffer))) {

// Fill the vertex buffer with the cylinder information
if(SUCCEEDED(pD3DVertexBuffer->Lock(0, 0, \

(BYTE**)&pVertex, 0))) {
for(i=0; i<50; i++) {

theta = (2 * D3DX_PI * i) / (50 - 1);
pVertex[2*i+0].Position = D3DXVECTOR3(sinf(theta), \

-1.0f, cosf(theta));

225Lighting

pVertex[2*i+0].Normal = D3DXVECTOR3(sinf(theta), \
0.0f, cosf(theta));

pVertex[2*i+1].Position = D3DXVECTOR3(sinf(theta), \
1.0f, cosf(theta));

pVertex[2*i+1].Normal = D3DXVECTOR3(sinf(theta), \
0.0f, cosf(theta));

}
pD3DVertexBuffer->Unlock();

// Return a pointer to new vertex buffer
return pD3DVertexBuffer;

}
}

// Return NULL on error
return NULL;

}

226 6. Drawing with DirectX Graphics

Figure 6.20

The GenerateCylinder function creates a
cylinder object with normals that point away from
the center.

Let There Be Light!
Now that you’ve decided on the type of light to use and have set up its respective
structure, it is time to activate the lighting pipeline and turn on the light(s). To
activate the lighting pipeline, you set a single rendering state, D3DRS_LIGHTING to TRUE:

// g_pD3DDevice = pre-initializing device object
_pD3DDevice->SetRenderState(D3DRS_LIGHTING, TRUE);

To deactivate the lighting pipeline, use the following code:

// g_pD3DDevice = pre-initializing device object
g_pD3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE);

After activating the lighting pipeline, you turn the individual lights on and off using
the IDirect3DDevice8::LightEnable function. Here’s the prototype for LightEnable:

IDirect3DDevice8::LightEnable(
DWORD LightIndex, // Light index, 0 - max # lights
BOOL bEnable); // TRUE to turn on, FALSE to turn off

If you’ve already set up a point light as LightIndex 0, you can turn it on and off with
the following code:

// g_pD3DDevice = pre-initializing device object

// Turn light on
g_pD3DDevice->LightEnable(0, TRUE);

// Turn light off
g_pD3DDevice->LightEnable(0, FALSE);

That’s it for using Direct3D’s lighting system! One last word of warning before
moving on: Direct3D does a decent job of using lights in the graphics system, but if
a user’s video card does not support lighting, Direct3D has to emulate the lighting
effects. While not a bad thing, emulation can slow down rendering if lighting is
used. Don’t let the threat of light emulation stop you, however, as using light
effects in your game enhances your graphics tremendously.

Using Fonts
One drawback to DirectX 8 is its lack of font support. Older versions of DirectX are
able to harness Window’s font-drawing functions. With version 8, you must manually

227Using Fonts

draw a font onto a texture surface and draw each font letter as a small texture-
mapped polygon.

Managing a texture that contains a font is a bit much to do just to draw text, but
thanks to D3DX, you have access to a special object, ID3DXFont, that handles those
texture map fonts for you. The ID3DXFont object contains only one useable function,
ID3DXFont::DrawText, which you use to draw the fonts. Before you go any further,
however, take a look at how to create a font.

Creating the Font
In order to use the ID3DXFont object, you must first initialize it with the
D3DXCreateFontIndirect function:

HRESULT D3DXCreateFontIndirect(
IDirect3DDevice8 *pDevice, // Device to associate font to
CONST LOGFONT* pLogFont, // Structure defining font
ID3DXFont **ppFont); // Pointer to created font object

You supply this function with the pre-initialized device object and pointer to the
ID3DXFont object that you are initializing, but what do you do with the pLogFont para-
meter? As you can see, the pLogFont points to a LOGFONT (which stands for logical font)
structure, which looks like this:

typedef struct tagLOGFONT {
LONG lfHeight;
LONG lfWidth;
LONG lfEscapement;
LONG lfOrientation;
LONG lfWeight;
BYTE lfItalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
TCHAR lfFaceName[LF_FACESIZE];

} LOGFONT;

228 6. Drawing with DirectX Graphics

TEAMFL
Y

Team-Fly®

Wow, that’s a lot of information! You can safely skip setting most of the fields in the
LOGFONT structure shown and stick with the default values that I’ve shown. The only
ones that you’re bound to work with are lfHeight, lfWeight, lfItalic, lfUnderline, and
lfFaceName.

Starting with the easiest ones, you can set lfItalic and lfUnderline to 0 or 1 to set or
clear the use of italics and underlines, respectively. With lfWeight, you can set the
level of boldness to use when drawing; you can set it to 0 for normal or 700 for
bold. lfHeight represents the point size of the font. The lfHeight value is a bit tricky
because it doesn’t take a direct size per se. Instead, you must give it a negative value
that represents the approximate height in pixels. For example, for a font that is 16
pixels in height, you use a value of -16.

Last is lfFaceName, which is the name of the font that you want to use. It might be
Times New Roman, Courier New, or any other font installed on your system. You
just copy the name into the lfFaceName field.

Here’s an example that uses the Times New Roman font with a point size of 16:

// g_pD3DDevice = pre-initialized device object
// hWnd = handle to parent window
ID3DXFont *pD3DFont;
LOGFONT lf;

// Clear out the font structure
ZeroMemory(&lf, sizeof(LOGFONT));

// Set the font name and height
strcpy(lf.lfFaceName, “Times New Roman”);
lfHeight = -16;

// Create the font object
if(FAILED(D3DXCreateFontIndirect(g_pD3DDevice, \

&lf, &pD3DFont))) {
// Error occurred

}

229Using Fonts

CAUTION
Because ID3DXFont is a COM object, always be
sure to release it when you are done with it.

Drawing with Fonts
Once your ID3DXFont object is initialized, you can begin drawing text using the
ID3DXFont::DrawText function:HRESULT ID3DXFont::DrawText(

LPCSTR pString, // String to print
INT Count, // -1
LPRECT pRect, // Area to draw text in
DWORD Format, // 0
D3DCOLOR Color); // Color to use to draw with

The only thing to watch out for when using the DrawText function is the pRect parame-
ter, which is a pointer to a RECT structure that contains the area in which to draw the
text. You can set this area to the size of the screen, or if you want to contain the text
within a specific area, use those screen coordinates. The RECT structure looks like this:

typedef struct tagRECT {
LONG left; // Left coordinate
LONG top; // Top coordinate
LONG right; // Right coordinate
LONG bottom; // Bottom coordinate

} RECT;

Last in the DrawText function is the Color parameter, which determines the color to
use for drawing the text. Use the handy D3DCOLOR_RGBA or D3DCOLOR_COLORVALUE macro
to define the color for drawing the text.

The following example assumes that you’ve initialized the font object and are ready
to draw text:

// g_pD3DDevice = pre-initialized device object
// pD3DXFont = pre-initialized font object

// Setup the RECT structure with drawable area
RECT rect = { 0, 0, 200, 100 };

// Begin the drawing code block
if(SUCCEEDED(g_pD3DDevice->BeginScene())) {

// Draw some text
pD3DXFont->DrawText(“I can draw with text!”, -1, \

&rect, 0, D3DCOLOR_RGBA(255,255,255,255);

// End the scene
g_pD3DDevice->EndScene();

}

230 6. Drawing with DirectX Graphics

Billboards
Billboarding is a cool technique that allows 2-D objects to appear in three dimen-
sions. For example, a complex object such as a tree can be rendered from a side
view in a modeling program and then drawn as a texture on a rectangular polygon.
This rectangular polygon always faces the viewpoint, so regardless of the angle from
which the polygon is viewed, it will appear as though the tree texture is viewed
from the side at which it was rendered (as illustrated in Figure 6.21).

Many programmers use billboarding for creating games because they can easily
implement it. A perfect example of billboarding use can be seen in Paper Mario
for the N64. All the characters are drawn in 2-D and then texture-mapped onto
polygons. The game adds a twist by allowing you to see the billboard polygons as
they turn around, thereby giving the graphics a rather comical style.

Billboarding works by using a world matrix that aligns the polygons with the view.
Because you already know the angle of the view (or can obtain a view transformation
matrix), you only need to construct a matrix using the opposite view angles. You
don’t have to alter the position of the polygon because only the angle concerns you.

The first way to construct the billboard world matrix (which you can apply to a
mesh or polygons) is to use the opposite values of the view angles that you already
know. For example, assume that a vertex buffer is already set up with the vertices.

231Billboards

Other Polygons

Billboard

Viewpoint

Billboard

Other Polygons

Scene from Above

Viewpoint

Figure 6.21

Billboarding ensures that
polygons face the
viewpoint regardless
of the position or angle
from which the polygon
is viewed.

The viewpoint angles are stored as XRot, YRot, and ZRot, and the billboard object’s
coordinates are XCoord, YCoord, ZCoord. Here’s how to set up the matrix to use for
rendering the billboard vertex buffer:

// g_pD3DDevice = pre-initialized device object
D3DXMATRIX matBillboard;
D3DXMATRIX matBBXRot, matBBYRot, matBBZRot;
D3DXMATRIX matBBTrans;

// Construct the billboard matrix

// Use the opposite angles of the viewpoint to align to view
D3DXMatrixRotationX(&matBBXRot, -XRot);
D3DXMatrixRotationY(&matBBYRot, -YRot);
D3DXMatrixRotationZ(&matBBZRot, -ZRot);

// Use the billboard object coordinates to position
D3DXMatrixTranslation(&matBBTrans, XCoord, YCoord, ZCoord);

// Combine the matrices
D3DXMatrixIdentity(&matBillboard);
D3DXMatrixMultiply(&matBillboard, &matBillboard, &matBBTrans);
D3DXMatrixMultiply(&matBillboard, &matBillboard, &matBBZRot);
D3DXMatrixMultiply(&matBillboard, &matBillboard, &matBBYRot);
D3DXMatrixMultiply(&matBillboard, &matBillboard, &matBBXRot);

// Set the matrix
g_pD3DDevice->SetTransform(D3DTS_WORLD);

// Continue to draw the vertex buffer, which is aligned
// to face the viewport, but at the proper coordinates.

After the last line of code, the world transformation matrix is set up and ready to
be used to render the billboard object.

The second way to create a billboard world matrix is to grab the current view
matrix from Direct3D and transpose it (inverse it). This transposed matrix will
align everything properly to face the view. You just apply the mesh’s translation
matrix to position the mesh properly in your world. Here’s how to construct the
billboard matrix from the view matrix and use it to draw the billboard object:

// g_pD3DDevice = pre-initialized device object

232 6. Drawing with DirectX Graphics

D3DXMATRIX matTrans, matWorld, matTransposed;

// Get the current Direct3D view matrix
g_pD3DDevice->GetTransform(D3DTS_VIEW, &matTranspose);

// Create the mesh’s translation matrix
D3DXMatrixTranslation(&matTrans, XCoord, YCoord, ZCoord);

// Multiply them together to form world transformation matrix
D3DXMatrixMultiply(&matWorld, &matTranspose, &matTrans);

// Set the world transformation matrix
g_pD3DDevice->SetTransform(D3DTS_WORLD, &matWorld);

// Continue to draw the vertex buffer, which is aligned
// to face the viewport, but at the proper coordinates.

Billboarding is a powerful technique that is actually the basis to some other special
effects, such as particles.

Particles
Huge explosions, smoke trails, and even those tiny sparkles of light that trail off the
tail of a hurdling magic missile are all the work of a special effect known as particles.
Particles follow the same principles as billboarding and are just as easy to use.

With particles, you set up polygons that are texture-mapped with smoke, fire,
sparks, or whatever graphics you want to use. At the appropriate time, you enable
alpha blending (optional) and draw the particles so that they face the viewpoint
(using billboarding). The result is a collage of blended objects that you can use for
some awesome effects.

The cool thing about particles is that they can be virtually any size, because you can
create a scaling matrix to combine with the world transformation matrix of the par-
ticle polygon. This means that you need to use only a single polygon to draw all
your particles, except when the particle texture varies, in which case the number of
polygons should match the number of textures.

It’s time to create a particle image. You might start with a circle shape that is solid
(opaque) in the center and that gradually becomes transparent on the way to the
outside edge (as illustrated in Figure 6.22).

233Particles

Now, set up four vertices that use two polygons (using a triangle strip for optimiza-
tion). The vertex’s coordinates represent the default size of a particle that you’ll
scale to size later on. Each particle can have unique properties, including its own
color (by using materials).

You then use this structure, combined with a single vertex buffer containing two
polygons (creating a square), to render the polygons to the 3-D device. Before being
drawn, each particle is oriented by its own world matrix (using billboarding, of
course). You combine the world transformation matrix with each particle’s scale
matrix transformation. Then you set a material (using the IDirect3DDevice8::SetMaterial
function) to change the color of the particle, and finally you draw the particle.

Here’s an example that creates a particle vertex buffer and draws it to a device:

// g_pD3DDevice = pre-initialized device object

// define a custom vertex structure and descriptor
typedef struct {

FLOAT x, y, z; // Local 3-D coordinates
FLOAT u, v; // Texture coordinates

} sVertex;
#define VertexFVF (D3DFVF_XYZ | D3DFVF_TEX1)

// Particle vertex buffer and texture
IDirect3DVertexBuffer8 *g_pParticleVB = NULL;
IDirect3DTexture8 *g_pParticleTexture = NULL;

234 6. Drawing with DirectX Graphics

Figure 6.22

You generally draw a particle using a circular image,
as shown here.When you use materials, the image is
colored when drawn.

BOOL SetupParticle()
{

BYTE *Ptr;
sVertex Verts[4] = {

{ -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, 0.0f, 1.0f, 0.0f },
{ -1.0f, -1.0f, 0.0f, 0.0f, 1.0f },
{ 1.0f, -1.0f, 0.0f, 1.0f, 1.0f }

};

// Create particle vertex buffer and stuff in data
if(FAILED(g_pD3DDevice->CreateVertexBuffer(\

sizeof(sVertex)*4, 0, VertexFVF, \
D3DPOOL_DEFAULT, &g_pParticleVB)))

return FALSE;
if(FAILED(g_pParticleVB->Lock(0,0, (BYTE**)&Ptr, 0)))

return FALSE;
memcpy(Ptr, Verts, sizeof(Verts));
g_pParticleVB->Unlock();

// Get particle texture
D3DXCreateTextureFromFile(g_pD3DDevice, “particle.bmp”, \

&g_pParticleTexture);

return TRUE;
}

BOOL DrawParticle(float x, float y, float z, float scale)
{

D3DXMATRIX matWorld, matView, matTransposed;
D3DXMATRIX matTrans, matScale;
D3DMATERIAL8 d3dm;

// Set render states (alpha blending and attributes)
g_pD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
g_pD3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
g_pD3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);

// Turn on ambient lighting
g_pD3DDevice->SetRenderState(D3DRS_AMBIENT, 0xffffffff);

// Set stream source to particle vertex buffer

235Particles

g_pD3DDevice->SetStreamSource(0, g_pParticleVB, sizeof(sVertex));

// Set vertex shader to particle type
g_pD3DDevice->SetVertexShader(VertexFVF);

// Set texture
g_pD3DDevice->SetTexture(0, g_pParticleTexture);

// Set the particle color
ZeroMemory(&d3dm, sizeof(D3DMATERIAL8));
d3dm.Diffuse.r = d3dm.Ambient.r = 1.0f;
d3dm.Diffuse.g = d3dm.Ambient.g = 1.0f;
d3dm.Diffuse.b = d3dm.Ambient.b = 0.0f;
d3dm.Diffuse.a = d3dm.Ambient.a = 1.0f;
g_pD3DDevice->SetMaterial(&d3dm);

// Build scaling matrix
D3DXMatrixScaling(&matScale, scale, scale, scale);

// Build translation matrix
D3DXMatrixTranslation(&matTrans, x, y, z);

// Build the billboard matrix
g_pD3DDevice->GetTransform(D3DTS_VIEW, &matView);
D3DXMatrixTranspose(&matTransposed, &matView);

// Combine matrices to form world translation matrix
D3DXMatrixMultiply(&matWorld, &matScale, &matTransposed);
D3DXMatrixMultiply(&matWorld, &matWorld, &matTrans);

// Set world transformation
g_pD3DDevice->SetTransform(D3DTS_WORLD, &matWorld);

// Draw particle
g_pD3DDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);

// Turn off alpha blending
g_pD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);

return TRUE;
}

236 6. Drawing with DirectX Graphics

These two functions demonstrate setting up a vertex buffer and texture to use for
the particle and drawing the actual particle. The code for a full particle example
is fairly lengthy. I just wanted to give you a glimpse at how to handle a single parti-
cle. For a complete example application that demonstrates using particles to a
higher degree, check out the Particle project on this book’s CD-ROM (look for
\BookCode\Chap06\Particle).

Depth Sorting
and Z-Buffering
It quickly becomes apparent that while you are rendering polygon mesh objects to
the scene, the objects farther from the viewer need to be obscured by those objects
that are closer. This is call depth sorting, of which there are two common methods.

The first method is called the painter’s algorithm. This method breaks objects apart
by their polygons and sorts these polygons from back to front, thus drawing them
in that order (as illustrated in Figure 6.23). Drawing in this manner ensures that
a polygon is always drawn in front of a polygon behind it.

237Depth Sorting and Z-Buffering

5

15

23

10

12

Pixel

Z-value

Viewpoint

Figure 6.23

When one pixel overlaps another, only the pixel with a lower
Z-value is drawn. Here, only three pixels are drawn, because the
two farthest pixels are overdrawn with the closer pixels.

The second way of depth sorting, and one that graphics hardware devices use the
most, is called the Z-Buffer method. This method works on a per-pixel basis, with
each pixel having a Z value (the distance from the viewer).

As each pixel is being written, the renderer first checks to see whether a pixel with a
smaller Z-value is already there. If not, the pixel is drawn; if so, the pixel is skipped.
You can see this concept illustrated in Figure 6.23.

Most accelerated 3-D graphics cards have a built-in Z-Buffer, so that is the depth-sorting
method of choice. The easiest way to use a Z-Buffer in your application is to initialize
it while you are creating the device object and setting the presentation methods.

You do this by first selecting the precision of the buffer (16, 24, or 32 bits) using
the appropriate D3DFORMAT setting. You will find quite a few settings to use for the
Z-buffer, but I’ll concentrate on using D3DFMT_D16 (16 bits) and D3DFMT_D32 (32 bits).

You use the different precisions for two reasons—for storage and for quality. In
terms of storage, a 32-bit Z-Buffer takes up considerably more space than a 16-bit
Z-Buffer, so try to stick with a 16-bit Z-Buffer if possible.

In terms of quality, using a 16-bit Z-Buffer with objects that are very close together
sometimes causes the wrong pixel to be drawn, because there is less precision.
Going for a 32-bit Z-Buffer solves the precision issues, but at the cost of the Z-Buffer
using twice the memory. You don’t need to worry though; in the fast-action gaming
world, speed and optimization are more important, so stay with a 16-bit Z-Buffer.

Going back to the presentation setup, you can add the following two lines to
enable Z-Buffering in your application:

d3dp.EnableAutoDepthStencil = TRUE;
d3dp.AutoDepthStencilFormat = D3DFMT_D16; // or D3DFMT_D32

Now you can proceed with your initialization routines. When you’re ready to ren-
der using the Z-Buffer (it doesn’t kick on automatically), you have to set the appro-
priate render state:

// g_pD3DDevice = pre-initialized device object

// To turn on Z-Buffer, use:
g_pD3DDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE);

// To turn off Z-Buffer, use:
g_pD3DDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);

238 6. Drawing with DirectX Graphics

TEAMFL
Y

Team-Fly®

If you have already tired the new
Z-Buffer capabilities, you might
have noticed that something is awry.
For example, the screen is not
updated after a few frames, or
objects too far away are clipped.
That’s because you must clear the Z-
Buffer before every frame and you
need to readjust your projection
matrix to allow for distance settings.

To clear the Z-Buffer before each
frame, change your
IDirect3DDevce8::Clear call as follows:

g_pD3DDevice->Clear(0, NULL, \
D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, \
D3DCOLOR_RGBA(0.0f, 0.0f, 0.0f, 0.0f) 1.0f, 0);

Notice the addition of the D3DCLEAR_ZBUFFER flag in the preceding code. This flag
tells the clear function that it has to clear the Z-Buffer to the supplied value
(the fifth argument, which is 1.0f). This value ranges from 0.0 (minimum Z-Buffer
depth) to 1.0 (maximum Z-Buffer depth).

Using the value of 1.0 tells the clear function to set all depth values to their maxi-
mum. If you want to clear the Z-Buffer to half the maximum range, use 0.5. The
only remaining question is what is the maximum range?

The Z-Buffer measures distance from the viewpoint, so as the rendering takes
place, objects farther than the maximum viewing distance (and those objects that
are too close) are not drawn. During your call to set up the projection matrix
(using D3DX), set the minimum and maximum viewing ranges, such as in the
following code bit:

// Set a min distance of 1.0 and a max of 1000.0
D3DXMatrixPerspectiveFovLH(&MatrixProj, D3DX_PI/4, 1.0f, 1.0f, 1000.0f);

The last two values are the ones that you want to adjust—the minimum range and
the maximum range, respectively. Experiment with the values to see which values
work best for you; just remember that the greater the distance between the mini-
mum and maximum ranges, the poorer the quality of the Z-Buffer. Typical values
for the distances are 1.0 for the minimum range and 1000.0, 2000.0, or 5000.0 for the
maximum range.

239Depth Sorting and Z-Buffering

NOTE
Although it might seem logical to leave
the Z-Buffer on at all times, you can gain
some speed by shutting it off when it’s
not needed.When you draw images such
as a menu onscreen, you’ll need total
control of what is drawn where, so feel
free to turn the Z-Buffer on and off as
you see fit.

Working with Viewports
At times, you’ll want to render to smaller portions of the display, somewhat like
rendering to a smaller window with the main application window. The main view-
port typically covers the entire display, but when you need to, you can change the
size of the viewport to cover small areas of the screen.

To set a viewport, you first fill in a D3DVIEWPORT8 structure with the coordinates and
dimensions of the new viewport you want to use:

typedef struct _D3DVIEWPORT8 {
DWORD X; // left X coordinate of viewport
DWORD Y; // top Y coordinate of viewport
DWORD Width; // Width of viewport
DWORD Height; // Height of viewport
float MinZ; // 0.0
float MaxZ; // 1.0

} D3DVIEWPORT8;

After you set the structure with the appropriate data, you tell Direct3D to use it
with a call to ID3DDevice8::SetViewport, as in the following code bit:

// pD3DDevice = pre-initialized 3-D device

// Create a viewport
D3DVIEWPORT8 d3dvp = { 0,0, 100, 100, 0.0f, 1.0f };

// Set the new viewport
pD3DDevice->SetViewport(&d3dvp);

From this point on (after calling SetViewport), all graphics are rendered within the
viewport window you defined. After you finish with the new viewport, you restore
the old viewport. To grab the old viewport settings and later restore them, you call
ID3DDevice8::GetViewport, as in the following code:

// pD3DDevice = pre-initialized 3-D device
D3DVIEWPORT8 OldViewport;

// Get old viewport settings
pD3DDevice->GetDevice(&OldViewport); // get old viewport

// .. change viewport settings as needed

// Restore old viewport
pD3DDevice->SetDevice(&OldViewport);

240 6. Drawing with DirectX Graphics

Working with Meshes
At its lowest level, Direct3D doesn’t work with meshes, only with polygons. D3DX
adds to the functionality of the Direct3D system by giving you a series of objects
that handle the containment and rendering of such meshes.

At the lowest level, meshes are constructed from possibly thousands of vertices and
polygons, all requiring complex manipulation. Fortunately, Direct3D comes com-
plete with a native 3-D file format used to store the information that describes a 3-
D model, including (but not limited to) vertex, face, normal, and texture data.
This file format is referred to as .X.

The .X Files
An .X file is Microsoft’s proprietary 3-D model storage format (sorry, we’re not
going to be visited by Mulder and Scully). It is template-driven and completely
expandable, which means that you can use it for all your 3-D file storage.

Although I could go on about the intricacies of the .X file format at this point, it
would overload this chapter with information that only the most hard-core program-
mers and graphics artists would ever use. Let’s face it—trying to manually edit a
mesh constructed from thousands of vertices is ludicrous. Why would you want that
daunting task when you could easily use a program like trueSpace or MilkShape 3-D
to design your meshes in a user-friendly environment? That’s what I thought!

Instead, let me give you a quick overview of the way .X files are formatted; then you
can move on to the good stuff—using models in your games!

The .X File Format
An .X file, identified by its .X file extension, is highly versatile. It can be text-based
in order to make editing easier or binary-based in order to make the file smaller
and easier to protect from prying eyes. The entire format of .X is based on tem-
plates, which are similar to C structures.

Templates Galore
You use templates to contain an array of data. Generally, the templates in an .X file
are used to store information about a mesh (or a number of meshes). For example,
there are templates that define mesh vertices, polygons, texture maps, and nor-
mals. Most of these templates are wrapped up in other meshes, forming a template

241Working with Meshes

hierarchy. For example, a template that defines vertex normals can be embedded
with a mesh definition template. In turn, that mesh definition template can be
embedded within a frame of reference template (a special template that you’ll read
more about in a moment).

You can instance templates in much the same way that you instance a structure in
C/C++. Known as template referencing, this capability enables you to define a template
in an .X file and reuse that template data as many times as you want without having
to redefine the template. Imagine that you define a single mesh that you want to use
multiple times in the same .X file. Rather than define the mesh again and again
(wasting considerable memory), you can define the mesh once and use template
referencing to refer back to the template whenever the mesh data is needed.

Most templates are transparent; you’ll never have to deal with them directly when
loading an .X file. The only exceptions are those of mesh templates and frame
templates.

Using a Frame Hierarchy
You use a frame template, also known as a frame of reference template, to group one or
more templates (usually mesh templates) together for easier handling. You can also
create a single mesh and use multiple frames to contain mesh references, which
enables you to use a single mesh multiple times.

For example, say that you have a mesh of a billiard ball. Because there are 15 balls
to a set, you create 15 frames, each containing a reference to the original ball mesh.
From then on, you can orient each frame (using a frame transformation matrix tem-
plate) around the pool table, causing each mesh instance to move with the frame.
In essence, you have created 15 billiard ball mesh instances from a single mesh.

In addition to using frames to create multiple instances of a single mesh, you can
also use them to create a frame hierarchy. A frame hierarchy defines the structure of
a scene or grouping of meshes. Whenever a frame moves, all frames embedded
within it move as well.

For example, think of a human skeleton as a set of frames (as illustrated in Figure
6.24). At the top of the hierarchy is the chest. From the chest down, you can attach
each bone in line with the previous bone—that is, chest to hip, hip to leg, and leg
to foot. Going in reverse (up), you have chest to arm and arm to hand. This order-
ing goes on until all the bones are attached in one way or another leading back to
the chest.

242 6. Drawing with DirectX Graphics

At this point, you have a root frame, which is the chest. The root has no parent
frames, meaning that it is at the top of the hierarchy and does not belong to
another frame. Frames that are connected to other frames are called child frames
(also referred to as nodes). For example, the upper arm is the parent of the lower
arm and the hand is the child of the lower arm. Going up the hierarchy, the hand,
lower arm, and upper arm are all children of the chest.

When a frame moves, all of its child frames move as well. If you move your upper arm,
your lower arm and hand will move as well. On the other hand (no pun intended), if
you move your hand, metaphorically speaking, only your hand will change position,
because it has no child frames (the lower arm is the hand’s parent frame).

Each frame has its own orientation, which in .X file terms is a frame transformation.
You apply this transformation on top of the transformation that is applied to the
higher-level template in the hierarchy. Each transformation is translated down, from
the top of the hierarchy all the way to each child frame. For example, if your upper
arm rotates, that rotation transformation works its way down to the lower arm and
hand (with each of the frames combining with their own transformations).

The frame hierarchy is essential to using advanced mesh and animation techniques.
In fact, they are required in order to use such things as skinned meshes (see the sec-
tion “Meshes with D3DX,” later in this chapter, for more on skinned meshes).

243Working with Meshes

Chest
Frame
(Root)

Head
Frame

Upper Arm
Frame

Lower Arm
Frame

Hand
Frame

Hip
Frame

Upper Leg
Frame

Lower Leg
Frame

Foot
Frame

Frame Hierarchy

Root - Chest

�� Head

�� Upper Arm

��� Lower Arm

���� Hand

�� Upper Leg

��� Lower Leg

���� Foot

Figure 6.24

Your skeleton is the perfect
example of a frame hierarchy.
Each bone in the hierarchy leads
back to the chest.

Another reason for using a frame hierarchy is to isolate portions of a scene. That
way, you can modify a small section of a scene by moving specific frames, leaving
the remainder of the scene alone. For example, if you have a frame that represents
your house and another one that represents a door, you can alter the door’s frame
without disturbing the house’s frame.

Creating .X Meshes
You can create your own .X files a number of ways. Microsoft has written a few
exporters that you can use with modeling programs such as 3D Studio Max or
Maya. If you can’t afford those awesome modeling programs, you can create mod-
els by hand (by manually entering each of the vertices’ and polygons’ data into a
text .X file) or use a low-cost alternative program, such as MilkShape 3-D, which is
a low-polygon modeler developed by Mete Ciragan.

MilkShape 3-D started as a modeling program for creating models for the game
Half-Life, but it grew into something much larger. MilkShape 3-D now supports
multiple model formats (mainly for games), but it still remains a useful program.
You know this is getting somewhere, so I’ll go ahead and let the cat out of the
bag—MilkShape 3-D has an .X file exporter, written by your favorite author
(that’s right, me!) that you can use. Check out Appendix E, “What’s on the CD,”
for details on installing the exporter, or go to the official MilkShape 3-D Web site
(at http://www.swissquake.ch/chumbalum-soft) to download it.

Except for using third-party programs to create an .X file for you, your only option
is to do so by hand. However, because creating models yourself is not an optimal
solution, I don’t cover that topic in this book.

Parsing .X Files
Later in this chapter and throughout this book, it will become necessary to parse
an .X file manually in order to pull out vital mesh information. To parse an .X file,
you use the IDirectXFile family of objects, which has the job of opening an .X file
and enumerating through the file’s templates, thereby giving them to you in an
easy-to-access manner.

Parsing an .X file is really not as hard as it might seem at first. The trick is to scan
the entire template hierarchy, looking for the templates that you want to use—
typically, templates for meshes and frames. The hardest part is remembering that
templates can be embedded within other templates, so instead of templates, you
might encounter template references (which need to be resolved in order to access
the original template data). Figure 6.25 illustrates this organization of templates.

244 6. Drawing with DirectX Graphics

The following code opens and parses the templates contained within an .X file.
Remember that these functions are essential for later use in this chapter (and the
rest of the book), so don’t worry too much about using them at this point.

BOOL ParseXFile(char *Filename)
{

IDirectXFile *pDXFile = NULL;
IDirectXFileEnumObject *pDXEnum = NULL;
IDirectXFileData *pDXData = NULL;

// Create the .X file object
if(FAILED(DirectXFileCreate(&pDXFile)))

return FALSE;

// Register the templates in use
// Use the standard retained mode templates from Direct3D
if(FAILED(pDXFile->RegisterTemplates((LPVOID) \

D3DRM_XTEMPLATES, D3DRM_XTEMPLATE_BYTES))) {
pDXFile->Release();
return FALSE;

}

// Create an enumeration object
if(FAILED(pDXFile->CreateEnumObject((LPVOID)Filename, \

DXFILELOAD_FROMFILE, &pDXEnum))) {
pDXFile->Release();
return FALSE;

}

// Enumerate all top-level templates

245Working with Meshes

Frame Template

Material Template

Mesh Template

Transformation Matrix Template

Frame Template

Figure 6.25

An .X file enables you to embed templates within
other templates, thus creating a template hierarchy.

NOTE
To use the IDirectXFile components,
you have to include dxfile.h,
rmxfguid.h, and rmxftmpl.h.Also,
you must link the dxguid.lib and
d3dxof.lib libraries to your project.

while(SUCCEEDED(pDXEnum->GetNextDataObject(&pDXData))) {
ParseXFileData(pDXData);
ReleaseCOM(pDXData);

}

// Release objects
ReleaseCOM(pDXEnum);
ReleaseCOM(pDXFile);

// Return a success
return TRUE;

}

void ParseXFileData(IDirectXFileData *pData)
{

IDirectXFileObject *pSubObj = NULL;
IDirectXFileData *pSubData = NULL;
IDirectXFileDataReference *pDataRef = NULL;
const GUID *pType = NULL;
char *pName = NULL;
DWORD dwSize;
char *pBuffer;

// Get the template type
if(FAILED(pData->GetType(&pType)))

return;

// Get the template name (if any)
if(FAILED(pData->GetName(NULL, &dwSize)))

return;
if(dwSize) {

if((pName = new char[dwSize]) != NULL)
pData->GetName(pName, &dwSize);

}

// Give template a default name if none found
if(pName == NULL) {

if((pName = new char[9]) == NULL)
return;

strcpy(pName, “Template”);
}

246 6. Drawing with DirectX Graphics

// See what the template was and deal with it
// This is where you’ll jump in with your own code

// Scan for embedded templates
while(SUCCEEDED(pData->GetNextObject(&pSubObj))) {

// Process embedded references
if(SUCCEEDED(pSubObj->QueryInterface(\

IID_IDirectXFileDataReference, (void**)&pDataRef))) {
if(SUCCEEDED(pDataRef->Resolve(&pSubData))) {

ParseXFileData(pSubData);
ReleaseCOM(pSubData);

}
ReleaseCOM(pDataRef);

}

// Process non-referenced embedded templates
if(SUCCEEDED(pSubObj->QueryInterface(\

IID_IDirectXFileData, (void**)&pSubData))) {
ParseXFileData(pSubData);
ReleaseCOM(pSubData);

}
ReleaseCOM(pSubObj);

}

// Release name buffer
delete pName;

}

ParseXFile and ParseXFileData work together to parse every single template within an
.X file. The ParseXFile function opens the .X file and enumerates through it, look-
ing for the topmost templates in the hierarchy. As each template is found, it is
passed to the ParseXFileData.

The ParseXFileData function processes the template data. It starts by getting the tem-
plate type and the template instance name (if any). From there, you can process
the template data, and then let the function enumerate all child templates using
recursion. This process continues until all templates are processed.

You just call ParseXFile with the name of the .X file that you want processed, and
the two functions take care of the rest. You learn how to put these functions to
good use in section “Skinned Meshes,” later in this chapter.

247Working with Meshes

Meshes with D3DX
You, essentially, will deal with two types of meshes in Direct3D: the standard mesh
and the skinned mesh. The standard mesh is just that—standard. It has no bells or
whistles, except that it can use texture-mapping to enhance its appearance.

Skinned meshes are unique because they are deformable. That is, the mesh can dynami-
cally alter its shape during run-time. To prepare the mesh for deformation, you must
attach the vertices of the mesh to an imaginary set of bones inside your 3-D modeling
program. Anytime the bones move, the vertices attached to them move as well.

Before going into more detail about standard and skinned meshes, take a look at a
special object used by both meshes to store data—the ID3DXBuffer object.

The ID3DXBuffer Object
You use the ID3DXBuffer object to store and retrieve data buffers. D3DX uses the
ID3DXBuffer object to store information about meshes, such as material and texture-
map lists. You learn more about this data buffer object in action in the later section
“Standard Meshes.”

The ID3DXBuffer has only two functions. The first function is
ID3DXBuffer::GetBufferPointer, which you use to get a pointer to the data contained
within the object’s buffer. A call to the GetBufferPointer function returns a void
pointer that you can cast to any data type:

void *ID3DXBuffer::GetBufferPointer();

The second function is ID3DXBuffer::GetBufferSize, which returns the number of
bytes used to store the data:

DWORD ID3DXBuffer:GetBufferSize();

You create an ID3DXBuffer object for your own use with the D3DXCreateBuffer function:

HRESULT D3DXCreateBuffer(
DWORD NumBytes, // Size of buffer to create
ID3DXBuffer **ppvBuffer); // Buffer object to create

What good is a function prototype without an example to show it off—so here it is
(creating a buffer object 1,024 bytes in size and filling it with zeros):

ID3DXBuffer *pBuffer;

// Create the buffer
if(SUCCEEDED(D3DXCreateBuffer(1024, &pBuffer))) {

248 6. Drawing with DirectX Graphics

TEAMFL
Y

Team-Fly®

// Get the buffer pointer
char *pPtr = pBuffer->GetBufferPoint();

// Set the buffer to all 0’s
memset(pPtr, 0, pBuffer->GetBufferSize());

// Release the buffer
pBuffer->Release();

}

Standard Meshes
A standard mesh is a simple beast; it contains a single mesh definition. It is the
easiest mesh to work with, and so is a great place to start. Using D3DX makes deal-
ing with standard meshes even easier, because D3DX requires only a short series of
code to load and display a standard mesh. The standard mesh I work with in the
book is represented by an ID3DXMesh object, which has the responsibility of storing
and drawing a single mesh.

After instancing an ID3DXMesh object, use the following function to load the object
with a mesh from an .X file:

HRESULT D3DXLoadMeshFromX(
LPSTR pFilename, // Filename of .X file to load
DWORD Options, // D3DXMESH_SYSTEMMEM
IDirect3DDevice8 *pDevice, // initialized device object to use
ID3DXBuffer **ppAdjacency, // NULL
ID3DXBuffer **pMaterials, // Buffer containing material info
DWORD pNumMaterials, // # of materials in mesh
ID3DXMesh **ppMesh); // D3DX Mesh object to create

Most of the arguments in the D3DXLoadMeshFromX function are filled in by D3DX dur-
ing the execution of the D3DXLoadMeshFromX function. You supply the filename of the
.X file to load, an uninitialized ID3DXBuffer and ID3DXMesh object, and a DWORD variable
to store the number of materials used in the mesh.

If you attempt to load an .X file consisting of multiple meshes, the D3DXLoadMeshFromX
function will collapse them all into a single mesh. That’s perfectly okay for your
current purposes. Take a look at some working code that loads a single mesh:

// g_pD3DDevice = pre-initialized Direct3D device object
ID3DXBuffer *pD3DXMaterials;
DWORD g_dwNumMaterials;
ID3DXMesh *g_pD3DXMesh;

249Working with Meshes

if(FAILED(D3DXLoadMeshFromX(“mesh.x”, D3DXMESH_SYSTEMMEM, \
g_pD3DDevice, NULL, &pD3DXMaterials, &g_dwNumMaterials,

&g_pD3DXMesh))) {
// Error occurred

}

Following a successful load of your mesh, you query for the material and texture
map information using the following bit of code:

D3DXMATERIAL *pMaterials = NULL;
D3DMATERIAL8 *g_pMaterialList = NULL;
IDirect3DTexture8 **g_pTextureList;

// Get the pointer to the material list
pMaterials = (D3DXMATERIAL*)pD3DXMaterials->GetBufferPointer();
if(pMaterials != NULL) {

// Allocate some material structure to copy data into
g_pMaterialList = new D3DMATERIAL8[dwNumMaterials];

// Allocate an array of texture object pointers
g_pTextureList = new IDirect3DTexture8[dwNumMaterials];

// Copy over the materials
for(DWORD i=0;i<dwNumMaterials;i++) {

g_pMaterialList[i] = pMaterials[i].MatD3D;

// Set the ambient color to the same as diffuse
g_pMaterialList[i].Ambient = g_pMaterialList[i].Diffuse;

// Create and load the texture (if any)
if(FAILED(D3DXCreateTextureFromFileA(g_pD3DDevice, \

g_pMaterials[i]->pTextureFilename, &g_pTextureList[i])))
g_pTextureList[i] = NULL;

}
// Release material buffer used for loading
pD3DXMaterials->Release();

} else {
// Create a default material if no materials were loaded
g_dwNumMaterials = 1;

// Create a white material
g_pMaterialList = new D3DMATERIAL8[1];

250 6. Drawing with DirectX Graphics

g_pMaterialList[i].Diffuse.r = 1.0f;
g_pMaterialList[i].Diffuse.g = 1.0f;
g_pMaterialList[i].Diffuse.b = 1.0f;
g_pMaterialList[i].Diffuse.a = 1.0f;
g_pMaterialList[i].Ambient = g_pMaterialList[i].Diffuse;

// Create an empty texture reference
g_pTextureList = new IDirect3DTexture8[1];
g_pTextureList[0] = NULL;

}

When the preceding code bit is complete, you have a spanking new list of materials
and textures all set up and ready to use in your scene. The only remaining task is to
render your mesh.

Rendering Meshes
At the heart of the ID3DXMesh object is a single rendering function named DrawSubset,
which has the job of rendering a subset of the mesh. A subset is a portion of a mesh
that is separated because of a changing rendering condition, such as a change in
the material or texture from the last subset. You can split a mesh into many subsets
(for example, as illustrated in Figure 6.26). Your job is to understand what each
subset represents and to render it.

After you load an .X file, you are left with a mesh object, as well as the materials.
The subsets of a mesh correlate to those materials, so if you have five materials in a
mesh, the mesh contains five subsets to draw.

This arrangement of subsets enables you to easily render a mesh; simply scan
through each material, set it, then render the subset. Repeat these steps until the
entire mesh is drawn. To position the mesh in the world, set the world transforma-
tion matrix before drawing it. Here’s an example, using a previous loaded mesh:

// g_pD3DDevice = pre-initialized device object
// pD3DXMesh = an ID3DXMesh object, already loaded
// matWorld = mesh world transformation matrix

// Begin the scene
if(SUCCEEDED(g_pD3DDevice->BeginScene())) {

// Set the meshes world transformation matrix
g_pD3DDevice->SetTransform(D3DTS_WORLD, &matWorld);

251Working with Meshes

// Loop for each material in a mesh
for(DWORD i=0;i<g_dwNumMaterials;i++) {

// Set the material and texture
g_pD3DDevice->SetMaterial(&g_pMaterialList[i]);
g_pD3DDevice->SetTexture(0, g_pTextureList[i]);

// Draw the mesh subset
pD3DXMesh->DrawSubset(i);

}

// End the scene
g_pD3DDevice->EndScene();

}

252 6. Drawing with DirectX Graphics

Mesh

Subsets

Figure 6.26

You use subsets to separate
various portions of the mesh.

Remember that before you can render a mesh, you set its world transformation
matrix in order to position it anywhere and at any angle within your 3-D world.
If you load multiple meshes, you can connect them to form an animated object by
altering the individual orientations of each mesh. This is the basis of 3-D animation
(for more on this topic, see “Using 3-D Animation .X Style,” later in this chapter).

Skinned Meshes
One of the most exciting features of Direct3D is skinned meshes. As I’ve mentioned,
a skinned mesh can be deformed dynamically. You accomplish this by joining the
individual vertices that construct a mesh to a structure of underlying “bones,” or
frame hierarchy. A skinned mesh uses the bones to define its shape; as the bones
move, the mesh deforms to match.

The bones are represented as a frame hierarchy inside an .X file. When modeling
your meshes, you connect the frame in a parent-child manner. When a parent
frame is reoriented, all child frames attached to it inherit the parent’s transforma-
tion and combine their own transformations. This makes achieving animation eas-
ier—you move a single frame and all attached frames will move as well.

To load and use a skinned mesh, you deal directly with the .X file templates, just
as you did in the earlier section “Parsing .X Files” (I told you that code would come
in handy). As you parse the templates, you need to maintain a list of frames (and
their hierarchy).

Loading Skinned Meshes
As you’re enumerating the mesh templates contained within an .X file, you need
to call on the various D3DX mesh-loading functions to handle the template data.
The one function that’s of interest to you when loading skinned meshes is
D3DXLoadSkinMeshFromXof. This function has the job of reading in the mesh template
from the .X file and creating an ID3DXSkinMesh that contains the skinned mesh
object.

Because the code for parsing the frame hierarchy and loading the meshes is a
bit complex, you will find it on the CD-ROM at the back of this book (look for
\BookCode\Chap06\XFile). I can just hear you sighing, but don’t worry; the code
is very well commented, and I’ll take a moment right now to explain it. First, you
find a couple of structures that contain the frame hierarchy (complete with frame
transformation matrices) and meshes.

253Working with Meshes

The LoadMesh function uses a slightly modified version of the parsing function
shown earlier in this chapter (in the section “Parsing .X Files”). Frame templates,
as they are enumerated in the LoadFile function, are added to a frame hierarchy.
Other templates within the Frame template are then enumerated, providing the
hierarchy with a series of child templates.

If a Mesh template is found during the enumeration of the .X file’s templates,
the LoadFile function will load the mesh using the D3DXLoadSkinMeshFromXof file. The
loaded mesh object is then added to a linked list of loaded mesh. The frames con-
tain pointers back to the meshes, so you can use a single mesh multiple times
(using referencing).

After a mesh is loaded, the loading function matches the mesh’s bones to their
appropriate frames, and the mesh’s materials are loaded. If a mesh does not con-
tain bones, the load function converts the mesh into a standard mesh.

To load a skinned mesh or series of meshes, call the LoadFile function using the
name of the .X file. In turn, LoadFile will call the ParseXFile function. Then, in
return of the LoadFile function, you will receive a pointer to a frame that is the root
of all other frames. In order to render a skinned mesh, you must first update the
mesh. Updating a mesh retrieves a pointer to a standard mesh object, which you
use to render the mesh.

Updating and Rendering a Skinned Mesh
Before you can render a skinned mesh, you must update it. A skinned mesh
really doesn’t know how to draw itself. That’s because you must first apply all the
transformations to each bone in the mesh and then by calling the ID3DXSkinMesh::
UpdateSkinnedMesh function (which you’ll see in just a moment), retrieve a pointer
to an ID3DXMesh that represents the final deformed appearance of the mesh.

To alter a frame transformation, you modify the frame’s rotation transformation
matrix (which makes perfect sense because, except for the root object, objects
can’t be translated). Your first objective is to find the frame that you want to mod-
ify. To do so, just scan through the frame list. Using standard D3DXMatrix* functions,
go ahead and alter the rotation of a frame now.

Once you complete rotating each frame into the orientations you want, you are
ready to update all the transformations in the frame hierarchy. You start at the
root, which has been oriented in the world where you want the mesh to be ren-
dered. Then you pass the transformation matrix to the next child frame, which
is combined with its own transformation matrix. Continue this process down the
hierarchy until all transformation matrices are updated.

254 6. Drawing with DirectX Graphics

Here’s an example function that processes the entire frame hierarchy for you
(assuming that you are using the sFrame structure from the code examples on
the CD-ROM):

// Call the following function with your root frame
// and a matrix that is the orientation of the
// mesh in the world.
void UpdateFrameMatrix(sFrame *Frame, D3DXMATRIX *pMatrix)
{

// Multiply the matrices
D3DXMatrixMultiply(&Frame->matWorld, &Frame->matRotation, \

pMatrix);

// update child frames
if(Frame->Child != NULL)

UpdateFrameMatrix(Frame->Child, &Frame->matWorld);

// update sibling frames
if(Frame->Sibling != NULL)

UpdateFrameMatrix(Frame->Sibling, pMatrix);
}

Once all frames are oriented, you update the skinned mesh and generate an
ID3DXMesh which is used to render the final orientation of the mesh:

HRESULT ID3DXSkinMesh::UpdateSkinnedMesh(
CONST D3DXMATRIX* pBoneTransforms, // Frame matrices
ID3DXMesh *pMesh); // Output mesh

The first parameter, pBoneTransforms, is the pointer to the array of matrices used to
store the bone transformations. The second parameter, pMesh, is the pointer to the
updated output mesh that you use to render (using the DrawSubset function). Just
refer back to the previous section on rendering meshes to see how to process
from here.

Using 3-D Animation .X Style
Animation in 3-D is a whole new deal than animation in 2-D. No longer can you
afford the luxury of drawing images and then displaying them in sequence to cre-
ate animation. With 3-D, an object can be viewed from virtually any orientation.

The basis for 3-D animation is to alter the frame transformation matrices used to
orient your meshes during run-time, thereby causing the various meshes located

255Working with Meshes

within the frames to move. This movement of the meshes is animation. You can
translate, rotate, and even scale the meshes almost any way you want.

When dealing with skinned meshes, using frame transformations is the only way
to animate the mesh. Because a skinned mesh is a single mesh (not composed of
multiple meshes), you need to alter the frames in order for the vertices to deform.

The easiest way to modify the frame transformation matrices is through a tech-
nique called key framing.

Key Frame Techniques
In computer animation, key framing describes the technique for taking two com-
plete, separate orientations (key frames) and interpolating between them based
on a factor such as time. In other words, by taking the orientation of two different
frames (with each orientation called a key), you can calculate their orientation any-
where and any time between those keys (as illustrated in Figure 6.27).

Key framing is memory efficient and
ensures that the animation will run at
the same speed on all systems. Slower
computers drop frames (at the cost of
choppy animation), whereas faster
computers generate more frames,
providing smoother animation.

As you now know, a hierarchy of
frames is constructed in which all
frames are attached in one way or
another. You also know how to ani-
mate the frames of a mesh using the
.X file animation templates. Now, you
just need to plug in the calculations to
interpolate between those frames in
order to create smooth animation.

The form of key framing that I prefer,
and the one that I show in this book, is
matrix key framing. Because you’re already using the D3DX matrix object, using this
form of key framing is easy. Say that you have two matrices: Mat1 and Mat2, represent-
ing the starting and ending matrices, respectively. The distance in time between

256 6. Drawing with DirectX Graphics

NOTE
Interpolating is a way of calculating the
transitional values between two num-
bers over a set amount of time. For
example, if your house is two miles
from your workplace and it takes you
30 minutes to get to work, you can
determine your distance to work at
any specific time by using interpolation
with the following calculation:

Distance = (DistanceToWork /
TravelTime) * CurrentTime;

As you can see, after 26 minutes, you
have traveled (Distance = (2 / 30) * 26)
1.73 miles.

them is represented as Length, and the current time is represented as Time (which
ranges from 0 to Length). You calculate the interpolated matrix as follows:

// D3DXMATRIX Mat1, Mat2;
// DWORD Length, Time;
D3DXMATRIX MatInt; // Resulting interpolated matrix

// Calculate the interpolated matrix
MatInt = (Mat2 - Mat1) / Length;

// Multiply by time
MatInt *= Time;

// Add back to Mat1 and that’s the result!
MatInt += Mat1;

The final calculation is complete, and you’re left with a matrix that holds the orien-
tation somewhere between the matrices that you used.

Animation in .X
Microsoft has provided animation data in .X files. This animation data is within a
set of special templates, and you can load the data from those animation templates
using the same techniques you use to load a skinned mesh.

Loading animations from an .X file is messy; there are entire animations, each with
an animation template, an animation set template, time templates, key-frame tem-
plates—way too much to deal with!

257Working with Meshes

Time

FramesFrames

Starting Orientation Ending Orientation
Interpolated Orientation

Figure 6.27

The orientations
of the frames are
interpolated over
time from starting
to ending
orientations.

Rather than wade through the creation of an entire animation package here, check
out the code on this book’s CD-ROM (look for \BookCode \Chap06\XFile). You can
also refer to Chapter 10, “Creating the Game Core,” to check out an entire anima-
tion package developed for this book. For now, though, continue reading this sec-
tion to find out how animation works in .X.

Special templates contain the various keys that are used in key framing techniques.
Each key represents a single transformation: rotation, scaling, and translation. To
make it easier, you can specify matrix keys that combine all the transformations at
once (which is the type of key that I use in this book).

Each key has an associated time at which it is active. In other words, a rotation key
at time=0 means that when time is 0, the rotation value in the key is used. A second
rotation key becomes active at time=200. As time goes on, an interpolated rotational
value is calculated somewhere between the first and second rotation keys. As time
hits 200, the rotational value equals that of the second rotation key. This form of
interpolation to the values applies to all key types.

Animations come in sets, and each set is
assigned to a specific frame. You can
have multiple keys assigned to the same
set so that more than one animation key
affects the frame. For example, a frame
can be modified by a set of rotation-keys
and a set of translation-keys at the same
time in order to rotate and translate the
frame at once.

Again, with the help of modeling
programs such as 3D Studio Max and
MilkShape 3-D, you’ll never have to deal
directly with an .X file’s animation data.
In addition, by using the code provided in
this book, you can have fully animated
meshes up and running in your games in
no time flat! Refer to Chapter 10 for infor-
mation on loading and using animation

258 6. Drawing with DirectX Graphics

NOTE
When discussing time, realize that
it has no real measurement.You
must decide how to measure it. For
example, time can be the number
of seconds passed from a certain
point, or time can be the number of
frames that have elapsed.To make it
easy, time should be based on the
computer system’s time, which
makes it possible to time anima-
tions down to the exact second
(that is, you want an animation to
complete in two seconds).

TEAMFL
Y

Team-Fly®

Wrapping Up Graphics
Congratulations! This chapter finishes the whirlwind tour on DirectX Graphics!
With so much to see and learn, you might want to take a little time to be sure
that you fully understand the basics—vertices, polygons, textures, and materials.
Understanding these basics is your only ticket to the big-time effects shown
earlier in this chapter and later in the book.

259Wrapping Up Graphics

Programs on the CD-ROM

Programs that demonstrate the code discussed in this chapter are
on the CD-ROM at the back of this book.You can find the following
programs in the \BookCode\Chap06\ directory:

◆ Enum. A program that enumerates all display adapters and shows
their mode information. Location: \BookCode\Chap06\Enum\.

◆ Draw2D. This program shows how to draw polygons (plain and tex-
tured) using 2-D coordinates. Location: \BookCode\Chap06\Draw2D\.

◆ Draw3D. This program shows how to draw polygons (plain and
textured) using 3-D coordinates and 3-D transformations.
Location: \BookCode\Chap06\Draw3D\.

◆ Alpha. This program demonstrates using alpha blending and
transparent blitting. Location: \BookCode\Chap06\Alpha\.

◆ Lights. With this program, you can see the effects that each
type of light has on objects. Location: \BookCode\Chap06\Lights\.

◆ ZBuffer. This program demonstrates the use of a Z-buffered to
depth sort. Location: \BookCode\Chap06\ZBuffer\.

◆ Font. This program shows how to use the font features illustrated
in this chapter. Location: \BookCode\Chap06\Font\.

◆ Particle. This program draws a collage of moving particles, using
billboarding techniques. Location: \BookCode\Chap06\Particle\.

◆ XFile. This program demonstrates the use of the D3DX library
mesh functions. Location: \BookCode\Chap06\XFile\.

This page intentionally left blank

CHAPTER 7

Interacting
with

DirectInput

One thing definitely holds true for most applications—they need user input.
Whether you are using a joystick to guide your on-screen hero, clicking your

mouse on a Web page link, or just typing a letter using your keyboard, the results are
all considered to be input. Wouldn’t it be great to use all three input devices in your
own game engine? With so many devices out there, how could you handle them all?

Don’t worry; Microsoft has come to the rescue with DirectInput! No longer do you
have to worry about the minute details of every input device, because DirectInput
gives you a simple, generalized method of accessing them.

This chapter begins with a brief discussion on how input devices work and then
moves on to using them with DirectInput. Specifically, in this chapter, you learn
how to do the following:

■ Use input devices
■ Work with DirectInput
■ Initialize DirectInput
■ Use DirectInput devices
■ Read and use device data

Introducing Input Devices
Computers use three common input devices: keyboards, mice, and joysticks. All are
invaluable, and each has its own pros and cons. Keyboards, while good for typing
things, are no replacement for a mouse, and they are too bulky to use as joysticks.

As for the mouse, it’s great for pointing and movement, but lacks the simplicity of
joystick control. As for joysticks, they’re great for simple movements—up, down,
left, and right—but almost useless for anything else. It’s like the old phrase, “Can’t
live with ‘em, can’t live without ‘em.”

Each input device interfaces with the computer in its own special way—some
through the use of device drivers (small programs that have the sole purpose
of dealing with the input device), while others deal directly with the computer’s
memory. It’s your job to query the device drivers or operating system for any
information the input device may be relaying, and then handle that information
as you see fit.

262 7. Interacting with DirectInput

Interacting via the Keyboard
Press a key on the keyboard and the corre-
sponding letter, number, or symbol seems
to magically appear on the screen.
However, the interaction between a key-
board and a computer is quite involved,
and as a game programmer, this interac-
tion is something you must understand.

Basically, a keyboard is an array of keys
arranged in a logical pattern. With just a
few differences, most keyboards have a
standard layout. Each key on a keyboard
is essentially a switch that is triggered
when you press or release the key.

Pressing or releasing a key sends a signal
to the keyboard’s microprocessor, which
in turn generates what is called an inter-
rupt on the computer system. In turn,
the system retrieves the data from the
keyboard’s microprocessor, thereby
ascertaining what was pressed or released.
This data is called a scan code.

Because keyboards can have different layouts, scan codes might change from key-
board to keyboard. This, however, is not too great a problem, because most key-
boards follow the standard 101–102 key layout. For the uninitiated, every keyboard
has a layout referred to by the number of keys on the keyboard, and in most cases,
this number of keys is 101 or 102.

Figure 7.1 shows you a portion of
a typical 101–102 key scan code
arrangement. Notice that the
scan codes are arranged accord-
ing to the arrangement of the
keys on the keyboard; in rows of
keys, a key to the right of another
key is usually a single scan code
higher.

263Introducing Input Devices

NOTE
An interrupt is a signal of sorts that
informs the system that a device or
program needs processing as soon
as possible. Using interrupts ensures
the system knows that a device’s
state has been changed.

Scan codes are values that deter-
mine which key on the keyboard
was pressed or released.These
codes are a single byte (although
the operating system can present
them to you in a number of ways),
with a portion of the byte telling
you which key is involved, and a
single bit telling you whether the
key was pressed or released.

NOTE
Because a scan code recognizes only single
key presses, it can’t distinguish between
uppercase and lowercase letters. So the
scan code for uppercase A and for lowercase
a are the same.The operating system auto-
matically detects and distinguishes between
uppercase and lowercase letters by tracking
whether the shift key is being held.

The lowest 7 bits (bits 0–6) of the scan code represent the key value (which key was
pressed or released), while the highest bit of the scan code (bit 7) signifies if that
key was pressed (bit set) or released (bit clear). The highest number a byte can
represent is 255, and the highest bit is reserved, which gives us room for 128 keys.

Dealing with the Keyboard in Windows
Windows is able to handle the mundane task of retrieving keyboard input for you.
To make the job easier, Windows converts incoming scan codes from the keyboard
(which, based on the keyboard, could be anything) to standardized values called
Virtual Key Codes and ASCII codes. Windows reports these values in a number of
ways to the programmer, usually through the message procedure, which is shown in
Chapter 5, “Programming with Windows and Application Basics.”

What you do with these newly received Virtual Key Codes or ASCII codes is now up
to you and your application. For word processors, you may insert the correspond-
ing key’s letter in the body of text. For games, you can process the key presses and
move the player’s character around the screen.

264 7. Interacting with DirectInput

1 2 3 4 5 6
2 3 4 5 6 7

16 17 18 19 20

30 31 32 33 34

44 45 46 47

K
ey

s

S
can C

odes

Figure 7.1

A closer look at the keyboard
shows a few keys with their
respective scan codes. Scan
codes are bit-encoded numbers.

Did I just say use the keyboard for games? Yes, that’s right—you can use the key-
board quite efficiently for playing games. The only problem is that Windows just
can’t keep up with the mad key-pressing actions of some games. What’s the solu-
tion then? You find out in just a bit in the section “Using DirectInput.”

Playing with the Mouse
If the plural of goose is geese, is more than one mouse called meese? Well, I’ll
leave that for others to argue; for me, mice are sufficient. Unlike their furry coun-
terparts, computer mice help us immensely.

A mouse consists of very few components. It usually has two or three buttons and a
ball underneath that tracks the movement of the mouse. The buttons are easy to
understand—press one, and it sends a signal to the computer; release it and it
again sends a signal to the computer. Some other mouse devices use optics to track
the movement so that there is no need for a ball, but these devices do the same
thing as others.

265Introducing Input Devices

NOTE
A Virtual Key Code is the Windows version of a scan code. Instead of
using the scan code of 30 for the letter A (and hoping it is correct),
you instead use the Virtual Key Code macro of the letter A, VK_A, and
rest assured that it will always be the letter A, regardless of the key-
board in use (and the scan codes the keyboard reports).

ASCII (American Standard Code for Information Interchange) is the stan-
dard that dictates what values can be mapped to what characters.
With ASCII, you can tell the difference between an uppercase A and a
lowercase a because they have different values. ASCII can map values
for up to 128 different characters, which range from numbers, alpha-
bet, common symbols, and control codes.

Windows actually uses Extended ASCII codes and Unicode characters
(or wide characters). Extended ASCII adds an extra bit of information
to regular ASCII, thus boosting the maximum number of characters to
256.The downside is that the extended characters could be anything—
there is no real standard for them. Also, some other languages need
more characters, so Unicode was invented, which brought the maxi-
mum amount of characters to 16 bits, enough for 65,536 characters.

There’s really nothing difficult to understand under the little rodent’s hard cover.
At the lowest level, the mouse is informing the system that it just moved in a cer-
tain direction, one little tick at a time. The driver reading this data converts the
ticks into relative movement values.

In a typical application, Windows takes
these movements and reports them as
messages to the user through the mes-
sage procedure, as shown in Chapter 5.
Remember that working with the mes-
sage procedure is quite slow at times—
each message passed to the message
procedure is inserted into a queue that
only processes the messages in the order
they are added.

To speed up the process of receiving and
processing mouse input, you interface
direction with the mouse driver, leaving
the Windows message procedure out
of the loop.

Regardless of the way you receive the
mouse movements, you start tracking the
coordinates of the mouse on the screen. You have the option of tracking absolute or
relative mouse coordinates. Absolute means the current position of the mouse based
on a fixed point (usually the upper-left corner of the screen as seen in Figure 7.2).
Relative refers to the amount of movement from the last known position, either left,
right, down, or up. Both are easy to implement, as you’ll soon see.

Mouse buttons can flag only whether a button is currently pressed, much in the
same way the keyboard is able to report that a key is pressed.

Jammin’ with the Joystick
Ahhh, the feel of a new joystick. The molded plastic pieces, rubber grips, and shiny
buttons all seem to fit your hand perfectly. Thoughts of conquering fill your head.
Memories of past victories, and losses, flood through you. It’s almost like you were
born to play games.

266 7. Interacting with DirectInput

NOTE
A relative movement is the amount
of movement from the last recorded
position. For instance, if you were to
stand up and walk five steps for-
ward, then your relative position
from where you last were is five
steps back.

The small amount of movement
that a mouse signals is called a
Mickey. (I’m sure that old Walt
would have gotten a kick out of
that!) The mouse driver has the
responsibility of converting these
Mickeys into values that the driver is
able to pass on to the system.

Joysticks are the bread and butter of game controls. While not the only input
device used for games, it seems to be the most intuitive. Push left on the stick, and
your character walks left. Push a button, and your hero swings his sword. What
could by easier?

Joysticks come in a myriad of shapes and sizes. That steering wheel controller you
see on the store shelf—that’s a joystick. If you’ve ever been to an arcade, you’ve
probably played games that allow (or require) you to stand on huge snowboards or
to sit on small motorcycles while controlling your onscreen persona. While amaz-
ingly deceitful, even those snowboards and motorcycles are considered joysticks!

Joysticks are devices that are axis-controlled and have a few buttons. The steering
wheel has a single axis control for steering left and right. Maybe it has two more
axis controls for brake and gas pedals. Even your basic two-button joystick has two
axis controls, one for up and down and the other for left and right. Figure 7.3
shows you a few of these.

An axis control is just a potentiometer (variable resister), which regulates the level of
voltage passing through the circuit. The least amount of voltage passing through

267Introducing Input Devices

50,50

200,100

75, 300

My Application

Figure 7.2

You measure the mouse’s absolute
coordinates by the number of pixels
that the mouse is away from the
upper-left corner of the screen.

represents one extent (the furthest point a joystick
can be pushed) of the axis, while the most voltage
represents the other extent. All levels in between
represent the axis somewhere between the extents.

This voltage level makes its way to the system which
is thankfully handled by Windows (or DirectInput)
and then given to you for your use. The joystick’s
buttons operate almost the same way, but have volt-
age either applied or not, signaling that a button is
pressed or released, respectively.

Joystick data is read in by absolute values,
which are relative to the center of the joystick.
Push left or up, and you receive negative values
representing the distance away from the center.
Press down or right, and you get positive values.
Buttons are single flags that state whether a button is up.

Using DirectInput
You’ll most likely use the keyboard and the mouse, and it will be handy to have
access to a joystick as well. However, so many different types of these devices are
available that your head will spin trying to support them all.

268 7. Interacting with DirectInput

Foot Pedals

Standard Joystick

Steering Wheel and Gear
Figure 7.3

Directional, rotational, and push-style
input are all common traits among
joysticks, regardless of their appearance.

NOTE
The only big differences
that you might notice in joy-
sticks are those with digital
axis controls that work like
a bunch of buttons. Pushing
left on the joystick is just
like pushing a button that
signifies left.Whenever the
programmer queries the
joystick for the axis reading,
the joystick will return the
lowest or highest possible
value along the axis.

TEAMFL
Y

Team-Fly®

Also, as mentioned in Chapter 5, dealing with the window’s message procedure to
obtain input is just plain slow and certainly not suited for the fast action needs of
gaming. Why wait for crucial key press data or mouse movement information to
pass through the message queue when you need it now? Behold DirectInput—the
solution to your need. With it, you have a method to quickly retrieve data when you
need it, and not have to wait for Windows to give it to you.

As it turns out, DirectInput is hands down the easiest component of DirectX to
work with. With DirectInput, your programs can easily use any keyboard, mouse, or
joystick connected to the user’s system (as well as any other input device compati-
ble with DirectInput). And if you want to go barebones working with code, you
might be able to do so in less than a few dozen lines!

Presenting DirectInput Basics
DirectInput is a collection of COM objects (like all DirectX components) that repre-
sents the input system as well as the individual input devices (as shown in Table 7.1).
The main object, IDirectInput8, is used to initialize the system and create the input
device interfaces.

Each input device (such as the keyboard, mouse, and joystick) uses a common
interface object to work with, which is IDirectInputDevice8. Certain devices, such
as joysticks and mice, are able to query their respective IDirectInputDevice8 objects
for an additional interface, IDirectInputEffect, which is used to control the force
feedback effects of the device. This relationship among the IDirectInput8,
IDirectInputDevice8, and IDirectInputEffect interfaces is shown in Figure 7.4.

269Using DirectInput

Table 7.1 DirectInput COM Objects

Object Description

IDirectInput8 The main DirectInput 8 COM interface. All other interfaces
are queried from this.

IDirectInputDevice8 COM interface for input devices. Each device has a separate
interface of its own to use.

IDirectInputEffect The COM interface for force-feedback effects, such as
those on joysticks and some mice.

The IDirectInput8 component object contains a
number of functions used to initialize the input
system and obtain device interfaces (where the
real work takes place). Of these functions, you’ll
typically need only two, IDirectInput8::EnumDevices
and IDirectInput8::CreateDevice. You learn more
about these when it comes time to deal with
input devices, starting in the section “Employing
DirectInput Devices.”

Initializing DirectInput
To start using DirectInput, be sure to include
DInput.h and link DInput8.lib with your project.
An IDirectInput8 object represents the main
DirectInput object, so go ahead and declare it
globally:

IDirectInput8 g_pDI; // global DirectInput object

270 7. Interacting with DirectInput

IDirectInput8

IDirectInputDevice8

Keyboard

IDirectInputDevice8

Mouse

IDirectInputEffect

Force-FeedbackJoystick

IDirectInputDevice8

Figure 7.4

The head of the show
is IDirectInput8,
which creates the
various
IDirectInputDevice8

objects. In turn, the
IDirectInputDevice8

objects can be used to
create their own
IDirectInputEffect

objects.

NOTE
For the purposes of this
book, I use only the first two
COM objects, thus excluding
IDirectInputEffect.

NOTE
As with all COM objects, be
sure to call Release() on
them when you are finished:

g_pDI->Release();

DirectInput supplies the helper function DirectInput8Create to initialize this inter-
face for you. Here’s its prototype:

HRESULT WINAPI DirectInput8Create(
HINSTANCE hInstance, // instance handle of your program
DWORD dwVersion, // DIRECTINPUT_VERSION
REFIID riidltf, // IID_IDirectInput8
LPVOID *ppvOut, // pointer to your new object
LPUNKNOWN pUnkOuter); // set to NULL

The arguments are easily understood; you only need to
supply the pointer to the object you want to create and set
the rest as specified in the comments. The following code
bit shows how you can create the DirectInput interface:

IDirectInput8 *g_pDI; // global DirectInput object

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

{
HRESULT hr;

hr = DirectInput8Create(hInst, DIRECTINPUT_VERSION, \
IID_IDirectInput8, (void**)&g_pDI, NULL);

// return failure if an error occurred
if(FAILED(hr))

return FALSE;

// Go on with program here

That’s about all there is to setting up DirectInput! Next,
you learn how to set up the device objects to work with
the actual hardware (keyboard, mouse, and joystick).

Employing DirectInput
Devices
Microsoft went to great lengths to simplify dealing with input devices. It’s so simple,
in fact, that you can use the same COM interface (IDirectInputDevice8) to deal with
just about every input device you can think of (and probably a few that you can’t!)

271Using DirectInput

NOTE
As do all COM
interfaces, the
DirectInput8Create
function returns
an HRESULT value.
DirectInput will
return a value of
DI_OK if the function
completed success-
fully, or another value
if it did not. Refer
to the DirectX
Software Developer’s
Kit for specifics on
Error Codes.When
you test a return
code, use the FAILED
or SUCCEEDED macro
to test it. Functions
can still succeed but
return an error code,
so the macros will
detect this for you.

The steps for creating and using an input device are similar for each one, so let me
jump ahead a bit and show you how to do that. Table 7.2 shows the steps in general
and in their correct order along with the DirectInput interface and function that
handles the step.

Before moving on, be sure to declare a DirectInput device object
(IDirectInputDevice8):

IDirectInputDevice8 *pDIDevice;

Obtaining a Device GUID
Every device installed has a GUID (Global Unique IDentification) number assigned to it.
In order to use a device, you need to know its GUID first. For the system keyboard
and mouse, this is easy. DirectInput defines these as GUID_SysKeyboard and GUID_SysMouse,
respectively. For all other devices, you must enumerate to find the ones you want.

Enumerating devices is the job of the IDirectInput8::EnumDevices function:

HRESULT IDirectInput8::EnumDevices(
DWORD dwDevType, // device type to look for
LPDIENUMCALLBACK lpCallback, // enum callback function
LPVOID pvRef, // user-set data pointer
DWORD dwFlags); // enumeration flags

272 7. Interacting with DirectInput

Table 7.2 Steps to Creating and Using a Device

Step Interface/Function

Obtain a device GUID IDirectInput8::EnumDevices

Create the device COM object IDirectInput8::CreateDevice

Set the data format IDirectInputDevice8::SetDataFormat

Set the cooperative level IDirectInputDevice8::SetCooperativeLevel

Set any special properties IDirectInputDevice8::SetProperty

Acquire the device IDirectInputDevice8::Acquire

Poll the device IDirectInputDevice8::Poll

Read in data IDirectInputDevice8::GetDeviceState

dwDevType is a bit field describ-
ing which types of devices to
enumerate. This could range
from general device types,
such as joysticks and mice,
to something more specific,
such as trackballs or yokes.
Consult the DX SDK for a
full list or Table 7.3 for a few
common ones.

The lpCallback variable is the
pointer to an enumeration function that is called every time a matching device is
found on the system. I get to this in a bit. As for pvRef, you can set this to anything,
typically having it point to a structure in which you want to store information.
When the enumeration function is called, it supplies this data pointer to the struc-
ture (or other data) you provided, giving you the chance to retrieve or set data.

273Employing DirectInput Devices

NOTE
To use GUID_SysKeyboard or GUID_SysMouse, you must
define INITGUID before all other preprocessor
directives or link DXGuid.lib to your project:

#define INITGUID

You only need to define INITGUID once in your
project (inside a single source code file); doing
so more than once causes compiler errors.

Table 7.3 DirectInput Device Enumeration Types

Value Description

DI8DEVCLASS_ALL All devices.

DI8DEVCLASS_GAMECTRL All game controllers (joysticks).

DI8DEVCLASS_KEYBOARD All keyboard devices.

DI8DEVCLASS_POINTER All pointer devices (mouse).

DI8DEVCLASS_DEVICE All devices that don’t fit into the previous three types.

DI8DEVTYPE_MOUSE Mouse or mouse-like device, such as a trackball.

DI8DEVTYPE_KEYBOARD Keyboard or keyboard-like device.

DI8DEVTYPE_JOYSTICK Joystick or similar device, such as a steering wheel.

DI8DEVTYPE_DEVICE Device that doesn’t fit into the three previous types.

DI8DEVTYPEMOUSE_TOUCHPAD Device is a touchpad (sub-type).

DI8DEVTYPEMOUSE_TRACKBALL Device is a trackball (sub-type).

Last is dwFlags, which tells DirectInput how to enumerate devices. You can set the
dwFlags argument to any value listed in Table 7.4.

The previously mentioned lpCallback function pointer needs to point to a
DIEnumDeviceProc defined enumeration function, which uses the following prototype:

BOOL CALLBACK DIEnumDevicesProc(
LPDIDEVICEINSTANCE lpddi, // device structure
LPVOID pvRef); // the user-specified pointer

lpddi is a pointer to a DIDEVICEINSTANCE structure, which contains information on the
currently enumerated device during this call. Here’s the structure:

typedef struct {
DWORD dwSize; // Size of this structure
GUID guidInstance; // device GUID
GUID guidProduct; // OEM supplied GUID of device
DWORD dwDevType; // Device type
TCHAR tszInstanceName[MAX_PATH]; //Name of device
TCHAR tszProductName[MAX_PATH]; //Name of product
GUID guidFFDriver; // GUID of force-feedback driver
WORD wUsagePage; // Usage page if an HID device
WORD wUsage; // Usage code if an HID device

} DIDEVICEINSTANCE;

Let me take a moment now and build a couple of functions that initialize DirectInput
and enumerate all devices, displaying the name of each one found, one at a time, in a
message box. At each one, you get to select whether you want to stop enumeration or
continue by clicking either the Cancel button or the OK button, respectively.

274 7. Interacting with DirectInput

Table 7.4 Enumeration Flags

Value Description

DIEDFL_ALLDEVICES Enumerates all installed devices (default).

DIEDFL_ATTACHEDONLY Enumerates only devices that are attached.

DIEDFL_FORCEFEEDBACK Enumerates only devices that have force-feedback.

DIEDFL_INCLUDEALIASES Includes devices that are aliases for other devices.

DIEDFL_INCLUDEPHANTOMS Includes phantom (placeholder) devices.

// Global DirectInput COM object
IDirectInput8 *g_pDI;

// Function prototypes
BOOL InitDIAndEnumAllDevices(HWND hWnd, HINSTANCE hInst);
BOOL CALLBACK EnumDevices(LPCDIDEVICEINSTANCE pdInst, \

LPVOID pvRef);

BOOL InitDIAndEnumAllDevices(HWND hWnd, HINSTANCE hInst)
{

if(FAILED(DirectInput8Create(hInst, DIRECTINPUT_VERSION, \
IID_IDirectInput8, (void**)&g_pDI, NULL)))

return FALSE;

g_pDI->EnumDevices(DI8DEVCLASS_ALL, EnumDevices, \
(LPVOID)hWnd, DIEDFL_ALLDEVICES);

return TRUE;
}
BOOL CALLBACK EnumDevices(LPCDIDEVICEINSTANCE pdInst, \

LPVOID pvRef)
{

int Result;

275Employing DirectInput Devices

NOTE
The only fields you need to work with in the DIDEVICEINSTANCE structure
are guidInstance, dwDevType, and tszInstanceName. guidInstance is the GUID
needed to initialize the device (which is what you are looking for).
dwDevType is the type of device that is currently being enumerated.

Lastly, tszInstanceName is a text buffer that contains a description name of
the device (such as “JoyStick 1”) that you can use, possibly to enable the
user to select the device from a list.

NOTE
A quick note on enumeration: During the enumeration function, you
must determine whether you need to continue enumerating devices
or stop, which you do by returning the values DIENUM_CONTINUE or
DIENUM_STOP, respectively.

// Display a message box with name of device found
Result = MessageBox((HWND)pvRef, pdInst->tszInstanceName, \

“Device Found”, MB_OKCANCEL);
// Tell it to continue enumeration if OK pressed
if(Result == IDOK)

return DIENUM_CONTINUE;
// Stop enumeration
return DIENUM_STOP;

}

Just insert the preceding
code into your own
program and call
InitDIAndEnumAllDevices().

Creating the Device COM Object
Now that you have the device GUID, you can create the actual IDirectInputDevice8
COM object. This is the work of the IDirectInput8::CreateDevice function:

HRESULT IDirectInput8::CreateDevice(
REFGUID rguid, // GUID of device to create

// predefined or from enumeration
LPDIRECTINPUTDEVICE *lplpDirectInputDevice, // pointer to

// the object you’re creating
LPUNKNOWN pUnkOuter); // NULL - not used

Here’s an example of using IDirectInput8::CreateDevice:

IDirectInputDevice8 *pDIDevice;
HRESULT hr = g_pDI->CreateDevice(DeviceGUID, &pDIDevice, NULL);

Or, as an example, to create an object using the system keyboard with predefining
GUID, use the following:

IDirectInputDevice8 *pDIDevice;
HRESULT hr = pDI->CreateDevice(GUID_SysKeyboard, \

&pDIDevice, NULL);

276 7. Interacting with DirectInput

NOTE
Say that of all the devices you want to enumerate
only the joysticks that are attached. Just replace
the g_pDI->EnumDevices line with the following:

g_pDI->EnumDevices(DI8DEVTYPE_JOYSTICK,
EnumDevices, (LPVOID)hWnd, DIEDFL_ATTACHEDONLY);

NOTE
You can embed this function call within an enumeration function, when you
discover the section,“Using DirectInput with Joysticks,” later in this chapter.

Setting the Data Format
Each device has a specific data format used to read in data. There are numerous
things to consider: keys, buttons, axes, and so on. You have to tell DirectInput this
format in order for your program to begin reading data from the device.

You do this via the IDirectInputDevice8::SetDataFormat function:

HRESULT IDirectInputDevice8::SetDataFormat(
LPCDIDATAFORMAT lpdf);

The SetDataFormat function has only one argument, which is a pointer to a DIDATAFORMAT
structure:

typedef struct {
DWORD dwSize; // Size of this structure
DWORD dwObjSize; // Size of DIOBJECTDATAFORMAT structure
DWORD dwFlags; // Flags determining if device works in

// absolute mode (DIDF_ABSAXIS)
// or relative (DIDF_RELAXIS)

DWORD dwDataSize; // Size of data packets received
// from device (in multiples of 4)

DWORD dwNumObjs; // Number of objects in the rgodf array
LPDIOBJECTDATAFORMAT rgodf; // Address to an array of

// DIOBJECTDATAFORMAT structures.
} DIDATAFORMAT, *LPDIDATAFORMAT;

Most objects do not have to deal with setting up this structure because DirectInput
comes with a few predefined ones that you can use, as shown in Table 7.5.

I will not go into the specifics on how to create your own formats because the three
device data structures shown in Table 7.5 are all that you need for this book. Consult
the DirectX SDK for information on creating your own device data format structures.

Setting the Cooperative Level
Let’s face it—every program will use only so many input devices. Nearly every pro-
gram uses a keyboard and a mouse, while some also use the joystick. When it comes
down to it, you must share access to those devices with other applications that may
be running—or you can be a bully and hog all access to the devices for your own
application, thus not allowing other applications to take control of those devices
until you’re finished with them.

277Employing DirectInput Devices

The next step in using a device is setting the cooperative level, which you handle
using the following function:

HRESULT IDirectInputDevice8::SetCooperativeLevel(
HWND hWnd, // handle to the parent window
DWORD dwFlags); // flags determining how to share access

Set the hWnd argument of the SetCooperativeLevel
function to your application’s window handle.
In order to share the device access with other
applications, set the dwFlags argument to one of
the values in Table 7.6, which describes how to
share device access.

When you set your cooperative level, it must be
either DISCL_EXCLUSIVE or DISCL_NONEXCLUSIVE, and
it must be combined with DISCL_FOREGROUND or
DISCL_BACKGROUND. I recommend that you use the
DISCL_FOREGROUND and DISCL_NONEXCLUSIVE for the three devices:

pDIDevice->SetCooperativeLevel(hWnd, DISCL_FOREGROUND | \
DISCL_NONEXCLUSIVE);

Setting Special Properties
This is where you can set any special properties for the device, such as axis mode,
buffering, and minimum or maximum ranges. For axis mode, you have two choices—
relative and absolute. Absolute mode reports coordinates based on a central coordi-
nate. Values to the left or above that point are reported as negatives, while values to
the right or below are positive.

278 7. Interacting with DirectInput

Table 7.5 Preset DirectInput Device Data Structures

Device Data Structure Example

Keyboard c_dfDIKeyboard pDIDevice->SetDataFormat(&c_dfDIKeyboard);

Mouse c_dfDIMouse pDIDevice->SetDataFormat(&c_dfDIMouse);

Joystick c_dfJoystick pDIDevice->SetDataFormat(&c_dfDIJoystick);

NOTE
Use of DISCL_NOWINKEY is
optional, but I recommend
doing so for full-screen
applications so that the
user doesn’t inadvertently
break out of the program.

TEAMFL
Y

Team-Fly®

Relative coordinates are reported by the difference in movement from the last posi-
tion. For example, if the mouse were at coordinates 100,40 and then moved right 5
units, then DirectInput would report the value 5, not 105. It’s your job to use these
relative movement values as you see fit.

As for buffering, you can set the amount of data to buffer in (if any) to a data
buffer that you provide. This allows you to read the device’s data at your own pace
without having to worry about skipped data. While handy, using buffered data is
not what you’ll need for gaming. It’s preferable to know the exact state of the
device when you need it, so I skip using buffering.

The last interesting properties are the minimum and maximum range settings for
the device. For example, pressing the joystick to the far left produces the minimum

279Employing DirectInput Devices

Table 7.6 IDirectInputDevice8 Cooperative Levels

Level Description

DISCL_NONEXCLUSIVE Using this setting allows the input device to share
its access with others and does not interfere with
other programs using it.

DISCL_EXCLUSIVE This setting makes your program the bully. When
acquired, you have sole access to the device, even
if others have set exclusive use of it.

DISCL_FOREGROUND The application requires foreground access. This
means that your program must be active to use the
device. If your program is set inactive, the device
will be automatically unacquired, and you will have
to restore it when your program gets focus.

DISCL_BACKGROUND Your program requires background access, which
means your device can be accessed even if your
program is not currently active.

DISCL_NOWINKEY This disables the Windows logo key.

value reported, while pushing to the far right reports the maximum value. What
these two values are depends on you. Setting these applies only to joysticks, so I use
that for an example.

Setting the special properties is the job of IDirectInputDevice8::SetProperty:

HRESULT IDirectInputDevice8::SetProperty(
REFGUID rguidProp, // GUID of property
LPCDIPROPHEADER pdiph); // DIPROPHEADER containing data

// about the property being set

The GUID of property is set. Refer to Table 7.7 for a list of Property GUIDs.

The DIPROPRHEADER just used is defined as follows:

typedef struct {
DWORD dwSize; // Size of the enclosing structure
DWORD dwHeaderSize; // Size of this structure
DWORD dwObj; // What value we’re setting
DWORD dwHow; // How you’re setting the value

} DIPROPHEADER, *LPDIPROPHEADER;

dwSize and dwHeaderSize are set to the sizes of the structures in bytes as described in
the comments. As for dwObj, this can vary depending on what property you are set-
ting. For your use later on, it is either DIJOFS_X or DIJOFS_Y, which represents the X-
or Y-axis.

Last, you set dwHow to DIPH_BYOFFSET. The
DirectX SDK defines this as the offset
into the current data format of the
object whose property is being accessed.
This means that DIJOFS_X and DIHOFS_Y are
offsets into the current data format you
are setting.

Later in this chapter, I show you how to set the properties of the joystick.

Acquiring the Device
Before any device can be used, it must be acquired. Acquiring a device ensures that
your program has access to it, whether that access is shared with other programs
or your program has complete control of the device. Be careful though, other
programs might be fighting for the same rights and can snatch control away from
you. To remedy this, you have to reacquire the device for your use.

280 7. Interacting with DirectInput

NOTE
Only one property can be set at a
time. Use multiple calls to set the
other properties that you need.

How do you know when you have to acquire the device? The first time is always when
you create the interface—you must acquire it before using it. The only other time is
when another program snatches control and DirectInput informs your program.

Acquiring a device is accomplished with
a call to IDirectInputDevice8::Acquire:

HRESULT IDirectInputDevice8::Acquire();

You can also unacquire a device when
you’re done with it. This is the job of
IDirectInputDevice8::Unacquire:

HRESULT IDirectInputDevice8::Unacquire();

281Employing DirectInput Devices

Table 7.7 Property GUIDs

REFGUID Description

DIPROP_AUTOCENTER Specifies if the device is self-centering.

DIPROP_AXISMODE Sets the axis mode as discussed previously.

DIPROP_BUFFERSIZE The input buffer size.

DIPROP_CALIBRATIONMODE Specifies if DirectInput needs to retrieve
calibrated data from the device. By default, all
data is calibrated.

DIPROP_DEADZONE This is the deadzone value that is allowed to
register a change. This ranges from 0 (none)
to 10,000 (100 percent).

DIPROP_RANGE Sets the minimum and maximum range values.

DIPROP_SATURATION This is the value that marks the extreme range
on a device. It ranges from 0 to 10,000. For
example, a value of 9,500 means once a device
has passed 95 percent of its movement, such as
a joystick being pushed 95 percent of its range,
it is considered pressed all the way.

NOTE
Referring to the DX SDK, you can
see that a standard error code
returned from IDirectInputDevice8
calls is DIERR_INPUTLOST, which means
the device needs to be acquired,
because access to it has been lost.

Polling the Device
Polling readies the device and in certain cases
reads the device’s data for you, since it might
be time-critical. Such is the case with joysticks;
the computer needs to send a burst of power to
the device in order to read from it. While this
is essential to joystick input, it is not required
for a keyboard or a mouse.

This is not going to stop us from using it though, as the code we’re writing in the
core is generic and will run the same for each device. Don’t worry—polling a device
that doesn’t require it has no effect. In the end, the code will be much cleaner.

Polling a device is done via IDirectInputDevice8::Poll:

HRESULT IDirectInputDevice8::Poll();

Reading In Data
At last! You’ve reached the goal of finally reading in device data, which is handled
by IDirectInputDevice8::GetDeviceState. You must pass a data buffer to this function so
that it can store the device’s information for your program’s use. For each device,
this data is different, as you soon see.

Here’s the function prototype:

HRESULT IDirectInputDevice8::GetDeviceState(
DWORD cbData, // size of buffer to store device data
LPVOID lpvData); // buffer to hold device data

Regardless of the device, you can read in the data with the following code bit. It takes
into account that you can lose focus of the device and reacquire it as needed. You
must pass a pointer to a buffer that is large enough to hold the device information, as
well as the amount of data to read in. In upcoming sections (“Using DirectInput with
the Keyboard,” “Using DirectInput with the Mouse,” and “Using DirectInput with
Joysticks”), I show you how to utilize the following function in each device’s data:

BOOL ReadDevice(IDirectInputDevice8 *pDIDevice, \
void *DataBuffer, long BufferSize)

{
HRESULT hr;

282 7. Interacting with DirectInput

CAUTION
Make sure to call Unacquire
on a device when you’re
done with it. Failing to do so
can result in a system hang.

while(1) {

// Poll device
g_pDIDevice->Poll();

// Read in state
if(SUCCEEDED(hr = g_pDIDevice->GetDeviceState(BufferSize,(LPVOID)DataBuffer)))

break;

// Return on an unknown error
if(hr != DIERR_INPUTLOST && hr != DIERR_NOTACQUIRED)

return FALSE;

// Reacquire and try again
if(FAILED(g_pDIDevice->Acquire()))

return FALSE;

}

// Return a success
return TRUE;

}

Using DirectInput
with the Keyboard
Here it is—how to set up and use the keyboard. The following initialization func-
tion returns the pointer to a newly created IDirectInputDevice8 object, or NULL if the
function failed. Just pass the handle to the parent window and the preinitialized
DirectInput object.

IDirectInputDevice8*InitKeyboard(HWND hWnd, IDirectInput8 *pDI)
{

IDirectInputDevice8 *pDIDevice;

// Create the device object
if(FAILED(pDI->CreateDevice(GUID_SysKeyboard, \

&pDIDevice, NULL)))
return NULL;

283Using DirectInput with the Keyboard

// Set the data format
if(FAILED(pDIDevice->SetDataFormat(&c_dfDIKeyboard))) {

pDIDevice->Release();
return NULL;

}

// Set the cooperative mode
if(FAILED(pDIDevice->SetCooperativeLevel(hWnd, \

DISCL_FOREGROUND | DISCL_NONEXCLUSIVE)))
pDIDevice->Release();
return NULL;

}

// Acquire the device for use
if(FAILED(pDIDevice->Acquire()))

pDIDevice->Release();
return NULL;

}

// Everything was a success, return the pointer
return pDIDevice;

}

The InitKeyboard function pretty much follows what I’ve already talked about in this
chapter. Later in the section “Using DirectInput with the Mouse,” you see that the
mouse init code is very similar, so I eventually wrap all this up into a single func-
tion in order to handle both in the core. To read in data from the keyboard, you
can now make use of the ReadData function.

First, you need to understand how the key-
board stores data. You must give it an array
that is 256 bytes in size, with each byte stor-
ing the status of a single key. That gives you
room for 256 keys. Each byte stores informa-
tion about the current state of the key—
whether or not it is being pressed. To find
the status of a key, check the high bit (bit 7).
If set, that key is pressed. If clear, the key is
not pressed.

284 7. Interacting with DirectInput

NOTE
Each key has a macro, prefixed
with DIK_, assigned to it in
DirectInput.The A key is defined
as DIK_A, the Esc key is DIK_ESCAPE,
and so on. Consult the DX SDK
or DInput.h for the other macros.

Here’s an example of creating and reading the keyboard:

// make sure to preinitialized a global DirectInput
// object and parent window handle
// g_pDI and g_hWnd
IDirectInputDevice8 *pDIDKeyboard;

// The data buffer to store the key states
char KeyStateBuffer[256];
if((pDIDKeyboard = InitKeyboard(g_hWnd, g_pDI)) != NULL) {

// read in the data
ReadData(pDIDKeyboard, (void*)KeyStateBuffer, 256);

}

You can create a macro to easily check the status of a key, whether it is pressed or
released. This macro gives you a value of TRUE if the key is pressed or FALSE if not.

#define KeyState(x) ((KeyStateBuffer[x] & 0x80) ? TRUE : FALSE)

Here is an example of using the macro:

if(KeyState(VK_LEFT) == TRUE) {
// Left arrow is being pressed

}

Using DirectInput
with the Mouse
Next in line is the mouse. Initializing the mouse is almost identical to initializing
the keyboard, except that you specify the mouse identifier and mouse data format:

IDirecInputDevice8* InitMouse(HWND hWnd, IDirectInput8* pDI)
{

IDirectInputDevice8 *pDIDevice;

// Create the device object
if(FAILED(pDI->CreateDevice(GUID_SysMouse,&pDIDevice, NULL)))

return NULL;

// Set the data format
if(FAILED(pDIDevice->SetDataFormat(&c_dfDIMouse))) {

285Using DirectInput with the Mouse

lpDIDevice->Release();
return NULL;

}

// Set the cooperative mode
if(FAILED(pDIDevice->SetCooperativeLevel(hWnd, \

DISCL_FOREGROUND | DISCL_NONEXCLUSIVE))) {
lpDIDevice->Release();
return NULL;

}

// Acquire the device for use
if(FAILED(lpDIDevice->Acquire())) {

lpDIDevice->Release();
return NULL;

}

// Everything was a success, return the pointer
return lpDIDevice;

}

A call to DirectInputDevice8::GetDeviceState fills a DIMOUSESTATE structure up with infor-
mation about the mouse such as relative movement and the state of the buttons.
You define the DIMOUSESTATE structure as follows:

typedef struct {
LONG lX; // Relative change in X coordinate
LONG lY; // Relative change in Y coordinate
LONG lZ; // Relative change in Z coordinate
BYTE rgbButtons[4]; // Button pressed flags

} DIMOUSESTATE, *LPDIMOUSESTATE;

Because the coordinate values reported from the DIMOUSESTATE structure are relative,
you need to track the absolute values. You do so by creating a couple of global vari-
ables that represent the absolute mouse coordinates, called g_MouseXPos and
g_MouseYPos, respectively.

Here’s how to create the object and then read in and process mouse information:

// make sure to preinitialize a global DirectInput
// object and parent window handle
// g_pDI and g_hWnd
IDirectInputDevice8 *pDIDMouse;

286 7. Interacting with DirectInput

// The mouse coordinates
long g_MouseXPos = 0, g_MouseYPos = 0;

// The data buffer to store the mouse state
DIMOUSESTATE MouseState;

if((pDIDMouse = InitMouse(g_hWnd, g_pDI)) != NULL) {
// read in the data
ReadData(pDIDMouse, (void*)MouseState, sizeof(DIMOUSESTATE));
// update the absolute coordinates
g_MouseXPos += MouseState.lX;
g_MouseYPos += MouseState.lY;

}

Just as you can use a macro to check the state of a key, you can do the same for the
mouse buttons:

#define MouseButtonState(x) ((MouseState.rgbButtons[x] & \
0x80) ? TRUE : FALSE)

To use it, just give it the mouse button you are checking:

if(MouseButtonState(0) == TRUE) {
// button 0 pressed

}

Using DirectInput
with Joysticks
In a way, this is the hardest device with which to work. The hardest part is setting it
up. You must enumerate to find the joystick devices that are hooked up to the system.
During the enumeration, you have to decide which joystick to use and then create the
COM object for it. For this book, you look only for the first joystick on the system.

// make sure to preinitialize a global DirectInput
// object and parent window handle
// g_pDI and g_hWnd
IDirectInputDevice8 *g_pDIDJoystick = NULL;

BOOL CALLBACK EnumJoysticks(LPCDIDEVICEINSTANCE pdInst, \
LPVOID pvRef)

{

287Using DirectInput with Joysticks

HRESULT hr;

g_pDIDJoystick = NULL;

The start of the enumeration is pretty basic. You create a global IDirectInputDevice8
object to use for the joystick. When the enumeration starts, it clears the interface
pointer to NULL, meaning that nothing is found. After enumeration, you can check
whether it’s still set to NULL, meaning that no joysticks were initialized.

As for the enumeration function arguments, pdInst is a pointer to a DIDEVICEINSTANCE
structure that contains information about the currently enumerated device. You
can now obtain the crucial device GUID from the guidInstance field in this struc-
ture, which you use to create the device interface.

The user-provided pointer, pvRef, is really not needed at this point because the par-
ent window handle is a global variable. You could pass a pointer to a data structure
that contains such information as this, but I find it easier to use the global method
at this point.

The next code bit follows the same pattern of creating a device interface as the oth-
ers, except that it returns the value DIENUM_CONTINUE to force the enumeration to con-
tinue if there was an error. Because more than one joystick might be on the system,
you deal here with only the first one possible:

// Create the device object using global DirectInput object
if(FAILED(g_pDI->CreateDevice(pdInst->guidInstance, \

&g_pDIDJoystick, NULL)))
return DIENUM_CONTINUE;

// Set the data format
if(FAILED(g_pDIDJoystick->SetDataFormat(&c_dfDIJoystick))) {

g_pDIDJoystick->Release();
g_pDIDJoystick = NULL;
return DIENUM_CONTINUE;

}

// Set the cooperative mode
if(FAILED(g_pDIDJoystick->SetCooperativeLevel(hWnd, \

DISCL_FOREGROUND | DISCL_NONEXCLUSIVE))) {
g_pDIDJoystick->Release();
g_pDIDJoystick = NULL;
return DIENUM_CONTINUE;

}

288 7. Interacting with DirectInput

TEAMFL
Y

Team-Fly®

You need to set the device properties now. These include the range of the joystick
axis values, as well as the dead zone. Filling a DIPROPRANGE structure with the required
values and using that structure in a call to DirectInputDevice8::SetProperty sets the
ranges. You define a DIPROPRANGE structure as follows:

typedef struct {
DIPROPHEADER diph; // DIPROPHEADER as seen previously
LONG lMin; // minimum value of range (X or Y axis)
LONG lMax; // maximum value of range (X or Y axis)

} DIPROPRANGE, *LPDIPROPRANGE;

First, initialize the structure:

DIPROPRANGE dipr;
// Clear out the structure first
ZeroMemory(&dipr, sizeof(DIPROPRANGE));
dipr.diph.dwSize = sizeof(dipr);
dipr.diph.dwHeaderSize = sizeof(dipr);

At this point, you set dipr.diph.dwObj to what you are setting, either the X- or Y-
coordinate. You can start with X and later switch to Y.

dipr.diph.dwObj = DIJOFS_X;
dipr.diph.dwHow = DIPH_BYOFFSET; // offset into data format

The first property you set is the X-axis range. Set the minimum and maximum values
to range from -1024 (far left) to +1024 (far right):

dipr.lMin = -1024;
dipr.lMax = 1024;

Now call IDirectInputDevice8::SetProperty to set the X-axis range:

if(FAILED(g_pDIDJoystick->SetProperty(DIPROP_RANGE, \
&dipr.diph))) {

g_pDIDJoystick->Release();
g_pDIDJoystick = NULL;
return DIENUM_CONTINUE;

}

Now you can set the Y-axis range. Just change the dwObj value and then set the prop-
erty again:

dipr.diph.dwObj = DIJOFS_Y;
if(gFAILED(g_pDIDJoystick->SetProperty(DIPROP_RANGE, \

&dipr.diph))) {

289Using DirectInput with Joysticks

g_pDIDJoystick->Release();
g_pDIDJoystick = NULL;
return DIENUM_CONTINUE;

}

That’s it! All you need to do now is set the deadzone range so that the joystick doesn’t
jitter when it’s moved slightly. You can safely set this to about 12 percent of the range.

dipdw.diph.dwObj = DIJOFS_X;
dipdw.dwData = 128;
if(FAILED(g_pDIDJoystick->SetProperty(DIPROP_DEADZONE, \

&dipdw.diph))) {
g_pDIDJoystick->Release();
g_pDIDJoystick = NULL;
return DIENUM_CONTINUE;

}

dipdw.diph.dwObj = DIJOFS_Y;
if(FAILED(g_pDIDJoystick->SetProperty(DIPROP_DEADZONE, \

&dipdw.diph))) {
g_pDIDJoystick->Release();
g_pDIDJoystick = NULL;
return DIENUM_CONTINUE;

}

At last the device is initialized, and it is time to acquire the device and stop the enu-
meration:

// Acquire the device for use
if(FAILED(g_pDIDJoystick->Acquire())) {

g_pDIDJoystick->Release();
g_pDIDJoystick = NULL;
return DIENUM_CONTINUE;

}
// Stop enumeration
return DIENUM_STOP;

}

g_pDIDJoystick will now be the pointer to the new object, or it will equal NULL if no
joystick was initialized. Once the device object is initialized, you can read in infor-
mation just as you did before with the keyboard and mouse, but use a DIJOYSTATE
structure with the ReadData function. Here’s a look at the DIJOYSTATE structure:

290 7. Interacting with DirectInput

typedef struct DIJOYSTATE {
LONG lX; // Absolute value for X coordinate
LONG lY; // Absolute value for Y coordinate
LONG lZ; // Absolute value for Z coordinate
LONG lRx; // X rotation value
LONG lRy; // Y rotation value
LONG lRz; // Z rotation value
LONG rglSlider[2]; // Slider values
DWORD rgdwPOV[4]; // POV values
BYTE rgbButtons[32]; // Button flags (for 32 buttons)

} DIJOYSTATE, *LPDIJOYSTATE;

Now that you have the enumeration function down, you can set up the joystick with
the following:

g_pDI->EnumDevices(DIDEVTYPE_JOYSTICK, EnumJoysticks, \
NULL, DIEDFL_ATTACHEDONLY);

if(g_pDIDJoystick == NULL) {
// no joystick initialized

}

To read in data from the joysticks, call ReadData with a DIJOYSTATE structure:

DIJOYSTATE JoystickState;
ReadData(g_pDIDJoystick, (void*)JoystickState, \

sizeof(DIJOYSTATE));

You can retrieve the axis values directly from the JoystickState structure, as the
coordinates are absolute. There’s no need to track the relative movements here:

JoystickX = JoystickState.lX;
JoystickY = JoystickState.lY;

Also, the same macro for reading the button states still applies here:

#define JoystickButtonState(x) ((JoystickState.rgbButtons[x] \
& 0x80) ? TRUE : FALSE)

Wrapping Up Input
The information in this chapter, which focuses on the three most common input
devices—the keyboard, mouse, and joystick, should prepare you for the current world
of input devices. With technology constantly moving forward, however, new input
devices are sure to come along that you’ll want to incorporate into your game projects.

291Wrapping Up Input

Think of the possibilities—virtual reality headgear, full-body biofeedback suits, and
even brainwave scanners—all fully DirectInput-compatible! In such a world, you
will be able to use sundry devices effortlessly, following the techniques you learned
in this chapter.

292 7. Interacting with DirectInput

Programs on the CD-ROM

Programs that demonstrate the code discussed in this chapter are on the
CD-ROM at the back of this book.You can find the following programs in
the \BookCode\Chap7\ directory:

◆ Shell. A shell application that initializes DirectInput and devices
for you. Location: \BookCode\Chap7\shell\.

◆ Enum. A program that uses the enumeration example from this
chapter to display all input devices connected to the system.
Location: \BookCode\Chap7\Enum\.

◆ Keyboard. A program that creates a keyboard interface and reads
data from it. Location: \BookCode\Chap7\Keyboard\.

◆ Mouse. A program that creates a mouse interface and reads data
from it. Location: \BookCode\Chap7\Mouse\.

◆ Joystick. A program that creates a joystick interface and reads data
from it. Location: \BookCode\Chap7\Joystick\.

CHAPTER 8

Playing
Sound with

DirectX
Audio

Music soothed the savage beast, and it will be a combination of sound and
music that will soothe us. Anyway, what fun would a game be without sound?

It would be like watching a killer movie such as The Matrix as a silent film! No loud
explosions, kicking sound track, or actors talking to make the movie what it is—a
total multimedia experience.

Your game deserves the same level of experience that you have watching a movie,
including music and sound effects. You can do all this with DirectX Audio,
Microsoft’s latest addition to DirectX. DirectX Audio is the combination of
DirectSound and DirectMusic from previous versions, and although the two still
remain as separate components, they are more intertwined in this release.

In this chapter, you learn about the following:

■ The basic properties of sound
■ Digital audio and music formats
■ How to use DirectX Audio in your own project
■ How to work with DirectSound
■ How to make DirectMusic sing

Sound Basics
If a tree falls in the forest and nobody is around to hear it, does it make a sound?
Although this is often considered a peculiar question, it does make sense. Sounds
are simply waves traveling through a medium, such as air. For all practical pur-
poses, these waves are “nothing” until they enter an ear canal and stimulate the
eardrum, thus replicating the sound.

Most natural sounds have a “clean” wave in which you can visually see the clarity of
its pattern. A sine wave is the perfect example of a clean wave—the sine wave rises
and falls in a consistent pattern. Other waves, such as those from a human voice,
are very complex, as they rise and drop in level very quickly and without a consis-
tent pattern. Figure 8.1 shows two different sound waves.

Every sound has unique properties, such as amplitude (volume level) and fre-
quency. Over a period of time, you can record the properties of sounds in order to
digitally record them and play them back.

294 8. Playing Sound with DirectX Audio

In addition, you can use these sounds with music—for example, to play a composi-
tion on your computer. By recording sounds, such as a piano or a violin, you could
almost realistically duplicate a real-world song. Imagine playing a Mozart piece and
not knowing whether it’s a real symphony playing or replicated!

Recording Digital Sounds
The basis of recording and using digital sounds isn’t too hard to comprehend. In gen-
eral, you take a sound, say two seconds in length, and examine the sound wave from
start to finish at a specific time rate (sampling rate), which is measured in hertz (Hz).

Say that you want to record a two-second sound at 11,025 Hz, which means the
sound is split into 22,050 sections (with 11,025 sections per second). Those sections
are called samples. For each sample, you examine the amplitude of the sound wave
at each sample’s position within the wave, which measures the wave’s volume level
at that period of time. You record this value and move on to the next sample.
When you have completed reading the volume level of each sample in the wave,
you will have a digital representation of the sound.

Figure 8.2 shows a sound wave split into a couple of samples. When digitized, the
sound loses its “wave” shape. The digitized wave does not maintain the shape of the
original wave because there are not enough samples to model the original wave
correctly.

As you might be able to surmise, the higher the sampling rate used to capture the
sound wave, the better you’re able to replicate the original sound. “What sampling
rate is the best,” you ask? I don’t have a set answer for you, but depending on the
level of quality you want, use one of the following: 8000 Hz, 11,025 Hz, 22,050 Hz,
or 44,100 Hz. The last level is the level that audio CDs use.

295Sound Basics

Simple Sound Wave Complex Sound Wave

Figure 8.1

Sound waves can have a
simple, clean shape or can
be very complex.

The next thing you need to understand is storage. When you grab a sample from
the wave, you have a level value representing the amplitude. You have the choice of
storing this value as either 8 bits or 16 bits. This means that you can have 256 levels
using an 8-bit sampling or 65,536 levels using a 16-bit sampling.

Choose the higher value in order to have more levels to replicate. The 8-bit sam-
plings are muffled and should be used only for low-quality sounds. Try to always
use 16-bit sound, even though it’s double the size—it’s worth it.

Last, you decide how many channels to use. Stereo sounds (those that are different
on the left and right sides) have two channels. Mono sounds have only one channel;
thus, both sides sound the same.

You can store digital sounds in a number of ways, and you can use different encryp-
tion and compression methods for them. I always store them in the uncompressed
Windows wave file format (.WAV) because it is the most popular (and therefore sup-
ported) way to store sound.

A bare-bones wave file contains a single sound, which is preceded with a header of
data that describes it. Windows has a lot of wave functions in the Win32 SDK, so con-
sult the documents there for more information on dealing with those wave functions.

Musical Madness
Music takes many forms, and you can record and play it back many ways.
Technological breakthroughs give us the ability to enjoy music that utilizes digital
sounds, thus increasing our listening experience.

296 8. Playing Sound with DirectX Audio

Samples Samples

A
m

plitudeA
m

pl
itu

de

Time Time

Original Sound Wave Digitized Sound Wave

Figure 8.2

The original wave on
the left has been split
over time into multiple
samples.You can use
those samples to
create a digital
representation of the
sound as shown on
the right.

Music is nothing more than a series of notes, played and stopped at various ampli-
tudes and times. Many instruments can be used to play a single song, but they all
operate the same—by means of using notes. When you write a song on a computer,
you store the notes and play them back using sound hardware.

Midi
The Midi format (identified by the .MID extension) is a standard for storing musi-
cal scores. Midi files contain the messages, or directions, needed for playing a song.
These directions tell the sound hardware what to do and when to do it, including
when and how to play and release a note, change the tempo, play a different
instrument, and so on.

Midi uses up to 128 standardized instruments, enabling you, for example, to com-
pose a song using instrument 0 (which represents a piano). When others listen to
the song, their playback device ensures that the instrument specified is the one that
is played.

Songs are separated into tracks with each track containing the notes to be played
by a single instrument. You can have approximately 128 tracks in a single file, and
the length is not restricted. That means some major music madness!

Your computer is not the only one that can play Midi songs; so can Midi-enabled
musical devices such as a synthesizer. That’s right. You can hook up your computer
system to an actual musical device and have the device play that instrument data
for you.

DirectMusic
The DirectMusic format is similar to the Midi format; however, the DirectMusic for-
mat adds more functionality, such as the ability to create dynamic musical sequences
that consistently provide unique musical experiences. You can alter chords, tempo,
and instruments during playback, thereby creating a powerful system.

DirectMusic musical segments (the actual song file) use the .SGT file extension.
Other related files include bands (.BND) that contain instrument information,
chordmaps (.CDM) that contain chords to alter playback, styles (.STY) for creating
playback style, and templates (*.TPL) for constructing musical segments.

When you construct a DirectMusic song, all the necessary files are handled auto-
matically by DirectMusic (so from now on, I refer to a DirectMusic song as being in
native format). All this means is that you must deal with only segment files.

297Sound Basics

Understanding DirectX Audio
DirectX Audio is composed of the two DirectX components, DirectSound
and DirectMusic. Of the two components, DirectMusic is the most improved
(DirectSound remains almost the same as it was in the prior version).

DirectSound is the main component used for digital sound playback. DirectMusic
handles all song formats—including Midi, DirectMusic native format, and wave
files—and sends them to DirectSound for digital reproduction (as you can see in
Figure 8.3). This means that, with Midi, you can use digitally-recorded instruments
during playback.

Now that you have a little background, you are ready to learn how to use DirectSound
and DirectMusic, which I explain in the remaining sections of this chapter.

Using DirectSound
Although DirectSound might seem complicated at first, it really is not difficult to
understand and use. You create a COM object that interfaces with the sound hard-
ware. With this COM object, you’re then able to create individual sound buffers
(called secondary sound buffers) that store sound data.

The data in these sound buffers are mixed together into a main mixing buffer
(called the primary sound buffer) and played back in any sound format you specify.
These playback formats can range in frequency, number of channels, and bits per
sampling. Viable frequencies are 8000 Hz, 11,025 Hz, 22,050 Hz, and 44,100 Hz
(CD audio quality).

You have two choices for the number of channels: one channel for monaural
(mono) sound or two channels for stereo sound. The number of bits is also limited
to two settings: 8 bits for lower-quality sound reproduction and 16 bits for high-
quality sound reproduction. DirectSound has a default setting of 22,025 Hz, 8-bit
samplings, stereo, if you don’t manually adjust it.

You can modify the sound channels to play at different frequencies (thus changing
the pitch), alter the volume and panning during playback, and even loop the sound.
Not only that, but sounds can also be played in a virtualized 3D environment, simu-
lating real sounds as they move around you.

298 8. Playing Sound with DirectX Audio

TEAMFL
Y

Team-Fly®

It’s your job to take sounds and stuff them into these sound buffers. For sounds
that are very large, you create a streaming playback method that loads small chunks
of sound data, and once that has played, you stuff the next chunk of data in the
sound buffer. This process continues until the sound is fully played.

You accomplish streaming by setting positions within the sound buffer that, when
reached, signal the application that it’s time to update the sound data. This process
of signaling an update is called notification. You aren’t limited to how many buffers
can be playing at one time, but you should keep the buffers low because each
buffer adds to the processing and memory overhead.

It really isn’t hard to work with DirectSound. In fact, in this book, you work with
only the three interfaces shown in Table 8.1.

Figure 8.4 shows the relationship each object has to each other. IDirectSound8 is the
main interface, from which you create sound buffers (IDirectSoundBuffer8). A sound
buffer then can create its own notification interface (IDirectSoundNotify8) that you
use for marking positions with the sound buffer that notifies you when reached.
This notification interface is useful for streaming sounds.

299Using DirectSound

Sound Card

DirectSound
DirectMusic

DirectX Audio

Figure 8.3

DirectX Audio uses
separate DirectMusic
and DirectSound
components, but allows
DirectMusic to use
DirectSound to
synthesize instrument
sounds and play them
through your sound
card.

Initializing DirectSound
Before anything else, you need to include DSound.h and link in DSound.lib. Other
than that, the first step to using DirectSound is the creation of the IDirectSound8
object, which is the main interface representing the sound hardware. You accom-
plish this with the help of the DirectSoundCreate8 function:

HRESULT WINAPI DirectSoundCreate8(
LPCGUID lpcGuidDevice, // set to NULL (default sound device)
LPDIRECTSOUND8 *ppDS8, // object you are creating
LPUNKNOWN pUnkOuter); // NULL - not used

300 8. Playing Sound with DirectX Audio

Table 8.1 DirectSound COM Interfaces

Interface Description

IDirectSound8 The main DirectSound interface object.

IDirectSoundBuffer8 Primary and secondary sound buffer object. Stores data
and controls playback.

IDirectSoundNotify8 Notification object. Notifies the application when specific
positions are reached within a sound buffer.

IDirectSound8

IDirectSoundBuffer

IDirectSoundBuffer8

IDirectSoundNotify8IDirectSoundNotify8

IDirectSoundBuffer8

Figure 8.4

You obtain sound buffers from
the IDirectSound8 object.
IDirectSoundNotify8 objects
are created from their parent
IDirectSoundBuffer8 objects.

Using the DirectSoundCreate8 function and a global
IDirectSound8 object instance, you can initialize
the sound system object as follows:

IDirectSound8 *g_pDS; // global IDirectSound8
object
if(FAILED(DirectSoundCreate8(NULL, &g_pDS, NULL))) {

// Error occurred
}

Setting the
Cooperative Level
The next step in initialization is to set the cooperative level of the IDirectSound8 object.
You use the cooperative level to determine how to share the sound card resources
with other applications. Do you want the card all to yourself, not letting others play
with it; or do you want to share access? Or do you need a special playback format
that doesn’t jive with the default one?

Setting the cooperative level is the job of IDirectSound8::SetCooperativeLevel. There
are four cooperative levels to work with, as shown in Table 8.2. Each one has its
own macro to specify in DirectSound.

Here’s the prototype of the IDirectSound8::SetCooperativeLevel function:

IDirectSound8::SetCooperativeLevel(
HWND hwnd, // handle to parent window
DWORD dwLevel); // cooperative level from Table 8.2

What cooperative level should you use?
That really depends on the type of applica-
tion you’re creating. For full-screen appli-
cations, use exclusive. Otherwise, I
recommend priority level. The only caveat
when using a level other than the normal
level is that you need to specify a playback
format. I show you how to do that in the
upcoming section, “Setting the Playback
Format.”

301Using DirectSound

NOTE
This function, like all
DirectSound functions,
returns DS_OK if the call was
successful, or another error
value if not.To make error
checking easier, you can
make use of the FAILED and
SUCCEEDED macros to test
return values.

TIP
I highly recommend using the
priority cooperative level because
you have control of the primary
buffer, even if you don’t want to
change the playback format.This
way, you can easily alter the main
volume as well as control panning
changes during playback.

For now, here is an example of setting the cooperative level to priority using a pre-
initialized IDirectSound8 object:

// g_pDS = pre-initialized IDirectSound8 object
// hWnd = pre-initialized handle to the parent window
if(FAILED(g_pDS->SetCooperativeLevel(hWnd, DSSCL_PRIORITY))) {

// Error occurred
}

Setting the Playback Format
The last step to initializing DirectSound is grabbing control of the primary sound
buffer and setting the playback format of the system, but only if you are using a
cooperative level other than normal. This is a two-step process: first using the
IDirectSound8 object to create the buffer interface and second using the interface
to modify the format.

302 8. Playing Sound with DirectX Audio

Table 8.2 DirectSound Cooperative Levels

Level Macro Description

Normal DSSCL_NORMAL The normal level; lets all programs access
the sound card at once using a default play-
back format of 8-bit, 11025 Hz, 1 channel
(mono).This format cannot be changed.

Priority DSSCL_PRIORITY Same as normal, but lets you change the
playback format.

Exclusive DSSCL_EXCLUSIVE Exclusive use of the sound card; no other
application gets to use the sound device
while your application is active (in the fore-
ground).You specify the playback format.

WritePrimary DSSCL_WRITEPRIMARY An advanced level that gives you complete
control of the system.You gain access only
to the primary sound buffer (no secondary
buffers allowed).This is for programmers
who want to code their own mixer, so I
won’t go any further on this one.

Creating the Primary
Sound Buffer Object
An IDirectSoundBuffer object represents the primary sound buffer. No need for a
version 8 interface here, as there was no change in the mixing system of this DX
release. The function that creates a sound buffer (either primary or secondary)
is IDirectSound8::CreateSoundBuffer, and it looks like this:

HRESULT IDirectSound8::CreateSoundBuffer(
LPCDSBUFFERDESC pcDSBufferDesc, // description of buffer
LPDIRECTSOUNDBUFFER *ppDSBuffer, // buffer object to create
LPUNKNOWN pUnkOuter); // NULL - not used

pcDSBufferDesc is a pointer to a DSBUFFERDESC structure, which holds a variety of infor-
mation about the buffer you are creating. For the primary buffer, you’re not going
to use all the features the sound object provides, but here is the entire structure:

typedef struct {
DWORD dwSize; // Size of this structure
DWORD dwFlags; // Flags describing abilities of buffer
DWORD dwBufferBytes; // Size of sound buffer
DWORD dwReserved; // Not used - set to 0
LPWAVEFORMATEX lpwfxFormat; // playback format
GUID guid3DAlgorithm; // GUID_NULL (3D playback algorithm)

} DSBUFFERDESC, *LPDSBUFFERDESC;

The fields are pretty much self-explanatory, except for lpwfxFormat. This points to
a structure describing the playback format of the buffer being created. Because
you’re not dealing with that one for now, skip it until later. As for dwSize, the
primary sound buffer already exists, so set dwSize to 0.

The only thing you need to work
with right now is dwFlags, which is a
set of flags determining the capa-
bilities of the buffer you are creat-
ing. Table 8.3 shows all the possible
flags you can use.

303Using DirectSound

NOTE
DirectSound automatically sets up a data
buffer used for the primary sound buffer
because there’s no telling whether the
buffer is located in system or hardware
memory. Also, setting the playback format
of the primary sound buffer is accom-
plished a little differently, so you need
to set the lpwfxFormat pointer to NULL.

304 8. Playing Sound with DirectX Audio

Table 8.3 Flags for Sound Buffer Creation

Flag Description

DSBCAPS_CTRL3D Buffer has 3D capabilities.

DSBCAPS_CTRLFREQUENCY Allows on-the-fly frequency changes during play-
back of buffer.

DSBCAPS_CTRLFX Buffer allows effects processing.

DSBCAPS_CTRLPAN Buffer has panning capabilities.

DSBCAPS_CTRLPOSITIONNOTIFY Buffer has notification capabilities.

DSBCAPS_CTRLVOLUME Allows on-the-fly volume adjusting to buffer.

DSBCAPS_GETCURRENTPOSITION2 This flag lets you ask a buffer exactly where its
playing position is.

DSBCAPS_GLOBALFOCUS Makes this a global sound buffer, which means it’s
audible even when another program is active.

DSBCAPS_LOCDEFER Allows this buffer to use hardware and software
resources.

DSBCAPS_LOCHARDWARE Forces hardware resources, such as mixing and
hardware memory storage.

DSBCAPS_LOCSOFTWARE Forces software resources, such as mixing and
system memory storage.

DSBCAPS_MUTE3DATMAXDISTANCE This forces 3D sounds to stop playing when they
reach the maximum distance from the listener.

DSBCAPS_PRIMARYBUFFER Makes this buffer the primary sound buffer. Only
use this once, and only when using a cooperative
level other than normal.

DSBCAPS_STATIC Places this buffer in hardware memory if available.
Use only for small sounds.

DSBCAPS_STICKYFOCUS Forces a buffer to continue playing when user
switches to other applications that do not use
DirectSound. Buffers are muted when this occurs,
unless this flag is specified.

The only flags of use to you now are
DSBCAPS_PRIMARYBUFFER and DSBCAPS_CTRLVOLUME.
Those flags are telling DirectSound that
you want to create an interface to the
primary sound buffer and to make sure
that you have a master volume control.
Later on, I talk about the rest of these
flags.

Here you jump ahead and grab the primary sound buffer interface:

IDirectSoundBuffer g_pDSPrimary; // global access
DSBUFFERDESC dsbd; // buffer description
ZeroMemory(&dsbd, sizeof(DSBUFFERDESC)); // zero out structure
dsbd.dwSize = sizeof(DSBUFFERDESC); // set structure size
dsbd.dwFlags = DSBCAPS_PRIMARYBUFFER | DSBCAPS_CTRLVOLUME;
dsbd.dwBufferBytes = 0; // no buffer size
dsbd.lpwfxFormat = NULL; // no format yet
if(FAILED(g_pDS->CreateSoundBuffer(&dsbd, &g_pDSPrimary, \

NULL))) {
// Error occurred

}

Setting the Format
Now that you have control of the primary sound buffer, it is time to set the playback
format of the system. You have a number of choices, but I recommend using a sen-
sible setting, such as 11,025 Hz, 16-bit samples, mono or 22,050 Hz, 16-bit samples,
mono.

When picking the format, try not to use stereo. Using stereo is a waste of process-
ing time, as true stereo sound effects are hard to record. Also, always try to use 16-
bits per sample because the quality is much better than 8-bit. Never settle for less!
As for the frequency, the higher the better, but don’t go over 22,050 Hz. Even
CD-quality audio can be played nicely at 22,050 Hz without much loss.

That being said, let’s move on. You set the playback format via a call to
IDirectSoundBuffer::SetFormat:

HRESULT IDirectSoundBuffer::SetFormat(
LPCWAVEFORMATEX pcfxFormat);

305Using DirectSound

CAUTION
Certain flags are not allowed with
the primary buffer, such as frequency
control flags. Including such flags will
cause the creation of the primary
sound buffer object to fail.

The one and only argument is a pointer to a
WAVEFORMATEX structure, which holds the format
information you want to set:

typedef struct {
WORD wFormatTag; // set to WAVE_FORMAT_PCM
WORD nChannels; // 1 for mono, 2 for stereo
DWORD nSamplesPerSec; // sampling rate
DWORD nAvgBytesPerSec; // # bytes per second of format
WORD nBlockAlign; // alignment of sample data
WORD wBitsPerSample; // 8 or 16
WORD cbSize; // not used

} WAVEFORMATEX;

You should be able to follow it easily, except for two fields, nBlockAlign and
nAvgBytesPerSec. nBlockAlign is the number of bytes used for each sampling in the
sound. Set this to

nBlockAlign = (nBitsPerSample / 8) * nChannels;

nAvgBytesPerSec is the number of bytes per second of sound. This takes into account
the sampling rate and block alignment and can be calculated as

nAvgBytesPerSec = nSamplesPerSec * nBlockAlign;

Now that you have this information, it’s time to try it out! I’m going to set the for-
mat to 22,050 Hz, 16-bit, mono:

// g_pDSPrimary = pre-initialized global primary sound buffer
WAVEFORMATEX wfex;
ZeroMemory(wfex, sizeof(WAVEFORMATEX));
wfex.wFormatTag = WAVE_FORMAT_PCM;
wfex.nChannels = 1; // mono
wfex.nSamplesPerSec = 22050; // 22050hz
wfex.wBitsPerSample = 16; // 16-bit
wfex.nBlockAlign = (wfex.wBitsPerSample / 8) * wfex.nChannels;
wfex.nAvgBytesPerSec = wfex.nSamplesPerSec * wfex.nBlockAlign;
if(FAILED(g_pDSPrimary->SetFormat(&wfex))) {

// Error occurred
}

306 8. Playing Sound with DirectX Audio

CAUTION
This function can
only be called on
a primary sound
buffer object, and
it must not be a
version 8 interface.

Jump-Starting the
Primary Sound Buffer
You finally have control of the sound system and are ready to rock! You only need
to get the primary buffer to start playing. Even though there are no sounds, it’s
best to start the buffer now and to keep it going until you’re finished with the
whole sound system. Starting the buffer playing at the start of your application
saves processing time when starting and stopping.

Before showing you how to start the
buffer playing, I want to describe the
primary sound buffer. Because memory
resources can be limited, especially in
hardware, the data buffer you use can
be any size (even a few thousand bytes).
For this reason, the primary sound
buffer and the secondary sound buffers
use circular buffers.

You can see a visual example of a circular buffer in Figure 8.5. Even though the
data buffer is a one-dimensional array of data, it wraps back to the beginning.
This is a powerful technique that is capable of saving large amounts of memory.

307Using DirectSound

NOTE
A circular buffer is a term used to
describe a data buffer that wraps
around to the beginning when the
end has been reached, thus forming
an endless loop, or circle.

Circular Buffer

Sound Data

End Start

Figure 8.5

Circular buffers always wrap around, connecting
the start and end of the buffer so that sounds can
continuously wrap around for seamless playback.

Sounds, as they are played, get mixed into the primary sound buffer’s circular data
buffer. Once the end of the sound buffer is reached, the sound loops back to the
beginning of the buffer and continues to play the sound seamlessly. In order to use
a buffer’s looping feature, you must specifically enable looping playback; otherwise,
the buffer’s playback stops when the end of the buffer is reached.

In order to play a sound buffer (with the option to loop playback), you must call
the sound buffer’s Play function, which looks like this:

HRESULT IDirectSoundBuffer8::Play(
DWORD Reserved1, // must be 0
DWORD Priority, // mixing priority - use 0
DWORD dwFlags); // playback flags

The only argument you need to be interested in here is dwFlags, which has two
settings: 0, which forces the sound buffer to play once and stop when the end is
reached, and DSBPLAY_LOOPING, which tells the sound to wrap around to the begin-
ning in an endless loop when the end is reached.

For the primary sound buffer, this is exactly what you want, and here is how you do
it:

g_pDSPrimary->Play(0, 0,
DSBPLAY_LOOPING))) {

// Error occurred
}

When you’re done with the
primary sound buffer (and the
sound system in general), you
need to stop it with a call to
IDirectSoundBuffer::Stop, which
takes no arguments:

if(FAILED(g_pDSPrimary->Stop())) {
// Error occurred

}

Using Secondary Sound Buffers
Next in line is the creation of secondary sound buffers that will hold the actual
sound data you want to play. There’s no limit to the number of secondary sound
buffers you can have at once, and with the capabilities of DirectSound, you’re able
to play them all at once if you want!

308 8. Playing Sound with DirectX Audio

CAUTION
The primary sound buffer will not stop playing
unless all secondary sound buffers are first
stopped.Anytime a secondary sound buffer
is played, it automatically starts the primary.

TEAMFL
Y

Team-Fly®

You accomplish this by stuffing the primary sound buffer with the sound data con-
tained in the secondary sound buffers (similar to the process illustrated in Figure 8.6).
This data is mixed as it goes along, so writing one sound and then another at the
same location in the primary sound buffer will play the two sounds at the same time.

Secondary sound buffers use the IDirectSoundBuffer8 object, which is very similar to
the IDirectSoundBuffer object. In fact, to create the version 8 interface, you must first
create an IDirectSoundBuffer object and query for the newer one.

The only difference here in creating a secondary sound buffer is that you must set
the playback format while initializing it. This means that the buffer will have only
one format to use. If you need to change the format, you have to release the buffer
and create another one.

Again, you’re going to use the WAVEFORMATEX structure to store the format and the
DSBUFFERDESC to describe the capabilities of the buffer. However, this time, you spec-
ify a pointer to the WAVEFORMATEX structure inside the DSBUFFERDESC structure.

Here’s an example of creating a secondary sound buffer using a 22,050 Hz, 16-bit,
mono format. I give the buffer two seconds worth of storage (because, at this point,
I have no real sound to put in there) along with volume, panning, and frequency
control.

// g_pDS = pre-initialized IDirectSound8 object
IDirectSoundBuffer8 *g_pDSBuffer; // v8 global object we want
IDirectSoundBuffer *pDSB; // local sound buffer

309Using DirectSound

Secondary Sound Buffers

Primary Sound Buffer

Figure 8.6

Secondary sound buffers mix together
inside the primary sound buffer before
being played.

// Set up the WAVEFORMATEX structure
WAVEFORMATEX wfex;
ZeroMemory(wfex, sizeof(WAVEFORMATEX));
wfex.wFormatTag = WAVE_FORMAT_PCM;
wfex.nChannels = 1; // mono
wfex.nSamplesPerSec = 22050; // 22050hz
wfex.wBitsPerSample = 16; // 16-bit
wfex.nBlockAlign = (wfex.wBitsPerSample / 8) * wfex.nChannels;
wfex.nAvgBytesPerSec = wfex.nSamplesPerSec * wfex.nBlockAlign;

// Set up the DSBUFFERDESC structure
DSBUFFERDESC dsbd;
ZeroMemory(&dsbd, sizeof(DSBUFFERDESC)); // zero out structure
dsbd.dwSize = sizeof(DSBUFFERDESC); // need to zero-out
dsbd.dwFlags = DSBCAPS_CTRLFREQUENCY | DSBCAPS_CTRLVOLUME | \

DSBCAPS_CTRLPAN;
dsbd.dwBufferBytes = wfex.nAvgBytesPerSec * 2; // 2 seconds
dsbd.lpwfxFormat = &wfex;

// Create the first version object
if(FAILED(g_pDS->CreateSoundBuffer(&dsbd, &pDSB, NULL))) {

// Error occurred
} else {

// Get the version 8 interface
if(FAILED(pDSB->QueryInterface(IID_IDirectSoundBuffer8, \

(void**)&g_pDSBuffer))) {
// Error occurred - free first interface first
// and then do something
pDSB->Release();

} else {
// release the original interface - all a success!
pDSB->Release();

}
}

Lock and Load—Loading
Sound Data into the Buffer
Great! The sound buffer is created, and now you’re ready to play sounds! The only
problem now is getting the sound data into the buffers. Sound buffers have a pair of

310 8. Playing Sound with DirectX Audio

functions at their disposal: IDirectSoundBuffer8::Lock, which deals with locking the sound
data buffer and retrieving pointers to the data buffer, and IDirectSoundBuffer8::Unlock,
which releases the resources used during a lock operation.

When you lock a buffer, you are preparing it for write access. You tell the buffer
the offset (in bytes) from which you want to start reading and the number of bytes
you’re going to access. In return, you receive two pointers to the data and two vari-
ables telling you how much data to access.

Why do you get two pointers and two sizes? Because the sound buffers are circular,
you might have to wrap around to the start of the buffer to lock the requested
number of bytes. The first pointer is the position you request, and the first size is
clipped to the end of the buffer. The second pointer is usually the start of the
buffer, and the second size is the remaining number of locked bytes that extend
past the end of the sound buffer. Figure 8.7 shows an example of a data buffer with
two pointers and sizes.

The lock function prototype looks like this:

HRESULT IDirectSoundBuffer8::Lock(
DWORD dwOffset, // offset in buffer where to lock
DWORD dwBytes, // # of bytes to lock
LPVOID *ppvAudioPtr1 , // pointer to 1st data pointer
LPDWORD *ppwAudioBytes1, // pointer to 1st size
LPVOID *ppvAudioPtr2, // pointer to 2nd data pointer
LPDWORD *ppwAudioBytes2, // pointer to 2nd size
DWORD dwFlags); // locking flags

311Using DirectSound

Sound Length = 65,536 Bytes

Pointer Wraps
Around at End

Pointer +
Size 1

Pointer +
Size 2

60,000 Bytes

2,000 Bytes

Figure 8.7

Here, a data buffer 65,536 bytes
in size has been locked in order
to access 62,000 bytes.The first
data pointer accesses 60,000
bytes, while the second data
pointer accesses the remaining
2,000 bytes.

Notice a couple things here. First,
you need to pass the pointers to the
pointers and sizes you are requesting.
Second, you see dwFlags, which has
three options: 0 to lock the section
you are asking for, DSBLOCK_FROMWRITE-
CURSOR to lock at the current write
position, and DSBLOCK_ENTIREBUFFER to
lock the entire buffer and skip the
requested offset
and size.

Now, you can
go ahead and
lock the
whole data
buffer and
throw in some
random data:

// g_pDSBuffer = pre-initialized secondary sound buffer
char *Ptr;
DWORD Size;
if(SUCCEEDED(g_pDSBuffer->Lock(0,0,(void**)&Ptr, \

(DWORD*)&Size,NULL,0,DSBLOCK_ENTIREBUFFER))) {
for(long i=0;i<Size;i++)

Ptr[i] = rand() % 65536;

At this point, you’re through with the buffer and ready to unlock it, thus releasing
the resources used in the process. You do this with IDirectSoundBuffer8::Unlock:

HRESULT IDirectSoundBuffer8::Unlock(
LPVOID pvAudioPtr1, // the 1st data pointer
DWORD dwAudioBytes1, // the 1st size
LPVOID pvAudioPtr2, // the 2nd data pointer
DWORD dwAutioBytes2); // the 2nd size

You need to pass only the values (not the pointers to them) received from locking
the buffer:

if(FAILED(g_pDSBuffer->Unlock((void*)Ptr, Size, NULL, 0))) {
// Error occurred

}
}

312 8. Playing Sound with DirectX Audio

CAUTION
When you lock the sound buffer, make
sure that you unlock it as quickly as
possible.Taking too long during a lock
can cause undesirable effects.Also,
don’t try to lock a portion of data that
is currently being played.

TIP
It’s best to set dwFlags to 0 — this ensures that you get exactly
the position and the amount of bytes you are requesting.Also,
if you don’t want a second data pointer or size, set those appro-
priate variables to NULL and 0, respectively.

Playing the Sound Buffer
Now that the sound buffer is locked and the data is loaded, it is time to play the
sound. The function call for playing a secondary sound buffer is identical to the
primary sound buffer, described earlier in the chapter. This time, however, you
don’t want the sound to loop, so you exclude the DSBPLAY_LOOPING flag.

The only noteworthy difference at this point is that you need to tell the sound
buffer where to start playing from within the buffer. Normally, the first time you
play the sound, you play it from the start. However, stopping a sound doesn’t reset
the playing position because you can pause a sound just by stopping it, and then
call the play function again to pick up from where it was last stopped. Setting the
play position is easy with the following function:

HRESULT IDirectSoundBuffer8::SetCurrentPosition(
DWORD dwNewPosition);

This function has only one argument—the offset in which you want the sound to
start playing. You must align this to the sampling block size, as defined when you
created the buffer. If you want to start the sound buffer playing at the beginning
each time you play it, try the following code:

// g_pDSBuffer = initialized sound buffer pre-loaded with data
if(SUCEEDED(g_pDSBuffer->SetCurrentPosition(0))) {

if(FAILED(g_pDSBuffer->Play(0,0,0))) {
// Error occurred

}
}

In order to stop playback, just use the IDirectSoundBuffer8::Stop function:

if(FAILED(g_pDSBuffer->Stop())) {
// Error occurred

}

Altering Volume, Panning,
and Frequency Settings
When the correct flags are used to create the sound buffer, you can alter the vol-
ume, panning, and frequency of the sound buffer, even while it’s playing! This
means adding some great functions to your sound system, but don’t go crazy—
these capabilities strain the system a bit. Exclude the flags of unused features
while creating the buffers.

313Using DirectSound

Volume Control
Volume is a bit strange to deal with at first. DirectSound plays sounds at full volume
as they are sampled. It will not amplify sounds to make them louder, because that’s
the purpose of the actual sound hardware.

DirectSound only makes
sounds quieter. It does this
by attenuating the sound
level, which is measured in
hundredths of decibels
ranging from 0 (full vol-
ume) to -10,000 (silence).
The problem is that the sound
can drop to silence anywhere
in between depending on the
user’s sound system.

To alter the volume, you need
to call only this function:

HRESULT IDirectSoundBuffer8::SetVolume(LONG lVolume);

The only argument is the volume level in hundredths of decibels, as I just men-
tioned. As an example of altering the volume, check out the following code that
will attenuate the volume level by 25 decibels:

// g_pDSBuffer = pre-initialized sound buffer
if(FAILED(g_pDSBuffer->SetVolume(-2500))) {

// Error occurred
}

Panning
Next in line is panning, which is the ability to shift
the sound’s playback between the left and right
speakers (as depicted in Figure 8.8). Think of pan-
ning as a balance control on your typical stereo.
Panning is measured by an amount that represents
how far left or right to pan the sound. The far-left
level (left speaker only) is -10,000, whereas the far-
right level (right speaker only) is 10,000. Anywhere
in between is balanced between the two speakers.

314 8. Playing Sound with DirectX Audio

NOTE
You must create the sound buffer using the
DSBCAPS_CTRLVOLUME flag in order to alter the volume.

NOTE
DirectSound defines two macros to represent
full volume and silence; they are DSBVOLUME_MAX
and DSBVOLUME_MIN, respectively.

NOTE
DirectSound defines two
macros to represent the
far-left and far-right levels;
they are DSBPAN_LEFT and
DSBPAN_RIGHT, respectively.

Here’s the magic function:

HRESULT IDirectSoundBuffer8::SetPan(LONG lPan);

Just set the lPan argument to the panning level you want. Try it out on an example
buffer by setting the panning value to -5,000, which decreases the right speaker’s
volume level by 50db:

// g_pDSBuffer = pre-initialized sound buffer
if(FAILED(g_pDSBuffer->SetPan(-5000))) {

// Error occurred
}

Frequency Changes
Altering the frequency at which the sound
buffer plays back effectively changes the pitch
of the sound. Imagine changing your hero’s
voice into a chipmunk’s by raising the fre-
quency a bit! You could even use the same
sampling of a man to simulate a female’s voice
by raising the frequency a bit. Do you believe
me? Try it and find out.

315Using DirectSound

Left Right

Left Right

Centered Pan

Left Pan

+ 0 db + 0 db

+ 10 db - 10 db

Figure 8.8

The speakers normally play a
sound at identical volume levels
(measured in decibels, or db
for short). Panning lowers the
volume in one speaker and
raises it in the opposite to
give a pseudo 3-D effect.

NOTE
You need to create the sound
buffer using the DSBCAPS_CTRLPAN
flag in order to play with pan-
ning controls.

CAUTION
Make sure that the primary
buffer supports a 16-bit play-
back format, or the pan effect
might not sound quite right.

You set the frequency with the following function:

HRESULT IDirectSoundBuffer8::SetFrequency(DWORD dwFrequency);

You only need to set the dwFrequency argument to the
level you want—for example:// g_pDSBuffer =
pre-initialized sound buffer
if(FAILED(g_pDSBuffer->SetFrequency(22050))) {

// Error occurred
}

Astute readers will notice that altering the playback frequency has the effect of
squashing the sound wave, thus making it play in a shorter amount of time, as
illustrated in Figure 8.9.

Losing Focus
At times, other applications just have to grab resources away from you, leaving you
with a device that’s been altered. This usually happens to sound buffers, so you
need to restore those lost resources with a call to IDirectSoundBuffer8::Restore (which
takes no parameters). For example, if you have a buffer that’s been lost, you can
restore it (and all memory associated with the buffer) using the following code:

// g_pDSBuffer = pre-initialized sound buffer that’s been lost
if(FAILED(g_pDSBuffer->Restore())) {

// Error occurred
}

The unfortunate
side effect of losing a
buffer’s resources is
that the sound data
is lost for good and
must be reloaded.

316 8. Playing Sound with DirectX Audio

NOTE
Include the
DSBCAPS_CTRLFREQUENCY
flag when you create
the sound buffer to
use this feature.

Normal x2 Frequency
Figure 8.9

Doubling the frequency
of a sound makes it
play twice as fast, and
thus at a higher pitch.

TIP
When creating the sound buffer, use DSBCAPS_LOCSOFTWARE
to tell DirectSound to use system memory resources,
which are rarely lost.This way, you’ll never have to worry
about lost resources.

Using
Notifications
As you previously read, notifications are
markers within a sound buffer that,
when reached, signal an event you cre-
ate. By working with notifications, you
gain the ability to know when a sound
has completed or stopped. You use those
notifications to stream large sounds.

Notifications use an object called
IDirectSoundNotify8. Its only purpose is to mark positions within a sound buffer and
trigger an event to your application, which you can process in the message loop or
in a separate thread.

These positions are
marked by their off-
set in the buffer
(as shown in Figure
8.10), or by a macro
signifying when the
sound is stopped or
complete. This
macro is defined
in DirectSound as
DSBPN_OFFSETSTOP.

317Using DirectSound

NOTE
Worried about a speed hit without
hardware processing? The system is
perfectly capable of dealing with a
few sound buffers without any prob-
lems. Just try to make it easier on
the system by making sure that all
buffers (primary and secondary)
use the same playback format.

Sound Buffer0 4,000

Notification

1
Pos: 1,000

Notification

2
Pos: 2,000

Notification

3
Pos: 3,000

Figure 8.10

Notifications can be placed (by an offset
amount) anywhere inside the sound buffer.

CAUTION
You can’t just mark any offset within the buffer; it has to
be aligned to the block size of a sample. Also, the notifi-
cations must be in order, from lowest offset to highest,
and can never share an offset with another offset. If you
use the DSBPN_OFFSETSTOP macro, it must be set last.

For example, using a block alignment of 2 (mono with
16-bit) and trying to set offsets 4 and 5 will fail because
offsets 4 and 5 share the same sample.

To obtain an IDirectSoundNotify8 object, you have to query it from an
IDirectSoundBuffer8 object:

// g_pDSBuffer = pre-initialized secondary sound buffer
IDirectSoundNotify8 *g_pDSNotify;
if(FAILED(g_pDSBuffer->QueryInterface(IID_IDirectSoundNotify8, \

(void**)&g_pDSNotify))) {
// Error occurred

}

Notification
interfaces
have only one
function:

HRESULT IDirectSoundNotify8::SetNotificationPositions(
DWORD dwPositionNotifies, // # notifications
LPCDSBPOSITIONNOTIFY pcPositionNotifies); // array of offsets

pcPositionNotifies is actu-
ally a pointer to an array
of DSBPOSITIONOTIFY struc-
tures. Here’s a look at
that structure and what
it contains:

typedef struct {
DWORD dwOffset; // offset or DSBPN_OFFSET macro
HANDLE hEventNotify; // handle of event to signal

} DSBPOSITIONOTIFY, *LPCDSBPOSITIONNOTIFY;

The kicker here is the use of event handles. Events have two states—signaled (set)
or non-signaled (clear). In order to create an event, you declare a handle variable
and assign it as follows:

HANDLE hEvent;
hEvent =
CreateEvent(NULL,FALSE,FALSE,NULL);

318 8. Playing Sound with DirectX Audio

NOTE
In order to use notifications, you must create a sound buffer
with the DSBCAPS_CTRLPOSITIONNOTIFY flag. If you create a buffer
with this flag, you must create and use a notification object.

CAUTION
You cannot call SetNotificationPositions on a buffer
that is currently playing. If you have to change notifi-
cation positions, be sure to stop the buffer first. Use
this function only on secondary sound buffers.

NOTE
When you’re done with an event,
you must free it with a call to

CloseHandle(hEvent);

TEAMFL
Y

Team-Fly®

You can create as many events as you want; you’ll be able to distinguish among them
later on. Typically, you create one event per sound channel, but that’s not a rule. It’s
all up to you, and it’s up to you to distin-
guish what each event means.

I want to pause here and show you how to
set up the events and notification offsets.
I’ll use a sound buffer that’s 65,536 bytes
in size and create two events that represent
the middle of the buffer and the end,
respectively:

// g_pDSBNotify = pre-initialize notification object
HANDLE g_hEvents[2]; // global handles
DSBPOSITIONNOTIFY dspn[2]; // 2 offsets to set - local

g_hEvents[0] = CreateEvent(NULL,FALSE,FALSE,NULL);
g_hEvents[1] = CreateEvent(NULL,FALSE,FALSE,NULL);
dspn[0].dwOffset = 32768; // halfway marker
dspn[0].hEventNotify = hEvents[0];
dspn[1].dwOffset = DSBPN_OFFSETSTOP; // end of sound marker
dspn[1].hEventNotify = g_hEvents[1];
if(FAILED(g_pDSBNotify->SetNotificationPositions(2, dspn))) {

// Error occurred
}

At this point, the buffer is ready, so go ahead and start the sound buffer playing
and let the events roll in. At this point, you only have to scan for the events, waiting
for them to signal. Waiting for events is the purpose of the WaitForMultipleObjects
function:

DWORD WaitForMultipleObjects(
DWORD nCount, // # of events to watch for <= 64
CONST HANDLE *lpHandles, // array of event handles to watch
BOOL fWaitAll, // FALSE (don’t wait for all)
DWORD dwMilliseconds); // INFINITE (wait forever on events)

The only arguments you need to be interested in here are nCount, which holds the
number of events to scan for, and lpHandles, which is an array of event handles that
the function scans. In return from this function, you get the event number in the
array that was signaled.

319Using DirectSound

TIP
Try to keep all events in an array;
later it becomes important to
have them organized in this way.

In actuality, you get a return value
that has to be manipulated to
retrieve the event number. This
is as easy as subtracting the value
WAIT_OBJECT_0 from the function’s
return value, which will give you
a value of 0 to the number of
events -1.

Now you see why you need to put
the events in an array. From this,
you can quickly determine which
event was the trigger, so here is a function that plays a sound buffer, waiting for the
end of the sound event that was already set up:

// Pass a pre-initialized sound buffer w/notifications set up
// g_Events is an array of pre-initialized events 2 elements
// in size:
// HANDLE g_Events[2];
void PlayItAndWait(IDirectSoundBuffer8 *pDSB)
{

DWORD RetVal, EventNum;

// Start sound playing from beginning of buffer
pDSBuffer->SetCurrentPosition(0);
pDSBuffer->Play(0,0,0);

while(1) {
while((RetVal = WaitForMultipleObjects(2, g_Events, \

FALSE, INFINITE)) != WAIT_FAILED) {
EventNum = RetVal - WAIT_OBJECT_0;
// check for end of sound event and break
if(EventNum == 1)

break;
}

}
// Stop sound
pDSBuffer->Stop();

}

The only problem with the preceding sound playing example is that the code
should be placed within the main message loop of your program, and, as such,

320 8. Playing Sound with DirectX Audio

CAUTION
WaitForMultipleObjects can scan for only 64
objects at one time, so make sure that you
don’t exceed that limit.

This function can also return a value of
WAIT_FAILED to indicate there was an error
while waiting for an event. Simply restart
the wait, and everything should be all right.

needs to scan for standard Windows messages. This is entirely possibly, and it seems
that Microsoft prefers this method in the DirectX SDK examples.

The problem with constantly checking the status of a sound buffer as just shown is
that it takes away from modular programming techniques that I prefer to use. In
order to make this system work better, you have to create a separate thread and let
that take care of the preceding event-scanning loop.

Using Threads for Events
I think I just heard a sigh. Don’t worry, using threads to work with the events is
not that hard. If you read Chapter 5, “Programming with Windows and Application
Basics,” you already are aware that setting up a thread is easy. It’s how you deal with
this kind of setup that’s difficult.

In Chapter 5, I wrote that in order for a thread to close, it has to call the ExitThread
function from within itself. But how can the thread know when it’s done if it’s just
endlessly scanning for events in a list? The solution—add an extra event used to
trigger the closure of the thread!

In order to manually trigger an event, you use the following call with the event han-
dle:

SetEvent(hEvent);

To reset an event, you can use the following function call:

ResetEvent(hEvent);

Take a look at the event-scanning loop again, this time adding functions to play a
sound buffer, to stop the sound, and to add thread-processing:

HANDLE g_Events[2]; // global events
IDirectSoundNotify8 *g_pDSBNotify; // global notification object

HANDLE g_hThread; // thread handle
BOOL g_Active = FALSE; // thread active flag
BOOL g_Playing = FALSE; // flag is sound playing

// Pass a pre-initialized sound buffer w/notification abilities
// this function will set up the notifications for you.
void PlaySound(IDirectSoundBufffer8 *pDSBuffer)
{

DSBPOSITIONNOTIFY dspn[1];

321Using DirectSound

DWORD ThreadId;

// stop a sound already playing
if(g_Playing == TRUE)

StopSound(pDSBuffer);

// get the notification object
pDSBuffer->QueryInterface(IID_IDirectSoundNotify8, \

(void**)&g_pDSBNotify);

// create events and thread
g_hEvents[0] = CreateEvent(NULL, FALSE, FALSE, NULL);
g_hEvents[1] = CreateEvent(NULL, FALSE, FALSE, NULL);
g_hThread = CreateThread(NULL, 0, \

(LPTHREAD_START_ROUTINE)MyThread, NULL, 0, &ThreadId);

// set the notification positions
dspn[0].dwOffset = DSBPN_OFFSETSTOP;
dspn[0].hEventNotify = g_hEvents[0];
g_pDSBNotify->SetNotificationPositions(1, dspn);

// play the sound and flag as so
pDSBuffer->SetCurrentPosition(0);
pDSBuffer->Play(0,0,0);
g_Playing = TRUE;

}

void StopSound(IDirectSoundBuffer8 *pDSBuffer)
{

pDSBuffer->Stop();
g_Playing = FALSE;

// clear sound buffer events and signal thread closure
while(g_Active == TRUE) {

ResetEvent(g_Events[0]);
SetEvent(g_Events[1]);

}

// Release all resources
g_pDSBNotify->Release();
CloseHandle(g_hEvents[0]);

322 8. Playing Sound with DirectX Audio

CloseHandle(g_hEvents[1]);
CloseHandle(g_hThread);

}

DWORD WINAPI MyThread(void *lpParameter)
{

DWORD RetVal, EventNum;

g_Active = TRUE;

while(1) {
while((RetVal = WaitForMultipleObjects(2, g_Events, \

FALSE, INFINITE) != WAIT_FAILED) {
EventNum = RetVal - WAIT_OBJECT_0;

// Check if the thread needs to close
if(EventNum == 1)

ExitThread(0);

// the sound stopped - just flag for now
if(EventNum == 1) {

g_Playing = FALSE;
}

}
}

That’s about it. All you have to do is call PlaySound with a sound buffer that is
already created and has sound in it; then you wait for the sound to end or call
StopSound to forcibly stop it. Even if the sound is no longer playing, you have to free
the resources and close the thread by calling StopSound.

Loading Sounds into the Buffers
Now that you can access the sound buffer, where do you get the sound data?
The easiest way is to use Microsoft’s widely used digital sound files, called wave files,
which use the .WAV file extension.

A wave file begins with a small header followed by the raw sound data, which can
be compressed (hard to work with) or uncompressed (easy to deal with). In this
section, you learn how to read in and parse the file header, how to read the
uncompressed sound data, and how to place it in a sound buffer.

323Using DirectSound

Following is a structure I created that will store the wave file header for your use:

typedef struct sWaveHeader {
{

char RiffSig[4]; // ‘RIFF’
long WaveformChunkSize; // 8
char WaveSig[4]; // ‘WAVE’
char FormatSig[4]; // ‘fmt ‘ (notice space after)
long FormatChunkSize; // 16
short FormatTag; // WAVE_FORMAT_PCM
short Channels; // # of channels
long SampleRate; // sampling rate
long BytesPerSec; // bytes per second
short BlockAlign; // sample block alignment
short BitsPerSample; // bits per second
char DataSig[4]; // ‘data’
long DataSize; // size of waveform data

} sWaveHeader;

The only step required to han-
dling the header is to open a
wave file and immediately read
it in. The structure will then con-
tain all the information needed
to determine the format of the
sound, as well as the size of the
sound data to read in.

At this point, you could create a
sound buffer based on the data
read in and then go about your
business with it. However, I want
to write a couple of functions that
will load a wave file into a newly
created secondary sound buffer
for you. The first function reads
and parses the wave file header,
creating a sound buffer along the
way; the second one reads sound
data into the sound buffer.

324 8. Playing Sound with DirectX Audio

CAUTION
Most wave files are saved using the header
shown depicted by the sWaveHeader structure,
but at times extra chunks are inserted,
throwing everything into a spin. For exam-
ple, a comment chunk might be inserted
before the wave data chunk.Try to read only
wave files that contain a single digital sound,
and you should be fine.

NOTE
You can tell whether the sound header is to
an actual wave file by checking the various
signature (*Sig) fields in the sWaveHeader
structure. See the comments for what each
one should contain and make sure that they
match when you load the header. If one is
wrong, you have an indication that you might
not be able to load the sound correctly.

The first function, CreateBufferFromWAV, takes a pointer to an open wave file as well
as an sWaveHeader structure that is filled with the wave file header data from the file.
Upon the return of the CreateBufferFromWAV file, you will receive a pointer to a newly
created IDirectSoundBuffer8 object that is ready to accept the sound data received from
calling the LoadSoundData function. Take a look at the code for the two functions:

// g_pDS = pre-initialized IDirectSound8 object
IDirectSounndBuffer8 *CreateBufferFromWAV(FILE *fp, \

sWaveHeader *Hdr)
{

IDirectSoundBuffer *pDSB;
IDirectSoundBuffer8 *pDSBuffer;
DSBUFFERDESC dsbd;
WAVEFORMATEX wfex;

// read in the header from beginning of file
fseek(fp, 0, SEEK_SET);
fread(Hdr, 1, sizeof(sWaveHeader), fp);

// check the sig fields, returning if an error
if(memcmp(Hdr->RiffSig, “RIFF”, 4) || \

memcmp(Hdr->WaveSig, “WAVE”, 4) || \
memcmp(Hdr->FormatSig, “fmt “, 4) || \
memcmp(Hdr->DataSig, “data”,4))

return NULL;

// set up the playback format
ZeroMemory(&wfex, sizeof(WAVEFORMATEX));
wfex.wFormatTag = WAVE_FORMAT_PCM;
wfex.nChannels = Hdr->Channels;
wfex.nSamplesPerSec = Hdr->SampleRate;
wfex.wBitsPerSample = Hdr->BitsPerSample;
wfex.nBlockAlign = wfex.wBitsPerSample / 8 * wfex.nChannels;
wfex.nAvgBytesPerSec = wfex.nSamplesPerSec * wfex.nBlockAlign;

// create the sound buffer using the header data
ZeroMemory(&dsbd, sizeof(DSBUFFERDESC));
dsbd.dwSize = sizeof(DSBUFFERDESC);
dsbd.Flags = DSBCAPS_CTRLVOLUME | DSBCAPS_CTRLPAN | \

DSBCAPS_CTRLFREQUENCY;
dsbd.dwBufferBytes = Hdr->DataSize;

325Using DirectSound

dsbd.lpwfxFormat = &wfex;
if(FAILED(g_pDS->CreateSoundBuffer(&dsbd, &pDSB,NULL)))

return NULL;

// get newer interface
if(FAILED(pDSB->QueryInterface(IID_IDirectSoundBuffer8, \

(void**)&pDSBuffer))) {
pDSB->Release();
return NULL;

}

// return the interface
return p-DSBuffer;

}

BOOL LoadSoundData(IDirectSoundBuffer8 *pDSBuffer, \
long LockPos, FILE *fp, long Size)

{
BYTE *Ptr1, *Ptr2;
DWORD Size1, Size2;

if(!Size)
return FALSE;

// lock the sound buffer at position specified
if(FAILED(pDSBuffer->Lock(LockPos, Size, \

(void**)&Ptr1, &Size1, \
(void**)&Ptr2, &Size2, 0)))

return FALSE;

// read in the data
fread(Ptr1, 1, Size1, fp);
if(Ptr2 != NULL)

fread(Ptr2, 1, Size2, fp);

// unlock it
pDSBuffer->Unlock(Ptr1, Size1, Ptr2, Size2);

// return a success
return TRUE;

}

326 8. Playing Sound with DirectX Audio

Here’s a sample function that will use the CreateBufferFromWAV and LoadSoundData func-
tions to load in a wave file. Upon return of the following LoadWAV file, you will receive
a sound buffer that’s ready to be worked with:

IDirectSoundBuffer8 *LoadWAV(char *Filename)
{

IDirectSoundBuffer8 *pDSBuffer;
sWaveHeader Hdr;
FILE *fp;

// open the source file
if((fp=fopen(Filename, “rb”))==NULL)

return NULL;

// create the sound buffer
if((pDSBuffer = CreateBufferFromWAV(fp, &Hdr)) == NULL) {

fclose(fp);
return NULL;

}

// read in the data
fseek(fp, sizeof(sWaveHeader), SEEK_SET);
LoadSoundData(pDSBuffer, 0, fp, Hdr.DataSize);

// close the source file
fclose(fp);

// return the new sound buffer fully loaded with sound
return p-DSBuffer;

}

Streaming Sound
I’m going to let you in on a little secret—streaming sound is an easy process. The
secret to handling streaming playback is to use looping playback to ensure seamless
and constant playback of the sound buffer, while continuously loading in new sound
data to replace the sound data that has already been played.

The trick is to set a couple of markers in the sound buffer. When the sound being
played passes one of these markers, you have an indication that it’s time to load more
sound data into the portion just played. In this way, you ensure that playback wraps

327Using DirectSound

around to the start of the buffer and finds new sound data. Figure 8.11 shows a sound
buffer with four stream markers that signify when new sound data must be loaded.

To play a streaming sound, you first load the entire buffer with sound data (as
much data as will fit in the buffer). Start playing the sound and wait until the first
marker is hit. At this point, the next small chunk of sound data is inserted into the
section just played. Playing continues until marker two is hit, at which point more
data is loaded into the chunk just played.

This process continues until the entire sound is loaded and played, at which point
a marker triggers the sound to stop. If the sound is to be looped, playback contin-
ues by restarting the entire playback sequence you just read about.

In the previous section, “Loading Sounds into the Buffers,” I wrote a function called
LoadSoundData that will load sound data into a buffer that you specify. Inside the thread
that handles the notification events, you use the loading function to stream in data as
it is finished, thus keeping the buffer full of sound information. The Sound Core
does this to every sound channel, thus putting an awesome tool at your disposal.

Here’s how it’s all done:

1. Create a sound buffer, say 65,536 bytes in size.

2. Set four notification positions (one for each 1⁄4 of the sound buffer).

3. Load the entire buffer with as much data as possible.

4. Start playing the sound buffer using the DSBPLAY_LOOP flag.

5. As each notification event is triggered, load the previously played section
with new data. Continue until you reach a notification and there’s no more
sound left to buffer in; then play the last of the sound.

328 8. Playing Sound with DirectX Audio

Stream Markers

Signal
Section
Load

Signal
Section
Load

Signal
Section
Load

Signal
Section
Load

Figure 8.11

The sound buffer has four stream markers.When
playback reaches each marker, the sound buffer
signals you to load new sound data into the
section just played.

TEAMFL
Y

Team-Fly®

6. To determine which event marks the end of the sound, determine the modu-
lus from the sound size according to the buffer size (the remainder after
dividing the sound size by the buffer size). Divide the modulus value by four
(the number of notifications) to determine which of the events is used to sig-
nify the end of the sound position.

The Stream demo parses the wave header, creating a sound buffer, setting up four
notifications and events, and then playing the sound, buffering in data as the
events roll in. This process
continues until the end of
sound is reached, at which
point playback ends.

You can find the actual
code to the Stream demo
in Chapter 10, “Creating the
Game Core.” There you’ll find
a working set of functions that
you can use in your projects
to stream sound.

Working with DirectMusic
Whereas DirectSound handles digital sound, DirectMusic handles music playback
from Midi files (files ending with the .MID extension), DirectMusic native files
(*.SGT files), and digitally recorded songs stored in a wave format (.WAV files).
Which of these formats is best for you is a question you’ll have to answer.

Each has its advantages and disadvantages.
The real magic of DirectMusic is when
you use the native format. A DirectMusic
native song can consist of small musical
patterns that can be randomly played one
after another in various chords. Randomly
picking patterns and chords means that
the music will never be the same—it’s
always changing. Add tempo changes,
and you have a kick-butt music system.

329Working with DirectMusic

NOTE
The entire streaming code example (called
Stream) is on the CD-ROM that comes with
this book (look for BookCode\Chap08\Stream).
Because of its length, I can’t provide the code
list here, but it follows the techniques present-
ed in this section. To play a streamed sound,
call the PlayStreamedSound function with the file-
name of the sound to play, and the function
will take care of the rest.

NOTE
Another feature is the use of motif’s,
which are sounds you overlay on
musical segments as they are play-
ing.These can serve as cues that
blend into the song. For example, if
the player achieves a goal, a short
bleat of horns can play to signify it.

The benefit of using Midi files is that
they are highly supported. You can find
literally hundreds of thousands of songs
with this format on the Internet, and
there are more Midi music authoring
software packages than you can count.
The great thing is that you can now use
digitally sampled sounds as instruments.

Get this—instead of typical instruments,
you can use other digitally sampled
sounds, such as guns, monkey screeches,
or whatever catches your fancy. You can
finally set down that funky fresh tune
you’ve been dreaming of using in your
own game and use a music format such as Midi to do so!

Using digital instruments also ensures that your song will sound the same on all
computers. You accomplish this by using DirectSound to synthesize sound effects.
DirectMusic has the option to create its
own DirectSound interface or to use one
you’ve already created.

Using Midi or DirectMusic native songs
allows one common advantage (the abil-
ity to alter the tempo of playback) that
adds a cool feature—the ability to slow
down or speed up the music to match
the on-screen action. When the gaming
action gets intense, increase the music
tempo to match, and then slow it down
to signify that the action is over.

Digitally recorded music creates an ultimate system . . . sort of. While the quality is
superb, the song cannot be altered to match the action. The song sounds just as it
is recorded, nothing more or nothing less.

Starting with DirectMusic
Now I know you’re excited, so let’s get moving. The first step to using DirectMusic
is to create a main object, called the performance object, that represents the music

330 8. Playing Sound with DirectX Audio

NOTE
The problem with the native format
is that it takes a bit of time to get
used to writing the musical patterns
and chords.There’s no way I could
begin to show you how to do so in
this limited space, but I will refer
you to the DirectMusic Producer,
which is Microsoft’s music editor
package.You can find it on this
book’s CD-ROM, or you can down-
load it at http://www.microsoft.com.

NOTE
The path musical data takes to the
synthesizer (DirectSound) is called an
audio path, which you can grab hold
of and play with just as you can with
a standard DirectSound sound buffer.
Now imagine this—grabbing an audio
path and creating a 3D sound buffer
from it! This is all possible, and it is
what makes DirectMusic 8 exciting.

system. Second, create an object, called the loader object, that loads all essential
music files. These two objects interact with each other as shown in Figure 8.12.

Last, you have to load the actual musical segments into segment objects. Multiple
segments can be loaded and played after each other in order to create longer or
more dynamic songs. In this chapter, I deal only with a single segment (which can
represent an entire song).

DirectMusic doesn’t have a function
to help you create or initialize the main
DirectMusic interface, so you need to
initialize the COM system yourself. I
cover this in Chapter 5, but will go over
it quickly here. To initialize COM, call
the following function:

CoInitialize(NULL);

Do this only once when you start using DirectMusic, because it keeps an internal
count of the number of times it was initialized. You need to match every call to this
function with a call to close down COM:

CoUninitialize();

This decreases the reference count of COM usage, and when it finally reaches 0,
it will release the COM system from memory. This is memory efficient, and all
COM objects follow this procedure. In order to create the objects, you use the
CoCreateInstance function, which is also shown in Chapter 5. The following two
sections show you how to create the respective performance and loader objects.

331Working with DirectMusic

DirectMusic

Loader Performance

Music Segment

Instrument Data

Track Sequences

. . .

Play Music

Stop Play

Play Parameters

. . .

Figure 8.12

The loader objects fetch the data that the
performance object needs in order to play.

NOTE
Before using DirectMusic, you need to
include DMusici.h and link DSound.lib
to your project. Also, you’ll be using
the COM system in the Win32 SDK,
so include ObjBase.h.

Creating the Performance Object
The performance object is the big daddy here and, as such, is the main object
you’ll be working with. You can have multiple performance objects, but I recom-
mend using only one. In order to create the performance object, first declare an
IDirectMusicPerformance8 object and call CoCreateInstance as follows:

// global performance object
IDirectMusicPerformance8 *g_pDMPerformance;

CoCreateInstance(CLSID_DirectMusicPerformance, NULL, \
CLSCTX_INPROC, IID_IDirectMusicPerformance8, \
(void**)&g_pDMPerformance);

The performance object needs to be initialized.
This creates a DirectMusic and DirectSound object,
and it creates sound buffers and sets the playback
capabilities as well. It also sets up a default audio
path on which music is played. A typical setup will
use 128 channels (instruments) and have stereo
and reverb (reflections of sounds off objects)
effects. Here’s the function call that does it all:

HRESULT IDirectMusicPerformance8::InitAudio(
IDirectMusic **ppDirectMusic, // NULL
IDirectSound **ppDirectSound, // NULL
HWND hWnd, // parent window handle
DWORD dwDefaultPathType, // type of default audio path

// use DMUS_APATH_SHARED_STEREOPLUSREVERB
DWORD dwPChannelCount, // # channels - use 128
DWORD dwFlags, // DMUS_AUDIOF_ALL

// (enable all music features)
DMUS_AUDIOPARAMS *pParams); // NULL (parameters structure)

There’s a lot here, but the comments pretty much say it all. You don’t need a
pointer to the internal DirectMusic or DirectSound objects, so skip those. You have
to give this function the handle to the parent window—this is a must. You can keep
the other parameters as commented in the function InitAudio prototype.

Here is how to give this function a call:

// g_pDMPerformance = pre-initialized performance object
if(FAILED(g_pDMPerformance->InitAudio(NULL, NULL, hWnd, \

332 8. Playing Sound with DirectX Audio

NOTE
In Chapter 5, I write that
CoCreateInstance returns
the value S_OK if the call is
a success, or another value
if the call is not a success.

DMUS_APATH_SHARED_STEREOPLUSREVERB, 128, \
DMUS_AUDIOF_ALL, NULL))) {

// Error occurred
}

Creating the Loader Object
Creating the loader object is the next step to using DirectMusic. This object is basi-
cally a caching system that speeds up data loading and that loads support files for
songs that need them (such as the digital samples used for instruments).

The IDirectMusicLoader8 object represents the loader. You can create it with the fol-
lowing code:

IDirectMusicLoader8 *g_pDMLoader; // global loader object
CoCreateInstance(CLSID_DirectMusicLoader, NULL, \

CLSCTX_INPROC, IID_IDirectMusicLoader8, \
(void**)&g_pDMLoader);

The next step to using the loader is telling
it in which directory to search for files.
This directory is referred to as the default
search directory. Normally, when loading a
single music file, such as a Midi file, set-
ting the default directory isn’t really
needed as long as you give the loader the
complete path. But for DirectMusic
native files, the loader object must know
where to find the support files.

Setting the default search directory is the job of the
IDirectMusicLoader8::SetSearchDirectory function:

HRESULT IDirectMusicLoader8::SetSearchDirectory(
REFGUID rguidClass, // class (GUID_DirectMusicallTypes)
WCHAR *pwszPath, // directory path (in wide characters)
BOOL fClear); // FALSE - clear load cache info

The preceding call really needs only one parameter—the search directory path you
are setting. Be careful; it’s a wide character string, so convert it if needed or use the
WCHAR data type.

333Working with DirectMusic

CAUTION
Make sure that you create only one
IDirectMusicLoader8 object in your
application. It helps to cache and
control the frequently-used data
and resources required for using
DirectMusic.

To make it simple,
I normally set the
search directory
to the current
directory. That
way you can refer-
ence song files
from your own
subdirectories
(such as .\Songs\—
notice the period
to denote current
directory).

Here’s an example
of setting the current directory as the default search directory:

// g_pDMLoader = pre-initialized loader object
CHAR strPath[MAX_PATH]; // current path
WCHAR wstrPath[MAX_PATH]; // wide character buffer

GetCurrentDirectory(MAX_PATH, strPath);
mbstowcs(wstrPath, strPath, MAX_PATH);
if(FAILED(g_pDMLoader->SetSearchDirectory(\

GUID_DirectMusicAllTypes, wstrPath, FALSE))) {
// Error occurred

}

Working with Music Segments
Now that the system is initialized and the loader is ready, it is time to start loading
in the songs and letting them play. This is the purpose of the IDirectMusicSegment8
object. The DirectMusic loader object (as illustrated in Figure 8.13) has the job of
loading the music and instrument data and creating the IDirectMusicSegment8 object
for you. Consider the loading process in two steps—first loading the music segment
that contains the notes to play.

Loading Music Segments
The first step is to set up an object description structure called DMUS_OBJECTDESC with
the information on what you are loading (a song). Here’s the structure:

334 8. Playing Sound with DirectX Audio

NOTE
To declare a wide character string, use the following line of
code:

WCHAR *Text = L”Testing”;

To copy a regular character string into a wide character
string, use the mbstowcs function as shown here:

char Text[] = “Roleplaying is fun!’; // source text buffer

WCHAR WText[256]; // dest text buffer

// convert at least 256 characters from source to dest

mbstowcs(WText, Text, 256);

typedef struct {
DWORD dwSize; // size of this structure
DWORD dwValidData; // flags determining valid fields
GUID guidObject; // unique GUID of object
GUID guidClass; // CLSID_DirectMusicSegement
FILETIME ftDate; // Date when object last edited
DMUS_VERSION vVersion; // structure containing

// version information
WCHAR wszName[DMUS_MAX_NAME]; // name of object
WCHAR wszCategory[DMUS_MAX_CATEGORY]; // category of object
WCHAR wszFileName[DMUS_MAX_FILENAME]; // filename to load
LONGLONG llMemLength; // size of data in memory
LPBYTE pbMemData; // pointer to data in memory
IStream *pStream; // stream interface for loading

} DMUS_OBJECTDESC;

Fortunately, you can ignore most of the fields in DMUS_OBJECTDESC. The first thing you
should pay attention to is the dwValidData variable. This stores a combination of flags
telling the loader which fields in the structure to use. For example, if you want to
use the wszFilename and guidClass objects, you set the appropriate flags. These flags
are shown in Table 8.4.

The DMUS_OBJECTDESC structure is passed to the IDirectMusicLoader8::GetObject function,
which ensures that all related data files are loaded and placed in the segment
object. Here’s the function prototype:

HRESULT IDirectMusicLoader8::GetObject(
LPDMUS_OBJECTDESC pDesc, // pointer to a

// DMUS_OJBECTDESC structure
REFIID riid, // IID_IDirectMusicSegment8
LPVOID FAR * ppv); // pointer to newly loaded object

335Working with DirectMusic

Music Segment

Loader

Music Object

Instuments and
Other Related Data

Figure 8.13

The loader object
is responsible for
retrieving the data,
such as the musical
score and instrument
data, needed to create
a music object.

You are telling the GetObject function to use the structure you’ve already set up and
to load the data into an IDirectMusicSegment8 object. Of course, you need to declare
the segment object first, so here is a function that handles loading the music seg-
ment and returns the segment object (or NULL if an error occurs):

// g_pDMLoader = pre-initialized object w/search directory set

IDirectMusicSegment8 *LoadSong(char *Filename)
{

DMUS_OBJECTDESC dmod;
IDirectMusicSegment8 *pDMSegment;

ZeroMemory(&dmod, sizeof(DMUS_OBJECTDESC));
dmod.dwSize = sizeof(DMUS_OBJECTDESC);
dmod.guidClass = CLSID_DirectMusicSegment;

336 8. Playing Sound with DirectX Audio

Table 8.4 dwValidData Flags

Flag Description

DMUS_OBJ_CATEGORY wszCategory is valid.

DMUS_OBJ_CLASS guidClass is valid.

DMUS_OBJ_DATE ftDate is valid.

DMUS_OBJ_FILENAME wszFileName is valid.

DMUS_OBJ_FULLPATH wszFileName contains full path to object.

DMUS_OBJ_LOADED Object is already loaded.

DMUS_OBJ_MEMORY Object is in memory. llMemLength and pbMemData are valid.

DMUS_OBJ_NAME wszName is valid.

DMUS_OBJ_OBJECT guidObject is valid.

DMUS_OBJ_STREAM pStream is valid.

DMUS_OBJ_URL wszFileName represents a URL. DirectMusic does not yet
support this flag.

DMUS_OBJ_VERSION vVersion is valid.

dmod.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME | \
DMUS_OBJ_FULLPATH;

mbstowcs(dmod.wszFileName, Filename, MAX_PATH);
if(FAILED(g_pDMLoader->GetObject(&dmod, \

IID_IDirectMusicSegment8, (LPVOID)&pDMSegment)))
return NULL;

// loading completed
return p_DMSegment;

}

Loading Instruments
The DirectMusic loader will set up the default instrument data when you are using
native or Midi songs, but what about those times when you want to switch between
native and Midi instrument settings? In those cases, you need our friend DirectMusic,
which allows you to use your own custom instrument data.

Instruments are referred to as patches, and a collection of patches is referred to as
DLS instrument data (Downloadable Sounds), which is contained in instrument collec-
tions. Patches are numbered by a series of three values: most-significant byte (MSB),
least-significant byte (LSB), and patch number.

General Midi patches are also standardized, so a patch number 1 (a piano) will
always be a piano patch. If you want to use a new piano patch, you can just load it
up from a DLS collection. DirectMusic comes with a General Midi instrument col-
lection, called the GM/GS set, made by Roland.

If you’re making new instruments to replace General
Midi patches, make sure that they have a MSB and
LSB of 0. Otherwise, try to use a different value for
both to ensure that you’re not intruding in the
space of one or the other. Consult the DirectMusic
Producer help files if you need help.

If you want to use only a couple of new instruments,
by all means just save them to a DLS. When you load
a new DLS, you overwrite the instruments in mem-
ory that are already loaded (as illustrated in Figure
8.14). After the DLS collection is ready to use, you
tell DirectMusic to use the collection with your
music segment.

337Working with DirectMusic

NOTE
To make your own DLS,
install the DirectMusic
Producer included on
the CD-ROM. Just select
File, New and create a
DLS Collection. Begin
adding wave files to the
list and then add instru-
ments, making sure to
assign the appropriate
wave data to them.

To load a DLS collection, you need to obtain an IDirectMusicCollection8 object from
the loader object. Again, you utilize the IDirectMusicLoad8::GetObject function, but
this time, you specify the collection object and filename. Here’s a function that will
load a DLS collection for you, returning a pointer to the loaded collection object
with which you work:

IDirectMusicCollection8 *LoadDLSCollection(char *Filename)
{

DMUS_OBJECTDESC dmod;
IDirectMusicCollection8 *pDMCollection;

ZeroMemory(&dmod, sizeof(DMUS_OBJECTDESC));
dmod.dwSize = sizeof(DMUS_OBJECTDESC);
dmod.guidClass = CLSID_DirectMusicCollection;
dmod.dwValidData = DMUS_OBJ_CLASS | DMUS_OBJ_FILENAME | \

DMUS_OBJ_FULLPATH;
mbstowcs(dmod.wszFileName, Filename, MAX_PATH);
if(FAILED(g_pDMLoader->GetObject(&dmod, \

IID_IDirectMusicCollection8, (void**)pDMCollection)))
return NULL;

// return the pointer to the collection object
return IDirectMusicCollection8;

}

338 8. Playing Sound with DirectX Audio

DLS
Song

Instruments
Piano

Guitar

Violin

Flute

Clarinet

Piano

Piano

Organ

Guitar

Violin

Flute

Figure 8.14

When you load DLS instruments, you either overwrite
existing instrument data or insert the new instrument
data where no current instrument exists.

TEAMFL
Y

Team-Fly®

At this point, the collection is loaded, but you need to assign it to the segment. Do
this by setting a specific segment track parameter using
IDirectMusicSegment8::SetParam:

HRESULT IDirectMusicSegment8::SetParam(
REFGUID rguidType, // GUID of param to set
DWORD dwGroupBits, // which tracks to effect (0xFFFFFFFF)
DWORD dwIndex, // 0
MUSIC_TIME mtTime, // when to apply setting - use 0
void* pParam); // new parameter or NULL if none required

Specifically, you want to set the DLS collection type parameter, which has a GUID
value of GUID_ConnectToDLSCollection. You want to affect every track and make sure
the change of instruments takes effect immediately. Do this with the following code
bit (which loads a DLS and sets it to a preloaded segment):

IDirectMusicCollection8 *pDMCollection;
if((pDMCollection = LoadDLSCollection(“MyDLS.dls”)) != NULL)

pDMSegment->SetParam(GUID_ConnectToDLSCollection, \
0xFFFFFFFF, 0, 0, (void*)pDMCollection);

At times, you’ll need to use the default collection, which you can do with a call to
GetObject using the GUID value of GUID_DefaultGMCollection under the object class
field:

IDirectMusicCollection8 *GetDefaultCollection()
{

DMUS_OBJECTDESC mod;
IDirectMusicCollection8 *pDMCollection;

ZeroMemory(&dmod, sizeof(DMUS_OBJECTDESC));
dmod.dwSize = sizeof(DMUS_OBJECTDESC);
dmod.guidObject = GUID_DefaultDMCollection;
dmod.dwValidData = DMUS_OBJ_OBJECT;
if(FAILED(g_pDMLoader->GetObject(&dmod, \

IID_IDirectMusicCollection8, (void**)pDMCollection)))
return NULL;

return pDMCollection;
}

Calling the preceding GetDefaultCollection function creates an instrument collection
object that contains the default DLS instrument data that you can use.

339Working with DirectMusic

Configuring for Midi
A complete song in memory (with instruments) is almost ready to use. There are
only a few problems to tackle. First, because the system must prepare itself by con-
forming to General Midi settings, you need to tell the system whether the load file
is a Midi file.

To tell DirectMusic that the segment is a Midi file, you, again, set a segment track
parameter using IDirectMusicSegment8::SetParam. This time, you use the GUID value
of GUID_StandardMidiFile:

pDMSegment->SetParam(GUID_StandardMidiFile, \
0xFFFFFFFF, 0, 0, NULL);

You can insert the
SetParam function, as
just seen, in the
LoadSongFile function
(after the song is
completely loaded):

if(FAILED(g_pDMLoader->GetObject(&dmod, \
IID_IDirectMusicSegment8, (LPVOID)&pDMSegment)))

return NULL;
// loading completed
// set as Midi file
if(strstr(Filename, “.mid”) != NULL)

pDMSegment->SetParam(GUID_StandardMidiFile, \
0xFFFFFFFF, 0, 0, NULL);

return p_DMSegment;
}

Setting Up the Instruments
The next step to preparing a segment to play is to set up the instrument data by
downloading it to the performance object. You accomplish this with a call to
IDirectMusicSegment8::Download:

HRESULT IDirectMusicSegment8::Download(IUnknown *pAudioPath);

340 8. Playing Sound with DirectX Audio

CAUTION
Perform this call only on files that are Midi files, because
it changes the way music information is perceived. If you
play around with it, you will see that certain data tracks
are changed or dropped.

This function’s only parameter is the audio path to which you download the instru-
ment data. In this case, it is the performance object, so the following code will work:

if(FAILED(g_pDMSegment->Download(g_pDMPerformance))) {
// Error occurred

}

When you’re done with a musical segment, you must follow up with a call to
IDirectMusicSegment8::Unload, which frees the instrument data. Do this after you stop
playback of a segment and are done with it or when you switch instrument collec-
tions. This call is identical to IDirectMusicSegment8::Download, so I’ll skip the prototype
and show you an actual call:

if(FAILED(g_pDMSegment->Unload(g_pDMPerformance))) {
// Error occurred

}

Using Loops
and Repeats
The last step before playing a
song is to set up repeat points
and the number of times to
repeat a loop. For example, if
you have a kicking tune and want to repeat a small portion of it a couple of times,
you can set the starting and ending loop points (as illustrated in Figure 8.15) and
then set the number of times to repeat the loop.

Setting loop points is the purpose of the IDirectMusicSegment8::SetLoopPoints function:

HRESULT IDirectMusicSegment8::SetLoopPoints(
MUSIC_TIME mtStart,
MUSIC_TIME mtEnd);

341Working with DirectMusic

TIP
To change instruments (such as assigning
a DLS to a segment), you first unload the
instrument data.After the instruments are
unloaded, you can load the new instrument
data and let the song continue playing.

Play Starts Here

Loop Point

Loops to

Figure 8.15

You have to set starting and ending loop
points within a song in order to use the
loop and repeat features of DirectMusic.

Normally, you want the entire
song to repeat playback upon
completion, so there’s really no
reason to mess with the
SetLoopPoints function. If you
do, be sure to measure the
time based on the tempo (refer
to the DX SDK documents for
more on this topic).

After setting the loop points
(or even if you haven’t), you are
ready to set the number of times
the song repeats. If you want the song to play only once and then stop, you have it
repeat zero times. If you want the song to play twice, you have it repeat one time.

You set the number of repeats with IDirectMusicSegment8::SetRepeats, which takes only
one parameter—the number of times to repeat the song loop (or the macro
DMUS_SEG_REPEAT_INFINITE, which causes the song to play forever):

pDMSegment->SetRepeats(0); // play song once (no loops)

Playing and Stopping the Segment
Now, at last it comes time to play your song. Yes, the road was long and hard, but it
has all led to this point. The performance object plays segments through the use of
the IDirectMusicPerformance8::PlaySegmentEx function:

HRESULT IDirectMusicPerformance8::PlaySegmentEx(
IUnknown *pSource, // segment to play
WCHAR *pwzSegmentName, // NULL - not used
IUknown *pTransition, // transition segment - use NULL
DWORD dwFlags, // flags to modify behavior
__int64 i64Starttime, // when to start playing

// use 0 for immediately
IDirectMusicSegmentState **ppSegmentState, // pointer to

// object to receive a segment state object
IUnknown *pFrom, // NULL
IUnknown *pAudioPath); // audio path to use, or

// NULL for default one

Wow! That’s a lot to take in; luckily, you really don’t have to use all these arguments.

342 8. Playing Sound with DirectX Audio

CAUTION
Notice the use of MUSIC_TIME, which is a time
measurement used in DirectMusic.This time
measurement is based on the tempo of the
song, not the timing, so it is sometimes diffi-
cult to work with.Timing is another issue alto-
gether, and one best left to the DirectX SDK
documents. For your current purposes, you
want all changes to take effect immediately, so
specifying a value of 0 for the time will do fine.

You can see that the segment pointer is the first argument, but what’s a segment state?
This is an object that tracks the status of the segment. You don’t need this segment
state object, so just set it to NULL.

The behavior flags allow you to alter the starting time of the segment, whether it
starts on a beat measure, is aligned to prior tempos, or what have you. Because
you’re now interested only with playing the song, just skip the flags and tell the
PlaySegmentEx function to play immediately.

You can kick-start your segment playing by calling the following code bit:

if(FAILED(g_pDMPerformance->PlaySegmentEx(g_pDMSegment, \
NULL, NULL, 0, 0, NULL, NULL, NULL))) {

// Error occurred
}

To stop the segment from playing, use a call to IDirectMusicPerformance8::Stop:

HRESULT IDirectMusicPerformance8::Stop(
IDirectMusicSegment *pSegment, // segment to stop
IDirectMusicSegmentState *pSegmentState, // segstate to stop
MUSIC_TIME mtTime, // time to stop (0 for immediate)
DWORD dwFlags); // stop timing behaviors

Again, this call takes the segment as an argument as well as the time you want it to
stop. All that information isn’t required; you just provide the pointer to the segment
object and the time to stop playing, as in the following:

if(FAILED(g_pDMPerformance::Stop(g_pDMSegment, NULL, 0, 0))) {
// Error occurred

}

Unloading Segment Data
After you’ve stopped a segment and are done with it, be sure to unload the instru-
ment data:

pDMSegment->Unload(g_pDMPerformance);

You also need to have the loader to release the cached data using a call to
IDirectMusicLoader8::ReleaseObjectByUnknown:

HRESULT IDirectMusicLoader8::ReleaseObjectByUnknown(
IUnknown *pObject);

343Working with DirectMusic

ReleaseObjectByUnknown takes one parameter—the pointer to the segment object you
are unloading. Once the segment object is unloaded, you can release the segment
COM object. Here’s how to perform these two calls:

g_pDMLoader->ReleaseObjectByUnknown(pDMSegment);
pDMSegment->Release();

Also, if you’ve loaded an instrument collec-
tion, now is the time to unload it from the
loader object as well, just as you did when
releasing the music segment. To make clear-
ing the cache easier, there is a single call
that you can use to force the entire cache to
clear. You don’t need to call it before releas-
ing the loader, as it does it automatically.

Clear the cache like this:

g_pDMLoader->ClearCache(GUID_DirectMusicAllTypes);

Altering Music
You can do a number of things to music, including altering volume levels, changing
the tempo, and applying special effects by using a DirectSound sound buffer object.
Take a look at each method.

Volume Settings
You can alter two volume settings—the volume of the entire performance object
(and music system in general) and an individual segment’s playback volume. As illus-
trated in Figure 8.16, each segment undergoes a volume change when passed to the
performance object. The performance object is then affected by the global volume.

The performance volume (master volume) is represented as a global parameter
and, as such, uses a call to IDirectMusicPerformance8::SetGlobalParam to set it:

HRESULT IDirectMusicPerformance8::SetGlobalParam(
REFGUID rguidType, // global param to set
void *pParam, // new param value
DWORD dwSize); // size of param data

The rguidType parameter is a GUID to the global parameter you need to set, which,
in this case, is GUID_PerfMasterVolume. You can change many global parameters, so be
sure to check out the DX SDK documents for more information.

344 8. Playing Sound with DirectX Audio

NOTE
You must unload the cache data
only when you’re sure that a new
segment you’re loading doesn’t
need the cached information. If
you are loading a separate song,
unloading is safe practice.

The pParam parameter is the volume level you need to set. The dwSize value is the
size of a long value, which is the size of a variable you’re using to store the volume
level. DirectMusic uses two macros, called DMUS_VOLUME_MIN (-200 decibels) and
DMUS_VOLUME_MAX (+20 decibels), to define the minimum and maximum volume
settings. By using a value between these two macro values, you can specify the
amount of attenuation in decibels.

You can simplify the volume level by creating a quick formula that uses percentages
rather than levels to measure the volume. The percentages range from 0 to 100,
with 0 representing no sound and 100 representing a slightly amplified volume
level. That’s right—the highest volume level amplifies the sound (and sometimes
distorts it!), so be sure to set the appropriate level.

Here’s a little function you can use to set the master volume level by specifying a
percentage value from 0 to 100:

BOOL SetMasterVolume(long Level)
{

long Volume, Range;

// Get range of volume levels and calculate new volume level
Range = labs(DMUS_VOLUME_MAX - DMUS_VOLUME_MIN); // 220
Volume = DMUS_VOLUME_MIN + Range / 100 * Level;

// set the new volume level
if(FAILED(g_pDMPerformance->SetParam(GUID_PerfMasterVolume, \

&Volume, sizeof(long))))
return FALSE;

return TRUE;
}

345Working with DirectMusic

Segments Performance

Segment
Volume

Segment
Volume

Global
Volume

Figure 8.16

Whereas each
segment alters only
its volume level, the
global volume affects
all segments.

You set the music segment volume by grabbing the audio path interface and then
using it to set the new volume level. Because you’ve already created a default audio
path, retrieving the pointer to it is easy using the following function:

HRESULT IDirectMusicPerformance8::GetDefaultAudioPath(
IDirectMusicAudioPath8 **ppAudioPath);

This function takes only one parameter—the pointer to the IDirectMusicAudioPath8
object that you are using. Once you get the audio path pointer, you can use the
IDirectMusicAudioPath8::SetVolume function:

HRESULT IDirectMusicAudioPath8::SetVolume(
long lVolume, // volume level to set
DWORD dwDuration); // time (milliseconds) taken for change

The volume level is ranged from -600 (silence) to 0 (full volume). There is no ampli-
fication here. The duration should be 0 to ease the strain on the processor. Setting
the dwDuration to 0 also tells the music system to change the volume immediately.

Instead of having to specify volume levels in the range of -600 to 0, why not just
specify the values as a percentage? You can create a simple function, much as the
one I’m about to show you, that calculates the volume level. Using this volume
level, you can obtain the audio path object and alter the volume, as shown here:

BOOL SetSegmentVolume(IDirectMusicSegment8 *pDSSegment, \
long Level)

{
long Volume;
IDirectMusicAudioPath8 *pDMAudioPath;

// Get the audio path object to work with
if(FAILED(g_pDMPerformance->GetDefaultAudioPath(\

&pDMAudioPath)))
return FALSE;

// Calculate a volume setting then set it using the
// audio path object
Volume = -96 * (100-Level);
if(FAILED(pDMAudioPath->SetVolume(Volume, 0))) {

pDMAudioPath->Release();
return FALSE;

}

346 8. Playing Sound with DirectX Audio

// release the audio path object and return a success
pDMAudioPath->Release();
return TRUE;

}

Tempo Changes
Imagine being able to change the tempo of your music slightly, altering the game-
play in such a way that the user knows something is going on. For example, when
your player nears a monster that wants to fight, the tempo picks up, and you know
there’s trouble.

The tempo is measured in beats per minute (BPM), with a typical BPM being 120. In
DirectMusic, you can change the tempo a number of ways. The easiest way is to
adjust the performance master tempo by a scaling factor. For example, setting a scale of
0.5 cuts the tempo in half, whereas a scale of 2.0 doubles the tempo.

You accomplish this by setting a global parameter, which you’ve already done. This
time, however, you alter the GUID_PerfMasterTempo setting using a scaling factor of the
data type float. Here’s a quick function for doing so. I’ve changed it so that you
specify a percentage value instead of a scaling factor, which makes setting the tempo
a little easier:

BOOL SetTempo(long Percent)
{

float Tempo;

Tempo = (float)Percent / 100.0f;
if(FAILED(g_pDMPerformance->SetGlobalParam(\

GUID_PerfMasterTempo, (void*)&Tempo, sizeof(float)))
return FALSE;

return TRUE;
}

The only catch here is that it may take a couple seconds for the tempo change
to take effect because of the beat timing. Also, remember that SetTempo affects the
global tempo, so all segments played are scaled. You should reset the tempo to
normal (1.0, or 100%) whenever you’re done with a song.

Grabbing an Audio Channel
Last in this long list of music features is the ability you have to grab a DirectSound
sound buffer object that is used to synthesize the instruments and music. You can

347Working with DirectMusic

do this by retrieving an audio path object and then using it to snatch a sound
buffer interface.

In Figure 8.17, you can see the default flow of data from the performance object
through the audio path to the synthesizer. You want to intercept that flow and alter
it in any way that you desire.

This is the purpose of the IDirectMusicAudioPath8::GetObjectInPath function:

HRESULT IDirectMusicAudioPath8::GetObjectInPath(
DWORD dwPChannel, // DMUS_PCHANNEL_ALL (search channel)
DWORD dwStage, // DMUS_PATH_BUFFER (stage in path)
DWORD dwBuffer, // 0 (index in buffer chain)
REFGUID guidObject, // GUID_NULL (class of object)
DWORD dwIndex, // 0 (index of object in buffer)
REFGUID iidInterface, // GUID of desired object
void ** ppObject); // pointer to object to create

To grab a sound object, you just specify its GUID and give it a pointer to set. The
following function will get the default audio path from a performance object and
get you an IDirectSoundBuffer8 object with which to play:

IDirectSoundBuffer8 *GetSoundBuffer()
{

IDirectMusicAudioPath8 *pDMAudioPath;
IDirectSoundBuffer *pDMB;
IDirectSoundBuffer8 *pDSBuffer;

// get the default audio path
if(FAILED(g_pDMPerformance->GetDefaultAudioPath(\

&pDMAudioPath)))
return NULL;

348 8. Playing Sound with DirectX Audio

Performance Audio Path

(Default
Path)

(Intercepted
Audio Path)

Sound Buffer 3-D Sound Buffer

Synthesizer Speaker

Figure 8.17

Hijacking an audio
path makes it possible
to use DirectSound
buffers (normal and
3-D) to create some
awesome effects.

TEAMFL
Y

Team-Fly®

// create an IDirectSoundBuffer object then release
// audio path object
if(FAILED(pDMAudioPath->GetObjectInPath(DMUS_PCHANNEL_ALL, \

DMUS_PATH_BUFFER, 0, GUID_NULL, 0, \
IID_IDirectSoundBuffer, (LPVOID*)*pDSB))) {

pDMAudioPath->Release();
return FALSE;

}
pDMAudioPath->Release();

// query for newer sound buffer object and return it
if(FAILED(pDSB->QueryInterface(IID_IDirectSoundBuffer8, \

(void**)&pDSBuffer))) {
pDSB->Release();
return FALSE;

}
pDSB->Release();

return pDSBuffer;
}

You can alter the preceding function to query for a 3D buffer interface just by
changing the interface ID to IID_IDirectSound3DBuffer8. However, be sure to release
the new object when you’re done with it.

Finishing Up Sound
DirectX Audio is one tough customer. With two complex components (DirectSound
and DirectMusic) to deal with, you have your hands full trying to figure out all the
intricate details of each one. You create sound buffers and load them with sound
data, weed through instrument data, and load and play musical segments.

Fortunately, you have this chapter at your disposal! With the information in this
chapter, you’ll be able to use streaming playback techniques, custom DLS instru-
ments, and special playback effects such as altering volume, panning, and fre-
quency settings.

This chapter covers a good deal of information that you will find highly useful in
your programming endeavors. In addition, Chapter 10 tells you exactly how to use
these techniques to create a library of handy sound and music functions.

349Finishing Up Sound

350 8. Playing Sound with DirectX Audio

Programs on the CD-ROM

Programs that demonstrate the code discussed in this chapter are
on the CD-ROM at the back of this book.You can find the following
programs in the \BookCode\Chap8\ directory:

◆ Shell. A shell application that initializes DirectSound and
DirectMusic. Location: \BookCode\Chap08\Shell\.

◆ LockLoad. A program that creates, locks, and loads sound buffers
with random noise. Location: \BookCode\Chap08\LockLoad\.

◆ WavPlay. A program that loads small wave files (.WAV) and plays
them back. Location: \BookCode\Chap08\WavPlay\.

◆ Stream. A program that loads a single wave file (.WAV) and uses
streaming techniques to play. Location: \BookCode\Chap08\Stream\.

◆ MidiPlay. A program that loads a .MID file and plays it.
Location: \BookCode\Chap08\MidiPlay\.

CHAPTER 9

Networking
with

DirectPlay

I still remember the late nights that I spent slumped over my computer hacking
away at hordes of monsters, looking for treasure, and just having a good-old time

with a couple of my Internet buddies. Heck, what am I talking about; I’m still that
way!

Internet (and intranet) gaming has changed the world of gaming and made multi-
player-gaming features a standard. No longer are gamers content with beating the
tar out of the computer; they now want to test their skills on each other. In order
for your game to stand a chance in today’s demanding market, you’ll need to give
your players this ability. You, too, can add networking to your growing list of game
features with the aid of Microsoft’s DirectPlay.

In this chapter, you learn how to do the following:

■ Understand networking
■ Work with DirectPlay’s interfaces
■ Handle network messages
■ Work with servers and clients

Understanding Networking
A network is a system of computers connected to each other for data transfer and
communications. In addition to two or more computers, a network requires net-
working software (or network operating system), network adapters, and cables. Network
adapters come in many shapes and sizes, but generally a network adapter takes the
form of a modem. That’s right; your modem is a network adapter that is capable of
connecting you to millions of other computers over the world’s largest network—
the Internet.

In this chapter, I focus on networking from the perspective of programming and
playing games. At first glance, networking might seem a little intimidating. With so
many computers passing an endless stream of data, how and what can you possibly
do to understand it all? As with all things, you need to start at the beginning and
learn the concepts behind a network; then you can build your knowledge based on
actual (and simple) examples.

352 9. Networking with DirectPlay

Network Models
There are three basic types of networking models: server, client, and peer-to-peer. Each
model connects computers together in order to share information in one form or
another. Which model you use is really up to you, but depending on your needs,
each application has its pros and cons.

You use the server to create a centralized
networking system. Other computers
using the client model connect to the
server and begin sending and receiving
information from it.

Clients have no knowledge or direct link
to other clients; they only know about
the server. The server knows about all
clients and routes information among
them as it sees fit. Figure 9.1 shows the
relationship between the server and client
models.

The third type of networking model is peer-to-peer, in which the computers con-
nect to each other directly, as opposed to the server or client model. A new link is
established for each new computer joining a network session, so each computer
knows about the other computers. As illustrated in Figure 9.2, a network with four
computers has 12 connections (remember that each computer has a connection
for each of the other three computers).

353Understanding Networking

NOTE
The server and client pair is usually
described as one, the server/client
mode, but when using DirectPlay, the
separation is necessary because the
server and client are composed of
two separate components.

ServerClient

Client Client

Client

Figure 9.1

Clients can connect to the
server, but clients have no
knowledge of each other.

The type of network model that is best
for you depends on the application that
you’re using. Client/server models are
best suited for networks that have more
than four users, whereas peer-to-peer
models are best suited for direct connec-
tions or small-scale networks.

A major problem when dealing with a
large number of networked computers is
trying to locate other players. Although
you might normally play with certain
friends (and definitely know where to
find them), what if that is not the case
or you want to find somebody new with
whom to play? In that case, network
games typically use a lobby server.

354 9. Networking with DirectPlay

Peer

PeerPeer

Peer

Figure 9.2

Computers using the peer-to-peer network model create
a link to every computer on the network.

NOTE
The time in which you’re connected
to a network is called a session.
A session can have properties asso-
ciated with it, such as a password,
the maximum number of connec-
tions, and so on. In Chapter 19,
“Getting Online with Multiplayer
Gaming,” you learn how this infor-
mation relates to gaming.

NOTE
Some games use a peer-to-peer
model because they generally only
allow four to eight players. For
example, Diablo (by Blizzard
Entertainment) allows four players
to connect. On the other hand, a
game like Ultima Online (by Origin
Systems) can handle thousands of
players using the client/server model.

Lobbies
You can think of a lobby server as a meeting hall for online gamers. A lobby enables
all players to log in, communicate, and join in a round of their favorite game. Once
the lobby server connects the players, the lobby is cut out of the loop (to save net-
work bandwidth).

You can find a great lobby server at
Microsoft’s Gaming Zone Web site
(at http://zone.msn.com). This lobby
enables thousands of players to link
to each other and then connects them
directly for a go at their favorite net-
work-enabled games. The Gaming Zone
supports many games, and if you pro-
gram your game right, it might even
support yours!

Although lobbies are helpful to multiplayer games, a discussion on using lobby
servers is beyond the scope of this book. The DirectX SDK help files contain a
great deal of information on using lobby servers, and included with the SDK are a
number of lobby server-enabled applications in which you can browse. Consult the
DX SDK for more information on those applications (you can find the DX SDK on
this book’s CD-ROM).

Latency and Lag
Bandwidth brings up two new terms: latency and lag. Latency is the amount of time
it takes for an operation to complete (the lower, the better). Lag is the word used
to describe the delay in networking communications—the time from which the
data is sent to the time it is received.

A low-lag means that network data is received quickly. High-lag (an undesirable
thing) means that network data is delayed or not delivered at all. Lag is a major
problem, especially when dealing with the Internet, and it’s up to you to deal with it.

Communication Protocols
Networks can communicate with each other in a variety of ways, but in order to
understand one another, two systems must use the same protocol. Currently, the
most popular protocol is TCP/IP (Transfer Control Protocol/Internet Protocol), the one
used over the Internet, and the only one that I deal with in this book.

355Understanding Networking

NOTE
Network bandwidth refers to the
amount of data that a network
connection can handle with ease.
For example, a high-bandwidth con-
nection can handle large amounts
of network data faster than a low-
bandwidth connection can.

The TCP/IP protocol is a method of
packaging data and sending it over the
network. It does this by splitting the
data into small packets, adding the
sender and receiver addresses as well as
the packet number used to reassemble
it (as illustrated in Figure 9.3). These
packets are whisked off into the great
unknown, hopefully to make their way
to a destination system.

TCP/IP enables a network to resend packets, just in case information is lost during
the transfer (something that happens frequently). When lag becomes an issue, these
packets can even be received in the wrong order, with older packets arriving after
newer ones. Don’t worry though; TCP/IP takes care of resending lost packets and
rearranging out-of-order packets.

Addressing
With so many computer systems on the Internet, how does the data know where to
go? Just as envelopes are addressed before being mailed, with the TCP/IP protocol,
a system is assigned a network address (an IP address) that consists of four numbers
(ranging from 0 to 255), and each number is separated by a period. An IP address
might look like this:

64.120.53.2

Although gibberish to us, the networks are able to successfully route data based on
each value. If you do the math, you’ll also see that those four numbers combined

356 9. Networking with DirectPlay

NOTE
Communication protocols are also
referred to as service providers.Think
of a service provider as your inter-
face to a network, whether it’s a pro-
tocol such as IPX,TCP/IP, or a device
such as a modem or serial cable.

Original Data

0,

22,

18,

18,

12,

10,

255,

16,

56

50

20

1

0,3

1,3

2,3

3,3

0,

22,

18,

18,

12,

10,

255,

16,

56

50

20

1

TCP/IP Packets Reconstructed Data

0,

22,

18,

18,

12,

10,

255,

16,

56

50

20

1

Header Data

Figure 9.3

TCP/IP splits data into
packets and appends
its own header inform-
ation to them.The
header contains the
packet number,
sender’s address and
the intended target’s
address.

give you a total of 4,294,967,296 possible addresses. To increase the number of
addresses, networks use additional address values, called ports, to which data is
delivered.

Think of an IP address as a mailroom. This mailroom (IP address) represents a sin-
gle computer system hooked to the network; that computer system is assigned only
one IP address. Inside this mailroom are many bins (or ports) into which the mail
is sorted. Each bin (port) belongs to a particular office (a particular application).

Some applications have multiple ports. Data is received only by a system that knows
which IP address and which port to look in. A device called a data router directs
incoming network data to a system that the router knows, or it passes the network
data on to another network connection (called a pass-along network). Figure 9.4
illustrates the route that network data can flow via a data router.

Introducing DirectPlay
DirectPlay is Microsoft’s solution to the networking confusion. Although DirectPlay
has undergone some major changes over the last few versions, it appears as though
Microsoft has finally developed an easy-to-use system in version 8. So easy, in fact,
that you’ll be up and networking before you know it!

357Introducing DirectPlay

1 32

4 5 6

Bins (ports)

Data RouterIncoming Data

To Other -
Pass Along Network

12.23.187.2

To Mailroom

118.2.31.1

To Mailroom

Mailroom (IP)12.23.187.2

1 32

4 5 6

Bins (ports)

Mailroom (IP) 118.2.31.1

Figure 9.4

A mailroom
(IP address) has
multiple bins
(ports) to sort
the incoming
data. Multiple
mailrooms can
be connected to
a data router.

The Network Objects
Using DirectPlay, you have access to the three network models that I mentioned ear-
lier: client, server, and peer-to-peer. Each has its own interface object (as described
in Table 9.1), all
sharing similar
functions.

To connect to a
remote network
system (or to host
a session), you con-
struct a network
address using
IDirectPlay8Address

(shown in Table
9.1). Its sole
purpose is to
construct and
contain a sin-
gle network
address.

358 9. Networking with DirectPlay

Table 9.1 DirectPlay COM Objects

Object Description

IDirectPlay8Client The client network object. Connects to a server.

IDirectPlay8Server The server network object. Connects to clients.

IDirectPlay8Peer The peer-to-peer network object. Connects
clients to other clients.

IDirectPlay8Address An object that contains (and constructs) network
addresses.

NOTE
Large-scale role-playing games usually require a client/server
setup to run efficiently, so I’ll forgo the peer-to-peer network
models in this book. Check out the DirectX SDK for exam-
ples on using it or take a look at Appendix C,
“Recommended Reading,” for some resources. For informa-
tion on using peer-to-peer networking models for gaming,
I suggest Multiplayer Game Programming, by Todd Barron.

NOTE
As I mentioned earlier, a session refers to the time you are host-
ing or are joined to a networked system.When you terminate
that connection, the session is over. Each session has unique
properties, such as name, password (if any), maximum number
of users allowed, and so on.You learn more about sessions in the
section “Configuring Session Information,” later in this chapter.

TEAMFL
Y

Team-Fly®

After you create the network object and assign it an address, you are ready to host a
game session or to connect to a remote system. To host a game, you simply wait for
other systems (that is the people using the systems) to connect to you, at which
point your system and the remote system begin transferring game-related network
messages to each other. DirectPlay refers to those remote systems (as well as your
computer), as players.

Working with Players
In DirectPlay terms, a player is a single connection (usually a game player) that con-
nects to another computer over the network. A single computer can have several
players, but generally only one. In fact, a server is assigned as a player in order to
identify it.

Each player receives an identification number (Player ID) that the system uses to direct
messages to the individual players. These numbers are the only trusted method of
tracking players, so you need to set up your program to keep track of them.

For large-scale games, you could have thousands of connected players. In order to
improve handling of all the players in the game, some (or all) of the players can be
assigned to groups. Using groups eases programming chores a little bit, primarily
because you can group a series of players who are in a single game area (such as a
map or level) and send network data to the entire group at once, rather than to
each player individually. (There are a number of other reasons to use groups, but
this is the most significant one.)

This relationship among players and groups is illustrated in Figure 9.5. There are
no restrictions on the number of players in a group and no restrictions on the
number of groups that you can create. As you can also see in Figure 9.5, groups
(denoted by an enclosed box) can also belong to other groups (Groups 1 and 2
belong to Group 3 in the figure). Notice that Players 7 and 8 are isolated from the
groups; it doesn’t matter to DirectPlay whether a player belongs to a group or not.

Regardless of the way you group (or don’t group) the game’s players, once a connec-
tion is in place, the systems can begin communicating with each other via messages.

Networking with Messages
A message is a categorized packet of data, wrapped inside a simple structure. Each
message has a specific meaning, is assigned a macro (as shown in Table 9.2), and is
dependent on the network model that you are using. For example, a client object
will never receive a message intended for peer objects.

359Introducing DirectPlay

In order to receive messages, your net-
work object must have assigned itself
a callback function that is called every
time a message comes in. To ensure a
smooth flow of data, this function parses
the data based on its type and returns as
quickly as possible.

To send messages, you use each network
object’s send function (of which there
are two). These functions are easy to use,
and they provide you with many delivery
options, including guaranteed delivery,
secure encryption, and asynchronous or
synchronous delivery.

Asynchronous
and Synchronous
The first delivery option that DirectPlay
provides you is the ability to send mes-
sages asynchronously or synchronously. This means that the system returns control to
you after you give it the command to send data (asynchronous) or that it will wait
until all the data is successfully sent (synchronous).

360 9. Networking with DirectPlay

Group 1

Group 2

Player 1

Player 2

Player 5
Player 6

Player 3
Player 4

Player 8

Player 7

Group 3
Figure 9.5

Eight players are
connected to a game
session. Six of the
players belong to a
group (or two groups),
while two players
remain separate
from all groups.

NOTE
Although some of the messages
might not make sense at this
moment, the descriptions give you
the low-down.There are surprisingly
few messages with which to work, but
this is a case of when less is more.

NOTE
DirectPlay’s network messages and
their related information can be
found in the DirectX SDK docu-
ments. I recommend that you keep
that document open while creating
your masterpiece.

361Introducing DirectPlay

Table 9.2 Standard DirectPlay Messages

Message Macro Description

DPN_MSGID_ADD_PLAYER_TO_GROUP A player was added to an existing group.

DPN_MSGID_APPLICATION_DESC Application data was requested.

DPN_MSGID_ASYNC_OP_COMPLETE An asynchronous send-data operation has
completed.

DPN_MSGID_CLIENT_INFO Client data was requested.

DPN_MSGID_CONNECT_COMPLETE A network connection was completed.

DPN_MSGID_CREATE_GROUP A group was created.

DPN_MSGID_CREATE_PLAYER A player was created.

DPN_MSGID_DESTROY_GROUP A group was destroyed (removed).

DPN_MSGID_DESTROY_PLAYER A player was destroyed (removed).

DPN_MSGID_ENUM_HOSTS_QUERY Signifies that another network application is
looking for others with which to connect.

DPN_MSGID_ENUM_HOSTS_RESPONSE A message to allow you to respond to a host query.

DPN_MSGID_GROUP_INFO Group data was requested.

DPN_MSGID_HOST_MIGRATE A host has moved its data to another system
because of loss of connection.

DPN_MSGID_INDICATE_CONNECT Signifies that a remote system is trying to connect.

DPN_MSGID_INDICATED_CONNECT_ABORTED Informs you that the remote connecting system
aborted its connection attempt.

DPN_MSGID_PEER_INFO Peer-to-peer data was requested.

DPN_MSGID_RECEIVE Data was received.

DPN_MSGID_REMOVE_PLAYER_FROM_GROUP A player was removed from a group.

DPN_MSGID_RETURN_BUFFER Lets you know that DirectPlay is done with a
buffer that you previously gave it.

DPN_MSGID_SEND_COMPLETE Data was sent successfully.

DPN_MSGID_SERVER_INFO Server data was requested.

DPN_MSGID_TERMINATE_SESSION A network session has terminated.

Which is the best option? The asynchronous (async) method is most likely the one
you’ll want to use; it doesn’t hold up the system as the synchronous (sync) method
does. For example, if you’re sending a large amount of data and trying to play a
game at the same time, you don’t want a break in the action while the network tries
to send all the data. Just tell it to send, let DirectPlay handle it, and let the player
go on as though nothing happened.

Security
It’s scary to know that at any given time someone might be intercepting and record-
ing your network data. For this reason, you have the option to encrypt message data
in a secure manner, making it much harder for those unscrupulous hackers to read
your precious information.

The downside is that using secure network delivery will slow the system a bit because
it must encrypt the message before it is sent and then decrypt the message after it is
received. If you’re sending crucial information, time really isn’t the issue (but it is
an issue for games).

DirectPlay has built-in support for secure messages. Fortunately, using it is as easy as speci-
fying a single flag during a send operation. Now that’s a big burden off your shoulders.

Guaranteed Delivery
Just as some parcel delivery companies guarantee the arrival of a package, so can
DirectPlay guarantee the arrival of messages. You can signify a message as guaranteed
and rest assured that DirectPlay will get it to its destination (short of being discon-
nected) by continually performing the send operation until successful. Using guaran-
teed delivery is accomplished through a specific flag unique to the calling function,
as you will see in the section “Sending Server Messages,” later in this chapter.

The downside to guaranteed delivery is speed. Guaranteed delivery is much too
slow to use in a real gaming situation. Games use a UDP (User Datagram Protocol)
delivery method—which doesn’t care whether data is received. You might think
that’s crazy, but when you come down to it, games send updated information so
often that it’s acceptable to lose a little data every now and then.

Throttling
At times, your system can become overloaded trying to handle the flow of messages.
However, DirectPlay has a built-in message-throttle system that discards low-priority
messages from the send queue.

362 9. Networking with DirectPlay

Perhaps Figure 9.6 can help you visualize the
concept of using a throttling mechanism. As
you look at the figure, imagine a line of people
waiting in front of the hottest nightclub in
town. Each patron represents a message, and
the bouncers (throttling mechanisms) must weed
those of lesser importance from the line when
things get too busy.

From Small Bytes to Big Words
The world is a big place and because we’re all different, there are times when a
happy medium is needed. Actually, what I’m talking about are language barriers,
specifically the computer language barrier.

DirectPlay introduces you to the world of Unicode (if you’re not already familiar
with it). Unicode is a universal standard that enables different programs and com-
puters to share information. Because a network can communicate with another
network anywhere in the world, your game players might live in different countries
and speak different languages.

Because Windows operates a little differently in each country, the users’ systems
might be configured to use Unicode characters (refer to Chapter 5, “Programming
with Windows and Application Basics,” for a description of Unicode).

363Introducing DirectPlay

NOTE
DirectPlay handles throttling
excellently, so you typically
don’t have to mess around
with its default settings.

Pending Send Data

Bouncer
(Throttle Mechanism)

Acc
ep

te
d

Dat
a

Rejected Data

Network Club

Figure 9.6

A throttling mechanism
(the bouncer) allows
or rejects messages
(patrons) based on
their importance.

As a result, the entire DirectPlay system is built around using Unicode characters
(a single character uses 16 bits instead of 8 bits to store data), accommodating lan-
guages that use more than 256 characters. I can hear you groaning, so let me just
say that Windows has all the functions you need to convert between the two charac-
ter formats; there’s nothing to worry about.

Identifying Applications with GUIDs
Because there are so many network applications, how do you keep yours apart from
others? Assign your application a unique number and allow only applications using
the same number to connect with each other. This special number is, of course, the
GUID (Global Unique Identification) familiar to Windows programmers.

When you create your applica-
tion, take a few moments to give
it a unique GUID and make sure
that all applications needing to
interface over the network with it
use the same GUID.

That’s really about all there is to
sending data. The flow from cre-
ating a DirectPlay network object
to sending and receiving data is
strikingly similar for each object,
so I’ll be interweaving some of
the information as I go along.

Initializing a Network Object
The first step in using DirectPlay is to
create a network object, whether it’s a
server, client, or peer.

To initialize each one of the network
model interfaces, DirectPlay gives you
a single helper function that handles
all of them:

HRESULT DirectPlay8Create(
GUID *pcIID, // GUID pointer to type of interface:

364 9. Networking with DirectPlay

NOTE
The only way to generate a GUID is by using
Microsoft’s guidgen.exe program (usually
located in the \common\tools subdirectory
of the Visual C/C++ installation directory).
To generate a GUID, locate and run the
guidgen.exe file. Select option #4,“Registry
Format,” and click Copy (to copy the GUID
onto the Clipboard). Open a source code file
into which you can paste the GUID. Paste
the GUID into your code by selecting Edit,
Paste or by pressing Ctrl+V.

NOTE
To use DirectPlay in your projects,
you need to include a dplay8.h and
dpaddr.h header file, plus link in
dplay.lib, dpnet.lib, and dpnaddr.lib.

// &IID_IDirectPlay8Server
// &IID_IDirectPlay8Client
// &IID_IDirectPlay8Peer

void **ppvInterface, // Pointer to receive interface object
IUnknown *pUnknown); // NULL

The comments pretty much say it all, but you begin to notice one thing from here
on—DirectPlay uses pointers to the pointers of variables (unlike other DX objects).
So, to initialize a server network object, do the following:

IDirectPlay8Server *pDPServer;

if(FAILED(DirectPlay8Create(&IID_IDirectPlay8Server, \
(void**)&pDPServer, NULL)) {

// Error occurred
}

To use any of the network model inter-
faces, the only other step is to assign the
network object a callback function, which
is called any time that a network message

365Initializing a Network Object

CAUTION
To be on the safe side, always initialize the COM system before call-
ing any DirectPlay functions. DirectPlay is supposed to initialize the
COM system, but sometimes that just doesn’t happen as planned,
in which case your application might crash.

For applications that do not use multiple threads (single-threaded),
add the following line before any other DirectX calls:

CoInitialize(NULL);

On the other hand, if you are using multi-threading, use the following
function call:

CoInitializeEx(NULL, COINIT_MULTITHREADED);

When your application is done, always be sure to call CoUninitialize,
as follows:

CoUninitialize();

TIP
In the call to DirectPlay8Create,
to use a different network model,
you just change the object
instance and GUID to the net-
work object type you are creating.

is received. This function takes the following prototype:

typedef HRESULT (WINAPI *PFNDPNMESSAGEHANDLER)(
PVOID pvUserContext, // An application specified pointer
DWORD dwMessageType, // The type of message received
PVOID pMessage); // Buffer with message-specific data

The pvUserContext is a pointer to anything you want to associate with the player; you
set the pointer during the creation of a player. pvUserContext could be the pointer to
a structure holding the game state or whatever you wish. The dwMessageType and
pMessage arguments relate to messages, which you learn about in the section
“Receiving Data,” later in this chapter.

For now, you can skip the actual callback function and continue with the initialization
of the network object. To complete the initialization, you call the following function:

HRESULT IDirectPlay8Server::Initialize(
PVOID const pvUserContext, // User specified data pointer
const PFDNPMESSAGEHANDLER pfn, // Message callback function
const DWORD dwFlags); // 0

Here’s an example
of creating your own
callback function
(just the prototype
for now) and initial-
izing the server net-
work object just
created:

// Callback function
prototype
HRESULT WINAPI
MessageHandler(PVOID pvUserContext, \

DWORD dwMessageId, PVOID pMsgBuffer);

// Initialize the pre-created pDPServer object
if(FAILED(pDPServer->Initialize(NULL, MessageHandler, 0))) {

// Error occurred
}

That’s all there is to creating and initializing the network objects. The next step is
creating an address object.

366 9. Networking with DirectPlay

NOTE
This function also works for each model (using the same
argument lists):

HRESULT IDirectPlay8Client::Initialize(...);

HRESULT IDirectPlay8Peer::Initialize(...);

Using Addresses
As you previously read, a network uses an IP address and port to deliver its data. In
DirectPlay, you construct this address in its own special object, IDirectPlay8Address.
The address object has a number of functions for you to use, but you work with
only three in this book (as shown in Table 9.3).

Initializing the Address Object
Before you can use the address object, you need to create it using the
DirectPlay8AddressCreate helper function:

HRESULT DirectPlay8AddressCreate(
GUID *pcIID, // &IID_IDirectPlay8Address
void ** ppvInterface, // pointer to interface object
IUnknown *pUnknown); // NULL

Not much is going on here; you just specify that you are creating an address object
and give it the pointer to the object you are creating:

IDirectPlay8Address pDPAddress; // no need for global instance

if(FAILED(DirectPlay8AddressCreate(&IID_IDirectPlay8Address, \
(void**)&pDPAddress, NULL))) {

// Error occurred
}

367Using Addresses

Table 9.3 IDirectPlay8Address Functions

Function Description

IDirectPlay8Address::Clear Clears all address data.

IDirectPlay8Address::SetSP Sets the service provider.

IDirectPlay8Address::AddComponent Adds an address component.

Adding Components
An address object is simply one that contains a string of Unicode text. This text
string contains the service provider, port number, and other optional information.
Its only purpose is to build this string for other objects to use.

In order to add a component to the address object, use the IDirectPlay8Address:
:AddComponent function:

HRESULT IDirectPlay8Address::AddComponent(
const WCHAR *const pwszName, // Name of component to set.
const void *const lpvData, // Buffer containing component

// information you are setting.
const DWORD dwDataSize, // Size of above data buffer.
const DWORD dwDataType); // Type of data being sent.

This little function requires a good deal of description, so let’s take it slow. The first
argument, pwszName, is a pointer to a Unicode string containing the component to be
added. DirectPlay has macros that define these components, as shown in Table 9.4.

The buffer you send to the AddComponent function via lpvData depends on the type of
component you are sending, but it always takes the form of a string (Unicode or

368 9. Networking with DirectPlay

Table 9.4 Component Name Macros

Component Macro

Provider DPNA_KEY_PROVIDER

Network device DPNA_KEY_DEVICE

Port number DPNA_KEY_PORT

Host name/address DPNA_KEY_HOSTNAME

Phone number DPNA_KEY_PHONENUMBER

Baud rate DPNA_KEY_BAUD

Flow control DPNA_KEY_FLOWCONTROL

Parity DPNA_KEY_PARITY

Stop bits DPNA_KEY_STOPBITS

TEAMFL
Y

Team-Fly®

ANSI), double word (DWORD), GUID, or binary. This is the purpose of the
dwDataType argument, which can be any of the macros shown in Table 9.5.

Last is the dwDataSize argument, which is the size of the data you are sending
(DWORD, string length, GUID size, and so on). It’s hard to imagine using this
method for setting data, but doing so will make sense when you see the examples I
provide in the section “Selecting a Port,” later in this chapter. For now, take a look
at Figure 9.7, which shows the components that you can add to the address object
and each component’s data type.

369Using Addresses

Table 9.5 Component Data Types

Type Macro

String (Unicode) DPNA_DATATYPE_STRING

String (ANSI) DPNA_DATATYPE_STRING_ANSI

DWORD DPNA_DATATYPE_DWORD

GUID DPNA_DATATYPE_GUID

Binary DPNA_DATATYPE_BINARY

IP Address
(String)

Provider
(GUID)

Port #
(DWORD)

IDirect8Address
(COM Object)

Device
(GUID)

Figure 9.7

The address object can hold various
kinds of component information.
Each component has its respective
data type.

Setting the Service Provider
After you create the address object and understand the concept of components, the next
thing to do is to select a service provider. This is the only setting that does not require the
use of the AddComponent function. Instead, you use the IDirectPlay8Address::SetSP function:

HRESULT IDirectPlay8Address::SetSP(
const GUID *const pguidSP); // GUID of service provider

The GUID for each type of service provider is shown in Table 9.6. The choice is
yours, but for this book, I use the TCP/IP service provider (CLSID_DP8SP_TCPIP).

To set the service provider utilizing what you’ve just read, you can use the following:

// Set the TCP/IP service provider
if(FAILED(pDPAddress->SetSP(&CLSID_DP8SP_TCPIP))) {

// Error occurred
}

Selecting a Port
Next in line is to select a port, either to host a session (as a server or peer) or to
connect to a remote system when using the client network model. If you are con-
necting to a remote system, you must know the port that an application is using
in order to connect and send data to the remote system.

You set the port using the IDirectPlay8Address:AddComponent function. Although this is
a confusing function, as you’ve already seen, you’ll quickly see how easy it is to use.

370 9. Networking with DirectPlay

Table 9.6 DirectPlay Service Providers

Type GUID

TCP/IP CLSID_DP8SP_TCPIP

IPX CLSID_DP8SP_IPX

Modem CLSID_DP8SP_MODEM

Serial CLSID_DP8SP_SERIAL

Here’s the call used to set a port using the AddComponent function:

// dwPort is a DWORD value representing the port # to use
if(FAILED(pDPAddress->AddComponent(DPNA_KEY_PORT, &dwPort, \

sizeof(DWORD), DPNA_DATATYPE_DWORD))) {
// Error occurred

}

You can see that it’s not hard to add components because DirectPlay makes it as
easy as possible! At this point, you’re pretty much finished with the address setup.
What’s left you ask?

Assigning a Device
Even though you have selected a service provider, more than one device on your sys-
tem might use it. Such is the case when you have a network adapter and a modem
connected to the Internet—both use TCP/IP. In such cases, you must enumerate
the devices and select.

Figure 9.8 illustrates an array of service
providers. The enumerator grabs all the
usable service providers and puts them
together for you in a usable fashion.
Enumeration with DirectPlay is a little dif-
ferent than the typical Windows method
of enumeration; you do not use a callback
function that is called every time an instance of the object in question is found.
Instead, you ask for a buffer that contains every service provider in the form of an
array of structures.

371Using Addresses

NOTE
The port number you use is a matter of choice, but don’t
use a reserved one (1 to 1,024). Pick anything above those
numbers, and you should be safe.

You can have DirectPlay pick a port for you by specifying
0 as the port number, but the downside is that the port
could be anything, and you need to query for it.The pre-
ferred method is for you to select one.

TIP
You can skip this step if there’s only
one adapter because DirectPlay
will use the first occurrence of it.

You handle enumeration using the following function (this also applies to the
client and peer network objects):

HRESULT IDirectPlay8Server::EnumServiceProviders(
const GUID *const pguidServiceProvider, // GUID of the SP
const GUID *const pguidApplication, // NULL
const DPN_SERVICE_PROVIDER_INFO *const pSPInfoBuffer,
DWORD *const pcbEnumData, // Pointer to DWORD holding size

// of data buffer.
DWORD *const pcReturned, // Pointer to DWORD holding #

// enumerated items in buffer.
const DWORD dwFlags); // 0

With this function, you pass the service provider GUID as the first argument (or
NULL to specify all service providers). The pSPInfoBuffer is a pointer to an array of
DPN_SERVICE_PROVIDER_INFO structures that this function will fill with the enumerated
information. That structure is defined as follows:

typedef struct _DPN_SERVICE_PROVIDER {
DWORD dwFlags; // 0
GUID guid; // Guid of device
WCHAR *pwszName; // Name of device
PVOID pvReserved; // 0
DWORD dwReserved; // 0

} DPN_SERVICE_PROVIDER;

When you call this function, give it a DWORD variable (such as pcdEnumData) that is
filled with the total size of the data returned. This is here for one reason—to query
the enumeration beforehand and ask for the size of the buffer in order to allocate
the memory in which to store the enumeration data.

372 9. Networking with DirectPlay

Modem
TCP/IP

Modem
Direct

Network Card
TCP/IP

IPX

Serial Port
com1

Service Providers

DirectPlay
Enumerate

Array of SPs

1. TCP/IP Modem

2. TCP/IP Network Card

3. IPX �

4. Modem Modem

5. Serial Serial com1

Network Card

Figure 9.8

Enumeration creates
a list of every service
provider on the system
and places them all
into an easily
accessible array
of providers.

Here is an example that enumerates all TCP/IP service providers. This following
example provides a list of devices in return that have access to this service provider,
from which you can pick a device and use in the address object.

DPN_SERVICE_PROVIDER_INFO *pSP = NULL;
DPN_SERVICE_PROVIDER_INFO *pSPPtr;
DWORD dwSize = 0;
DWORD dwNumSP = 0;
DWORD i;

// Query the required size of the data buffer
hr = pDPServer->EnumServiceProviders(&CLSID_DP8SP_TCPIP, \

NULL, pSP, &dwSize, &dwNumSP, 0);
// return error code should be buffer too small if all OK
if(hr != DPNERR_BUFFERTOOSMALL) {

// An unknown error occurred
} else {

// Allocate a buffer and enumerate again
pSP = (DPN_SERVICE_PROVIDER_INFO*)new BYTE[dwSize];
if(SUCCEEDED(pDPServer->EnumServiceProviders(\

&CLSID_DP8SP_TCPIP, NULL, pSP, \
&dwSize, &dwNumSP, 0))) {

// Enumeration is complete, scan through entries
pSPPtr = pSP;
for(i=0; i < dwNumSP; i++) {

// pSPPtr->pwszName contains Unicode string of provider
// pSPPtr->guid contains the GUID of the service provider

pSPPtr++; // go to next service provider in buffer
}

}

// Delete data buffer memory
delete[] pSP;

}

You’ll most likely need to display the
names of the service providers to the users
in order for them to pick which one to
use. The DirectX SDK comes with an exam-
ple program called AddressOverride that shows you exactly how to do so.

373Using Addresses

TIP
If you want to enumerate all
service providers on the system
rather than only TCP/IP, just sub-
stitute CLSID_DP8SP_TCPIP with NULL.

When you have the service provider GUID, you can use it to complete the address.
Do this with a call to IDirectPlay8Address::AddComponent function again, this time pass-
ing the GUID:

// guidSP is the GUID of the service provider
if(FAILED(pDPAddress->AddComponent(DPNA_KEY_PROVIDER, \

&guidSP, sizeof(GUID), DPNA_DATATYPE_GUID))) {
// Error occurred

}

You now have a complete address component ready and waiting for use.

Using Message Handlers
Before going much further, you must construct a message handler callback func-
tion. This function is really straightforward. It only needs to distinguish what kind
of message was retrieved and handle it as quickly as possible. You can think of this
message handler as a funnel, as illustrated in Figure 9.9.

You’ve seen the prototype already, so take a look at a sample function:

// Callback function prototype
HRESULT WINAPI MessageHandler(PVOID pvUserContext, \

DWORD dwMessageId, PVOID pMsgBuffer)
{

switch(dwMessageId) {
case DPN_MSGID_CREATE_PLAYER:

// handle creation of player
return S_OK;

case DPN_MSGID_DESTROY_PLAYER:
// handle removal of player
return S_OK;

}

return E_FAIL;
}

By creating a switch...case system, you can quickly scan for the messages you want,
passing up the rest. Returning a value of S_OK signifies that you processed the mes-
sage successfully. A return value of E_FAIL means that you did not.

Each message carries with it a data buffer, which is cast into the appropriate struc-
ture. These structures share almost the same naming scheme as the message

374 9. Networking with DirectPlay

macros, except that they start with DPNMSG_
rather than DPN_MSGID_ , as in the follow-
ing:

DPNMSG_CREATE_PLAYER *pCreate; //
DPN_MSGID_CREATE_PLAYER
DPNMSG_DESTROY_PLAYER *pDestroy; //
DPN_MSGID_DESTROY_PLAYER
pCreate =
(DPNMSG_CREATE_PLAYER*)pMsgBuffer;
pDestroy = (DPNMSG_DESTROY_PLAYER*)pMsgBuffer;

Of course, the contents of these messages are useful only to the specific network
object, so there’s no reason to use all of them. In the sections “Working with
Servers,” and “Working with Clients,” later in this chapter, you see each one used in
its respective object.

375Using Message Handlers

Network

Data

Data

Data

Message Handler

Data

Data

Data

A
pp

lic
at

io
n

Process

Process

Process

Figure 9.9

The network object receives network messages and
lets the message handler deal with those messages
one-by-one.

NOTE
DPNSUCCESS_PENDING is a third return
value that you see when learning
how to deal with the server in the
section “Receiving Data.” Check
out that section for information on
this value.

Configuring
Session Information
Each network object needs to know a little bit about the session it’s hosting or
about to join. This information is contained within a single structure:

typedef struct _DPN_APPLICATION_DESC {
DWORD dwSize; // size of this structure
DWORD dwFlags; // session flags
GUID guidInstance; // NULL
GUID guidApplication; // set to application GUID
DWORD dwMaxPlayers; // set to maximum # players allowed
DWORD dwCurrentPlayers; // current number of players
WCHAR *pwszSessionName; // name of session
WCHAR *pwszPassword; // session password (if any)
PVOID pvReservedData; // unused
DWORD dwReservedDataSize; // unused
PVOID pvApplicationReservedData; // NULL
DWORD dwApplicationReservedDataSize; // 0

} DPN_APPLICATION_DESC;

As I’ve said, you don’t need all the information in the DPN_APPLICATION_DESC structure,
so here’s a breakdown of what you need for each network model.

Server Session Data
A server needs to configure the maximum number of players allowed (if you want
to set a limit), the name of the session and password used to log in, session flags,
and the application GUID.

To do this, you first clear the structure (to 0s), set the dwSize variable, and fill in the
required fields. As for the dwFlags variable, you have the choice of the flags shown
in Table 9.7

Here’s an example of setting up the session information:

// This application’s GUID
GUID AppGUID = { 0xede9493e, 0x6ac8, 0x4f15, \

{ 0x8d, 0x1, 0x8b, 0x16, 0x32, 0x0, 0xb9, 0x66 } };

// Zero out the session information structure and set its size
DPN_APPLICATION_DESC dpad;

376 9. Networking with DirectPlay

ZeroMemory(&dpad, sizeof(DPN_APPLICATION_DESC));
dpad.dwSize = sizeof(DPN_APPLICATION_DESC);

// Set the session name and password
dpad.pwszSessioName = L”MySession”;
dpad.pwszPassword = L”MyPassword”;

// Set maximum # of players to 4
dpad.dwMaximumPlayers = 4;

// Set the application GUID
dpad.guidApplication = AppGUID;

// Set flags to client/server and use
password
dpad.dwFlags = DPNSESSION_CLIENT_SERVER |
\

DPNSESSION_REQUIREPASS-
WORD;

Client Session Data
The information you need to set for the client structure includes the name and
password of the session you want to join, the client/server session flag, and the

377Configuring Session Information

Table 9.7 Session Flags

Flag Macro Description

DPNSESSION_CLIENT_SERVER This session is a client/server model.

DPNSESSION_MIGRATE_HOST Used in peer models, the inclusion of this flag causes
DirectPlay to transfer host information to another
system if the current host is lost.

DPNSESSION_NODPNSVR Tells DirectPlay not to allow enumerations of your
application from a remote system.

DPNSESSION_REQUIREPASSWORD The remote user must give the correct password to
log in.

NOTE
If you don’t want to set a maximum
number of players, leave that field as
0. Do the same with the password;
just don’t use the flag and leave the
password field alone.

application GUID. Be sure to use the same application GUID as the server applica-
tion so that they can find each other on the network. Here’s an example:

// The server application GUID
GUID AppGUID = { 0xede9493e, 0x6ac8, 0x4f15, \

{ 0x8d, 0x1, 0x8b, 0x16, 0x32, 0x0, 0xb9, 0x66 } };

// Zero out the session information structure and set its size
DPN_APPLICATION_DESC dpad;
ZeroMemory(&dpad, sizeof(DPN_APPLICATION_DESC));
dpad.dwSize = sizeof(DPN_APPLICATION_DESC);

// Set the session name and password to join in
dpad.pwszSessioName = L”MySession”;
dpad.pwszPassword = L”MyPassword”;

// Set the application GUID
dpad.guidApplication = AppGUID;

// Set flags to client/server and use password
dpad.dwFlags = DPNSESSION_CLIENT_SERVER | \

DPNSESSION_REQUIREPASSWORD;

Working with Servers
At last, the real fun begins! The first step to getting a real network going is to cre-
ate a server. The server will act as the central processing unit for your networked
game. All players will connect to a server via a client application and begin trans-
mitting data back and forth.

The server keeps the game data synchronized and informs the players of the cur-
rent state of the game. Although this might not be the fastest method for smaller
network games, it is the best method for larger ones, so I use it in Chapter 19.

Here’s a complete function that creates the server object and initializes it with a
message handler function (just a pretty bare one for now), that creates the address
component and session structure, and that makes a special call to start the hosting.
As a result of calling the function, you receive a pointer to the server network object.

// Server GUID
GUID AppGUID = { 0xede9493e, 0x6ac8, 0x4f15, \

{ 0x8d, 0x1, 0x8b, 0x16, 0x32, 0x0, 0xb9, 0x66 } };

378 9. Networking with DirectPlay

TEAMFL
Y

Team-Fly®

// Message handler prototype
HRESULT WINAPI ServerMsgHandler(PVOID pvUserContext, \

DWORD dwMessageId, PVOID pMsgBuffer);

IDirectPlay8Server *StartNetworkServer(
char *szSessionName, // Session name (in ANSI)
char *szPassword, // Password to use (NULL if none)
DWORD dwPort, // Which port to use
DWORD dwMaxPlayers, // Maximum # of players

{
IDirectPlay8Server *pDPServer;
IDirectPlay8Address *pDPAddress;
DPN_APPLICATION_DESC dpad;
WCHAR wszSessionName[256];
WCHAR wszPassword[256];

// Create and initialize the server object
if(FAILED(DirectPlay8Create(&IID_IDirectPlay8Server, \

(void**)&pDPServer, NULL)))
return NULL;

if(FAILED(pDPServer->Initialize(pDPServer, \
ServerMsgHandler, 0))) {

pDPServer->Release();
return NULL;

}

// Create the address object, set the SP & port
if(FAILED(DirectPlay8AddressCreate(\

&IID_IDirectPlay8Address, (void**)&pDPAddress, NULL))) {
pDPServer->Release();
return NULL;

}
pDPAddress->SetSP(&CLDID_DP8SP_TCPIP);
pDPAddress->AddComponent(DPNA_KEY_PORT, &dwPort, \

sizeof(DWORD), DPNA_DATATYPE_DWORD);

// Set up the session information
ZeroMemory(&dpad, sizeof(DPNA_APPLICATION_DESC));
dpad.dwSize = sizeof(DPNA_APPLICATION_DESC);
dpad.dwFlags = DPNSESSION_CLIENT_SERVER;

379Working with Servers

// Set session name by converting ANSI to Unicode
mbstowcs(wszSessionName, szSessionName, \

strlen(szSessionName)+1);
dpad.pwszSessionName = wszSessionName;

// Set password information (if any)
if(szPassword != NULL) {

mbstowcs(wszPassword, szPassword, strlen(szPassword)+1);
dpad.pwszPassword = wszPassword;
dpad.dwFlags |= DPNSESSION_REQUIREPASSWORD;

}
dpad.dwMaxPlayers = dwMaxPlayers;

I’ll stop here for a second and introduce the special host function that starts the
server object’s networking session:

HRESULT IDirectPlay8Server::Host(
const DPN_APPLICATION_DESC *const pdnAppDesc, // session info
IDirectPlay8Address **const prgpDeviceInfo, // Address object
const DWORD cDeviceInfo, // 1
const DPN_SECURITY_DESC *const pdpSecurity, // NULL
const DPN_SECURITY_CREDENTIALS *const pdpCredentials, // NULL
VOID *const dwPlayerContext, // NULL
const DWORD dwFlags); // 0

Thankfully, you’re all prepared for this monster function. You’ve already created
the address object and set up the session description, so the rest is child’s play.
Here’s the rest of the preceding function:

if(FAILED(pDPServer->Host(&dpad, &pDPAddress, 1, \
NULL, NULL, NULL, 0))) {

pDPAddress->Release();
pDPServer->Release();
return NULL;

}

// Release the address object - no longer required
pDPAddress->Release();

// Return the server object
return pDPServer;

}

// The server network message handler function with

380 9. Networking with DirectPlay

// useable message switch...case statements in place.
HRESULT WINAPI ServerMsgHandler(PVOID pvUserContext, \

DWORD dwMessageId, PVOID pMsgBuffer)
{

// Define DPNMSG_* message structures here

// Pointer to calling server object
// retrieved through user-specified pointer during
// call to Initialize.
IDirectPlay8Server *pDPServer;
pDPServer = (IDirectPlay8Server*)pvUserContext;

switch(dwMessageId) {
// do case statements here based on message type
// for instance:
// case DPN_MSGID_CREATE_PLAYER:
// DPNMSG_CREATE_PLAYER dpcp;
// dpcp = (DPNMSG_CREATE_PLAYER*)pMsgBuffer;
// do whatever you want with this data and
// return success when done.
// return S_OK;

}

return E_FAIL;
}

As you can see, I again inserted only a skeleton message handler function. Before
you can start working with the messages, you need to understand the theory
behind them. The following sections begin with player-related messages, which are
the messages you are most likely to use.

Handling Players
When the server starts up, one of the first messages you receive is the message for
creating a player. The first player created is always the host player. Then other play-
ers begin to come and go, but the host player remains throughout the session.

Dealing with Create-Player Messages
The create-player message is defined as DPN_MSGID_CREATE_PLAYER, and the message
buffer is cast into a DPNMSG_CREATE_PLAYER structure, which is declared as follows:

typedef struct _DPNMSG_CREATE_PLAYER {

381Working with Servers

DWORD dwSize; // Size of this structure
DWORD dpnidPlayer; // Player ID #
PVOID pvPlayerContext; // Pointer to player context data

} DPNMSG_CREATE_PLAYER;

This ingeniously simple structure contains only two useful bits of information: the
assigned player ID # that you use to reference the player from now on and the
player context data pointer.

As you can see, the DPNMSG_CREATE_PLAYER structure apparently has a lot
of missing data, especially the player’s name. This is actually the job of a separate
function, as you see
in the next section, “Retrieving a Player’s Name.” At this point, you set the player
context, which is as easy as
casting the pointer to it:

DPNMSG_CREATE_PLAYER
pCreatePlayer;
pCreatePlayer-
>pvPlayerContext =
(PVOID)ContextDataPtr;

Of course, the ContextDataPtr
is the pointer to whatever
you are using to store the
player data. To associate a
single structure from an
array of structures that con-
tains in-game player informa-
tion, pass a pointer to the structure as the context, as shown here:

typedef struct {
char szPlayerName[32]; // Name of player
DWORD dwXPos, dwYPos; // Coordinates of player

} sPlayerInfo;
sPlayerInfo Players[100]; // room for 100 players

// inside message switch...case statement on create player:
pCreatePlayer->pvPlayerContext = (PVOID)&sPlayerInfo[1];

Retrieving a Player’s Name
A player has a name associated with it, and you should be able to retrieve that
information to use in the game (who wants to be referred to by a number?).

382 9. Networking with DirectPlay

NOTE
A player context data pointer is the information
you use to define a player in your application.
This data pointer can point to a structure, class,
or data buffer that contains the player’s name,
health, age, current weapon and armor, and so on.

By giving DirectPlay a pointer to this player con-
text, DirectPlay can refer you back to it for faster
access.This beats having to go through a list of
logged-in players searching for a matching player
ID when the time comes!

This is the job of IDirectPlay8Server::GetClientInfo:

HRESULT IDirectPlay8Server::GetClientInfo(
const DPNID dpnid, // the players ID #
DPN_PLAYER_INFO *const pdpnPlayerInfo, // a player info struct
DWORD *const pdwSize, // size of above structure
const DWORD dFlags); // 0

Again, you’re dealing with a data structure that can be any size, so you need to
first query for the correct size, allocate a buffer, and then retrieve the structure.
This data buffer is in the form of a DPN_PLAYER_INFO structure, as shown here:

typedef struct _DPN_PLAYER_INFO {
DWORD dwSize; // Size of this structure
DWORD dwInfoFlags; // DPNINFO_NAME | DPNINFO_DATA
PWSTR pwszName; // Name of player (in Unicode)
PVOID pvData; // Pointer to player data
DWORD dwDataSize; // Size of player data
DWORD dwPlayerFlags; // DPNPLAYER_LOCAL if a local player

// or DPNPLAYER_HOST if a host player
} DPN_PLAYER_INFO;

You can see the magic parameter, so jump ahead and find out how to process a
create-player message and retrieve the associated players name:

HRESULT WINAPI ServerMsgHandler(PVOID pvUserContext, \
DWORD dwMessageId, PVOID pMsgBuffer)

{
IDirectPlay8Server *pDPServer;
HRESULT hr;
DPNMSG_CREATE_PLAYER *pCreatePlayer;
DPN_PLAYER_INFO *dppi;
DWORD dwSize;

if((pDPServer = (IDirectPlay8Server*)pvUserContext)) == NULL)
return E_FAIL;

switch(dwMessageId) {
case DPN_MSGID_CREATE_PLAYER:

pCreatePlayer = (DPNMSG_CREATE_PLAYER*)pMsgBuffer;

dwSize = 0;
dppi = NULL;

383Working with Servers

// Query for data buffer size
hr = pDPServer->GetClientInfo(\

pCreatePlayer->dpnidPlayer, dppi, &dwSize, 0);
// Check for an error - if it’s an invalid player, then
// the player being added is the host player (skip it).
if(FAILED(hr) && hr != DPNERR_BUFFERTOOSMALL) {

if(hr == DPNERR_INVALIDPLAYER)
break;

}

// Allocate a data buffer and get the information
dppi = (DPN_PLAYER_INFO*)new BYTE[dwSize];
ZeroMemory(dppi, sizeof(DPN_PLAYER_INFO);
dppi.dwSize = sizeof(DPN_PLAYER_INFO);
if(FAILED(pDPServer->GetClientInfo(\

pCreatePlayer->dpnidPlayer, dppi, &dwSize, 0))) {
delete[] dppi;
break;

}

// At this point, we have the player information
// inside the dppi structure. To get the player
// name in ANSI characters, just call wcstombs.
// For now we’ll just display it in a message box.
char szName[32];
wcstombs(szName, dppi->pwszName, 32);
MessageBox(NULL, szName, “Player Joined”, MB_OK);

// get rid of player data buffer
delete[] dppi;

return S_OK;
}

return E_FAIL;
}

Destroying
Players
No, you’re not killing them off
in the game, but when players

384 9. Networking with DirectPlay

CAUTION
Notice that the call to get client information
fails, which is not your fault. A client does not
have to set its client information structure,
which means that the server cannot retrieve it.

are disconnected, you receive a message saying so. Creating this message is just as
easy as creating the create-player message. Cast the message buffer to a
DPNMSG_DESTROY_PLAYER structure, as follows:

typedef struct _DPNMSG_DESTROY_PLAYER {
DWORD dwSize; // Size of this structure
DPNID dpnidPlayer; // ID # of player being removed
PVOID pvPlayerContext; // The player context pointer
DWORD dwReason; // Reason for leaving

} DPNMSG_DESTROY_PLAYER;

You again use the players’ ID numbers and their context pointers, which you set
earlier. The only questionable field is the last one, dwReason. Why did the player
leave? Was he deleted for normal reasons, was the connection lost, did the session
terminate, or was the player forcibly removed? Each reason has a unique macro
assigned, as shown in Table 9.8. It’s up to you to use the value in the dwReason field
as you see fit.

To forcibly disconnect a player, you use the IDirectPlay8Server::DestroyClient:

HRESULT IDirectPlay8Server::DestroyClient(
const DPNID pdnidClient, // Player ID #
const void *const pDestroyInfo, // NULL
const DWORD dwDestroyInfoSize, // 0
const DWORD dwFlags); // 0

There’s not much new here—just the player ID number. Here’s how to do disconnect
a player:

385Working with Servers

Table 9.8 Reasons for Disconnection

Macro Description

DPNDESTROYPLAYERREASON_NORMAL The player is removed for normal reasons.

DPNDESTROYPLAYERREASON_CONNECTIONLOST The player is removed because the
connection is lost.

DPNDESTROYPLAYERREASON_SESSIONTERMINATED The player is removed because the
session is terminated.

DPNDESTROYPLAYERREASON_HOSTDESTROYPLAYER The player is forcibly removed by the server.

pDPServer->DestroyClient(dpnidPlayerID, NULL, 0, 0);

The only other way to disconnect a player is to end the networking session, which
you see in the section “Ending the Host Session,” later in this chapter.

Receiving Data
The actual game data will take the form of application-specific messages, but will
always come wrapped inside a DPN_MSGID_RECEIVE message type, using the DPNMSG_RECEIVE
data structure:

typedef struct _DPNMSG_RECEIVE
DWORD dwSize; // Size of this structure
DPNID dpnidSender; // Player ID # of sender
PVOID pvPlayerContext; // Player context pointer
PBYTE pReceiveData; // Received data buffer
DWORD dwReceivedDataSize; // Size of received data
DPNHANDLE hBufferHandle; // A buffer handle for data

} DPNMSG_RECEIVE;

To process this data, start accessing the pointer pReceiveData, using the Windows
memory handle hBufferHandle if need be. This might not make sense at first, but it’s
actually in place to ensure that the message is held in memory until you’re ready to
work with the data.

As an example, say that the data received is 16 bytes in size. That data represents a
player’s state in the game. To access the data, cast it into a data structure pointer
and retrieve the data, such as in the following example:

#define MSG_PLAYERSTATE 0x101
typedef struct {

DWORD dwType;
DWORD dwXPos, dwYPos, dwHealth;

} sPlayerState;

// And the message handler dealing with it:
HRESULT WINAPI ServerMsgHandler(PVOID pvUserContext, \

DWORD dwMessageId, PVOID pMsgBuffer)
{

IDirectPlay8Server *pDPServer;
HRESULT hr;

386 9. Networking with DirectPlay

DPNMSG_RECEIVE *pReceive;
sPlayerState *pState;

if((pDPServer = (IDirectPlay8Server*)pvUserContext)) == NULL)
return E_FAIL;

switch(dwMessageId) {
case DPN_MSGID_RECEIVE:

pReceive = (DPNMSG_RECEIVE*)pMsgBuffer;

// Cast the data buffer into our message type
pState = (sPlayerState*)pReceive->pReceivedData;
if(pState->dwType == MSG_PLAYERSTATE) {

// Do whatever you need with this structure data
}
return S_OK;

}

return E_FAIL;
}

Sometimes so many messages might be coming in that you cannot process them
when received. In these cases, you can stuff them in a queue. When you’re done
with the memory, you need to pass this handle to the IDirectPlay8Server::ReturnBuffer
function:

HRESULT IDirectPlay8Server::ReturnBuffer(
const DPNHANDLE hBufferHandle, // Handle of buffer
const DWORD dwFlags); // 0

In order for DirectPlay to know not to release this memory, you return a value of
DPNSUCCESS_PENDING, rather than S_OK or E_FAIL, when you’re done with the message.

Sending Server Messages
What good is a network that doesn’t transfer data? In order to have the server
object send data to a connected client, you need to use the SendTo function, which
sends the data to a single player, to all players at once, or to all players who belong
to a specific group. Take a look at the SendTo function:

HRESULT IDirectPlay8Server::SendTo(
const DPNID dpnid, // player or group ID # to send to

387Working with Servers

// use DPNID_ALL_PLAYERS_GROUP to send
// the message to all players.

const DPN_BUFFER_DESC *const pBufferDesc, // see text
const DWORD cBufferDesc, // 1
const DWORD dwTimeOut, // Time-out (in milliseconds) to

// wait for message to send -
// 0 to not use time-out.

void *const pvAsyncContext, // a user supplied context
DPNHANDLE *const phAsyncHandle, // NULL for sync operations
const DWORD dwFlags); // see text

The SendTo function can definitely be a bit overwhelming. You need to consider
security, delivery method, and throttling. You can see the player ID number to
which you want the message sent as well as the DPN_BUFFER_DESC structure pointer.

This simple structure is defined as follows:

typedef struct _DPN_BUFFER_DESC {
DWORD dwBufferSize; // Size of data to send
BYTE *pBufferData; // Pointer to data to send

} DPN_BUFFER_DESC;

Here you have the size and the pointer to the data that you want to send. Next
to the SendTo function is cBufferDesc, which you set to 1. Then you set the dwTimeOut
value to the length of time (in milliseconds) this function waits before returning
an error (from the time that you sent the data). Or you can set the value to 0 if you
don’t want to use the time-out feature.

pvAsyncContext is a user-specified context that you use to point to information you
want when the send operation is complete. This is similar to the player context
because it makes accessing information easier.

To use asynchronous sending, you supply phAsyncHandle with a handle that you can
later use to cancel the send operation. There’s a lot to dwFlags. See Table 9.9 for a
list and description of macros that you can use to construct this value.

A typical combination of flags is DPNSEND_NOLOOPBACK and DPNSEND_NOCOPY, which gives you
optimal performance without involving the server player in messages sent to groups.

Going back to the receive message example, you can turn around and resend this
information to the same player, maybe with a slight change in the data.

Here’s the switch...case statement again, this time with send information:

DPNHANDLE g_hSendTo; // an async handle for data

388 9. Networking with DirectPlay

TEAMFL
Y

Team-Fly®

389Working with Servers

Table 9.9 SendTo Behavior Flags

Macro Description

DPNSEND_SYNC Sends data synchronously. Does not return until data
is sent.

DPNSEND_NOCOPY Forces DirectPlay not to make an internal copy of the
data being sent.This is the most efficient method of
sending data; however, the pending data can be modi-
fied before DirectPlay has a chance to send it.

DPNSEND_NOCOMPLETE Tells DirectPlay not to notify the server when a send
operation is complete.

DPSEND_COMPLETEONPROCESS Makes DirectPlay send the DPN_MSGID_SEND_COMPLETE
message when the data is sent and verified by the
destination system.This slows down the works, but
makes sure that the data arrives.You must specify the
DPSEND_GUARANTEED flags as well with this one.

DPSEND_GUARANTEED Uses guaranteed delivery.

DPNSEND_PRIORITY_HIGH Specifies the message as high priority. Use this to
mark significant messages that must get through the
throttler.

DPNSEND_PRIORITY_LOW Specifies the message as low priority. Use this to mark
less important data that the throttler might discard.

DPNSEND_NOLOOPBACK Suppresses the DPN_MSGID_RECEIVE on the server if
you are sending data to a group that includes the
server player.

DPNSEND_NONSEQUENCIAL Forces messages on the destination system to be
received in the order they are sent (as opposed to
being mixed up because of slowdowns in network
transmissions). Using nonsequential messaging can
slow down the network on the remote end—because
the remote system tracks and reorders network
messages (if they are received out of sequence).

switch(dwMessageId) {
case DPN_MSGID_RECEIVE:

pReceive = (DPNMSG_RECEIVE*)pMsgBuffer;

// Cast the data buffer into our message type
pState = (sPlayerState*)pReceive->pReceivedData;
if(pState->dwType == MSG_PLAYERSTATE) {

// Modify the data
pState->dwHealth += 10; // increase health

// Cast the data to send
DPN_BUFFER_DESC dpbd;
dpbd.dwSize = sizeof(sPlayerState);
dpbd.pBufferData = pState;

// Send it using internal copy method and no
// send notification. Retrieves an async
// handle for stopping send operation.
pDPServer->SendTo(pReceive->dpnidSender, &dpbd, \

1, 0, NULL, &g_hSendTo, DPNSEND_NOCOMPLETE);
}
return S_OK;

}

To cancel this information before it is sent (while it’s waiting in the send queue),
use the globally-declared handle in the following manner:

// to cancel a single sendto operation use:
pDPServer->CancelAsyncOperation(g_hSendTo, 0);

// to cancel all pending operations use:
pDPServer->CancelAsyncOperation(NULL, DPNCANCEL_ALL_OPERATIONS);

Ending the Host Session
Once the server finishes its job, it is time to stop the session, which stops all trans-
missions and destroys all players. You do so with the following function:

HRESULT IDirectPlay8Server::Close(
const DWORD dwFlags); // 0

390 9. Networking with DirectPlay

Because this function works synchronously,
it will not return until all transmissions are
complete and all connections are closed.
This ensures that the application can be
shut down with no worries.

Last, release all COM objects in use, which at
this point should be only the server object:

pDPServer->Release();

Working with Clients
Clients, on the other hand, aren’t as complex as the servers. They typically use only
two messages, the receive-data and session-terminated messages, and need to con-
nect and keep track of a single connection (the server).

One major addition is that the client application must specify its player settings so that
the host can retrieve them. Setting the player information is accomplished by first fill-
ing in a DPN_PLAYER_INFO structure with the relevant data and calling IDirectPlay8Client:
:SetClientInfo.

You have to be concerned about only
a few fields in the DPN_PLAYER_INFO struc-
ture—particularly pwszName, which con-
tains the Unicode string of the player
name you want to use. You need to
clear the structure, set its dwSize value,
set the dwInfoFlags variable to
DPNINFO_NAME | DPNINFO_DATA, and set the
player name.

Here’s the prototype for
IDirectPlay8Client::SetClientInfo:

HRESULT IDirectPlay8Client::SetClientInfo(
const DPN_PLAYER_INFO *const pdpnPlayerInfo, // player info
PVOID const pvAsyncContext, // NULL
DPNHANLDE *const phAsyncHandle, // NULL
const DWORD dwFlags}; // DPNSETCLIENTINFO_SYNC

391Working with Clients

TIP
This handy function works with
every network model object, so
you’re not limited to only servers.

NOTE
As previously mentioned, you use the
same application GUID for the server
and the client so that they can recog-
nize each other. Not doing so is one of
the main reasons network applications
won’t connect, so make sure that
those application GUIDs are the same.

Here you again see the pointer to the player information structure. Here’s an
entire function that you can use to create the client object, initialize it with a mes-
sage handler, create an address object, set the session and client information, and
connect to the server. You don’t need the message handler function; it’s the same
thing as the server.

// Server/Client GUID
GUID AppGUID = { 0xede9493e, 0x6ac8, 0x4f15, \

{ 0x8d, 0x1, 0x8b, 0x16, 0x32, 0x0, 0xb9, 0x66 } };

// Message handler prototype
HRESULT WINAPI ClientMsgHandler(PVOID pvUserContext, \

DWORD dwMessageId, PVOID pMsgBuffer);

IDirectPlay8Client *StartClientServer(
char *szPlayerName, // Player’s name
char *szSessionName, // Session name to join (in ANSI)
char *szPassword, // Password to use (NULL if none)
char *szIPAddress, // Text string of IP address

// in form: ###.###.###.###
DWORD dwPort // Which port to use

{
IDirectPlay8Client *pDPClient;
IDirectPlay8Address *pDPAddress;
DPN_APPLICATION_DESC dpad;
DPN_PLAYER_INFO dppi;
WCHAR wszSessionName[256];
WCHAR wszPassword[256];
WCHAR wszIPAddress[256];
WHCAR wszPlayerName[256];

// Create and initialize the client object
if(FAILED(DirectPlay8Create(&IID_IDirectPlay8Client, \

(void**)&pDPClient, NULL)))
return NULL;

if(FAILED(pDPServer->Initialize(pDPClient, \
ClientMsgHandler, 0))) {

pDPClient->Release();
return NULL;

}

392 9. Networking with DirectPlay

// Create the address object and set the SP
if(FAILED(DirectPlay8AddressCreate(\

&IID_IDirectPlay8Address, (void**)&pDPAddress, NULL))) {
pDPClient->Release();
return NULL;

}
pDPAddress->SetSP(&CLDID_DP8SP_TCPIP);

// convert IP address to Unicode and add component
mbstowcs(wszIPAddress, szIPAddress, strlen(szIPAddress)+1);
pDPAddress->AddComponent(DPNA_KEY_HOSTNAME, wszIPAddress, \

(wcslen(PlayerInfo->pwszName)+1)*sizeof(WCHAR), \
DPNA_DATATYPE_STRING);

// Add port component
pDPAddress->AddComponent(DPNA_KEY_PORT, &dwPort, \

sizeof(DWORD), DPNA_DATATYPE_DWORD);

// Set up the player information
ZeroMemory(&dppi, sizeof(DPN_PLAYER_INFO));
dppi.dwSize = sizeof(DPN_PLAYER_INFO);
dppi.dwInfoFlags = DPNINFO_NAME | DPNINFO_DATA;
mbstowcs(wszPlayerName, szPlayerName, \

strlen(szPlayerName)+1);
dppi.pwszName = wszPlayerName;
pDPClient->SetClientInfo(&dppi, NULL, NULL, \

DPNSETCLIENTINFO_SYNC);

// Set up the session information
ZeroMemory(&dpad, sizeof(DPNA_APPLICATION_DESC));
dpad.dwSize = sizeof(DPNA_APPLICATION_DESC);
dpad.dwFlags = DPNSESSION_CLIENT_SERVER;

// Set session name by converting ANSI to Unicode
mbstowcs(wszSessionName, szSessionName, \

strlen(szSessionName)+1);
dpad.pwszSessionName = wszSessionName;

// Set password information (if any)
if(szPassword != NULL) {

mbstowcs(wszPassword, szPassword, strlen(szPassword)+1);

393Working with Clients

dpad.pwszPassword = wszPassword;
dpad.dwFlags |= DPNSESSION_REQUIREPASSWORD;

}

At this point, the client is ready to connect, but this time things are a little differ-
ent. The function in use now is IDirectPlay8Client::Connect, and its prototype is
another big one:

HRESULT IDirectPlay8Client::Connect(
const DPN_APPLICATION_DESC *const pdnAppDesc, // session info
IDirectPlay8Address *const pHostAddr, // server address
IDirectPlay8Address *const pDeviceInfo, // local device to use
const DPN_SECURITY_DESC *const pdnSecurity, // NULL
const DPN_SECURITY_CREDENTIALS *const pdnCredentials, // NULL
const void *const pvUserConnectData, // data to send w/connect
const DWORD dwUserConnectDataSize, // size of data to send
void *const pvAsyncContext, // async op. context
DPNHANDLE *const phAsyncHandle, // async handle
const DWORD dwFlags); // 0 or DPNCONNECT_SYNC

I told you that the Connect function was a whopper, but most of the arguments are
covered in the earlier section “Working with Servers.” The most glaring difference
is the addition of pDeviceInfo, which is an IDirectPlay8Address object that contains the
local device to use for the connection.

You learned how to obtain the IDirectPlay8Address object in the section “Using
Addresses.” So, last is dwFlags, which tells DirectPlay to connect asynchronously (0)
or synchronously (DPNCONNECT_SYNC).

Using async connection types returns control immediately, so you need to wait for a
DPN_MSGID_CONNECT_COMPLETE message to signify a successful connection to the server. With
sync connections, this function returns only on an error or successful connection.

Now, take the first TCP/IP device on the system and pass it to this function, using a
sync connection method:

IDirectPlay8Address *pDPDevice = NULL;
DPN_SERVICE_PROVIDER_INFO *pSP = NULL;
DPN_SERVICE_PROVIDER_INFO *pSPPtr;
DWORD dwSize = 0;
DWORD dwNumSP = 0;
DWORD i;

394 9. Networking with DirectPlay

// Query the required size of the data buffer
if(SUCCEEDED(pDPClient->EnumServiceProviders(\

&CLSID_DP8SP_TCPIP, NULL, pSP, \
&dwSize, &dwNumSP, 0))) {

// Allocate a buffer and enumerate again
pSP = new BYTE[dwSize];
if(SUCCEEDED(pDPClient->EnumServiceProviders(\

&CLSID_DP8SP_TCPIP, NULL, pSP, \
&dwSize, &dwNumSP, 0))) {

// Enumeration is complete, use first instance of TCP/IP
pSPPtr = pSP;
if(FAILED(DirectPlay8AddressCreate(\
&IID_IDirectPlay8Address, (void**)&pDPDevice, NULL))) {
pDPClient->Release();
pDPAddress->Release();
return NULL;

}
pDPDevice->AddComponent(DPNA_KEY_DEVICE, pSPPtr->guid, \

sizeof(GUID), DPNA_DATATYPE_GUID);
}

// Delete data buffer memory
delete[] pSP;

}

// Perform connection
if(FAILED(pDPClient->Connect(&dpad, &pDPAddress, \

&pDPDevice, NULL, NULL, NULL, 0, NULL, NULL, \
DPNCONNECT_SYNC))) {

pDPAddress->Release();
pDPDevice->Release();
pDPClient->Release();
return NULL;

}

// Release the address objects - no longer required
pDPAddress->Release();
pDPDevice->Release();

// Return the client object
return pDPClient;

}

395Working with Clients

Sending and Receiving Messages
Receiving messages with the client is identical to receiving them from the server, so
you can take care of this inside the message handler function. As for sending, this
is the job of IDirectPlay8Client::Send:

HRESULT IDirectPlay8Client::Send(
const DPN_BUFFER_DESC *const pBufferDesc, // data to send
const DWORD cBufferDesc, // 1
const DWORD dwTimeOut, // timeout value (in milliseconds)
void *const pvAsyncContext, // async context pointer
DPNHANDLE *const phAsyncHandle, // async op. handle
const DWORD dwFlags); // same flags as server SendTo

You used these arguments in the section “Sending Server Messages,” so I will not
describe them again. Instead, here is an example that constructs a packet of game-
related data that is sent to a server via the client object’s Send function:

#define MSG_PLAYERSTATE 0x101
typedef struct {

DWORD dwType;
DWORD dwXPos, dwYPos, dwHealth;

} sPlayerInfo;
sPlayerInfo PlayerData;

// later in program to send it
DPN_BUFFER_DESC dpbd;

dpbd.dwBufferSize = sizeof(sPlayerInfo);
dpbd.pBufferData = &PlayerData;
PlayerData.dwType = MSG_PLAYERSTATE;
pDPClient->Send(&dpbd, 1, 0, NULL, NULL, DPNSEND_NOCOPY);

Terminating the Client Session
When it comes time to disconnect the client from the session, you should explicitly
convey this to DirectPlay so that the proper steps can be taken to shut down the
connection. You handle disconnecting the client from a session using the
IDirectPlay8Client::Close function:

pDPClient->Close(0); // always use 0 as argument

396 9. Networking with DirectPlay

Wrapping Up Networking
If you haven’t noticed by now, using DirectPlay is very easy—something you wouldn’t
expect with such a complex topic as networking and with such a powerful tool.
Microsoft really nailed the interface down and gave it to you in the best way possible.

The only way to go from here is up. With the information in this chapter under
your belt, you will be able to give your project the special features that gamers are
craving. Be sure to check out Appendix C for references to other books and for Web
sites with information on networking—and, as always, refer to the DirectX SDK help
files for more information and samples.

397Wrapping Up Networking

Programs on the CD-ROM

Programs that demonstrate the code discussed in this chapter are
on the CD-ROM at the back of this book.You can find the following
programs in the \BookCode\Chap09\ directory:

◆ Enum. A program that enumerates all specific server provider
devices on the system. Location: \BookCode\Chap09\Enum\.

◆ Server. A demonstration of a server application.Works in conjunc-
tion with the client demo. Creates a chat-server to relay messages
to all connected clients. Location: \BookCode\Chap09\Server\.

◆ Client. A demonstration of a client application.Works in conjunc-
tion with the server demo. Connect to a server and start chatting
away. Location: \BookCode\Chap09\Client\.

This page intentionally left blank

TEAMFL
Y

Team-Fly®

CHAPTER 10

Creating
the Game

Core

If you started at the beginning of this book, you’ve weeded through the basics. By
now, you know that working with the coding techniques of DirectX and Windows

can be a challenge. When working with these two programs, the trick to dealing
with the repetitive (and mundane) code is to construct a core library of useful
functions that handles the repetitive code for you. This library of functions helps
you construct your game projects quickly, without having to write the same DirectX
or Windows code again and again. In this chapter, I show you one library that I
created to aid in the creation of the demonstration progams in this book, as well
as to aid you in your own game projects.

In this chapter, you learn about the following:

■ Getting the core concept
■ Creating the core libraries

Understanding
the Core Concept
The Game Core is a collection of libraries that I created to simplify DirectX and
Windows programming. Just about every function you’ll want to use in your gam-
ing project is represented in the Game Core, including functions for drawing
graphics, playing sounds, processing user input, and dealing with application pro-
cessing. This means that you will not have to deal with the low-level DirectX or
Windows code every time you start a new project!

Instead, as you need them, just add the various core components to your game
project. Here are the five cores that I developed for this book (each core is named
based on its functionality):

■ System Core. Handles Windows processing, including registering the window
class, creating the application window, and dealing with processes, states, and
data packages.

■ Graphics Core. Draws graphics like the pros. Use 2-D methods to draw
images quickly or blast into the scene using 3-D methods such as animated
meshes.

■ Input Core. Processes user input from keyboard, mouse, and joystick devices.

400 10. Creating the Game Core

■ Sound Core. Blasts the user with multiple channels of sound and music.
Changes the instrument sounds and creates unique musical experiences.

■ Network Core. Connects you to the Internet and some massive on-line gam-
ing. Now you can join the networking bandwagon with this core.

You can use each core separately; there’s no need to include all of them in your
project. If you want only sound features, include only the Sound Core. Do you want
the added benefit of state processing from the System Core? Go for it. The choices
are yours.

Each core contains a collection of class components from which you must instance
or derive your own objects. Each class has a unique purpose. For example, you use
the cInputDevice class of the Input Core to control a single input device.

Nearly every core class has an initialization function and a shutdown function.
These are typically called Init and Shutdown, respectively, but at times the two func-
tions will take the names Create and Free. Most functions that you call in the cores
return a BOOL value—TRUE if the function succeeded or FALSE if it did not.

You must initialize most class instances in order to use them, and you must shut-
down those class instances in order to free system resources. Once initialized, the
class object is ready to go.

The cores are very large, however, so I can’t possibly list the complete code for
each core in this chapter. Instead, I will provide you with an overview of each com-
ponent class declaration, plus a small example of code that shows you how to use
each class. You might want to skip to the
section “Programs on the CD-ROM,” at
the end of this chapter, for information
about the Game Core source code; it
might help to browse those sources as
you read this chapter.

The System Core
The System Core handles the initialization and program flow of typical Windows
gaming applications, as well as processes, states, and data packaging. This is the
first place to start with your new gaming projects.

401The System Core

NOTE
The Game Core is based solely on
information you read in Chapters 4
through 9, covering C++,Windows,
and DirectX programming.

Using the cApplication Core Object
The most useful core object in the System Core is cApplication, which creates your
application’s window and controls the program flow. This object registers the window
class, creates the application window, and enters a message pump that processes
application-window messages for you and calls the internal class functions as needed.

To process an application, the cApplication class calls on three overloaded functions
that you provide (through a derived class declaration): Init, Shutdown, and Frame.
Each of these functions has a specific purpose, as you’ll see later in this section.
When processing Windows messages, you also need to provide a message handler.
Again, I cover this later in this section.

For now, go ahead and check out the following code listing, which contains the
cApplication class declaration:

class cApplication
{

private:
HINSTANCE m_hInst; // Instance handle
HWND m_hWnd; // Window handle

protected:
char m_Class[MAX_PATH]; // Class name
char m_Caption[MAX_PATH]; // Window caption

WNDCLASSEX m_wcex; // Windows class structure

DWORD m_Style; // Window style
DWORD m_XPos; // X coordinate of window
DWORD m_YPos; // Y coordinate of window
DWORD m_Width; // Default width of window
DWORD m_Height; // Default height of window

public:
cApplication(); // Constructor

HWND GethWnd(); // Returns window handle
HINSTANCE GethInst(); // Returns instance handle

BOOL Run(); // Executes class code
BOOL Error(BOOL Fatal, char *Text, ...); // Prints error

402 10. Creating the Game Core

BOOL Move(long XPos, long YPos); // Move window
BOOL Resize(long Width, long Height); // Resize client area

BOOL ShowMouse(BOOL Show = TRUE); // Show or hide cursor

// Default message handler
virtual FAR PASCAL MsgProc(HWND hWnd, UINT uMsg, \

WPARAM wParam, LPARAM lParam) { \
return DefWindowProc(hWnd, uMsg, wParam, lParam); \

}

// Custom functions that will hold your game code
virtual BOOL Init() { return TRUE; }
virtual BOOL Shutdown() { return TRUE; }
virtual BOOL Frame() { return TRUE; }

};

The number of functions you call in the cApplication class is minimal because the
cApplication class is designed to run almost by itself—you just plug in your game code.

To use the cApplication class, you must first create a derived class using cApplication
as the base class. In that way, you can overload specific functions to do your own
bidding. Those functions that you’ll be overloading, as mentioned previously, are
Init, Shutdown, and Frame.

In the cApplication::Init function, you place all class initialization code, such
as loading data, preparing processing states, and so on. The opposite of Init is
cApplication::Shutdown, which frees all previously allocated resources. The Shutdown
function is the last function called, whereas Init is the first one called.

Last comes cApplication::Frame, which is called with every iteration of the message pump
(in which a Windows message is not processed).
As you might guess, the Frame function
processes a single frame of your game, which
might include processing user input, checking
network data, and drawing graphics.

You have little reason to overload the mes-
sage handler function, unless you want to
process Windows messages on your own.
To process the messages, you overload the
cApplication::MsgProc, which I will show you
how to do in a moment.

403The System Core

NOTE
Each of the functions men-
tioned (Init, Shutdown, and Frame)
return a BOOL value, which asks
the cApplication class whether
it should exit the program.
If one of these three functions
returns a FALSE value, execution
of the application is terminated.

As for now, take a moment to work with the cApplication class by creating a quick appli-
cation. Be sure to include the Core_System.h include file, add the Core_System.cpp
file to your project, and derive your own application class to work with, as shown here:

#include “Core_System.h”
class cApp : public cApplication
{

private:
char *m_Name;

public:
cApp(); // Constructor

BOOL Init(); // Overloaded Init function
BOOL Shutdown(); // Overloaded Shutdown function
BOOL Frame(); // Overloaded Frame function

};

This example code initializes your application by registering the window class,
creating a window, and entering the message pump, thus continuously calling the
Frame function. The purpose of this example is to create a buffer and store a name
in it (my name, in this case) and to display that name each frame. When you finish
with the application, you free the name buffer and exit the application.

cApp::cApp()
{

// Initialize instance data to default values
m_Name = NULL;

// Set up the window style, position, width, and height
m_Style = WS_OVERLAPPEDWINDOW; // Window style
m_XPos = 100; // X coordinate of window
m_YPos = 20; // Y coordinate of window
m_Width = 400; // Width of client area
m_Height = 400; // Height of client area

// Assign a class name and window caption
strcpy(m_Class, “NameClass”);
strcpy(m_Caption, “My Name Example”);

}

404 10. Creating the Game Core

BOOL cApp::Init()
{

// Allocate room for my name
if((m_Name = new char[10]) == NULL)

strcpy(m_Name, “Jim Adams”);
else return FALSE;
return TRUE;

}

BOOL cApp::Shutdown()
{

// Free the name buffer
delete m_Name;
m_Name = NULL; // reset buffer to NULL

}

BOOL cApp::Frame()
{

// Display my name and wait for user to click
// OK or CANCEL, exiting program on CANCEL
if(MessageBox(GethWnd(), m_Name, “My name is”, \

MB_OKCANCEL) == IDCANCEL)
return FALSE;

return TRUE;
}

Well, that’s it! All you have to do now is instance your new class and run it using
the WinMain function:

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

{
cApp App;
return App.Run();

}

State Processing
with cStateManager
Chapter 5, “Programming with Windows and Application Basics,” introduces the
use of a state-based-processing class. In this section, I build on that information and

405The System Core

show you a vamped-up version of the cStateManager developed in Chapter 5. When
creating your game, you will find this version of cStateManager works better with a
game’s program flow.

The new state manager introduces a couple concepts: calling purposes and adding
a user-defined data pointer to the functions in cStateManager.

Here’s the code listing for the cStateManager class declaration:

class cStateManager
{

// State function pointers (linked list)
typedef struct sState {

void (*Function)(void *Ptr, long Purpose);
sState *Next;

// Structure constructor that clears pointers
sState() {

Function = NULL;
Next = NULL;

}

// Structure destructor to delete linked list
~sState() { delete Next; }

} sState;

protected:
sState *m_StateParent; // State stack link list parent

public:
cStateManager(); // Constructor
~cStateManager(); // Destructor

// Pushes a state on the stack, along with a
// user-defined pointer. The push function will call
// the state function with an init purpose.
void Push(void (*Function)(void *Ptr, long Purpose), \

void *DataPtr = NULL);

// Pop top-most state off stack, calling it with a
// shutdown purpose.
BOOL Pop(void *DataPtr = NULL);

406 10. Creating the Game Core

NOTE
A calling purpose is, just as
it sounds, the reason that
a state is called.The “pur-
pose” can be INITPURPOSE
(to signal that the func-
tion needs to prepare
itself for use), FRAMEPURPOSE
(to process a single
frame), or SHUTDOWNPURPOSE
(to release all resources
when the processing is
complete).

// Pop all states, calling SHUTDOWN purpose for each.
void PopAll(void *DataPtr = NULL);

// Process the top-most state with a frame purpose.
BOOL Process(void *DataPtr = NULL);

};

Working with the cStateManager class might seem strange at first (specifically with
regard to the purposes), but don’t worry, that’s what examples are for! Check out
this example, which is based on the previous cApplication example:

class cApp : public cApplication
{

private:
cStateManager m_StateManager;

// State function prototypes
static void Function1(void *, long);
static void Function2(void *, long);

public:
BOOL Init() { m_StateManager.Push(Function1, this); }

}

void cApp::Function1(void *DataPtr, long Purpose)
{

// Get a pointer to the calling class, as this function is
// static, meaning it’s not assigned a class instance.
cApp *cc = (cApp*)DataPtr;

// Display a message on INIT and push a 2nd state
if(Purpose == INITPURPOSE) {

MessageBox(cc->GethWnd(), “State 1”, “Message”, MB_OK);
cc->m_StateManager.Push(Function2, cc);
return;

}

// Force program to exit
if(Purpose == FRAMEPURPOSE)

cc->m_StateManager.Pop(cc);
}

407The System Core

void cApp::Function2(void *DataPtr, long Purpose)
{

cApp *cc = (cApp*)DataPtr;

// Display a message and pop itself
if(Purpose == FRAMEPURPOSE) {

MessageBox(cc->GethWnd(), “State 2”, “Message”, MB_OK);
cc->m_StateManager.Pop(cc);
return;

}
}

Once executed, the cApp class
pushes a state function
(Function1) on the stack.
Once pushed on the stack,
the Function1 state function
is called (by the cApp class)
using an initialize purpose,
which in turn triggers Function1 to push a second state function (Function2) on
the stack. Once the Function2 function has been called using a frame purpose,
a message is displayed, the states are popped, and execution ends.

Notice that the addition of the user-defined variable has a purpose. Because you
must declare state functions as static inside the class (or the code will not compile),
you need to pass a pointer to the state functions. Because the state function is still
part of the class, the state functions can use the pointers freely to access the class
data (even private data).

Processes and cProcessManager
cProcessManager is much like cStateManager, with one minor exception: Every function
on the stack is called every frame. Not to be left behind from its earlier creation in
Chapter 5, the new sProcessManager also takes a calling purpose and a user-defined
pointer, just like cStateManager.

The class declaration for cProcessManager is identical to the class declaration of
cStateManager. Rather than present that declaration again, you can skip right to an
example of using the cProcessManager that, every frame, calls two functions that have
been pushed onto the process stack:

class cApp : public cApplication

408 10. Creating the Game Core

NOTE
Notice that all state functions follow the same
function prototype. Be sure to duplicate the
prototype in your programs:

void StateFunction(void *DataPtr, long Purpose);

TEAMFL
Y

Team-Fly®

{
private:

cProcessManager m_ProcessManager;

// Process function prototypes
static void Function1(void *, long);
static void Function2(void *, long);

public:
BOOL Init() {

m_ProcessManager.Push(Function1, this);
m_ProcessManager.Push(Function2, this);

}
}

void cApp::Function1(void *DataPtr, long Purpose)
{

// Get a pointer to the calling class, as this function is
// static, meaning it’s not assigned a class instance.
cApp *cc = (cApp*)DataPtr;

// Display a message
if(Purpose == FRAMEPURPOSE) {

MessageBox(cc->GethWnd(), “Process 1”, “Message”, MB_OK);
return;

}
}

void cApp::Function2(void *DataPtr, long Purpose)
{

cApp *cc = (cApp*)DataPtr;

// Display a message
if(Purpose == FRAMEPURPOSE) {

MessageBox(cc->GethWnd(), “Process 2”, “Message”, MB_OK);
return;

}
}

409The System Core

Managing Data with cDataPackage
In Chapter 5, you learn how to use a data package manager. Now, you alter the
data package manager that you created by adding two functions that return the size
of the data buffer and the pointer to the data buffer. Here’s the class declaration:

class cDataPackage
{

protected:
void *m_Buf; // Data buffer
unsigned long m_Size; // Size of data buffer

public:
cDataPackage(); // Constructor
~cDataPackage(); // Destructor

void *Create(unsigned long Size); // Create a buffer
void Free(); // Free buffer

BOOL Save(char *Filename); // Save buffer to file
void *Load(char *Filename, unsigned long *Size); // Load

void *GetPtr(); // Get pointer to data buffer
unsigned long GetSize(); // Get data size

};

As you can see, the cDataPackage class remains the same (for help on using the
cDataPackage class, please refer to Chapter 5).

The Graphics Core
Now you’re getting to the good stuff! The Graphics Core represents a major por-
tion of the Game Core and is the largest and most complicated core object you’ll
see here. The Graphics Core features the classes shown in Table 10.1.

Most of the classes in the Graphics Core are easy to use, so you can just skim their
features. The class declarations of each Game Core object are self-explanatory, so
be sure to read the declarations carefully. You might as well start with cGraphics, the
granddaddy of all Graphics Core objects.

410 10. Creating the Game Core

The Graphics System with cGraphics
You use cGraphics to set display modes, render states, clear the device, and much
more. Once the cGraphics object is initialized, you use it in conjunction with just
about every Graphics Core class component. Take a look at the cGraphics declaration:

class cGraphics
{

protected:

411The Graphics Core

Table 10.1 Graphics Core Components

Class Description

cGraphics Handles the initialization of Direct3D and enables rendering of
states and setting up textures, materials, and lights.

cTexture Holds a single texture and a function to draw 2-D portions of
the texture to the display.

cMaterial Holds a single material definition.

cLight Contains a single light definition.

cFont This class encloses the ID3DXFont object you see in Chapter 6,
“Drawing with DirectX Graphics.”

cVertexBuffer A class that makes dealing with vertex buffers much easier.

cWorldPosition Manages a world transformation matrix, enabling you to quickly
position, scale, and rotate objects.

cCamera Contains a view transformation matrix that you can modify
using the object’s interface.

cMesh Contains a list of meshes loaded from an .X file and their
materials. Use this class with the cObject class.

cObject This class object represents a single object in the 3-D world.
It controls the object’s orientation, mesh, and animation status.

cAnimation Contains a list of animations loaded from an .X file. Use this
with the cObject class.

HWND m_hWnd; // Parent window handle
IDirect3D8 *m_pD3D; // Direct3D object
IDirect3DDevice8 *m_pD3DDevice; // Device object
ID3DXSprite *m_pSprite; // 2-D sprite object

D3DDISPLAYMODE m_d3ddm; // Display mode properties

BOOL m_Windowed;// Flag if using windowed mode
BOOL m_ZBuffer; // Flag if using zbuffer
BOOL m_HAL; // Flag if hardware accelerated

long m_Width; // Width of display mode
long m_Height; // Height of display mode
char m_BPP; // Bits-per-pixel of display

char m_AmbientRed; // Ambient light red
char m_AmbientGreen; // Ambient light green
char m_AmbientBlue; // Ambient light blue

public:
cGraphics(); // Construct
~cGraphics(); // Destructor

// Functions to retrieve COM interfaces
IDirect3D8 *GetDirect3DCOM();
IDirect3DDevice8 *GetDeviceCOM();
ID3DXSprite *GetSpriteCOM();

BOOL Init(); // Init graphics object
BOOL Shutdown(); // Shutdown graphics object

// Initialize a display mode using specified attributes
BOOL SetMode(HWND hWnd, BOOL Windowed = TRUE, \

BOOL UseZBuffer = FALSE, \
long Width = 0, long Height = 0, \
char BPP = 0);

// Functions to get # of display modes and retrieve info
long GetNumDisplayModes();
BOOL GetDisplayModeInfo(long Num, D3DDISPLAYMODE *Mode);

412 10. Creating the Game Core

// Return BPP for a specified display format
char GetFormatBPP(D3DFORMAT Format);

// See if specified display mode exists.
// Set Format and Windowed, then HAL to TRUE to test for
// hardware acceleration or FALSE to test for emulation.
BOOL CheckFormat(D3DFORMAT Format, BOOL Windowed, BOOL HAL);

BOOL Display(); // Display backbuffer (perform a flip)

BOOL BeginScene(); // Call before rendering anything
BOOL EndScene(); // Call after rendering everything

BOOL BeginSprite(); // Call to allow sprite drawing
BOOL EndSprite(); // Call to finish sprite drawing

// Functions to clear the display and/or zbuffer
BOOL Clear(long Color = 0, float ZBuffer = 1.0f);
BOOL ClearDisplay(long Color = 0);
BOOL ClearZBuffer(float ZBuffer = 1.0f);

// Functions to retrieve dimensions or bits-per-pixel
long GetWidth();
long GetHeight();
char GetBPP();

// Functions to see if hardware acceleration and
// ZBuffer features are used once display mode is set.
BOOL GetHAL();
BOOL GetZBuffer();

// Set a new perspective transformation
BOOL SetPerspective(float FOV=D3DX_PI/4, \

float Aspect=1.3333f, \
float Near=1.0f, float Far=10000.0f);

// Functions to set world and view transformations
BOOL SetWorldPosition(cWorldPosition *WorldPos);
BOOL SetCamera(cCamera *Camera);

// Functions to set the current light, material, and texture

413The Graphics Core

BOOL SetLight(long Num, cLight *Light);
BOOL SetMaterial(cMaterial *Material);
BOOL SetTexture(short Num, cTexture *Texture);

// Set or get the ambient color level w/D3DCOLOR structure
BOOL SetAmbientLight(char Red, char Green, char Blue);
BOOL GetAmbientLight(char *Red, char *Green, char *Blue);

// Enable or disable a specific light (0-n)
BOOL EnableLight(long Num, BOOL Enable = TRUE);

// Enable or disable lighting, zbuffering, alphablending
// and alphatesting. Blending has optional blend values.
BOOL EnableLighting(BOOL Enable = TRUE);
BOOL EnableZBuffer(BOOL Enable = TRUE);
BOOL EnableAlphaBlending(BOOL Enable = TRUE, \

DWORD Src = D3DBLEND_SRCALPHA, \
DWORD Dest = D3DBLEND_INVSRCALPHA);

BOOL EnableAlphaTesting(BOOL Enable = TRUE);
};

You can do a great deal with cGraphics, and it all starts with a call to cGraphics::Init.
From there, you can enumerate the various display modes or jump right in and call
cGraphics::SetMode to get the ball rolling. At the minimum, SetMode requires only a
handle to a parent window. By default, the display mode is set to use a window (as
opposed to fullscreen) for output with no zbuffer.

If you want to use the full screen, you
must set Windowed to FALSE and specify
valid Width, Height, and bits-per-pixel
(BPP) values. If you leave any of these
three values at 0, SetMode will use the
current desktop settings. If you are
using Windowed mode and you specify
a different Width or Height, the parent
window will be resized to match those
Width and Height values.

From there, you might be wondering
what to do next. Before rendering any-
thing, you must call cGraphics::BeginScene. After rendering is complete, call
cGraphics::EndScene. Then call on cGraphics::Display to display your graphics.

414 10. Creating the Game Core

NOTE
The cGraphics::SetMode function is a
talented one. It determines whether
hardware acceleration and Z-Buffer
support (if opted) exist. If neither of
these properties exist, the SetMode
function will have Direct3D emulate
the 3-D functions and cut out the Z-
Buffer to ensure that the mode is set.

Want to clear the screen before rendering? Go right ahead with the trio of clear
functions.

Now, you can begin turning on lights, materials, and textures (as shown throughout
this section). cGraphics works just as I describe in Chapter 6, so nothing sneaky is
going on here.

To set and enable
the lighting, you call
EnableLighting. Alpha
blending works great,
and you have the abil-
ity to specify the exact
blending values (for source and destination blending). Alpha testing helps you
draw those pesky transparent textures (as shown in Chapter 6).

Images with cTexture
Textures are what make 3-D graphics worth their weight in gold. Plain polygons
come to life, using full-color imagery. Trying to maintain a list of textures, however,
can be a little painstaking, but with the help of cTexture, you can make your life eas-
ier:

class cTexture
{

protected:
cGraphics *m_Graphics; // Parent cGraphics
IDirect3DTexture8 *m_Texture; // Texture COM
unsigned long m_Width, m_Height; // Dimensions of

// texture image.

public:
cTexture(); // Constructor
~cTexture(); // Destructor

IDirect3DTexture8 *GetTextureCOM(); // Return texture COM

// Load a texture from file
BOOL Load(cGraphics *Graphics, char *Filename, \

DWORD Transparent = 0, \
D3DFORMAT Format = D3DFMT_UNKNOWN);

415The Graphics Core

CAUTION
If you’re not using a Z-buffer, don’t call Clear—because
it takes a zbuffer value. Use ClearDisplay instead.

// Configure a cTexture class from an existing
// IDirect3DTexture8 object instance.
BOOL Create(cGraphics *Graphics, IDirect3DTexture8 *Texture);

BOOL Free(); // Free texture object

BOOL IsLoaded(); // Returns TRUE if texture is loaded

long GetWidth(); // Return width (pitch) of texture
long GetHeight(); // Return height of texture
D3DFORMAT GetFormat(); // Return texture storage format

// Draw a 2-D portion of texture to device
BOOL Blit(long DestX, long DestY, \

long SrcX = 0, long SrcY = 0, \
long Width = 0, long Height = 0, \
float XScale = 1.0f, float YScale = 1.0f, \
D3DCOLOR Color = 0xFFFFFFFF);

};

A cTexture class can be loaded with a texture from two sources: from an image file
on a disk or from an existing IDirect3DTexture8 object. If you’re loading an image
from a disk, call cTexture::Load; it requires a few parameters in order to work: first,
the pre-initialized cGraphics object and, second, the filename of the image to load.

The following two optional arguments are the transparent color key (if you’re
using textures with transparent pixels) and the storage format. The default value
of 0 for Transparent tells the Load function not to use transparent pixels. Providing a
value with D3DCOLOR_RGBA can remedy that problem (make sure you specify a value of
255 for the alpha parameter).

When using Format, use a Direct3D texture storage format such as D3DFMT_A1R5G5B5.
Remember that textures with transparent pixels must use an alpha channel, so be
sure to use a format such as D3DFMT_A1R5G5B5 or D3DFMT_A8R8G8B8.

From there, you’ll most likely use the cTexture class in conjunction with the
cGraphics::SetTexture function in order to draw texture-mapped polygons. On the
other hand, if you are using a texture object’s bitmap image to draw directly to
the display, you can then use the cTexture::Blit function, which uses a special object
called ID3DXSprite. You haven’t learned about ID3DXSprite just yet—you’ll get to see it
in Chapter 11, “Using 2-D Graphics.”

416 10. Creating the Game Core

For now, I’ll explain how to use the Blit function. You need to specify the destina-
tion coordinates for drawing a portion of the texture to the display, as well as the
upper-left source coordinates, width, height, scaling factor, and color modulation
values that you want to use. In Chapter 12, you see the Blit function used in more
detail, but for now, here’s a quick example that loads a texture (called texture.bmp)
and draws it to the display:

// Assuming g_Graphics = pre-initialized cGraphics object
cTexture Texture;
Texture.Load(&g_Graphics, “texture.bmp”);

// Draw texture to screen at 0,0 (using 2-D method)
Texture.Blit(0,0);

Texture.Free(); // Free texture from memory

Colors and cMaterial
Chapter 6 discusses the importance of using materials that change the visual
appearance of rendered objects by altering the color values of drawn faces. To
make altering material color values easier, you use the cMaterial class:

class cMaterial
{

protected:
D3DMATERIAL8 m_Material; // Material structure

public:
cMaterial(); // Constructor

D3DMATERIAL8 *GetMaterial(); // Return D3DMATERIAL8 object

// Set and get diffuse color components
BOOL SetDiffuseColor(char Red, char Green, char Blue);
BOOL GetDiffuseColor(char *Red, char *Green, char *Blue);

// Set and get ambient color components
BOOL SetAmbientColor(char Red, char Green, char Blue);
BOOL GetAmbientColor(char *Red, char *Green, char *Blue);

// Set and get specular color components

417The Graphics Core

BOOL SetSpecularColor(char Red, char Green, char Blue);
BOOL GetSpecularColor(char *Red, char *Green, char *Blue);

// Set and get emissive color components
BOOL SetEmissiveColor(char Red, char Green, char Blue);
BOOL GetEmissiveColor(char *Red, char *Green, char *Blue);

// Set and get power value
BOOL SetPower(float Power);
float GetPower(float Power);

};

As you can see, the cMaterial class holds a single D3DMATERIAL structure and gives you
the functions to set and retrieve the various color components. To set a color com-
ponent, specify an amount from 0 to 255. To retrieve a color component, supply
the appropriate function with a pointer to a char type pointer.

Here’s a quick example of using cMaterial to set a yellow material:

// Assuming g_Graphics is pre-initialized cGraphics object
cMaterial YellowMaterial;

YellowMaterial.SetDiffuseColor(255,255,0);
YellowMaterial.SetAmbientColor(255,255,0);

g_Graphics.SetMaterial(&YellowMaterial); // Set material

You use the cMaterial class object in conjunction with
cGraphics::SetMaterial to set the current rendering material.

Light It Up with cLight
Lights are simple beasts, just as materials are. You can do only so much with a light
and in only so many ways, which is why I’m wrapping everything about lights (or at
least everything you’ll read about lights in Chapter 6 into a class called cLight:

class cLight
{

protected:
D3DLIGHT8 m_Light; // Light structure

public:

418 10. Creating the Game Core

NOTE
When you instance
the cMaterial class,
the m_Material
member is cleared
to an all-white
material by default.

TEAMFL
Y

Team-Fly®

cLight(); // Constructor

D3DLIGHT8 *GetLight(); // Return light structure

BOOL SetType(D3DLIGHTTYPE Type); // Set type of light:
// D3DLIGHT_POINT
// D3DLIGHT_SPOT
// D3DLIGHT_DIRECTIONAL

// Move light to absolute position or relative from current
BOOL Move(float XPos, float YPos, float ZPos);
BOOL MoveRel(float XPos, float YPos, float ZPos);

// Get current position into provided variables
BOOL GetPos(float *XPos, float *YPos, float *ZPos);

// Set direction to absolute or relative from current
BOOL Point(float XPos, float YPos, float ZPos);
BOOL PointRel(float XPos, float YPos, float ZPos);

// Get current direction into provided variables
BOOL GetDirection(float *XPos, float *YPos, float *ZPos);

// Set and get the various color components
BOOL SetDiffuseColor(char Red, char Green, char Blue);
BOOL GetDiffuseColor(char *Red, char *Green, char *Blue);
BOOL SetSpecularColor(char Red, char Green, char Blue);
BOOL GetSpecularColor(char *Red, char *Green, char *Blue);
BOOL SetAmbientColor(char Red, char Green, char Blue);
BOOL GetAmbientColor(char *Red, char *Green, char *Blue);

// Set and get the range
BOOL SetRange(float Range);
float GetRange();

// Set and get the falloff value
BOOL SetFalloff(float Falloff);
float GetFalloff();

// Set and get the various attenuation values
BOOL SetAttenuation0(float Attenuation);

419The Graphics Core

float GetAttenuation0();
BOOL SetAttenuation1(float Attenuation);
float GetAttenuation1();
BOOL SetAttenuation2(float Attenuation);
float GetAttenuation2();

// Set and get the Theta value
BOOL SetTheta(float Theta);
float GetTheta();

// Set and get the Phi value
BOOL SetPhi(float Phi);
float GetPhi();

};

To use lights in your own project, you only
need to instance the cLight class, pick a type
of light to use (using standard Direct3D
light types, as shown in the comments), set
the light’s color, and position (and point if
necessary) the light anywhere you wish. To set the light, use the cGraphics::SetLight
function as shown previously in the section “The Graphics System with cGraphics.”

Here’s a quick example of creating a white-colored directional light:

// Assuming g_Graphics = pre-initialized cGraphics object
cLight DirLight;

DirLight.SetType(D3DLIGHT_DIRECTIONAL);
DirLight.Move(0.0, 10.0f, 0.0f); // Place 10 units above origin
DirLight.Point(0.0, -1.0, 0.0f); // Point down

g_Graphics.SetLight(0, &DirLight); // Set as light 0
g_Graphics.EnableLight(0, TRUE); // Turn on light

Text and Fonts Using cFont
Although the ID3DXFont object is easy to deal with, it can be a pain setting up a font.
However, you can use the cFont class to quickly and easily get fonts into your project:

class cFont
{

private:

420 10. Creating the Game Core

NOTE
When instanced, the cLight class
is configured with a white point-
light (see Chapter 6) located at
0,0,0.Also, directions are normal-
ized (changed to a value of 1.0
or less, as you saw in Chapter 6)
when you call Point or PointRel.

ID3DXFont *m_Font; // Font COM object

public:
cFont(); // Constructor
~cFont(); // Destructor

ID3DXFont *GetFontCOM(); // Return font COM object

// Create and free a font
BOOL Create(cGraphics *Graphics, char *Name, \

long Size = 16, BOOL Bold = FALSE, \
BOOL Italic = FALSE, BOOL Underline = FALSE, \
BOOL Strikeout = FALSE);

BOOL Free();

// Begin and end font drawing sequence
BOOL Begin();
BOOL End();

// Print specified text
BOOL Print(char *Text, long XPos, long YPos, \

long Width = 0, long Height = 0, \
D3DCOLOR Color = 0xFFFFFFFF, DWORD Format = 0);

};

To begin using a font, you must create it with the cFont::Create function. You must
pass it a pre-initialized cGraphics object, supply it with a font face name (such as
Arial or Times New Roman), and specify the size in pixel height (more or less). You
then have the option to use bold, italics, underline, and strikeout.

Notice the cFont::Begin and cFont::End pair which tells Direct3D that you’re prepar-
ing to draw a font and that you’re done printing with the font, respectively. You do
not have to explicitly call these functions, because the Print function will call them
for you (if you haven’t already done so). Not calling Begin and End, however, can
slow down printing, as the Print function will repeatedly call Begin and End for you
every time you print a line of text.

When printing a line of text, you provide the cFont::Print function with a pointer to
the text you want to print, the coordinates at which to start printing, the bounding box
dimensions into which to clip the text (Width and Height defaults to 0, which means the
full screen), the text color (defaults to white—use D3DCOLOR_RGBA macros to define
color), and the text formatting (a combination of flags as shown in Table 10.2).

421The Graphics Core

Here’s a quick example of creating and using an instance of the cFont class:

// Assuming g_Graphics = pre-initialized cGraphics object
cFont ArialFont;

ArialFont.Create(&g_Graphics, “Arial”); // Arial font at size=16
ArialFont.Print(“I can print fonts!”, 0,0); // Print at 0,0

Vertices and cVertexBuffer
Vertices can be a burden, but unfortunately you can’t do much about it at times.
The cVertexBuffer class eases the burden a little by providing a quick way to create,
set, and render sets of vertices, as illustrated here:

class cVertexBuffer
{

private:
cGraphics *m_Graphics; // Parent cGraphics
IDirect3DVertexBuffer8 *m_pVB; // Vertex buffer COM

DWORD m_NumVertices; // # vertices
DWORD m_VertexSize; // Size of vertex
DWORD m_FVF; // FVF descriptor

422 10. Creating the Game Core

Table 10.2 cFont::Print Format Flags

Flag Description

DT_BOTTOM Justifies text to bottom of bounding rectangle.

DT_CENTER Centers text horizontally in bounding rectangle.

DT_LEFT Left-justifies text to left edge of bounding rectangle.

DT_NOCLIP Draws text without clipping to bounding rectangle.
Provides faster printing.

DT_RIGHT Right-justifies text (to right edge of bounding rectangle).

DT_TOP Justifies text to top of bounding rectangle.

DT_WORDBREAK Breaks words when right edge of bounding rectangle is reached.

BOOL m_Locked; // Flag if buffer locked
char *m_Ptr; // Pointer to buffer

public:
cVertexBuffer(); // Constructor
~cVertexBuffer(); // Destructor

// Functions to retrieve COM, Size, FVF, and # vertices
IDirect3DVertexBuffer8 *GetVertexBufferCOM();
unsigned long GetVertexSize();
unsigned long GetVertexFVF();
unsigned long GetNumVertices();

// Create and free a vertex buffer
BOOL Create(cGraphics *Graphics, \

unsigned long NumVertices, DWORD Descriptor, \
long VertexSize);

BOOL Free();

BOOL IsLoaded(); // Return TRUE if buffer is allocated.

// Copy a series of vertices into vertex buffer.
BOOL Set(unsigned long FirstVertex, \

unsigned long NumVertices, void *VertexList);

// Render vertex buffer to device
BOOL Render(unsigned long FirstVertex, \

unsigned long NumPrimitives, DWORD Type);

// Lock and unlock a vertex buffer for access
BOOL Lock(unsigned long FirstVertex = 0, \

unsigned long NumVertices = 0);
BOOL Unlock();

void *GetPtr(); // Return pointer to locked vertex buffer
};

You must create a vertex buffer with cVertexBuffer::Create, which takes a parent
cGraphics object, the number of vertices for which to allocate room, a flexible vertex
format (FVF) descriptor, and the size (in bytes) of a single vertex. That’s right, you
still have to construct a vertex structure to work with this class, but don’t worry; it’s
not hard to do, as you’ll soon see.

423The Graphics Core

When you’re done with your class instance, be sure to free it with a call to
cVertexBuffer::Free. Before that, however, fill the buffer with the vertex information
you’ll be using with a call to cVertexBuffer::Set. Call cVertexBuffer::Set using the
index of the first vertex you’ll be setting, the number of vertices to set, and a
pointer to an array of vertex structures that you defined.

You are now ready to render polygons using cVertexBuffer:Render. Notice that you
can specify the first vertex with which to start drawing and the total number of
primitives (polygon faces) to draw. Use the Type parameter just as you did in
Chapter 6 (and as described in Table 10.3).

Say that you want to create a simple vertex buffer, one that uses 2-D transformed
vertices (vertices defined in screen coordinates) and a diffuse color component. To
make things easier, create a square polygon using two triangles (using a triangle strip):

// assuming g_Graphics = pre-initialize cGraphics object

// define a vertex structure and FVF descriptor
typedef struct sVertex {

float x, y, z, rhw;
D3DCOLOR Diffuse;

} sVertex;
#define VERTEXFVF (D3DFVF_XYZRHW | D3DFVF_DIFFUSE)

cVertexBuffer g_VB;
g_VB.Create(&g_Graphics, 4, VERTEXFVF, sizeof(sVertex));

// Triangle strip vertices in clockwise ordering
sVertex Verts[4] = {

{ 0.0f, 0.0f, 0.0f,1.0f, D3DCOLOR_RGBA(255,0,0,255) },
{ 200.0f, 0.0f, 0.0f,1.0f, D3DCOLOR_RGBA(0,255,0,255) },
{ 0.0f, 200.0f, 0.0f,1.0f, D3DCOLOR_RGBA(0,0,255,255) },
{ 200.0f, 200.0f, 0.0f,1.0f, D3DCOLOR_RGBA(255,255,255,255) },

};
g_VB.Set(0, 4, (void*)&Verts);

// Render the triangle strip
g_VB.Render(0, 2, D3DPT_TRIANGLESTRIP);

// Free vertex buffer
g_VB.Free();

424 10. Creating the Game Core

World Transformations
with cWorldPosition
Although working with a world transformation matrix is not difficult, wouldn’t it
be nice to have a class handle all the details—details such as world coordinates,
rotation values, and scaling factors? How about throwing billboards into the mix,
just for the right flavor?

It’s all here in cWorldPosition:

class cWorldPosition
{

protected:
BOOL m_Billboard; // Flag if billboard being used

// Current position, rotation, and scale
float m_XPos, m_YPos, m_ZPos;
float m_XRotation, m_YRotation, m_ZRotation;
float m_XScale, m_YScale, m_ZScale;

D3DXMATRIX m_matWorld; // World transformation matrix

425The Graphics Core

Table 10.3 cVertexBuffer::Render Type Flags

Flags Description

D3DPT_POINTLIST A series of vertices to draw as pixels.

D3DPT_LINELIST A set of isolated (unconnected) lines.

D3DPT_LINESTRIP A series of connected lines. Each line is drawn from the previ-
ous vertex to the current vertex, much like connecting dots.

D3DPT_TRIANGLELIST A list of triangles with three vertices per triangle.

D3DPT_TRIANGLESTRIP A triangle strip. Each vertex uses the previous two vertices
to create a face.

D3DPT_TRIANGLEFAN A triangle fan. Each vertex attaches to a center vertex and
the next vertex to create a face.

D3DXMATRIX m_matScale; // Scale matrix
D3DXMATRIX m_matRotation; // Rotation matrix
D3DXMATRIX m_matTranslation; // Translation matrix
D3DXMATRIX *m_matCombine1; // Combined matrix 1
D3DXMATRIX *m_matCombine2; // Combined matrix 2

public:
cWorldPosition(); // Constructor

// Return world transformation matrix
D3DXMATRIX *GetMatrix(cGraphics *Graphics = NULL);

// Set outside matrices to combine with world matrix
BOOL SetCombineMatrix1(D3DXMATRIX *Matrix = NULL);
BOOL SetCombineMatrix2(D3DXMATRIX *Matrix = NULL);

BOOL Copy(cWorldPosition *DestPos); // Copy to other class

// Move to world coordinates (and relative from current)
BOOL Move(float XPos, float YPos, float ZPos);
BOOL MoveRel(float XAdd, float YAdd, float ZAdd);

// Set rotation values (and relative from current)
BOOL Rotate(float XRot, float YRot, float ZRot);
BOOL RotateRel(float XAdd, float YAdd, float ZAdd);

// Set scaling factors (and relative from current)
BOOL Scale(float XScale, float YScale, float ZScale);
BOOL ScaleRel(float XAdd, float YAdd, float ZAdd);

// Update matrix and provide cGraphics object for billboard
BOOL Update(cGraphics *Graphics = NULL);

// Enabled or disable use of billboarding
BOOL EnableBillboard(BOOL Enable = TRUE);

// Retrieve current position, rotation, and scale
float GetXPos();
float GetYPos();
float GetZPos();
float GetXRotation();

426 10. Creating the Game Core

float GetYRotation();
float GetZRotation();
float GetXScale();
float GetYScale();
float GetZScale();

};

Most of the functions are fairly self-evident; the only questionable ones are Update,
GetMatrix, SetCombineMatrix1, and SetCombineMatrix2. The Update function rebuilds the
world transformation matrix using the contained orientation, taking a billboard
matrix and two outside matrices (which I call combine matrices) into account. To set
the two combined matrix sources, use the SetCombineMatrix1 and SetCombineMatrix2
functions.

The GetMatrix function returns the current
world transformation matrix. Be sure to pass
the GetMatrix function the current cGraphics
object that you’re using in order to calculate
the billboard matrix (it’s calculated from the
transposed view matrix).

Here’s an example that orients two objects
inside the 3-D world (with one attached to
the other):

cWorldPosition ObjectPos, ObjectPos2;

ObjectPos.Move(10.0f, 100.0f, -56.0f);
ObjectPos.Rotate(1.57f, 0.0f, 0.785f);
ObjectPos.Update(); // Calculate updated matrix

// Combine the 2nd object with the 1st (inherits orientation)
ObjectPos2.SetCombineMatrix1(ObjectPos.GetMatrix());
ObjectPos2.Rotate(0.0f, 0.0f, 3.14f);
ObjectPos2.Update(); // Calculate update matrix using combined

View Transformations and cCamera
Much like cWorldPosition, the cCamera class deals with view transformation matrices:

class cCamera
{

protected:

427The Graphics Core

NOTE
Combined matrices (or attached
matrices) represent the trans-
formations required to attach
one object to another, such as
to attach a weapon to a mesh’s
hand.The two matrices repre-
sent the local orientation of
the attached mesh frame and
the world orientation of the
attached mesh, respectively.

float m_XPos, m_YPos, m_ZPos; // Position coordinates
float m_XRot, m_YRot, m_ZRot; // Rotation values

// Camera tracking orientations
float m_StartXPos, m_StartYPos, m_StartZPos;
float m_StartXRot, m_StartYRot, m_StartZRot;
float m_EndXPos, m_EndYPos, m_EndZPos;
float m_EndXRot, m_EndYRot, m_EndZRot;

D3DXMATRIX m_matWorld; // World transformation matrix
D3DXMATRIX m_matTranslation; // Translation matrix
D3DXMATRIX m_matRotation; // Rotation matrix

public:
cCamera(); // Constructor

D3DXMATRIX *GetMatrix(); // Get view transformation matrix
BOOL Update(); // Update transformation matrix

// Move and rotate camera (view)
BOOL Move(float XPos, float YPos, float ZPos);
BOOL MoveRel(float XAdd, float YAdd, float ZAdd);
BOOL Rotate(float XRot, float YRot, float ZRot);
BOOL RotateRel(float XAdd, float YAdd, float ZAdd);

// Point a camera from Eye position to At position
BOOL Point(float XEye, float YEye, float ZEye, \

float XAt, float YAt, float ZAt);

// Set starting and ending track orientations
BOOL SetStartTrack();
BOOL SetEndTrack();

// Interpolate camera orientation along track
// using Time (0.0 - 1.0) and total Length.
BOOL Track(float Time, float Length);

// Retrieve translation and rotation values
float GetXPos();
float GetYPos();

428 10. Creating the Game Core

TEAMFL
Y

Team-Fly®

float GetZPos();
float GetXRotation();
float GetYRotation();
float GetZRotation();

};

The cCamera class works much like the cWorldPosition class, so I will forgo the intro-
ductions. The only difference is the addition of the Point, SetStartTrack, SetEndTrack,
and Track functions. You use the Point function to orient the viewpoint and point it
in a specific direction all at once.

The trio of track-related functions track the path of a moving camera over time.
To use the camera tracking orientations, position the camera in its desired starting
location and call cCamera::SetStartTrack. Then move the camera to the desired end-
ing orientation and call cCamera::SetEndTrack.

From there, it’s a matter of calling cCamera::Track (before the call to cCamera::Update)
to orient the camera along the track you created. The Time parameter of Track
ranges from 0.0 (starting orientation) to 1.0 (ending orientation) and any value in
between moves the camera along the track. Length can be any arbitrary value that
you work with (milliseconds, for example).

Camera tracking creates some awesome effects, so jump right into this example:

cCamera Cam;

// Position at 0.0f, 100.0f, -100.0f and look at origin
Cam.Point(0.0f, 100.0f, -100.0f, 0.0f, 0.0f, 0.0f);
Cam.SetStartTrack();

// Move to ending orientation
Cam.Point(-100.0f, 0.0f, 0.0f, 0.0f, 100.0f, 0.0f);
Cam.SetEndTrack();

// Position camera to halfway mark over 10000 milliseconds
Cam.Track(0.5f, 10000);
Cam.Update();

To set a camera as the current view transformation matrix, use the cGraphics::SetCamera
function:

g_Graphics.SetCamera(&Cam); // Don’t call Update beforehand

429The Graphics Core

Loadable Meshes using cMesh
Now, you can’t say that dealing with meshes isn’t difficult, can you? Of course,
I’m talking about skinned meshes as well as the standard meshes you’ve been using
from Chapter 6. The purpose of cMesh is to help you load those little demons into a
series of easy-to-use classes and then use them with other objects that render the
meshes to the display.

class cMesh
{

private:
cGraphics *m_Graphics; // Parent cGraphics object

long m_NumMeshes; // # meshes in class
sMesh *m_Meshes; // Mesh list

long m_NumFrames; // # of frames in class
sFrame *m_Frames; // Frame list

D3DXVECTOR3 m_Min, m_Max; // Bounding box coordinates
float m_Radius; // Bounding sphere radius

// Function that parses a single .X file template
void ParseXFileData(IDirectXFileData *pData, \

sFrame *ParentFrame, char *TexturePath);

// Match bone and frame transformation matrices
void MapFramesToBones(sFrame *Frame);

public:
cMesh(); // Constructor
~cMesh(); // Destructor

BOOL IsLoaded(); // Return TRUE if meshes are loaded

long GetNumFrames(); // Return # of frames in list
sFrame *GetParentFrame(); // Get top-most frame in list
sFrame *GetFrame(char *Name); // Find frame in list

long GetNumMeshes(); // Return # of meshes in list
sMesh *GetParentMesh(); // Get top-most mesh in list

430 10. Creating the Game Core

sMesh *GetMesh(char *Name); // Find mesh in list

// Get bounding box coordinates and bounding sphere radius
BOOL GetBounds(float *MinX, float *MinY, float *MinZ, \

float *MaxX, float *MaxY, float *MaxZ, \
float *Radius);

// Load and free an .X file
// (specifying optional path of texture maps).
BOOL Load(cGraphics *Graphics, char *Filename, \

char *TexturePath = “.\\”);
BOOL Free();

};

While this class also looks small, I’m not showing you the sMesh and sFrame structures
that the cMesh class uses. Those two structures form a linked list of mesh objects and
frame definitions. They also hold the various orientations of the frames and lists of
materials and textures. Go ahead and load up the Graphics Core source and take a
look at them; they’re highly commented and should be easy to follow.

The only thing you’ll do with cMesh is use it to load meshes from .X files, such as in
the following:

// Assuming g_Graphics = pre-initialized cGraphics object
cMesh Mesh;
Mesh.Load(&g_Graphics, “Mesh.x”);
Mesh.Free(); // Free mesh when done

Drawing Objects Using cObject
When it comes time to draw meshes, you must create a bridge from the mesh defi-
nitions to the display. “Why not handle rendering by using the cMesh object,” you
ask? The answer is memory usage. What if you want to use the same mesh again and
again? The solution is to use cObject:

class cObject
{

protected:
cGraphics *m_Graphics; // Parent cGraphics object
cMesh *m_Mesh; // Meshes to draw
sAnimationSet *m_AnimationSet; // Animation set
cWorldPosition m_Pos; // World orientation

431The Graphics Core

BOOL m_Billboard; // Billboard object flag

unsigned long m_StartTime; // Starting animation time

// Functions to update frame orientations and draw meshes
void UpdateFrame(sFrame *Frame, D3DXMATRIX *Matrix);
void DrawFrame(sFrame *Frame);
void DrawMesh(sMesh *Mesh);

public:
cObject(); // Constructor
~cObject(); // Destructor

// Create and free an object (setting optional mesh)
BOOL Create(cGraphics *Graphics, cMesh *Mesh = NULL);
BOOL Free();

// Enable or disable billboarding
BOOL EnableBillboard(BOOL Enable = TRUE);

// Attach object to another object’s frame
// (this combines the matrices when update is called).
// Defaults to first frame found in mesh.
BOOL AttachToObject(cObject *Object, \

char *FrameName = NULL);

// Orient object
BOOL Move(float XPos, float YPos, float ZPos);
BOOL MoveRel(float XAdd, float YAdd, float ZAdd);
BOOL Rotate(float XRot, float YRot, float ZRot);
BOOL RotateRel(float XAdd, float YAdd, float ZAdd);
BOOL Scale(float XScale, float YScale, float ZScale);
BOOL ScaleRel(float XAdd, float YAdd, float ZAdd);

D3DXMATRIX *GetMatrix(); // Retrieve object’s matrix

// Retrieve object orientations
float GetXPos();
float GetYPos();
float GetZPos();

432 10. Creating the Game Core

float GetXRotation();
float GetYRotation();
float GetZRotation();
float GetXScale();
float GetYScale();
float GetZScale();

// Get scaled bounding box and radius
BOOL GetBounds(float *MinX, float *MinY, float *MinZ, \

float *MaxX, float *MaxY, float *MaxZ, \
float *Radius);

// Set mesh that this class draws
BOOL SetMesh(cMesh *Mesh);

// Set new animation (w/name and start reference time)
BOOL SetAnimation(cAnimation *Animation, \

char *Name = NULL, \
unsigned long StartTime = 0);

char *GetAnimation(); // Get pointer to animation name

// Reset animation playback with new start reference time
BOOL ResetAnimation(unsigned long StartTime = 0);

// Update animation based on time and
// using smooth interpolation.
BOOL UpdateAnimation(unsigned long Time, BOOL Smooth = TRUE);

// Returns TRUE if animation is complete at Time
BOOL AnimationComplete(unsigned long Time);

BOOL Update(); // Update object transformation matrix
BOOL Render(); // Draw object using world transformation

};

The cObject class has just about everything you need to work with 3-D objects in
your world. You can orient the object, set new meshes, align the object with the
view (billboard), set and update animations, attach to other objects, and retrieve
the bounding box and radius of the bounding sphere.

433The Graphics Core

To work with cObject, just instance it and attach a previously loaded mesh object.
Then you can orient the object in any way and render it to the display, as in the
following example:

// g_Graphics = pre-initialized cGraphics object
// g_Mesh = pre-loaded mesh object
cObject g_Object;

g_Object.Create(&g_Graphics, &g_Mesh);
g_Object.Move(100.0f, 50.0f, 100.0f);
g_Object.Render();

Making Meshes
Move with cAnimation
Rounding up the end of the Graphics Core is cAnimation, the mesh animation com-
ponent. With cAnimation, you can load a series of animation sets from .X files and
use them in conjunction with cObject to animate meshes.

The cAnimation class is small. Much like cMesh, cAnimation has a few structures that
hold a list of animation data. Have a look at the class declaration:

class cAnimation
{

protected:
long m_NumAnimations; // # animations in class
sAnimationSet *m_AnimationSet; // Animations list

434 10. Creating the Game Core

NOTE
A bounding box is a set of coordinates that represents the farthest
extremes of the vertices within a mesh. For example, a mesh in which
the highest vertex is at y=100.0 means that the box will have an
extreme top value of 100.0.The same goes for the left, right, bottom,
front, and back of the mesh.The bounding radius is almost the same,
but rather than use a box, you use a sphere to enclose the mesh.

Bounding boxes and spheres are very useful when it comes to colli-
sion detection, in which you check to see whether two objects have
collided with one another.

// Parse a single .X file template
void ParseXFileData(IDirectXFileData *DataObj, \

sAnimationSet *ParentAnim, \
sAnimation *CurrentAnim);

public:
cAnimation(); // Constructor
~cAnimation(); // Destructor

BOOL IsLoaded(); // Return TRUE if animations are loaded

// Retrieve # of animations in list, topmost animation,
// and length of a given animation.
long GetNumAnimations();
sAnimationSet *GetAnimationSet(char *Name = NULL);
unsigned long GetLength(char *Name = NULL);

// Load an free an animation (with optional mesh to map)
BOOL Load(char *Filename, cMesh *MapMesh = NULL);
BOOL Free();

BOOL MapToMesh(cMesh *Mesh); // Map animation to mesh

// Set an animation to loop or not to loop.
BOOL SetLoop(BOOL ToLoop, char *Name = NULL);

};

With the cAnimation class, you call only four common functions: Load, Free, MapToMesh,
and SetLoop. Mapping an animation to a mesh is necessary in order to assure that
the animation class can find the mesh’s matrices that need to be altered. As for
SetLoop, notice the Name parameter; Name refers to the name of the animation to set
a repetitive loop for.

Animations (like frames and meshes) can be named inside the .X file (as they
should be). In that way, you can pack multiple animations into an .X file and refer-
ence them by name. For example, if your .X file contains an animation set called
Walk, you can pass the string “Walk” as Name. Using NULL as Name specifies the topmost
animation in the list.

The other thing you’re bound to notice is the StartTime parameter in the cObject
class. The StartTime parameter provides a starting reference value that the anima-
tion uses to time the animation. In this way, if you base your animations on time

435The Graphics Core

(using a function such as timeGetTime), you set StartTime to the time that you started
playing the animation.

Then subsequent calls to cObject::UpdateAnimation will use the difference between
the time you provide and the StartTime reference, giving you a clean-cut timing
mechanism (in other words, the exact timing based on a starting play time of 0 sec-
onds, rather than on an arbitrary time value).

At long last, using the final Graphics Core example, here’s how to load an anima-
tion, set its loop, and apply the animation object to a previously created 3-D object:

// g_Graphics = pre-initialized cGraphics object
// g_Mesh = pre-loaded cMesh object
// g_Object = pre-loaded cObject object
cAnimation Anim;

// Load animation and loop walk animation
Anim.Load(“Mesh.x”, &g_Mesh);
Anim.SetLoop(TRUE, “Walk”);

// Apply walk animation to object
g_Object.SetAnimation(&Anim, “Walk”, timeGetTime());

// Enter loop to render object, updating animation each frame
g_Object.UpdateAnimation(timeGetTime(), TRUE);
g_Object.Render();

// When done, free animation
Anim.Free();

The Input Core
Whew! The Graphics Core is massive,
and it may take a while to fully under-
stand it. For now, let’s slow it down a bit
and take a look at the Input Core, which
you use to provide a means to communi-
cate players’ actions to your games via
the keyboard, mouse, and joystick.

436 10. Creating the Game Core

NOTE
When playing animations, time
is arbitrary; it can mean time in
seconds, milliseconds, frames, and
so on.You must decide, and main-
tain, the measurement of time that
you want to use.

Device input takes place with two simple classes: cInput and cInputDevice. You use the
cInput class to initialize DirectInput, and you use the cInputDevice class to contain a
single DirectInput device interface object. If you use multiple devices, use separate
cInputDevice objects for each one.

Using DirectInput with cInput
The first step to using the input system is to initialize DirectInput, which is the pur-
pose of the cInput class. Extremely compact, the cInput class delcaration is as follows:

class cInput

{
protected:

HWND m_hWnd; // Handle of owner window
IDirectInput8 *m_pDI; // DirectInput interface

public:
cInput(); // Constructor
~cInput(); // Destructor

IDirectInput8 *GetDirectInputCOM(); // returns DI COM object
HWND GethWnd(); // returns window handle

BOOL Init(HWND hWnd, HINSTANCE hInst); // Initialize class
BOOL Shutdown(); // Shutdown class

};

This cInput class is fairly lightweight, with only two functions that you’ll be calling
(Init and Shutdown). The real magic comes in when using the cInputDevice class.

Input Devices with cInputDevice
The cInputDevice class is where the real action is. The cInputDevice class is used to ini-
tialize a specific input device (the keyboard, mouse, or joystick) and give you the
means to retrieve that device’s information for use in your game. Whereas the
cInput class was simple, the cInputDevice class makes up the rest of the input func-
tionality with the following declaration:

class cInputDevice
{

public:

437The Input Core

cInput *m_Input; // Parent cInput class

short m_Type; // Type of device
// MOUSE, KEYBOARD,
// or JOYSTICK

IDirectInputDevice8 *m_pDIDevice; // COM device

BOOL m_Windowed; // TRUE if using Windows
// mouse reading method
// or FALSE if using
// DirectInput method.

char m_State[256]; // States of all keys
// and buttons

DIMOUSESTATE *m_MouseState; // Mouse state
DIJOYSTATE *m_JoystickState; // Joystick state
BOOL m_Locks[256]; // Flags if keys or

// buttons locked.

// Mouse/joystick coordinates
long m_XPos, m_YPos;

// Internal enumeration function
static BOOL FAR PASCAL EnumJoysticks(\

LPCDIDEVICEINSTANCE pdInst, LPVOID pvRef);

public:
cInputDevice(); // Constructor
~cInputDevice(); // Destructor

IDirectInputDevice8 *DeviceCOM(); // Return COM object

// Functions to create a device interface and to free it
BOOL Create(cInput *Input, short Type, \

BOOL Windowed = TRUE);
BOOL Free();

BOOL Clear(); // Clear device data
BOOL Read(); // Read in device data
BOOL Acquire(BOOL Active = TRUE); // Acquire or unacquire

// device.

438 10. Creating the Game Core

TEAMFL
Y

Team-Fly®

BOOL GetLock(char Num); // Get locked key/button state
BOOL SetLock(char Num, BOOL State = TRUE); // Set lock state

long GetXPos(); // Get x position of mouse/joystick
BOOL SetXPos(long XPos); // Set x position
long GetYPos(); // Get y position of mouse/joystick
BOOL SetYPos(long YPos); // Set y position
long GetXDelta(); // Get x delta (relative movement)
long GetYDelta(); // Get y delta (relative movement)

// Keyboard specific functions
BOOL GetKeyState(char Num); // Get key state . Returns:

// TRUE=Pressed or FALSE=Released
// Use Num = KEY_* or DIK_*

BOOL SetKeyState(char Num, BOOL State); // Set key state
BOOL GetPureKeyState(char Num); // Get key state w/o locks
short GetKeypress(long TimeOut = 0); // Wait for keypress

// and return ASCII value
long GetNumKeyPresses(); // Get # keys currently pressed
long GetNumPureKeyPresses();// Get # keys pressed w/o locks

// Mouse/Joystick specific functions
BOOL GetButtonState(char Num); // Get button state

// Num=LBUTTON, RBUTTON, MBUTTON
BOOL SetButtonState(char Num, BOOL State); // Set state
BOOL GetPureButtonState(char Num); // Get state w/o locks
long GetNumButtonPresses(); // Get # buttons pressed
long GetNumPureButtonPresses(); // Get # pressed w/o locks

};

The cInputDevice class has it all! It encompasses all devices: keyboards, mice, and
joysticks, in one neat package. The class object works by calling cInputDevice::Create
and passing along a pre-initialized cInput class object. You also need to tell the class
which device to use by setting Type to the apprioate value (KEYBOARD, MOUSE, or
JOYSTICK). Lastly, you need to inform the class whether or not to use DirectInput’s
device-reading functions or Windows’ device-reading functions. Setting Windowed to
TRUE will force the class object to use Windows’ device-reading functions, while a
value of FALSE will force DirectInput’s. If you’re planing on using a windowed
application (or want the Windows cursor visible), be sure to specify a value of TRUE
for Windowed.

439The Input Core

Moving on in the class’s function list, you call cInputDevice::Read to read the
current state of the device in question. Then you can check the state of each indi-
vidual key or button using cInputDevice::GetKeyState, cInputDevice::GetButtonState,
cInputDevice::GetPureKeyState, and cInputDevice::GetPureButtonState.

The reason for the two separate pure functions is that keys and buttons can be
locked. A locked key or button cannot be triggered until it is released. Reading
pure values ignores the state of the locks.

A call to GetKeyState or GetButtonState returns TRUE if the key is being pressed or FALSE
if not. The Num parameter of these state-checking functions represents the key or
button to check. Keys are referenced by name, prefixed with KEY_— for example,
KEY_ESC or KEY_A. Check the Core_Input.h file for a full listing of KEY_ values (or use
constants such as DIK_A and DIK_ESCAPE, which are supplied by DirectInput).

Buttons are referenced by mouse: MOUSE_LBUTTON (left button), MOUSE_RBUTTON (right
button), and MOUSE_MBUTTON (middle button). For joysticks, use JOYSTICK_BUTTON0, JOY-
STICK_BUTTON1, JOYSTICK_BUTTON2, JOYSTICK_BUTTON3, JOYSTICK_BUTTON4, and JOYSTICK_BUTTON5.

Using the Input Core
Using the Input Core is easy; just instance a cInput class object and as many cInputDevice
objects as you need, being sure to initialize each as you go. For example, say that you
want to use two devices, the keyboard and mouse:

cInput g_Input; // Global declarations
cInputDevice g_Keyboard;
cInputDevice g_Mouse;

// Initialize the input system (required)
// Assumes hWnd and hInst are already initialized
// hWnd = window handle, hInst = instance handle
g_Input.Init(hWnd, hInst);

// Create keyboard and mouse devices
// Use DirectInput method of reading mouse
g_Keyboard.Create(&g_Input, KEYBOARD);
g_Mouse.Create(&g_Input, MOUSE, FALSE);

// Read in current state of devices
g_Keyboard.Read();
g_Mouse.Read();

440 10. Creating the Game Core

// If ESC pressed, display a message
if(g_Keyboard.GetKeyState(KEY_ESC) == TRUE) {

// Load the ESC key so user must release it before
// it can be read again.
g_Keyboard.SetLock(KEY_ESC, TRUE);
MessageBox(hWnd, “ESCAPE”, “Key Pressed!”, MB_OK);

}

// If left mouse button pressed, display coordinates
if(g_Mouse.GetPureButtonState(MOUSE_LBUTTON) == TRUE) {

char b[200];
sprintf(b, “%ld, %ld”, g_Mouse.GetXPos(), g_Mouse.GetYPos());
MessageBox(hWnd, b, “Mouse Coordinates”, MB_OK);

}

// Release everything
g_Mouse.Free();
g_Keyboard.Free();
g_Input.Shutdown();

The Sound Core
What’s a game without music and sound? The Sound Core is your solution to get-
ting sound and music into your game quickly and easily. Five class components are
contained within the Sound Core (see Table 10.4).

Let’s go ahead and start at the top of the list by first looking at the cSound object.

Using DirectX Audio
Control with cSound
The cSound object controls the DirectSound and DirectMusic objects and sets the
global volume for playback. It also controls the notification thread used to stream
sounds. Take a look at the class declaration:

class cSound
{

protected:
HWND m_hWnd; // Parent window handle

long m_Volume; // Global volume

441The Sound Core

// Events for each sound channel
// extra event used to shutdown thread
HANDLE m_Events[33];
cSoundChannel *m_EventChannel[32];

// Streaming thread data
HANDLE m_hThread; // thread handle
DWORD m_ThreadID; // thread ID
BOOL m_ThreadActive; // active thread
static DWORD HandleNotifications(LPVOID lpvoid);

// DirectSound COM objects
IDirectSound8 *m_pDS;
IDirectSoundBuffer *m_pDSBPrimary;

// Cooperative level, frequency, # channels, and BPS
long m_CooperativeLevel;
long m_Frequency;
short m_Channels;
short m_BitsPerSample;

442 10. Creating the Game Core

Table 10.4 The Sound Core Classes

Class Description

cSound Contains the DirectSound and DirectMusic objects, and controls
sound streaming.

cSoundData A class that contains wave data used to play with cSoundChannel.

cSoundChannel The class used to play a single sound.You can have as many as 32
of these classes in use at once (meaning that you can play 32
simultaneous sounds)!

cMusicChannel You can use this class to play a single song file, whether it’s a
MIDI file or a DirectMusic native song.You can use only one of
these classes at a time.

cDLS The DownLoadable Sound class object.This class allows you to
load different instruments into the cMusicChannel object.

// DirectMusic COM objects
IDirectMusicPerformance8 *m_pDMPerformance;
IDirectMusicLoader8 *m_pDMLoader;

public:
cSound(); // Constructor
~cSound(); // Destructor

// Assign and release events used in streaming
BOOL AssignEvent(cSoundChannel *Channel, \

short *EventNum, HANDLE *EventHandle);
BOOL ReleaseEvent(cSoundChannel *Channel, short *EventNum);

// Functions to retrieve COM interfaces
IDirectSound8 *GetDirectSoundCOM();
IDirectSoundBuffer *GetPrimaryBufferCOM();
IDirectMusicPerformance8 *GetPerformanceCOM();
IDirectMusicLoader8 *GetLoaderCOM();

// Init and shutdown functions
BOOL Init(HWND hWnd, long Frequency = 22050, \

short Channels = 1, short BitsPerSample = 16, \
long CooperativeLevel = DSSCL_PRIORITY);

BOOL Shutdown();

// Get or set the global volume level
long GetVolume();
BOOL SetVolume(long Percent);

// Restore system to known state
BOOL Restore();

};

The primary functions to deal with in the cSound class are Init, Shutdown, and SetVolume.
As I’ve mentioned, each class object needs to be initialized before using, and the
cSound class is not an exception.

To use Init, you must pass it to the parent window handle, as well as the optional
mixer settings (the system defaults to 22,050 Hz, mono, 16-bit samplings with a
DSSCL_PRIORITY cooperative level). Refer to Chapter 8, “Playing Sound with DirectX
Audio,” for information on the various playback formats and cooperatives levels

443The Sound Core

that you can use. Always follow up a call to Init with a call to Shutdown when you’re
done with the sound system.

To change the volume setting call cSound::SetVolume with Percent set to a value from 0
(silence) to 100 (full volume).

Using Wave Data and cSoundData
You use the cSoundData class object to describe and contain a single sound (wave-
form). The sound frequency, bits-per-sample, number of channels, size, and source
are all wrapped into this declaration:

class cSoundData
{

friend class cSoundChannel; // Let the sound channel have
// access to my class.

protected:
long m_Frequency; // Sound frequency.
short m_Channels; // # of channels in sound.
short m_BitsPerSample; // Bits-per-sample in sound.

FILE *m_fp; // Source sound file pointer.
char *m_Ptr; // Source sound memory pointer.
char *m_Buf; // Source sound memory buffer.

long m_Size; // Size of sound (in bytes).
long m_Left; // Data left to stream.

long m_StartPos; // Starting position of sound in source.
long m_Pos; // Current position of sound in source.

public:
cSoundData(); // Constructor
~cSoundData(); // Destructor

char *GetPtr(); // Get the sound memory buffer pointer.
long GetSize(); // Get the size of the sound.

BOOL Create(); // Create sound using loaded size.
BOOL Create(long Size); // Create a sound using size.
BOOL Free(); // Free sound buffer

444 10. Creating the Game Core

// Set playback format of loaded sound.
BOOL SetFormat(long Frequency, short Channels, short BitsPerSample);

// Set source from file or memory pointer, using specified
// offset position from start, and total size of sound.
BOOL SetSource(FILE *fp, long Pos = -1, long Size = -1);
BOOL SetSource(void *Ptr, long Pos = -1, long Size = -1);

// Load a .wav file into memory and configure for playback.
BOOL LoadWAV(char *Filename, FILE *fp = NULL);

// Load only the wav file header and configure format.
BOOL LoadWAVHeader(char *Filename, FILE *fp = NULL);

// Copy internal data to another cSoundData object
BOOL Copy(cSoundData *Source);

};

The upcoming cSoundChannel structure uses the cSoundData class to play sounds.
Before you can play sound, however, you must use a cSoundData class object to store
the playback format and the sound’s data source. Sounds can come from two
sources: a file or a memory buffer. In addition, sounds too big to fit into memory
can be configured to stream from their source.

The quickest way to load a single .WAV file is to use the cSoundData::LoadWAV func-
tion. The LoadWAV function takes two parameters: a filename to load and a source
file pointer. Only one of these parameters can be used, with the other one being
set to NULL. The source file pointer enables you to pack multiple .WAV files into a
single file but still be able to load them separately.

To load a single .WAV file, try this:

cSoundData Data;

// Load a sound from a file
Data.LoadWAV(“sound.wav”);

// Load a sound from file pointer
FILE *fp = fopen(“sound.wav”, “rb”);
Data.LoadWAV(NULL, fp);
fclose(fp);

445The Sound Core

Aside from loading a single .WAV file, you have the option to set up your own sound’s
data source. This is helpful if your sounds are too large for the sound buffer (greater
than 64K). Your choices now are to stream the sound from a file or a memory buffer.
That’s the purpose of the SoundData::SetSource function, which has two versions you
can use:

BOOL cSoundData::SetSource(FILE *fp, long Pos = -1, \
long Size = -1);

BOOL cSoundData::SetSource(void *Ptr, long Pos = -1, \
long Size = -1);

As you can see, you can pick a source file pointer or a memory pointer. The Pos
parameter conveys the starting position (the offset) of the sound data to the class.
The Size parameter sets the total number of bytes to stream (the size of the sound).

Note that the default value for both Pos and Size is -1, which enables the class to set
the positions. For that to happen, you must first set up the playback format using
SetFormat, which is self-explanatory. Then you must parse a wave file header using
LoadWAVHeader, which works similarly to LoadWAV with respect to the parameters.

Finally, if the sound is to be stored and streamed from
memory, you must create the buffer to use with the
cSoundData::Create function. You can specify the buffer
size yourself, or you can let the function use the
buffer size parsed from the LoadWAVHeader function.
Calling cSoundData::GetPtr retrieves the pointer to the
memory buffer that you can safely use to store the
sound.

For the sake of example, assume that you want to play
a large .WAV file named BigSound.wav. You can use the

following code to set up the cSoundData class:

cSoundData Data;
FILE *fp = fopen(“BigSound.wav”, “rb”);
Data.LoadWAVHeader(NULL, fp); // Get the playback specs
Data.SetSource(fp); // Set source to file

// Play sound here and when done, close source file
fclose(fp);

446 10. Creating the Game Core

CAUTION
Anytime that you
use a memory buffer,
you should always
free it with a call to
cSoundData::Free.
Also note that if
you’re streaming
sounds from a file,
you’re responsible
for closing the file
yourself.

Blasting Sounds
with cSoundChannel
At this point, you can initialize the sound system and load the sound data.
Naturally, the next step is to play the sounds. That’s the purpose of the
cSoundChannel class, which looks like this:

// These are the fixed sizes for sound channel buffers
const long g_SoundBufferSize = 65536;
const long g_SoundBufferChunk = g_SoundBufferSize / 4;

Before moving on, I want to explain the two global const variables. The first one
shown, g_SoundBufferSize, represents the number of bytes allocated to each
DirectSound buffer used to play the sound. I used 65,536 bytes, which is enough
to hold a few seconds worth of data at high performance playback formats.

The second variable shown, g_SoundBufferChunk, is the size of a single chunk, of
which there are four. Each chunk stores a small sampling of streamed sound. When
a chunk finishes playing, the next chunk in line begins to play while the previously
played chunk is loaded with new sound data.

You don’t have to alter these two values unless you want to conserve memory, in
which case, you just change the g_SoundBufferSize variable to a smaller amount.
With that said, let’s get back on track with the cSoundChannel class declaration:

class cSoundChannel
{

friend class cSound; // Let cSound has access to my class

protected:
cSound *m_Sound; // parent cSound class
IDirectSoundBuffer8 *m_pDSBuffer; // DS sound buffer
IDirectSoundNotify8 *m_pDSNotify; // notification object
short m_Event; // Event # for notify

long m_Volume; // Current volume 0-100%
signed long m_Pan; // Pan level -100 to +100
BOOL m_Playing; // Flag if channel playing
long m_Loop; // # loops to play sound

long m_Frequency; // Playback format
short m_BitsPerSample; // as the channel
short m_Channels; // was initialized.

447The Sound Core

cSoundData m_Desc; // Source sound description

// Variables for streaming
short m_LoadSection; // next chunk to load
short m_StopSection; // which chunk stops
short m_NextNotify; // which chunk is next

BOOL BufferData(); // Buffer streaming data in
BOOL Update(); // Update playback of channel

public:
cSoundChannel(); // Constructor
~cSoundChannel(); // Destructor

// Functions to retrieve COM objects
IDirectSoundBuffer8 *GetSoundBufferCOM();
IDirectSoundNotify8 *GetNotifyCOM();

// Create and free sound channel
BOOL Create(cSound *Sound, long Frequency = 22050, \

short Channels = 1, short BitsPerSample = 16);
BOOL Create(cSound *Sound, cSoundData *SoundDesc);
BOOL Free();

// Play and stop channel
BOOL Play(cSoundData *Desc, long VolumePercent = 100, \

long Loop = 1);
BOOL Stop();

// Get and set volume level (0-100%)
long GetVolume();
BOOL SetVolume(long Percent);

// Get and set panning (-100 left to +100 right)
signed long GetPan();
BOOL SetPan(signed long Level);

// Get and set new playback frequency
long GetFrequency();
BOOL SetFrequency(long Level);

BOOL IsPlaying(); // Return TRUE if sound playing
};

448 10. Creating the Game Core

TEAMFL
Y

Team-Fly®

Compared to the simple cSoundData class, the cSoundChannel class is a piece of cake.
You can instance this class up to 32 times, meaning that you can have up to 32
channels playing at once. You initialize each sound channel with a call to
cSoundChannel::Create.

You provide the Create call with the pre-initialized cSound class and with the playback
format. To make things a little easier, you can even create the sound channel using
the playback format stored within a cSoundData class. When you are finished with the
cSoundChannel class, you free it with a call to cSoundChannel::Free.

The most you’ll probably do with cSoundChannel is to play and stop sounds, and possi-
bly alter their volume. To play a sound, pass cSoundChannel a cSoundData class that
holds the sound data to play, plus a volume level and the number of times to play
the sound in succession. To play the sound in an endless loop, use a value of 0 for
the Loop parameter.

The rest of the functions are self-explanatory. All levels for volume and panning
use percentage levels, ranging from -100% (silence or full left pan) to +100% (full
volume or full right pan). Calling cSoundChannel::IsPlaying returns TRUE if the sound
is still playing or FALSE if not.

Here’s an example that loads a single sound and streams a larger sound by using
two sound channels:

// Global declarations
cSound g_Sound;
cSoundData g_Data[2];
cSoundChannel g_Channel[2];

// Initialize sound system
// Assuming hWnd is already a handle to initialized window
g_Sound.Init(hWnd);

// Load sounds
g_Data[0].LoadWAV(“SmallSound.wav”);
FILE *fp = fopen(“BigSound.wav”, “rb”);
g_Data[0].LoadWAVHeader(NULL, fp);
g_Data[0].SetSource(fp);

// Create sound channels
g_Channels[0].Create(&g_Sound, &g_Data[0]);
g_Channels[1].Create(&g_Sound, &g_Data[1]);

449The Sound Core

// Begin playback
g_Channels[0].Play(&g_Data[0]); // Play 1st sound once
g_Channels[1].Play(&g_Data[1], 100, 0); // Play 2nd endlessly

// Once you’re ready, stop everything and shutdown
g_Channels[0].Stop();
g_Channels[0].Free();
g_Channels[1].Stop();
g_Channels[1].Free();

g_Data[0].Free();
g_Data[1].Free();
fclose(fp);

g_Sound.Shutdown();

Listening to Music
with cMusicChannel
Again, what fun is a game without music? Now it’s time to kick up the beat using
the cMusicChannel class, which plays .MID and DirectMusic native songs (*.SGT):

class cMusicChannel
{

friend class cSound; // Let cSound class access my data.

protected:
cSound *m_Sound; // Parent cSound class
IDirectMusicSegment8 *m_pDMSegment; // DM segment object
long m_Volume; // Volume level 0-100%

public:
cMusicChannel(); // Constructor
~cMusicChannel(); // Destructor

IDirectMusicSegment8 *GetSegmentCOM(); // Get segment COM

BOOL Create(cSound *Sound); // Initialize the class

BOOL Load(char *Filename); // Load a music file
BOOL Free(); // Free a music file

450 10. Creating the Game Core

BOOL SetDLS(cDLS *DLS); // Set a new DLS

// Play and stop music
BOOL Play(long VolumePercent = 100, long Loop = 1);
BOOL Stop();

// Get and set new volume level (0-100%)
long GetVolume();
BOOL SetVolume(long Percent = 100);

BOOL SetTempo(long Percent = 100); // Set new tempo 1%+

BOOL IsPlaying(); // TRUE if playing, FALSE otherwise
};

Don’t let the size of the cMusicChannel class fool you—it gets the job done. The dif-
ference between cMusicChannel and other classes is that you must initialize it only
once with a call to cMusicChannel::Create.

The cMusicChannel::Free function frees songs from memory, leaving room for another
song to be loaded. When loading a song, you provide it with the filename, which
must be a .MID or DirectMusic native song file (.SGT). Midi files must end with .MID
or the cMusicChannel function will not configure DirectMusic for proper playback.
If you use only Midi song files, you might want to alter this function by forcing
DirectMusic always to configure the song segment object for Midi playback (as
you saw in Chapter 8).

Once a song is loaded, you can begin playback using cMusicChannel::Play, which
works just like cSoundChannel::Play in regard to the Volume and Loop parameters. The
rest of the functions are easy to understand—except for cMusicChannel::SetDLS, which
alters the instruments used for music playback.

I get to the DLS stuff in the next section (“Mixing Up the Instruments with
cDLS”), but now take a look at the cMusicChannel class in action:

// Global declarations
cSound g_Sound;
cMusicChannel g_Music;

// Initialize sound system
// Assuming hWnd is already a handle to initialized window
g_Sound.Init(hWnd);

451The Sound Core

// Initialize the music channel
g_Music.Create(&g_Sound);

// Load and play a song (endless looping)
g_Music.Load(“song.mid”);
g_Music.Play(100,0);

// When you’re done with playback, stop and free song
g_Music.Stop(;
g_Music.Free();

// Shutdown sound system
g_Sound.Shutdown();

Mixing Up the
Instruments with cDLS
At long last, you’re reaching the end of the information on using the Sound Core.
To enhance the music playback features of the cMusicChannel class, shown in the
preceding section, you can use cDLS, as illustrated here (consult Chapter 8 for the
benefits on using Downloadable Sounds, referred to as DLS):

// Macros to help deal with patches
#define PATCH(m,l,p) ((m << 16) | (l << 8) | p)
#define PATCHMSB(x) ((x >> 16) & 255)
#define PATCHLSB(x) ((x >> 8) & 255)
#define PATCHNUM(x) (x & 255)

class cDLS
{

protected:
cSound *m_Sound; // Parent cSound object

// DM DLS collection object
IDirectMusicCollection *m_pDMCollection;

public:
cDLS(); // Constructor
~cDLS(); // Destructor

452 10. Creating the Game Core

// Return the collection COM
IDirectMusicCollection8 *GetCollectionCOM();

BOOL Create(cSound *Sound); // Initialize class

// Load and free a DLS (NULL = load default set)
BOOL Load(char *Filename = NULL);
BOOL Free();

long GetNumPatches(); // Return # of patchs in set
long GetPatch(long Index); // Get patch # in set
BOOL Exists(long Patch); // See if a patch # exists

};

As you can see, the only purpose of the cDLS class is to contain a single DLS set.
As with cMusicChannel, you call cDLS::Create only once because cDLS::Free frees only a
loaded set. Notice the default value of NULL for the Filename parameter in cDLS::Load,
which specifies the default DLS set. Loading the default DLS set comes in handy
for restoring instruments to their original sounds.

The last three functions show the instruments that a DLS set contains. This is also
the purpose of the four PATCH macros at the top of the class declaration. To see how
many instruments are contained in a class, call cDLS::GetNumPatches.

Now, you can iterate each instrument for its patch number using the cDLS::GetPatch
function, or using cDLS::Exists, you can check to see whether a specific patch exists in
the set. A return value of TRUE means that a patch exists; FALSE means that it doesn’t.

To use cDLS with cMusicChannel, you load the specific DLS and use cMusicChannel::SetDLS
to utilize the instrument set:

// Assuming previously loaded c_Music object
// and pre-initialized g_Sound object.
cDLS g_DLS;

g_DLS.Create(&g_Sound);
g_DLS.Load(“custom.dls”);
g_Music.SetDLS(&g_DLS);

// Once done with DLS, just free it
g_DLS.Free();

453The Sound Core

The Network Core
In the earlier sections, you saw how easy it is to play DirectPlay. Now, you will learn
how to work with DirectPlay by using the Network Core. The Network Core contains
three classes: cNetworkAdapter, cNetworkServer, and cNetworkClient.

Querying for Adapters
with cNetworkAdapter
You use cNetworkAdapter to enumerate the installed TCP/IP devices on your system.
In order to connect through a client connection, you must know the device’s
GUID, which is the purpose of cNetworkAdapter. Here is the class declaration for
cNetworkAdapter:

class cNetworkAdapter
{

protected:
DPN_SERVICE_PROVIDER_INFO *m_AdapterList; // Adapter list
unsigned long m_NumAdapters; // # adapters

// Empty network message handler - required
static HRESULT WINAPI NetMsgHandler(\

PVOID pvUserContext, DWORD dwMessageId, \
PVOID pMsgBuffer) { return S_OK; }

public:
cNetworkAdapter(); // Constructor
~cNetworkAdapter(); // Destructor

BOOL Init(); // Initialize class object
BOOL Shutdown(); // Shut down object (free memory)
long GetNumAdapters(); // Get # of installed adapters

// Store name of adapter in buffer (Num = 0 to # adapters-1)
BOOL GetName(unsigned long Num, char *Buf);

// Return pointer to adapter GUID (Num = 0 to # adapters-1)
GUID *GetGUID(unsigned long Num);

};

454 10. Creating the Game Core

The cNetworkAdapter class is easy to use, just call the Init function, query for the num-
ber of installed adapters and begin pulling out the adapter names and GUIDs.
When you’re done with the object, call Shutdown to free the class’s internal resources.

I’ll get back to using the cNetworkAdapter class later in the next two sections. For now,
you can move on to the cNetworkServer class.

Servers with cNetworkServer
On the server side of networking, you deal with the cNetworkServer class, which allows
you to initialize a DirectPlay server object, host a game session, and handle incoming
and outgoing network messages. In this section, you see how I wrapped the server
side of networking into the following cNetworkServer class:

class cNetworkServer
{

protected:
IDirectPlay8Server *m_pDPServer; // Server Object
BOOL m_Connected; // Flag is host started

// Session name and password (stored as ASCII characters)
char m_SessionName[MAX_PATH];
char m_SessionPassword[MAX_PATH];

long m_Port; // Port used
long m_MaxPlayers; // Max players allowed
long m_NumPlayers; // # current players

// Network message handler
static HRESULT WINAPI NetworkMessageHandler(\

PVOID pvUserContext, DWORD dwMessageId, \
PVOID pMsgBuffer);

// Overloaded functions for various network message
virtual BOOL AddPlayerToGroup(\

DPNMSG_ADD_PLAYER_TO_GROUP *Msg) { return TRUE; }
virtual BOOL AsyncOpComplete(\

DPNMSG_ASYNC_OP_COMPLETE *Msg) { return TRUE; }
virtual BOOL ClientInfo(\

DPNMSG_CLIENT_INFO *Msg) { return TRUE; }

455The Network Core

virtual BOOL ConnectComplete(\
DPNMSG_CONNECT_COMPLETE *Msg) { return TRUE; }

virtual BOOL CreateGroup(\
DPNMSG_CREATE_GROUP *Msg) { return TRUE; }

virtual BOOL CreatePlayer(\
DPNMSG_CREATE_PLAYER *Msg) { return TRUE; }

virtual BOOL DestroyGroup(\
DPNMSG_DESTROY_GROUP *Msg) { return TRUE; }

virtual BOOL DestroyPlayer(\
DPNMSG_DESTROY_PLAYER *Msg) { return TRUE; }

virtual BOOL EnumHostsQuery(\
DPNMSG_ENUM_HOSTS_QUERY *Msg) { return TRUE; }

virtual BOOL EnumHostsResponse(\
DPNMSG_ENUM_HOSTS_RESPONSE *Msg) { return TRUE; }

virtual BOOL GroupInfo(\
DPNMSG_GROUP_INFO *Msg) { return TRUE; }

virtual BOOL HostMigrate(\
DPNMSG_HOST_MIGRATE *Msg) { return TRUE; }

virtual BOOL IndicateConnect(\
DPNMSG_INDICATE_CONNECT *Msg) { return TRUE; }

virtual BOOL IndicatedConnectAborted(\
DPNMSG_INDICATED_CONNECT_ABORTED *Msg) { return TRUE; }

virtual BOOL PeerInfo(\
DPNMSG_PEER_INFO *Msg) { return TRUE; }

virtual BOOL Receive(\
DPNMSG_RECEIVE *Msg) { return TRUE; }

virtual BOOL RemovePlayerFromGroup(\
DPNMSG_REMOVE_PLAYER_FROM_GROUP *Msg) { return TRUE; }

virtual BOOL ReturnBuffer(\
DPNMSG_RETURN_BUFFER *Msg) { return TRUE; }

virtual BOOL SendComplete(\
DPNMSG_SEND_COMPLETE *Msg) { return TRUE; }

virtual BOOL ServerInfo(\
DPNMSG_SERVER_INFO *Msg) { return TRUE; }

virtual BOOL TerminateSession(\
DPNMSG_TERMINATE_SESSION *Msg) { return TRUE; }

public:
cNetworkServer(); // Constructor
~cNetworkServer(); // Destructor

456 10. Creating the Game Core

IDirectPlay8Server *GetServerCOM(); // Return server object

BOOL Init(); // Initialize network server
BOOL Shutdown(); // Shut down network server

// Begin a hosting session
BOOL Host(GUID *guidAdapter, long Port, \

char *SessionName, char *Password = NULL, \
long MaxPlayers = 0);

BOOL Disconnect(); // Disconnect a hosting session
BOOL IsConnected(); // Checks if host started

// Send raw data or a text string
BOOL Send(DPNID dpnidPlayer, void *Data, \

unsigned long Size, unsigned long Flags=0);
BOOL SendText(DPNID dpnidPlayer, char *Text, \

unsigned long Flags=0);

// Forcibly disconnect a player
BOOL DisconnectPlayer(long PlayerId);

// Get IP address of host or player in supplied buffer
BOOL GetIP(char *IPAddress, unsigned long PlayerId = 0);
// Get name of player
BOOL GetName(char *Name, unsigned long PlayerId);

// Get port used to host
long GetPort();

// Get session name and password
BOOL GetSessionName(char *Buf);
BOOL GetSessionPassword(char *Buf);

// Get max # players allowed and current # of players
long GetMaxPlayers();
long GetNumPlayers();

};

In order to use the cNetworkServer class (as well as cNetworkClient, as you’ll soon see in
the following section, “Working with Clients and cNetworkClient”), you derive your
own class using cNetworkServer as the base class. You do so because you have to

457The Network Core

overload the network handling functions with functions of your own construct.
Each network message is represented in the cNetworkServer class, so there’s no way
for your derived class to miss the important messages.

To host a session, you need an adapter GUID, session name, optional password,
and the maximum number of players allowed (with 0 meaning no limit). When
cNetworkServer::Host is called, DirectPlay initializes the connection and returns con-
trol to you. At this point, you can expect messages to start coming in. It’s your job
to siphon through the incoming messages and deal with them as you see fit. Each
message handler you create returns TRUE to signify the message was handled or FALSE
to signify an error.

As a quick example, here’s an instance of the cNetworkServer class that displays
incoming text messages and sends the same message back to the originator (using
guaranteed delivery):

// Create a derived class
class cServer : public cNetworkServer
{

private:
BOOL Receive(DPNMSG_RECEIVE *Msg);

}

BOOL cServer::Receive(DPNMSG_RECEIVE *Msg)
{

// Display the message
MessageBox(NULL, Msg->pReceivedData, \

“Incoming Message”, MB_OK);

// Send it back
Send(Msg->dpnidSender, Msg->pReceiveData, \

Msg->dwReceivedDataSize, DPNSEND_GUARANTEED);

return TRUE;
}

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

{
cServer Server;
cNetworkAdapter Adapter;
GUID *guidAdapter;

458 10. Creating the Game Core

TEAMFL
Y

Team-Fly®

// Pick the first network adapter
Adapter.Init();
guidAdapter = Adapter.GetGUID(0); // 0 = 1st adapter

Server.Init();
Server.Host(guidAdapter, 12345, “TextSession”);

// Wait until ESC pressed
while(!(GetAsyncKeyState(VK_ESC) & 0x80));
Server.Disconnect();
Server.Shutdown();

// Free the adapter list
Adapter.Shutdown();

return TRUE;
}

Don’t worry if the preceding example doesn’t show you much; you’ll get to deal
with the network components in more detail in Chapter 19, “Getting Online with
Multiplayer Gaming.”

Working with Clients
and cNetworkClient
At this point, take a look at the remaining network class object, cNetworkClient, which
deals with the client end of networking:

class cNetworkClient
{

protected:
IDirectPlay8Client *m_pDPClient; // DP client object

BOOL m_Connected; // Flag if connected

char m_IPAddress[MAX_PATH]; // IP address
long m_Port; // connected port

char m_Name[MAX_PATH]; // Client name

// Session name and password (as sent to host)

459The Network Core

char m_SessionName[MAX_PATH];
char m_SessionPassword[MAX_PATH];

// Network message handler function
static HRESULT WINAPI NetworkMessageHandler(\

PVOID pvUserContext, DWORD dwMessageId, \
PVOID pMsgBuffer);

// Overloaded network message handlers (identical to
// cNetworkServer’s) go here. They have been removed for
// sake of saving space.
public:

cNetworkClient(); // Constructor
~cNetworkClient(); // Destructor

// Return DirectPlay client object
IDirectPlay8Client *GetClientCOM();

BOOL Init(); // Init client network system
BOOL Shutdown(); // Shutdown client system

// Connect to remote host using specified adapter, IP,
// port, player name, session name, and optional
// password.
BOOL Connect(GUID *guidAdapter, char *IP, long Port, \

char *PlayerName, char *SessionName, \
char *SessionPassword = NULL); \

BOOL Disconnect(); // Disconnect a session
BOOL IsConnected(); // Returns TRUE if connected

// Send raw data and text functions
BOOL Send(void *Data, unsigned long Size, \

unsigned long Flags=0);
BOOL SendText(char *Text, unsigned long Flags=0);

BOOL GetIP(char *IPAddress); // Get IP address in buffer
long GetPort(); // Return connected port #
BOOL GetName(char *Name); // Return name
BOOL GetSessionName(char *Buf); // Return session name
BOOL GetSessionPassword(char *Buf); // Return password

};

460 10. Creating the Game Core

Working with the cNetworkClient object is similar to using cNetworkServer, with the
exception of connecting to a network. To connect using cNetworkClient::Connect, you
must first pick a network adapter using the cNetworkAdapter class object, as illustrated
in the following example:

// Create a derived class
class cClient : public cNetworkClient
{

private:
BOOL Receive(DPNMSG_RECEIVE *Msg);

}

BOOL cClient::Receive(DPNMSG_RECEIVE *Msg)
{

MessageBox(NULL, Msg->pReceiveData, \
“Incoming Message”, MB_OK);

return TRUE;
}

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

{
cClient Client;
cNetworkAdapter Adapter;
GUID *guidAdapter;

// Pick the first network adapter
Adapter.Init();
guidAdapter = Adapter.GetGUID(0); // 0 = 1st adapter

// Initialize client and connect to IP=123.123.123.123
// using port 12345, session = TextSession and no password.
Client.Init();
Client.Connect(guidAdapter, “123.123.123.123”, \

12345, “MyName”, “TextSession”);

// Wait until connection complete or until user
// presses ESC.
while(Client.IsConnected() == FALSE) {

if(GetAsyncKeyState(VK_ESC) & 0x80) {
Client.Disconnect();

461The Network Core

Client.Shutdown();
return TRUE;

}
}
// Now connected, proceed with application

// Send a text message
Client.SendText(“Hello there!”);

// Wait until ESC pressed
while(!(GetAsyncKeyState(VK_ESC) & 0x80));

// Disconnect and shutdown
Client.Disconnect();
Client.Shutdown();

// Free adapter list
Adapter.Shutdown();

return TRUE;
}

Again, the samples here are minimal; you see the entire Network Core in action
in Chapter 19. For now, you might want to look through the class declarations and
the code on the CD-ROM at the back of this book.

Wrapping Up the Game Core
Creating a core of reusable objects, such as those shown in this chapter, is one of
the best things you can do to get started in programming games. Not only do you
learn the intricate details of every object and component you are representing with
the core classes, but you also form a solid framework with which to get your games
developed at a much quicker pace.

In this chapter, I introduced you to the Game Core, a collection of classes I devel-
oped for use in my projects and for use in this book. I pass the core on to you in
hopes you will find it useful in your projects. By following the examples in this chap-
ter, and throughout the remainder of this book, you should be able to get a firm
grasp on just what the core is capable of doing, and how you can use the core classes.

462 10. Creating the Game Core

463The Network Core

Programs on the CD-ROM

A number of programs that demonstrate the code discussed in this
chapter are located on the CD-ROM at the back of this book.You can
find the following programs in the BookCode\Chap10\ directory:

◆ GameCore. This is not a real application project because it
contains the complete code for only the Game Core. Use this
collection of classes as a starting point for your projects.
Location: \BookCode\Chap10\GameCore\.

This page intentionally left blank

Part Four

Role-Playing
Game
Programming

11 Using 2-D Graphics

12 Creating 3-D Graphics Engines

13 Mixing 2-D and 3-D Graphics Engines

14 Implementing Scripts

15 Defining and Using Objects

16 Controlling Players and Characters

17 Working with Maps and Levels

18 Creating Combat Sequences

19 Getting Online with Multiplayer Gaming

CHAPTER 11

Using 2-D
Graphics

You’re finally getting past the basics of programming and on to the good stuff.
Because this book is about programming role-playing games, let’s start with one

of the first things that a gamer notices—the graphics! Starting with the “yesterday”
of gaming, you’ll see that games evolved from a simple 2-D graphics style that still
prevails in today’s market with games such as Final Fantasy, Baldur’s Gate, and the vari-
ous Ultima games. Now, it’s time for you to harness 2-D graphics in your own games.

In this chapter, you learn about the following:

■ Using tiles and maps
■ Building basic and angled 2-D tile engines
■ Big bitmap engines

Understanding Tiles and Maps
The heart of the 2-D games mentioned in the introduction to this chapter is a tech-
nique for drawing graphics known as tiling. When tiling, you use small rectangular
groups of pixels (small bitmaps called tiles) to construct a large scene. The arrange-
ment in which these tiles are drawn is called a map. (See Figure 11.1.)

In Figure 11.1, four small numbered images are on the left; these are the tiles. In
the middle, you see a grid of numbers. This grid represents the layout in which you
draw the tiles (in a sort of paint-by-numbers manner). For each grid element, you
draw the respective tile that is represented by the number and continue until the
entire scene is drawn. This grid is the map. When the grid is complete, you have
the image shown on the right.

The benefits of using tiles and maps are clear; tiles and maps require very little
memory for storage. By using the paint-by-numbers format for the map, you are
able to construct huge (and I mean huge) scenes, using very little memory.

Consider this example, which uses tiles that are 16 × 16 pixels. Assuming that you
use 8-bit colors, a set of 256 tiles will use 65,536 bytes of memory. In addition, you
have the map, which is an array of bytes (each byte representing the tile number
to draw) that is 1024 × 1024 (1,048,576 bytes). That’s a total of 1,114,112 bytes to
store the tiles and map.

468 11. Using 2-D Graphics

TEAMFL
Y

Team-Fly®

Because each tile is 16 pixels in size either way and the map is 1,024 units in size,
a rendered map will generate an image 16,384 × 16,384 pixels in size, which takes a
whopping 268,435,456 bytes to store. You can see that the savings in memory is
between almost 300MB and a little more than 1MB.

Tile Graphics
So far, you have a basic overview of tiles and maps. What you might not realize is
how far you can take the concept of using tiles. Even though the tiles you are draw-
ing are rectangular, the graphics used for the tiles do not have to be rectangular,
nor do they have to be drawn to the screen in a rectangular grid-like pattern.

Angled Tiles
In a typical 2-D game, the scene is usually from an above or side viewpoint.
Whatever the case, in those typical games, you draw all the tiles to conform nicely
to a rectangular shape.

The Black Gate (the seventh game in the Ultima sequel), on the other hand, changes
the viewpoint. When viewing it from above and slightly rotated, you’re able to see
more than one side of all objects. The graphics, like the characters in the game,
extend upward at an angle, and you can see their backs and sides at the same time!
What’s going on here? Angled tiles! That’s what.

The game is still using rectangular tiles, but they are drawn with angled graphics.
You might not be able to distinguish the rectangular shape of the tiles right away

469Understanding Tiles and Maps

Figure 11.1

Tiles and maps go
hand in hand when
drawing large scenes
in 2-D graphics.You
use the tiles on the
left to render the map
on the right.

because a large chunk of each tile is transparent (not drawn). Take a look at Figure
11.2 to see what I mean.

You now have the basics on working with the various types of tiles used in games
today. Next, you find out how to use tiles in your own project by means of DirectX.

Using Tiles with DirectX
As you’ve already seen in previous chapters, it’s not too difficult to render small
rectangular texture-mapped polygons, which are perfect for representing your tiles.
You can accomplish this with a special D3DX object called ID3DXSprite. In Chapter
10, “Creating the Gaming Core,” I mention the ID3DXSprite interface when discussing
the Game Core; now is your chance to take a look at that interface.

The ID3DXSprite object has the sole job of drawing rectangular polygons to the
screen, using the specific texture you assign. Of course, the texture you give it will
be packed with tiles.

To start using tiles in Direct3D, instance an ID3DXSprite object and use the D3DXCreateSprite
function to initialize it:

// g_pD3DDevice = pre-initialized device object
ID3DXSprite *pSprite = NULL;

if(FAILED(D3DXCreateSprite(g_pD3DDevice, &pSprite))) {
// Error occurred

}

470 11. Using 2-D Graphics

Figure 11.2

Here is a typical character
drawn in an angled tile
(the left with transparency
and the right without
transparency of the tile
shown).

You can see that the D3DXCreateSprite function takes two parameters—one pointer to
your pre-initialized 3-D device object and another to the ID3DXSprite object you are
creating. After this function call, you’re ready to roll. All that you need to do is
load a texture that represents the tile (or tiles) you want to draw and use the
ID3DXSprite::Draw function to draw the tile:

HRESULT ID3DXSprite::Draw(
IDirect3DTexture8 *pSrcTexture, // Texture to use
CONST RECT *pSrcRect, // Source rectangle
CONST D3DXVECTOR2* pScaling, // Scaling vector
CONST D3DXVECTOR2* pRotationCenter, // Rotation center
FLOAT Rotation, // Rotation angle
CONST D3DVECTOR2* pTranslation, // Translation vector
D3DCOLOR Color); // Modulation color

The trick to using the Draw function is to construct a source rectangle RECT structure
with the coordinates inside the texture that you want to use as the tile. For exam-
ple, say that you have a texture 256 × 256 pixels in size that contains 64 tiles (32 ×
32 pixels in size each) packed in 8 rows by 8 columns (as shown in Figure 11.3).

If you draw the second tile from the left, third from the top, your source rectangle
will be from 64,96 to 96,128. Because all your tiles are 32 × 32, you need to know
only the upper-left coordinates of the tile in the texture; then you just add 32 for
the bottom and right coordinates of the tile. Use those values to configure the RECT
structure:

471Using Tiles with DirectX

TIP
For efficiency, pack a texture used for tiles with as many tiles as you
can fit and lay them out in rows and columns. For example, if you have
64 tiles that are 32 ×× 32 pixels in size, create a bitmap that can store
8 rows and 8 columns of tiles, which gives you a texture that is 256 ×× 256
pixels in size. Figure 11.3 demonstrates one such arrangement of tiles.

The tiles are numbered and referenced starting at the upper-left cor-
ner.The upper-left tile is considered tile 0.The next tile to the right is
tile 1, and so on, until the next row, in which the tile numbers continue
all the way to 63 (the lower-right tile). From now on, you reference a
tile by its number and let the tile-drawing routines figure out the coor-
dinates in the texture.

RECT SrcRect;
SrcRect.left = 64; // left coordinate of tile
SrcRect.top = 96; // top coordinate of tile
SrcRect.right = SrcRect.left + 32; // add tile width
SrcRect.bottom = SrcRect.top + 32; // add tile height

Note that setting pSrcRect to NULL tells the draw function to use the entire texture as a
tile. pScaling is a vector that specifies the size that you want to scale the tile. If you’re
not going to scale the
tiles, set pScaling to
NULL; otherwise, you’ll
need to construct a
vector containing the
scaling values.

Scaling is about as far
as I’m going to go for
special features using
tiles. So, you can set
pRotationCenter to NULL
and Rotation to 0.0.

472 11. Using 2-D Graphics

Figure 11.3

Here you see 64 tiles arranged in an 8 × 8
pattern.

TIP
The ability to scale tiles with Direct3D makes for some
awesome possibilities. By using smaller tile images, say
16 × 16 pixels in size, you can then draw them at a
much larger size, say 64 × 64. As the tile is drawn, the
texture is stretched to fit the scaled-up tile.When these
scaled tiles are applied with maps, you can greatly
expand the size of the map while conserving memory
for tile textures. I’ll show you more of this technique in
the section “Big Bitmap Engines,” later in this chapter.

The only parameter you need to be concerned about is pTransform, which is a vector
that tells the sprite object the coordinates at which to draw the tile, in screen space
ranging from 0 to the width and height of the window. Note that you draw all tiles
down and right from the coordinates you specify, meaning that the upper-left cor-
ner of the tile is considered the origin.

The last argument of the Draw function is Color, which is a D3DCOLOR value used to mod-
ulate the output texture. Normally, you’d set this to a value of 0xFFFFFFFF in order to
draw the tiles just as they appear in the texture, but by using a macro such as
D3DCOLOR_RGBA, you can modify the colors or alpha values of the tiles as they are drawn.

For example, to draw a tile with half the alpha value, use the following:

D3DCOLOR_RGBA(255,255,255,127); // 127 = half of full

You can see that the values range from 0 (no color or alpha) to 255 (full color or
alpha). In the same way you altered the alpha values, you can cut the red compo-
nent out completely by using the following:

D3DCLOR_RGBA(0,255,255,255); // 0=no color

This creates some splendid possibilities, such as creating day and night scenes or
tiles that show through to underlying graphics (such as windows).

Getting back to the subject at hand, you can now use the Draw function to draw
tiles. Here’s a sample function that takes a texture, source coordinates, and destina-
tion coordinates in order to draw a tile (notice that the coordinates are still float,
but they are defined in screen space—that is, in the dimensions of the display):

// Before calling this function, make sure you have called
// IDirect3DDevice::BeginScene and have already loaded
// the texture you are using to store the tiles.

// pSprite = pre-initialized ID3DXSprite object
void DrawTile(float SrcX, float SrcY, \

float DestX, float DestY, \
float TileWidth, float TileHeight \
float ScaleX, float ScaleY, \
IDirect3DTexture8 *pTileTexture, \
D3DCOLOR Color)

{
RECT SrcRect; // source rectangle

473Using Tiles with DirectX

// Set up the source rectangle
SrcRect.left = SrcX;
SrcRect.top = SrcY;
SrcRect.right = SrcRect.left + TileWidth;
SrcRect.bottom = SrcRect.top + TileHeight;

// Draw the tile using specified coordinates, color,
// and scale. If you want the tile to be drawn at the
// normal scale, specify a value of 1.0 for ScaleX and ScaleY
pSprite->Draw(pTileTexture, &SrcRect, \

&D3DXVECTOR2(ScaleX, ScaleY), NULL, 0.0f, \
&D3DXVECTOR2(DestX, DestY), Color);

}

Although using the ID3DXSprite object to
draw tiles might seem a little odd at first
(and a little unoptimized), I assure you
that it does the job very well. The only
way to go from here is to build a special
class that handles tiles for you, including
loading and drawing them.

Building a Tile-Handler Class
Because you’ve learned how to draw tiles, now is a good time to construct a class
that handles tiles for you. This class should be minimal, only loading the tile tex-
tures and drawing them to the specified device. Here’s a look at a simple tile class
that I created. To make things easier to deal with, I integrated the Graphics Core
into the following tile class:

class cTiles
{

private:
cGraphics *m_Graphics; // Parent cGraphics object

long m_NumTextures; // # of textures
cTexture *m_Textures; // cTexture array
short *m_Widths; // Tile widths array
short *m_Heights; // Tile heights array
short *m_Columns; // # columns in texture

474 11. Using 2-D Graphics

NOTE
As you can see in the DrawTile
function, I added the ability to draw
scaled tiles.This is a power tech-
nique that I’ll be using later in this
chapter in the section,“Big Bitmap
Engines.”

public:
cTiles();
~cTiles();

// Functions to create and free the tile interface
BOOL Create(cGraphics *Graphics, long NumTextures);
BOOL Free();

// Functions to load and free a single texture
BOOL Load(long TextureNum, char *Filename, \

short TileWidth = 0, short TileHeight = 0, \
D3DCOLOR Transparent = 0, \
D3DFORMAT Format = D3DFMT_A1R5G5B5);

BOOL Free(long TextureNum=-1);

// Functions to retrieve tile dimensions and
// # of tiles in a texture.
long GetWidth(long TextureNum);
long GetHeight(long TextureNum);
long GetNum(long TextureNum);

// Enable or disable transparent blitting
BOOL SetTransparent(BOOL Enabled = TRUE);

// Draw a single tile to location
BOOL Draw(long TextureNum, long TileNum, \

long ScreenX, long ScreenY, \
D3DCOLOR Color = 0xFFFFFFFF, \
float XScale = 1.0f, float YScale = 1.0f);

};

The cTiles class presented here works
by allocating an array of cTexture objects
in which to store the tile graphics. The
actual code for the cTiles class is con-
tained within the Chapter 11 source code
directory on this book’s CD-ROM (look
for \BookCode\Chap11\). The following
sections provide a breakdown of the
public functions and what they do
(as well as how to call them).

475Using Tiles with DirectX

NOTE
All public functions in the cTiles
class return a BOOL value; TRUE
represents a successful call, and
FALSE means there was an
unspecified error.

cTiles::Create
BOOL cTiles::Create(

cGraphics *Graphics, // Pre-initialized cGraphics object
long NumTextures); // # texture objects to create

The first function called, cTiles::Create, allocates the array of cTexture objects in
which to store the tile graphics. Be sure to pass this Create function a pre-initialized
cGraphics object and a sufficient number of textures in which to store tiles.

BOOL cTiles::Create(cGraphics *Graphics, long NumTextures)
{

Free(); // Free in case of existing data

// Error checking
if((m_Graphics = Graphics) == NULL)

return FALSE;
if((m_NumTextures = NumTextures) == NULL)

return FALSE;

// Allocate texture objects
if((m_Textures = new cTexture[m_NumTextures]) == NULL)

return FALSE;

// Allocate width, height, and column count arrays
m_Widths = new long[m_NumTextures];
m_Heights = new long[m_NumTextures];
m_Columns = new long[m_NumTextures];

return TRUE; // Return success!
}

cTiles::Free
BOOL cTiles::Free();

This function takes no parameters because it frees all resources and class objects.
No further calls to Load, Draw, or Free will work until the cTiles class instance is reini-
tialized with a call to cTiles::Create.

BOOL cTiles::Free()
{

m_Graphics = NULL;

476 11. Using 2-D Graphics

// Free all textures
if(m_NumTextures) {

for(short i=0;i<m_NumTextures;i++)
m_Textures[i].Free();

}
delete [] m_Textures;
m_Textures = NULL;

// Free width, height, and column arrays
delete [] m_Widths;
delete [] m_Heights;
delete [] m_Columns;
m_Widths = m_Heights = m_Columns = NULL;
m_NumTextures = 0;

return TRUE;
}

cTiles::Load
BOOL cTilesLoad(

long TextureNum, // Texture # to load graphics into
char *Filename, // Filename of image to load (*.bmp)
short TileWidth, // Width of tiles in image
short TileHeight, // Height of tiles in image
D3DCOLOR Transparent, // Transparent color (use alpha=255)
D3DFORMAT Format); // Storage format

The cTiles::Load function handles loading a texture into a specific texture array ele-
ment. For example, if you create the cTiles object to use five textures, you can spec-
ify any element from 0 to 4 in which to load a texture. All textures are referenced
by their index in the texture array.

When loading a texture file, you must specify the size of the tiles stored on the tex-
ture (using pixels as measurement). Those tiles must be packed on the texture,
running left to right, top to bottom, with the first tile starting at the upper-left pixel
of the texture. For example, you could have a texture containing 64 tiles, with each
tile being 32 × 32 pixels in size. That means that the texture will have 8 columns
and 8 rows of tiles, much like the set shown in Figure 11.3.

The last two parameters are useful only if you are using transparent blitting. Set the
Transparent parameter to a valid D3DCOLOR value (using D3DCOLOR_RGBA or the like, being

477Using Tiles with DirectX

sure to use an alpha value of 255) and either leave Format as its default setting of
D3DFMT_A1R5G5B5 or specify your own from the list of possible formats provided by
Direct3D.

Here’s the Load function code:

BOOL cTiles::Load(long TextureNum, char *Filename,
short TileWidth, short TileHeight,
D3DCOLOR Transparent, D3DFORMAT Format)

{
// Error checking
if(TextureNum >= m_NumTextures || m_Textures == NULL)

return FALSE;

Free(TextureNum);

// Load the texture
if(m_Textures[TextureNum].Load(m_Graphics, Filename, \

Transparent, Format) == FALSE)
return FALSE;

// Store height value (get width of texture if
// no TileWidth was specified).
if(!TileWidth)

m_Widths[TextureNum] = m_Textures[TextureNum].GetWidth();
else

m_Widths[TextureNum] = TileWidth;

// Store height value (get height of texture if
// no TileHeight was specified).
if(!TileHeight)

m_Heights[TextureNum] = m_Textures[TextureNum].GetHeight();
else

m_Heights[TextureNum] = TileHeight;

// Calculate how many columns of tiles there are
// in the texture. This is used to speed up calculations
// when drawing tiles.
m_Columns[TextureNum] = m_Textures[TextureNum].GetWidth() \

/ m_Widths[TextureNum];

return TRUE;
}

478 11. Using 2-D Graphics

TEAMFL
Y

Team-Fly®

cTiles::Free
BOOL cTiles::Free(long TextureNum); // Texture # to free

This function frees a single texture from the array, but still allows you to reuse the
texture object via a call to cTiles::Load. Just by specifying the texture number to free
in the TextureNum argument, you can use this function to free older textures and
make room for newer textures.

BOOL cTiles::Free(long TextureNum)
{

// Error checking
if(TextureNum >= m_NumTextures || m_Textures == NULL)

return FALSE;

// Free a single texture resource
m_Textures[TextureNum].Free();

return TRUE;
}

cTiles::GetWidth,
cTiles::GetHeight, and cTiles::GetNum
long cTiles::GetWidth(long TextureNum); // Read from texture #
long cTiles::GetHeight(long TextureNum);
long cTiles::GetNum(long TextureNum);

You use these three functions to retrieve the width, height, and number of tiles per
texture, respectively. You will rarely use these functions directly, but it helps to have
them in the tile class:

long cTiles::GetWidth(long TextureNum)
{

// Error checking
if(TextureNum >= m_NumTextures || m_Widths == NULL)
return 0;

return m_Widths[TextureNum];
}

long cTiles::GetHeight(long TextureNum)
{

479Using Tiles with DirectX

// Error checking
if(TextureNum >= m_NumTextures || m_Heights == NULL)
return 0;

return m_Heights[TextureNum];
}

long cTiles::GetNum(long TextureNum)
{

// Error checking
if(TextureNum >= m_NumTextures || m_Textures == NULL || \

m_Columns == NULL || m_Widths == NULL || m_Heights == NULL)
return 0;

return m_Columns[TextureNum] + \
m_Textures[TextureNum].GetHeight() / \
m_Heights[TextureNum];

}

cTiles::SetTransparent
BOOL cTiles::SetTransparent(BOOL Enabled); // Enable/disable

The cTiles::SetTransparent function enables or disables alpha testing, which means
that textures loaded with an appropriate transparent color and color format will
use transparent blitting when enabled. As a default value, Enabled is set to TRUE.
Here’s a look at the code for the SetTransparent function:

BOOL cTiles::SetTransparent(BOOL Enabled)
{

// Error checking
if(m_Graphics == NULL)

return FALSE;
return m_Graphics->EnableAlphaTesting(Enabled);

}

cTiles::Draw
BOOL cTiles::Draw(

long TextureNum, // Texture # to draw from
long TileNum, // Tile # to draw

480 11. Using 2-D Graphics

long ScreenX, // X-coordinate
long ScreenY, // Y-coordinate
D3DCOLOR Color, // Modulation color/alpha value
float XScale, // x-scale factor
float YScale); // y-scale factor

This is the function to use to draw your tiles. Once a texture is loaded into the
array, you can draw the individual tiles contained within the texture. All tiles are
numbered starting with 0 at the upper-left, increasing from left to right, top to
bottom. For example, a texture with 64 tiles (in an 8 × 8 pattern) will be numbered
from 0 to 63. Tile 0 is the upper-left tile, tile 8 is the next tile down, and tile 1 is the
one to the right of tile 0.

When drawing, you need to specify the screen coordinates in long values (which are
later converted to float values), as well as a scaling factor (to increase or decrease
the size of the tiles from their previously defined size). As mentioned previously in
this chapter, the modulation value is utilized to decrease the color or alpha values
using the ID3DXSprite interface.

BOOL cTiles::Draw(long TextureNum, long TileNum, \
long ScreenX, long ScreenY, \
D3DCOLOR Color, float XScale, float YScale)

{
long SrcX, SrcY;

// Error checking
if(m_Graphics == NULL)

return FALSE;
if(TextureNum >= m_NumTextures || m_Textures == NULL)

return FALSE;

// Calculate the source tile coordinates from texture
SrcX=(TileNum % m_Columns[TextureNum])*m_Widths[TextureNum];
SrcY=(TileNum / m_Columns[TextureNum])*m_Heights[TextureNum];

return m_Textures[TextureNum].Blit(ScreenX, ScreenY, \
SrcX, SrcY, \
m_Widths[TextureNum], m_Heights[TextureNum], \
XScale, YScale);

}

481Using Tiles with DirectX

Using the Tile Class
Here’s a quick example that loads two textures for tiles. The first texture contains
64 tiles, each 32 × 32 pixels in size. The second texture contains 16 tiles, with each
tile being 64 × 64 pixels in size.

// Graphics = pre-initialized cGraphics object
cTiles Tile;

// Create the tile class with room for 2 textures
Tile.Create(Graphics, 2);

// Load both textures using transparent value of black
Tile.Load(0, “Tiles1.bmp”, 32, 32, \

D3DCOLOR_RGBA(0,0,0,255), D3DFMT_A1R5G5B5);
Tile.Load(1, “Tiles2.bmp”, 64, 64, \

D3DCOLOR_RGBA(0,0,0,255), D3DFMT_A8R8G8B8);

// Draw a couple of tiles from the first texture
// with no transparency
Tile.SetTransparent(FALSE);
// Tiles 0 (at 128,128) and 3 (at 0,0)
Tile.Draw(0, 0, 128,128);
Tile.Draw(0, 3, 0,0);

// Draw a couple of tiles from second texture
// with transparency
Tile.SetTransparent(TRUE);
// Tiles 1 (at 28,18) and 16 (at 100,90)
Tile.Draw(1, 1, 28,18);
Tile.Draw(1, 16, 100,90);

// Free the tile class and free textures
Tile.Free();

That’s about it. The tile class is very compact and is the perfect addition to your
2-D graphics engine because the class is able to handle all tile drawing-related
functions for you. All you have to do is give the class the tile graphics you want
to use and you’re ready to go.

482 11. Using 2-D Graphics

A Basic Tile Engine
The time has come. You’re ready to create an actual tile engine (not a tile-drawing
engine). Although almost as old as computer gaming itself, this first method of creat-
ing a tile engine remains the most highly used 2-D graphics technique. In fact, every
game made for the Gameboy Advance hand-held gaming system uses the following
tile engine technique. That game system exclusively uses tile graphics in one form or
another to bring you its portable gaming graphics goodness (did I just write that?).

Now is your chance to brush up on some old techniques that just might help you in
your next project.

Drawing Basic Maps
Drawing the basic tile map is a quick and painless process; you need to loop
through only so many columns and rows, drawing the tiles as you go along. The
total number of tiles you draw is based on the size of the tiles and the display reso-
lution. For example, for a display that’s 384 × 384 pixels in size, using tiles that are
64 × 64 means that you can fit 6 columns of tiles with 6 rows in the display, for a
grand total of 36 tiles.

At this point, refer to Figure 11.1, which shows four tiles, a map, and the final ren-
dering of the map. To represent that map array utilizing the tile numbers used to
draw the map, you can do the following:

char Map[6][6] = { // Map[y][x]
{ 3, 3, 3, 3, 1, 1 },
{ 3, 3, 3, 3, 3, 3 },
{ 2, 3, 3, 2, 3, 3 },
{ 3, 3, 3, 3, 3, 3 },
{ 3, 3, 3, 3, 3, 1 },
{ 4, 4, 1, 1, 1, 1 }

};

In order to draw the preceding map, you scan through each element in the array
and draw the associated tile:

// Tile = pre-initialized and loaded cTiles object
for(short row=0; row<6; row++) {

for(short column=0; column<6; column++) {
// Get the tile number to draw
char TileNum = Map[row][column];

483A Basic Tile Engine

// Draw the tile (64x64 in size) associated with TileNum
// from the first texture loaded.
Tile.Draw(0, TileNum, column*64, row*64);

}
}

Assuming that you have a set of three tiles and the preceding map (and drawing func-
tion), you wind up with a rendered map on the display as shown earlier in Figure 11.1.

Using Multiple Layers
Moving up a step, you can add a lot of power to your tiled map engine with little
effort. Most tile-based games use multiple layers (scenes stacked upon each other
as illustrated in Figure 11.4) to create some cool effects. For example, by first draw-
ing the ground, drawing the characters on the ground, and then drawing a layer of
other overlapping objects, you can simulate a 3-D scene.

In order to use multiple layers, you just declare another map array (a map array
for each layer) and fill it with its own tile information. Starting at the first layer,
draw each tile contained with the layer. After you draw the last tile of the layer,
move on to the next layer and draw its tiles. Continue until you draw all layers.

Consider, for example, an engine that uses four layers. You have a base layer that
represents the ground and objects that the characters can’t walk behind, a layer in

484 11. Using 2-D Graphics

Figure 11.4

To create a simulated 3-D environment, you can
stack layers of maps on top of one another.

which all characters are drawn, a layer for objects that characters can walk behind,
and a layer that can cover everything (such as clouds floating overhead).

At this point, you create five map arrays and fill each array element with the tile
information to draw. Entering the map rendering function, you then step through
each map-layer array and draw it to the screen. Continue until all layers are drawn.
The code for drawing multiple map layers is as follows:

// Tile = pre-initialized and loaded cTiles object

char Map[5][10][10]; // Map data, assuming already loaded

// Loop through each layer
for(short Layer=0;Layer<5;Layer++) {

// Loop through each row and column
for(short row=0; row<10; row++) {

for(short column=0; column<10; column++) {
// Get the tile number to draw
char TileNum = Map[Layer][row][column];

// Draw the tile (32x32 in size) associated with TileNum
// from the first texture loaded.
Tile.Draw(0, TileNum, column*32, row*32);

}
}

}

Adding Objects
Earlier in the chapter, I mentioned drawing characters as map layers; however, that
statement is not entirely accurate because characters can move freely around the
world and don’t conform to the whole map array theory. Instead, characters and
other moving objects only need to be drawn as free-floating tiles; there is no need to
use a map array for them. More exactly, you track all characters and objects according
to their respective coordinates in the world; then you convert those objects’ coordi-
nates into coordinates that are ready to draw to the screen when they appear in the
view.

To keep things simple at this point, just set up a structure to store the object coor-
dinates and a single tile that is drawn (which represents the object):

typedef struct sObject {

485A Basic Tile Engine

long XPos, YPos; // object coordinates
char Tile; // tile to draw

} sObject;

From now on, notice that I’ll consider everything that can freely move as an object,
including the player characters. As you keep track of those characters, be sure to
add them to a list of objects to be drawn. That list of objects can be a simple array
declared as follows:

#define MAX_OBJECTS 1024
sObject Objects[MAX_OBJECTS]; Allow 1024 objects in list

For each frame, track the number of objects to be drawn using a variable:

long NumObjectsToDraw = 0;

For each frame of your game, NumObjectsToDraw is reset to 0, and as objects are added
to the list, the count increases. For example, to add an object, you can use the fol-
lowing function:

void AddObject(long XPos, long YPos, char Tile)
{

if(NumObjectsToDraw < MAX_OBJECTS) {
Objects[NumObjectsToDraw].XPos = XPos;
Objects[NumObjectsToDraw].YPos = XPos;
Objects[NumObjectsToDraw].Tile = Tile;
NumObjectsToDraw++;

}
}

When it comes time to render those objects, you can just scan through the number
of used objects in the list and render the tile. Notice that the map coordinates that
are used to render the map to the display must offset each object:

// Tiles = pre-initialized and loaded cTiles object
// MapXPos, MapYPos = map coordinates
for(i=0;i<NumObjectsToDraw;i++)

Tiles.Draw(0, Objects[i].Tile,
Objects[i].XPos - MapXPos,
Objects[i].YPos - MapYPos);

Smooth Scrolling
When you play with the tile engine a bit, you’ll notice that larger maps need to scroll

486 11. Using 2-D Graphics

around in order for the players to see the entire map. At its current incarnation, the
tile engine produces a jerky movement whenever you try to alter the coordinates at
which the map is drawn. To improve the visual quality of the engine, you need to
smooth out the movement using a technique known as smooth scrolling.

To visualize smooth scrolling, imagine a tile-drawn map as a large bitmap. Each pixel
in the bitmap has its own pair of coordinates, known as the map’s fine coordinates.
Each grouping of pixels that represents a tile is given its own set of map coordinates.
For example, if the tiles are 16 × 16 pixels in size, and the map array is 10 × 10, when
fully rendered, the map image will be 160 × 160 pixels in size (meaning that the map
has a fine coordinate resolution of 160 × 160 pixels). You can see a similar example
of this in Figure 11.5.

If the display is only 100 × 100 pixels, only that number of pixels is drawn from the
map. Of course, those pixels belong to tiles, which must be drawn in the properly
aligned positions on the display. In order to do that, you must now specify the map
coordinates on a pixel level (using the fine map coordinates) and be able to draw
only smaller portions of the tiles.

I don’t want to overcomplicate the matter at hand; using smooth scrolling is as sim-
ple as adding a couple of extra lines of the code. The fact is that when you are
drawing the map tiles, you only need to offset them a little bit to align them to the

fine map coordinates.

487A Basic Tile Engine

Figure 11.5

A 2 × 2 map that uses tiles 16 × 16 pixels in
size has a fine map coordinate resolution of
32 × 32 pixels. Notice that each pixel has its
own pair of coordinates.

To calculate this offset when drawing the tiles, you just take the fine coordinates at
which you want the map drawn (with the fine map coordinates representing the
first pixel to be drawn at the upper-left corner of the display) and calculate a few
variables, as in the following:

// Assuming FineX and FineY are the fine map coordinate to use
// TileWidth and TileHeight are the dimensions of a tile

// Calculate the actual map array coordinates to use
long MapX, MapY; // The map array coordinates
MapX = FineX / TileWidth; // Get map x coordinate
MapY = FineY / TileHeight; // Get map Y coordinate

// Calculate the amount of pixels to offset the tiles
long XOff, YOff; // Pixel offset amounts
XOff = FineX % TileWidth; // x offset
YOff = FineY % TileHeight; // Y offset

Notice that I calculated four variables. You use the first pair of coordinates, MapX
and MapY, when accessing the map array. For example, if you specify fine map coor-
dinates of 8,8 (and the tiles are 16 × 16), the actual map array coordinates are 0,0
(because the pixel at 8 × 8 lies within the upper-left map tile).

The second pair of coordinates, XOff and YOff, offsets the tiles as they are drawn. To
calculate XOff and YOff, you take the modulus (the remainder) of the fine coordi-
nate divided by the tile dimensions. From now on, whenever you want to draw a
map tile (or any tile that uses fine map coordinates), subtract the XOff value from
the X-coordinate of the tile and the YOff value from the Y-coordinate of the tile.

Here’s how the smooth-scrolling offsets work into the rendering loop:

// Tile = pre-initialized and loaded cTiles object
for(short row=0; row<11; row++) {

for(short column=0; column<11; column++) {
// Get the tile number to draw
char TileNum = Map[row][column];

// Draw the tile (32x32 in size) associated with TileNum
// from the first texture loaded.
Tile.Draw(0, TileNum, column*32-XOff, row*32-YOff);

}
}

488 11. Using 2-D Graphics

TEAMFL
Y

Team-Fly®

The Map and the Mouse
Even if you haven’t been playing games for very long, you have probably noticed
that most of the games for computers take full advantage of the mouse. Point-and-
click control is definitely intuitive. Game players just click at a particular place on
the screen, and their personas walk to that location; or they might click an item in
order to pick it up. What if you want to use that point-and-click functionality in
your own game—how do you determine where a player has clicked?

With rectangular maps, you have two options for determining where players click.
The first, and simplest, method is to divide the mouse’s coordinates by the size of
the tiles. This gives you the coordinates within the map array. If you’re using
smooth scrolling, the offsets used to draw the tiles must also be taken into account.

For example, assume that you are using a smooth-scrolling map that uses tiles that
are 32 × 32 pixels in size. The map coordinates (in fine coordinates) are at 48,102,
and the mouse coordinates are at 45,80. First, calculate the offset amounts for the
smooth scrolling:

XOff = 48 % 32; // FineX / TileWidth
YOff = 102 % 32; // FineY / TileHeight

Next, subtract the offset values from the mouse coordinates and add the fine map
coordinates where the map is to be drawn:

// assuming MouseX, MouseY are the mouse coordinates
long MouseFineX, MouseFineY; // fine coordinates where clicked
MouseFineX = MouseX - XOff + 48;
MouseFineY = MouseY - YOff + 102;

You now have the exact fine map coordinates where the user clicked. You can then
divide MouseFineX and MouseFineY by the tile dimensions to get the map array coordi-
nates:

long MouseMapX, MouseMapY; // map coordinates where clicked
MouseMapX = MouseFineX / 32;
MouseMapY = MouseFineY / 32;

Although the preceding bits of code are all you’ll need in most cases, you will find
at times that it will not suffice when working with free-floating objects such as game
characters. Say that the player clicks a character who is walking around the screen.
Because the character doesn’t belong to the map array data, you use a method that
scans tiles as they are drawn and that compares their coordinates to the coordi-
nates of the mouse pointer. This is a simple matter of bounds checking.

489A Basic Tile Engine

Now, assume that a tile 64 × 64 pixels in size is about to be drawn at display coordi-
nates 48,100. If the mouse pointer is located at display coordinates 60,102, it will be
considered to be touching the tile because the tile covers the area from 48,100 to
112,164. You can write a short function that takes the coordinates of a tile (in screen
space), the tile’s dimensions, and the coordinates of the mouse and have the func-
tion return TRUE if the mouse is touching the tile or FALSE if it is not touching the tile.

BOOL IsMouseTouchingTile(
long TileX, long TileY, // tile coordinates
long TileWidth, long TileHeight, // tile dimensions
long MouseX, long MouseY) // mouse coordinates

{
// check if mouse too far left from tile
if(MouseX < TileX) return FALSE;
// check if mouse too far right from tile
if(MouseX >= TileX + TileWidth) return FALSE;
// check if mouse too far above tile
if(MouseY < TileY) return FALSE;
// check if mouse too far below tile
if(MouseY >= TileY + TileHeight) return FALSE;

// mouse must be touching tile
return TRUE; // return success

}

Going back to the example of seeing which tile was clicked, you can call the pre-
ceding defined function to determine whether the mouse is touching the tile:

if(IsMouseTouchingTile(48,100,64,64,60,102) == TRUE)
// Mouse was touching tile!

else
// Mouse not touching tile

Creating a Map Class
Because you’ve gone to all the trouble of learning how to use tiles, multiple layers,
smooth scrolling, and object rendering, let’s wrap it all together into a small class
(and supporting structure).

To keep your game running smoothly, you first limit the number of free-floating
tiles (sprites) that can be drawn for each frame. Defining a macro does a fine job
of informing the map class how many sprites can be drawn each frame:

490 11. Using 2-D Graphics

#define MAX_OBJECTS 1024

Next comes the sprite tile structure that tracks the coordinates and tile number of
the sprite object to draw during the next frame render function call:

typedef struct {
long XPos, YPos;
char Tile;

} sObject;

The map class declaration is next. It contains an array of sObject structures and an
array of map layers. You store the map’s dimensions within two variables, m_Width
and m_Height, that are set when you initialize the map class with a call to Create.

Each map class instance can store a huge number of layers (well over one million).
You store each layer’s tile data within a single array, m_Map. Because the map is fixed
in size once it is created, you can access each layer’s tile data by calculating the cur-
rent offset into the m_Map array and, using a pointer, read and write from that layer.
The class’s SetMapData and Render functions demonstrate accessing the layer data.

As for the graphics tiles to use, the map class is limited to one set of tiles (using
only one texture to store the tiles). You inform the map class which tile class object
to use for drawing the map’s tiles by calling the UseTiles function you see in the
map class declaration.

Speaking of the map class declaration, have a look:

class cMap
{

private:
long m_Width, m_Height; // Width and height of map
long m_NumLayers; // # of layers
char *m_Map; // array for tile information
cTiles *m_Tiles; // cTile class to use for tiles

long m_NumObjectsToDraw; // # objects to draw
sObject m_Objects[MAX_OBJECTS]; // Object list

public:
cMap(); // Constructor
~cMap(); // Destructor

// Function to create and free a map class
BOOL Create(long NumLayers, long Width, long Height);

491A Basic Tile Engine

BOOL Free();

// Function to set a map’s layer data
BOOL SetMapData(long Layer, char *Data);

// Function to clear and add an object to list
void ClearObjectList();
BOOL AddObject(long XPos, long YPos, char Tile);

char *GetPtr(long Layer); // Get pointer to map array
long GetWidth(); // Get width of map
long GetHeight(); // Get height of map

// Assign cTile class object to use for drawing map tiles
BOOL UseTiles(cTiles *Tiles);

// Render map using specified top-left map coordinates, as
// well as # of columns and rows to draw, plus layer used
// to draw objects.
BOOL Render(long XPos, long YPos, \

long NumRows, long NumColumns, \
long ObjectLayer);

};

Most of the functions are commented and pretty much self-explanatory, so go
ahead and take a look at the full cMap class code. The code starts with the construc-
tor and destructor functions, which ensure that the class’s data is reset to a known
state and that all resources are freed when the class object is destroyed:

cMap::cMap()
{

m_Map = NULL;
m_Tiles = NULL;
m_NumObjectsToDraw = 0;
m_Width = m_Height = 0;

}

cMap::~cMap()
{

Free();
}

492 11. Using 2-D Graphics

In order to use the map class, you first must instance the class and call the Create
function. The Create function takes the number of layers to use for the map, as well
as the width and height of the map to use:

BOOL cMap::Create(long NumLayers, long Width, long Height)
{

// Free a prior map
Free();

// Save # layers, width, and height
m_NumLayers = NumLayers;
m_Width = Width;
m_Height = Height;

// Allocate map data memory
if((m_Map = new char[m_NumLayers*m_Width*m_Height]) == NULL)

return FALSE;

// Clear it out
ZeroMemory(m_Map, m_NumLayers*m_Width*m_Height);

// Reset # objects to draw
m_NumObjectsToDraw = 0;

return TRUE;
}

Short and to the point, the Create function allocates an array of char values to hold
the tile information. The array’s size is determined by the width, height, and num-
ber of layers to use; multiply those three values to come up with the final array size.

To ensure that the map layer array is released when you’re done with the map
class, you call on the Free function:

BOOL cMap::Free()
{

// Free map array
delete [] m_Map;
m_Map = NULL;
m_Width = m_Height = 0;
m_NumLayers = 0;

return TRUE;
}

493A Basic Tile Engine

In order to fill the map layer array with useful tile information, you first construct
an array of char values that represents a layer as shown earlier in the section
“Drawing Basic Maps.” Using that array as an argument, call the SetMapData function
along with the layer number in the map to which you want the array of data copied:

BOOL cMap::SetMapData(long Layer, char *Data)
{

// Error checking
if(Layer >= m_NumLayers)

return FALSE;

// Copy over data
memcpy(&m_Map[Layer*m_Width*m_Height],Data,m_Width*m_Height);

return TRUE;
}

For each frame that you want to render the map, you construct a list of sprite
objects that might need to be drawn. By first calling ClearObjectList, you prepare
the map class to begin receiving the sprite information used during the render:

void cMap::ClearObjectList()
{

m_NumObjectsToDraw = 0;
}

To add a sprite to the list to be drawn for each frame, call on AddObject, providing
the screen coordinates where the specified tile is to be drawn:

BOOL cMap::AddObject(long XPos, long YPos, char Tile)
{

if(m_NumObjectsToDraw < MAX_OBJECTS) {
m_Objects[m_NumObjectsToDraw].XPos = XPos;
m_Objects[m_NumObjectsToDraw].YPos = XPos;
m_Objects[m_NumObjectsToDraw].Tile = Tile;
m_NumObjectsToDraw++;

return TRUE;
}

return FALSE;
}

494 11. Using 2-D Graphics

In case you want to directly alter the map’s layer data, you can call on the GetPtr,
GetWidth, and GetHeight functions of the map class to respectively retrieve the pointer
to the layers’ data array, the width of the map, and the height of the map:

char *cMap::GetPtr(long Layer)
{

if(Layer >= m_NumLayers)
return NULL;

return &m_Map[Layer*m_Width*m_Height];
}

long cMap::GetWidth()
{

return m_Width;
}

long cMap::GetHeight()
{

return m_Height;
}

Earlier I said you can use only one set of tiles to draw the map. In order to tell the
map class which tile class object to use, pass the pointer to the class instance to
the map class’s UseTiles function:

BOOL cMap::UseTiles(cTiles *Tiles)
{

if((m_Tiles = Tiles) == NULL)
return FALSE;

return TRUE;
}

At long last, you come to the Render function, which renders the map to the display
using the specified fine map coordinates you provide, as well as the number of rows
and columns of tiles to draw. If you’re using sprites, you must also specify after
which layer to draw those sprites by setting the ObjectLayer argument:

BOOL cMap::Render(long XPos, long YPos,
long NumRows, long NumColumns,
long ObjectLayer)

{

495A Basic Tile Engine

long MapX, MapY;
long XOff, YOff;
long Layer, Row, Column, i;
char TileNum;
char *MapPtr;

// Error checking
if(m_Map == NULL || m_Tiles == NULL)

return FALSE;

// Calculate smooth scrolling variables
MapX = XPos / m_Tiles->GetWidth(0);
MapY = YPos / m_Tiles->GetHeight(0);
XOff = XPos % m_Tiles->GetWidth(0);
YOff = YPos % m_Tiles->GetHeight(0);

// Loop through each layer
for(Layer=0;Layer<m_NumLayers;Layer++) {

MapPtr = &m_Map[Layer*m_Width*m_Height];

// Loop for each row and column
for(Row=0;Row<NumRows;Row++) {

for(Column=0;Column<NumColumns;Column++) {
TileNum = MapPtr[(Column + YPos)*m_Width+Row+XPos];
m_Tiles->Draw(0, TileNum, \

Column * m_Tiles->GetWidth(0) - XOff, \
Row * m_Tiles->GetHeight(0) - YOff);

}
}

// Draw objects if on object layer
if(Layer == ObjectLayer) {

for(i=0;i<m_NumObjectsToDraw;i++)
m_Tiles->Draw(0, m_Objects[i].Tile, \

m_Objects[i].XPos - XOff, \
m_Objects[i].YPos - YOff);

}
}

return TRUE;
}

496 11. Using 2-D Graphics

Each function in cMap is straightforward and to the point and basically a repetition
of the information in the earlier section “A Basic Tile Engine.” I’ll leave it up to
you to check out the sample programs from this chapter to see the cMap class in
action. You will find these on the CD-ROM at the back of this book (look for
BookCode\Chap11\).

Angled Tile Engine
With no changes whatsoever to your basic tile engine, you can begin using angled
tiles to start giving your graphics that extra visual dimension. Now your graphics
can illustrate width, height, and depth. The only changes are the tile graphics.

Going back to my previous tile example, let’s swap out a few tiles and see what you can
come up with. Take a look at Figure 11.6 to see the new set of tiles you’ll be using.

Now, using the same map from previous examples, run through the map-drawing
function again (only this time with the new tiles). As a result, you get something
like the scene shown in Figure 11.7.

The same techniques that are used
for regular tile engines apply to
other angled-tile topics such as
map-mouse clicking, with no
changes except to account for
the new tile sizes.

497Angled Tile Engine

Figure 11.6

A group of angled tiles gives bland, flat maps an extra
dimension. Angled tiles show width, depth, and height.

NOTE
If you want to check out the full source
code for the angled tiles example, go to
the \BookCode\Chap11\Tile directory
on the CD-ROM at the back of this book.

Big Bitmap Engines
The last type of 2-D graphics engine that I’d like to show you is commonly called the
big bitmap engine. Made popular by games such as Baldur’s Gate, the big bitmap
engine takes a new look at using 2-D graphics. The name says it all—big bitmap.
The big bitmap engine uses a huge bitmap as the level, which means that the visual
quality of the map is much better than it would be if you were using small tiles.

For texture memory reasons, the bitmaps used to store the levels are split into mul-
tiple image files. For example, a level might be 1024 × 1024 pixels in size. Because
you want to constrain to the texture limits of Direct3D, you can split that level into
16 textures that are 256 × 256 pixels in size (arranged in a 4 × 4 grid). Basically,
you’re splitting the level into 16 tiles.

Because you’re using tiles to render the level, you have at your disposal some pow-
erful options. For example, you can reuse the tiles in the level, saving on textures.
Take grass, for example; it’s a common image that can be tiled repeatedly, and in
the big picture, the grass will blend in perfectly.

Not only can you reuse tiles, but also you can scale them in order to create much
larger levels. For example, by scaling the tiles up to twice their size, you can effectively

498 11. Using 2-D Graphics

Figure 11.7

Using the angled tiles and a map, you get
fantastic results!

TEAMFL
Y

Team-Fly®

double the size of your
level. How about
tripling or quadrupling
the size of your level?
It’s all possible, and by
using multiple layers of
tiles, you can construct
extremely large (and
beautiful) levels.

Creating Big Tiles
The only problem when dealing with big bitmaps is that you have to split them into
multiple textures. Say that all your levels are 1024 × 1024 pixels in size; that means
you must split the level images into 16 textures, each 256 × 256 pixels in size. Because
Direct3D has no way of doing this, you must turn to another program for help.

After you save your big bitmap tiles to the various files, it’s time to load them up.
You can use the ever-so-useful cTiles class object developed earlier in this chapter
in the section “Building
a Tile-Handler Class”
to load those bitmap
images from the disk and
draw them to the display.
That’s right—no need for
more special program-
ming; it’s already done!

Because you’re at the
point now where you can
load your big bitmap tiles,
and you can use the ear-
lier developed cMap class to
store your map information, you can move on to drawing some big bitmap levels.

A Big Example
Now that you have a series of big tiles and a set of smaller ones, it’s your time to shine.
In fact, the big bitmap engine I described and developed for this book doesn’t differ a

499Big Bitmap Engines

NOTE
A demo version of Paint Shop Pro (PSP), an awe-
some digital image editor program, is located in
the \Utils\Paint Shop Pro 7\ directory of this book’s
CD-ROM. Using PSP, you can split bitmaps into
smaller, usable images.

You might want to divide your favorite large image
and use it as an example in the next section, or you
can open the example provided on the CD-ROM
(look for \BookCode\Chap11\Bitmap\).

NOTE
Each map layer in your engine can have its own set of
tiles that can be scaled to any size. For example, the
bottommost layer can use huge 256 × 256 tiles, scaled
to twice their size.The second layer up can then use
64 × 64 sized tiles with no scaling. Each layer has its
own map array with which to work, so the hardest part
is making sure that they all line up with each other.

bit from the previous tile engine I showed you earlier in this chapter (see the section
“A Basic Tile Engine”). For that reason, there’s really no need to reinvent the wheel
and show you the same code again. Instead, check out the big bitmap demo program
on the CD-ROM for an example. The only difference you’ll notice is that certain lay-
ers use big tiles.

Wrapping Up 2-D Graphics
At this point, you’ve learned how to utilize Direct3D’s 2-D drawing capabilities.
This includes using memory-conserving graphics tiles to construct huge levels.
With very little extra work, you can turn the basic engines found in this chapter
into full-fledged game engines, ready to be used in your next project.

If you’re feeling adventurous, why don’t you try to spruce up the map engines a
bit to include features such as tile animation? Tile animation is easy; by altering
the tile number values in the map array, you can dynamically change which tiles
are drawn at specific locations in the map. By creating a sequence of animated tiles,
you can then continuously alter the tile values in the map array to use those
sequences of tile numbers.

Beginning with Chapter 12, “Creating 3-D Graphics Engines,” and in several
subsequent chapters, I concentrate mainly on using 3-D graphics engines.

500 11. Using 2-D Graphics

Programs on the CD-ROM

Three programs discussed in this chapter that demonstrate the 2-D
engine are located on the CD-ROM at the back of this book.You can
find the following programs in the \BookCode\Chap11\ directory:

◆ Tile.An example of the basic tile engine that demonstrates
using tiles, maps, and smooth-scrolling techniques.
Location: \BookCode\Chap11\Tile\.

◆ Angled.An example much like Tile, except using angled tiles.
Location: \BookCode\Chap11\Angled\.

◆ Bitmap. Demonstrates the use of a big bitmap engine.
Location: \BookCode\Chap11\Bitmap\.

CHAPTER 12

Creating
3-D

Graphics
Engines

In Chapter 6, “Drawing with DirectX Graphics,” you learn how to render 3-D graph-
ics, but only when working with small meshes. What you need now is the ability to

render large maps and levels for your gaming denizens to navigate. You’ve already
seen how to work with 2-D worlds—now is the time to move up to the world of 3-D!

In this chapter, you learn how to do the following:

■ Use meshes as levels
■ Use a viewing frustum
■ Render levels with nodes and trees
■ Integrate 3-D objects
■ Use collision detection
■ Use sky boxes

Meshes as Levels
You might think I’m crazy, but nothing is as simple as using a mesh for a level.
In this way, you can easily use the Graphics Core at the basic level. The flip side to
using single meshes, however, is that you’re rendering the entire level at once,
meaning that even those sections that are not seen are passed through the render-
ing pipeline to be clipped out. In English, this means that you’re wasting time.

Don’t let that daunt you, though, because there are some great ways to use a single
mesh for rendering levels. Say that your game world consists solely of dungeons.
Each dungeon consists of various rooms, all linked together by corridors. See what
I’m getting at? Each room and corridor is a single mesh—all you have to do is load
and free the meshes that represent the dungeon rooms as the game-play progresses.

To see what I’m talking about, load up the MeshLvl example program located
on this book’s CD-ROM (look for BookCode\Chap12\MeshLvl\). MeshLvl demon-
strates a way to load a few meshes and then draw them together to form a larger
level. In Figure 12.1, you see a screenshot from the MeshLvl demo.

Here’s how the MeshLvl demo works: The main function (stripped down here)
loads two meshes: a corridor and a room. Each room in the game uses a cObject
object from the Graphics Core, which in turn is associated with the meshes. For

502 12. Creating 3-D Graphics Engines

each frame of animation, the rooms are rendered according to the viewer’s posi-
tion. In the demo, you can use the arrow keys to move within the corridors and
rooms, using the mouse to rotate the view.

Loading Levels
As I mentioned in the previous section, levels are constructed using various meshes
that you must load. For our purposes, those meshes are loaded into a series of
Graphics Core mesh (cMesh) and 3-D object (cObject) class instances. To load those
meshes used by the MeshLvl demo, as well as assigning the meshes to the 3-D objects,
the MeshLvl uses the following code:

// Declarations in class
cMesh m_LevelMeshes[2];
cObject m_LevelObjects[8];

// ... later on in init code
// Load the room meshes
m_RoomMeshes[0].Load(&m_Graphics, \

“..\\LevelData\\Corridor.x”, “..\\LevelData\\”);
m_RoomMeshes[1].Load(&m_Graphics, “..\\LevelData\\Room.x”, \

“..\\LevelData\\”);

// Set up the room objects
m_RoomObjects[0].Create(&m_Graphics, &m_RoomMeshes[1]);

503Meshes as Levels

Figure 12.1

The MeshLvl demo in action. Notice that
only two meshes are used to draw the
various rooms.

m_RoomObjects[1].Create(&m_Graphics, &m_RoomMeshes[0]);
m_RoomObjects[2].Create(&m_Graphics, &m_RoomMeshes[1]);
m_RoomObjects[3].Create(&m_Graphics, &m_RoomMeshes[0]);
m_RoomObjects[4].Create(&m_Graphics, &m_RoomMeshes[0]);
m_RoomObjects[5].Create(&m_Graphics, &m_RoomMeshes[1]);
m_RoomObjects[6].Create(&m_Graphics, &m_RoomMeshes[0]);
m_RoomObjects[7].Create(&m_Graphics, &m_RoomMeshes[1]);

The preceding code shows two meshes being loaded: Corridor.x and Room.x. Then
eight objects are created, each representing a room. At this point, the rooms need
to be oriented:

m_RoomObjects[0].Move(-2000.0f, 0.0f, 2000.0f);
m_RoomObjects[1].Move(0.0f, 0.0f, 2000.0f);
m_RoomObjects[2].Move(2000.0f, 0.0f, 2000.0f);
m_RoomObjects[3].Move(-2000.0f, 0.0f, 0.0f);
m_RoomObjects[4].Move(2000.0f, 0.0f, 0.0f);
m_RoomObjects[5].Move(-2000.0f, 0.0f, -2000.0f);
m_RoomObjects[6].Move(0.0f, 0.0f, -2000.0f);
m_RoomObjects[7].Move(2000.0f, 0.0f, -2000.0f);

m_RoomObjects[1].Rotate(0.0f, 1.57f, 0.0f);
m_RoomObjects[2].Rotate(0.0f, 1.57f, 0.0f);
m_RoomObjects[5].Rotate(0.0f, -1.57f, 0.0f);
m_RoomObjects[6].Rotate(0.0f, -1.57f, 0.0f);
m_RoomObjects[7].Rotate(0.0f, 3.14f, 0.0f);

That’s it! Now, you are ready to draw the rooms.

Drawing the Rooms
Once the meshes are loaded, it now comes time to render them to the display.
With each frame, the MeshLvl demo determines where the user is located within
the series of rooms that construct the level. Once the user’s location is determined,
the demo then orients and renders each mesh that represents a room. There are a
total of four rooms and four corridors that connect the rooms. With two meshes in
use, that means each mesh is drawn four times.

The code that renders the view is therefore very simple. By looping through an
array that stores the orientation of each of the rooms, the demo can render each
mesh using a short series of commands. In the following code, you see the short
loop that is in place to orient and draw each room. Also notice that I added some

504 12. Creating 3-D Graphics Engines

code that reads the user’s input and appropriately moves the viewpoint (using
a cCamera object). Using the arrow keys moves the viewpoint, whereas moving the
mouse rotates the view.

Take a look at the function that handles the rendering and input:

BOOL cApp::Frame()
{

static DWORD Timer = timeGetTime();
unsigned long Elapsed;
float XMove, ZMove;
short i;

// Calculate elapsed time (plus speed boost)
Elapsed = (timeGetTime() - Timer) * 2;
Timer = timeGetTime();

// Get input
m_Keyboard.Read();
m_Mouse.Read();

// Process input and update everything.
// ESC quits program
if(m_Keyboard.GetKeyState(KEY_ESC) == TRUE)

return FALSE;

// Process movement
XMove = ZMove = 0.0f;

// Process keyboard input to move view
if(m_Keyboard.GetKeyState(KEY_UP) == TRUE) {

XMove = (float)sin(m_Camera.GetYRotation()) * Elapsed;
ZMove = (float)cos(m_Camera.GetYRotation()) * Elapsed;

}
if(m_Keyboard.GetKeyState(KEY_DOWN) == TRUE) {

XMove = -(float)sin(m_Camera.GetYRotation()) * Elapsed;
ZMove = -(float)cos(m_Camera.GetYRotation()) * Elapsed;

}
if(m_Keyboard.GetKeyState(KEY_LEFT) == TRUE) {

XMove = (float)sin(m_Camera.GetYRotation() - 1.57f) * Elapsed;
ZMove = (float)cos(m_Camera.GetYRotation() - 1.57f) * Elapsed;

505Meshes as Levels

}
if(m_Keyboard.GetKeyState(KEY_RIGHT) == TRUE) {

XMove = (float)sin(m_Camera.GetYRotation() + 1.57f) * Elapsed;
ZMove = (float)cos(m_Camera.GetYRotation() + 1.57f) * Elapsed;

}

// Update view coordinates
m_XPos += XMove;
m_ZPos += ZMove;

// Position camera and rotate based on mouse movement
m_Camera.Move(m_XPos + XMove, 400.0f, m_ZPos + ZMove);
m_Camera.RotateRel((float)m_Mouse.GetYDelta() / 200.0f,

(float)m_Mouse.GetXDelta() / 200.0f,
0.0f);

// Set camera
m_Graphics.SetCamera(&m_Camera);

// Render everything
m_Graphics.Clear(D3DCOLOR_RGBA(0,64,128,255));
if(m_Graphics.BeginScene() == TRUE) {

// Render each room
for(i=0;i<8;i++)

m_RoomObjects[i].Render();
m_Graphics.EndScene();

}
m_Graphics.Display();

return TRUE;
}

Improving on Basic Techniques
Although drawing 3-D worlds is not difficult, one problem creeps in. Although you
can draw as many meshes as you like (characters, objects, and levels), you begin to
notice that your 3-D engine slows down each time you draw a new object.

Each polygon that you add to the pipeline slows down the whole works as the data
is processed. That holds true for all the polygons in each mesh, including the
meshes that aren’t visible (that are behind your view).

506 12. Creating 3-D Graphics Engines

Ideally, you want to discard the meshes that are out of view so that Direct3D is free
to deal with only those meshes (and polygons) that are in the view—and thereby
speed things up a bit. But how can you possibly know when something is in the
view before processing it? That’s where the viewing frustum comes into play.

Introducing the
Viewing Frustum
The viewing frustum is a collection of six planes that extend outward from the view-
point that determines which polygons are, and are not, seen by the viewer. The
viewing frustum is very helpful in optimizing graphics processing, so I’d like to
acquaint you with the intricate details regarding the viewing frustum.

First, you can think of a frustum as a pyramid that extends away from you (as illus-
trated in Figure 12.2). This pyramid represents your field of view (FOV). Everything
you see is within this pyramid, and everything outside the pyramid is out of your view.

If you’re wondering how a viewing frustum can help you in your 3-D engine, con-
sider this: Everything in your 3-D graphics engine consists of 3-D points (called ver-
tices). The viewing frustum has six sides (front, back, left, right, top, and bottom).
Using some mathematical calculations, you can determine which vertices are within
the frustum and which vertices are outside. The vertices inside the frustum are ren-

507Introducing the Viewing Frustum

Near
Clip Plane

Far Clip Plane

The Viewing
Frustum

Viewer

Figure 12.2

The viewing frustum
typically takes the shape
of a pyramid. Everything
inside the frustum is
considered within the
viewer’s field of view.

dered, and the vertices outside the frustum are not rendered. The same is true when
rendering polygons—only those with vertices within the frustum are rendered.

Planes and Clipping
The six sides of the viewing frustum are called the clipping planes. To make things
easy, think of a plane as an infinitely long piece of paper (with a front and back
side). A plane is defined by four numbers, typically referred to as A, B, C, and D.
Those four numbers define the plane’s orientation in 3-D.

In Chapter 6, I mention normals—those
numbers that define the direction in
which an object points. Although typically
used for lighting, a normal can be used to
define the direction of anything, and in
this case, it’s the direction a plane’s face is
pointing. You define a plane by pointing it
in a specific direction and moving it into
position away from the origin. (A plane is
actually defined just like a normal, but with the addition of the distance of the
plane away from the origin.) Take a look at Figure 12.3, which demonstrates a
plane oriented in 3-D space.

508 12. Creating 3-D Graphics Engines

NOTE
Direct3D, or rather D3DX, uses a
special object named D3DXPLANE to
contain plane data. D3DXPLANE con-
tains four variables: a, b, c, and d—
all of which are float data types.

Origin

Y-
A

xi
s

X-Axis

Z-A
xis

Plan
e

Dist
an

ce

Plan
e

Nor
m

al

Plane
Figure 12.3

A plane’s definition includes the direction its
face is pointing, as well as the distance from
the origin. Here, a plane has been oriented
after pointing it away from the origin.

TEAMFL
Y

Team-Fly®

Rather than specifying the plane’s normal values as X,Y,Z, you use the variables A,
B, and C. An additional value is required to determine the plane’s distance from
the origin. This distance is represented as D. In order to define a plane, you set the
A, B, and C values to the normal values and set D to the distance of the plane from
the origin. Once the normal and distance values are set up, you can use a plane to
check whether a specific point is located in front of or behind the plane.

To calculate the six planes of the viewing frustum, you combine the current view-
ing transformation matrix and the projection matrix. Then you deal directly with
the combined matrix to calculate the A, B, C, and D values for each plane.

Here’s how to combine the two required matrices and calculate the plane’s values
from those matrices (placing the plane values into the appropriate D3DXPLANE objects):

// Graphics = pre-initialized cGraphics object
D3DXPLANE Planes[6]; // six planes to the viewing frustum
D3DXMATRIX Matrix, matView, matProj; // Matrices to work with

// Get the view and projections matrices, then combine them
Graphics.GetDeviceCOM()->GetTransform(D3DTS_PROJECTION, \

&matProj);
Graphics.GetDeviceCOM()->GetTransform(D3DTS_VIEW, &matView);
D3DXMatrixMultiply(&Matrix, &matView, &matProj);

// Calculate the planes
Planes[0].a = Matrix._14 + Matrix._13; // Near plane
Planes[0].b = Matrix._24 + Matrix._23;
Planes[0].c = Matrix._34 + Matrix._33;
Planes[0].d = Matrix._44 + Matrix._43;
D3DXPlaneNormalize(&Planes[0], &Planes[0]);

Planes[1].a = Matrix._14 - Matrix._13; // Far plane
Planes[1].b = Matrix._24 - Matrix._23;
Planes[1].c = Matrix._34 - Matrix._33;
Planes[1].d = Matrix._44 - Matrix._43;
D3DXPlaneNormalize(&Planes[1], &Planes[1]);

Planes[2].a = Matrix._14 + Matrix._11; // Left plane
Planes[2].b = Matrix._24 + Matrix._21;
Planes[2].c = Matrix._34 + Matrix._31;
Planes[2].d = Matrix._44 + Matrix._41;
D3DXPlaneNormalize(&Planes[2], &Planes[2]);

509Introducing the Viewing Frustum

Planes[3].a = Matrix._14 - Matrix._11; // Right plane
Planes[3].b = Matrix._24 - Matrix._21;
Planes[3].c = Matrix._34 - Matrix._31;
Planes[3].d = Matrix._44 - Matrix._41;
D3DXPlaneNormalize(&Planes[3], &Planes[3]);

Planes[4].a = Matrix._14 - Matrix._12; // Top plane
Planes[4].b = Matrix._24 - Matrix._22;
Planes[4].c = Matrix._34 - Matrix._32;
Planes[4].d = Matrix._44 - Matrix._42;
D3DXPlaneNormalize(&Planes[4], &Planes[4]);

Planes[5].a = Matrix._14 + Matrix._12; // Bottom plane
Planes[5].b = Matrix._24 + Matrix._22;
Planes[5].c = Matrix._34 + Matrix._32;
Planes[5].d = Matrix._44 + Matrix._42;
D3DXPlaneNormalize(&Planes[5], &Planes[5]);

Checking for Visibility with the Plane
At this point, you have a plane (or a set of planes) that points in a specific direc-
tion. To check whether a point lies in front of or behind the plane, you compute
the dot product. The dot product is a special vector (coordinate) typically used to cal-
culate the angle between two vectors. When checking points against planes, the dot
product tells you the distance from a point to the plane. If the value is positive, the
point is in front of the plane. If the value is negative, the point is behind the plane.

To calculate the dot product, you use the D3DXPlaneDotCoord function:

FLOAT D3DXPlaneDotCoord(
CONST D3DXPLANE* pP, // D3DXPLANE to check
CONST D3DXVECTOR3* pV); // Point to check

With the D3DXPlaneDotCoord function you supply the plane structure (that contains
the plane’s values) as well as the point (a vector contained inside a D3DXVECTOR3
object). You are checking to determine which side that point is on the plane, either
the front or the back. Upon return of D3DXPlaneDotCoord, you will receive the distance
of the vector from the plane. This return value can be 0, a negative value, or a posi-
tive value.

If the return value is 0, the point you’re checking lies on the plane; if it’s negative,
the point is behind the plane; if it’s positive, the point lies in front of the plane
you’re checking, as demonstrated here:

510 12. Creating 3-D Graphics Engines

NOTE
Notice that each plane
has to be normalized to
ensure that the A, B, and C
values are <= 1.0f and that
D contains the distance of
the plane from the origin.

// Plane = pre-configured D3DXPLANE object
// XPos, YPos, ZPos = point to check
float Dist = D3DXPlaneDotCoord(&Plane, \

&D3DXVECTOR3(XPos, YPos, ZPos));
// If dist > 0 then point is in front of plane
// If dist < 0 then point is in back of plane
// If dist = 0 then point is on plane

Checking the Entire Frustum
Although checking a single point is useful, you can expand on it a bit by checking
if entire objects are contained within the frustum. These objects to test are cubes,
rectangles, and spheres. For cubes and rectangles, you check all the corners, mak-
ing sure that at least one or all are contained within each frustum plane. As for
spheres, as long as the distance from each plane is equal to or more than the
sphere’s radius, the sphere is visible.

To check any number of points, you check each one individually, making sure that
at least one falls in front of all the planes. In the next section, you learn how to cre-
ate a class that constructs the viewing frustum as well as checks the visibility of
objects with the frustum.

The cFrustum Class
Up to this point you’ve seen the math behind using the viewing frustum, and
although this math is relatively easy to handle, you’ll want to use the frustum with-
out constantly retyping the same code. Because the math is the same every time
you use the frustum, it makes sense to create a class that handles the math for you,
including calculating the frustum using the frustum to check whether an object is
visible. The class I’m speaking of is cFrustum:

class cFrustum
{

private:
D3DXPLANE m_Planes[6]; // The frustum planes

public:
// Construct the six planes from current view and
// projection. Can override the default depth value.
BOOL Construct(cGraphics *Graphics, float ZDistance = 0.0f);

511Introducing the Viewing Frustum

// The following functions check a single point, cube,
// rectangle, and sphere if contained in the frustum.
// A return value of TRUE means visible, FALSE not visible.
BOOL CheckPoint(float XPos, float YPos, float ZPos);
BOOL CheckCube(float XCenter, float YCenter, \

float ZCenter, float Size);
BOOL CheckRectangle(float XCenter, float YCenter, \

float ZCenter, float XSize,
float YSize, float ZSize);

BOOL CheckSphere(float XCenter, float YCenter, \
float ZCenter, float Radius);

};

cFrustum::Construct
You use this function, which must be called every time the viewing or projection
matrix is changed, to construct the six testing planes:

BOOL cFrustum::Construct(cGraphics *Graphics, float ZDistance)
{

D3DXMATRIX Matrix, matView, matProj;
float ZMin, Q;

// Error checking
if(Graphics == NULL || Graphics->GetDeviceCOM() == NULL)

return FALSE;

// Calculate FOV data
Graphics->GetDeviceCOM()->GetTransform(D3DTS_PROJECTION, \

&matProj);
if(ZDistance != 0.0f) {

// Calculate new projection matrix based on
// distance provided.
ZMin = -matProj._43 / matProj._33;
Q = ZDistance / (ZDistance - ZMin);
matProj._33 = Q;
matProj._43 = -Q * ZMin;

}
Graphics->GetDeviceCOM()->GetTransform(D3DTS_VIEW, &matView);
D3DXMatrixMultiply(&Matrix, &matView, &matProj);

512 12. Creating 3-D Graphics Engines

// Calculate the planes
m_Planes[0].a = Matrix._14 + Matrix._13; // Near plane
m_Planes[0].b = Matrix._24 + Matrix._23;
m_Planes[0].c = Matrix._34 + Matrix._33;
m_Planes[0].d = Matrix._44 + Matrix._43;
D3DXPlaneNormalize(&m_Planes[0], &m_Planes[0]);

m_Planes[1].a = Matrix._14 - Matrix._13; // Far plane
m_Planes[1].b = Matrix._24 - Matrix._23;
m_Planes[1].c = Matrix._34 - Matrix._33;
m_Planes[1].d = Matrix._44 - Matrix._43;
D3DXPlaneNormalize(&m_Planes[1], &m_Planes[1]);

m_Planes[2].a = Matrix._14 + Matrix._11; // Left plane
m_Planes[2].b = Matrix._24 + Matrix._21;
m_Planes[2].c = Matrix._34 + Matrix._31;
m_Planes[2].d = Matrix._44 + Matrix._41;
D3DXPlaneNormalize(&m_Planes[2], &m_Planes[2]);

m_Planes[3].a = Matrix._14 - Matrix._11; // Right plane
m_Planes[3].b = Matrix._24 - Matrix._21;
m_Planes[3].c = Matrix._34 - Matrix._31;
m_Planes[3].d = Matrix._44 - Matrix._41;
D3DXPlaneNormalize(&m_Planes[3], &m_Planes[3]);

m_Planes[4].a = Matrix._14 - Matrix._12; // Top plane
m_Planes[4].b = Matrix._24 - Matrix._22;
m_Planes[4].c = Matrix._34 - Matrix._32;
m_Planes[4].d = Matrix._44 - Matrix._42;
D3DXPlaneNormalize(&m_Planes[4], &m_Planes[4]);

m_Planes[5].a = Matrix._14 + Matrix._12; // Bottom plane
m_Planes[5].b = Matrix._24 + Matrix._22;
m_Planes[5].c = Matrix._34 + Matrix._32;
m_Planes[5].d = Matrix._44 + Matrix._42;
D3DXPlaneNormalize(&m_Planes[5], &m_Planes[5]);

return TRUE;
}

513Introducing the Viewing Frustum

You saw most of the preceding code earlier in this chapter in the section “Introducing
the Viewing Frustum,” but the one thing added is the ability to override the distance
to the far clipping plane when computing the frustum. If you want only the closer
objects to be seen, you can specify a new distance value to the far clipping plane. To
calculate the new far plane, you must recalculate the matrix values for the minimum
and maximum planes, as shown in the preceding code.

cFrustum::CheckPoint, CheckCube,
CheckRectangle, and CheckSphere
You use these four functions to find out whether anything is visible within the view-
ing frustum. These functions are fairly self-explanatory, as you can see here:

BOOL cFrustum::CheckPoint(float XPos, float YPos, float ZPos)
{

// Make sure point is in frustum
for(short i=0;i<6;i++) {

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XPos, YPos, ZPos)) < 0.0f)

return FALSE;
}
return TRUE;

}

In the preceding CheckPoint function, the point in question is checked to make sure
it is in front of all six of the clipping planes. Remember that the point is in front of
a plane if the dot product is positive. If the dot product is negative for any plane,
the function reports FALSE, meaning that the point is behind the plane, and thus
out of view.

BOOL cFrustum::CheckCube(float XCenter, float YCenter, \
float ZCenter, float Size)

{
// Make sure at least one point is completely in frustum
for(short i=0;i<6;i++) {

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XCenter-Size, YCenter-Size, \

ZCenter-Size)) >= 0.0f)
continue;

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XCenter+Size, YCenter-Size, \

ZCenter-Size)) >= 0.0f)

514 12. Creating 3-D Graphics Engines

continue;
if(D3DXPlaneDotCoord(&m_Planes[i], \

&D3DXVECTOR3(XCenter-Size, YCenter+Size, \
ZCenter-Size)) >= 0.0f)

continue;
if(D3DXPlaneDotCoord(&m_Planes[i], \

&D3DXVECTOR3(XCenter+Size, YCenter+Size, \
ZCenter-Size)) >= 0.0f)

continue;
if(D3DXPlaneDotCoord(&m_Planes[i], \

&D3DXVECTOR3(XCenter-Size, YCenter-Size, \
ZCenter+Size)) >= 0.0f)

continue;
if(D3DXPlaneDotCoord(&m_Planes[i], \

&D3DXVECTOR3(XCenter+Size, YCenter-Size, \
ZCenter+Size)) >= 0.0f)

continue;
if(D3DXPlaneDotCoord(&m_Planes[i], \

&D3DXVECTOR3(XCenter-Size, YCenter+Size, \
ZCenter+Size)) >= 0.0f)

continue;
if(D3DXPlaneDotCoord(&m_Planes[i], \

&D3DXVECTOR3(XCenter+Size, YCenter+Size, \
ZCenter+Size)) >= 0.0f)

continue;

return FALSE;
}

return TRUE;
}

In the same way that the CheckPoint function checks a single point’s position relative
to all six frustum planes, the CheckCube function checks the eight points of a cube.
Because a cube is symmetrical, you just specify the center coordinates and the
width from the center to one edge (much as you specify a cube’s radius).

BOOL cFrustum::CheckRectangle(float XCenter, float YCenter, \
float ZCenter, float XSize, \
float YSize, float ZSize)

{

515Introducing the Viewing Frustum

// Make sure at least one point is in frustum
for(short i=0;i<6;i++) {

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XCenter-XSize, YCenter-YSize, \

ZCenter-ZSize)) >= 0.0f)
continue;

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XCenter+XSize, YCenter-YSize, \

ZCenter-ZSize)) >= 0.0f)
continue;

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XCenter-XSize, YCenter+YSize, \

ZCenter-ZSize)) >= 0.0f)
continue;

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XCenter+XSize, YCenter+YSize, \

ZCenter-ZSize)) >= 0.0f)
continue;

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XCenter-XSize, YCenter-YSize, \

ZCenter+ZSize)) >= 0.0f)
continue;

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XCenter+XSize, YCenter-YSize, \

ZCenter+ZSize)) >= 0.0f)
continue;

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XCenter-XSize, YCenter+YSize, \

ZCenter+ZSize)) >= 0.0f)
continue;

if(D3DXPlaneDotCoord(&m_Planes[i], \
&D3DXVECTOR3(XCenter+XSize, YCenter+YSize, \

ZCenter+ZSize)) >= 0.0f)
continue;

return FALSE;
}

return TRUE;
}

516 12. Creating 3-D Graphics Engines

The CheckRectangle function is identical to the CheckCube function, except that you can
specify the width, height, and depth of the rectangle independently. Remember that
the sizes depict half the actual size of the rectangle in the width, height, and depth.
For example, a rectangle 30 x 20 x 10 is specified as 15 x 10 x 5 to the CheckRectangle
function.

Moving on to the next, and last, object to determine visibility is the sphere. The
CheckSphere function is somewhat different from the others—it only takes the posi-
tion and radius of the sphere:

BOOL cFrustum::CheckSphere(float XCenter, float YCenter, \
float ZCenter, float Radius)

{
short i;

// Make sure radius is in frustum
for(i=0;i<6;i++) {
if(D3DXPlaneDotCoord(&m_Planes[i], &D3DXVECTOR3(XCenter, YCenter, ZCenter)) < -Radius)

return FALSE;
}
return TRUE;

}

The preceding CheckSphere function is probably one of the easiest functions to deal
with when checking viewing frustums. If a sphere is in front of (or touching) a
viewing plane, the distance is more than the negative radius. If the distance is less
than the negative sphere radius, the sphere is out of view.

As you can see, the cFrustum class has many uses, including developing an advanced
3-D engine that you can use to draw levels, which brings us to the next topic.

Developing an
Advanced 3-D Engine
Rendering levels as single meshes is fairly easy, albeit a little inefficient at times.
What about those times when a level needs a little more detail—buildings, trees,
caverns, and other gaming graphics necessities? Also, how about making levels a
little easier to design? Wouldn’t it be cool to draw a level in a 3-D model editor
such as 3D Studio Max or MilkShape 3-D and then drop it into your game?

517Developing an Advanced 3-D Engine

The problems with large, detailed levels arise because of the number of polygons
you must deal with. Drawing all those polygons each frame is inefficient. To speed
things up a bit, you might render only the polygons that are in the view, and to
make the process even faster, avoid scanning through each polygon in the scene to
determine which polygons are visible.

How can you possibly know which polygons are in the view without scanning through
all of them every frame? The solution is to divide a 3-D model (that represents the
level) into small chunks (called nodes) that contain fewer polygons. Then you arrange
the nodes in a special structure (a tree) that you can quickly scan to determine which
nodes are visible. You then render the visible nodes.

You find out which nodes are visible by using the viewing frustum. Now, instead of
scanning through thousands of polygons, you can scan a small set of nodes to
decide what to draw. See how easy this improved drawing process is becoming?

Now I know you’re getting anxious to know how you can perform such a stunning
feat. So let me introduce you to the NodeTree engine. Created specially for this
book, the NodeTree engine is capable of taking any mesh and splitting it up into
nodes that are used to quickly render meshes (such as those meshes used for your
game’s levels).

Introducing the NodeTree Engine
The NodeTree engine is very versatile because it can operate in two different
modes (in regard to node splitting): the quadtree mode and the octree mode. The
quadtree mode splits the world (and subsequent nodes) into four nodes at a time.
This mode is best suited for level
meshes in which the Y-axis doesn’t
vary much (the viewpoint height
doesn’t change much). The octree
mode splits the world (and subse-
quent nodes) into eight nodes at a
time. Use this mode for large 3-D
meshes in which the viewpoint can
move anywhere in the world. To
understand the quadtree/octree
splitting process, take a look at
Figure 12.4.

518 12. Creating 3-D Graphics Engines

NOTE
Deciding which splitting mode to use is
up to you. Consider your meshes—do
you have a castle to comb through,
caverns to delve, or landscape to wan-
der through? If the mesh doesn’t vary
much in height (for example, the land-
scape), a quadtree mode is best. On the
other hand, if each axis in the mesh is
really spread out (for example, a castle
with many levels), use the octree mode.

TEAMFL
Y

Team-Fly®

The world (which can be represented by a cube that encases every polygon used
to define the world) can be split continuously into smaller nodes of equal size.
A quadtree splits the nodes in 2-D space (using the X- and Z-axes), and an octree
splits nodes in 3-D space (using all axes).

I’ll get back to splitting in a moment, but before going on, I want to clear up a few
points. A node represents a group of polygons, while at the same time representing
an area of 3-D space. Each node can belong to another node, in a parent-child type
of relationship. This means that a node can contain other nodes with each subse-
quent node being a fraction smaller than the parent node. In general, the 3-D world
is considered the root node (the topmost node to which all other nodes belong).

Here’s the trick to the nodes and
tree: By determining which polygons
are contained within a node’s 3-D
space, you can group them; then
starting at the root node, you can
traverse each node in the tree
quickly.

Creating Nodes
and Trees
To begin creating the nodes and
building the tree structure, you
examine every polygon in the mesh. Don’t worry; you do this only once, so the
overall affect on speed isn’t a factor. Your goal is to decide how to arrange the

519Developing an Advanced 3-D Engine

Quadtree Octree

Nodes

Nodes

Nodes

Nodes

Figure 12.4

A quadtree mode splits the
world (and subsequent
nodes) four nodes at a
time, and an octree mode
splits the world (and
subsequent nodes) eight
nodes at a time.

NOTE
To better understand nodes, think of
a Rubik’s Cube in this way:The whole
cube is the root node, and each colored
piece of the cube is a child node. Each
child node is assigned a few colors, or
polygons.These polygons (colors) belong
to nodes (pieces), which in turn belong
to higher-level nodes (the whole cube).

nodes in the tree.

Each polygon in the mesh is enclosed within a box (called a bounding box, as illus-
trated in Figure 12.5). This box represents the extent of the polygon in any direc-
tion. As long as the polygon’s bounding box is enclosed within a node’s 3-D space
(either completely or partially), then that polygon belongs to the node. A polygon
can belong to multiple nodes because the extents of the polygon can pass through
many nodes.

As you’re going along grouping polygons to nodes, notice whether the space
between the polygons are very large or whether you have too many polygons in a
large space. If so, you need to
split the nodes into more
nodes and then scan the poly-
gon list again, taking the new
nodes into account. Continue
this process until all the poly-
gons are in groups that are suf-

520 12. Creating 3-D Graphics Engines

Y-
A

xi
s

X-Axis

Z-A
xis

Figure 12.5

Polygons have an imaginary (bounding) box
that surrounds them.This bounding box is useful
for quickly determining a polygon’s location in
3-D space.

TIP
To optimize the tree structure, discard all
nodes that do not contain polygons. Discarding
empty nodes saves memory and enables you
to quickly traverse the tree. And you know
that saving memory and time is the key.

ficiently small and until each node containing polygons is small enough.

In Figure 12.6, which shows a few polygons, the world (root node) is surrounded
by a square. It’s the square that is split up into smaller nodes that, in turn, are split
up into further nodes. Each node is considered to be used (the node contains a
polygon or polygons) or unused (the node contains no polygons).

Because the polygons in Figure 12.6 are far apart, you can split the root node into
four smaller nodes (making it a quadtree mode). Then check each node and con-
tinue to split the larger ones. You can skip the empty nodes to speed up the
process. In the end, you’ll have a perfect tree structure ready for scanning.

Scanning and Drawing the Tree
Once you build the tree structure, you are ready to render it. Starting at the root
node, you need to perform a viewing frustum check on the node. A node is consid-
ered in view if any one of the eight points (think of each corner of a cube) that
forms its 3-D space is within the frustum.

After you decide that a node is visible, perform the same check on its child nodes (if
any). If a node doesn’t contain child nodes, check whether the current node contains
polygons that haven’t been drawn (child nodes can draw the same polygon during the
scan). After polygons are drawn in a node, they are marked as drawn and scanning
returns to the parent node (and any other remaining nodes to be scanned).

You can see the magic in this process: Higher-level nodes are discarded, along with
their child nodes. In this way, you might remove thousands of polygons from the
rendering process and save time.

When working with Direct3D and the tree structure, you might find that a mesh
contains multiple textures. Remember that switching textures is an expensive oper-
ation, so you want to tread carefully here. How can you draw all visible polygons
without switching the textures again and again (even back to textures already

521Developing an Advanced 3-D Engine

Unused Node

Used Node

Figure 12.6

Here is an example world with a few polygons that
can be grouped into nodes.

used)? This is where texture groups come into play.

Working with Texture Groups
Texture groups are sets of polygons that are grouped together based on their
assigned textures. Because a mesh can contain multiple textures, it makes sense to
render only those groups of polygons that belong to a given texture at a given time.
In that way, you set each texture only once, render the polygons that use the tex-
ture, and go on to the next texture.

Although the use of texture groups sounds logical, grouping the polygons together
by their texture makes it hard to deal with the NodeTree structure. You can’t know
which polygons will be drawn without scanning the tree structure. You must scan
the tree structure and build lists of polygons that need to be rendered. When you
complete your scanning, just check the lists of polygons that belong to each texture
and work with them.

Texture grouping doesn’t really affect only the order in which visible polygons are
drawn. Pretty nifty, huh?

Creating the cNodeTree Class
It’s time to do some programming. You start by creating a few structures to repre-
sent the vertices, polygons, nodes, and texture groups:

// The sVertex structure is a custom vertex structure that
// contains only the 3-D coordinates. This is used to
// retrieve coordinate info from a mesh’s vertex buffer.
typedef struct sVertex { float x, y, z; } sVertex;

// The polygon structure maintains a texture group (by #)
// the time it was last drawn (so you don’t redraw it
// many times over per frame), and the three vertices
// used to render the polygon (which you’ll read about later).
typedef struct sPolygon {

unsigned long Group; // Texture group
unsigned long Time; // Time last drawn
unsigned short Vertex[3]; // Vertex index #’s

sPolygon() { Group = Time = 0; } // Clear data
} sPolygon;

522 12. Creating 3-D Graphics Engines

// The node structure keeps count of the # of polygons in
// its 3-D space, an array of sPolygon structures, the
// 3-D coordinates of the node (as well as the size, which
// is the distance from the center to one edge making the node
// a perfect cube), and pointers to the child nodes.
typedef struct sNode {

unsigned long NumPolygons; // # of polygons in node
sPolygon **PolygonList; // List of polygon data
float XPos, YPos, ZPos; // Center coordinate of node
float Size; // Size of node
sNode *Nodes[8]; // Child nodes 4=quad, 8=oct

// Constructor used to clear out variables
sNode()
{

NumPolygons = 0; // Set to no polygons in node
PolygonList = NULL; // Clear polygon list
XPos = YPos = ZPos = Size = 0.0f; // Position and size
for(short i=0;i<8;i++) // Quadtrees only uses first 4

Nodes[i] = NULL; // Clear out child node pointers
}

// Destructor to clear child nodes and variables
~sNode()
{

delete [] PolygonList; // Delete polygon list array
for(short i=0;i<8;i++)

delete Nodes[i]; // Delete child nodes
}

} sNode;

// The texture group structure uses a cVertexBuffer class
// from the Graphics Core to store polygons that need to
// be rendered in a single frame, also it maintains the
// number of polygons in a texture group and how many
// polygons to draw each frame.
typedef struct sGroup {

cVertexBuffer VertexBuffer; // Vertex data to draw
char *VertexPtr; // Pointer to vertex data
unsigned long NumPolygons; // # polygons in group

523Developing an Advanced 3-D Engine

unsigned long NumPolygonsToDraw; // # polygon to draw

sGroup() { NumPolygons = 0; } // Clear # polygons
~sGroup() { VertexBuffer.Free(); } // Free vertex buffer

} sGroup;

Each structure stores the various kinds of information about the mesh or
NodeTree structure. sVertex is the basic custom vertex structure; it maps directly to
all other vertex structures. If you load a mesh from a disk, you can use the sVertex
structure to retrieve the vertex coordinates.

You use the sPolygon structure to store information about each polygon in the scene.
The structure stores the texture group number (textures are numbered from zero
to the number of textures minus one), the time it was last drawn (to stop redraw),
and the three vertices used to draw the polygon.

That’s right; you directly poll the mesh object for the index number of each vertex
used to draw each polygon. Accessing the mesh’s vertices will have to wait until we
can construct a NodeTree class later in this section. For right now, turn your attention
to the sNode structure.

sNode maintains the number of polygons contained within a node’s 3-D space. Each
node has a coordinate that represents the center of the node, as well as a size vari-
able that tells you the distance from the center of the node to one edge (making
each node a perfect cube). For each polygon in the node, a pointer is kept to point
back to the respective sPolygon structure used to store the polygon data. Last, there
are pointers to eight child node pointers that construct the tree structure. Note
that a quadtree uses only the first four child node pointers.

Last is the cGroup structure, which maintains the texture groups. Each texture group
uses a cVertexBuffer object to contain exactly the number of polygons that uses the
texture in the scene. As nodes are scanned, all visible polygons are added to their
respective texture groups’ vertex buffer. Once all nodes are scanned, each texture
group is drawn out using the groups’ vertex buffer render function.

Enough about the data structures; it’s time to move on to the class code. Take a
look at the following class, which takes a mesh as input and converts it to a tree
structure of your choice, either a quadtree or an octree:

// Enumerate the two types of tree structures
enum TreeTypes { QUADTREE = 0, OCTREE };

class cNodeTreeMesh
{

524 12. Creating 3-D Graphics Engines

private:
// .. insert previous sVertex, sPolygon, sNode, and
// sGroup structures here.

int m_TreeType; // Type of nodetree
// QUADTREE or OCTREE

cGraphics *m_Graphics; // Parent cGraphics object
cFrustum *m_Frustum; // Viewing frustum

unsigned long m_Time; // Time of current render

float m_Size; // Size of world cube
float m_MaxSize; // Maximum node size

sNode *m_ParentNode; // Node linked list parent

unsigned long m_NumGroups; // # of texture groups
sGroup *m_Groups; // Texture groups

unsigned long m_NumPolygons; // # of polygons in mesh
unsigned long m_MaxPolygons; // Maximum polygons in node
sPolygon *m_PolygonList; // Polygon data array

sMesh *m_Mesh; // Parent mesh
char *m_VertexPtr; // Pointer to mesh vertices
unsigned long m_VertexFVF; // Mesh vertex FVF
unsigned long m_VertexSize; // Size of mesh vertex

// SortNode groups the polygons into nodes and splits
// the nodes into child nodes as needed.
void SortNode(sNode *Node, \

float XPos, float YPos, float ZPos, \
float Size);

// AddNode adds a node into the list of nodes to draw.
void AddNode(sNode *Node);

// IsPolygonContained return TRUE if a polygon’s bounding
// box intersects with the specified cube space.
BOOL IsPolygonContained(sPolygon *Polygon, \

float XPos, float YPos, float ZPos, \

525Developing an Advanced 3-D Engine

float Size);

// CountPolygons returns the # of polygons in a 3-D cube.
unsigned long CountPolygons(\

float XPos, float YPos, float ZPos, \
float Size);

public:
cNodeTreeMesh(); // Constructor
~cNodeTreeMesh(); // Destructor

// Functions to create and free a node/tree mesh from
// a source cMesh object, specifying the maximum # of
// polygons in an area that is larger than a specific
// size (forcing node splits).
BOOL Create(cGraphics *Graphics, cMesh *Mesh, \

int TreeType = OCTREE, \
float MaxSize = 256.0f, long MaxPolygons = 32);

BOOL Free();

// Render the current view using the current view
// transformation and overloaded distance of view.
// Also specify to use a pre-calculate frustum or
// force a calculation of own frustum.
BOOL Render(cFrustum *Frustum = NULL, float ZDistance = 0.0f);

};

The comments in the preceding class do a good job of explaining what each vari-
able represents and what each function does. In the next few sections, I cover each
function in more detail. First, check out Table 12.1, which lists and describes all the
cNodeTree variables.

As you continue through this chapter, I’ll point out when the class variables come
into play, but now it’s time to learn more about each function in the cNodeTree class.

cNodeTreeMesh::Create
and cNodeTreeMesh::Free
The cNodeTreeMesh::Create function is where the whole process starts. To create a
NodeTree structure, you need a source mesh with which to work, and what better
place to get one than from a cMesh object. The cMesh object maintains a list of

526 12. Creating 3-D Graphics Engines

meshes contained in a single .X file, and to make things easy, deals only with the
first mesh in the list of contained meshes.

By passing the Create function the pointers to your pre-initialized cGraphics object, the

527Developing an Advanced 3-D Engine

Table 12.1 cNodeTree Variables

Variable Description

m_Graphics A pointer to a pre-initialized cGraphics object.

m_Frustum A pointer to the cFrustum viewing frustum class used during a
render operation.

m_Time The current time (used during rendering to stop redraw).

m_Size The size of the world from the center (the origin) to the far-
thest edge in any of the three axes (making the world a cube).

m_MaxSize The maximum size a node can be before being split (which hap-
pens when the node contains too many polygons).

m_ParentNode The head of the node linked list.

m_NumGroups The number of texture groups.

m_Groups The texture group array.

m_NumPolygons The number of polygons in the source mesh.

m_MaxPolygons Holds the maximum number of polygons allowed in a node
(before forcing a split on nodes that are too large).

m_PolygonList An array of sPolygon structures holding the details for each
polygon in the mesh.

m_Mesh A pointer to the source mesh (the sMesh structure used by the
Graphics Core).

m_VertexPtr Used globally to access the source mesh vertex buffer.

m_VertexFVF The source mesh FVF descriptor.

m_VertexSize Holds the size of a single source mesh vertex (in bytes).

pre-loaded cMesh object, and the type of node tree you want to use (either QUADTREE or
OCTREE), you set the entire class up so that it is ready to render. In addition to the
function arguments just mentioned, you also need to specify the maximum number
of polygons allowed per node and the maximum size of a node before it needs to be
split (when it contains the maximum number of polygons per node).

BOOL cNodeTreeMesh::Create(cGraphics *Graphics, cMesh *Mesh,
int TreeType,
float MaxSize, long MaxPolygons)

{
ID3DXMesh *LoadMesh;
unsigned short *IndexPtr;
DWORD *Attributes;
unsigned long i;
float MaxX, MaxY, MaxZ;

// Free a prior mesh
Free();

// Error checking
if((m_Graphics = Graphics) == NULL)

return FALSE;
if(Mesh == NULL)

return FALSE;
if(!Mesh->GetParentMesh()->m_NumMaterials)

return FALSE;

// Get source mesh info
m_Mesh = Mesh->GetParentMesh(); // Pointer to mesh
LoadMesh = m_Mesh->m_Mesh; // ID3DXMesh pointer
m_VertexFVF = LoadMesh->GetFVF(); // Get FVF and size
m_VertexSize = D3DXGetFVFVertexSize(m_VertexFVF);
m_NumPolygons = LoadMesh->GetNumFaces(); // Get # polygons
m_MaxPolygons = MaxPolygons; // Save max polygons

// Create the polygon list and groups
m_PolygonList = new sPolygon[m_NumPolygons]();
m_NumGroups = m_Mesh->m_NumMaterials;
m_Groups = new sGroup[m_NumGroups]();

// Lock vertex, index, and attribute buffers

528 12. Creating 3-D Graphics Engines

TEAMFL
Y

Team-Fly®

LoadMesh->LockIndexBuffer(D3DLOCK_READONLY,(BYTE**)&IndexPtr);
LoadMesh->LockAttributeBuffer(D3DLOCK_READONLY, &Attributes);

Here, you see something new. The ID3DXMesh uses vertex buffers; in addition, the
ID3DXMesh uses what is called an indexed vertex buffer. Instead of storing vertices in the
order they need to be drawn, you store all the vertices in the buffer (in any order)
and create a second array that keeps track of which three vertices are used to draw
each polygon. That array is called the index array.

Next, an ID3DXMesh object has what’s called an attribute buffer, which is simply an
array of values that states which texture each polygon uses. A one-to-one correla-
tion exists between the array elements and the polygons. It’s this attribute buffer
that is used to assign polygons to their respective texture groups.

The following code starts by looping through each polygon in the mesh, pulling
out the three vertices that are used to construct each polygon. Also, you store the
texture used to draw the polygon within each polygon’s data structure.

// Load polygon information into structures
for(i=0;i<m_NumPolygons;i++) {

m_PolygonList[i].Vertex[0] = *IndexPtr++; // Store polygon
m_PolygonList[i].Vertex[1] = *IndexPtr++; // index #’s
m_PolygonList[i].Vertex[2] = *IndexPtr++; // in structure

// Store the polygon texture group and count
m_PolygonList[i].Group = Attributes[i];
m_Groups[Attributes[i]].NumPolygons++;

}

// Unlock buffers and release them (including mesh)
LoadMesh->UnlockIndexBuffer();
LoadMesh->UnlockAttributeBuffer();

// Build the group vertex buffers
for(i=0;i<m_NumGroups;i++) {

if(m_Groups[i].NumPolygons != 0)
m_Groups[i].VertexBuffer.Create(m_Graphics, \

m_Groups[i].NumPolygons * 3, \
m_VertexFVF, m_VertexSize);

}

In the preceding code, you can see that the mesh’s index array and attribute buffer
are locked. At that point, you’re merely building a list of polygon information
(which vertices are used for each polygon, plus the texture group to use). When

529Developing an Advanced 3-D Engine

you finish building the list of polygon data, the index and attribute buffers are
unlocked, and the actual texture groups are configured.

Each texture group contains a cVertexBuffer object to store the vertices that need to
be drawn. This is the standard vertex buffer you’ve come to love, so working with it
shouldn’t be hard. Notice that each vertex buffer has enough space for exactly the
number of polygons used for each texture in the mesh.

// Get the size of the bounding cube
MaxX = (float)max(fabs(Mesh->GetParentMesh()->m_Min.x), \

fabs(Mesh->GetParentMesh()->m_Max.x));
MaxY = (float)max(fabs(Mesh->GetParentMesh()->m_Min.y), \

fabs(Mesh->GetParentMesh()->m_Max.y));
MaxZ = (float)max(fabs(Mesh->GetParentMesh()->m_Min.z), \

fabs(Mesh->GetParentMesh()->m_Max.z));
m_Size = max(MaxX, max(MaxY, MaxZ)) * 2.0f;
m_MaxSize = MaxSize;

// Create the parent node
m_ParentNode = new sNode();

Here, the point farthest away from the center of the source mesh is calculated. In
order to make calculations smoother, the world must be a perfect cube, so you use
the distance from the center of the mesh to the outer edge as the size for the world
bounding box. After creating the parent node (m_ParentNode), you then lock the
mesh’s vertex buffer in order to read in the vertex coordinates. Lastly, the nodes
are sorted by calling the SortNode function.

// Sort polygons into nodes
LoadMesh->LockVertexBuffer(D3DLOCK_READONLY, \

(BYTE**)&m_VertexPtr);
SortNode(m_ParentNode, 0.0f, 0.0f, 0.0f, m_Size);
LoadMesh->UnlockVertexBuffer();

return TRUE;
}

Once sorted, the mesh’s vertex buffer is unlocked, and the function returns TRUE to
signify success. At this point, the node tree mesh is ready to use. When you’re done
with the node tree mesh, you call cNodeTree::Free to free the mesh:

BOOL cNodeTreeMesh::Free()
{

530 12. Creating 3-D Graphics Engines

delete m_ParentNode; // Delete parent node and all child nodes
m_ParentNode = NULL;

m_Graphics = NULL;

m_NumPolygons = 0; // No more polygons
delete [] m_PolygonList; // Delete polygon array
m_PolygonList = NULL;

m_NumGroups = 0; // No more texture groups
delete [] m_Groups; // Delete texture groups
m_Groups = NULL;

return TRUE;
}

cNodeTreeMesh::SortNode
cNodeTreeMesh::SortNode is a recursive function (one that calls itself) that counts the
number of polygons contained in the node’s 3-D space and decides whether the
node needs to be split into four or eight child nodes (depending on the tree type).
After the nodes are appropriately split, the SortNode function then builds a list of
polygons contained with the node’s 3-D space.

The code to the SortNode function starts off by ensuring that the arguments passed
to the function are valid. From there, the function stores the node’s coordinates
and begins splitting the nodes.

void cNodeTreeMesh::SortNode(sNode *Node, \
float XPos, float YPos,

float ZPos, \
float Size)

{
unsigned long i, Num;
float XOff, YOff, ZOff;

// Error checking
if(Node == NULL || m_PolygonList == NULL)

return;

// Store node coordinates and size
Node->XPos = XPos;

531Developing an Advanced 3-D Engine

NOTE
If the node tree type is a
quadtree, you can ignore the
height used during clipping
and split operations. Notice
that the height values are
ignored or handled differently,
as you see in the cNodeTreeMesh
class code.

Node->YPos = (m_TreeType==QUADTREE)?0.0f:YPos;
Node->ZPos = ZPos;
Node->Size = Size;

// See if there are any polygons in the node
if(!(Num = CountPolygons(XPos, YPos, ZPos, Size)))

return;

// Split node if size > maximum and too many polygons
if(Size > m_MaxSize && Num > m_MaxPolygons) {

for(i=0;i<(unsigned long)((m_TreeType==QUADTREE)?4:8);i++) {
XOff = (((i % 2) < 1) ? -1.0f : 1.0f) * (Size / 4.0f);
ZOff = (((i % 4) < 2) ? -1.0f : 1.0f) * (Size / 4.0f);
YOff = (((i % 8) < 4) ? -1.0f : 1.0f) * (Size / 4.0f);

// See if any polygons in new node bounding box
if(CountPolygons(XPos+XOff,YPos+YOff,ZPos+ZOff, \

Size/2.0f)) {

Node->Nodes[i] = new sNode(); // Create new child node

// Sort the polygons with the new child node
SortNode(Node->Nodes[i],XPos+XOff,YPos+YOff, \

ZPos+ZOff,Size/2.0f);
}

}

return;
}

Up to this point, all polygons that are within the node’s bounding box are counted.
If there are too many polygons and the node’s bounding box is too large, the node
is split. The subsequent split nodes are run through the same process. This time,
however, empty nodes are skipped from further processing, and nodes with poly-
gons are sent back to the SortNode function (thus, the recursion).

// Allocate space for polygon pointer list
Node->NumPolygons = Num;
Node->PolygonList = new sPolygon[Num];

// Scan through polygon list, storing pointers and

532 12. Creating 3-D Graphics Engines

// assigning them.
Num = 0;
for(i=0;i<m_NumPolygons;i++) {

// Add polygon to node list if contained in 3-D space.
if(IsPolygonContained(&m_PolygonList[i], \

XPos, YPos, ZPos, Size) == TRUE)
Node->PolygonList[Num++] = &m_PolygonList[i];

}
}

The last bit of the SortNode code allocates an array of pointers that point back to
the sPolygon array. When it comes time to render, that array of pointers is used to
retrieve each polygon’s information, which includes the vertex data and texture
group to use. Those polygons to draw are added to the appropriate texture group’s
vertex buffer later by the AddNode function.

cNodeTreeMesh::IsPolygonContained
and cNodeTreeMesh::CountPolygons
You use this duo of functions to determine whether a polygon is within the speci-
fied 3-D bounding box space and to count the total number of polygons contained
within the bounding box.

BOOL cNodeTreeMesh::IsPolygonContained(sPolygon *Polygon, \
float XPos, float YPos, float ZPos, \
float Size)

{
float XMin, XMax, YMin, YMax, ZMin, ZMax;
sVertex *Vertex[3];

// Get the polygon’s vertices
Vertex[0] = (sVertex*)&m_VertexPtr[m_VertexSize * \

Polygon->Vertex[0]];
Vertex[1] = (sVertex*)&m_VertexPtr[m_VertexSize * \

Polygon->Vertex[1]];
Vertex[2] = (sVertex*)&m_VertexPtr[m_VertexSize * \

Polygon->Vertex[2]];

// Check the X-axis of specified 3-D space
XMin = min(Vertex[0]->x, min(Vertex[1]->x, Vertex[2]->x));
XMax = max(Vertex[0]->x, max(Vertex[1]->x, Vertex[2]->x));

533Developing an Advanced 3-D Engine

if(XMax < (XPos - Size / 2.0f))
return FALSE;

if(XMin > (XPos + Size / 2.0f))
return FALSE;

The preceding code (as well as the following code) determines the farthest extents of
a vertex in the X-axis. If the polygon is too far left or right from the bounding cube
that’s being checked, then FALSE is returned. The same goes for the next two axes.

// Check the Y-axis of specified 3-D space (if octree)
if(m_TreeType == OCTREE) {

YMin = min(Vertex[0]->y, min(Vertex[1]->y, Vertex[2]->y));
YMax = max(Vertex[0]->y, max(Vertex[1]->y, Vertex[2]->y));
if(YMax < (YPos - Size / 2.0f))

return FALSE;
if(YMin > (YPos + Size / 2.0f))

return FALSE;
}

// Check the Z-axis of specified 3-D space
ZMin = min(Vertex[0]->z, min(Vertex[1]->z, Vertex[2]->z));
ZMax = max(Vertex[0]->z, max(Vertex[1]->z, Vertex[2]->z));
if(ZMax < (ZPos - Size / 2.0f))

return FALSE;
if(ZMin > (ZPos + Size / 2.0f))

return FALSE;

return TRUE;
}

unsigned long cNodeTreeMesh::CountPolygons(\
float XPos, float YPos, float ZPos, float Size)

{
unsigned long i, Num;

// Return if no polygons to process
if(!m_NumPolygons)

return 0;

// Go through every polygon and keep count of those
// contained in the specified 3-D space.

534 12. Creating 3-D Graphics Engines

Num = 0;
for(i=0;i<m_NumPolygons;i++) {

if(IsPolygonContained(&m_PolygonList[i],XPos,YPos,ZPos, \
Size) == TRUE)

Num++;
}

return Num;
}

You can see that CountPolygons loops only through each polygon in the mesh and
checks whether it falls inside the bounding cube. Each polygon contained is
counted and a final tally is returned. You use this function to determine how many
polygons are within a node when splitting and sorting the nodes.

cNodeTreeMesh::AddNode
You use the cNodeTreeMesh::AddNode function in conjunction with the Render function.
AddNode performs the frustum check on all nodes and recursively checks all child
nodes. At first call to the AddNode function, the m_ParentNode variable is passed to
AddNode to start the process from the root.

void cNodeTreeMesh::AddNode(sNode *Node)
{

unsigned long i, Group;
short Num;

// Perform frustum check based on tree type
if(m_TreeType == QUADTREE) {

if(m_Frustum->CheckRectangle(\
Node->XPos, 0.0f, Node->ZPos, \
Node->Size / 2.0f, m_Size / 2.0f, \
Node->Size / 2.0f) == FALSE)

return;
} else {

if(m_Frustum->CheckRectangle(
Node->XPos, Node->YPos, Node->ZPos, \
Node->Size / 2.0f, Node->Size / 2.0f, \
Node->Size / 2.0f) == FALSE)

return;
}

535Developing an Advanced 3-D Engine

Again, you can see the frustum check I
mentioned earlier. Here’s where
quadtree and octree modes differ. A
quadtree, being a 2-D structure, checks
only two dimensions (Y always falls into
view for 2-D). As for an octree, a node
might be anywhere in 3-D space, so at
least one point must be in view.

The AddNode function now decides if child nodes need to be added (as long as there
is a node with polygons). Adding nodes stops whenever a node has no more chil-
dren. In this case, the next parent node is processed, with the process continuing
until all nodes are processed.

// Scan other nodes
Num = 0;
for(i=0;i<(unsigned long)((m_TreeType==QUADTREE)?4:8);i++) {

if(Node->Nodes[i] != NULL) {
Num++;
AddNode(Node->Nodes[i]);

}
}

// Don’t need to go on if there are other nodes
if(Num)

return;

From here, the AddNode function checks to see whether the node in question con-
tains any polygons. If the node contains polygons, then each polygon in the node is
checked to see if it is visible (polygons that use a material alpha value of 0.0 are
considered invisible).

AddNode will add those polygons that are visible into the appropriate texture group’s
vertex buffer as well as keep count of the number of polygons to draw in the node.
Each frame, the number of polygons to render in each texture group is reset by the
Render function. The following code increments the count of polygons to draw:

// Add contained polygons (if any)
if(Node->NumPolygons != 0) {

for(i=0;i<Node->NumPolygons;i++) {

// If a polygon hasn’t yet been drawn and it has a

536 12. Creating 3-D Graphics Engines

NOTE
If a node doesn’t fall within the
viewing frustum, it and all its child
nodes are skipped. Here’s where the
node tree speeds things up!

// valid texture group value, then process it.
if(Node->PolygonList[i]->Time != m_Time && \

(Group = Node->PolygonList[i]->Group) < m_NumGroups) {

// Only draw polygons that are visible
// ie: have a material alpha value of > 0.0
if(m_Mesh->m_Materials[\

Node->PolygonList[i]->Group].Diffuse.a != 0.0f) {

// Copy over vertex data from source mesh
memcpy(m_Groups[Group].VertexPtr, \

&m_VertexPtr[m_VertexSize * \
Node->PolygonList[i]->Vertex[0]], \
m_VertexSize);

m_Groups[Group].VertexPtr += m_VertexSize;

memcpy(m_Groups[Group].VertexPtr, \
&m_VertexPtr[m_VertexSize * \
Node->PolygonList[i]->Vertex[1]], \
m_VertexSize);

m_Groups[Group].VertexPtr += m_VertexSize;

memcpy(m_Groups[Group].VertexPtr, \
&m_VertexPtr[m_VertexSize * \
Node->PolygonList[i]->Vertex[2]], \
m_VertexSize);

m_Groups[Group].VertexPtr += m_VertexSize;

m_Groups[Group].NumPolygonsToDraw++;
}

// Mark polygon as processed this
time segment

Node->PolygonList[i]->Time = m_Time;
}

}
}

}

When completed, the AddNode function will

537Developing an Advanced 3-D Engine

NOTE
You assign each polygon a time
variable because once a polygon is
drawn for a given time, it doesn’t
need to be redrawn (from other
nodes to which the polygon
belongs). For that reason, AddNode
checks the time value for each
polygon before it is added to the
texture group vertex buffer.

have built a complete set of texture group vertex buffers ready to be rendered.

cNodeTreeMesh::Render
You’re coming down to the end of the cNodeTreeMesh class, and what better place
than with the function that gives you the gratification of rendered polygons? The
cNodeTreeMesh::Render function takes an optional viewing frustum to use in place of
its internal frustum.

Also, because the rendering function works from the viewing frustum, you need a
way to overload the distance of the field of view. This helps if you want to draw only
portions of the mesh that are within a specific distance from the viewing point. For
example, if the frustum can see 20,000 units in distance but you want to render
only those polygons within 5,000 units, specify 5000.0 for ZDistance.

The Render function starts off by calculating the viewing frustum and locking the
vertex buffers:

BOOL cNodeTreeMesh::Render(cFrustum *Frustum, float ZDistance)
{

D3DXMATRIX Matrix; // Matrix used for calculations
cFrustum ViewFrustum; // Local viewing frustum

// Error checking
if(m_Graphics==NULL || m_ParentNode==NULL || !m_NumPolygons)

return FALSE;

// Construct the viewing frustum (if none passed)
if((m_Frustum = Frustum) == NULL) {

ViewFrustum.Construct(m_Graphics, ZDistance);
m_Frustum = &ViewFrustum;

}

// Set the world transformation matrix to identity so that
// level mesh is rendered around the origin it was designed.
D3DXMatrixIdentity(&Matrix);
m_Graphics->GetDeviceCOM()->SetTransform(D3DTS_WORLD,&Matrix);

// Lock vertex buffers
for(unsigned long i=0;i<m_NumGroups;i++) {

m_Groups[i].VertexBuffer.Lock(0,0);

538 12. Creating 3-D Graphics Engines

TEAMFL
Y

Team-Fly®

m_Groups[i].VertexPtr = \
(char*)m_Groups[i].VertexBuffer.GetPtr();

m_Groups[i].NumPolygonsToDraw = 0;
}
m_Mesh->m_Mesh->LockVertexBuffer(D3DLOCK_READONLY, \

(BYTE**)&m_VertexPtr);

At this point, the texture group vertex buffers are locked and ready to receive ver-
tex information from the locked source mesh vertex buffer (recall the AddNode func-
tion). Each texture group has the number of polygons to draw zeroed out, and
with the following lines of code, all polygons in view (via nodes) are added to the
texture group vertex buffers. At that time, all locked vertex buffers are unlocked,
and each texture group that contains polygons is drawn using the texture groups’
vertex buffer Render function (while also setting the proper material and texture).

// Store current time of render
m_Time = timeGetTime();

// Add all polygons to vertex buffer
AddNode(m_ParentNode);

// Unlock vertex buffers and draw
m_Mesh->m_Mesh->UnlockVertexBuffer();
for(i=0;i<m_NumGroups;i++) {

m_Groups[i].VertexBuffer.Unlock();

if(m_Groups[i].NumPolygonsToDraw) {
m_Graphics->GetDeviceCOM()->SetMaterial(\

&m_Mesh->m_Materials[i]);
m_Graphics->GetDeviceCOM()->SetTexture(0, \

m_Mesh->m_Textures[i]);

m_Groups[i].VertexBuffer.Render(0, \
m_Groups[i].NumPolygonsToDraw, D3DPT_TRIANGLELIST);

}
}

return TRUE;
}

539Developing an Advanced 3-D Engine

Using cNodeTree
As long as you’re using the Graphics Core in your project, using the cNodeTree class is
as easy as including it in your project, giving it a source mesh with which to work, and
rendering away! If, on the other hand, you’re not using the Graphics Core, a little
reworking is in order. In the code that follows, you can see the spots that use the
Graphics Core classes (I kept them to a minimum), and at this point, you should
be able to adjust the NodeTree engine according to your own graphics engine.

The NodeTree demo is on the CD-ROM at the back of this book. You can find it in
BookCode\Chap12\NodeTree\. Right now, check out this code to see how quickly
you can get a node tree up and running:

// Graphics = pre-initialized cGraphics object
cMesh Mesh;
cNodeTreeMesh NodeTreeMesh;
cCamera Camera;
cFrustum Frustum;

// Load a mesh from disk
Mesh.Load(&Graphics, “mesh.x”);
NodeTreeMesh.Create(&Graphics, &Mesh, OCTREE);

// Set a camera position and create the frustum
Camera.Point(0.0f, 100.0f, -200.0f, 0.0f, 0.0f, 0.0f);
Graphics.SetCamera(&Camera);
Frustum.Construct(&Graphics);

// Begin the scene, render the mesh, end scene, and display
// Render everything
Graphics.Clear(D3DCOLOR_RGBA(0,0,0,0));
if(Graphics.BeginScene() == TRUE) {

NodeTreeMesh.Render(&Frustum);
Graphics.EndScene();

}
Graphics.Display();

// Free everything
NodeTreeMesh.Free();
Mesh.Free();

540 12. Creating 3-D Graphics Engines

Adding 3-D Objects
to the World
Three-dimensional worlds are not complete without objects. Because you’re using
3-D worlds, 3-D meshes will suffice as game objects; however, as you saw in the sec-
tion “Meshes as Levels,” blindly drawing thousands of objects (without performing
any clipping) causes some major lag time in the graphics-rendering pipeline.

What you need is to once again use the viewing frustum to quickly determine
which objects are, or are not, within the view. In order to determine which objects
are visible, you enclose each 3-D object within an invisible sphere, called a bounding
sphere, that is used in conjunction with the viewing frustum class’s CheckSphere func-
tion (see the section “The cFrustum Class,” earlier in this Chapter).

Figure 12.7 illustrates the use of bounding spheres and the frustum. The figure
shows a scene with three objects and the viewing frustum. Each mesh has an invisi-
ble bounding sphere that surrounds it. Recall that a sphere is considered visible if
it lies in front of all six planes that construct the viewing frustum.

541Adding 3-D Objects to the World

Frustum

Viewer

Bounding
Sphere

Figure 12.7

You can test the three
objects in the scene
against the viewing
frustum.

In Figure 12.7, only two objects are visible in the viewing frustum. One object is
completely outside the frustum. You want to be able to draw the visible objects and
skip the one outside the frustum. To do that, you must calculate each object’s
bounding sphere and then test the spheres to see if they are within the frustum.

Computing the Bounding Sphere
If you don’t use the Graphics Core mesh class, you need to determine the bound-
ing sphere of a mesh. Using D3DX, you can call the D3DXComputeBoundingSphere func-
tion (which is what the Graphics Core uses):

HRESULT D3DXComputeBoundingSphere(
PVOID pvPointsFVF, // Buffer containing vertices
DWORD NumVertices, // # of vertices in buffer
DWORD FVF, // FVF descriptor
D3DXVECTOR3* pCenter, // &D3DXVECTOR2(0.0f, 0.0f, 0.0f)
FLOAT* pRadius); // Pointer to radius variable

This function merely scans a vertex buffer, remembering which vertex is farthest
away from the center. The distance from the center to the outermost vertex then
becomes the radius. In order to call D3DXComputeBoundingSphere, you lock the vertex
buffer with a call to the following:

HRESULT ID3DXMesh::LockVertexBuffer(
DWORD Flags, // Lock flags. Use D3DLOCK_READONLY
BYTE **ppData); // Pointer to vertex buffer data

With a mesh loaded, you are ready to compute its
bounding sphere, as follows:

// pMesh = pre-loaded ID3DXMesh object
float Radius; // Radius of object
BYTE **Ptr; // Vertex buffer pointer

// Lock the vertex buffer
if(SUCCEEDED(pMesh->LockVertexBuffer(D3DLOCK_READONLY, \

(BYTE**)&Ptr))) {

// Compute bounding sphere radius
D3DXComputeBoundingSphere((void*)Ptr, \

pMesh->GetNumVertices(), pMesh->GetFVF(),
&D3DXVECTOR3(0.0f, 0.0f, 0.0f), &Radius);

542 12. Creating 3-D Graphics Engines

NOTE
ID3DXMesh and
ID3DXSkinMesh share the
same function for lock-
ing a vertex buffer, so
the function calls for
ID3DXMesh applied to
ID3DXSkinMesh.

// Unlock vertex buffer
pMesh->UnlockVertexBuffer();

}

Notice that in the call to D3DXComputeBoundingSphere, you query the ID3DXMesh directly
for the vertex count and vertex FVF descriptor. You follow the call to
ID3DXMesh::LockVertexBuffer with a call to ID3DXMesh::UnlockVertexBuffer. You must
unlock the vertex buffer when you’re done with it, or further calls to lock or ren-
der the buffer will fail.

Bounding Spheres and the Frustum
Now that you have the viewing frustum constructed and have a bounding sphere,
you can call cFrustum::CheckSphere to check whether an object is visible, as shown
here:

// cFrustum *Frustum = pre-constructed viewing frustum
// Radius = pre-calculated bounding sphere radius
// XPos, YPos, ZPos = Object world coordinates
if(Frustum->CheckSphere(XPos, YPos, ZPos, Radius) == TRUE) {

// Object is in frustum, go ahead and render
} else {

// Object is not in frustum, just skip rendering
}

Collision Detection
with Meshes
Even using a simple mesh to represent a game level can present some big prob-
lems, including when 3-D objects collide with other objects in the world, or when
(and where) the user clicks on a mesh with the mouse (a mouse-to-mesh collision).
For example, how do you know when your player or any other character walks
around and bumps into a wall or when meshes collide into each other? Detecting
these kinds of problems is referred to as collision detection. In this section, you find
out how to determine when a mesh collides with another mesh, and how to deter-
mine when a mesh is being pointed at (with the mouse) by the user.

543Collision Detection with Meshes

Colliding with the World
I don’t know about your games, but in mine, most of my characters are not super-
heroes, so they can’t all go around walking through walls! For that reason, a 3-D
engine needs to know when to block the path of a character that is about to collide
with an object such as a wall.

Casting a Ray
In order to check whether a polygon blocks the path from one point to another,
you “cast” an imaginary ray between the two points and check to see whether it
intersects with a plane. Remember planes? I spoke of them in the section, “Planes
and Clipping.” A polygon is nothing more than a finitely sized plane. By construct-
ing a plane to represent the polygon, you can use algebra to determine the inter-
section (refer to Figure 12.7).

In the earlier section “Checking for Visibility with the Plane,” you learned about
dot products and calculating distance from points to planes. Using the same calcu-
lations, you can determine if, and where, a point intersects a plane as that point
moves in 3-D space. The point, as it moves, creates a line that represents the path
an object takes during some sort of movement.

Figure 12.8 illustrates these points. In the figure, you see a polygon and a line. The
line represents the ray cast from a starting point to an ending point. The ray inter-
sects with the polygon about halfway down the ray.

544 12. Creating 3-D Graphics Engines

Intersection Point

Ray Start

Ray End
Figure 12.8

A polygon blocks the path of the ray.

Remember that a plane is infinite in size, so a ray will always intersect with the
plane as long at it isn’t parallel with the plane. For that reason, you must be able to
tell whether the intersection is within the polygon’s edges, and that’s a little more
difficult to do.

Here comes D3DX to the rescue! A single function performs an intersection test,
ensures that the point of the ray-to-plane intersection lies within the polygon, gives
the exact coordinates of the intersection, and, as a bonus, reveals the distance from
the ray’s starting point to the intersection point. Talk about one useful function! So,
which function is it? It’s the D3DXIntersect function, which has the following prototype:

HRESULT D3DXIntersect(
LPD3DXBASEMESH pMesh, // Mesh to check intersection
CONST D3DXVECTOR3 *pRayPos, // Ray origin
CONST D3DXVECTOR3 *pRayDir, // Direction to cast ray
BOOL *pHit, // Flag if intersection occurs
DWORD *pFaceIndex, // Which face ray intersects
FLOAT *pU,
FLOAT *pV,
FLOAT *pDist); // Distance to intersection

Right off the bat, you can see that D3DXIntersect works with meshes (ID3DXBaseMesh),
which is a boon because mesh objects are just what you’re working with at this
point. Next, you can see that you need to specify the starting origin of the ray
(in pRayPos). For pRayPos (and pRayDir), you can use the D3DXVECTOR3 macro inline.

pRayDir represents a direction vector, much like a normal vector. For example, to
cast a ray upward, you use a value of -1.0 for the Y value. The only other argument
you need to deal with is pDist. pDist points to a FLOAT type variable that is filled with
the distance from the ray origin to the intersection point.

Blocking the Path
Now that you know the do-all intersection function, how about testing it? Here’s a
quick example that shows the D3DXIntersect function in action. The following func-
tion takes a pointer to a mesh (that represents your level) to check for intersections,
plus a starting and ending point to check for intersections. In return, you receive
the distance to the intersection and the exact coordinates of the intersection:

BOOL CheckIntersection(ID3DXMesh *Mesh, // Level mesh
float XStart, float YStart, float ZStart,
float XEnd, float YEnd, float ZEnd,
float *Distance)

545Collision Detection with Meshes

{
{

BOOL Hit; // Flag if intersection occurred
float u, v, Dist; // Misc. and distance to intersection
float XDiff, YDiff, ZDiff, Size; // Differences and size
DWORD FaceIndex; // Face that was intersected
D3DXVECTOR3 vecDir; // Direction vector for ray

// Calculate differences from start to end point
XDiff = XEnd - XStart;
YDiff = YEnd - YStart;
ZDiff = ZEnd - ZStart;

// Calculate the direction vector
D3DXVec3Normalize(&vecDir, &D3DXVECTOR3(XDiff, YDiff, ZDiff));

// Perform the intersection test
D3DXIntersect(Mesh,

&D3DXVECTOR3(XStart,YStart,ZStart), &vecDir,
&Hit, &FaceIndex, &u, &v, &Dist);

// If there was an intersection, see if it’s within the
// path of the ray (distance to intersection is less than
// the length of the ray).
if(Hit == TRUE) {

// Get length of ray
Size = (float)sqrt(XDiff*XDiff+YDiff*YDiff+ZDiff*ZDiff);

// Ray did not intersect with polygon
if(Dist > Size)

Hit = FALSE;
else {

// Ray intersected, store distance to intersection
if(Length != NULL)

*Length = Dist;
}

}

// Return TRUE if intersection occurred, FALSE if not
return Hit;

}

546 12. Creating 3-D Graphics Engines

Moving Up and Down
One of the added benefits of using collision detection at a polygon level is that
you can make objects follow the changing height of the polygons below the objects.
In other words, you can make them walk on top of polygons! Talk about cool!
Imagine being able to draw your levels in a 3-D model editor and not worry about
defining which areas and object can “walk” on—the polygons are those areas! This
makes dealing with quadtree and octree meshes even easier.

To perform ground-height based intersection tests, you create three functions,
which I have added to the NodeTree engine. These three functions are
GetClosestHeight, GetHeightAbove, and GetHeightBelow, as shown here:

float GetClosestHeight(ID3DXMesh *Mesh, \
float XPos, float YPos, float ZPos)

{
float YAbove, YBelow;

// Get height above and below point we’re checking
YAbove = GetHeightAbove(Mesh, XPos, YPos, ZPos);
YBelow = GetHeightBelow(Mesh, XPos, YPos, ZPos);

// See which height is closer to point we’re checking
// and return that value.
if(fabs(YAbove-YPos) < fabs(YBelow-YPos))

return YAbove; // Height above is closest, return it.
return YBelow; // Height below is closest, return it.

}

float GetHeightBelow(ID3DXMesh *Mesh, \
float XPos, float YPos, float ZPos)

{
BOOL Hit; // Flag if polygon hit
float u, v, Dist; // Misc. plus distance to intersection
DWORD FaceIndex; // Which face ray intersects with

// Perform intersection test against mesh
D3DXIntersect(Mesh,

&D3DXVECTOR3(XPos,YPos,ZPos),
&D3DXVECTOR3(0.0f, -1.0f, 0.0f),
&Hit, &FaceIndex, &u, &v, &Dist);

547Collision Detection with Meshes

// Return closest height below if there was an intersection
if(Hit == TRUE)

return YPos-Dist;
return YPos; // Return height passed as no intersection

}

float GetHeightAbove(ID3DXMesh *Mesh, \
float XPos, float YPos, float ZPos)

{
BOOL Hit; // Flag if polygon hit
float u, v, Dist; // Misc. plus distance to intersection
DWORD FaceIndex; // Which face ray intersects with

// Perform intersection test against mesh
D3DXIntersect(m_Mesh->m_Mesh,

&D3DXVECTOR3(XPos,YPos,ZPos),
&D3DXVECTOR3(0.0f, 1.0f, 0.0f),
&Hit, &FaceIndex, &u, &v, &Dist);

// Return closest height below if there was an intersection
if(Hit == TRUE)

return YPos+Dist;
return YPos; // Return height passed as no intersection

}

Each of the three preceding functions serves a specific purpose. GetClosestHeight
retrieves the height of the polygon (Y-coordinate) that is closest to the point in
question. For example, if you’re checking a point in 3-D space (say, at Y=55) that
has a polygon 10 units above it and another polygon 5 units below it, the
GetClosestHeight function will return a value of 50 (because the polygon below is
closer to the point in question).

GetHeightAbove and GetHeightBelow scan in a specific direction (up or down) and
retrieve the height of the closest polygon. Using GetHeightBelow, you can tell where to
position your objects (in regard to height) anywhere in your world. As objects move,
you can update their height based on the height of the ground below them. In addi-
tion, you can tell whether a polygon is too steep to traverse. Check out the combined
quadtree and octree demo, NodeTree, on this book’s CD-ROM to see this method
put to good use.

548 12. Creating 3-D Graphics Engines

TEAMFL
Y

Team-Fly®

Fast Intersection Checking
With rays flying all over the place and polygon counts pushing the limits, it’s hard
to keep things going at a fast pace. A 3-D engine’s speed can lag severely when you
start checking collisions between just a few objects. For that reason, you need to
find ways to speed up your collision detection.

One of the most ingenious ways of speeding up collision checking that I’ve found
(especially when dealing with quadtree and octree meshes) is to maintain separate
meshes. That’s right; by splitting a level into multiple meshes, you can perform col-
lision detection against only the meshes that are necessary!

For example, try splitting your level mesh into three meshes: the ground (for
tracking height), walls and obstacles (for collision detection so that characters
don’t walk through walls), and decorative (all those extra polygons that serve no
purpose other than to make your levels look good). At the right time, you just
check for intersections in the appropriate mesh

Collisions with the
cNodeTreeMesh Class
To enhance the cNodeTreeMesh class, you can add the intersection and height func-
tions just mentioned. Now, using a couple of simple functions wrapped into an awe-
some class, you have at your disposal the ability to load any level mesh you want
and allow characters to walk around, bumping into the walls and standing on a
solid ground (as opposed to falling through the ground!).

When Meshes Collide
In addition to detecting when object meshes will collide with the mesh that con-
structs the world, you want to know when smaller meshes will collide. For example,
you don’t want your characters to walk through each other, so you need to incorpo-
rate object-to-object collision detection.

Rather than use ray-casting and plane intersection tests as you did in the previous
section on colliding with the world mesh, you can cut object-to-object collision
down to one simple calculation. Remember the bounding spheres discussed in sec-
tion “Computing the Bounding Sphere”? All you have to do is determine if the
objects in question have intersecting bounding spheres.

549Collision Detection with Meshes

Before you can do that, however, you need to understand a few things, including
the downside to using bounding spheres. Take a look at Figure 12.9, which shows
two monsters. They have tails—very long tails. Those tails affect the overall size of
the bounding sphere for the mesh—the sphere would be overly large in order to
encompass the entire mesh (including the tail). If you were to move the two mon-
sters in Figure 12.9, you would see that the two bounding spheres would intersect,
even though the monsters aren’t close to each other.

Although you can get around the large bounding sphere problem many ways, there
is one that you can quickly perform. Instead of using the mesh’s bounding sphere,
go ahead and compute your own bounding sphere radius for each mesh. By com-
puting your own bounding sphere radius, you can quickly adjust it to cover the
amount of space needed to safely cover the mesh.

With that problem aside, you can come up with a single function that checks
whether two bounding spheres intersect:

BOOL CheckSphereIntersect(\
float XCenter1, float YCenter1, float ZCenter1, \
float Radius1, \
float XCenter2, float YCenter2, float ZCenter2, \
float Radius2)

{
float XDiff, YDiff, ZDiff, Distance;

// Calculate distance between center points

550 12. Creating 3-D Graphics Engines

Figure 12.9

Meshes that contain extruded parts
(such as the monsters’ tails) might use
larger-than-needed bounding spheres
during collision detection.

XDiff = (float)fabs(XCenter2-XCenter1);
YDiff = (float)fabs(YCenter2-YCenter1);
ZDiff = (float)fabs(ZCenter2-ZCenter1);
Distance = (float)sqrt(XDiff*XDiff+YDiff*YDiff+ZDiff*ZDiff);

// Return TRUE if the two spheres intersect
if(Distance <= (Radius1+Radius2))

return TRUE;

// No intersection
return FALSE;

}

When called with the two bounding sphere locations and radiuses, the preceding
function returns TRUE if the spheres intersect or FALSE if the spheres do not intersect.
The way to tell whether two spheres intersect is to calculate the distance between
the center points; if the distance is less than or equal to the two radiuses combined,
the spheres intersect.

Mouse Clicks and Meshes
In your final examination of mesh intersections, you focus on a feature that you’re
sure to want when dealing with 3-D graphics: the ability to click a mesh and know
exactly which polygon face was selected. You already know how to scan a mesh to

551Collision Detection with Meshes

TIP
To optimize the CheckSphereIntersect function, you can drop the sqrt
function call in the code, as in the following:

Distance = XDiff*XDiff+YDiff*YDiff+ZDiff*ZDiff;

float RadiusDistance = (Radius1+Radius2)*(Radius1+Radius2)*3.0f;

// Return TRUE if the two spheres intersect

if(Distance <= RadiusDistance)

return TRUE;

return FALSE; // No intersection

The distance comparison factors the distance of the radiuses without
using sqrt to calculate the actual distance from the center points.

see which polygon a ray may intersect with (see the section “Casting a Ray,” earlier
in this chapter)—now you need to cast a ray from the mouse’s cursor into the 3-D
scene and see which polygon the mouse pointer is covering.

To determine exactly which polygon in a mesh was clicked, in addition to using
the D3DXIntersect (see the section “Casting a Ray,” earlier in this chapter), you use the
D3DXIntersect function argument DWORD *pFaceIndex. This pointer to a DWORD variable
contains the indexed polygon face that was intersected by the ray that you cast.

Note that if you cast a ray from an imaginary viewpoint (center of the screen) to
the mouse cursor, you can check every polygon in the scene for a collision. The
intersection closest to the viewpoint (the intersection with the least distance) is the
polygon on which the user clicked. This can be calculated using the following code
(which uses code from the DirectX 8.0 SDK samples):

// Graphics = pre-initialized cGraphics object
// Mouse = pre-initialized mouse cInputDevice object
D3DXVECTOR3 vecRay, vecDir; // Ray’s position and direction
D3DXVECTOR3 v; // Temporary vector
D3DXMATRIX matProj, matView; // Projection and view matrices
D3DXMATRIX m; // Temporary matrix

// Get the current projection and view transformations
Graphics.GetDeviceCOM()->GetTransform(D3DTS_PROJECTION, \

&matProj);
Graphics.GetDeviceCOM()->GetTransform(D3DTS_VIEW, \

&matView);

// Inverse the view matrix
D3DXMatrixInverse(&m, NULL, &matView);

// Read mouse coordinates (to prepare for reading)
Mouse.Read();

// Compute the vector of the pick ray in screen space
v.x = (((2.0f * Mouse.GetXPos()) / Graphics.GetWidth()) - \

1) / matProj._11;
v.y = -(((2.0f * Mouse.GetYPos()) / Graphics.GetHeight()) - \

1) / matProj._22;
v.z = 1.0f;

// Transform the screen space ray

552 12. Creating 3-D Graphics Engines

vecRay.x = m._41;
vecRay.y = m._42;
vecRay.z = m._43;
vecDir.x = v.x*m._11 + v.y*m._21 + v.z*m._31;
vecDir.y = v.x*m._12 + v.y*m._22 + v.z*m._32;
vecDir.z = v.x*m._13 + v.y*m._23 + v.z*m._33;

To use the preceding code effectively, go ahead and load a mesh into an ID3DXMesh
object. You can use the Graphics Core’s cMesh object to make loading and contain-
ing the mesh easier:

// Mesh = pre-loaded cMesh object
ID3DXMesh *pMesh;
BOOL Hit;
DWORD Face;
float u, v, Dist;

// Get pointer to cMesh ID3DXMesh object
pMesh = Mesh->GetParentMesh()->m_Mesh;

// call above code to get ray vectors and call intersect
ID3DXIntersect(pMesh, &vecRay, &vecDir, &Hit, &Face, \

&u, &v, &Dist);

// If Hit is TRUE, then user clicked on mesh

By determining the intersection with the least distance (using the preceding code),
you can even check each mesh in the scene (or other meshes, such as characters)
and find out which one was clicked.

Using Sky Boxes
A sky box is a graphics technique in which a texture-mapped 3-D cube surrounds
the viewer. When rendering a sky box, you always center it with the viewpoint so
that the user always sees the inside texture-mapped faces of the box. This tech-
nique gives the effect that the world actually surrounds the user (as illustrated in
Figure 12.10).

Sky boxes are easy to implement. You just need a cube mesh (with the faces pointed
inward). Using a vertex buffer to store the cube mesh is perfect. As for textures, you

553Using Sky Boxes

can have up six—giving you one per side. The mesh need not be large, only a cube
20.0 units in size. Textures should be 256 × 256, as anything smaller would appear
stretched out and unappealing.

Creating a Sky Box Class
What better way to implement sky boxes in your own game than to create a class that
you can easily include for your project. This class, in this case named cSkyBox, needs to
take control of every aspect of the sky box, from creating the vertex buffer used to
render the box to containing the textures used when rendering. The following code
for the sky box class is very compact and is a nice addition to any gaming library:

class cSkyBox
{

private:
typedef struct sSkyBoxVertex {

float x, y, z;
float u, v;

} sSkyBoxVertex;
#define SkyBoxFVF (D3DFVF_XYZ | D3DFVF_TEX1)

cGraphics *m_Graphics; // Parent cGraphics object
cTexture m_Textures[6]; // Face textures (0-5)
cVertexBuffer m_VB; // Mesh vertex buffer
cWorldPosition m_Pos; // Sky box orientation

554 12. Creating 3-D Graphics Engines

Figure 12.10

A sky box gives users the illusion of being surrounded
by a huge world.

public:
cSkyBox(); // Constructor
~cSkyBox(); // Destructor

// Create and free a sky box class object
BOOL Create(cGraphics *Graphics);
BOOL Free();

// Set a specific side’s texture map. Allow for
// transparent and storage format changes.
BOOL LoadTexture(short Side, char *Filename,

D3DCOLOR Transparent = 0,
D3DFORMAT = D3DFMT_UNKNOWN);

// Rotate box to an absolute or relative rotation.
BOOL Rotate(float XRot, float YRot, float ZRot);
BOOL RotateRel(float XRot, float YRot, float ZRot);

// Render the sky box (using optional alpha-blending)
// and using current view transformation from Camera.
BOOL Render(cCamera *Camera, BOOL Alpha = FALSE);

};

The upcoming sections cover each function in the preceding code in more detail.

cSkyBox::Create and cSkyBox::Free
You use this duo of functions to retrieve the parent graphics object, create the sky
box mesh, and release all the used cTexture objects (size in total). Take at look at
their code bits:

BOOL cSkyBox::Create(cGraphics *Graphics)
{

sSkyBoxVertex Verts[24] = {
{ -10.0f, 10.0f, -10.0f, 0.0f, 0.0f }, // Top vertices
{ 10.0f, 10.0f, -10.0f, 1.0f, 0.0f },
{ -10.0f, 10.0f, 10.0f, 0.0f, 1.0f },
{ 10.0f, 10.0f, 10.0f, 1.0f, 1.0f },

{ -10.0f, -10.0f, 10.0f, 0.0f, 0.0f }, // Bottom vertices
{ 10.0f, -10.0f, 10.0f, 1.0f, 0.0f },
{ -10.0f, -10.0f, -10.0f, 0.0f, 1.0f },

555Using Sky Boxes

{ 10.0f, -10.0f, -10.0f, 1.0f, 1.0f },

{ -10.0f, 10.0f, -10.0f, 0.0f, 0.0f }, // Left vertices
{ -10.0f, 10.0f, 10.0f, 1.0f, 0.0f },
{ -10.0f, -10.0f, -10.0f, 0.0f, 1.0f },
{ -10.0f, -10.0f, 10.0f, 1.0f, 1.0f },

{ 10.0f, 10.0f, 10.0f, 0.0f, 0.0f }, // Right vertices
{ 10.0f, 10.0f, -10.0f, 1.0f, 0.0f },
{ 10.0f, -10.0f, 10.0f, 0.0f, 1.0f },
{ 10.0f, -10.0f, -10.0f, 1.0f, 1.0f },

{ -10.0f, 10.0f, 10.0f, 0.0f, 0.0f }, // Front vertices
{ 10.0f, 10.0f, 10.0f, 1.0f, 0.0f },
{ -10.0f, -10.0f, 10.0f, 0.0f, 1.0f },
{ 10.0f, -10.0f, 10.0f, 1.0f, 1.0f },

{ 10.0f, 10.0f, -10.0f, 0.0f, 0.0f }, // Back vertices
{ -10.0f, 10.0f, -10.0f, 1.0f, 0.0f },
{ 10.0f, -10.0f, -10.0f, 0.0f, 1.0f },
{ -10.0f, -10.0f, -10.0f, 1.0f, 1.0f },

};

Free(); // Free a prior sky box

// Error checking
if((m_Graphics = Graphics) == NULL)

return FALSE;

// Create the vertex buffer (and copy over sky box vertices)
if(m_VB.Create(m_Graphics, 24, SkyBoxFVF, \

sizeof(sSkyBoxVertex)) == TRUE)
m_VB.Set(0,24,(void*)&Verts);

// Rotate sky box into default orientation
Rotate(0.0f, 0.0f, 0.0f);

return TRUE; // Return success!
}

556 12. Creating 3-D Graphics Engines

BOOL cSkyBox::Free()
{

m_Graphics = NULL; // Clear parent cGraphics object
for(short i=0;i<6;i++) // Release textures

m_Textures[i].Free();
m_VB.Free(); // Release vertex buffer

return TRUE; // Return success!
}

You can see that both functions get right to the point. From the start, Create creates
a vertex buffer (a cube mesh with 12 faces and 6 sides). This vertex buffer is filled
with the information defined locally in the Create function. Once the vertex buffer
has been created, the Create function continues by setting the orientation of the sky
mesh to a default rotation value.

Using rotation, you can layer multiple sky boxes to create a 3-D effect. For exam-
ple, imagine layering a few sky boxes—one box with stars, another with clouds, and
another with the sun and moon—and, just like that, creating a rotating sky com-
plete with an orbiting sun and moon!

With the Create function complete, I move on to the Free function. The Free func-
tion frees the texture resources and vertex buffer using those objects’ respective
Free functions.

cSkyBox::LoadTexture
The LoadTexture function loads a single texture, which is used to texture-map a sin-
gle side of the sky box mesh, as illustrated here:

BOOL cSkyBox::LoadTexture(short Side, char *Filename, \
D3DCOLOR Transparent, D3DFORMAT Format)

{
// Error checking
if(m_Graphics == NULL || Side < 0 || Side > 5)

return FALSE;

m_Textures[Side].Free(); // Free prior texture

return m_Textures[Side].Load(m_Graphics, Filename, \
Transparent, Format);

}

557Using Sky Boxes

The LoadTexture function loads a single bitmap image into the texture you specify
(using the supplied transparent color and storage format if you plan on using
transparent blits or alpha blending). Finally, note the numbering order of the sky
box faces. You can see which value corresponds to which face in Table 12.2.

cSkyBox::Rotate
and cSkyBox::RotateRel
You’ve already learned that the sky box can be rotated to give the illusion of the sky
object orbiting the viewer. With these two functions, you can alter the rotation val-
ues of the sky box:

BOOL cSkyBox::Rotate(float XRot, float YRot, float ZRot)
{

return m_Pos.Rotate(XRot, YRot, ZRot);
}

BOOL cSkyBox::RotateRel(float XRot, float YRot, float ZRot)
{

return m_Pos.RotateRel(XRot, YRot, ZRot);
}

These two functions call the Graphics Core’s cWorldPosition class functions in order
to alter the rotation values (refer to Chapter 10, “Creating the Game Core,” for
more information on the cWorldPosition object).

558 12. Creating 3-D Graphics Engines

Table 12.2 Face Values for cSkyBox::LoadTexture

Value Face

0 Top

1 Bottom

2 Left

3 Right

4 Front

5 Back

TEAMFL
Y

Team-Fly®

cSkyBox::Render
Here’s the real meat-and-potatoes function. This function centers the sky box with
the supplied camera, enables alpha blending and alpha testing (if required), and
renders the six sides of the sky box (or at least those that are texture-mapped):

BOOL cSkyBox::Render(cCamera *Camera, BOOL Alpha)
{

D3DXMATRIX matWorld;
short i;

// Error checking
if(m_Graphics == NULL || Camera == NULL)

return FALSE;

// Position sky box around viewer
m_Pos.Move(Camera->GetXPos(), Camera->GetYPos(), Camera->GetZPos());
m_Graphics->SetWorldPosition(&m_Pos);

// Enable alpha testing and alpha blending
m_Graphics->EnableAlphaTesting(TRUE);
if(Alpha == TRUE)

m_Graphics->EnableAlphaBlending(TRUE, D3DBLEND_SRCCOLOR, D3DBLEND_DESTCOLOR);

// Draw each layer
for(i=0;i<6;i++) {

if(m_Textures[i].IsLoaded() == TRUE) {
m_Graphics->SetTexture(0, &m_Textures[i]);
m_VB.Render(i*4,2,D3DPT_TRIANGLESTRIP);

}
}

// Disable alpha testing and alpha blending
m_Graphics->EnableAlphaTesting(FALSE);
if(Alpha == TRUE)

m_Graphics->EnableAlphaBlending(FALSE);

return TRUE;
}

559Using Sky Boxes

To call the Render function, you must pass it the current cCamera object that is being
used to render the scene. You can optionally set the Alpha argument to TRUE in order
for the Render function to render the sky box using alpha blending techniques.

Using the Sky Box
Now you get to see the sky box in action. In fact, if you’ve already looked at
the NodeTree example program, you’ve seen the sky box in action. Basically, the
NodeTree sample uses a single texture (stars) for the sky box. Although a simple
example was used in the NodeTree sample, sky boxes can use up to six textures,
which makes great looking 3-D scenes look even better.

Wrapping Up 3-D Graphics
You will rarely need engines any more powerful than the ones this chapter provides.
Some of you might want to improve on the NodeTree engine by using indexed vertex
buffers, thus decreasing the number of memcpy’s needed to draw the visible polygons.
(Consult the DirectX SDK example and documents for more information on index
vertex buffers if you’re feeling brave!) You might also test each node for visibility; if
a node is fully visible (with each of its eight corners in the viewing frustum), you can
draw every polygon and child node in the fully visible node without further checking.

560 12. Creating 3-D Graphics Engines

Programs on the CD-ROM

Programs that demonstrate the code discussed in this chapter are
located on the CD-ROM at the back of this book.You can find the
following programs in the \BookCode\Chap12\ directory:

◆ MeshLvl. Shows how to use single meshes to construct levels.
Location: \BookCode\Chap12\MeshLvl\.

◆ NodeTree. Demonstrates node tree level rendering.
Location: \BookCode\Chap12\NodeTree\.

◆ Objects. See how to use viewing frustums to clip out unseen
objects. Location: \BookCode\Chap12\Objects\.

CHAPTER 13

Mixing 2-D
and 3-D

Graphics
Engines

When it comes to graphics, there are neither limits nor rules to which you
must abide; that is, you’re not limited to using only 2-D graphics or only

3-D graphics. You can mix the two with impunity. This chapter is your guide to
understanding the tricks behind mixing the two dimensions in order to achieve
some awesome effects.

In this chapter, you learn how to do the following:

■ Use 2-D graphics in 3-D engines
■ Draw 3-D objects in a 2-D world

Mixing the Two Dimensions
Imagine having 3-D characters able to walk around a 2-D image or using 2-D tiles
inside a 3-D world. I know you’re dying to know how to mix 3-D characters in your
flat 2-D images, but you might be wondering why you would want to use 2-D tiles in
a 3-D world.

Think of it like this: Using billboards (2-D objects) saves on using polygons to rep-
resent simple objects in your 3-D world—objects such as trees, rocks, and so on.
These objects add to the visual flare of your game.

In fact, if you’ve been observant, you’re probably aware that a lot of 3-D games use
2-D objects, and in such a way that you barely notice the effect. For example, in
Mario 64 for the N64 (a console gaming system), you can walk up to a tree and
circle around it. Notice that the tree doesn’t rotate. That’s because it’s 2-D.

Whatever your reasons for mixing 2-D and 3-D, you are about to get a firsthand
look at a couple of engines I created that can help you on your way. You use the
first engine, called 2Din3D, to draw 3-D meshes that represent a game level over-
laid for 2-D tiles that represent game objects.

562 13. Mixing 2-D and 3-D Graphics Engines

Using 2-D Objects
in a 3-D World
Chapter 6, “Drawing with DirectX Graphics,” covers using billboards (2-D objects
that are aligned so that they are always facing the viewer), but in this chapter, I’m
also talking about using actual 2-D objects, such as tiles, in a 3-D scene.

To see 2-D objects in a game, you might want to check out Paper Mario for the N64.
Mario (and all the other game denizens) is drawn as a flat image using the bill-
boarding technique (textures mapped to flat polygons). The whole world sur-
rounding Mario is 3-D, and as you move him around, the 3-D scene shifts to always
show all the characters in the game from the proper viewing angle.

That’s the effect you want to duplicate, which you can do by using billboarding to
simulate 2-D objects or by using 2-D tile graphics. With billboards, you can easily
introduce depth (such as having objects appear smaller as they move farther from
the viewer). With 2-D tiles, you can achieve a similar effect by using scaling, but
why bother when you can use billboards?

Drawing Tiles in 3-D
As complicated as it might seem to mix 2-D tiles with 3-D meshes, there’s really
nothing new here. You learn how to load and draw 2-D tiles in Chapter 11, “Using
2-D Graphics,” and how to work with 3-D meshes in Chapter 6. In this chapter, you
find out how to intertwine the 2-D and 3-D components in order to draw a 3-D
mesh that represents a game level and how to overlay the mesh with 2-D graphics
tiles that represent the game’s objects.

At this point, you need a 3-D mesh that represents the game level to use. Figure 13.1
shows one such mesh that is stored on this book’s CD-ROM (look for \BookCode\
Chap13\2Din3D). In the Chapter 13 directory, you will also find a bitmap image that
contains a series of 2-D tiles to use for drawing a character in the game.

Typically, a character moves around the 3-D world (usually running along a single
axis), and as the character moves, so does the camera. The camera needs to stay a
short distance from the character and needs to be offset a little higher than the
character, just to give the full 3-D effect of the level. To see what I’m talking about,
take a look at Figure 13.2, which shows the 2Din3D demo in action.

563Using 2-D Objects in a 3-D World

Without further ado, please turn your attention to the code that you use to load a
mesh that represents the level, to create a set of 2-D tiles that represent the objects
(such as the player character), and to draw everything so that it is aligned correctly
for each frame. You start by loading all the mesh that represents the level.

564 13. Mixing 2-D and 3-D Graphics Engines

Figure 13.1

A large mesh can represent
the 3-D level within which you
will draw the 2-D objects.

Figure 13.2

The 2Din3D demo program
demonstrates using 2-D tiles
mixed with the complexity of 3-D
levels. In this image, you can see a
2-D tile, the monster being drawn
on a 3-D mesh that represents
the level.

Loading the Level Mesh
Because the Graphics Core is a useful library of functions, you can use it to load an
.X file that contains the level’s mesh. The Graphics Core object that handles load-
ing .X files is cMesh. Once the mesh is loaded in the cMesh object, you create a cObject
object used to render the level mesh. For this example, the mesh to use is Level.x,
which you can find in the Chapter 13 directory on the CD-ROM (look for \BookCode\
Chap13\2Din3D).

// Graphics = pre-initialized cGraphics object
cMesh LevelMesh; // The level mesh
cObject LevelObj; // The object used for rendering

// Load the .X file titled Level.x
LevelMesh.Load(&Graphics, “LevelMesh”);

// Assign mesh to object
LevelObj.Create(&Graphics, &LevelMesh);

Using the Graphics Core really is handy; the preceding code is all that’s needed at
this point. Next comes loading the tiles.

Loading the Tiles
The 2-D tiles in this example contain a series of images used to draw an animated,
walking monster. These tiles are contained within a single bitmap image, which is
loaded into a cTexture object. The bitmap image is Tiles.bmp, which is on the CD-ROM
(again, look for \BookCode\Chap13\2Din3D).

// Graphics = pre-initialized cGraphics object
cTexture Tiles;

// Load the tile texture, assign a transparent color of 0
Tiles.Load(&Graphics, “Tiles.bmp”, 0, D3DFMT_A1R5G5B5);

You’re almost ready to start drawing the level—at this point, the level mesh and the
tiles are loaded. Before you can draw the scene, however, you need to do a little
preparation.

565Using 2-D Objects in a 3-D World

Preparing to Draw
Before each frame is rendered, you must align the camera to the player and clear
the display (and Z-buffer):

// Graphics = pre-initialized cGraphics object
// XPos, YPos, ZPos = coordinates of character to align with
cCamera Camera;

// Clear the display and Z-buffer to defaults
Graphics.Clear();

// Align camera (from a distance away and above position)
Camera.Point(XPos, YPos+50.0f, ZPos-500.0f, \

XPos, YPos, ZPos);
Graphics.SetCamera(&Camera);

You’re getting closer; you can now draw the level mesh.

Drawing the Level Mesh
A quick call to cObject::Render takes care of rendering the level mesh. As with all
calls to render a mesh, you must be sure to enclose the call in a cGraphics::BeginScene/
cGraphics::EndScene series of calls:

if(Graphics::BeginScene()==TRUE) {
LevelObj.Render();
Graphics::EndScene();

}

At this point, the level is rendered and all that’s left is drawing the 2-D tiles.

Drawing 2-D Objects
You are ready to draw the tiles onscreen in their appropriate locations. You do so by
looping through each object and drawing it to the display. Advanced game program-
mers can even use a viewing frustum to reject objects that don’t appear in the view.
The following example builds on the code in the preceding section by drawing one
object—the player character:

// Graphics = pre-initialized cGraphics object

// Begin the scene
if(Graphics::BeginScene()==TRUE) {

566 13. Mixing 2-D and 3-D Graphics Engines

// Draw the level mesh
LevelObj.Render();

// Enable transparent drawing
Graphics.EnableAlphaTesting(TRUE);

// Disable z-buffering
Graphics.EnableZBuffer(FALSE);

// Begin the sprite drawing features
Graphics.BeginSprite();

// Draw the player character object (64x64 tiles) based on
// its middle coordinate of the bottom of the tile.
// Since the camera is centered on the object, you can just
// draw the tile in the middle of the screen (offset by the
// tile size a bit). Notice that 640 and 480 represent the
// dimensions of the display.
Tiles.Blit(0,0,(640-64)/2,480/2-64,64,64);

// End the sprite drawing
Graphics.EndSprite();

// Disable alpha testing
Graphics.EnableAlphaTesting(FALSE);
// End scene drawing
Graphics::EndScene();

}

Moving in the 3-D World
A still picture has limited appeal, so you need to add a little motion to the demo—
the characters need to walk around, for example. Because your characters are
essentially represented by a set of 3-D coordinates and the level is really an ID3DXMesh
object, why not just use the ID3DXIntersect function to test for height changes and
character-to-wall intersections? In fact, why not use the intersection test functions?
There is no reason not to do both, so go ahead and call up the functions devel-
oped in Chapter 12, “Creating 3-D Graphics Engines.”

567Using 2-D Objects in a 3-D World

TIP
Using 2-D tiles has a drawback.They
don’t use Z-buffers (at least not if you’re
using the ID3DXSprite interface, as I am),
which means that you can’t just draw
them and expect them to mix correctly
with a 3-D scene. Once drawn, a 2-D tile
is fully visible until you draw something
over it (such as a polygon or another tile).

Adding 3-D Objects
to a 2-D World
With games such as Final Fantasy and Parasite Eve, both created by Square Co., Ltd.,
you can enjoy the beauty of pre-rendered background images while at the same
time, use 3-D models in the game. Mixing 2-D and 3-D graphics has been a highly
guarded secret of game companies, and it’s a secret that’s worth exposing.

If you haven’t seen the 3-D in 2-D graphics engines I’m talking about, take a look at
Figure 13.3, which shows the engine that comes on this book’s CD-ROM (look for
\BookCode\Chap13\3Din2D). The figure shows a static 2-D backdrop with a 3-D
object placed in it. The 3-D object moves around the backdrop, just as though the
image were 3-D.

568 13. Mixing 2-D and 3-D Graphics Engines

NOTE
Check out the complete 2Din3D sample program that
comes on the CD-ROM at the back of this book (look for
\BookCode\Chap13\2Din3D\) to see just how I added the inter-
section tests.You will also find some rudimentary movement
features.With this sample program, you can use the arrow
keys to move left and right throughout the level. Have fun!

Figure 13.3

A 3-D in 2-D graphics engine allows
for great looking 2-D backdrops while
using 3-D elements, such as the
character graphics.

TEAMFL
Y

Team-Fly®

Backdrops are represented by pre-rendered bitmaps drawn to the display for every
frame using the 2-D blitting techniques in Chapter 11. Specifically, a ID3DXSprite
object handles drawing the bitmap (which is loaded into an IDirect3DTexture8 object).
Using an ID3DXMesh object is perfect for the 3-D objects in the engine, not to mention
the Graphics Core cMesh and cObject classes that aid in loading and displaying those
3-D objects.

So, on one hand, you have a pre-rendered backdrop that is blitted to the screen
for every frame, and on the other hand, you have 3-D objects drawn in the scene.
Are things actually that easy? Not really—at least not at first glance.

How can you get 3-D depth information from a 2-D image? In fact, you can dupli-
cate the 3-D–object–on–2-D–image backdrop effect in a number of ways. Here are
some examples:

■ Create pre-rendered backdrops in a 3-D modeler such as Caligari’s trueSpace
or discreet’s 3D Studio Max and save the images along with the depth buffer
that contains the Z-values for each pixel. For each frame of the game, copy
the depth buffer of the image to the depth buffer of the back buffer and
continue by drawing the 3-D objects.

■ Create the backdrop in layers. Starting at the bottom layer, draw each image
in succession and draw the 3-D characters on the appropriate layer, thus allow-
ing succeeding layers to cover up portions of lower layers (and 3-D objects).

■ Use a highly detailed pre-rendered backdrop and a simplified version of the
mesh that you used to render the scene in the 3-D modeler. Use the mesh to
render out the Z-values and for collision detection. Three-dimensional
objects can then rely on the Z-buffer to handle drawing the right depth.

Here you have three viable ways to get 3-D depth information into a 2-D image.
Option number one, storing an image in a format that includes each pixel’s Z-value,
sounds great and using it would be the best method except that doing so is not pos-
sible at this time with DirectX. Even though DirectX Graphics provides minimal
functions to lock the depth buffer and manipulate it (note that DirectX doesn’t
allow blitting to the depth buffer), you have no guarantee that every video card
supports the depth buffer locking mechanism. In addition, manually locking and
unlocking the depth buffer in each frame puts a major demand on the system.

Option number two is to draw the backdrop in layers. This option is in many ways
the easiest one to use. By separating sections of the backdrop, you can draw them
in order, adding the 3-D objects as needed for each layer. If your backdrops don’t
include real areas that will cover up the 3-D objects, you can just draw the layers all
at once and then draw the 3-D objects.

569Adding 3-D Objects to a 2-D World

Last is option three, utilizing a simplified version of the mesh used to render the
backdrop for creating Z-values of each pixel, which is the option I use in this book.
Because the scenes will be pre-rendered in a 3-D modeler, you can take a simplified
version of the scene mesh and use it to fill the Z-buffer for every frame, blit the
backdrop image, and continue by drawing the 3-D objects onscreen. In addition,
you can reuse the mesh for collision detection (and for determining height, as you
do in Chapter 12 when using the NodeTree engine).

You’re now ready to start constructing a 3Din2D demo; you begin by obtaining the
backdrop image and mesh with which you will work.

Dealing with 2-D Backdrops
As I mentioned in the previous section, you develop 2-D backdrops by means of a 3-D
modeling program such as trueSpace (and not a painting program—because you
need the polygon data from the modeler). Figure 13.4 exemplifies a simple mesh
and final render.

When designing your scene, you can go crazy with the details because the only thing
you really want is the final rendered image (although polygons that cover portions
of the view become a bit tricky, as you see in the upcoming section, “Dealing with
the Scene Mesh”). For now, just remember the exact location and orientation of the
camera that you use to render the scene (it’ll come in handy later).

570 13. Mixing 2-D and 3-D Graphics Engines

Figure 13.4

A mesh you create in a 3-D
modeler is rendered out as
the backdrop.

Once the scene that you’re modeling is rendered, you need to save it on a disk as a
bitmap file. That bitmap file needs to be split up into smaller textures. Figure 13.5
shows the sample backdrop again, this time divided into six small rectangular chunks
(textures).

You need to split the backdrop image in Figure 13.5 into multiple textures that
Direct3D can handle. In this case, the backdrop image is 640 × 480, so the textures
are 256 × 256 (for chunks 1, 2, 4, and 5) and 128 × 256 (for chunks 3 and 6). Notice
that if a chunk is not large enough, you need to expand it to match the correct tex-
ture size (for example, chunks 4–6 need to be expanded in height to 256 pixels).

As you split the bitmap image into six
chunks, save each chunk to its own
bitmap file. You later load the six bitmap
files into a Graphics Core cTexture object,
which is used to render the chunks to the
display. Assuming that the chunks are
numbered 1–6 and prefixed with the
filename Scene, you can do the following
to load the textures:

// Graphics = pre-initialized cGraphics object
char Filename[81]; // Filename of texture to load

571Adding 3-D Objects to a 2-D World

Figure 13.5

The backdrops are
split into six smaller
rectangular chunks.

NOTE
If you’re feeling brave, try creating a
class that will load any size bitmap
and divide it into chunks.This way,
you don’t have to mess with paint
programs to cut up the image,
which will make it easier to load in
bitmaps of different resolutions.

cTexture Textures[6]; // Objects to holds textures

for(short i=0;i<6;i++) {
// Construct the filename of the texture
sprintf(Filename, “Scene%u.bmp”, i+1);

// Load the texture
Textures[i].Load(&Graphics, Filename);

}

Once you load each of the six chunks in their respective texture objects, you can
utilize the cTexture::Blit function to draw them to the screen. You find out how to
do that in the section “Rendering the Scene,” later in this chapter, but first focus
your attention on the scene mesh.

Dealing with the Scene Mesh
Your detailed level looks great, and now you want to include some 3-D objects in it.
First, though, you need to construct a simplified version of your scene, which you will
use in two ways—to fill in the depth buffer for every frame so that 3-D objects blend
correctly with the 2-D backdrop and as a collision mesh for movement of objects.

When I say simplified, I mean really simplified. Because the mesh must be rendered
out for every frame in order to create the Z-values in the scene, the fewer polygons
you use the better. However, you must use enough polygons to make sure that the
3-D objects blend in correctly. To see what I’m talking about, look at Figure 13.6,
which shows the final rendered image, the actual scene mesh, and the simplified
scene mesh.

Earlier, I mentioned that you use
just the right number of poly-
gons to render the scene. If
there are too many polygons,
your engine slows down; if you
have too few, you get graphi-
cal errors when playing your
game. Think about it like this:
A sphere mesh that uses 500
polygons is obviously too com-
plex to use as a simplified
mesh. In a simplified mesh,

572 13. Mixing 2-D and 3-D Graphics Engines

TIP
When dealing with a simplified mesh, use only
two materials (no textures).The first material
represents the polygon areas that were actually
drawn in the backdrop, whereas the second
material hides polygons that are used in inter-
section tests.The second material, therefore,
uses an alpha value of 0.0 (meaning that it’s
invisible and actually not rendered).

you need only enough polygons to represent the sphere and to make sure that it
covers the same area on the screen when rendered. Figure 13.7 illustrates a com-
mon mistake when creating simplified meshes—that is, using far too few polygons.

573Adding 3-D Objects to a 2-D World

Figure 13.6

The rendered image
used as the backdrop
(left).The actual mesh
used to render the
backdrop in the 3-D
modeler (center).The
simplified mesh used
for Z-buffering and
intersection tests (right).

Figure 13.7

The mesh on the left has
numerous polygons and can
be used to render the
backdrop.The simplified
mesh on the right doesn’t
have enough polygons to
match the original mesh, so
3-D objects will incorrectly
overwrite the excluded pixels.

TIP
To cut back on the number of polygons in the simplified mesh, cut out the
faces that will never be seen or used in intersection tests. Also, you draw
only polygons that are actually going to cover up 3-D objects. For example,
if you have a box in the background that the player’s character is never
going to get near, don’t draw it in the simplified mesh.The 3Din2D demo
(located in \BookCode\Chap13\3din2d) that is on the CD-ROM that comes
with this book demonstrates using simplified meshes and 3-D objects to
good effect because only one object in the foreground needs to be rendered.

Okay, you’ve done the
hard work and created
your simplified scene
mesh. The simplified
mesh needs to make its
way into your engine, so
go ahead and convert it
into an .X file. I export
the mesh as a .3DS file
(compatible with many
modeling programs) and
then use the Microsoft
.X conversion utility
(conv3ds.exe) that comes
with the DirectX 8 SDK.

Once you convert the .3DS
file (or any other mesh file) to an .X file, you can utilize the cMesh and cObject
classes to make it easier to load the simplified mesh:

// Graphics = pre-initialized cGraphics object
cMesh SceneMesh; // Contains mesh info
cObject SceneObj; // Used to render mesh

SceneMesh.Load(&Graphics, “Scene.x”);
SceneObj.Create(&Graphics, &SceneMesh);

Rendering the Scene
You now have completed the last step required for ensuring that the backdrop
image is capable of containing depth information (via the simplified mesh). If you
load the backdrop images and simplified mesh, you can easily render a frame of
your game by following these steps:

1. Clear the Z-buffer to 1.0 (and ensure that Z-buffering is enabled).

2. Render the simplified mesh (thus filling in the scene Z-buffer), skipping
polygons that have a value of 0.0 (which signifies that they are invisible).

3. Disable the Z-buffer.

4. Blit out the backdrop textures using ID3DXSprite.

5. Enable the Z-buffer.

574 13. Mixing 2-D and 3-D Graphics Engines

TIP
Using conv3ds.exe to convert from a .3DS file to an
.X file is as easy as using the following commands
at a DOS prompt:

conv3ds -mx filename.3ds

The preceding DOS command will convert the mesh
file from filename.3ds to filename.x.This .X file con-
tains a single mesh (all meshes combined into one)
that is saved in text format.At this point, you can cut
out all the mesh normal and texture-mapping data
(that information isn’t used) from the .X file to save
space.You really need only the mesh vertices, faces,
materials, and mesh material list templates.

Because you have
already loaded the
backdrop image as a
series of six textures
and you now have a
simplified mesh
loaded and ready to
use, get a jump on
things and look at
some code that ren-
ders the scene for you:

// Graphics = pre-initialized cGraphics object
// Textures[6] = pre-loaded scene textures
// SceneObj = Scene mesh object (cObject)

// Clear the z-buffer and begin the scene
Graphics.ClearZBuffer();
if(Graphics.BeginScene() == TRUE) {

// Render simplified mesh for z-values
Graphics.EnableZBuffer(TRUE);
SceneObj.Render();

// Draw the backdrop (composed of six textures)
Graphics.EnableZBuffer(FALSE); // Disable z-buffering
Graphics.BeginSprite();
for(long i=0;i<2;i++) {

for(long j=0;j<3;j++)
Textures[i*3+j].Blit(j*256,i*256);

}
Graphics.EndSprite();

// End the scene
Graphics.EndScene();

}

// Display the scene
Graphics.Display();

575Adding 3-D Objects to a 2-D World

CAUTION
You need to do a few things before you can render
the scene, such as creating and orienting a camera to
match the camera that rendered the backdrop image.

You also need to match the perspective projection used
in the modeling program when the backdrop image was
rendered. If you’re using 3D Studio Max, this is typically
34.516 degrees (or 0.6021124 radians). Last, be sure to
match the aspect ratio, which is typically 1.333333.

That’s it for the backdrops. To recap: You first drew the simplified mesh (in order
to set the appropriate scene Z-buffer values), and then you filled the screen with
the backdrop image. Next comes the best part—adding 3-D objects to the scene!

Adding 3-D Objects
After drawing the backdrop, nothing holds you back from drawing 3-D objects
(meshes) in the scene—because the Z-buffer contains all the depth values for each
relevant pixel. Don’t be shy. Draw the characters, objects, and even enhancements
to the background image. For example, use 3-D objects for the doors; they can
open, close, and block the path of movement. Nothing is sacred here, so have fun!

Collisions and Intersections
Now comes the point where the 3-D objects must know where they collide with
the backdrop. If you need to brush up on how to detect mesh intersections, before
continuing, refer to Chapter 12. All you want to do at this point is make sure that
your characters don’t walk through walls and determine the height in which to
draw them at any point in the scene.

If you read the 3Din2D project source code referred to earlier in this chapter, you
realize that I borrowed the intersection code from Chapter 12. In the 3Din2D demo,
I strive to keep the character from walking through walls, and I allow him to move up
and down the stairs. I’ll leave it up to you to perfect the movement routines.

Wrapping Up Mixed Engines
I really enjoyed writing this chapter, and I hope you enjoyed reading it. The real
secret behind terrific graphics engines such as those from Final Fantasy 7 is that
there really is no secret. As you learned in this chapter, using the simple graphics
techniques presented in this book, you can come up with some cool stuff. Just keep
your mind open to the possibilities, and the ideas will start flowing.

Advanced readers can expand the 3Din2D sample by adding animation to the tex-
tures (using DirectShow, a DirectX multimedia component) and to the simplified
mesh. Adding animation will bring the engine up to par with newer games such as
Final Fantasy 10. As for the 2Din3D example, you can use the cNodeTreeMesh object
developed in Chapter 12 to optimize rendering of the level and to let the player’s
character move around in complete 3-D freedom, rather than along the X- and Y-axes.

576 13. Mixing 2-D and 3-D Graphics Engines

577Wrapping Up Mixed Engines

Programs on the CD-ROM

Programs that demonstrate the code discussed in this chapter are
located on the CD-ROM at the back of this book.You can find the
following programs in the \BookCode\Chap13\ directory:

◆ 2Din3D. A program that demonstrates using 2-D objects
in a 3-D world. Location: \BookCode\Chap13\2Din3D\.

◆ 3Din2D. On the flip side, this program shows how to use
3-D objects in a 2-D world (ala Final Fantasy 7-9).
Location: \BookCode\Chap13\3Din2D\.

This page intentionally left blank

TEAMFL
Y

Team-Fly®

CHAPTER 14

Implementing
Scripts

When creating projects as large as role-playing games, you will find it difficult
(and foolhardy) to program game-related information in your source code.

Your best course is to use external sources (that resemble programming code)
called scripts for gaming data such as dialogue. In this way, you can control the flow
of your game and save time because you don’t have to recompile the project every
time you make a change. In this chapter, you learn how to create and use a basic
scripting system.

In this chapter, you do the following:

■ Learn about scripts
■ Create your own scripting system
■ Use the scripting system
■ Apply scripts to your game

Understanding Scripts
When creating a game, you use scripts in much the same way that movie producers
use scripts —to control every aspect of your “production.” Game scripts are similar
to the program code you write when creating your game, except that game scripts
are external to the gaming engine. Because they are external, you can make quick
changes to a script without having to recompile the entire game engine. Imagine
having a project with more than one million lines of code and having to recompile
the entire project just to change a single line of dialogue!

Scripts are not really difficult to work with, and just about every aspect of your
game can benefit from the use of scripts. You can use scripts when navigating
menus, controlling combat, handling a player’s inventory, and so much more. For
example, when developing a game, imagine that you want to present users in com-
bat with a list of magic spells that they regularly use for attack. Say that over the
course of developing the game, you decide to change some of those spells. If that
spell information is hard-coded, you have a major problem; you must change every
instance of the program code that controls the spell, not to mention having to
debug and test that code until it’s perfect. Why devote so much time on changes
such as this one?

580 14. Implementing Scripts

Instead, you can write the code for magic spells and their respective effects on the
game denizens in several small scripts. Whenever combat commences, these scripts
are loaded and the selection of magic spells shown. Once a magic spell is cast, a
script processes the effects—from the damage done to the movement and anima-
tion of the spell’s graphics.

For this book, I was torn between using two different types of scripting systems.
One script system involves the use of a language much like C++. You type com-
mands into a script file, compile the file, and execute the compiled script file from
within your game. The second script system is an extremely simplified version of
the first. Rather than allowing you to type the commands into a file, the system
enables you to create scripts by selecting the commands from a predetermined set
of commands.

Because I want to get you up and running with your scripting engine as quickly
as possible, I opted to use the second script system. This system, which I call the
Mad Lib Scripting system, works by using a set of predetermined commands, called
actions, each of which has an associated game function. Take, for example, the
actions in Table 14.1—each action has a specific function to perform.

With such a limited set of actions, you really don’t need the power of complex
compiled script languages; instead, you need the ability to tell the script system
which action to use and what options the action should use to perform the gaming
function. The great thing about this method is that instead of spouting out lines of
code to specify a simple action, you reference the action and options by number.

For example, say that the Play Sound action is considered action number four, and
the action requires only one entry, the sound number to play. There are only two

581Understanding Scripts

Table 14.1 Example Command Actions

Action Function

Print Prints a line of text to the screen.

End Ends script processing.

Move Character Moves the specified character in a specific direction.

Play Sound Plays a specific sound effect.

values to store in the script: one number for the action and one number that repre-
sents the sound. Using values to represent actions (instead of text) makes process-
ing these types of scripts quick and easy.

Creating a Mad
Lib Script System
As I mentioned in the preceding section, I refer to my recommended scripting sys-
tem as the Mad Lib Script system (or MLS for short) because it closely resembles
the old pen-and-paper game of the same name. In Mad Libs (which is founded on
the perfect concept for a basic scripting system), you receive a story that is missing
numerous words, and your job is to fill in the blanks with hilarious text. While your
game’s actions represent something other than funny quotes, the idea is perfect for
your needs.

In this section, I introduce the concepts of creating a Mad Lib Script system, from
developing the actions you use in your scripts to creating a script system (complete
with a script editor) that you can insert into your game project.

Designing the Mad
Lib Script System
Implementing your own MLS system is easy enough; just create the actions that you
want in your game, complete with the blank spots (called entries) that need to be
filled in by the person creating or editing the scripts. For each action, be sure to
provide a list of choices for filling in the blank entries, which can vary in type from
a line of text to a numerical value.

You number the actions and the blank entries so that the scripting system can ref-
erence them, as illustrated in the following example lists of actions:

1. Character (*NAME*) takes (*NUMBER*) damage.

2. Print (*TEXT*).

3. Play sound effect titled (*SOUND_NAME*).

4. Play music titled (*MUSIC_NAME*).

5. Create object (*OBJECT_NAME*) at coordinates (*XPOS*),(*YPOS*).

6. End script processing.

582 14. Implementing Scripts

Each of the six actions has either zero or more blank entries enclosed within paren-
theses. Each of the blank entries holds either a text string or a number. This list of
actions and possible entries (with the type of entry) is called an action template (see
Figure 14.1 for an example).

Once action templates are in use, you can refer to actions by their numbers rather
than by the actions’ text (which exists only to make it easier for users to under-
stand which function each action per-
forms). For example, from now on, I can
say that I want to implement action #4
using title.mid in the first blank entry.
When you execute the script, the script
system will see the number 4 (action #4)
and know that it has only one entry—
the filename of the song that you want
to load and play.

I trust that you are beginning to see the
ease with which you can use this system.
Now, I will forgo any more theory so that
you can jump right into programming
your own MLS system.

583Creating a Mad Lib Script System

Action Template

Action Print *Text*

Entries Text String

Action Move *character* *number*

Main Character

NPC

Nobody

Entries Enter Value

Units Up.

Figure 14.1

An action template is divided
into multiple actions, which in
turn are split into entries.

NOTE
The MLS scripting system will
work for 90 percent of your game.
For example, take a look at the
PlayStation console in the game
RPG Maker (by Agetec, Inc.). In RPG
Maker, you can create your own
role-playing games, working off an
MLS-type system such as the one
I just described; believe me, you can
create complex scripts in this game.

Programming the
Mad Lib Script System
In order to make your MLS system as powerful as possible, you need to design it so
that it supports multiple action templates, with each action template containing an
unlimited number of actions. In this way, you can reuse the system for just about
any project your heart desires.

To make writing the scripts easier, utilize a script editor program (such as the one
you see in the later section, “Working with the MLS Editor”) with an action tem-
plate that enables you to quickly piece together actions and change the blank
entries for each action. When a script is complete, you can read the script file into
your engine and process each individual action, using the specific entries for each
action that was entered via the script editor.

The first order of business is to work with the action templates.

Working with Action Templates
An action template needs to contain a list of actions, complete with text, number
of entries, and each entry’s data. Recall that each action is numbered by its index
within a list, with each blank entry in each action numbered as well. You assign
each entry a type (text, integer number, float number, Boolean value, or multiple
choice). You also number types, as follows:

0. No entry type

1. Text entry

2. Boolean value

3. Integer number

4. Float number

5. Multiple choice (a choice from a list of text selections)

Each entry type has unique characteristics; strings can be of variable size, numbers
can be between any range of two numbers, and Boolean values can either be TRUE
or FALSE. As for multiple choices, each choice has its own text string (the scripts are
given a choice from a list, and the index number of the selected choice is used
rather than the text).

A sample action might then take this form:

Action #1: Spell targets (*MULTIPLE_CHOICE*).

584 14. Implementing Scripts

Possible choices for blank entry #1:
1. Player character
2. Spell caster
3. Spell target
4. Nobody

Imagine that you are using the preceding action and instructing it to use choice #3
as the target. You instruct the script engine to use action #1 with choice #3 for the
first blank spot (which is a multiple-choice entry). Using numbers to represent the
actions and entries means that the script processor doesn’t have to deal directly
with code text, which makes processing the scripts easier.

To contain the actions and entries, I’ve come up with the following structures,
which are heavily commented so that you can follow along:

// Type of entries (for blank entries)
enum Types { _NONE = 0, _TEXT, _BOOL, _INT, _FLOAT, _CHOICE };

// Structure to store information about a single blank entry
typedef struct sEntry {

long Type; // Type of blank entry (_TEXT, etc.)

// The following two unions contain the various
// information about a single blank entry, from
// the min/max values (for int and float values),
// and the number of choices in a multiple choice entry.
// Text and Boolean entries do not need such info.
union {

long NumChoices; // # of choices in list
long lMin; // long min. value
float fMin; // float min. value

};
union {

long lMax; // long max. value
float fMax; // float max. value
char **Choices; // text array for each choice

};

// Structure constructor to clear to default values
sEntry()
{

Type = _NONE;
NumChoices = 0;

585Creating a Mad Lib Script System

Choices = NULL;
}

// Structure destructor to clean up used resources
~sEntry()
{

// Special case for choice types
if(Type == _CHOICE) {

if(NumChoices) {
for(long i=0;i<NumChoices;i++)

delete [] Choices[i]; // Delete choice text
}
delete [] Choices; // Delete choice array

}
}

} sEntry;

// Structure that stores a single action and contains
// a pointer for using linked lists.
typedef struct sAction {

long ID; // Action ID (0 to # actions-1)
char Text[256]; // Action text
short NumEntries; // # of entries in action
sEntry *Entries; // Array of entry structures
sAction *Next; // Next action in linked list

sAction()
{

ID = 0; // Set all data to defaults
Text[0] = 0;
NumEntries = 0;
Entries = NULL;
Next = NULL;

}

~sAction()
{

delete [] Entries; // Free entries array
delete Next; // Delete next in list

}
} sAction;

586 14. Implementing Scripts

You use the two preceding structures, sEntry and sAction, in conjunction to store
the action text as well as the type of each entry. For entries, you select from the
enumerated list type (as described earlier in this section). The sEntry structure also
holds the rules for each entry type (using the two unions).

Because text entries are only buffers of characters, you have no rules to follow for
using text entry types. The same goes for Boolean values because they can be only
TRUE or FALSE. Integer and float values need a minimum and maximum range of
acceptable values (hence, the min/max variables). There are a number of multiple
choices and an array of char buffers that holds the text for each choice.

sAction holds the action ID (the action number from the list of actions), the action
text, and an array of entries to use for the action. To determine the number of
entries in the action (as well as each type), you need to encrypt the action text a
bit. To insert an action into the action text, use a tilde (~) character, as shown here:

Player ~ gains ~ hit points

The two tildes represent two entries. More information is needed about each entry,
but how do you obtain information from only two tilde characters? You can’t, so
you must access the storage format of the action templates to determine what addi-
tional information is required for each action.

Action templates are stored as text files, with each action’s text enclosed within
quotes. Each action that contains entries (marked as tildes in the text) is followed
by a list of entry data. Each entry begins with a word that describes the type of
entry (TEXT, BOOL, INT, FLOAT, or CHOICE). Depending on the entry type, further infor-
mation might follow.

No more information is needed for TEXT. The same goes for BOOL types. As for INT
and FLOAT, a minimum value and a maximum value are required. At last, the CHOICE
entry is followed by the number of choices to select from and then by each choice’s
text (enclosed in quotes).

After you define each entry, you can go on to the next action text. The following
example action template file demonstrates each entry type:

“Print ~”
TEXT

“Move character to ~, ~, ~”
FLOAT 0.0 2048.0
FLOAT 0.0 2048.0
FLOAT 0.0 2048.0

587Creating a Mad Lib Script System

“Character ~ ~ ~ ~ points”
CHOICE 3

“Main Character”
“Caster”
“Target”

CHOICE 2
“Gains”
“Losses”

INT 0 128
CHOICE 2

“Hit”
“Magic”

“Set variable ~ to ~”
INT 0 65535
BOOL

“End Script”

Because the action template doesn’t allow comments, I’ll explain the actions and
entries. The first action (Print ~) prints a single text string (using the first entry in
the action, entry 0). The second action takes three float values, each ranging from
0 to 2,048. The third action gives three multiple-choice options as well as an inte-
ger value that can range from 0 to 128. Action four demonstrates integer values
again, as well as a single Boolean value. Last is action five, which takes no entries.

Loading the action template is a matter of processing a text file and setting up the
appropriate structures, which consists of doing string comparisons on words loaded
and storing text lines within quotes. This is really an easy process, and in the section,
“Putting Together the cActionTemplate Class,” you find out exactly how it is done.

The next step is to use the action templates in conjunction with another structure
that stores the entry data (which text to display, what number or choice was
selected, and so on), which is the purpose of the script entries.

Creating Script Entries
Because the sEntry structure contains only the template (guidelines) of the actions
and entries, you need another array of structures to store the data for each entry.
These new structures include what text to use in a text entry, which Boolean value
to use, and which multiple-choice selection to use. This new structure that contains
an entry’s data is sScriptEntry, and is defined as follows:

588 14. Implementing Scripts

TEAMFL
Y

Team-Fly®

typedef struct sScriptEntry
{

long Type; // Type of entry (_TEXT, _BOOL, etc.)

union {
long IOValue; // Used for saving/loading
long Length; // Length of text (w/ 0 terminator)
long Selection; // Selection in choice
BOOL bValue; // BOOL value
long lValue; // long value
float fValue; // float value

};
char *Text; // Text buffer

sScriptEntry()
{

Type = _NONE; // Clear to default values
IOValue = 0;
Text = NULL;

}

~sScriptEntry() { delete [] Text; } // Delete text buffer
} sScriptEntry;

Much like sEntry, the sScriptEntry holds the actual values to use for each blank
entry in the action. Here, you see Type again. It describes the type of entry (_TEXT,
_BOOL, and so on). The single union of variables is where the good stuff is, including
one variable for the length of the text, one for the multiple choice selection, and
one for the integer and float values and the Boolean value.

Take note of two things about sScriptEntry. First, a character pointer is outside the
union (because both Length and Text are used to store text data); second, an addi-
tional variable called IOValue is included in the union. You use IOValue to access the
union variables to save and load the entry data.

To demonstrate how to store each action’s entry data into an sScriptEntry structure
(or structures if there is more than one entry), review the following action:

“~ player’s health by ~”
CHOICE 2

“Increase”
“Decrease”

INT 0 65535

589Creating a Mad Lib Script System

Depending on multiple choice selection, the preceding action either increases or
decreases the player’s health by a set amount ranging from 0 to 65535. Because there
are two entries (a multiple choice and an integer), you need two sScriptEntry structures:

sScriptEntry Entries;

// Configure multiple choice - set to first choice
Entries[0].Type = _CHOICE;
Entries[0].Selection = 0; // Increase

// Configure integer - set to 128
Entries[1].Type = _INT;
Entries[1].lValue = 128;

When dealing with the script entries, the most difficult part crops up when many
entries are in a complete script. Each action in the script requires a matching
sEntry structure, which in turn might contain a number of sScriptEntry structures.
Before you know it, you can become knee-deep in structures—talk about a mess!
To better handle a script’s structures, you need another structure that tracks each
entry that belongs to the script actions:

typedef struct sScript
{

long Type; // 0 to (number of actions-1)
long NumEntries; // # entries in this script action
sScriptEntry *Entries; // Array of entries

sScript *Prev; // Prev in linked list
sScript *Next; // Next in linked list

sScript()
{

Type = 0; // Clear to defaults
NumEntries = 0;
Entries = NULL;
Prev = Next = NULL;

}

~sScript()
{

delete [] Entries; // Delete entry array
delete Next; // Delete next in linked list

}
} sScript;

590 14. Implementing Scripts

You use the sScript structure to contain a single action, as well as maintain a linked
list of further sScript structures that constitutes an entire script. The Type variable
can range from zero to the number of actions in the action template minus one. If
you have ten actions in the action template, Type can range from zero to nine.

To make processing easier, store the number of entries in the NumEntries variable.
The value in NumEntries must match the number-of-entries variable in the action
template. From there, allocate an array of sScriptEntry structures to store the data
for each entry in the action template. If two entries are in the associated action,
you need to allocate two sScriptEntry structures.

Lastly, there are the two pointer variables, Prev and Next, in sScript. These two point-
ers maintain a linked list of the entire script. To construct a linked list of sScript
structures (much as illustrated in Figure 14.2), start with a root structure that rep-
resents the first action in the script. You then link sScript structures via the Next and
Prev variables, as shown here:

sScript *ScriptRoot = new sScript();
sScript *ScriptPtr = new sScript;
ScriptRoot->Next = ScriptPtr; // Point to second action
ScriptPtr->Prev = ScriptRoot; // Point back to root

At this point, you can start at the root of the script and traverse down the entire
script with the following code:

void TraverseScript(sScript *pScript)
{

while(pScript != NULL) { // loop until no more script actions
// Do something with pScript
// pScript->Type holds the script action ID
pScript = pScript->Next; // Go to next script action

}
}

591Creating a Mad Lib Script System

Script Structure

Prev. Next

Entries[];

Script Structure

Prev. Next

Entries[];

Script Structure

Prev. Next

Entries[];

Figure 14.2

A script-action linked
list uses Prev and
Next variables to link
the entire script. Each
script action has it own
array of script entries.

You can also quickly load and save scripts by using linked lists, as illustrated in the
following two functions:

BOOL SaveScript(char *Filename, sScript *ScriptRoot)
{

FILE *fp;
long i, j, NumActions;
char Text[256];
sScript *ScriptPtr;

// Make sure there’s some script actions
if((ScriptPtr = ScriptRoot) == NULL)

return FALSE;

// Count the number of actions
NumActions = 0;
while(ScriptPtr != NULL) {

NumActions++; // Increase count
ScriptPtr = ScriptPtr->Next; // Next action

}

// Open the file for output
if((fp=fopen(Filename, “wb”))==NULL)

return FALSE; // return a failure

// Output # of script actions
fwrite(&NumActions, 1, sizeof(long), fp);

// Loop through each script action
ScriptPtr = ScriptRoot;
for(i=0;i<NumActions;i++) {

// Output type of action and # of entries
fwrite(&ScriptPtr->Type, 1, sizeof(long), fp);
fwrite(&ScriptPtr->NumEntries, 1, sizeof(long), fp);

// Output entry data (if any)
if(ScriptPtr->NumEntries) {

for(j=0;j<ScriptPtr->NumEntries;j++) {

// Write entry type and data

592 14. Implementing Scripts

fwrite(&ScriptPtr->Entries[j].Type, 1,sizeof(long), fp);
fwrite(&ScriptPtr->Entries[j].IOValue,1,sizeof(long),fp);

// Write text entry (if any)
if(ScriptPtr->Entries[j].Type == _TEXT && \

ScriptPtr->Entries[j].Text != NULL)
fwrite(ScriptPtr->Entries[j].Text, 1, \

ScriptPtr->Entries[j].Length, fp);
}

}

// Go to next script structure in linked list
ScriptPtr = ScriptPtr->Next;

}

fclose(fp);

return TRUE; // return a success!
}

sScript *LoadScript(char *Filename, long *NumActions)
{

FILE *fp;
long i, j, Num;
char Text[2048];
sScript *ScriptRoot, *Script, *ScriptPtr = NULL;

// Open the file for input
if((fp=fopen(Filename, “rb”))==NULL)

return NULL;

// Get # of script actions from file
fread(&Num, 1, sizeof(long), fp);

// Store number of actions in user supplied variable
if(NumActions != NULL) *NumActions = Num;

// Loop through each script action
for(i=0;i<Num;i++) {

// Allocate a script structure and link in

593Creating a Mad Lib Script System

Script = new sScript();
if(ScriptPtr == NULL)

ScriptRoot = Script; // Assign root
else

ScriptPtr->Next = Script;
ScriptPtr = Script;

// Get type of action and # of entries
fread(&Script->Type, 1, sizeof(long), fp);
fread(&Script->NumEntries, 1, sizeof(long), fp);

// Get entry data (if any)
if(Script->NumEntries) {

// Allocate entry array
Script->Entries = new sScriptEntry[Script->NumEntries]();

// Load in each entry
for(j=0;j<Script->NumEntries;j++) {

// Get entry type and data
fread(&Script->Entries[j].Type, 1, sizeof(long), fp);
fread(&Script->Entries[j].IOValue, 1, sizeof(long), fp);

// Get text (if any)
if(Script->Entries[j].Type == _TEXT && \

Script->Entries[j].Length) {
// Allocate a buffer and get string
Script->Entries[j].Text = \

new char[Script->Entries[j].Length];
fread(Script->Entries[j].Text, 1, \

Script->Entries[j].Length, fp);
}

}
}

}

fclose(fp);

return ScriptRoot;
}

594 14. Implementing Scripts

Given the root script structure in a linked list, SaveScript will output each script
structure’s data, which includes the action number, the number of entries to follow,
the entry data, and the optional text of a text entry. The entire linked list of sScript
structure is written to the file.

The LoadScript function opens the script file in question and builds a linked list of
sScript structures from the data it loads. sScriptEntry structures are allocated on-the-
fly, as well as the sScript structures that construct the linked list. When complete,
the LoadFile function sets NumActions to the number of script actions loaded and
returns a pointer to the root script structure.

Putting Together the
cActionTemplate Class
You now understand the structure used for action templates and for containing the
script data. Now, it’s time to put them all together in order to create a working class
that loads and processes scripts:

class cActionTemplate {
private:

long m_NumActions; // # of actions in template
sAction *m_ActionParent; // list of template actions

// Functions for reading text (mainly used in actions)
BOOL GetNextQuotedLine(char *Data, FILE *fp, long MaxSize);
BOOL GetNextWord(char *Data, FILE *fp, long MaxSize);

public:
cActionTemplate();
~cActionTemplate();

// Load and free an action template
BOOL Load(char *Filename);
BOOL Free();

// Get # actions in template, action parent,
// and specific action structure.
long GetNumActions();
sAction *GetActionParent();
sAction *GetAction(long Num);

// Get a specific type of sScript structure

595Creating a Mad Lib Script System

sScript *CreateScriptAction(long Type);

// Get info about actions and entries
long GetNumEntries(long ActionNum);
sEntry *GetEntry(long ActionNum, long EntryNum);

// Expand action text using min/first/TRUE choice values
BOOL ExpandDefaultActionText(char *Buffer, sAction *Action);

// Expand action text using selections
BOOL ExpandActionText(char *Buffer, sScript *Script);

};

The only functions in this code that you haven’t seen in this chapter are
GetNextQuotedLine and GetNextWord. The GetNextQuotedLine function scans the file in
question for a line of text enclosed within quotes, while the GetNextWord function
reads in the next text word from a file. Both functions take a pointer to a data
buffer in which to store the text, the file access pointer, and the maximum size
of the data buffer (to avoid overflow):

BOOL cActionTemplate::GetNextQuotedLine(char *Data, \
FILE *fp, long MaxSize)

{
int c;
long Pos = 0;

// Read until a quote is reached (or EOF)
while(1) {

if((c = fgetc(fp)) == EOF)
return FALSE;

if(c == ‘“‘) {
// Read until next quote (or EOF)
while(1) {

if((c = fgetc(fp)) == EOF)
return FALSE;

// Return text when 2nd quote found
if(c == ‘“‘) {

Data[Pos] = 0;
return TRUE;

}

596 14. Implementing Scripts

// Add acceptable text to line
if(c != 0x0a && c != 0x0d) {

if(Pos < MaxSize-1)
Data[Pos++] = c;

}
}

}
}

}

BOOL cActionTemplate::GetNextWord(char *Data, FILE *fp, \
long MaxSize)

{
int c;
long Pos = 0;

// Reset word to empty
Data[0] = 0;

// Read until an acceptable character found
while(1) {

if((c = fgetc(fp)) == EOF) {
Data[0] = 0;
return FALSE;

}

// Check for start of word
if(c != 32 && c != 0x0a && c != 0x0d) {

Data[Pos++] = c;

// Loop until end of word (or EOF)
while((c=fgetc(fp)) != EOF) {

// Break on acceptable word separators
if(c == 32 || c == 0x0a || c == 0x0d)

break;

// Add if enough room left
if(Pos < MaxSize-1)

Data[Pos++] = c;
}

597Creating a Mad Lib Script System

// Add end of line to text
Data[Pos] = 0;

return TRUE;
}

}
}

Using the GetNextQuotedLine and GetNextWord functions, you can scan input files for
text that describes the actions, which is the purpose of the cActionTemplate::Load
function:

BOOL cActionTemplate::Load(char *Filename)
{

FILE *fp;
char Text[2048];
sAction *Action, *ActionPtr = NULL;
sEntry *Entry;
long i, j;

// Free previous action structures
Free();

// Open the action file
if((fp=fopen(Filename, “rb”))==NULL)

return FALSE;

// Keep looping until end of file found
while(1) {

// Get next quoted action
if(GetNextQuotedLine(Text, fp, 2048) == FALSE)

break;

// Quit if no action text
if(!Text[0])

break;

// Allocate an action structure and append it to list
Action = new sAction();
Action->Next = NULL;
if(ActionPtr == NULL)

m_ActionParent = Action;

598 14. Implementing Scripts

TEAMFL
Y

Team-Fly®

else
ActionPtr->Next = Action;

ActionPtr = Action;

// Copy action text
strcpy(Action->Text, Text);

// Store action ID
Action->ID = m_NumActions;

// Increase the number of actions loaded
m_NumActions++;

// Count the number of entries in the action
for(i=0;i<(long)strlen(Text);i++) {

if(Text[i] == ‘~’)
Action->NumEntries++;

}

// Allocate and read in entries (if any)
if(Action->NumEntries) {

Action->Entries = new sEntry[Action->NumEntries]();
for(i=0;i<Action->NumEntries;i++) {

Entry = &Action->Entries[i];

// Get type of entry
GetNextWord(Text, fp, 2048);

// TEXT type, no data follows
if(!stricmp(Text, “TEXT”)) {

// Set to text type
Entry->Type = _TEXT;

} else

// INT type, get min and max values
if(!stricmp(Text, “INT”)) {

// Set to INT type and allocate INT entry
Entry->Type = _INT;

// Get min value
GetNextWord(Text, fp, 2048);

599Creating a Mad Lib Script System

Entry->lMin = atol(Text);

// Get max value
GetNextWord(Text, fp, 2048);
Entry->lMax = atol(Text);

} else

// FLOAT type, get min and max values
if(!stricmp(Text, “FLOAT”)) {

// Set to FLOAT type and allocate FLOAT entry
Entry->Type = _FLOAT;

// Get min value
GetNextWord(Text, fp, 2048);
Entry->fMin = (float)atof(Text);

// Get max value
GetNextWord(Text, fp, 2048);
Entry->fMax = (float)atof(Text);

} else

// BOOL type, no options
if(!stricmp(Text, “BOOL”)) {

// Set to BOOL type and allocate BOOL entry
Entry->Type = _BOOL;

} else

// CHOICE type, get number of entries and entry’s texts
if(!stricmp(Text, “CHOICE”)) {

// Set to CHOICE type and allocate CHOICE entry
Entry->Type = _CHOICE;

// Get the number of choices
GetNextWord(Text, fp, 1024);
Entry->NumChoices = atol(Text);
Entry->Choices = new char[Entry->NumChoices];

// Get each entry text
for(j=0;j<Entry->NumChoices;j++) {

GetNextQuotedLine(Text, fp, 2048);
Entry->Choices[j] = new char[strlen(Text)+1];

600 14. Implementing Scripts

strcpy(Entry->Choices[j], Text);
}

}
}

}
}

fclose(fp);

return TRUE;
}

Using the cActionTemplate::Load function, you can open a text file and begin scanning
through it. With the beginning of each iteration, the next line of text enclosed in
quotes (an action) is loaded in a new sAction structure and then examined for tilde
characters. If tilde characters are found, the remaining information is loaded and
parsed. This process continues until the end of the file is found.

Moving on, the next questionable function in cActionTemplate is CreateScriptAction; it
takes an action number and returns an initialized sScript structure that is set up to
store the number of entries to match the action. You can directly parse the sScript
structure from this point on to access data contained within the actions and entries
(which is how the MLS editor and samples do it):

sScript *cActionTemplate::CreateScriptAction(long Type)
{

long i;
sScript *Script;
sAction *ActionPtr;

// Make sure it’s a valid action - Type is really the
// action ID (from the list of actions already loaded).
if(Type >= m_NumActions)

return NULL;

// Get pointer to action
if((ActionPtr = GetAction(Type)) == NULL)

return NULL;

// Create new sScript structure
Script = new sScript();

601Creating a Mad Lib Script System

// Set type and number of entries (allocating a list)
Script->Type = Type;
Script->NumEntries = ActionPtr->NumEntries;
Script->Entries = new sScriptEntry[Script->NumEntries]();

// Set up each entry
for(i=0;i<Script->NumEntries;i++) {

// Save type
Script->Entries[i].Type = ActionPtr->Entries[i].Type;

// Set up entry data based on type
switch(Script->Entries[i].Type) {

case _TEXT:
Script->Entries[i].Text = NULL;
break;

case _INT:
Script->Entries[i].lValue = ActionPtr->Entries[i].lMin;
break;

case _FLOAT:
Script->Entries[i].fValue = ActionPtr->Entries[i].fMin;
break;

case _BOOL:
Script->Entries[i].bValue = TRUE;
break;

case _CHOICE:
Script->Entries[i].Selection = 0;
break;

}
}

return Script;
}

602 14. Implementing Scripts

NOTE
I didn’t include the script saving or
loading functions because they are
not part of the action templates.
However, you can modify the saving
and loading functions for each appli-
cation as you see fit.This is also the
case for this chapter’s two sample
programs, MlsEdit and MlsDemo,
which you can find on the CD-ROM
at the back of this book (both pro-
grams are in the \BookCode\Chap14
directory).

Last in cActionTemplate are the two final functions: ExpandDefaultActionText and
ExpandActionText. Both functions take the action text and replace the tilde characters
inside with more understandable text, such as an integer number or the selected mul-
tiple-choice text. The difference between the functions is that ExpandDefaultActionText
expands text with any entry data; it simply picks the minimum values or first multiple-
choice entry. ExpandActionText, expands the action text using the data contained in the
supplied sScript structure. Both functions are used only in the script editor to make
sense of the data contained with the action template and script structures—you can
find the code for them on the CD-ROM (in the MLS Script Editor project).

With an understanding of the action templates and script structures, you can start
piecing them together and putting MLS to good use, which all starts with the Mad
Lib script editor.

Working with the MLS Editor
An MLS system works only with numbers: the number that represents an action,
the number of entries to follow, and numbers to represent the entry data.
Computers work well with numbers, but we need more. You need to construct
scripts in comprehensible lines of text and let a script editor convert the text you
enter into a series of numerical representations that a script system can handle.

During the editing of a script, dealing with numbers is not for us, so the editor also
has the job of loading and converting those numbers back into lines of text that is
easy for us to read. So, to clear up matters, you only need to construct a script
using a series of text commands, and let the script editor and engine convert those
commands into their numerical representations and vice versa.

The Mad Lib script editor imports the text that represents the actions and provides
the user with the ability to edit a list of actions and modify the blank entry spots
with each action. Figure 14.3 shows the MLS editor I created for the book. The
script list box, which contains the currently edited script, is at the top of the MLS
application window. The actions from the action template are listed at the bottom
of the window. The various buttons used to construct the scripts are spread around
the window.

You will find using the script editor to be very intuitive. You have options for load-
ing a set of actions, loading and saving a script, creating a new script, and adding,
removing, and modifying script entries (as well as for moving their entries up or
down the list). The actions used by the editor are stored in action template files.

603Working with the MLS Editor

As for the actual script entries, the editor makes use of the sScript and sScriptEntry
structures to store the current script being edited, and are saved and loaded just as
you have already seen.

To start your MLS editing session, go ahead and load up an action template or use the
default action template, which is titled default.mla (you can find it in the \BookCode\
Chap14\Data directory). Then you can begin adding, inserting, and editing script
entries by using the respective buttons in the editor’s application window. Table
14.2 explains what each button does in the script editor.

As you begin adding actions to the script (using Add to Script, or Insert in Script),
notice that the action text is expanded and added to the script list box (the list box
at the top of the script editor). The script actions are stored from the top down,
with the root of the script being the topmost script action. Processing of the scripts
starts at the top and continues downward, much like typical C/C++ code.

Notice that each time you add, insert, or edit a script entry, the Modify Action
Entry dialog box appears (see Figure 14.4). You use this dialog box to modify the
script action entries.

In the Modify Action Entry dialog box, you see various controls for modifying the
script action entries. The dialog box provides two places to type text. You use the first
one

604 14. Implementing Scripts

Figure 14.3

This MLS editor contains all
the essentials for creating and
editing scripts.

605Working with the MLS Editor

Table 14.2 The MLS Editor Buttons

Button Function

Delete Deletes the currently selected line from the script list box.

Edit Edits the entries from the currently selected line from the script
list box.

Move Up Moves the currently selected script action up in the list box.

Move Down Moves the currently selected script action down in the list box.

New Script Removes all script actions from memory and starts with a fresh slate.

Load Script Loads a script file from disk (files with an .MLS extension).

Save Script Saves a script file to disk (files with an .MLS extension).

Add to Script Adds the currently selected action (from the action list) to
the end of the script list. This automatically opens the Modify
Action Entry dialog box as well.

Insert in Script Inserts the currently selected action (from the action list) into
the selected line in the script list. Also opens the Modify Action
Entry dialog box.

Load Actions Loads a new action template file (files with an extension .MLA).
This also forces the current script to be cleared.

Figure 14.4

Use the Modify Action Entry dialog box to quickly
navigate and modify the script’s action entries.

(at the top of the dialog box) to type an entry’s text or the minimum and maximum
ranges for values; in the second one, you type values relevant to the entry. Boolean
values have two radio buttons, one to select a TRUE value and another to select a FALSE
value. The dialog box provides a list box for multiple-choice selections.

A few controls that are common to each type of entry are at the top of the Modify
Action Entry dialog box. First is the box that displays the action text (with the
selected entries expanded in the text). Next is an Entry #, a text box that displays
the entry number currently being editing, as well as the number of entries in the
action. To navigate the entries, you use two buttons—the previous entry button
(represented by an arrow pointing left) and the next entry button (represented by
an arrow pointing right). Clicking either button forces the current entry to be
updated and the next entry’s data to be displayed.

At the bottom of the Modify Action Entry dialog box are two more buttons—OK
and Cancel. The Cancel button is displayed only when you add an action. When
you select an action to edit from the list, the Cancel button is not shown, which
means that all the changes you make to an entry are used whenever OK is clicked,
so make sure that you don’t modify anything if that’s not your intention. Clicking
OK accepts all entry data and adds, inserts, or
modifies the action selected in the MLS Editor
dialog box.

The script editor comes with a sample action
template and script to help you get started. The
real power comes when you start constructing
your own action templates, tailored for your
game project. After you create the action tem-
plates and construct your script, you are ready to
start using them in your own project.

Executing Mad Lib Scripts
Whew! I can honestly say the hardest part is over, as executing the scripts is child’s
play at this point. You can now toss the action templates out the door because you
work with only the sScript and sScriptEntry structures from here on out.

The first step to working with a script is to load it into memory, which you accomplish
using the LoadScript function (refer also to the section “Creating Script Entries” for
more on this function):

606 14. Implementing Scripts

NOTE
The code for the MLS editor
is on the CD-ROM at the
back of this book (look for
\BookCode\Chap14\MLSEdit\).

long NumActions;
sScript *LoadedScript = LoadScript(“Script.mls”, &NumActions);

From this point on, your game engine just iterates the script-linked list in order
to execute each action. This requires a bit of hard-coding because the actions are
known only by numbers at this point (so you must know what each action does).
Here’s an example that iterates the preceding loaded script and looks for Print
actions (action 0), which contain a single entry (the text to print):

sScript *ScriptPtr = LoadedScript; // Start at root

// Loop through all script actions in list
while(ScriptPtr != NULL) {

// Is it an action 0?
if(ScriptPtr->Type == 0) {

// This action definitely has one entry, the text.
// Display the text in a message box
MessageBox(NULL, ScriptPtr->Entries[0].Text, “TEXT”, MB_OK);

}

// Go to next action in script
ScriptPtr = ScriptPtr->Next;

}

Although the preceding is nothing more than a few lines of code, it demonstrates
the awesome potential of processing the scripts. With a little ingenuity, you could
use MLS to handle some major scripting duties.

How about using conditional if...then...else statements? You know, those statements
that determine whether a condition is true or false and, depending on the outcome,
process a different sequence of actions. Take for example the following C code:

BOOL GameFlags[256]; // Some game flags defined in the game

if(GameFlags[0] == TRUE) {
// Print a message and set flag to FALSE
MessageBox(NULL, “It’s TRUE!”, “Message”, MB_OK);
GameFlags[0] = FALSE;

} else {
// Print a message
MessageBox(NULL, “It’s FALSE.”, “Message”, MB_OK);

}

607Executing Mad Lib Scripts

Based on the value contained in the GameFlags array, a different block of code is
processed. By creating a few actions and a slight reworking of the script processing
code, you could enjoy the benefits of using if...then...else statements in MLS as
well. First, check out the action template:

“If GameFlag ~ equals ~ then”
INT 0 255
BOOL

“Else”
“EndIf”
“Set GameFlag ~ to ~”

INT 0 255
BOOL

“Print ~”
TEXT

There is nothing special here because the real work is done in the script-processing
code:

// pScript = pre-loaded script that contains the following:
// “If GameFlag (0) equals (TRUE) then”
// “Print (It’s TRUE!)”
// “Set GameFlag (0) to (FALSE)”
// “Else”
// “Print (It’s FALSE.)”
// “EndIf”

// Action processing functions
sScript *Script_IfThen(sScript *Script);
sScript *Script_Else(sScript *Script);
sScript *Script_EndIf(sScript *Script);
sScript *Script_SetFlag(sScript *Script);
sScript *Script_Print(sScript *Script);

// The script action execution structure
typedef struct sScriptProcesses {

sScript *(*Func)(sScript *ScriptPtr);
} sScriptProcesses;

// List of script action function structures
sScriptProcesses ScriptProcesses[] = {

{ Script_IfThen },

608 14. Implementing Scripts

TEAMFL
Y

Team-Fly®

{ Script_Else },
{ Script_EndIf },
{ Script_SetFlag },
{ Script_Print }

};

BOOL GameFlags[256]; // The games flags array

void RunScript(sScript *pScript)
{

// Clear the GameFlags array to FALSE for this example
for(short i=0;i<256;i++)

GameFlags[i] = FALSE;

// Scan through script and process functions
while(pScript != NULL) {

// Call script function and break on NULL return value.
// Any other return type is the pointer to the next
// function, which is typically pScript->Next.
pScript = ScriptProcesses[pScript->Type].Func(pScript);

}
}

sScript *Script_IfThen(sScript *Script)
{

BOOL Skipping; // Flag is skipping script actions

// See if a flag matches second entry
if(g_Flags[Script->Entries[0].lValue % 256] == \

Script->Entries[1].bValue)
Skipping = FALSE;

else
Skipping = TRUE;

// At this point, Skipping states if the script actions
// need to be skipped due to a conditional if..then statement.
// Actions are further processed if skipped = FALSE, looking
// for an else to flip the skip mode, or an endif to end
// the conditional block.

// Go to next action to process

609Executing Mad Lib Scripts

Script = Script->Next;

while(Script != NULL) {
// if Else, flip skip mode
if(Script->Type == 1)

Skipping = (Skipping == TRUE) ? FALSE : TRUE;

// break on EndIf
if(Script->Type == 2)

return Script->Next;

// Process script function in conditional block
// making sure to skip actions when condition not met.
if(Skipping == TRUE)

Script = Script->Next;
else {

if((Script = ScriptProcesses[Script->Type].Func(Script)) == NULL)
return NULL;

}
}
return NULL; // end of script reached

}

sScript *Script_SetFlag(sScript *Script)
{

// Set a Boolean flag
GameFlags[Script->Entries[0].lValue % 256] = \

Script->Entries[1].bValue;
}

sScript *Script_Else(sScript *Script) { return Script->Next; }
sScript *Script_EndIf(sScript *Script) { return Script->Next; }

sScript *Script_Print(sScript *Script)
{

MessageBox(NULL, Script->Entries[0].Text, “Text”, MB_OK);
return Script->Next;

}

You can see that the real magic is in the Script_IfThen statement, which is a recursive
function that processes all script actions contained within a pair of if...then and EndIf

610 14. Implementing Scripts

actions. The Else action does a simple job of switching processing modes (from no
processing to processing), based on the original value of the Skipping variable.

Now that is power, and if you need a little more convincing, I suggest that you
check out some later chapters that use the MLS system, such as Chapter 16,
“Controlling Players and Characters,” and Chapter 20, “Putting Together a Full
Game.” Both chapters demonstrate the use of scripts when interacting with game
characters.

Applying Scripts to Games
From the beginning of your project, expect to implement scripts in every game-
related detail. For example, scripts come in handy when dealing with dialogue and
cinemas all the way down to spell effects and inventory handling. In fact, creating
your game engine to accept scripts for the majority of in-game data produces a very
open-source and efficient project.

In Chapter 20, you learn just how to apply the scripts to your various game compo-
nents, such as the combat and inventory system. As for now, you might want to
become familiar with the whole script concept by checking out the sample program
MlsDemo, which is on this book’s CD-ROM.

Wrapping Up Scripting
The scripting method introduced in this chapter is very powerful when used
correctly, and in most cases, will be just the right system for your game project.
Advanced readers who want to develop their own “real” script language (one that
resembles C++, for example) might want to acquire a good book on compilers,
specifically one that utilizes lex and yacc (two programs that process text and
grammar). One such book, aptly titled lex & yacc, is a great guide to learning the
basics on creating a script-parsing language processor. Turn to Appendix C,
“Recommended Reading,” for more information on the book.

If you are intrigued by the power behind the MLS system, before beginning your
project, you might create a set of action templates that will carry you through the
entire game. In this chapter, I discussed some of the simpler techniques for doing
so, but I’m sure that you can build on this information and come up with other
great uses for MLS.

611Wrapping Up Scripting

612 14. Implementing Scripts

Programs on the CD-ROM

Two programs that demonstrate the code discussed in this chapter
are located on the CD-ROM at the back of this book.You can find
the following programs in the \BookCode\Chap14\ directory:

◆ MlsEdit. A Mad Lib Script editor program that is perfect
for putting together scripts for your project.
Location: \BookCode\Chap14\MlsEdit\.

◆ MlsDemo. A small project that demonstrates the parsing
of Mad Lib Scripts created with the MLS editor.
Location: \BookCode\Chap14\MlsDemo\.

CHAPTER 15

Defining
and Using

Objects

Big things, little things, round things, and all other sorts of things—the world is
full of objects of every size, shape, and description. I’m not just talking about

any world here—your gaming world needs to be packed with useful items. Trying to
keep track of those useful objects and what they actually do in your role-playing game
is a major chore, but with a little knowledge, you can tackle this job blindfolded!

In this chapter, you learn how to do the following:

■ Define objects in your game
■ Create a master list of items
■ Use inventory systems to manage items

Defining Objects
for Your Game
Frantically I dig through my sack. I know that I put that healing potion in there yes-
terday; where could it have gone? What a time to lose something—in the midst of a
battle, taking hits from all sides, and now that I have a moment, I can’t recover my
health!

Let’s see, there’s my dagger, that extra shield, a handful of gold pieces, something
I don’t recognize, and . . . oh, there it is—my healing potion! How in the world did
I manage to collect all this junk? Oh well, I’ll worry about that later; for now, I
need to take a gulp of elixir and get back to the job of slaying monsters.

Thankfully my ordeal wasn’t really life threatening; I really only had to pause the
game for a moment, sort my inventory list, and locate the appropriate potion. Fully
refreshed and game resumed, I managed to fight on in true warrior spirit!

During the course of a game, you’re bound to pick up a few items (also called
objects), each serving its unique purpose. When creating your game, each object
must be accounted for, each designed for a specific use. Weapons, armor, or even
healing items, all need definition. They need form and function.

Form and function—two words to live by when defining an object. Form refers to
appearance and identity—what an object looks like, what it feels like, how big it is,

614 15. Defining and Using Objects

how much it weighs, and so on. Function refers to purpose; every object has a purpose
—money buys things, swords aid in an attack, and healing potions heal wounds.

In this section, you learn how to define an object’s form and function in a format
readily usable in your game project.

Using Form in Objects
Although essential in order for us to visually comprehend an object, form means
nothing to a computer—for which an object just needs to be represented by a
graphics image or a 3-D model. In Chapter 6, “Drawing with DirectX Graphics,” you
learn how easy it is to load a bitmap image or an .X file that contains a 3-D mesh, so
why not go with using those bitmaps or meshes to define the form of an object?

Assume that you want to create a weapon, or more specifically, a sword. In a 3-D
game (for example, the one I describe at the beginning of this chapter), you want
players to be able to see the characters holding swords and to examine the swords
closely by zooming in. In addition, to show which weapon is equipped (being
held), you want to display a bitmap of the sword onscreen. You need only a single
mesh and a single bitmap image (see Figure 15.1) to represent the sword.

I know what you’re thinking—that’s a big, heavy sword in Figure 15.1! In the real
world, a sword is “big and heavy.” For that matter, you don’t want just anyone to be
able to wield it. A sword might weigh about five pounds and be about four feet

615Defining Objects for Your Game

Figure 15.1

You can use the mesh on the left for
in-game play (with the player holding
it) and in an inventory list (to
examine the sword).The bitmap
image on the right is displayed during
the game to signify that the player is
indeed holding a sword.

long. If your game is concerned
with the physical properties of an
object, each item in the game can
be assigned dimensions and weight.
I opt to measure size in cubic feet.

With this bit of information, you can
start entering the item information
into your game. Start by creating a
structure that will hold the informa-
tion for the sword (and every other
item for that matter):

typedef struct sItem
{

char Name[32]; // A short name for the item
char Description[128]; // A description of item
float Weight; // Weight (in lbs.)
float Size; // Size (in cubic feet)
char MeshFilename[16]; // .X mesh filename
char ImageFilename[16]; // .BMP filename

} sItem;

To quickly define the Sword object, declare it as follows:

sItem Sword = {
“Sword”, “A big heavy sword.”,
5.0f, 4.0f,
“Sword.x”, “Sword.bmp” };

At this point, the sword is ready for use! Well, not really, because at this point,
you’ve only assigned the physical properties of the sword (along with the filenames
to use for the mesh and image). The game engine doesn’t have enough informa-
tion about the item in order to use it. That’s where function comes in.

Defining the Functions of Objects
If you were to hand an object to a child (or to anyone for that matter), the child
would be able to find some use for it, even if it’s not the correct use. Although it
might be great to be able to do all kinds of things with objects in a game, that just
will not do for your purposes. The items (objects) in your game
will be used for specific purposes, which can be in one of the following categories
(note that the list is not comprehensive, but is a starting place for ideas):

616 15. Defining and Using Objects

NOTE
Why would you bother with weight and
size in your game? For one thing, do
you want a tiny guy or gal wielding a
huge sword? What about when the little
character tries to put a four-foot sword
in a one-cubic foot backpack? Quite a
few games dismiss these problems, but
if you want a realistic edge in your
game, consider weight and size.

■ Accessory. Rings, necklaces, belts, and any other form of wearable equipment
that can aid an adventurer are classified as accessories. Sometimes an accessory
is a magical piece of equipment that helps boost the abilities of the wearer.

■ Armor. Taking a blow is nothing—if you’re wearing the proper protection,
that is. Armor can be any form of protective gear, from a full suit of armor to
a pair of boots.

■ Collection. Any item that doesn’t serve an actual purpose is considered to be
a collection piece. These can be items that are important to the game story
in some way or that really have no definitive use. Items such as a picture,
small ornamental figurine, or chair are considered collection items.

■ Edible. Clam cakes, clam pies, clam alamode, creamed clam, or BBQ clam—
whatever your fancy. Your gaming denizens are bound to get hungry, and
whatever they can find and consume is classified as edible, even potions and
herbs.

■ Money. Everybody deals with the big M, no matter what form it takes—coins,
bills, clam shells, and so on. Games do not require denominations—one gold
coin is as good as the next, and the more coins you have, the better.

■ Transportation. Whether by bus, boat, plane, or hang glider, people sure
know how to get around, and items that can transport belong to characters
in the game. A boat can’t be lugged around, but your game recognizes a
character as the item’s owner by noting so in the character’s inventory.

■ Weapon. Whether it’s a sword, rock, or piece of lint, some things are just
more suitable for dealing out damage.

■ Other. Anything that doesn’t fit into the preceding categories is considered
“other.”

Your game engine determines what each item does, based on each item’s category.
For example, weapons can be equipped (worn), whereas edible items can be con-
sumed. You can add subcategories to each as needed to make dealing with items
even easier. For example, a healing potion, although edible, can be categorized as
a healing item. When your game engine sees a healing item, it knows immediately
to restore some level of health to the character.

Each item has additional information for usage, however, so you can’t stop here.
Weapons have a strength attribute, which increases a character’s ability to deal
out damage, a healing potion restores heath, and a piece of armor reduces damage
to a character during attacks. Now, take a look at what each category of items
accomplishes.

617Defining Objects for Your Game

Weapons
Characters have the potential to deal out damage with their bare hands. The more
powerful the character, the more damage he can administer. Put a weapon in that
character’s hands and the amount of damage meted out increases. Some weapons
do more damage than others, so finding the perfect weapon is more than enough
reason to keep adventuring.

Weapons can also have more than one use. In the mythical sense, an enchanted
sword can slash through demon hides and, at the same time, cast a potent fireball
spell. I refer to such extra functions of an item as specials.

Not just everybody can wield every weapon, however; there are some restrictions. Size
and weight is one restriction, and how much fun would it be to hand a beginner the
most powerful weapon in the game? For that reason, you introduce usage restrictions
(you find out more on usage restrictions in the section “Usage Restrictions,” later in
this chapter).

Getting back on track, some weapons can do more damage than others. The
amount of damage a weapon can cause is measured as a number, called an attack
modifier. The higher the number, the more damage the weapon does. Also, some
weapons are easier to wield, so you can hit your targets more often. To measure just
how much easier a weapon can hit its target, you use a to-hit modifier. The higher
a weapon’s to-hit modifier, the better chance a character has to hit a target using
that weapon. You’ll read more about using modifiers and how those modifiers
relate to characters in Chapter 16, “Controlling Players and Characters.”

Some weapons can also be classified in
special groups, called weapons groups.
Certain weapons tend to do more
damage to certain creatures than other
weapons—for example, using a fire-
enchanted sword against an ice-based
monster.

Finally, weapons can be categorized into
subgroups such as hand-to-hand or ranged.
Regardless of the type of weapon, each one has a range of use. Swords can hit the
targets in front of them, while a crossbow may hit a target 40 feet away. In addition,
weapons may be able to hit more than one target at once. These are all things to
take into consideration when designing weapons.

618 15. Defining and Using Objects

NOTE
A modifier is something that changes
a character’s attributes in some way.
A damage modifier, for example,
increases or decreases the amount
of damage they do.

TEAMFL
Y

Team-Fly®

Armor
The more protection, the better, and in your game every little piece of armor
helps. Armor helps add resistance to damage. This resistance amount is called the
defense modifier. Just like weapons, armor has special uses and usage restrictions and
belongs to armor groups.

Armor can be split into multiple subcategories, such as helmets, chest and
abdomen protection, leggings, boots, gloves, and so on.

Accessories
As mentioned earlier, accessories usually have a specific use. A magic ring can be
worn to gain the ability to become invisible. This ability might always be in use
once the ring is donned, or it may have to be activated. Accessories can also act like
armor; they can increase the resistance to some aspect of the game—for example,
making it harder for the wearer to be poisoned.

Edibles
Edible items usually come in a few flavors (pun intended). Food items sustain life,
healing items increase health, and poisonous items decrease health. Again, special
uses are in effect, but because there are few uses for edible items, you can hard-
code those into your game engine.

Collections
A collectable object is usually docile; it’s needed only for some small aspect of the
game. For example, if a character gives you a picture of himself to deliver to a girl
in a neighboring town (and for no other purpose), the picture is considered a col-
lection item. Collection items simply move some part of the game story forward.
Perhaps the character delivering the picture will receive, in turn, a special item
from the girl in the next town.

Transportation
Getting around on foot is slow and tiring, so other forms of transportation might
be needed. The purpose of transportation items is to change the way the characters
move around (typically around the map). Transportation can also open up new areas
in the game that were previously not accessible. For instance, your character’s newly
acquired boat can now be used to sail across the lake to an isolated island, or maybe
that horse you saw in a nearby town will help you cross a barren desert safely.

619Defining Objects for Your Game

Others
“Other” items are pretty much useless because they don’t have a defined use.
However, don’t throw them out. At the least, they can perform some type of action
as defined by the engine. For instance, depending on how well you do in combat,
your character could be awarded medals. While these medals are cool to look at,
they serve no purpose in the game.

Adding Function to Objects
In the earlier section “Defining the Functions of Objects,” you can see how much is
needed to define the function of an object. Luckily, because each object is catego-
rized as one thing or another, not all the information is needed—swords do damage,
whereas armor prevents it—so there’s no need to mix damage and protection data.

Item Categories and Values
In reality, you’ll want to categorize each item specifically to fit your game engine,
just as I did in the section “Defining the Functions of Objects.” Each category of
item is numbered for reference (1 is a weapon, 2 is armor, and so on). Each cate-
gory has a value associated with it, one that determines the modifier (attack or
defend), the special use, the healing or damaging value, and an attached script.
That’s right. Items can use scripting to increase their capabilities.

Except for an attached script, you can represent all values with a single variable, one
that represents the modifier amount, healing value, and so on. At this point, the fol-
lowing two variables can then be added to the sItem structure previously created:

// ... previous sItem info
long Category; // 1-5 representing item category shown above
long Value; // Modifier, health increase, etc.
// .. More sItem info

620 15. Defining and Using Objects

TIP
You can use an enumerator value to represent the categories
in the sItem structure:

enum ItemCategories { WEAPON=0,ARMOR,SHIELD,HEALING,OTHER };

Assigning Value to Items
Everything in the game is of value. Assigning each item a monetary value helps to
determine what a player can buy or sell and at what price. You don’t want to clutter
each item with multiple amounts; just pick a single amount that the character
should pay to buy the item. When being sold, the same item will have an amount
lower than what your character would pay to buy it. For instance, an item can be
sold for half the price your character paid for it.

An item’s value can be inserted in the sItem structure as follows:

// ... previous sItem info
long Price; // Buying price of item

Item Flags
Sometimes, you will not want the character to be able to sell an item—important
magic items, for example. A bit flag will take care of this, and while you’re at it, add
a few more bit flags. Table 15.1 contains a list of possible flags you can use.

Each bit flag is contained within a variable in the sItem structure:

long Flags; // Item bit flags
// ... more sItem data

621Defining Objects for Your Game

Table 15.1 Item Bit Flags

Flag Description

SELLABLE These items can be sold in shops.

CANDROP These items can be dropped. Don’t use this flag with important items
if you don’t want characters to drop those items.

USEONCE These items can be used only once. Once used, they disappear.

UNKNOWN These items are unknown.You must identify them in order to use
them correctly.You can find examples of this kind in Sega’s online
masterpiece game, Phantasy Star Online.

You can then represent each flag as an enum value (with a maximum of 32 flags). To
set, clear, or check a flag, use the following macros (using the macros, v represents
the item flag variable, and f is the flag):

enum {
SELLABLE = 0, // Bit 0
CANDROP, // Bit 1
USEONCE, // Bit 2
UNKNOWN // Bit 3

};

#define SetItemFlag(v,f) (v |= (1 << f))
#define ClearItemFlag(v,f) (v &= ~(1 << f))
#define CheckItemFlag(v,f) (v & (1 << f))

// Example using macros and flags
long ItemFlags = 0;

// Set item flags to sellable and item can be dropped
SetItemFlag(ItemFlags, SELLABLE);
SetItemFlag(ItemFlags, CANDROP);

// Check if the item is dropable and display a message
if(CheckItemFlag(ItemFlags, CANDROP))

MessageBox(NULL, “Can Drop Item”, “Item”, MB_OK);

ClearItemFlag(ItemFlags, SELLABLE); // Clear sellable flag

Usage Restrictions
Certain characters in your game might
not be able to use a specific item.
A magic user, for example, can’t wield
a huge two-handed battleaxe, and a
barbarian can’t wield a wizard’s staff.
In such cases, where only certain charac-
ters are allowed to use certain items,
you need to restrict usage to specific
character classes.

622 15. Defining and Using Objects

NOTE
A character class is a classification or
grouping of characters based on
their race or profession. For exam-
ple, all humans belong to the same
class, but to be more specific,
human fighters are considered a
separate class from human wizards
(or just fighters and wizards—who
says they all have to be human).

To represent the usage restrictions of an item, another variable is introduced to the
sItem structure, one that tracks 32 bits of information. Each bit represents a single
class, which means that you can track up to 32 classes. If an item is usable by a cer-
tain class, that respective bit is set; if an item is restricted in use by the character’s
class, the appropriate bit is cleared.

Here’s the addition to the sItem structure, which handles usage restrictions:

long Usage; // Usage restrictions
// ... other sItem data

To make setting, clearing, and retrieving a usage restriction class bit easier, you can
use the following macros (v represents the flag variable, and c is the class number
ranging from 0 to 31):

#define SetUsageBit(v,c) (v |= (1 << c))
#define ClearUsageBit(v,c) (v &= ((~(1 << c))
#define CheckUsageBit(v,c) (v & (1 << c))

// Examples using macros
long Flags = 0;
SetUsageBit(Flags, 5); // Set class 5 bit
if(CheckUsageBit(Flags, 5)) // Check class 5 bit

MessageBox(NULL, “Usage Set”, “Bit”, MB_OK);
ClearUsageBit(Flags, 5); // Clear class 5 bit

Using the preceding macros (SetUsageBit, ClearUsageBit, and CheckUsageBit), you can
quickly check whether a character is allowed to use or equip the item based on his
character class. For example, this game places wizards in class 1 and fighters in
class 2. When the wizard tries to equip a broadsword (one that has the class 1 bit
clear), the game engine informs the player that the wizard cannot use the item.

Attaching Scripts
to Items
To make items more versatile, you can
attach scripts to items. A script is triggered
any time an item is used, whether it is a
potion being consumed, a sword being used
in a round of combat, or a user activating
the special usage of an item (by using a
magic wand, for example).

623Defining Objects for Your Game

TIP
When using scripts, it’s good
form to use a specialized action
template better suited for
items. Refer to Chapter 14,
“Implementing Scripts,” for
more information on creating
action templates and using the
script editor.

At this point, you need to store only the script’s filename in the sItem structure:

// .. previous sItem data
char ScriptFilename[16]; // .mls script filename

Meshes and Images
You want your game’s players to see what an item looks like, which means that you
need to load a 2-D image or a 3-D mesh to represent the object. You achieve this
using the following additions to the sItem structure:

// .. previous sItem data
char MeshFilename[16]; // .X mesh filename
char ImageFilename[16]; // .bmp image filename

} sItem; // Close structure

The Final Item Structure
At this point, the sItem structure is ready for use! Here it is again in its entirety
(including supporting macros):

enum ItemCategories { WEAPON=0,ARMOR,SHIELD,HEALING,OTHER };

#define SetUsageBit(v,c) (v |= (1 << c))
#define ClearUsageBit(v,c) (v &= ((~(1 << c))
#define CheckUsageBit(v,c) (v & (1 << c))

enum {
SELLABLE = 0, // Bit 0
CANDROP, // Bit 1
USEONCE, // Bit 2
UNKNOWN // Bit 3

};

#define SetItemFlag(v,f) (v |= (1 << f))
#define ClearItemFlag(v,f) (v &= ~(1 << f))
#define CheckItemFlag(v,f) (v & (1 << f))

typedef struct sItem
{

624 15. Defining and Using Objects

char Name[32]; // A short name for the item
char Description[128]; // A description of item
float Weight; // Weight (in lbs.)
float Size; // Size (in cubic feet)
long Category; // Category of item
long Value; // Modifier, health increase, etc.
long Price; // Buying price of item
long Flags; // Item bit flags
long Usage; // Usage restrictions

char ScriptFilename[16]; // .mls script filename
char MeshFilename[16]; // .X mesh filename
char ImageFilename[16]; // .bmp image filename

} sItem;

With the complete sItem structure in place, it’s time to get back to building the
sword item. Say that the sword item uses a +10 modifier on damage (which means
that you add 10 to the damage factor in combat). The sword normally sells for 200
monetary units in the game, and only fighter classes (class two) can use it:

// Character class definitions
#define WIZARD 1
#define WARRIOR 2

sItem Sword = {
“Sword”, “A big heavy sword”, // name and description
5.0f, 4.0f, // weight and size
WEAPON, 200, SELLABLE | CANDROP, // category, price, and flags
(1 << WARRIOR), // usage class 2 (warrior)
“”, “Sword.x”, “Sword.bmp” // Script, mesh, image files

};

Now that the sword item is
defined, you can use it in the
game. But what good is a single
item? Your game world is going
to be packed with items! How
can you possibly deal with all
those objects?

625Defining Objects for Your Game

NOTE
The script, mesh, and image filenames are
limited to 16 bytes, which means that the
sItem structure will store only the actual
filename and not the path to the appropri-
ate file.Also, although the sItem structure
stores the filenames, you are responsible
for loading the files to use in the game.

The Master Item List
Every item in your game needs to be defined, and to keep things tidy, you need to
keep all item descriptions in a master item list (MIL). Think of the MIL as a catalog
of objects, much like the one shown in Figure 15.2. Each object is numbered for
reference, and only one of each item is shown.

Anytime you need a new object or need to retrieve the attributes of a specific
object, you consult the MIL. At a basic level, your game’s MIL can be stored as an
array of sItem structures or a single sequential file composed from a list of item
structures (similar to the one shown in Figure 15.3). How can you go about creat-
ing your own MIL? Well, let’s take a closer look.

Constructing the MIL
The following code bit creates a small item structure that contains the item’s name,
weight, and size. You will use this structure to construct a simple MIL:

typedef struct sItem
{

char Name[32]; // Name of item
float Weight; // Weight (in lbs.)
float Size; // Size (in cubic ft.)

};

626 15. Defining and Using Objects

Master Item List Catalog

Sword
Item #421

Lightweight sword that does
moderate damage. $300.

Page 20

Shield
Item #32

Strong shield that protects
the user. $150.

Figure 15.2

Much like a department
store catalog, a master
item list helps you keep
every object in the world
in order.

From here, say that you want to store five items in the MIL, all represented in an
array of sItem structures:

sItem Items[5] = {
{ “Big Sword”, 5.0f, 4.0f },
{ “Small Sword”, 2.0f, 2.0f },
{ “Magic Wand”, 0.5f, 1.0f },
{ “Rock”, 1.0f, 0.5f },
{ “Potion”, 0.5f, 0.5f }

};

Now that you have defined your MIL (using an array of sItem structures), you may want
to save the list out to a file for later retrieval. Such is the case if you are using a separate
program that creates the MIL file for you, much like the program you’ll see in the
upcoming section, “Using the MIL Editor.” As for here, take a look at the following bit
of code that will create a file (called items.mil) and save the Items array to the file:

FILE *fp=fopen(“items.mil”, “wb”);

for(short i=0;i<5;i++)

627The Master Item List

Item
Structure

128 Bytes

Master Item
List File

Item
Structure

128 Bytes

Item
Structure

128 Bytes

Item
Structure

128 Bytes

Item
Structure

128 Bytes

0

128

256

384

File Pos

Figure 15.3

A sequential MIL file keeps track of every
item in your game. Each item’s data is fixed
in size, ensuring that you can quickly access
the file when you need to retrieve data.

fwrite(&Items[i], 1, sizeof(sItem), fp);
fclose(fp);

Although short and to the point, the preceding example for creating a MIL file
is wholly unusable in a real-world application such as a role-playing game. Item
descriptions need to contain much more information, and you could theoretically
work with thousands of items. Doing all that by hand is a waste of time. What you
need is an item editor to help you create and maintain the MIL . . . and, so, behold
the MIL Editor.

Using the MIL Editor
The need for quick-and-easy item creation gave birth to the Master Item List Editor
(MIL). Much like the MLS Editor discussed in Chapter 14, “Implementing Scripts,”
the MIL Editor consists of a single application window that enables you to navigate
through a list of items, editing the attributes of each item as you go. You can save and
load MILs, but the list of item attributes remains fixed (until you reprogram them for
your own purposes).

The complete source code to the MIL Editor is included on the CD-ROM that
comes with this book (look for \BookCode\Chap15\MILEdit). When you start the
MIL Editor found on the CD, the Master Item List Editor dialog box appears as
shown in Figure 15.4. The Master Item List Editor dialog box consists of a list box
that contains each item in the list, plus buttons to edit each item’s information and
to save and load an item list. The list provides room for 1,024 items, which means
that you can store an item number within a 16-bit variable (ranging from 0 to 1,023).

To begin using the Master Item List Editor, locate and execute the MILEdit.exe file
(look in \BookCode\Chap15\MILEdit). At the Master Item List Editor dialog box, you
can perform the following steps to add or edit items, and then save them to disk:

1. Select an item from the Item List by double-clicking the item (or selecting
the item and clicking the Edit button), or add an item by clicking the Add
button. The Modify Item dialog box appears (shown in Figure 15.5).

2. Edit the appropriate fields in the Modify Item dialog box.

3. When you finish editing, click OK to apply the changes and return to the
Master Item List Editor dialog.

4. To make the changes permanent, click Save on the Master Item List Editor
dialog box, and in the Save MIL File dialog box, enter a filename and save
the MIL to disk.

628 15. Defining and Using Objects

TEAMFL
Y

Team-Fly®

The MIL Editor uses the same version of the sItem
structure shown earlier in this chapter, but I added
some extra item categories. Those extra categories
are Shield, Healing, and Container (a container object
such as a backpack). Here these extra categories
are added to the ItemCategories enum list, shown pre-
viously in the section “Items Categories and Values”:

enum ItemCategories
{

629The Master Item List

Figure 15.4

The Master Item List
Editor is used to create
and edit your game’s
objects.The list of items
shown here has eight
items defined.

NOTE
Loading a MIL is just as
easy as saving one; just
click the Load button on
the Master Item List
Editor dialog box.When
the Load MIL File dialog
box appears, select the
file you want to load.

MIL files typically use a
.MIL file extension.You
can use a different exten-
sion for your lists, but the
sample programs for this
book use .MIL.

Figure 15.5

The Modify Item dialog box enables you
to modify each item’s vital information.

MONEY = 0, WEAPON, ARMOR,
SHIELD, ACCESSORY, EDIBLE,
HEALING, COLLECTION, TRANSPORTATION,
CONTAINER, OTHER

};

If you decide to modify the MIL Editor to use different item attributes or cate-
gories, modify the sItem structure as well. When you’re ready, you can start using
the item data you created in your game project.

Accessing Items from the MIL
Once you have a MIL, you can load the entire list into an array of sItem structures
using the following code:

sItem Items[1024]; // Array of sItem structures

// Open the Default.mil file
FILE *fp = fopen(“Default.mil”, “rb”);

// Read in all items
for(short i=0;i<1024;i++)

fread(&Items[i], 1, sizeof(sItem), fp);

// Close file
fclose(fp);

At this point, I’m assuming that your item structure is relatively small and that you
are using no more than 1,024 items in your MIL. What happens if you extend each
item’s sItem structure or you begin storing more items in the MIL? We’re talking
about some serious memory usage.

To avoid loading each and every single item in memory from the MIL at once, you
can access individual items directly from the MIL. Because the size of each item
structure is fixed, you can access each item’s data by moving the file pointer to the
appropriate position and reading in the structure, as in the following code bit:

// ItemNum = reference # of item to load
sItem Item;

// Open the MIL file titled items.mil
FILE *fp=fopen(“items.mil”, “rb”);

630 15. Defining and Using Objects

// Seek to the appropriate position in file
// based on the size of the sItem structure and
// the number of the item to load.
fseek(fp, sizeof(sItem) * ItemNum, SEEK_SET);

// Read in the item structure
fread(&Item, 1, sizeof(sItem), fp);

// Close the file
fclose(fp);

And there you go—quick and easy access to every item in the MIL! Now, it’s time
to do something with those items.

Managing Items with
Inventory Control Systems
With your items ready to be scattered around the world, it’s only a matter of time
before players start trying to pick up everything that isn’t nailed down. When that
happens, the players will need a way of managing the items, which includes using
an inventory control system (an ICS for short) to sort things out.

Don’t be fooled; an ICS doesn’t just apply to player characters. It applies to the
entire world. Items can belong to a map, a character, or even to a different item
(a backpack with other items inside it, for example). That means items need to be
assigned ownership. In addition, an owner can have multiple instances of an object—
coins, for example.

An owner’s collection of items is called an inventory list, and any object can belong
within this list (and as many instances of the object as well). The relationships
between owners, inventory lists, and quantities are illustrated in Figure 15.6.
(Note: Don’t think of items as belonging to an owner; rather, think of owners as
having a collection of items.)

The ICS works hand in hand with the master item list. Where the MIL contains
only a single, unique instance of each object in the world, the ICS works with many
instances of any object. Anytime the ICS needs information about an item, it can
refer to the MIL for the specifics. In that way, you can conserve memory by using
only the ICS to store reference numbers to objects in the MIL (as illustrated in
Figure 15.7).

631Managing Items with Inventory Control Systems

632 15. Defining and Using Objects

Inventory Control
Sword x 1 - Player
Shield x 1 - Player
Coin x 40 - NPC

Item: Coin

Quantity x 40
Owner: NPC

Item: Shield

Quantity x 1
Owner: Player

Item: Sword

Quantity x 1
Owner: Player

Player

NPC

Figure 15.6

An inventory control system
keeps track of each owner’s
items, including the number
of items.

Inventory
Control

Item Reference #

Master Item
List

Item #2 - Sword

Image
Cost

Description
Other Data...

Item #21 - Shield

Image
Cost

Description
Other Data...

Item #314 - Potion

Image
Cost

Description
Data

2

314

21

Figure 15.7

Assuming that the ICS contains only
item references, you can save massive
amounts of memory by letting the MIL
store the rest of the item’s information.

For your game’s maps and levels, a simple ICS (called a map ICS) consists of only a
list of items and their locations within the map, which is just fine because you can
place objects throughout—ready for characters to pick them up. The real problem
comes when those characters pick them up and add them to their inventory.
Multiple instances pile up, new items are added, and other items are used or
dropped. Things quickly become a real jumble. Handling a collection of character’s
objects is the job of a character ICS, which is a little more complicated than its map
counterpart.

Developing a Map ICS
The map ICS tracks items that are placed within levels, including items that are
contained within other items—a sword contained within a treasure chest, for
example. The type of map you use determines how you position items within the
map. In 3-D maps, you use three coordinates for positioning an item—the X-, Y-,
and Z- coordinates. Because each map is also unique (each part of the world has
different maps), you can track each map’s items in separate files.

You can represent the map ICS with a structure and a class:

typedef struct sMapItem
{

long ItemNum; // MIL item number
long Quantity; // Quantity of item (ie coins)
float XPos, YPos, ZPos; // Map coordinates

sMapItem *Prev, *Next; // linked list pointers

long Index; // This item’s index #
long Owner; // Owner index #
sMapItem *Parent; // Parent of a contained item

sMapItem()
{

Prev = Next = Parent = NULL;
Index = 0; Owner = -1;

}

~sMapItem() { delete Next; }
} sMapItem;

633Managing Items with Inventory Control Systems

class cMapICS
{

private:
long m_NumItems; // # items in map
sMapItem *m_ItemParent; // Linked list parent map item

// Functions to read in next long or float # in file
long GetNextLong(FILE *fp);
float GetNextFloat(FILE *fp);

public:
cMapICS(); // Constructor
~cMapICS(); // Destructor

// Load, save, and free a list of map items
BOOL Load(char *Filename);
BOOL Save(char *Filename);
BOOL Free();

// Add and remove an item on map
BOOL Add(long ItemNum, long Quantity, \

float XPos, float YPos, float ZPos, \
sMapItem *OwnerItem = NULL);

BOOL Remove(sMapItem *Item);

// Retrieve # items or parent linked list object
long GetNumItems();
sMapItem *GetParentItem();
sMapItem *GetItem(long Num);

};

First, you see the sMapItem structure, which holds the information for every item in
the map. ItemNum is the MIL item reference number (which ranges from 0 to 1,023
if you used the MILEdit program), and Quantity is the number of ItemNums (to allow
things like a horde of coins to be represented as a single object). Then you see the
item’s map coordinates XPos, YPos, and ZPos.

Next comes the Prev and Next pointers. You insert them to track a linked list of
sMapItem structures. The next couple of variables, Index and Owner, are used when

634 15. Defining and Using Objects

loading and saving the items in a map. Index stores the current index number of
an item in the linked list. If an item is owned by another item, the Owner variable
holds the index number of the parent object (otherwise, Owner is set to -1). When
loading (or adding) an object, you set the final variable in sMapItem (Parent) to point
to the actual owner item’s structure. You can see the sMapItem structure link list con-
cept illustrated in Figure 15.8.

The sMapItem uses both a constructor and destructor function called whenever a
structure instance is allocated or reallocated. Both functions ensure that the linked
list pointers are in check, and whenever a structure is deleted, all subsequent
sMapItem structures in the linked
list are deleted as well.

The cMapICS class has two pri-
vate functions (GetNextLong
and GetNextFloat) used to read
in text and convert it into a
long or float value. The cMapICS
class also has eight usable
public functions. Take a closer

635Managing Items with Inventory Control Systems

Map Item
List File

Item 1: Sword

Item 2: Backpack

Item 3: Coin

Prev.

Next

Prev.

Next

Prev.

Next

Parent
Item

Figure 15.8

You store the map’s list of items as a linked list. Items are numbered as they
are read in from disk, which helps to match child-to-parent objects.

CAUTION
If you’re removing only a single instance of
sMapItem from the linked list, you first have to
set the instance’s Next variable to NULL. Doing
so ensures that all subsequent instances in the
linked list are not deleted as well.

look at those public functions.

cMapICS::Load, cMapICS::Save,
and cMapICS::Free
As their names suggest, this trio of functions loads, saves, and frees a list of items
that belong to a map. The first of the three, Load, loads and creates a list of items.
For simplicity, store all items in a text file, using the following format:

MIL_ItemNum
Quantity
XPos
YPos
ZPos
ParentID

Each item uses six lines of text, and each entry (group of six lines) is numbered
sequentially (the first item in the file is item #0, the second item is #1, and so on).
Here’s a sample file that contains two items:

// Item #0 as follows:
10 // MIL Item # (long value)
1 // Quantity (long value)
10.0 // XPos (float value)
0.0 // YPos (float value)
600.0 // ZPos (float value)
-1 // Owner (-1 = none, index # otherwise)
// Item #1 as follows:
1 // MIL Item #
1 // ...
10.0
0.0
600.0
0 // belongs to item #0 (first item in file)

The preceding comments are for clarification; the actual storage file does not use
them. When reading in a list of items such as the preceding ones, the Load function
converts the text into usable numbers. Using those numbers, it creates a sMapItem
structure for each item in the map to be loaded, constructing a linked list as the
items are loaded. After every item is read in, all objects that belong to another are
matched up (using the Parent pointer in the sMapItem structure).

There’s really nothing too difficult here, so jump right into the cMapICS::Load code:

636 15. Defining and Using Objects

BOOL cMapICS::Load(char *Filename)
{

FILE *fp;
long LongNum;
sMapItem *Item, *ItemPtr = NULL;

Free(); // Free a prior set

// Open the file
if((fp=fopen(Filename, “rb”))==NULL)

return FALSE;

// Loop forever reading in items
while(1) {

// Get next item number (break if no more items,
// which is represented by a return value of -1).
if((LongNum = GetNextLong(fp)) == -1)

break;

// Create a new map pointer and link it in
Item = new sMapItem();
if(ItemPtr == NULL)

m_ItemParent = Item;
else {

Item->Prev = ItemPtr;
ItemPtr->Next = Item;

}
ItemPtr = Item;

// Store MIL item number
Item->ItemNum = LongNum;

// Get quantity
Item->Quantity = GetNextLong(fp);

// Get coordinates
Item->XPos = GetNextFloat(fp);
Item->YPos = GetNextFloat(fp);
Item->ZPos = GetNextFloat(fp);

// Get owner #
Item->Owner = GetNextLong(fp);

637Managing Items with Inventory Control Systems

// Save index # and increase count
Item->Index = m_NumItems++;

}

// Close the file
fclose(fp);

// Match objects that belong to others
ItemPtr = m_ItemParent;
while(ItemPtr != NULL) {

// Check if this item belongs to another
if(ItemPtr->Owner != -1) {

// Find matching parent item
Item = m_ItemParent;
while(Item != NULL) {

if(ItemPtr->Owner == Item->Index) {
// A match, point to parent
ItemPtr->Parent = Item;
break; // Stop scanning for parents

}

Item = Item->Next;
}

}

// Go to next item
ItemPtr = ItemPtr->Next;

}

return TRUE;
}

Save takes an internal list of items and, using the filename you specify, saves that list
to a file on disk. The Save function is typically used to update the game data, because
players might consistently pick up and drop items.

The Save function first assigns an index value to each sMapItem structure in the
linked list (based on their order). The first item in the linked list is 0 (zero), the

638 15. Defining and Using Objects

NOTE
Much like all the code in this
book, the cMapICS class func-
tions return a value of TRUE if
the function call succeeded or
a value of FALSE if the call failed.

TEAMFL
Y

Team-Fly®

second item is 1, and so on. Each child item’s Owner variable is updated as well at
this point, and finally all data is written to a file:

BOOL cMapICS::Save(char *Filename)
{

FILE *fp;
sMapItem *Item;
long Index = 0;

// Open the file
if((fp=fopen(Filename, “wb”))==NULL)

return FALSE;

// Assign index numbers to items
if((Item = m_ItemParent) == NULL) {

fclose(fp);
return TRUE; // no items to save

}
while(Item != NULL) {

Item->Index = Index++;
Item = Item->Next;

}

// Match child items to parents
Item = m_ItemParent;
while(Item != NULL) {

if(Item->Parent != NULL)
Item->Owner = Item->Parent->Index;

else
Item->Owner = -1;

Item = Item->Next;
}

// Save ‘em out
Item = m_ItemParent;
while(Item != NULL) {

// Item number
fprintf(fp, “%lu\r\n”, Item->ItemNum);

// Quantity
fprintf(fp, “%lu\r\n”, Item->Quantity);

639Managing Items with Inventory Control Systems

// Coordinates
fprintf(fp, “%lf\r\n%lf\r\n%lf\r\n”, Item->XPos, Item->YPos, Item->ZPos);

// Owner #
fprintf(fp, “%ld\r\n”, Item->Owner);

// Next item
Item = Item->Next;

}

fclose(fp); // Close the file

return TRUE; // Return success!
}

Finally, you use the Free function when destroying the class (thus, deleting the
linked list of items). Here’s the code for Free:

BOOL cMapICS::Free()
{

m_NumItems = 0;
delete m_ParentItem;
m_ParentItem = NULL;
return TRUE;

}

You’re just deleting the item linked list and getting the class ready for further use.

cMapICS::Add and cMapICS::Remove
As items are added to the map (as the result of a player dropping them, for exam-
ple), you need to call Add to make sure those dropped items make it into the list of
map objects. The Add function does this by first allocating a sMapItem structure, filling
it with the appropriate item information that you give it and then linking it into the
map’s list of items:

BOOL cMapICS::Add(long ItemNum, long Quantity, \
float XPos, float YPos, float ZPos, \
sMapItem *OwnerItem)

{
sMapItem *Item;

// Create a new item structure

640 15. Defining and Using Objects

Item = new sMapItem();

// Insert into top of list
Item->Next = m_ItemParent;
if(m_ItemParent != NULL)

m_ItemParent->Prev = Item;
m_ItemParent = Item;

// Fill the item structure
Item->ItemNum = ItemNum;
Item->Quantity = Quantity;
Item->XPos = XPos;
Item->YPos = YPos;
Item->ZPos = ZPos;
Item->Parent = OwnerItem;

return TRUE;
}

Just as the Add function is used to add objects to the map’s list of items, you’ll need
to use Remove to remove items from a map. You call Remove using the item’s identifier
that you wish to remove from the map’s list. Remove also deletes the allocated item
structure and takes care of items that belong to the removed item:

BOOL cMapICS::Remove(sMapItem *Item)
{

sMapItem *ItemPtr, *NextItem;

// Remove child objects first
if((ItemPtr = m_ItemParent) != NULL) {

while(ItemPtr != NULL) {
NextItem = ItemPtr->Next;
if(ItemPtr->Parent == Item)

Remove(ItemPtr);
ItemPtr = NextItem;

}
}

// Remove from linked list and reset root
// if it’s the current head of list.
if(Item->Prev != NULL)

Item->Prev->Next = Item->Next;

641Managing Items with Inventory Control Systems

else
m_ItemParent = Item->Next;

if(Item->Next != NULL)
Item->Next->Prev = Item->Prev;

// Clear link list
Item->Prev = Item->Next = NULL;

// Free memory
delete Item;

return TRUE;
}

cMapICS::GetNumItems,
cMapICS::GetParentItem,
and cMapICS::GetItem
You use these three functions to retrieve the number of
items that belong to the map and to retrieve the parent
sMapItem or specified item structure in the linked list. The
first two of the following three functions return a single
variable while the third function does the hard work by
scanning through the linked list of objects, returning the
specified item in the list:

long cMapICS::GetNumItems() { return m_NumItems; }
sMapItem cMapICS::GetParentItem() { return m_ParentItem; }

sMapItem *cMapICS::GetItem(long Num)
{

sMapItem *Item;

Item = m_ItemParent; // Start at parent item
while(Num—) { // Loop until reached item num

if(Item == NULL)
return NULL; // no more items to scan, return error

Item = Item->Next; // go to next item in linked list
}
return Item; // return resulting item

}

642 15. Defining and Using Objects

NOTE
With the parent
item structure
pointer returned
from GetParentItem,
you can scan the
entire linked list of
items by utilizing
each item struc-
ture’s Next pointer.
If you want a specific
item structure
based on its index
into the list, use the
GetItem function.

Using the cMapICS Class
Every map in your game will have an associated list of items that belongs to it. The
map ICS will load those items and provide them to your engine whenever it needs
to render the map or add a specific item to a player’s inventory (when an item
contained in the map is picked up).

Take a look at the following code bit, which loads a sample list of items, adds a
single item, removes another item, and saves the list of items:

cMapICS MapICS;

MapICS.Load(“sample.mi”); // Load the file

// Add 1 of item # 10
MapICS.Add(10, 1, 0.0f, 0.0f, 100.0f, NULL);

// Remove 2nd item from list
MapICS.Remove(MapICS.GetItem(1));

// Save list back out
MapICS.Save(“sample.mi”);

Although this is a simple example of modifying a map’s item list, why not go ahead
and see just how complicated it can become.

The MapICS demo (see Figure 15.9) contains the full cMapICS class shown in this
chapter and the sItem structure from the MIL edit program. You can load the
MapICS demo from the CD-ROM at the back of this book (look for \BookCode\
Chap15\MapICS). You use the map ICS and MIL to render a list of objects spread
around a simple level.

The MapICS loads the map items and
uses their coordinate data to draw
a generic item mesh in the scene.
Whenever you approach an item, a
targeting icon appears and displays
the name of the item.

Nothing in the MapICS should be new to
you, so I’ll skip the code at this point.
Basically, the MapICS demo is like the
NodeTree demo shown in Chapter 12,
“Creating 3-D Graphics Engines.”

643Managing Items with Inventory Control Systems

NOTE
The MapICS demo allows you to walk
around a simple level by using the
arrow keys and mouse.You can pick up
items by standing in front of one and
pressing the left mouse button.
Pressing the right mouse button
causes you to drop a random item.

Once the level is rendered out, each item in the map is scanned and drawn if in
view. The closest item is detected, and its name is printed to the screen. The code
is well commented, so you should have no problem breezing through it.

Developing a Character ICS
Although developing a character’s inventory system might make you cringe at first,
let me reassure you that it’s not much different from developing a map inventory
control system. You have the ability to add and remove items, but you don’t have the
problem of dealing with the item coordinates on the map. Instead, a player’s ICS
keeps track of order, which means that players can rearrange the items as they see fit.

Of course, this ordering is just a matter of arranging the linked list, but what about
the items that can hold other items, such as backpacks? As long as you properly cat-
egorize the items as containers in the MIL Editor, you don’t need to worry.

Speaking of categorizing, the real magic happens when you want to equip or use
an item. Because each item is categorized, the character ICS can quickly determine
what to do with the item in question. If the item is a weapon, the character ICS can
ask to equip the item. If it’s a healing item, the player can consume it. Beginning
to get the idea?

644 15. Defining and Using Objects

Figure 15.9

The MapICS demo allows
you to walk around a simple
level, picking up and
dropping items.

Finally, a character ICS should allow the player to examine objects, which is the rea-
son for the mesh and image parameters in the MIL Editor. Whenever the game’s
player examines the object, the specific mesh or image is loaded and displayed.

Now, turn your attention to putting together a character ICS and example by using
the ICS.

Defining the cCharICS Class
The character ICS class and supporting structure developed for this book are defined
as follows:

typedef struct sCharItem
{

long ItemNum; // MIL item number
long Quantity; // Quantity of item (i.e. coins)

sCharItem *Prev, *Next; // linked list pointers

long Index; // This items index #
long Owner; // Owner index #
sCharItem *Parent; // Parent of a contained item

sCharItem()
{

Prev = Next = Parent = NULL;
Index = 0; Owner = -1;

}

~sCharItem() { delete Next; }
} sCharItem;

class cCharICS
{

private:
long m_NumItems; // # items in inventory
sCharItem *m_ItemParent; // Linked list parent item

// Functions to read in next long or float # in file
long GetNextLong(FILE *fp);
float GetNextFloat(FILE *fp);

645Managing Items with Inventory Control Systems

public:
cCharICS(); // Constructor
~cCharICS(); // Destructor

// Load, save, and free a list of items
BOOL Load(char *Filename);
BOOL Save(char *Filename);
BOOL Free();

// Add and remove an item
BOOL Add(long ItemNum, long Quantity,

sCharItem *OwnerItem = NULL);
BOOL Remove(sCharItem *Item);

// Retrieve # items or parent linked list object
long GetNumItems();
sCharItem *GetParentItem();
sCharItem *GetItem(long Num);

// Re-ordering functions
BOOL Arrange();
BOOL MoveUp(sCharItem *Item);
BOOL MoveDown(sCharItem *Item);

};

Much like the cMapICS class, the cCharICS class uses a special structure (sCharItem) that
tracks the MIL item numbers and quantity and maintains a linked list. Unlike the
sMapItem structure, however, sCharItem doesn’t care about the item’s coordinates.

The cCharICS class, again, is much like its cMapICS counterpart, except for the addition
of three more public functions—Arrange, MoveUp, and MoveDown. You use these functions
to sort the character’s list of items. Their code is as follows:

BOOL cCharICS::Arrange()
{

sCharItem *Item, *PrevItem;

// Start at top of linked list and float
// each item up that has a lesser ItemNum.
// Break if past bottom of list
Item = m_ItemParent;
while(Item != NULL) {

646 15. Defining and Using Objects

// Check previous item to float up
if(Item->Prev != NULL) {

// Keep floating up while prev item has
// a lesser ItemNum value or until top
// of list has been reached.
while(Item->Prev != NULL) {

PrevItem = Item->Prev; // Get prev item pointer

// Break if no more to float up
if(Item->ItemNum >= PrevItem->ItemNum)

break;

// Swap ‘em
if((PrevItem = Item->Prev) != NULL) {

if(PrevItem->Prev != NULL)
PrevItem->Prev->Next = Item;

if((PrevItem->Next = Item->Next) != NULL)
Item->Next->Prev = PrevItem;

if((Item->Prev = PrevItem->Prev) == NULL)
m_ItemParent = Item;

PrevItem->Prev = Item;
Item->Next = PrevItem;

}
}

}

// Go to next object
Item = Item->Next;

}

return TRUE;
}

BOOL cCharICS::MoveUp(sCharItem *Item)
{

sCharItem *PrevItem;

// Swap item and item before it

647Managing Items with Inventory Control Systems

if((PrevItem = Item->Prev) != NULL) {
if(PrevItem->Prev != NULL)

PrevItem->Prev->Next = Item;

if((PrevItem->Next = Item->Next) != NULL)
Item->Next->Prev = PrevItem;

if((Item->Prev = PrevItem->Prev) == NULL)
m_ItemParent = Item;

PrevItem->Prev = Item;
Item->Next = PrevItem;

}

return TRUE; // Return success
}

BOOL cCharICS::MoveDown(sCharItem *Item)
{

sCharItem *NextItem;

// Swap item and item after it
if((NextItem = Item->Next) != NULL) {

if((Item->Next = NextItem->Next) != NULL)
NextItem->Next->Prev = Item;

if((NextItem->Prev = Item->Prev) != NULL)
Item->Prev->Next = NextItem;

else
m_ItemParent = NextItem;

NextItem->Next = Item;
Item->Prev = NextItem;

}

return TRUE; // Return success
}

Arrange sorts the linked list of items based on each item’s MIL item number, from
lowest to highest. If, on the other hand, you want to specifically order the list your-
self, you can utilize the MoveUp and MoveDown functions, which take a pointer to a
sCharItem structure that is already contained in the list.

648 15. Defining and Using Objects

TEAMFL
Y

Team-Fly®

The MoveUp function moves the specified sItem structure up in the linked list, and
MoveDown moves the specified structure down in the linked list. Figure 15.10 illus-
trates the concept of using the Arrange, MoveUp, and MoveDown functions on a sample
linked list of items.

The rest of the functions in cCharICS are identical in their functionality to the
cMapICS class, with the obvious exclusion of the item coordinates used when adding
an item to the list. Even the storage format for character items is identical to the
map item format, except for the coordinates.

Using the cCharICS Class
To demonstrate the use of the character ICS system, I created a demo application
named CharICS that maintains a list of items contained in the default.mil master
item list file. You can find the demo on the CD-ROM at the back of this book
(look for \BookCode\Chap15\CharICS). When you start the demo, you’ll see the
Inventory dialog box (shown in Figure 15.11). In the Inventory dialog box, the list
box contains an imaginary character’s inventory, which you can manipulate by
using the buttons on the dialog box.

To use the CharICS demo, follow these steps:

1. Click the Add Item button. The CharICS demo will add a random item from
the MIL to the inventory list.

2. Select an item from the list. Items are classified, so the Use and Equip but-
tons are enabled or disabled depending on which item you select from the
list. Clicking Equip has no effect; it comes into play later when you deal with
characters. Clicking Use, however, removes an item if it is flagged as USEONCE.

649Managing Items with Inventory Control Systems

Original Sorted Moved Up Moved Down

sItem Structure
Item #10

sItem Structure
Item #2

sItem Structure
Item #3

sItem Structure
Item #7

sItem Structure
Item #2

sItem Structure
Item #3

sItem Structure
Item #7

sItem Structure
Item #10

sItem Structure
Item #10

sItem Structure
Item #3

sItem Structure
Item #2

sItem Structure
Item #7

sItem Structure
Item #10

sItem Structure
Item #2

sItem Structure
Item #7

sItem Structure
Item #3

Figure 15.10

From left to right,
you see the original
unsorted list, the
arranged (sorted) list,
the list after moving
an item up, and the
list after moving an
item down.

3. Click the Drop button to drop an item (remove the item from the inventory
list) if it is flagged as CANDROP.

4. In order to arrange the items in the inventory, you can click an item and
then click either Sort Up or Sort Down. The selected item then moves up or
down in the list. To arrange the items by their item number in the list, click
Arrange.

As a last, special treat, items that have matching meshes appear in the box on the
right in the demo. The 3-D object spins around slowly so that you have a full view
of all sides. Now, that’s cool!

Wrapping Up Objects
and Inventory
Don’t let the complexity of working with objects in your game fool you. The simple
fact is that items in your game are actually small, easily handled bits of data. It’s
when characters start using those items that things become a bit more complicated.
In this chapter, you saw just how you use inventory control systems to handle items
belonging to a map and a character.

To expand the usefulness of the MIL Editor (and for your own game’s items), I
recommend adding your own item attributes. This involves a little Windows pro-
gramming knowledge, because you must modify the dialog box that handles the

650 15. Defining and Using Objects

Figure 15.11

The CharICS demo allows you to peruse
an imaginary character’s inventory, adding,
dropping, or sorting items as you see fit.

modifications. In addition, you have to rewrite the sItem structure to hold the new
attributes that you’re adding. Of course, you don’t have to worry about that chal-
lenge; you’re becoming a role-playing game programming wizard.

651Wrapping Up Objects and Inventory

Programs on the CD-ROM

The \BookCode\Chap15\ directory contains these three programs,
which demonstrate how to use a master item list and how to use the
two inventory control systems developed in this chapter:

◆ MILEdit. The Master Item List Editor program discussed in this
chapter.The editor aids in the creation of items you can use in
your own game project. Location: \BookCode\Chap15\MILEdit\.

◆ MapICS. An example of a map inventory control system.
Items loaded from disk are scattered about a map that the
user can scroll around using the mouse and arrow keys.
Location: \BookCode\Chap15\MapICS\.

◆ CharICS. An example character inventory control system that
enables you to view a list of items. Items can be examined, used,
or equipped. Location: \BookCode\Chap15\CharICS\.

This page intentionally left blank

CHAPTER 16

Controlling
Players

and
Characters

Agaming world is nothing without players and monsters running around.
Nevertheless, creating them can be a little daunting at first. But don’t worry.

In this chapter, you can find the basic information you need to create characters
and give them a life of their own in your game—all in an easy-to-follow format.

In this chapter, you learn how to do the following:

■ Define characters
■ Control characters in play
■ Use spells with characters
■ Deal with interaction between the player character and NPCs

Players, Characters,
and Monsters, Oh My!
Prior to this chapter, the game components are pretty standard. Those compo-
nents—graphics engines, object handling, and using scripts—are easy to handle.
Now you come to what can seem like an impasse because fashioning characters can
be difficult or easy depending on your game’s needs. You must handle the player
characters (from now on referred to as PCs) that are under the control of the
player, the non-player characters (from now on called NPCs) that are running
around populating the world and carrying on with their own lives, and the monster
characters (from now on called
MCs) that want nothing more
than to strike you down.

In this section, I introduce you to
the various topics that help you
design and define your game’s
characters, ranging from a charac-
ter’s controls, abilities, and features.

Talk about pressure! How do you
handle every little aspect of these

654 16. Controlling Players and Characters

NOTE
A player character is your player’s alter ego.
Non-player characters are the characters
for whom your player has no direct con-
trol. NPCs are often townsfolk, shopkeep-
ers, bankers, healers, and monsters.Yes,
even monsters are NPCs, but for this book,
I like to make a clear distinction between
an NPC and an MC. NPCs do not attack
players, whereas MCs do attack.

three types of characters? You might first break those aspects into the following cat-
egories and then determine how to proceed:

■ Definition. You determine everything that a character can accomplish in
a game by using a set of rules. Those rules need to establish exactly what a
character is capable of accomplishing. Character definition includes a char-
acter’s abilities (such as physical strength and agility) and a character’s
graphical appearance (as defined by 3-D meshes, for example).

■ Navigation. Characters need to navigate through the world, whether on foot,
by horse, or in an airship.

■ Conversation. PCs interact with other PCs and with NPCs by talking or via
other communication channels. The course of your game can change with
a single spoken word, or the story can be permanently laid out by means of
canned responses from talking dummies.

■ Resource management. Resource management plays a large part in role-
playing games. You have a PC inventory that consists of armor, weapons,
potions, keys, and whatever else the PCs can fit into their virtual pockets.
Those items, of course, are used at some point in the game, and it’s the job of
PCs to figure out each object’s use. Spells and magic also fall into this category.

■ Combat. Combat is a PC’s means of ridding the world of evildoers, who take
the form of NPCs or other PCs, and of giving PCs a chance to gain experi-
ence and power. Remember that a major element of role-playing games is to
take your big, bad characters and build them into even bigger, badder charac-
ters!

■ Character building. As I just mentioned, the purpose of typical role-playing
games is to consistently increase your characters’ powers and experiences so
that they are better prepared to take on the more challenging aspects of the
game. As characters’ experiences increase, they gain knowledge of new skills,
powers, spells, and abilities.

■ Character actions and appearance. Characters can do only so much in a
game. They can walk around, attack, cast spells, use items, and what have
you. Each action that a character can perform is matched by a graphical rep-
resentation, such as a 3-D mesh displayed on the screen.

Defining Characters in Your Game
Employing characters into your game is one of the most difficult jobs you’ll face.
Even at a basic level, the code needed to control gaming characters can be convo-
luting. What’s a lowly programmer to do? Just take it slow, work from the begin-

655Players, Characters, and Monsters, Oh My!

ning, and all will be well.

In this section, I introduce you to some basic concepts common to most role-
playing games. These concepts include defining a character’s basic abilities (which
include strength, intelligence, agility, and so on), how characters navigate through
the game world, and how characters can interact with each other. Let’s start by
looking at how you can define a character’s abilities.

Character Abilities
Characters need particular abilities in order to affect the outcome of certain
actions that take place within the game—combat for example. If a character swings
a sword, what is the chance it will hit its intended target, and for that matter how
much damage will the sword produce?

Typical role-playing games assign values to abilities—the higher the value, the bet-
ter the character in terms of a particular ability. Using numbers also makes calcula-
tions easier. For example, a typical ability in a role-playing game is strength. Say
that strength is measured from 0 (total weakling) to 999 (super-hero). An average
human could then have strength of 100 to 150.

Now, go one step further and assume that a character must be a certain strength
in order to perform a specific feat. Pushing open a jammed door, for example,
requires a person to have strength of 100 or more. Lifting a boulder requires
strength of 500 or more. Beginning to get the idea?

What other types of abilities can a character possess? For your game, that is the big
question, so think about it carefully. Just what is going to happen in your game that
requires an ability to be assigned to a character? Generally speaking, you can get by
with the abilities shown in Table
16.1.

Each ability in your game is
assigned a number, and each
ability has a different use for the
numbers. Attack is the amount
of damage characters deal out
without weapons in their hands.
If this value is 100, the character
can cause 100 points of damage
per attack. At this point, let me
just say that a character can expe-

656 16. Controlling Players and Characters

TIP
To keep things fair, whenever a weak charac-
ter attacks a character with high defense
without the ability to do damage, you still
want to apply some level of damage. Later, in
the section “Combat and Characters,” you
see how to modify a weak character’s attack
ability in order to apply some sort of damage
to a character with a high defense ability.

rience only so many points of damage before dying.

Defense, on the other hand, reduces the amount of damage points taken from an
attack. If a character has a defense value of 50, the damage from an attack is
reduced by 50 points, so the higher the defense, the lower the damage.

You also can modify attack and defense abilities by using items. Specific items, such
as weapons, have a value that can multiply the attack value of a character (again,

657Players, Characters, and Monsters, Oh My!

Table 16.1 Character Abilities

Ability Description

Attack This is the amount of damage a character can deal out.The attack
value is based on how much damage characters can do with their
bare hands, but add a weapon and the attack value increases (based
on the type of weapon).

Defense With a full set of armor you feel invincible.With just your blue jeans
and T-shirt you are very vulnerable. Defense is the level of protection
you have—the higher the defense, the less damage you take. Each
character has a natural defense, whether it is weak skin or a tough
hide. Using armor or other types of equipment can raise defense.

Agility The ability to move around quickly and sure-footed. Characters with
high agility can move quicker and even dodge attacks with greater ease.

Mental The character’s ability to control his mind.Total control over one’s
mind is a requirement of magical characters who cast spells and the
like.The higher the mental ability, the greater the chance a charac-
ter’s spells will hit the intended target.

Resistance Whereas defense ability helps reduce physical damage from physical
attacks, resistance ability reduces damage from magic-based attacks.
The higher the resistance, the lower the damage from spells. A 100
percent resistance makes a character invulnerable to magic!

To hit Some characters aim right on; others have a little trouble.
Characters’ to-hit abilities detail just how well characters can hit
their targets during an attack.This ability is raised or lowered
depending on the type of weapon or other equipment donned.

see the later section “Combat and Characters” for more on these modifier values).

In terms of agility, characters have an innate chance of dodging attacks, which
increases as the characters grow stronger. Agility is measured from 0 to 999—the
higher the value, the greater the chance of dodging an attack. To determine
the chances of dodging an attack, a random number is figured and compared to the
agility value. If the random number is equal to or lower than the agility ability,
the attack is dodged.

The mental ability ranges anywhere from zero and up. The mental ability deter-
mines the chances of a spell affecting its target. Spells normally have a chance for
success, but when you add mental ability, those chances increase. If a spell has a
mental value of 100, the spell has a 100 percent greater chance for working.

Resistance is the character’s ability to reduce damage from spells. This value can
range from 0 to 100 percent. The percentage is applied to the spell’s damage
amount and used as a final value to cause damage to a target character.

Finally, the to-hit ability can range from 0 to 999 as well. Again, a random value is
compared to the to-hit ability; a random number higher than the to-hit value
means that the attack missed its target.

In addition to character abilities, other types of information can define a charac-
ter—for example, the player’s health. A few extra details about each character are
needed at this point to determine just how healthy and powerful a character is.
Enter character attributes.

Character Attributes
Character’s attributes are much like abilities, except that attributes define a differ-
ent aspect of a character. Your physical health is an attribute, for example; it varies
depending on how much injury a character sustains. These injuries can be healed
and, as such, the health of the character is increased.

You need only a few attributes in a game. Table 16.2 describes four attributes that I
use throughout this chapter.

A character’s health is measured in health points (HP), and mana is measured in
mana points (MP). A character needs MPs in order to cast spells. Each time a spell is
cast, a set amount of MPs are taken away; if no mana remains, no spells can be cast.

Experience and experience levels enable players to track the progress and increase
the power of their characters. Dealing with experience relates to PCs only, which is
discussed in the section “Increasing in Experience and Power,” later in this chapter.

658 16. Controlling Players and Characters

TEAMFL
Y

Team-Fly®

Status Ailments in Characters
Abilities and attributes are a great way to determine the capabilities of a character.
Of course, those abilities and attributes describe a character at his peak perfor-
mance. Certain ailments can dog characters, causing them to weaken or strengthen.
Characters can be poisoned or inflicted with an ailment that causes them to become
clumsy.

These status ailments are magical in nature and help turn the tide at critical points.
Table 16.3 lists several status ailments used in many games (and in this book) and
their effect on the afflicted character.

As you can see, certain status ailments aid characters rather than affect them badly.
Later, in the sections “The Function of Spells” and “Using Combat Rules for
Attacking,” you see how to incorporate these ailments into your project.

659Players, Characters, and Monsters, Oh My!

Table 16.2 Character Attributes

Attribute Description

Health The health of a character ranges from zero and up.The higher
the number, the more damage the character can take. A value
of zero means that the character is dead.

Mana Mana applies to the amount of magic power a character has
in reserve. Every spell requires a set amount of mana that is
depleted each time a spell is cast.

Experience points Think of assigning a number to the amount of experiences
you’ve had in life.As characters in a game experience more,
they grow stronger and learn more.A character’s experiences
are measured in numerical form.

Experience level Every so often, a character’s abilities and attributes increase.
Experience levels are those instances of increase. Experience lev-
els are determined by a set amount of experience points, as you
soon see in the section “Increasing in Experience and Power.”

660 16. Controlling Players and Characters

Table 16.3 Status Ailments and Their Effects on Characters

Ailment Effect

Poison Poison slowly saps the health of a character until the calamity is
dispelled. In this book, characters that are poisoned lose two health
points every four seconds.

Sleep Characters who are asleep can’t do anything until they wake up.
The only ways to wake up are to be hit by another character or to
wait until the effect wears off (a 4-percent chance).

Paralyze Paralyzed characters can’t do anything, which is much like the Sleep ail-
ment. However, paralyzed characters will recover only when the magic
is dispelled or the effect wears off (a 2-percent chance).

Weak The attack and defense abilities of weak characters are reduced by half.

Strong The attack and defense abilities of strong characters are increased by
50 percent.

Enchanted The magical resistance ability of enchanted characters is reduced by half.

Barrier A magical barrier ailment increases the character’s resistance ability by
50 percent.

Dumbfounded Dumbfounded characters lose half their mental ability when afflicted.

Clumsy The agility of clumsy characters is reduced by 25 percent, making them
less able to dodge physical attacks.

Sure-footed Being quick on their feet is the name of the game, and the agility of
sure-footed afflicted characters is raised by 50 percent.

Slow Normally, characters have a set rate of walking speed (measured in
units per second), but being afflicted by the slow ailment reduces this
walking speed by half.

Fast Increases the character’s walking speed by 50 percent.

Blind Blind characters are 25 percent more likely to miss their targets when
attacking.

Hawkeyed Hawkeyed characters are 50 percent more likely to hit their targets
when attacking.

Silenced Silenced character are unable to cast spells until this ailment is dispelled.

Character Classes
Characters come in all shapes and sizes—big ones, little ones, even short and furry
ones. The fact is that some characters have different attributes that make them spe-
cial.

For every different type of character in your game, there is a matching character
class. You can think of character classes as being a way to differentiate the different
species of characters in your game. Going even further, classes can determine a
specific type of character in a species.

Classifying a character simply as human isn’t enough. Instead, the classification of
human fighter might be appropriate in certain cases. This applies to all characters.
For example, you might classify a dragon as an ice dragon, or a fire dragon, or a
rock dragon, and so on.

The reasons for determining class are important to your game design (refer to
Chapter 15, “Defining and Using Objects,” for more information on using classes
in relation to items and characters). The items in your game are assigned a class
usage variable that states which classes can harness a particular item. Broadswords
can be wielded only by human or dwarf warrior characters, whereas only a wizard
class can use a spell scroll.

Character classes also come into play when you are handling combat situations.
Certain attacks, whether physical or magical, have either a strong or weak effect on
specific character classes. Consider, for example, a fireball spell. Although a fireball
is heat-based, it will do much more damage to an ice-based monster than to a fire-
based monster (in fact, it might heal a fire-based monster).

Character classes are assigned by number and are entirely up to your design.

Character Actions
Every character in your game has an associated set of actions that the character
can perform, and with action, an associated animation is played out on the screen.
Taking a swing with a weapon, casting a spell, or talking to another character—
they’re all actions, and it’s your job to determine what actions your game’s
characters can perform.

Each action in the game also has a resulting effect. A walking action moves a char-
acter, whereas an attack action involves swinging a weapon and determining who or
what is hit. Internally, one effect is taking place; externally, the player is treated to a
graphical animation to represent the action.

661Players, Characters, and Monsters, Oh My!

Table 16.4 shows the actions I implement in this book.

Certain actions can be performed only at specific times. Maybe characters can’t
attack during navigation sequences, leaving combat actions to a separate battle

662 16. Controlling Players and Characters

Table 16.4 Character Actions

Action Description

Attack Swinging with their weapons, characters strike forth at any
character in front of them.Although only one type of attack is
implemented in this book, you should be able to add different
types of attacks in your game.

Cast spell The ancient art of magic is brought forward as characters per-
form a small ritual with the intention of calling forth a damaging
or beneficial spell.

Movement Walking, flying, running—all are ways of getting around in your
gaming world.Your character needs a typical method of motion,
and for this book, that method is to walk around.

Idle When characters stand still, they are idle. Characters might
appear to be bored, alert, or constantly looking around, but
no matter what they’re doing, they are considered idle.

Use item When a character decides to harness the use of the items they
have collected, a use item action is initiated.

Talk Conversing with the gaming denizens is a talk action. Instead
of just standing still, gamers want their characters to appear as
though they are interacting with each other—waving their arms,
moving their mouths, or what have you.

Hurt A character hit by an attack, whether magical or physical, usually
requires a second to recover.This period of recovery is consid-
ered a hurt action, and during this action, the player cannot
perform any actions.

Die After enough damage is received, a character can die. Not just
any death will do, however; an over-dramatized animation of the
downfall is followed by the character’s removal from the game.

sequence. Even when those actions are acceptable to use, another factor limits
when some actions can be performed.

Take the attack action for example. Assuming that it can be performed at any time
during the game doesn’t mean that the player can sit and constantly hack away. You
use a limiting factor called the charge to delay the time between attacks. In fact, all
actions except idle and movement work off the character’s charge.

Whenever one of those actions is used, the character’s charge is reset. Slowly, that
charge refills until the character is once again able to perform another action. The
rate at which this charge increases is specific to each type of character.

Although every character in the game can perform the actions shown in Table
16.4, different types of characters use only certain actions. PCs are the only ones
who use items, for example, so a monster will never be assigned that action.

To better understand what each character type is capable of performing, take a
brief look at each one of them.

The Player Character
The world revolves around your PC, so most of your game development will go into
controlling him. PCs have the most actions and options available to them. Other
than those character actions previously mentioned, PCs have the option of manag-
ing their game resources, which includes items and magic spells. In addition, char-
acter building is used to build up the strength of the character.

The following sections show how each aspect comes into play when working with PCs.

Player Navigation
The most important ability of your PCs is navigation. It’s a huge world, and half the
fun of the game is exploring every nook and cranny in it. You must give PCs as
many ways as possible to navigate the world, whether they walk, fly, swim, or tele-
port.

Again, staying with the basics, the characters’ most important navigation method is
walking around the world. Each character in your game is assigned a value that
gauges the character’s speed of movement, and for your player, the faster the
movement rate, the better.

663Players, Characters, and Monsters, Oh My!

Resource Management
Resources are the items and objects that litter your gaming world. They make the
game worth playing.

Chapter 15 introduces you to creating items, but it doesn’t fully cover the use of
those items. The fact is that items are nothing unless there’s somebody to use them,
so now is a good time to review how your game players can interact with those items.
Potions can be consumed, weapons and armor worn, and gold spent—it’s all up to
how you design those items (see Chapter 15) and how your players use them!

Not only are items resources, but they also can be magic spells. Spells are tremen-
dously useful tools, and in order to make it anywhere in the world, your PC needs
to learn to use as many spells as possible. How does a player learn to use spells?
Through ever-increasing experience, that’s how!

Increasing in Experience and Power
True to typical role-playing game design, characters can grow in experience—every
treasure they find and every battle they win increase their abilities. Think of experi-
ence as a number, and the higher the number, the more powerful the character. As
specific levels of experience are reached, a character gains certain benefits.

For example, imagine that George, a game character, has just finished slaying his
one-thousandth Ogre. Throughout all his combat experiences, he has grown
increasingly stronger. He can now deal out three times the amount of damage with
his sword than he could when he started his adventure. His physical strength has
increased, and he is more agile and more able to dodge attacks. His mental abili-
ties have increased, and he has learned some powerful new spells.

Characters have what’s called experience points and experience levels. Every experience
increases the experience points of a character. At specific intervals of experience
points, a character’s experience level is raised. When an experience level raises, a
character gains benefits, which generally include an increase in abilities and spells.

For this book, gaining experience points comes from killing monsters. The amount
of experience points gained is coded into a character’s definitions. Killing a
homely little imp might give your character a measly 10 experience points, whereas
slaying a level-200 red dragon might give your character a whopping 20,000! It’s up
to you to designate the amount of experience gained for killing monsters.

Designating experience levels and rewarding advances are part of your work as a
game designer. A character designated as level 1 might need 500 experience points

664 16. Controlling Players and Characters

to go to level 2, and going up to experience level 3 might require 1,200 experience
points.

When determining the experience points needed for a specific level, you might
gauge those levels of advancement by the average experience given from killing
monsters in a specific area in the game. For example, if your character is in “imp-
land” and each imp gives your PC 10 experience points when killed, you want the
player to kill at least 20 monsters to go up to level 2, which means that level 2
requires 200 experience points.

In addition to benefits going up, abilities and attributes also increase as experience
levels go up. The PC’s maximum amount of health and mana points increase; the
player becomes stronger and able to take more damage. Spells become easier to
cast, and with the addition of more mana points, your PC can cast more spells
before running out of juice. What really happens to PCs as levels increase is a mat-
ter of a game’s design. In this chapter, I don’t delve too deeply into it (but you can
find out how I increase a PC’s abilities because of an increase in experience in the
full-game example in Chapter 20, “Putting Together a Full Game”).

Non-Player Characters
You contend with NPCs much as you contend with PC controls, except that the
game engine handles all aspects of an NPC’s controls. This difference creates some
tough design and programming situations, and you must develop an artificial intel-
ligence system that can mimic believable behavior.

Reviewing the characters’ aspects, you can see that even NPCs need quite a bit of
managing:

■ Navigation. Although not as complicated as PCs, NPCs do need to get
around in the world. With the help of scripting, this becomes much easier,
but problems still arise because of terrain obstacles and PC interaction.

■ Conversation. Again, although not at the same level as PCs, NPCs need to
act “human,” and part of acting human is using communication skills.

■ Combat. NPCs make up the majority of characters against whom PCs do
combat, so the NPCs need to be worthy adversaries. Even the lowliest NPC
has self-preservation skills and needs to exhibit them in a battle to the death!

Other major control aspects, such as resource management, don’t apply to NPCs.
The items that NPCs carry are written into the design of the characters. Rarely do
they have free choice of what they carry or use. Also, because the players do not
control most NPCs, they have their “entire lives” to develop, so character building

665Players, Characters, and Monsters, Oh My!

doesn’t affect them either.

Because it applies only to MCs (and not all NPCs), leave combat at this point and
turn your attention to navigation and conversation, which have a great effect on
NPCs. These two actions require a plausible artificial intelligence in order for the
characters to become semi-sentient beings in a game. Actually, NPCs only need to
appear intelligent. Under all the fluff, they follow a small set of instructions and
rules that govern their actions.

For example, Phantasy Star Online, a popular game created by Sega, uses minimal
NPC interactions. It has a couple of shopkeepers who sell items, a bank to hold
money and other items, a healer to cure wounds, and a guild to embark on quests.
The game’s monsters are dumb by many standards; they simply walk around until
they see the PC, at which point they home in for an attack. This group of NPC con-
trol aspects is perfect for fast-action role-playing games, but not good enough for
more serious gamers.

On the other hand, a game such as Origin’s Ultima Online is packed with NPCs.
How do these two games compare? The NPCs in Ultima Online are limited in terms
of their artificial intelligence—they can only wander around, follow a character,
remain still, attack, heal, guard, or act as a banker or shopkeeper. In Ultima Online,
the scripts that the NPCs use are their real magic. Each NPC can have a script
attached that enables the NPC to perform additional actions. For example, talking
to an NPC yields nothing special until the player gives the NPC a special item, at
which point the NPC bequeaths the player a magic sword.

Which is the way to go? If you want a super complex artificial intelligence, so be it,
but your gaming world can be literally packed with hundreds of NPCs, so the easier
it is to handle them, the better.

In this book, I model the Ultima Online NPC control scheme. NPCs are assigned
specific movements and are allowed to utilize scripts. To keep things simple, a PC
must interact with an NPC before a script is activated.

Monster Characters
Monster characters are really NPCs in disguise. An MC is programmed just like an
NPC, but with monsters, they take on an additional form of intelligence—hunting
and attacking PCs.

Monsters can wander around, follow, evade, follow a route, and even stand still—
just like normal NPCs. However, when a PC comes within range of a monster’s
attack range (physical or magical), that player becomes fair game. The monster

666 16. Controlling Players and Characters

will consistently attack nearby PCs until either the PCs are dead or the PCs leave
the monster’s attack range.

Monsters also have a sense of self-preservation. If a monster loses half its health
points and has the ability to perform a healing spell, it will attempt to heal itself
using the healing spell. Likewise, if a monster has an ailment, it will attempt to dis-
pel the ailment. Finally, a monster will attempt to enhance itself by casting benefi-
cial status ailment spells upon itself.

Monsters are the only type of character that a PC can attack (or should be able to
attack for that matter). Because a PC gains experience only by killing monsters, you
want to provide your game with a sufficient number of monsters.

Character Graphics
Up to this point, only the functionality
of a character has been discussed. The
reality is that functionality is the only
part that really matters, but game play-
ers will want some sort of visual repre-
sentation of their digital alter ego.
With the power of a 3-D modeler and
the Graphics Core, you’ll have no
problem tackling the graphics portion
of your characters.

Each character in your game can per-
form specific actions. These actions (or
at least those actions used in this book)
are as follows: to walk, stand still, swing a
weapon, cast a spell, be hurt, and die. Each of these actions has a specific animation,
which is used in conjunction with a mesh to create a character’s graphics compo-
nent.

As you learn in the later section “Creating a Character Controller Class,” each char-
acter’s mesh is loaded into a cMesh object, and each animation is loaded into a
cAnimation object. Those two Graphics Core objects are unique to each character in
your game (with multiple instances of the same character using only one mesh and
animation object). Your job is to load those meshes and animations and to render
the characters to the display at each frame.

667Navigating Characters

NOTE
Two great models and supporting
action animations are included on the
CD-ROM at the back of this book
(look for \Resources\Models\Yodan and
Spawn).You use these meshes in later
chapters.Take some time to load these
models into MilkShape 3-D and check
out how each model is animated and
how you can modify and use the mod-
els and animations in your project.

Navigating Characters
Now that you’ve defined your characters, it is time to put them in the world and move
them around. This is where you separate control systems between PCs and NPCs. PCs,
being the characters directly controlled by the
players, have the most options.

If you’ve checked out the demo programs
in Chapter 12 and Chapter 13 that
are on this book’s CD-ROM, you have
already witnessed the player control system
(which I like to call direct control) that I cre-
ated. Those demos enable you to move the
player around using arrow keys and the
mouse.

For the first-person demos (such as the
NodeTree demo in Chapter 12), pushing the
up arrow moves the player forward, pushing the down arrow moves the player
backward, and pushing the left and right arrows moves the player left and right,
respectively. Moving the mouse rotates the viewpoint. As for a non-first-person
demo (such as the 3Din2D demo in Chapter 13), the arrows move the character in
the appropriate direction (press the up arrow to move up, press the left arrow to
move left, and so on).

Rarely does anything become more complicated than using these control systems
when dealing with a PC. Things do get complicated, however, whenever your player
starts walking around bumping into other characters and objects (such as doors).
You’ve already seen how to perform collision detection of sorts, so that’s really not
a big problem.

Things tend to get a little more complicated for NPCs. No longer is the player
responsible for moving a character around the map; the game engine takes over.
You also can enable NPCs to walk around according to simple directions, but
instead of moving around the world like the PC, NPCs perform a basic set of
movement behaviors, as follows:

■ Stand still
■ Wander aimlessly around the entire level or specific area
■ Walk along a specified route

668 16. Controlling Players and Characters

NOTE
First person and non-first person
describes the viewpoint of the
player. For first-person games, the
player’s viewpoint is from the
character’s eyes. Non-first-person
games take a different viewpoint—
from above, the side, or any other
such angle.

TEAMFL
Y

Team-Fly®

■ Follow a character
■ Evade a character

The preceding list of actions is all you ever need to start, and because you have to
start somewhere, start at the most logical place—with the PC controls.

Controlling Player Characters
Your player is the most important character in the game, so you need complete con-
trol of him. Typical games utilize a simple directional control scheme, similar to the
scheme you read about in the section “Player Navigation.”

A direct control scheme enables you to manually move a character forward, back-
ward, left, right, up, and throughout the map. Nothing can be more direct, so I
tend to use the direct control method to control characters in this book.

There are two types of direct controls—directional control and rotational control, which
are covered in the following two sections.

Using Directional Control
Directional control uses controls such as arrow keys or a joystick to move characters
in a single direction. Directional control is best suited to third-person games in which
the camera is viewing the character from above and from the side (as illustrated in

669Navigating Characters

Left Up

Dow
n Right

Camera

Figure 16.1

With a directional control, a character walks
in the direction directed by the key pressed—
the up arrow moves the character up the
screen (away from the camera), the left arrow
moves the character left, and so on.This
control method takes into account the
camera’s position when moving the character
so that the up arrow always moves a
character up (away), regardless of the
camera’s viewing angle.

Figure 16.1).

To move a character by using directional controls, you need to know the camera’s
angle (along the Y-axis), the character’s position, and the direction in which the
character wants to move (0.0 being up or away from the camera, 1.57 being right,
3.14 being down, and 4.71 being left).

Assume that the character’s coordi-
nates are represented in a pair of
variables:

float XPos, ZPos; // YPos = height and
is not required yet.

Now the camera’s angle (along the
Y-axis) is represented with a variable:

float CameraYAngle; // The angle of
view

Last, you have the direction you
want to move the character and the
distance to move in that direction:

float Direction; // Direction to move
float Distance; // How far to move

Next, set up a sample in which a character is located at the origin of the world and
wants to walk up (relative to the camera view); the camera is positioned to the right
of the origin along the X-axis and is pointed left, as illustrated in Figure 16.2.

Here are the variables to set up and the calculations to perform:

XPos = ZPos = 0.0f; // The character’s position
CameraYAngle = -1.57f; // The camera angle
Direction = 0.0f; // Direction to move
float Distance = 4.0f; // The distance to move character

// The new direction (angle) to move
float NewAngle = CameraYAngle + Direction - 1.57f;

// Move character
XPos += (float)cos(NewAngle) * Distance;
ZPos += (float)-sin(NewAngle) * Distance;

At this point, the character has moved 4.0 units away from the camera, which

670 16. Controlling Players and Characters

CAUTION
Using distance values can be a problem
because you’re not controlling how fast
each frame is updated in your engine.
When a game is running full speed on
one computer and is updated 100 times
a second, the game’s characters will
move much faster on that computer
than they will on a computer that is
updating the game 30 times a second.
You need to limit the number of times
your game updates each frame, much
as I do later in the section “Using
cCharacterController” and in Chapter 20.

means that the character is now located at X=-4.0, Z=0.0, which is just where you
want the character to be. The only problem now is determining the character’s
height (for those using a 3-D engine).

That really isn’t a problem. Chapter 12 explains how to use the respective intersec-
tion tests to determine the height of a point in a polygon, which you use as the
Y-coordinate for the characters. Chapter 12 covers utilizing the GetHeight functions
to determine the Y-coordinates required to place characters in 3-D space.

Rotational Control
Rotational control allows the player to rotate the character using the left and right
arrow keys and forward and backward using the up and down arrow keys.

Rotational control is better than directional control is some aspects, because the
movement calculations are more basic. Characters need to store a directional value
now, however, that represents the direction they are facing (with 0.0 pointing along
the positive Z-axis, 1.57 pointing along the positive X-axis, 3.14 pointing along the
negative Z-axis, and 4.71 pointing along the negative X-axis). Assume that the
direction variable is as follows:

float Facing = 0.0f; // Direction character is facing

At this point, you can say that pushing the left control (the left arrow key or left on
a joystick) rotates the character to the left (negative rotation), and pushing right
rotates the character to the right (positive rotation):

// using the Input Core:
// Keyboard = pre-created cInputDevice object for keyboard

671Navigating Characters

Side View

Camera

Origin

X-Axis
– +

Origin

X
-A

xi
s

+

Camera View
Figure 16.2

The camera is pointing
left, whereas the
character points up.

Keyboard.Read();

// Rotating left?
if(Keyboard.GetKeyState[KEY_LEFT] == TRUE)

Facing -= 0.01f; // Rotate left .01 radians

// Rotating right
if(Keyboard.GetKeyState[KEY_RIGHT] == TRUE)

Facing += 0.01f; // Rotate right .01 radians

From the Facing angle variable, movement forward and backward becomes a matter
of the following:

// Move forward?
if(Keyboard.GetKeyState[KEY_UP] == TRUE) {

XPos += (float)cos(Facing-1.57f) * Distance;
ZPos += (float)-sin(Facing-1.57f) * Distance;

}

// Move backward?
if(Keyboard.GetKeyState[KEY_DOWN] == TRUE) {

XPos += (float)-cos(Facing-1.57f) * Distance;
ZPos += (float)sin(Facing-1.57f) * Distance;

}

First Person Control
The last type of directional control I like to use is one for a first-person style game
in which you see the world through the eyes of the character. This form of control
uses the arrow keys to move characters left, right, forward, and backward and the
mouse to rotate the view (much like turning your head as you look around).

Pressing the up arrow moves characters forward in the direction they are looking,
whereas pressing the down arrow moves characters backward. The left and right
arrows move left and right. First-person control is similar to the rotational control
you just read about, but with first-person control, the mouse turns the character.

This time however, it’s not characters that rotate, but the camera (because the cam-
era view represents the view from the character’s eyes). This introduces a couple of
new variables that represent the camera angles:

float XAngle = 0.0f, YAngle = 0.0f; // Character viewing angles

The two preceding variables will now hold the viewing angle, which is modified as
the player moves the mouse. Here’s the code to modify the viewing angles:

672 16. Controlling Players and Characters

// Assuming using the Input Core
// Mouse = pre-created cInputDevice for mouse
// same for keyboard
Mouse.Read();
Keyboard.Read();

// Rotate the character based on mouse angle
XAngle += Mouse.GetYDelta() / 200.0f;
YAngle += Mouse.GetXDelta() / 200.0f;

// Move character
if(Keyboard.GetKeyState[KEY_UP] == TRUE) {

XPos += (float)cos(YAngle-1.57f) * Distance;
ZPos += (float)-sin(YAngle-1.57f) * Distance;

}
if(Keyboard.GetKeyState[KEY_DOWN] == TRUE) {

XPos += (float)-cos(YAngle-1.57f) * Distance;
ZPos += (float)sin(YAngle-1.57f) * Distance;

}
if(Keyboard.GetKeyState[KEY_LEFT] == TRUE) {

XPos += (float)cos(YAngle-3.14f) * Distance;
ZPos += (float)-sin(YAngle-3.14f) * Distance;

}
if(Keyboard.GetKeyState[KEY_RIGHT] == TRUE) {

XPos += (float)cos(YAngle) * Distance;
ZPos += (float)-sin(YAngle) * Distance;

}

Notice that whenever the user moves the mouse, a delta value (the amount of
movement) is used to rotate the view. From there, calculating which direction to
move the character is easy.

Controlling Non-Player Characters
As you’ve been able to surmise from the past few sections, controlling the player is
relatively simple. Now comes the tough part—controlling the game’s NPCs. This
section shows you the various methods of navigating your game’s NPCs.

Although games might trick you into thinking some elaborate scheme is moving
the NPCs around the world, that just isn’t the case.

Do you remember the five general types of NPC movements that I mentioned earlier—

673Navigating Characters

standing still, wandering around an area, walking along a route, following a character,
and evading a character? With these in mind, you might want to take a closer look at
your favorite role-playing games to find out which control schemes they use.

As for your role-playing game, take a moment to examine the following controls
and how to implement them.

Standing Still
There’s not much to think about here—just place a character and he stands still
facing a specific direction. That direction is an angular rotation.

Wandering an Area
Games such as Ultima Online allow NPCs to wander around a set area, whether it is
the entire level or a section that you define. To keep things simple, you can specify
the range in which you want a character to wander, within a specific range of coor-
dinates (as illustrated in Figure 16.3). These coordinates can be stored in variables
such as these:

float WanderMinX, WanderMinY, WanderMinZ;
float WanderMaxX, WanderMaxY, WanderMaxZ;

Now, assuming that you are tracking a character’s coordinates in the level in a trio of
variables, you can move them around randomly and check whether a move is valid:

float CharXPos, CharYPos, CharZPos; // Character coordinates
float XMove, ZMove; // Movement amounts - skip YMove movements

// Distance to move character
float Distance;

// Determine a random direction to move - loop until found
while(1) {

float Direction = 6.28f / 360.0f * (float)(rand() % 360);
XMove = cos(Direction) * Distance;
ZMove = sin(Direction) * Distance;

// Check if move is valid - ignore height for now
if(CharXPos+XMove >= WanderMinX && \

CharXPos+XMove <= WanderMaxX && \
CharZPos+ZMove >= WanderMinZ && \
CharZPos+ZMove <= WanderMaxZ) {

674 16. Controlling Players and Characters

// Movement allowed, update coordinates
CharXPos+=XMove;
CharZPos+=ZMove;

break; // break out of loop
}

Walking a Route
Although NPCs aren’t intelligent enough to know their way around the level, you
can assign them routes to travel. These routes include coordinates that must be
reached in order to proceed to the next coordinates. Once the last set of coordi-
nates is reached, the character returns to the first set of coordinates and starts the
path all over again.

675Navigating Characters

Wander Area

Map

Figure 16.3

A character needs to know its limits
when wandering around. By specifying
a small area within a map (as shown
here), you can limit just where a
character can go.

CAUTION
Don’t randomly move a character around at every
frame, or you’ll find yourself with characters that look
like they’re having a conniption fit. Instead, update a
character’s direction only every few seconds or so.

Using Route Points
Route points are defined as a set of coordi-
nates, and keeping with the 3-D concept that
you’re accustomed to, you can use the follow-
ing structure to store those coordinates:

typedef struct sRoutePoint {
float XPos, ZPos;

} sRoutePoint;

In order to construct a route, you pick the points you want a character to walk and
construct an array of sRoutePoint structures to store the coordinates. Figure 16.4, for
example, shows a simple map, with five points marked.

Because each point in the route is marked with coordinates, you can see how to
construct the sRoutePoint structures array:

sRoutePoint Route[5] = {
{ -200.0f, -100.0f },
{ 100.0f, -300.0f },

676 16. Controlling Players and Characters

NOTE
Note that there’s no need for a
Y-coordinate when using a 3-D
engine because the height is
determined by the height of the
ground below the character.

1
2

3

4

5

Figure 16.4

This imaginary map shows five route
points.The character starts at point 1 and
proceeds directly to point 2, and then to
point 3, and so on until point 5 is reached.
At that point, the character goes back to
point 1 and starts the routine again.

{ 300.0f, -200.0f },
{ 200.0f, 100.0f },
{ 0.0f, 400.0f }

};
long NumRoutePoints = 5; // To make it easier to know # points

Walking from Point to Point
In order to proceed from point to point, a character walking a route needs to com-
pare its current coordinates to the point where it’s headed. You use this, combined
with the character’s walking speed, to compute a pair of movement variables that
update the character’s position.

Start by assuming that the character’s coordinates are kept in the following variables
(along with the character’s walking speed):

float CharXPos, CharZPos; // No Y-coordinate needed
float WalkSpeed; // Walking speed per frame

At this point, assume that you’ve already retrieved the coordinates you want the
character to walk to and placed them into another pair of variables:

float RouteXPos, RouteZPos; // Again, no Y-coordinate

Now, to start the character moving, you calculate the movement variables:

// Calculate distance from character to route point
float XDiff = (float)fabs(RouteXPos - CharXPos);
float ZDiff = (float)fabs(RouteZPos - CharZPos);
float Length = sqrt(XDiff*XDiff + ZDiff*ZDiff);

// Calculate movement towards point
float MoveX = (RouteXPos - CharXPos) / Length * WalkSpeed;
float MoveZ = (RouteZPos - CharZPos) / Length * WalkSpeed;

Whenever you update the character per frame from now on, you’ll need to add
MoveX and MoveZ to the character’s coordinates, as in the following:

CharXPos += MoveX;
CharZPos += MoveZ;

With that aside, go back and see just how to track which route point a character is
walking toward. When one route point is reached, the character must walk toward
the next. To determine when a route point is reached, you check the distance from
the character to the route point; if the distance is within a certain limit, the charac-
ter has reached the point and is allowed to continue on to the next route point.

677Navigating Characters

Faster than the Speed of Pythagoras
To determine the distance away from a route point, you can use the standard
Pythagorean Theorem, but in order to speed things up, you can toss the sqrt
operation out the door and use the sum of the squares of the lengths instead.
To see what I mean, take a
look at the following two
lines of code:

float Distance =
sqrt(Length1*Length1 +
Length2*Length2);
float Distance =
Length1*Length1 +
Length2*Length2;

Notice that the preceding
two lines of code are almost
identical, except the second
line omits the sqrt function, making the second line execute much faster. The
downside is that you don’t get the exact length, which really isn’t a problem.

For example, imagine that you are measuring the distance between two points and
you want to see whether that distance is less than 40. If the coordinates of the two
points are 0,0 and 30,20, the faster distance calculation will give you a distance of
1,300 (because the length of the two sides are 30 and 20, respectively).

How can you determine the distance now? By calculating the square (the number
times itself) of the distance, that’s how! So, by taking 40 times 40, you get 1,600. By
comparing the distance of 1,300 between the points, you can see that indeed the
distance is less than 1,600 and, thus, less than the original distance of 40 you were
checking.

To get back to what I was originally talking about, you can use the faster method
of distance calculation to determine when a character is close enough to a route
point. Say that you want a route point considered as being touched by a character
if that character comes within so many units from it. Utilizing the faster method of
distance calculation, you can use the following function to determine whether that
is the case:

BOOL TouchedRoutePoint(
float CharXPos, float CharZPos, // Character coordinates
float RouteXPos, float RouteZPos, // Route point coordinates
float Distance) // Distance to check

678 16. Controlling Players and Characters

NOTE
The Pythagorean Theorem is probably the most
famous theorem in geometry. It states that the
square of the length of the hypotenuse of a right
triangle is equal to the sum of the squares of the
lengths of the sides. Basically, it means that the
square root of the lengths of two sides (when
both are squared and added together) equals
the length of the third side of a right triangle.

TEAMFL
Y

Team-Fly®

{
// Square the distance to adjust for faster distance checking
Distance *= Distance;

// Now calculate the distance
float XDiff = (float)fabs(RouteXPos - CharXPos);
float ZDiff = (float)fabs(RouteZPos - CharZPos);
float Dist = XDiff*XDiff + ZDiff*ZDiff;

// Return results
if(Dist <= Distance) // Within range being checked

return TRUE;
return FALSE; // Out of distance range

}

When calling TouchedRoutePoint with the character coordinates, the coordinates of
the route point, and the distance from the point to check, you will receive a value
of TRUE if the character is within Distance units from the route point coordinates.
A return value of FALSE means that the character is not within Distance units from
the route point.

Walking the Route
At long last, you can put everything together and force a character to walk from
one route point to the next. Here’s a small program that takes the five route points
defined previously and puts a character at point one, forcing the character to walk
from point to point forever:

sRoutePoint Route[5] = {
{ -200.0f, -100.0f },
{ 100.0f, -300.0f },
{ 300.0f, -200.0f },
{ 200.0f, 100.0f },
{ 0.0f, 400.0f }

};
long NumRoutePoints = 5;

// Character coordinates and movement variables
float CharXPos = Route[0].XPos;
float CharZPos = Route[0].ZPos;
float MoveX, MoveZ;
float Speed; // Walking speed of character

679Navigating Characters

// Start track to 2nd point
long TargetRoutePoint = 1;
SetupMovement(TargetRoutePoint);

// Loop forever, moving and checking for route points reached
while(1) {

// Is character within range of route point?
if(TouchedRoutePoint(TargetRoutePoint, 32.0f) == TRUE) {

// Move to next route point
TargetRoutePoint++;
if(TargetRoutePoint >= NumRoutePoints)

TargetRoutePoint = 0;
SetupMovement(TargetRoutePoint);

}

// Move character
CharXPos += MoveX;
CharZPos += MoveZ;

}

// Function to check if within range of route point
BOOL TouchedRoutePoint(long PointNum, float Distance)
{

Distance *= Distance;
float XDiff = (float)fabs(CharXPos - Route[PointNum].XPos);
float ZDiff = (float)fabs(CharZPos - Route[PointNum].ZPos);
float Dist = XDiff*XDiff + ZDiff*ZDiff;

if(Dist <= Distance)
return TRUE;

return FALSE;
}

// Function to calculate movement variables
void SetupMovement(long PointNum)
{

float XDiff = (float)fabs(CharXPos - Route[PointNum].XPos);
float ZDiff = (float)fabs(CharZPos - Route[PointNum].ZPos);
float Length = sqrt(XDiff*XDiff + ZDiff*ZDiff);
MoveX = (Route[PointNum].XPos - CharXPos) / Length * Speed;
MoveZ = (Route[PointNum].ZPos - CharZPos) / Length * Speed;

680 16. Controlling Players and Characters

}

Following Another Character
Although following another character might seem complicated at first, don’t worry
too much. Remember that keeping it simple is the solution. Following a character
is as easy as walking a route. Because a character already knows its own coordinates
and the coordinates of the character it is following, you can use previously seen
functions to move the character toward another one.

The only difference at this point is that you might want a character to get within a
specific distance from the followed character, as illustrated in Figure 16.5.

Knowing each character’s coordinates (the character being followed and the char-
acter doing the following), you can construct a single function that determines
which direction the “following” character should move:

void CalculateFollowMovement(
float CharXPos, float CharZPos, // Coordinate of character
float WalkSpeed, // Walking speed of char.
float FollowXPos, float FollowZPos, // Coords of followed char.
float FollowDistance, // Distance to follow at
float *MoveX, float *MoveZ) // Variables for movement

{
// Fix for faster distance checking
FollowDistance *= FollowDistance;

// Get distance between characters
float XDiff = (float)fabs(FollowXPos - CharXPos);
float ZDiff = (float)fabs(FollowZPos - CharZPos);
float Length = XDiff*XDiff + ZDiff*ZDiff;

// If distance between characters is less than allowed,
// then just stand still.
if(Length < FollowDistance) {

*MoveX = *MoveZ = 0.0f;
return;

}

// Calculate rate to move based on character walking speed
Length = sqrt(Length);
*MoveX = (CharXPos - FollowXPos) / Length * WalkSpeed;

681Navigating Characters

*MoveZ = (CharZPos - FollowZPos) / Length * WalkSpeed;
}

Whenever you want to update a character that is following another one, you merely
pass along the required data and move the character using the returned movement
variables.

Evading Another Character
Evading means to move a character away from another one. If the character to be
avoided is closer than the minimum set distance, the evading character moves in
the opposite direction through the use of the CalculateEvadeMovement function:

void CalculateEvadeMovement(
float CharXPos, float CharZPos, // Coordinate of character
float WalkSpeed, // Walking speed of char.
float FollowXPos, float FollowZPos, // Coords of evaded char.
float EvadeDistance, // Distance to evade
float *MoveX, float *MoveZ) // Variables for movement

{
// Fix for faster distance checking
FollowDistance *= FollowDistance;

// Get distance between characters
float XDiff = (float)fabs(FollowXPos - CharXPos);

682 16. Controlling Players and Characters

Character to
Follow

Following
Character

Following
Character

Get Closer!
Too Close!

Figure 16.5

One character has
picked another
character to follow.
If the character being
followed is closer than
an assigned distance,
the following character
stands still. If the
distance is greater,
the character that is
following the other one
needs to move closer.

float ZDiff = (float)fabs(FollowZPos - CharZPos);
float Length = XDiff*XDiff + ZDiff*ZDiff;

// If distance between characters is more than allowed,
// then just stand still.
if(Length > EvadeDistance) {

*MoveX = *MoveZ = 0.0f;
return;

}

// Calculate rate to move based on character walking speed
Length = sqrt(Length);
*MoveX = -((CharXPos - FollowXPos) / Length * WalkSpeed);
*MoveZ = -((CharZPos - FollowZPos) / Length * WalkSpeed);

}

Automatic Control of Characters
Ever get the feeling you aren’t in control? With your role-playing game that just
might seem like the case. However, when scripting comes into play, you want to
control the PCs at times—for example, to advance the story in some way. This
involves automatic control.

Automatic control of a character means that the game decides which control method to
use and where to move the character. Automatic control takes place in the artificial
intelligence settings. To temporarily control a PC, you can use the following steps:

1. Change the PC to an NPC.

2. Change the artificial intelligence setting of the PC (now an NPC) to follow
a route (or other movement type).

3. Perform movements and continue updating until the last route point is
reached or until you want to stop using automatic control.

4. Switch the character back to a PC type.

Conversation
among Characters
That’s right, chat it up! Character interaction is also a major part of a role-playing
game, but have you seriously thought about how to implement conversation into a

683Conversation among Characters

game? Thankfully, there are easy ways to make your characters talk to each other,
and not wanting to stray from the easy path, let me show you some of the basic
character conversation methods.

The Talking Dummy
The easiest conversation method to use has got to be the talking dummy. Every role-
playing game has at least one character (the talking dummy) that says the same
thing again and again; no intelligence is involved. Programming a talking dummy
into your game is as easy as assigning a line of text that is displayed whenever a
character is spoken to.

The problem is that the talking dummy can say only one thing at a time, which
isn’t very useful. Also, rather than inserting the code for a character’s dialogue into
the game engine, you can use an external source for the conversation text, which
takes us to the next topic, how to improve the basic talking dummy design.

Script-Driven Talking Dummies
You knew this was coming, didn’t you? Scripting is the heart and soul of computer
role-playing games, so you should try to use it to the fullest degree, including when
your characters converse with each other. By assigning a script to each character
in your game, the scripting engine can take the basic talking dummy concept and
expand it.

Adding the ability to use conditional code in the script enables talking dummies to
decide what to say based on internal flags and variables. Say that you have a script
that tracks the status of a flag, a flag that states whether you’ve visited a nearby town.

When it comes to a script-driven talking dummy, your script engine decides which
text to display based on the flag it receives. That character (the dummy) tells you
to visit the nearby town, or if you’ve been to the town, the dummy might comment
on the town’s population. One such script might look something like this (in a tex-
tual format):

If flag 0 is TRUE then
Print message “I see you’ve visited GranWell to the south!”

Else
Print message “You should head south to the town GranWell.”

Endif

As you can see in the preceding script, a flag (flag 0) tracks a TRUE or FALSE value
(the flag is set to TRUE whenever the player visits the town GranWell).

684 16. Controlling Players and Characters

The script-talking dummy is relatively easy to create and process, and I use this conver-
sation method throughout the rest of the book. In the later section “Demonstrating
Characters with the Chars Demo” and in Chapter 20, you see the script process in
action and how to use script-driven talking dummies in your game.

Displaying Conversational
and Other Text
No matter which way you look at it, you need to display the conversation among
characters in one way or another. You know the routine—whenever your player
talks to another character, a small window pops up and displays text. Every once in
a while, the character can choose from a list of actions displayed, and the conversa-
tion goes on.

Using 2-D techniques, you can display a conversation window (or text window to be
more precise), with the conversation text displayed inside the window. Because
only so many text characters can fit within the window at one time, multiple win-
dows are displayed with each page holding a portion of the complete conversation.
A player pushes a button to navigate through each page of text that is displayed in
the window. When the text finishes, the conversation ends.

685Conversation among Characters

Figure 16.6

The cWindow text
window class enables
you to open windows of
any height and width to
display any type of text
(usually conversation
text).

To keep things simple, I developed a system (a text window class called cWindow)
that can render a text window of any size anywhere on the display. This window
can be moved at any time, and may contain any string of text you assign. As a
bonus, the window can act as a text-bubble of sorts, whereas the window has a
pointer to a talking character. Figure 16.6 shows the text window class in action.

Technically, the window is two rectangles drawn on top of each other, with both
rectangles contained within a vertex buffer. One rectangle is white and is slightly
larger than the inner colored rectangle. When you draw them in order (from the
larger white rectangle to the smaller colored window), you achieve a bordered win-
dow look as shown in Figure 16.6.

The window text is drawn on top of the two windows. Text can be set at any time, but
presetting a string of text gives you the extra ability of calculating a window size that’s
guaranteed to fit the entire string of text within the window. Once you define a win-
dow’s size, you can dynamically change the string of text drawn without re-creating
the vertex buffer defining the window.

Realistically, you can use the text window for anything. Say that you want to open a
window to display an image using a text window class and texture object. It becomes
a matter of drawing one and then the other. In fact, in Chapter 20, you find out how
the text window class is put to good use for things other than conversations.

The cWindow Class
To get things rolling, take a look at the following cWindow class definition:

class cWindow
{

private:
typedef struct sVertex { // Custom vertex

float x, y, z; // Coordinates in screen space
float rhw; // RHW value
D3DCOLOR Diffuse; // Diffuse

color
} sVertex;
#define WINDOWFVF (D3DFVF_XYZRHW

| D3DFVF_DIFFUSE)

Remember that the text window
uses a vertex buffer to contain a

686 16. Controlling Players and Characters

CAUTION
At this time, you hard-code the size of the
font required; the font must be 16 pixels
or some spacing issues will arise. I’ll leave
it to you to alter the code a bit, but for all
further examples, I suggest sticking with
an Arial font using a size of 16.

couple of rectangles (with two triangles defined per rectangle). The vertex buffer uses
only transformed vertices that are assigned a diffuse color (white for the larger rectan-
gle in the back and your color of choice for the smaller rectangle in the front). Each
vertex is stored within the preceding sVertex structure
(and matching vertex descriptor).

From here, you define a set of parent cGraphics and cFont object pointers. A text
window must have a pre-initialized graphics object and font object in order to
work. Also, you instance the text window vertex buffer object.

cGraphics *m_Graphics; // Parent cGraphics object
cFont *m_Font; // Font object
cVertexBuffer m_WindowVB; // Vertex buffer for window

char *m_Text; // Text to display
D3DCOLOR m_TextColor; // Color to draw text

The text string is contained within the class (that is, inside an allocated char buffer),
along with a matching text color used to draw the text. Following these text string
definitions are the window coordinates and dimensions and a single variable that
states whether the text-bubble pointer needs to be drawn (as defined by a later call
to position the window).

long m_XPos, m_YPos; // Window coordinates
long m_Width, m_Height; // Window dimensions

BOOL m_DrawTarget; // Flag to draw bubble pointer

Next come the public class function declarations. (I cover the details of the function
prototype descriptions after showing them. At that point, I show the code for each
function separately.)

public:
cWindow(); // Constructor
~cWindow(); // Destructor

// Functions to create/free a text window
BOOL Create(cGraphics *Graphics, cFont *Font);
BOOL Free();

// Set the text and window coordinates/dimensions/colors
BOOL SetText(char *Text, D3DCOLOR TextColor = 0xFFFFFFFF);

// Move the window

687Conversation among Characters

BOOL Move(long XPos, long YPos, long Width,long Height=0, \
long TargetX = -1, long TargetY = -1, \
D3DCOLOR BackColor = D3DCOLOR_RGBA(0,64,128,255));

long GetHeight(); // Get window height after set

// Render window and text to display
BOOL Render(char *Text = NULL);

};

cWindow::cWindow and cWindow::~cWindow
The constructor and destructor are small and to the point, merely clearing and
releasing the class resources:

cWindow::cWindow()
{

// Clear class data
m_Graphics = NULL;
m_Font = NULL;
m_Text = NULL;
m_TextColor = 0xFFFFFFFF;

}

cWindow::~cWindow()
{

Free(); // Free class data

}

cWindow::Create and cWindow::Free
You use the Create and Free functions to prepare the class for use (by assigning the
cGraphics and cFont objects used for rendering) and to free the internal class data:

BOOL cWindow::Create(cGraphics *Graphics, cFont *Font)
{

Free(); // Free previous class data

// Error checking
if((m_Graphics = Graphics) == NULL || (m_Font = Font) == NULL)

return FALSE;

688 16. Controlling Players and Characters

TEAMFL
Y

Team-Fly®

// Create new vertex buffer (w/11 vertices to use)
m_WindowVB.Create(m_Graphics, 11, WINDOWFVF, sizeof(sVertex));

return TRUE; // Return success
}

BOOL cWindow::Free()
{

m_WindowVB.Free(); // Free vertex buffer

delete [] m_Text; // Delete text buffer
m_Text = NULL;

return TRUE;
}

A window vertex buffer uses 11 vertices to store the two window rectangles and a
pointer graphic to a target location on the screen. You get to see how the vertex
buffer is constructed and used coming up in the section “cWindow::Move.” As for
the window text, merely allocating an array and copying the string into it is suffi-
cient, so freeing the class involves deleting the array in use.

cWindow::SetText
As I just mentioned, you store the window text by creating an array of bytes and
copying the window text into that array. Setting the window text is the purpose of
the SetText function, which takes two parameters—the text to use (char *Text) and
the color to use to draw the text (D3DCOLOR TextColor).

BOOL cWindow::SetText(char *Text, D3DCOLOR TextColor)
{

// Delete previous text
delete [] m_Text;
m_Text = NULL;

m_Text = strdup(Text); // Copy text string
m_TextColor = TextColor; // Store text color

return TRUE;
}

689Conversation among Characters

For efficiency, use the strdup function to allocate and copy the text string at the
same time. The strdup function takes a text string as an argument and returns a
pointer to an allocated buffer that contains the text in question. From now on, the
text is ready to use in the class, and any time you want to change the text, just make
another call to SetText.

cWindow::Move
The biggest of the bunch, cWindow::Move has the job of constructing the vertex buffer
used to render the window (and supporting pointer, if needed). The function takes
as arguments the position to place the window (screen coordinates), the dimensions
(in pixels), a pair of coordinates at which to point the text-bubble pointer, and a
color to use for the smaller frontmost window.

BOOL cWindow::Move(long XPos, long YPos, \
long Width, long Height, \
long TargetX, long TargetY, \
D3DCOLOR BackColor)

{
sVertex Verts[11];
long i;

After declaring the few local variables in use, you store the position and dimensions
of the window within the class variables. The Move function prototype defaults the
Height argument to 0, which means that you want the class to calculate the height
required to display all text contained within the already created text buffer.

Having the Move function calculate the height of the text is perfect. If you’re display-
ing text of unknown lengths, you merely set Height to 0 and let the class do the hard
work. Speaking of this hard work, the code that stores the position and dimensions
are as follows (including the code to calculate the height):

// Save the coordinates and calculate height if needed
m_XPos = XPos;
m_YPos = YPos;
m_Width = Width;
if(!(m_Height = Height)) {

RECT Rect;
Rect.left = XPos;
Rect.top = 0;
Rect.right = XPos + Width - 12;
Rect.bottom = 1;

690 16. Controlling Players and Characters

m_Height = m_Font->GetFontCOM()->DrawText(m_Text, -1, \
&Rect, DT_CALCRECT | DT_WORDBREAK, \
0xFFFFFFFF) + 12;

}

From here on in, the code is dedicated to constructing the vertex buffer to display the
window. As I’ve mentioned, you use two rectangles, with each rectangle using four ver-
tices (arranged in a triangle strip to conserve memory and improve rendering time).

Using the previously stored position and dimensions, the windows are constructed
as shown in Figure 16.7.

Additionally, the vertex buffer may contain three more vertices that construct the
pointer at either the top or the bottom of the text window. Setting the TargetX and
TargetY arguments to a value other than -1 informs the Move function to draw a
pointer. Continue on in the code to set the vertices for the window:

// Clear the vertex data
for(i=0;i<11;i++) {

Verts[i].z = 0.0f;
Verts[i].rhw = 1.0f;

691Conversation among Characters

0 1

32

6 7

54

9

810

Figure 16.7

Two windows, each using four vertices are
defined by use of triangle strips.The last triangle
in the vertex buffer (the pointer) uses three
vertices of its own and is stored as a triangle
strip.

Verts[i].Diffuse = 0xFFFFFFFF;
}

// Set up the white outline
Verts[0].x = (float)m_XPos;
Verts[0].y = (float)m_YPos;
Verts[1].x = (float)(m_XPos+m_Width);
Verts[1].y = (float)m_YPos;
Verts.x = (float)m_XPos;
Verts.y = (float)(m_YPos+m_Height);
Verts.x = (float)(m_XPos+m_Width);
Verts.y = (float)(m_YPos+m_Height);

// Set up the text window
Verts.x = (float)m_XPos+2.0f;
Verts.y = (float)m_YPos+2.0f;
Verts.Diffuse = BackColor;
Verts[5].x = (float)(m_XPos+m_Width)-2.0f;
Verts[5].y = (float)m_YPos+2.0f;
Verts[5].Diffuse = BackColor;
Verts[6].x = (float)m_XPos+2.0f;
Verts[6].y = (float)(m_YPos+m_Height)-2.0f;
Verts[6].Diffuse = BackColor;
Verts[7].x = (float)(m_XPos+m_Width)-2.0f;
Verts[7].y = (float)(m_YPos+m_Height)-2.0f;
Verts[7].Diffuse = BackColor;

// Set up the target pointer
if(TargetX != -1 && TargetY != -1) {

m_DrawTarget = TRUE;

if(TargetY < m_YPos) {
Verts[8].x = (float)TargetX;
Verts[8].y = (float)TargetY;
Verts[9].x = (float)(m_XPos+m_Width/2+10);
Verts[9].y = (float)m_YPos;
Verts[10].x = (float)(m_XPos+m_Width/2-10);
Verts[10].y = (float)m_YPos;

} else {
Verts[8].x = (float)(m_XPos+m_Width/2-10);
Verts[8].y = (float)(m_YPos+m_Height);
Verts[9].x = (float)(m_XPos+m_Width/2+10);

692 16. Controlling Players and Characters

Verts[9].y = (float)(m_YPos+m_Height);
Verts[10].x = (float)TargetX;
Verts[10].y = (float)TargetY;

}
} else {

m_DrawTarget = FALSE;
}

m_WindowVB.Set(0,11,&Verts); // Set the vertices

return TRUE;
}

cWindow::GetHeight
Because you don’t have to specify a height value in the call to Move, you might need
to retrieve the actual height of the text window used. GetHeight does just that; it
returns the height of the text window as defined from Move:

long cWindow::GetHeight()
{

return m_Height;
}

cWindow::Render
Last comes the Render function, which you call with a cGraphics::BeginScene and
cGraphics::EndScene code block. Render merely sets the required rendering states and
draws the required polygons that form the pointer and text window. Then it draws
the text string (if the window height is greater than 12, which is the size of the
border used to surround the smaller frontmost window).

BOOL cWindow::Render(char *Text, D3DCOLOR Color)
{

// Error checking
if(m_Graphics == NULL || m_Font == NULL)

return FALSE;

// Set rendering states
m_Graphics->SetTexture(0, NULL);
m_Graphics->EnableZBuffer(FALSE);

// Draw window
m_WindowVB.Render(0,2,D3DPT_TRIANGLESTRIP);

693Conversation among Characters

m_WindowVB.Render(4,2,D3DPT_TRIANGLESTRIP);

// Draw target pointer if needed
if(m_DrawTarget)

m_WindowVB.Render(8,1,D3DPT_TRIANGLELIST);

// Only draw text if height > 12
if(m_Height > 12) {

// Draw the text
if(Text == NULL)

m_Font->Print(m_Text, m_XPos+6, m_YPos+6, \
m_Width-12,m_Height-12, \
m_TextColor, DT_WORDBREAK);

else
m_Font->Print(Text, m_XPos+6, m_YPos+6, \

m_Width-12,m_Height-12, \
Color, DT_WORDBREAK);

}

return TRUE;
}

Render takes two optional arguments. The first argument, Text, overrides the class’s
text that was already set using the SetText function. Overriding the text to draw is
great for dynamically updating what needs to be shown. The second argument,
Color, specifies the color you want to use to draw the text to the display.

Using cWindow
To quickly demonstrate using cWindow, let me show you how to display a short mes-
sage (assuming that you’ve already initialized a cGraphics object):

// Graphics = pre-initialized cGraphics object
cFont Font;
cWindow Window;

// Create a font to use
Font.Create(&Graphics, “Arial”, 16);

Window.Create(&Graphics, &Font); // Prepare class for use
Window.SetText(“The cWindow class in action!”);
Window.Move(4,4,632);

694 16. Controlling Players and Characters

Graphics.BeginScene(); // Begin the scene
Window.Render(); // Draw the window and text
Graphics.EndScene(); // End the scene
Graphics.Display(); // Display the scene

Window.Free(); // Free window class data

The usefulness of the cWindow class really comes into use later in the section
“Demonstrating Characters with the Chars Demo” when you display dialogue,
so put conversations and text windows on the back burner for a moment.

Scripting and Characters
Scripting keeps popping its head up throughout these last few chapters, and true
to form, scripting plays a major role when dealing with characters. Scripts work
with conversations, spells, character movement, and much more.

What you need at this point is a clean-cut method of processing the game scripts.
The best way to do this is to create a class to entwine into your character and other
application processing.

The Script Class
Rather than developing a class to process scripts earlier in the book, I waited until
you have a real need for doing so. In Chapter 14, “Implementing Scripts,” you
learn how easy it is to work with the Mad Lib Script (MLS) system and how easy it
is to process scripts created using the MLS editor. However, it becomes even easier
to execute scripts when you put the whole script processing in a class. Here is the
cScript class, defined in the Script.cpp and Script.h files (found on the CD in the
\BookCode\Chap16\Chars directory):

class cScript
{

private:
long m_NumActions; // # of script actions loaded
sScript *m_ScriptParent; // Script linked list

// Overloadable functions for preparing for script
// processing and when processing completed
virtual BOOL Prepare() { return TRUE; }
virtual BOOL Release() { return TRUE; }

695Scripting and Characters

// Process a single script action
virtual sScript *Process(sScript *Script)

{ return Script->Next; }

public:
cScript(); // Constructor
~cScript(); // Destructor

BOOL Load(char *Filename); // Load a script
BOOL Free(); // Free loaded script
BOOL Execute(char *Filename=NULL); // Execute script

};

Although deceptively small, the cScript class packs a punch. Loading a script is
accomplished via the Load function. Once it’s loaded, you can process the script
with a call to Execute. If you don’t want
to hassle with loading a script
before processing, a call to the
Execute function takes a script file
to load and execute in the same
function call (plus it frees the
script when execution is com-
plete).

The way the cScript class processes
scripts is ingenious. You actually
have to derive the cScript class to
parse each script action as it is processed. That’s the purpose of the Process function.
Once a script is loaded, the Process function is called for every script action to process.

Each script pointer is queried for the script action number, and you must decide
what to do with the action. Then you need to update the script pointers by returning
the pointer to the next script action in the linked list. (Refer to Chapter 14 for infor-
mation on how scripts are processed.)

The entire cScript class code is shown in Chapter 14, so turn now to finding out how
to derive a class that is used to process a script.

Creating a Derived Script Class
I’m going to assume that you are comfortable working with action templates and
scripts at this point. The following action template provides an example of using a

696 16. Controlling Players and Characters

TIP
Using the Load function to load a script is
useful if the script is processed many times
because you don’t have to free it between
uses. Loading a script within the Execute
function forces the script to be loaded and
freed every time, wasting precious time.

derived script class:

“End”
“If flag ~ equals ~ then”

INT 0 255
BOOL

“Else”
“EndIf”
“Set flag ~ to ~”

INT 0 255
BOOL

“Print ~”
TEXT

Now, using the preceding action
template, include the following
script (I list it in text form here to
make it easier to understand):

If flag 0 equals TRUE then
Print “Flag is TRUE”
Set flag 0 to FALSE

Else
Print “Flag is FALSE”
Set flag 0 to TRUE

EndIf

A brief reading shows that the preceding script displays the message “Flag is FALSE”
first (because all script flags are reset to FALSE when initialized); when executed
again, the script displays “Flag is TRUE”.

The Derived Class
The next step to processing the script is to derive a class from cScript:

class cGameScript : public cScript
{

private:
BOOL m_Flags[256]; // The internal flags

// The script function prototypes
sScript *Script_End(sScript*);
sScript *Script_IfFlagThen(sScript*);
sScript *Script_Else(sScript*);

697Scripting and Characters

CAUTION
Remember that the example script
shown here is in text form, but when used
as a Mad Lib Script, the format is based
on values. For example, the if...then
action is represented by the value 1,
whereas the EndIf action uses the value 3.

sScript *Script_EndIf(sScript*);
sScript *Script_SetFlag(sScript*);
sScript *Script_Print(sScript*);

// The overloaded process function
sScript *Process(sScript *Script);

public:
cGameScript();

};

The derived class shown here (cGameScript) uses an array of BOOL values that repre-
sents the internal flags the scripts can use. Following the single variable declaration
is a list of function prototypes.

The script function prototypes are the bread and butter of the script processor.
Each script action has an associated function that is called during the Process func-
tion. The Process function is overridden to call upon those script functions, as you
soon see in this section.

Aside from those private function calls, there is the constructor, which clears the
m_Flags array to all FALSE values.

cGameScript::cGameScript()
{

// Clear all internal flags to FALSE
for(short i=0;i<256;i++)

m_Flags[i] = FALSE;
}

Jumping back a bit, take a look at the overridden Process function. As you can see
from the following code, cGameScript::Process takes only the current script action
type and jumps to the appropriate function. Upon the return of each action func-
tion, a pointer to the next script action is returned. If a value of NULL is returned,
script execution halts.

sScript *cGameScript::Process(sScript *Script)
{

// Jump to function based on action type
switch(Script->Type) {

case 0: return Script_End(Script);
case 1: return Script_IfFlagThen(Script);
case 2: return Script_Else(Script);
case 3: return Script_EndIf(Script);

698 16. Controlling Players and Characters

TEAMFL
Y

Team-Fly®

case 4: return Script_SetFlag(Script);
case 5: return Script_Print(Script);

}

return NULL; // Error executing
}

Now that you’ve overridden the Process function (and filled in the switch statement
with the action’s function calls), you can continue by programming all of the actions’
functions, as follows:

sScript *cGameScript::Script_End(sScript *Script)
{

return NULL; // Force script to stop processing
}

sScript *cGameScript::Script_IfFlagThen(sScript *Script)
{

BOOL Skipping; // Flag for if...then condition

// See if a flag matches second entry
if(m_Flags[Script->Entries[0].lValue % 256] == \

Script->Entries[1].bValue)
Skipping = FALSE; // Don’t skip following actions

else
Skipping = TRUE; // Skip following actions

// At this point, Skipping states if the script actions
// need to be skipped due to a conditional if..then statement.
// Actions are further processed if skipped = FALSE, looking
// for an else to flip the skip mode, or an endif to end
// the conditional block.

Script = Script->Next; // Go to next action to process

while(Script != NULL) {
// if else, flip skip mode
if(Script->Type == 2)

Skipping = (Skipping == TRUE) ? FALSE : TRUE;

// break on end if
if(Script->Type == 3)

699Scripting and Characters

return Script->Next;

// Process script function in conditional block
// making sure to skip actions when condition not met.
if(Skipping == TRUE)

Script = Script->Next;
else {

if((Script = Process(Script)) == NULL)
return NULL;

}
}

return NULL; // End of script reached
}

sScript *cGameScript::Script_Else(sScript *Script)
{

return Script->Next; // Go to next script action
}

sScript *cGameScript::Script_EndIf(sScript *Script)
{

return Script->Next; // Go to next script action
}

sScript *cGameScript::Script_SetFlag(sScript *Script)
{

// Set boolean value
m_Flags[Script->Entries[0].lValue % 256] = \

Script->Entries[1].bValue;

return Script->Next; // Go to next script action
}

sScript *cGameScript::Script_Print(sScript *Script)
{

// Display some text in a message box
MessageBox(NULL, Script->Entries[0].Text, “Text”, MB_OK);

return Script->Next; // Go to next script action
}

700 16. Controlling Players and Characters

Using the Derived Class
To test the cGameScript class, instance it and run the example script that I showed
you earlier in the section “Creating a Derived Script Class.” Assuming that you
saved that script to a file named test.mls, the following example shows the script
class functionality:

cGameScript Script;

Script.Execute(“test.mls”); // Prints a Flag is FALSE message

// At this point, the script’s internal flags are maintained,
// so the next call would take the new flag states into account.
Script.Execute(“test.mls”); // Prints a Flag is TRUE message

Although this is a quick and dirty example of the derived cGameScript class, there really
isn’t much difference between this class and a full-fledged script parser that uses a huge
action template. You merely need to add each action-processing function into the class
and call that function via the Parse function. Throughout the rest of the book, you see
this script class put to good use; it actually forms the backbone of many projects.

Resource Management
Resource management plays a major role in your game. For characters to really get
anywhere or achieve anything, they may need the aid of the items, spells, and other
objects you’ve constructed for your game.

In Chapter 15, “Defining and Using Objects,” you see how to design your game’s
items and place those items into a master item list. Now is the time to see what you
can do with those items.

Resources also include spells that your game’s characters can learn through the
course of the game. You read more about spells later in this chapter in the section
“Magic and Spells,” but for now, here is a glimpse of what resources can do for you.

Using Items
You’ve already seen how to control items in your game using a character inventory
control system. If you have played with the CharICS demo, you have noticed the lack
of function for the Equip and Use buttons. Now is the time to understand just what
will happen when the functionality is put into place in that demo.

701Resource Management

A character can keep track of whatever armor, weapons, and accessories they can
equip. Because those equipped items are contained within an sItem structure, you
can query for the associated modified value (stored as sItem::Value) that is used to
modify a character’s abilities.

Say that item 1 is a sword. That sword is defined as a weapon and has a modified
value of 10. If a character is allowed to equip the weapon (as determined by the
class flags), the appropriate modified value is added to the character’s attack ability
value. Tracking which item is equipped can be as simple as storing the item num-
ber in the character definition. Also, because you want to visually display the
weapon that a character is holding, you might also load a weapon mesh to attach to
the character.

As for using items, that’s just as easy as equipping items. Remember that you prede-
termined what each item can be and what it can do. Say that you have a healing
potion and your player decides to drink it. Once you have checked the usage
restriction, you can determine that the healing potion is a healing item, and as
such, adds the item modifier value to the player’s health points.

Using Magic
Magic spells, much like items, are an essential resource for a player’s survival.
Magic aids the users in some way; stronger attacks, adding better defenses, and the
ability to heal are typical magic spell fare. Although spells are not needed, they
sure do help.

Magic spells are defined just like items. They have an assigned feature. Some spells
alter the character’s health, although other spells cause certain status ailments
(such as Poison). Any character can harness magic; they just need to “know” the
spell and have the matching mana points to cast it.

In order for characters to know a spell, they must learn it by working through expe-
rience levels. You can track learned spells by using the bit flags. You can use a 32-bit
variable to store known spells, with each bit in the variable representing a specific
spell. By setting a bit in the variable, the spell is learned. Once a spell is learned, it
is typically known forever.

Managing spell usage is just like managing items; by displaying a list of spells known
by a character, the player can determine which spells to cast when and where. As for
this book, there are no restrictions to when or where a character can cast a spell.

In the section “Working with Magic and Spells,” you find more on including spells
in your project.

702 16. Controlling Players and Characters

Shops and Bartering
Resources are commodities, so characters will want to buy and sell their wares from
and to each other. Only specific characters in a game are open to bartering. These
characters are commonly called “shopkeepers” because they tend to appear only in
stops. You know the drill—enter a shop, approach the counter, and begin dealing.

There are specific types of shops for each type of resource dealt with—item shops,
weapon shops, armor shops, and so on. You can use a standard approach to shops
in all instances.

Character inventory control systems are not just for PCs; here the inventory control
system (ICS) developed in Chapter 15 comes in great for shops and shopkeepers.
Shopkeeper characters have a unique ICS attached to them, one that determines
which items a given shopkeeper character can sell. You don’t have to worry about a
shopkeeper buying items; all shopkeepers can buy all items marked as sellable (for
a reduced cost as defined in the item definition, that is).

Buying an item from a shopkeeper is a matter of displaying the shopkeeper’s list of
items and their cost. Normally, shopkeepers never run out of stock, no matter how
many items the player buys; but occasionally you’ll want a shopkeeper to sell only
one instance of an item.

Some tinkering with the ICS is in order, but only in terms of quantity of items. If a
shopkeeper has an unlimited amount of an item, you set the quantity of that item
in the ICS as 2 or more (refer to Chapter 15 to see how to set the item quantity).
A quantity value of 1 means that the shopkeeper can sell the item only once.
Ingenious, isn’t it?

You will find it better to work with shops outside the character code and in the
game’s main application code. Check out Chapter 20 to see how I was able to
implement a bartering system.

Working with
Magic and Spells
Naturally, a first-rate role-playing game must have characters capable of harnessing
the mysterious magical powers of the unknown in order to reduce the game’s
denizens to small piles of charred flesh. Even if you’re not into the deadly side

703Working with Magic and Spells

of magic, don’t just dismiss the benefits of a well-timed healing spell. Magic plays a
major part in role-playing games, and now is the time to find out how to blast your
game’s players with awesome spells and their inevitable effects on the targets.

From a gamer’s point of view, a spell is a fancy flash of graphical goodness,
although from the game engine side, a spell is nothing more than a function that
alters character data. Your game engine can separate graphics and functionality,
the two components of a spell, thus making each component easier to handle.

Spell Graphics
Using 3-D meshes, you can easily deal with the graphical portion of a spell. These
spells originate from the spell caster and journey forth to their intended targets, at
which point, the spell takes full effect on some poor character. This happens in
three steps—origination of the spell mesh, traveling of the mesh, and when the
mesh reaches the target. With each step, you can assign an animated mesh, which
means that a spell can have up to three meshes graphically representing it.

To increase the choices in creating your game’s spell
effects, the position and motion of those three
meshes are not fixed. In fact, any of the three meshes
can hover over the caster or target, move from caster
to target or target to caster, or stretch out between
the caster and target.

Whenever a mesh is hovering over the caster or tar-
get (or stretching out between the two), it remains
there for a fixed amount of time (measured in mil-
liseconds). This gives your mesh the chance to
complete its animation cycle (or multiple cycles).

As for moving meshes (moving from caster to target or vice versa), a mesh is
assigned a speed of movement (measured in units per second). Once a mesh
reaches a target, that mesh is dismissed, and the next mesh takes over (if any
meshes are to follow).

Say that you have a fireball spell. Only two meshes are required. The first mesh,
a fireball, originates from the caster and moves toward the target, as illustrated in
Figure 16.8.

The second mesh, an explosion, takes over when the first mesh reaches its target.
The explosion mesh hovers over the target and cycles a few times to give the
appearance of some real damage taking place. You’re probably wondering about

704 16. Controlling Players and Characters

NOTE
Each mesh is displayed
separately.Two spell
meshes can never be dis-
played at once.When one
mesh completes its cycle,
it is released, and the
new mesh takes its place.

those times when you don’t want a spell to move but still want it to extend toward
your target. That’s the reason for the stretch positioning of meshes.

If you define a mesh that extends outward in the positive Z-axis (which you should
always do), that mesh can hover over the caster and scale so that the farthest extent
of the mesh touches the target. This stretching (or rather scaling) is perfect for
spells such as lightning or (as the Chars demo program from this chapter uses) a
groundball spell that ruptures the ground between the caster and the victim (as
illustrated in Figure 16.9). You can find the Chars demo program on the CD-ROM
in the \BookCode\Chap16\Chars directory. Although not apparent at first glance,
the groundball spell described in Figure 16.9 shows a small brownish-colored mesh
that is stretched out from the spell caster to the target character.

As you can tell, tracking the three meshes of the spell graphics component is just a
matter of loading the appropriate meshes and rendering the correct one at its
proper position over a period of time. Upon completion of the required mesh
cycles, the graphics segment of spells is complete, and it’s time for the functional
portion to take over.

The Function of Spells
The functional component of a spell does the real work. Once a spell runs through
its animation and reaches its intended target, the damaging or beneficial effects
need to be dealt with.

705Working with Magic and Spells

Figure 16.8

A spell caster has unleashed a
fireball toward an intended target.
The mesh travels at a set speed
until it reaches its destination.

Healing spells need to restore health to an injured character, whereas damaging
spells need to take away health. In fact, just about any aspect of a character can be
altered from a spell, ranging from characters’ health and mana to their abilities
such as attack or defense. In Table 16.5, I define the effects that can be used as a
spell effect, according to how I use them in this book.

Each spell effect has a supporting value defined in the source code as an enum
object that is defined as follows:

enum SpellEffects {
ALTER_HEALTH = 0,
ALTER_MANA,
CURE_AILMENT,
CAUSE_AILMENT,
RAISE_DEAD,
INSTANT_KILL,
DISPEL_MAGIC,
TELEPORT

};

706 16. Controlling Players and Characters

Figure 16.9

The groundball spell
from the Chars demo
program demonstrates
the stretch/scale mesh
positioning technique.
Whatever the distance
between caster and
target, the mesh is
scaled down to always
originate from the
caster and touch
the target.

Each spell effect is assigned a number. In that way, you can contain the processing
of a spell effect within a single switch statement, as in the following:

switch(SpellEffect) {
case ALTER_HEALTH:

// do health altering processing
case ALTER_MANA:

// do mana alter processing
...

}

Each spell effect is pretty straightforward. Now, take a closer look at just what each
of these effects do.

Alter Health and Mana
A spell can cause damage or rob characters of their stored mana, or it can, on the
other hand, restore health or mana. Alteration of health is probably the most widely
used spell effect.

A health altering spell has an associated value that determines how much health is
removed or added to the target character. The same applies to mana points, which
can be restored or drained away with the mere flick of a wizard’s hand.

707Working with Magic and Spells

Table 16.5 Possible Spell Effects

Effect Description

Alter health Increases or decreases target’s health points by a set amount.

Alter mana Increases or decreases target’s mana points by a set amount.

Cure ailment Cures a target’s specified ailment (such as poison or slow).

Cause ailment Causes a target to have an ailment (poison, and so on).

Raise dead Brings the PC back to life.

Instant kill Kills the target character instantly.

Dispel magic Cures all the target character’s status ailments.

Teleport Teleports a PC to a specific location on a map.

Cure and Cause Ailment
Status ailments are the bane and bonus of a character’s abilities and attributes. The
duo of curing and causing spell effects gives you great freedom in devising how to
curse or what to bestow upon a character.

When you alter an ailment (cause or cure), you must use a bit-encoded number to
define the ailment. By using bit flags, more than one status ailment can be caused
or cured at once. Each ailment has an associated macro defined as follows (defined
in the Chars.h file):

#define AILMENT_POISON 1
#define AILMENT_SLEEP 2
#define AILMENT_PARALYZE 4
#define AILMENT_WEAK 8
#define AILMENT_STRONG 16
#define AILMENT_ENCHANTED 32
#define AILMENT_BARRIER 64
#define AILMENT_DUMBFOUNDED 128
#define AILMENT_CLUMSY 256
#define AILMENT_SUREFOOTED 512
#define AILMENT_SLOW 1024
#define AILMENT_FAST 2048
#define AILMENT_BLIND 4096
#define AILMENT_HAWKEYE 8192
#define AILMENT_SILENCED 16384

Character ailments are stored within a single 32-bit variable, and all characters have
an ailment variable associated with them. That’s right, any character in your game
can be burdened with status ailments, but it is harder to afflict characters that have
a higher resistance.

Raise Dead and Instant Kill
At times, your poor characters are going to die, and except for MCs, you want the
ability to raise them from the dead. The raise dead spell effect does just that—
raises PC or NPC characters from death and gives them exactly one health point.

On the flip side, there will be times when you just want to strike a monster down in
one blow. That’s the purpose of the instance kill effect. Although having little
chance of working, the instant kill ability is still a force to be reckoned with.

708 16. Controlling Players and Characters

TEAMFL
Y

Team-Fly®

Dispel Magic
Forget all those status ailment-curing spells; why not just get rid of them all in one
shot! The dispel effect clears a target character’s ailments, whether good or bad,
and although this effect can be represented as a cure ailment effect, it becomes
much easier to not use bit flags.

Teleport
Other than walking around, the best way to travel is to magically teleport around.
Only PCs can use this spell. Teleporting can move a PC to any position on a map.

Spell Targeting, Cost, and Chances
Spell effects usually target a single player, but this is not always the case. At times,
the spell is either targeted at the spell caster or all the characters within an area.
Also, not all characters can be affected by a spell. A spell cast by a monster, for
example, should not hurt other monsters, just PCs. In the same vein, spells cast
by PCs should be directed only toward monsters.

Each spell has a range of attack; that is, any target within this range can be targeted
by the spell. Once a spell is launched and takes effect, the spell has a specific distance
at which the effect extends outward from the impact point. A spell targeting multiple
characters can then affect those characters under the spell’s distance of effect.

Assuming that a character knows a spell (dictated by tracking a bit-encoded vari-
able for each character), you can determine how much mana is required to cast
the spell. Each spell has an associated cost assigned—a character must have that
much mana to cast the spell. Once cast, the spell’s cost in mana is deducted from
the casting character’s mana points.

Merely casting a spell doesn’t mean it will work, however; there are chances of fail-
ure. The chance of the spell working or failing is called the spell effect chance, and
this chance ranges from 0 percent (never works) to 100 percent (always works).

The Master Spell List
Every aspect of a spell that you’ve read about can be stored within a single structure,
making it much easier to work with.

709Working with Magic and Spells

This structure, sSpell, is as follows:

typedef struct sSpell
{

char Name[32]; // Name of character
char Description[128]; // Description of spell

long DmgClass; // Class that spell does 2x dmg
long CureClass; // Class that spell aids

long Cost; // Spell casting cost in MP

float Distance; // Max. distance to target

long Effect; // Spell effect
long Chance; // % of effect occurring
float Value; // Misc. values

long Target; // Target of spell
float Range; // Range (in game units)

long MeshNum; // Mesh # to use
long MeshPos; // Positioning of mesh
float MeshSpeed; // Speed of mesh movement
long MeshSound; // Sound effect # to play
BOOL MeshLoop; // Loop animation

} sSpell;

As you can see, each spell is assigned a name and a description, both of which are
contained with small buffers. Your game engine will display the name of each spell
in anticipation of the player selecting one to cast when the time comes.

710 16. Controlling Players and Characters

NOTE
The sSpell structure is defined within the msl.h include file included in
the Char project directory (look for \BookCode\Chap16\Chars on this
book’s CD-ROM). Consult the end of this chapter for more information
on the Char project.

Earlier in this chapter, I mentioned character classes. With spells, those classes
come into effect. Certain spells can do double damage to characters that have a
weak defense against them, which is the reason for the sSpell::DmgClass variable.
If the character’s class and DmgClass variables match, the spell does double damage.

On the other hand, if a character’s class is based on the spell’s class, that spell actu-
ally heals the character. Imagine casting an ice spell at an ice dragon. Instead of
hurting the dragon, it heals him for half the damage amount of the spell. Thus, the
purpose of sSpell::CureClass becomes apparent; if the character’s class and CureClass
match, the spell heals rather than hurts.

Moving on, you can see the spell casting cost (sSpell::Cost), measured in mana
points. A character must have at least this amount of mana (Cost) in reserve to cast
the spell. Once the spell is cast, the value in the Cost variable is deducted from the
character’s mana.

Remember that spells have an assigned range and distance; range (sSpell::Range) is
the distance away from the caster that a spell can reach and strike a target, whereas
distance (sSpell::Distance) is the parameter around the targeted position at which
the spell’s effects can take place.

Once a spell finds its mark, the cSpell::Target variable determines who or what is
affected—either the spell caster, a single target caught in the parameter of the
spell, or all characters caught in the parameter. Each type of target is defined in
the engine as follows:

enum SpellTargets {
TARGET_SINGLE = 0,
TARGET_SELF,
TARGET_AREA

};

The spell’s effect (sSpell::Effect) has an associated chance of success, which is
stored in sSpell::Chance. Each value has an associated trio of variables (sSpell::Value)
at its disposal. The first value in the array is the amount of damage caused or cured
or the bit values of the ailment to be used.

The values’ only other use is for the teleport spell effect; for NPCs and monsters,
the first three values are those of the coordinates inside the current level that the
character is moved to whenever the teleport spell is cast. As for PCs, the fourth
variable is used to specify which map the player will be switched to when the spell
is cast. Because of the complexity of teleporting PCs, let the game script engine
handle such teleporting situations.

711Working with Magic and Spells

You use the final group of variables (MeshNum, MeshPos, MeshSpeed, MeshSound, and
MeshLoop) for the graphical portion of the spell. Rather than reference the spell
meshes by name, it is much more efficient to use numbers. The MeshNum stores a
mesh number that the spell control engine uses for drawing the spell’s graphics.

MeshPos is the array of variables that contains the position of each mesh. Remember
that a mesh can hover over the caster or target, move to or from them, and even
stretch out between the two characters. You can set the MeshPos variables to one of
the following values:

enum AnimPositions {
POSITION_NONE = 0,
POSITION_CASTER,
POSITION_TOTARGET,
POSITION_TOCASTER,
POSITION_TARGET,
POSITION_SCALE

};

Again, each mesh has an associated speed of travel or time that it remains in place
(as it hovers over a character or stretches out between two positions). Both speed
and time are stored in the MeshSpeed variable, as only one of those values is used
(depending on the movement of the mesh).

In speed calculations, MeshSpeed determines the distance in 3-D units that the mesh
travels in one second. For time, the MeshSpeed variable is converted into a long value
that represents the amount in milliseconds that the mesh remains in place.

If the mesh is able to complete its animation cycle before it reaches its target or
before its time of display is up, the MeshLoop variables tell the spell control engine to
loop the animation over and over until the mesh cycle is complete.

As a final bonus, each one of the three meshes has the ability to emanate a sound
when the mesh is initialized (positioned). Imagine that your fireball spell is sizzling
toward its target, only to blast forth in a speaker-shattering sound! You also refer-
ence each sound by a number and have your game engine play those sounds.

The Spell List
You use an array of sSpell structures to contain the information about every spell in
a game. This array of structures is called the master spell list (referred to as MSL from
now on), which is stored as a sequential data file. The spell data structure is rela-
tively small, which means that the list can be completely loaded at the start of the
game in order to save you time when accessing the data.

712 16. Controlling Players and Characters

Looking back, you can see I’ve designated that each character has the ability to use
64 spells, so the MSL should hold only 64 sSpell data structures, each representing
a single spell that is available for use by all characters.

As I mentioned previously, it becomes a matter of loading each sSpell structure
with the appropriate spell data needed. Even with only 64 spells at your disposal,
trying to hard-code that many spell structures is too much work.

Defining Spells with the MSL Editor
Defining your game’s spells by manually constructing a bunch of sSpell structures
can quickly become tedious. Instead, you need an editor that is better suited to
quickly change every aspect of your game’s spells. Welcome to the MSL Editor!

The MSL Editor (located on this book’s CD-ROM; look for \BookCode\Chap16\
MSLEdit) has a straightforward interface, as shown in Figure 16.10.

The MSL Editor has room for 64 spells (limited only by the flags used to store the
character’s known spells). Once you start the editor, you can follow these steps to
create or edit your spells:

1. Double-click a spell in the list to open the Modify Spell dialog box.

2. In the Modify Spell dialog box (see Figure 16.11), enter the spell’s data. Click
OK to close the Modify Spell dialog box and return to the Master Spell List
Editor dialog box.

3. To save your spell list, click the Save button.

4. In the Save MSL File dialog box, enter a filename and click OK. To load a
spell file, click the Load button in the Master Spell List Editor dialog box,
enter the filename of the spell file to load, and click OK.

713Working with Magic and Spells

Figure 16.10

The MSL Editor main screen
maintains a list of the spells
currently loaded, as well as buttons
controlling the adding, removing,
saving, and loading of MSL files.

Modifying a spell can be a little daunting at first because of all the data involved,
but earlier in this chapter, you learned what each piece of data does for a spell.
Now, refer to Figure 16.11 as you follow this brief example of defining the fireball
spell shown in the figure.

The fireball spell is hitting a single target with a ball of fire. Costing 5 MP to cast,
this spell has no damage or cure classes assigned (as denoted by the value of -1).
The spell alters health by -10 (as denoted in the Value 1 edit box), and has a 100
percent chance of affecting the target.

Characters within 256 units of distance from the caster can be targets of the spell,
with only a single target being hurt by the spell (the first character found within
the 30 unit distance parameter).

Two meshes are in use; the first is mesh 0, which moves from the caster to the target
at a speed of 256 units per second. This mesh loops in its animation until the mesh
hits the intended target, at which time the second mesh takes over. The second
mesh uses mesh 1, which hovers over the target for 400 milliseconds. The third
mesh is not in use (which you set by selecting N/A as the position). At this point,
the spell is completed.

Take your time and check out the example spells included with this chapter’s demo
program (Chars). Try adding some of your own spells and test their visual effects
and functions on the demo’s characters.

714 16. Controlling Players and Characters

Figure 16.11

The Modify Spell dialog box is packed with graphics
and all the information you need to describe a
spell’s effects.

Creating a Spell Controller
Controlling spells is a matter of tracking the meshes and animations that represent
the spell and then processing the spell’s effects on their intended targets. Because
the spell’s effects are really related to the characters, it’s best to let the engine that
controls the characters handle the spell effects and leave the spell animation up to
a spell controller class object.

You want to create a spell controller class
that maintains a list of currently cast spells
and displays them onscreen. When a spell is
complete, this controller class calls an out-
side function to process the spell’s effects.

This spell controller class, cSpellController,
uses supportive structures that make
tracking the spell meshes and animation
easier. These structures are sSpellMeshList
and sSpellTracker.

Meshes with sSpellMeshList
Reviewing the sSpell spell structure, you can see that meshes are referenced by
number rather than by name. That mesh reference number is actually the index to
an array of meshes. You store this array of meshes in a collection of sSpellMeshList
structures:

typedef struct sSpellMeshList {
char Filename[MAX_PATH]; // Filename of mesh/anim
long Count; // # Spells using mesh
cMesh Mesh; // Mesh object
cAnimation Animation; // Animation object

// Construct and destructor to prepare and release data
sSpellMeshList() { Count = 0; }
~sSpellMeshList() { Mesh.Free(); Animation.Free(); }

} sSpellMeshList;

For each mesh in use in your engine, you have a matching sSpellMeshList structure.
Each structure instance stores the filename of the mesh to use, a cMesh and a
cAnimation object for the mesh, and a variable (Count) that keeps count of how many
instances of the mesh are currently in use.

715Working with Magic and Spells

NOTE
The cSpellController class, the
sSpellMeshList structure, and
the sSpellTracker structure are
contained within the spell.h and
spell.cpp files on the CD-ROM
at the back of this book (look
for \BookCode\Chap16\Chars).

For each spell that needs a mesh, the appropriate .X file is loaded into the mesh
and animation objects (both using the same filename and the animation using a
single animation set called anim).

Meshes are only loaded from disk whenever the spell controller requires them, and
because the structure maintains a count of the times the mesh is in use, the spell
controller can quickly determine whether the mesh is loaded.

As spells complete their animation cycle, the appropriate mesh count is reduced,
and when the number of spells that use the mesh is reduced to zero, the mesh and
animation objects are released (to save memory).

Tracking Spells Using sSpellTracker
Whereas the sSpellMeshList structure maintains the meshes used by spells, the actual
list of active spells is maintained by the sSpellTracker structure. The sSpellTracker
structure is allocated and inserted into a linked list of the same structures any time
a spell is cast:

typedef struct sSpellTracker
{

long SpellNum; // Spell #

sCharacter *Caster; // Character casting spell
long Type; // Character type to affect

long CurrentAnimation; // Animation: 0-2
float SourceX, SourceY, SourceZ; // Source coordinates
float TargetX, TargetY, TargetZ; // Target coordinates

float XPos, YPos, ZPos; // Current coordinates
float XAdd, YAdd, ZAdd; // Movement values
float Distance; // Distance to target

union {
float Speed; // Speed of movement
long Time; // Timer to continue

};

cObject Object; // Graphics object

sSpellTracker *Prev, *Next; // Linked list

716 16. Controlling Players and Characters

sSpellTracker() { Caster = NULL; Prev = Next = NULL; }
~sSpellTracker() { delete Next; }

} sSpellTracker;

For each spell cast, a sSpellTracker structure is used to contain the information to track
the mesh, animation, movement, timing, and which character cast the spell. The
structure starts off with the spell number (SpellNum), which relates directly to the MSL.

To later help determine the effects of a spell, a pointer to a character (Caster) is
maintained as well as the type of characters the spell can affect (PCs, NPCs, or
MCs). You can define each type of character as follows:

#define CHAR_PC 0
#define CHAR_NPC 1
#define CHAR_MONSTER 2

Notice that a spell has no target character defined, but a trio of target coordinates.
In fact, a spell has a trio of source coordinates. Remember that a spell mesh can
stay in place over the caster or victim, move between the two, or stretch between
them. Setting the source and target coordinates ensures that the tracker knows how
to position the mesh in use.

Speaking of the mesh in use, CurrentAnimation is used to track which of the three
meshes to use. As you may recall, a mesh movement takes place in three steps, and
once the current animation passes the third step, the spell takes effect.

To track the motion of the spell meshes (if they are indeed moving), you use a set of
values (XAdd, YAdd, and ZAdd) that tells the spell controller which direction to move the
mesh at each update. As for the current position of the mesh in use, the variables
XPos, YPos, and ZPos contain the current coordinates at which to render the mesh.

The speed in which a mesh moves is contained in Speed, and the total distance the
mesh can move is contained in Distance. If a mesh stays in place, the Time variable
does a countdown of the number of milliseconds until the cycle is complete.

Rounding off sSpellTracker, Object is the graphics object you use to render the
meshes, and Prev and Next maintain the linked list of structures.

The cSpellController Class
Because the spell controller is needed only for tracking the spell meshes and
animation, the class definition is relatively small:

class cSpellController
{

717Working with Magic and Spells

private:
cGraphics *m_Graphics; // Parent graphics object
cFrustum *m_Frustum; // Viewing frustum

sSpell m_Spells[NUM_SPELL_DEFINITIONS]; // Spell data

sSpellTracker *m_SpellParent; // List of active spells

long m_NumMeshes; // # meshes in use
sSpellMeshList *m_Meshes; // Meshes list

char m_TexturePath[MAX_PATH]; // Mesh texture path

cCharacterController *m_Chars; // Character controller

// Setup the mesh movement
BOOL SetAnimData(sSpellTracker *SpellPtr, long Num);

// Function to override for playing sounds
virtual BOOL SpellSound(long Num) { return TRUE; }

Now check the private data of the spell controller before examining the public
functions. The spell controller uses a graphics and frustum object. The graphics
object (m_Graphics) must be pre-initialized for use with the class, whereas the frus-
tum object (m_Frustum) can be supplied from outside code or calculated from within
the spell-rendering function.

Next comes the MSL, which is contained in the array m_Spells. Notice that the
macro NUM_SPELL_DEFINITIONS defines the size of the MSL array, which means that you
can easily adjust the size for later enhancements.

Following the MSL is the linked list pointer m_SpellParent, which tracks the spells
that have been cast and are being displayed. Next comes m_NumMeshes (which stores
the number of meshes used) and m_Meshes (a list of meshes).

Because this example uses 3-D meshes to represent the spells, you need to load tex-
tures, and in order for the spell controller to find those textures, you must store a
directory path that indicates the location of the bitmaps to be used as textures.

Something you haven’t seen up to now is the m_Chars pointer, which points to the
character controller class object in use. This class pointer triggers the spell effects
(you find more on this topic in the section “Creating a Character Controller Class,”
later in this chapter).

718 16. Controlling Players and Characters

TEAMFL
Y

Team-Fly®

cSpellController contains two private functions: SetAnimData and SpellSound. The
SetAnimData function sets up the mesh to use as well as the movement of the mesh.
SpellSound is called whenever a spell mesh is used; it’s your job to override this func-
tion to play the appropriate sound as specified in the function’s argument list.

With private data and functions covered, you can move on to the class’s public func-
tions (the Constructor, Destructor, Init, Shutdown, Free, GetSpell, Add, Update, and Render):

public:
cSpellController(); // Constructor
~cSpellController(); // Destructor

// Functions to init/shutdown controller class
BOOL Init(cGraphics *Graphics, char *DefinitionFile, \

long NumSpellMeshes, char **MeshNames, \
char *TexturePath, \
cCharacterController *Controller);

BOOL Shutdown();

// Free class
BOOL Free();

sSpell *GetSpell(long SpellNum);

// Add a spell to the list
BOOL Add(long SpellNum, \

sCharacter *Caster, long TargetType, \
float SourceX, float SourceY, float SourceZ, \
float TargetX, float TargetY, float TargetZ);

// Update all spells based on elapsed time
BOOL Update(long Elapsed);

// Render all spell meshes within viewing frustum
BOOL Render(cFrustum *Frustum=NULL, float ZDistance = 0.0f);

};

Because this chapter is becoming a bit lengthy, I will now just list each function and
describe what it does. You might like to load the class code from the CD-ROM at the
back of this book (look for \BookCode\Chap16\ Chars\Spell.cpp) and follow along.

719Working with Magic and Spells

cSpellController::cSpellController
and cSpellController::~sSpellController
Typical in C++ classes, the constructor and destructor clear the class data and free
all used resources, respectively. The destructor relies on a separate function (the
Shutdown function) to clear the data.

cSpellController::Init
and cSpellController::Shutdown
Before using the spell controller class, you must initialize it. When you finish with
the class, you call Shutdown to free up the resources. Having the longest argument
list of all the controller functions, Init takes the following arguments:

A pointer to the pre-initialized graphics object (cGraphics)

The filename of the MSL (DefinitionFile)

Number of spell meshes to use (NumSpellMeshes)

An array of spell mesh .X filenames to use (MeshNames)

The texture-directory path (TexturePath)

A pointer to the yet unseen character controller class (Controller)

cSpellController::Free
When you’re done with a spell controller class instance but want to reuse it without
having to shut it down, a call to cSpellController::Free is in order. Free releases the
spell tracking list as well as the mesh list.

cSpellController::GetSpell
Outside code might need access to the MSL, and GetSpell fills that need. Providing
the MSL reference number returns a pointer into the array of the loaded MSL.

cSpellController::Add
Now the real fun begins! Add is the function you use the most because it initiates a
spell. The argument list includes the MSL reference number (from 0 to 63), the
casting character structure pointer, the type of characters to target, and the source
and target coordinates.

720 16. Controlling Players and Characters

cSpellController::SetAnimData
The private function SetAnimData initializes the three meshes in use by a spell. If one
of the meshes is not used (as specified by the POSITION_NONE value in MeshPos), the
next mesh in the three is used. After all three meshes are used up, the spell’s
effects are triggered.

cSpellController::Update
Spells need to move, have their timing updated, and have their mesh initiated at
the various steps. Update is responsible for all those functions. To use Update, just pass
the amount of time (in milliseconds) that has elapsed from the last call to Update
(or the amount of time you want the controller to update the spells).

cSpellController::Render
The last of the functions, Render, is used to render all spell meshes that are in effect.
Providing the Render function with an optional frustum and viewing distance helps
alter the way the meshes are rendered.

Determining Victims and Processing
Spell Effects
After a spell triggers and the effects are processed, what happens? As I’ve previously
mentioned, spells only affect characters, so only the character controller engine
should modify the character’s data. In the section “Creating a Character Controller
Class,” later in this chapter, you find out how to process spells in regard to characters.

Using the Spell Controller
At this point, the spell controller is fully functional, but without the aid of the char-
acter controller, the spell controller won’t work. However, for the moment, hold
that thought and observe the following example, which shows how to use the spell
controller. Begin by instancing the spell controller and declaring an array of mesh
filenames:

// Graphics = pre-initialized cGraphics object

// Use two meshes
char *g_SpellMeshNames[] = {

{ “Fireball.x” },
{ “Explosion.x” }

};

721Working with Magic and Spells

Next, instance and initialize the spell controller:

cSpellController Controller;

// Initialize the controller
Controller.Init(&Graphics, “default.msl”, \

sizeof(g_SpellMeshNames)/sizeof(char*), \
g_SpellMeshNames, “..\\”, NULL);

Now you’re ready for action. Assuming that you have a single spell in the MSL
(spell 0), you can cast it with the following code:

Controller.Add(0, NULL, CHAR_MONSTER, \
0.0f, 0.0f, 0.0f, 100.0f, 0.0f, 100.0f);

The spell will now travel from the
coordinates 0,0,0 to the coordinates
100,0,100 using the settings specified
in the MSL Editor. When you finish
with the spell controller, always be
sure to call the controller’s Shutdown
function:

Controller.Shutdown();

Combat and Characters
There are times when characters just can’t get along. For those special moments,
you need to teach those critters just who the boss is. Handling combat in your
game is a necessity that, fortunately, is easy to carry out.

Although the flashy graphics and cool special effects are something you want in
combat sequences, you need to start with the basics. Behind every combat action is
a set of rules (called the combat rules) that determines the outcome of every swing
of a weapon, every deflected blow, and the result of each magic spell.

Earlier in the chapter, you learned about character abilities—those abilities that
determine a character’s strength, agility, and so on. The abilities that most concern
you at this point are those to determine whether an attack hits its mark and how
much damage it does. Following a succinct set of rules, you can use those character
abilities to determine the outcome of combat.

722 16. Controlling Players and Characters

NOTE
The call to Init loads the MSL named
default.msl and also uses the current
directory as the texture path. No char-
acter controller is passed to the spell
controller at this point; that comes later.

Using Combat Rules for Attacking
Your game depends greatly on a set of underlying rules for handling combat, much
like traditional pen-and-paper role-playing games. Those rules are a set of mathe-
matical equations, which, when applied with a little randomness, determine the
outcome of attacks, damage, and defense.

The combat rule set (CRS) of your game works off the character’s abilities, attributes,
and skills that you’ve already seen in this chapter. Remember how those abilities,
skills, and attributes are assigned a numerical value? Guess what? Those values are
used to generate a few values that determine the outcome of combat actions.

For example, a character’s to-hit attribute is used in a random number calculation
to see whether an attack lands. Then a check against the agility of the attacker’s
opponent determines whether the attack was dodged. If the opponent was not so
lucky, the attacker’s attack values come into play to determine the damage.
Remember that the character being hit also has a defense ability that helps reduce
the amount of damage.

Once the decision to attack is made, a few steps determine the outcome.

Taking a Swing
When a character takes a swing at another character, this action triggers the
process that determines whether the blow hit the target. Determining whether the
attack hit involves an attacking character’s to-hit ability and a defending character’s
agility ability. Remember that the higher the ability values, the better the chance to
hit or dodge the attack.

The to-hit ability can range from 0 (always misses) to 999 (always hits). By taking
a random number and comparing it to the to-hit value, you can quickly determine
whether a hit was accomplished. If the random number is equal to or less than the
to-hit attribute, the blow lands. The following code illustrates how to determine
whether a hit is successful:

// ToHit = character’s to-hit attribute value
long RandomValue = rand() % 1000;
BOOL HitFlag = (RandomValue <= ToHit) ? TRUE : FALSE;

In the preceding code, HitFlag is set to TRUE if the blow lands, or rather if the blow
should land. In order to improve the chances of hitting a target, the attacker can
have specific status ailments that decrease or increase the to-hit value. Two status

723Combat and Characters

ailments in use that affect the attacker’s to-hit ability are Blind and Hawkeye. The
Blind status ailment reduces the to-hit chance ability by 25 percent, whereas
Hawkeye increases the chances to hit by 50 percent.

To apply either status ailment modifiers, multiply the determined to-hit value:

if(Ailments & AILMENT_BLIND)
ToHit = (long)((float)ToHit * 0.75f);

if(Ailments & AILMENT_HAWKEYE)
ToHit = (long)((float)ToHit * 1.5f);

long RandomValue = rand() % 999;
BOOL HitFlag = (RandomValue <= ToHit) ? TRUE : FALSE;

Dodging an Attack
Remember that a victim’s agility ability comes into play when being attacked. The
greater the defender’s agility, the greater the chance the victim dodges the attack.
You calculate whether the defender dodges the attack in the same way that you
check whether the attacker makes a hit:

// Agility = character’s agility ability
RandomValue = rand() % 999;
BOOL DodgeFlag = (RandomValue <= Agility) ? TRUE : FALSE;

In order to decrease or increase the
chances of dodging an attack, you
can use the Clumsy and Surefooted
status ailments. Clumsy decreases
the chances of dodging and attack
by 25 percent, whereas Surefooted
increases the chances by 50 percent
(meaning that characters that are
affected by both the Clumsy and
Surefooted ailments have their
chances of dodging an attack
increased by 25%):

if(Ailments & AILMENT_CLUMSY)
Agility = (long)((float)Agility * 0.75f);

if(Ailments & AILMENT_SUREFOOTED)
Agility = (long)((float)Agility * 1.5f);

long RandomValue = rand() % 999;
BOOL DodgeFlag = (RandomValue <= Agility) ? TRUE : FALSE;

724 16. Controlling Players and Characters

CAUTION
You can determine from the agility
dodging calculations that the higher the
agility, the higher the chance of dodging
the attack. For that reason, you generally
don’t set a character’s agility too high
because they can become untouchable.

Dealing Damage
When it is determined that the blow hit the victim, it’s time to calculate how much
damage was done, which is where the character’s attack and defense abilities come
into play. Damage is usually variable, which means that rarely does the same attack
do the same damage each time. Again, you use a little randomness.

To keep things simple, you can take the attacker’s attack ability value (or at least 90
percent to 110 percent of it) and subtract the victim’s defense value (at least 80
percent to 100 percent of it). Note that status ailments are an issue here as well,
along with the use of items to increase the attack and defense abilities.

That’s right. Equipped items add a multiplier to the attack and defense abilities.
The item modifier value is the key. The value represents a value from 0 and up
that, when divided by 100 and increased by one, gives you a multiplier value to use
in conjunction with the ability value. For example, a weapon with a modifier value
of 150 increases the attack ability by 50 percent:

// Attack = character’s attack ability value
// Item[] = master item list array
long Attack = (long)((float)Attack * \

(((float)Item[Weapon].Value / 100.0f) + 1.0f));

Getting back to status ailments, two affect both attack and defense—Weak and Strong.
Weak reduces attack and defense by half whereas Strong increases the values by 50 per-
cent. Here’s how everything works to determine the amount of damage to apply:

// Attack = attacker’s attack ability value
// Defense = defenders defense ability value
// Item[] = master item list array
// Weapon = weapon # in item list (or -1 if none)
// Armor = armor # in item list (or -1 if none)
// Shield = shield # in item list (or -1 if none)

// Determine attack amount
// Start with adding equipping weapon modifier
if(Weapon != -1)

long Attack = (long)((float)Attack * \
(((float)Item[Weapon].Value / 100.0f) + 1.0f));

// Adjust by status ailments
if(Ailments & AILMENT_WEAK)

725Combat and Characters

Attack = (long)((float)Attack * 0.5f);
if(Ailments & AILMENT_STRONG)

Attack = (long)((float)Attack * 1.5f);

// Determine defense amount

// Apply armor and shield modifiers
if(Armor != -1)

Defense = (long)((float)Defense * \
(((float)Item[Armor].Value / 100.0f) + 1.0f);

if(Shield != -1)
Defense = (long)((float)Defense * \

(((float)Item[Shield].Value / 100.0f) + 1.0f);

// Apply status ailments
if(Ailments & AILMENT_WEAK)

Defense = (long)((float)Defense * 0.5f);
if(Ailments & AILMENT_STRONG)

Defense = (long)((float)Defense * 1.5f);

float DamagePercent = ((float)(rand() % 70) + 50.0f) / 100.0f;
long DamageAmount = (long)((float)Attack * DamagePercent);

// Determine damage amount (use some randomness in there)
float Range = (float)((rand() % 20) + 90) / 100.0f;
long DmgAmount = (long)((float)Attack * Range);
Range = (float)((rand() % 20) + 80) / 100.0f;
DmgAmount -= (long)((float)Defense * Range);

At long last, the DmgAmount variable will contain the amount of damage that is dealt.
You’re not done at this point, however, because now character class comes into
play. If an attack is strong against the
character’s class type, damage is dou-
bled. If the victim is of the same class
as the attack, that attack cures the
victim for half the amount of dam-
age dealt! I’ll let you work those into
the calculations.

726 16. Controlling Players and Characters

CAUTION
Again, the defense ability of a character
shouldn’t be so high that the defending
character rarely takes any damage when
an attack hits.

Spells in Combat
Now, you can put all the neat spells that your game has to offer to good use. You
know how spells work, but you need to know how the spells affect the characters.
Remember that the spell controller tracks only the meshes that create the visual
side of spells; the character controller determines the effects of the spells.

Spells in combat are used mainly to damage an opponent. A spell uses a series of
calculations to determine the outcome of the spell’s effects, just as physical attacks
do. Spells have a chance of failing, which is determined by the spell’s chance value
in the spell definition.

The chance of a spell working is increased by the caster’s mental ability, which uses
the following calculation to determine the multiplier to apply to the chance value:

// Chance = spell’s chance of working
// Mental = caster’s mental ability
Chance = (long)(((float)Mental / 100.0f + 1.0f) * (float)Chance);

The last line shows that the mental value can range from 0 and up. A value of 150
means to increase the chance by 50 percent, whereas a value of 200 means to dou-
ble the chances. To aid victims of a spell, the target characters have their associated
resistance abilities factored in as well:

// Resistance = target’s resistance ability
Chance = (long)((1.0f - (float)GetResistance(Target) / \

100.0f) * (float)Chance);

When it is determined that the spell took effect, the appropriate actions can be
taken to handle the results. The only spell effect you want to contend with at this
time is damage. Whenever damage is dealt to a victim, the victim’s resistance ability
is used to reduce the amount of damage. Resistance is a percentage value, which
means that a value of 0 does not reduce spell damage, whereas a value of 100 com-
pletely dispels damage.

Status ailments also work their way into spell casting. An ailment of Silenced means a
character can’t even cast magic spells, whereas an ailment of Dumbfounded reduces
a character’s mental ability by half. Finally, the Enchanted and Barrier ailments
reduce the victim’s resistance by half or increase the resistance by 50 percent, respec-
tively.

You can use the following code to determine whether a spell affects the victim and
just how much damage is dealt:

// Chance = Magic spell’s chance of working

727Combat and Characters

// Mental = Spell caster’s mental ability
// Resistance = victim character’s resistance amount
// Amount = base damage amount spell causes

// Apply status ailments to mental and resistance
if(Ailments & AILMENT_DUMBFOUNDED)

Mental /= 2;
if(Ailments & AILMENT_ENCHANTED)

Resistance = (long)((float)Resistance * 0.5f);
if(Ailments & AILMENT_BARRIER)

Resistance = (long)((float)Resistance * 1.5f);

// Check chance of working and calculate damage
Chance=(long)(((float)Mental / 100.0f + 1.0f) * (float)Chance);
if((rand() % 100) < Chance) {

float Resist = 1.0f - ((float)Resistance / 100.0f);
long DmgAmount = (long)((float)Amount * Resist);

// Apply extra class damage or cure-class amounts here
}

After a spell has hit its target, the proper amount of damage to apply is calculated.
Remember that certain classes of spells can cause twice as much damage as the spell
normally would to a character, whereas other spells can cure half the damage dealt.

Because you create a feasible character controller in the section “Creating a
Character Controller Class,” later in this chapter, you can wait until then to finish
working with spells.

Intelligence in Combat
Although your game’s players are completely capable of controlling their player
characters, it’s up to you to control the NPCs. In order to make your game worthy,
the NPCs’ artificial intelligence needs to be up to par for combating. Their actions
need to mimic yours, from choosing to attack, healing themselves, or casting a spell.

Characters are given a rudimentary intelligence when it comes to combat. If a char-
acter has lost over half of his health or is under the effects of a status ailment, that
character will attempt to heal himself or dispel the ailments. This means it will
search through its list of known spells (if any) and cast the appropriate spell for aid.

If, on the other hand, a PC comes into another character’s range, a hostile charac-

728 16. Controlling Players and Characters

TEAMFL
Y

Team-Fly®

ter then chooses to either perform a physical attack or a magical attack (if any
spells are known). You need to assign the chances that a character will perform
either type of attack. Note that attacks are based on the built-up charge of the
attacking creature—the charge must be full in order for the creature to attack.

When the decision is made to attack a nearby character, either the attack is performed
or a magic spell is chosen. Only spells that hurt other characters are cast. If a charac-
ter does not have a viable target character in range, the game randomly decides that
the character in question will attempt to enhance itself by using a status ailment-caus-
ing spell, in this way raising its strength, agility, or other beneficial ailment.

The specifics on performing the preceding actions come into play when you create
a character controller that will make such decisions for your characters. You will
find that discussion later in the section “Creating a Character Controller Class.”

Building the Master
Character List
You create and use a master character list (MCL) much like you use the master
item list (MIL) to define objects in your game. Before using them in your game,
you need to design every character, complete with appearance (3-D mesh) and
functionality (abilities and attributes). This character information is stored in the
sCharacterDefinition structure.

The MCL is stored just as the MIL, as a sequential data file (see Figure 16.12).

729Building the Master Character List

Character Structure
256 bytes

Master Character
List File

Ref #1
Name: Player
. . .

Ref #32
Name: npc
. . .

Ref #33
Name: Monster
. . .

Name:
Class:
Money:

Figure 16.12

The MCL file is divided into sections (structures),
each the same size, which makes it easy to seek
out and load a specific structure by its reference
number.

Whenever a character is needed within the game, the MCL is referenced; each
character is assigned a number that tells which character to use. As a character is
needed, you load the specific data structure.

Now take a look at the sCharacterDefinition structure:

typedef struct sCharacterDefinition
{

// Misc data
char Name[32]; // Name of character
long Class; // Class # of character
long Money; // Amount of money
float Speed; // Movement speed
long MagicSpells; // Bit flags to mark known spells
long MeshNum; // Mesh/anim # to load

// Abilities
long Agility; // Agility ability
long Attack; // Attack ability
long Defense; // Defend ability
long Resistance; // Magic resistance ability
long Mental; // Mental ability

// Attributes
long HealthPoints; // # health points (maximum)
long ManaPoints; // # mana points (maximum)
long ToHit; // Chance to hit
long Level; // Experience level
long Experience; // Experience points

// Inventory
char ItemFilename[MAX_PATH]; // CharICS filename
long Weapon; // Equipped Weapon
long Armor; // Equipped Armor
long Shield; // Equipped Shield
long Accessory; // Equipped Accessory

// Dropping item data
long DropChance; // % of dropping item when killed
long DropItem; // Item # to drop when killed

// Attack/Magic chances and effects

730 16. Controlling Players and Characters

float Range; // Attack range
float ChargeRate; // Countdown rate to attack
long ToAttack; // Percent to attack
long ToMagic; // Percent to use magic
long EffectChance; // Chance of attack effect occurring
long Effects; // Bit flags of attack effects

} sCharacterDefinition;

Just like the master item list, the MCL
stores only minimal information about a
character. Because multiple characters
of the same type can exist in the game
world at one time (for example, ten
instances of a Goblin character), the
per-instance data is kept separate. This
per-instance data includes the coordi-
nates of the characters, their current health and mana points, and so on.

The sCharacterController structure stores the template to use when instancing a
character. This template encompasses all characters, including the PCs.

Although the structure is well commented, a few things might not make immediate
sense. In addition to the abilities and attributes that you’ve already read about, you
have the miscellaneous, inventory, dropping item, and attack/magic chances and
effects. Table 16.6 describes what these variables do for the character definition.

731Building the Master Character List

NOTE
You can find the cCharacterDefinition
structure in the mcl.h include file
located in the Chars demo program
on this book’s CD-ROM (look for
\BookCode\Chap16\Chars\).

Table 16.6 Various sCharacterDefinition
Structure Variables

Variable Description

Name Name of character (limited to 32 bytes, including the trailing string
terminator).

Class The character’s class number. Characters are assigned classes, and
only items marked as the same class can be used by that character.
Also, certain attacks and spells affect different classes differently.

Money The amount of money the character is carrying.
(continued)

732 16. Controlling Players and Characters

Table 16.6 Various sCharacterDefinition
Structure Variables (continued)

Variable Description

MagicSpells This array of two long variables contains the bit flags detailing the
spells known by a character. Starting with the first byte in the array,
the lowest bit represents spell 0, the second bit represents spell 1, and
so on until the sixty-fourth bit is reached, which represents spell 63.

MeshNum An external array of meshes is maintained that details the mesh
and animation to use for the character.The value stored in MeshNum
is the index into that array for which mesh to use.

ItemFilename This is the character inventory control system filename used for PCs.
NPCs use only an ICS if they are going to barter with the player.

Weapon This is the index number into the MIL of the weapon currently
equipped by the character. If this value is -1, nothing is equipped
(same applies to the following equipable items).

Armor The index number in the MIL of the armor currently equipped by
the character.

Shield Same as weapon and armor.This is the index into the item list of
the currently equipped shield.

Accessory Rounding off the bunch, this is the index into the item list of the
currently equipped accessory.

DropChance This is the percentage chance of the character dropping an item
when killed.

DropItem When a character is killed and it is determined that the character
is dropping an item (via DropChance), this is the number of the item
to drop.

Range Characters have a normal range of attack that extends from their
outermost bounding edge.This value is that range and should be
set to a value higher than 0 to be effective.

ChargeRate After a character performs an action such as attacking, using
an item, equipping an item, or casting a spell, that character is
unable to perform another such move for a short period of time.
ChargeRate is the speed at which the countdown to the time that
a character can perform another action is reached.

Configuring a single character definition is as simple as filling in the blanks, but
when it comes to defining 100 characters, things can quickly become complicated.
What you need is an MCL Editor.

The MCL Editor
You’re probably used to these editors by now, and this one is just as easy to use as
other editors. If you haven’t done so already, go ahead and run the MCLEdit appli-
cation (found on this book’s CD-ROM in the \BookCode\Chap16\MCLEdit direc-
tory). Figure 16.13 shows the MCL Editor dialog box.

Working with the MCL is similar to working with the MSL Editor earlier in this
chapter and with the MIL Editor in Chapter 15. The MCL Editor can handle up to
256 characters—each numbered from 0 to 255. Each character is shown in the list
box. To work with the MCL Editor, follow these steps:

1. Double-clicking a character in the list or clicking the New button brings up
the Modify Character dialog box, as shown in Figure 16.14.

2. In the Modify Character dialog box, enter the appropriate character infor-
mation in each field. You can alter a character’s Name, Class, Health Points,

733Building the Master Character List

Table 16.6 (continued)

Variable Description

ToAttack Characters have two choices of attacking—physical and magical.
ToAttack is the percentage rate of the character using a physical
attack when given the chance.

ToMagic ToMagic is the percentage rate in which a character will cast a spell
given the chance.

EffectChance If the character attacks, this is the percentage rate of a magical
effect occurring.

Effects These are the effects of the character attack given the effect has
occurred.This is a bit flag encoded value, and you decide what each
bit represents.

Mana Points, Level, Experience, Money, ability values, known Spells, and
Mesh information.

3. Once you finish filling in a character’s information in the Modify Character
dialog box, click OK. You’ll return to the Master Character List Editor dialog
box.

4. Click the Save button to bring up the Save MCL File dialog box.

5. Enter a filename and click the Save button to write the MCL file to disk.

6. To Load a file, click the Load button (in the Master Character List Editor
dialog box), enter a filename, and click OK.

734 16. Controlling Players and Characters

Figure 16.13

The Master Character List Editor
dialog box contains the list of
characters and some buttons
laid out around the application
window—buttons that let you add
new characters to the list, clear a
character definition, and edit, save,
and load the character lists.

Figure 16.14

The Modify Character dialog box is packed with
every bit of information about a character found
in the sCharacterDefinition structure.

You’ve read about each bit of the character definition. Now, it’s time to enter that
information into the appropriate places. When it comes to spells, highlight the
spell number you want the character to know automatically. Those spell numbers
relate directly to your MSL, so you might want to run the MSL Editor and MCL
Editor side by side to compare the information.

Using the Character Definitions
The character definitions are templates by nature, so you really need to load up the
definitions and work with them on a per-instance basis. This means that you need
to come up with a controller that loads the definitions and tracks each instance of
a character in your game. What you need is a character controller class.

Creating a Character
Controller Class
Now that you’ve seen what is involved in controlling and defining your game’s
characters, you can focus on constructing a controller class that takes care of every-
thing for you, including adding, removing, updating, and rendering the characters,
as well as handling the spell effects from the spell controller previously developed.

Because so much is involved in tracking characters, the job is split into a few struc-
tures and a single class. Much like spells, a mesh list is required to hold the list of
used meshes. This time however, the looping information of the animations is not
contained in the character definitions; another structure is needed to contain the
character animations that need to be looped.

When working in artificial intelligence, you create a single structure to store the
coordinates of route points. Finally, another structure maintains a linked list of
characters in use. Now, examine each structure just mentioned and the informa-
tion they contain.

Meshes with sCharacterMeshList
Earlier, in section “Meshes with sSpellMeshList,” you read about the spell controller
and how the controller maintains a list of meshes. For the character controller, you
also have to provide a list of meshes that are used to render the characters. The
sCharacterMeshList structure contains the mesh and animation objects and filenames.

typedef struct sCharacterMeshList {

735Creating a Character Controller Class

char Filename[MAX_PATH]; // Filename of mesh/anim
long Count; // # characters using mesh
cMesh Mesh; // Mesh object
cAnimation Animation; // Animation object

sCharacterMeshList() { Count = 0; }
~sCharacterMeshList() { Mesh.Free(); Animation.Free(); }

} sCharacterMeshList;

Animation Loops and
sCharAnimationInfo
The animations used by the characters are set in their ways; either they can or
cannot loop. Certain actions, such as standing, require a character’s mesh to con-
stantly repeat, giving the appearance of constant motion, whereas other animations
such as swinging the sword only need be performed once.

By storing a list of the animations that need be looped, the character controller can
pass the information on to the Graphics Core so that it can handle the hard work
for you. You store this animation loop information in the sCharAnimationInfo struc-
ture, as follows:

typedef struct {
char Name[32]; // Name of animation
BOOL Loop; // To loop flag

} sCharAnimationInfo;

To use the structure, you must store the name of the animation (matching the ani-
mation set name in the .X file) and a flag that tells whether to loop the associated
animation. You see more on this in the section “Using cCharacterController,” later
in the chapter.

Moving with sRoutePoint
As previously discussed, you use the sRoutePoint structure to store the coordinates of
a route point that characters move toward in their never-ending movement
through the levels.

typedef struct {
float XPos, YPos, ZPos; // Target position

} sRoutePoint;

736 16. Controlling Players and Characters

Tracking Characters
with sCharacter
Things are about to become more complicated because tracking each character
involves quite a bit of data. In fact, so much data is involved in tracking characters
(within an sCharacter structure) that you need to see it in pieces:

typedef struct sCharacter
{

long Definition; // Character definition #
long ID; // ID # of character

long Type; // PC, NPC, or MONSTER
long AI; // STAND, WANDER, etc

BOOL Enabled; // Enabled flag (for updates)

To start, each character needs a definition, which is pulled from the master char-
acter list. You store this definition value in the Definition variable. To tell similar
characters apart, you assign a unique identification number (ID) to each one.
Think of using identification numbers as you use names. Instead of adding a char-
acter named “George” into the game during play, you refer to that same character
as character 5.

Each character being tracked is of a specific type, either a PC, an NPC, or a monster.
To determine the value for Type, use the following three macros:

#define CHAR_PC 0
#define CHAR_NPC 1
#define CHAR_MONSTER 2

Next are the character’s artificial intelligence settings. Remember that a character
can stand in place, wander around, walk a route, follow another character, or evade
another character. The artificial intelligence of each character is stored in the AI
variable and can be set to one of the following macro values:

#define CHAR_STAND 0
#define CHAR_WANDER 1
#define CHAR_ROUTE 2
#define CHAR_FOLLOW 3
#define CHAR_EVADE 4

737Creating a Character Controller Class

Finally, each character needs to be enabled in order to be updated. The Enabled flag
determines this, and setting it to TRUE lets the controller update the character every
frame, whereas setting the flag to FALSE means that the character is never updated
(until enabled, that is).

You need to store the character’s MCL definition for referencing, and for charac-
ters with an inventory, you contain the ICS. The following structure variables store
that information, along with the filename of a script file that is called when the
player activates the character:

sCharacterDefinition Def; // Loaded definition
cCharICS *CharICS; // PC character’s ICS

char ScriptFilename[MAX_PATH]; // Associated script

Because the character’s definition
stores only the maximum values of
the abilities and attributes, the
sCharacter structure needs a way to
track the current values as they
change through game-play. This
includes the health points, mana
points, status ailment flags, and the
current charge of the character.

long HealthPoints; // Current health points
long ManaPoints; // Current mana points
long Ailments; // Ailments against character
float Charge; // Attack charge

As characters move around performing their various actions (moving, idling,
attacking, and so on), you need to provide a way for their actions and positions
to be tracked. In addition, their last known animation needs to be maintained
(in order to update their animation), as well as the last time their animation was
updated.

You use the following structure variables to track a character’s action, coordinates,
direction of movement, and animation data:

long Action; // Current action
float XPos, YPos, ZPos; // Current coordinates
float Direction; // Angle character is facing
long LastAnim; // Last animation
long LastAnimTime; // Last animation time

738 16. Controlling Players and Characters

NOTE
Remember that characters can perform
specific actions (attacking or casting a
spell, for example) only when their charges
are at full peak.This charge rate increases
at the rate defined within the MCL.

TEAMFL
Y

Team-Fly®

You also need to provide a way to prevent characters that perform specific actions
from being updated until the completion of those actions. When a character is
attacking, for example, there’s no need to update the character any further until
the character finishes swinging the weapon. What is needed is a countdown timer
to lock a character’s actions; this countdown timer is ActionTimer.

To permanently prevent a character from being updated, you use a second variable,
called Locked. If you set Locked to TRUE, the character controller will not update the
character until you set Locked to FALSE.

You define both ActionTimer and Locked in the sCharacter structure as follows:

BOOL Locked; // Specific action lock
long ActionTimer; // Lock action countdown timer

The next set of variables take care of the combat side of characters:

sCharacter *Attacker; // Attacking character (if any)
sCharacter *Victim; // Character to attack

long SpellNum; // Spell to cast when ready
long SpellTarget; // Target type of spell
float TargetX, TargetY, TargetZ; // Spell target coords

When a character attacks another one, the pointers to both the attacking character
and victim character are stored in their respective sCharacter structures. The attacker
remembers the victim while the victim remembers the attacker. Also, when a charac-
ter uses a spell, the MSL spell number is stored, along with the spell’s target coordi-
nates and the type of character to target (CHAR_PC, CHAR_NPC, or CHAR_MONSTER).

Recall that characters have actions, and those actions have a set of associated ani-
mations. The reason for storing the attacker, victim, and spell information (as well
as the following item information) is that a character’s action and animation must
be completed before the results of the action take place. Once an attacking charac-
ter swings a weapon, the results of the attack are calculated. The same goes for
spell; once a character casts a spell, the spell information in the sCharacter structure
is used to determine who, or what, is affected.

The same goes for using items; the pointer to the item used during a use item
action is stored, as well as the pointer to the ICS cCharItem structure of the character
(in order to remove the item if it was marked as USEONCE):

long ItemNum; // Item to use when ready
sCharItem *CharItem; // Item to remove from inventory

739Creating a Character Controller Class

You’re about halfway through the structure. Now, you store the information about
the character’s artificial intelligence. You’ve already read about most of the follow-
ing data. You have the distance to follow or evade a character, along with the
pointer to the character to follow or evade.

For characters that use a bounding area, you store the minimum and maximum
coordinates, followed by the route information:

float Distance; // Follow/Evade distance
sCharacter *TargetChar; // Character to follow
float MinX, MinY, MinZ; // Min bounding coordinates
float MaxX, MaxY, MaxZ; // Max bounding coordinates

long NumPoints; // # points in route
long CurrentPoint; // Current route point
sRoutePoint *Route; // Route points

Moving on, you use a trio of variables to store a simple message that is overlaid on
top of a character during game-play (as illustrated in Figure 16.15).

char Message[128]; // Text message
long MessageTimer; // Text message timer
D3DCOLOR MessageColor; // Color of text message

Character messages help relate tiny bits of information, as Figure 16.15 shows.
To set a message, copy the message string (up to 128 characters) into the Message
buffer, set the amount of time (in milliseconds) to display the message, and assign
a color to the text to be displayed.

740 16. Controlling Players and Characters

Figure 16.15

A message mechanism displays the outcome
of certain actions, such as shown here.
A character attacking another character
discovers that the intended victim dodged
the attack.

Finishing up the sCharacter class variables is the Graphics Core cObject object that
maintains the character’s mesh and animation. To enhance the visual appearance
of the characters, a separate mesh and object are used to represent a character’s
weapon. This weapon mesh and object are configured any time a new weapon is
equipped. Last comes the linked list pointers Prev and Next:

cObject Object; // Character object class
cMesh WeaponMesh; // Weapon mesh
cObject WeaponObject; // Weapon object

sCharacter *Prev, *Next; // Linked list of characters

That’s a lot of information to store for each character, and to help the controller
prepare a structure every time a new character is added to the fray, the sCharacter
structure comes complete with a constructor and destructor in order to prepare
the data and help release its resources.

sCharacter()
{

Definition = 0; // Set to definition #0
ID = -1; // Set to no ID
Type = CHAR_NPC; // Set to NPC character
Enabled = FALSE; // Set to not enabled

Ailments = 0; // Set no ailments
Charge = 0.0f; // Set no charge

// Clear definition
ZeroMemory(&Def, sizeof(sCharacterDefinition));
CharICS = NULL; // Set no ICS

ScriptFilename[0] = 0; // Set no script

Action = CHAR_IDLE; // Set default animation
LastAnim = -1; // Reset animation

Locked = FALSE; // Set no lock
ActionTimer = 0; // Set no action timer

Attacker = NULL; // Set no attacker
Victim = NULL; // Set no victim

741Creating a Character Controller Class

ItemNum = 0; // Set no item to use
CharItem = NULL; // Set no item to decrease

Distance = 0.0f; // Set distance
TargetChar = NULL; // Set no target character

// Clear bounding box (for limiting movement)
MinX = MinY = MinZ = MaxX = MaxY = MaxZ = 0.0f;

NumPoints = 0; // Set no route points
Route = NULL; // Set no route

Message[0] = 0; // Clear message
MessageTimer = 0; // Set no message timer

Prev = Next = NULL; // Clear linked list pointers
}

~sCharacter()
{

if(CharICS != NULL) { // Release character ICS
CharICS->Free();
delete CharICS;

}

delete [] Route; // Release route

WeaponObject.Free(); // Release weapon object
WeaponMesh.Free(); // Release weapon mesh
Object.Free(); // Release character object

delete Next; // Delete next character in list
}

} sCharacter;

And that’s it! I told you sCharacter was a big structure, but it is nothing compared to
the character controller class that uses the structures.

The cCharacterController Class
The brains of the character operation is the cCharacterController class (contained in
the Chars.h and Chars.cpp files), which is probably the biggest non-game core class

742 16. Controlling Players and Characters

you’ll work with. Because of space constraints, rather than showing the class declara-
tion here, I put the class code on the CD-ROM that comes with this book (look for
\BookCode\Chap16\Chars).

The cCharacterController class maintains a list of active characters, each character
being stored within a sCharacter structure. For each type of character, there is a
matching entry into an array of sCharacterMeshList structures (and a matching
sCharAnimationInfo structure).

A macro is defined at the beginning of the Chars.h file.

// Number of characters in file
#define NUM_CHARACTER_DEFINITIONS 256

Following this definition are the macros you’ve already seen—character types, arti-
ficial intelligence types, and status ailments. The macros after that trio are ones you
haven’t seen, but you should understand them by now; they are the actions that a
character can perform (and the matching animations). Take a look at the macros:

// Character types
#define CHAR_PC 0
#define CHAR_NPC 1
#define CHAR_MONSTER 2

// AI types
#define CHAR_STAND 0
#define CHAR_WANDER 1
#define CHAR_ROUTE 2
#define CHAR_FOLLOW 3
#define CHAR_EVADE 4

// Status ailments
#define AILMENT_POISON 1
#define AILMENT_SLEEP 2
#define AILMENT_PARALYZE 4
#define AILMENT_WEAK 8
#define AILMENT_STRONG 16
#define AILMENT_ENCHANTED 32
#define AILMENT_BARRIER 64
#define AILMENT_DUMBFOUNDED 128
#define AILMENT_CLUMSY 256
#define AILMENT_SUREFOOTED 512
#define AILMENT_SLOW 1024

743Creating a Character Controller Class

#define AILMENT_FAS 2048
#define AILMENT_BLIND 4096
#define AILMENT_HAWKEYE 8192
#define AILMENT_SILENCED 16384

// Action/Animation types
#define CHAR_IDLE 0
#define CHAR_MOVE 1
#define CHAR_ATTACK 2
#define CHAR_SPELL 3
#define CHAR_ITEM 4
#define CHAR_HURT 5
#define CHAR_DIE 6
#define CHAR_TALK 7

From here, it’s all left up to the controller class.

class cCharacterController
{

private:
cGraphics *m_Graphics; // Parent graphics object
cFont *m_Font; // Font object to use
cFrustum *m_Frustum; // Viewing frustum

The class begins its private data with a pointer to the parent cGraphics object and a
pointer to a cFont object (used to draw text to the display). You must pre-initialize
both objects before the character controller can use them. You use the frustum
object as you use the one in the spell controller.

Next comes the filename of the MCL, the pointers to the MIL and MSL, and finally
a pointer to the spell controller:

char m_DefinitionFile[MAX_PATH]; // Filename of def. file

sItem *m_MIL; // Master item list
sSpell *m_MSL; // Master spell list

cSpellController *m_SpellController; // Spell controller

As characters are added to the game, a counter (m_NumCharacters) keeps track of how
many are in use. Following the counter is the pointer to the parent (root) sCharacter
structure in the linked list of structures:

long m_NumCharacters; // # characters in list
sCharacter *m_CharacterParent; // List of characters

744 16. Controlling Players and Characters

You use a list of mesh and animation structures much like you use the spell con-
troller. This time, in addition to storing the texture path, you also create a direc-
tory path where the meshes are located. Why use a mesh directory? In the case of
attaching weapons to a character, the sItem structure stores only the filename, not
the path. This means that weapon meshes must be located in the same directory
as the character meshes.

long m_NumMeshes; // # meshes in use
sCharacterMeshList *m_Meshes; // Meshes list
char m_MeshPath[MAX_PATH]; // Weapon mesh path
char m_TexturePath[MAX_PATH]; // Mesh texture path

long m_NumAnimations; // # animations
sCharAnimationInfo *m_Animations; // Animation data

That wraps up the internal data of the sCharacterController class. Now, you can turn
your attention to the private functions. You use the first function, GetXZRadius, to cal-
culate the maximum bounding radius along the X- and Z-axes.

// Return X/Z radius of character
float GetXZRadius(sCharacter *Character);

You use the X/Z radius to enhance the reliability of bounding sphere collision detec-
tion. To see what I mean, take a look at Figure 16.16.

745Creating a Character Controller Class

Figure 16.16

The character on the left is a tall
lad.The entire character object’s
bounding sphere extends far out in
each direction based on his height,
causing some false collision detection
results when two characters collide.

Taller characters in the game have the unfortunate side effect of having large
bounding spheres. To remedy this, only the farthest point of the character in the
X- and Z-axes is used to compute the bounding sphere size, because those two axes
represent the character’s width and depth, not height.

Getting on with the functions, you insert a virtual function that is used to play a sound
effect whenever an action is initiated. It’s your job to derive the cCharacterController
class in order to override the function to make it do something useful:

// Function to override for playing sounds
virtual BOOL ActionSound(sCharacter *Character)

{ return TRUE; }

The next two functions to come along work in conjunction with the update func-
tionality of the class. At every frame that a character needs updating, a specific
function is called to update the character’s actions. This specific function is depen-
dent on the type of character being updated; for PCs, that specific function is
PCUpdate (which is overridden by you in order to control your player).

For NPCs and monsters, the update function called is CharUpdate. PCUpdate does
nothing at this point because you need to write the code in the main application
to control the player. Monsters and NPCs already have their AIs sets, and the con-
troller knows how to handle them with CharUpdate.

// Move function for player characters (need to override)
virtual BOOL PCUpdate(\

sCharacter *Character, long Elapsed, \
float *XMove, float *YMove, float *ZMove) \

{ return TRUE; }

// Character update function for all non-PC characters
BOOL CharUpdate(sCharacter *Character, long Elapsed, \

float *XMove, float *YMove, float *ZMove);

The steps taken for initiating an update and processing all of a character’s actions
is a long one. First, you iterate each character in the list of active characters. The
appropriate character’s update function is called (PCUpdate or CharUpdate).

Once it is determined what action each character wants to perform, that action
must be validated. Characters moving around can’t walk through other players
(except for PCs, who can walk through other PCs). Also, depending on your levels,
you use a function to determine character-to-map collisions. These two validation
functions are as follows:

746 16. Controlling Players and Characters

// Check for valid movements. Bounds check to other
// characters and call ValidateMove (overridden).
BOOL CheckMove(sCharacter *Character, \

float *XMove, float *YMove, float *ZMove);

// Virtual ValidateMove for outside bounds checking
// against character movements.
virtual BOOL ValidateMove(sCharacter *Character, \

float *XMove, float *YMove, float *ZMove) \
{ return TRUE; }

Both of the preceding functions (CheckMove and ValidateMove) take a pointer to the
character being updated, as well as the character’s intended amount of movement
in each direction. Each function modifies these values appropriately. When the
character’s moves and actions have been validated, another function wraps up the
actions and actually updates the character positions and actions.

// Finish movement by setting direction, animation, etc
BOOL ProcessUpdate(sCharacter *Character, \

float XMove, float YMove, float ZMove);

Whenever characters start battling it out, some are sure to die. The controller can
quickly handle dying NPCs and monsters by removing their respective structures
from the list. As for PCs though, death can mean the end of the game, so it’s up to
the main application to handle them. That’s the reasoning behind PCDeath, which
takes a single argument, the pointer to the dying PC:

// Process death of a player character
virtual BOOL PCDeath(sCharacter *Character) \

{ return TRUE; }

Speaking of characters dying, any time a monster dies, it has a chance of dropping
an item, as well as all the money it is carrying. Because your main application han-
dles all items in the maps, it’s your job to determine when a monster drops an item
or gold and to add the appropriate item to the map’s list of items. Overriding the
following two functions will help you out anytime a monster drops something by
giving you the exact coordinates where the monster perished, the item dropped,
and the amount of money dropped.

// Functions to drop money and item when character dies
virtual BOOL DropMoney(float XPos,float YPos,float ZPos, \

long Quantity)
{ return TRUE; }

747Creating a Character Controller Class

virtual BOOL DropItem(float XPos, float YPos, float ZPos, \
long ItemNum)

{ return TRUE; }

You’re coming to the end of the long haul. You’ve finished the private data and
functions, and the public functions are left:

public:
cCharacterController(); // Constructor
~cCharacterController(); // Destructor

// Functions to init/shutdown controller class
BOOL Init(cGraphics *Graphics, cFont *Font, \

char *DefinitionFile, sItem *MIL, sSpell *MSL, \
long NumCharacterMeshes, char **MeshNames, \
char *MeshPath, char *TexturePath, \
long NumAnimations, sCharAnimationInfo *Anims, \
cSpellController *SpellController);

BOOL Shutdown();

In addition to the typical class constructor and destructor are the Init and Shutdown pair
of functions. For the controller to operate, it must first be initialized with a call to Init.
When you’re done with the character controller class, a call to Shutdown is in order.

The arguments are plenty, but each is understandable. You have the parent graphics
and font objects followed by the MCL definition filename. Next come the pointers
to the master item list and MSL. Remember that the spell controller maintains the
MSL, so a call to sSpellController::GetSpell is needed to obtain the pointer to the list.

Next is the number of character meshes to use, along with the mesh list, mesh path
directory, and texture path directory. Rounding up the Init function arguments are
the number of animation loop structures to set, the respective animation structure
array pointer, and the pointer to the spell controller class object in use.

Somewhat similar in nature to shutdown, the following Free function completely
removes all characters in the list of active characters. This function is useful for
clearing the list when a character leaves a level and a whole new set of characters
need to be added to the list:

// Free class
BOOL Free();

Speaking of adding characters to the list, here comes the function that does it all:

// Add a character to the list

748 16. Controlling Players and Characters

TEAMFL
Y

Team-Fly®

BOOL Add(long IDNum, long Definition, long Type, long AI, \
float XPos, float YPos, float ZPos, \
float Direction = 0.0f);

// Remove a character from list
BOOL Remove(long IDNum);
BOOL Remove(sCharacter *Character);

With the Add function, you need to provide a unique identification number, the MCL
character definition number to use, the character’s type to assign (CHAR_PC, CHAR_NPC,
or CHAR_MONSTER), the artificial intelligence to use, and the character’s coordinates and
Y-axis angle used to point the character in a specific direction.

Following Add are two functions that remove a character in the list. The first version
of the Remove function takes a character’s unique identification number as an argu-
ment, and the second version of the Remove function takes a pointer to the character
structure.

Notice that I keep talking about removing characters from the list. What about all
the hard work you’ve put into your PCs—how are you ever going to store their
achievements for later loading? With the following set of saving and loading func-
tions, of course!

// Save or load an individual character
BOOL Save(long IDNum, char *Filename);
BOOL Load(long IDNum, char *Filename);

Both of the two preceding functions take the character’s identification number to
save or load, as well as the filename to use.

That about rounds up the functions used to prepare, add, and remove the characters
from the game. Now it’s time to get them all moving around performing their actions.
Previously you saw the functions used to update the individual character types; now
comes the single function you’ll call to update all characters at once:

// Update all characters based on elapsed time
BOOL Update(long Elapsed);

The Update function is called once every frame. Taking a single argument (the time
elapsed since the last update), the Update function calls upon each character’s
respective update function, validates each character’s movements and actions, and
wraps up by processing the actions. Then a call to Render is in order to display all
characters visible within the specified frustum.

// Render all objects within viewing frustum

749Creating a Character Controller Class

BOOL Render(long Elapsed = -1, \
cFrustum *Frustum = NULL, \
float ZDistance = 0.0f);

With Render, you have a few optional arguments. You use the first one to control
the animation timing of the characters. In a task-switchable environment such as
Windows, merely using the time elapsed from the last processed frame is unaccept-
able; you must instead specify a fixed amount of time passed and ensure that your
game engine sticks to updates at that rate. In this book, I use a typical update rate
of 30 frames per second (33-millisecond delays between frames).

As for the viewing frustum pointer, the application can provide its own pre-created
object, or pass NULL (and an optional Z-distance) to create its own frustum.

Whenever a character needs updating, rendering, or what have you, a pointer to
the linked list of characters is needed in order to iterate the list. Either that or
maybe your application needs access to the character data. Either way, the follow-
ing functions will help you out:

// Retrieve an sCharacter structure
sCharacter *GetParentCharacter();
sCharacter *GetCharacter(long IDNum);

During specific functions, it becomes necessary for characters (such as monsters)
to make sure that they can see another character before attacking or casting a spell.
A function of your design is required to verify that such a line of sight is clear.
Returning a value of TRUE states that a character is in sight of another one:

// Make sure there’s a line of sight to attack/cast spell
virtual BOOL LineOfSight(\

sCharacter *Source, sCharacter *Target, \
float SourceX, float SourceY, float SourceZ, \
float TargetX, float TargetY, float TargetZ)
{ return TRUE; }

When the character controller (or outside code) needs one of the character’s abili-
ties, it needs to retrieve it with the following group of functions. These functions
take into account the various modifiers such as status ailments and equipped items:

// Function to retrieve adjusted ability/other info
float GetSpeed(sCharacter *Character);
long GetAttack(sCharacter *Character);
long GetDefense(sCharacter *Character);
long GetAgility(sCharacter *Character);

750 16. Controlling Players and Characters

long GetResistance(sCharacter *Character);
long GetMental(sCharacter *Character);
long GetToHit(sCharacter *Character);
float GetCharge(sCharacter *Character);

Coming up is a huge collection of functions you use to retrieve and set the specific
information about a character (related to the artificial intelligence functionality or
actions):

// Get pointer to the character ICS
cCharICS *GetICS(long IDNum);

// Set lock and action timer
BOOL SetLock(long IDNum, BOOL State);
BOOL SetActionTimer(long IDNum, long Timer);

// Set evade/follow distance
BOOL SetDistance(long IDNum, float Distance);
float GetDistance(long IDNum);

// Set route points
BOOL SetRoute(long IDNum, \

long NumPoints, sRoutePoint *Route);

// Set script
BOOL SetScript(long IDNum, char *ScriptFilename);
char *GetScript(long IDNum);

// Set enable flags
BOOL SetEnable(long IDNum, BOOL Enable);
BOOL GetEnable(long IDNum);

// Functions to move and get character coordinates
BOOL Move(long IDNum, float XPos, float YPos, float ZPos);
BOOL GetPosition(long IDNum, \

float *XPos, float *YPos, float *ZPos);

// Functions to Set/Get character bounds
BOOL SetBounds(long IDNum, \

float MinX, float MinY, float MinZ, \
float MaxX, float MaxY, float MaxZ);

BOOL GetBounds(long IDNum, \

751Creating a Character Controller Class

float *MinX, float *MinY, float *MinZ, \
float *MaxX, float *MaxY, float *MaxZ);

// Functions to Set/Get character type
BOOL SetType(long IDNum, long Type);
long GetType(long IDNum);

// Functions to Set/Get character AI
BOOL SetAI(long IDNum, long Type);
long GetAI(long IDNum);

// Set a target character
BOOL SetTargetCharacter(long IDNum, long TargetNum);

Skipping the details on the preceding functions (refer to the section “Navigating
Characters,” for information on their functionality), you now encounter the func-
tion used to set up the data that displays a message over a character:

// Set text messages to float up from character
BOOL SetMessage(sCharacter *Character, char *Text, \

long Timer, D3DCOLOR Color=0xFFFFFFFF);

SetMessage allows you to temporarily overlay a string of text for Timer milliseconds, draw-
ing the text in the color specified. You set a character message to inform the player of
an event, such as how many health points were reduced because of an attack.

Coming next is the function that processes the damage taken from an attack,
whether it’s physical or magical (as denoted by the PhysicalAttack flag, set to TRUE for
physical attacks or FALSE for magical):

// Process attack damage from spells and physical attacks
BOOL Damage(sCharacter *Victim, \

BOOL PhysicalAttack, long Amount, \
long DmgClass, long CureClass);

Damage takes a pointer to the character taking damage, the type of damage (physical
or magical), the amount of damage to apply, and the double damage and cure
classes of the attack. You adjust the damage amount based on the defense and resis-
tance abilities of the victim.

Once characters take enough damage, they die, and when that happens, the follow-
ing function is called:

// Process death of an NPC/Monster
BOOL Death(sCharacter *Attacker, sCharacter *Victim);

752 16. Controlling Players and Characters

Taking the pointer to the victim, the controller is able to handle its death appropri-
ately. If the victim is a monster, you use the attacking character pointer to apply the
experience points. Also, if a monster dies, the Death function determines how much
gold the monster drops and what item (if any) is dropped and calls the appropriate
controller function to handle such dropped items.

Leading into the next function, whenever a PC kills a monster, that PC gains the
experience stored in the monster’s MCL definition. To apply the experience, use
the following function:

// Process experience up
virtual BOOL Experience(sCharacter *Character, \

long Amount) \
{ Character->Def.Experience += Amount; return TRUE; }

Notice that the Experience function can be overridden. This can occur when you’re
using a separate battle sequence engine; you don’t want experience added to the
PC until the battle is over. Consequently, you use your own function to keep track
of how much experience to apply when the battle is over.

The overridden function can also occur when the character needs to go up in
experience levels once he gains a certain number of experience points. The
Experience function is the place to determine just when a character goes up an
experience level and to take the appropriate actions to increase their abilities.

One note about the Experience function: The character controller normally displays
the number of experience points that a PC gains when killing a monster. To stop
the controller from displaying this number (as in the case of the separate battle
sequences), return a value of FALSE from the Experience function.

The next couple of functions are the ones responsible for processing attacks and
spells. Both functions take pointers to the attacking characters (if any) as well as
their intended victims. For spells, a sSpellTracker structure is required to tell the
controller which spell to process, as well as the sSpell structure that contains the
information about the spell effects to use:

// Resolve a physical attack from attacker to victim
BOOL Attack(sCharacter *Attacker, sCharacter *Victim);

// Process spell ailments when spell completed
BOOL Spell(sCharacter *Caster, \

sSpellTracker *SpellTracker, sSpell *Spells);

753Creating a Character Controller Class

Each of the preceding functions takes into account the attacking and defending
characters’ abilities and adjust their values accordingly. When an attack connects,
damage is dealt. When a spell is found to have affected the target (remember,
there’s a chance it might fail), the next function is called to process the effects:

// Apply spell effects
BOOL SpellEffect(sCharacter *Caster, sCharacter *Target, \

sSpell *Spell);

Things are winding down with the controller at this point. You use the following
functions to equip, use, and drop an item:

// Process equipping/unequipping of item
BOOL Equip(sCharacter *Character, long ItemNum, \

long Type, BOOL Equip);

// Process item being used on character
BOOL Item(sCharacter *Owner, sCharacter *Target, \

long ItemNum, sCharItem *CharItem = NULL);

// Process dropping an item
BOOL Drop(sCharacter *Character, \

sCharItem *Item, long Quantity);

With Equip, you must specify the character to modify and the item number (from
the MIL) of the item being equipped. You use the Type argument to specify which
item type to equip (WEAPON, ARMOR, SHIELD, or ACCESSORY) and the Equip flag to tell the
controller to equip the specified item (set Equip to TRUE) or just to unequip the cur-
rently used item (by setting Equip to FALSE).

As for the use item function (Item), two characters are required: the owner of the
item and the character on which the item is being used. In that way, one character
can use a healing potion on another character. Specify the MIL item number being
used, as well as a pointer to the owner’s ICS CharItem structure so that the quantity
of the item can be decreased.

The next function is required to process the teleport spell effect on PCs. Whenever a
teleport spell is used on a PC, the character controller calls the following function to
handle the effects. Both the pointer to the target character and spell structure are
passed:

// Process a PC teleport spell
virtual BOOL PCTeleport(sCharacter *Character, \

754 16. Controlling Players and Characters

sSpell *Spell) \
{ return TRUE; }

Finishing up the character controller class functions is the one that is responsible
for preparing a character to perform an action. You use this function mostly when
controlling your PC via the PCUpdate function:

// Set action (w/timer)
BOOL SetAction(sCharacter *Character, \

long Action, long AddTime = 0);

};

When a PC (or any character for that matter) does something, a matching action is
performed. Walking is an action, attacking is an action, and so on. Previously, actions
were defined as CHAR_IDLE, CHAR_MOVE, CHAR_ATTACK, and so on, for example. You need to
set the Action argument to one of those values in order to initiate a character action.

For each action that a character can perform, there is a matching animation in the
sCharAnimationInfo structure array used to initialize the controller. When a character
performs an action, the appropriate animation is set, as well as the action timer
used to count down the time until the animation is complete. Remember that no
further actions can be performed until the current action is complete.

The last argument in the list, AddTime, is used to add additional milliseconds to the
action timer. Specifying a value of -1 for AddTime, forces SetAction to not use the
action timer, which means that the action clears on the next update.

Using cCharacterController
You find loads of functions in the cCharacterController class, and although you’ve
already read about their functionality, it’s difficult to comprehend just what every-
thing does. Perhaps an example will help.

Start by setting up the mesh and animation information for each character mesh.
This example uses two meshes.

char *g_CharMeshNames[] = {
{ “..\\Data\\Warrior.x” }, // Mesh # 0
{ “..\\Data\\Yodan.x” } // Mesh # 1

};

Each mesh contains a list of animations representing the actions each character
can perform. Each action animation in the two meshes shares the same animation

755Creating a Character Controller Class

set names. You map these names using the cCharAnimationInfo structure (which
stores the name of the animation in the .X file, as well as a flag to determine
whether the animation loops) as follows:

sCharAnimationInfo g_CharAnimations[] = {
{ “Idle”, TRUE }, // CHAR_IDLE action
{ “Walk”, TRUE }, // CHAR_MOVE action
{ “Swing”, FALSE }, // CHAR_ATTACK action
{ “Spell”, FALSE }, // CHAR_SPELL action
{ “Swing”, FALSE }, // CHAR_ITEM action
{ “Hurt”, FALSE }, // CHAR_HURT action
{ “Die”, FALSE }, // CHAR_DIE action
{ “Idle”, TRUE } // CHAR_TALK action

};

Now that you have determined which meshes
to use and how to animate them, you can ini-
tialize the character controller and begin
adding characters:

// Graphics = pre-initialized cGraphics object
// Font = pre-initialized font object
// MIL = master item list array (sItem MIL[1024])
// SpellController = pre-instanced spell controller
cCharacterController Controller;

// Initialize the controller
Controller.Init(&Graphics, &Font, “..\\Data\\Default.mcl”, \

(sItem*)&MIL, SpellController.GetSpell(0), \
sizeof(g_CharMeshNames)/sizeof(char*), g_CharMeshNames, \
“..\\Data\\”, “..\\Data\\”, \
sizeof(g_CharAnimations) / sizeof(sCharAnimationInfo), \
(sCharAnimationInfo*)&g_CharAnimations, \
&SpellController);

// Add an NPC (MCL definition #0) that wanders inside an area
// from -256,0,-256 to 256,0,256
Controller.Add(0, 0, CHAR_NPC, CHAR_WANDER, \

0.0f, 0.0f, 0.0f, 0.0f);
Controller.SetBounds(0, -256.0f, 0.0f, -256.0f, \

256.0f, 0.0f, 256.0f);

756 16. Controlling Players and Characters

NOTE
Notice that in the animation
info structures I reused some
of the animations, which is
perfectly fine. Just make sure
that you don’t set the loop
flag to TRUE in an animation
if you later set the loop flag
to FALSE, or else things just
won’t work out.The same
applies when you first set the
loop flag to FALSE and later
set it to TRUE for another
action.

Now that you’ve added an NPC to the list, you can continuously update and render
him each frame:

long UpdateCounter = timeGetTime(); // Record current time

// For example, set an attack action
Controller.GetCharacter(0)->Victim = FALSE;
Controller.SetAction(Controller.GetCharacter(0), CHAR_ATTACK);

// Attach a weapon to the NPC (item #0 - a sword)
Controller.Equip(Controller.GetCharacter(0), 0, WEAPON, TRUE);

while(1) {
// Limit updates to every 33 milliseconds
while(timeGetTime() < UpdateCounter + 33);
UpdateCounter = timeGetTime(); // Record new time

Controller.Update(33); // Force a 33 millisecond update

Graphics.Clear();
if(Graphics.BeginScene() == TRUE) {

// Update character animations by 33 milliseconds and
// render them to the display.
Controller.Render(33);

}
Graphics.Display();

}

This brief example demonstrates the basics for using the controller. For a more
advanced example, check out the Chars demo program.

Demonstrating Characters
with the Chars Demo
All your hard work is about to pay off with a demonstration of the character and
spell controllers seen in this chapter. Now is the time to check out the Chars demo
program included on this book’s CD-ROM (look for \BookCode\Chap16\Chars\).
Upon executing the program, you see the scene shown in Figure 16.17.

757Demonstrating Characters with the Chars Demo

In the Chars demo, you take control of the PC, using the arrow keys to turn and
move him. The controls are straightforward—use the space bar to interact with the
closest character (either to speak to an NPC or to attack a monster). Pressing the
number keys 1 through 3 casts a few spells at the closest monster.

Each character in the game demonstrates a single artificial intelligence. Speaking
to another character conveys which artificial intelligence a particular character uses
(except for monsters, which either stand still or follow the player character). It’s
best to quickly dispatch the monsters before they take your player character out.

Everything in the Chars demo has been explained in this chapter. A script class
determines which characters to place in the map during startup (as detailed in the
startup script) and what each character does or says when spoken to.

The demo’s action template, default.mla, contains a number of script actions that
directly modify a character’s type, artificial intelligence, position, and direction.
Adding characters to the world is as easy as using an add character script action,
and from there, you modify the character’s attributes accordingly.

As for the main application, the system core’s cApplication class is being used to
control the flow of the demo; each frame update is regulated to 33-millisecond

758 16. Controlling Players and Characters

Figure 16.17

The Chars demo contains
only the essentials—
characters interacting with
each other.They walk, talk,
and fight it out in this demo.

TEAMFL
Y

Team-Fly®

lapses, giving a 30-frames-per-second update rate. At each and every frame, key-
board input is read in and stored, waiting to be used during the PC update func-
tion. A fixed camera renders out the action, with each character fully animated
inside a single level (both characters and the level represented by meshes).

The code to the demo is well commented, so enjoy exploring it, and find out how
quickly you can create characters running around in your game project. Be sure to
check out the scripts and script action template using the Mad Lib Script editor, as
well as the items and character definitions using the MIL and MCL Editors.

Wrapping Up Characters
You can do a great deal with characters in your game, and this chapter only
touches on the basics for doing so. Programming a superior artificial intelligence
system, one that better handles the decisions a character can make during game-
play is the place to start enhancing the characters. Then add path-finding abilities,
and suddenly characters will become aware of their surroundings and know just
where to go and how to get there.

Also, when working with monsters, a basic structure is in place for determining
what actions to perform—heal thyself, attack, or cast a spell against an opponent.
The percentages of doing any of those actions are fixed. To improve upon a char-
acter’s intelligence, try assigning percentages that a monster will use for a specific
action or magic spell.

Always remember the cardinal rule, however—just keep it simple. Although the
character class presented in this chapter is simplistic in nature, it becomes a power-
ful addition to your game project when you need to control characters.

759Wrapping Up Characters

760 16. Controlling Players and Characters

Programs on the CD-ROM

The \BookCode\Chap16\ directory contains the following programs,
which demonstrate how to use and edit characters and spells:

◆ MCLEdit.The Master Character List Editor discussed in this
chapter. Use this program to edit the lists of characters in your
game. Location: \BookCode\Chap16\MCLEdit\.

◆ MSLEdit.The Master Spell List Editor discussed in this chapter.
Use this program to edit the spells and effects in your game.
Location: \BookCode\Chap16\MSLEdit\.

◆ Chars. Using this application, find out how to control characters,
including PCs and NPCs.As the player, you control the PC’s actions
by using the arrow keys, the space bar, and the 1, 2, and 3 numerical
keys (to cast spells). Location: \BookCode\Chap16\Chars\.

CHAPTER 17

Working
with Maps

and Levels

In Chapter 12, “Creating 3-D Graphics Engines,” you learn how to construct and
display your maps and levels in full 3-D graphics glory. However, drawing those

pretty little maps is just the beginning. You also need to place characters in the
world, mark spots that will trigger specific actions, place doors and other barriers,
and design a way to track where players have been. Well, don’t fret; this chapter is
just what you need to tackle those tasks.

In this chapter, you learn how to do the following:

■ Populate maps with characters
■ Use triggers and barriers
■ Edit maps, in and out of the game
■ Use auto mapping to track character movement

Placing Characters
on the Map
While going through the examples in the book, I placed characters on the map in
a direct, hard-coded manner. However, remember that hard-coding game data is a
no-no. You need to have as much flexibility as possible when designing your maps,
and this includes placement of characters in a level.

Two methods for placing characters in maps that provide the flexibility you want
involve character map lists and scripts.

Character Map Lists
In numerous chapters, such as Chapter 14, “Implementing Scripts,” I use external
data files that store a list of numbers and text. Those data files are loaded and
parsed into some useful information to the engine loading the data. Action tem-
plates, for example, contain the action text plus the entry data for each action, all
in one easy-to-read-and-edit file.

To adhere to the simple nature of using text data files, you can create lists of char-
acters to place within a map when the map is loaded. Because players are placed in

762 17. Working with Maps and Levels

a map using only a set of coordinates and a direction to face, this data file might
look something like the following:

0 100.0 0.0 450.0 0.0
21 0.0 0.0 -82.0 1.57
18 640.0 10.0 0.0 3.14

At first appearance, the preceding three lines of numbers are just that—a list of
numbers—but the trained eye sees that each number represents something. Starting
with the first number on each line, you have the following:

■ The character’s type (for example: 0=Main Character, 21=Ogre, 18=Child)
■ The X-coordinate, Y-coordinate, and Z-coordinate
■ The angle that the character is facing (in radians)

Now knowing what each number means, you can see that I defined three charac-
ters and placed them through the map at their respective locations and pointed
them in a certain direction. This data is compact, easy to edit, and can be loaded
and processed quickly.

Loading Character Map Lists
To process the data files as just described, you need only two functions (which you
also find in Chapter 14). These functions are as follows:

long GetNextLong(FILE *fp)
{

char Buf[1024];
long Pos = 0;
int c;

// Read until EOF or EOL
while(1) {

if((c = fgetc(fp)) == EOF)
break;

if(c == 0x0a || (c == ‘ ‘ && Pos))
break;

if((c >= ‘0’ && c <= ‘9’) || c == ‘.’ || c == ‘-’)
Buf[Pos++] = c;

}
if(!Pos)

return -1;
Buf[Pos] = 0;

763Placing Characters on the Map

return atol(Buf);
}

float GetNextFloat(FILE *fp)
{

char Buf[1024];
long Pos = 0;
int c;

// Read until EOF or EOL
while(1) {

if((c = fgetc(fp)) == EOF)
break;

if(c == 0x0a || (c == ‘ ‘ && Pos))
break;

if((c >= ‘0’ && c <= ‘9’) || c == ‘.’ || c == ‘-’)
Buf[Pos++] = c;

}
Buf[Pos] = 0;

return (float)atof(Buf);
}

Both functions take a file pointer (fp) as an argument and return the next long type
number or float type number found in the specified file. You arrange the character
map list data file so that the first number (the character type) is a long, although
the remaining numbers are float.

Using GetNextLong and GetNextFloat, you can parse an entire character map list as follows:

// fp = file pointer to open character map data file
long Type; // Character type to load
float XPos, YPos, ZPos, Direction;
long NumCharactersLoaded = 0; // # characters loaded

while(1) {
// Break if no more characters to process
if((Type = GetNextLong(fp)) == -1)

break;

// Get coordinates and angle
XPos = GetNextFloat(fp);

764 17. Working with Maps and Levels

YPos = GetNextFloat(fp);
ZPos = GetNextFloat(fp);
Direction = GetNextFloat(fp);

// Do something with data - insert a character

NumCharactersLoaded++; // Increase # characters loaded
}

// Done loading NumCharactersLoaded # of characters

Using Character Map Lists in Your Game
Using character map lists is a quick way to place characters in a map. When you
load a map into memory, load the matching character map list and insert the char-
acters. Although this method of adding characters to a map seems desirable, you’ll
need a bit more flexibility at times, and that’s when using scripts comes into play.

Script Placement
As I said earlier in this section, you can also use scripts to insert characters into a
map. Scripts give you more control over where and when a character is placed on
a map than using direct placement does.

For example, imagine that you want to track time in your game. At nighttime, all town
vendors are at home, so the marketplace is empty. Guards are in the vendors’ places,
so your game needs to know which characters to place—the vendors or the guards.

You might notice that I’m coming up empty here by not defining a class for load-
ing character placements on maps. How are your characters going to know where
to be placed on your maps? As you might have guessed, you can use the Mad Lib
Script system presented in Chapter 14 to create and incorporate an action template
and a script processor into your project—the script processor then assumes the task
of adding characters to the map based on the scripts you write for your game.

A sample action template that adds characters to the map might look like this:

“Add character # ~ to map at coordinates ~, ~, ~”
INT 0 65535
FLOAT -5000 5000
FLOAT -5000 5000
FLOAT -5000 5000

765Placing Characters on the Map

With that single action defined, you can construct small scripts that place a charac-
ter (by a unique identification number) on the map based on the X-, Y-, and Z-
coordinates you provided. Quick, clean, and right to the point, scripting is
definitely the way to go, and is the method I use to add characters to the map in
the complete role-playing game in Chapter 20, “Putting Together a Full Game.”

Using Map Triggers
Cause and effect—two words that say it all. In your world, nothing happens unless
you specifically tell it to. Most events in your game happen when a character picks
up an item, walks past a certain spot, or even tries to talk to another character.
Those events are called triggers, and once a trigger has been signaled, a series of
effects are sure to follow. Those effects usually take the form of a script being
processed.

The problem at this point isn’t dealing with the scripts, but figuring out how to
trigger them. Programming a trigger for things like picking up an item is easy
enough; just assign a number to the item description and process the appropriate
script if that item is picked up. The same goes for talking to characters.

Maps are a whole new deal. Maps come in all shapes and sizes, and trying to figure
out when a character touches a certain spot on a map is the problem at this point.
Well, I’m kidding, as that’s not really a problem. The trick is to mark sections of
the map with geometric shapes that are used to quickly check whether a character
steps inside the shape.

The geometric shapes you want to use are spheres, boxes, cylinders, and triangles.
Take a look at each one and how they all work out in the whole trigger scheme.

Sphere Triggers
You define sphere triggers (see Figure 17.1) by a set of coordinates and a radius.
Sphere triggers have two unique benefits:

■ Spheres are perfect for defining large areas of a map as a trigger, only using
the center coordinates and a radius to define the location of the sphere.

■ The sphere trigger is one of the fastest ways to check for character-to-trigger
collisions in the map trigger engine.

766 17. Working with Maps and Levels

Box Triggers
A box trigger uses bounding boxes to work its magic. Box triggers are the fastest trig-
gers to process when looking for character-to-trigger collisions, but on the downside,
box triggers can exist only parallel to the world’s axis (the boxes can’t be rotated to
fit your needs). You define box triggers by the coordinates of its opposing corners, as
illustrated in Figure 17.2.

767Using Map Triggers

X, Y, Z
Coords

Y-
A

xi
s

X-Axis

Z-A
xis

Figure 17.1

You can locate a sphere trigger in 3-D space by using
a trio of coordinates and the radius of the sphere.

Y-
A

xi
s

Z-A
xis

Corner

Corner

X-Axis

Figure 17.2

Define a box trigger by the coordinates of the
opposing corners.

Cylinder Triggers
Cylinder triggers are much like sphere triggers, except that with a cylinder trigger,
you can limit the height of the covered area (unlike a sphere trigger, which extends
higher as the radius increases). Cylinder triggers are most effective when used for cir-
cular areas in which you want to keep the height of the trigger from extending into
higher or lower levels. Check out an illustration of cylinder triggers in Figure 17.3.

Triangle Triggers
A triangle trigger is similar to a polygon in that both are defined by three points; how-
ever, a triangle trigger’s three points are defined only by their X- and Z-coordinates.
This makes the triangle two-dimensional. To make the triangle work in a 3-D world,
you must assign a single Y-coordinate at which all three points of the triangle are
placed, as well as the height in which the triangular area extends upward. It helps to
think of a triangle trigger as a three-sided box, as shown in Figure 17.4.

Triggering a Trigger
After you place the trigger shapes on the map, it’s a simple matter to determine
which trigger is touched by a character. Each trigger has its special way of deter-
mining these character-to-trigger collisions. A sphere uses distance checks, a box

768 17. Working with Maps and Levels

Y-
A

xi
s

Z-A
xis

X-Axis

H
ei

gh
t

center

radius

Figure 17.3

Define a cylinder trigger by the coordinates of its
lower-center point, radius, and height.

TEAMFL
Y

Team-Fly®

uses bounding box calculations, and a cylinder uses bounding and distance
checks—although the triangle trigger uses bounding checks and also makes sure
that the point in question is contained within the triangle.

When you determine that a trigger has sprung, what do you do? Because each trig-
ger is assigned an identification number,
you can use that number to determine
which action to perform. You can exe-
cute a matching script or perform
another hard-coded function. In fact, in
the later section “Using Triggers,” you
find out how useful it is to use triggers.

Creating a Trigger Class
Adhering to object-oriented programming techniques, create a class that will handle
a list of triggers and determine which (if any) has been touched by a character. The
class uses a structure to store the information of each trigger—the coordinates, type,
and so on. Each trigger is also assigned an identification number that it uses to refer
back to itself. The entire list is maintained as a linked list of structure.

769Using Map Triggers

Y-Axis

Z-Axis

X-
Ax

is

Height

3 P
oints

Figure 17.4

Because they use a flat
2-D triangle that extends
upward from their
placement in the world,
triangle triggers are the
most versatile shape you
can use for defining
triggers.

NOTE
You find out how to perform each
collision check in the upcoming
section “Creating a Trigger Class.”

The cTrigger class can load and save a trigger file, which makes editing lists of trig-
gers easier. This file is text-based, making it easier to read and edit. Each trigger
in the map uses a single line of text written in this order: an identification number,
the type of trigger (0=sphere, 1=box, 2=cylinder, 3=triangle), and the default enabled
status (if the trigger is enabled when loaded). A value of 0 means that the trigger
is disabled, and a value of 1 means that the trigger is enabled.

Depending on the type of trigger you are defining, the trigger must include a few
more values. Spheres require the X-, Y-, and Z-coordinates and the radius, as shown
in the following:

ID 0 ENABLED X Y Z RADIUS

Boxes have the coordinates of the opposing corners:

ID 1 ENABLED X1 Y1 Z1 X2 Y2 Z2

You define cylinders by the lower-center coordinates plus the radius and height:

ID 2 ENABLED X Y Z RADIUS HEIGHT

Finally, you define triangles by the X- and Z-coordinates of the three corners, in a
clockwise order, as seen from above the triangle on the Y-axis (much as a polygon
face is defined in Chapter 6, “Drawing with DirectX Graphics”). The Y-coordinate for
all three points of the triangle and the height of the trigger round out this definition:

ID 3 ENABLED X1 Z1 X2 Z2 X3 Z3 Y HEIGHT

I’ll get back to the trigger data file in a moment. For now, take a look at the class
definition of the trigger class. The class (with the header declared in the Trigger.h
file and the full source to the trigger class declared in the Trigger.cpp file) starts
out with an enum list that defines each type of trigger shape that you can use:

// An enum for type of triggers
enum TriggerTypes { Trigger_Sphere = 0, Trigger_Box, \

Trigger_Cylinder, Trigger_Triangle };

Each trigger you define requires a structure that contains the information perti-
nent to the trigger—the trigger’s location, enabled state, and unique identification
number. Each type of trigger uses a set of coordinates to define its location on the
map, as well as additional data to define the trigger’s radius, opposing corner coor-
dinates, and so on. The structure that contains the information about each trigger
created is as follows:

typedef struct sTrigger {
long Type; // Sphere, Box, etc

770 17. Working with Maps and Levels

long ID; // Trigger ID
BOOL Enabled; // Flag if enabled

float x1, y1, z1; // Coord 1
float x2, y2, z2; // Coord 2
float x3, z3; // Coord 3
float Radius; // Radius of bounds

sTrigger *Prev, *Next; // Linked list of triggers

sTrigger() { Prev = Next = NULL; }
~sTrigger() { delete Next; }

} sTrigger;

Notice that the sTrigger structure maintains a set of linked list pointers, as well as a
constructor and a destructor that clear the linked list pointers and free the linked
list, respectively.

In order to utilize the sTrigger structure, you use the trigger class, which manages
the linked list of triggers and enables you to save and load lists of those triggers.
Take a look at the trigger class declaration:

class cTrigger
{

private:
long m_NumTriggers; //# triggers in linked list
sTrigger *m_TriggerParent; // Linked list parent

long GetNextLong(FILE *fp); // Get next long
float GetNextFloat(FILE *fp); // Get next float

// Function that adds a trigger to linked list
sTrigger *AddTrigger(long Type, long ID, BOOL Enabled);

public:
cTrigger();
~cTrigger();

// Functions to load/save a trigger list
BOOL Load(char *Filename);
BOOL Save(char *Filename);

771Using Map Triggers

// Functions to add a specific trigger to list
BOOL AddSphere(long ID, BOOL Enabled, \

float XPos, float YPos, float ZPos, \
float Radius);

BOOL AddBox(long ID, BOOL Enabled, \
float XMin, float YMin, float ZMin, \
float XMax, float YMax, float ZMax);

BOOL AddCylinder(long ID, BOOL Enabled, \
float XPos, float YPos, float ZPos, \
float Radius, float Height);

BOOL AddTriangle(long ID, BOOL Enabled, \
float x1, float z1, \
float x2, float z2, \
float x3, float z3, \
float YPos, float Height);

// Remove a specific trigger by ID
BOOL Remove(long ID);

// Free all triggers
BOOL Free();

// Find first trigger at location (returns 0 if none)
long GetTrigger(float XPos, float YPos, float ZPos);

// Get state of trigger by ID
BOOL GetEnableState(long ID);

// Enabled/Disable a trigger by ID
BOOL Enable(long ID, BOOL Enable);

// Return the # of triggers and parent of linked list
long GetNumTriggers();
sTrigger *GetParentTrigger();

};

Most of the functions deal with only a linked list of sTrigger structures—add a struc-
ture, remove a structure, find a structure and modify it, and so on. For a closer

772 17. Working with Maps and Levels

look at what’s going on, take a minute or two to review the following sections,
which provide the code for each function.

cTrigger::cTrigger and cTrigger::~cTrigger
Just as does every C++ class, cTrigger has a constructor and a destructor that set up
and free the data contained within the class. The only data tracked by the trigger
class that is not contained with the linked list is the number of triggers currently
held in the linked list and a pointer to that linked list. The constructor and
destructor ensure that the class is prepared for using those two variables to free
the class’s data when destroyed (by calling the Free function), as seen here:

cTrigger::cTrigger() { m_NumTriggers = 0;
m_TriggerParent = NULL; }

cTrigger::~cTrigger() { Free(); }

cTrigger::Load and cTrigger::Save
You typically design maps with a set of triggers all in their proper locations.
Loading a list of those triggers is the main priority of the trigger class. Once a list
of triggers is created or loaded, you also have the option to save that list of triggers
(to save the game state, for example).

The Load function opens a text file and repeatedly reads in lines of text that define
the type, identification, location, and special properties of each trigger (as described
in the earlier section “Creating a Trigger Class”). When the end of file is reached,
the Load function returns. Take a look at the Load function code to see just what I’m
talking about:

BOOL cTrigger::Load(char *Filename)
{

FILE *fp;
long Type, ID;
BOOL Enabled;
float x1, y1, z1, x2, y2, z2, x3, z3, Radius;

Free(); // Remove all current triggers

// Open file
if((fp=fopen(Filename, “rb”))==NULL)

return FALSE;

773Using Map Triggers

At this point, the trigger data file is open and ready to begin reading in a list of
trigger definitions. For each trigger, remember that the text line uses the following
order: the trigger identification number, the type (0=sphere, 1=box, and so on), the
default enabled status (0=trigger disabled, 1=enabled), and the specific data based on
the type of trigger being read. Keep that order in mind as you read on:

// Start looping, reading in until EOF reached
while(1) {

// Get ID of trigger
if((ID = GetNextLong(fp)) == -1)

break;

Type = GetNextLong(fp); // Get type

// Get enabled status
Enabled = (GetNextLong(fp)) ? TRUE : FALSE;

// Read in rest depending on type
switch(Type) {

case Trigger_Sphere: // Load a sphere
x1 = GetNextFloat(fp); y1 = GetNextFloat(fp);
z1 = GetNextFloat(fp); Radius = GetNextFloat(fp);
AddSphere(ID, Enabled, x1, y1, z1, Radius);
break;

case Trigger_Box: // Load a box
x1 = GetNextFloat(fp); y1 = GetNextFloat(fp);
z1 = GetNextFloat(fp); x2 = GetNextFloat(fp);
y2 = GetNextFloat(fp); z2 = GetNextFloat(fp);
AddBox(ID, Enabled, x1, y1, z1, x2, y2, z2);
break;

case Trigger_Cylinder: //Load a cylinder
x1 = GetNextFloat(fp); y1 = GetNextFloat(fp);
z1 = GetNextFloat(fp); Radius = GetNextFloat(fp);
y2 = GetNextFloat(fp);
AddCylinder(ID, Enabled, x1, y1, z1, Radius, y2);
break;

case Trigger_Triangle: // Load a triangle
x1 = GetNextFloat(fp); z1 = GetNextFloat(fp);

774 17. Working with Maps and Levels

x2 = GetNextFloat(fp); z2 = GetNextFloat(fp);
x3 = GetNextFloat(fp); z3 = GetNextFloat(fp);
y1 = GetNextFloat(fp); y2 = GetNextFloat(fp);
AddTriangle(ID, Enabled, x1, z1, x2, z2, x3, z3, y1, y2);
break;

default: fclose(fp); // Some error occurred
Free();
return FALSE;

}
}

// Close file and return results
fclose(fp);
return (m_NumTriggers) ? TRUE : FALSE;

}

Once past reading in the identification number, type, and enabled flag of each trig-
ger, a single switch...case code block takes care of loading in each trigger type’s data.
As each trigger’s data is read in, a separate function is called (based on the trigger’s
type) to insert the trigger into the linked list. Those functions are AddSphere, AddBox,
AddCylinder, and AddTriangle.

Moving past the Load function, you see the Save function, which scans the linked list
of triggers and saves each trigger’s data to a file, using the same format for each
line of text that defines a trigger. Take a look:

BOOL cTrigger::Save(char *Filename)
{

FILE *fp;
sTrigger *TriggerPtr;

// Error checking
if(!m_NumTriggers)

return FALSE;
if((TriggerPtr = m_TriggerParent) == NULL)

return FALSE;

// Open file
if((fp=fopen(Filename, “wb”))==NULL)

return FALSE;

775Using Map Triggers

// Write out all triggers in linked list
while(TriggerPtr != NULL) {

// Write out ID, Type, and enabled flag
fprintf(fp, “%lu “, TriggerPtr->ID);
fprintf(fp, “%lu “, TriggerPtr->Type);
fprintf(fp, “%lu “, (TriggerPtr->Enabled) ? 1 : 0);

// Write out remaining data depending on type
switch(TriggerPtr->Type) {

case Trigger_Sphere: // Write out sphere
fprintf(fp, “%lf %lf %lf %lf\r\n”,

TriggerPtr->x1, TriggerPtr->y1, TriggerPtr->z1,
TriggerPtr->Radius);

break;

case Trigger_Box: // Write out box
fprintf(fp, “%lf %lf %lf %lf %lf %lf\r\n”,

TriggerPtr->x1, TriggerPtr->y1, TriggerPtr->z1,
TriggerPtr->x2, TriggerPtr->y2, TriggerPtr->z2);

break;

case Trigger_Cylinder: // Write out cylinder
fprintf(fp, “%lf %lf %lf %lf %lf\r\n”,

TriggerPtr->x1, TriggerPtr->y1, TriggerPtr->z1,
TriggerPtr->Radius, TriggerPtr->y2);

break;

case Trigger_Triangle: // Write out triangle
fprintf(fp, “%lf %lf %lf %lf %lf %lf %lf %lf\r\n”,

TriggerPtr->x1, TriggerPtr->z1,
TriggerPtr->x2, TriggerPtr->z2,
TriggerPtr->x3, TriggerPtr->z3,
TriggerPtr->y1, TriggerPtr->y2);

break;
}

}

// Close file and return success
fclose(fp);
return TRUE;

}

776 17. Working with Maps and Levels

cTrigger::AddTrigger
AddTrigger is the heart of all the other functions that add a trigger. This function
allocates a sTrigger structure, sets its type, identification number, and enable flag,
and then links the structure into the linked list of triggers. Once you allocate your
program using the AddTrigger function, the program can fill in the returned sTrigger
structure with the coordinates, radius, height, or whatever other information the
trigger needs to have defined.

Keeping in mind that the AddTrigger function allocates only a sTrigger structure and
fills it with the minimal data as just mentioned, take a look at the code:

sTrigger *cTrigger::AddTrigger(long Type, long ID, BOOL Enabled)
{

// Allocate a new trigger structure and link in
sTrigger *Trigger = new sTrigger();
Trigger->Prev = NULL;
if((Trigger->Next = m_TriggerParent) != NULL)

m_TriggerParent->Prev = Trigger;
m_TriggerParent = Trigger;

// Set trigger Type, ID, and Enabled flag
Trigger->Type = Type;
Trigger->ID = ID;
Trigger->Enabled = Enabled;

m_NumTriggers++; // Increase trigger count

return Trigger; // Return structure pointer
}

cTrigger::AddSphere, cTrigger::AddBox,
cTrigger::Cylinder, and
cTrigger::AddTriangle
This group of functions adds a trigger of a specific type to the linked list of trig-
gers. Each function has its own list of arguments to use for creation (you can
check the comments preceding each function to see what each argument does).
Regardless of the type of trigger, each function first calls the AddTrigger function
to get a sTrigger structure with which to work.

777Using Map Triggers

Let’s start with the AddSphere function, which takes, in addition to the trigger’s iden-
tification number and default enabled state (as each of the four functions here
do), the sphere’s radius and the X-, Y-, and Z-coordinates for the sphere:

BOOL cTrigger::AddSphere(long ID, BOOL Enabled, \
float XPos, float YPos, float ZPos, \
float Radius)

{
// Create a new trigger structure and link in
sTrigger *Trigger = AddTrigger(Trigger_Sphere, ID, Enabled);

// Set up trigger data
Trigger->x1 = XPos;
Trigger->y1 = YPos;
Trigger->z1 = ZPos;
Trigger->Radius = Radius * Radius;

return TRUE;
}

Short and to the point, the AddSphere function calls on the AddTrigger function to
allocate and link in a sTrigger structure to the linked list. Once created, the sTrigger
structure instance is filled with the sphere trigger’s coordinates and radius.

AddBox, AddCylinder, and AddTriangle operate in much the same way the AddSphere func-
tion does. The AddBox function takes the identification number and default enabled
state, as well as the coordinates for the opposing corners of the box:

BOOL cTrigger::AddBox(long ID, BOOL Enabled, \
float XMin, float YMin, float ZMin, \
float XMax, float YMax, float ZMax)

{
// Create a new trigger structure and link in
sTrigger *Trigger = AddTrigger(Trigger_Box, ID, Enabled);

// Set up trigger data (fix for min/max values)
Trigger->x1 = min(XMin, XMax);
Trigger->y1 = min(YMin, YMax);
Trigger->z1 = min(ZMin, ZMax);
Trigger->x2 = max(XMin, XMax);
Trigger->y2 = max(YMin, YMax);
Trigger->z2 = max(ZMin, ZMax);

778 17. Working with Maps and Levels

TEAMFL
Y

Team-Fly®

return TRUE;
}

The AddCylinder function uses the lower-middle coordinates of the cylinder, the
radius, and height for the trigger. Take a look at the AddCylinder code:

BOOL cTrigger::AddCylinder(long ID, BOOL Enabled, \
float XPos, float YPos, float ZPos, \
float Radius, float Height)

{
// Create a new trigger structure and link in
sTrigger *Trigger = AddTrigger(Trigger_Cylinder, ID, Enabled);

// Set up trigger data
Trigger->x1 = XPos;
Trigger->y1 = YPos;
Trigger->z1 = ZPos;
Trigger->Radius = Radius * Radius;
Trigger->y2 = Height;

return TRUE;
}

Wrapping up the bunch is AddTriangle, which takes the three pairs of X- and Z-
coordinates that define each of the triangle’s three corners. The Y-coordinate to
use for those three corners, as well as the height of the triangular trigger shape,
follows. By now, the following code should be a snap:

BOOL cTrigger::AddTriangle(long ID, BOOL Enabled, \
float x1, float z1, \
float x2, float z2, \
float x3, float z3, \
float YPos, float Height)

{
// Create a new trigger structure and link in
sTrigger *Trigger = AddTrigger(Trigger_Triangle, ID, Enabled);

// Set up trigger data
Trigger->x1 = x1;
Trigger->z1 = z1;
Trigger->x2 = x2;
Trigger->z2 = z2;
Trigger->x3 = x3;

779Using Map Triggers

Trigger->z3 = z3;
Trigger->y1 = YPos;
Trigger->y2 = Height;

return TRUE;
}

cTrigger::Remove and cTrigger::Free
These two functions remove triggers from the linked list by referring to the identi-
fication number of the trigger to remove in the Remove function or by allowing the
class to remove all triggers in the list using the Free function.

The Remove function operates by scanning the entire linked list—for each trigger
that shares the same identification number as the number passed in the ID argu-
ment, the Remove function removes the structure from the linked list and frees the
structure’s memory:

BOOL cTrigger::Remove(long ID)
{

sTrigger *TriggerPtr, *NextTrigger;
long Count = 0;

// Scan through list of triggers
if((TriggerPtr = m_TriggerParent) != NULL) {

while(TriggerPtr != NULL) {

At this point, the linked list of sTrigger structures is being scanned. Now you store
a pointer to the next structure in the linked list and check the currently iterated
sTrigger structure for a match in the identification number being removed:

// Remember which is next
NextTrigger = TriggerPtr->Next;

// Matched?
if(TriggerPtr->ID == ID) {

Once it is determined that a structure needs to be removed, the following code
alters the linked list’s pointers and releases the structure’s memory resources:

780 17. Working with Maps and Levels

NOTE
All functions that use a radius as an argument square
the value when it is stored in the structure.This speeds
up distance checks later on. How does the trigger class
speed up distance checks? A standard distance check
uses a sqrt call to calculate the correct distance.
Tossing out the sqrt speeds up the engine, but then
you must square the values to match the distance.

// Remove from list
if(TriggerPtr->Prev != NULL)

TriggerPtr->Prev->Next = TriggerPtr->Next;
else

m_TriggerParent = TriggerPtr->Next;
if(TriggerPtr->Next != NULL)

TriggerPtr->Next->Prev = TriggerPtr->Prev;
if(TriggerPtr->Prev==NULL && TriggerPtr->Next==NULL)

m_TriggerParent = NULL;

// Release memory
TriggerPtr->Prev = TriggerPtr->Next = NULL;
delete TriggerPtr;

From this point on, the number of triggers stored in the linked list is reduced and the
loop that scans for structures to remove continues until all structures are scanned:

// Decrease number of triggers and increase # removed
m_NumTriggers—;
Count++;

}

// Go to next trigger
TriggerPtr = NextTrigger;

}
}

// Return TRUE if any found and removed
return (Count) ? TRUE : FALSE;

}

Whereas the Remove function removes triggers according to their identification num-
bers, the Free function can skip all the hoopla and delete the entire linked list in
one fell swoop using the following code:

BOOL cTrigger::Free()
{

delete m_TriggerParent;
m_TriggerParent = NULL;
m_NumTriggers = 0;

return TRUE;
}

781Using Map Triggers

cTrigger::GetTrigger
GetTrigger is the function in the trigger class that you call every time the player’s char-
acter moves. GetTrigger will take the coordinates of the character you are checking and
return the identification number of the first trigger found at that location (if any). If
no triggers are found at the specified location, GetTrigger returns a value of zero.

A great deal is going on in GetTrigger,
but things are not too complicated. As
the linked list of triggers is scanned,
each trigger in question is checked to
see whether it and the specified coor-
dinates share the same map space.
If so, the trigger’s identification
number is returned.

long cTrigger::GetTrigger(float XPos, float YPos, float ZPos)
{

float XDiff, YDiff, ZDiff, Dist;
D3DXVECTOR2 vecNorm;
sTrigger *Trigger;

// Scan through list of triggers
if((Trigger = m_TriggerParent) != NULL) {

while(Trigger != NULL) {

// Only bother if enabled
if(Trigger->Enabled == TRUE) {

At this point, you check a trigger that is enabled to see whether it intersects with
the coordinates passed in the XPos, YPos, and ZPos arguments of the GetTrigger func-
tion. Each trigger has a special way of determining whether the specified coordi-
nates are within the trigger space, and by using a switch statement, the following
code can determine how to process that intersection check:

// Check based on type
switch(Trigger->Type) {

case Trigger_Sphere:

For spheres, you use a distance check. If the coordinates have a distance equal to
or less than the radius of the sphere, the trigger is touched:

// Check distance from sphere (using radius)
XDiff = (float)fabs(Trigger->x1 - XPos);

782 17. Working with Maps and Levels

CAUTION
Never assign a value of zero to a trig-
ger because the trigger class uses zero
to signify that no trigger is found when
the GetTrigger function is called.

YDiff = (float)fabs(Trigger->y1 - YPos);
ZDiff = (float)fabs(Trigger->z1 - ZPos);
Dist = XDiff*XDiff+YDiff*YDiff+ZDiff*ZDiff;
if(Dist <= Trigger->Radius)

return Trigger->ID;
break;

case Trigger_Box:

Box triggers use typical bounding boxes to compare the coordinates of the opposing
corners to the coordinates being checked to see whether they intersect:

// Check if inside box
if(XPos >= Trigger->x1 && XPos <= Trigger->x2) {

if(YPos >= Trigger->y1 && YPos <= Trigger->y2) {
if(ZPos >= Trigger->z1 && ZPos <= Trigger->z2)

return Trigger->ID;
}

}
break;

case Trigger_Cylinder:

Cylinder triggers use a mixture of spheres and bounding boxes.

// First make sure within height bounds
if(YPos >= Trigger->y1 && \

YPos <= Trigger->y1 + Trigger->y2) {
// Check distance from cylinder
XDiff = (float)fabs(Trigger->x1 - XPos);
YDiff = (float)fabs(Trigger->y1 - YPos);
ZDiff = (float)fabs(Trigger->z1 - ZPos);
Dist = XDiff*XDiff+YDiff*YDiff+ZDiff*ZDiff;
if(Dist <= Trigger->Radius)

return Trigger->ID;
}
break;

case Trigger_Triangle:

The triangle trigger code shown here checks whether the coordinate in question
is in front of all three edges of the triangle by using what’s called a dot-product. For
each edge of the triangle, the dot-product is calculated and checked to see whether
the coordinates in question are on the inside or the outside of the triangle.

783Using Map Triggers

You can think of the dot-product as the distance of the coordinates in question
from a triangle edge. A negative distance means that the coordinates in question
are on the outside of the triangle, whereas a positive distance means that the coor-
dinates in question are inside the triangle.

If all three dot-product checks come up with positive values, the coordinates in ques-
tion must be inside the triangle. You use one last test to determine whether the coor-
dinates in question fall within the height range defined in the sTrigger structure:

// First make sure within height bounds
if(YPos >= Trigger->y1 && \

YPos <= Trigger->y1 + Trigger->y2) {

// Check if point in front of all lines

// x1,z1 to x2,z2
D3DXVec2Normalize(&vecNorm, \

&D3DXVECTOR2(Trigger->z2 - Trigger->z1, \
Trigger->x1 - Trigger->x2));

if(D3DXVec2Dot(&D3DXVECTOR2(XPos-Trigger->x1, \
ZPos-Trigger->z1), \
&vecNorm) < 0)

break;

// x2,z2 to x3,z3
D3DXVec2Normalize(&vecNorm, \

&D3DXVECTOR2(Trigger->z3 - Trigger->z2, \
Trigger->x2 - Trigger->x3));

if(D3DXVec2Dot(&D3DXVECTOR2(XPos-Trigger->x2, \
ZPos-Trigger->z2), \
&vecNorm) < 0)

break;

// x3,z3 to x1,z1
D3DXVec2Normalize(&vecNorm, \

&D3DXVECTOR2(Trigger->z1 - Trigger->z3, \
Trigger->x3 - Trigger->x1));

if(D3DXVec2Dot(&D3DXVECTOR2(XPos-Trigger->x3, \
ZPos-Trigger->z3), \
&vecNorm) < 0)

break;

784 17. Working with Maps and Levels

return Trigger->ID;
}
break;

}
}

// Go to next trigger
Trigger = Trigger->Next;

}
}

return 0; // return no trigger found
}

cTrigger::GetEnableState
and cTrigger::Enable
The GetEnableState function checks the current status of a trigger; by passing the
trigger identification number, you get in return the state of the trigger. If a trigger
is disabled, a call to GetEnableState returns a value of FALSE. If enabled, the return
value is TRUE. To enable or disable a trigger, call on the Enable function, using the
trigger’s identification number as the only argument.

Each of the two functions scans the linked list of sTrigger structures. For GetEnableState,
the enabled flag value of the first structure found in the list that has a matching iden-
tification number as the number provided in the ID argument is returned.

For the Enable function, the linked list is scanned, and every instance of a structure
with a matching identification number as passed in the ID argument has its enabled
flag set to the value as provided in the Enable argument. Take a look at each func-
tion’s code:

BOOL cTrigger::GetEnableState(long ID)
{

sTrigger *TriggerPtr;

// Loop through all triggers looking for ID
if((TriggerPtr = m_TriggerParent) != NULL) {

while(TriggerPtr != NULL) {

// If matched ID then set return state
if(TriggerPtr->ID == ID)

785Using Map Triggers

return TriggerPtr->Enabled;

// Go to next flag
TriggerPtr = TriggerPtr->Next;

}
}

// Return FALSE for none found
return FALSE;

}

BOOL cTrigger::Enable(long ID, BOOL Enable)
{

sTrigger *TriggerPtr;
long Count = 0;

// Loop through all triggers looking for ID
if((TriggerPtr = m_TriggerParent) != NULL) {

while(TriggerPtr != NULL) {

// If matched ID then set flag and increase count
if(TriggerPtr->ID == ID) {

TriggerPtr->Enabled = Enable;
Count++;

}

// Go to next flag
TriggerPtr = TriggerPtr->Next;

}
}

// Return TRUE if any triggers changed
return (Count) ? TRUE : FALSE;

}

cTrigger::GetNumTriggers
and cTrigger::GetParentTrigger
As I like to do with all my classes, I have included two functions that you can use to
retrieve the number of sTrigger structures in the linked list as well as the pointer to

786 17. Working with Maps and Levels

the first structure (the root, or parent, structure) contained with the list. You pro-
gram these two functions, GetNumTriggers and GetParentTrigger, as follows:

long cTrigger::GetNumTriggers()
{

return m_NumTriggers;
}

sTrigger *cTrigger::GetParentTrigger()
{

return m_TriggerParent;
}

Using Triggers
As I promised in the section,
“Using Map Triggers,” you now
revisit using files to store triggers
on a map, this time using the
cTrigger class created in the sec-
tion “Creating a Trigger Class.”
In this section, you find out how
to define and load a trigger file
effectively.

Defining a Trigger File
You start with a sample trigger data file (called test.trg):

1 0 1 -900 0 900 620
2 1 0 0 0 0 100 100 100
3 2 1 100 10 200 20 100
4 3 0 10 10 10 -100 -50 0 0 100

The first trigger (ID# 1) is a sphere located at -900,0,900 with a radius of 620. The
second trigger (ID# 2) is a box that covers the area from 0,0,0 to 100,100,100. The
third trigger (ID# 3) is a cylinder; its lower-middle point is at 100,10,200, it has a
radius of 20, and it extends up 100 units. The fourth trigger (ID# 4) is a triangle
that encloses the area from 10,10 to 10,-100 to -50,0; it has a Y-coordinate (the bot-
tom of the triangle) of 0 and extends 100 units upward. Notice that all other trig-
gers are disabled by default.

787Using Map Triggers

NOTE
The Mapping example that comes on this
book’s CD-ROM (look for \BookCode\
Chap17\Mapping\) demonstrates using
triggers much better than this small
example does. Be sure to check it out!

Loading a Trigger File
To load the trigger file, instance the cTrigger file and call Load:

cTrigger Trigger;
Trigger.Load(“test.trg”);

Touching a Trigger
Finally, to see whether a trigger is touched by a character, call GetTrigger with the
character’s coordinates:

long TriggerID;
TriggerID = Trigger.GetTrigger(CharXPos, CharYPos, CharZPos);
if(TriggerID)

MessageBox(NULL, “Trigger touched!”, “Message”, MB_OK);

With this admittedly simplified example of loading and using the cTrigger class
under your belt, you might want to work through the Mapping example program
to get more experience with creating, loading, and checking for character-to-trigger
collisions using the cTrigger class.

Blocking the
Path with Barriers
In Chapter 12, I explain the basics for using collision detection. You know—detect-
ing when your character is walking around the map bumping into walls or standing
on solid ground. What about objects such as doors blocking your character’s way?
Because a door is not part of the terrain, I didn’t include a door when I con-
structed the collision detection code. Now is the time to remedy that situation.

Anything that bars clear passage of a character’s movement is called a barrier.
Barriers can exist in two states—open (disabled) or closed (enabled). Characters
are allowed to pass through a barrier when it is open, but they cannot pass through
when the barrier is closed.

You can treat barriers much as you do triggers. You can define a barrier similar to
the way you define a trigger on a map. You can define barriers as spheres, boxes,
cylinders, and triangles. Barriers can also have an enabled state, with TRUE meaning
that the barrier is blocking the character’s passage and FALSE meaning that the way
through the barrier is clear.

788 17. Working with Maps and Levels

TEAMFL
Y

Team-Fly®

The big difference between barriers and triggers is that barriers can have meshes
and animation assigned to them. This relieves you of the burden of drawing the
barrier and gives the job to the barrier engine. All you have to do is assign the
meshes and animations.

You start off using barriers with the barrier class declaration (as found in the
Barrier.h and Barrier.cpp files located on the CD-ROM in the Chapter 17 direc-
tory), which looks very similar to the trigger class declaration. Notice that I also
define an enum list and structure (sBarrier) used to contain each barrier’s data:

enum BarrierTypes { Barrier_Sphere = 0, Barrier_Box, \
Barrier_Cylinder, Barrier_Triangle };

typedef struct sBarrier {
long Type; // Sphere, Box, etc
long ID; // Barrier ID
BOOL Enabled; // Flag if enabled

float XPos, YPos, ZPos; // Coordinates
float XRot, YRot, ZRot; // Rotation

float x1, y1, z1; // Coord 1
float x2, y2, z2; // Coord 2
float x3, z3; // Coord 3
float Radius; // Radius of bounds

Here’s where the similarities between the triggers and barrier end. A barrier needs
a graphical representation (a 3-D mesh), so the following code adds a Graphics
Core cObject object that is used to contain the barrier’s mesh and animation data:

cObject Object; // Graphics object

Getting back to the similarities of the trigger and barrier classes, notice the point-
ers that maintain the linked list as well as the sBarrier structure constructor and
destructor:

sBarrier *Prev, *Next; // Linked list

sBarrier() { Prev = Next = NULL; }
~sBarrier() { delete Next; Object.Free(); }

} sBarrier;

789Blocking the Path with Barriers

The similarities between triggers and barrier continue with the declaration of the
barrier class:

class cBarrier
{

private:
cGraphics *m_Graphics; // Parent cGraphics object
long m_NumBarriers; // # barriers in linked list
sBarrier *m_BarrierParent; // Linked list of barriers

long GetNextLong(FILE *fp); // Get next long in file
float GetNextFloat(FILE *fp); // Get next float in file

// Get a sBarrier structure and linked into list
sBarrier *AddBarrier(long Type, long ID, BOOL Enabled, \

float XPos, float YPos, float ZPos, \
float XRot, float YRot, float ZRot);

Shift your focus for a moment to the arguments that the AddBarrier function is tak-
ing. Aside from the position in which to position the barrier (using the XPos, YPos,
and ZPos arguments), the AddBarrier function takes the rotational values in which to
draw the barrier’s mesh (using the XRot, YRot, and ZRot arguments that represent the
X-, Y-, and Z-rotational values, in radians, respectively).

Notice that the addition of rotational values throughout the barrier class, as well as
the addition of an extra trio of coordinates that define the mesh’s position in the
world. As you come upon these additional values, I’ll be sure to point them out.

Continue now with the cBarrier class declaration:

public:
cBarrier(); // Constructor
~cBarrier(); // Destructor

// Functions to load and save a barrier list
BOOL Load(char *Filename);
BOOL Save(char *Filename);

// Functions to set a mesh and animation for a barrier
BOOL SetMesh(long ID, cGraphics *Graphics, cMesh *Mesh);
BOOL SetAnim(long ID, cAnimation *Anim, \

char *Name, long Time);

790 17. Working with Maps and Levels

When you need to assign a mesh to a barrier, use the SetMesh function, passing the
barrier’s identification number to set, as well as the Graphics Core cGraphics and
cMesh objects to use. For setting an animation for a barrier, you pass the barrier’s
identification number, cAnimation object, the name of the animation to use, and the
time the animation is set (using a timer function such as timeGetTime).

After you assign a mesh and animation, you can render a barrier to the display using
the following Render function. The Render function takes as arguments the current
time to update the animations (again using timeGetTime) and the viewing frustum to
use for clipping out the barriers that are out of the viewpoint:

// Render barriers out using specified frustum
BOOL Render(unsigned long Time, cFrustum *Frustum);

When it comes time to start adding barriers to the linked list, the cBarrier class
comes packed with as many functions to do so as cTrigger. Take a look at those
functions’ prototypes (I show you how they each work after showing the entire
cBarrier class declaration):

BOOL AddSphere(long ID, BOOL Enabled, \
float XPos, float YPos, float ZPos, \
float XRot, float YRot, float ZRot, \
float CXPos, float CYPos, float CZPos, \
float Radius);

BOOL AddBox(long ID, BOOL Enabled, \
float XPos, float YPos, float ZPos, \
float XRot, float YRot, float ZRot, \
float XMin, float YMin, float ZMin, \
float XMax, float YMax, float ZMax);

BOOL AddCylinder(long ID, BOOL Enabled, \
float XPos, float YPos, float ZPos, \
float XRot, float YRot, float ZRot, \
float CXPos, float CYPos, float CZPos, \
float Radius, float Height);

BOOL AddTriangle(long ID, BOOL Enabled, \
float XPos, float YPos, float ZPos, \
float XRot, float YRot, float ZRot, \
float x1, float z1, \
float x2, float z2, \

791Blocking the Path with Barriers

float x3, float z3, \
float CYPos, float Height);

BOOL Remove(long ID);
BOOL Free();

long GetBarrier(float XPos, float YPos, float ZPos);

BOOL GetEnableState(long ID);
BOOL Enable(long ID, BOOL Enable);

long GetNumBarriers();
sBarrier *GetParentBarrier();

};

Again, the barrier class is so similar to the trigger class you saw in the section
“Creating a Trigger Class” that I would be wasting space by providing the complete
code to the cBarrier class here. Instead, just refer to the cTrigger class for the
specifics on the majority of functions and read on to see the breakdown of the
functions that are exclusive to the barrier class.

cBarrier::SetMesh
and cBarrier::SetAnim
With the addition of graphics objects, you need to assign meshes and animations.
Each barrier has a dedicated cObject to use for orientation, but first a mesh must be
assigned via the SetMesh function. Animations are sure to follow using the SetAnim
function. Take a look at each of the functions responsible for setting those meshes
and animations:

BOOL cBarrier::SetMesh(long ID, \
cGraphics *Graphics, cMesh *Mesh)

{
sBarrier *BarrierPtr;
long Count = 0;

// Loop through all Barriers looking for ID
if((BarrierPtr = m_BarrierParent) != NULL) {

while(BarrierPtr != NULL) {

// If matched ID then set mesh

792 17. Working with Maps and Levels

if(BarrierPtr->ID == ID) {
BarrierPtr->Object.Create(Graphics, Mesh);
Count++;

}

// Go to next flag
BarrierPtr = BarrierPtr->Next;

}
}

// Return TRUE if any meshes set
return (Count) ? TRUE : FALSE;

}

BOOL cBarrier::SetAnim(long ID, cAnimation *Anim, \
char *Name, long Time)

{
sBarrier *BarrierPtr;
long Count = 0;

// Loop through all Barriers looking for ID
if((BarrierPtr = m_BarrierParent) != NULL) {

while(BarrierPtr != NULL) {

// If matched ID then set animation
if(BarrierPtr->ID == ID) {

BarrierPtr->Object.SetAnimation(Anim, Name, Time);
Count++;

}

// Go to next flag
BarrierPtr = BarrierPtr->Next;

}
}

// Return TRUE if any animations set
return (Count) ? TRUE : FALSE;

}

After you’ve loaded or created barriers, assign the meshes by their respective bar-
rier identification numbers. Notice that the SetAnim function is just like the

793Blocking the Path with Barriers

cObject::SetAnimation function—you have the name of the animation and the start-
ing time of the animation.

Both functions simply scan through the linked list of barriers looking for a match-
ing identification number, at which point, the class records the mesh or animation
being set and moves on through the rest of the linked list.

cBarrier::Render
The only other exclusive function in cBarrier (as opposed to cTrigger) is Render,
which takes a time value that is used to update the barriers’ animations and a view-
ing frustum that is used to clip out unseen barrier objects. Take a look at the Render
function code:

BOOL cBarrier::Render(unsigned long Time, cFrustum *Frustum)
{

sBarrier *BarrierPtr;
float Radius;

// Error checking
if(Frustum == NULL)

return FALSE;

// Loop through all Barriers looking for ID
if((BarrierPtr = m_BarrierParent) != NULL) {

while(BarrierPtr != NULL) {

// Get radius and perform frustum check
BarrierPtr->Object.GetBounds(NULL,NULL,NULL,NULL, \

NULL,NULL,&Radius);
if(Frustum->CheckSphere(BarrierPtr->XPos, \

BarrierPtr->YPos, \
BarrierPtr->ZPos, Radius)) {

// Position object
BarrierPtr->Object.Move(BarrierPtr->XPos, \

BarrierPtr->YPos, \
BarrierPtr->ZPos);

BarrierPtr->Object.Rotate(BarrierPtr->XRot, \
BarrierPtr->YRot, \
BarrierPtr->ZRot);

794 17. Working with Maps and Levels

// Update animation
BarrierPtr->Object.UpdateAnimation(Time, TRUE);

// Render object
BarrierPtr->Object.Render();

}

// Go to next flag
BarrierPtr = BarrierPtr->Next;

}
}

return TRUE;
}

In the preceding Render function, the linked list of barriers is scanned, and for each
barrier, a frustum check is performed. If a barrier is in the view, its respective ani-
mation is updated and the mesh is rendered.

Adding Barriers with cBarrier
Even though the barrier class marks areas on the map using geometric shapes in
exactly the same way as the trigger class does, the barrier class also positions meshes.
Looking again at the cBarrier class declaration, notice that each of the add barrier
functions—AddSphere, AddBox, AddCylinder, and AddTriangle—have a set of coordinates
that position and rotate the barrier’s mesh before being rendered.

To determine where the mesh is positioned, set the XPos, YPos, and ZPos arguments
of the add barrier functions to where you want the mesh rendered. You also need
to set the XRot, YRot, and ZRot arguments to the rotational values to draw the mesh.

For example, say that you want to add a spherical barrier that already has a mesh
assigned. The barrier is positioned at coordinates 10,20,30 (with a radius of 40),
while the mesh is positioned at 10,0,30 using no rotational values. To add the bar-
rier, you call the AddSphere function as follows:

cBarrier::AddSphere(1, TRUE, \
10.0f, 0.0f, 30.0f, 0.0f, 0.0f, 0.0f, \
10.0f, 20.0f, 30.0f, 40.0f);

You get a better understanding of adding and using barriers in the next section.

795Blocking the Path with Barriers

Using the Barrier Class
Using the barrier class is not difficult; it’s much like using the trigger class. The
biggest difference is that you have to add object placement data to the barrier data
files and assign the appropriate meshes and animations.

Creating the Barrier Data File
The barrier data files are arranged just like trigger data files, except that you start
each barrier definition with the identification number, type, enabled flag, place-
ment coordinates (X, Y, Z), and rotations (X-rotation, Y-rotation, and Z-rotation) to
place the barrier graphics object. Finish each definition with the respective barrier
type’s data.

The following defines two barriers to use (contained in a file called test.bar). Note
that the coordinates and rotational values of the barrier are shown in bold:

1 1 1 -900 0 0 0 0 0 -1154 0 10 -645 100 -10
2 1 0 0 0 -900 0 1.57 0 -10 0 -1154 10 100 -645

Here are two barriers, both using a box shape. The first barrier’s graphics object is
placed at -900,0,0 and has rotational values of 0,0,0. The first box covers the area
from -1154,0,10 to -645,100, -10.

The second barrier has a graphics object placed at 0,0, -900 and has rotational val-
ues of 0,1.57,0. The second barrier covers the area from -10,0,-1154 to 10,100,-645.

Loading the Barrier Data
In order to load and use a barrier data file, instance the cBarrier class, load the data
file and appropriate meshes, and assign the meshes:

// Graphics = pre-initialized cGraphics object
cBarrier Barrier;

// Load a barrier data file
Barrier.Load(“test.bar”);

// Load a mesh and animation to use
cMesh Mesh;
cAnimation Anim;
Mesh.Load(&Graphics, “barrier.x”);
Anim.Load(“barrier.x”, &Mesh);

796 17. Working with Maps and Levels

// Assign mesh and animation to both barriers loaded
Barrier.SetMesh(1, &Graphics, &Mesh);
Barrier.SetMesh(2, &Graphics, &Mesh);
Barrier.SetAnim(1, &Anim, “AnimationName”, 0);
Barrier.SetAnim(2, &Anim, “AnimationName”, 0);

Checking Barrier Collisions
To see whether an area on the map is blocked, call GetBarrier with the character
coordinates. If a value of TRUE is returned, passage is blocked, and you should take
appropriate actions. Take the following example that checks a character’s coordi-
nates against all barriers loaded from the barrier list.

You use a trio of values that represents the direction the character is moving in
each axis to determine beforehand whether the movement is blocked by a barrier.
Say that a character is moving 10 units in the position Z-axis, meaning that the
upcoming ZMove variable will be set to 10. That ZMove variable is added to the charac-
ter’s current position, and if intersecting with a barrier, that ZMove variable is cleared
out, thus not allowing such a movement along the axis, as shown here:

// XPos, YPos, ZPos = character coordinates
// XMove, YMove, ZMove = character movement values
if(Barrier.GetBarrier(XPos+XMove,YPos+YMove,ZPos+ZMove)==TRUE) {

// Passage not allowed, clear movement variables
XMove = YMove = ZMove = 0.0f;

}

Rendering Barriers
Last, you only need to call cBarrier::Render to draw all barrier objects within view:

// Frustum = pre-initialize cFrustum object
Barrier.Render(timeGetTime(), &Frustum);

Using Auto Maps
Your game world is a huge place, and when players start exploring their surround-
ings, you may want to make things easier on them by providing a miniature version
of your map for their reference. Not just any map mind you—a map that is smart
enough to know where the player has been and the places he still needs to explore.

797Using Auto Maps

You need to display only those portions of the map that a player has explored.
Sections never visited do not need to be shown—that is, not until discovered by
players. In that way, players can look back to where they’ve been and maybe plot
out their paths to future destinations. This is the magic of auto mapping.

Auto Maps in Action
One of my favorite games, Phantasy Star Online, by Sega Corp., uses auto mapping
in a seamless fashion. Check out Figure 17.5, which shows the auto map at work in
the upper-right corner of the screen.

In Phantasy Star Online, the main player and other important characters in the
game are displayed on the auto map as well as small arrows. As the main player
walks around, the map scrolls to show the area around the player. As the player
visits new rooms (sections), the rooms are revealed on the auto map.

This auto-mapping feature, much like the other features shown in this book, are
easy to re-create for your own game project.

Big Map, Small Map
The challenge here is to change your large game level into a small map suitable
for display in your game. Figure 17.6 shows a screen shot of the Mapping example

798 17. Working with Maps and Levels

Figure 17.5

Phantasy Star Online
uses a flat 2-D version
of the level as seen
from above.

TEAMFL
Y

Team-Fly®

program. Notice the map in the upper-right corner of the screen. It uses alpha blend-
ing (refer to Chapter 6 for more on this topic) to show the game action underneath.

The easiest way to make a smaller version of the in-game level is to go into your 3-D
editor and load up the level of the small map that you want to construct. Figure
17.7 shows a sample level loaded up into MilkShape 3-D and ready to work with.

799Using Auto Maps

Figure 17.6

The Mapping example uses
auto mapping to display
sections of the map that
the player has visited.

Figure 17.7

A sample level is
loaded into the
MilkShape 3-D editor
and is ready to be
converted into a
smaller map.

To start off, select all polygon faces by
pressing Ctrl+A. Click the Groups tab
and choose Regroup to create a single
mesh. Next click the Materials tab
and keep clicking Delete until all
materials are deleted. At this point,
you should have a single mesh that
does not use texture maps.

Now for the hard part: Go through the
entire mesh and delete all nonessential polygons. This includes polygons that will
never be seen from above, that are used for decoration, or that represent walls. You
want to keep only those polygons that construct the ground. To delete a face, select
it (although you have the Select, Face options selected) and press the Delete key.

If needed, create new faces to match the level mesh as best possible, but avoid over-
lapping polygons. If you are alpha-blending a small map onto the display, overlapped
polygons are darkened and create a bad effect (as you can see in Figure 17.8).

After a little reworking, as you can see in Figure 17.9, my loaded level mesh is
reduced to only those polygons on which the characters are capable. I’ve added a
few new polygon faces that are going to be useful when splitting the mesh into mul-
tiple sections.

At last, the map needs to be split into smaller sections (which are basically the sepa-
rate rooms on the map) that are revealed as the character discovers them. Begin by
clearing the selection (press Shift+Ctrl+A). Now click the Model tab, click Select,
and choose Face.

800 17. Working with Maps and Levels

CAUTION
Milkshape 3-D is unable to display large
meshes, so in order to view an entire
level at once you might have to scale
down the mesh to work with, then
scale it back up when ready to save.

Figure 17.8

Overlapping polygons in the small
map can create strange color
artifacts when rendered using alpha
blending.

Start clicking the faces that you want to include in a single map section. You can
see in Figure 17.10 that I selected a group of faces in the upper-left corner of the
mesh. These faces will form the first map section.

801Using Auto Maps

Figure 17.9

The small map mesh
contains significantly
fewer polygons.The
polygons are ready to
be grouped into
individual sections.

Figure 17.10

Selecting faces is the
first step to building
the various map
sections.

Now that the faces have been selected, click the Groups tab again and choose
Regroup. Notice that a new group is created (as shown in Figure 17.11).

Congratulations! You have created your first map section. Click the Regroup01
group, deselect all the faces, and begin selecting the faces for the next map section.
Continue selecting faces and regrouping them until the whole map is split into the
various groups.

For the sample map, I ended up splitting the mesh into four individual groups,
representing the upper-left, upper-right, lower-left, and lower-right corners of the
level. Check out the mapping demo for the finished map file. At this point, go
ahead and save your map and export it as an .X file (using the .X file exporter cre-
ated by myself that comes with this book).

Loading and Displaying Auto Maps
Okay, the small auto map is created and waiting to be used. What you need to do at
this point is load the .X file and query it for the individual meshes contained
within. Using the Graphics Core’s cMesh object is perfect for loading the mesh.

Now, you construct an array of vertex buffers—one for each mesh in the auto map.
You fill each vertex buffer with the triangle face data from each mesh in the cMesh
object. The trick at this point is that although you are copying the vertex data from

802 17. Working with Maps and Levels

Figure 17.11

A new group of faces
has been created.

the mesh to the vertex buffer, the Y-coordinate is tossed out so that the resulting
vertex buffer mesh is flat, and thus the 2-D look of the auto map.

To display the loaded map, you just position a camera, set up a viewport to render
to on the display, and render each vertex buffer. With auto mapping in place, you
can skip rendering the vertex buffers that represent sections of the map that have
not been visited by the character.

Although the concept sounds simple, get a jump on things by looking at some
working code.

Creating the Auto Map Class
The auto map class I’ve developed for the book will load a cMesh object and com-
press it into a flat version of the map. The flattened map is stored in a series of ver-
tex buffers. These vertex buffers use only the X-, Y-, and Z-coordinates of each
vertex plus a single diffuse color. This means that auto maps are compact and easy
to render. This also means that you can use alpha blending to overlay the map on
the screen without covering the crucial gaming action going on.

Each map section has an associated flag that defines whether it is visible. The class
allows you to enable or disable those visibility flags, and to make sure that the
player’s hard work is not in vain, save and load those visibility flags.

Enough talk; now check out the class declaration:

class cAutomap
{

private:
typedef struct {

float x, y, z; // 3D coordinates
} sGenericVertex;

typedef struct {
float x, y, z; // Coordinates
D3DCOLOR Diffuse; // Map color

} sVertex;
#define AUTOMAPFVF (D3DFVF_XYZ | D3DFVF_DIFFUSE)

cGraphics *m_Graphics; // Parent cGraphics object

long m_NumSections; // # sections in map

803Using Auto Maps

char *m_Visible; // Visibility of sections
cVertexBuffer *m_MapVB; // Map vertex buffer

cVertexBuffer m_PointerVB; // Pointer vertex buffer

D3DVIEWPORT8 m_Viewport; // Area to draw map
cCamera m_Camera; // Camera used to render map

float m_Scale; // Scale used to draw map

public:
cAutomap(); // Constructor
~cAutomap(); // Destructor

// Functions to create and free a map
BOOL Create(cGraphics *Graphics, char *Filename, \

long Color = D3DCOLOR_RGBA(64,64,64,255));
BOOL Free();

// Functions to load/save enabled map sections
BOOL Load(char *Filename);
BOOL Save(char *Filename);

// Return number of map sections
long GetNumSections();

// Enable/disable a map section’s visibility flag
BOOL EnableSection(long Section, BOOL Enable);

// Define an area to draw the map
BOOL SetWindow(long XPos, long YPos, \

long Width, long Height);

// Render the map to display
BOOL Render(cCamera *OldCamera, \

float MXPos, float MYPos, float MZPos, \
float NumPositions, \
float *XPos, float *ZPos, float *Angle);

};

804 17. Working with Maps and Levels

From the start, you can see that I’ve defined two vertex structures. You use the first,
sGenericVertex, to access the vertex coordinates from the source meshes. You use the
second vertex structure, sVertex, to store the map sections.

Following the vertex structures are a collage of variables. Notice the cGraphics object
to use for loading meshes, the number of map sections in use, an array of vertex
buffers, an array of char variables used to mark sections of the map that are visible,
a viewport structure, a cCamera, a scaling factor variable, and a pointer vertex buffer.

You should be comfortable with everything except the pointer vertex buffer and the
scaling factor. To make things easier on you, a map being loaded is scaled down to a
workable size. When you render the auto map, you need to specify coordinates from
the large map scale, but the auto map class will scale them down to fit the small map.

For example, a map that is 1,024 units in width and depth is scaled down to 256
units in width and depth. In fact, all maps are scaled down to a size of 256 x 256,
regardless of their size in the .X file.

As for the pointer vertex buffer, I’ve added the capability to display an arrow
pointer that represents each character on the map. The arrow pointer points in the
direction each character is facing. This vertex buffer simply contains three points
and is rendered using a red diffuse color.

In addition to the class’s private variables, you must deal with the functions.

cAutomap::cAutomap and
cAutomap::~cAutomap
The constructor and destructor of the cAutomap class ensure that all data is placed
within a known state and that all used resources are released. The constructor does
nothing more than clear some variables and orient a camera to point downward.
You later use that camera to render the map. The destructor calls on the Free
function to release all used resources. Take a look at each function’s code:

cAutomap::cAutomap()
{

m_Graphics = NULL;

// Set section data and vertex buffer
m_NumSections = 0;
m_Visible = NULL;
m_MapVB = NULL;

805Using Auto Maps

// Point the camera down
m_Camera.Rotate(1.57f, 0.0f, 0.0f);

// Set a default window for displaying map
SetWindow(0,0,100,100);

m_Scale = 1.0f; // Set a default scale
}

cAutomap::~cAutomap()
{

Free();
}

cAutomap::Create and cAutoMap::Free
All right, take a deep breath for this part. The Create function is the biggest of the
bunch. It loads an .X file and converts each mesh within into a separate vertex
buffer. Starting with its variable declarations, examine the variable in pieces to
better understand what’s going on:

BOOL cAutomap::Create(cGraphics *Graphics, \
char *Filename, long Color)

{
cMesh Mesh; // The .X file being loaded
sMesh *MeshPtr; // Pointer to meshes in cMesh
ID3DXMesh *IMeshPtr; // Direct3D mesh pointer
sGenericVertex *GenVert; // Vertex source
sVertex Vertex, *VBPtr; // Vertex destination
long i, j, Num;
long VertexSize, NumFaces;
unsigned short *IndexPtr; // Pointer into mesh index buffer
char *VertexPtr; // Mesh vertex buffer pointer
float Radius; // Radius of all meshes in .X
// Pointer vertex buffer definition
sVertex PointerVerts = {

{ 0.0f, 0.0f, 10.0f, D3DCOLOR_RGBA(128,64,0,255) },
{ 5.0f, 0.0f, -10.0f, D3DCOLOR_RGBA(128,64,0,255) },
{ -5.0f, 0.0f, -10.0f, D3DCOLOR_RGBA(128,64,0,255) }

};

806 17. Working with Maps and Levels

// Free a prior automap
Free();

// Error checking
if((m_Graphics = Graphics) == NULL || Filename == NULL)

return FALSE;

At this point, some variables are declared, a prior auto map is freed (via a call to
Free), and some error checking is being performed. Notice that the variable decla-
rations include the vertex definitions for the pointer vertex buffer.

Now move on, starting with the code that loads the map mesh that is used to create
the vertex buffers:

// Attempt to load the mesh
if(Mesh.Load(Graphics, Filename) == FALSE)

return FALSE;

// Get mesh pointer
if((MeshPtr = Mesh.GetParentMesh()) == NULL) {

Mesh.Free();
return FALSE;

}

// Get size of vertices from source mesh
VertexSize = D3DXGetFVFVertexSize(MeshPtr->m_Mesh->GetFVF());

// Get a bounding radius to scale by
Mesh.GetBounds(NULL,NULL,NULL,NULL,NULL,NULL,&Radius);
m_Scale = 128.0f / Radius;

// Get # of sections in map mesh
if(!(m_NumSections = Mesh.GetNumMeshes())) {

Mesh.Free();
return FALSE;

}

The first order of business is to load the actual .X file from disc. The first sMesh
structure is grabbed from the cMesh object (remember from the Graphics Core that
the cMesh class stores meshes in a linked list of sMesh structures).

Next, you calculate the size of the vertex structure used by the .X file and calculate
the scaling factor to alter the meshes being loaded. Finally, you store the number

807Using Auto Maps

of map sections in a class variable. Notice that the number of map sections hap-
pens to be the number of meshes in the .X file.

Moving on, you allocate an array of char variables, with each element in the array
representing whether a map section is visible. Each map section has a matching
element in the array. You also create an array of vertex buffers (using the Graphics
Core’s cVertexBuffer class). These vertex buffers will be used to store the map
sections. Take a look at the code that creates those arrays and begins scanning
through the list of meshes:

// Allocate the visibility buffer and clear it
m_Visible = new char[m_NumSections];
ZeroMemory(m_Visible, m_NumSections);

// Allocate the vertex buffers
m_MapVB = new cVertexBuffer[m_NumSections]();

// Go through each mesh in the cMesh object and
// construct a matching vertex buffer. Make sure
// to start with last section in map to compensate
// for linked list ordering of meshes in cMesh.
Num = m_NumSections - 1;
while(MeshPtr != NULL) {

// Get a pointer to the mesh
IMeshPtr = MeshPtr->m_Mesh;

Remember that the meshes are contained with a linked list of structures. Now is
the time to iterate through each structure in the linked list and query each struc-
ture for the pointer to the actual Direct3D ID3DXMesh object that contains the mesh
information for a single map section.

Next, you lock the index and vertex buffers (just as in Chapter 12) and start
pulling out the vertex data:

// Lock index and vertex buffers
IMeshPtr->LockIndexBuffer(D3DLOCK_READONLY, \

(BYTE**)&IndexPtr);
IMeshPtr->LockVertexBuffer(D3DLOCK_READONLY, \

(BYTE**)&VertexPtr);

// Create the vertex buffer
NumFaces = IMeshPtr->GetNumFaces();
m_MapVB[Num].Create(Graphics, NumFaces*3, \

808 17. Working with Maps and Levels

TEAMFL
Y

Team-Fly®

AUTOMAPFVF, sizeof(sVertex));

// Lock the vertex buffer
m_MapVB[Num].Lock(0,0);
VBPtr = (sVertex*)m_MapVB[Num].GetPtr();

A vertex buffer is being created to match the number of polygon faces in the source
mesh. The vertex buffer is being locked and a pointer is being retrieved to start stor-
ing the vertices:

// Pull out vertices and construct vertex list
for(i=0;i<NumFaces;i++) {

for(j=0;j<3;j++) {
// Get pointer to vertex
GenVert=(sGenericVertex*) \

&VertexPtr[VertexSize * (*IndexPtr++)];

// Create new vertices
Vertex.x = GenVert->x * m_Scale;
Vertex.y = 0.0f;
Vertex.z = GenVert->z * m_Scale;
Vertex.Diffuse = Color;

memcpy(VBPtr++, &Vertex, sizeof(sVertex));
}

}

Two loops now go through every polygon face in the source mesh, and three vertices
for each face are copied over to the map vertex buffers. Notice that you use only the
X- and Z-coordinates, although the Y-coordinate is set to 0 (again to flatten the map).
Last, you set the diffuse color to the color value provided (used to render the map).

// Unlock the vertex buffer
m_MapVB[Num].Unlock();

// Unlock buffers
IMeshPtr->UnlockVertexBuffer();
IMeshPtr->UnlockIndexBuffer();

// Go to next mesh
Num—;
MeshPtr = MeshPtr->m_Next;

}

809Using Auto Maps

You wrap up the process by unlocking the index and vertex buffers of the source
mesh and then proceeding to the next map section mesh in the linked list of
meshes loaded from the .X file. Notice that the Num variable is tracking the vertex
buffer that is being created, and the preceding code decrements it with each mesh
being processed.

You decrement rather than increment the Num variable because the meshes in the
cMesh object are stored in reverse order (to make loading faster), so you must com-
pensate to make sure that each map section is numbered sequentially to match the
order those meshes are stored in the .X file.

The Create function finishes up by creating the pointer vertex buffer and copying
over the vertex definition data defined earlier. The source mesh is freed and con-
trol returns to the caller.

// Create a character pointer vertex buffer
m_PointerVB.Create(Graphics,3,AUTOMAPFVF, sizeof(sVertex));
m_PointerVB.Set(0,3,&PointerVerts);

Mesh.Free(); // Free loaded mesh

return TRUE;
}

In order to free the map sections from memory, you provide a Free function that
releases all the allocated resources and prepares the class to load another map class:

BOOL cAutomap::Free()
{

long i;

// Free map vertex buffers
if(m_MapVB != NULL) {

for(i=0;i<m_NumSections;i++)
m_MapVB[i].Free();

delete [] m_MapVB;
m_MapVB = NULL;

}

m_NumSections = 0; // Reset # of sections

delete [] m_Visible; // Release visibility array
m_Visible = NULL;

810 17. Working with Maps and Levels

m_PointerVB.Free(); // Free pointer vertex buffer

return TRUE;
}

cAutomap::Load and cAutomap::Save
Recall that you need to enable each map section in order for it to be visible when
rendered. The m_Visible array tracks the visibility of each map section; if an array
element is set to 0, the respective map section is not displayed. If the element is set
to 1, the map section is drawn.

In your game, once the map sections are marked as visible, you save those flags
so that a player can track his progress through the game and later load his map
progression to continue the game-play. The load and save functions do just that:

BOOL cAutomap::Load(char *Filename)
{

FILE *fp;
long Num;
BOOL ReturnVal = FALSE;

// Open the file
if((fp=fopen(Filename, “rb”))==NULL)

return FALSE;

// Get the number of sections in file
fread(&Num, 1, sizeof(long), fp);

// Make sure they match and load in visible flags
if(m_NumSections == Num && m_Visible != NULL) {

fread(m_Visible, 1, Num, fp);
ReturnVal = TRUE;

}

fclose(fp);

return ReturnVal;
}

BOOL cAutomap::Save(char *Filename)
{

811Using Auto Maps

FILE *fp;

// Error checking
if(m_NumSections && m_Visible == NULL)

return FALSE;

// Create the file
if((fp=fopen(Filename, “wb”))==NULL)

return FALSE;

// Write out number of sections
fwrite(&m_NumSections, 1, sizeof(long), fp);

// Write out visible flags
fwrite(m_Visible, 1, m_NumSections, fp);

fclose(fp); // Close file

return TRUE; // Return success
}

The storage format for the visibility array is simple: The file starts with a long variable
that states how many elements are in the array. Following that, the entire map visi-
bility array is written out. To load the visibility array back up, read in the number of
elements, ensure that they match the currently loaded map, and load in the array.

cAutomap::GetNumSections
and cAutomap::EnableSection
These two functions return the number of map sections loaded and allow you to
set the visibility of each map section. Each map section is numbered sequentially
from the order stored in the .X file. Using an argument of TRUE for Enable makes
sure that a map section is visible, although using FALSE ensures that the map section
is not displayed. Keep that in mind as you read the following code:

long cAutomap::GetNumSections()
{

return m_NumSections;
}

BOOL cAutomap::EnableSection(long Section, BOOL Enable)
{

812 17. Working with Maps and Levels

if(Section >= m_NumSections || m_Visible == NULL)
return FALSE;

m_Visible[Section] = (Enable==TRUE) ? 1 : 0;

return TRUE;
}

cAutomap::SetWindow
and cAutomap::Render
You use SetWindow to define the area in which you want the auto map displayed
(specified in screen coordinates plus height and width in pixels). As you can see,
the function is small—it only sets up the viewport structure declared in the cAutomap
class:

BOOL cAutomap::SetWindow(long XPos, long YPos, \
long Width, long Height)

{
m_Viewport.X = XPos;
m_Viewport.Y = YPos;
m_Viewport.Width = Width;
m_Viewport.Height = Height;
m_Viewport.MinZ = 0.0f;
m_Viewport.MaxZ = 1.0f;

return TRUE;
}

As for the Render function, this is where your hard work shows. To display a map,
you have to provide a pointer to a camera that you are currently using (to restore
it after changing the view matrix), the coordinates of the map camera to use when
rendering, the number of characters to display on the map, and three arrays that
define each character’s coordinates and facing angle to draw on the auto map:

BOOL cAutomap::Render(cCamera *OldCamera, \
float MXPos, float MYPos, float MZPos, \
float NumPositions, \
float *XPos, float *ZPos, float *Angle)

{
cWorldPosition Pos;
D3DVIEWPORT8 OldViewport;

813Using Auto Maps

long i;

// Error checking
if(m_Graphics == NULL || !m_NumSections ||

m_MapVB == NULL || m_Visible == NULL)
return FALSE;

// Move camera
m_Camera.Move(MXPos*m_Scale, MYPos, MZPos*m_Scale);
m_Graphics->SetCamera(&m_Camera);

The Render function starts off by defining a few variables, performing some error-
checking, and setting up a camera to render the map sections. That’s right. The
map sections are still 3-D meshes, just flat and viewed from above (which is the rea-
son for the camera being rotated down earlier in the code).

Next you create the rendering viewport (with the old viewport settings saved for
later restoring). You set the rendering states (no Z-buffering and no textures) and
a transformation matrix to center the auto map in the world:

// Get old viewport and set new viewport
m_Graphics->GetDeviceCOM()->GetViewport(&OldViewport);
m_Graphics->GetDeviceCOM()->SetViewport(&m_Viewport);

// Set rendering states and texture
m_Graphics->EnableZBuffer(FALSE);
m_Graphics->SetTexture(0, NULL);

// Render vertex buffers
m_Graphics->SetWorldPosition(&Pos);

Next you render every map section. Actually, only those map sections that are
flagged as visible are rendered. The code to render those map sections is small, so
you can wrap it up with the code that renders the pointers (which represent the
characters’ positions on the map):

for(i=0;i<m_NumSections;i++) {
if(m_Visible[i])

m_MapVB[i].Render(0, m_MapVB[i].GetNumVertices()/3, \
D3DPT_TRIANGLELIST);

}

814 17. Working with Maps and Levels

// Display alpha blending to render pointers
m_Graphics->EnableAlphaBlending(FALSE);

// Draw the character positions
if(NumPositions) {

for(i=0;i<NumPositions;i++) {
Pos.Move(XPos[i] * m_Scale, 0.0f, ZPos[i] * m_Scale);
Pos.Rotate(0.0f, Angle[i], 0.0f);
m_Graphics->SetWorldPosition(&Pos);
m_PointerVB.Render(0, 1, D3DPT_TRIANGLELIST);

}
}

After rendering the map sections, you disable alpha blending (in case it was used
to render the map) and position and render the pointer vertex buffer for each
character that was passed to the Render function.

Last, you restore the camera and viewport settings that were used prior to render-
ing the auto map:

// Restore old camera if passed
if(OldCamera != NULL)

m_Graphics->SetCamera(OldCamera);

// Restore old viewport
m_Graphics->GetDeviceCOM()->SetViewport(&OldViewport);

return TRUE;
}

Using cAutomap
The mapping demo for this chapter contains a perfect example of using the auto
map class, but to give you a clear idea of its use, here is an example. Start by
instancing the cAutomap class and call Create to load an .X file:

// Graphics = pre-initialized cGraphics object
cAutomap Automap;

Automap.Create(&Graphics, “Map.x”, D3DCOLOR_RGBA(64,64,64,255));

815Using Auto Maps

At this point, the map is loaded and ready to go. The map uses a color of dark gray
for rendering (which is the reason for the D3DCOLOR_RGBA macro). To start rendering
the map, you must first set the position of the window to which you are rendering:

Automap.SetWindow(0,0,200,200); // Use 0,0 to 200,200 for map

Next, you mark a map section as visible:

Automap.EnableSection(0); // Set 1st section to visible

All that’s left to do is to render the map:

Automap.Render(NULL, 0.0f, 200.0f, 0.0f, 0, NULL, NULL, NULL);

The preceding call positions the camera at the coordinates 0,200,0 (200 units
above the map) and renders the single visible map section. Now, what about the
other map sections? How is your game going to know which map sections to flag as
visible? By using triggers; that’s how!

By instancing a cTrigger class, you can embed triggers into your map that signal
which map sections have been entered, and thus marked as visible. You just mark
those map triggers using the same identification numbers as the map section mesh
contained with the map .X file (the first mesh in the file needs a trigger with an
identification number of 1, the second mesh needs a trigger identification number
of 2, and so on).

The Mapping example uses triggers to mark sections of the map to display as charac-
ters enter them—be sure to check out the example to see just what I’m talking about.

Wrapping Up
Maps and Levels
In this chapter, you learned how to use external files to store the locations of char-
acter on your map, how to use map triggers and barriers, and how to use auto
maps. That’s a lot of information to swallow, and I managed to fill your head with
more code than you could possibly absorb at once.

Be sure to go over the code carefully to see exactly what is going on, especially
regarding the auto maps. The code is simple at its core, but trying to take in the
class code all at once is overwhelming. Make sure you’re comfortable using the
Graphics Core as well; the code shown in this chapter depends on the various
components of the Graphics Core to make your programming task easier.

816 17. Working with Maps and Levels

If you’re feeling adventurous, try creating a character class that handles loading of
characters much like the map inventory control class in Chapter 15, “Defining and
Using Objects.”

817Wrapping Up Maps and Levels

Programs on the CD-ROM

In the \BookCode\Chap17\ directory, you can find the following
program, which demonstrates what you’ve read about in this chapter:

◆ Mapping. A program that demonstrates auto maps, triggers, and
barriers. Move your character around using the mouse and arrow
keys, and use the spacebar to open and close the doors.
Location: \BookCode\Chap17\Mapping\.

This page intentionally left blank

TEAMFL
Y

Team-Fly®

CHAPTER 18

Creating
Combat

Sequences

With swords swinging and magic blasting, you manage to wade through wave
after wave of demonic creatures. With every victory, you feel yourself grow-

ing stronger; new spells are learned, and stronger weapons are usable. The enemy
is beginning to lose ground, and here you are standing tall on the mountain you
created.

That is, until you encounter the Red Dragon that has been razing the countryside.
All your hard work comes crashing down in the ten seconds it takes for the huge
beast to turn you into small, charred chunks of flesh.

Ah, but what fun it is—the power and exhilaration you feel from beating down
countless evildoers, and the agony of defeat that comes from the hands, or in this
case the claws, of stronger foes. Awesome combat sequences make some games
what they are (or at least the sequences boost the fun of playing the games). Now
is your chance to add combat sequences to your game.

In this chapter, you learn how to do the following:

■ Design external combat sequences
■ Construct a simple combat sequence

Designing External
Combat Sequences
Some of my fondest memories of role-playing games are those of combat. Not just
any type of combat, mind you. I’m talking about those incredible combat sequences
that pit you against evil hordes in close-quarter strategic warfare. If you’ve ever
played Final Fantasy 7, you know the kind of combat sequences I’m referring to.

Games such as Final Fantasy 7 take combat in a whole different direction. Rather than
battling it out in real time, such as you do in the Chars demo (located on this book’s
CD-ROM; look for \BookCode\Chap16\Chars\) in Chapter 16, “Controlling Players
and Characters”, Final Fantasy 7 switches to an external battle sequence screen in
which the view is much closer to the action. Figure 18.1 shows a typical external
combat sequence game (from the Battle demo designed in this chapter; look for
\BookCode\Chap18\Battle\ on the CD-ROM).

820 18. Creating Combat Sequences

External combat sequences generally follow simi-
lar designs and patterns. First, you have the arena,
which is the area representing a small section of
the level on which the characters are fighting. The
characters are spread around the arena—players
on the right, monsters on the left.

Each character has an associated timer (the
charge timer) tracking how often the character
can perform an action. This timer slowly increases
until it tops off at maximum, at which point the
character can decide which action to perform.
No more hand-twitching, button-pounding com-
bat here—just deliberate, decisive selections.

Once an action and the action’s victim are selected, the characters slowly carry out the
results. When casting spells, the characters perform long, mundane rituals that bring
forth amazing spells and graphical effects. Whenever a character attacks another char-
acter, the two quickly engage, regardless of their distance from each other.

After a character completes an action, the character’s charge timer is reset, and the
character must once again wait for it to be fully charged before performing

821Designing External Combat Sequences

NOTE
External combat sequence
means that the combat
sequence is separated
from the game’s naviga-
tion sequences. For exam-
ple, a player walking within
a level enters combat, and
the game-play, in turn,
switches to a combat
sequence screen.

Figure 18.1

The camera views the
action from a fixed position
that encompasses all
engaged characters. In this
figure, a monster has cast a
powerful spell at the player.

another action. Combat continues in the
same manner as previously described
until all monsters or players are dead
(or the PC runs away).

Once combat is complete, the combat
sequence engine divides the booty, and
the regular game-play continues (until
the next combat sequence that is). Of
course, this style of combat proceeds more
slowly than real-time combat, but all in all, it’s worth the wait.

The Technical Side
The arena is represented by a single mesh, as are the characters and the spells. In
fact, the character and spell controllers developed in Chapter 16 are perfect for the
combat sequences here. You need to tweak only a few things to make those con-
trollers work for you.

Only the attack and spell ranges need reworking. Characters are allowed to attack
any other character, regardless of the distance between them. Similarly, spells are
allowed to target any character, regardless of the distance between the target char-
acter and the spell caster.

To handle the differences in distances, you alter the master character and master
spell data. Characters need a very high attack range, so you’ll need to run the
Master Character List Editor and increase the attack range for each character.
Figure 18.2 shows one such character’s Attack Range being set to 1,024.

As for the spells, the Master Spell List Editor is where you’ll want to go to increase
the maximum distance of each spell. In Figure 18.3, you’ll see one such spell in
which I increased the Max. Distance value to 1,024.

In addition to setting appropriate distances, you need to alter each character’s AI
settings when using the character controller. In combat sequences, you must force
characters to stand in place using a CHAR_STAND AI setting; otherwise, they’ll just wan-
der around the combat level and possibly get lost! If you do let your characters
walk around the level, it’s best to use the route-walking AI setting (CHAR_ROUTE) to
ensure that the characters walk specifically along the route you want. Consult
Chapter 16 for more information on using AI settings and moving characters.

822 18. Creating Combat Sequences

NOTE
Most actions require the player to
have a fully charged timer in order
to perform the action, such as using
items, equipping new weapons and
armor, attacking, and using spells.

823Designing External Combat Sequences

Figure 18.2

Each character’s Attack Range setting in the
MCL Editor should be high enough that all
characters in the battle can hit each other,
regardless of the distance between them.

Figure 18.3

The MSL Editor enables you to adjust the
range of a spell. Be sure to set the Max.
Distance to a high level, such as the range
in this figure.

Developing the
Combat Sequence
What better way to learn how to create your own combat sequence than to follow
by example. In this section, I’m going to show how you can use the information in
Chapter 16 to create your own combat sequence engine.

To see how I developed a combat sequence engine, copy the Battle demo project
from the CD-ROM and read along as I show you each function from the WinMain.cpp
file. Those functions are relatively small, because the character and spell controllers
handle the majority of the work. Your combat engine adds characters to the fray using
the character controller’s Add function, collects and processes the player’s actions, and
updates the characters accordingly.

The entire project is contained within a cApplication class object from the System
Core. Here’s the cApplication class declaration (derived as cApp):

class cApp : public cApplication
{

friend class cChars;

private:
cGraphics m_Graphics; // cGraphics object
cCamera m_Camera; // cCamera object
cFont m_Font; // cFont object

cWindow m_Stats; // Window for HP/MP stats
cWindow m_Options; // Window for spells

cInput m_Input; // cInput object
cInputDevice m_Keyboard; // Keyboard input object
cInputDevice m_Mouse; // Mouse input object

cMesh m_TerrainMesh; // Terrain mesh
cObject m_TerrainObject; // Terrain object

cVertexBuffer m_Target; // Target object
cTexture m_Buttons; // Buttons and more pics.

// Character and spell animation controllers

824 18. Creating Combat Sequences

cCharacterController m_CharController;
cSpellController m_SpellController;

sItem m_MIL[1024]; // The master item list

// See which character mouse is pointing at
long GetCharacterAt(long XPos, long YPos);

public:
cApp();

BOOL Init();
BOOL Shutdown();
BOOL Frame();

};

The application class (cApp) seems fairly small for an ambitious project such as a
combat sequence, but don’t let the size fool you. This project packs a punch!
Remember that the previously developed character and spell controllers do most of
the work. The character and spell controllers are identical to those in Chapter 16;
even the code to initialize each object is the same.

The only differences between these characters and spells and those in previous
examples in the book are the attack and spell ranges. All spell and attack ranges
have been raised to 1,024 in the master lists, so there’s no need to bother modify-
ing them in the application class.

In the Battle project, I constructed a simple, small mesh for the arena (see Figure
18.4) and loaded it into the m_TerrainMesh and m_TerrainObject objects. You do not
need a node tree because the level meshes typically fit perfectly in the display.
The combat sequence level meshes don’t have to be large, so when designing your
own levels, keep the meshes just small enough to fit in the display.

The controls are straightforward. For your character to attack or cast a spell, you
must first select a target character at which to direct the attack or spell. Selecting a
target character is accomplished by clicking any character in the battle. Two small tri-
angles that spin around the target character represent the target (which is contained
within the vertex buffer m_Target). The player can target any character at any time.

When the player is fully charged (the charge is denoted by a bar that slowly fills up at
the lower-right corner of the screen), he can select the type of action to perform.
Click Attack to cause the player to strike the selected target (thus damaging it). Click
Spell to open a list of known spells; clicking a spell casts it at the targeted character.

825Developing the Combat Sequence

Other than the addition of the targeting mechanism, there’s really nothing new
here. So why not breeze through the application code at this point?

Global Data
The application class uses three global variables to contain the data about the char-
acter and spell meshes, and the character animation information:

#include “Core_Global.h”

#include “Window.h”
#include “Chars.h”
#include “WinMain.h”

// Global names of character meshes
char *g_CharMeshNames[] = {

{ “..\\Data\\Warrior.x” }, // Mesh # 0
{ “..\\Data\\Yodan.x” } // Mesh # 1

};
sCharAnimationInfo g_CharAnimations[] = {

{ “Idle”, TRUE },
{ “Walk”, TRUE },
{ “Swing”, FALSE },
{ “Spell”, FALSE },
{ “Swing”, FALSE },
{ “Hurt”, FALSE },
{ “Die”, FALSE },

826 18. Creating Combat Sequences

Figure 18.4

The arena mesh in use
for the Battle project.

{ “Idle”, TRUE }
};

char *g_SpellMeshNames[] = {
{ “..\\Data\\Fireball.x” },
{ “..\\Data\\Explosion.x” },
{ “..\\Data\\Groundball.x” },
{ “..\\Data\\ice.x” },
{ “..\\Data\\bomb.x” },

};

The characters and spells used here are the same as those in Chapter 16. Refer to
that chapter for more information on setting new character and spell meshes.

cApp::cApp
You use the constructor of the application class only to set up the class data, which
includes configuring the application window:

cApp::cApp()
{

m_Width = 640;
m_Height = 480;
m_Style = WS_BORDER|WS_CAPTION|WS_MINIMIZEBOX|WS_SYSMENU;
strcpy(m_Class, “BattleClass”);
strcpy(m_Caption, “Battle Demo by Jim Adams”);

}

cApp::Init
Init, the first overloaded function in the application class, initializes the graphics
and input systems, loads all graphics, fonts, items, and other data needed for the
program:

BOOL cApp::Init()
{

long i;
FILE *fp;

// Initialize the graphics device and set display mode
m_Graphics.Init();
m_Graphics.SetMode(GethWnd(), TRUE, TRUE);

827Developing the Combat Sequence

m_Graphics.SetPerspective(D3DX_PI/4, 1.3333f, 1.0f, 10000.0f);
ShowMouse(TRUE);

// Create a font
m_Font.Create(&m_Graphics, “Arial”, 16, TRUE);

As is typical in a graphics project, the graphics system is initialized and an Arial font
is created. Next comes initialization of the input system and devices:

// Initialize input and input devices
m_Input.Init(GethWnd(), GethInst());
m_Keyboard.Create(&m_Input, KEYBOARD);
m_Mouse.Create(&m_Input, MOUSE, TRUE);

As I mentioned, you need to target a character in order to attack or cast a spell
on the character. A pair of red, spinning triangles contained within a triangle list
vertex buffer with six vertices represents the target (as illustrated in Figure 18.5).

At this point in the Init function, create the vertex buffer that contains the two tri-
angles that represent the target:

// Create the target vertex buffer
typedef struct {

float x, y, z;
D3DCOLOR Diffuse;

} sVertex;
sVertex Vert[6] = {

{ -20.0f, 40.0f, 0.0f, 0xFFFF4444 },
{ 20.0f, 40.0f, 0.0f, 0xFFFF4444 },
{ 0.0f, 20.0f, 0.0f, 0xFFFF4444 },
{ 0.0f, -20.0f, 0.0f, 0xFFFF4444 },
{ 20.0f, -40.0f, 0.0f, 0xFFFF4444 },
{ -20.0f, -40.0f, 0.0f, 0xFFFF4444 }

};
m_Target.Create(&m_Graphics, 6, D3DFVF_XYZ|D3DFVF_DIFFUSE,

sizeof(sVertex));
m_Target.Set(0,6,&Vert);

Once the target vertex buffer is created, the various graphics need to be loaded
from disk. First, you load the button graphics used to select an action. You can see
the button graphics image in Figure 18.6. The images used to draw the charge
timer are included with the button graphics image. Next, you load the arena mesh
and object.

828 18. Creating Combat Sequences

TEAMFL
Y

Team-Fly®

// Load the buttons and other graphics
m_Buttons.Load(&m_Graphics, “..\\Data\\Buttons.bmp”);

// Load the terrain mesh and set object
m_TerrainMesh.Load(&m_Graphics, “..\\Data\\Battle.x”, \

“..\\Data\\”);
m_TerrainObject.Create(&m_Graphics, &m_TerrainMesh);

In order to display the player character’s status (including health and mana points
as defined in Chapter 16), you create a text window (m_Stats—a cWindow object from
Chapter 16) below the character. Create a second window (m_Options) to contain the
names of all known spells from which players can select spells as needed. As you
can see in Figure 18.7, this second window covers the top of the display.

// Create text windows
m_Stats.Create(&m_Graphics, &m_Font);
m_Stats.Move(508, 400, 128, 48);
m_Options.Create(&m_Graphics, &m_Font);
m_Options.Move(4, 4, 632, 328);

829Developing the Combat Sequence

0 1

2
Origin

3

5 4

Figure 18.5

By design, the target vertex buffer rotates its center coordinate (the origin).

Figure 18.6

The button image contains the Attack and Spell buttons as well
as the Charge Timer bar.

Next, you need to load the master item list and initialize the character and spell
controller classes. The code to initialize the controllers is identical to the code used
in the Chars demo project in Chapter 16.

// Load the master item list
for(i=0;i<1024;i++)

ZeroMemory(&m_MIL[i], sizeof(sItem));
if((fp=fopen(“..\\Data\\Default.mil”, “rb”)) != NULL) {

for(i=0;i<1024;i++)
fread(&m_MIL[i], 1, sizeof(sItem), fp);

fclose(fp);
}

// Initialize the character controller
m_CharController.Init(&m_Graphics, NULL, &m_Font, \

“..\\Data\\Default.mcl”, (sItem*)&m_MIL, \
m_SpellController.GetSpell(0), \
sizeof(g_CharMeshNames)/sizeof(char*), g_CharMeshNames, \
“..\\Data\\”, “..\\Data\\”, \
sizeof(g_CharAnimations) / sizeof(sCharAnimationInfo), \
(sCharAnimationInfo*)&g_CharAnimations, \
&m_SpellController);

830 18. Creating Combat Sequences

Figure 18.7

The text windows allow the
application to show players
their status and all known
spells.

// Initialize the spell controller
m_SpellController.Init(&m_Graphics, NULL, \

“..\\Data\\Default.msl”, \
sizeof(g_SpellMeshNames)/sizeof(char*),g_SpellMeshNames, \
“..\\Data\\”, &m_CharController);

To finish the Init function, you position a few characters (players and monsters)
within the arena. (I was a little lazy here; hard-coding the characters encountered
and their positions in the arena should be a bit randomized, but I’ll leave that up
to you.) To add and position characters in the battle, use the character controller’s
Add function, as shown here:

// Add the character player
m_CharController.Add(0, 0, CHAR_PC, CHAR_STAND, \

200.0f, 0.0f, 0.0f, 4.71f);

// Hardcoded - add some other characters
m_CharController.Add(1, 1, CHAR_MONSTER, CHAR_STAND, \

-200.0f, 0.0f, 0.0f, 1.57f);
m_CharController.Add(2, 1, CHAR_MONSTER, CHAR_STAND, \

-100.0f, 0.0f, -200.0f, 1.57f);
m_CharController.Add(3, 1, CHAR_MONSTER, CHAR_STAND, \

0.0f, 0.0f, 100.0f, 1.57f);

// Give an axe to one of the monsters
m_CharController.Equip(m_CharController.GetCharacter(1), \

8, WEAPON, TRUE);

return TRUE;
}

Notice that a total of four characters are added to the fray. To make things a little
harder for the player, I went ahead and equipped the second character (a monster)
with an ax weapon. To equip characters with a weapon, you use the character con-
troller’s Equip function, as I did.

cApp::Shutdown
cApp::Shutdown (which is opposite cApp::Init) frees all used resources (from the
meshes, objects, and controllers) as shown here:

BOOL cApp::Shutdown()
{

831Developing the Combat Sequence

// Free controllers
m_CharController.Free();
m_SpellController.Free();

// Free objects and meshes
m_TerrainMesh.Free();
m_TerrainObject.Free();

// Free windows
m_Stats.Free();
m_Options.Free();

// Free target vertex buffer
m_Target.Free();
m_Buttons.Free();

// Shut down input
m_Keyboard.Free();
m_Mouse.Free();
m_Input.Shutdown();

// Shut down graphics
m_Font.Free();
m_Graphics.Shutdown();

return TRUE;
}

cApp::Frame
The cApp::Frame function is a little crowded in its current incarnation. Here, Frame has
the job of collecting and processing player input. The only input used is that of the
mouse; the left mouse button selects a target character, a spell to cast, or an attack to
perform. The right mouse button closes the spell selection window if it is currently
open. Once a target and an action are picked, the appropriate action is performed.

Besides processing input, the Frame function renders everything to the display,
including the arena, characters, spell animations, status window (which displays the
player’s health and mana points), charge bar, spell list, and action buttons:

BOOL cApp::Frame()
{

832 18. Creating Combat Sequences

static DWORD UpdateCounter = timeGetTime();
static sCharacter *PCChar=m_CharController.GetCharacter(0);
static BOOL SelectSpell = FALSE;
static long TargetID = -1;
cWorldPosition Pos;
sCharacter *CharPtr;
sSpell *SpellPtr;
char Text[128];
long x, y, Num, i;
float MinY, MaxY, YOff;

// Lock to 30 fps
if(timeGetTime() < UpdateCounter + 33)

return TRUE;
UpdateCounter = timeGetTime();

A frame timer governs the speed in which the game plays. Currently, the battle pro-
ject is locked at 30 frames per second. If an update is allowed, execution continues
by reading in the player input:

// Read in input
m_Keyboard.Acquire(TRUE);
m_Keyboard.Read();
m_Mouse.Acquire(TRUE);
m_Mouse.Read();

// Exit if ESC pressed
if(m_Keyboard.GetKeyState(KEY_ESC) == TRUE)

return FALSE;

Frame next determines what to process if the player presses the left mouse button.
Remember that this includes selecting a target, a spell, or an attack:

// Get selected character if left button pressed
if(m_Mouse.GetButtonState(MOUSE_LBUTTON) == TRUE) {

// Get mouse coordinates
x = m_Mouse.GetXPos();
y = m_Mouse.GetYPos();

// Lock the mouse button
m_Mouse.SetLock(MOUSE_LBUTTON, TRUE);
m_Mouse.SetButtonState(MOUSE_LBUTTON, FALSE);

833Developing the Combat Sequence

From here, Frame determines what to process. If the player clicks the Spell button,
the spell list window (m_Options) opens displaying all known spells. When the spell
list window opens, the SelectSpell flag (which is set to FALSE by default) is set to TRUE,
and Frame waits for a spell to be selected or for the window to be closed (by the
player clicking the right mouse button).

// See if selecting a spell
if(SelectSpell == TRUE) {

// Get pointer to spell
Num = ((y-8)/20) * 4 + ((x-8)/150);

You select a spell by calculating the coordinates that were clicked onscreen and
comparing those coordinates to the location where each spell name was printed to
the window. Each spell name consumes a 150 x 20 pixel section of the window
(which is located at the screen coordinates 8,8), and there is room for 64 spell
names in the window.

// Make sure player knows spell (and has enough MP)
if(Num >= 0 && Num < 64) {

SpellPtr = m_SpellController.GetSpell(Num);
if(PCChar->Def.MagicSpells[Num/32] & (1<<(Num&31)) && \

SpellPtr->Name[0] && \
PCChar->ManaPoints >= SpellPtr->Cost) {

PCChar->SpellNum = Num; // Set spell number to cast
PCChar->SpellTarget = CHAR_MONSTER; // Set target
m_CharController.SetAction(PCChar, CHAR_SPELL);
SelectSpell = FALSE; // Close selection window

Once the player selects a spell from the spell selection window, the appropriate
spell is cast, and the control classes process the effects. The spell selection window
is flagged as closed, and execution continues. If a spell is not being selected, the
Frame function continues execution by determining whether the player clicked
either the attack or spell buttons.

}
}

} else {
// See if a button pressed (if target picked and charged)
if(TargetID != -1 && PCChar->Charge >= 100.0f) {

// Set victim and attacker info
CharPtr = m_CharController.GetCharacter(TargetID);

834 18. Creating Combat Sequences

PCChar->Victim = CharPtr;
CharPtr->Attacker = PCChar;
PCChar->TargetX = CharPtr->XPos;
PCChar->TargetY = CharPtr->YPos;
PCChar->TargetZ = CharPtr->ZPos;

// Determine if attack selected
if(x >= 572 && x < 636 && y >= 328 && y < 360)

m_CharController.SetAction(PCChar,CHAR_ATTACK);

// Determine if spell selected
if(x >= 572 && x < 636 && y >= 364 && y < 396)

SelectSpell = TRUE;

After an action is selected (and if a target character has been chosen and the
player’s charge timer is fully charged), the attack information is set up. If the
player clicked the Attack button, the attack action initiates. If the player clicked the
Spell button, the spell window opens.

Regardless of what is clicked, the code continues to the next line that determines
whether a target character has been selected via a call to GetCharacterAt:

// See if a character picked
TargetID = GetCharacterAt(x, y);

}
}

// Clear spell state if right mouse button clicked
if(m_Mouse.GetButtonState(MOUSE_RBUTTON) == TRUE) {

// Lock the mouse button
m_Mouse.SetLock(MOUSE_RBUTTON, TRUE);
m_Mouse.SetButtonState(MOUSE_RBUTTON, FALSE);
SelectSpell = FALSE;

}

// Update controllers
m_CharController.Update(33);
m_SpellController.Update(33);

If the player clicked the right mouse button, the spell selection window closes, and
execution continues with the Frame function updating the characters and spell con-
trollers (by calling each controller’s Update function). At this point, all input pro-
cessing is complete and rendering begins.

835Developing the Combat Sequence

// Set the camera
m_Camera.Point(300.0f, 300.0f, -340.0f, 0.0f, 0.0f, 0.0f);
m_Graphics.SetCamera(&m_Camera);

// Render everything
m_Graphics.Clear(D3DCOLOR_RGBA(0,32,64,255));
if(m_Graphics.BeginScene() == TRUE) {

To begin, the camera is positioned, the scene cleared, and the scene rendering
begins by drawing the arena, characters, and spells.

// Render terrain
m_Graphics.EnableZBuffer(TRUE);
m_TerrainObject.Render();

// Render all characters
m_CharController.Render();

// Render spells
m_SpellController.Render();

// Check if target needs rendering
if(TargetID != -1) {

// Move target to target character position
CharPtr = m_CharController.GetCharacter(TargetID);
Pos.EnableBillboard(TRUE);
Pos.Move(CharPtr->XPos,CharPtr->YPos,CharPtr->ZPos);
Pos.Rotate(0.0f, 0.0f, (float)timeGetTime() / 100.0f);

// Offset to half of character height
CharPtr->Object.GetBounds(NULL,&MinY,NULL,

NULL,&MaxY,NULL,NULL);
YOff = MinY + ((MaxY-MinY)*0.5f);
Pos.MoveRel(0.0f, YOff, 0.0f);

// Render the target
m_Graphics.SetTexture(0, NULL);
m_Graphics.EnableZBuffer(FALSE);
m_Graphics.SetWorldPosition(&Pos);
m_Target.Render(0,2,D3DPT_TRIANGLELIST);
m_Graphics.EnableZBuffer(TRUE);

}

836 18. Creating Combat Sequences

After the arena, characters, and spells have been rendered, it comes time to render
the target vertex buffer (only if a target character is selected). You center the target
in the middle of the character (based on the character’s height) and draw the tar-
get (using a billboard world transformation matrix so that the target always faces
the camera).

Next comes the player character’s status window, which you update to display the
player’s current health and mana points:

// Display stats screen
sprintf(Text, “HP: %ld / %ld\r\nMP: %ld / %ld”, \

PCChar->HealthPoints, PCChar->Def.HealthPoints, \
PCChar->ManaPoints, PCChar->Def.ManaPoints);

m_Stats.Render(Text);

Next, you display the charge timer. The charge timer ranges anywhere from 0 to
100, and using the buttons image previously loaded into the m_Buttons object, blit
only a small portion of the image that represents the current level of charge:

// Display charge meter
m_Graphics.BeginSprite();
m_Buttons.Blit(508,450,0,64,128,16);
m_Buttons.Blit(510,452,0,80,(long)(1.24f*PCChar->Charge),12);
m_Graphics.EndSprite();

Now, you draw the action buttons (only if the charge timer is fully charged):

// Display attack options
if(m_CharController.GetCharacter(0)->Charge >= 100.0f) {

m_Graphics.BeginSprite();
m_Buttons.Blit(572,328,0,0,64,32);
m_Buttons.Blit(572,364,0,32,64,32);
m_Graphics.EndSprite();

}

To wrap up the render, draw the spell selection window if needed, and display each
known spell for the player’s selection:

// Display spell list
if(SelectSpell == TRUE) {

m_Options.Render();

// Display known spells
for(i=0;i<64;i++) {

SpellPtr = m_SpellController.GetSpell(i);

837Developing the Combat Sequence

if(PCChar->Def.MagicSpells[i/32] & (1<<(i&31)) && \
SpellPtr->Name[0] && \
PCChar->ManaPoints >= SpellPtr->Cost) {

x = i % 4 * 150;
y = i / 4 * 20;
m_Font.Print(m_SpellController.GetSpell(i)->Name, \

x+8, y+8);
}

}
}

m_Graphics.EndScene();
}
m_Graphics.Display();

return TRUE;
}

cApp::GetCharacterAt
One of the coolest functions is GetCharacterAt, which scans through the list of char-
acters and determines which one is positioned at the specified display coordinates.
Although doing this might be as easy as performing a bounding check on the char-
acter’s display coordinates, go the extra mile and make the selection work on a
polygon face level:

long cApp::GetCharacterAt(long XPos, long YPos)
{
D3DXVECTOR3 vecRay, vecDir;

D3DXVECTOR3 vecMeshRay, vecMeshDir;
D3DXVECTOR3 vecTemp;
D3DXMATRIX matProj, matView, *matWorld;
D3DXMATRIX matInv;
DWORD FaceIndex;
BOOL Hit;
float u, v, Dist;
sCharacter *CharPtr;
sMesh *MeshPtr;

// Get parent character object
if((CharPtr = m_CharController.GetParentCharacter()) == NULL)

return -1;

838 18. Creating Combat Sequences

TEAMFL
Y

Team-Fly®

You want to check every character to see which one was clicked, so GetCharacterAt
starts by first determining whether any characters exist. At that point, you need to
compute a ray to test for polygon intersections from the mouse cursor to each mesh.

// Get the project, view, and inversed view matrices
m_Graphics.GetDeviceCOM()->GetTransform(D3DTS_PROJECTION, \

&matProj);
m_Graphics.GetDeviceCOM()->GetTransform(D3DTS_VIEW, \

&matView);
D3DXMatrixInverse(&matInv, NULL, &matView);

// Compute the vector of the pick ray in screen space
vecTemp.x = (((2.0f * (float)XPos) / \

(float)m_Graphics.GetWidth()) - 1.0f) / \
matProj._11;

vecTemp.y = -(((2.0f * (float)YPos) / \
(float)m_Graphics.GetHeight()) - 1.0f) / \
matProj._22;

vecTemp.z = 1.0f;

// Transform the screen space ray
vecRay.x = matInv._41;
vecRay.y = matInv._42;
vecRay.z = matInv._43;
vecDir.x = vecTemp.x * matInv._11 + \

vecTemp.y * matInv._21 + \
vecTemp.z * matInv._31;

vecDir.y = vecTemp.x * matInv._12 + \
vecTemp.y * matInv._22 + \
vecTemp.z * matInv._32;

vecDir.z = vecTemp.x * matInv._13 + \
vecTemp.y * matInv._23 + \
vecTemp.z * matInv._33;

Now that the ray is configured (in exactly the same way you configured them in
Chapter 12, “Creating 3-D Graphics Engines”), you continue the execution by
entering a loop that iterates through all characters. For each character, the
GetCharacterAt function scans through each contained mesh to check for a ray-to-
polygon intersection:

// Scan through each character and intersect check
while(CharPtr != NULL) {

839Developing the Combat Sequence

// Scan through character meshes
MeshPtr = CharPtr->Object.GetMesh()->GetParentMesh();
while(MeshPtr != NULL) {

// Transform ray and direction by object’s
// world transformation matrix
matWorld = CharPtr->Object.GetMatrix();
D3DXMatrixInverse(&matInv, NULL, matWorld);
D3DXVec3TransformCoord(&vecMeshRay, &vecRay, &matInv);
D3DXVec3TransformNormal(&vecMeshDir, &vecDir, &matInv);

// Check for intersection
D3DXIntersect(MeshPtr->m_Mesh, &vecMeshRay,&vecMeshDir, \

&Hit, &FaceIndex, &u, &v, &Dist);

Note that for each character in question, you have to offset the ray’s coordinates by
the character’s orientation in the world (obtained from the character object’s trans-
formation matrix). You do so because the intersect function doesn’t take the world
transformation of each character into mind; you do that.

If a polygon is intersected, the function returns the identification number of the
character. On the other hand, if no intersection is found, you check the next char-
acter mesh, followed by the next character in the list. If no characters are found,
the function returns an error (signified by -1).

// Check if ray hit character and return ID if so
if(Hit == TRUE)

return CharPtr->ID;

// Go to next mesh
MeshPtr = MeshPtr->m_Next;

}

// Go to next character
CharPtr = CharPtr->Next;

}

return -1; // Return no hit
}

840 18. Creating Combat Sequences

Using Battle Arrangements
Although I intentionally hard-coded the functions that determine the characters to
use in the combat sequence in the Battle demo, in a real game application, you base
the selection of monsters on the map region in which the player is currently
located.

For example, players in a haunted house will encounter ghosts and zombies. In the
countryside, players might encounter large beasts native to the area. You need to
determine each type of monster that players can encounter (and where).

The best way to determine which monsters to battle in each sequence is to use bat-
tle arrangements, pre-configured sets of monsters. In a haunted house, you could
have one arrangement with two ghosts and another arrangement with three zom-
bies. When combat starts, one arrangement is picked at random by the game.

How do you store the arrangements? With scripts, of course! In Chapter 16, you
learn how to load a startup script. All you do is determine which script to load and
then process it, allowing the script to add the arrangement of monsters to the
sequence.

The great thing is that you can force a specific battle sequence to take place. For
example, if it is time to fight a boss monster, you can specifically load that script.
Within the script, you can load a song to play signifying that a major battle is
occurring. There are no limits when using scripting!

The full-game demo, entitled The Tower, found in Chapter 20, “Putting Together a
Full Game,” demonstrates how to use battle arrangements in an actual game appli-
cation. Be sure to check it out for more details on using scripting in your combat
sequences (on the CD-ROM, look for \BookCode\Chap20\Game).

Wrapping Up
Combat Sequences
If you’re like me, you believe that combat sequences make role-playing games fun.
What better way to unload your daily stress than by slashing through hordes of evil
doers? That feeling I get when my ultimate spell unleashes and wipes clear the bat-
tlefield is all I need to lift my spirits.

When dealing with combat in your game, just remember to keep it simple enough
to hold the interest of the gamers. Nobody wants to become bogged down with use-

841Wrapping Up Combat Sequences

less features or details; just get to the fun stuff and let ‘em rip.

Although the combat-sequence project developed in this chapter is a relatively simple
one, it provides you with a good foundation on which you can expand—and then
show everyone what you can do. Try adding the ability to change inventory mid-com-
bat or the ability for your character to run away. Change the arena mesh depending
on the player’s location in the world. Also, track which items and money the mon-
sters drop when killed, and add those to the player’s inventory when combat is over.

With a little work, you can change the battle project into a full-fledged combat
sequence engine!

842 18. Creating Combat Sequences

Programs on the CD-ROM

The \BookCode\Chap18\ directory contains the following program,
which demonstrates external combat sequences:

◆ Battle.A 3-D combat engine demo. Click the target creatures;
then wait for the battle options to appear and select how to attack.
Location: \BookCode\Chap18\Battle\.

CHAPTER 19

Getting
Online with

Multiplayer
Gaming

Although beating down the endless hordes of evil and saving countless worlds is
interesting enough to rob you of precious sleep, it can get pretty boring after a

while. No matter how hard we try, game developers just can’t nail down the intrigue
and challenge of human intelligence that gamers want in virtual opponents.

Enter the world of Internet gaming—where real-life opponents with real thoughts
and reactions await your participation in a realm of gaming action that is reshaping
the way people play games. No longer do you just sit there beating on mindless
minions. Now you are faced with hundreds of cunning gamers waiting to either
come to your aid or stand in your way.

Your game needs to give players the ability to hook up to the Internet and find
other gamers willing to join forces and duke it out in true multiplayer style. This
chapter is your guide to accomplishing that feat.

In this chapter, you learn about the following:

■ The basics of multiplayer gaming
■ How to design a multiplayer game architecture
■ The network game sample design
■ How to work with game servers and client applications

Maddening
Multiplayer Mayhem
With a puff of smoke and glitter of light, my hero materializes behind a small
building located within a small town. Circling around the corner, a large chapel
comes into view. The stench of death fills the air, obviously emanating from the
cursed chapel that lies ahead. My hero’s goal is clear—to delve into the now-evil
temple and remove the curse deep within its bowels.

To his left stand two other ominous figures, both scarred from countless battles.
As he approaches the grizzly duo, he realizes that they are none other than two
comrades-in-arms, all ready to join him in his adventure into the depths. After a quick
jaunt to the local item shop for some healing potions, they delve into the chapel.

844 19. Getting Online with Multiplayer Gaming

Hordes of evil creatures of every size immediately sense the adventurers’ presence.
The creatures take it upon themselves to rid their world of the newcomers. But the
worthy adventurers have other plans, and through strength and cunning, they
defeat every last monster that stands in their way. Their goal is close at hand, and
they feel good to have made it this far.

As you can see in the preceding scenario, my gaming buddies and I had an almost
perfect adventure (thanks to Diablo by Blizzard Entertainment). I say almost
because even though our group was victorious in its fights against the computer-
ized demons, we weren’t a match against a new arrival—a mysterious fellow who
just joined the game. Within moments of being magically transported to our cur-
rent location, the new arrival proceeded to make mincemeat of us.

Lying on the ground, I (the hero) watch the would-be robber sift through my
belongings, taking the glorious treasures I worked so hard to discover. How could
anyone be so vicious, so deceiving—and so powerful? Apparently, this chap has been
around a lot longer than I have; his power is staggering, and I vow to reach that
level of power so that I, too, can venture forth and illustrate just who is the boss!

Leaving the current adventure, I once again connect to Blizzard Entertainment’s
Diablo lobby-server and initiate a new game. This time, however, I’m going solo.
With every kill, I grow stronger; with every treasure I find, I buy better weapons.
Soon I will be ready to hunt down the savage who earlier decimated my fellow
adventurers and me.

These adventures are among the many that I have been privileged to experience.
Those of you who have “wasted” (that is to say, invested) precious hours playing
Diablo can attest to how much fun the game can be. Diablo’s online gaming features
make the game worth playing, and you’ll want to duplicate those features in your
projects. So, with this teaser under your belt, you’re ready to start doing just that.

Multiplayer Game Design
Online gaming has given players a whole new way to match up with other human
players, and as the narrative in the preceding section illustrates, these encounters
can be fun or a wake-up call to the deftness of other players.

When dealing with multiplayer games, a little extra design effort must go into the
mix. With single-player gaming, the player takes control of the game’s hero and so
takes it upon himself to save the world. Multiplayer gaming can have thousands of
other players, each wanting to be the one true hero, which is obviously impossible.

845Multiplayer Game Design

When you move from single-player to multiplayer gaming, the goals begin to
change. Consider a game like Origin’s Ultima Online, for example. If you’ve played
the game, you realize it has no real goal. There are no supreme bosses to defeat, no
lead-you-by-the-hand story, and no sense that a single person can change the world.

So why would anybody want to play Ultima Online? For one thing—it’s fun. No
longer can you expect to be the most powerful being in the universe, because you
are now joined by thousands of other gamers with the same thoughts of glory.
Ultima Online gives people the ability to join forces to combat endless hordes of evil,
to conquer small quests, or even to lay in ambush against each other.

With the human intellect and the power of the Ultima Online gaming engine,
gamers can accomplish whatever they can imagine, making the experience truer to
real life. Although Ultima Online does not provide a storyline (nor the ability to
beat the game), it still remains an online gaming juggernaut.

On the other hand, take a look at a game such as Sega’s Phantasy Star Online, which
forces players to join forces against the ultimate evil of a supreme being. Phantasy
Star Online also has the benefit of a storyline (although it’s rather vague and seems
almost thrown in). The other great thing about Phantasy Star Online is that you can
beat it. That’s right, with each new game session, the story begins anew, waiting for
your characters to slash through thousands of monsters on their way to killing the
supreme bad guy.

The differences between Ultima Online and Phantasy Star Online are significant, yet
they both draw gamers by the thousands. What is it that players enjoy the most, and
what features do they demand of their online games? Those are tough questions,
but look at what each game has to offer and consider which features you want to
incorporate into you own game project:

■ Character building. Why waste time playing a game if your accomplishments
can’t be reflected? The reason you go out into the world slaying hordes of
beasts is that your character is going to get “bigger and badder” and will go
on to even more achievements.

■ An evolving world. A world that never changes is bland; once explored, it
stays the same no matter what. Popular games allow changes in the world,
with new levels to explore or new quests to undergo.

■ Cooperative and opposing players. Humans need to interact with other
humans; it’s a part of life. With the Internet at your disposal, joining players
for multiplayer action is just what you need, even if those players are at war
with one another.

846 19. Getting Online with Multiplayer Gaming

■ New, secret, and cool items to discover. What good is consistently exploring
the world unless you can pick up a couple of things along the way—stronger
weapons, wicked armor, and maybe a super-secret magical item that will
really turn the tide in combat.

■ An actual storyline. Whether the storyline runs throughout the entire play of
the game or only in quests within the game, a good storyline gives games
that extra little pizzazz.

■ Ability to win. Games like Phantasy Star Online and Diablo give players the abil-
ity to actually beat the game. Of course, a typical game can run for hours, but
it is still possible to defeat the last big boss and save the world.

Just remember that whatever features you have in your game, you want to make the
game fun and worth playing again and again. Take a look at games currently on
the market to see what they have going for them and try to make your project as
entertaining.

To help you create your multiplayer games, I wrote a demonstration game, appro-
priately named Network Game. In the upcoming section, you find out how I
designed the game, and throughout the rest of this chapter, you find the specifics
on programming the game.

The Network Demo
The Network Game demonstration program included on this book’s CD-ROM (look
in the \BookCode\Chap19 directory) is basic in design. The game has a single large
level that players are allowed to join and in which they can begin moving and attack-
ing each other as they like (although no damage is done and nobody can die).

The game level is a large mesh (as illustrated in Figure 19.1) and utilizes the
NodeTree class object for rendering (see Chapter 12, “Creating 3-D Graphics
Engines,” for more on using the NodeTree class).

A single mesh defines the players (and a
mesh defines their weapons). Take a look
at Figure 19.2, which shows the character
and weapon meshes in use.

As far as the demonstration game’s
mechanics go, players are allowed to join
the game in play and begin moving
throughout the level. Locally, players use

847Multiplayer Game Design

NOTE
In Figure 19.2, the impressive
character mesh is a slightly modi-
fied version of Scarecrow’s great
Spawn model. Thanks to Scarecrow
for allowing me to use the models!

meshes to render a 3-D view of the game world. Each player’s view is oriented
slightly above and away from his character, as you can see in Figure 19.3.

To move their character, players use the arrow keys; pressing in a specific direction
moves the character relative to the camera. Moving the mouse left and right
changes the camera-viewing angle to give players a full 360-degree view. Players are

848 19. Getting Online with Multiplayer Gaming

Figure 19.1

The network demo level.
A few obstacles provide
cover for players to hide
from each other.

Figure 19.2

The game characters are represented by
a fully animated 3-D character (on the
left) who bears the weapon on the right.

TEAMFL
Y

Team-Fly®

allowed to attack each other by pressing the spacebar, which, in turn, makes their
characters swing their swords in hopes of knocking another character off of his feet.

Although the demo game is very basic, it does give you the foundation you need to
begin creating your own game. Remember though that all roads will eventually
lead down one road—getting your multiplayer game ready, and to do that, you
must first create an underlying game architecture.

Creating a Multiplayer
Game Architecture
When creating your game, if you were to stop mid-stream and try to add multi-
player features (features you hadn’t planned on including) chances are you would
have a hard time making everything work out correctly. Let’s face it—you need to
be prepared ahead of time, and if your game is going to be multiplayer-compatible,
you must make sure that you have a solid foundation on which to work.

You start by understanding what you’re up against when using networks and what
you can do to ensure that everything works correctly. It will be helpful to look at

849Creating a Multiplayer Game Architecture

Figure 19.3

The demo game shows
off some snazzy 3-D
terrain and animated
virtual players.

how to use a client/server
network architecture.
Chapter 9, “Networking with
DirectPlay,” covers the basics
on working with client and
server network communica-
tions, but now is the time
to see how the server and
clients can work together
effectively from a gaming
perspective.

Working Together:
The Client and the Server
The client and the server communicate back and forth continuously. As players
(the clients) perform actions in the game, those actions are sent as messages to the
server for verification. The server, in order to maintain synchronization, takes the
players’ actions, updates the game world, and then sends game updates to the
clients. In this way, the server maintains the entire gaming world, whereas the
clients are merely systems for collecting the players’ actions (and displaying their
eventual outcomes on the clients’ screens).

The types of messages sent between the server and clients are numerous, but with
some well thought-out design, those messages are easily manageable. The messages
can be the following:

■ Connection requests. Joining in a game means connecting to a server. Not
just anyone can join, however; the server might be operating at its limit or
the player might not have a valid account. Once a client is connected, the
real action(s) begin!

■ Navigation. Players can move around maps, usually by pressing an arrow on
the keyboard or clicking their destination on the map. Clients send in move-
ment requests and leave it up to the server to return game update messages.

■ Combat. With swords swinging and spells erupting, it seems too much to
deal with. If you were to strip away the fluff, however, you would discover that
combat is nothing more than an attacker with his form of attack and a
defender with his form of defense. Clients are the only ones to request com-
bat; it’s the job of the server to take combat requests and work them into the
game updates.

850 19. Getting Online with Multiplayer Gaming

NOTE
A client application is the program the player
interacts with during a networked gaming ses-
sion. A server is the network application that
serves as the central processing hub of the gam-
ing world. Client applications connect to servers
and begin communicating player actions back and
forth. However, ultimately, the server handles the
majority of the game-processing functionality.

■ Resource management. With a world full of goods, players want to be able to
buy, sell, find, and use just about any resource that they can get their hands
on. I’m beginning to repeat myself, because resource management comes
from the client, and requests are sent to the server to use for updates.

■ Conversation. What fun is a multiplayer game without the social interaction?
Characters talk to each other in order to learn vital information or just to
shoot the breeze. Either way, this is a simple matter of displaying a few lines
of text. This conversation works both ways, from clients sending in text to the
server returning text to display.

■ Game updates. As mentioned, the server needs to let all clients know the
state of the game periodically, and the game update messages are just the
ticket. Game updates usually include the positions of all characters in the
game, plus information about items and other game resources.

A couple of things quickly come to mind when using the type of network communi-
cations just mentioned. First, because the server is the only system responsible for
maintaining the game state, all connected clients would have to wait for those peri-
odic updates to keep the game flowing.

Unfortunately, network transmission
speeds don’t allow instantaneous
transmissions, so some of the data
passing from client to server and
back again are delayed. This delay
in transmission is called latency, and it’s
this latency that can cause havoc in your game.

Because the server is the only system allowed to make changes to the game world,
the server must validate players’ actions before they can occur. As you can see from
Figure 19.4, players trying to issue actions will experience a delay from the time the
actions are initiated to the time they take place. This delay of action, called lag, can
cause the game-play to be choppy (and thus unplayable).

To keep things running smoothly and help alleviate the effects of latency and lag,
clients are allowed to make small changes to the world between server updates.
Those small changes are typically only to update the movement of characters. In
that way, clients don’t have to wait for server updates in order to move characters;
clients can just guess how to update all characters based on their last known state
(as you can see in Figure 19.5). This form of guessing is called dead reckoning, and
it is used in network gaming.

851Creating a Multiplayer Game Architecture

NOTE
Latency is measured in milliseconds (ms).

When more serious actions, such as combat actions, come into play, using dead
reckoning is unacceptable. The server is the authority, and if a system needs to
determine who hits whom and how much damage is done, that system needs to
query the server for resolution.

852 19. Getting Online with Multiplayer Gaming

Server

Client

11
5

m
s

La
te

nc
y 200 m

s Latency

Incoming
Action

Time=1315

Outgoing
Action

Time=1000

Figure 19.4

A client sending out a message and waiting for a
response from the server experiences a delay in
transmission (lag).

Figure 19.5

With dead reckoning,
a character that is
walking continues to
walk until the server
tells that character
to stop.

As mentioned, when using a
networking system, the second
problem is game timing. Let’s
face it—trying to synchronize
possibly dozens of clients is
almost impossible. Each com-
puter hooked on the network
has a different latency; some
clients take longer sending mes-
sages to the server and receiv-
ing them back from the server.

On the client side, one player might make a move at the exact time as another
player, but because their actions take a moment to reach the server, the client with
the faster connection will have the advantage (as illustrated in Figure 19.6).

All messages received by the client and server are recorded with the time of their
receipt. The server uses that time to determine how to update the players. For
example, if a message received by the server isn’t processed within 100 milliseconds
(ms), the server compensates for that amount of time during updates. The same
goes for clients. If an action message needs to be updated (especially during the
use of dead reckoning), that time (the time the messages are received) is used to
move characters appropriately.

853Creating a Multiplayer Game Architecture

CAUTION
If you leave any of the major decisions (such as
combat) up to a client, you’re inviting trouble,
because game hackers and cheaters will take
full advantage of any loopholes. Remember
that the server is the only system responsible
for keeping track of the game; the clients are
merely portals into the game world.

Server

Client Client

10
0

m
s

La
te

nc
y

30
0

m
s

La
te

nc
y

Figure 19.6

The client on the left has a lower latency
than the player on the right, so the left
player’s action will reach the server first
and will be processed first.

Now that you have an overview of
how the clients and server work
together, take a closer look at
each one.

Looking at
the Server
The game server is a specialized
piece of software. It doesn’t need fancy graphics, kicking tunes, or even dedicated
input functions. The server merely needs to process the actions received from con-
nected players and, every so often, send updates to the clients.

Once the server begins executing, it enters into a tight loop, continuously process-
ing incoming network messages, updating all connected players based on their last
known movement actions, and sending updates.

Few network messages are received from
the server—connection requests, discon-
nect notifications, and player actions.
Those player actions are solely up to the
game design, and with the demo game
for this chapter, those actions include
only players walking, standing still, or
attacking with a weapon.

As network messages are received from
clients, the messages are stuffed into a
message queue. Using a message queue
speeds up network operations and leaves the majority of the work up to the main
application (rather than the network code thread). The server maintains a message
queue (a stack of messages) that holds all incoming messages. As a message comes
in, it is added to the queue. The server continuously pulls out the oldest message
and sends it off to various functions for processing. This process of message han-
dling is illustrated in Figure 19.7.

The server deals with player connection requests by first checking whether there are
any open slots for players. If so, the player data is requested from the client and saved
in a local structure. All players in the game are notified that another player has
joined the fray, and play goes on. A slot is freed up whenever a player disconnects.

854 19. Getting Online with Multiplayer Gaming

TIP
To help improve synchronization, the client
and server both calculate latency into the
time that a message is received.You see
how to calculate the latency in the section
“Calculating Latency,” later in this chapter.

NOTE
To keep things processing quickly,
the server updates players only
every 33ms, whereas client updates
are sent approximately every
100ms. Incoming messages (con-
tained in the message queue) are
processed every frame, however.

Player actions are quickly dealt with; all player actions simply change the state of
the player. At this point, the only states used are those for walking, standing still,
attacking, and being hurt. At every frame, those states are used to update the
player. As player actions are received, the server sends them out to all other con-
nected players so that the players can update their game states (between server
updates, of course).

Aside from dealing with network mes-
sages, the server updates the state of the
players. If a player character’s last known
state was walking in a certain direction,
that player’s character continues to walk
in that direction. The server, in all its
authority, will perform collision detec-
tion to make sure those moving charac-
ters can’t walk through walls!

855Creating a Multiplayer Game Architecture

Network

Incoming
Messages

Newer
Messages

Older
Messages

Process
Message

Message
Message

. . .

Message

Figure 19.7

Network messages are inserted
into the queue in the order those
messages are received.The
message queue ensures that the
oldest messages are next to be
processed by the server.

NOTE
By allowing only the server to
update the game world, you elimi-
nate cheaters (players who try to
alter the game-play to their advan-
tage). Cheaters typically work by
sending bogus data to the server in
the hope that they can move their
player in impossible ways.

For every action and state you add to your game, you add the logic to the server to
process the characters. For example, the attack state requires the server to refuse
further state changes from a player until the attack state has cleared (after one sec-
ond). At the same time the attack is initiated by a client, the server will calculate
which other clients were hit and the level of damage.

Implementing the server is easy. After
you create a sound base from which to
work, you can easily begin adding more
features to the server. Besides adding
new actions that players can perform,
you can also add features such as player
account management. However, now it’s
time to take a quick peek at the client
side of things.

Looking at Clients
Once connected, clients just need to collect local player control information and
send it up to the server. Between the updates received from the server, the clients
guess (using dead reckoning) how to handle all the game characters based on their
last known state.

For example, all characters that were walking at the last update keep walking until
the server signals them to stop. In this way, the game-play appears smooth, and with
a good network connection, server updates are received fast enough for the game
to stay entirely in sync.

As illustrated in Figure 19.8, whenever a client makes a change in action (such as
walking in a different direction than in the last known state), that change in state is
immediately relayed to the server, which immediately sends that action to all con-
nected clients. In that way, synchronization is much better.

Speaking of changes in player actions, exactly what actions can a player perform?
Navigation for one. As players walk around the map, their direction of travel is sent
up to the server. Notice that only the direction of travel is sent.

If you allow clients to specify their coordinates when they move, you’re inviting
cheaters to mess with the values. Instead, the server will modify the coordinates of
the player and send those coordinates back to the clients (at which time, it doesn’t
matter whether cheaters modify the values, because the server can’t be affected).

856 19. Getting Online with Multiplayer Gaming

NOTE
I left out the damage portion of the
server demo for this chapter, but
you can still harm other players. I’ll
leave adding the damage up to you.

For specific actions, such as walking, clients are allowed to change their own states.
As a result, players can move between server updates. For actions such as attacking,
only the state change is sent to the server, which in turn processes the attack and
sends out the appropriate state changes to all clients.

Players can be updated only every 33ms. The updates are time-limited in order to
make sure the clients don’t flood the server with thousands of actions. By keeping
actions to a minimum, the server can process things more quickly, and the game-
play stays smooth.

Whenever the server does send those crucial updates to the client, the client will
immediately change the state of the characters (or characters) in question (no
need for a message queue here). This update can also include the local player, so
as you’re moving around, some jumps in the action can occur due to the client syn-
chronizing to the server.

Well, enough of the explanations; let’s get on to making an actual network game!

Working with Game Servers
You’ve already read about how simple the server can be. To put theory into practice
(and help you create your multiplayer games), I put together a server application,

857Working with Game Servers

Figure 19.8

The client sends state
changes to the server
only when the player
makes a move that’s
different from the last
move, which saves
time because the
same move does not
have to be resent
again and again.

which you can find on this book’s CD-ROM (look for \BookCode\Chap19\Server).
In this section, you discover how to develop the underlying server-network-game
architecture and create the server application.

The game server is basic in nature. You can use the Game Core to handle graphics,
networking, and input. Because Chapter 10, “Creating the Game Core,” covers how
to use the Game Core, I’ll skip the formalities and get right to the point. To use the
server application, follow these steps:

1. Locate the Server application on this book’s CD-ROM. When you open the
application, the Configure Server dialog box appears (see Figure 19.9).

858 19. Getting Online with Multiplayer Gaming

Figure 19.9

The Configure Server dialog box, which appears first
when you run the server application, enables you to
select the TCP/IP adapter to use for hosting a game.

2. In the Configure Server dialog box, select the TCP/IP Adapter that you’ll be
using to host the game.

3. Click OK to start the game.

The Network Server Demo window opens (see Figure 19.10). This window
displays the server’s IP address, number of players, and a list of the players
connected to the server (if any).

Figure 19.10

The Network Server Demo window displays the host’s IP
address, the number of connected players, and each player’s
name.

Players can now connect to the server and play the game. Only eight players
can join the game at any given time, but you can increase that number in the
source code.

4. To close the server (and disconnect all players), press Alt+F4.

TEAMFL
Y

Team-Fly®

Once you’ve had a chance to play with the server, go ahead and load up the source code.

The real work is done behind the scenes where messages are processed, characters
are moved around, and the entire game world is maintained. The application uses
a derived cApplication class, named cApp; you see portions of the server’s application
class throughout this section.

Skipping the standard application setup functions (such as initializing the graphics
and input systems), let’s go through the server’s functionality step-by-step, starting
with handling players.

Storing Player Information
Players in the game are only allowed to move around and swing their weapons (hit-
ting other players). The server will want to track every player’s current state (walking,
standing still, swinging their weapons, or being hurt), the coordinates in the world,
the direction they are facing, and the speed they are walking (if they are walking).

This player data is stored inside a structure called sPlayer. Because all connected
players in the game need their own set of unique data, an array of sPlayer struc-
tures are allocated to store the information. Both the number of player structures
to allocate and the number of players to allow to join the game session are stored
in the macro MAX_PLAYERS, which is currently set to 8.

The sPlayer structure is as follows (with supporting state definition macros):

// Player states
#define STATE_IDLE 1
#define STATE_MOVE 2
#define STATE_SWING 3
#define STATE_HURT 4

typedef struct sPlayer {
BOOL Connected; // TRUE if player connected

char Name[256]; // Name of player
DPNID dpnidPlayer; // DirectPlay Player ID #

long State; // Last known state (STATE_*)
long Time; // Time of last state update
long Latency; // Half of roundtrip latency in ms

float XPos, YPos, ZPos; // Player coordinates

859Working with Game Servers

float Direction; // Angle facing
float Speed; // Movement speed

// Constructor
sPlayer() { Connected = FALSE; Latency = 0; }

} sPlayer;

There’s not much to the sPlayer structure; you have a flag if the player is con-
nected, the name of the player, the player’s DirectPlay identification number, the
player’s current state (as defined by the state macros), time of last state change,
network latency value, the player’s coordinates, direction, and walking speed.

The variables in sPlayer are self-explanatory, except for Latency. Remember that
latency is the delay resulting from network transmission. By storing the time it takes
for a message to go from the server to the client (and vice versa), time-based calcu-
lations become more synchronized between the server and client.

Speaking of time-based calculations, that’s the purpose of the Time variable. Whenever
the server updates all players, it needs to know the time that has elapsed between
updates. Every time a player state is changed (from the client), the Time variable is set
to the current time (minus the latency time).

Time is also used to control actions. If a player swings a weapon, the server refuses
to accept further state changes from the client until the swing weapon state is
cleared. How does the state clear? After a set amount of time, that’s how! After one
second passes, the update player cycle clears the player’s state back to idle, allowing
the client to begin sending new state-change messages.

On the subject of sending messages, take a look at how the server deals with the
incoming network messages.

Handling Messages
You’ve already seen DirectPlay messages in action, but now you focus on the game
action messages (state changes). Because DirectPlay has only three functions of
interest when handling incoming network messages (CreatePlayer, DestroyPlayer, and
Receive), the server will need to convert the incoming networking message to mes-
sages more suited to game-play.

The server receives messages from clients via the DirectPlay network’s Receive func-
tion. Those messages are stored in the pReceiveData buffer contained within the
DPNMSG_RECEIVE structure passed to the Receive function. That buffer is cast into a
more usable game message, which is stuffed into the game message queue.

860 19. Getting Online with Multiplayer Gaming

The server game code doesn’t deal directly with network messages. Those are han-
dled by a small subset of functions that take the incoming messages and convert
them into game messages (which are entered into the message queue). The server
game code works with those game messages.

Because there can be many different
types of game messages, a generic mes-
sage container structure is needed. Each
message starts with a header that stores
the type of message, the total size of the
message data (in bytes) including the
header, and a DirectPlay player identifi-
cation number that is usually set to the
player sending the message.

I’ve taken the liberty of separating the
header into another structure, making
it possible to reuse the header in every
game message:

// The message header structure used in all messages
typedef struct {

long Type; // Type of message (MSG_*)
long Size; // Size of data to send
DPNID PlayerID; // Player performing action

} sMessageHeader;

Because there can be many different game messages, you first need a generic mes-
sage container capable of holding all the different game messages. This generic
message container is a structure as follows:

// The message queue message structure
typedef struct {

sMessageHeader Header; // Message header

char Data[512]; // Message data
} sMessage;

Pretty basic, isn’t it? The sMessage structure needs to contain only the message header
and an array of chars used to store the specific message data. To use a specific mes-
sage, you can cast the sMessage structure into another structure to access the data.

861Working with Game Servers

NOTE
IDirectPlay8Server::Receive is not
the only function that can store
messages in the server message
queue, however; so can CreatePlayer
and DestroyPlayer. In the upcoming
section,“DirectPlay Messages to
Game Message,” you see how those
two functions are used to inform the
server that players are joining and
leaving the game session.

For example, here is a structure that represents a state-change message:

// Change in state message
typedef struct {

sMessageHeader Header; // Message header

long State; // State message (STATE_*)
float XPos, YPos, ZPos; // Player coordinates
float Direction; // Player facing direction
float Speed; // Walking speed of player

long Latency; // Latency value of connection
} sStateChangeMessage;

To cast the sMessage structure that contains a state-change message into a usable
sStateChangeMessage structure, you can use this code bit:

sMessage Msg; // Assuming message contains data
sStateChangeMessage *scm = (sStateChangeMessage*)Msg;

// Access state-change message data
scm->State = STATE_IDLE;
scm->Direction = 1.57f;

In addition to the state-change message, the following message structures are used
in the network game:

// Request a player DPNID from server message
typedef struct {

sMessageHeader Header; // Message header
} sAssignPlayerIDMessage;

// Create a player message
typedef struct {

sMessageHeader Header; // Message header

float XPos, YPos, ZPos; // Create player coordinates
float Direction; // Direction of player

} sCreatePlayerMessage;

// Request player information message
typedef struct {

sMessageHeader Header; // Message header

DPNID PlayerID; // Which player to request

862 19. Getting Online with Multiplayer Gaming

} sRequestPlayerInfoMessage;

// Destroy a player message
typedef struct {

sMessageHeader Header; // Message header
} sDestroyPlayerMessage;

Each message also has a related macro that both the server and client use. Those
message macros are the values store in the sMessageHeader::Type variable. Those mes-
sage type macros are as follows:

// Types of messages
#define MSG_CREATE_PLAYER 1
#define MSG_PLAYER_INFO 2
#define MSG_DESTROY_PLAYER 3
#define MSG_STATE_CHANGE 4
#define MSG_ASSIGNID 256

You see each message in action in the sections “Processing Game Messages” and
“Working with Game Clients,” later in this chapter, but for now, check out how the
server maintains these game-related messages.

DirectPlay Messages
to Game Messages
As I’ve mentioned before, the server needs to convert the DirectPlay network mes-
sages into the game-related messages you’ve just read about. You accomplish this by
processing incoming player connection, disconnection, and receive data messages from
DirectPlay and converting those messages into game messages.

To accomplish this conversion of messages, you derive a class from cNetworkServer
and override the CreatePlayer, DestroyPlayer, and Receive functions:

class cServer : public cNetworkServer
{

private:
BOOL CreatePlayer(DPNMSG_CREATE_PLAYER *Msg);
BOOL DestroyPlayer(DPNMSG_DESTROY_PLAYER *Msg);
BOOL Receive (DPNMSG_RECEIVE *Msg);

};

Because I’m using the System Core to handle application processing, a problem
quickly arises when dealing with the network. The network component and applica-
tion component are two separate entities, which means that neither component is
allowed to modify the other’s private data.

863Working with Game Servers

As Figure 19.11 illustrates, the network component needs a way to siphon incoming
messages into the application, which by chance is handled by creating three public
functions that match the network class’s functions.

To use the three message functions in the application component, you construct a
derived cApplication class that contains the three public functions as follows:

class cApp : public cApplication
{

// Previous cApp data and functions
private:

cServer m_Server; // Include derived server network class

public:
// Functions to siphon network messages to application
BOOL CreatePlayer(DPNMSG_CREATE_PLAYER *Msg);
BOOL DestroyPlayer(DPNMSG_DESTROY_PLAYER *Msg);
BOOL Receive(DPNMSG_RECEIVE *Msg);

};

864 19. Getting Online with Multiplayer Gaming

Network
Messages

Network
Component

Create Player

Destroy Player

Receive

Application
Component

Create Player

Destroy Player

Receive

message

message

message

Figure 19.11

The network component sends
incoming messages from the
overridden CreatePlayer,
DestroyPlayer, and Receive
functions to the matching public
functions in the application
component.

To start sending DirectPlay messages to the application class, you code the overridden
cServer functions to call upon the matching application functions. In order for the
server to know which application class instance to send messages to, you need to
declare a global variable that points to the current application class instance in use:

cApp *g_Application = NULL;

Inside the derived application class’s constructor, you then point the global
g_Application variable to the application class instance:

cApp::cApp()
{

// Other constructor code

g_Application = this; // Set application instance pointer
}

Now, you can code the network server component to send incoming messages to
the application object defined by the global g_Application pointer:

BOOL cServer::CreatePlayer(DPNMSG_CREATE_PLAYER *Msg)
{

// Send message to application class instance (if any)
if(g_Application != NULL)

g_Application->CreatePlayer(Msg);

return TRUE;
}

BOOL cServer::DestroyPlayer(DPNMSG_DESTROY_PLAYER *Msg)
{

// Send message to application class instance (if any)
if(g_Application != NULL)

g_Application->DestroyPlayer(Msg);
return TRUE;

}

BOOL cServer::Receive(DPNMSG_RECEIVE *Msg)
{

// Send message to application class instance (if any)
if(g_Application != NULL)

g_Application->Receive(Msg);
return TRUE;

}

865Working with Game Servers

The server component is now complete and is forwarding network messages to the
application class. To convert those network messages to game-related messages,
the application class must contain the following public functions:

BOOL cApp::CreatePlayer(DPNMSG_CREATE_PLAYER *Msg)
{

sCreatePlayerMessage cpm;

// Set up message data
cpm.Header.Type = MSG_CREATE_PLAYER;
cpm.Header.Size = sizeof(sCreatePlayerMessage);
cpm.Header.PlayerID = Msg->dpnidPlayer;

QueueMessage(&cpm); // Queue the message

return TRUE;
}

BOOL cApp::DestroyPlayer(DPNMSG_DESTROY_PLAYER *Msg)
{

sDestroyPlayerMessage dpm;

// Setup message data
dpm.Header.Type = MSG_DESTROY_PLAYER;
dpm.Header.Size = sizeof(sDestroyPlayerMessage);
dpm.Header.PlayerID = Msg->dpnidPlayer;

QueueMessage(&dpm); // Queue the message

return TRUE;
}

BOOL cApp::Receive(DPNMSG_RECEIVE *Msg)
{

sMessageHeader *mh = (sMessageHeader*)Msg->pReceiveData;

// Make sure it’s a valid message type and queue it
switch(mh->Type) {

case MSG_ASSIGNID:
// Store player ID before continuing
mh->PlayerID = Msg->dpnidSender;

866 19. Getting Online with Multiplayer Gaming

case MSG_PLAYER_INFO:
case MSG_STATE_CHANGE:

// Add message to queue
QueueMessage((void*)Msg->pReceiveData);
break;

}

return TRUE;
}

You can see that in each of the three functions, I’m constructing a game-related
message using the data from the DirectPlay messages provided. When a player tries
to connect to the server, a create-player message is created that stores the connecting
player’s DirectPlayer identification number (along with the message type and size).
That create-player message is then queued.

As for players disconnecting from the game, a disconnect-player message is con-
structed and queued. Last, whenever data (other than a system message) is
received from a client, the cApp::Receive function checks it to see whether it’s a valid
message type, and if so, the message is queued.

If the player has sent an MSG_ASSIGNID message (you see one such message later in
the section “Handling Player Data”), the requesting player’s DirectPlayer identifica-
tion number is stored before the cApp::Receive function queues the message (for
reasons you’ll soon see).

I keep mentioning the message queue and how the previously shown function adds
messages to the queue. Next, you find out what the queue is and how it works.

The Message Queue
The server never deals directly with incoming messages; instead, the server pulls
messages from the queue. If a message needs to be processed, it must be inserted
into the queue. Using a queue ensures that the server never gets bogged down with
processing incoming network data.

The queue is just an array of sMessage structures that is allocated when the application
class is initialized. I set a limit of 1,024 messages to be allocated for the server, but you
can change that amount just by altering the NUM_MESSAGE macro in the source code.

To track messages being added and removed from the queue, use two variables—
m_MsgHead and m_MsgTail. Check out Figure 19.12 to see how the queue uses those
two variables to track which messages are to be inserted or removed.

867Working with Game Servers

Whenever a message needs to be added to the message queue, a special function is
called. That function is cApp::QueueMessage, and it takes a single argument: the
sMessage structure to add to the queue.

Remember the incoming message functions of cApp (covered in the section “DirectPlay
Messages to Game Messages”)? Those functions built a message structure and added
the message to the queue via QueueMessage. Look at the QueueMessage code to see what’s
going on:

BOOL cApp::QueueMessage(void *Msg)
{

sMessageHeader *mh = (sMessageHeader*)Msg;

// Error checking - make sure there’s a message array
if(m_Messages == NULL)

return FALSE;

868 19. Getting Online with Multiplayer Gaming

message

message
. . .

removed message

inserted message

message

Message Queue

Message
Tail

m_MsgTail

Process

Message

Incoming

Network

Message

Message
Head

m_MsgHead

Figure 19.12

The m_MsgHead
variable marks the
next position in the
message queue to
insert a message.
m_MsgTail is the
position where
messages are
pulled out.

TEAMFL
Y

Team-Fly®

// Return if no room left in queue
if(((m_MsgHead+1) % NUM_MESSAGES) == m_MsgTail)

return FALSE;

// Stuff message into queue
if(mh->Size <= sizeof(sMessage)) {

// Start the critical section
EnterCriticalSection(&m_MessageCS);

memcpy(&m_Messages[m_MsgHead], Msg, mh->Size);

// Go to next empty message (flip around if at end)
m_MsgHead++;
if(m_MsgHead >= NUM_MESSAGES)

m_MsgHead = 0;

// Leave the critical section
LeaveCriticalSection(&m_MessageCS);

}

return TRUE;
}

As you can see, QueueMessage merely copies the supplied sMessage structure into the
next available element in the message array (pointed to by m_MsgHead). Two things
you haven’t seen are the EnterCriticalSection and LeaveCriticalSection functions.
Windows uses these two functions to restrict the application’s access to memory
(using the EnterCriticalSection function), only allowing a single process to modify
that memory. Once you finish modifying the memory, you need to inform
Windows by calling LeaveCriticalSection.

Although this may not make sense at first, think about it like this—the network
component (a process) is running in the background at the same time as the appli-
cation (another process). If the network component is adding messages to the
array while the application is trying to remove messages or modify the messages,
the program data can become corrupt. Critical sections ensure that only one
process gets sole access to data for a short time.

Processing Game Messages
Now that the game messages have made their way into the message queue, the next
step is to remove the messages at each frame and process them. To keep things

869Working with Game Servers

running quickly, only 64 messages at a time are processed (as defined by the
MESSAGE_PER_FRAME macro in the server source code).

Message processing takes place within the cApp::ProcessQueuedMessages function:

void cApp::ProcessQueuedMessages()
{

sMessage *Msg;
long Count = 0;

// Pull out messages to process
while(Count != MESSAGES_PER_FRAME && m_MsgHead != m_MsgTail) {

// Get pointer to ‘tail’ message
EnterCriticalSection(&m_MessageCS);
Msg = &m_Messages[m_MsgTail];
LeaveCriticalSection(&m_MessageCS);

// Process a single message based on type
switch(Msg->Header.Type) {

case MSG_ASSIGNID: // Send users their player ID
PlayerID(Msg, Msg->Header.PlayerID);
break;

case MSG_PLAYER_INFO: // Request player info
PlayerInfo(Msg, Msg->Header.PlayerID);
break;

case MSG_CREATE_PLAYER: // Add a player
AddPlayer(Msg);
break;

case MSG_DESTROY_PLAYER: // Remove a player
RemovePlayer(Msg);
break;

case MSG_STATE_CHANGE: // Change state of player
PlayerStateChange(Msg);
break;

}

870 19. Getting Online with Multiplayer Gaming

Count++; // Increase processed message count

// Go to next message in list
EnterCriticalSection(&m_MessageCS);
m_MsgTail = (m_MsgTail + 1) % NUM_MESSAGES;
LeaveCriticalSection(&m_MessageCS);

}
}

As ProcessQueuedMessages iterates through the next 64 messages, it calls upon a sepa-
rate set of functions to handle the various game messages. Those message-handling
functions are described in the following sections.

cApp::PlayerID
The PlayerID function is used whenever clients are requesting their own DirectPlayer
identification numbers. Those identification numbers are crucial to the clients for
maintaining their lists of connected players (as illustrated in Figure 19.13).

When a client receives a message from the server, it consults the list of players to
match the identification number; in this way, the client knows which client the
message affects. Remember that the cApp::Receive function stores the requesting
player’s identification number in the sMessage being passed; that number is vital
for this function.

BOOL cApp::PlayerID(sMessage *Msg, DPNID To)
{

sAssignPlayerIDMessage apidm;

apidm.Header.Type = MSG_ASSIGNID;
apidm.Header.Size = sizeof(sAssignPlayerIDMessage);
apidm.Header.PlayerID = To;
SendNetworkMessage(&apidm, DPNSEND_NOLOOPBACK, To);

return TRUE;
}

cApp::AddPlayer
Let’s face it—your game is going to be cool, and before long you’ll have players joining
the game left and right. When a player joins the game (or at least tries to join), a player
message is added to the queue, and when that message is processed, the AddPlayer func-
tion is called to find room for the player. If no room exists, that player is disconnected.

871Working with Game Servers

BOOL cApp::AddPlayer(sMessage *Msg)
{

long i;
DWORD Size = 0;
DPN_PLAYER_INFO *dpi = NULL;
HRESULT hr;
DPNID PlayerID;

// Error checking
if(m_Players == NULL)

return FALSE;

PlayerID = Msg->Header.PlayerID;

// Get the player information
hr = m_Server.GetServerCOM()->GetClientInfo(PlayerID, dpi, \

&Size, 0);

// Return on error or if adding server
if(FAILED(hr) && hr != DPNERR_BUFFERTOOSMALL)

return FALSE;

872 19. Getting Online with Multiplayer Gaming

Incoming Message

Regarding Client

#239

Process Message

Client

ID #321

Client

ID #18

Client

ID #239

Figure 19.13

Clients maintain a list of connected
players, each identified by server-assigned
DirectPlay identification number.

// Allocate player data buffer and try again
if((dpi = (DPN_PLAYER_INFO*)new BYTE[Size]) == NULL)

return FALSE;
ZeroMemory(dpi, Size);
dpi->dwSize = sizeof(DPN_PLAYER_INFO);
if(FAILED(m_Server.GetServerCOM()->GetClientInfo(\

PlayerID, dpi, &Size, 0))) {
delete [] dpi;
return FALSE;

}

Up to this point, the server has polled DirectPlay for the client’s information (as
set from the client), which includes the client’s name. From now on, the server will
scan the array of sPlayer structures looking for one that has the Connected flag set to
FALSE (and also to make sure that the player isn’t already connected), which means
that the spot is open to joining players.

// Make sure not already in list
for(i=0;i<MAX_PLAYERS;i++) {

if(m_Players[i].dpnidPlayer == PlayerID && \
m_Players[i].Connected == TRUE) {

delete [] dpi;
m_Server.DisconnectPlayer(PlayerID);
return FALSE;

}
}

// Search for an empty slot to put player
for(i=0;i<MAX_PLAYERS;i++) {

if(m_Players[i].Connected == FALSE) {

m_Players[i].Connected = TRUE; // Flag as connected

// Save DirectPlay DPNID # and name of player
m_Players[i].dpnidPlayer = PlayerID;
wcstombs(m_Players[i].Name, dpi->pwszName, 256);

// Setup player data
m_Players[i].XPos = 0.0f;
m_Players[i].YPos = 0.0f;
m_Players[i].ZPos = 0.0f;
m_Players[i].Direction = 0.0f;

873Working with Game Servers

m_Players[i].Speed = 512.0f;
m_Players[i].State = STATE_IDLE;
m_Players[i].Latency = 0;

If an empty slot is found in
the player array, the client
information is stored and
the player’s structure is
reset to known values.
Continuing, the rest of
the function will send a
MSG_CREATE_PLAYER game
message to all other con-
nected players, informing
them of a new player.

// Send add player info to all players in area
sCreatePlayerMessage cpm;
cpm.Header.Type = MSG_CREATE_PLAYER;
cpm.Header.Size = sizeof(sCreatePlayerMessage);
cpm.Header.PlayerID = PlayerID;
cpm.XPos = m_Players[i].XPos;
cpm.YPos = m_Players[i].YPos;
cpm.ZPos = m_Players[i].ZPos;
cpm.Direction = m_Players[i].Direction;
SendNetworkMessage(&cpm, DPNSEND_NOLOOPBACK, -1);

ListPlayers(); // List all players

delete [] dpi; // Free player data

return TRUE; // Return success
}

}

delete[] dpi; // Free player data

// Disconnect player - not allowed to connect
m_Server.DisconnectPlayer(PlayerID);

return FALSE; // Return failure
}

874 19. Getting Online with Multiplayer Gaming

NOTE
All server network messages are sent via the
SendNetworkMessage function, which basically for-
wards the message to the DirectPlay network’s
IDirectPlay8Server::SendTo function to handle.To
see the exact code, check out the full source code
on this book’s CD-ROM (again, look for the Server
demo in the \BookCode\Chap19\Server directory).

cApp::RemovePlayer
Just as players join the game, so do players quit, and that’s the purpose of the
RemovePlayer function. In the RemovePlayer function, the server will scan the list of
connected players for a match of a DirectPlay identification number (from the dis-
connecting player) and remove that player from the list. After the scan is complete
and the appropriate player is removed from the list, all clients are notified of the
disconnecting player, and the server rebuilds a list of existing players.

BOOL cApp::RemovePlayer(sMessage *Msg)
{

long i;

// Error checking
if(m_Players == NULL)

return FALSE;

// Search for player in list
for(i=0;i<MAX_PLAYERS;i++) {

if(m_Players[i].dpnidPlayer == Msg->Header.PlayerID && \
m_Players[i].Connected == TRUE) {

m_Players[i].Connected = FALSE; // Disconnect player

// Send remove-player message to all players in area
sDestroyPlayerMessage dpm;
dpm.Header.Type = MSG_DESTROY_PLAYER;
dpm.Header.Size = sizeof(sDestroyPlayerMessage);
dpm.Header.PlayerID = Msg->Header.PlayerID;
SendNetworkMessage(&dpm, DPNSEND_NOLOOPBACK, -1);

// List all players
ListPlayers();

return TRUE;
}

}

return FALSE; // Return failure
}

875Working with Game Servers

cApp::PlayerInfo
Unfortunately, in network gaming, game messages sometimes get lost along the
way. What if one of those lost messages intended to inform the client application
that a player had joined the game? Furthermore, what if the client started receiving
messages related to a player that the client didn’t know existed (because of a lost
message)?

In cases where the client has no knowledge of a player and is receiving messages
related to that player, the client will request the appropriate player’s data from the
server in order to continue. The server, in turn, will send the requested player’s
information to the client using the PlayerInfo function:

BOOL cApp::PlayerInfo(sMessage *Msg, DPNID To)
{

sRequestPlayerInfoMessage *rpim;
sCreatePlayerMessage cpm;
long i;

// Error checking
if(m_Players == NULL)

return FALSE;

// Get pointer to request info
rpim = (sRequestPlayerInfoMessage*)Msg;

for(i=0;i<MAX_PLAYERS;i++) {
// Only send if found in list
if(m_Players[i].dpnidPlayer == rpim->PlayerID && \

m_Players[i].Connected == TRUE) {

// Send player info to requesting player
cpm.Header.Type = MSG_PLAYER_INFO;
cpm.Header.Size = sizeof(sCreatePlayerMessage);
cpm.Header.PlayerID = rpim->PlayerID;

cpm.XPos = m_Players[i].XPos;
cpm.YPos = m_Players[i].YPos;
cpm.ZPos = m_Players[i].ZPos;
cpm.Direction = m_Players[i].Direction;

876 19. Getting Online with Multiplayer Gaming

SendNetworkMessage(&cpm, DPNSEND_NOLOOPBACK, To);

break;
}

}

return TRUE;
}

cApp::PlayerStateChange
The major message-processing function in the server must be PlayerStateChange,
which takes incoming actions from the clients and updates the internal player data.

BOOL cApp::PlayerStateChange(sMessage *Msg)
{

sStateChangeMessage *scm, uscm;
long i, PlayerNum;
BOOL AllowChange;
float XDiff, ZDiff, Dist, Angle;

// Error checking
if(m_Players == NULL)

return FALSE;

// Get pointer to state-change message
scm = (sStateChangeMessage*)Msg;

// Get player number in list
PlayerNum = -1;
for(i=0;i<MAX_PLAYERS;i++) {

if(m_Players[i].dpnidPlayer == Msg->Header.PlayerID && \
m_Players[i].Connected == TRUE) {

PlayerNum = i;
break;

}
}
if(PlayerNum == -1)

return FALSE;

Up to this point, the server has looked for the player that uses the state-change
message. If a message is coming from a player who is not connected, the message
is ignored. From now on, the game’s logic takes over.

877Working with Game Servers

Players are allowed to walk, stand still, or swing their weapons. Players whose states
are already set as swinging their weapons or being hurt are not allowed to update
their states (until those states are cleared).

AllowChange = TRUE; // Flag to allow changes in state

// Refuse to update player if swinging sword
if(m_Players[PlayerNum].State == STATE_SWING)

AllowChange = FALSE;

// Refuse to update player if hurt
if(m_Players[PlayerNum].State == STATE_HURT)

AllowChange = FALSE;

// Only change state if allowed
if(AllowChange == TRUE) {

// Update selected player
m_Players[PlayerNum].Time = timeGetTime();
m_Players[PlayerNum].State = scm->State;
m_Players[PlayerNum].Direction = scm->Direction;

// Adjust action time based on latency
m_Players[PlayerNum].Time -= m_Players[PlayerNum].Latency;

// Send player data to all clients
uscm.Header.Type = MSG_STATE_CHANGE;
uscm.Header.Size = sizeof(sStateChangeMessage);
uscm.Header.PlayerID = scm->Header.PlayerID;
uscm.State = m_Players[PlayerNum].State;
uscm.XPos = m_Players[PlayerNum].XPos;
uscm.YPos = m_Players[PlayerNum].YPos;
uscm.ZPos = m_Players[PlayerNum].ZPos;
uscm.Direction = m_Players[PlayerNum].Direction;
uscm.Speed = m_Players[PlayerNum].Speed;
SendNetworkMessage(&uscm, DPNSEND_NOLOOPBACK);

Now the player’s state is updated (if allowed) and sent out to all other connected
players. Next, if the player has swung his weapon, all players are scanned to see
whether the attacker hit them. If so, the states of those hurt are changed to HURT.

878 19. Getting Online with Multiplayer Gaming

TEAMFL
Y

Team-Fly®

Also, notice that I offset the state’s time variable (sPlayer::Time) by the player’s
latency value (sPlayer::Latency). This adjusts for network transmission delays and
improves synchronization. If you remove the latency offset, you’ll see a jumping
effect when players are moving around the level.

// If swinging sword, determine who’s hurt
if(scm->State == STATE_SWING) {

// Check all players
for(i=0;i<MAX_PLAYERS;i++) {

// Only check against other players who are connected
if(i != PlayerNum && m_Players[i].Connected == TRUE) {

// Get distance to player
XDiff = (float)fabs(m_Players[PlayerNum].XPos - \

m_Players[i].XPos);
ZDiff = (float)fabs(m_Players[PlayerNum].ZPos - \

m_Players[i].ZPos);
Dist = XDiff*XDiff + ZDiff*ZDiff;

// Continue if distance between players acceptable
if(Dist < 10000.0f) {

// Get angle between players
Angle = -(float)atan2(\

(m_Players[i].ZPos - \
m_Players[PlayerNum].ZPos), \

(m_Players[i].XPos - \
m_Players[PlayerNum].XPos)) + \
1.570796f;

// Adjust for attacker’s direction
Angle -= m_Players[PlayerNum].Direction;

Angle += 0.785f; // Adjust for FOV

// Bounds angle value
if(Angle < 0.0f)

Angle += 6.28f;
if(Angle >= 6.28f)

Angle -= 6.28f;

879Working with Game Servers

// Player hit if in front of attacker (90 FOV)
if(Angle >= 0.0f && Angle <= 1.57f) {

Note that players who are swinging their swords have a chance to hit the players in
front of them. To check whether another player was hit during an attack, you first
perform a distance calculation, and if any characters are considered close enough,
the angles between the players are checked. If the players being attacked are within
a 90-degree field of view in front of the attackers (as illustrated in Figure 19.14),
they are considered hit, at which point, those victims’ states are changed to HURT.

// Set victim’s state to hurt (if not already)
if(m_Players[i].State != STATE_HURT) {

m_Players[i].State = STATE_HURT;
m_Players[i].Time = timeGetTime();

// Send network message
uscm.Header.Type = MSG_STATE_CHANGE;
uscm.Header.Size = sizeof(sStateChangeMessage);
uscm.Header.PlayerID = m_Players[i].dpnidPlayer;
uscm.State = m_Players[i].State;
uscm.XPos = m_Players[i].XPos;
uscm.YPos = m_Players[i].YPos;
uscm.ZPos = m_Players[i].ZPos;
uscm.Direction = m_Players[i].Direction;
uscm.Speed = m_Players[i].Speed;
SendNetworkMessage(&uscm, DPNSEND_NOLOOPBACK);

}
}

}
}

}
}

}

return TRUE;
}

And that’s it for dealing with the game messages and state changes in players.
Although the PlayerStateChange function is responsible for parsing the queued game
messages, it’s really up to another function to move players and clear their swing-
ing or hurt states, as you see in the following section.

880 19. Getting Online with Multiplayer Gaming

Updating Players
In order to synchronize itself with clients, the server needs to maintain a simplified
version of the game running internally. This version of the game doesn’t include
graphics, sound, or any other fancy features; it only needs to track player’s actions.

The server tracks those actions by updating the player’s actions every 33ms (just as
the client application will do). Those actions include walking and waiting for other
specific states to clear (such as sword swinging and being hurt).

The cApp::UpdatePlayers function is responsible for updating all players:

void cApp::UpdatePlayers()
{

long i;
float XMove, ZMove, Speed;
sStateChangeMessage scm;
long Elapsed;

// Loop through all players
for(i=0;i<MAX_PLAYERS;i++) {

// Only update connected players
if(m_Players[i].Connected == TRUE) {

// Get elapsed time from now and state time
Elapsed = timeGetTime() - m_Players[i].Time;

881Working with Game Servers

Figure 19.14

In order for a player to hit another player,
the attacker must be close enough and must
be facing the intended victim.The server
checks to see whether the victim is within
a 90-degree field of vision of the attacker.

As the server scans the list of players, it determines which players are connected
and calculates the time since the last server update for all connected players. Next,
if a player’s state is set to STATE_MOVE, the elapsed time is used to move the player:

// Process player movement state
if(m_Players[i].State == STATE_MOVE) {

// Calculate amount of movement by time passed
Speed = (float)Elapsed / 1000.0f * m_Players[i].Speed;
XMove = (float)sin(m_Players[i].Direction) * Speed;
ZMove = (float)cos(m_Players[i].Direction) * Speed;

// Check for movement collisions -
// can’t walk past anything blocking path.
if(CheckIntersect(&m_LevelMesh, \

m_Players[i].XPos, \
m_Players[i].YPos + 16.0f, \
m_Players[i].ZPos, \
m_Players[i].XPos + XMove, \
m_Players[i].YPos + 16.0f, \
m_Players[i].ZPos + ZMove) == TRUE)

XMove = ZMove = 0.0f;

// Update player coordinates
m_Players[i].XPos += XMove;
m_Players[i].YPos = 0.0f; // Stay on ground
m_Players[i].ZPos += ZMove;

m_Players[i].Time = timeGetTime(); // Reset time
}

Next, the server deals with the STATE_SWING and STATE_HURT states. Those states are
cleared only after one second has passed (as determined by the elapsed time):

// Clear swing status after 1 second
if(m_Players[i].State == STATE_SWING) {

if(Elapsed > 1000) {
m_Players[i].State = STATE_IDLE;

// Send network message to player to clear
scm.Header.Type = MSG_STATE_CHANGE;
scm.Header.Size = sizeof(sStateChangeMessage);

882 19. Getting Online with Multiplayer Gaming

scm.Header.PlayerID = m_Players[i].dpnidPlayer;
scm.XPos = m_Players[i].XPos;
scm.YPos = m_Players[i].YPos;
scm.ZPos = m_Players[i].ZPos;
scm.Direction = m_Players[i].Direction;
scm.Speed = m_Players[i].Speed;
scm.State = m_Players[i].State;

// Send the message over network
SendNetworkMessage(&scm, DPNSEND_NOLOOPBACK, -1);

}
}

// Clear hurt status after 1 second
if(m_Players[i].State == STATE_HURT) {

if(Elapsed > 1000) {
m_Players[i].State = STATE_IDLE;

// Send network message to player to clear
scm.Header.Type = MSG_STATE_CHANGE;
scm.Header.Size = sizeof(sStateChangeMessage);
scm.Header.PlayerID = m_Players[i].dpnidPlayer;
scm.XPos = m_Players[i].XPos;
scm.YPos = m_Players[i].YPos;
scm.ZPos = m_Players[i].ZPos;
scm.Direction = m_Players[i].Direction;
scm.Speed = m_Players[i].Speed;
scm.State = m_Players[i].State;

// Send the message over network
SendNetworkMessage(&scm, DPNSEND_NOLOOPBACK, -1);

}
}

}
}

}

Surprisingly, that’s it for cApp::UpdatePlayers! Remember that the UpdatePlayers func-
tion is called every 33ms, so keeping the function quick and to the point is crucial.
Once all players are updated, you need to notify other players.

883Working with Game Servers

Updating the Network Clients
Throughout earlier sections in this chapter, I mentioned periodic server updates
that are sent to the client in order to synchronize game-play. That’s the purpose of
the cApp::UpdateNetwork function. The UpdateNetwork function is quick and to the
point, sending out the current state of all connected clients every 100ms.

void cApp::UpdateNetwork()
{

long i;
sStateChangeMessage scm;

// Send all player updates
for(i=0;i<MAX_PLAYERS;i++) {

// Only send data about connected players
if(m_Players[i].Connected == TRUE) {

scm.Header.Type = MSG_STATE_CHANGE;
scm.Header.Size = sizeof(sStateChangeMessage);
scm.Header.PlayerID = m_Players[i].dpnidPlayer;
scm.XPos = m_Players[i].XPos;
scm.YPos = m_Players[i].YPos;
scm.ZPos = m_Players[i].ZPos;
scm.Direction = m_Players[i].Direction;
scm.Speed = m_Players[i].Speed;
scm.State = m_Players[i].State;
scm.Latency = m_Players[i].Latency;

// Send the message over network
SendNetworkMessage(&scm, DPNSEND_NOLOOPBACK);

}
}

}

Calculating Latency
The server periodically calculates the time it takes a message to be received from a
client and uses the latency in the timed calculations to update clients, all of which
is crucial to maintaining the synchronization of the game. The function that calcu-
lates the latency is UpdateLatency, and it is called every 10 seconds from the main
application loop (cApp::Frame).

884 19. Getting Online with Multiplayer Gaming

void cApp::UpdateLatency()
{

long i;
DPN_CONNECTION_INFO dpci;
HRESULT hr;

// Go through all players
for(i=0;i<MAX_PLAYERS;i++) {

// Only process connected players
if(m_Players[i].Connected == TRUE) {

// Request player connection settings
hr = m_Server.GetServerCOM()->GetConnectionInfo(\

m_Players[i].dpnidPlayer, &dpci, 0);

if(SUCCEEDED(hr)) {
m_Players[i].Latency = dpci.dwRoundTripLatencyMS / 2;

// Bounds latency to 1 second
if(m_Players[i].Latency > 1000)

m_Players[i].Latency = 1000;

} else {
m_Players[i].Latency = 0;

}
}

}
}

To calculate the latency, the server queries DirectPlay for the connection statistics
via the IDirectPlay8Server::GetConnectInfo function. That function call takes a struc-
ture (DPN_CONNECTION_INFO) as an argument, and inside the structure is a variable that
represents the roundtrip latency time in milliseconds. The server divides that
latency value in half and stores it in each player’s data structure.

The Hard Part Is Over!
You’ve been through the guts of the server. Now you just need to wrap everything into
a fully functional application. Other than the code for the server, there’s not much left
to do. To see how the application is set up, check out the server code on the CD-ROM.

885Working with Game Servers

Things are really getting exciting! Now, it’s time to focus on the other side of the
network game—the client!

Working with Game Clients
The client application (referred to as the client) is the conduit between the gaming
server and the player. The client accepts the user’s input and forwards it to the server.
Between updates from the server, the client updates itself based on what little informa-
tion it has—the player’s movement, other players’ movements, NPC actions, and so on.

The client uses graphics, sound, and input-processing to work its magic. However,
if you were to strip away the graphics and sound, you would be left with a rather
bland application. This “dumb” client structure might look unworthy, but believe
me, it will work perfectly for your game project.

To use the Client application (located on this book’s CD-ROM in the \BookCode\
Chap19\Client directory), you can follow these steps:

1. Locate and run the Client application. The Connect to Server dialog box
(shown in Figure 19.15) appears.

886 19. Getting Online with Multiplayer Gaming

Figure 19.15

Besides picking an adapter and entering a player name, you’ll
need to know the server’s IP address in order to connect and play
the game.

2. In the Connect to Server dialog box, enter the host’s IP address, select an
adapter, and enter your player’s name.

3. Click OK to begin the game and connect to the server.

The client works almost identically to the server in some respects, the first of which
is dealing with players.

Handling Player Data
The client, much like the server, uses an sPlayer structure that contains the informa-
tion about each connected player in the game. This time, however, information is
needed to track the 3-D object for drawing the player (as well as the weapon) and
the player animation being played. Other than that, you can see many similarities

between the sPlayer structure being used by the client and server. Take a look at
the declaration of the client’s sPlayer structure (along with supporting macros):

// Player states
#define STATE_IDLE 1
#define STATE_MOVE 2
#define STATE_SWING 3
#define STATE_HURT 4

// Animations
#define ANIM_IDLE 1
#define ANIM_WALK 2
#define ANIM_SWING 3
#define ANIM_HURT 4

typedef struct sPlayer {
BOOL Connected; // TRUE if player active

DPNID dpnidPlayer; // DirectPlay Player ID #

long State; // Last known state (STATE_*)
long Time; // Time of last state update
long Latency; // Half of roundtrip latency in ms

float XPos, YPos, ZPos; // Player coordinates
float Direction; // Angle facing
float Speed; // Movement speed

cObject Body; // Character 3-D object
cObject Weapon; // Weapon 3-D object
long LastAnim; // Last known animation

// Constructor and destructor
sPlayer()
{

Connected = FALSE;
dpnidPlayer = 0;
LastAnim = 0;
Time = 0;

}

~sPlayer() { Body.Free(); Weapon.Free(); }
} sPlayer;

887Working with Game Clients

Again, an array of sPlayer structures is allocated to hold the player information.
Each player is allowed to use a separate Graphics Core object for the character’s
body and weapon mesh. The local player uses the first element in the player data
array (defined as m_Players in the application class), although joining players are
stuffed into the first empty slot found.

As the application class for the client is initialized, all character and weapon
meshes are loaded and assigned to each of the player data structures. This is your
first chance to customize your network game; by loading different meshes, you can
have each player appear differently. For example, one character can be a warrior,
another character a wizard, and so on.

A list of animations is also loaded. Those animations represent the various states of
players: a walking animation, standing still (idle), swinging a weapon, and finally a
hurt animation. Those animations are set by the UpdatePlayers function, which you
see in a bit in the section “Updating Local Players.”

One extra tidbit in the sPlayer structure is a DirectPlay identification number.
Clients normally don’t have access to their identification numbers; those are left
for the server to track. However, clients are designed so that their identification
numbers track all players, and in order to start playing, all clients must request
their identification number from the server.

Remember the MSG_ASSIGNID game message that I mentioned earlier in the section
“Handling Messages”? Clients use the MSG_ASSIGNID message to request their identifi-
cation from the server. Upon receiving it, clients can determine which incoming
update messages go to which connected players.

When a game message is received from the server, the client application scans
through the list of connected players. When the player identification number from
the local list of players and from the server is matched, the client knows exactly
which player to update.

The client uses a function called GetPlayerNum to scan the list of players and return
the index number of the matching player (or -1 if no such match is found):

long cApp::GetPlayerNum(DPNID dpnidPlayer)
{

long i;

// Error checking
if(m_Players == NULL)

return -1;

888 19. Getting Online with Multiplayer Gaming

TEAMFL
Y

Team-Fly®

// Scan list looking for match
for(i=0;i<MAX_PLAYERS;i++) {

if(m_Players[i].dpnidPlayer == dpnidPlayer && \
m_Players[i].Connected == TRUE)

return i;
}

return -1; // Not found in list
}

From now on, the client will always use the GetPlayerNum function to determine
which player to update. If a player is not found in the list but is known to exist, the
client must send a MSG_PLAYER_INFO message, which requests the player’s information
from the server. In response, the server will return a create-player message to the
requesting client.

But I’m getting a little ahead of myself, so let’s slow things down a bit. Much like
the server, the client uses the Network Core to handle network communications.
Now, take a look at the client component I’m using for the client application.

The Network Component
To use a client component, you have to derive a class from it and, in that derived
class, override the necessary functions. Those functions are few and are needed
only to convey when a connection to the server is achieved or to receive incoming
game messages.

To use the client network component, begin by deriving your own class from
cNetworkClient:

class cClient : public cNetworkClient
{

private:
BOOL ConnectComplete(DPNMSG_CONNECT_COMPLETE *Msg);
BOOL Receive(DPNMSG_RECEIVE *Msg);

};

To pass messages to the application, the derived application object needs only one
public function to siphon in received messages. Why only one? The client needs to
know when a connection is established to the server, which is the purpose of the
ConnectComplete function.

889Working with Game Clients

By using a global variable (g_Connected) that represents the connection status, the
client network component can update the state of the connection as follows:

cApp *g_Application; // Global application pointer

BOOL cClient::ConnectComplete(DPNMSG_CONNECT_COMPLETE *Msg)
{

// Save connection status
if(Msg->hResultCode == S_OK)

g_Connected = TRUE;
else

g_Connected = FALSE;

return TRUE;
}

Use the matching cApp::Receive function for the cClient::Receive function:

BOOL cApp::Receive(DPNMSG_RECEIVE *Msg)
{

sMessage *MsgPtr;

// Get pointer to received data
MsgPtr = (sMessage*)Msg->pReceiveData;

// Handle packets by type
switch(MsgPtr->Header.Type) {

case MSG_ASSIGNID: // Assign local player ID
AssignID(MsgPtr);
break;

case MSG_PLAYER_INFO: // Add a player to list
case MSG_CREATE_PLAYER:

CreatePlayer(MsgPtr);
break;

case MSG_DESTROY_PLAYER: // Remove a player from list
DestroyPlayer(MsgPtr);
break;

890 19. Getting Online with Multiplayer Gaming

case MSG_STATE_CHANGE: // Change state of player
ChangeState(MsgPtr);
break;

}

return TRUE;
}

Notice that the Receive function immediately processes incoming messages appro-
priately by calling separate functions for each type of game message.

Message Handling
The client application uses the same message structures as the server, but the client
has no need for queuing messages. As Figure 19.16 demonstrates, incoming messages
are immediately parsed by the client.

Now that you’ve seen the Receive function that handles incoming message, it’s time
to examine each message handling function.

891Working with Game Clients

Network

Application

Process
Message

Incoming
Message

Message

Figure 19.16

The client receives messages from the client network component in
much the same way as the server. However, with the client, incoming
messages are cast into game-related messages and processed
immediately.

cApp::AssignID
Recall that the client needs to first know its own DirectPlay identification number
from the server. AssignID is the function that sets this identification number as it is
received.

void cApp::AssignID(sMessage *Msg)
{

sAssignPlayerIDMessage *apidm;

// Error checking
if(m_Players == NULL || m_Players[0].dpnidPlayer)

return;

// Get pointer to message data
apidm = (sAssignPlayerIDMessage*)Msg;

EnterCriticalSection(&m_UpdateCS);
m_Players[0].dpnidPlayer = apidm-

>Header.PlayerID;
LeaveCriticalSection(&m_UpdateCS);

}

cApp::CreatePlayer
As clients join the game, the server informs other connected clients of those new
arrivals. The purpose of the following CreatePlayer function is to find room in the
sPlayer structure and store the player data:

void cApp::CreatePlayer(sMessage *Msg)
{

sCreatePlayerMessage *cpm;
long PlayerNum, i;

// Error checking
if(m_Players == NULL || !m_Players[0].dpnidPlayer)

return;

// Get pointer to message data
cpm = (sCreatePlayerMessage*)Msg;

// Don’t add local player to list

892 19. Getting Online with Multiplayer Gaming

NOTE
Because the network compo-
nent and the application are
in constant struggles over the
same player data structures,
critical sections are in full
abundance in the client.

if(cpm->Header.PlayerID == m_Players[0].dpnidPlayer)
return;

// Make sure player not already in list while at
// same time finding an empty slot.
PlayerNum = -1;
for(i=1;i<MAX_PLAYERS;i++) {

if(m_Players[i].Connected == TRUE) {
if(m_Players[i].dpnidPlayer==cpm->Header.PlayerID)

return;
} else

PlayerNum = i;
}

// Return error if no open slots
if(PlayerNum == -1)

return;

// Enter critical section
EnterCriticalSection(&m_UpdateCS);

// Add player data
m_Players[PlayerNum].Connected = TRUE;
m_Players[PlayerNum].dpnidPlayer = cpm->Header.PlayerID;
m_Players[PlayerNum].XPos = cpm->XPos;
m_Players[PlayerNum].YPos = cpm->YPos;
m_Players[PlayerNum].ZPos = cpm->ZPos;
m_Players[PlayerNum].Direction = cpm->Direction;
m_Players[PlayerNum].Speed = 0.0f;
m_Players[PlayerNum].State = STATE_IDLE;

m_NumPlayers++;

// Leave critical section
LeaveCriticalSection(&m_UpdateCS);

}

cApp::DestroyPlayer
The server notifies clients when a player is leaving a session. The clients, in turn,
signal the player as being disconnected and skips updating the player during the

893Working with Game Clients

update cycle. The following code determines which client is disconnected and
takes the appropriate steps:

void cApp::DestroyPlayer(sMessage *Msg)
{

sDestroyPlayerMessage *dpm;
long PlayerNum;

// Error checking
if(m_Players == NULL || !m_Players[0].dpnidPlayer)

return;

// Get pointer to message data
dpm = (sDestroyPlayerMessage*)Msg;

// Don’t remove local player from list
if(dpm->Header.PlayerID == m_Players[0].dpnidPlayer)

return;

// Get player number in list
if((PlayerNum = GetPlayerNum(dpm->Header.PlayerID)) == -1)

return;

// Enter critical section
EnterCriticalSection(&m_UpdateCS);

// Set player as disconnected
m_Players[PlayerNum].Connected = FALSE;
m_NumPlayers—;

// Leave critical section
LeaveCriticalSection(&m_UpdateCS);

}

cApp::ChangeState
The client processes changes of state in players by pulling out the message data and
putting it in the player’s structure. If a player isn’t found in the list of players, the
client requests that player’s information via a MSG_PLAYER_INFO message and exits the
ChangeState function without further ado.

894 19. Getting Online with Multiplayer Gaming

This is the only situation in which a player’s coordinates can be directly modified
by a state change—clients are not allowed to make direct changes to their coordi-
nates (to avoid cheating), so it’s up to the server to tell players just where they are
in the world during the updates:

void cApp::ChangeState(sMessage *Msg)
{

sStateChangeMessage *scm;
sRequestPlayerInfoMessage rpim;
long PlayerNum;

// Error checking
if(m_Players == NULL || !m_Players[0].dpnidPlayer)

return;

// Get pointer to message data
scm = (sStateChangeMessage*)Msg;

// Get player number in list
if((PlayerNum = GetPlayerNum(scm->Header.PlayerID)) == -1) {

// Unknown player - request info
if(PlayerNum == -1) {

// Construct message
rpim.Header.Type = MSG_PLAYER_INFO;
rpim.Header.Size = sizeof(sRequestPlayerInfoMessage);
rpim.Header.PlayerID = m_Players[0].dpnidPlayer;
rpim.PlayerID = scm->Header.PlayerID;

// Send message to server
SendNetworkMessage(&rpim, DPNSEND_NOLOOPBACK);

return;
}

}

// Enter critical section
EnterCriticalSection(&m_UpdateCS);

// Store new sytate info
m_Players[PlayerNum].Time = timeGetTime();
m_Players[PlayerNum].State = scm->State;

895Working with Game Clients

m_Players[PlayerNum].XPos = scm->XPos;
m_Players[PlayerNum].YPos = scm->YPos;
m_Players[PlayerNum].ZPos = scm->ZPos;
m_Players[PlayerNum].Direction = scm->Direction;
m_Players[PlayerNum].Speed = scm->Speed;
m_Players[PlayerNum].Latency = scm->Latency;

// Bounds latency to 1 second
if(m_Players[PlayerNum].Latency > 1000)

m_Players[PlayerNum].Latency = 1000;

// Adjust time based on latency
m_Players[PlayerNum].Time -=

m_Players[PlayerNum].Latency;

// Leave critical section
LeaveCriticalSection(&m_UpdateCS);

}

Just like the server, the client has a
SendNetworkMessage to send the game-related
network messages to the server (for details
on this function, check out the client’s source
code on this book’s CD-ROM).

Updating the Local Player
Between updates from the server, the clients need to update all players to keep the
game running smoothly. The client application limits updates to every 33ms (30 times
a second), which matches the server update rate. Between these player updates, the
client is allowed to collect input from the player who is used to change their actions.

The cApp::Frame function is generally used to update the local player. The players
use the keyboard and mouse to control their characters, so I included a few Input
Core objects (m_Keyboard and m_Mouse):

BOOL cApp::Frame()
{

static DWORD UpdateCounter = timeGetTime();
static long MoveAction = 0, LastMove = 0;
static BOOL CamMoved = FALSE;
BOOL AllowMovement;

896 19. Getting Online with Multiplayer Gaming

NOTE
The client also depends on
the latency time to modify
the timing calculations.The
server sends this latency
time to the client, but to
make things safe, the client
application is allowed to cut
the latency down to one
second if the server states
that it is higher.

long Dir;
float Angles[13] = { 0.0f, 0.0f, 1.57f, 0.785f, 3.14f, \

0.0f, 2.355f, 0.0f, 4.71f, 5.495f, \
0.0f, 0.0f, 3.925f };

// Get local input every frame
m_Keyboard.Acquire(TRUE);
m_Mouse.Acquire(TRUE);
m_Keyboard.Read();
m_Mouse.Read();

// Pressing ESC quits program
if(m_Keyboard.GetKeyState(KEY_ESC) == TRUE)

return FALSE;

At every frame, the input devices are restored (in case a device’s focus has been
lost), and input is read in. If the user presses Esc, the game-play quits by returning
a value of FALSE from the Frame function.

From here, game-play may only continue if the client is connected to the server.
If no such connection exists, a message displays to that effect. Also, if a player is
still waiting for a DirectPlay identification number from the server, a message dis-
plays, and a request is periodically sent to the server for the correct identification
number. You use the following code to display those messages and wait for the
identification number from the server:

// Handle connection and waiting for data screen
if(g_Connected == FALSE || !m_Players[0].dpnidPlayer) {

// Display message(s)
m_Graphics.Clear();
if(m_Graphics.BeginScene() == TRUE) {

m_Font.Print(“Connecting to server...”, 0, 0);
if(!m_Players[0].dpnidPlayer)

m_Font.Print(“Waiting for server data...”, 0, 20);
m_Graphics.EndScene();

}
m_Graphics.Display();

// Request player ID from server every 2 seconds
if(timeGetTime() > UpdateCounter + 2000) {

UpdateCounter = timeGetTime(); // Update counter

897Working with Game Clients

sAssignPlayerIDMessage apidm;
apidm.Header.Type = MSG_ASSIGNID;
apidm.Header.Size = sizeof(sAssignPlayerIDMessage);
SendNetworkMessage(&apidm, DPNSEND_NOLOOPBACK | \

DPNSEND_GUARANTEED);
}

return TRUE;
}

From here on, player input is parsed. A single variable tracks player actions (MoveAction),
and each bit in the variable represents a specific action (as shown in Figure 19.17). The
user’s actions are move up, move down, move left, move right, and attack. Also, camera
angle changes are recorded (and flagged for later updating).

The following code determines which keys the player is currently pressing and sets
the appropriate bits in the MoveAction variable:

// Store movements every frame
if(m_Keyboard.GetKeyState(KEY_UP) == TRUE)

MoveAction |= 1;
if(m_Keyboard.GetKeyState(KEY_RIGHT) == TRUE)

MoveAction |= 2;
if(m_Keyboard.GetKeyState(KEY_DOWN) == TRUE)

MoveAction |= 4;
if(m_Keyboard.GetKeyState(KEY_LEFT) == TRUE)

MoveAction |= 8;

// Store attack action
if(m_Keyboard.GetKeyState(KEY_SPACE) == TRUE)

MoveAction |= 16;

898 19. Getting Online with Multiplayer Gaming

MoveAction

31 . . . 4 3 2 1 Bit 0

Unassigned . . . Attack Left Down Right Up

Figure 19.17

Each bit in the MoveAction variable is
used to define a specific move action.

TEAMFL
Y

Team-Fly®

if(m_Mouse.GetButtonState(MOUSE_LBUTTON) == TRUE)
MoveAction |= 16;

// Rotate camera
if(m_Mouse.GetXDelta() > 0) {

m_CamAngle -= 0.1f;
CamMoved = TRUE;

}
if(m_Mouse.GetXDelta() < 0) {

m_CamAngle += 0.1f;
CamMoved = TRUE;

}

// Only update players every 33ms (30 times a second)
if(timeGetTime() < UpdateCounter + 33)

return TRUE;

Remember that player updates are limited to 30 times per second, so the last bit of
the preceding code will return control if that amount of time has not passed.

// Set flag to allow player movement
AllowMovement = TRUE;

// Don’t allow movement if still swinging weapon
if(m_Players[0].State == STATE_SWING)

AllowMovement = FALSE;

// Don’t allow movement if still being hurt
if(m_Players[0].State == STATE_HURT)

AllowMovement = FALSE;

Normally, players are allowed to move around the world, but if a player is currently
swinging his weapon or being hurt, that player is not allowed to move. You use the
AllowMovement flag to signify when a player’s actions can be processed, as shown here:

// Handle movements if allowed
if(AllowMovement == TRUE) {

// Process attack
if(MoveAction & 16) {

MoveAction = 0; // Clear movement
LastMove = 0; // Clear last movement

899Working with Game Clients

// Send attack message - let server signal swing
sStateChangeMessage Msg;
Msg.Header.Type = MSG_STATE_CHANGE;
Msg.Header.Size = sizeof(sStateChangeMessage);
Msg.Header.PlayerID = m_Players[0].dpnidPlayer;
Msg.State = STATE_SWING;
Msg.Direction = m_Players[0].Direction;

// Send message to server
SendNetworkMessage(&Msg, DPNSEND_NOLOOPBACK);

}

If a player chooses to attack, you need to construct a state-change message and
send that message to the server. After you send the state-change message, clear the
player’s movement actions. Notice that the client does not change its own state at
this point; the server determines when to change the player’s state.

If the player did not attack, his actions are checked to see whether the player is
moving:

// Process local player movements
if((Dir = MoveAction) > 0 && Dir < 13) {

// Set new player state (w/time and direction)
EnterCriticalSection(&m_UpdateCS);
m_Players[0].State = STATE_MOVE;
m_Players[0].Direction = Angles[Dir] - m_CamAngle + 4.71f;
LeaveCriticalSection(&m_UpdateCS);

// Reset last move if camera moved since last update
if(CamMoved == TRUE) {

CamMoved = FALSE;
LastMove = 0;

}

After the player’s state and movement direction is set, the Frame function continues
by resetting the camera’s movements (by setting the CamMoved flag to FALSE). The
player’s controls are relative to the camera-viewing angle (if the player is pressing
the up arrow key, he is walking away from the camera). If you change the camera’s
angle while the player is walking, you force the player’s direction to change as well.
The client takes this change of the player’s direction into consideration when the
camera is rotated.

900 19. Getting Online with Multiplayer Gaming

The Frame function now determines whether the player has changed the direction
of movement (from the movement in the last frame):

// Send actions to server if changed from last move
if(MoveAction != LastMove) {

LastMove = MoveAction; // Store last action

m_Players[0].Time = timeGetTime();

// Construct message
sStateChangeMessage Msg;
Msg.Header.Type = MSG_STATE_CHANGE;
Msg.Header.Size = sizeof(sStateChangeMessage);
Msg.Header.PlayerID = m_Players[0].dpnidPlayer;
Msg.State = STATE_MOVE;
Msg.Direction = m_Players[0].Direction;

// Send message to server
SendNetworkMessage(&Msg, DPNSEND_NOLOOPBACK);

}

Once a player has moved, the client sends a state-change message to the server.
Notice that the state-change message is sent only if the player’s movement is differ-
ent from the last move he performed (as recorded in the LastMove variable).

If the player hasn’t moved, his state is changed to standing still (STATE_IDLE), and a
state-change message is sent to the server using the following code:

} else {
// Change to idle state
EnterCriticalSection(&m_UpdateCS);
m_Players[0].State = STATE_IDLE;
LeaveCriticalSection(&m_UpdateCS);

// Send update only if player moved last update
if(LastMove) {

LastMove = 0;

sStateChangeMessage Msg;
Msg.Header.Type = MSG_STATE_CHANGE;
Msg.Header.Size = sizeof(sStateChangeMessage);
Msg.Header.PlayerID = m_Players[0].dpnidPlayer;

901Working with Game Clients

Msg.State = STATE_IDLE;
Msg.Direction = m_Players[0].Direction;

// Send message to server
SendNetworkMessage(&Msg, DPNSEND_NOLOOPBACK);

}
}

}

At this point, the local player’s actions have been recorded and sent to the server.
Next, all players are updated, the scene is rendered, and the movement actions are
reset for the next frame:

// Update all players
UpdatePlayers();

// Render the scene
RenderScene();

MoveAction = 0; // Clear action data for next frame

UpdateCounter = timeGetTime(); // Reset update counter

return TRUE;
}

Updating All Players
Whereas the local player’s input is processed in the cApp::Frame function, the
UpdatePlayers (which you saw in the code in the previous section) processes the
players according to their respective states.

Unlike the server’s UpdatePlayers function, the client’s UpdatePlayers function is sim-
ple. The client is allowed to move players based only on their last known positions,
directions, and elapsed time since their last update.

Remember, only the server can clear the weapon-swinging and being-hurt states, so
the client has nothing to do at this point except update the various animations to
show the player what is going on:

void cApp::UpdatePlayers()
{

long i;

902 19. Getting Online with Multiplayer Gaming

float XMove, ZMove, Dist, Speed;
long Elapsed;

// Process all active player movements
for(i=0;i<MAX_PLAYERS;i++) {

if(m_Players[i].Connected == TRUE) {

// Get elapsed time from now and state time
Elapsed = timeGetTime() - m_Players[i].Time;

// Process player movement state
if(m_Players[i].State == STATE_MOVE) {

// Calculate amount of movement by time movement processed
Speed = (float)Elapsed / 1000.0f * m_Players[i].Speed;
XMove = (float)sin(m_Players[i].Direction) * Speed;
ZMove = (float)cos(m_Players[i].Direction) * Speed;

// Check for movement collisions -
// can’t walk past anything blocking path
if(m_NodeTreeMesh.CheckIntersect(

m_Players[i].XPos,
m_Players[i].YPos + 16.0f,
m_Players[i].ZPos,
m_Players[i].XPos + XMove,
m_Players[i].YPos + 16.0f,
m_Players[i].ZPos + ZMove,
&Dist) == TRUE)

XMove = ZMove = 0.0f;

// Update coordinates
EnterCriticalSection(&m_UpdateCS);
m_Players[i].XPos += XMove;
m_Players[i].YPos = 0.0f;
m_Players[i].ZPos += ZMove;

m_Players[i].Time = timeGetTime(); // Reset time

LeaveCriticalSection(&m_UpdateCS);
}

903Working with Game Clients

// Set new animations as needed
if(m_Players[i].State == STATE_IDLE) {

if(m_Players[i].LastAnim != ANIM_IDLE) {
EnterCriticalSection(&m_UpdateCS);
m_Players[i].LastAnim = ANIM_IDLE;
m_Players[i].Body.SetAnimation(\

&m_CharacterAnim, “Idle”, timeGetTime() / 32);
LeaveCriticalSection(&m_UpdateCS);

}
} else
if(m_Players[i].State == STATE_MOVE) {

if(m_Players[i].LastAnim != ANIM_WALK) {
EnterCriticalSection(&m_UpdateCS);
m_Players[i].LastAnim = ANIM_WALK;
m_Players[i].Body.SetAnimation(\

&m_CharacterAnim, “Walk”, timeGetTime() / 32);
LeaveCriticalSection(&m_UpdateCS);

}
} else
if(m_Players[i].State == STATE_SWING) {

if(m_Players[i].LastAnim != ANIM_SWING) {
EnterCriticalSection(&m_UpdateCS);
m_Players[i].LastAnim = ANIM_SWING;
m_Players[i].Body.SetAnimation(\

&m_CharacterAnim, “Swing”, timeGetTime() / 32);
LeaveCriticalSection(&m_UpdateCS);

}
} else
if(m_Players[i].State == STATE_HURT) {

if(m_Players[i].LastAnim != ANIM_HURT) {
EnterCriticalSection(&m_UpdateCS);
m_Players[i].LastAnim = ANIM_HURT;
m_Players[i].Body.SetAnimation(\

&m_CharacterAnim, “Hurt”, timeGetTime() / 32);
LeaveCriticalSection(&m_UpdateCS);

}
}

}
}

}

904 19. Getting Online with Multiplayer Gaming

Character animations are updated only if they differ from the last known anima-
tion. The sPlayer::LastAnim variable tracks the last known animation, although the
various ANIM_* macros define which animations to play.

The Client’s Full Glory
The hard work is over! The only requirements for running the client are process-
ing the local player’s input and updating the players. Now, all you have to do is
spruce up your project with some 3-D graphics, and you’ll almost have a game.

The graphics portion of the client application uses the Graphics Core to draw the
various connected players in the game. You use a NodeTree object to render the
game’s level. The client loads all meshes when the application class is initialized. As
previously mentioned, all players receive an assigned mesh to represent their charac-
ters and weapons. Animations are also used and are set by the various update mes-
sages.

You limit rendering of a scene to 30 times a second, and to ensure that everything
runs as quickly as possible, you use a viewing frustum to render the level and to clip
unseen characters out of the rendering loop.

To wrap up the Client application, you deal with the different kinds of application
code, such as selecting an adapter and connecting to the server. You can find this
code on the CD-ROM at the back of this book (look for \BookCode\Chap19\Client).

Wrapping Up
Multiplayer Gaming
The game server and client discussed in this chapter are powerful (regardless of
how bland they might appear). With a little reworking, you can fine-tune them to
match the needs of your gaming project. If you want to create games that can han-
dle thousands of players at once, I suggest researching a multiserver setup that uses
lobbies and connection servers. For a huge game world, you could use 100 comput-
ers to host a single, persistent game session. Wouldn’t that be awesome!

For further study on the topic of multiplayer gaming, I highly suggest picking up a
copy of Todd Barron’s book, Multiplayer Game Programming. Check out Appendix C,
“Recommended Reading,” for more information on Todd’s book.

In addition, you could brave the multiplayer frontier by downloading the code to
Quake and Quake II (two games from id Software, Inc., that helped revolutionize the

905Wrapping Up Multiplayer Gaming

multiplayer genre). Quake and Quake II are perfect examples of multiplayer gaming
in action, and by reading through the source code of those two games, you’ll learn
a good deal about using networking with games. To download the source code for
Quake and Quake II, point your browser (or ftp client) to ftp://ftp.idsoftware.com/
idstuff/source/q1source.zip and ftp://ftp.idsoftware.com/idstuff/source/quake2.zip.

906 19. Getting Online with Multiplayer Gaming

Programs on the CD-ROM

Two projects that harness the multiplayer features shown in this
chapter are located on the CD-ROM at the back of this book.You can
find the following programs in the \BookCode\Chap19\ subdirectory:

◆ Server. A multiplayer game server that allows eight clients to
connect and play. Location: \BookCode\Chap19\Server\.

◆ Client. The client application that allows a player to connect to
a remote server and join up to seven other players in multiplayer
gaming action.The server must be running in order to play the
game. Location: \BookCode\Chap19\Client\.

Part Five

The
Finishing
Touches

20 Putting Together a Full Game

21 Marketing and Publishing Your Game

TEAMFL
Y

Team-Fly®

CHAPTER 20

Putting
Together a
Full Game

In this chapter, you put all the pieces of a game together. If you’ve followed the
book sequentially, you now have fully developed core engines, maps, characters,

items, scripts, and a story. All that’s left is to put everything in place and call the
result a game! In this chapter, you build a small game that I developed especially
for this book.

In this chapter, you learn how to do the following:

■ Design a sample game
■ Assemble gaming components
■ Program the game

Designing the Sample Game
Now comes the time to commence creating the book’s sample game—The Tower.
Although its title is not too ingenious, the game does put together all the gaming
pieces you need to complete a game. The purpose of The Tower is to show every
component in its proper place, including tech engines, map and level manage-
ment, character control, and scripting.

The game’s creation starts with the design. You need to write the story, create the
levels, develop characters, design items, and devise spells. To help set a context, I
will kick off the design process with a short story describing what occurs up to the
time the player enters the game. This story explains how the player came to be
within the vicinity of the game, what set the mood, and so on.

Writing the Game’s Story
Part of the experience of picking up a new game is to delve into the game’s instruc-
tion booklet to read up on the game’s controls, characters, and the pre-game story.
That’s right, not only do you need a story for your game, but also you generally
write a small pre-game story that precedes the action that takes place at the start
of your game.

The pre-game story, much like the following one, sets the mood for your game (or
at least for the beginning of the game), introduces the player to his alter-ego, and

910 20. Putting Together a Full Game

thrusts the player right into the actual
story. For The Tower, I wrote the follow-
ing pre-game story to let the player know
his role and the kind of situation he is in
at the beginning of the game.

The day’s travel has gone well. After a
quick stop in the quaint village of
Dunsberry, our hero once again sets off
to explore the rolling plains of the
Eastern Lands. Thrice before he had
adventured forth to those Lands—they
were quickly becoming his favorite romping
grounds, and for good reason. With each visit, our hero has found thrilling adven-
tures, amazing treasures, and the most intriguing people he has ever had the plea-
sure of encountering.

With high hopes on his mind and the setting sun at his back, our lone adventurer
journeys onward. If he makes good time, he should reach the village of Grandere
before dawn. Once there, he will take a break for some well-deserved rest and
relaxation before entering the center plains of the Lands, where he hopes to find
a grand quest upon which to embark.

With a sudden, loud clap of thunder, the glorious dreams of conquest are swept
from his mind. The day is ending—the sun setting. A shrill wind arises, bringing
forth dark, rolling clouds. The night grows darker, and with every passing moment
the wind grows stronger and the clouds thicken. A heavy hit of thunder echoes in
the air, and a brief flash of lightning illuminates the plains in a sickly blue hue.

The storm forming over the plains is quickly building in strength. With one last
deafening clap of thunder, clouds pour forth their watery innards. Relentlessly, the
clouds unleash their fury—driving rain drenches the land, making further travel
impossible. Our adventurer needs to find shelter, or this storm will claim his life.

Staggering forward, he comes upon a small clump of trees within which he hoists
his tent. With his remaining energy, the now-exhausted adventurer closes the flap
to his hastily erected tent and buries himself in his makeshift bed of water-logged
hay and cloth. Unconsciousness soon comes over him, pulling him into a deep,
restless sleep. Visions of hideous scaled demons fill his dreams. A grand tower
looms over him, casting a dark shadow over the surrounding land. A small village
appears in front of the hero—the way is clear; the village beckons him forth.

911Designing the Sample Game

NOTE
For your game, instead of writing
a pre-game story in the game’s
instruction booklet, you might
choose to include the story in your
game. For example, when the player
begins his first game, you might dis-
play the pre-game story immediately
before the game commences.

As you can see, although the story starts off fairly well for the would-be hero, cir-
cumstances turn everything upside down. A mysterious storm appears and forces
him to take shelter. At the completion of this part of the story, the game-play begins.
What the preceding story does not detail is what happens to the hero as he enters
the village in his dream. What you need to do now is define the purpose of the
story—that is, what the player (as the game’s hero) needs to do from this point on
in the story.

The Purpose of The Tower Game
The story in the preceding section helps to set the mood for The Tower and provides
a way for the player to be in a small village located by a dark, ominous tower. The
purpose of the player of The Tower is to free a cursed village from the evil demons
that inhabit the nearby tower. It turns out that the inhabitants of the village are for-
ever trapped, only to be sacrificed one by one to the tower’s evil demon lord. It is the
job of the player to go into the tower and destroy the evil creatures.

Along the way, the player can harness various weapons and spells. Killing monsters
increases the player’s experience points. At specific points, the player’s experience
level and abilities are increased. At certain experience levels, the player is also able
to use a newly learned spell.

Those items and spells will come in handy because the player must fight through
five monster-packed levels (including the local village where the player can regain
health and buy items). Each unique level demonstrates briefly what you can accom-
plish using the components created in this book. So, it’s time to get a move on and
see how those levels are designed.

Designing the Levels
The Tower consists of five game levels (also referred to as scenes)—the village, the
bridge, the ground level of the tower, the tower ledge, and the Evil Lord’s room.
A pre-rendered backdrop bitmap image represents each level, much like the back-
drops developed in Chapter 13, “Mixing 2-D and 3-D Graphics Engines.” All the
game levels have a single bitmap that is split into six smaller textures. Each level
also has a simplified mesh used to render each level’s depth buffer.

The first scene, the village, is shown in Figure 20.1. The village is the starting point
of the adventure and is where the character will find a place to heal and buy items.
At the start of the game, when the player arrives, a single monster inhabits the
village. Once the monster is dispatched, the village becomes safe enough for

912 20. Putting Together a Full Game

the villagers to come out of hiding.

Figure 20.2 shows the second level of the game, the bridge. Upon the player’s first
visit to the bridge, the village guard blocks travel across the bridge. Once the guard

leaves his post, the

913Designing the Sample Game

Figure 20.1

The village level, complete
with locals, is where the
player begins his adventure.

Figure 20.2

The bridge to the tower is
sometimes wrought with
perils. Here, two monsters
close in for the kill.

player is free to move across the bridge and into the tower. Monsters randomly
inhabit this level once the guard returns to the village.

The third level of the game, shown in Figure 20.3, is the ground level of the tower.
The first time the player enters the tower, he sees two guards. As one guard attacks,
the other one goes to warn his master of the player’s intrusion. Subsequent visits to
the tower’s ground level leads to a random number of guards attacking.

In Figure 20.4, you see the fourth level, the tower ledge. The action moves outside
as the player moves along a ledge leading to the last level. Here, the player engages
in combat against Granite, the magically altered guard with the unfortunate duty of
warning his lord of the player’s arrival.

The last level of the game, the Evil Lord’s room (see Figure 20.5) is where the
game comes to an end. Within the round walls of this last level is the Evil Lord,
demon supreme, and the beast responsible for the curse placed upon the village.
The player must kill the Evil Lord in order to win the game.

Although limited in the number of characters, this sample game does a fine job of
demonstrating characters. Check out the next section to see how to define the
characters in the game, and the section “Controlling Characters in the Game,”

914 20. Putting Together a Full Game

Figure 20.3

Two or more guards initially
patrol the tower’s ground
level. Here, one guard issues
a command to another
guard.

915Designing the Sample Game

Figure 20.4

The tower ledge is home
to the strong demon beast,
Granite. Be careful; he
packs a punch and is
ready to make quick work
of the player.

Figure 20.5

The Evil Lord lies in wait for
the player to visit his inner
sanctum. Here, the Lord
casts a power-up spell on
himself.

later in this chapter, to see how those characters are programmed in the project.

Defining the Characters
Including the player of the game, a total of eight types of characters are in The Tower
(with the game using multiple instances of those types of characters). Table 20.1
defines those eight types of characters. To understand those definitions, use the
following legend:

■ Class. The character’s class.
■ HP. Health points. The maximum number of health points of a character.
■ MP. Mana points. The maximum number of mana points of a character.
■ Exp. The amount of experience gained when a character is killed.
■ Gold: The amount of gold a character is carrying (and drops when killed).
■ Atk. Attack ability.
■ Def. Defense ability.
■ Agl. Agility ability.
■ Res. Magical resistance ability.
■ Mnt. Mental ability.
■ ToH. A character’s to-hit ability.
■ Speed. Speed of movement measured in units per second.
■ Range. Attack range measured in units.
■ Charge. The charge rate of a character. This is in units per second. Once a char-

acter’s charge is at 100, that character can perform an attack or magic spell.
■ Atk%. Percentage of chance that a character will attack a nearby player.
■ Mag%. Percentage of chance that a character will use a spell on a nearby player.
■ Spells. The magic spells a character knows.

As an example for using the character definitions and the legend, take character #3.
Granite (the character’s name) is class 3, has 70 health points, 100 mana points,
200 experience points (given to the player when Granite is killed), no gold, and
the following ability values:

Attack: 20

Defense: 15

Agility: 5

Magic resistance: 10

916 20. Putting Together a Full Game

Movement speed: 16 units per second

Attack range: 16 units

Charge rate: 15 per second

Percentage to attack: 80%

Percentage to use magic: 20%

Knows spells: #4 (Groundball)

917Designing the Sample Game

Table 20.1 The Tower’s Game Characters

Character #/Name Description

0: Player The player of the game. Statistics listed are those at
the beginning of game. Class 1, HP:25, MP:10,Atk:6,
Def:3,Agl:2, Res:2, Mnt:2,ToH:800, Speed:150,
Range:16, Charge:40.The player can learn spells 0
through 4 at the gain of each experience level, starting
at level 2. Experience levels increase at 10, 30, 80, 150,
350, and 500 experience points.

1: Yodan Peon A weak demon. Class 2, HP:14, Exp:10, Gold:10,Atk:8,
Def:1,Agl:1, Res:0, Mnt:0,ToH:700, Speed:64, Range:8,
Charge:30.

2: Yodan Guard A stronger version of the Peon. Class 2, HP:28, MP:20,
Exp:50, Gold:20,Atk:10, Def:5,Agl:3, Res:2, Mnt:2,
ToH:800, Speed:64, Range:10, Charge:30,Atk%:80,
Mag%:20, Spells:0, 2.

3: Granite Born from magic, this stone monster packs a wallop!
Class 3, HP:70, MP:100, Exp:200, Gold:0,Atk:20, Def:15,
Agl:5, Res:10, Mnt:10,ToH:800, Speed:16, Range:16,
Charge:15,Atk%:80, Mag%:20, Spells:4.

4: The Evil Lord The king of chaos, this demon is the purpose of the
player being trapped in the cursed village. Class 4,
HP:150, MP:200, Exp:1000, Gold:500,Atk:25, Def:25,
Agl:10, Res:40, Mnt:50,ToH:900, Speed:16, Range:16,
Charge:40,Atk%:70, Mag%:30, Spells:0, 5, 6.

5: Elder The village elder. He heals you whenever spoken to.

6: Guard The village guard. He blocks passage across the bridge
to the tower.

7: Villager This is the shopkeeper of the village. He sells magical
items as well as healing potions.

Mental: 10

To Hit: 800

To make better sense of the charac-
ter’s definitions, I suggest loading
up the MCLEdit project and using it
to edit the Game.mcl file (both are
on this book’s CD-ROM; look for
\BookCode\Chap16\MCLEdit). The
only character in the list that you
really need to be concerned about
is the game’s player, character #0.

The character statistics listed in
Table 20.1 (and in the master
character list used in the demo

game—look for \BookCode\Chap20\
Data\ Game.mcl) represent the
statistics when the game starts.

Whenever the player kills a monster, the player’s experience points rise a bit (based
on the monster’s experience points), and as the player reaches specific levels of
experience points, his statistics increase by the following amounts:

As well as increased statistics, the player might learn a spell, depending on the
experience level gained. The levels of experience points at which those experience
“level-ups” occur are listed here, along with the spell learned:

■ 10 experience points for level 2. The player learns the Fireball spell (spell #0).
■ 30 experience points for level 3. The player learns the Ice spell (spell #1).
■ 80 experience points for level 4. The player learns the Heal Self spell (spell #2).
■ 150 experience points for level 5. The player learns the Teleport spell (spell #3).
■ 350 experience points for level 6. The player learns the Groundball spell

(spell #4).
■ 500 experience points for the level 7 (the final level). No spells learned.

Notice that the last experience level achievable by the player is level 7. At that point,
the player should be powerful enough to take on the Evil Lord at the end of the

918 20. Putting Together a Full Game

NOTE
You can edit the master character list
(the MCL) using the MCL Editor program
covered in Chapter 16,“Controlling
Players and Characters.”

Maximum health points: +10

Maximum mana points: +10

Attack: +2

Defense: +1

Agility: +1

Magic Resistance: +1

To Hit: +5

TEAMFL
Y

Team-Fly®

game.

Assigning Characters
During the design of the sample game, it is necessary to assign each character a
unique identification number. For example, the player is assigned the identifica-
tion #0, whereas the village elder uses the identification #1. By assigning these
identification numbers, the script engine knows which characters to use for per-
forming certain actions, such as displaying dialogue or tracking flags in order to
alter in–game-play. These pre-assigned identification numbers are as follows:

0: Player character

1: Village elder

2: Village guard

3: Village shopkeeper

4: Monster in village at start of game

5: Demon in tower who runs to warn the Evil Lord

6: Granite, the rock demon

7: Evil Lord

The only characters in the list shown here that do not have identification numbers
assigned are the monsters the player encounters throughout the game. You assign
these monsters identification numbers from 256 and up—there’s really no reason
at this point to predetermine these numbers. Think of the numbering order as a
first-come, first-serve order of assigning monsters’ identification numbers.

Creating the Items and Spells
The Tower has eight items, each of which is shown in Table 20.2. Only a few of the
items are for sale; the player receives the rest from other characters. Items with a
price listed (shown by a number followed by gp) are for sale in the village level.

You use seven spells in the sample game—numbered from 0 to 6. Table 20.3 lists
and describes each spell. You can also confer with the Master Spell List Editor
program from Chapter 16 for the specifics on each spell. The game’s spells are

919Designing the Sample Game

contained in the Game.msl file (located on this book’s CD-ROM; look for
\BookCode\Chap20\Data\ Game.msl).

To better understand the spells in Table 20.3, use the following legend:

■ Cost. This is the amount of mana points it takes to cast a spell.

■ Cure. A spell can cure characters with
a specific class assigned to them. If a
cure class is listed, casting the spell on
a character instead heals that character
for half the amount of intended dam-
age.

■ 2xDmg. Much like cure, this is the
class of character to which the spells
cause twice as much damage as the spell normally would cause. For example,

920 20. Putting Together a Full Game

Table 20.2 The Tower ’s Game Items

Item #/Name Description

0: Gold The monetary unit of The Tower in gold pieces.

1: Sword A weapon that increases damage dealt from attacks by 15%.
The player starts the game with the Sword.

2: Magic Sword A strong sword that increases damage from attacks by 50%.
Price: 100gp.

3: Leather Armor A weak piece of leather-studded armor that reduces damage
taken from attacks by 10%. Obtain from village guard.

4: Magic Plate A superior armor made from enchanted metals. Reduces
damage taken from attacks by 50%. Price: 100gp.

5: Buckler A small weak shield that reduces damage taken from attacks
by 5%. Obtain from village guard.

6: Magical Shield An awesome shield made from the scales of a red dragon.
Reduces damage taken from attacks by 20%. Price: 100gp.

7: Healing Potion One quaff from this elixir cures 50 health points. Price: 10gp.

NOTE
You can view and edit the
spells in The Tower by using the
Master Spell List (MSL) Editor
program covered in Chapter 16.

an ice spell will cause twice the normal amount of damage to a fire-based
monster, such as the Evil Lord.

■ Effect. This is the effect of the spell on the intended character. The four
effects used in The Tower are alter health, teleport, cure ailment, and cause
ailment. Each effect (except teleport) is followed by a number that represents
the modifier value. Alter health is the amount to subtract or add to the tar-
get’s health points. Cure ailment and cause ailment refer to the bit-flags used.

■ Target. This is the spell’s target type, which can be a single character
(Single), self (the character casting the spell), or an area.

■ EffectRange. This is the radius in which the spell’s effect hits nearby targets.

■ TargetDistance. This is the maximum distance the spell will travel to hit a tar-
get character. The character casting the spell must be within this distance to

921Designing the Sample Game

Table 20.3 The Tower’s Game Spells

Spell #/Name Description

0: Fireball Hurls a ball of fire at a single enemy for light damage. Cost:5,
Cure:4, Effect:Alter Health -10,Target:Single, EffectRange:32,
TargetDistance:512.

1: Ice Chunks of ice encase the victim for moderate damage. Cost:10,
2xDmg:4, Effect:Alter Health -20,Target: Single, EffectRange: 40,
TargetDistance:512.

2: Heal Self Restore 50 health points to caster. Cost:8, Effect:Alter Health
+50,Target:Self.

3: Teleport Teleports the player to a nearby town. Cost:10, Effect:Teleport,
Target:Self.

4: Groundball A rush of underground power that sends up chunks of rock.
Cost:10, Cure:3, Effect:Alter Health -30,Target:Single,
EffectRange:40,TargetDistance:512.

5: Concussion A huge blast of power that causes major damage. Cost:20,
Effect:Alter Health -40,Target:Area, EffectRange:1024,
TargetDistance:1024.

6: Evil Force The caster increases in power after being surrounded by a ball
of darkness. Cost:10, Effect:CauseAilment 10832,Target:Self.

cast the spell at a target character.

Some of the preceding spells are unique to certain characters. For example, the
Evil Force spell is used only by the Evil Lord—he casts it upon himself to increase
his power (specifically raising his statistics and increasing his speed). Consult the
game’s master character list (\BookCode\Chap20\Data\Game.mcl) to determine
which characters know which spells.

That’s about it for the game’s contents, spells, or characters, so now you can turn
your attention to the game’s scripts.

Developing the Scripts
You control all The Tower’s game content, such as dialogue, through the use of scripts.
The Mad Lib Script system covered in Chapter 14, “Implementing Scripts,” is in use
here. A single action template, Game.mla (see \BookCode\Chap20\Data\Game.mla),
contains a number of actions that will be useful in your project. More than 200 lines
in length, the game’s action template is a little too long to list here, so I highly sug-
gest that you open the action template while reading through this section.

The action template is split into the following six groups of actions:

■ Script flow. Much like a standard program, scripts execute actions starting at
the beginning of the script. The script flow continues until the end of the
script. Scripts also use conditional if...then checking (checking the status of
internal flags and variables) to change the flow of the script’s execution.

■ Character control. This includes adding, removing, moving, and setting the
character’s AI settings.

■ Item controls. These check whether items exist and add and remove items
in a character’s inventory.

■ Barriers and triggers. This group of actions enable you to add, enable, and
remove map triggers.

■ Sound and music. You can play various sound effects and songs using this
group of actions.

■ Miscellaneous. A group of actions that doesn’t fit into the previously listed
groups.

You use the preceding actions to construct the game’s scripts. Once you construct
the scripts, you can use them to control the flow of the game. You trigger the
scripts used by the game in six ways—the player talking to another character, the
player touching a map trigger, and a character reaching the last route point in an

922 20. Putting Together a Full Game

assigned route, entering a level, starting combat, or ending combat.

You name the scripts that are called when the player talks to another character
according to the character’s identification number, which you append to the word
char. For example, character #2 has a script file named char2.mls that is executed
any time the player clicks that character with the mouse.

You place map triggers in each level by using the script actions. Whenever a trigger
is touched, a script executes. You name the map triggers by using the word trig fol-
lowed by the trigger’s identification number—such as trigger #4 using the script
filename of trig4.mls.

When entering a level, use the word
scene followed by the map level’s
assigned number. For example, when
the character enters map #4, the
script file scene4.mls is executed.

The final three methods of executing
a script use a three-letter script file-
name that is appended with the
associated character’s identification number or map level number. For end-of-route
scripts, you use eor
followed by the character’s identification number. For example, when character #2
reaches the last point on a route, the script named eor2.mls is executed.

For the start of combat, use soc followed by the map level number for the filename
of the script. The same applies to the end-of-combat method, except you use eoc—
for example, eoc3.mls, which is executed when combat ends in map level #3.

With the six script file-naming methods in mind, check out the following list of
scripts used in The Tower (again, you can find the scripts on the CD-ROM):

■ Char1.mls, Char2.mls, Char3.mls, Char6.mls, and Char7.mls. These are the
scripts that are executed whenever the player clicks a character with the
mouse. Characters 1, 2, and 3 are villagers, whereas characters 6 and 7 are
Granite and the Evil Lord, respectively.

■ SOC1.mls, SOC2.mls, SOC3.mls, SOC4.mls, and SOC5.mls. These are the
start-of-combat scripts for each level. These play only the third assigned song
in the game.

923Designing the Sample Game

NOTE
End-of-route scripts are processed when-
ever a character reaches the last point
of a route assigned to that character.

■ EOC1.mls, EOC2.mls, EOC3.mls, EOC4.mls, and EOC5.mls. The end-of-
combat scripts typically restore the music to the level’s original song.

■ EOR0.mls, EOR4.mls, and EOR5.mls. Only three characters in the game
walk along routes—the player during the first level of the game, the demon
that is attacking the player in the village at the start of the game, and the
guard that runs to warn his Evil Lord.

■ Scene1.mls, Scene2.mls, Scene3.mls, Scene4.mls, and Scene5.mls. Each scene
starts by playing music and setting up all characters that belong in that level.

■ Trig1.mls, Trig2.mls, Trig3.mls, Trig4.mls, Trig5.mls, Trig6.mls, Trig7.mls,
and Trig8.mls. You use the map triggers solely to move the player from one
level to another whenever the player tries to leave a particular level.

The majority of the scripts are basic. For example, check out the trig2.mls script:

Set character id=(*0*) direction to (*0.000000*)
Teleport character id=(*0*) to map (*1*) at

(*100.000000*) (*0.000000*) (*-170.000000*)

The purpose of the trig2.mls, which is placed in the second scene (the bridge), is
to teleport the character to the first map (the village) and to change the player’s
direction. To see a more advanced script, check out scene4.mls, which is executed
when the player enters the fourth level:

// (*Store scene #*) //
Set variable (*1*) to (*4*)
————————————-
// (*Play scene music *) //

Play music (*1*)
————————————-
// (*Add teleporter triggers *) //

Add triangle trigger id=(*6*) at
(*-177.00000*) (*200.000000*) (*-144.000000)

Add triangle trigger id=(*7*) at
(*177.00000*) (*200.000000*) (*210.000000)

————————————-
// (*Add Granite is not killed already *) //

if flag (*8*) equals (*FALSE*) then
Add character id=(*6*) definition=(*3*) type=(*NPC*) at

XPos=(*170.000000*) YPos=(*0.000000*) ZPos=(*-60.000000*)
direction=(*3.925000*)

924 20. Putting Together a Full Game

Set character id=(*6*) AI to (*Stand*)
EndIf

Although it’s certainly much longer than the other scripts in the game, the
scene4.mls script is fairly simple. The script starts much like the other scene scripts
do—by storing the scene’s map number in variable #1 and playing the level’s asso-
ciated song. From there, two triggers are placed in the scene that teleport the
player back down to the ground level of the tower or to the Evil Lord’s chamber.

Finishing up the script, flag #8 is checked, and if set to FALSE, a character is added
to the level. This character, Granite, is character #3 in the master character list. In
the game engine, Granite is assigned the character identification number 6. At
first, Granite begins as an NPC (non-player character), merely standing still and
waiting for the player to speak to him.

When he is spoken to, Granite’s script is processed—some words are exchanged
between Granite and the player, and then Granite’s type is changed to Monster.
When the player dispatches Granite, the end of combat script sets flag #8 to TRUE,
thereby skipping the portion of the scene4.mls script that adds Granite to the map
when the player reenters scene #4. Ingenious, isn’t it?

In the section “Processing Scripts,” later in this chapter, you find out how the
scripts in The Tower are processed. As for now, move on to defining how the player
interacts with the game.

Defining the Controls
The player interacts with The Tower by using the keyboard and mouse. When work-
ing in the main menu (see Figure 20.6), the player uses the mouse to select an
option. The options available on the main menu are as follows:

■ New Game. Select this option to begin a new game.

■ Back to Game. Return to a game already in progress.

■ Load Game. Load and continue a previously saved game.

■ Save Game. Save a game that’s in progress.

■ Quit. Quit the game.

To select an option, the player positions the mouse over one of the displayed
options and presses the left mouse button to select that option. When playing the
game, the controls are a little trickier.

The player uses the arrow keys to move a character and the mouse to home in on

925Designing the Sample Game

a character that will be the target of a spell or an attack. Pressing the up arrow key
moves the player forward, whereas the left and right arrow keys rotate him. Position
the mouse cursor over a nearby monster and left-click in order to attack. Note that
the player must be close enough to a monster in order to attack the
monster. Left-clicking an NPC effectively “talks” to that character. The player doesn’t
have to be close to talk to a character—simply clicking the character from anywhere
on the screen does the job.

Pressing a number key from 1 to 5 while the cursor is over a character (other
than NPCs) casts a spell with that character as the target. Pressing the number 1
casts the Fireball spell, 2 casts Ice, 3 casts Heal Self, 4 casts Teleport, and 5 casts
Groundball. Spells 3 and 4 target only the player, so no matter which character you
cast it on, it will always affect the player. Note that only known spells can be cast,
and to determine which spells the player knows, enter the character status window.

During game-play, you can right-click to bring up the character status window. To
use, equip, or unequip an item, left-click it. Right-clicking again closes the status
window. On the lower-right side of the status window, you see the numbers 1
through 5, each representing a known spell.

To exit the game and return to the main menu, press the Esc key during game-play.
If you’re speaking to a character, left-click or press the space bar to continue the

926 20. Putting Together a Full Game

Figure 20.6

The main menu enables
the player to begin a new
game, return to a game
in progress, load a saved
game, and quit the
current game.

conversation; if you’re bartering with the shopkeeper, left-click an item to buy it or
right-click to exit the window.

Laying Out the Flow
With all the design aspects in place, it’s time to piece them into the whole game.
The game is fairly linear—everything that will happen in the game is already laid
out. The player has a straightforward path from the beginning to the end of the
game, mainly because of the game’s small size.

The game begins with the player walking into the village. With a few words to himself,
the player catches glimpses of a demon walking through the town. A sacrifice appears
to be in order this night, and the demon is in the village to escort the poor soul to his
doom. Confused and curious, the player speaks up, only to be attacked by the monster.

After the player dispatches the vile demon, the villagers feel safe enough to come
out and congratulate him for his heroic deed. It seems that the villagers believe the
player is the savior of an old legend—a legend in which a liberator sets them free
from the curse that traps all inhabitants within the neighboring lands (mainly the
village and the nearby tower).

Not to let the good people down, the player heads off to the tower in the East.
Along the way, the village’s guard blocks the player’s access across the only bridge
to the tower. Only doing his duty, the guard refuses to grant the player passage
across the bridge until the player returns to the village and obtains permission to
cross the bridge from the village elder. The guard returns to town, leaving the
bridge unguarded and accessible. If the player returns to town and speaks with
the guard, the guard will give the player a piece of armor and a shield.

Back on track, the player continues back across the bridge and into the tower,
where he encounters a few demons. This area’s head demon orders another one
to run and inform their master (the Evil Lord) of the player’s arrival. Their master
is not very happy with this news and apparently kills the messenger. Whenever the
player enters this area, monsters are sure to attack.

The player moves up the ramp and through the second-level door, which leads to
the tower’s ledge where a seemingly unmovable stone creature (Granite) is waiting.
Once spoken to, this creature attacks the player. Upon the creature’s death, the
way to the Evil Lord’s chamber is open.

Entering the next chamber, the player finds the root of all the villager’s troubles—
the Evil Lord. After spitting out a few angry words, the Evil Lord attacks the player.

927Designing the Sample Game

This is the final battle, and once the Lord is destroyed, the game ends.

To create the preceding flow in the game, you must carefully lay out scripts that
take control whenever the player speaks to certain characters, enters a specific area
on the map, or enters a level. (Aspects that trigger the script are described in the
earlier section “Developing the Scripts.”)

Most of the scripts are easy to understand. There are the map triggers that trans-
port the player to another map whenever the player tries to exit the current map.
Clicking a character triggers another script. The more ingenious uses of scripts are
those for checking whether a route point has been reached.

For example, at the start of the game, the scene1.mls script is executed. The
player’s type changes to an NPC and a route is assigned. This forces the player to
walk into the village, and once he reaches the end of the assigned route, a new
script takes over that adds the monster to the level. The monster then follows a
route. When the monster finishes, another script takes over, displaying dialogue
between the player and the monster. When the dialogue is over, the player once
again changes into a PC character and combat begins.

At the end of combat in the village, the player walks to the center of town, trigger-
ing a script that teleports the player back into the town—at which time, another
portion of the scene1.mls script runs adding the villagers to the town. The same style
of scripting that processes scripts based on characters’ routes is used in the ground
level of the tower, where the demon runs to inform his master of the player’s arrival.

The remaining scripts randomly add monsters to the maps, sometimes based on
certain script flags. If the player kills Granite, for example, a flag is set that informs
further scripts not to add Granite back in the level when the character enters the
tower ledge map.

Using flags is perfectly demonstrated in The Tower —be sure to check out every
script file in use to get an understanding of the flags in use. Again, you can find the
game’s scripts on this book’s CD-ROM.

Programming
the Sample Game
The game design is relatively simple. The majority of the work is assembling all the
pieces so that they work together. Imagine a game split into its major components,

928 20. Putting Together a Full Game

TEAMFL
Y

Team-Fly®

much as illustrated in Figure 20.7. If you’ve read the book sequentially, you learned
how to deal with the components of your game in earlier chapters. Now, you just
need to amass those components into a useable form.

Throughout this book, I separated each game component and did not intermix
them from chapter to chapter (with the exception of characters, which depend on a
few components from various chapters). I didn’t want you to be dependent on each
and every component working together. In this way, you can pick the components
that suit the needs for your project and apply what you learn quickly and easily.

Finally, in this chapter, you discover how easy it is to take all the separate compo-
nents and paste them together to form a complete game. With the game’s design,
which is outlined in the earlier section “Designing the Sample Game” under your
belt, you can focus on the programming side of creating the sample game.

Table 20.4 describes the components used in The Tower and the chapters in which
those components are developed.

The sample game project (\BookCode\Chap20\Game\) consists of the following
files, which represent the gaming components in Table 20.4.

■ Core_Graphics.h, Core_Graphics.cpp, Core_Input.h, Core_Input.cpp,
Core_Sound.h, Core_Sound.cpp, Core_System.h, Core_System.cpp, and
Core_Global.h. These files compose the Graphics Core.

■ Frustum.h, Frustum.cpp, Window.h, and Window.cpp. These files represent
the viewing frustum and text viewing window objects.

■ Script.h, Script.cpp, Game_Script.h, and Game_Script.cpp. The MLS system
and derived processor class objects are in these files.

■ Charics.h and Charics.cpp. The character inventory control system is in this
duo of files.

929Programming the Sample Game

Maps Items Game
Core

Characters Controllers Scripts

Figure 20.7

Your game project is split into
pieces, much like a puzzle. Each
piece has its own purpose, and
all pieces must be in place in order
to create a full game.

■ Chars.h, Chars.cpp, Game_Chars.h, and Game_Chars.cpp. These four files
hold the character controller and derived character controller code for the
sample game.

■ Spell.h, Spell.cpp, Game_Spell.h, and Game_Spell.cpp. These four files con-
tain the spell controller and derived spell controller class.

■ Barrier.h, Barrier.cpp, Trigger.h, and Trigger.cpp. Barriers and triggers are
handled through these files.

■ MCL.h, MIL.h, and MSL.h. These are the master character, item, and spell
list include files.

■ WinMain.h and WinMain.cpp. These are the main application files that con-
tain the application class code.

Don’t be overwhelmed by the number of files in use here. You become familiar
with the majority of the files throughout the book. To better understand how the

930 20. Putting Together a Full Game

Table 20.4 The Game Components

Component Description

Game Core Except for the Network Core, every compo-
nent of the Game Core is in use. Specifically,
those components are the Graphics Core,
System Core, and Input Core.The entire Game
Core is outlined in Chapter 10,“Creating the
Game Core.”

Frustum and text windows A viewing frustum component from Chapter 12,
“Creating 3-D Graphics Engines,” is used to clip
unseen objects before they are rendered.Also,
the text window class from Chapter 16 is used
to display dialogue and other text in the game.

Mixed 2-D/3-D graphics engine The same graphics engine developed in Chapter
13.This engine allows you to render 3-D
meshes onto a pre-rendered 2-D backdrop.

Script and script controller The Mad Lib Script system developed in
Chapter 14 is used to develop the game’s
scripts.A script controller class from Chapter
16 is used to load and process those scripts.

files all work together, however, take them one at a time, starting with the main
application class.

Structuring the Application
The main application is relatively small (if you can call just under 1,500 lines of
code small). It has the job of initializing all the required components and tracking
the game state (that’s right, state-based processing is even used here).

First, you declare the application class. Although the class is incomplete at this
point, throughout the rest of this chapter, the pieces fall into place, and the appli-
cation class becomes complete. Now, check out the sections of the application class
that set up the class data and initialize the game system:

class cApp : public cApplication
{

931Programming the Sample Game

Table 20.4 (continued)

Component Description

Items and inventory A master item list combined with a character
inventory control system, both from Chapter
15,“Defining and Using Objects.”

Characters and character controller A complete character controller (with support-
ing master character list), as seen in Chapter
16, is used to control and render characters
in the game.

Spells and spell controller The spell controller from Chapter 16 is used to
manage and display spells.The master spell list
(also covered in Chapter 16) is used to define
the spells in the game.

Barriers and triggers Barriers to block movement and triggers that
execute scripts when touched, both systems are
discussed in Chapter 17,“Working with Maps
and Levels.”

friend class cSpells;
friend class cChars;
friend class cGameScript;

The application class begins by setting three friend class references. Those three
classes, cSpells, cChars, and cGameScript, are the derived controllers for the spells,
characters, and scripts, respectively. Each
of those classes need special access to
the application class, so you can make
them friends.

The next portion of the cApp class
declares a list of Game Core specific
objects, all of which are private to the
cApp class:

private:
// Graphics device, camera, and font
cGraphics m_Graphics;
cCamera m_Camera;
cFont m_Font;

// Input system and devices
cInput m_Input;
cInputDevice m_Keyboard;
cInputDevice m_Mouse;

// Sound system, sound and music channels, and sound data
cSound m_Sound;
cSoundChannel m_SoundChannel;
cMusicChannel m_MusicChannel;
cSoundData m_SoundData;

From the Graphics Core, you can see the use of the graphics, font, and camera
objects. For input, there’s the input system object, plus a device for each the key-
board and mouse. Rounding off the lot are objects for using the sound system, a
single sound and music channel, and a sound data object for loading sounds.

A small bitmap stores the graphics used to display the player’s charge bar (the
amount of charge built up for attacking). You store this bitmap using a texture
object. Following that, you include three text window objects to display various
dialogue and screen text:

932 20. Putting Together a Full Game

NOTE
In Chapter 4,“Starting with C++,”
you read about using friend classes.
When one class declares another
one as a friend class, that friend
class gains unrestricted access to
the declaring class’s data.

// The options bitmap texture image
cTexture m_Options;

// Text windows
cWindow m_Stats;
cWindow m_Window;
cWindow m_Header;

At this point in the application class declaration, you define a couple of miscella-
neous private functions:

BOOL WinGame(); // Process win-game scenario

// Get the character where mouse is pointed
sCharacter *GetCharacterAt(long XPos, long YPos);

The WinGame function is called whenever a script encounters the win-game action.
This action triggers the end of game, which returns play back to the main menu.
GetCharacterAt is the function (discussed in Chapter 18, “Creating Combat
Sequences”) that determines which character a user clicks with the mouse.

Completing cApp are the class constructor and the overridden Init, Shutdown, and
Frame functions, all of which you declare with public accessibility:

public:
cApp();

// Overridden functions
BOOL Init();
BOOL Shutdown();
BOOL Frame();

};

At this point, the private variables are nothing without supporting functions. The
functions you want to concentrate on now are the four public functions—the cApp
class constructor, Init, Shutdown, and Frame.

The cApp Constructor
You generally use the constructor for the application class to define the application
window’s class, style, size, class name, and application name, and the same applies
here. The constructor sets define only the width and height of the window, the
style of the window, the class name, and application title:

cApp::cApp()
{

933Programming the Sample Game

m_Width = 640;
m_Height = 480;
m_Style = WS_BORDER | WS_CAPTION | \

WS_MINIMIZEBOX | WS_SYSMENU;
strcpy(m_Class, “GameClass”);
strcpy(m_Caption, “The Tower by Jim Adams”);

}

The Application Init Function
As the starting point of the game, the Init function initializes the system (including
the graphics, sound, and input systems), sets up the character and spell controllers,
loads the master item list, pushes the main menu state, and carries out a few mis-
cellaneous functions. Take a look at the Init function piece by piece to see what’s
going on:

BOOL cApp::Init()
{

// Initialize the graphics device
m_Graphics.Init();

// Determine to use fullscreen mode or not
#ifdef FULLSCREENMODE

m_Graphics.SetMode(GethWnd(), FALSE, TRUE, 640, 480);
#else

m_Graphics.SetMode(GethWnd(), TRUE, TRUE);
#endif

// Set perspective
m_Graphics.SetPerspective(0.6021124f,1.33333f,1.0f,20000.0f);

// Enable cursor
ShowMouse(TRUE);

// Create a font
m_Font.Create(&m_Graphics, “Arial”, 16, TRUE);

Graphics is the first order of business here—you initialize the graphics system and
set the video mode. A macro definition at the beginning of the WinMain.cpp file
determines whether to use a full-screen mode—just comment out the line to use a
windowed mode. You then set the perspective to match that of the 3-D modeler
used to render the backdrops. Finally, you create a font to use throughout the

934 20. Putting Together a Full Game

game and display the mouse cursor.

Next, you initialize the input system and create two device interfaces—one for the
keyboard and the other for the mouse:

// Initialize input and input devices
m_Input.Init(GethWnd(), GethInst());
m_Keyboard.Create(&m_Input, KEYBOARD);
m_Mouse.Create(&m_Input, MOUSE, TRUE);

Rounding out the Graphics Core initialization code, you initialize the sound system
and create the sound and music channels:

// Initialize the sound system and channels
m_Sound.Init(GethWnd(), 22050, 1, 16);
m_SoundChannel.Create(&m_Sound, 22050, 1, 16);
m_MusicChannel.Create(&m_Sound);

Now, you initialize the game-specific data and interfaces. You load the master item
list from the CD-ROM (located in \BookCode\Chap20\Data) and initialize the char-
acter controller and spell controllers:

// Load the master item list
FILE *fp;
for(long i=0;i<1024;i++)

ZeroMemory(&m_MIL[i], sizeof(sItem));
if((fp=fopen(“..\\Data\\Game.mil”, “rb”)) != NULL) {

for(i=0;i<1024;i++)
fread(&m_MIL[i], 1, sizeof(sItem), fp);

fclose(fp);
}

// Initialize the character controller
m_CharController.SetData(this);
m_CharController.Init(&m_Graphics, &m_Font, \

“..\\Data\\Game.mcl”, (sItem*)&m_MIL, \
m_SpellController.GetSpell(0), \
sizeof(g_CharMeshNames)/sizeof(char*), g_CharMeshNames, \
“..\\Data\\”, “..\\Data\\”, \
sizeof(g_CharAnimations) / sizeof(sCharAnimationInfo), \
(sCharAnimationInfo*)&g_CharAnimations, \
&m_SpellController);

935Programming the Sample Game

// Initialize the spell controller
m_SpellController.SetData(this);
m_SpellController.Init(&m_Graphics, \

“..\\Data\\Game.msl”, \
sizeof(g_SpellMeshNames)/sizeof(char*),g_SpellMeshNames, \
“..\\Data\\”, &m_CharController);

The controllers have a lot of arguments in their initialization calls (refer to Chapter
16 to see just what each argument does).

You’re about halfway through the Init function. At this point, you load a bitmap
that contains the graphics that display the player’s charge meter, and you create
and position the text windows:

// Get the options bitmap
m_Options.Load(&m_Graphics, “..\\Data\\Options.bmp”);

// Create the main, header, and stats windows
m_Window.Create(&m_Graphics, &m_Font);
m_Header.Create(&m_Graphics, &m_Font);
m_Stats.Create(&m_Graphics, &m_Font);

// Position all windows
m_Window.Move(2,2, 636, 476);
m_Header.Move(2,2,128,32,-1,-1,D3DCOLOR_RGBA(128,16,16,255));
m_Stats.Move(2,2,128,48);

Rounding off the Init function, you make a call to the derived script class that tells
the script which application class interface to use. Following that, you push the first
of the game states, the main menu, onto the state stack:

// Set script application pointer
m_Script.SetData(this);

// Push the main menu state, setting menu options first
g_MenuOptions = MENU_LOAD;
m_StateManager.Push(MenuFrame, this);

return TRUE;
}

The Shutdown Function
What good is the Init function without a matching Shutdown function to shut down

936 20. Putting Together a Full Game

and free used resources in the game? The cApp::Shutdown function does just that; it
clears the controllers, frees the states from the state stack, releases the script, and
so much more:

BOOL cApp::Shutdown()
{

// Pop all states
m_StateManager.PopAll(this);

// Free controllers
m_CharController.Free();
m_SpellController.Free();

// Free script object
m_Script.Free();

// Free level data
FreeLevel();

// Free the options texture
m_Options.Free();

// Free the text windows
m_Window.Free();
m_Header.Free();
m_Stats.Free();

// Shut down sound
m_MusicChannel.Free();
m_SoundChannel.Free();
m_Sound.Shutdown();

// Shut down input
m_Keyboard.Free();
m_Mouse.Free();
m_Input.Shutdown();

// Shut down graphics
m_Font.Free();
m_Graphics.Shutdown();

937Programming the Sample Game

return TRUE;
}

Processing Frames
with the Frame Function
For every frame that the game is updated, the application class’s Frame function is
called. To limit how often the game actually updates, however, a timer is maintained
that limits further frame processing to 30 frames a second. This process of limiting
the updates takes up the first half of the Frame function, as shown here:

BOOL cApp::Frame()
{

static DWORD UpdateTimer = timeGetTime();

// Limit all frame updates to 30 fps
if(timeGetTime() < UpdateTimer + 33)

return TRUE;
UpdateTimer = timeGetTime();

As I mentioned, the game is updated 30 times a second. Each frame that the game
is updated, the keyboard and mouse’s states are read in, and the current state is
processed:

// Acquire input devices and read input for all states
m_Keyboard.Acquire(TRUE); // Read keyboard
m_Keyboard.Read();
m_Mouse.Acquire(TRUE); // Read mouse
m_Mouse.Read();

// Process state, returning result
return m_StateManager.Process(this);

}

Chapter 5, “Programming with Windows and Application Basics,” covers how state-
based processing works. As states are inserted into the state stack, the uppermost
state executes when cStateManager::Process is called, as shown in the Frame function.

Using State-Based Processing
I developed the sample game to use state-based processing in order to effectively
use the application class’s processing structure. The game uses these four states:

938 20. Putting Together a Full Game

TEAMFL
Y

Team-Fly®

■ Main menu state. When executed, the game displays a main menu giving the
player the option to start a new game, load a game, return to or save a game
in progress, or to quit the game.

■ In-game state. This state is used most often because it takes care of updating
and rendering each frame of the game.

■ Character status window state. Whenever the player right-clicks during game-
play, he accesses the character status window. Here, the player can use, equip,
or unequip items just by clicking them, as well as check on the character’s
statistics and known spells.

■ Barter window state. When the player talks to the villager, the barter window
opens in order to buy items. Click items to buy or press Esc or the right
mouse button to exit.

You use a state manager object (refer to Chapter 5) to control the processing of these
four states. Each state has an associated function that you declare in the cApp class:

// State-based processing manager and state functions
cStateManager m_StateManager;
static void MenuFrame(void *Ptr, long Purpose);
static void GameFrame(void *Ptr, long Purpose);
static void StatusFrame(void *Ptr, long Purpose);
static void BarterFrame(void *Ptr, long Purpose);

The four states control processing the user’s input and rendering the results to the
screen. The code for each state function is a little too much to list here, so rather
than show each function’s code, I will focus on the most important state function,
GameFrame (which is called at every frame to update the player and monsters and to
render the scene):

void cApp::GameFrame(void *Ptr, long
Purpose)
{

cApp *App = (cApp*)Ptr;
sCharacter *CharPtr;
BOOL MonstersInLevel;
long TriggerNum;
char Filename[MAX_PATH],

Stats[256];
float MaxY;

// Only process frame states

939Programming the Sample Game

NOTE
In Chapter 5, you read about using
calling purposes.When using state-
based functions, a calling purpose
informs the state function about
why it was called, whether to initial-
ize data, process a frame, or shut
down and release resources.

if(Purpose != FRAMEPURPOSE)
return;

Because this is a frame state, you can call the GameFrame function for one of three
purposes—the state being initialized, the frame being processed, and the state
being shut down. The GameFrame function uses only the update-frame purpose, so
processing is returned if any other calling purpose is used.

At the beginning of the GameFrame function is a quick check to see whether the Esc
key has been pressed. If so, the main menu state is pushed onto the stack:

// Quit to menu screen if ESCAPE pressed
if(App->m_Keyboard.GetKeyState(KEY_ESC) == TRUE) {

// Setup menu options
g_MenuOptions = MENU_BACK | MENU_SAVE | MENU_LOAD;

In order for the main menu to know which options to display, you declare a global
variable at the beginning of the application. This global variable, g_MenuOptions, is
bit-encoded and uses the following macros to define them—MENU_BACK to display the
back to game option, MENU_SAVE to display the save game option, and MENU_LOAD to dis-
play the load game option. Once you define the options, the state is pushed:

// Push main menu state
App->m_StateManager.Push(App->MenuFrame, App);

return;
}

// If teleporting, then handle that first and return
if(App->m_TeleportMap != -1) {

// Free level and process a new one
App->FreeLevel();
App->LoadLevel(App->m_TeleportMap);

App->m_TeleportMap = -1; // Clear out teleport map #

return; // No more processing this frame
}

Whenever the player needs to move from one map to another (such as calling the
SetupTeleport function with the map number and coordinates to which to move the
player), you set a global variable called m_TeleportMap to the correct map number for
teleporting. The preceding bit of code checks each frame to see whether that vari-

940 20. Putting Together a Full Game

able has been set and teleports the player to the appropriate map.

Now comes the real bulk of the GameFrame function. At the start of the following
block of code, you set a flag that records whether any monsters are in the map is
cleared. From there, scan the entire list of loaded characters. If you find a monster
character in the list, set the MonstersInLevel flag. Also, for each monster in the map,
change its AI settings based on its action charge. For charges less than 70, set the
monster’s AI to wander (to let the monster wander around the map). If the charge
is over 70, set the monster’s AI type to follow the player (so that the monster is
attempting to attack the player):

// Mark no monsters in level
MonstersInLevel = FALSE;

// See if any characters are in level. If any monsters,
// flag as such and change their AI to wander if their
// charge is less than 70, follow AI otherwise.
// Also, process whenever a character reaches a route point.
CharPtr = App->m_CharController.GetParentCharacter();
while(CharPtr != NULL) {

// Alter monster’s AI based on charge
if(CharPtr->Type == CHAR_MONSTER) {

MonstersInLevel = TRUE;

// Change AI based on charge
if(CharPtr->Charge >= 70.0f) {

CharPtr->AI = CHAR_FOLLOW;
CharPtr->TargetChar = g_PCChar;
CharPtr->Distance = 0.0f;

} else {
CharPtr->AI = CHAR_WANDER;

}
}

If, on the other hand, an NPC is found on the map and that character has its AI set
to follow a route, a separate function is called to determine whether that character
has reached the last route point assigned. If the last point on the route has been
touched, that character’s end-of-route script is executed:

// Check if an NPC character has reached last route point
if(CharPtr->Type==CHAR_NPC && CharPtr->AI==CHAR_ROUTE) {

941Programming the Sample Game

// Was last point reached?
if(App->LastPointReached(CharPtr) == TRUE) {

// Process the route point script for character.
sprintf(Filename,”..\\Data\\EOR%lu.mls”, CharPtr->ID);
App->m_Script.Execute(Filename);

// Don’t process any more this frame
return;

}
}

// Go to next character
CharPtr = CharPtr->Next;

}

Once you are past the scan-for-characters phase of GameFrame, you compare the
MonstersInLevel flag to the same flag that was stored from the last frame. If they do
not match, either combat has started or ended, and the appropriate script is called:

// Handle start of combat stuff
if(MonstersInLevel==TRUE && App->m_MonstersLastFrame==FALSE)

App->StartOfCombat();

// Handle end of combat stuff if combat over
if(MonstersInLevel==FALSE && App->m_MonstersLastFrame==TRUE)

App->EndOfCombat();

// Remember if monsters were in this frame
// And reset player’s charge to full if no monsters
if((App->m_MonstersLastFrame = MonstersInLevel) == FALSE)

g_PCChar->Charge = 100.0f;

// Update controllers
App->m_CharController.Update(33);
App->m_SpellController.Update(33);

Next comes the point at which all characters and spells are updated. Because the
cApp::Frame function is locked to update the game 30 times a second, all controllers
use an update time of 33 milliseconds. Notice that before being updated, the
player’s charge meter is set to full if no monsters are in the level.

942 20. Putting Together a Full Game

After the characters are updated, the trigger object comes into play. If the player
walks into an active trigger, the appropriate script is executed:

// Check for triggers and execute script
if((TriggerNum = App->m_Trigger.GetTrigger(g_PCChar->XPos, \

g_PCChar->YPos, \
g_PCChar->ZPos))) {

sprintf(Filename, “..\\Data\\Trig%lu.mls”, TriggerNum);
App->m_Script.Execute(Filename);

return; // Don’t process any more this frame
}

From this point on, you render the scene by calling the RenderFrame function from
the application class. The RenderFrame function renders only the backdrop and
character in the map—it’s up to the rest of this function’s code to draw the status
window and charge meter:

// Position the camera for the scene
App->m_Graphics.SetCamera(&App->m_Camera);

// Render everything
App->m_Graphics.ClearZBuffer();
if(App->m_Graphics.BeginScene() == TRUE) {

App->RenderFrame(33);

Again, you first render the scene by using the RenderFrame function, which takes as
an argument the amount of time (in milliseconds) that the animations should be
updated. You then draw the player’s charge meter, but only if monsters are present
on the map (as determined by the MonstersInLevel flag):

// Render the player’s charge bar, but only during combat
if(MonstersInLevel == TRUE) {

D3DXMATRIX matWorld, matView, matProj;
D3DVIEWPORT8 vpScreen;
D3DXVECTOR3 vecPos;

// Get the world, projection, and view transformations
D3DXMatrixIdentity(&matWorld);
App->m_Graphics.GetDeviceCOM()->GetTransform(\

D3DTS_VIEW, &matView);
App->m_Graphics.GetDeviceCOM()->GetTransform(\

D3DTS_PROJECTION, &matProj);

943Programming the Sample Game

// Get viewport
App->m_Graphics.GetDeviceCOM()->GetViewport(&vpScreen);
// Offset charge bar by character’s height
g_PCChar->Object.GetBounds(NULL,NULL,NULL, \

NULL,&MaxY,NULL,NULL);

// Project coordinates to screen
D3DXVec3Project(&vecPos, &D3DXVECTOR3(\

g_PCChar->XPos, \
g_PCChar->YPos + MaxY, \
g_PCChar->ZPos), \

&vpScreen, &matProj, &matView, &matWorld);

// move 4 pixels right before displaying
vecPos.x += 8.0f;

There are numerous matrix- and vector-related functions at work here—you use
them to calculate the screen coordinates in which to draw the charge meter. To
determine where to draw the meter, using the preceding D3DXVec3Project function,
calculate the 2-D coordinates based on the 3-D world space coordinates of the player.

Now, you disable the Z-Buffer and draw the charge meter using the m_Option texture
object as the source for the charge meter bitmap:

// Display charge bar below player (flash when full)
App->m_Graphics.EnableZBuffer(FALSE);
App->m_Graphics.BeginSprite();
App->m_Options.Blit((long)vecPos.x,(long)vecPos.y, \

0,0,16,4);
if(g_PCChar->Charge >= 100.0f) {

if(timeGetTime() & 1)
App->m_Options.Blit((long)vecPos.x,(long)vecPos.y, \

0,4,16,4);
} else {

App->m_Options.Blit((long)vecPos.x,(long)vecPos.y, \
0,4,(long)(g_PCChar->Charge/100.0f*16.0f),4);

}

App->m_Graphics.EndSprite();
}

944 20. Putting Together a Full Game

During the game-play, you display the player’s statistics at the upper-left corner of
the screen—this includes the health and mana points, at their current levels and at
their maximum level:

// Draw the player’s stats at top-left
sprintf(Stats, “%ld / %ld HP\r\n%ld / %ld MP”, \

g_PCChar->HealthPoints, g_PCChar->Def.HealthPoints, \
g_PCChar->ManaPoints, g_PCChar->Def.ManaPoints);

App->m_Stats.Render(Stats);

App->m_Graphics.EndScene();
}
App->m_Graphics.Display();

}

The GameFrame function ends up by calling EndScene and displaying the frame to the
user. The remaining state frame functions are basic in nature, so I briefly explain
them here, leaving it up to you to explore them as you work with the sample game
on the CD-ROM.

You use the MenuFrame function to display the main menu, which, in all its glory, has
a spinning texture-mapped polygon overlaid with the main menu options. The pur-
pose of the MenuFrame function is to track which option is being selected and to han-
dle the appropriate functions.

You use the StatusFrame function to display the player’s statistics (health points,
mana points, known spells, and so on) when the player’s status window is displayed.
This function handles equipping items and checking on the player’s statistics. The
last of the state functions, BarterFrame displays the store clerk’s wares and allows the
player to click-and-buy those items for sale.

Dealing with Maps
The sample game is divided into five maps (scenes). Each scene uses six bitmaps,
each of which is loaded as textures that are drawn to the display for each frame.
The game also uses an underlying simplified mesh for each scene. These simplified
meshes (as explained in Chapter 13) aid in properly drawing the 3-D characters
that inhabit each scene.

To load and use the six textures, declare an array of cTexture objects (to contain the
six bitmaps), a cMesh object (that contains the scene’s simplified mesh), and a
cObject object (that is used to render the simplified mesh):

945Programming the Sample Game

long m_SceneNum; // The current scene number, 1-5
cTexture m_SceneTextures[6]; // The six scene textures
cMesh m_SceneMesh; // The simplified scene mesh
cObject m_SceneObject; // The simplified scene object

A total of four functions are contained within the application class that is used
to work with scenes. These functions are LoadLevel, FreeLevel, GetHeightBelow, and
CheckIntersect. You use the GetHeightBelow and CheckIntersect functions, which are
presented in Chapter 12, to check for mesh-to-mesh intersections. In the case of
the game, those mesh intersections are used to determine when characters inter-
sect with the simplified scene mesh.

The LoadLevel function loads the six scene textures and the simplified mesh and
executes the script associated with loading the scene. An external file, which you
see in just a moment, stores the position of the camera within each scene. Here is
the code for LoadLevel:

BOOL cApp::LoadLevel(long Num)
{

char Filename[MAX_PATH];
FILE *fp;
long i;
float XPos, YPos, ZPos, XAt, YAt, ZAt;

FreeLevel(); // Free a prior level

// Record scene number
m_SceneNum = Num;

The previously loaded level is now freed, and the new scene number is recorded.
Now, you load the scene textures and simplified mesh:

// Load the backdrop textures
for(i=0;i<6;i++) {

sprintf(Filename, “..\\Data\\Scene%u%u.bmp”, Num, i+1);
if(m_SceneTextures[i].Load(&m_Graphics, Filename) == FALSE)

return FALSE;
}

// Load the scene mesh and configure object
sprintf(Filename, “..\\Data\\Scene%u.x”, Num);
if(m_SceneMesh.Load(&m_Graphics, Filename) == FALSE)

return FALSE;

946 20. Putting Together a Full Game

m_SceneObject.Create(&m_Graphics, &m_SceneMesh);

After you load the scene’s mesh and create the scene’s object, you are ready to
determine the placement of the camera used to render the 3-D graphics. You place
the camera in each scene by first creating a text file for each scene. Name these
files cam1.txt, cam2.txt, cam3.txt, cam4.txt, and cam5.txt—each named according
to its respective scene number (scenes being numbered 1 through 5).

Place a scene’s camera by opening the appropriate text file and reading in six num-
bers, each of which is used to determine the camera’s orientation in the scene. The
first three numbers represent the position of the camera in the world, and the last
three numbers are the coordinates to which the camera is pointed.

After you load the six numbers and orient the camera, call the cGraphics::SetCamera
function to inform Direct3D of the new view transformation being used by the camera:

// Load the camera data
sprintf(Filename, “..\\Data\\Cam%u.txt”, Num);
if((fp=fopen(Filename, “rb”))==NULL)

return FALSE;
XPos = GetNextFloat(fp);
YPos = GetNextFloat(fp);
ZPos = GetNextFloat(fp);
XAt = GetNextFloat(fp);
YAt = GetNextFloat(fp);
ZAt = GetNextFloat(fp);
fclose(fp);
m_Camera.Point(XPos, YPos, ZPos, XAt, YAt, ZAt);

// Position the camera for the scene
m_Graphics.SetCamera(&m_Camera);

After you position the camera in the file, the class clears a flag that determines
whether monsters are currently in the scene (for combat processing) and then
executes the script associated with the scene:

// Set no monsters in last frame
m_MonstersLastFrame = FALSE;

// Execute the script for loading this scene
sprintf(Filename, “..\\Data\\Scene%lu.mls”, Num);
m_Script.Execute(Filename);

947Programming the Sample Game

return TRUE;
}

There’s not much to do in LoadLevel as you can see. The FreeLevel function is rather
trouble-free as well. It frees the scene’s textures and simplified mesh, removes every
character from the character controller (except for the player, that is), and clears
all spells currently being processed. Here is the complete FreeLevel function code
(sans comments because the function gets right to the point):

BOOL cApp::FreeLevel()
{

sCharacter *CharPtr, *NextChar;
long i;

// Free scene mesh and textures
m_SceneMesh.Free();
m_SceneObject.Free();
for(i=0;i<6;i++)

m_SceneTextures[i].Free();

// Free triggers and barriers
m_Barrier.Free();
m_Trigger.Free();

// Free all non-pc characters
if((CharPtr=m_CharController.GetParentCharacter()) != NULL) {

while(CharPtr != NULL) {
// Remember next character
NextChar = CharPtr->Next;

// Remove non-PC character
if(CharPtr->Type != CHAR_PC)

m_CharController.Remove(CharPtr);

// Go to next character
CharPtr = NextChar;

}
}

948 20. Putting Together a Full Game

TEAMFL
Y

Team-Fly®

// Free all spell effects
m_SpellController.Free();

return TRUE;
}

Using Barriers and Triggers
Both barriers and triggers are used in The Tower. Those components remain exactly
as shown in Chapter 17, so you might want to refer to that chapter for details on
using them. Only scripts have the ability to add barriers and triggers in the game.

You declare the barrier and trigger objects in the cApp class declaration as follows:

cTrigger m_Trigger;
cBarrier m_Barrier;

Again, nothing has changed in these interfaces, so now you can focus on how to
control the characters in the game.

Controlling Characters
The characters are the heart and soul of your
game. The character and spell controllers
developed in Chapter 16 are perfect for the
sample game in this chapter.
If you read Chapter 16, you probably recall
that the controllers must be derived,
so let’s make that the first order of business
here.

You derive the character controller in order to
control the player of the game and to collision-check a character’s movements
against the maps. For The Tower, you can use a derived character controller, first
presented in Chapter 16, to manage all your game’s characters. The first step to
using the character controller in a game is to derive your own class from
cCharacterController:

class cChars : public cCharacterController
{

private:
cApp *m_App;

949Programming the Sample Game

NOTE
You store the derived charac-
ter controller class in the pair
of files entitled Game_Chars.h
and Game_Chars.cpp.

BOOL PCUpdate(sCharacter *Character, long Elapsed, \
float *XMove, float *YMove, float *ZMove);

BOOL ValidateMove(sCharacter *Character, \
float *XMove, float *YMove, float *ZMove);

BOOL Experience(sCharacter *Character, long Amount);

BOOL PCTeleport(sCharacter *Character, sSpell *Spell);

BOOL ActionSound(sCharacter *Character);

BOOL DropMoney(float XPos, float YPos, float ZPos, \
long Quantity);

BOOL DropItem(float XPos, float YPos, float ZPos, \
long Item, long Quantity);

public:
BOOL SetData(cApp *App) { m_App = App; return TRUE; }

};

The cChars class comes with only one public function, SetData. You use the SetData
function to set the application class pointer in the cChars class instance. In addition,
the cChars class overrides only the functions used to move the player and to validate
all character movements. The remaining functions come into play when the player
gains experience points from combat or teleports the character with a spell, when
the character controller plays a sound, when a monster drops some money, or
when a monster drops an item after being killed.

Because the derived character controller class requires access to the application
class, you must precede all calls to the cChars class with a call to the SetData function.
The SetData function takes one argument—the pointer to the application class.

The other functions, such as Experience, DropMoney, and DropItem tell the game engine
that a monster was killed and that the game needs to reward the player with experi-
ence, money, and items dropped from a dying monster. These rewards are pushed
aside until combat ends, at which point, the application class’s EndOfCombat function
processes them.

The PCUpdate is the main function of interest here. It determines which keys the
player is pressing and what mouse button is being pressed. Now, take this function
apart to see what makes it tick:

950 20. Putting Together a Full Game

BOOL cChars::PCUpdate(sCharacter *Character, long Elapsed, \
float *XMove, float *YMove, float *ZMove)

{
float Speed;
sCharacter *TargetChar;
float XDiff, YDiff, ZDiff;
float Dist, Range;
char Filename[MAX_PATH];
long Spell = -1;

The PCUpdate function starts off with the prototype and a few variable declarations. The
PCUpdate function uses five arguments—the pointer to the character to update, the
elapsed time (in milliseconds) since the last update, and three pointers to the vari-
ables that are to be filled with the directional movements in each axis of the character.

PCUpdate starts by first determining whether an update is in order (based on
whether any time has elapsed) and continues by determining which keys (if any)
are pressed on the keyboard. If the up arrow key is pressed, the character moves
forward, whereas if the left or right arrow keys are pressed, the character’s direc-
tion is modified, as shown here:

// Don’t update if no elapsed time
if(!Elapsed)

return TRUE;

// Rotate character
if(m_App->m_Keyboard.GetKeyState(KEY_LEFT) == TRUE) {

Character->Direction -= (float)Elapsed / 1000.0f * 4.0f;
Character->Action = CHAR_MOVE;

}

if(m_App->m_Keyboard.GetKeyState(KEY_RIGHT) == TRUE) {
Character->Direction += (float)Elapsed / 1000.0f * 4.0f;
Character->Action = CHAR_MOVE;

}

if(m_App->m_Keyboard.GetKeyState(KEY_UP) == TRUE) {
Speed = (float)Elapsed / 1000.0f * \

m_App->m_CharController.GetSpeed(Character);
*XMove = (float)sin(Character->Direction) * Speed;
*ZMove = (float)cos(Character->Direction) * Speed;
Character->Action = CHAR_MOVE;

951Programming the Sample Game

}

For each movement that the player performs, such as walking forward or turning
left and right, you need to assign the CHAR_MOVE action to the player’s character.
Notice that even though pressing left or right immediately rotates the player’s char-
acter, the code does not immediately modify the character’s coordinates. Instead,
you store the direction of travel in the XMove and ZMove variables.

You then determine whether the player has clicked the left mouse button. Remember
from the design of the sample game that clicking the left mouse button on a nearby
character either attacks the character (if the character is a monster) or speaks to the
character (if the character is an NPC):

// Process attack/talk action
if(m_App->m_Mouse.GetButtonState(MOUSE_LBUTTON) == TRUE) {

// See which character is being pointed at and make
// sure it’s a monster character.
if((TargetChar = m_App->GetCharacterAt(\

m_App->m_Mouse.GetXPos(), \
m_App->m_Mouse.GetYPos())) != NULL) {

The portion of code just shown calls upon the GetCharacterAt function, which scans
for the character that is positioned under the mouse cursor. If a character is found,
you determine which type of character it is; if it is an NPC, you execute the appro-
priate character’s script:

// Handle talking to NPCs
if(TargetChar->Type == CHAR_NPC) {

// No distance checks, just process their script
sprintf(Filename, “..\\Data\\Char%lu.mls”, \

TargetChar->ID);
m_App->m_Script.Execute(Filename);

return TRUE; // Don’t process anymore
}

On the other hand, if the character clicked is a monster and that monster is within
attack range, you initiate an attack action:

// Handle attacking monsters
if(TargetChar->Type == CHAR_MONSTER) {

// Get distance to target

952 20. Putting Together a Full Game

XDiff = (float)fabs(TargetChar->XPos-Character->XPos);
YDiff = (float)fabs(TargetChar->YPos-Character->YPos);
ZDiff = (float)fabs(TargetChar->ZPos-Character->ZPos);
Dist = XDiff*XDiff + YDiff*YDiff + ZDiff*ZDiff;

// Offset dist by target’s radius
Range = GetXZRadius(TargetChar);
Dist -= (Range * Range);

// Get maximum attack range
Range = GetXZRadius(Character);
Range += Character->Def.Range;

// Only perform attack if target in range
if(Dist <= (Range * Range)) {

// Set target/victim info
TargetChar->Attacker = Character;
Character->Victim = TargetChar;

// Face victim
XDiff = TargetChar->XPos - Character->XPos;
ZDiff = TargetChar->ZPos - Character->ZPos;
Character->Direction = (float)atan2(XDiff, ZDiff);

// Set action
m_App->m_CharController.SetAction(Character, \

CHAR_ATTACK);
}

}
}

}

Coming up to the end of the PCUpdate function, the controller needs to determine
whether a spell has been cast at a nearby character. In the game, positioning the
mouse cursor over a character and pressing one of the number keys (from 1 through
5) casts a spell:

// Cast magic spell based on # pressed
if(m_App->m_Keyboard.GetKeyState(KEY_1) == TRUE) {

m_App->m_Keyboard.SetLock(KEY_1, TRUE);
Spell = 0; // Fireball

953Programming the Sample Game

}
if(m_App->m_Keyboard.GetKeyState(KEY_2) == TRUE) {

m_App->m_Keyboard.SetLock(KEY_2, TRUE);
Spell = 1; // Ice

}
if(m_App->m_Keyboard.GetKeyState(KEY_3) == TRUE) {

m_App->m_Keyboard.SetLock(KEY_3, TRUE);
Spell = 2; // Heal Self

}
if(m_App->m_Keyboard.GetKeyState(KEY_4) == TRUE) {

m_App->m_Keyboard.SetLock(KEY_4, TRUE);
Spell = 3; // Teleport

}
if(m_App->m_Keyboard.GetKeyState(KEY_5) == TRUE) {

m_App->m_Keyboard.SetLock(KEY_5, TRUE);
Spell = 4; // Groundball

}

// Cast spell if commanded
if(Spell != -1) {

If a spell was cast, the controller determines whether the player knows the spell and
has enough mana to cast the spell and whether the target character is in range:

// Only cast if spell known and has enough mana points
if(g_PCChar->Def.MagicSpells[Spell/32]&(1<<(Spell&31)) && \

g_PCChar->ManaPoints >= \
m_App->m_SpellController.GetSpell(Spell)->Cost) {

// See which character is being pointed
if((TargetChar = m_App->GetCharacterAt(\

m_App->m_Mouse.GetXPos(), \
m_App->m_Mouse.GetYPos())) != NULL) {

// Don’t target NPCs
if(TargetChar->Type != CHAR_NPC) {

// Get distance to target
XDiff = (float)fabs(TargetChar->XPos-Character->XPos);
YDiff = (float)fabs(TargetChar->YPos-Character->YPos);
ZDiff = (float)fabs(TargetChar->ZPos-Character->ZPos);

954 20. Putting Together a Full Game

Dist = XDiff*XDiff + YDiff*YDiff + ZDiff*ZDiff;

// Offset dist by target’s radius
Range = GetXZRadius(TargetChar);
Dist -= (Range * Range);

// Get maximum spell range
Range = GetXZRadius(Character);
Range += \

m_App->m_SpellController.GetSpell(Spell)->Distance;

// Only perform spell if target in range
if(Dist <= (Range * Range)) {

At this point, the controller has determined that the spell can be cast. You need
to store the coordinates of the target, the number of the spell being cast, and the
player’s action in the structure pointed to by the Character pointer:

// Set spell data
Character->SpellNum = Spell;
Character->SpellTarget = CHAR_MONSTER;

// Store target coordinates
Character->TargetX = TargetChar->XPos;
Character->TargetY = TargetChar->YPos;
Character->TargetZ = TargetChar->ZPos;

// Clear movement
(*XMove) = (*YMove) = (*ZMove) = 0.0f;

// Perform spell action
SetAction(Character, CHAR_SPELL);

// Face victim
XDiff = TargetChar->XPos - Character->XPos;
ZDiff = TargetChar->ZPos - Character->ZPos;
Character->Direction = (float)atan2(XDiff, ZDiff);

// Set action
m_App->m_CharController.SetAction(Character, \

CHAR_SPELL);
}

955Programming the Sample Game

}
}

}
}

To finish up the player character update, the controller determines whether the
player clicked the right mouse button, which opens the character’s status window
(by pushing the character-status state onto the state stack):

// Enter status frame if right mouse button pressed
if(m_App->m_Mouse.GetButtonState(MOUSE_RBUTTON) == TRUE) {

m_App->m_Mouse.SetLock(MOUSE_RBUTTON, TRUE);
m_App->m_StateManager.Push(m_App-

>StatusFrame, m_App);
}

return TRUE;
}

In order to use the derived character class,
the game instances the cChars class within the cApp declaration:

cChars m_CharController;

With the derived character controller class out of the way, you are ready to derive
the spell controller. But keep your eyes open; this is going to be quick.

class cSpells : public cSpellController
{

private:
cApp *m_App;

public:
BOOL SetData(cApp *App) { m_App = App; return TRUE; }
BOOL SpellSound(long Num);

};

Much like the derived character controller, the derived spell controller has the
SetData function, which tells the controller which application class to access. In
the case of the SpellSound function, you use the application pointer to call the
cApp::PlaySound function.

I hope you didn’t blink because that’s all there is to the derived spell controller!
The only overridden function is the one that plays sounds; the base cSpellController

956 20. Putting Together a Full Game

NOTE
You store the derived spell con-
troller in the files Game_Spells.h
and Game_Spells.cpp.

class handles the rest of the functions. In order to use the derived class in the
game, you declare an instance of it within the application class declaration:

cSpells m_SpellController;

Handling Bartering
Previously you read about how the BarterFrame state is used to render the bartering
scene (see Figure 20.8) in which the player can buy items from a character.

How does that state know what items to sell? The only way the game initiates the
bartering state is when a script triggers it via the Barter-with-Character script action.
That action, in turn, calls cApp::SetupBarter, which configures the information
needed for the BarterFrame function. This information includes the character that is
selling the items, as well as the filename of the character inventory control system
(ICS) item file:

BOOL cApp::SetupBarter(sCharacter *Character, char *ICSFilename)
{

g_BarterChar = Character;
strcpy(g_BarterICS, ICSFilename);
m_StateManager.Push(BarterFrame, this);

957Programming the Sample Game

Figure 20.8

The bartering interface
displays items for sale at
the left and the amount of
money to spend on the item
at the upper-right.

return TRUE;
}

The BarterFrame state function scans the ICS that was loaded, displaying every item
contained with the character’s inventory list on the screen. If the player clicks an
item and the player has the appropriate amount of money, that item is bought.
Once the player finishes dealing with the shopkeeper, the barter state is popped
from the state stack, and game-play returns.

Playing Sounds and Music
Music and other sounds are played during the game. Those game sounds, although
somewhat cheesy (as you can tell, I’m no recording artist!), are played by a call to
PlaySound. The only argument to PlaySound is an index number to an array of sound
files that you declare at the beginning of the application code:

// Global sound effect filenames
#define NUM_SOUNDS 9
char *g_SoundFilenames[NUM_SOUNDS] = {

{ “..\\Data\\Attack1.wav” },
{ “..\\Data\\Attack2.wav” },
{ “..\\Data\\Spell.wav” },
{ “..\\Data\\Roar.wav” },
{ “..\\Data\\Hurt1.wav” },
{ “..\\Data\\Hurt2.wav” },
{ “..\\Data\\Die1.wav” },
{ “..\\Data\\Die2.wav” },
{ “..\\Data\\Beep.wav” }

};

Notice that the number of sound filenames is determined by the NUM_SOUNDS macro.
You must ensure that a sound that doesn’t exist isn’t trying to be played—because
trying to play a non-existent sound would crash the system. To play one of the valid
sounds, you use the following function:

BOOL cApp::PlaySound(long Num)
{

if(Num >=0 && Num < NUM_SOUNDS) {
m_SoundData.Free();

if(m_SoundData.LoadWAV(g_SoundFilenames[Num]) == TRUE)
m_SoundChannel.Play(&m_SoundData);

958 20. Putting Together a Full Game

TEAMFL
Y

Team-Fly®

return TRUE;
}

return FALSE;
}

The PlaySound function needs to load the sound to play, using the cSoundData object.
From there, the sound is played from memory. In much the same way that you call
the PlaySound function, you can play different songs using the PlayMusic function.

The PlayMusic function also takes an index number into an array of song filenames,
which you declare as follows:

char *g_MusicFilenames[] = {
{ “..\\Data\\Cathedral_Sunrise.mid” },
{ “..\\Data\\Distant_tribe.mid” },
{ “..\\Data\\Escape.mid” },
{ “..\\Data\\Jungle1.mid” },
{ “..\\Data\\Magic_Harp.mid” },
{ “..\\Data\\Medi_Strings.mid” },
{ “..\\Data\\Medi_techno.mid” },
{ “..\\Data\\Song_of_the_sea.mid” },
{ “..\\Data\\Storm.mid” }

};

No need for tracking the number of songs here (we’re living on the wild side!), so
you can jump right into the PlayMusic function:

BOOL cApp::PlayMusic(long Num)
{

// Don’t bother changing song if same already playing
if(g_CurrentMusic == Num)

return TRUE;

Before continuing, you want to check whether a song is currently playing. A global
variable keeps track of which song was last played, and if that song is still playing,
you don’t need to start playing the same song again (the current song continues to
play). If a new song is to be played, fade out the volume, free the current song,
load the new song, and start playing the music playing:

// Stop and free current song
m_MusicChannel.Stop();
m_MusicChannel.Free();

959Programming the Sample Game

// Fade music out, giving DirectMusic enough time
// to finish up last song (or else new song doesn’t
// play correctly. The 700 is based on play volume
// of music, so adjust ahead.
DWORD Timer = timeGetTime() + 700;
while(timeGetTime() < Timer) {

DWORD Level = (Timer - timeGetTime()) / 10;
m_MusicChannel.SetVolume(Level);

}

// Load and play new song
m_MusicChannel.Load(g_MusicFilenames[Num]);
m_MusicChannel.Play(70,0);

// Remember new song #
g_CurrentMusic = Num;

return TRUE;
}

Rendering the Scene
During game-play, various states are pushed onto the stack—you use those states to
determine which graphics to render to the scene. One thing common to most of
those states is that their graphics are rendered over the map and characters. To
keep things simple, you create one function that renders only the backdrop and
character on the screen, leaving the remaining graphics to be drawn by the state
functions. The RenderFrame function renders the map and character:

BOOL cApp::RenderFrame(long Elapsed)
{

long i, j;

// Render simplified mesh for z-values
m_Graphics.EnableZBuffer(TRUE);
m_SceneObject.Render();

// Draw the backdrop (composed of six textures)
m_Graphics.EnableZBuffer(FALSE);
m_Graphics.BeginSprite();
for(i=0;i<2;i++) {

for(j=0;j<3;j++)
m_SceneTextures[i*3+j].Blit(j*256,i*256);

960 20. Putting Together a Full Game

}
m_Graphics.EndSprite();

// Draw the 3-D objects
m_Graphics.EnableZBuffer(TRUE);
m_CharController.Render(Elapsed);
m_SpellController.Render();

return TRUE;
}

The map rendering is identical to that in Chapter 13 (refer to that chapter for more
information on using the 3Din2D graphics engine). What’s new here is rendering
of the characters. A call to cCharacterController::Render updates the characters’ ani-
mations and draws out their respective meshes. The function ends with a call to
render the spells.

Processing Scripts
Script processing controls the entire game’s content. The content includes adding
characters to the maps, displaying dialogue, and other functions not hard-coded
into the game engine.

The sample uses the script and derived script class developed in Chapter 16.
Whereas that script class is stored in the files script.h and script.cpp, The Tower
stores the derived version of the script class that is used in the files game_script.h
and game_script.cpp. Skipping the script class (because it remains the same as in
Chapter 16), examine the derived script class, called cGameScript:

class cGameScript : public cScript
{

private:
// The internal flags and variables array
BOOL m_Flags[256];
long m_Vars[256];

// The parent application object
cApp *m_App;

// A text window for displaying messages
cWindow m_Window;

The scripts use an array of flags and variables (m_Flags and m_Vars), both arrays being

961Programming the Sample Game

256 elements in size. Several script actions use these flags and variables to store and
perform condition-checks to control the flow of script processing. Also, a pointer to
the application class instance is stored (to call the application’s functions), and a
text window object is created to display the character’s dialogue and other text.

Next in the cGameScript function, you define a sRoutePoint object that is used by the
scripts to construct and assign a route to a character:

// Route points for constructing a character route
long m_NumRoutePoints;
sRoutePoint *m_Route;

From here on in, the majority of functions to follow are the script action process-
ing functions. These functions are called when an action from the script is being
processed—for example, the Script_SetFlag function is called when the SetFlag
action is being processed from a script. Take a look at these function prototypes:

// Standard processing actions
sScript *Script_End(sScript*);
sScript *Script_Else(sScript*);
sScript *Script_EndIf(sScript*);
sScript *Script_IfFlagThen(sScript*);
sScript *Script_IfVarThen(sScript*);
sScript *Script_SetFlag(sScript*);
sScript *Script_SetVar(sScript*);
sScript *Script_Label(sScript*);
sScript *Script_Goto(sScript*);
sScript *Script_Message(sScript*);

// Character related actions
sScript *Script_Add(sScript*);
sScript *Script_Remove(sScript*);
sScript *Script_Move(sScript*);
sScript *Script_Direction(sScript*);
sScript *Script_Type(sScript*);
sScript *Script_AI(sScript*);
sScript *Script_Target(sScript*);
sScript *Script_NoTarget(sScript*);
sScript *Script_Bounds(sScript*);
sScript *Script_Distance(sScript*);
sScript *Script_Script(sScript*);
sScript *Script_CharMessage(sScript*);
sScript *Script_Enable(sScript*);

962 20. Putting Together a Full Game

sScript *Script_CreateRoute(sScript*);
sScript *Script_AddPoint(sScript*);
sScript *Script_AssignRoute(sScript*);
sScript *Script_AlterHPMP(sScript*);
sScript *Script_Ailment(sScript*);
sScript *Script_AlterSpell(sScript*);
sScript *Script_Teleport(sScript*);
sScript *Script_ShortMessage(sScript*);
sScript *Script_Action(sScript*);
sScript *Script_IfExpLevel(sScript*);

// Shop/barter action
sScript *Script_Barter(sScript*);

// Item related actions
sScript *Script_IfItem(sScript*);
sScript *Script_AddItem(sScript*);
sScript *Script_RemoveItem(sScript*);

// Barrier related actions
sScript *Script_AddBarrier(sScript*);
sScript *Script_EnableBarrier(sScript*);
sScript *Script_RemoveBarrier(sScript*);

// Trigger related actions
sScript *Script_AddTrigger(sScript*);
sScript *Script_EnableTrigger(sScript*);
sScript *Script_RemoveTrigger(sScript*);

// Sound related actions
sScript *Script_Sound(sScript*);
sScript *Script_Music(sScript*);
sScript *Script_StopMusic(sScript*);

// Win game action
sScript *Script_WinGame(sScript*);

// Comment and separator actions
sScript *Script_CommentOrSeparator(sScript*);

963Programming the Sample Game

// Wait action
sScript *Script_Wait(sScript*);

// Random number generation
sScript *Script_IfRandThen(sScript*);

// Force a frame to render
sScript *Script_Render(sScript*);

Whew! That’s a lot of functions—and as I said, they directly relate to the script actions.
Thankfully, the script action processing functions are brief and easy to process.
Chapter 14 presents the scripts, and Chapter 16 presents the script class, so you can
refer to those chapters as needed, but now refocus on the cGameScript declaration:

// If/then processing function
sScript *Script_IfThen(sScript *ScriptPtr, BOOL Skip);

With all the if...then-related functions in the action template, it’s easier to develop a
single function that deals with the conditional processing. This function (Script_IfThen)
takes a pointer to the next script function after the if...then action and a flag that
determines the conditional state. If Skip is set to TRUE, all proceeding script actions are
skipped until an Else or End script action is found, whereas if Skip is set to FALSE, the con-
dition was met, and all script actions are processed until an Else or End script action is
found. Note that the Else script action toggles the Skip flag (from TRUE to FALSE, and vice
versa), allowing for true if...then...else processing.

The cGameScript declaration finishes with two more private functions—the first,
Release, is called to free the script’s internal data whenever a script completes pro-
cessing. The second function, Process, contains a large switch statement that sends
off the script actions to be processed by their respective functions (exactly as shown
in Chapter 16):

// The overloaded processing functions
BOOL Release();
sScript *Process(sScript *Script);

public:
cGameScript();
~cGameScript();

BOOL SetData(cApp *App);

964 20. Putting Together a Full Game

BOOL Reset();

BOOL Save(char *Filename);
BOOL Load(char *Filename);

};

The cGameClass finishes with the public function prototypes—you have the construc-
tor, the destructor, the SetData function that records the application class instance
pointer, a function to reset all flags and variables, and a duo of functions to save
and load the flags and variables to a file.

You insert the derived script class, cGameScript, into the cApp declaration for the main
application’s use:

cGameScript m_Script;

Even though the m_Script object is declared using private accessibility, most of the
objects in the game use the script object. Now the reasons for declaring those
friend classes in the application class declaration make sense!

Assembling the Pieces
You are now more than familiar with the individual pieces of the puzzle. With the
sample game on this book’s CD-ROM, you’ll get a true hands-on experience
putting those pieces together! You learned about how the components are defined,
developed, and coded. With a call to the cApp::Init function, followed by repeated
calls to cApp::Frame, the game comes alive! The scripts execute, characters interact,
spells and attacks go flying. Each component pulls its weight, and they all work
together to form the whole.

When exploring the game project, I suggest starting with the WinMain.h and
WinMain.cpp files; those files contain the application class that forms the applica-
tion framework. As detailed in this chapter, you can follow the flow of the program,
from initialization to shutdown.

Wrapping Up Creating Games
Despite its size and simplicity, the example program in this chapter demonstrates
the potential use of all the information I’ve shared in this book. Just imagine what
you can do with your game project using the methods shown in this and other

965Wrapping Up Creating Games

chapters! By understanding how each piece works individually and then by assem-
bling the pieces and understanding how they all work together, you are prepared to
create any kind of role-playing game.

By using an underlying library of functions to handle the graphics, sound, and
input, your game-creation process can really take off. No longer must you worry

966 20. Putting Together a Full Game

Program on the CD-ROM

The following program is located on this book’s CD-ROM. It contains
the entire source code for The Tower game:

◆ The Tower. The sample game, The Tower, is a complete game
project that takes everything you’ve learned in this book and
puts it all together in an easy-to-understand package.
Location: \BookCode\Chap20\The Tower\.

CHAPTER 21

Marketing
and

Publishing
Your Game

Your game is complete, and the gaming world eagerly awaits its release. What’s
that? You don’t know how to get your game published. Don’t worry; this

chapter tells you how to present your game to prospective publishing companies
and how to put your product on the market yourself.

In this chapter, you learn about the following:

■ How to prepare a proposal
■ How to contact and deal with publishing companies
■ How to manage do-it-yourself publishing

Submitting Your Game
The question is, do you create your game before or after you contact a publisher?
If creating games is your sole source of income, there’s no choice. You want to
receive your money upfront—to keep you going while you’re developing your
game. If you program as a hobby, you will probably do the majority of the work
and then look for a publisher. Whichever choice you make, one point stands—
you have to pitch your wares.

Preparing your game for submission (whether it’s nearly complete or just a concept)
is a major deal. Here are the elements that I suggest including in your submission
packet:

■ Proposal letter
■ Marketing analysis
■ Design document
■ Budget
■ Schedule
■ Game demo (with uninstaller)

Although you can include much more information in a game submission, the
preceding list covers the basics. Now, take a closer look at each element.

968 21. Marketing and Publishing Your Game

TEAMFL
Y

Team-Fly®

Writing the Proposal Letter
The first place to start is with the proposal letter. This letter should contain the
following components:

■ A table of contents
■ An introduction of your company or team
■ Product highlights
■ An overview of the product
■ Non-Disclosure Agreement (NDA)

The table of contents enables the publisher to navigate quickly through the various
aspects of your game submission (the marketing analysis, design document, and
so on).

The introduction of your company or team should include contact information, his-
tory (if you’ve published previous games), available licensing that you have
obtained, and names of team members. Then you disclose some of the key points
of your project—licensing rights (say that you have the license for The Matrix!),
graphics effects, marketing fringes, and so on.

You don’t have to go into much detail in these highlights; that’s what the product
overview is for. Think of the product overview as a scaled-down version of the design
document. You are showing the best points of the game in more detail, while not
overloading the reader with useless details.

Finally (and this is optional), you can provide a standard NDA (Non-Disclosure
Agreement) that the publisher signs in order to continue procuring an agreement
with you. However, don’t hold up the transaction waiting for the publisher to sign
the NDA (and don’t worry; publishers are not in the practice of stealing games).
Just remember that in your submission packet, you want to include enough to whet
publishers’ appetites, but not anything that will hinder their vision of your game.
God Games has an excellent NDA form that you can download and incorporate
into your proposal (go to http://www.godgames.com).

Performing Marketing Analysis
Next in line for your gaming proposal is the marketing analysis. The purpose of the
marketing analysis is to check out the market to see who wants what, what is already
on the market, and how your product might appeal to the gaming world. Don’t
skimp here. A publishing company will not research the market for you, so you’ll
have to tell them what’s already out there and why your product is worth publishing.

969Submitting Your Game

For example, imagine that you’re creating a first-person shooter game. Anyone who
has played games has probably seen more than 20 first-person shooters, each one
just like the others. How will your game stand out in the crowd? Will marketing it
be worth pursuing in such a flooded market? These are some of the issues that you
need to convey in your marketing analysis.

Assume that you think your game has some great features that will make it better
than the rest. You must capitalize on those features, and you must help the pub-
lisher appreciate those features. Now, you need to find out whether other games
have features in common with your game’s features. Write down those games noting
their features, publishers, retail prices, and why your game beats them hands down.

Finally, throw in testimonials such as letters and e-mails from players who have seen or
tested your game. You want a publisher to see a typical reaction from the marketplace.

Including Your Design Document
You’ve done the deed and written your design document, haven’t you? Well, if you
haven’t then now is the time! A game submission must include a design document.
Although Chapter 2, “Exploring RPG Design Elements,” discusses how to write a
design document, it deals only with the programming aspects of designing a docu-
ment. Now, you are ready for a more detailed discussion on actually designing a
document.

When designing your game, a major goal is to keep your “audience” in mind. You
need to provide enough information on every aspect of the game so that anyone
can understand how to create it (from their point of view, of course). This includes
the game’s story, controls, characters, items, technology engines, and so on.

Calculating Budgets and
Determining Schedules
As with anything, creating games require costs and schedules. You must develop a
budget sheet as well as a development schedule. Your budget is very important; if
you’re just starting your project, you will need to sustain yourself during the entire
development time. In addition, you might need to consider the compensation
of teammates.

Your budget should include the following information (at a minimum):

■ Payments to team members (per hour, salary, or total)

970 21. Marketing and Publishing Your Game

■ Special packaging costs (extras that you want to package with your game, for
example)

■ Total cost of development

With your budget in hand, it’s time to construct your schedule. This is your
timetable, and you want to maintain it as best you can. The main elements in your
schedule are the milestones. The milestones mark the major developmental targets,
from the completion of one component to another. For example, imagine that
your first milestone is completion of your sound engine within two weeks. In that
case, two weeks from the start of development, you expect the sound engine to be
completely ready to go.

Although that is a simple example, your real milestone markers should be quite
detailed and include every aspect of your game, including engines, art, music, and
test runs. That’s right; you are expected to provide test runs of your game to
demonstrate the quality of your game. You typically provide three test runs: alpha,
beta, and final beta.

The alpha test version demonstrates the basics of your game, such as how the
engines work, how specific graphics look, and whether the game development is
going in the direction the design document dictates. You can have multiple alpha
versions, each demonstrating various aspects of your game. Just remember that the
alpha version represents a very early version of your game.

The beta represents your game after it is well under way. The majority of the under-
lying game should be in place, with some minor, cosmetic issues still being
resolved. In this version, beta testers begin testing your game for bugs. Essentially,
they check for actions or conditions that might cause your game to crash or to do
something else that it isn’t intentionally designed to do.

Using the information received from the first beta, you construct and test the final
beta. At this point, all known bugs should have been eliminated, and the game is
close to completion. Remaining issues should be only very minor ones, such as title
credits and the like. This is the version that you give to your publisher and that the
publisher uses to begin marketing your game.

Including a Game Demo
Before dedicating resources to help you create your game, a publisher might ask
you for a small demo version of your game. This demo needs to focus on certain
important aspects of your game. For example, a publisher might want to see the
combat engine in action, so you demonstrate your game by creating a menu of the

971Submitting Your Game

things shown in your game. To show off the combat sequence, you might wow the
publisher with the biggest, “baddest” monster and the coolest combat effects.

Don’t overload the demo with useless game-play. You want publishers to be able to
instantly get into the
game and play or
demonstrate it. Even
better at times is to
create a self-playing
demo that demon-
strates the best parts,
skipping an interac-
tive approach.

Communicating
with Companies
Once you have your submission complete, grab a list of companies to contact
regarding your proposal (you can find a list in the section “Considering Which
Publishers to Contact,” later in this chapter). Starting at the top of the list, call
or e-mail each company.

Your first goal is to find the right person to contact; just ask for the name of the
person in charge of submissions. This is the person you want to deal with—no one
else. When communicating with that person, always use his name, never something
as generic as Dear Sir/Madame or the like. Professionalism is the key here; in your
approach, show that you are a qualified per-
son worth dealing with.

After you know whom to contact, your
next step is to send a letter explaining
what you are presenting. Keep this letter
short and succinct. Raise major points
about your product, spelling out the key
features. This letter is the teaser that
determines the publisher’s initial inter-
est in (or lack of interest in) dealing
with you. Don’t worry if you’re shot
down at first; just keep moving down
the list of publishers.

972 21. Marketing and Publishing Your Game

CAUTION
Whether you create an interactive or self-running demo,
always make sure that you carefully check it for viruses
and be sure to include an uninstall program. Nothing will
get your name drop-kicked out the door faster than
sending a publisher a virus-infested game demo.

NOTE
Try imagining yourself as the pub-
lisher. Publishers want a product
that they perceive as desirable and
that you will deliver on their time.
To them, games are merchandise,
and they want to be able to sell this
merchandise as quickly and cleanly
as possible. Meet their criteria, and
things should go smoothly.

When you receive a nibble from a publisher, it’s time to start showing what you
have to offer. Mail your submission packet (see the earlier section “ Submitting
Your Game” for items to include in the packet) and keep in touch with the pub-
lisher. You want to know the process your submission is going to take from mailing
it to them to final approval.

Dealing with Rejection
When a publishing company rejects your submission, trust me—it’s not the end of
the world. In fact, you are likely to be rejected a number of times, and it’s even pos-
sible that your game will go unpublished.

Think of rejection as a way to learn from your mistakes (even if you’re not making
mistakes). You have to see it from the company’s viewpoint. The publisher wants
a product that is going to make money. If your game has market appeal, the com-
pany will most likely consider publishing your game. If they think that your game
doesn’t fit their marketing model, they’ll pass it by.

If your game isn’t accepted—and if you’re otherwise lucky—you’ll receive a good
explanation about why not. Take that explanation for all it’s worth—determine
exactly why it was rejected. If your graphics weren’t fancy enough, the story was
lagging, or the concept was too plain, adjust that aspect of your game and resubmit
it. Beware! Don’t change one small aspect of your submission and then resubmit it;
that would be wasting your time and the publisher’s.

Receiving the Acceptance Letter
All right! You’ve received your acceptance letter (or at least a letter that furthers
the publishing company’s interest in your game), and you’ve got some celebrating
to do! Actually, don’t count your chickens before they hatch. You still must deal
with quite a few things before your game hits the shelf. You need to nail down
contracts, schedules, and budgets (if that’s part of the deal), and so on. You need
to pay close attention to the contracts and how they are negotiated.

Negotiating Your Contract
Behind every deal is a contract, and negotiating the terms of your contract is impor-
tant. Your first step is to consider hiring a lawyer to examine your contract. The
legalese in contracts can be confusing at times, and you need to understand all the
fine lines. Remember the old saying, “What the big print gives, the small print takes.”

973Communicating with Companies

Typical contracts will outline (usually in full detail) exactly what is expected of you,
from start to finish. A good contract should outline the schedule, budget, and
product expectations. You should also try to get marketing details in the contract,
such as what the publishing company will do to advertise your game.

Considering Which
Publishers to Contact
This section contains a few game publishing companies that you might like to con-
tact about your commercial game. Each listing contains a general description of
the company and its contact information.

■ Activision. One of the big boys that helped start it all, Activision publishes,
develops, and distributes around the world, targeting a number of gaming
platforms from PCs to home gaming consoles such as PlayStation 2,
Dreamcast, GameBoy Advance, and Xbox. Several development companies
call Activision “home,” and with hard work, so can you.

Activision, Incorporated
3100 Ocean Park Boulevard
Santa Monica, California 90405
310-255-2000
http://www.activision.com

■ Electronic Arts. This conglomerate is one of the largest game publishing
companies with which you’re likely to deal. Its list of labels includes Origin

974 21. Marketing and Publishing Your Game

CAUTION
Take your time perusing the contract. Some of the fine print
might contain something that you won’t like. Most contracts are
not written in stone, so try to get what you don’t like changed,
but don’t go too far. Remember that each publishing company
has a set way of doing certain things—for example, the publisher
may have the right to set milestones, payment arrangements
may be different than expected, or your licensing rights to the
game may need to be transferred to the publishing company.

Systems, Fox Interactive, and Westwood Studios. This is the big leagues, and
getting a deal with a company like this one is a godsend.

Electronic Arts, Inc.
209 Redwood Shores Parkway
Redwood City, CA 94065-1175
650-628-1500
http://www.ea.com

■ Gathering of Developers. Gathering of Developers is a publishing company
that caters to the independent developers (indies). These are the guys respon-
sible for bringing you games such as Oni, Railroad Tycoon II, Age of Wonders,
4x4 Evolution, Heavy Metal: F.A.K.K.2, and Rune.

Gathering of Developers
2700 Fairmount Street
Dallas, TX 75201
212-696-2000
http://www.godgames.com
submissions@godgames.com

■ Infogrames. With powerhouse games such as Alone in the Dark, Unreal Tourn-
ament, and Driver, Infogrames is a major contender worth checking out!
Not only does it have great games, but also it has the licensing rights behind
major names and productions—for example, Warner Bros., Inc.; “Looney
Toons,” and “Mission Impossible.”

Infogrames, Inc.
417 Fifth Avenue
New York, NY 10016
212-726-6500
http://www.infogrames.com

■ Microsoft Corp. That’s right, even the big M publishes games, and with the
recent release of its Xbox gaming console, the company’s reach into the
gaming market expands. Getting a deal with Microsoft might seem like a
dream, but one that is certainly achievable.

Microsoft Corp.
One Microsoft Way North Office 2211
Redmond, WA 98052-6399
425-882-8080
http://www.microsoft.com

975Considering Which Publishers to Contact

■ Take2 Interactive. Take2 is a large publisher that currently owns develop-
ment studios such as TalonSoft, Tarantula Studios, and Alternative Reality.
Take2 has business relationships with the Gathering of Developers. It pub-
lishes games for the PC, Dreamcast, PlayStation 2, N64, and GameBoy Color.

Take2 Interactive Software, Inc.
575 Broadway
New York, NY 10012
212-334-6633
http://www.take2games.com

■ Wizard Works. Another value-ware publisher, Wizard Works has a vast distrib-
ution channel that makes it easy for games to be seen. If you’re working on a
small- to mid-size project and you think value (discount) software is the way
to go, give Wizard Works a jingle.

The Wizard Works Group
2155 Niagara Lane North, Ste. 150
Plymouth, MN 55447
763-249-7600
http://www.wizardworks.com

■ Xtreme Games, LLC. Xtreme games is a value-ware (discount software) game
publishing company led by André LaMothe and crew. It not only publishes
games, but also offers services such as access to its collection of gaming code,
including 2-D and 3-D engines, tools, and DirectX add-ons, plus the company
can hook you up with the resources you need—music, art, sound, and much
more!

Xtreme Games, LLC
P.O. BOX 641744
San Jose, CA 95164-1744
925-736-2098
http://www.xgames3d.com
questions@xgames3d.com

Do-It-Yourself Publishing
In addition to publishing through a large commercial company, you can distribute
your game as shareware. In fact, major gaming companies such as id Software, Inc.
(the creators of Doom) made shareware distribution a major part of their main-
stream commercial marketing and distribution.

976 21. Marketing and Publishing Your Game

With shareware, you give your prospective buyers a chance to try out your game
before they buy it. If they like it, they can buy it direct from you. There’s no need for
fancy boxing, marketing, or other such sales tactics; your game sells itself. Moreover,
add the power of Internet distribution to your arsenal, and you’ll have it made!

If you’re interested in trying the do-it-yourself route, you begin by getting the word out.

Advertising
The key to selling your game is advertising it to your potential customers. While
you can find many ways to advertise, some of those methods work like a charm and
others fail miserably.

If you’re serious about advertising your game, you’ll need to publish ads in maga-
zines and on Web sites; you can also package ads with other products (for example,
include a small pamphlet with your game’s advertisement). Of course, these media
can involve considerable expense. You might go to your favorite gaming zones and
check out their advertising rates—those Web sites might be a cheaper alternative.
You might even be able to work with a banner company to randomly display your
ads on, possibly, millions of Web sites!

Gaming magazines are solid ground for getting results, but at a high cost. Some
printed advertisements can cost you thousands, but they might be worth it. Again,
check out the magazines’ advertisement indexes; you should find information on con-
tacting prospective magazine publishing companies to work out a deal for your ads.

Last, there’s always word of mouth. If you belong to a gaming zone that has a mes-
sage forum, why not “pitch” your game? You might generate thousands of visits to
your gaming Web page with this single advertising technique.

Once your advertising is in place, it’s time to give potential buyers a “taste” of your
product.

Using a Try-Before-You-Buy
Approach
True to the nature of shareware, your game needs a scaled down (or shortened)
demo version that is free for all to try. Design the demo so that players can finish a
single mission or go on a quest to kill the first major bad guy in the game. You want
to give the player a sufficient idea of how the game works and what it has to offer.

977Do-It-Yourself Publishing

In do-it-yourself, shareware publishing,
don’t forget that your game demo is an
additional medium for selling your game,
so make it good. Include instructions on
ordering the full product, perhaps along
with a few incentives, such as an offer to
buy two games and get the third one free.
The bottom line is to sell your game!

Selling
Your Product
Now comes the best part—selling
your game! If you’ve done your
duty, players are demanding your
product. They’ve had a taste of the
game and are ready for the full
course; now, it’s your job to feed
them. To do so, however, you must
distribute it.

You can distribute your game a
number of ways. Of course, there’s
the traditional box-on-shelf method that you decided to skip when you decided to
self-publish. You can record your games on discs, package them (minimal packag-
ing, of course), and mail them as you receive orders. Another method is to allow
players to download the games directly—that is, order, pay, and download the
games from your Web site. Which way is best?

Directly downloading has problems because of high-bandwidth transfers. Can you
find an affordable Internet server that allows you to transfer large volumes of data?
In addition, customers might have difficulties downloading a 500MB game. Although
smaller games don’t present that problem, you still face problems such as downloads
being cut off before they are complete.

The best methods at this point are to produce the discs yourself, via a couple of
CD-ROM writers, or to send your product to a mastering house, which will take your
disc and whip out a sufficient number of copies in no time flat, plus label the discs
in a more professional manner than you might be able to do at home. Add in the
jewel cases and maybe a small information booklet (instruction book), and your
product is ready to mail.

978 21. Marketing and Publishing Your Game

TIP
A game demo is the perfect place
for advertising! You can include
messages about your other game
projects and information about
the full version of the demo they
are trying out.

TIP
If you decide that the shareware route
is for you, I suggest checking out the
Association of Shareware Professionals
(www.asp-shareware.com).The Association
of Shareware Professionals, or ASP for
short, was formed in April 1987 to aid
members in their goal of getting their
products marketed and published.

TEAMFL
Y

Team-Fly®

You must also deal with various pay-
ment options—checks, credit cards,
and cash. Setting up a business
banking account enables you to take
credit card payments, and doing so
comes in handy when it comes time
to pay taxes (sorting out business
expenses and income). Ask your
friendly banker (or an accountant) for more details on setting up financially. Before
you know it, the money will be pouring in, and you’ll have to keep up with orders!

Wrapping Up
Marketing and Publishing
The world of creating games is an exciting one. Imagine the joy that you’ll feel see-
ing your very own game on store shelves! Gaming magazines will rave about your
game, while players will line up by the hundreds to buy your game. Do you believe
that can be true for your game? Sure it can, but only if you make it happen!

In this chapter, you found out how to prepare your game for submission to poten-
tial publishers, what to expect when dealing with publishing companies, and what
other paths you can take in order to get your game on the market.

My final comment on marketing and publishing of your game is good luck! The key
to getting your game published in this huge gaming world is to start contacting
companies and looking for the one that will take your project and propel it into
the market. In fact, companies solely devoted to independent developers are begin-
ning to spring up all over the Internet, waiting to help you publish your game.

979Wrapping Up Marketing and Publishing

CAUTION
Before selling your product, be sure to
secure your business and tax licenses; the
government frowns on back-door dealings,
and it’s best to do this the right way.

Epilogue

Well, it’s come to an end. Your journey through your game’s creation was long and
wrought with perils, but you prevailed through thick and thin. Creating a complete
game is by no means an easy task, and if you’re still having trouble, don’t worry. It
takes many resources, a lot of time, and dedication to finish even the simplest role-
playing game. At this point, I will try to help you organize your thoughts by high-
lighting what you covered in this book.

In the Epilogue, you do the following:

■ Review what you’ve learned from this book
■ Consider what’s next in your game-creating endeavors

Looking Back
Getting into the game industry is a bit of a misnomer—to land a great job, you
have to already have some game-making experience. How do you get that experi-
ence if you haven’t worked for a company? The answer is via your mind and your
hands. With books like this one as your guide, you can build a solid understanding
of what goes into creating games. Nothing impresses a potential employer or pub-
lisher more than a programmer who knows his business and is able to deliver a
quality product.

What did you discover during your quest through this book? All along your quest,
you learned the following:

■ How to design the technical aspects of your game. With a little forethought
and planning, your project becomes easier to manage. Coupling technology
with design, you are able to foresee all that your game needs, and with
proper planning all goes smoothly.

■ The basics of C++ and Windows programming. Learn the basics and jump
right into programming your applications (in easy-to-follow formats). Basic
programming techniques such as modular programming and state-based
processing lead to shortened development times.

■ How to utilize DirectX to build the various game engine components.
This includes using DirectX Graphics, DirectX Audio, DirectInput, and
DirectPlay.

■ How to use the game engines. You learned the backbone of RPG game
engines, from scripting systems, combat sequences, character AI, and
inventory management.

■ How to improve your story-writing abilities. With structure and plausibility,
your stories bring your creation to life.

■ How to prepare your game for Internet play. Networking is the new life of
games, and you don’t want to be left behind.

■ How to market and publish your game. Although they’re just the tip of the
iceberg, the ideas introduced in this book will start you on your way to mar-
keting and publishing your game.

Using what you’ve learned in this book, you should now be “up to snuff” on the
latest tools and techniques needed for creating games. I have complete confidence
that with the information in this book and a liberal dose of dedication, you can
create a complete role-playing game.

What’s Next?
So where do you go with your newfound knowledge? Into the world my friend.
With the recent release of so many powerful home-gaming consoles, you can even
port your games to the console world. Imagine seeing your game in full Microsoft
Xbox or Nintendo Game Cube glory! The basics behind each console are the same
as those for your computer, and with a little more altering of your game project’s
libraries and source code (so that they work with the consoles’ development kits),
you can accomplish the dream of programming games for home consoles.

Perhaps you don’t plan to create a complete game on your own. That’s okay.
Gaming companies need bright, intelligent, well-informed (now that you’ve read
this book) individuals like you to keep the world of gaming going. You might use
your new RPG programming powers to land your next job—and, hey, give my book
a thought when you land that awesome job!

981What’s Next?

This page intentionally left blank

Part Six

Appendixes

A Setting Up DirectX 8.0 and
Configuring the Compiler

B Getting Help on the Web

C Recommended Reading

D Glossary

E What’s on the CD

APPENDIX A

Setting Up
DirectX 8.0

and
Configuring

the
Compiler

Before working with the code and examples in this book, you must install and
set up the Microsoft DirectX 8.0

Software Developer’s Kit (SDK) on
your computer. During the installation
process, the DirectX installer will try
to configure your compiler to use the
appropriate SDK paths, but in order to
complete the configuration of the com-
piler, you’ll need to make some manual
configuration changes, which I explain
in this appendix.

Setting Up DirectX 8.0
The first step in game programming is to install the Microsoft DirectX Run-Time
Libraries and Software Developers Kit; both are packaged in the SDK installation
on the CD-ROM at the back of this book.

Typically, new versions of DirectX are released annually. The new versions generally
provide improvements on older features and other new enhancements. Because
DirectX is based on COM, you never have to worry about someone using a newer
version of DirectX—the matching components of the different versions remain the
same (see Chapter 5, “Programming with Windows and Application Basics,” for
more on COM).

With each new release, you also retain access to earlier components and features,
although the newer and older components are not interchangeable. For example,
you cannot use the features of Direct3D 8.0 with the 2-D drawing features of
DirectDraw 7. That’s not a problem, however, because newer interfaces usually
contain the functionality of the lacking features (for example, Direct3D can draw
2-D graphics, just in a slightly different manner than in earlier versions).

DirectX comes in two parts: the Run-Time Libraries and the SDK. As a developer,
you need to install both (end users need to install only the Run-Time Libraries).

986 A. Setting Up DirectX 8.0 and Configuring the Compiler

NOTE
You will find the DirectX 8.0 SDK
on this book’s CD-ROM; check out
Appendix E,“What’s on the CD,”
for information on the install pro-
gram.You can also download the
SDK from Microsoft’s Web site at
http://msdn.microsoft.com/directx/.

Using Run-Time
Libraries and the SDK
The Run-Time Libraries are the heart and sole of the DirectX components. The
libraries contain the code that is specific for your system’s hardware. Created by
their respective manufacturers, these libraries are either packaged as part of the
standard DirectX distribution or are available from the manufacturers (via an
installation disk or the Internet).

Developers will find the source code, headers, and libraries packaged in the SDK.
All you do is install these files, set up your compiler, and you’re off and running.
For developers, the device libraries come in two versions: the debug version and
the retail version. End users (such as those people playing your game) need only
the retail version. What’s the difference between the debug and retail versions,
you ask? Read on to find out.

Using the Debug Version
Versus the Retail Version
When you install the SDK, you are asked whether you want to use the retail or
debug version of the DX device libraries. This is a judgment call, so you need to
understand what each version does for you.

On one hand, debugging gives you the ability to see what is going on behind the
scenes, but at the cost of speed and size. You can work at full speed with the retail
version, but you might be left clueless when your programs start crashing.

I recommend using the debug version while becoming familiar with DirectX and
the retail version if you’re more experienced and want the fastest speed possible.

Installing DirectX 8.0
It’s time to get down to the business at hand. Insert this book’s CD-ROM into your
computer’s CD-ROM drive. The Programming Role Playing Games with DirectX license
page will appear. Click I Agree to continue. If the CD-ROM interface does not
immediately appear, you can start it manually by following these steps:

1. Go to the Windows taskbar and click Start, Run and then type
d:\start_here.html (where d: is your CD-ROM drive) in the textbox.

987Setting Up DirectX 8.0

2. When the Programming Role Playing Games with DirectX license page appears,
click I Agree to continue.

The CD-ROM’s main interface will appear (see Figure A.1). From this inter-
face, you can choose a number of options, from browsing the source code to
installing programs.

3. To start the installation process, click DirectX and then click Install DirectX
8.0 SDK.

Installing DirectMusic Producer
Although DirectMusic Producer is not part of the standard DirectX SDK install
package, you will find it on this book’s CD-ROM (check Appendix E for more
details on the package’s location). This package is your tool for producing
DirectMusic native song files (which includes importing Midi files) that can be
played using the information in Chapter 8, “Playing Sound with DirectX Audio.”

To install DirectMusic Producer, you can use the CD-ROM installation program, or
you can go to your D drive, open the \DirectX\DirectMusic Producer directory, and
run the Setup.exe program. Again, follow the instructions and configure the instal-
lation to your liking.

988 A. Setting Up DirectX 8.0 and Configuring the Compiler

Figure A.1

Use the CD-ROM interface to
navigate the programs on the disc.
Browse the source code or install one
of the many utility applications or
games.

TEAMFL
Y

Team-Fly®

Include Files and Libraries
When DirectX 8.0 and the SDK are installed and properly working (which you might
check by executing some of the DX demo programs packaged with this book), you
are ready to include the proper libraries and header files in your projects.

In the next section, you learn how to adjust the settings for your compiler, but first
take a look at Table A.1, which provides a list of the DirectX components used in
the book and the include files and libraries that you include in the compiler set-
tings when creating a new project.

Setting Up the Compiler
Microsoft’s Visual C/C++ compiler is a powerful tool that is essential when writing
Windows applications using the C and C++ languages. Currently in release 6 (with
release 7 coming out as this book is being written), Visual C/C++ is the program of
choice for developers worldwide (and the choice for this book). Before jumping
into the book’s code and examples, you need to set up a few options to ensure that
everything works properly.

989Setting Up the Compiler

Table A.1 DirectX Components, Include Files,
and Libraries

Component Include File(s) Library File(s)

Direct3D d3d8.h d3d8.lib

D3DX d3dx8.h d3dx8.lib

DirectInput dinput.h dinput8.lib

DirectSound dsound.h dsound.lib

DirectMusic dmusici.h dsound.lib

DirectPlay dpaddr.net, dplay8.h dpnaddr.lib, dpnet.lib, dplayx.lib

Directory Settings for DirectX
In order for your compiler to find the DirectX SDK libraries and header files, you
must add those elements to the directory lists, as follows:

1. To access the lists, go to the main menu and click Tools, Options. The
Options dialog box appears.

2. Click the Directories tab (see Figure A.2).

3. In the Show directories for drop-down box, choose Include files.

4. If the DirectX directory is not listed in the Directories list, you need to add
it. Do so by clicking the New button and entering the DirectX include file
directory selected during the DX installation (refer to the section “Installing
DirectX 8.0”). This directory typically ends with \include.

5. Repeat Step 4 to set the DirectX library directory. This time, however, click
the Show Directories for drop-down box and choose Library files. If the
library path is not shown, click the New button again and follow the proce-
dure in Step 4 to find the library directory (typically ending with \lib).

Linking to Libraries
The next step to using DirectX (and some Windows features) is to add the libraries
to the project. You can accomplish this in two ways. You can add the libraries to the
source file list or to the compiler link Object/libraries modules in the Project Settings
dialog box.

To add the libraries to the source file list, follow these steps:

1. Open a project file and right-click the Source Files header under the Workspace
navigator (it is typically on the left side of the screen and contains the files
included in your project). A small menu appears (see Figure A.3).

990 A. Setting Up DirectX 8.0 and Configuring the Compiler

Figure A.2

The Visual C/C++ version 6 Directories tab, located in the
Options dialog box, contains the search paths for including
header, library, and other source code files.

2. Click Add Files to Folder. The Insert Files into Project dialog box appears.

3. Locate and choose the libraries you want to include and click OK.

You can also add libraries inside the Project Settings dialog box, by following these
steps:

1. To access the settings, with a project file open, click Project, Settings. The
Project Settings dialog box opens.

2. Click the Link tab.

3. If the Link tab is not visible, make sure that your project’s workspace is
selected in the Settings For list box (see Figure A.4)—the project’s workspace
is the topmost option in the Settings For list box.

4. In the Category drop-down box, choose General. In the Object/library mod-
ules textbox, you’ll see a list of libraries that Visual C/C++ links to your pro-
ject when the application is compiled.

5. At the end of the text in the Object/library modules textbox, type the spe-
cific libraries you want to link to your project.

991Setting Up the Compiler

Figure A.3

You will find it easy to
add library files to the
source files list.

Setting Default char Behavior
Strangely, Visual C/C++ lacks an option for selecting unsigned chars by default,
which means whenever you type

char Variable;

the compiler will expand the variable declaration to

unsigned char Variable;

For many years, this was a typical coding
convention, because most programs
used unsigned chars to store a value
from 0 to 255. Typing unsigned char
every time was a waste of space, so by
default, the compiler expanded a single
char declaration to unsigned char when a
program was compiled. Normally, this
option was set by default inside the com-
piler’s configuration. However, for some reason, Microsoft’s Visual C/C++ compiler
does not set this option as the default, and trying to set it yourself can be daunting.

To force the compiler to use unsigned chars by default, do the following:

1. Open the Project Settings dialog box and click the C/C++ tab.

2. In the Category drop-down box, choose General.

992 A. Setting Up DirectX 8.0 and Configuring the Compiler

Figure A.4

To add library files in the
Project Settings dialog box,
type the library filenames
in the Object/library modules
textbox.

NOTE
If you don’t want to go through the
hassle of setting the compiler option
for using unsigned chars by default,
use the BYTE macro to declare an
unsigned char in your program code.

3. In the Project Options textbox, add the characters /J to the end of the text
(see Figure A.5).

Release and Debug Versions
In every new project, Visual C/C++ creates a debug and a release version of your
project, each with its own settings. Visual C/C++ does so because during develop-
ment you might want to specify different settings to help debug the application—as
opposed to those settings you use for the final release of your application. These
settings determine which options the compiler sets by default, as well as which
libraries the compiler uses (such as the debug Run-Time libraries).

Which version (release or debug) to use is entirely up to you. In this book, I use
the debug version and its default options (with the exception of the modifying
options that I include in this appendix).

Multithreaded Libraries
Certain DirectX components (such as DirectSound) use the Windows multithreaded
libraries, so you have to notify the compiler to use them. You do so in the Project
Settings dialog box (boy, what a busy box!), as follows:

1. Open the Project Settings dialog box and click the C/C++ tab.

2. In the Category drop-down list, choose Code Generation.

3. In the Use run-time library drop-down list, choose Multithreaded (see Figure A.6).

993Setting Up the Compiler

Figure A.5

The compiler can modify
compiler options, or you
can type them in the
Project Settings dialog
box—in the Project
Options textbox, as
shown here.

994 A. Setting Up DirectX 8.0 and Configuring the Compiler

Figure A.6

With so many options
to choose from, the Use
run-time library drop-down
list might confuse the
uninitiated. Select the
Multithreaded option,
and you’ll be set to go.

APPENDIX B

Getting
Help on
the Web

In this day and age, many (if not most) people turn to the Internet for informa-
tion. In this appendix, you will find Web sites that I use for finding information

on RPGs, including information on programming, designing, and playing games.

Programming Role-Playing
Games with DirectX
I shamefacedly begin with my Web site at http://home.att.net/~rpgbook. This site
contains updated information about this book, as well as resources on designing
and programming your RPGs. With its new articles, code updates, and information
on upcoming releases, you’ll want to keep an eye on this site!

www.GameDev.net
This is the definitive site for programming enthusiasts. Point your browser in this
direction for articles, tutorials, message forums, news, book reviews, and much more.
I tend to hang out in the DirectX message forum, so feel free to drop me a line.

XTreme Games
Home for André LaMothe, author of several popular books on game programming
(and series editor for Premier’s Game Development series), this Web site is the
portal to XTremeGames, LLC. This site’s goal is to help independent developers
publish their games, mainly through the value software motif. If you want a start
in the gaming industry and have a game you want to publish, visit this site at
http://www.XGames3D.com.

Flipcode
Here is another great programming resource site. It contains news, resources,
source code, and all the other little goodies that keep people glued to their
screens. Check them out at http://www.flipcode.com.

996 B. Getting Help on the Web

MilkShape 3-D Home Page
This is the home of MilkShape 3-D, a low-cost, low-polygon modeler that you can find
on the CD-ROM at the back of this book. Check this site for frequent updates to the
program, as well as plug-ins you can use to import from and export to various model
formats (including .X files). Point your browser at http://www.swissquake.ch/
chumbalum-soft/ to visit the MilkShape 3-D homepage.

Agetec
Agetec, Inc. (at http://www.agetec.com) is the maker of the cool RPG Maker soft-
ware for the Sony PlayStation. With RPG Maker, you can design your own SNES-like
RPGs, starting from the ground up. With graphics, scripts, and combat, this pro-
gram has it all. This site is a good starting point for those who want to create RPGs
without the hassles of programming.

Wizards of the Coast
This is the home for Wizards of the Coast, Inc., makers of Dungeons & Dragons.
Check this site (at http://www.Wizards.com) for resources on the granddaddy of
RPGs—D&D, and while you’re there, check out their full line of RPG products.

White Wolf Publishing
This is the site of the makers of Vampire the Masquerade and numerous other RPG
systems. This site (at http://www.white-wolf.com) contains great resources for start-
ing you on the path to darkness (in the wicked creature of the night sort of way).

Steve Jackson Games
Located at http://www.sjgames.com/gurps, this is Steve Jackson’s GURPS home
page. Steve’s company is responsible for bringing you famous games such as
GURPS, OGRE, Car Wars, Illuminati: New World Order, and many others. Check out
this site for all the information you need on the Generic Universal RolePlaying
System, including a list of books and free downloads of the core rules.

997Getting Help on the Web

Polycount
This site is loaded with models for just about every 3-D shooter out there.
This site is a must for finding artists and models for your own projects. Go to
http://www.polycount.com to check out those models. Be sure to install MilkShape
3-D, which you need to edit those models!

RPG Planet
Packed with reviews, articles, and discussions on the newest in computer RPGs, this
site (located at http://www.rpgPlanet.com) is a definite must-visit for all you RPG
fanatics! If you’re into the computer side of role-playing and want to keep up on
current events in the RPG industry, you’ll want to keep an eye out at this site.

RPG Host
Host for many RPG Web sites, RPG Host is the definitive directory of RPG-related
materials. This site packs in games, downloads, resources, news, and message forums—
all related to your favorite game genre. Check out RPG Host at
http://www.rpghost.com, and while you’re there, check out the huge list of hosted
RPG-related Web sites.

www.gamedev.net/
reference/articles/frpg/site
Although I’ve mentioned GameDev.net, this section contains a plethora of informa-
tion about RPG design. A definite look-see for those who need a little help or some
direction. Chris Bennett of Dwarfsoft maintains this site.

www.excite.com/
games/role_playing
Here you find Excite’s page to RPG resources galore! Check out the various sec-
tions, such as scenario writing, guides, plots and stories, and much more! A great
place to start when beginning your game project, this site will help guide you to
design-related materials.

998 B. Getting Help on the Web

TEAMFL
Y

Team-Fly®

APPENDIX C

Recommended
Reading

Behind every great programmer is a great set of books. All programmers have
to start at the bottom, learn the basics, build their knowledge, and struggle

through every bit and piece of code. Having a good set of books at your disposal is
a sure-fire way to kick-start your programming endeavors. In this appendix, I share
my favorite books on programming. I have used these books in my work as a pro-
grammer and as general references to topics covered in this book. Each book in
this appendix has bits of information that relate to the material in this book.

Dragon Magazine
Periodical. (Wizards of the Coast, Inc.)

This magazine is devoted to role-playing games. Each issue is packed with adven-
tures, stories, tips and tricks, letters, and so much more role-playing game good-
ness. If you’re a fan of traditional RPGs, this is the magazine for you.

Dungeon Adventures
Periodical. (Wizards of the Coast, Inc.)

This is the source for Dungeons & Dragons adventures. Each new issue brings you the
most creative adventures developed by readers and professionals worldwide.

Dungeons & Dragons 3rd Edition
Player’s Handbook
Authors: Monte Cook, Jonathan Tweet, and Skip Williams (Wizards of the Coast,
Inc., 2000. ISBN: 0-7869-1550-1)

Every serious RPG player has heard of the big Dungeons & Dragons franchise—
Dungeons & Dragons pretty much gave life to the RPG world. This book is the latest
edition of the rules for the game.

1000 C. Recommended Reading

Dungeons & Dragons 3rd Edition
Dungeon Master’s Guide Handbook
Authors: Monte Cook, Jonathan Tweet, and Skip Williams (Wizards of the Coast,
Inc., 2000. ISBN: 0-7869-1551-X)

This book, which is the companion book to the Dungeons & Dragons 3rd Edition
Player’s Handbook, is targeted to DMs (referees of the game). If you want to keep
up with the D&D universe, this is the book to acquire.

Isometric Game
Programming with DirectX 7.0
Author: Ernest Pazera (Premier Press, Inc., 2001 ISBN: 0-7615-3089-4)

A must for those serious about breaking into isometric game-programming tech-
niques. Although Programming Role Playing Games with DirectX covers using isometric
graphics in general, Ernest Pazera’s book does a great job of showing the whole
iso-gaming phenomenon in detail.

lex & yacc
Authors: John R. Levine, Tony Mason, and Doug Brown (O’Reilly & Associates, Inc.,
1995. ISBN: 1-56592-000-7)

In my book, I detail the use of a simple scripting system, called the Mad Lib Scripting
system. In order to develop a much more advanced script system that uses program-
like code (somewhat like C++), you’ll need to delve into topics such as lexical ana-
lyzer and grammar structure. One book that’s sure to help you out is lex & yacc,
which covers the basic steps to creating your own script language and compiler.

Multiplayer Game Programming
Author: Todd Barron (Premier Press, Inc., 2001 ISBN: 0-7615-3298-6)

As you learn in the book you are now reading, multiplayer gaming is a major topic.
Todd Barron’s book is a great place to turn for in-depth information on multiplayer
gaming that is beyond the scope of Programming Role Playing Games with DirectX.
Ranging from networking basics to creating actual multiplayer games, Multiplayer
Game Programming might be just the book you need.

1001Recommended Reading

Programming Windows, Fifth Edition
Author: Charles Petzold (Microsoft Press, 1998 ISBN: 1-57231-995-X)

Anyone who is serious about Windows programming must have this tome. Covering
nearly all the basics on Windows ideology, this book remains one of my most fre-
quently used references.

Schaum’s Quick Guide
to Writing Great Short Stories
Author: Margaret Lucke (McGraw-Hill, 1999. ISBN: 0-07-039077-0)

That’s right. Even short stories can build to grand proportions, and this book is a
straightforward guide to working with the basics of every story—plot development,
story structure, and character creation. Learn the do’s and don’ts of story writing,
how to create colorful characters—each with its unique personality and history—
how to develop unique plots, and much more.

Swords & Circuitry: A Designers Guide
to Computer Role-Playing Games
Authors: Neal Hallford and Jana Hallford (Premier Press, Inc., 2001
ISBN: 0-7615-3299-4)

Ever wanted to see the other side to creating a game—you know, the design aspect
of gaming? The book you are now reading focuses mainly on the programming
side of RPGs (with a smidgen of design topics), so you might want to pick up a
copy of Swords & Circuitry, which details the secret world behind RPG design,
from plot trees to game scripting.

The Zen of Direct3D
Game Programming
Author: Peter Walsh (Premier Press, Inc., 2001 ISBN: 0-7615-3429-6)

Who wouldn’t want a book devoted solely to Direct3D? This book provides a
detailed look at the features that Direct3D offers. Whereas my book gives you a
whirlwind tour of Direct3D (from using the graphics system to drawing 3-D polygons
and meshes), The Zen of Direct3D Game Programming digs deeper into the basics of
Direct3D. It is a definite beginner’s guide to getting into Direct3D programming.

1002 C. Recommended Reading

APPENDIX D

Glossary

Abilities. See Attributes.

Action template. A list of script actions and their appropriate structure and use.

Actions. Script commands.

Alpha blending. The combination of colors or alpha values during rendering.

Alpha channel. The opacity of an image defined by an alpha value per pixel inter-
leaved with the color components (for example, ARGB), an alpha value per pixel
stored in a separate alpha surface, or a constant alpha value for the entire surface.

Alpha testing. A rendering state that skips the drawing of completely transparent
pixels.

Ambient light. A constant level of light that illuminates all objects in a scene
equally.

Antagonist. The character (or characters) who brings chaos and disarray into the
story, typically by intruding in the hero’s (the protagonist) attempts to achieve
goals and intentions. See also Protagonist.

Application framework. An application structure (in regard to layout and process-
ing).

Application message queue. A queue that stores Windows messages related to the
application.

Application Programming Interface (API). The middleman in the programming
world. The API provides the programmer with an interface to the underlying func-
tionality of separate program code.

Armor. A generalized description of any piece of equipment that a player can wear to
raise his defensive level against attacks. This can include pieces of armor to shields or
boots.

Artificial Intelligence (AI). Describes the intelligence or processing control of non-
player characters within a game in order to simulate specific behaviors or actions.

ASCII. An acronym for American Standard Code for Information Interchange. It is
a code in which the numbers from 0 to 255 stand for letters, numbers, punctuation
marks, and other characters. ASCII code is standardized to facilitate transmitting
text among computers or between a computer and a peripheral device.

Attributes. Define the stature and abilities of characters in games. These attributes
(and abilities) can range from physical details such as height to gauged estimates of
strength.

1004 D. Glossary

Attribute buffer. An array of values used by the ID3DXMesh object for rendering
meshes. Each element in the array corresponds to every polygon face in the mesh.
Each element holds the material identification number used to render the respec-
tive polygon face.

Audio path. Controls the flow of data from the performance object, a segment, syn-
thesizer, and sound buffers.

Auto map (auto-mapping). The function of a game engine to automatically track
and display previously visited sections of gaming maps and levels. This feature
enables players to see where they’ve already been.

Backbuffer. A nonvisible surface to which bitmaps and other images can be drawn
while the front buffer displays the currently visible image.

Backface culling. The removal (or skipping) of polygons (that face away from the
viewpoint) during the rendering process.

Bandwidth. The measure or amount of data that can pass through a network
connection.

Barrier. A blockage on a map that halts a character’s passage.

Base class. Used to describe a parent class of a derived class.

Battle arrangements. The predetermined arrangement of characters during a com-
bat sequence.

Big bitmap. Describes large pre-rendered levels used within a specialized style of
graphics engine called a Big Bitmap Engine.

Billboard. A polygon that is aligned to face the viewpoint.

Billboarding. A technique of simulating the appearance of a 3-D object in a scene.

Bitmap. A pattern of pixels that form a larger image. Bitmap is also the name of
Microsoft’s proprietary image storage format (signified by the .BMP file extension).

Bounding box. A rectangular area that completely encloses an object.

Bounding sphere. A spherical area that completely encloses an object.

Calling purpose. The reason for calling a state function.

Camera. In graphical terms, the representation of a free-moving viewpoint used to
view maps and levels.

Character building. The process of increasing a character’s abilities and attributes
through the course of a game.

1005Glossary

Character class. A character’s classification, which is determined by the game’s design.

Child template (or child frame). A template (or frame) that belongs to another
template.

Circular buffer. A buffer that loops around in order to join the end and beginning
of the buffer.

Class. In programming terms, a collection of program code and data unique to an
object instance. In respect to RPGs, a class is the category or profession of a charac-
ter (such as a ranger, warrior, or magic user).

Class visibility. The declaration of a class’s data and functions that limits or restricts
access to said data and functions.

Client. A client application is the program that the player of a game interacts with
during a networked gaming session.

Climax. The point of greatest intensity in a story.

Clipping planes. Remove objects from rendering pipeline based on the side (front
or back) that the object is in relation to each plane.

Coding conventions. A set of rules or definitions that determines the format or
structure of program code.

Color key. A color that represents a transparent pixel. Pixels colored the same as
the color key are skipped during rendering.

Combat. Describes any sequence of actions that involves attacking or defending
player characters.

Combat rule set. The rules that govern combat.

Compile. The act of compiling, which converts your program code into executable
code.

Compiler. The program you use to convert your program code into executable
applications.

Complications. Obstacles that stand in the way of reaching a resolution.

Component Object Module (COM). A form of modular programming adopted by
Microsoft. It is the heart of DirectX components.

Console. Console has two meanings. It is a special screen that allows users to mod-
ify, read, or type game information or messages. It also is a home-gaming unit, such
as the Sony PlayStation.

1006 D. Glossary

Constructor. A function that shares the same name as the declaring class.

Cooperative level. A setting that defines how to share access to a device or object.

Creature. Describes a non-friendly or non-intelligent character. This includes any
character you might fight (such as a skeleton) or an animal (such as a horse).

Critical section. An object used to synchronize the threads of a single process.

Cut-scenes. A temporary break in the story-flow; used to change scenes.

D&D. Abbreviation for the game Dungeons & Dragons.

Data router. A device that directs network data.

Dead reckoning. A form of updating game content based on known data.

Decibels (dB). A unit of comparison between two levels of sound intensity.

Denouement. The final portion of a story.

Depth sorting. Sorting of objects based on their depth in a scene.

Derived class. A class that borrows the structure of a base class and expands its
functionality by adding or modifying existing functions and data.

Design document. This is the bible of a game design; it contains the layout of a
game to be created.

Destructor. A function called by an object when destroyed.

DirectInput (DI). The DirectX component responsible for dealing with input
devices (such as a keyboard, mouse, or joystick).

Directional light. A light that points in a specific direction.

DirectMusic (DM). The DirectX component used to play music and sound files
(such as Midi and wave files).

DirectPlay (DP). The DirectX component used for networking functionality.

DirectSound (DS). The DirectX component used to play digital sounds.

DirectX. The brainchild of Microsoft, DirectX is a gaming API that allows program-
mers to create games without worrying about the details involved in using the
underlying hardware.

DirectX Audio. With the release of DirectX 8.0, DirectX Audio represents the com-
bination of all audio components, namely DirectSound and DirectMusic.

1007Glossary

DirectX Graphics. Starting with DirectX 8.0, all previous graphics functionality
from DirectDraw and Direct3D were merged into a single component named
DirectX Graphics.

Downloadable Sounds (DLS). A digitally sampled sound (or set of sounds) that is
downloaded into a synthesizer.

Dot product (or scalar product). The product of the lengths of two vectors and the
angle between them.

Dungeon Master (DM). The referee that manages all gaming aspects and controls
the flow of the game.

Experience level. Used to track major levels of advancement in a character. For
example, a character might have 10,000 experience points, but be considered at
level 5. Usually, each advancement in experience levels comes with bonuses, such
as learning new spells or skills.

Experience points (EXP). Describe the amount of growth (in numerical values) of
a character’s advancement in experiences (much like experience level).

Extended ASCII. An extension of the ASCII standard that defines the use of 256
characters, as opposed to ASCII’s 128-character limit.

Falloff. The reduction of a light’s intensity over distance.

Field of View (FOV). The visible portion of a viewer’s sight.

Final beta. The final test version of a software product before release.

Flashback. A look back in time, in the form of a story’s cut-scene.

Flexible Vertex Format (FVF). Describes the contents of a vertex, ranging from a
vertex’s color to its coordinates.

Flip. Switching the visible and non-visible portions of the display.

Foreshadowing. Looking back to introduce the reasoning of a story’s incident.

Frame (also known as a reference frame). Used in .X files to group related tem-
plates together for easier access.

Frame hierarchy. Categorized list of frames.

Frame template. A template that contains a frame.

Frame transformation. A transformation applied to a frame.

Friend class. A class allowed to freely access the declaring class’s data and function.

1008 D. Glossary

TEAMFL
Y

Team-Fly®

Frustum (or viewing frustum). The visible portion of a viewer’s sight contained
within six planes (in the shape of a pyramid).

Function overloading. The method of providing multiple prototypes of the same
function, each with a different set of calling arguments.

Game engine. The group of program code and functions that runs the actual game
application.

Game Master (GM). See Dungeon Master.

Gaming core. A library of functions that controls the basic aspects of game pro-
gramming, ranging from graphics processing and drawing to processing user input
from devices such as the mouse and keyboard.

Gaming system. The set of rules that govern a role-playing game.

Genre. A style or classification. For example, role-playing games and action games
are two separate genres of games.

Global queue. A queue of messages waiting to be processed by the operating system.

Global Unique Identification (GUID). A guaranteed unique number 128 bits in size.

GM/GS set. General Midi/General Synth set of instruments.

GURPS. Acronym for Generic Universal Role-Playing System.

Hit points (HP). Describe either a character’s level of health or the amount of
damage that a character can take before being considered dead.

Hungarian Notation. A coding convention that prefixes a variable or a function
with its defined data type.

Inciting incident. The event that triggers a major event that drives a story.

Index array. An array of values that constructs a series of polygon faces.

Indexed vertex buffer. A vertex buffer that stores vertices in any order, using an
index array to define which vertices construct polygons.

Indies. Independent developers.

Inheritance. In programming terms, describes the capability of derived classes to
adopt their base class’s functionality (including functions and variables).

Instrument collections. A collection of instruments used to play music.

Inventory control system (ICS). An engine used to manage a character’s or a map’s
list of objects.

1009Glossary

Inventory list. A list of objects belonging to a character or map.

IP address. A networking address that takes the form of four numbers—for example,
255.255.255.255.

Key. An object’s orientation at a single point in time. Used in animation sequences.

Key frame. A sequence of keys used in an animation.

Lag. The delay between the time an action is requested and the time that it occurs.
Lag is typically associated with networked games in which network congestion is so
high that players’ commands take much longer than usual to be processed. The
result is sluggish gaming control.

LARPS (Live Action RolePlaying System). Used to describe any game system in
which players dress up and act out their roles, much as in a stage play. Vampire, the
Masquerade is one such game.

Latency. The time it takes a network message to travel from the source to the desti-
nation. The higher the latency, the longer it takes a message to reach the destina-
tion, and usually the higher the lag time in game-play.

Level. Either the level of experience a character achieves during game-play or an
in-game map that characters inhabit and explore.

Library. In programming terms, a library is a collection of programming functions
grouped into a single entity. You use libraries by means of APIs.

Lobby server. A network server object that manages multiple connections and
directs users for a game session.

Local space. A 3-D object’s local coordinate space.

Mad Lib Script or Mad Lib Scripting (MLS). A term I coined to describe the
method of scripting in which you utilize prewritten actions that use a multiple
choice format for obtaining required data.

Magic. Describes paranormal abilities that might or might not be harnessed by
gaming characters.

Magic points (MP). Much like hit points, magic points describe a character’s level of
magic power or the amount of magic a character can use. Magic points are usually
depleted with every magic spell cast, but are later regained with rest or restoration.

Map (or level). Location or locations in which a game takes place.

Master character list (MCL). List of characters used in a game.

1010 D. Glossary

Master item list (MIL). List of items used in a game.

Master spell list (MSL). List of spells used in a game.

Master tempo. The tempo used by the sound system during music playback.

Material. Describes the look and texture of a 3-D object; it is used to render such
objects, including color, bumpiness, and spectacular highlights.

Matrix concatenation. The combination of two matrices.

Mesh. A grouping of polygons.

Message pump. A function that constantly pulls messages from the application mes-
sage queue and processes them.

Midi. A music storage format.

Model. A mesh and assigned materials that are used to render the mesh.

Model space. See Local space.

Modifier. A value that alters another one.

Modular. Modular programs or libraries can be inserted into projects quickly and
easily. Typical modular libraries consist of reusable functions, such as device input
routines.

Monster. The term given to any gaming denizen opposing the player. Do not confuse
a monster with a non-player character. Monsters have few roles in games other than
for combat, whereas NPCs usually are important to the game’s story or progress.

Multithreading. The processing of multiple threads.

Network. A series of connected computers that share or exchange data.

Nodes. A single entity contained with a tree. See also Tree.

Non-Player Character (NPC). Any character in the game that the player does not
control. An NPC can be anything from the friendly shopkeeper to the lowliest
demon of the underworld.

Normal. A vector that describes the direction in which a vertex, plane, light, or
polygon is pointing.

Painter’s algorithm. The order in which objects are rendered. Objects are rendered
based on their distance from the viewpoint, farthest to nearest.

1011Glossary

Particle. Represents any free-roaming object that is strictly used in the graphical
sense to enhance the visual quality of a game. Particles can be used to represent trails
of smoke, sparks of light, and even non-sentient bugs that flitter around aimlessly.

Pass-along network. A network or data router that passes network data onto
another network or data router.

Patch number. An instrument’s identification number.

Patches. Instruments.

Peer-to-peer. A direct network connection from one computer to another.

Performance. The main object used to control the playback of a music object.

Player character (PC). Character that is under the player’s control (who is usually
the hero of the game).

Player killer (PK). Character that does the dirty work of killing off other player
characters.

Plot points (also called plot twists). Major turning points in a story.

Point light. An object (a light) that sheds light in every direction.

Polygon. A closed shape formed by a grouping of vertices connected by edges.
Polygons form the basis of 3-D graphics (because all 3-D graphics are rendered as
polygons). A polygon can be as small as a single pixel or large enough to cover the
entire screen.

Polymorphism. The capability of a derived class to call on its base class’s functions
as though the derived class were the same class as the base.

Port. A virtual dock that directs incoming networking data. A port takes the form of
a number, usually in the range of 0 to 10,000. Data targeted for a specific port of an
IP address is sent directly to that port, so no other ports can interfere with that data.

Primary sound buffer. The main object that contains sounds before being played
by the sound system.

Processes. A single-threaded block of execution. You can think of your game as a
process that can be broken into other processes such as an input process, a graph-
ics rendering process, and so on.

Program flow. The flow in which a program executes or is structured.

Project. In programming terms, a project is a collection of code, libraries, and any
other programming aspects assembled into a single collection.

1012 D. Glossary

Projection matrix. Matrix used to convert from untransformed coordinates to
transformed coordinates.

Projection transformation. The transformation that converts untransformed coor-
dinates into transformed coordinates.

Protagonist. The hero of the story or the character around whom the story revolves.

Race. Much like real life, characters in role-playing games belong to races (for
example, human, elf, or even ogre).

Recursive function. A function that calls on itself during execution.

Render. To draw an object or objects.

Role-playing game (RPG). A game in which players assume the role of an imaginary
character.

Root node. The first node in a list to which all other nodes are connected.

Sample. A single measurement of a sound wave’s amplitude.

Sampling rate. The frequency that a digital sound is recorded.

Scan code. The value sent by a keyboard that represents which key is pressed or
released.

Screen space. Two-dimensional coordinates analogous to the screen’s coordinates.

Scripts. A series of program instructions processed within a game engine. You use
scripts to alter portions of a game without having to re-code the game engine.

Secondary sound buffer. A buffer that contains a sound wave.

Segment. A musical piece.

Server. The network application that serves as the central processing hub of the
gaming world. Client applications connect to servers and begin communicating
player actions back and forth. However, ultimately, the server handles the majority
of the game-processing functionality.

Service providers. Network protocols.

Session. The time a game is in operation.

Skills. Much like attributes in the way they describe the abilities of a character.
Skills can include anything from the ability to climb to how well a character can
converse in tense situations.

1013Glossary

Skinned mesh. A mesh that deforms to the shape of an underlying set of imaginary
bones.

Sky Box. A texture-mapped 3-D cube that surrounds the viewer.

Specular. Color of highlights on a lit object.

Spotlight. A cone-shaped light that illuminates only objects within the cone.

Sprite. Free-moving blocks of pixel graphics, usually representing game characters
and objects.

Standard mesh. See Mesh.

States. Not the states of our great country, but states of change or states of opera-
tion. At one moment, a program can be in a specific state, and in another moment,
it can be switched to another state, changing the form of processing that a game
follows. You can think of states as stoplights: A red-light state means that no cars
can go; a green-light state means that cars can go.

State-based processing (SBP). The structure or flow of functions based on the cur-
rently set state.

Status ailments. Physical or mental conditions that increase or decrease a charac-
ter’s abilities and attributes.

Streaming audio. Large sound data cannot be stored effectively in memory. Playing
large sounds involves playing small chunks of audio data in succession, giving the
impression of continuous playback. The process of reading sound data in chunks is
called streaming audio.

Subset. A set of polygons in a mesh, grouped by respective materials.

Supporting characters. Characters that support the protagonist of a story.

Tech engine. The engines that control the technical aspects of a game, such as
graphics rendering, sound playing, and input processing.

Template. Predefined layouts of specific data. For example, a job application can
be considered a template because it contains prewritten text with blanks that the
applicant completes.

Template hierarchy. A structured list of templates.

Template referencing. A form of pointing to or referring to templates.

Texture filtering. Techniques used to alter the pixels of a texture-mapped polygon
before being rendered.

1014 D. Glossary

Texture group. Polygons grouped by their respective textures.

Texture map. A bitmap image that is painted onto the surface of a polygon in
order to increase the rendered polygon’s visual appearance.

Texture stage. A step in the rendering pipeline that determines how a texture map
is used when drawing polygons.

Thread. A single process of execution.

Throttling mechanisms. A mechanism that limits the flow of incoming or outgoing
network data.

Tile. A block of pixel graphics used to piece together larger images.

Transfer Control Protocol/Internet Protocol (TCP/IP). A network transmission
protocol used to transfer data over the Internet.

Transformations. Calculations used to modify coordinates.

Transformed coordinates. Coordinates that are analogous to the display.

Translating. The act of moving objects.

Transparent blit. Drawing operation that skips transparent pixels.

Tree. Not the big beautiful leafy kind, but a structure that contains nodes con-
nected to other nodes in a branchlike manner. Think of a real tree—the trunk
branches off to a tree limb, which branches off to a twig, which branches off to a
leaf. All those points (the trunk, limb, twig, and leaf) are called nodes.

Triangle fan. A list of polygons created from a series of connected vertices around a
central vertex.

Triangle list. A list of polygons created from groups of three vertices.

Triangle strip. A list of polygons created from a series of subsequently defined vertices.

Trigger. An object placed on a map that triggers the execution of a script when
touched by the player.

Unicode. A 16-bit character capable of encoding all known characters.

Untransformed coordinates. 3-D coordinates.

User Datagram Protocol (UDP). A form of network transmission that does not
track whether a client successfully receives network data.

Vertex. A single point in n-dimensional space. In 3-D terms, a vertex contains a trio
of coordinates (X, Y, and Z) to define its spatial location.

1015Glossary

Vertex shader. A series of directions that determines how vertices are processed
and drawn.

Vertex stream. The conduit in which vertex data is sent from a data buffer to the
renderer.

View transformation. Transformation that orients vertices around the viewing
position.

Viewing matrix. A matrix that represents the view transformation.

Viewpoint. The eye-point of the viewer.

Virtual Key Code. A code used by Microsoft Windows that closely resembles a scan
code.

Weapon. Items that can be used for attack (such as swords, daggers, sticks, and rocks).

Wide characters. See Unicode.

Window. A graphical rectangle belonging to an application. Used to display an
application’s output.

Window message procedure. An application’s function that processes windows’
messages.

Workspace. Much like a desk, but in virtual terms, the workspace manages all project-
related materials (such as source code files, resources, and libraries) by grouping
them into a list that can be freely navigated and altered to suit the project’s needs.

World space. Three-dimensional coordinates oriented around the origin of a
game’s world.

World transformation. Converts from an object’s local coordinates to world
coordinates.

World transformation matrix. A matrix that represents the world transformation.

Z-Buffer (or depth buffer). An array of values that determines the depth (into the
scene) of each pixel.

1016 D. Glossary

APPENDIX E

What’s on
the CD

Attached to the back cover of this book is a disc containing a spiral arrange-
ment of approximately 650,000,000 bytes of data, commonly referred to as

a CD. No installation is required to view the CD; therefore, only the files that you
choose to copy or install will be transferred to your hard drive. You can run the CD
on any operating system that can view graphical HTML pages; however, not all the
programs can be installed on all operating systems.

If AutoRun is turned on, the HTML interface automatically loads into your default
browser. If AutoRun is turned off, you can access the CD by following these steps:

1. Insert the CD into your computer’s CD-ROM drive and close the tray.

2. Go to My Computer or Windows Explorer and double-click the CD-ROM
drive.

3. Find and open the start_here.html file (this works with most HTML
browsers). The Premier Press License Agreement will appear.

4. Take a moment to read the agreement. If you agree, click the I Agree button
to accept the license and proceed to the user interface. If you do not agree
to the terms of the license, click the I Disagree button. The CD will not load.

The opening screen of the Premier Press user interface contains navigation buttons
and a content area. The navigation buttons appear on the left side of the browser
window. You can navigate through the Premier Press user interface by clicking but-
tons. Each page loads accordingly, and the content displays on the right.

The following sections explain what the CD contains.

DirectX 8.0 SDK
Because the title of this book is Programming Role Playing Games with DirectX and
because you find frequent references to the DirectX SDK throughout the book, the
full release of the DirectX 8.0 SDK is provided on the CD.

One of the best ways to round out your understanding of DirectX is to examine the
sample programs and associated source code that Microsoft provides as part of the
SDK. In particular, check out the Direct3D demo programs; they can teach you a
lot about 3-D game programming.

1018 E. What’s on the CD

TEAMFL
Y

Team-Fly®

Also included in the SDK is the DirectX online help. If you haven’t used the
DirectX API Help feature yet, you’ll quickly learn that it is one of your best friends
when it comes to developing 3-D graphics. Don’t just use the index. Peruse the
books under the Contents tab as well, because they contain valuable information
on the architecture of features as a whole (as well as specific information about
each component).

GoldWave 4.23 Demo
GoldWave (by GoldWave Inc.) is a comprehensive digital audio editor. It contains
the following features and more:

■ Provides Multiple Document Interface for editing dozens of files in one session.
■ Permits large file editing (up to 1GB in size).
■ Has configurable RAM (fast) for hard disk (large) editing.
■ Offers real-time graphs (amplitude, spectrum, bar, and spectrogram, X-Y, fire).
■ Allows separate, resizable Device Controls window for accessing audio devices.
■ Features real-time fast forward and rewind playback.
■ Provides numerous effects (distortion, doppler, echo, filter, mechanize, off-

set, pan, volume shaping, invert, resample, equalizer, noise reduction, time
warp, pitch, and more).

■ Supports many file formats (WAV, MP3, OGG, AIFF, AU, VOX MAT, SND,
VOC, raw binary data, and text data) and can convert to and from these
formats.

■ Has drag-and-drop cue points.
■ Allows direct waveform editing with the mouse.

MilkShape 3D 1.56 Demo
MilkShape 3D (by chUmbaLum sOft) is a low-polygon modeler, initially designed
for Half-Life. During its development, many file formats were added. MilkShape 3D
has all the basic operations—select, move, rotate, scale, extrude, turn edge, subdi-
vide, and so on. MilkShape 3D also allows low-level editing with the vertex and face
tool. Primitives such as spheres, boxes, and cylinders are also available. MilkShape
3D also has skeletal animation capabilities. This allows you to export and morph

1019MilkShape 3D 1.56 Demo

target animation like the ones in the Quake model formats or to export to skeletal
animations like Half-Life or Genesis3d. MilkShape 3D currently supports 37 differ-
ent file formats from 27 different games, engines, and programs.

Paint Shop Pro Trial Version
On the CD, you will find a 30-day trial version of Paint Shop Pro (by Jasc Software,
Inc.), one of the best tools available for image creation, editing, and retouching.
Paint Shop Pro is a powerful paint program that can easily provide you with the
essential tools you need to create textures and backdrops.

Poser 4 Demo
Poser 4 (by Curious Labs, Incorporated) is a 3-D character animation and design tool
for artists and animators. You can create images, movies, and posed 3-D figures from
a diverse collection of fully articulated 3-D human and animal models. Libraries of
pose settings, facial expressions, hand gestures, and swappable clothing are included.
Posing and animating is fast and easy with Poser’s unique interface. You can generate
movies and 2D graphics from your posed models for content in Web, print, and video
projects.

trueSpace5 Demo
trueSpace (by Caligari Corporation) is widely used by 3-D artists and animators and
has gained industry recognition for advanced capabilities such as hybrid radiosity
rendering and direct manipulation of user interfaces. trueSpace5 provides features
to satisfy the needs of two new markets: the design market and 3-D Web content
creation.

1020 E. What’s on the CD

Index

A
abilities of characters, defining, 656–658
absolute movement of mouse, 266
acceptance letters, 973
accessories

attributes of, 619
function of, 617

acquiring devices for DirectInput, 280–281
action templates. See also Mad Lib Script system

for Chars demo, 758
ActionTimer, 739
Activision, 974
AddBarrier function, 790, 795
Add function

with cCharacterController class, 748–749
for cMapICS class, 640–642
with cSpellController class, 720

AddNode function, 533, 535–537
AddRef function, 130
AddressOverride program, 374
AddTime function, 755
AddTrigger function, 777
advertising your game, 977
Agetec, Inc., 583

Web site, 997
Agility ability, 568, 657
allocating memory in C++, 76–77
alpha blending, 206–207, 211–217

drawing with, 212–213
enabling, 212
with particles, 233
for sky boxes, 559
small maps, 800
textures with color keying, loading, 214–215
transparent blits, 213–217

alpha channels, 211

alpha testing, 213
with cTiles class, 480
enabling, 215
for sky boxes, 559
version of game, 971

alpha values, 211
for tiles, 473, 481
transparent blits and, 213–214

alter health spells, 707
alter mana spells, 707
ambient color/light, 167

defined, 218
setting, 197–198
using, 223

amplitude, 294
anger in stories, 55
angled tiles, 469–470

angled tile engines, 497–498
animation, 255–258. See also barriers;

cAnimation object; magic spells
with cCharacterController class, 745
for character controller, 736
cObject class for, 433
key framing, 256–257
matrix key framing, 256–257
multiplayer gaming, list for, 888
templates for, 258
time, measurement of, 436

anim set, 716
antagonists, 40
application data, 144–148

data packaging, 144–146
testing the data package, 146–148

application framework, 154
application message queue, 104
Arial font, 686

for Battle project, 828

armor
attributes of, 619
function of, 617
groups, 619

Arrange function, 646–647
art bible, 23, 25
artificial intelligence, 728–729

Chars Demo, using, 758
in combat, 728–729, 822
sCharacter for setting, 737
in The Tower, 940–941

ASCII codes, 264–265
aspect parameter, 196
assert function, 155–157
AssignID function, 892
Association of Shareware Professionals (ASP), 978
asynchronous messages, 360, 362
atmosphere, setting, 42–43
attached matrices, 427
attack ability, 656–657

modifiers, 618, 662–663
attribute buffers, 529
attributes

of characters, 7, 658–659
of objects, 617–619

audio path objects, DirectMusic, 348
auto maps, 797–798. See also cAutomap class

centering in world, 814
diffuse colors for, 809
displaying, 802–803
loading, 802–803
overlapping polygons in, 800
polygon faces for, 800–802
rendering, 814–815
size of maps, 798–802
small maps, 799–800
triggers in maps, using, 816
using, 815–816
vertex buffers for, 805, 808

axis control, 267–268

B
backbuffers

color for, 199
definition of, 174

Direct3D presentation method, 174–176
scenes, presenting, 201–202

backdrops
2-D backdrops, dealing with, 570–572
3Din2D backdrops, 569
for The Tower, 912

backface culling, 166
back-stories, 53
Baldur’s Gate, 12, 468

big bitmap engine in, 498–500
bands (.BND), 297
bandwidth of network, 355
barriers, 788–792. See also cBarrier class

adding barriers, 795
checking barrier collisions, 797
cObject object, need for, 789
data file, creating, 796
defined, 788
loading barrier data, 796–797
rendering, 791, 794–795, 797
rotational values, 790
sBarrier structure, 789–790
SetAnim function for, 792–794
SetMesh function, 791, 792–794
in The Tower, 930, 949
triggers compared, 788–789

Barrier status ailment, 272, 660
Barron, Todd, 358, 1001
BarterFrame function, 956–957
bartering

resource management for, 703
in The Tower, 956–957

battle arrangements, 841
Battle project, 824–826

actions, selecting, 834–835
charge timer, updating, 837
constructor of application class, 827
declaration of cApplication class, 824–826
Frame function for, 832–838
GetCharacterAt function, 838–840
global variables, 826–827
health/mana points, updating, 837
initializing application class, 827–831
mouse button effects, 833–834
rendering scene in, 836–837
selecting spells, 834–835
Shutdown function for, 831–832

1022 Index

speed, frame timer governing, 833
using battle arrangements, 841

beats per minute (BPM), 347
beta testing version, 971
big bitmap engine, 498–500

example of, 499–500
loading big tiles, 499

billboarding, 231–233
cObject and, 433
cWorldPosition for, 425–427

bitmaps. See also textures
big bitmap engines, 498–500
splitting, 499

The Black Gate, 469
Blind status ailment, 660, 723–724
Blit function with cTexture, 416–417
Blizzard Entertainment, 354, 845
blocking the path, 545–546
boldness, setting level of, 229
Boolean values in MLS, 587
bounding box/sphere

with cCharacterController class, 745–746
CheckSphereIntersect function, 551
of cNodeTreeMesh, 532
cObject class for retrieving, 433
computing the, 542–543
defined, 434
IsPolygonContained function, 533–535
with NodeTree engine, 520
object-to-object collision detection with,

549–551
triggers, triggering, 769
and viewing frustum, 517, 541

bounding radius, 434
bounds checking, 489–490
box triggers, 767

adding, 778–779
GetTrigger function with, 783

Breath of Fire series, 16
Brown, Doug, 1001
budgets for game, 970–971
buffers. See also DirectSound; vertex buffers;

Z-buffers
DirectInput buffers, setting, 279
for DirectSound, 299
ID3DXBuffer object, 248–249

bugs. See also Debugging
in Windows program, 155–157

bump-mapping, 203

C
cache data in DirectMusic, unloading, 344
cActionTemplate class, 595–603
CalculateEvadeMovement function, 682–683
Caligari, xli, 569
callback functions with DirectPlay, 366
calling purposes, 406

state-based functions and, 939
camera tracking, 429. See also cCamera object
cAnimation object, 434–436

for barriers, 791
for moving meshes, 434–436

Capcom, 16
cApplication class. See Battle project; multiplayer

gaming; The Tower
casting a ray, 544–545

with GetCharacterAt function, 839–840
cast spell action, 662
cause ailment spells, 707
cAutomap class

colors, setting, 809
constructor/destructor, 805–806
Create function, 806–811
creating, 803–805
declaration, 803–805
EnableSection function, 812–813
Free function, 805–806, 810–811
GetNumSections function, 812–813
Load function, 811–812
Render function, 812–813
Save function, 811–812
SetWindow function, 812–813
using, 815–816
vertex buffers, creating, 808–809

cBarrier class
adding barriers, 795
declaration of, 790–792
linked lists, adding barriers to, 791
Render function, 794–795, 797
SetAnim function, 792–794
SetMesh function, 792–794

1023Index

cCamera object, 427–429
for auto maps, 805
for sky boxes, 560

cCharacterController class, 742–757
Add function, 748–749
animation structure, 745
bounding spheres for, 745–746
damage conditions, setting, 752
death of characters, 752–753
dropping items, function for, 754
equipping items, function for, 754
Experience function, 753
floating messages, displaying, 752
macros for, 743–744
mesh directory for, 745
private functions, 744, 745–748
public functions, 748–755
Remove function, 748–749
Render function, 749–750
retrieving information with, 751–752
SetMessage function, 752
Update function, 749
updating with, 746, 749–750
using, 755–757
validation function, 746–747

cCharICS class, 645–650
Arrange function, 646–647
MoveDown function, 648, 649
MoveUp function, 647–648, 649
public functions, 646–650
using, 649–650

cDLS class, 452–453
CD-ROM contents, xli
.c extension, 65
cFont class, 420–422

format flags, 422
cFrustum class, 511–517

Construct function in, 512–514
visibility-checking functions, 514–517

cGameScript class, 961–965
cGraphics class, 411–415

for auto maps, 805
for barriers, 791
cFont class, using, 421
SetMode function with, 414

cGroup structure, 524
character controller class, 735. See also

cCharacterController class

adding characters, 756–757
animations in, 736
artificial intelligence settings, 737
for Battle project, 830–831
enabling characters, 738
Experience function, 753
floating messages, displaying, 752
moving characters, 736
preventing updating, 739
retrieving information, 751–752
sCharacter, tracking with, 737
sCharacterMeshList, 735–736
teleport spell with, 754–755
for The Tower, 949–956
tracking characters, 737–742

character ICS. See inventory control system (ICS)
character map lists, 762–765

loading, 763–765
character objects, 65
characters, 7, 31, 32. See also Battle project;

character controller class; combat;
conversations; cScript class; inventory
control system (ICS); master character
list (MCL); monster characters (MCs);
non-player characters (NPCs); player
characters (PCs); The Tower

abilities, defining, 656–658
actions, 655, 661–663
Agility ability, 657, 658
appearance, 655
Attack ability, 656–657
attributes of, 7, 658–659
automatic control of, 683
bounds checking, 489–490
building, 655
character ICS, 633
character map lists, 762–765
charge factor, 663
Chars Demo, using, 757–759
classes, 622, 661

spell classes and, 711
conversation of, 655
creating, 40–42
Defense ability, 657
definition of, 655–663
detailed descriptions of, 50
dialogue, 42
experience levels, 658, 659

1024 Index

experience points, 658, 659
graphics, 667
health points (HP), 658, 659
on keyboards, 264–265
mana points (MP), 658, 659
Mental ability, 657, 658
Modify Character dialog box, 733–734
navigation of, 655
in pen-and-paper games, 8
Resistance ability, 657, 658
sCharacterController structure, 731
sCharacterDefinition structure, 730–733
script placement of, 765–766
status ailments, 659–660

combat, spells in, 727–728
damage in combat, 725–726
dodging attacks, 724
sCharacter structure tracking, 738
with to-hit ability, 723–724

talking dummy character, 684
three-dimensional characters, 41
To-hit ability, 657, 658

char buffers, 687
charge factor, 663
charge timers

in Battle project, 837
in combat, 821–822

Chars Demo, 757–759
CharUpdate function, 746
CheckCube function, 514–517
CheckIntersect function, 945–946
CheckMove function, 747
CheckPoint function, 514–517
CheckRectangle function, 514–517
CheckSphere function, 514–571, 541

for bounding spheres, 543
CheckSphereIntersect function, 551
child frames, 243
child nodes. See NodeTree engines
chordmaps (.CDM), 297
Chronicles of Thomas Covenant (Donaldson), 56
chunks in cSoundChannel class, 447
cInput class, 437
cInputDevice class, 437–440

locked keys and buttons, 440
circular buffers, 307–308
clans, 14

clarity of story, 47
classes, 78–79. See also characters

const keyword with, 95
constructors, 85–86
derived classes, 90–94
destructors, 85–86
friends, classifying, 89–90
functions, 81–87
inheritance, 90
operator functions, 86–87
polymorphism, 92
static classes, 83–84
this keyword, 88
variables, 81–87
virtual functions, 93–94
visibility, 80–81
Windows class, registering, 105–108

cleaning data, 135
clients, 353. See also DirectPlay; multiplayer

gaming
networks, 358, 850

cLight, 418–420
climax of story, 37
clipping planes. See also cFrustum class

calculating, 509–510
dot-product, computing, 510–511
normals and, 508–509
viewing frustum, sides of, 508–511
visibility with plane, checking, 510–511

clipping ranges, 195–196
Clumsy status ailment, 660, 724
cMap class

Create function, 493
creating, 490–497
declaration, 491–492
Free function with, 493
Render function, 495–497
SetMapData function, 494
UseTiles function, 495

cMapICS class, 634–644
Add and Remove functions, 640–642
Free function, 636–644
GetItem function, 642
GetNumItems function, 642
GetParentItem function, 642
Load function, 636–644
Save function, 636–644
using, 643–644

1025Index

cMaterial class, 417–418
cMesh class, 430–431

for barriers, 791
cAutomap class, 803
for 3Din2D backdrops, 569

cMusicChannel, 450–452
cNetworkAdapter, 454–455
cNetworkClient, 459–462
cNetworkServer, GUIDs for, 454, 458
cNodeTree class, 522–526. See also

cNodeTreeMesh class
with Network Game demonstration program,

847
using, 540
variables, 527

cNodeTreeMesh class
AddNode function, 535–537
assigning polygons in, 537
attribute buffers, 529
collisions with, 549
CountPolygons function, 533–535
Create function, 526–531
Free function, 526–531
indexed vertex buffers, 529
IsPolygonContained function, 533–535
Render function, 538–539
SortNode function, 530, 531–533

cObject class, 431–434, 433
for barriers, 789
sCharacter class and, 741
StartTime parameter in, 435–436
for 3Din2D backdrops, 569

collection objects
attributes of, 619
function of, 617

collision detection. See also barriers
blocking the path, 545–546
bounding spheres, intersecting, 549–551
box triggers, 767
casting a ray, 544–545
with cNodeTreeMesh class, 549
D3DXIntersect function for, 552–553
moving up and down, 547–548
object-to-object collision detection, 549–551
path, blocking the, 545–546
ray, casting a, 544–545
speeding up, 549

splitting meshes for, 549
in 3Din2D scenes, 576

color keys, 213
textures, loading, 214–215

colors. See also alpha blending; ambient
color/light; textures

for backbuffer, 199
cMaterial class for, 417–418
Direct3D, 197–198
display mode, selecting, 171–173
with DrawText function, 230
lights, color levels of, 219–220
materials, values for, 197–198
of particles, 234
polygon faces, 167
for tiles, 473

combat, 7, 722–726. See also Battle project;
multiplayer gaming

artificial intelligence in, 728–729, 822
characters and, 655
charge timers, 821–822
classes of characters, 661
damage, dealing, 725–726, 728
defense ability of character, 726
dodging attacks, 724
external sequences, designing, 820–823
as feature of game, 31
magic spells in, 727–728
of non-player characters (NPCs), 665
in pen-and-paper games, 8
sCharacter structure for, 739
to-hit ability, 723–724

combat rule set (CRS), 722–726
combined matrices, 427
COM (Component Object Module), 128–132.

See also DirectInput; DirectPlay
coding for objects, 130
creating objects, 131–132
with DirectMusic, 331
for DirectSound, 298, 300
Direct3D components, 169–170
initializing COM, 129
IUnknown class for, 130
modular programming, 135, 136–137
querying interfaces, 131–132
vertex buffer COM objects, releasing, 188

command action examples, 581
command-line options, 103

1026 Index

communication protocols, 355–356
complications in story, 37
computer RPG games, 10–12
Concussion spell in The Tower, 921
Configure Server dialog box, 858
ConnectComplete function, 890–891
Connect function in DirectPlay, 391–394
consistency in story, 46
const keyword, 74–75

with classes, 95
cSoundChannel class, 447

Construct function in cFrustum class, 512–514
constructors/destructors, 85–86

Battle project constructor of application
class, 827

cAutomap class, 805–806
cTrigger class, 773
cWindow class, 688
sCharacter structure, 741–742
sSpell Controller class, 720
The Tower cApplication class constructor, 933

contracts, negotiating, 973–974
conventions of book, xlii
conversations, 42, 683–695. See also cScript class;

cWindow class; text windows
displaying, 685–686
in games, 56, 59–60
in multiplayer gaming, 851
of non-player characters (NPCs), 665–666
talking dummy character, 684

conversation windows. See text windows
Cook, Monte, 1000, 1001
cooperative levels

for DirectInput, 277–278, 279
for DirectSound, 301–302

coordinates, 162–164. See also X-coordinates; Y-
coordinates; Z-coordinates

for barrier data files, 796
bounding box, defined, 434
cWorldPosition for, 425–427
in smooth scrolling technique, 487
for tiles, 473

Core_System.h include file, 494
core technical engines, 32
CountPolygons function, 533–535
Courier New font, 229

C++. See also Classes
classes, 78–79
compiler, setting up, 989
enumeration with, 77–78
functions, working with, 66–71
introduction of, 64–65
memory allocation, 76–77
modular programming, 135, 136–137
NULL value, 77–78
resource manager, 123
scripts using, 581
variables, working with, 71–75
Visual C/C++, 989–994

.cpp extension, 65
cProcessManager, 408–409
C programming language, 65. See also C++

compiler, setting up, 989
resource manager, 123
structures, 78–79
Visual C/C++, 989–994

CreateDevice function, 176
Create function, 146

with cAutomap class, 806–811
with cMap class, 493
for cNodeTreeMesh, 526–531
for cSkyBox class, 555–557
for cTiles class, 476
with cWindow class, 688–689

CreatePlayer function. See multiplayer gaming
CreateScriptAction function, 601–602
CreateThread function, 126–127
CreateWindow function, 108–110

dwStyle flags, 110
critical sections, 128
cScript class

definition, 695–696
derived script class, 696–701
processing scripts, 696

cSkyBox class
creating, 554–557
Free function with, 555–557
LoadTexture function, 557–558
Render function, 559–560
Rotate function, 558

cSoundChannel class, 447–450
cSoundData class, 444–446

streaming sounds with, 446

1027Index

cSound object, 441–444
cSpellController class, 715–722, 717–721

Add function, 720
GetSpell function, 720
initializing, 720
private functions, 718–719
public functions, 719–721
updating functions, 721

cStateManager class declaration, 405–408
cTexture, Blit function with, 416–417
cTiles class, 474–481

Create function, 476
Draw function, 480–481
Free function, 476–477, 479
GetWidth/GetHeight/GetNum functions,

479–480
Load function, 477–478
transparent colors with, 480
using, 482

cTrigger class, 769–787
AddTrigger function, 777
constructor/destructor, 773
declaration, 771–773
definition of, 770–771
Enable function, 785–786
Free function with, 780–781
GetEnableState function, 785
GetTrigger function, 782–785
identification number, reading in, 774–775
loading triggers, 773–775
removing triggers, 780–781
retrieving triggers, 786–787
Save function, 775–776
sTrigger structure, 771
type of trigger, adding, 777–780

cube meshes, 553
cure ailment spells, 707

effects of, 707, 708
in The Tower, 920

Curious Lab, iv
CurrentAnimation, 717
cut-scenes, 53

and plot, 58
cVertexBuffer

for nodes, 524
render type flags, 425
texture groups, objects in, 530

cWindow class
constructor/destructor, 688
Create function, 688–689
definition, 686–688
demonstration of, 694–695
Free function, 688–689
GetHeight function, 693
Move function, 690–693
Render function, 693–694
SetText function, 689

cWorldPosition class, 425–427, 558
Cyberpunk 2020, 9
cylinder, normals for, 225–226
cylinder triggers, 768

adding, 779
GetTrigger function with, 783

D
damage, 711

cCharacterController class setting, 752
in combat, 725–726, 728
modifiers, 618

Damage function, 752
data buffer, 147–148
data packaging, 144–146

cDataPackage, managing data with, 410
data routers, 357
DataType, 76
dead reckoning, 851–852
death of characters

as action, 662
cCharacterController class, 747–748,

752–753
monster characters (MCs), 747, 752–753
PCDeath function, 747

debugging
SDK debug version, 987
Windows programming, 155–157

declaring variables, 71–72
default function argument values, 67–79
default search directory, DirectMusic, 333–334
default window procedure, 114
defense modifier, 619
delivery of messages, 362
denouement of story, 37
depression in story, 55

1028 Index

TEAMFL
Y

Team-Fly®

depth buffer for 3Din2D, 569
depth of viewing frustum rectangle, 517
depth sorting, 237
derived classes, 90–94. See also scripts

virtual function with, 93–94
design bible, 24, 26
design documents

creating, 23–30
elements of, 23–24
features of games, 31–32
importance of, 22–23
multiple bibles, splitting into, 23–28
story-writing and, 60
in submission of game, 970
table of contents (TOC), 28, 29
topics, adding, 28–30
Web site sources for, 30

destroying players. See also multiplayer gaming
in DirectPlay, 385–386

destructors. See constructors/destructors
Diablo, 354, 845
dialog boxes in Windows programming, 121–122
dialogue. See conversations
dice, 7
diffuse colors, 167

with alpha blending, 212–213
for auto maps, 809
setting, 197–198

digital axis controls, 268
DIPROPRANGE structure for joystick, 289
direct control system, 668
DirectDraw, 169
DirectInput, 268–269

acquiring devices, 280–281
basics of, 269–270
buffering, setting, 279
with cInput, 437
cInputDevice class, 437–440
COM objects, 269–270

creating, 276
cooperative level, setting, 277–278, 279
data format, setting, 277
enumerating devices, 272–276
flags, 274
GUIDs, 272–276

property GUIDs, 281
initializing, 270–271

with joysticks, 287–291
keyboards, setting up for, 283–285
with mouse, 285–287
polling devices, 282
preset device data structures, 278
range settings for, 279–280
reading in data, 282–283
special properties, setting, 278–280
using devices, 271–272

DirectInput8Create function, 271
directional control of PCs, 669–671
directional lights, 210

cLight class configured for, 420
defined, 218
using, 222–223

Direction vector declaration, 222
DirectMusic, 297, 329–330

audio channel, grabbing, 347–349
beats per minute (BPM), 347
cache data, unloading, 344
cDLS class, 452–453
cMusicChannel, 450–452
COM objects, 331
configuring for MIDI, 340
cSound object, 441–444
default search directory, 333–334
DLS collection, creating, 337–339
flags for segment loading, 335–336
General MIDI patches, 337
GUIDs

for DLS collections, 339
sound objects, grabbing, 348–349

instruments
cDLS class, 452–453
loading, 337–339
setting up, 340–341

loader objects, 331, 333–334
instruments, loading, 337–339
responsibility of, 335

loops, using, 341–342
native format, 329–330
patches, 337
performance master tempo, adjusting, 347
performance object

creating, 330–333
instruments, setting up, 340–341
playing segment with, 342
volume control with, 344–345

1029Index

DirectMusic (continued)
performance volume, 344
repeats, using, 341–342
segments, 297, 331, 334–344

configuring for MIDI, 340
loading, 334–337
playing/stopping segment, 342–343
unloading segment data, 343–344
volume control and, 344–345

segment state object, 343
starting with, 330–331
stopping segment from playing, 343
synthesizing sound effects, 330
tempo changes, 347
time measurement in, 342
unloading segment data, 343–344
volume control, 344–347

DirectMusic Producer, installing, 988
DirectPlay, 357. See also multiplayer gaming;

Network Core
asynchronous connection types with, 394
callback functions, assigning, 366
canceling information, 390
clients

access, 358
cNetworkClient, 459–462
ending client sessions, 396
sending/receiving messages, 396
working with, 391–395

cNetworkAdapter with, 454–455
cNetworkClient, 459–462
COM objects, 358-359

initializing COM system, 365
Connect function, 391–394
create-player messages, 382
data types for components, 369
destroying players, 385–386
devices, assigning, 371–374
different network model, calling, 365
disconnecting players, 385
DWORD variable, calling, 372–373
ending sessions

client sessions, 396
host sessions, 390–391

enumeration with, 371–372
flags

sending messages, 388–390
session flags, 377

groups of players, 359
GUIDs

for clients, 391
for client session data, 378
cNetworkAdapter with, 454, 458
for server sessions, 376
for service providers, 370, 374

initializing
COM objects, 365
IP address object, 367
network objects, 364–366

IP addresses
components, adding, 368–369
functions, list of, 367
initializing address object, 367
ports, selecting, 370–371

macros for component names, 368
message handlers, using, 374–376
messages, 359–363

client messages, 391–395
players, 381–386

create-player messages, 382
destroying players, 385–386
name, retrieving, 383–384
storing player data, 382
working with, 359

ports, selecting, 370–371
primary sound buffer, 298
receiving messages

client messages, 396
server messages, 386–387

sending messages
client messages, 396
server messages, 387–390

servers
access to, 358
with cNetworkServer, 455–459
session data, 376–377
setting, 370
working with, 378–381

sessions
client session data, 378
configuring information for, 376–378
ending host session, 390–391
flags, 377
server session data, 376–377

TCP/IP service providers, enumeration of,
373–374

Unicode with, 363–364

1030 Index

DirectShow, 576
DirectSound, 298–300

circular buffers, 307–308
COM objects for, 298, 300
cooperative levels, setting, 301–302
cSound object, 441–444
event handlers for notifications, 318–319
flags, 303–305

for DirectInput, 274
for notifications, 318
setting, 312

frequency changes, 315–316
headers for wave files, 324–325
initializing, 300–301
loading sounds into buffers, 310–312,

323–327
LoadSoundData function, 325–326, 328
locking sound buffers, 311–312
loop playback option, 308
losing buffer’s resources, 316
multithreaded libraries, 993–994
notifications, 299, 317–321

streaming sound with, 328–329
panning, 314–315
playback format, setting, 302–306
playing sound buffer, 313
primary sound buffer

creating object, 303–305
panning, support for, 315
stopping, 308

resetting events, 321
secondary sound buffers, 298, 308–310
speakers, panning and, 314–315
stereo format, 305
streaming sound, 327–329
synthesizing sound effects, 330
threads for events, using, 321–323
volume control, 314
waiting for events in, 319–320

Direct3D, 160–161. See also alpha blending;
lights; meshes

billboarding, 231–233
coloring polygons, 167
color modes, selecting, 171–173
components of, 169–170
coordinate systems, 162–164
depth sorting, 237

display interface, creating, 176
display mode, selecting, 171–173
drawing graphics with, 184–202
fonts, 227–230
initializing system, 170–177
interface, obtaining, 170–171
lost devices, 177
materials, 162
objects, constructing, 164–165
ordering vertices, 166–167
particles, 233–237
presentation method, setting, 174–176
primitive types, 200–201
restoring device, 177
scenes, beginning and ending, 199
texture-mapping with, 204
transformations, 167–168
viewpoints, 198–199, 240
Z-buffers, 237–239

DirectX, 132–134
components list, 989
directory settings, 990
downloading, 134
installing, xxxix, 134, 987–988
introduction of, 33–34
libraries, linking to, 990–992
program flow, understanding, 134–135
setting up, 986–994
versions of, 133–134
Web sites resources, 996–998

DirectX Audio, 298–300. See also DirectMusic;
DirectSound

cSound object, 441–444
DirectX graphics. See Direct3D
DirectX libraries, 33, 148
DispatchMessage function, 113
dispel magic spells, 707, 709
display modes in Direct3D, 171–173
distributing games, 978
DLS instrument data, 337–339

cDLS class and, 452–453
dodging attacks, 724
do-it-yourself publishing, 976–977
Donaldson, Stephen R., 39, 55, 56
Doom, 976
DOS, 98

1031Index

dot-products, 510–511
for casting a ray, 544–545
triangle trigger code, 783–785

Downloadable Sounds. See DLS instrument data
downloading DirectX, 134
drafts of story, 48, 49–50

cut-and-polish draft, 42
revision draft, 42
rough drafts, 51–52

Dragon Magazine, 8, 1000
Draw function. See also tiles and tiling

with cTiles class, 480–481
with fonts, 230
meshes with cObject, 431–434

DrawPrimitive primitive types, 200–201
DrawSubset function, 251
DrawText function, 230
dropping items, function for, 754
D3D8.Lib library, 169
D3DMATRIX pointer, 180
D3DXIntersect function, 545

meshes, clicking on, 552–553
D3DX library, 178

casting a ray with, 545
for matrix construction, 179
spotlights, pointing, 222
with textures, 204–205

Dumbfounded status ailment, 272, 660
Dungeon Adventures, 8, 1000
Dungeon Master (DM), 7
Dungeons & Dragons, 6, 7, 8, 12
Dungeons & Dragons 3rd Edition Dungeon Master’s

Guide Handbook (Cook, Tweet &
Williams), 1001

Dungeons & Dragons 3rd Edition Player’s Handbook
(Cook, Tweet & Williams), 1000

Dungeon Siege, xxxvii, 12, 14
DWORD variable with DirectPlay, 372–373
dynamic stories, 58

E
edible objects, 617, 619
editing. See also Mad Lib Script system; MSL editor

with MLS editor, 603–606
stories, 48, 51

effaced narrator, 43
Electronic Arts, 974–975
embedded functions, 95–96
emotion in stories, 44, 54–55
Enable function with cTrigger class, 785–786
EnableSection function, 812–813
Enchanted status ailment, 272, 660
encrypting messages, 362
EndIf actions in MLS script, 610–611
EnterCriticalSection function, 869
entries, 582. See also Mad Lib Script system
enumerating

DirectInput devices, 272–276
with DirectPlay, 371–372
joystick devices, 287–288
objects, bit flags for, 622
sItem structure, 620

ENUM keyword, 77–78
enum objects

for barriers, 789
for magic spells, 706–707

equipping items, function for, 754
evading another character, 682–683
event handlers for DirectSound, 318–319
events in Windows programming, 104–105
EverQuest, 12
Evil Force spell in The Tower, 921, 922
evolution of gaming, 12–16
excitement in story, 55
Execute function for scripts, 696
ExitThread function, 127
ExpandActionText function, 603
ExpandDefaultActionText function, 603
Experience function, 753
experience levels, 658, 659, 664–665
experience points, 658, 659, 664–665

in The Tower, 918–919
explanations in story, 46
exploration feature, 31
Extended ASCII codes, 265
external combat sequences, 820–823

F
fans. See triangle fans

1032 Index

fast characters, 660
fear in story, 55
features of game, 31–32
field of view (FOV), 507
filters for textures, 208–209
final beta testing version, 971
Final Destination, 36
Final Fantasy, 15, 56, 468
Final Fantasy 7, 820
Final Fantasy 10, 576
FindResource function, 124–125
fine coordinates, 487–488
Fireball spell

class of characters and, 661
meshes for, 704–705
modifying, 714
in The Tower, 921

first-person games, 668
control of player characters (PCs) in, 672–673

first person story-writing, 43
fixed vertex shaders, 191
flags. See also DirectPlay; DirectSound

cFont class format flags, 422
cVertexBuffer render type flags, 425
for derived script class, 698
DirectMusic, 335–336
dwStyle flags, 110
flexible vertex format (FVF) descriptor

flags, 186
item bit flags, 621–622
message box flags, 120
MonstersInLevel flag, 940–942
object bit flags, 621–622
for talking dummy character, 684
with Windows class, 106

flashbacks in stories, 53
flexible vertex format (FVF), 184–186

bounding sphere, computing, 543
cVertexBuffer class and, 423
for normals, 225

flip, 174
Flipcode Web site, 996
float data types, 185

in Mad Lib Script system, 587
for tiles, 473
with viewing frustum, 508

flow
program flow, 134–135, 137
of story, 44
The Tower, layout out flow in, 927–928

following another character, 681–682
fonts, 227–230

with cCharacterController class, 748
cFont class, 420–422
creating, 228–229
drawing with, 230
D3DX library information, 178
naming, 229
for text windows, 686

foreshadowing, 53–54
form in objects, using, 614–616
fovy parameter, 196
Frame function, 402–403

for Battle project, 832–838
in multiplayer gaming, 896–901

frame hierarchy, 242–244
for skinned meshes, 253–254

frames
animation and, 255–256
key framing, 256–257
for The Tower, 937–938

frame templates, 242–244
frame transformation, 243
free-floating tiles. See sprites
Free function, 146

with cAnimation class, 435
with cAutomap class, 805–806, 810–811
with cCharacterController class, 748
with cMap class, 493
of cMapICS class, 636–644
with cNodeTreeMesh, 526–531
for cSkyBox class, 555–557
with cSpellController class, 720
for cTiles class, 476–477, 479
cWindow class, 688–689
Remove function, 780–781

FreeLevel function, 945–946, 947–948
frequency, 294

in DirectSound, 315–316
friends, classes as, 89–90
full screen mode

with cGraphics, 414
Direct3D presentation method, 174–176

1033Index

function overloading, 68–70
function prototyping, 66–67
functions, 66–71. See also specific functions

class functions, 81–87
declaring, 81
default function argument values, 67–79
embedded functions, 95–96
inline functions, 70–71
in IUnknown class for COM, 130
operator functions, 86–87
overloading, 68–70
prototyping, 66–67
resource handling functions, 124–125
static functions

with classes, 83–84
this keyword with, 88

this keyword with, 88
virtual functions, 93–94
Windows programming, naming in,

100–101
functions of objects, 615, 616–617, 620–625

categorizing items, 620
defining, 615, 616–617

FVF descriptor, 184–186

G
Gameboy Advance hand-held system, 483
Game Core, 400–401. See also Graphics Core;

Input Core; Network Core; Sound Core;
System Core

for The Tower, 930
Game Designers’ Workshop, 9
GameFrame function, 939–945
Game Master (GM), 7
game publishers. See publishers
gaming magazines, 977
Gaming Zone Web site, 355
Gas Powered Games, xxxvii, 12
Gathering of Developers, 975
General MIDI patches, 337
GenerateCylinder function, 225–226
Generic Universal Role-Playing System

(GURPS), 9
GetBarrier function, 797
GetCharacterAt function, 838–840

for The Tower, 952

GetClosestHeight function, 547–548
GetEnableState function, 785
GetHeightAbove function, 547–548
GetHeightBelow function, 547–548, 945–946
GetHeight function, 693
GetItem function, 642
GetMatrix function, 427
GetMessage function, 111
GetNextFloat function, 763–764
GetNextLong function, 763–764
GetNextQuotedLine function, 596–597
GetNextWord function, 596, 597–598
GetNumItems function, 642
GetNumSections function, 812–813
GetNumTriggers function, 786–787
GetParentItem function, 642
GetParentTrigger function, 786–787
GetPlayerNum function, 888–889
GetSpell function, 720
GetTrigger function, 782–785

touching triggers, 788
global queue, 104
glossary, 1003–1016
GM/GS set, 337
God Games’ NDA form, 969
graphics. See also Direct3D; 2-D graphics;

3-D graphics
character graphics, 667

graphics cards, 238
Graphics Core, 400, 410–436. See also

cNodeTree class
cAnimation, 434–436
cCamera, 427–429
cFont class, 420–422
with cGraphics, 411–415
cLight, 418–420
cMaterial, 417–418
cMesh, 430–431
cObject, 431–434
components of, 411
cTexture, 415–417
cVertexBuffer class, 422–425
cWorldPosition, 425–427
2Din3D, loading meshes for, 565

graphics engines, 32

1034 Index

Groundball spells
scaling for, 705
stretch/scale mesh positioning technique,

705, 706
in The Tower, 921

groups of players, 359
guidgen.exe program, 364
GUIDs. See also DirectInput; DirectMusic

network applications, identifying, 364

H
Half-Life, 244
Hallford, Jana, 1002
Hallford, Neal, 1002
handles, 103, 107
hand-to-hand weapons, 618
happiness in story, 55
Hardball 2, xxxviii
Hawkeye status ailment, 660, 723–724
headers

for wave files, 324–325
in Windows programming, 103

Heal Self spell in The Tower, 921
health points (HP), 658, 659

alter health spells, 707
in Battle project, 829–830, 837
sCharacter structure tracking, 738
in The Tower, 944–945

health spells, 706, 707
height

font, setting height of, 229
of maps, 495
moving up and down and, 547–548
of quadtrees, 531
for tiles, 479–480
of viewing frustum rectangle, 517

hertz (Hz), 295
high-lag networks, 355
highlight color, 219
humiliation in story, 55
Hungarian Notation, 73, 99

classes in, 78
typical prefixes in, 100

hurt players, 662. See also multiplayer gaming

I
Ice spell

experience points for, 918
in The Tower, 921

icon resources, 123
identification number (ID) for characters, 737
identity matrix, 180–181
idle action, 662
id Software, Inc., 976
ID3DXBuffer object, 248–249
ID3DXSprite, 470–474, 481
Iex & yacc (Levine, Mason & Brown), 1001
if...then actions

in MLS script, 610–611
in The Tower, 964

if...then...else statements in MLS scripts,
607–608

incidents in story, 37
indexed vertex buffers, 529
Index field for lights, 224
Infogames, 975
inheritance, 90
Init function, 402–403

for Battle project, 827–831
with cCharacterController class, 748
with cNetwork Adapter, 454
with cSound class, 443
The Tower cApplication class, 934–936

initializing. See also DirectPlay
Battle project application class, 827–831
with cSoundChannel class, 447–450
cSpellController class, 720
DirectInput, 270–271
DirectSound, 300–301
Direct3D system, 170–177
fonts, 228
mouse, 285–286
performance object, DirectMusic, 332
The Tower cApplication class, 934–936

inline functions, 70–71
inner dialogue, 42
Input Core, 400, 436–441

cInput, 437
using, 440–441

1035Index

input devices, 262. See also DirectInput;
specific types

access to, 33
cInputDevice class, 437–440

installing
DirectMusic Producer, 988
DirectX, xxxix, 134, 987–988

instant kill spells, 707
effects of, 708

instrument collections, 337
instruments. See DirectMusic
Integer values in MLS, 587
Internet. See also multiplayer gaming; Web sites

gaming on, 14
Interplay, 12
interpolating, 256
interrupts, 263
intersections. See also collision detection;

D3DXIntersect function
of bounding spheres, 549–551
in 3Din2D scenes, 576

inventory control system (ICS), 32
for character control, 738
character ICS, 633, 644–650

cCharICS class, 645–650
equipping items, 644
examining objects, 645
Inventory dialog box for, 649–650
sCharItem structure, 645–650
using ICS system, 649–650

Inventory dialog box for characters,
649–650

managing items with, 631–633
map ICS

adding items, 640–642
cMapICS class, 634–644
developing, 633–644
loading, 636–640
removing items, 640–642
retrieving items, 642
saving, 636–640
sMapItem structure, 633–635
using, 643–644

master item list (MIL) and, 631–633
resource management and, 703
shopping and, 703

inventory control system (ICS)character ICS, 633

inventory lists, 631. See also inventory control
system (ICS)

IP addresses, 356–357. See also DirectPlay
Isometric Game Programming with DirectX 7.0

(Pazera), 1001
IsPolygonContained function, 533–535
italics, setting use of, 229
Item function with cCharacterController class,

754
items. See objects
IUnknown class for COM, 130

J
joysticks, 262, 266–268

axis control, 267–268
cInputDevice class for, 437–440
deadzone range, setting, 290
digital axis controls, 268
DIPROPRANGE structure for, 289
DirectInput with, 287–291

K
keyboards, 262, 263–265

cInputDevice class for, 437–440
DirectInput, setting up for, 283–285
macros for keys, 284
The Tower controls, 925–926
in Windows, 264–265

key framing, 256–257

L
lag, 355, 851, 852
LaMothe, André, 996
language. See also C++

C programming language, 65
for story, 44, 46

LARP (Live-Action Role-Playing) games, 10
latency, 355, 851. See also multiplayer gaming
layers

backdrops in, 569
in big bitmap engine, 499
declaring maps, 484–485
in map class, 491
for tile-based games, 484–485

least-significant byte (LSB), 337

1036 Index

LeaveCriticalSection function, 869
left-handed coordinate systems, 162, 196
Legend of Zelda, 16
levels. See also MeshLvl demo

meshes as, 502–504
levels engine, 32
Levine, John R., 1001
libraries. See also D3DX library; Game Core

DirectX libraries, 33, 148
DirectX links, 990–992
D3D8.Lib library, 169
multithreaded libraries, 993–994
Run-Time Libraries, 986, 987
Windows programming, working with, 103

lightning spells, 705
lights, 227. See also ambient color/light

activating lighting pipeline, 227
with cLight, 418–420
color levels of, 219–220
emulation of, 227
normals, 224–226
number of lights in scenes, 224
setting, 223–224

linear/nonlinear story lines, 58–59
lines with Direct3D, 166
linked lists

barriers, adding, 791
for character ICS, 644
in MLS, 591–595

lists. See linked lists; triangle lists
loader objects. See DirectMusic
LoadFile function for skinned meshes, 254
Load function, 146

of cActionTemplate class, 598–601
with cAnimation class, 435
with cAutomap class, 811–812
of cMapICS class, 636–644
with cTiles class, 477–478
with cTrigger class, 773–775
for scripts, 696
for triggers, 788

loading. See also DirectMusic; Mad Lib Script
system; meshes; .X files

auto maps, 802–803
barrier files, 796–797
character map lists, 763–765
master spell list (MSL), 722

MeshLvl demo mehses, 503–504
scripts, 696
textures, 204–206
triggers, 773–775, 788
2Din3D, loading meshes for, 565
wave files (.WAV), 323–327, 445

LoadLevel function, 945–946, 947–948
LoadMesh function, 254
LoadResource function, 124–125
LoadScript function, 595, 606
LoadTexture function with cSkyBox class, 557–558
LoadWAV function, 445
lobby servers, 354, 355
local space, 164

view coordinates, converting to, 182–183
locking

sound buffers, 311–312
vertex buffers, 188–189

LockResource function, 124–125
logical font structure, 228–229
loops

with cSoundChannel, 449
DirectMusic, using loops in, 341–342

lowercase letters, 263
low-lag networks, 355
Lucke, Margaret, 1002

M
macros

for cCharacterController class, 743–744
with cDLS class, 453
DirectPlay component names, 368
with DirectSound, 314
Direct3D color mode macros, 171–172
with FVF, 185
for keys on keyboard, 284
MAKEINTRESOURCE macro, 125
for multiplayer gaming messages, 863
sprites, limiting number of, 490–491
for usage restrictions, 623

Mad Lib Script system, 581
action templates, 583

cActionTemplate class, 595–603
characters to maps, adding, 765–766
derived script class, 696–697
loading, 588

1037Index

Mad Lib Script system (continued)
MLS editor actions, storing, 603
storage of, 587
for The Tower scripts, 922–923
working with, 584–588

cActionTemplate class, 595–603
CreateScriptAction function, 601–602
final functions, 603
Load function of, 598–601

characters to maps, adding, 765–766
creating, 582–583
derived script class, 696–701
designing, 582–583
EndIf actions, 610–611
entries, 582

creating, 588–595
MLS editor, modifying with, 603
tracking, 590–591
types, assigning, 584

executing scripts, 606–611
games, applying scripts to, 611
if..then actions, 610–611
if...then...else statements, using, 607–608
linked lists, using, 591–595
loading

action templates, 588
with cActionTemplate class, 595–603
MLS editor for, 603
script actions, 595

MlsDemo program, 602
MLS editor, 603–606

buttons, list of, 605
MlsEdit program, 602
Modify Action Entry dialog box, 604–606
programming, 584–603
saving functions, 602
script-action linked lists, 591–595
script editors, 603–606
script-processing code, 608–610
sScriptEntry structure, 588–589
text entries, 587
tilde characters

information, 587
scanning for, 601
understandable text, replacing
characters with, 603

for The Tower scripts, 922–925
types to entries, assigning, 584

magic spells. See also Battle project;
cSpellController class; master spell list
(MSL); The Tower

chance of success values, 711
classes of characters and, 711
in combat, 727–728
controlling spells, 715–722
CurrentAnimation, tracking with, 717
distance of, 711
effects, list of, 707
function of, 705–709
graphics, 704–705
meshes

defining spells, 714
for graphics of spell, 704–705, 712
speed calculations with, 712
for spell controller, 721–722
with sSpellMeshList, 715–716

modifying, 713–714
non-player characters (NPCs) using, 666
range of, 709, 711
resource management for, 702
scripts for, 580–581
sound with, 712
spell controller, 717–721

for Battle project, 830
private data, 718–719
public functions, 719–721
for The Tower, 930, 956
using, 721–722

spell effect chance, 709
sSpellMeshList, 715–716
sSpell structure, 710–715, 753–754
sSpellTracker structure, 716–717, 753–754
status ailments, 659–660
supporting values of, 706–707
targeting, 709
tracking, 716–717
working with, 703–704

main function, 103
MAKEINTRESOURCE macro, 125
mana points (MP), 658, 659, 709, 711

alter mana spells, 707
in Battle project, 829–830, 837
sCharacter structure tracking, 738
spells, 707
in The Tower, 920, 944–945

map ICS. See inventory control system (ICS)

1038 Index

TEAMFL
Y

Team-Fly®

maps, 468–469. See also auto maps; barriers;
cMap class; inventory control system
(ICS); layers; triggers

angled tiles on, 497–498
character map lists, 762–765
mouse and, 489–490
route points for NPCs, 676
script placement of characters, 765–766
in smooth scrolling technique, 487
for tile engine, 483–484
in The Tower, 945–948

maps engine, 32
MaptoMesh function with cAnimation class, 435
Mario 64, 562
marketing analysis, 969–970
marketing information, 23, 968–979
Mason, Tony, 1001
master bible, 23, 24–25
master character list (MCL), 729–735

MCL Editor, 733–735
sCharacterDefinition structure, 730–733

mastering house, using, 978
Master Item List Editor dialog box, 628–629
master item list (MIL), 626–631

accessing items from, 630–631
for Battle project, 830
constructing, 626–628
inventory control system (ICS) and,

631–633
MIL Editor, using, 628–630
saving, 627–628
for The Tower, 930

master spell list (MSL), 709, 712–713
loading, 722
Modify Spell dialog box, 713
MSL Editor, using, 713–714
spell controller and, 718
spell number (SpellNum), 717

materials, 162
cMaterial class for, 417–418
coloring polygons and, 167
color values for, 197–198
Direct3D, 197–198

math. See also Matrices
in viewing frustum, 509–511

matrices, 178–183
billboard matrix, 231–233

combining matrices, 181–182, 427
construction of matrix, 179–181
D3DX library information, 178
identity matrix, 180–181
matrix concatenation, 181
matrix math, 178–182
order for combining matrices, 182
for projection transformations, 195–197
viewing frustum, calculating planes of,

509–510
for view transformation, 193–195
in world transformation, 192–193

The Matrix, 36, 294–295
matrix concatenation, 181
matrix key framing, 256–257
matrix math, 178–182
maximizing windows, 102
Maya, 244
MCL Editor, 733–735

Attack Range settings, 832
Modify Character dialog box, 733–734
for The Tower, 918

memory
allocation, 76–77
buffers with cSoundData class, 446
cObject for using, 431
tiles saving, 468–469

Mental ability, 657, 658
MenuFrame function, 945
meshes, 161. See also animation; barriers;

bounding box/sphere; character
controller class; cMesh class;
cNodeTreeMesh; collision detection;
magic spells; MeshLvl demo; 3Din2D; .
X files

billboarding and, 231
cAnimation for moving, 434–436
with cCharacterController class, 745
cObject, drawing meshes with, 431–434
constructing, 164–165
D3DXIntersect function with, 545, 552–553
with D3DX library, 178, 248–255
frame hierarchy in, 243
as levels, 502–504
for magic graphics, 704–705
node splitting mode and, 518
objects, representation of, 624

1039Index

meshes (continued)
octree mode splitting for, 518
quadtree splitting mode, 519
rendering, 251–253

skinned meshes, 254–255
standard meshes, 251–253

skinned meshes, 253–255
cMesh for loading, 430–431
as deformable, 248
frame hierarchy in, 243
loading, 253–254
rendering, 254–255
updating, 254–255

standard meshes
cMesh for loading, 430–431
loading, 249–250

subsets of, 251
templates and, 242
texture groups, working with, 522
for 2-D graphics, 565
working with, 241–255
.X files, 241–247

MeshLvl demo, 502–503
loading meshes, 503–504
rooms, drawing, 504–506

message boxes
return values from, 121
in Windows programming, 119–121

message pumps, 104, 111–113
for application framework, 154
for games, 113
shell application for, 116–119

message queue. See multiplayer gaming
messages. See also DirectPlay; multiplayer

gaming; Windows programming
create-player messages, 382
guaranteed delivery of, 362
ID with, 104
messages handlers, using, 374–376
networking with, 359–363
security for, 362
sending, 360
standard messages, list of, 361
synchronous or asynchronous messages,

360, 362
throttle system, 362–363

messages handlers for DirectPlay, 374–376
Mete Ciragan, 244

Mickeys, 266
Microsoft Corp., 975

Visual C/C++, 989–994
Microsoft DirectX Run-Time Libraries, 986, 987
Midi files (.MID), 297. See also DirectMusic

with cMusicChannel, 451
Might and Magic, 11
milestones in schedule for game, 971
MilkShape 3-D, 241, 517

animation data, 258
auto maps, 799–800
for character graphics, 667
Web site, 997
for .X meshes, 244

minimizing windows, 102
minor characters, 40–41
mixing dimensions, 562. See also 3Din2D

for The Tower, 930
2Din3D, 563–567

MLS. See Mad Lib Script system
MlsDemo program, 602
MlsEdit program, 602
models and modeling, 161. See also 3-D models

constructing, 164–165
networking models, 353–354
in pen-and-paper games, 8
skinned meshes, 253
for .X meshes, 244

model space, 164
modifiers of objects, 618
Modify Action Entry dialog box, MLS Editor,

604–606
Modify Character dialog box, 733–734
Modify Spell dialog box, 713
modular programming, 135, 136–137

for application framework, 148
money function, 617
mono sounds, 296
monster characters (MCs), 654, 666–667

battle arrangements, 841
CharUpdate function, 746
death of, 747, 752–753

mood of story, setting, 4–6, 42–43
most-significant byte (MSB), 337
motifs, 329

1040 Index

mouse, 262, 265–266
absolute coordinates of, 266, 267
Battle project, governing in, 833–834
bounds checking, 489–490
cInputDevice class for, 437–440
DirectInput with, 285–287
initializing, 285–286
maps and, 488
-to-mesh collisions, 543
The Tower controls, 925–926

MoveAction variable, 898–899
MoveDown function cCharICS class, 640, 648
Move function with cWindow class, 690–693
MoveUp function cCharICS class, 647–648, 649
moving characters. See navigating characters
MSL editor, 713–714

Max Range for spells, 823
for The Tower, 920

multidimensional array, allocating, 77
Multiplayer Game Programming (Barron), 358, 1001
multiplayer gaming, 32, 844–845. See also The Tower

adding players, 871–874
animations, list of, 888
architecture, creating, 849–850
AssignID function, 892
cApplication class (client)

AssignID function, 892
CreatePlayer function, 892–893
DestroyPlayer function, 893–894
Frame function, 896–901
PlayerChangeState function, 894–896
Receive function, 890–891

cApplication class (server)
AddPlayer function, 871–874
global application variable, 865
network server component, coding, 865
PlayerID function, 871
PlayerInfo function, 876–877
PlayerStateChange function, 877–881
ProcessQueuedMessages function,
870–871
public functions, 864–865, 866–867
RemovePlayer function, 875
UpdateLatency function, 884–885
UpdatePlayers function, 881–884

changing state of players
client, 894–896
server, 877–881

clients, 856–857
changing state of players, 894–896
ConnectComplete function, 890–891
connected players, list of, 872
creating players, 892–893
disconnecting players, 893–894
GetPlayerNum function, 888–889
identification number from server,
obtaining, 897–898
message handling, 891–896
MoveAction variable, 898–899
network component, 889–891
player data, handling, 886–889
sPlayer structure for, 886–889
updating, 884
working with, 850–854, 886–905

combat
dead reckoning in, 852
messages, 850

communications, client server, 850–854
connection requests, 850
conversation in, 851
converting DirectPlay messages into game

messages, 863–867
CreatePlayer function

client, 892–893
server, 863–864

creating players
client message, 892–893
server message, 867

dead reckoning, 851–852
design for, 845–847
DestroyPlayer function

client, 893–894
server, 863–864

disconnect-player message, 867
EnterCriticalSection function, 869
Frame function, 896–901
generic message container, 861
hitting players, calculations for, 880–881
hurt players, 878, 882–883

MoveAction variable, 898–899
lag, 851, 852
latency, 851

calculating, 884–885
player’s latency value, changing, 879

LeaveCriticalSection function, 869
lost messages, player information for, 876–877

1041Index

multiplayer gaming (continued)
message queue, 854–855, 861

using, 867–869
MoveAction variable, 898–899
navigation, 856–857

messages, 850
PlayerID function, 871
PlayerStateChange function

client, 894–896
server, 877–881

processing game messages, 881
ProcessQueuedMessages function, 870–871
Receive function

for client, 890–891
for server, 860–861

removing players, 875
resource management, 851
SendNetworkMessage function, 874
server, 854–856

handling messages, 860–881
implementing, 855
message queue, 854–855
responsibility of, 853
updating with, 855
using server application, 858–859
working with client, 850–854

sMessage structure, 861–862
sPlayer structure

for client, 886–889
for server, 859–860

state-change message, 862
storing player information, 859–860
swing state, updating, 882–883
Time variable, setting, 860
tracking messages on queue, 867–869
UpdatePlayers function

all players, updating, 902–905
animations set up by, 888
for server, 881–884

updating
all players, 902–905
clients updating players, 896–902
limits on, 857
with PlayerStateChange function, 877–881
servers updating players, 881–884

multithreaded libraries, 994–995
multithreading, 125–128

COM, initializing, 129

music. See also DirectMusic; sound
in The Tower, 958–960

N
names

design document bibles, 28
fonts, 229
player names, retrieving, 383–384

narrative voice, 44
native songs, 329–330

with cMusicChannel, 450–452
navigating characters, 655, 662, 667–668.

See also multiplayer gaming
non-player characters (NPCs), 665–666
player characters (PCs), 663

nCmdShow variable, 103
Network Core, 401, 454–462

cNetworkAdapter, 454–455
cNetworkClient, 459–462

Network Game demonstration program, 847–849
network operating system, 352
networks, 33, 352–354. See also DirectPlay;

multiplayer gaming; Network Core;
sessions

bandwidth, 355
GUIDs, identifying applications with, 364
IP addresses, 356–357
lag, 355, 851, 852
latency, 355, 851
pass-along networks, 357
sessions, 354
TCP/IP, 356

Network Server Demo dialog box, 858
Nintendo Entertainment System (NES), 14–15

Legend of Zelda, 16
Paper Mario, 231

nodes, 243, 518
node splitting, 518–519
NodeTree engines, 518–522. See also cNodeTree

class; cNodeTreeMesh class
creating nodes and trees, 519–521
drawing tree, 521
intersection tests with, 547–548
optimizing tree structure, 520
root nodes, 519
scanning tree, 521
texture groups, working with, 522

1042 Index

non-disclosure agreements (NDA), 969
non-first person games, 668
nonlinear story lines, 58
non-player characters (NPCs), 654, 665–666.

See also monster characters (MCs)
adding to list, 756–757
artificial intelligence, controlling, 728–729
automatic control of, 683
CharUpdate function, 746
controlling, 668, 673–683
conversation of, 655
death, cCharacterController class handling,

747
distance calculation for, 678–679
evading another character, 682–683
following another character, 681–682
navigation of, 668
point to point, walking from, 677
Pythagorean, walking faster than speed of,

677–679
route, walking the, 675–680
route points, using, 675–676
standing still, 674
time for updating direction of, 675
wandering an area, 674–675

normals, 224–226
calculating, 225
clipping planes and, 508–509
template defining, 242

notifications. See DirectSound
NULL value, 75, 77–78

allocating memory and, 76
number

of lights in scenes, 224
sprites, limiting number of, 490–491
of tiles, 479–480

O
object-oriented programming, 64–65
objects, 32, 64–65. See also classes; cObject class;

COM (Component Object Module);
functions of objects; inventory control
system (ICS); 3-D objects; The Tower;
weapons

bit flags, 621–622
character classes and, 661
defining, 614–615

Direct3D, constructing in, 164–165
form in, 614–616
master item list (MIL), 626–631
meshes for images, using, 624
modifiers of, 618
multiple instances of, 631
of non-player characters (NPCs), 665
resource management of, 701–702
scripts

attaching to objects, 623–624
using, 620

size of, 616
tile engines, adding to, 485–486, 488
usage restrictions, 622–623
value, assigning, 621
vector objects, 195
in viewing frustum, 511

object-to-object collision detection, 549–551
octree meshes, 518–519

AddNode function with, 535
cNodeTree class for, 524–526
moving up and down in, 547

omniscient narrator, 43
operators

class functions as, 86–87
overloadable operators, 87

organization of book, xl
Origin Systems, 11, 354, 666, 846
others objects, 617, 620
overloadable operators, 87
overwriting, 46
ownership of object, 631

P
pacing of story, 44
painter’s algorithm, 237–238
Paint Shop Pro (PSP), 499
panning in DirectSound, 314–315
Paper Mario, 231
paralyzed characters, 660
ParseXFile functions, 247
parsing

character map lists, 764–765
skinned meshes, code for loading, 253
tilde characters, parsing information for, 601
.X files, 244–247

1043Index

particles, 233–237
example of, 234–237

parties in LARP (Live-Action Role-Playing)
games, 10

pass-along networks, 357
passwords

with cNetworkServer, 4587
sessions using, 354

patches, 337
patch numbers, 337

with cDLS class, 453
path, blocking the, 545–546
Pazera, Ernest, 1001
PCDeath function, 747
PCUpdate function, 748, 950–954
PeekMessage function, 113
peer-to-peer networks, 353–354

DirectPlay access, 358
resource information, 358

pen-and-paper games, 7–8
performance object. See DirectMusic
per-frame processing, 135
Petzold, Charles, 98, 1002
Phantasy Star Online, 15, 16, 31, 666, 846–847

auto mapping, 798
physical traits of character, 41
physics in game, 14
pixels, 166. See also tiles and tiling

alpha blending, 206–207
vertices for, 187
Z-buffers and, 238–239

planning the story, 47, 48–49
player characters (PCs), 654, 663–665

artificial intelligence, controlling, 728–729
automatic control of, 683
controlling, 668, 669–673
conversation of, 655
death of, 747, 752–753
directional control, 669–671
experience points/levels, 664–665
first person control, 672–673
growth of characters, 664–665
monster characters (MCs) and, 666
navigation of, 663, 668
resource management, 663–664
rotational control of, 671–672
temporary control of, 683

Player ID, 359
players. See also DirectPlay; player characters

(PCS)
working with, 359

PlayerStateChange function. See multiplayer
gaming

PlayMusic function in The Tower, 958–960
PlaySound function, 581–582

in The Tower, 958–960
plot points, 37, 44–45

breaking up plot, 57–58
subplots, 45
twists, 45

Point function with cCamera, 429
point lights, 210

cLight class configured with, 420
defined, 218
using, 220

point of view of story, 43–44
poisoned characters, 660
polling input devices, 282
Polycount Web site, 997
polygon faces, 161. See also colors; materials

for auto maps, 800–802
billboarding, 231–233
constructing, 164–166
GetCharacterAt function and, 838–840
normals, using, 224–226

polygons, 161. See also cNodeTreeMesh class;
collision detection; meshes; polygon
faces

casting a ray, 544–545
in cNodeTree class, 522–523
coloring, 167
nodes representing, 519
rendering, 199–201
vertices for, 187

polymorphism, 92
ports

DirectPlay ports, selecting, 370–371
networks using, 357

Pos parameter with cSoundData class, 446
primary sound buffer. See DirectSound
primitive types, 200–201
printing with cFont object, 421–422
priority cooperative level, 301

1044 Index

private data, 80
for cCharacterController class, 744, 745–748
for cSpellController class, 718–719
derived classes and, 91
The Tower cApplication class, 932

problem-solving, 31
processes, 141–144

cProcessManager, 408–409
Process function

for derived script class, 698
in The Tower, 964

ProcessQueuedMessages function, 870–871
program flow, 134–135

optimizing, 137
programmable vertex shaders, 191
Programming Windows, Fifth Edition (Petzold), 98,

1002
projection matrix, 182–183

viewing frustum, calculating planes of, 509
with Z-buffers, 239

projection transformations, 168
constructing, 195–197

proofreading stories, 48, 51
proposal letter for game, 969
protagonists, 40
prototyping functions, 66–67
psychological traits of character, 41
Ptr, 76
public functions, 80

of cCharacterController class, 748–755
in class variables or functions, 81
of cMapICS class, 635–644
in cTiles class, 475
cWindow class declarations, 687–688
for derived classes, 91
in multiplayer gaming cApplication class,

864–865, 866–867
publishers

acceptance letters, 973
communicating with, 972–973
do-it-yourself publishing, 976–977
list of possible contacts, 974–976
negotiating contracts, 973–974
rejection from, 973
submitting games to, 968–972

demo, including, 971–972
design document, including, 970

Pythagoras Theorem, 677–678

Q
quadtree meshes, 518–519

AddNode function with, 535
cNodeTree class for, 524–526
height, ignoring, 531
moving up and down in, 547

Quake/Quake II, 906
QueryInterface function, 130

R
R. Talsorian Games, 9
radians, 180
raise dead spells, 707, 708
ranged weapons, 618
range of use of weapons, 618
ray, casting a. See Casting a ray
Receive function. See also multiplayer gaming

overriding, 863–864
receiving data in DirectPlay, 386–387
RECT structure, 230

for tiles, 471–472
recursive functions, 531
referees, 7
RegisterClassEx function, 107–108
rejection by publisher, 973
relative movement of mouse, 266
Release function, 130

in The Tower, 964
remote network systems, 358
Remove function

with cCharacterController class, 748–749
for cMapICS class, 640–642
with cTrigger class, 780–781

RenderFrame function, 943–944
for The Tower, 960–961

Render function
for barriers, 791, 794–795, 797
Battle project scene, 836–837
with cAutomap class, 812–813
with cCharacterController class, 749–750
with cMap class, 495–497
cNodeTreeMesh, 538–539
cSkyBox class, 559–560

1045Index

Render function (continued)
cWindows class, 693–694
NodeTrees, 538–539
3Din2D scene, 574–576
The Tower scenes, 943–945, 960–961

repeats, DirectMusic using, 341–342
Resistance ability, 657, 658
resource management, 31

for magic, 702
in multiplayer gaming, 851
objects, using, 701–702
shops and bartering, 703

resources, 122–125
attaching to application, 123–124
with C and C++, 123
handling functions, 124–125
retrieving data, 124–215

revisions of story, 48, 50
right-handed coordinate systems, 162, 196
Roland, GM/GS set, 337
role-playing games (RPGs), xxxvi–xxxviii
rooms, drawing, 504–506
root frame, 243
root nodes, 519, 521

drawing tree from, 521
rotation

in animation, 258
cWorldPosition for, 425–427
player characters (PCs), rotational control

of, 671–672
skinned meshes, 254–255
sky boxes, 558–559

rough drafts for story, 51–52
RPG Maker, 583
RPG Planet Web site, 997
Rubik’s Cube, 519
rules, 7

for character-building, 41
for story-writing, 46–47

Run-Time Libraries, 986, 987

S
sAction structure, 587, 601
samples, 295, 296
sampling rate, 295–296

Save function
with cAutomap class, 811–812
of cMapICS class, 636–644
with cTrigger class, 775–776

SaveScript function, 595
sBarrier structure, 789–790
scaling

in animation, 258
for auto maps, 805
big bitmap engine, scaling tiles with,

498–499
cWorldPosition for, 425–427
magic spells, graphics for, 705
tiles, 472

scaling matrix, 179–180
for particles, 233

scan codes, 263–264
Virtual Key Codes, 264–265

Scarecrow, 847
scenes

Direct3D scenes, beginning and ending,
199

frame meshes and, 244
presenting the scene, 201–202
in The Tower, 912–915
use of, 57–58

sCharacterController structure, 731
sCharacterDefinition structure, 730–733

Modify Character dialog box information,
734

variables, 731–733
sCharacterMeshList structure, 735–736

cCharacterController class entries, 743
sCharacter structure, 737–742

constructor/destructor with, 741–742
messages, storing, 740

sCharAnimationInfo structure, 736, 755–756
Schaum’s Quick Guide to Writing Great Short Stories

(Lucke), 1002
schedules for game, 970–971
screen space, 164
script editors, 603–606
scripts, 22, 32. See also cScript class; Mad Lib

Script system; objects; The Tower
action templates for derived script class,

696–697

1046 Index

command action examples, 581
derived script class, 696–701

action templates, 696–697
Process function for, 698
processing, 697–700
using, 700–701

executing scripts, 696
as external, 580
loading, 696
for non-player characters (NPCs), 666
placing characters with, 765–766
talking dummy character, script-driven, 684
understanding, 580–582

scrolling, smooth technique, 486–488
secondary sound buffers, 298, 308–310
Second Chronicles of Thomas Covenant

(Donaldson), 39
security. See also passwords

for messages, 362
Sega Phantasy Star Online, 15, 16, 31, 666, 798,

846
segments. See DirectMusic
self-publishing. See shareware
SendNetworkMessage function, 874
SendTo function in DirectPlay, 388
sEntry structure, 587, 588
server/client mode, 353
servers, 850. See also DirectPlay; multiplayer

gaming
with cNetworkServer, 455–459
lobby servers, 354, 355

service providers, 356
sessions, 358. See also DirectPlay

hosting, 358
properties of, 358

SetAnimData function, 721
SetAnim function, 792–794
SetCamera function, 947
SetDataFormat function, 277
SetData function, 950
SetEndTrack function with cCamera, 429
SetFormat function with cSoundData class, 446
SetLoop with cAnimation class, 435
SetMapData function, 494
SetMesh function for barriers, 791, 792–794
SetMessage function, 752

SetMode function for cGraphics, 414
SetStartTrack function with cCamera, 429
SetVolume with cSound class, 443
SetWindow function with cAutomap class,

813–815
sFrame structure, 431
sGenericVertex, 805
.SGT extension, 297
shaping the story, 47, 49
shareware, 976–977

advertising of, 977
demos for, 977–978
selling product as, 978–979

shell application, 116–119
shops, resource management for, 703
ShowWindow function, 110
Shutdown function, 402–403

for Battle project, 831–832
with cSound class, 443
for The Tower cApplication class, 936–937

shutting down system, 135
silenced characters, 660
Simonyi, Charles, 99
sine waves, 294
Sir-Tech, 11
sItem structure, 620

bit flags for objects, 621
final coding for, 624–625
master item list (MIL), constructing,

626–628
objects, representation of, 624
resource management with, 701–702
usage restrictions and, 623
value, assigning, 621

size of objects, 616
Size parameter with cSoundData class, 446
skinned meshes. See meshes
sky boxes, 553–560. See also cSkyBox class

rendering, 559–560
rotating, 558
using, 560

sleeping characters, 660
slow characters, 660
sMapItem structure, 633–635
sMesh structure, 431
sMessage structure, 861–862

1047Index

smoke, particles for, 233
smooth scrolling technique, 486–488

mouse and, 489–490
sNode structure, 524
sociological traits of character, 41
Software, Inc., 906
Software Developers Kit (SDK), 986

debug version, 987
using, 987
Win32 SDK, 99

sorrow in stories, 55
SortNode function, 530, 531–533
sound, 33. See also DirectMusic; DirectSound

basics of, 294–295
digital sounds, recording, 295–296
magic spell sounds, 712
streaming sounds, 327–329
in The Tower, 958–960
in The Tower, 935

sound bible, 24, 27
Sound Core, 328, 401, 441–453

cMusicChannel, 450–452
cSoundChannel class, 447–450
cSoundData class, 444–446
cSound object, 441–444
list of classes, 442

sparks, particles for, 233
specials, 618
specular color, 167

in lights, 219
setting, 197–198

spell controller. See magic spells
spell effect chance, 709
spells. See magic spells
sphere triggers, 766–767

adding, 778
GetTrigger function with, 782–783

spicing up story, 47
SPlayer structure. See multiplayer gaming
sPolygon structure, 524, 533
spotlights, 210

cautions on using, 221, 222
defined, 218
D3DX library with, 222
using, 220–222

sprites

with cMap class, 494
limiting number of, 490–491
rendering maps with, 495–497

Squaresoft, 15, 56
sRoutePoint structure, 676, 736
sScriptEntry structure, 588–589, 591
sScript structure, 591, 601–602

executing scripts with, 606–611
sSpell Controller class, 720
sSpellMeshList structure, 715–716
sSpell structure, 710–715, 753–754. See also

master spell list (MSL)
sSpellTracker structure, 716–717, 753–754
stacks

processes, calling, 143
states, calling, 138–139

standard meshes. See meshes
StartTime parameter, 435–436
state-based programming (SBP), 138
state functions, 408
state manager object, 138–141

for The Tower, 939
state processing, 135
states, 137–141
static functions. See Functions
static variables, 73–74

with classes, 83–84
status ailments. See characters
StatusFrame function, 945
stereo sounds, 296
Steven Jackson Games, 9

Web site, 997
storage

of action templates, 587
with cTexture, 416
of sound, 296

story bible, 24, 26
story-writing, 31. See also Characters; cut-scenes;

Plot points
art of, 36–37
back-stories, 53
beginning of story, 38
components of story, 37
with emotions, 44, 54–55
end of story, 39
enveloping players, 56

1048 Index

TEAMFL
Y

Team-Fly®

experiencing events in, 54
flashbacks, 53
foreshadowing, 53–54
games, applying story to, 56–59
ladder, 37–40
linear/nonlinear story lines, 58–59
middle of story, 39
mood, setting, 4–6, 42–43
narrative voice in, 44
point of view, 43–44
steps to, 47–48
for The Tower, 910–912
wrapping up story, 60

streaming sounds. See sound
sTrigger structure, 771
strips. See triangle strips
Strong status, 660, 725–726
structures, 78–79

advanced structures, 95–96
WNDCLASSEX structure, 106, 107

styles (.STY), 297
style variable, 106
submitting games to publisher. See publishers
subplots, 45
subsets of meshes, 251
supporting characters, 40–41
Surefooted status, 660, 724
sVertex structure, 524

text windows and, 686
swords. See weapons
Swords & Circuitry: A Designers Guide to Computer

Role-Playing Games (Hallford &
Hallford), 30, 1002

synchronous messages, 360, 362
System Core, 400, 401–410

cApplication, using, 402–405
cDataPackage, managing data with, 410
cProcessManager, 408–409
cStateManager, state processing with,

405–408
processes, 408–409

system requirements, 33

T
table of contents

in design document, 28, 29

in proposal letter, 969
Take2 Interactive, 976
talk action, 662
talking dummy character, 684
targeting magic spells, 709
Taylor, Chris, xxxvi–xxxviii, 12
TCP/IP, 355–356

with cNetworkAdapter, 454–455
for DirectPlay, 373–374
DirectPlay with TCP/IP device, 394–395

tech bible, 24, 27
Teleport spell, 707, 709

chance of success value, 711
character controller setting, 754–755
in The Tower, 921

template hierarchy, 241–242
template referencing, 242
templates. See also Mad Lib Script system

for animation, 258
embedded templates, 244–245
frame templates, 242–244
MLS action templates, 583
for sound (.TPL), 297
.X file templates, 241

tempo changes, DirectMusic, 347
test runs for game, 971
texture groups

cVertexBuffer objects in, 530
rendering nodetrees and, 539
working with, 522

texture-mapping, 167, 202–211
with cTexture, 415–417
with Direct3D, 204
filtering, 208–209
loading textures, 204–206
particles and, 233
rendering textured objects, 210–211
setting the texture, 206–208
sky boxes, 553
standard meshes, code for, 250–251

textures, 162, 202, 203. See also cTiles class; tiles
and tiling

alpha values, 211
big bitmap engine, 498–500
color keys, loading textures with, 214–215
with cTexture, 415–417
D3DX library information, 178

1049Index

filtering, 208–209
textures (continued)

fonts and, 228
loading, 204–206
LoadTexture function, 557–558
for particles, 237
rendering textured objects, 210–211
resources, 123
restrictions on, 204
setting the texture, 206–208
for sky boxes, 554, 557
stages, 206–207
in The Tower, 945–946

text windows, 685–686. See also cWindow class
setting window text, 689
for The Tower, 930, 936

third person story-writing, 43
this keyword, 88
threads, 125–128

critical sections, 128
for DirectSound events, 321–323

3-D graphics, 33, 160–162. See also Direct3D;
mixing dimensions

angled tile engines, 497–498
characters, 41
for characters, 667

3-D graphics engines. See also MeshLvl demo;
NodeTree engines; sky boxes; 3D
objects; viewing frustum

advanced engine, developing, 517–518
levels, meshes as, 502–504
MeshLvl demo and, 502–503
slowdowns in, 506–507
worlds, adding objects to, 541–543

3Din2D, 568–576
adding 3-D objects, 576
backdrops, 569
camera, orienting, 575
chunks, splitting backdrop into, 571–572
collision detection, 576
prerendered backdrops, 569
rendering the scene, 574–576
scene mesh for, 572–574
simplified meshes, using, 572–574
splitting backdrop images, 571–572
2D backdrops, dealing with, 570–572
Z-buffers for backdrops, 569, 570

3-D models, 34

normals with, 225
3DO, 11
3-D objects. See also collision detection

adding, 541–543
bounding spheres and, 542–543
3Din2D scene, adding to, 576

.3DS files to .X files, converting, 574
3D Studio Max, 244, 517, 569

animation data, 258
throttling messages, 362–363
tilde characters. See Mad Lib Script system
tile engines

adding objects, 485–486
angled tile engines, 497–498
basic tile maps, drawing, 483–484
fine coordinates, using, 487–488
layers, using, 484–485
map arrays, using, 484–485
maps, drawing, 483–484
objects, adding, 485–486
smooth scrolling technique, 486–488

tiles and tiling, 468–469, 471–473. See also cMap
class; cTiles class; maps; sprites; tile
engines

alpha values for, 473, 481
angled tiles, 469–470
big bitmap engine, 498–500
bounds checking, 489–490
colors for, 473
cTiles class, building, 474–481
DirectX, using with, 470–474
Draw function for, 471–473
free-floating tiles, limiting, 490–491
ID3DXSprite, 470–474
numbering tiles, 471
RECT structure for, 471–472
scaling tiles, 472
tile-handler class, building, 474–481
for 2Din3D, 563–567

time
animations, playing, 436
in multiplayer gaming, 860
network sessions, 354

time slice, 125
Times New Roman font, 229
tips

assert function for bugs, 157

1050 Index

CheckSphereIntersect function, 551
classes, forward-referencing, 79
class variables, prefix for, 81
default argument values, placing, 67
derived classes, protecting data in, 92
DirectMusic instruments, changing, 341
DirectPlay

canceling information, 390
devices, assigning, 371
different network model, calling, 365
service providers, enumerating, 373

DirectSound
event handlers, organizing, 319
flags, setting, 312
lost resources, 316

instruments, changing, 341
lights, color levels of, 219
multidimensional array, allocating, 77
multiplayer game synchronization,

improving, 854
NodeTree engine structure, optimizing, 520
pen-and-paper game resources, 8
scripts, action templates for, 623
shareware publishing, 978
for story-writing, 52
textures, saving time with, 204
2D tiles, using, 567
3Din2D scene mesh, 572, 573
.3DS files to .X files, converting, 574
tiles and tiling

numbering tiles, 471
scaling tiles, 472
textures with, 471

U,V coordinates, specifying, 203
weak characters, modifying levels of

damage, 656
Titanic, 55
to-hit ability of character, 618, 657, 658, 723–724
Tolkien, J. R. R., 55–56
topics in design document, 28–30
Total Annihilation, xxxviii
The Tower, 841

assigning characters, 919
barriers in, 930, 949
BarterFrame function, 956–957
bartering, handling, 956–957
barter window state, 939
cApplication class, 931–938

constructor, 933
Init function, 934–936
private functions, 932–933
Shutdown function, 936–937
state-based processing for, 938–945

cGameScript class, 961–965
characters

assigning, 919
controlling, 949–956
defining, 916–919
game components, 930

character status window state, 938–939
charge bar, displaying, 932
CheckIntersect function, 945–946
combat scripts, 923
components for, 929–931
controlling characters, 949–956
controls, defining, 925–926
derived spells, storing, 955–956
effect range of spells, 921
experience points in, 918–919
flow, laying out, 927–928
frames for, 937–938
FreeLevel function, 945–946, 947–948
GameFrame function, 939–945
GetCharacterAt function, 952
GetHeightBelow function, 945–946
global variables, 940
if..then-related functions, 964
in-game state, 938
initializing, 934–936
legend for characters, 916
levels, designing, 912–915
LoadLevel function, 945–946, 947–948
magic spells

creating, 919–922
derived spells, storing, 955–956
effects of, 921
experience points for, 918–919
game components, 930
list of, 921
spell controller, 956

main menu for, 925, 938
maps in, 945–948
master item list (MIL) for, 930
MenuFrame function, 945
MonstersInLevel flag, 940–942
MSL editor, using, 920
music, playing, 958–960

1051Index

music system, initializing, 935
The Tower (continued)

objects
creating, 919–922
list of, 920

PCUpdate function, 950–954
PlaySound function, 958–960
pre-game story, writing, 910–911
Process function, 964
programming for, 928–931
purpose of, 912
Release function, 964
RenderFrame function, 943–944, 960–961
rendering scenes, 943–945, 960–961
scenes, rendering, 943–945, 960–961
sChars class, 949–956
scripts

advanced scripts, viewing, 924–925
developing, 922–925
flow, laying out, 927–928
game component, 930
list of, 923–924
processing, 961–965

SetCamera function, 947
SetData function, 950
Shutdown function for, 936–937
sound, playing, 958–960
sound system, initializing, 935
spell controller, 956
state-based processing for, 938–945
state manager object, using, 939
StatusFrame function, 945
story of game, writing, 910–912
target distance of spells, 921, 922
text windows for, 936
triggers, 923, 930, 942–943, 949
updating, 937–938, 950–951

tracking
with cCamera, 429
characters, 737–742
magic spells, 716–717

transformations, 167–168. See also view
transformations; world transformations

auto map, centering, 814
combined matrices, 427
for drawing graphics, 191–197
matrices for, 178–179
for particles, 234

for skinned meshes, 254–255
transformed coordinates, 162–164, 164

matrix math with, 179
TranslateMessage function, 113
translations, 179–180

in animation, 258
with billboards, 232–233

transparent blits, 211, 213–217
with cTiles class, 477–478
Draw function, 480
example of, 215–217

transparent colors
with cTexture, 416
with cTiles class, 480

transportation objects
attributes of, 619
function of, 617

Traveller, 9
triangle fans, 165–166

vertex buffers with, 186
vertices for, 187

triangle lists, 165–166
vertex buffers with, 186

triangle strips, 165–166
vertex buffer for, 187

triangle triggers, 768
adding, 779–780
GetTrigger function with, 783–785

triggers, 766. See also cTrigger class; triangle
triggers

in automaps, 816
box triggers, 767
current status, checking, 785
cylinder triggers, 768
defining triggers, 770, 787
loading triggers, 773–775, 788
radius as argument, functions using, 780
saving data, 775–776
sphere triggers, 766–767
sTrigger structure, 771
touching triggers, 788
in The Tower, 923, 930, 942–943, 949
triggering a trigger, 768–769
using triggers, 787–788
zero values to, 782

Triple Play Baseball, xxxviii
trueSpace, xlixli, 241, 569, 570

1052 Index

TSR, Inc., 8
Tweet, Jonathan, 1000, 1001
2-D coordinates, 162–164
2-D graphics. See also mixing dimensions; tile

engines; tiles and tiling
big bitmap engine in, 498–500
billboarding and, 231

2Din3D, 563–567
drawing

level mesh, 566
preparation for, 566
2-D objects, 566–567

loading
meshes, 565
tiles, 565

moving in 3-D world, 567–568
preparing to draw, 566
sample program, 568
tiles, drawing, 563–567

2xDmg characters, 921
Type argument

with cInputDevice class, 439
for lighting, 218
with texture filters, 208–209

U
UDP (User Datagram Protocol), 362
Ultima Online, 12, 13, 354, 666, 846–847

wandering NPCs in, 674
Ultima Pagan, 14
Ultima series, 10, 11, 468
underlines, setting use of, 229
Unicode, 265

with DirectPlay, 363–364
untransformed coordinates, 164
Update function

with cCharacterController class, 749
with cSpellController class, 721
with world transformation matrix, 427

UpdateLatency function, 884–885
UpdatePlayers function. See multiplayer gaming
UpdateWindow function, 110
updating

cCharacterController class, 746
game, 851
The Tower, 937–938, 950–951

uppercase letters, 263
usage restrictions, 622–623

resource management and, 702
of weapons, 618

use item action, 662
UseTiles function, 495
U,V coordinates, 202–203

rendering textured objects, 210–211

V
ValidateMove function, 747
Value argument with texture filters, 208–209
value to objects, assigning, 621
Vampire: The Masquerade, 10
variables, 71–75

class variables, 81–87
const keyword with, 74–75
declaring, 71–72
global variables, 73
precedence of, 72–73
scope of, 72–73
static variables, 73–74

vector objects, 195
casting a ray and, 545

Verant Interactive, 12
vertex buffers, 186–189

attribute buffers, 529
for auto maps, 805, 808–809
for Battle project, 828
bounding sphere, computing, 542
creating, 187–188
with cSkyBox class, 557
cVertexBuffer class, 422–425
indexed vertex buffers, 529
locking, 188–189
for particles, 237
stuffing in vertex data, 189–190
text window using, 686–687

vertex shaders, 190–191
vertex streams, 190
vertices, 161

for auto maps, 805
in cNodeTree class, 522
converting from local to view coordinates,

182–183
with cVertexBuffer class, 422–425

1053Index

drawing with, 184–191
vertices (continued)

flexible vertex format (FVF), 184–186
normals with, 224–226
objects, constructing, 164
ordering, 166–167
shaders, 190–191
stored vertices, 186–187
streams, 190
stuffing in vertex data, 189–190
vertex buffers, 186–189
in viewing frustum, 507–508

video card lighting support, 227
viewing frustum, 507–517. See also cFrustum

class; clipping planes
with cCharacterController class, 749–750
clipping planes, 508–511
entire objects in frustum, checking, 511
nodes falling within, 536
normals and, 508–509
as pyramid, 507
rendering nodetrees in, 538–539
spell controller using, 718
3-D objects, adding to world, 541–543
for The Tower, 930
vertices in, 507–508

viewing matrix, 182
viewpoints, 193. See also viewing frustum

for billboarding, 231–232
clearing, 198–199
collision checking and, 552
of player, 668
in 2-D games, 469
working with, 240
Z-buffers and, 237–239

view transformations, 168
and cCamera, 427–429
constructing, 193–195
local coordinates, converting from, 182–183
viewing frustum, calculating planes of, 509

virtual functions, 93–94
Virtual Key Codes, 264–265
visibility of classes, 80–81
Visual C/C++, 989–994

char Variables, default for, 992–993
debug and release versions, 993

volume control
with cSoundChannel, 449

with cSound class, 444
DirectMusic, 344–347
DirectSound, 314

W
Walsh, Peter, 1002
wave files (.WAV), 296

with cSoundData class, 444–446
headers, 324–325
loading, 323–327, 445

Weak status ailment, 660
damage from combat and, 725–726
modifying levels of damage, 656

weapons, 618
attack modifiers, 618
attributes of, 617, 618
form, using, 615–616
function of, 617
groups, 618
range of use of, 618
resource management for, 701–702
to-hit modifiers, 618
usage restrictions, 618, 622–623

Web sites
Association of Shareware Professionals

(ASP), 978
design document information, 30
Microsoft Gaming Zone Web site, 355
resource information, 996–998
White Wolf Publishing, 10

weight of objects, 615–616
White Gold Wielder (Donaldson), 39
White Wolf Publishing, 10

Web site, 997
width

of maps, 495
for tiles, 479–480
of viewing frustum rectangle, 517

Williams, Kip, 1000, 1001
Win32 data types, 99–100, 101
window message procedure, 104
window procedure, 113–114
windows

appearance of, 109
for application framework, 154
with cGraphics, 414
conversation windows, 685–686

1054 Index

creating, 108–110
from dialog box template, 122
Direct3D presentation method, 174–176
position of, 109
shell application for, 116–119
size of, 109
working in, 102–119

Windows 95, 98
Windows programming, 99–158. See also COM

(Component Object Module); DirectX;
windows

class, registering, 105–108
coding conventions, 99–101
critical sections, 128
custom classes, creating, 105–106
debugging, 154
default window procedure, 114
dialog boxes, 121–122
events in, 104–105
function naming, 100–101
global queue, 104
header files, 103
joysticks with, 268
keyboards in, 264–265
message boxes, using, 119–121
message pumps/loops, 111–113
messages, 104–105

common messages, 115–116
procedure, 113–114

multithreading, 125–128
resources, 122–125
shell application, 116–119
threads, 125–128
Win32 data types, 99–100
WinMain function, 103–104

WinMain.cpp file, 149–155
WinMain function, 103–104

entire coding for, 112
expanding, 109

Win32 SDK, 99
Wizardry, 10, 11
Wizards of the Coast, Inc., 8

Web site, 997
Wizard Works, 976
WNDCLASSEX structure, 106, 107
word use in story, 44
world objects, 65

world space, 164
world transformations, 168, 182–183

for billboards, 232
constructing, 182–183, 192–193
with cWorldPosition, 425–427

writers, studying, 55–56
writing. See Story-writing
www.excite.com, 997
www.GameDev.net, 996
www.gamedev.net Web site, 997

X
X-coordinates, 162–164, 179–180

for barriers, 796
for joysticks, 289
lights, placement of, 218
with tile engines, 488

.X files, 241–247
animation in, 255–258
cAnimation for loading meshes from,

434–436
for cAutomap class, 807–808
cMesh loading meshes from, 431
creating meshes, 244
frame templates, 242–244
with multiple meshes, loading, 249–250
parsing, 244–247
templates in, 241–242
.3DS files to .X files, converting, 574
2Din3D, loading meshes for, 565
versatility of, 241

Xtreme Games, LLC, 976
Web site, 996

Y
Y-coordinates, 162–164, 179–180

for barriers, 796
for joystick, 289–290
lights, placement of, 218
with tile engines, 488
for triangle triggers, 768

Z
Z-buffers, 237–239

with cGraphics, 414, 415

1055Index

ranges for, 239
for 2Din3D drawing, 566
for 2-D tiles, 567
for 3Din2D, 569, 570

Z-coordinates, 162–164, 179–180
for barriers, 796
lights, placement of, 218

The Zen of Direct 3D Game Programming (Walsh),
1002

zf parameter, 196–197
zn parameter, 196–197

1056 Index

“Game programming is without a doubt the most intellectually challenging field of Computer Science in the world.
However, we would be fooling ourselves if we said that we are ‘serious’ people! Writing (and reading) a game pro-
gramming book should be an exciting adventure for both the author and the reader.”

—André LaMothe,
Series Editor

Premier Press
www.premierpressbooks.com

This page intentionally left blank

TEAMFL
Y

Team-Fly®

This page intentionally left blank

Take Your
Game to the

XTREME!

Xtreme Games LLC was founded to help small game developers
around the world create and publish their games on the commercial
market. Xtreme Games helps younger developers break into the field
of game programming by insulating them from complex legal and
business issues. Xtreme Games has hundreds of developers around
the world, if you’re interested in becoming one of them, then visit us
at www.xgames3d.com.

www.xgames3d.com

License Agreement/Notice of Limited Warranty
By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of lim-
ited warranty, you cannot agree to the terms and conditions set forth, return the
unused book with unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the
software disc. You are licensed to copy the software onto a single computer for use
by a single user and to a backup disc. You may not reproduce, make copies, or dis-
tribute copies or rent or lease the software in whole or in part, except with written
permission of the copyright holder(s). You may transfer the enclosed disc only
together with this license, and only if you destroy all other copies of the software
and the transferee agrees to the terms of the license. You may not decompile,
reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Premier Press, Inc. to be free of physical defects in
materials and workmanship for a period of sixty (60) days from end user’s purchase
of the book/disc combination. During the sixty-day term of the limited warranty,
Premier Press will provide a replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY OF REPLACE-

MENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL PREMIER PRESS OR THE AUTHORS BE LIABLE

FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNC-

TIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS INTERACTION

WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES

THAT MAY ARISE, EVEN IF PREMIER AND/OR THE AUTHORS HAVE PREVIOUSLY BEEN NOTIFIED THAT

THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
PREMIER AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER WARRANTIES, EITHER

EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICU-

LAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION

OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE

LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Indiana without regard to
choice of law principles. The United Convention of Contracts for the International
Sale of Goods is specifically disclaimed. This Agreement constitutes the entire
agreement between you and Premier Press regarding use of the software.

	Cover
	About the Author
	Contents at a Glance
	Contents
	Foreword
	Introduction
	Part 1 - An Introduction to Role-Playing Games
	A World of Role- Playing
	A Story of Role- Playing
	The Concepts of Role- Playing
	The Basic Concepts
	Playing Traditional
	Pen- and- Paper Games
	Going Live with Role- Playing Games
	Role- Playing on the Computer

	The Evolution of Gaming
	Wrapping Up with a Look into the Future

	Part 2 - Role-Playing Game Design
	Exploring RPG Design Elements
	General Game Design Issues
	The Importance of Design Documents
	Creating Your Design Document
	The Perfect Design Document

	RPG Design Aspects
	Turning to the Technical Side
	Knowing Your Role
	Wrapping Up Design

	Story- Writing Essentials
	The Art of Telling Stories
	The Five Components of a Story
	The Story Ladder
	and the Three Acts
	Characters
	Setting Mood and Atmosphere
	The Point of View
	Your Narrative Voice
	Plots, Subplots, and Twists

	The Writing Process
	Eight Rules to Writing
	Six Steps to Writing
	Writing the Three Drafts

	Tips for Better Stories
	Back- Stories
	Flashbacks and Cut- Scenes
	Foreshadowing
	Don t Say It Experience It
	Harnessing Emotion
	Studying the Greats

	Applying Stories to Games
	Enveloping the Player
	Breaking Up the Plot
	Linear and Nonlinear Story Lines
	Dialogue
	Involving the Design Document

	Wrapping Up Stories

	Part 3 - Programming Basics
	Starting with C++
	Introducing C+ +
	Moving from C to C+ +
	Working with Functions
	Working with Variables
	New Keywords and Enhancements

	Classes
	Class Visibility
	Class Variables and Functions
	Using the this Keyword
	Class Friends
	Derived Classes
	Using Const with Classes
	Advanced Structures

	Wrapping Up C+ +

	Programming with Windows and Application Basics
	Programming with Windows
	Coding Conventions
	Working Inside a Window
	Advanced Features

	DirectX
	Downloading and Installing DirectX
	Including DirectX in Your Project

	Understanding the Program Flow
	Modular Programming
	States and Processes
	Application States
	Processes

	Handling Application Data
	Using Data Packaging
	Testing the Data Package System

	Building an Application Framework
	Structuring a Project
	Debugging Your Program
	Wrapping Up Windows and Application Basics

	Drawing with DirectX Graphics
	The Heart of 3-D Graphics
	Coordinate Systems
	Constructing Objects
	Lists, Strips, and Fans
	Vertex Ordering
	Coloring Polygons
	Transformations

	Getting Started with DirectX Graphics
	Direct3D Components
	Initializing the System
	Introducing D3DX

	The Math of 3-D
	Matrix Math

	Getting Down to Drawing
	Using Vertices
	Tr ansformations
	Materials and Colors
	Clearing the Viewport
	Beginning and Ending a Scene
	Rendering Polygons
	Presenting the Scene

	Using Texture Maps
	Using Texture- Mapping with Direct3D
	Loading a Texture
	Setting the Texture
	Using Texture Filters
	Rendering Textured Objects

	Alpha Blending
	Enabling Alpha Blending
	Drawing with Alpha Blending
	Tr ansparent Blitting
	with Alpha Testing

	Lighting
	Using Point Lights
	Using Spotlights
	Using Directional Lights
	Ambient Light
	Setting the Light
	Using Normals
	Let There Be Light!

	Using Fonts
	Creating the Font
	Drawing with Fonts

	Billboards
	Particles
	Depth Sorting and Z- Buffering
	Working with Viewports
	Working with Meshes
	The . X Files
	Meshes with D3DX
	Using 3-D Animation . X Style

	Wrapping Up Graphics

	Interacting with DirectInput
	Introducing Input Devices
	Interacting via the Keyboard
	Playing with the Mouse
	Jammin with the Joystick

	Using DirectInput
	Presenting DirectInput Basics
	Initializing DirectInput

	Employing DirectInput Devices
	Obtaining a Device GUID
	Creating the Device COM Object
	Setting the Data Format
	Setting the Cooperative Level
	Setting Special Properties
	Acquiring the Device
	Polling the Device
	Reading In Data

	Using DirectInput with the Keyboard
	Using DirectInput with the Mouse
	Using DirectInput with Joysticks
	Wrapping Up Input

	Playing Sound with DirectX Audio
	Sound Basics
	Recording Digital Sounds
	Musical Madness

	Understanding DirectX Audio
	Using DirectSound
	Initializing DirectSound
	Setting the
	Cooperative Level
	Setting the Playback Format
	Jump- Starting the
	Primary Sound Buffer
	Using Secondary Sound Buffers
	Lock and Load Loading
	Sound Data into the Buffer
	Playing the Sound Buffer
	Altering Volume, Panning,
	and Frequency Settings
	Losing Focus
	Using
	Notifications
	Using Threads for Events
	Loading Sounds into the Buffers
	Streaming Sound

	Working with DirectMusic
	Starting with DirectMusic
	Creating the Performance Object
	Creating the Loader Object
	Working with Music Segments
	Altering Music

	Finishing Up Sound

	Networking with DirectPlay
	Understanding Networking
	Network Models
	Lobbies
	Latency and Lag
	Communication Protocols
	Addressing

	Introducing DirectPlay
	The Network Objects
	Working with Players
	Networking with Messages
	From Small Bytes to Big Words
	Identifying Applications with GUIDs

	Initializing a Network Object
	Using Addresses
	Initializing the Address Object
	Adding Components
	Setting the Service Provider
	Selecting a Port
	Assigning a Device

	Using Message Handlers
	Configuring Session Information
	Server Session Data
	Client Session Data

	Working with Servers
	Handling Players
	Receiving Data
	Sending Server Messages
	Ending the Host Session

	Working with Clients
	Sending and Receiving Messages
	Terminating the Client Session

	Wrapping Up Networking

	Creating the Game Core
	Understanding the Core Concept
	The System Core
	Using the cApplication Core Object
	State Processing
	with cStateManager
	Processes and cProcessManager
	Managing Data with cDataPackage

	The Graphics Core
	The Graphics System with cGraphics
	Images with cTexture
	Colors and cMaterial
	Light It Up with cLight
	Text and Fonts Using cFont
	Vertices and cVertexBuffer
	World Transformations
	with cWorldPosition
	View Transformations and cCamera
	Loadable Meshes using cMesh
	Drawing Objects Using cObject
	Making Meshes
	Move with cAnimation

	The Input Core
	Using DirectInput with cInput
	Input Devices with cInputDevice
	Using the Input Core

	The Sound Core
	Using DirectX Audio
	Control with cSound
	Using Wave Data and cSoundData
	Blasting Sounds
	with cSoundChannel
	Listening to Music
	with cMusicChannel
	Mixing Up the
	Instruments with cDLS

	The Network Core
	Querying for Adapters
	with cNetworkAdapter
	Servers with cNetworkServer
	Working with Clients
	and cNetworkClient

	Wrapping Up the Game Core

	Part 4 - Role- Playing Game Programming
	Using 2-D Graphics
	Understanding Tiles and Maps
	Tile Graphics

	Using Tiles with DirectX
	Building a Tile- Handler Class
	Using the Tile Class

	A Basic Tile Engine
	Drawing Basic Maps
	Using Multiple Layers
	Adding Objects
	Smooth Scrolling
	The Map and the Mouse
	Creating a Map Class

	Angled Tile Engine
	Big Bitmap Engines
	Creating Big Tiles
	A Big Example

	Wrapping Up 2-D Graphics

	Creating 3-D Graphics Engines
	Meshes as Levels
	Loading Levels
	Drawing the Rooms
	Improving on Basic Techniques

	Introducing the Viewing Frustum
	Planes and Clipping
	The cFrustum Class

	Developing an Advanced 3-D Engine
	Introducing the NodeTree Engine
	Creating the cNodeTree Class
	Using cNodeTree

	Adding 3-D Objects to the World
	Computing the Bounding Sphere
	Bounding Spheres and the Frustum

	Collision Detection with Meshes
	Colliding with the World
	When Meshes Collide
	Mouse Clicks and Meshes

	Using Sky Boxes
	Creating a Sky Box Class
	Using the Sky Box

	Wrapping Up 3-D Graphics

	Mixing 2-D and 3- D Graphics Engines
	Mixing the Two Dimensions
	Using 2-D Objects in a 3- D World
	Drawing Tiles in 3-D
	Moving in the 3-D World

	Adding 3-D Objects to a 2- D World
	Dealing with 2-D Backdrops
	Dealing with the Scene Mesh
	Rendering the Scene
	Adding 3-D Objects
	Collisions and Intersections

	Wrapping Up Mixed Engines

	Implementing Scripts
	Understanding Scripts
	Creating a Mad Lib Script System
	Designing the Mad
	Lib Script System
	Programming the
	Mad Lib Script System

	Working with the MLS Editor
	Executing Mad Lib Scripts
	Applying Scripts to Games
	Wrapping Up Scripting

	Defining and Using Objects
	Defining Objects for Your Game
	Using Form in Objects
	Defining the Functions of Objects
	Adding Function to Objects

	The Master Item List
	Constructing the MIL
	Using the MIL Editor
	Accessing Items from the MIL

	Managing Items with Inventory Control Systems
	Developing a Map ICS
	Developing a Character ICS

	Wrapping Up Objects and Inventory

	Controlling Players and Characters
	Players, Characters, and Monsters, Oh My!
	Defining Characters in Your Game
	The Player Character
	Non- Player Characters
	Monster Characters
	Character Graphics

	Navigating Characters
	Controlling Player Characters
	Controlling Non- Player Characters
	Automatic Control of Characters

	Conversation among Characters
	The Talking Dummy
	Displaying Conversational
	and Other Text

	Scripting and Characters
	The Script Class
	Creating a Derived Script Class
	Using the Derived Class

	Resource Management
	Using Items
	Using Magic
	Shops and Bartering

	Working with Magic and Spells
	Spell Graphics
	The Function of Spells
	Spell Targeting, Cost, and Chances
	The Master Spell List
	Creating a Spell Controller
	Using the Spell Controller

	Combat and Characters
	Using Combat Rules for Attacking
	Spells in Combat
	Intelligence in Combat

	Building the Master Character List
	The MCL Editor
	Using the Character Definitions

	Creating a Character Controller Class
	Meshes with sCharacterMeshList
	Animation Loops and
	sCharAnimationInfo
	Moving with sRoutePoint
	Tr acking Characters
	with sCharacter
	The cCharacterController Class
	Using cCharacterController

	Demonstrating Characters with the Chars Demo
	Wrapping Up Characters

	Working with Maps and Levels
	Placing Characters on the Map
	Character Map Lists
	Script Placement

	Using Map Triggers
	Sphere Triggers
	Box Triggers
	Cylinder Triggers
	Triangle Triggers
	Triggering a Trigger
	Creating a Trigger Class
	Using Triggers

	Blocking the Path with Barriers
	cBarrier: : SetMesh
	and cBarrier: : SetAnim
	cBarrier: : Render
	Adding Barriers with cBarrier
	Using the Barrier Class

	Using Auto Maps
	Auto Maps in Action
	Big Map, Small Map
	Loading and Displaying Auto Maps
	Creating the Auto Map Class
	Using cAutomap

	Wrapping Up Maps and Levels

	Creating Combat Sequences
	Designing External Combat Sequences
	The Technical Side

	Developing the Combat Sequence
	Global Data
	cApp: : cApp
	cApp: : Init
	cApp: : Shutdown
	cApp: : Frame
	cApp: : GetCharacterAt

	Using Battle Arrangements
	Wrapping Up Combat Sequences

	Getting Online with Multiplayer Gaming
	Maddening Multiplayer Mayhem
	Multiplayer Game Design
	The Network Demo

	Creating a Multiplayer Game Architecture
	Working Together:
	The Client and the Server
	Looking at
	the Server
	Looking at Clients

	Working with Game Servers
	Storing Player Information
	Handling Messages
	Updating Players
	Updating the Network Clients
	Calculating Latency
	The Hard Part Is Over!

	Working with Game Clients
	Handling Player Data
	The Network Component
	Message Handling
	Updating the Local Player
	Updating All Players
	The Client s Full Glory

	Wrapping Up Multiplayer Gaming

	Part 5 - The Finishing Touches
	Putting Together a Full Game
	Designing the Sample Game
	Writing the Game s Story
	The Purpose of The Tower Game
	Designing the Levels
	Defining the Characters
	Assigning Characters
	Creating the Items and Spells
	Developing the Scripts
	Defining the Controls
	Laying Out the Flow

	Programming the Sample Game
	Structuring the Application
	Using State- Based Processing
	Dealing with Maps
	Using Barriers and Triggers
	Controlling Characters
	Handling Bartering
	Playing Sounds and Music
	Rendering the Scene
	Processing Scripts
	Assembling the Pieces

	Wrapping Up Creating Games

	Marketing and Publishing Your Game
	Submitting Your Game
	Writing the Proposal Letter
	Performing Marketing Analysis
	Including Your Design Document
	Calculating Budgets and
	Determining Schedules
	Including a Game Demo

	Communicating with Companies
	Dealing with Rejection
	Receiving the Acceptance Letter
	Negotiating Your Contract

	Considering Which Publishers to Contact
	Do- It- Yourself Publishing
	Advertising
	Using a Try- Before- You- Buy
	Approach
	Selling
	Your Product

	Wrapping Up Marketing and Publishing

	Epilogue
	Looking Back
	What s Next?

	Part 6 - Appendixes
	Setting Up DirectX 8.0 and Configuring the Compiler
	Setting Up DirectX 8.0
	Using Run- Time
	Libraries and the SDK
	Using the Debug Version
	Versus the Retail Version
	Installing DirectX 8.0
	Installing DirectMusic Producer
	Include Files and Libraries

	Setting Up the Compiler
	Directory Settings for DirectX
	Linking to Libraries
	Setting Default char Behavior
	Release and Debug Versions
	Multithreaded Libraries

	Getting Help on the Web
	Programming Role- Playing Games with DirectX
	www. GameDev. net
	XTreme Games
	Flipcode
	MilkShape 3-D Home Page
	Agetec
	Wizards of the Coast
	White Wolf Publishing
	Steve Jackson Games
	Polycount
	RPG Planet
	RPG Host
	www. gamedev. net/reference/ articles/ frpg/ site
	www. excite. com/ games/ role_ playing

	Recommended Reading
	Dragon Magazine
	Dungeon Adventures
	Dungeons & Dragons 3rd Edition Player s Handbook
	Dungeons & Dragons 3rd Edition Dungeon Master s Guide Handbook
	Isometric Game Programming with DirectX 7.0
	lex & yacc
	Multiplayer Game Programming
	Programming Windows, Fifth Edition
	Schaum s Quick Guide to Writing Great Short Stories
	Swords & Circuitry: A Designers Guide to Computer Role- Playing Games
	The Zen of Direct3D Game Programming

	Glossary
	What's on the CD
	DirectX 8.0 SDK
	GoldWave 4.23 Demo
	MilkShape 3D 1.56 Demo
	Paint Shop Pro Trial Version
	Poser 4 Demo
	trueSpace5 Demo

	Index
	A
	B health/ mana points, updating, 837
	C
	D
	E
	F
	G GM/ GS set, 337
	H
	J
	N
	O
	Q
	R
	S
	T
	V
	U
	W

