- CO "WOLUDED

W
PROGRANIMING

RDLﬁE

E=i= e e e e
R i T e e B
FPROGRANMMING
HoOoLE FPLAYING
GAMES LITTH
DII1RECTX

EEEEEEEEEEEEEEE

This page intentionally left blank

e el L = e
FPROGRANMING
HoOoLE FPLAYING

GAMES LITTH
DII1RECTX

Jdim Adams

© 2002 by Premier Press, Inc. All rights reserved. No part of this book may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including photocopying, recording, or
by any information storage or retrieval system without written permission from Premier Press, except
for the inclusion of brief quotations in a review.
Premier PREMIER PRESS . L.
The Premier Press logo, top edge printing, and related trade dress are trade-
marks of Premier Press, Inc., and may not be used without written permission.
All other trademarks are the property of their respective owners.

Press GAMEDEVELOPMENT

Publisher: Stacy L. Hiquet Editorial Assistant: Margaret Bauer
Marketing Manager: Heather Buzzingham Technical Reviewer: Ernest Pazera
Managing Editor: Sandy Doell Interior Layout: Shawn Morningstar
Acquisitions Editor: Emi Smith Illustrator: Susan Honeywell

Series Editor: André LaMothe Cover Design: Phil Velikan

Project Editor: Melba Hopper Indexer: Katherine Stimson

Proofreader: Jenny Davidson

DirectX, DirectPlay, DirectSound, DirectMusic, DirectInput, Direct3D, DirectDraw, and Windows are
registered trademarks of Microsoft. MilkShape 3-D is a registered trademark of chUmbaLum sOft.
GoldWave is a registered trademark of GoldWave Inc. trueSpace is a registered trademark of Caligari
Corporation. Poser is a registered trademark of Curious Labs, Inc. Paint Shop Pro is a trademark of
Jasc Software, Inc.

Important: Premier Press cannot provide software support. Please contact the appropriate software
manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trade-
marks from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of
such information. Readers should be particularly aware of the fact that the Internet is an ever-chang-
ing entity. Some facts may have changed since this book went to press.

ISBN: 1-931841-09-8
Library of Congress Catalog Card Number: 2001096217

Printed in the United States of America

0203040506 RI10987654321

To my wife 2E:

The love of my life and best friend till the end—
you are my sunshine.

w . r e e ot O s B
W e M ="t """ =
Acknowledgments

Publishing a book takes considerable work and dedication on the part of every-
one involved. First and foremost, | want to thank my family—my wife, 2E, for
all her loving support; my mother, Pam, and my brother John for giving me moral
support; the kids, Michael, John, and Jordan, for letting me play their video games
and for giving me great ideas; and my sister, Jennifer, for irking me enough to show
her that writing is a job worth pursuing.

I extend special thanks to the book’s technical editor and fellow programmer-at-
large, Ernest Pazera, for dropping my name into the mix and for ensuring that the
technical material in this book is accurate. I'm particularly grateful to the book’s
acquisitions editor, Emi Smith, for her voice of calmness and for understanding
that things sometimes become delayed. Thanks also to the project editor, Melba
Hopper, undoubtedly the best editor with whom I've had the pleasure of working.

| offer sincere appreciation to Chris Taylor, president of Gas Powered Games, for
writing the book’s Foreword; to Wayne Peters (aka Scarecrow) for the great models
in the book’s demos; and to Andrew Russell for the cool music that fits the game
demos perfectly.

I would be remiss not to also thank Susan Honeywell for her artistic renditions
of my drawings, Shawn Morningstar for the excellent interior layout of the book,
Katherine Stimson for the book’s fine index, and the book’s proofreader, Jenny
Davidson, for her keen eyes.

Finally, I want to acknowledge friends and family members who were with me along
the way, if only in spirit: To my brother Jeff—I wish you could have been here to
see this; to lan McArdle—as you can see, the motivation to write this book never
wore out; to the rest of my friends and family—thanks for being there!

el W:.fimmﬁha—mﬁf%ﬁr
About the Author

Jim Adams’ current career, and his passion for programming, began at the age of
nine when using an Atari computer and a few lines of code, he discovered that he
could do just about anything his young mind imagined.

Over the years, with the help of increasingly advanced books on programming—
and countless hours molding together small games—he moved from computer to
computer until he finally discovered the world of IBM PCs. At the same time, he
was progressing through the emerging programming languages—going from
BASIC, to assembly, to PASCAL, to C, and finally to C++.

Thanks to Jim’s knowledge and experience in programming games and business
applications, he has led a satisfying career in game-making, writing, and consulting.
He has written numerous articles and is coauthor of several books on consumer
electronics and computer programming.

Jim is currently owner of The Collective Mind, a programming and consulting
business. You can find Jim cruising the Internet and hanging out at various game-
related Web sites.

ISR E T S S IR | '] e A AT R g B e
_LJJFFLW — = T =" &= !"—E—‘———-—ﬂ_ﬁ
Contents at a Glance

FOREWORD s s s s s s s s s s s s s v s s s m s mwmnmouw e x XXXV

INTRODUCTION = = = s s s s s s s s s m m m ;m mnmunounoumanmos s s XXXIX

Part One
An Introduction to Role-Playing Games. 1

CHRAPTER 1 H WoORLD oOfF ROLE-PLAYING s s s s s s s s m n n 0 X

Part Two
Role-Playing Game Design. 19

CHAPTER 2 ExPLORING R¥PG DESIGN ELEMENTS s s 5 1 1 1 21

CHAPTER X S5TORY-WMRITING ESSENTIALS s s s s s s n » » 1 X5

Part Three
Programming Basicsbl

CHAPTER Y GSGTARTING WITH C++ s s s s s s s s s v v n n n s BX

CHAPTER 5 PROGRAMMING WITH WWINDOWS
AND HPPLICATION BRASICS 2 2 o s 2 2 s 5 s = = » « D7

CHAPTER B DRAWING WTH DIRECTX GRAPHICS = = s s = » 1589
CHAPTER 7 INTERACTING WITH DIRECTINPUTs = » = = = = » 2ZH1
CHAPTER B +FLAYING 50uUND wWITH DIRECTX AUDION » » «» 29X
CHAPTER 3 NETWORKING WITH DTRECTPLAY s s s = = = s » X51

CHARPTER 10 CREATING THE GAME COREs s s v » 5 s v ¢ «» XHH

fontents at a Glance “

Part Four
Role-Playing Game Programming 465

CHAPTER 1l USING Z2-D GRAPHICS s s s s s n » s s s s » »« HE7
CHAPTER 1l2 (CREATING X-D GRAPHICS ENGINESs s s s x»x 501
CHAPTER 1X IYIiXING 2-D AND X-D GRAPHICS ENGINESs « 5H1
CHAPTER 14 TMPLEMENTING SCRIPTS s s s s s s n » s » » « 578
CHAPTER 15 DEFINING AND USING ORJECTS » = = s = =« « BIX [

CHRPTER 1B CONTROLLING PLAYERS AND CHARACTERS « B5X

CHAPTER 17 WWMORKING WITH YIAPS AND LEVELS » » v v » & 761
CHAPTER 1H CREATING COMBRAT SEQRUENCESs = » » = = = «» H19

CHAPTER 183 GETTING ONLINE WITH NMULTIPLAYER GAMING « B4Y4=X

Part Five
The Finishing Touches.907

CHAPTER 20 PutTiING TOGETHER A FuLL GAME « » » » « « 309
CHARPTER 21 NARKETING AND FPURLISHING YOUR GAME. « SB7

EPILOGUE s s s s s s s s s s 38O

Part Six
Appendixes.-.......983

ArPENDIX A SETTING UP D1RECTX H.O AND
CONFIGURING THE COMPILER = » » = » = = » « HHS

ArPPENDIX B GETTING HELP ON THE MER s » s s v » » » « 385
ArPPENDIX C RECOMMENDED READING » = s » = » = = = » » 399
ArPPENDIX D GLOSSARYs s s s s s s s s n s s s n o 100X

ArPPENDIX E WHAT'S ON THE CD w s s o s s o » s » = » » « 1017

Index ¢ttt eeae.=-=-..1021

Contents

FOREWORD u« s s s s s s s s " o " n n mn mwmmum = m XXXVI

INTRODUCTION = = = = s s s s s s n n w m m m m m m XXXIX

Part One
An Introduction to Role-Playing Games. 1

CHAPTER 1
H WoRLD OoF ROLE-FLAYINGs =« s s s s s 8 X

A Storyof Role-Playing. 4

The Concepts of Role-Playing. 6
The BasiC CONCEPLS oo 6
Playing Traditional Pen-and-Paper Games 7
Going Live with Role-Playing Games.o oiiii., 10
Role-Playing on the Computer........... i, 10

The Evolutionof Gaming 12

Wrapping Up with a Look into the Future. 17

Part Two

Role-Playing Game Design 19

CHRPTER 2
EXPLORING RPG DESIGN ELEMENTS: & 1 21

General Game Design ISSUES.o it 22
The Importance of Design Documents. it 22
Creating Your Design Document i 23

Starting with the Table of Contents. 28
Adding theTopiCS 28

The Perfect Design Document. it 30

Contents

RPG DesSign ASPECTES . . .« .o i it e 31
Turning to theTechnical Side 32
KnowingYour Role. e 33
Wrapping Up Design. 34

CHAPTER X
STORY-IMRITING ESSENTIALS: & = 5 1 1 1 X5

The Artof Telling Stories 36
The Five Components of a Story o 37
The Story Ladder and the Three Acts. 37

Act 1:The Beginningo 38
Act22The Middle 39
Act :The End. 39
CharaCters 40
KnowYour ROIES 40
Building Three-Dimensional Characters. 41
Dialogue 42
Setting Mood and Atmosphere 42
The Pointof View 43
Your Narrative VOICE. o 44
Plots, Subplots, and TWists. o 44
PIOt TWISES. . . o 45
SUBPIOLS . . 45

TheWriting Process 46
Eight Rules toWriting. 46
SIXStepS tOWIILINGo 47

Thoughtand Planning 48
ShapingYour Thoughts. 49
Writinga Draft. 49
Revising the Story. 50
Editing.o 51
Proofreading 51
Writingthe Three Drafts 51

The Rough Draft. 51

m Contents

The Revision Draft 52
The Cut-and-Polish Draft 52
Tips for Better Stories 52
BaCK-StOrIeS . . . oo 53
Flashbacks and Cut-Scenes.t 53
FOreshadowingo 53
Don't Say It—Experience It 54
Harnessing Emotion 54
J Studying the Greatsttt 55
Applying Storiesto Games 56
Enveloping the Player 57
Breaking Up the Plot 57
Linear and Nonlinear Story Lines. 58
Dialogue. . .. 59
Involving the Design Document i, 60
Wrapping Up Stories e 60
Part Three
Programming Basics b1

CHAPTER Y
STARTING WITH C++ 2 s s s s s s s s s s s BX

Introducing CH+. 64
Moving from C to C++. 65
Working with Functions. 66
Function Prototyping.ot 66
Default Function ArgumentValues. 67
Function Overloading 68

Inline FUNCLIONS. 70
Working withVariables. 71
Variable Declaration 71

Scope and Precedence 72
StaticVariables. 73

Protectingwith Const. i 74

Contents m

New Keywords and Enhancements. ov... 75

Memory Allocation 76

NULL and EnumM 77

ClaSSeS . . . o 78

ClassVisibilityo 80

Class Variables and Functions i 81

Using Static Variables and Functions 83

The Constructor and Destructor 85
Operator FUNCLIONSttt e et 86 [

Using the this Keyword 88

Class Friends e 89

Derived CIassesot 90

Virtual FUNCLIONS. 93

Using Const with Classes. o e 95

Advanced StrUCTUIES 95

Wrapping Up CH+. ... 96

CHAPTER 5
PROGRANMMING WITH WINDOWS
AND APPLICATION BEASICSs s s s s 5 v v « 7

Programming withWindows. 99
Coding Conventions.t 99
Hungarian Notation i, 99
WIN32 Data TYPES. oo 99
Function Naming.ot 100
Working Inside aWindow 102
Including the Headers 103
TheWinMain Function i 103
Events and MeSSagesS v oot i 104
RegisteringaWindows Class. 105
Creating aWindow 108
The Message PUMP 111
The Window Message Procedure 113
CommoN MESSAJESt 115

An Application Shell 116

Contents

Advanced Features 119
Using Message BOXESt 119

Dialog BOXES. . . .\ ot 121
RESOUICES o 122
Attaching Resources to an Application i 123
Retrieving Resource Data.ttt 124

Threads and Multithreading. 125
Critical SECHIONS 128

Using COM. 128
Initializing COM 129
IUNKNOWN. . .o 130

Initializing and Releasing Objects. 131

Querying INtErfaces 131
DirectX . . 132
Downloading and Installing DirectX 134
Including DirectX inYour Project 134
Understanding the Program Flow. 134
Modular Programmingt 136
States and ProCESSES o oo 137
Application States. 137
PrOCESSES . . . 141
Handling ApplicationData 144
Using Data Packaging e 144
Testing the Data Package System 146
Building an Application Framework 148
Structuringa Project. 155
DebuggingYour Program 155
Wrapping Up Windows and Application Basics 157

CHAPTER B
DRAWING WITH D1RECTX GRAPHICS: & 1 153

The Heart of 3-D Graphics 160
Coordinate SyStemsS 162
Constructing Objects 164

Contents

Lists, Strips,and Fans. 165
VerteX OFrdering.oov ot 166
Coloring Polygons. 167
Transformations 167
Getting Started with DirectX Graphics 168
Direct3D COmMpPONENtS.t 169
Initializing the System 170
Obtaining the Direct3D Interface 170
Selecting a Display MOGE.o oottt 171 [
Setting the Presentation Method. 174
Creating the Device Interface and Initializing the Display 176
Losing the Device 177
Introducing D3DX 178
TheMath of 3-D e 178
Matrix Math 178
Matrix Construction 179
Combining Matrices i 181
The Steps from Local to View Coordinates. 182
Getting Down to Drawingot 184
USINGVEItICES . . .ot 184
FlexibleVertex Format i 184
UsingVertex Buffers 186
Creating aVertex Buffer 187
Locking theVertex Buffer 188
Stuffing inVertex Data 189
VerteX Streamso 190
Vertex Shaders 190
Transformations 191
The World Transformation 192
TheView Transformation., 193
The Projection Transformation 195
Materials and Colors 197
Clearing the Viewport. e 198
Beginning and Endinga Scene 199
Rendering POIygoNns. 199

Presenting the Scene. 201

Contents

UsingTexture Mapso oot 202
Using Texture-Mapping with Direct3D 204
Loading aTextureo 204
SettingtheTexture 206
Using Texture Filters. e 208
Rendering Textured Objects. i 210

AlphaBlending e 211
Enabling Alpha Blending. 212
Drawing with Alpha Blending, 212
Transparent Blitting with AlphaTesting, 213

Loading Textures with Color Keying 214
Enabling AlphaTesting 215
A Transparent Blitting Example, 215

Lighting 217
Using Point Lights. 220
Using Spotlights 220
Using Directional Lights 222
Ambient Light. 223
Settingthe Light 223
Using Normals 224
LetThere Be Light!. 227

Using FoNts 227
Creatingthe Font. 228
Drawingwith Fonts i 230

Billboards. 231

PartiCles. 233

Depth Sortingand Z-Buffering 237

Working withViewports 240

Working with Meshes 241
The X Files 241

The X FileFormat 241
Templates Galore 241
Using a Frame Hierarchy. i e e 242

Creating X Meshes. 244

Parsing X Files 244

Contents

Meshes With D3DX 248
The ID3DXBuffer Object 248
Standard Meshes. 249
Rendering Meshes. 251
Skinned Meshes. 253

Loading Skinned MeShes.t 253
Updating and Rendering a Skinned Mesh 254

Using 3-D Animation X Style. 255
Key Frame Techniques. 256 [
Animation In X, 257

Wrapping Up Graphics 259

CHRAPTER 7
INTERACTING WITH DNRECTINPUT: » = = « 251

Introducing Input Devices 262
Interacting via the Keyboard. 263
Dealing with the Keyboard inWindows 264
Playing with the Mouse. 265
Jammin’ with the Joystick 266
Using Directinput 268
Presenting Directinput Basics 269
Initializing Directinput. 270
Employing Directinput Devices. 271
Obtaining a Device GUID. e 272
Creating the Device COM Object i, 276
Settingthe Data Format. i, 277
Setting the Cooperative Level. 277
Setting Special Properties. 278
Acquiring the DeVICE o 280
Polling the Device. e 282
Reading In Data 282
Using Directinput with the Keyboard. 283

Using Directlnput withthe Mouse 285

Contents

Using Directlnput with Joysticks. 287
Wrapping Up Input. 291

CHAPTER H
PLAYING S0OUND WITH
DIRECTX FAUDIO s« v s s s s s s s » » » 2H=X

SoUNd BasSiCSot 294
J Recording Digital SOUNGSo oot 295
Musical Madness. 296
Midi. .o 297
DIreCtMUSIC. . . . o ot 297
Understanding DirectXX Audio. 298
Using DirectSound. 298
Initializing DirectSound 300
Setting the Cooperative Level. 301
Setting the Playback Format 302
Creating the Primary Sound Buffer Object 303
Settingthe Format 305
Jump-Starting the Primary Sound Buffer 307
Using Secondary Sound Buffers 308
Lock and Load—Loading Sound Data into the Buffer................ 310
Playing the Sound Buffer. 313
Altering Volume, Panning, and Frequency Settings 313
Volume Control 314
PaNNING . . 314
Frequency Changes.t e 315

LOSING FOCUS. . . . oo e 316
Using NOTIfications 317
UsingThreads for Events 321
Loading Sounds into the Buffers. 323
Streaming Sound. 327
Working with DirectMusic 329
Starting with DIireCtMUSIC.o 330

Creating the Performance Object. 332

Contents

Creating the Loader Object i, 333
Working with Music Segments i 334
Loading MusiC Segments 334
Loading Instruments 337
Configuring for Midi 340
Setting Up the Instruments, 340
Using Loops and Repeatst 341
Playing and Stopping the Segment 342
Unloading Segment Data. it 343
Altering MUSIC. 344
Volume Settings.o 344
Tempo Changes.o 347
Grabbing an Audio Channel. 347
Finishing Up Sound 349

CHAPTER H
NETWORKING WITH DNRECTPLAY & & 1 1 X511

Understanding Networking. 352
Network Models 353
Lobbies. 355
Latency and Lag 355
Communication Protocols 355
AArESSING .« . o e 356

Introducing DirectPlay 357
The Network Objects i 358
Working with Players 359
Networking with Messages. 359

Asynchronous and Synchronous 360
SECUNILY. . o o 362
Guaranteed Delivery. 362
Throttling 362
From Small Bytes to BigWords 363
Identifying Applications with GUIDs 364

Initializing a Network Object 364

m Contents

USINg Adresses.o 367
Initializing the Address Object 367
Adding COmMPONENtS.o 368
Setting the Service Provider 370
Selecting a Port. o 370
Assigninga Device 371

Using Message Handlers 374

Configuring Session Information. 376

J ServerSession Data 376
Client Session Datac i, 378

Working with Servers 378

Handling Players e 381
Dealing with Create-Player Messages, 382
Retrieving a Player's Name 383
Destroying Players. 385

Receiving Data i 386

Sending Server MesSages v it 387

Ending the Host Session. i 390

Working with Clients. 391
Sending and Receiving MesSsageso 396
Terminating the Client Session 396

Wrapping Up Networking. 397

CHAPTER 10
CREATING THE GAME COREs » = & = » « X938

Understanding the Core Concept. 400
The System Core. 401
Using the cApplication Core Object. 402
State Processing with cStateManager 405
Processes and cProcessManager. 408
Managing Data with cDataPackage 410
The Graphics Core 410

The Graphics System with cGraphics. 411

Contents

Images with CTeXTUre 415
Colors and cMaterial 417
Light It Up withcLight 418
Textand Fonts UsingcFont 420
Vertices and cVertexBuffer. 422
World Transformations with cWorldPosition 425
View Transformations and cCamera, 427
Loadable Meshes usingcMesh. 430
Drawing Objects Using cObject 431
Making Meshes Move with cAnimation. 434
The lInput Core e e 436
Using Directinput with clnput. 437
Input Devices with clnputDevice, 437
Using the Input Core 440
The Sound Core 441
Using DirectX Audio Control with cSound. 441
UsingWave Data and cSoundData 444
Blasting Sounds with cSoundChannel 447
Listening to Music with cMusicChannel 450
Mixing Up the Instruments with cDLS 452
The Network Core e 454
Querying for Adapters with cNetworkAdapter 454
Servers with cNetworkServer 455
Working with Clients and cNetworkClient 459
Wrapping Upthe Game Core ..., 462
Part Four
Role-Playing Game Programming 465

CHAPTER 11
UsING Z2-D GRAPHICS s s s s s s s s » s HE7
UnderstandingTilesand Maps. 468

Tile Graphics 469
Angled Tiles. . ..o 469

m Contents

UsingTileswith DirectX e 470
Building aTile-Handler Class. 474
CTiles:Create e 476

CTileS: Free . o 476
CTiles:Load AT7

CTileS: Free . o 479
cTiles:GetWidth, cTiles::GetHeight, and cTiles:GetNum 479
cTiles:SetTransparent 480

J CTIleS: Draw . .. ot 480
UsingtheTile CIasst e 482
ABasicTileEngine 483
Drawing Basic Mapso 483
Using Multiple Layers 484
Adding ObJECES.o 485
Smooth Scrolling. 486
The Map and the Mouse. 489
CreatingaMap Class i e 490
AngledTile ENgine. 497
Big Bitmap ENginNes 498
Creating BigTiles e 499
ABigExample 499
Wrapping Up 2-D Graphics. 500

CHRAPTER 12
CREATING X-D GRAPHICS ENGINES: » « 501

Meshesas Levels i 502
Loading Levels 503
Drawingthe RoOOmsS 504
Improving on Basic Techniques i 506

Introducing theViewing Frustum 507
Planes and Clipping.o 508

Checking for Visibility with the Plane. 510
Checking the Entire Frustum. 511

The cFrustum CIass 511

Contents m

CFrustum:Construct 512
cFrustum::CheckPoint, CheckCube, CheckRectangle, and CheckSphere . . 514
Developing an Advanced 3-D Engine. 517
Introducing the NodeTree Engine. 518
Creating Nodes and Tre€sS.o e 519
Scanning and Drawing theTree 521
Working with Texture Groups. i e 522
Creating the cNodeTree Class i 522
cNodeTreeMesh::Create and cNodeTreeMesh::Free 526 [
cNodeTreeMesh::SortNode., 531
cNodeTreeMesh::IsPolygonContained and
cNodeTreeMesh::CountPolygons. 533
cNodeTreeMesh::AddNode. 535
cNodeTreeMesh:Render. i 538
Using CNOdETI eo 540
Adding 3-D Objectsto theWorld 541
Computing the Bounding Sphere 542
Bounding Spheres and the Frustum 543
Collision Detection with Meshes. 543
Colliding withtheWorld 544
Castinga Ray. 544
Blockingthe Path 545
MovingUpand Down. 547
Fast Intersection Checking it 549
Collisions with the cNodeTreeMesh Class 549
When Meshes Collide 549
Mouse Clicks and Meshes. 551
UsiNg SKY BOXES.o 553
Creatinga Sky Box Class 554
cSkyBox::Create and cSkyBox::Free. 555
cSkyBox:LoadTexture 557
cSkyBox::Rotate and cSkyBox::RotateRel 558
CSKyBoX:Render 559
Using the SKy BOX.o 560

Wrapping Up 3-D Graphics. 560

Contents

CHAPTER 1=X
Mi1xXaNG 2-D AND
X-D GRAPHICS ENGINES s s s 5 s 1 s 5H1

Mixing the Two DImMensions. 562
Using 2-D Objectsina3-DWorld. 563
Drawing Tiles in 3-D. 563
Loading the Level Mesh. 565

J LoadingtheTiles........... i 565
Preparing to Draw 566
Drawing the Level Mesh 566
Drawing 2-D Objects 566
Movinginthe 3-DWorld 567
Adding 3-D Objectstoa2-DWorld 568
Dealing with 2-D Backdrops. 570
Dealing with the Scene Mesh 572
Rendering the Scene. i 574
Adding 3-D Objects 576
Collisions and Intersections i 576
Wrapping Up Mixed Engines. 576

CHAPTER 14
TMPLEMENTING SCRI1PTS s s s s s s s 8 » 5785

Understanding Scripts. 580
Creating a Mad Lib Script System 582
Designing the Mad Lib Script System 582
Programming the Mad Lib Script System. 584
Working with Action Templates. 584
Creating Script Entries i 588
Putting Together the cActionTemplate Class 595
Working with the MLS Editor. 603
Executing Mad Lib Scripts. 606
Applying Scriptsto Games 611

Wrapping Up Scripting 611

Contents

CHAPTER 15
DEFINING AND USING ORJECTS = & = = « B1X

Defining Objects forYour Game 614
Using Form in Objects 615
Defining the Functions of Objects 616

WBaPONS. . . o 618
AIMOr. . 619
ACCESSOIIBS . v vt et e 619
Edibles. 619
COlleCtionSo 619
Transportation 619
Others . .. 620
Adding Function to Objects 620
Item CategoriesandValues 620
AssigningValue to Items 621
tem Flags 621
Usage ReStriCtioNns.o 622
Attaching Scriptsto Items. 623
Meshesand Images 624
The Final Item Structure. 624

The Master Item List. 626
Constructingthe MIL 626
Using the MIL Editor 628
Accessing Items fromthe MIL. 630

Managing Items with Inventory Control Systems 631
Developinga Map ICS. 633

cMapICS:.Load, cMapICS::Save, and cMapICS::Free. 636
CMapICS::Add and cMapICS:Remove 640
cMapICS::GetNumltems, cMapICS::GetParentltem,
and cMapICS:Getltem. 642
Using the cMapICS Class.o 643
Developing a Character ICS. 644
Defining the cCharlCS Class. i 645
Usingthe cCharlCSClass i 649

Wrapping Up Objectsand Inventory 650

Contents

CHAPTER 1B
CONTROLLING PLAYERS
AND CHARACTERS s s s s s s s s n » » » B5=X

Players, Characters, and Monsters, Oh My!. 654
Defining Characters inYour Game, 655
Character Abilities. 656
Character Attributes. 658

J Status Ailments in Characters., 659
Character Classes. e 661
Character ACtIONS.ot 661

The Player Character i i, 663
Player Navigation. 663
Resource Management 663
Increasing in Experience and Power 664
Non-Player Characters. e 665
Monster CharaCters 666
Character GraphiCs e 667
Navigating Characters. 667
Controlling Player Characters. 669
Using Directional Control. 669
Rotational Control 671

First Person Control. 672
Controlling Non-Player Characters 673
Standing Still 674
Wandering an Area 674
Walkinga Route 675

Using Route POINES 675

Walking from Pointto Point. 677

Faster than the Speed of Pythagoras. i, 677

Walking the Route 679
Following Another Character 681
Evading Another Character. 682

Automatic Control of Characters. 683

Contents

Conversation among Characters 683
TheTalking Dummy 684
Script-Driven Talking Dummies ot 684
Displaying Conversational and Other Text 685
The cWindow CIass e 686
cWindow::cWindow and cWindow::~cWindow. 688
cWindow::Create and cWindow:Free i 688 7
CWINAOW::SEtTEXE. . . oo 689
CWINAOW:MOVE « .o 690
cWindow:GetHeight 693 [
CWINdOW:RENAEY. . . .o 693
Using CWINOW.o 694
Scripting and Characters. 695
The Script Class 695
Creating a Derived Script Class 696
The Derived Class.o 697
Usingthe Derived Class. i 700
Resource Management 701
USINg ItemS. 701
USING MagiC . ..ot 702
Shops and Bartering 703
Working with Magicand Spells. 703
Spell Graphics.o 704
The Function of Spells 705
Alter Healthand Mana, 707
Cureand Cause Ailment. i, 708
Raise Dead and Instant Kill 708
Dispel MagiC 709
Teleport . ..o 709
Spell Targeting, Cost,and Chances 709
The Master Spell List 709
The Spell List 712

Defining Spells with the MSL Editor 713

Contents

Creating a Spell Controller. 715
Meshes with sSpellMeshList. 715
Tracking Spells Using sSpellTracker 716
The cSpellController Class i 717

cSpellController::cSpellController and cSpellController::~sSpellController 720
cSpellController:Init and cSpellController::Shutdown 720
cSpellController:Free.o 720
cSpellController:GetSpell. 720
cSpellController:Add 720

:| cSpellController:SetAnimData 721
cSpellController:Update. 721
cSpellController:Render. 721
Determining Victims and Processing Spell Effects. 721

Using the Spell Controller 721
Combatand Characters 722

Using Combat Rules for Attacking 723
Taking a SWINg. o 723
Dodgingan Attack. 724
Dealing Damageoo i 725

Spellsin Combat. 727

Intelligence in Combat 728

Building the Master Character List. 729
The MCLEItOr e 733
Using the Character Definitions. 735

Creating a Character Controller Class. 735

Meshes with sCharacterMeshList 735

Animation Loops and sCharAnimationinfo. 736

Moving with SRoutePoint 736

Tracking Characters with sCharacter 737

The cCharacterController Class. 742

Using cCharacterController 755

Demonstrating Characters with the Chars Demo.............. 757

Wrapping Up Characters 759

Contents

CHAPTER 17
MWoRKING WITH IYIAPS AND LEVELS s & & 7851

Placing CharactersontheMap............ 762
Character Map ListS oo 762
Loading Character Map Lists. 763
Using Character Map Lists inYour Game 765
Script Placement. 765
Using Map Triggersot e 766
SPhere TriggerS . . oo 766
BOX THIgOErS . . o ot 767
Cylinder TriggersS. . . o oo 768
Triangle TrIggerso 768
Triggering aTrigger . . .ot 768
Creating aTrigger Class 769
cTrigger::cTrigger and cTrigger:~CTriggerccvvvnn.. 773
cTrigger::Load and cTrigger:Save. 773
CTrigger:AddTrigger 777
cTrigger::AddSphere, cTrigger::AddBox,
cTrigger::Cylinder, and cTrigger::AddTriangle 777
cTrigger::Remove and cTrigger:Free 780
CTrigger:GetTrigger 782
cTrigger::GetEnableState and cTrigger::Enable 785
cTrigger::GetNumTriggers and cTrigger::GetParentTrigger 786
USING THIgOErS . . oot e 787
Defining aTrigger File 787
Loading aTrigger File. 788
Touching aTrigger 788
Blocking the Path with Barriers 788
cBarrier:SetMesh and cBarrier:SetAnim 792
CBarrier:Render. 794
Adding Barriers with cBarrier. 795
Using the Barrier Class. o 796
Creating the Barrier Data File. 796

Loading the Barrier Data. i, 796

m Contents

Checking Barrier Collisions. o 797
Rendering Barriers 797
USINGAUTO Mapso e e e 797
AUto Maps INACLION.o 798

Big Map,Small Map 798
Loading and Displaying Auto Maps i 802
Creatingthe AutoMap Class i 803
cAutomap::cAutomap and cAutomap::~CAutomap 805

J cAutomap:.Create and cAutoMap::Free. 806
cAutomap:Load and cAutomap:Save 811
cAutomap::GetNumSections and cAutomap::EnableSection 812
cAutomap::SetWindow and cAutomap:Render. 813

USING CAULOMAD o et 815
Wrapping Up Mapsand Levels 816

CHAPTER 1H
CREATING COMEBRAT SEQRUENCES: » » =« « H1H

Designing External Combat Sequences 820
TheTechnical Side. 822
Developing the Combat Sequence 824
Global Data 826
CAP AP . vt 827
CAPPEINIt 827
CAPP:SNULAOWN . . . oo 831
CAPPEFrame . . . 832
CApp:GetCharacterAt 838
Using Battle Arrangements. 841
Wrapping Up Combat Sequences 841

CHAPTER 19
GETTING ONLINE WITH
MULTIPLAYER GAMING: =« s s s = = s s s HYH=X

Maddening Multiplayer Mayhem 844

Contents m

Multiplayer Game Design 845
The Network Demo. e 847
Creating a Multiplayer Game Architecture. 849
Working Together: The Client and the Server. 850
Looking at the Server. 854
Looking at Clients. 856
Working with Game Servers. i, 857
Storing Player Information 859
Handling Messages e 860 [
DirectPlay Messages to Game Messages 863
The Message QUEUE i e 867
Processing Game MeSSagesS oo v vt i 869
CAPP:PlayerID ... 871
CAPPAdAPIAYEr . . o 871
CAPP:IREMOVEPIAYEY . . . o 875
CApPP:Playerinfoo 876
CApp:PlayerStateChange. 877
Updating Players. 881
Updating the Network Clients 884
Calculating Latency. 884
The Hard Part Is Over! 885
Workingwith Game Clients 886
Handling Player Data. 886
The Network Component 889
Message Handling 891
CAPP-ASSIONID . .o 892
CApp:CreatePlayer 892
CApp:DestroyPlayer 893
CApp:ChangeState 894
Updating the Local Player. 896
Updating All Players 902
The Clients Full Glory 905

Wrapping Up Multiplayer Gaming 905

m Contents

Part Five
The Finishing Touches

CHAPTER 20
PUTTING TOGETHER A FuLL GAME: « « 509

Designing the Sample Game. 910
Writing the Game’s Story. 910

J The Purpose of TheTower Game. 912
Designing the Levels. 912
Defining the Characters s 916
Assigning CharaCters 919
Creating the Itemsand Spells. 919
Developing the Scripts 922
Defining the Controls. 925
Laying Out the Flow. 927
Programming the Sample Game 928
Structuring the Application. 931
The cApp Constructor e 933

The Application Init Function, 934

The Shutdown Function 936
Processing Frames with the Frame Function. 937

Using State-Based Processing 938
Dealingwith Mapso 945
Using Barriers and Triggers. oo 949
Controlling Characters. i 949
Handling Bartering e e 956
Playing Sounds and MUSIC oot 958
Rendering the Scene. i 960
Processing SCHIPLS.o vt 961
Assembling the Pieces. 965

Wrapping Up Creating Games, 965

Contents

CHAPTER Z1
NMARKETING AND
PURBLISHING YOUR GAME s« s s s = s = s HH7

SubmittingYour Game 968
Writing the Proposal Letter i 969
Performing Marketing Analysis i 969
Including Your Design Documentt 970
Calculating Budgets and Determining Schedules. 970
Includinga Game DemoO.o 971

Communicating with Companies, 972
Dealing with Rejection 973
Receiving the Acceptance Letter. 973
NegotiatingYour Contractt 973

Considering Which Publishersto Contact 974

Do-It-Yourself Publishing. 976
AVEITISING . . . o 977
Using a Try-Before-You-Buy Approach 977
SellingYour Product 978

Wrapping Up Marketing and Publishing. 979

EPILOGUE: » » s s s s s v s v = v = v » « FHHO

Looking Back 980
What's Next? e 981
Part Six

Appendixes

HrPENDIX H
SETTING U DNRecTX H.O AND
CONFIGURING THE COMPILER: = = = = » HHS

SettingUp DirectX 8.0 e 986
Using Run-Time Librariesand the SDK 987

Contents

Using the Debug Version Versus the Retail Version 987

Installing DirectX 8.0 987

Installing DirectMusic Producer 988

Include Files and Libraries. i 989

Setting Up the Compiler. 989
Directory Settings for DirectX. 990

Linking to Libraries. 990

Setting Default char Behavior 992

J Release and DebugVersions i, 993
Multithreaded Libraries. 993

ArPPENDIX K
GETTING HELP ON THE WER « & s = « « H95

Programming Role-Playing Games with DirectX.................... 996
WWW.GameDev.net. 996
XTreme Gameso 996
Flipcode 996
MilkShape 3-D HOome Page. e 997
AQBTEC . . o 997
Wizards of the Coast. 997
White Wolf Publishing. 997
Steve Jackson Games 997
Polycount 998
RPG Planet. 998
RPG HOSE.o 998
www.gamedev.net/reference/articles/frpg/site 998
www.excite.com/games/role_playing. 998

HrPENDIX C
ReEcovMMmENDED READING = = = = = = = « HH9H

Dragon Magazinet 1000
Dungeon Adventures 1000
Dungeons & Dragons 3rd Edition Player’s Handbook 1000

Contents

XXXV

Dungeons & Dragons 3rd Edition Dungeon

Master’s Guide Handbook. 1001
Isometric Game Programming with DirectX 7.0................... 1001
[EX & YACC. . . o 1001
Multiplayer Game Programming, 1001
Programming Windows, Fifth Edition., 1002
Schaum’s Quick Guide to Writing Great Short Stories. 1002
Swords & Circuitry: A Designers

Guide to Computer Role-Playing Games 1002
The Zen of Direct3D Game Programming 1002

HPPENDIX D
GLOSSARY s s s s s s s s v s s v n n n n 100X

HPPENDIX £
MWHATYS ON THE CD s« s s s s s 5 v & & » 10017

DirectX 8.0 SDK 1018
GoldWave 4.23 DemMOot e 1019
MilkShape 3D 1.56 DemoOt 1019
Paint Shop ProTrialVersion 1020
Poser 4 Demo 1020
trueSpaceS Demo 1020

INDEX s« s s s s s s s s s s s v n n n »n n n 1021

Foreword

hen Jim asked me to write a foreword for this book, my first reaction was

that he must be crazy to take on a task of this magnitude! After marveling
over his ambition, however, | realized how fantastic a book like this would be for
those who see their PC not only as a tool for doing e-mail, surfing the Internet or
playing store bought games, but also as a device that allows them to create some-
thing fantastic—their own RPGs! This, of course, immediately had me reminiscing
about the “good ole days.” | remember when I hauled my first PC out of a box back
in 1980. Actually, it was technically a PC, but nothing like the computers available
today. It was a Radio Shack TRS-80 Model 1 level 2 personal computer with 16K of
memory (yes, 16K, which is about 32,000 times less memory than | have on my cur-
rent computer). Although that little state-of-the-art wonder had no real graphics to
speak of, it was all | needed.

My imagination took flight. | was going to create video games like no one had ever
seen. With really no idea about how or where to begin, I quickly discovered how
thrilling, and how frustrating, this was going to be. | wanted to start creating worlds,
but knew little more than how to switch the darn computer on!

I wanted to know what to do next, what to design, what to code, what sort of art-
work to make. The reality was that | didn’t have these answers, and nobody | knew
could help me. Back at the store where | purchased my computer, | tracked down
the salesman who, | thought, had the answers. He led me to a single book on pro-
gramming the computer’s central processing unit (CPU), the Z80 microprocessor.
This technically complex book was not what | was looking for. It did not cover
video games about monsters or missiles. It was just the details on how to program
the machine in its native tongue, Z80 assembly language. Learning how to create
games was going to take more than that, much more.

It was a long time before | managed to find what | was looking for, and much of my
education on the subject of game creation came from hours of investigation and
sweat over the computer, along with any and all information that | could scratch
together on the topic. In fact, it was years before | truly started to understand the
craft of making games.

Foreword R&%\%

Role-playing games (RPGs) are the mother of all video games because of the huge
worlds and massive amounts of game content (artwork, sound, and animations).

If you intend to make an RPG and you have never created a video game, be aware
that this enormous task will be like battling a dragon with nothing more than an
attitude and some cheap bathroom humor (which I can fix you up with if you need
some). As you might guess, you’ll need a little more in your back pocket than that.

I can only imagine how incredible it would have been to have found this book when
I made that fateful trip to the computer store back in 1980. Consider yourself imme-
diately ahead of the game!

Today, things have changed quite a bit. When you haul a new PC out of the box, you [
get a CPU that will execute billions of instructions per second. You get ultra power-
ful graphics cards that have dedicated microprocessors that draw amazing visuals
and outrageous special effects on the screen. You get more system memory (at an
affordable price) than | could ever have imagined for things like graphic textures,
sound, and animation. And now you can communicate over the Internet to any-
where in the world! The list of features doesn’t stop there. In many ways, all this
power ought to make the task of creating an RPG a simple one; unfortunately, that’s
not the case. It’s just as complex as it’s ever been.

Besides what we can do technically with the powerful machines that are available
today, let me add that RPGs are a very special form of entertainment. They not
only provide the player with a fun and exciting gameplay experience, but also they
allow the creators to do something very unique—create their very own world for
people to explore and become completely immersed in. Being able to create a
unique fantasy world is a very powerful form of art and entertainment, and for me,
an RPG was one of the first things that | wanted to create when I got my first com-
puter. Today | am finally fulfilling that dream. All of us have a different world
inside of our heads that we want to bring to life on the computer, and it is up to
each of us to find a way to bring that world to life!

Having said all that, creating a role-playing game is a crazy and outrageous amount
of work. It requires a team of many dedicated and courageous individuals giving it
all they’ve got. Our current endeavor at Gas Powered Games is called Dungeon Siege,
a vast project that is packed with so many features that it boggles my mind.

First, we decided to make an RPG that exists completely in 3-D using a custom state-
of-the-art engine. Achieving this goal would be a huge challenge, but we wanted
many more features that would push the boundaries. We wanted to completely elim-
inate loading screens by creating something we call a “continuous world.” Naturally,
we wanted to include multiplayer gaming over the Internet and allow the player to

Foreword

create a party of up to eight characters. It became a huge game, with a ton of chal-
lenges. These challenges ultimately translated into a next-generation experience
that provides both the single player and the multi-player game experience that play-
ers have not seen before. This is what makes the art and science of creating RPGs so
fantastic. We are not only creating something new, but also we are doing it with tools
and technology that were unavailable until now. Every day is a new and fantastic day
for people who create RPGs.

I can say one thing for sure. Even though | often joke about getting into the “mess”
of making an RPG, I’'m glad that I did. Once past the technically challenging stuff,
:I such as creating the core engine, setting up the combat systems, and ultimately
putting all the different pieces together, we have a remaining and very different
challenge—making the game fun to play! We do this by playing the game over and
over again, watching people play, studying reports from the quality assurance labs
and the play test experts. It’s the home stretch in making an RPG!

Throughout this testing and tuning phase, the less exciting areas are trimmed back,
new areas and ideas are added, while the game is continuously tested and balanced.
So much goes into creating a game that the creation never really stops; even up to
the release date, we will be adding or changing elements of the game with the latest
information, the latest test data—all to make sure that the entire gaming experience
is just right.

Now it’s your turn to make that journey, the long and fantastic adventure to creat-
ing your own game. Don’t be dismayed by the bumps and scrapes along the way.
Once you get past the hard stuff, you’ll have one of the greatest and most creatively
challenging adventures of your life. You will find that this book will guide you,
teach you, and answer many of the questions that you have about making an RPG.
It will get you started planning, designing, and building. It will introduce you to the
wonderful world of making your very own RPG.

I salute Jim for taking on this enormous task, and | thank him also for his desire to
share what he knows, and to share so much.

Good luck! I can’t wait to take a walk through your world!
— Chris Taylor

Chris Taylor, president of Gas Powered Games, is the lead designer of the upcom-
ing and highly anticipated game Dungeon Siege. With past titles such as Hardball 2,
Triple Play Baseball, and Total Annihilation, Chris continues to create games that
shape the computer gaming world.

Introduction

With fingers blistered and eyes bloodshot, all your hard work is about to pay
off. After one hundred hours of playing the newest computer-based role-
playing game, you’ve managed to reach the end. All that stands between you and
victory is a very large, very angry dragon. Not to worry though—you have a couple
of tricks up your sleeve to show this sucker who’s boss. After a final climatic battle,
your mission is over—the game is defeated.

Your quest was long and difficult, but when all is said and done, it was a very enjoy-
able quest. The story was compelling, the graphics eye-popping, the sound and
music superb. Sitting back, you might be wondering how you could create such a
masterpiece. Something with a snappy title, a great story, and that neat-o battle
engine from that newest game with
the kick-butt graphics engine. “Yes,”
you say, “I can do that!” NOTE

Before working with the code or exam-
ples in this book, you need to properly
install DirectX 8.0 and set up your
compiler accordingly.You can find the
DirectX 8.0 installation program on this

Programming Role Playing Games with
DirectX is your ticket to bringing your
ideas to life. Within these pages, |
have crammed enough information
about general programming and role-

book’s CD-ROM, or you can download

playing game topics to give you the the program from Microsoft’s Web site
help you need to create your own at http://msdn.microsoft.com/directx/.
game. In this book, you find out how Please turn to Appendix A, “Installing
to create cool graphics and combat DirectX and Configuring the Compiler;”

engines, handle players in your game, for the details.
use scripts and items, and make your —
game multiplayer-capable.

What This Book Is About

This book is for programmers who want to go into the specialized field of program-
ming role-playing games (RPGs). | think RPGs are some of the best games to play.

“ Introduction

I also think that RPGs are the hardest to create. Information on RPG game program-
ming is hard to come by, so to fill that need, | wrote this book.

In this book, | break a role-playing game into its essential components. | take those
components one by one, giving you a detailed look at each and showing you how
to use all of them in your game project. To see exactly what components I’'m talk-
ing about, scan ahead to the section “How This Book Is Organized.”

Within these pages and on the accompanying CD-ROM, you’ll find example programs

that were created using the information in each chapter. I constructed these example

:I programs so that you can easily transfer the various general and RPG-specific game
components into your projects. For the specifics on running the example programs,

check out Appendix E, “What’s on the CD.” In fact, | recommend checking out the

demo programs before reading the book. That way, you’ll know what to expect in

the book.

Who Should Read This Book

If you want to put extra oomph in your game, this book is for you. You will find
helpful hints and ideas and all the information you need to embark on your career
as an RPG programmer.

I wrote this book for beginning- to intermediate-level RPG programmers. The
information is clear and to the point, and regardless of your programming experi-
ence and skills, you will find that this book is a valuable tome.

I wrote this book on the assumption that you have a working knowledge of C. A good
deal of the code is in C++, but | lead you through it in such a way that you will be
able to fully comprehend the information.

So, if you’re interested in programming a role-playing game or just want help on a
specific gaming component, this is the book for you.

How This Book Is Organized

The book is split into the following six parts, each one dealing with a different set
of topics:

= Part One, “An Introduction to Role-Playing Games,” describes role-playing
games and their fundamental operation.

Introduction m

= Part Two, “ Role-Playing Game Design,” discusses game design topics and
provides help for writing your game’s story. This part begins with fundamen-
tal concepts and continues with RPG-specific design issues from a program-
mer’s point of view.

= Part Three, “Programming Basics,” is where things really heat up. This hefty
part offers you the basics on using C++, getting a Windows application up
and running, and utilizing DirectX in your game programming projects.

= Part Four, “Role-Playing Game Programming,” contains all the RPG-specific
gaming code that | could pack into those pages. Topics include creating 2-D
and 3-D graphics engines, controlling your game’s characters, using scripting [
and inventory, and multiplayer gaming.

= Part Five, “The Finishing Touches,” helps you wrap up your project. In this
part, you find out how | created a complete game using the information in
this book. In addition, you learn how to promote, market, and publish your
game.

= Part Six, “Appendixes,” starts by showing you how to install DirectX and
configure your compiler to use DirectX. You will find a list of recommended
books and Web sites. Part Six ends with an appendix describing how to use
this book’s CD-ROM.

What’'s on the CD

Appendix E, “What’s on the CD,” contains a list of the programs on this book’s
CD-ROM; however, | can’t resist giving you a glimpse of what you’ll find there. First
and foremost are Microsoft’s DirectX 8.0 software developer’s kit and the complete
source code to every demo program in this book.

DirectX is the leader among game development libraries, and it’s the library | use
in this book. Before reading this book, take a moment to install DirectX on your
system. Appendix A tells you exactly how to install DirectX and prepare your com-
piler to use DirectX.

In addition to DirectX and the source code, the CD-ROM contains a plethora of
useful programs. “Which programs,” you ask? How about Calgiari’s trueSpace4
trial edition and Curious Lab’s Poser 4 demo! That’s right; you get to test drive the
newest, most powerful modeling programs out there! But there’s more. The com-
plete DirectX 8.0 SDK, chUmbalLum’s MilkShape 3D, a Paint Shop Pro demo, and
much more—all packed into that little round disc!

m Introduction

Conventions Used
in This Book

This book has the following special features, called icons, that point you to impor-
tant or interesting information.

1T 1T

NOTE CAUTION

:| Notes provide additional helpful or Cautions tell you how to avoid
interesting information. problems.

1 1 |

TIP

Tips often suggest techniques and short-
cuts that make programming easier.

—1 —1

What You Need to Begin

Before beginning, you need to install the Microsoft DirectX 8.0 Software Developer’s
Kit, which is on this book’s CD-ROM (or you can download it from Microsoft at
http://msdn.microsoft.com/directx). Appendix A provides the steps for installing
DirectX.

You also need a C++ compiler; | recommend Microsoft’s Visual C/C++ compiler.
Even though you can compile the code and examples in this book with almost any
C++ compiler, the DirectX-specific code was targeted for Visual C/C++ version 6.0
or higher.

Beyond those two items, you just need dedication and motivation! Although creating
any game is a daunting task, with this book, you will have all the knowledge you need
to do just that—and, remember, players are waiting for your masterpiece!

PART ONE

=N
INTRODUCTION
TO
RoLE-FPLAYING j

1 A World of Role-Playing

s il MR R - | St e e
B e M — [oA

CHAPTER 1

= LNoRLD
OF
HOLE-FPLAYING

B 1. A World of Role-Blaying

laying games is a perfect way to escape the rigors of a long, hard day—board
games, video games, card games, all of us have preferences. For me and millions
of other players, role-playing games present the perfect medium for relaxation and fun.

My instinct is to begin this book by giving you the long and interesting history of
role-playing games. However, that’s not the purpose of this book, so | will move

:I right along and share with you the concepts and information that you need to cre-
ate your own role-playing games.

The chapter begins with a short, mood-setting story—just for ambience and maybe
to tweak your appetite for writing stories—and continues with a brief excursion
into the world of role-playing games and what they have to offer.

In this chapter, you encounter the following:

= A succinct, delightful narrative
= Role-playing concepts
= Role-playing games—past, present, and future

A Story of Role-Playing

The night’s heavy blanket had long since covered the dense jungle, extinguishing
all light. Our trek through the jungle had become treacherous, with each step an
adventure of its own. The mysterious loss of two more guides made all of us edgy,
and we huddled together like scared children.

This is not how I envisioned a treasure hunt with a bunch of war-torn adventurers.
And the inane chatter of cute little Deliah the elf was beginning to get on my last
nerve. While admitting that we all probably needed something to keep calm, |
wished Deliah had another means.

As the seemingly endless night dragged on, we stumbled upon our goal—the tomb
of the ancient Myracs. Tales of untold wealth lying behind its grim, disfigured entry-
way had driven us here. We approached its massive doors, which were carved from
some cursed quarry and erected as a warning to those foolish enough to enter.

Abruptly, our last guide fled, and we were left with the echo of his warning ringing
in our ears. “What a bunch of superstitious fools,” | thought. “That treasure is as
good as ours; no curse is going to scare me away!”

A Story of Role-Playing B

I realized what a fool | was upon my first step into the tomb. An odor as nauseous
as death filled my lungs, causing me to retch uncontrollably. Dark images began

to race through my mind; sights of nameless demons ravaged my helpless body.
Torturous devices held me down, tearing me limb from limb. My mind was slip-
ping, and reality seemed beyond my grasp. | was now truly cursed. Blind greed had
guided me here to my ultimate doom.

However, with each passing moment, my body adjusted to the sickly innards of this
accursed place. Slowly, I came back to my senses—the initial onslaught of visions
cleared. | was lucky to have survived nearly unscathed. Corpus, our half-orc strong
arm, had collapsed, and no matter how hard we tried, we could not get him to [
budge. His mind was gone, most likely consumed by the same images that tore
through my mind. With heavy hearts, those of us remaining struggled on.

As our party climbed its final set of gnarled stairs, | saw a pattern of countless
faces etched into the walls—each face disfigured by a unique and personal agony.
Nevertheless, the faces beckoned us forward, to enter this dark domain and join
their countless ranks. Beyond the faces stood a single open door.

As the last one of us passed through the door, it slammed shut with a tremendous
boom. The sound reverberated though my head, tearing the dark veil away from
my stricken mind. At last, | was able to concentrate on my actions and gather
enough power to cast a single spell.

With an effort, | flicked my withering hand, and a channel of power emanated
from my body. | was able to touch the minds of my teammates, freeing them from
the personal hells that had overtaken their pathetically weak minds.

My power also triggered something within this dark domain. The room suddenly
flared into vision. Momentarily losing my ability to see, | staggered backwards and
fell. My hands grasped at the ground, only to feel cold clanking metal. Focusing

intently, however, | was able to see that | had landed on a large pile of gold coins!

Immediately, | realized that we had fallen upon the treasure trove of our wildest
dreams. Gold, silver, platinum—all those colors gleaming off hordes of coins, the
likes of which we had never beheld. Elegant armor, swords, and chests carved from
gold lined every wall. I was truly in heaven.

With almost reckless lust, | scrambled toward the heart of the room. A rotting smell
pressed forth, blasting me back. Again, | was overcome with nausea. From the
opposite corner of the room, | beheld what | sensed—a pile of rotting, decom-
posed bodies of past adventurers, who weren’t so lucky. With a scream, | rushed
back to the door, but it was securely locked. We were trapped.

B 1. A Wworld of Role-Blaying

Suddenly, energy erupted from the pile of corpses. Our group spread out and pre-
pared for the worst. From the pile of flesh arose five of the ugliest skeletons we had
ever seen. Their scanty clothing was torn and tattered, and we had full view of the
rotten flesh hanging from their bones. Death was the price they had paid for their
attempt to rob this tomb. Now, because of the spell | had cast, they will live forever
as walking tributes to the powers that resurrected them.

Their leader drew close to me, a cynical laugh emanating from his empty jaw. Leaping

forward with weapon drawn, | swung. A miss! My companions yelled at me to watch

:I out, but, alas, it was too late. The skeleton took advantage of my mistake and swung
back.

A quick roll of the dice told me, unfortunately, that the skeleton’s blow would
strike me head on, killing me instantly. As my sight grew dim, I could just make out
the silhouettes of my fellow adventurers fighting for their lives. Soon enough, our
bodies would be raised from the dead to join these creatures in their timeless duty
as protectors of the tomb’s treasure trove.

All'in all, it was a long adventure that ended badly, but it was all in good fun. The
good thing, my friends, is that | can retry the tomb-raiding adventure again after a
quick break.

The Concepts of Role-Playing

A series of simple concepts lies at the root of every role-playing game. These con-
cepts are strung together into a feasible set of rules that are used to conduct a
game. In this section, | discuss those concepts and give you a brief glimpse at the
history of role-playing games, from the pen-and-paper roots to the modern com-
puterized versions.

The Basic Concepts

Those of you who have already discovered the incredible world of Dungeons &
Dragons and similar games might have realized that such games changed your life.
In those games, you can drop your daily worries and assume an alter ego in a uni-
verse full of monsters and magic. You can embark on epic quests to save the world,
or take it over if that’s your fancy.

That’s what makes role-playing so great—taking on the role of another person.
Remember when you were a kid and pretended to be a mighty warrior, slaying
hordes of evil creatures that held the beautiful princess captive? A role-playing

The | Concepts of Role-Playing

game (RPG) is much like your imagination—you still assume the role of that big
tough warrior. However, when you move into a RPG some rules apply, just as they
might in real life. You have to be a little realistic; not everybody can be a superhu-
man at the start.

For that reason, games have specific rules, plus a referee or judge that enforces
them. In Dungeons & Dragons, the referee is called a Dungeon Master (DM) or Game
Master (GM). This person is the overseer of the world and controls everything the
players can’t, such as the monsters and other non-playable characters. The players
control only their character(s). When needed, players inform the GM of their
intentions—what actions their characters perform. [

It’s the GM’s job to take these actions, apply the rules, and determine the outcome.
Situations will occur that require a decision dependent on the abilities of the character.
For example, in my earlier scenario, if | had swung at the skeletons, would my swing
have hit them? If my swing did hit them, what kind of damage would | have done?

When situations such as combat occur, the GM and players roll dice to decide the
outcome. Characters have a set of attributes that are used in conjunction with the
dice rolls; these attributes include factors such as a character’s strength, agility,
intelligence, and so on. The higher the attributes, the more damage the character
can cause, the faster the character can move, and the more spells he can learn.

As characters become more experienced, they begin to become more powerful.
Their attributes increase, making them stronger, faster, and smarter. As characters
grow in strength, they are able to get into bigger and tougher battles, gaining more
experience and, in turn, becoming stronger, thus continuing the cycle. This aspect
of increasing a character’s abilities (and experiences) over time is called character
building —it is the driving force of most RPGs.

By making their characters more powerful, players are able to enjoy more vigorous
guests. With each new game bringing you spectacular weaponry with amazing capa-
bilities, potent spells worthy of accolades, and story after story blending it all
together, who wouldn’t be hooked?

Playing Traditional
Pen-and-Paper Games

Pen-and-paper games are named as such because to play these games, you only need
reference books, pens, and paper. Most traditional pen-and-paper games also make
use of a set of dice, which works as a random number generator. (RPGs such as
Dungeons & Dragons are traditional pen-and-paper games.)

B 1. A World of Role-Blaying

You typically play a traditional pen-and-paper game something like this: The players
enter a locality looking for an adventure. The GM has a previously laid-out path for

the game and gradually manipulates everything so that the players become hope-

lessly involved in the adventure.

As the characters move along the path, they might come upon some planned or
chance encounters that lead to combat. Entering combat slows everything down
and game-play becomes turn-based, in which players take turns deciding what to
do. Each turn of play represents a few seconds of game time. Players then must
decide what actions to perform within a single turn. When they’ve decided, the
GM takes these actions, applies the rules, rolls the dice, checks the players’ abilities
and determines the outcome. This usually results in players and monsters harming

each other until some or all die.

Surviving players then collect their trea-
sure and continue until the adventure is
done. At this point, characters receive
experience points that gauge how weil
they did. These experience points are later
tallied—once a character’s experience
reaches a certain point, his abilities are
increased slightly.

You can further enhance this gaming
experience using miniaturized models
of the land, characters, monsters, and
many other things. Typical game sessions
employing models involve a large table
being pulled out and decorated with the

L1 L1

TIP

Resources for such games are
immense—the Dungeons & Dragons
franchise has reached its third
edition. There are even a few
dedicated magazines for it: Dragon
Magazine and Dungeon Adventures,
as well as a full-length motion
picture (with a few more in the
works). Check out Appendix C,
“Recommended Reading,” for
more references to books and |:
magazines on the subject.

M1 M1

scenario’s landscape and small figurines that represent the characters being placed
in their respective positions. Being able to see everything laid out on the table

helps you get into the game.

A plethora of traditional pen-and-paper games are out there, each centering on a
different genre. Here’s a short list of some of the most popular ones:

= Dungeons & Dragons by Wizards of the Coast, Inc. The granddaddy of fantasy
pen-and-paper role-playing games. Embark on mythical quests full of magic
and monsters to do whatever your little heart desires. Take the form of a
human, elf, dwarf, or any of the other many races this game provides and stock
up with magic, weapons, and armor. Originally developed by TSR, Inc.,
Dungeons & Dragons is now maintained by Wizards of the Coast, Inc.

The | Concepts of Role-Playing ﬂ

= Cyberpunk 2020 by R. Talsorian Games. The future is a dark place, and this
game does a brilliant job of immersing gamers into it. Imagine the world of
Blade Runner, and you’re halfway there. This game has so much going on,
from massive weaponry, bionic implants, and chemical boosters, that you’ll
have your hands full taking it all in.

= Traveller by Game Designers’ Workshop. Dating back to 1977, the Traveller
RPG was quickly adapted as the sci-fi RPG that others modeled. Explore the
galaxy, from the biggest spaceports to the lowliest outposts. Become raveled
in an intriguing history that dates back thousands of years—all from the
comfort of your own home! [

= Generic Universal Role-Playing System (GURPS) by Steven Jackson Games.
This role-playing system applies to
pretty much any game you can think

of. Shown in Figure 1.1, this gaming NOTE

system comes with a single set of rules A gaming system is the underlying
that you can apply to any setting. With set of rules and instructions used
so many resources out there, this one to play a game such as GURPS

is quickly becoming a contender to m and Dungeons & Dragons.

the Dungeons & Dragons empire.

Figure 1.1

Currently in its third reprint, the GURPS Basic Set (by
Steve Jackson Games) is your guidebook to the generic
role-playing game rule set.

STEVE JACKSON GAMI

B 1. A World of Role-Playing

Going Live with Role-Playing Games

LARP (or Live-Action Role-Playing) games moved traditional RPGs up a notch.
While maintaining their pen-and-paper roots, a LARP game has participants actu-
ally dressing for their parts and having parties in which they play their alter ego.
(I’'ll admit that it does take a little bit—well, a lot—of imagination to get all dressed
up and attend one of these parties.)

Even though RPG players have been dressing their alter-ego parts for as long as
RPGs have existed, one game in recent history has really made LARP mainstream.
:| That game, Vampire: The Masquerade (by White Wolf Publishing), takes players
through a secret world full of blood-sucking demons bent on human conquest.
This time, however, players assume the role of a “creature of the night.” This game
revolves around the wars among the brooding clans. With a political structure
behind the game, there’s bound to be dissension in the ranks and plenty of oppor-
tunities to make your clan come out ahead.

Players attack each other (proverbially speaking), using weapons just like in any
other RPG. When the going gets tough, the tough pull out their special abilities
(sort of like spells). Combat continues until one player becomes the victor by
destroying his or her opponent, causing the opponent to surrender or making the
opponent flee.

I’ll admit, pretending to be a flying demon of the night, slashing and hacking at
each other takes quite a bit of imagination. Players of Vampire: The Masquerade are
comparable to Trekies, so some take their game-play quite seriously. Have a look-
see on the Web (starting at White Wolf’s Web site at http://www.white-wolf.com),
and you’re likely to find dedicated groups in every major city. Just remember that
above all, the idea is to have fun!

Role-Playing on the Computer

Breaking out of the pen-and-paper mold, computer RPGs first became mainstream
back in 1980s. At that time, classic games such as Ultima and Wizardry burst onto
the scene, bringing gamers a whole new type of gaming.

Gone were the hassles of getting a group of friends together to play. Also, the
computer took the role of the GM, so players could jump in and start playing by
themselves. Of course, the excitement of a group is sorely missed, but you have to
make some sacrifices. It’s still just as addictive to be crouched in front of your mon-
itor, searching through ruins for a magic amulet, only to be surprised by a demon
in hiding!

The | Concepts of Role-Playing “

Now the computer takes care of everything for you. No need to write anything
down; the game stores it all, and it can be saved for later play. You can view maps
of any place you’ve visited, with each corner opening up new areas to explore.

Of course, the game-play is a bit more constrictive than the pen-and-paper type, where
you have a human who can make some decisions better than the computer can, but
with every new release of a computer RPG, the designers get a little bit closer.

The most impressive (and sometimes limiting) factor of these games are the stories.
Again, with a game like Ultima, you have an entire history to learn as you play the

game. You find out how the world was formed and what shaped it, and you take [
part in it all.

The only problem is that these games usually lead you through a planned route
with very little variation, so there’s really no need to play the game more than
once. No matter how many times you play it, the story remains the same, events
occur like last time, and very few surprises are left.

These are issues to consider, and over time, games continue to be more advanced,
thus solving many of these issues. Here’s a short list of games that have shaped the
world of computer RPGs:

= Ultima series by Origin Systems. An entire history of a world (and other
worlds in spin-off titles) spreads out before you to discover and participate
in. Take the part of the Avatar, a visitor from another dimension where time
goes at a slower pace (Earth), who must save a foreign land from the evil
clutches of countless bad guys. The storyline has been refined and even has
its own religious sects. The latest game of this series has become the model
on which other online RPGs are created.

= Wizardy series by Sir-Tech. Another classic game series that helped revolu-
tionize computer role-playing. Although the first game was constructed of
simple line-drawn 3-D mazes, each subsequent game release has progressed
into today’s deeply intriguing games. The latest games in this series boast an
artificial intelligence so advanced that other characters in the game can actu-
ally perform their own quests, interfering with yours!

= Might and Magic by 3DO. A true classic that spun off multiple game genres.
The original RPGs series is actually the only that can boast features such as
linking worlds together over multiple versions. That’s right; if you own a
certain version, you can install the next one in the series and play in both
worlds in the same game!

BEE 1. A World of Role-Blaying

= Baldurs Gate by Interplay. This gaming series is backed by the Advanced
Dungeons & Dragons rules sets and gives the players a true-to-life vision
of Dungeons & Dragons game-play at its best. Link up with other players or
battle the evil minions by yourself. This game has all the ingredients of a
RPG masterpiece.

= EverQuest by Verant Interactive. As the current reigning champion of online
RPGs, this game is so vast that it would take a lifetime to conquer. With new
add-ons coming out every few months, this game keeps it freshness for even
long-time players. This game also has the distinction of being the first one in
] which players actually auction super weapons and artifacts on Web-based auc-
tion sites. A definite must for those seeking online gratification for their
gaming addiction.

The Evolution of Gaming

From its meager pen-and-paper roots, role-playing has progressed, or rather
evolved, into the definitive gaming genre it is today. The floodgates have opened
and the industry has surged forth—each new game title advancing the style and
features of RPGs. In this section, you take a look back at the games that help to
innovate the RPG world.

Again, take a look at a classic game such as Ultima I. With such simple graphics
(see Figure 1.2) and controls, what power did it hold over players? An immense
world for one; ability to play hero-to-the-world for another. This is one of the first
games I’ve seen in which you’re actually allowed to attack anybody, even innocent
villagers (of course, the guards don’t take a liking to that—but, hey, you pay a price
for your evil deeds).

As the series matured, each release brought new features, including improved
graphics, physics, and larger environments. The latest offers in the Ultima series,
Ultima Online (Figure 1.3 shows a scene from the game) links thousands of players
together to live out their digital lives in a world that doesn’t revolve around them.
You leave your game and then come back only to realize that the world has gone
on without you.

Another such game in production is Dungeon Siege, by Gas Powered Games (see a
scene from the game in Figure 1.4). Dungeon Siege allows players to join forces
online, while at the same time, allowing game designers to alter the game in many
ways. Dungeon Siege’s lead game designer, Chris Taylor, was kind enough to lend his
services and write this book’s Foreword.

The’/ Evolution of Gaming B

Figure 1.2

The first in the
series of Origin’s
Ultima games,
Ultima | blazed
to the screen in
16-color glory.

Figure 1.3
Origin’s Ultima
Online still uses
2-D graphics, but
the game-play
makes up for the
lack in graphics
beauty.

B2 1. A World of Role-Playing

Figure 1.4
Dungeon Siege (by
Gas Powered Games)
brings players
together throughout
the world for some
hardcore action
role-playing as never
seen before.

The ability to join forces over the Internet has to be the biggest improvement in
RPGs in years because it brings back the glory days of having a group of people
play together, not a couple of programmed artificial characters. Whole in-game
societies (generally called clans) have been formed from players around the world.

Although not as subtle, over time, there has also been an increase in the games’
features, making the games more realistic. Games like Ultima Pagan (my favorite)
now apply physics to everything in the world. Throw an item like a ball, and it will
arch (as it would in the real world), bounce a few feet, roll down a hill, and plop
down into a pond.

Do RPGs really need this level of complexity? Physics in a game makes the experience
truer-to-life, but at the cost of added complications. If you have to depend on chal-
lenges like rolling a ball into a hole, you need to keep them simple enough not to
aggravate the player. Provide too little a challenge, and players get bored quickly.
Provide too great a challenge, and you run the risk of aggravating your audience.

Only time will tell how much realism players will take before the point of gaming is
lost. I mean, who wants to play a game in which you do everything you would in
your daily life? With the release of home-gaming consoles such as the Nintendo
Entertainment System (NES) in 1985, consumers of all ages were able to get into

The’/ Evolution of Gaming B

the digital age of RPGs. No need for an advanced computer hardware package
here, just a TV set, a console, and a game.

Probably the most notable console gaming series to date is Final Fantasy by Squaresoft.
From the simple graphics of the first version to the beautiful rendered graphics and 3-
D characters of the ninth, this game remains a top contender in today’s market.

Although | consider this game the best console series of all time, other games cur-
rently take the lead for playability and all out fun. The number one contender at
this time has got to be Sega’s Phantasy Star Online (PSO). (You can see a scene from
the game in Figure 1.5.) Online interaction with real people and the host of secrets
involved in playing the game make this game an instant classic.

Although | don’t want to take a biased stand, some games just make the cut better
than others do. Take a look at my pick of the best past and current console gaming
legends:

= Final Fantasy series by SquareSoft. The definitive RPG series for consoles.
Final Fantasy includes massive stories that have to be experienced by any die-
hard role-playing gamer, memorable battles full of super weapons, powerful
spells, and monsters so warped that you’ll be wondering what kind of person
could have dreamed them. Currently up to its ninth in the series, with the
tenth one on the way, this game is bound to be better with each release.

Figure 1.5

Sega’s Phantasy Star Online
offers gamers an action-
packed experience while
maintaining a role-playing
feel.

A Gillchic
Attribute:Machine

[

m 1. A World of Role-Playing

= Phantasy Star series by Sega. Another golden oldie that was way ahead of its
time from the first game in the series. A truly massive story that revolves
around the history and future of a dying race forced to leave its planet in
search of another one. Things would go good for them if not for a ruthless
demon that dogs them every thousand years. The latest, Phantasy Star Online,
joins players from every nation, for the first time, on the Internet for some
massive multiplayer mayhem.

= | egend of Zelda by Nintendo. Although not a true die-hard RPG, it does

contain many RPG elements. It appears that the world is a treacherous place,
] and your hero (Link) must defend the world against the evil tyranny of one
unusually relentless, bad dude named Ganondorf (aka Ganon). Definitely
worth getting if you own any of the Nintendo gaming systems.

= Breath of Fire series by Capcom. Currently in its fourth release; this is another
example of a series worth checking out. Although the graphics are a bit dated,
being blocky and brightly colored (see a scene from the game in Figure 1.6),
the game-play is top-notch. This is a classic game true to the old days of con-
sole RPGs.

Figure 1.6

Breath of Fire by
Capcom retains older
2-D graphics styles,
but in such a way
that it impresses
even hardcore
gamers.

Wrapping Up with\a Look into the Future

Wrapping Up with
a Look into the Future

What does the future hold for us gamers? It’s hard to say, but Internet gaming is
going to be a standard for all games to live up to. Some companies have a great
head start, but that will soon change as others get into the groove.

Imagine being able to design a single online character that you can tailor to any
online game. That’s right! That grizzly, battle-scarred warrior from the fantasy-line
games can be suited up with a mechanized combat suit. You will be able to main- [
tain experience, weapons, spells, and all other character aspects that make charac-
ter building worth it.

In addition, how about being able to stake out some prime new land in an online
world as big as your own? Sounds cool, doesn’t it? Form societies, define your laws
(and enforce them), populate your land—the possibilities are endless!

Not only will game-play improve, but also as technology improves, the gaming plat-
forms will be even better—with graphics cards pumping out millions of 3-D images
per second, sound systems jamming out the beat, and enough game controllers out
there to fill your every fantasy and need. There’s so much waiting for us in the
future of RPGs, but remember that the future is what we make it. Read on to learn
how you can help mold these future adventures.

This page intentionally left blank

PART Two

HoOoOLE-FPLAYING
GAME

DESI1GN

2 Exploring RPG Design Elements

3 Story-Writing Essentials

e i BB ! W

_'i_lj_k_r—'—"_‘ﬁ r'—q —_—l— 1~ = Lr—l"Lr‘_— ’ JJLLF

CHAPTER 2 J

EXPLORING
NG DESsIGN
ELEMENTS

a 2. Exploring RPG Design| Elements

he crucial part of a movie is its script. The script contains every spoken word

and special effect and all other details that describe the movie. It’s then up to
the director and actors to take the script and bring it to life in the best way that they
can.

Just as a script is important to a movie, so is a design document important to a
:I game. Any serious game project should have a design document, especially large
projects such as a role-playing game (RPG). Beginning your project by planning
and designing all aspects of the game will provide you with a guide to follow from
the beginning to the end of the project. This planning will ensure that the infor-
mation you need is readily available to you and others involved in the project. To
that end, please consider this chapter a guide to creating your own design docu-
ment.

In this chapter, you learn about the following:

= How to start your game design
= Creating a design document
= What information to include in the document

General Game Design Issues

At the core of every game project lies a simple design that is blown to huge propor-
tions. The best place to start your game project is with the general game design,
and the best place to culminate your ideas is in a design document.

The Importance of Design Documents

The design document is the instruction manual for your game. Within the document’s
pages are all aspects of the game: the story line, characters, dialogue, graphics style
and engine, and all other details important to describing the game (as those you see
in Figure 2.1).

All participants in the project should be able to refer to this document and pro-
ceed with their jobs based on the information they find there. For example, a
programmer needing to know what type of combat engine will be used in a game
might refer to the document and find that the game uses a 3-D engine that utilizes

General Game Design Issues E

Figure 2.1

wWarketin,

The design document is packed with all
the information you need to create your
game.

a moving camera, 3-D textured characters, and eye-pleasing graphics effects. Maybe
he will even see a few concept pictures drawn by the designers.

Not only does a design document contain information about a game’s design, but
also it should contain marketing information if you are planning on selling the
game. This information includes product highlights, estimated completion dates,
and other information pertinent to making your game available commercially.

Although the design document cannot possibly contain all the minute information
about your game, a design document does help ease the process of the game’s
development. Just as producers and actors interpret their scripts in different ways,
so do people creating a game interpret the design document differently—and
remember that it’s up to them to mold the game into a masterpiece.

Creating Your Design Document

For large projects, such as RPGs, I find that using a multiple document format is
essential. This means that each component of the design (art, design, music, and
so on) is broken down by category and listed in separate documents that are
referred to as books or bibles. I recommend using a total of six documents, as follows:

= Master bible
= Art bible

= Story bible
= Design bible
= Sound bible
= Tech bible

Each document contains only the information pertinent to its own topic; for exam-
ple, all the artwork goes into the art bible, and all the design issues go into the

Table 2.1 Master Bible Contents

Section Description
Table of contents Lists all sections contained within this document.
Proposal The game submission proposal if you are trying to submit

your game to a publishing company. Check out Chapter 21,
“Marketing and Publishing Your Game,” for more informa-
tion about what information to include in the proposal.

Introduction Introduction to the design document and what it contains.

Concept Game concept and idea (using brief and concise text). This
includes the game title and genre.

Story summary Short summary of the game story highlighting key points.
Character introduction ~ At-a-glance list of the game’s main characters.

Highlights Key elements of your game, such as story plot points,
licensed engines or technology, and graphics styles used to
create the game.

Game description Description of how the game looks and feels.

Game elements Lists actual gaming elements divided into topics such as
game-play, characters in the game, computer A.l,, and so on.

Hardware specifications Information such as system requirements (required CPU,
graphics acceleration, and so on).

Schedule Milestone and time-of-completion schedule for marketing
purposes.

Table 2.1 Master Bible Contents (continued)

Section

Budget

Team members

Marketing

Description

Breakdown of the estimated cost of production.You see
more about this in Chapter 21.

List of your team members or a list of people needed
to work on the project (including required skills such
as artist, C++ programmer, and so on).

Marketing information such as competitive analysis, target
audience, projected sales, and so on. Again, Chapter 21
contains more information about this.

Table 2.2 Art Bible Contents

Section

Table of contents

Concept

Storyboard
Character
Iltems

Levels and terrain

Magic effects

Combat

Description

Lists all sections contained within this document.

Sketches and idea drawings that might or might not be
included in the final game.

Story sequences are drawn out for the designers to follow.
Pictures of the game characters.
Pictures of the game items.

Pictures and suggested layouts of maps and terrain features
(such as trees, buildings, and so on).

Drawings of the game’s magic effects (usually in combat
sequences).

Drawings of combat scenes (terrain, effects, and so on).

m 2. Exploring RPG O

Table 2.3 Story Bible Contents

Section

Table of contents
Idea

Summary

:| Game story
Plots

Dialogue
Character history

Prelude
(manual story)

Description

Lists all sections contained within this document.
The “Plain-Jane” game idea, written in a couple paragraphs.

Summary of the entire game, highlighting key points such as combat
features, game engines, look and feel of game, and so on.

Linear game story.

Lists plots and descriptions.

Full script of every spoken word.
Story behind each character.

The introductory story to your game that helps prepare the player
for playing the game. This story is usually written for the game manual.

Table 2.4 Design Bible Contents

Section

Table of contents
Ideas
Game-play

General control

Characters

Items

Magic spells

Levels

Description

Lists all sections contained within the document.
All general ideas that designers might like to see in the game.
Description of how the game is played.

Control features such as moving your characters through the levels
and issuing commands during combat.

Description of the players and their vital information, such as their
HP, experience, allowable weapons, and so on.

Lists all items in the game and the data related to them that are
needed for the game (such as usage, description, and so on).

Lists all magic spells in the game and the information about them
(magic points used, effects, and so on).

Level-by-level breakdown of the game, what it features, how the
levels are laid out, what to place where, and so on.

Table 2.5 Sound Bible Contents

Section Description

Table of contents

Sound effects

Lists all sections contained within this document.

All sound effects other than voice.

Music All musical compositions.

Voice overs

All voice recordings (such as spoken dialogue).

Table 2.6 Tech Bible Contents

Section

Table of contents

System engine

Graphics engine

Sound engine

Input engine

Network engine

General system

GUI system

Game system

Scripting engine
Character control engine
Al engine

Combat system

Description

Lists all sections contained within the document.

Describes the basics of the entire system that runs the
game.

Describes the graphics engine(s).

Describes the sound engine.

Describes the input engine.

Describes the network engine.

Shows all general system information not listed elsewhere.
Shows the GUI (menu) system.

Shows the layout and flow of the game system.
Describes the scripting system.

Shows how the characters control engine works.

Talks about the Al system used in the game.

A breakdown of the combat engine.

m 2. Exploring RPG Design| Elements

design bible. Tables 2.1 through 2.6 list some major topics that each design bible
might contain, as well as the type of information each section should contain.

At this point, you can decide to include all the design documents in one file or in
multiple files. For large projects, it makes sense to divide the documents into multi-
ple files. If you have many people working on a game, you can control which team
members get which documents.

If you use a single document for your design, and thus a single file to save it, name

the file by the tentative game name, appending _DesignDaoc at the end. For exam-

:I ple, if you name your game RolePlayingGame, the filename might be
RolePlayingGame_DesignDoc.doc.

If you decide to split the document into multipie bibles, you need to create a file-
naming convention for those documents. For example, you might want to append
the bible name to the end of each document: RolePlayingGame_Art.doc,
RolePlayingGame_Design.doc, RolePlayingGame_Master.doc, and so on.

Starting with the Table of Contents

Regardless of the type of design document you use, the place to start is with the
table of contents (TOC for short). Take your time to flesh out the TOC; it’s a major
part of your design document (see Figure 2.2). You might use the layouts that |
showed you earlier in section “Creating Your Design Document” to get started.

People need to be able to quickly find exactly what they are looking for in the
design document. For example, a marketing representative might want to see only
projected sales figures. At a glance, he can see that this information is in the master
bible, on page 5 (yes, you need to number the pages).

Starting with the TOC ensures that you have a firm grasp on how you want to lay
out your project. In fact, the design document is one of the first things a publishing
company wants to see. For that reason, create an easy-to-follow indexing system,
with page numbers, appendixes, and so on.

Adding the Topics

At this point, start asking yourself questions about the game. Answer every question
that is conceivably related to the game and include the answers in the design docu-
ment (see Figure 2.3). For example, what engine do you use for the combat? Put

General Game Design Issues

Design Document

Table of Contents

Character Graphics

?

u] Graphics
oo Characters 20
u] Marketing
oo Sales Figures 8
u] Dialogue. 20
Dialogue
Graphics Engine?
rd
Solution

Design Document

Figure 2.2

A table of contents
makes looking up
specific information
in your bibles easier.

Figure 2.3

If you have a question
about your game, find
an answer and insert
it into your design
document.

m 2. Exploring RPG Design| Elements

the answer in the document. What happens when you push the joystick to the right
while playing the game? That answer goes in the document.

Classify each question and answer (the design) by the various topics that you lay out in
the TOC for each design bible. Art topics go in the art bible, design issues go in the
design bible. Continue doing this until you have a fleshed-out series of documents.

At this point, go through each document, adding more detail to each topic. You want
your game’s design document to be clear-cut and concise. Remember that you will be
following this instruction manual when it comes time to create your game.

:I Notice I’m not going into a great deal of detail here. It’s your game, and it is

impossible for me to tell you how to design it. Instead, this chapter helps you create
a shell, which you then fill with your own words. Upcoming chapters in this book
cover the various topics that are included in a design document—topics such as the
various engines, RPG elements, marketing information, and much more.

As you go through this book, keep tabs on your design document, adding the infor-
mation you need as you come across it. By the end of this book, you should have
enough information to complete your design document and program your game.

The Perfect Design Document

Although | wish that | could give you the complete layout for a perfect design doc-
ument, | just can’t do so. The fact is that no one uses a standard design document;
they’re all different in one aspect or another. What works for some project teams
doesn’t work for others. As a result, you must go with your own flow and create a
design document that fits your needs.

With that said, here’s a little secret. You can find a plethora of information about
design documents on the Internet. First, go to http://www.gamedev.net and check
out the resources section (or go directly to the design documents section at
http://www.gamedev.net/reference/list.asp?categoryid=23#Design Documents).

Next, go to http://www.gamasutra.com and search for “design document.” You’ll
be surprised what turns up! A number of free design-document templates are out
there, which you can download and tailor to your own needs.

Although this book is geared more toward the programming side of RPGs, | recom-
mend that you check Appendix C, “Recommended Reading,” for information on
Swords and Circuitry, a book that examines the design side of RPGs in greater detail
than | can do in this book. Before that, however, take a closer look at the design of

RPG Design Aspects B

RPGs, or at least the design issues you deal with in this book.

RPG Design Aspects

RPGs are a funny lot. Ask ten different game companies what a RPG is, and you’ll
most likely get ten different answers. The simple fact is that the aspects that make an
RPG what it is are really undefined. If you tell me that a RPG is all about character
building, I can show you 100 different games that fit into that category and that are
not called RPGs. The same goes for other supposedly RPG features—story telling,
exploring, resource management, and so on. [

The fact is that as the gaming industry evolves, so do the concepts of games. The
characteristics of different styles of games become mixed. Take, for example, the
popular game Phantasy Star Online by Sega, inc., a habit-forming action game with
character-building aspects. Is it a RPG or not? You make the call.

The reality is that any one of the typical RPG features can be mixed into your game
design, each useful in its own way. For that matter, what features are considered
role-playing ones? Take a look:

= Character building. Your virtual alter ego, started from scratch, is usually the
weakling in the bunch. With hard work, you build this character into a pow-
erhouse that strikes fear into the hearts of his enemies. Character building
is the term used to describe the character’s upbringing.

m Exploration. What game doesn’t include a bit of exploration? RPGs usually
take this feature to the extreme with a large world to explore, dungeons to
crawl through, and secrets to uncover.

®m Resource management. Items, treasures, spells, and other gaming commodities
abound in RPGs, and part of the fun comes from dealing with those commodi-
ties. Items have purposes, and it’s the player’s job to discover those purposes.

= Problem-solving. What better way to challenge your brain than with every
mind-bending puzzle that you can design. RPGs generally send players on a
wild chase to solve one puzzle or another as they save the world.

m Story involvement. The player, in all his trials and tribulations, typically takes
center-stage during the game, with the entire story revolving around the
player. With gripping plots and twists, the player needs to be driven on until
the end.

m Combat. Though you probably already know this, every RPG devotes a major
portion of time to combat. Weapons swinging, spells erupting, and creatures
dying, all in the name of good as the player strives for justice in a world of

E 2. Exploring RPG Design| Elements

evil. Combat is a major contributor to character building; the more creatures
killed, the stronger the player character becomes.

The list could go on, but I've hit upon some of the most important aspects. From a
designer’s point of view, each of the preceding aspects deserves an entire chapter,
but unfortunately, this book (and my publisher) does not allow for that kind of
space. Besides, that is not the purpose of this book. My aim is to show you how the
just-

mentioned aspects fit into the programming side of role-playing games.

Turning to the Technical Side

The design issues that | cover relate specifically to the technical side of RPGs, such
as the graphics engine, item handling, and character control. Concentrating on
this technical side of the design, note the following components that are needed
for your game:

= Core technical engines. These engines are the guts to your game. They
handle drawing graphics, playing sounds, and processing device input.

= Graphics engines. As the users’ viewports into the world, the graphics
engines are major workhorses that display what is happening in your game.

= Scripting. To expand the functionality of your game, you can use external
scripts (external to the game’s source code) to quickly change game-play
without the hassles of dealing with a C/C++ compiler. Instead, you use a
custom-built script editor that works hand-in-hand with the finished game
engine.

= Items and inventory control. Game players need “stuff” to play with, so as
the game’s developer, you need to create these items and develop ways for
players to manage them.

= Character control. What’s a game without a hero? Controlling all characters
in your game is issue numero uno.

= Maps and levels. What is a game world without places to explore? Your map
and level engines maintain the world around your characters.

= Multiplayer gaming. Be sure to link players over the Internet for some major
gaming action. The multiplayer component of your game is just what you
need.

Knowing Your Role E

In case you didn’t notice, the preceding list of components is almost dead-on with
this book’s table of contents; the major components of a RPG are all there, and
you will need each of them at one point or another.

Within the pages of this book, you find every component you need to make your
own RPG. Although basic in nature, the majority of the components are powerful
enough to drive your largest project. It all starts with a little understanding.

Knowing Your Role j

When you begin creating your game, you must understand just what you’re getting
into. You need to be aware of the minimal system requirements, the current tech-
nological capabilities and trends, and the available resources.

Minimal system requirements aren’t as big an issue as they used to be because com-
puter systems are continually becoming more powerful. It’s safe to say that you can
create a game and rest assured that it will run decently on the majority of systems,
assuming that you keep things compatible, which is where technical capabilities
and trends come in.

If you lived in a strictly non-techie cave during the past five years, you probably
missed the introduction of the DirectX gaming libraries by Microsoft. Merging all
the functionality you’ll ever need into a set of programming libraries, Microsoft
managed to wipe clear all compatibility issues among varying hardware setups,
thereby giving all programmers an equal opportunity to create great games (from a
technical point of view, that is). Using DirectX, you can be further assured that
your game will run on any computer that utilizes the DirectX libraries.

With DirectX, you have the following at your disposal:

= 3-D graphics. Now you can wander around immense worlds from a 3-D per-
spective. Powerful new graphics hardware takes care of the hard work. You’re
left with the easy job of laying out your virtual world. Graphics, at a mini-
mum, will use resolutions from 640 x 480 and up, harnessing 16-bit to 32-bit
color resolutions.

= A high-quality sound system. Music and sound effects never sound so great,
blasting the user with high quality playback. Use 16-bit, 22 KHz, stereo play-
back features to ensure that your game sounds are crisp and effective.

m Access to virtually all input devices. Using DirectX- and Directlnput-capable
drivers, any input device is usable for your projects, from that old dusty ana-
log joystick to the futuristic jumpsuit that’s just around the corner.

m 2. Exploring RPG Design Elements

= Networking gaming at its finest. No more dealing with overwhelming techni-
cal issues of networking; with DirectX on your side, network gaming becomes
a reality for your game, via an easy-to-use set of libraries.

As for available resources, you’re limited only by the tools that you have available for
your game project. Need 3-D modeling programs to lay out your game characters
and world? No problem, because each day brings more tools. No longer are you lim-
ited by the availability of high-quality, high-cost programs. Now you can get your
hands on some great tools at a low cost. In fact, the CD-ROM that comes with this
book is packed with useful programs (see Appendix E, “What’s on the CD-ROM,”

:I for more information).

Now you can model in 3-D, construct music and sound effects, and dish out almost
any materials you need to finish your game. With this book at your side, nothing
will slow you down!

Wrapping Up Design

As | noted earlier in this chapter, this book is geared more to the programming
aspects of RPGs. If you’re interested in the design side of gaming, check out
Appendix C at the back of this book for the information about a book on that topic.

Throughout this book, | incorporate an overall design ideology—to keep things
simple. The simpler you keep things, the faster things get done, and contrary to
popular belief, those awesome features you see in games are not hard to duplicate;
they just seem that way. At the same time, | discuss quite a few of the RPG design
aspects, especially when it comes to the technical side of things. With that in mind,
it’s time to move on to a design aspect that is important to role-playing games—
writing stories.

_':'l__|J‘I s l:,_r: sy — J%—“nﬂi

CHAPTER 3

STORY-UAIRITING
ESSENTIALS

E 3. Story-Writing Essentials

In order to produce a first-class role-playing game, you need a story that immerses
the players in a world of danger and deception—a game that constantly chal-
lenges the protagonist (the hero who plays the role of the main character) in his
quest to win the day.

Just as with a movie, the storyline is what makes a game memorable. What was
:I the best thing about the movie The Matrix? 1 still remember the massive blow

I received when Neo woke up inside his battery compartment in the far future.
Or how about in Final Destination in which a group of high schools kids realize
that their adversary is death itself? The players of your game can have similar expe-
riences. You can create a storyline that will sweep players off their feet when they
least expect it!

In this chapter, you find out how to create such a game by doing the following:

= Brushing up on story basics

= Understanding the writing process

= [mproving your writing with some helpful tips
= Applying stories to games

The Art of Telling Stories

The ancient art of storytelling is based on the ability to structure and communicate
events that occur during the resolution of a situation. Put another way, a story
reveals the details about what happened while someone endeavored to achieve

a goal (essentially, who, what, why, where, when, and how).

The real art, however, is relating those events in an entertaining way. Some authors
are adept at telling stories, relating them in a way that pulls you in and changes
your perception in some way. These writers are the ones who keep you up late at
night reading just one more page. Their stories exist in a world in which every
detail and character is alive, a world that you feel privileged to experience.

You, of course, want to achieve the same reaction with your stories. However, the
ability to write such stories doesn’t come at the snap of a finger. You have to work
your way up, first learning the basics, then coming up with ideas. You need to
develop characters and the situations that drive them through the story. Before

The Art of Telling Stories

doing any of these things, however, you must understand how stories are structured
so that you can later piece everything together in logical order.

The Five Components of a Story

All stories follow a basic format (called the story structure) that can be broken into
five components: the inciting incident, complications, plot points, climax, and
denouement.

The inciting incident is the event that triggers a major event and drives the story. The
incident forces the main characters’ involvement and gives them a reason to resolve [
a situation. Complications are the obstacles that stand in the way of reaching a reso-
lution.

Along the way, the story experiences plot points, which are major turning points in
the story. These events affect the flow of the story. Plot points are also called plot
twists because they can change the outlook of the story.

The climax is the point where excitement builds and everything is resolved in a
blaze of glory. Last is the denouement, the point where everything winds down and
the story concludes.

The Story Ladder
and the Three Acts

You can almost think of a storyline as a ladder, as illustrated in Figure 3.1. As you
climb the ladder, you reach specific components of a story. At the bottom of the
ladder is the inciting incident. Moving up, you have the complications mixed in
with the plot points. At the top of the ladder, you reach the climax. Although the
climax is at the top of the ladder, the climax is not the end of your climb. At this
point, the point of denouement, you jump down and into the story’s downfall;
here the story “comes down” to its end.

Although the story ladder gives you a way to visualize the story’s progress

(the rise in action), you can think of the whole story as a play, complete with acts.
Traditionally, a story is split into three acts, the beginning, the middle, and the
end. Even if a book has 24 chapters, it still has a beginning, a middle, and an end.

Each act has a purpose: to introduce the characters, the conflict, the plot points,
and finally the conclusion. Now, take a closer look at each act in detail and outline
what occurs in each.

E 3. Story-Writing Essentials

Figure 3.1
The story ladder can be broken into components.

\
_

—

oQ
9\99“0\)
RS

Story Flow —— >

Act 1: The Beginning

The beginning represents approximately the first 25 percent of the story. Here, you
introduce the important characters. You don’t have to introduce all the characters
here, but this part of the story should introduce the protagonist and other charac-
ters that help support the story. You need to start building a relationship between
the reader and the protagonist of the story as soon as possible.

Along the way, you introduce the inciting incident, which presents the protagonist
with a situation that needs to be resolved. This situation might play a minor role in
the beginning. At any rate, the situation gives the protagonist a reason to be
involved; that is, it presents him with something that must be resolved.

It’s this situation (and the underlying inciting incident) that conveys the story’s con-
flict. The conflict builds into a crisis that fully involves the protagonist over time.
This crisis marks the first plot point (turning point) that leads into the second act.

The Art of Telling Stories E

Act 2: The Middile

Here’s where all the fun happens! The middle story represents about 50 percent of
the story and is where most of the reader and character relationship building takes
place. Here, the reader needs to fully understand the main character, including his
personality, history, and purpose. The reader needs to “experience” everything the
main character does, says, and feels.

In the second act, the main character attempts to resolve the crisis introduced in
the first act. Because the story would not be intriguing if the protagonist solved the
problems too easily, you present obstacles that stand in his way, including conflicts [
and plot twists that are eventually overcome. The action continues to build up as
you near the end of the second act. You don’t want the story to slow down in any
way; you want to keep the reader excited.

The overall crisis still remains (seemingly a hopeless cause), and constant
reminders of it should occur throughout the story. The protagonist must prevail,
and soon it will be time. But first, another complication pokes it head up and the
main character is rushed into the final act.

Act 3: The End

Alas, all good stories must come to an end. The third act represents the final 25
percent of the story. Now is when the protagonist overcomes the crisis and prevails.
This is the moment of truth. You can’t dilly-dally—the readers are counting on you.

The climax continues to build until it’s ready to pop. The excitement rises, the
obstacles mount, all seems doomed. The goal is within reach, but it seems unobtain-
able. The protagonist seemingly reaches the point of no return, but finally, through
thick and thin, blood and sweat, the hero makes a final push, and then. . . .

Sorry, but you wouldn’t want me to give away the ending, would you? Just kidding.

As you can guess, the hero destroys the bad guy, rescues the damsel, saves the world—
that is, he achieves the desired goal. Notice that | said “desired goal.” Even though the
outlook of the story might be grim, the protagonist’s personal goal is reached.

For example, consider the Second Chronicles of Thomas Covenant by Stephen R.
Donaldson, which details the adventures of Thomas Covenant, the Unbeliever. In
the third book of these chronicles (White Gold Wielder), the protagonist of the story,
Thomas Covenent, reaches his goal of defeating the bad guy, but at the cost of his
own life. The ending comes as a surprise and leaves you in awe. Even though
Thomas’s death is a shock, his original goal is achieved.

m 3. Story-Writing Essentials

At the conclusion of the climax comes the denouement. Things wind down—
because the day was won. The readers see the aftereffects of all that occurred. At
this point, you want the reader to know that all the struggles were worth it and that
everything is better, now that the crisis is over. Life goes on; all is well.

Characters

The characters are the lifeblood of your story. For that reason, character creation

is the single most important step in writing stories. Every story has two types of

:I characters, major and minor. Just like in the movies, characters in your story can
play a major role (such as the protagonist (hero) or a supporting character) or

a minor role (extras and those guys who get killed within the first five minutes of

every “Star Trek” episode).

Know Your Roles

First and foremost is the lead character (or rather the character, or sometimes
characters, that the story revolves around). This person is the protagonist. The pro-
tagonist is the most important character in your story, so you need to describe this
person in as much detail as possible.

Opposing the protagonist is the antagonist (the bad character or factor), the second
most important character in your story. The protagonist of your story has a vested
interest in the antagonist, even if the antagonist is not a person. In reality, stories
don’t need an antagonist—the story is really about the protagonist.

What good is a world with only one or two people? For that reason, you create many
character roles in your game’s story. But be careful not to mix up your characters’
roles—either they play a major part in your story or they don’t. Minor characters
require very little attention, except when they are needed to add some support.
Characters who play a major role (the protagonist, antagonist, and supporting
characters) in the story require the most detail, the most attention. Figure 3.2
illustrates the interaction of the three most important character roles.

Your protagonist tops the list of major roles and, as such, requires the most atten-
tion. That is not to say that the antagonist gets little attention, just not as much as
the protagonist. You want the reader to form an emotional bond with the hero. In
addition, you want believable characters to play your main roles. In order to create
a believable character, you must make them three-dimensional characters.

The Art of Telling Stories m

Figure 3.2

Supporting roles help the major characters move
along in the story.

o Antagonist

Supporting Roles

Building Three-Dimensional Characters

The three dimensions of a character, physical, sociological, and psychological, are
described in the following list. These characteristics are the most common ones
that you can use to describe a person, and in order to be complete, your story char-
acters should have these traits.

= Physical. Traits that describe the physical nature of a character and his life,
including body type, health, and appearance. Appearances include how they
carry themselves, the manner in which they walk, how they dress, and so on.

= Sociological. A character’s name, age, residence, job, and beliefs; his educa-
tional, intellectual, social, and economic status; and all other details regard-
ing his social development and social life.

= Psychological. A character’s personality, manner of speech, attitude, abilities,
and emotions.

As an exercise in developing three-dimensional characters, prepare a comprehen-
sive list of your own characteristics (at least those in the preceding list); then using
this information, compose a few paragraphs that describe you—in terms of how
you perceive yourself. Don’t be afraid; you’ll be doing a lot of this kind of work
when you develop your story’s characters.

Treat these three characteristics as a set of “rules” when it comes to describing
characters. Try to assume the roles that you create, and check to see whether what
is being said and what is occurring are consistent with the characters’ traits.

m 3. Story-Writing Essentials

Dialogue

They walk, they talk, and they even have feelings! That’s right, your characters are
real—at least, they are in your mind. In order for your readers to believe in them,
too, you have to write about your characters as though they are real people; give
them feelings, purpose, and history.

What'’s the principal thing that you can write to help readers relate to a character?
The dialogue, of course. What your characters say has a crucial effect, just as in real
life. By listening to what people say, you can judge what type of people they are, what
:I they believe in, like, or hate, and sometimes even what they ate for dinner last night.

In the best stories, characters speak clearly (or at least understandably). No jive
talk, slang, or otherwise confusing lingo that’s bound to get in the way of compre-
hension. This is important, because you want your readers to understand what is
going on. ldeas are brought out in clear, concise words and get right to the point;
there’s no idle chitchat.

In addition to verbal dialogue, there’s inner dialogue, which is a person’s thoughts.
Readers need insight into the minds of characters, including their fears, objectives,
lusts, and other driving forces. Nothing is sacred in script.

Both verbal and inner dialogues are important to your story; they represent two-
thirds of how people, including your characters, are perceived (the other one-third
being visual perception or body language). Develop each character according to
his beliefs and thoughts, and be sure that they all react to each other accordingly.

Setting Mood and Atmosphere

It was a dark, stormy night. A flash of light and an ear-splitting boom rupture forth
from the gloom, illuminating the fields in a slight hue of blue and white. With each
flash of lightning, the sickly form of the approaching invader becomes more appar-
ent. Its long face, sharp fangs, and slinky red body covered in matted, bloody hair
dredge up thoughts of long forgotten nightmares. As it nears, you can feel its pur-
pose burning down to your soul—it has come for you!

Eerily, the last paragraph describes a scene you might see only in your worst night-
mares (or in your imagination). The setting is dark and foreboding, a perfect
mood for nightmarish stories. The atmosphere is heavy, creating a feeling of fear.
The poor hapless soul has bland, dark surroundings, the lightning providing brief
glimpses of an approaching horror.

The Art of Telling Stories m

Those elements are very important ones in a story—mood and atmosphere.
Although only a minute portion of what could be conceivably a love story (yeah,
right), that short paragraph presents a grim mood setting and manages to set the
atmosphere perfectly. Typically, a story will maintain the mood and atmosphere it
sets early on, but those elements can change as the story progresses (from good to
bad or vice versal). Be sure to express the mood and atmosphere in a concise and
exact way so that your readers can experience it themselves.

The Point of View [

All stories are related through a particular point of view (or perspective), and an
author describes a given story’s events from that story’s particular point of view. A
story can be told from the point of view of the protagonist. Say that the character is a
woman who hears a knock on her front door; she answers it and sees a door-to-door
salesman standing on her porch. Turning him away, she returns to her activities.

An outside source able to view the entire scene sees things from a broader perspec-
tive. The tired salesman has failed to make a successful pitch all day. He stumbles
along from house to house, only to reach a pretty, small one-story abode. Inside,
Mrs. Jones is relaxing after a hard day of work. The salesman approaches the door,
rings, and soon comes Mrs. Jones to answer. As the salesman is turned away yet again
(only to trot along to the next house), Mrs. Jones returns to her previous activities.

In this second example, you can see the perspective of both characters. The form
in which you relay your story is the same; just be sure to select one point of view
and stick with it.

Generally, stories are written either in first person (the “I” perspective) or third person
(the he/she perspective). When writing in first person, you tell the story from a
character’s point of view or from the perspective of a narrator who is an eyewitness
to the events of the story—note that this narrator is not the author and might or
might not be reliable.

When writing in third person, you generally write from the point of view of the
effaced narrator or the omniscient narrator. The effaced narrator can have a fixed
point of view (focusing on the perspective of only one character) or a broad per-
spective. The omniscient narrator intrudes into the story with editorial comments,
judgments, forecasts, and so on. The primary difference between the effaced narra-
tor and the omniscient narrator is intrusion.

Be careful not to switch the point of view mid-story; doing so can cause confusion
for the reader. Even though you should not switch the point of view, it is perfectly

m 3. Story-Writing Essentials

plausible to switch the focus from one character to another—but do so sparingly
because that might also cause confusion.

Your Narrative Voice

The language you use, the style you employ, and the details you describe are all a

matter of choice. This is the power of prose, and the manner in which you relate

your story is called your narrative voice. Authors with a strong narrative voice bring

life to their imaginary worlds, describing the details in a special way, making you

:I believe their stories are real. You, too, need to develop a strong narrative voice.
Here are a few tips for doing so:

= Choose descriptive words. The reader wants to understand what is occurring, in
the least number of words. Choose descriptive words and don’t be redundant.

= Use clear and concise language. Don’t fill the text with jargon and slang that
only a limited number of people will understand. The members of your
intended audience should all be able to understand and enjoy your story.

= Balance the flow. Action, adventure, love scenes, and dialogue—there’s a
place for all of these elements in your story, but space and balance them
appropriately. Don’t overload too many scenes with too much of one ele-
ment, or too little of another.

m Keep a good pace. To keep your readers interest, try to maintain a pace that
keeps them on the edge of their seats at all times.

m Use emotion. Just as in real life, emotions cannot be underestimated.
Emotions cause wars and create peace. The bottom line—use emotions
freely and portray them just as they happen in real life.

= Maintain one point of view. If you begin relaying a story from the main char-
acter’s point of view, don’t switch to another point of view (don’t switch from
a first-person perspective to a third-person perspective).

Plots, Subplots, and Twists

The plot is your story’s bread and butter. It carries the story from beginning to
end. The plot is sometimes confused with the premise, which is a quick, simple
description of the story—“The good guy gets mad at the bad guy and hunts him
down.”

The plot, on the other hand, consists of the major points of the story. Remember
the story ladder I mentioned in the section “The Story Ladder and the Three

The Art of Telling Stories E

Acts,” earlier in this chapter? The inciting incident, obstacles, and climax are all
part of the plot. As an example, try to describe your day. Although much of it
might be dull and drab, the major experiences are what make it count and are
what you want to concentrate on.

Plot Twists

Along the way, a story presents the reader with the turn of events—the turning
points. As | mentioned earlier, these are called plot twists and are essential to good
storytelling. You don’t want readers to be wondering what will happen next. You

want that to come as a surprise. Change the way the story flows much as Figure 3.3 [
illustrates. When the “twist” of the story events finally hits them, everything they
know and understand about the story changes.

You can pack your story with twists; however, don’t use so many that readers wind
up continually scratching their heads trying to figure out what is going on. The
path from crisis to resolution is still there, but twists change things a bit, sometimes
they even introduce the real crisis or resolution. Just don’t let readers lose sight of
the real goal once it is introduced.

Subplots

Although not essential, a subplot is an “off-to-the-side” series of events that occur
during the main plot. Think of the subplot as a story within a story, one that doesn’t
take away from the main plot. You can use subplots to build the reader’s relation-
ships with the characters or to reveal the characters’ past.

Figure 3.3

Plot twists are great for shaking up a story

or for turning a story in a different direction.

Plot Twist

Plot Point | —>(Plot Point

Story Flow —— >

m 3. Story-Writing Essentials

The Writing Process

While I’'m in no way a literary prodigy, | found that by following some simple rules
and guidelines, I’'m able to better structure, develop, and finish writing my stories.
Time-tested and proven, the following information is no secret—it’s fairly standard
in the writing industry. As you read the following guidelines, try to relate them to
your story (whether that story is on paper or still in your mind).

1 Eight Rules to Writing

In my experiences, there really are no ironclad rules to writing—the most creative sto-
ries come from unhindered thought. However, you can follow guidelines that will help
make your stories more appealing. | find that by adhering to at least a few of the follow-
ing guidelines, I’'m better able to convey my story, make it more to the point (without
losing clarity), and write so that the story appeals to a wider audience.

s Don’t overwrite. The number one guideline is don’t overwrite. At the begin-
ning of the writing process, let your creative juices flow and write anything that
comes to mind. As your story takes shape and nears its final draft, begin cutting
out the “dead-weight,” leaving only the content that actively conveys the story.

= Don’t explain too much. The mind’s world is a wondrous place; every little
pebble has a story behind it. You’re bursting at the seams to flood the reader
with every minute detail about this fantasy world you’ve created, but wait!
Too much of anything can diminish the experience. Even though details
add to an experience, too many can hurt your story. You must decide which
aspects of the story are important enough to require extra details—even
then, try to keep the details to a minimum. The tension is always between
what the readers need to know and what they don’t need to know.

= Be consistent. You’ve already selected your narrative voice, character bios,
story atmosphere, and all the other little facets that construct the base of
your story. Here’s a word of advice—stick to them! Nothing can ruin all your
hard work more than straying from your intended path. Don’t switch scenes
at inopportune moments, don’t present facts at improper times, don’t
change the characters’ personalities, and don’t change the narrative voice.

= Use good language structure. When writing your first draft, use shorthand,
abbreviated words, symbols, and simple phrases to speed up your writing.
When writing the second draft, however, be sure to replace those words and
symbols, being sure to use proper spelling, grammar, and punctuation—
unless you’re striving for a particular effect.

The Writing Process

s Don’t over or under spice. Although spicing a story with elaborate words can
sometimes give the story a certain creative flare, there is a fine line that you
don’t want to cross. If readers have to rely on their dictionaries more than
once per page, they might put your story down and move on. If you are an
aspiring writer, just remember that cooks spend a good deal of time testing
spices in their recipes before achieving the perfect taste. You, too, will want
to spend a bit of time achieving the perfect balance in your writing. Work
with your text until you’ve added just the right amount of spice. The text
should be neither bland nor overpowering; it should be just right.

m Be clear, concise, and to the point. This guideline comes into play after your [
first draft. Read your text and see if you can make your point in, say, half the
number of words that are in your first draft. Cut out unnecessary words and
make sure that the remaining text gets to the point.

s Don’t force your opinions or views. Life is hard enough without someone
constantly telling you what to do, say, think, or feel. Readers are intelligent
and capable of choosing their own paths, so don’t force your opinions or
views on unsuspecting readers. Specifically, you don’t want to feed readers
your opinions on matters that do not directly relate to the story. Allow read-
ers to develop their own opinions and points of view. In other words, write
your story so that you stimulate readers to use their own opinions and views.

s Have fun. I can’t say this enough. If you are not enjoying what you’re writ-
ing, why are you writing it? Your attitude is reflected in your work, and if you
are enjoying what you are writing, your words will reflect that pleasure. The
journey you take as a writer is wrought with many perils, but the rewards are
great. At the end, you will have a “masterpiece” to call your own!

Six Steps to Writing

I have found that by following six easy steps, I’'m able to maintain flow and order in
the chaos called creative writing. While not comprehensive by any means, these six
steps help form a base from which to work:

1. Begin with thought and planning. Think about what you want in the story;
take notes, brainstorm, write down little blurbs that come to mind, and keep
a running document of everything you can think of. It doesn’t matter how
big or small your ideas are, write them down!

2. Shape your thoughts. Using the information from the first step, begin to
mold your ideas into a plausible structure. Introduce major topics before

m 3. Story-Writing Essentials

talking about them, and introduce characters and give them purpose. Bring
together everything that you intend to include in your story.

3. Write a draft. This is the first big step you’re going to take in actually writing
your story. Take the thoughts and ideas that you’ve begun to shape and write
about them. Follow the standard flow for writing stories: introduce characters
and provide back-story (the who, what, why, where, and how that got them to
that point in the story), introduce the conflict, establish and lay out the plot
and the plot twists, and finally lead up to the conclusion.

4. Revise your work. Writing a good story is an ongoing process of writing,
:I updating and revising, writing some maore, revising some more—you get the
picture. There’s never an end (especially for perfectionists like me!), but you
will reach a point when you’re happy with what you’ve molded. After one
more draft, you’ll reach a point where you want to remove the unnecessary
parts and polish your text to perfection!

5. Edit your work. When you complete your story, edit it to make sure that
you’re using proper punctuation, look for misspelled words, check for
proper grammar, and iook for other kinds of errors.

6. Proofread your work. At last it is time to share your story with others! Give
your story a complete reading, keeping in mind your intentions for the story.
Imagine that you are reading it for the first time. Now, ask a friend to read
it and to give you his reaction to the story. Don’t feel badly about constructive
criticism; it helps you gain a better perspective. If needed, rewrite portions of
the story. Remember, you want a great story!

The preceding steps and their descriptions are meant strictly to serve as a quick
reference. Now, | want to describe each step in greater detail.

Thought and Planning

The first step is to pick a topic for your game’s story. This topic is usually the basis
of the game. Imagine that your “topic” is that an evil wizard is terrorizing a small
town and the hero needs to destroy the wizard.

However, that topic is fairly broad, so you need to narrow it a bit. Why is the wizard
doing this evil deed? What led to his actions, and how is the hero involved? There
must be a purpose for everything that happens. Even though many games don’t tell
you why, a hero needs a reason to be there (even as generic as showing up and feel-
ing justified in helping the needy).

The Writing Process m

You don’t have to include the specifics for every detail yet; just keep writing all your
thoughts. To expand on the wizard story, imagine that you’ve brainstormed and
determined the hero was a child at the time the wizard was banished; it’s the hero’s
village that is being tormented by the now vengeful sorcerer. Just write that down as
a note and move on.

This stage in the writing process might take a while. It’s time well spent, however,

because it is where you’ll have the most fun fleshing out what occurs throughout

your story. Keep adding notes until you feel you have enough information to pro-
ceed to the next step.

Shaping Your Thoughts

After you have a sufficient collection of ideas (all written down, of course!), you are
ready to put them together. Your goal here is to clarify the generalized information
contained in your notes. For example, characters in your story need a history and a
reason for being involved (the back-story). What events led them to their present
situations?

Situations such as the evil wizard terrorizing a town need a purpose as well. Most
things don’t just happen, they happen for a reason, and you need to reveal and
“build up” those reasons. For example, why is the town being attacked? Why was
the wizard banished in the first place? What in the child’s past causes him to
defend the village?

The bottom line is that you must make your story plausible; the reader must be
able to believe that the story could happen in real life (if not in their lives, then

in the life of the hero). Even if you base your story on fantasy, the world needs to
seem plausible. Although you don’t want to go into explicit detail about everything,
remember that the little details are what make your story believable.

Writing a Draft

This is your first chance to begin actually writing your story. Taking your notes and
ideas from the previous two steps, begin writing your story. Start at the beginning
and make it all flow together. It helps to create a timeline of major events that
occur in your story, filling in the gaps between those events as you write.

Make sure that you lead up to major topics; you don’t want to introduce them too
quickly. For example, if you’re writing a story about the evil wizard that takes over
the village, be sure to describe his history and the events leading up to that point
(even if that point is not at the beginning of the story). If you jump right into the

m 3. Story-Writing Essentials

attack on the village, you rob your readers of crucial background information that
might help them actually care why the wizard is attacking the village or what is
motivating the hero.

You need to describe important characters in great detail. Give them traits with
which the reader is sure to associate, weave a history that brings the reader and
characters closer together, and provide the characters with a personality that gives
them a foundation from which you can build.

Continuing with the wizard story, say that the hero was an innocent child who fell
:I victim to the wizard’s previous misdeeds
and that the wizard was banished from

the village for his actions. These mis- n NOTE

deeds could conceivably have been the Don’t go overboard on developing the
invocation of an evil spell that led to the characters’ personalities. Remember
destruction of the hero’s family, home, that players of games generally like to

and farmland. develop those personalities.

As you develop the history of the child -
(now alone in life since the loss of his

family), readers should understand (and believe) that the child’s upbringing
molded him into a strong person-of-the-land with a snappy attitude. Although life
was hard, the hero remains of good heart and doesn’t want the home village to fall
into the hands of the wizard, the very character who years ago harmed the hero.

Revising the Story

Just because you’ve written the last page of your story doesn’t mean that it’s com-
plete. Now it’s time to go back and fix all the inconsistencies, all the drawn out sec-
tions, and the portions that have nothing to do with the situations at hand.
Basically, you want all the pieces to fall into place, and you want your story to
“sound” just right.

You can do many things to improve your story. Read and evaluate each sentence.
Does it relate correctly to the story or does it need to be cut? Is it dull or boring?
The best way to dress up a dull sentence is to give it a little spice! Add some color-
ful language that preserves the meaning of the sentence. One resource for such
words is a thesaurus.

Once you’ve gone through the story and think that every sentence sounds just
right, you are ready to edit your work.

The Writing Process B

Editing

Here comes the dirty part! Now you get to have fun going over your work and mak-
ing sure that you are using proper punctuation, spelling, and grammar. Basically,
you get your story into a presentable form.

I hate to sound like your high school English teacher, but using proper sentence
structure is essential. Use proper noun, verb, and adjective placement and agree-
ment while writing in order to maintain clarity. Your best tools here are a dictio-
nary and a thesaurus (which are usually built into word-processing programs, such
as Microsoft Word). [

You’re close to being finished, so don’t give up. You have only one more step to go!

Proofreading

At this point, take a break for a day or two. Move on to some other portion of your
project and get the story off your mind. The purpose here is come back with a
fresh mind. Read the story slowly. Authors tend not to see their own mistakes, so
scrutinize every word of every sentence. Again, does the story flow logically? Are
major topics introduced too quickly or without a proper build up?

Let others read and judge your story as well. Have them tell you exactly what they
think about the story. Is anything missing, confusing, or unneeded? Don’t be
offended by their criticism; every little bit helps. In the end, you’ll thank your
friends for helping you create your literary masterpiece!

Writing the Three Drafts

No writer can sit down and write a story all in one round. Small inconsistencies
emerge, dead-ends occur, and drab portions make the text sluggish. For those rea-
sons, you should write a minimum of three drafts. As illustrated in Figure 3.4, those
three drafts have a definite purpose of their own.

The Rough Draft

You write the first draft just to get everything in there. This draft gives you a good
understanding about how your story will unfold, bonds you with the characters,
and pretty much ensures that you have a firm grip on the story. Don’t worry too
much about this draft; just write until you reach the end.

E 3. Story-Writing Essentials

Figure 3.4
The Three Drafts

The three drafts
/ l \ separate your writing
process into three helpful

Rough Draft Revision Draft(s) Cut-and-Polish Draft steps.

The Revision Draft

Here’s where you get to clean up the problems with the story. Now, you can edit
and add better details, introduce topics at the appropriate times, remove inconsis-
tencies, and basically brush up all that you’re not happy with. By the end of this
draft, everything is in order and no unanswerable questions regarding the story
should come up.

The story is almost finished—don’t undercut yourself here; think of this draft as
your last opportunity to add or revise your text. Be sure that you’re completely
happy with the results before moving on.

The Cut-and-Polish Draft

The final draft represents your story honed to perfection. Now you remove irrele-
vant portions, shorten long sections (while maintaining meaning), and polish the
details. You basically are checking to see whether you can convey your story in
fewer words, but with more flare, all the while maintaining its integrity. When you
finish this draft, your story is complete. Congratulations!

Tips for Better Stories

Stories are rarely clean-cut, beginning to end ordeals. Breaks in action occur, the
focus of the story might shift from one character to another, and some out-of-the-
way bits of information might need to be blended in to fully develop the story. How
you deal with the details is entirely up to you, but by using techniques in the follow-
ing sections, you can breathe new life into an otherwise drab story.

Tips for Better Stories E

Back-Stories

Have you ever noticed that owners of antique shops have a tendency to trap you for
what seems like hours, telling you the story behind every piece of furniture in their
shops, adding proof to the notion that there’s a story behind everything. This
should certainly be true for your story.

Your characters have a past—the reasons for the who, why, what, and where of their
lives—that needs to be explored. Everyone (and everything) has a back-story. It’s
your job to explore and relate these back-stories in a structured and useful way.

Flashbacks and Cut-Scenes

Anytime action is taking place outside the current point of view (in location or
time), it’s appropriate to cut to another scene, hence the name cut-scenes. A flash-
back is a cut-scene of a special type, usually in the form of a memory from a differ-
ent point of view. For example, the character might remember something that
happened in the past, something that is relevant to his quest. Think of a flashback
as a momentary break in the action of the main story.

However, cut-scenes can break the flow of the story to a greater degree. Think of
a cut-scene like this: While describing your day to a person, you stop midway and
allow your buddy to tell you about his day up to the time that you two met. The
story continues with the two of you together for the remainder of the day.

By taking two different points of view (yours and your friend’s), you have most
effectively used cut-scenes. By relating the stories of individual major characters,
you can weave their individual stories together as the climax approaches and
develop a strong relationship between the characters and reader.

Foreshadowing

Remember back to when you were a child. Perhaps you were playing in a field and
tripped over a small rock, only to come face to face with a huge, scary garden
snake (remember, you were a kid then, so every creature was huge and scary). You
were so frightened by the experience that you could never look at a snake again
without fear. Now, you find yourself standing knee deep in a pit of snakes (garden
snakes at that), paralyzed and praying for some higher power to save your life.

Another person might not understand your fear—they’re just garden snakes. But
they are witnessing the scene from their perspective; they did not have the horrible
experience of your childhood. That’s where foreshadowing comes in handy. You

m 3. Story-Writing Essentials

can use foreshadowing to reveal the reason behind something (in this case, you
might show the person standing in the pit of snakes, remembering his childhood
experience through the use of cut-scenes).

Here’s another example of foreshadowing. Imagine that a story’s main character is
standing in front of a bomb, wire cutters in hand. Two wires stand between victory
and death. Thinking back (foreshadowing), the hero remembers the bomb-diffusing
class he took last year at the YMCA; thankfully, he chooses the correct wire (thanks,
the reader assumes, to the class).

Don’t Say It—Experience It

You need to immerse readers in the details of a story. You want readers to see the
whole scene; you want them to imagine that they are experiencing what they are read-
ing.

Here is an example of what I’m talking about: Jane opens the front door. There is
a light wind, and she can smell the flowers in her garden. She remembers planting
those flowers many years ago. The sun begins to rise, and she shades her eyes as
she looks across the street at something that is moving.

Now, read this next paragraph, which is a rewrite of the previous one: As Jane
opens the door, a slight breeze caresses her, carrying with it the light scent of roses.
The soft, sweet smell triggers long lost memories of when she and her young
daughter worked together to plant those lovely flowers. Those days are long past;
her daughter is grown and has moved on with a life of her own. The morning sun
begins to peek over the horizon, casting a glorious shade of yellow over the street.
Jane, lost in her memories, instinctively raises her hand to shield her eyes. From
across the way, she catches a glimpse of a figure moving behind the bushes.

Although both paragraphs say basically the same thing, the second one provides
more detail. As you can see, in a small space, you can convey numerous details
about a character’s past and bring the reader closer to “experiencing” the events
(you can build the reader’s relationship with the character as well).

Harnessing Emotion

Emotion plays a major part in our daily lives, and in order to write a compelling
story, you need to use emotions to their full potential. If you’re having trouble
doing so, just image yourself in the same situation that your story’s character is in.
Don’t worry, no one will see you doing this, so just get out of that seat and into the
role! If your character is angry, experience it yourself and then make that emotion

Tips for Better Stories E

obvious in the story (don’t be afraid to do the same with a sad or gloomy emotion).

Anger and sorrow are two of the most powerful emotions you can harness, and
learning to use them correctly is essential. To see what | mean, consider the movie
Titanic. Now, truthfully, how many of you teared up when the hero, Jack, was finally
released into his watery resting place?

Take the movie The Fifth Element. In that movie, the sly and villainous Zorg was so
evil that you gritted your teeth every time you saw his ugly mug. If this guy were for
real, you’d be jumping in line with everyone else to kick him in the rear! Now,
imagine that same evil guy, only a little kinder—he doesn’t provoke as much emo- [
tion, does he?

The major emotions you’ll want to use in your story are as follows:

= Anger

= Sorrow

= Happiness
m Fear

= Excitement
s Humiliation
s Depression

Studying the Greats

Before embarking on your story-writing journey, | first suggest you do a little
research. The best way to learn how to write a good story is to read stories written
by other people, stories by authors who understand how important it is to use emo-
tion, concentrate on detail and realism, and who present it all to you in a manner
that keeps you glued to a book until you read the last page.

Which authors, you ask? Since | am stuck on the fantasy theme, how about J.R.R.
Tolkien and Thomas Donaldson. Their writing methods are so ingenious that they
can make the tiniest details explode into life, filling your head with wondrous
images of distant lands filled with magic and mayhem.

Each author has his own style. J.R.R. Tolkien effectively uses cutaways to slowly
introduce you to the story’s characters one by one and to lead them (and you)
through their trials and tribulations all the way to a major event. At that point, he
immediately switches to the next major character, leaving you wondering what hap-
pened to the first (in a cliffhanger sort of way). Once the characters are introduced

E 3. Story-Writing Essentials

and you’'re left wondering what happened to them all, he brings them together and
explains what has occurred.

This method of writing keeps readers guessing all the time, plus it forces them to
always be wondering what happened to the other characters. If you haven’t had a
chance to read any of Tolkien’s works, do yourself a favor and find a copy of The
Hobbit or The Lord of the Rings trilogy.

The next author, whom | highly recommended earlier, is Stephen R. Donaldson.

His style of dressing up even the smallest details creates a story so intriguing that

:I you can actually imagine you’re there along with the hero, struggling with this
character until the final moment of glory when the story comes to its ultimate con-

clusion. One of his greatest fantasy forays is the Chronicles of Thomas Covenant series,

mentioned earlier in this chapter.

It’s hard to relate these stories to games at times, and it goes without saying that
some games have better stories than others do. Look at the Final Fantasy series
created by Squaresoft; they all have huge and intriguing stories, plus the benefit

of having the player act as the hero (or at times multiple heroes). Their method of
cutaway storytelling is similar to Tolkien’s: Introduce a character, then switch to the
next, and later come back to end the story with all the characters together. You,
too, can write amazing stories using cutaway techniques.

Applying Stories to Games

While writing a story is one thing, applying it to your game is another. Game stories
don’t progress in the same way; instead, they progress section by section. The
player of the game becomes the hero, and it becomes harder to create the story
from an outside viewpoint.

For this reason, you need to write your stories based around the player (a first-per-
son viewpoint). Keep in mind that if you write a story in a different point of view
(which for all purposes is better for the story), you must decide later on how to
change it to a first-person point of view.

Dialogue is also different. Whereas a story has a set dialogue, a game can have dia-
logue that changes, depending on the choices of the player. These choices might
even change the outcome of your story, in either a minor or a major way.

The best way to convert your story (or even start the story) for game use is to take a
small portion and experiment. First, break it into its major components: dialogue,
plot, and flow. Remember, the flow of a story in a game is based on the actions the

Applying Stories to Games

player takes, not on a flow developed by the author.

Enveloping the Player

The biggest thing to remember is that the story must wrap around the player—that
is, the player should be involved in all aspects of story. This means that you should
write from a first-person point of view. Everything happens around the player, and
you should never let the player experience anything beyond his own perceptions.

It does help, however, to relate those portions of the story outside the player’s per-
ceptions within a cut-scene. Although the player, in all reality, does not have a way [
of knowing what is happening across the world, a cut-scene might reveal the actions
of another character (one who plays a major or supporting role).

Remember that the player’s actions are the driving force behind the story’s move-
ment, so make sure that the player experiences all aspects of the story.

Breaking Up the Plot

The plot represents the major events in a story. However, how different players
move from plot point to plot point might differ. As illustrated in Figure 3.5, it does-
n’t matter what the player does, just as long as he reaches the plot points. If you
properly convey the story’s situations, players can experience the whole story just as
though it was created at their own pace.

One way to accomplish this is to use scenes, which are a preset series of events. For

Figure 3.5
Story Flow —>

Although the story plots are linear, the
Plot Point | Plot Point | Plot Point | Plot Point author can break them up and separate
them as the game develops.

Game Story Flow

/ Skipped

Plot Point

Plot Point

\ / Plot Point

Plot Point

E 3. Story-Writing Essentials

example, after you open the locked chest hidden in the temple, a scene begins in
which you must escape the now-crumbling temple. This scene covers an entire plot
point—the point at which you found the chest and must escape the device of the
self-destructing template. Every player must go through the same sequence, as it is
a major plot point.

Not to confuse you, but scenes can also be cinematic cut-scenes that reveal portions
of the story. For example, if you open the hidden chest, the game-play stops, and
the player is treated to a full-motion movie of his or her character narrowly escap-
ing death from the collapsing temple.

Linear and Nonlinear Story Lines

Games rarely have a clean-cut beginning-to-end story line. Although the main plot
is always there, subplots are introduced that pepper up the experience, even
though they might have nothing to do with the main plot. The player might not
experience these subplots, but adding them gives your game the added replay
value it needs to keep players coming back for more.

Also, stories can be dynamic. That is, the story can change as the game goes on,
based on the player’s actions. Heck, there can even be multiple endings to a story
that always starts the same. How do you handle these multiple ends? By writing
them, of course!

If you’re writing a story from scratch, keep notes and mark positions in the story
that represent a change in the plot. You then follow this branch, conveying the
viewpoint created by the player’s potential decisions. As you branch off, continue
to write the story, keeping in mind that the player will alter something or other
that will change the remainder of the story.

During the course of writing a nonlinear (or even a linear) storyline, you might
find it helpful to track the branches, much like I did in Figure 3.6. At every plot
point, I branch off to possible outcomes. This branching outline continues until all
the plot points are outlined.

Of course, I’m assuming that the story is linear, flowing from beginning to end,
and that it is pretty much laid out by the author. Nonlinear stories, on the other
hand, don’t depend on a beginning-to-end flow. In these stories, the end can always
be within range, but not yet achievable (or it’s too difficult to handle at this point).
With nonlinear stories, the games twist in ways that don’t provide a good story

Applying Stories to Games E

Figure 3.6
Beginning of St
eomnmg o 7o It helps to track the plot points in your story, especially

Plot Point if they branch off.

|

Plot Point

— T

Plot Point Plot Point

l ~ i

Plot Point Plot Point | | Plot Point

l N

End of Story End of Story

experience unless all aspects of the game are searched for and discovered.

Dialogue

Unlike in a book, dialogue in a game is usually verbal; there’s very little (if any)
inner dialogue. For that reason, a story that uses more verbal dialogue is essential.
You can effectively convey feelings or thoughts to the player through the use of
foreshadowing and flashbacks.

When it does come time for verbal dialogue, you need to separate it from the text
of the main story. The purpose here is to form a movie-script-like breakdown of
every possible conversation that can take place in your game. If you’re creating a
clear-cut game, where everything is the same every time the game is played, this
separation of dialogue is a simple task—the dialogue remains the same no matter
what happens.

But what about dynamic dialogue? The conversation changes based on the possible
decisions made by the player. Just as your story can branch off, so can the dialogue.
At every conversational point in the game, it pays to write the text based on the
choices that were made earlier.

m 3. Story-Writing Essentials

Imagine that in a game, you meet a conceited store clerk. You praise him about his
charm, and you purchase a rare weapon at a good price. However, your language
offends him, and rather than receive your praise and purchase, he prefers to teach
you a few, new words in his native tongue. He becomes so offended by your further
choice of words that he has you arrested! How will that change your story?

Involving the Design Document

Don’t forget about your design document! Remember those story-related sections
:I you have to fill in? Now is the time to take the story, individual plot points, and dia-
logue, and put those into their appropriate positions within the design document.

Later on in the game’s creation (specifically when it comes to map design, script-
ing, and characters conversing), you’ll need to start referencing these story compo-
nents from the design document. The locations in which the players can visit
during their travels need to be related using graphics that help convey their respec-
tive descriptions in the story. Using a 3-D engine such as the one developed in
Chapter 12, “Creating 3-D Graphics Engines,” and Chapter 13, “Mixing 2-D and
3-D Graphics Engines,” is perfect for your map needs.

As for scripting and characters’ dialogue, using the methods developed in Chapter 14,
“Implementing Scripts,” and Chapter 16, “Controlling Players and Characters,” is
perfect for relaying the dialogue and controlling the flow of the story in the game.

Wrapping Up Stories

Stories play a major part in role-playing games, and a good story is what makes
certain games stand out more than others. Think back to the two best role-playing
games you’ve played and compare the stories to the two worst games you’ve played.
I’ll bet many of the differences are related to the stories! You want your game to be
one that players fondly remember.

In this chapter, you discovered the basic structure and guidelines for writing stories
and how to convey those stories in your game. As | said earlier, a good story is what
makes certain games, and using the information in this chapter, you can enhance
your stories. In addition to using the information in this chapter, | suggest picking
up a book on writing short stories. | find that short stories get right to the point of
the story, thus holding my interest (refer to Appendix C, “Recommended
Reading,” for one such book).

PART THREE

FPROGRANMING
EASI1CsS

10

Starting with C++

Programming with Windows and
Application Basics

Drawing with DirectX Graphics
Interacting with Directinput
Playing Sound with DirectX Audio
Networking with DirectPlay

Creating the Game Core

R W L e : o e e e e

= s] e N N el IV
CHAPTER 4
STAHRTING

LiI1TH C++

m <4. Starting with C++

ou’ve been reading the newest books, browsing the latest magazines, and

downloading all the code from the Internet that you can get your hands on.
With so many resources out there, you’ve finally decided to take the plunge and
learn C++. Let met tell you, it’s going to be one heck of a ride, but it’ll be worth
every penny of it.

:I With C++, you’re thrown into a whole new dimension of programming. Don’t

worry, you’re still able to rely on the standard C code you’ve grown to know and
love (C++ merely builds on C), but you now have at your fingertips the enhanced
features that C++ provides.

Features like object-oriented programming enable you to create modular code

you can use over and over in your different projects, all with little to no recoding.
Other features include useful new keywords, enhanced function-calling capabilities,
structure handling, and so many more additions that | could go on forever!

While most beginners look at the most advanced features of C++ first, the only real
way to learn is to start at the bottom with what you already know in C. With the
help of this chapter, you can use C++ in a step-by-step manner, getting the easiest
stuff first and then moving on to the more advanced topics. Before you know it,
you’ll be a C++ expert!

In this chapter, you do the following:

Learn about object-oriented programming
Work with functions and variables

Take advantage of new keywords and features
Find out about constructing and using classes
Use advanced structures

Introducing C++

C++ is an object-oriented language, so you need to think in those terms. Object-oriented
programming, or OOP for short, involves creating program code that enables you to
group sets of instructions into packages known as objects. An object can represent
anything: your player character, a weapon, or even the world. Although these

Moving from C to C++ E

Figure 4.1

Object

-) . OK! -
Outside Sources | Private Data | | Visible Data |<——>| Outside Sources |

An object contains
internal information
that outside sources
can, or cannot, access.

objects “know” only about themselves, they are constructed so that outside objects
can work with them. That is, the data within these objects is self-contained and is [
shared only through exposure, which means that an object hides its data, except

for the data that outside sources are allowed to access (as illustrated in Figure 4.1).

A world object, for example, takes care of only itself, but if | want to know the tem-
perature at a specific point on the globe, | ask the world object for this informa-
tion. A player character object, on the other hand, might be able to tell me its
health or its position in the world.

Object-oriented programming introduces a whole new way of structuring your code,
and learning how to cope with this change does take time. You’re not only dealing
with OOP, but also with C++ in general. With so much to take in, where can you
start? How about with what you already know, C, and building up from that.

Moving from C to C++

C++ is considered a superset of C, with C++ bringing you a bunch of new object-
oriented features and enhancements to existing C coding methods. You don’t have
to use the new features, but it helps a lot to be familiar with them.

First, instead of using the .c extension,
C++ source files use the .cpp extension

(as do all the source files included with NOTE
this book). All header files still use the .h At this point, I'm assuming that you
extension. Most compilers will automati- are familiar with the C programming
cally compile the code as C++ because of language. Although you don't need
the extension, but please make sure this to know all the idiosyncrasies of C,
is the case with your specific compiler. you should understand its basic pro-

) gram flow, structure usage, pointers,
Probably the most obvious place to start and other general information. |

is with the new features that C++ gives
you when working with functions.

a0 a0

m <4. Starting with C++

Working with Functions

C++ brings a whole new world of defining and calling functions. The improvements
are handy, but you’re not required to use them all. Take your time and get familiar
with these new features; they’re powerful assets in your programming arsenal.

Function Prototyping

The most important rule when working with functions in C++ is that you should
provide a prototype for each one (for reasons that will soon become apparent).
:I Appropriately, this method is called function prototyping.

Typically, function prototypes are placed
in a header file (.n), with each source Nex=
file including the header as needed. For
example, say that you want a function

Function prototyping is the method of
predefining a function-calling conven-

that adds two numbers. It takes two tion so that other program code calling
numbers as arguments and returns a on that function knows how to use it.
summed number, all using a long data This function prototype includes return
type. Here’s what your function proto- data types and calling arguments.

type and code might look like: — N\

// Function prototype - placed inside a header file (.h)
lTong AddNumbers(long Argumentl, short Argument2);

// The actual function - placed inside a source file (.cpp)
Tong AddNumbers(long Argumentl, short Argument2)
{
return Argumentl + Argument?2;
}

Instead of declaring variable names in the function prototypes, you can specify only
their data types, leaving the variable naming to the actual function code, as in the
following:

// Function prototype
lTong AddNum(long, Tong);

// Function code
Tong AddNum(Tong Numl, long Num2)
{

return Numl + Num2;

Moving from C to C++

Previously with C, you didn’t really have to prototype a function in order to call it.
The compiler merely created the prototypes, figuring out the arguments and return
types as best it could. Why then do you have to prototype all your functions? There
are a few reasons why, the first being something called default function argument values.

Default Function Argument Values

Function arguments can now have default values assigned to them, which saves you
time and space because you don’t have to type frequently used argument values.
For example, say that you have a financial program that takes a loan amount and

adds an interest percentage to it. [

Suppose that the standard loan amount is $10,000 and the interest rate is normally
set at eight percent. You’ll want to prototype the function to use the default values
for the arguments. Here’s what the sample prototype looks like:

float AddInterest(float Amount=10000.0, float Interest=0.08);

You can see in the preceding function proto- L s
type that Amount has a default value of 10000.0 TIP

and Interest has its default value set at 0. 08,
both of which the compiler will substitute if
the calling function does not include it.

Place default argument values
only in the function prototype.
You don’t need to place them
Here’s the function in use, along with the in the actual function.
different methods of calling it: — —

// Function prototype
float AddInterest(float Amount=10000.0, float Interest=0.08);

// The actual function - no need to add default values to Tine
float AddInterest(float Amount, float Interest)
{

return Amount * Interest;

main()
{
float Amount;

Amount = AddInterest(30000.0, 0.07); // Figure $30,000 at 7%
Amount = AddInterest(20000.0); // Figure $20,000 at 8%
Amount = AddInterest(); // Figure $10,000 at 8%

m <4. Starting with C++

L1 |

CAUTION

:| If you omit a value, leaving the compiler to use the default, you have
to omit the remaining values as well. In the AddInterest example, if you
omit Amount, you must also omit Interest (and any other arguments
that follow).

The only problem with this is that all following arguments must also

have default values assigned, or the compiler will complain. Take the
following function prototype, for example:
J float AddInterest(float Amount = 10000.0f, float Interest);
Because no default value for Interest is provided, the compiler will
:| again complain if you call AddInterest with less than two values: |:
AddInterest(10.0f);
1 1

Function Overloading

While assigning default argument values is a good reason why you should prototype
all functions, probably the biggest reason is the introduction of function overloading.

With function overloading, you can provide
many functions that share the same name NOTE
but differ in their arguments. In this way,
you can construct two (or more) functions
that share the same name but accept data
provided in different ways.

Function overloading is the method

of providing multiple prototypes
of the same function, each with a
g different set of calling arguments. g

For example, you can construct one func-
tion that takes a few individual variables as
arguments, or those variables can be
wrapped in a structure and have a

pointer to that structure passed to a sec- NOTE

ond function of the same name. f .
Internally, compilers encode function

Overloading ensures that the compiler names with a list of their argument
knows what functions to call. In Figure 4.2, types as a way to easily distinguish
notice that the object in the middle one function from another of the
(compiler) poses questions and the same name.'l_'his encoding is ca_lled
arrows show possible functions to call name decoration or name mangling.

with the same name. ‘

Moving from C to C++ m

Figure 4.2
FunctionCall (#,#); FunctionCall (#);)
Functions can have the same
name but different argument lists.
? ? Prototyping functions ensures
_ that the compiler doesn't get
Compiler

them mixed up.
FunctionCall (1,2)?

FunctionCall (*ptr);

Look at the following bit of code, which prototypes and defines two functions that
add numbers, both using the same function name (with different arguments):

// Function prototypes

// Add 2 numbers
Tong AddNumbers(long Numl, Tong Num2);

// Add an array of numbers
Tong AddNumbers(Tong *NumArray, Tong NumOfNums);

// Function code
lTong AddNumbers(Tong Numl, Tong Num2)
{

return Numl + NumZ;

Tong AddNumbers(long *NumArray, long NumOfNums)
{
long Result, 1;

Result = 0;
while(NumOfNums--)

Result += NumArray[il;

return Result;

<4. Starting with C++

These two functions can coexist in a C++ program because of function overloading.
The compiler will distinguish which function to call based on the arguments you
pass to the function. So, the following two functions calls are valid:

Result = AddNumbers(10, 20); // Result = 30
long Array[5] = { 10, 20, 30, 40, 50 };
Result = AddNumbers(Array, 5); // Result = 150

Inline Functions

:I Programmers are stuck with the old expression, to gain speed you must sacrifice

space, and vice versa. You can give your code a slight increase in speed a couple of
ways—Dbut at the cost of a bigger executable. One of these ways is to signify func-
tions as inline.

By preceding your function declarations with the keyword in1ine, the compiler will
place an actual copy of the function code at the calling location rather than push
everything on the stack and call the function (as in Figure 4.3). This means that if
you call the function five times, the function code will be inserted into the exe-
cutable five times at the calling locations.

Here’s an example that uses an inline function to add two numbers:

inTine Tong AddNumbers(long Numl, Tong Num2);

lTong AddNumbers(Tong Numl, long Num2)
{
return Numl + Num2;

main()
{
lTong Result;
Result = AddNumbers(10, 20); // Code to AddNums inserted here
Result = AddNumbers(11, 6); // Code to AddNums inserted here
Result = AddNumbers(l, 13); // Code to AddNums inserted here
}

Although this method increases the execution speed a little, sometimes it’s just not
worth implementing. Besides, some compilers will cut inline declarations out during
the optimization process, so there’s not much call for them.

Moving from C to C++

Figure 4.3

Program Inline Code Inline functions are inserted into the
............ / compiled code, thus increasing the speed
of execution and the resulting file size.

............ / Inline Code
Inline Code |4

Inline Code |[+———| Inline Code

Working with Variables

Along with adding new function-calling capabilities, variables were also given a leg-
up in C++. Although not as handy as some of the previous features might seem to
be, these enhancements to variables hold their own.

Variable Declaration

The biggest improvement is that you can now declare a variable anywhere in your
code rather than at the beginning of the code block. With this capability, you can also
declare a variable data type while you are setting its value, as in the following example:

lTong SomeFunction(long Numl, Tong Num2)
{
long Result; // accessible to entire function

7f(Numl < Num2) {
long AddResult; // accessible to next two Tines
AddResult = Numl + Num2;
Result = AddResult;

} else {
long SubResult = Numl - Num2; // accessible to next line
Result = SubResult;

<4. Starting with C++

SubResult = 0; // ERROR - out of declaring code-block

return Result;
}

You can see that | declared Addresu1t in the conditional block right before using it,
and I declared and set the subResult variable as well. Both are valid methods and
completely allowable, except for the one line | commented. You can see from my
remark that there’s an error, which | explain next.

J Scope and Precedence

The preceding example introduces variable scope. Variables declared are retained
only inside the scope of their declaration. So a variable declared at the start of a
function is accessible throughout it, while one declared inside a conditional block
is invalid outside the block (as shown in Figure 4.4). A declaration must precede its
usage and remain in scope.

In the preceding example, Result is declared at the top of the function, making
Result accessible throughout the entire function. But AddResult and SubResult are
not. Those variables are accessible only within the conditional blocks in which they
are defined. Trying to access either of those values outside their scope will cause an
error, as seen in the comment line in the preceding function.

- Figure 4.4
Function () The variable is valid only within its declaring
conditional block. Trying to access it outside this
block causes an error.
5 O long variable; g g
B O variable = 128; ~3
C } L
=}
L —
ife==2) <{ 1.8
EI} variable = 256; // Error! | g
} A8

Moving from C to C++

Because of variable scope, at times you might have a global variable with the same
name as a local variable. Just as in C, the local variable takes precedence. In C++,
you can explicitly tell the compiler to use the global variable by using the scope res-
olution operator (defined as two consecutive colons) prefixed to the variable in
question, as in the follow example:

Tong Result;

Tong SomeFunction(long Numl, Tong Num2)

{
Tong Result;
Result = Numl + Num2;

Result += ::Result;

return Result;
}

// Global variable

// Local variable [
// Local variable = Numl + Num2
// Note the two colons in the next Tine of code

::Result = Numl + Num2; // Global variable = Numl + Num2

// Local = Global

Precedence also works with functions, but it may not be readily apparent why at
this point. Just keep the idea of precedence in mind until later in this chapter.

Static
Variables

Variables take space, and you
want to preserve as much space
as you can, but what about
those times when you need to
keep track of a variable over
multiple function calls?
Because of scope issues, a vari-
able loses its value whenever its
scope is lost. Take a look at this
example:

long IncreasePeopleCount()
{
lTong NumberOfPeople = 0;
NumberOfPeople += 1;
return NumberOfPeople;

L1 L1

CAUTION

The only drawback is that you can’t have mul-
tiple variables with the same names in differ- |:
ent scopes and use those variables together.
For example, if you have a global variable
called Result and you define Result at the top
of a function and then again within a condi-
tional block, only the conditional block and
global Result are accessible.

For this, you might find it easier to prefix a
global variable with g_ to indicate the variable
as such.This is part of a coding standard called
Hungarian Notation, which is the method of
prefixing a variable name with specific letters
to signify its data type and/or scope.

[1 [1

<4. Starting with C++

main()
{
Tong Num;
Num = IncreasePeopleCount(); // Num
Num = IncreasePeopleCount(); // Num
}

This example has a function that tries to keep track of a number (some number
of people to be exact). The only problem is that Number0fPeople is always reset to 0
whenever the function is called. Of course, you could define that variable globally,
] but since you only want that variable associated with that specific function, you
could instead declare the variable as static:

||
—

static Tong NumberOfPeople = 0;

By prefixing the variable declaration with the keyword static, you informed the
compiler to maintain the variable’s value, even after losing scope. The value you
assigned the variable during the declaration is the starting value, and you are
allowed to modify it in any way after that.

Now, each time you call IncreasePeopleCount (this time with a static variable), you get
an incremental count, as in the following:

main()

{
Tong Num;
Num = IncreasePeopleCount(); // Num = 1;
Num = IncreasePeopleCount(); // Num = 2;
Num = IncreasePeopleCount(); // Num = 3;

Protecting with Const

What about those unscrupulous functions that try their best to mess with your vari-
ables? For those guys, you have the power of const at your disposable. By declaring
a variable (or even function!) with the const keyword, you tell the compiler that the
variable is strictly read-only, as illustrated in Figure 4.5.

The only way to write a value to a variable protected by the const keyword is when
you actually declare the variable, as in the following (notice the error trying to set
the value afterwards):

const long ReadOnlyVariable = 10; // Assign the value 10
ReadOnlyVariable = 20; // Error! Read-only!

Moving from C to C++

Figure 4.5
Variable Variables protected by const in their
Write Ok/ \ declaration can only be read, not written to.
Cad Source
Code

const Variable

Using const also pertains to function arguments, so when you pass a non-const vari-
able to a function, that function in return can classify the variable as const and thus
protect it, but only within the function’s code block. Here are a couple of examples
to get you going:

main()

{
const Tong Var = 10;
Tong 1i;

Var = 20; // Error! Is read-only
SomeFunction(i);

void SomeFunction(const long Val)
{
Val = 10; // Error! Is read-only

New Keywords and Enhancements

Past frustrations with C features led to some great enhancements and additions that
were included in C++. The biggest problems were allocating and deallocating mem-
ory, referencing enumerated lists, and depending on NULL being a consistent value
among different compilers. The list goes on, but these are the major problems that
I want to address.

Again, although you do not have to use these enhancements, they sure do make
your coding easier. With the enhancements you’re about to learn, you’ll have no
reasons to ever go back to the old methods!

<4. Starting with C++

m NOTE

C++ isn’t just some add-ons to an existing language; it’s a com-
plete standard adopted by every company that markets C++
compilers. Although you can still find a little discrepancy in some
compilers, it’s safe to assume that they all stick to the standard.

o —

Memory Allocation

The computer’s memory is where everything is held, program code, graphics,
sound effects, and what have you. Now, it’s time for you to get a piece of the pie
and grab hold of some memory for your own use.

Allocating memory is new in C++. You now have access to the super-intelligent new
and delete operators. These two babies will allocate any type of memory, whether
it’s a single data type (such as char, 1ong, Or float), class, or structure—and all with
the same call!

To allocate memory, use the new operator, which takes this form:

void *Ptr = new DataType; // for a single element
void *Ptr = new DataType[NumElements]; // for multiple array

Ptr is the pointer to the memory you are allo-
cating, while pataType is the type of data you

are requesting (as well as an optional array NOTE

size). The pointer can be cast into anything, If it was unable to allocate

usually the same as the data type you are memory, new will return a NULL

requesting. value. If non-NULL, new returns the
pointer to the newly allocated

For example, say that you want to memory, which is cast to the

allocate an array of 10 long values, 100 struc- data type allocated.
tures (called sMystruct), a single float value,
and an array of 20 pointers:

long *Ptrl = new long[10];

sMyStruct *Ptr2 = new sMyStruct[100];

float *Ptr3 = new float; // single float value
char *Ptrd = new char*[20];

Moving from C to C++

All memory you allocate using new needs to be released in order to free the system
resources. You accomplish freeing this memory with the delete operator. Since C++ is
doing the hard work for you, just call delete with the pointer to the allocated memory.

The only catch here is that, if the memory allocated was an array, you need to append
a pair of open and close square brackets after the delete keyword. Take a look at the
following code bit, which shows how to release the preceding allocated memory:

delete[] Ptrl; // longl[10]
delete[] Ptr2; // sMyStruct[100]
delete Ptr3; // float - no brackets I:
deletel] Ptrd; // char*[20]

As an added bonus LT LT

and to make your TIP

life a little easier, it - .

becomes possible to In order to allocate a multidimensional array, suc_:h as [
Tong[51[101[20], you must declare the pointer a little

call delete ona differently;

memory pointer

that is set to NULL. R s

Doing S0 saves you Ptr = new 1ong[5][10][20]; // allocate

the trouble of hav- delete[] Ptr; // free

ing to check the If you're trying to allocate an array of pointers, then simply

pointer before free- do this:

ing it. For example, char **Pointers = NULL;

the.follo-wing code :| Pointers = new char*[10]; // array of 10 char * pointers [

bit is valid: delete [] Pointers; // make sure to delete it!

char *DataPtr = NULL; [1 1

delete DataPtr;

NULL and Enum

While not readily apparent, some other smaller changes have occurred with exist-
ing C functions. Previously, NuLL could have been any variable that the compiler’s
manufacturer picked, but with C++, NULL is always O (although it still helps to use
the macro nULL).

Also, an enumerated list is even easier to work with because you don’t have to prefix
the usage with the enum keyword anymore. For example, you can do the following:

enum Numbers {
First = 1,

<4. Starting with C++

Second,
Third, NOTE
Tenth = 10

}s

short Value = Second; // equals 2

As always, enum values are of
the int data type, so be sure
to cast to the appropriate
You can see that the last line does not cast to data type when storing one.
the enumeration because the compiler figured
the enumeration part out for you. What a boon!

Classes

Drum roll please . . . introducing the biggest feature in C++—classes! Being an
object-oriented language, C++ deals with classes as objects. These objects are self-
contained, each one having its own set of data and functions with which to work,
thus making these objects portable and highly reusable.

You can think of a class as being 1
a C structure on steroids. You NOTE
declare a class much like a struc-
ture, first with the keyword class
and then with the actual name

Notice that | prefix all class names with
the lowercase letter c. Notice too that
Hungarian Notation (and thus Microsoft)

of the class you_ are defining. uses an uppercase C instead. | find this style
The class data is then enclosed confusing with certain class names, such as
within a pair of brackets. Here’s CHitPoints, because the C blends in with the
an example of an empty class first letter of the class name.The same goes
declaration: for my structure names; they are prefixed

with a lowercase letter s, as in sMyStructure.

class cClassName
{ 1 [1
b

One of the major differences between a class and a structure is that with a class,
you can protect the data within from being exposed (visible to outside code), as
Figure 4.6 shows.

For example, if | create the following, you can see that the three declared variables
are accessible from anywhere:

struct sMyStructure
{

Team-F IiJ v

long Varl, Var2, Var3;

main()
{
sMyStructure TestStruct;

TestStruct.Varl =

TestStruct.Var2 2;

TestStruct.Var3 3;
}

|
—

Classes

LI LI

TIP

:| | suggest that you always
forward-reference classes
(just as you would any variable)
inside a header file (.h). Do this
by inserting the keyword class,
followed by the name of the
class, as shown here: class
cClassName;.

In this manner, the compiler

Although doing this might seem desirable, knows that a class by that
what about those times when you have a | name does exist and can be

crucial value stored in a variable that you

used before it is declared.

don’t want anything to mess with? With C++, M M
you can tell exactly what data can be accessed

from outside the class.

Structure

Data

A

Outside
Source
Code

Data

Data

A

A

Class

Y «— Outside

— Source
Data [sTop | A Code

Data

Data

A

OK!

Figure 4.6

Structures allow free access to internal data, while
classes do not.

m <4. Starting with C++

Class Visibility

You limit access to class contents (class visibility) by using three keywords: public,
private, and protected. Public data is freely accessible from outside the class. Private
data is restricted to the class itself; nothing outside can access it.

Last is protected data, which is almost the same as private—nothing outside the class
can access the data, but classes derived from it can. Ooops! I'm getting ahead of
myself again; I’ll get to derived classes in a moment.

:I When referring to the data enclosed within a class, I’'m referring to variables and
functions. Yes, that’s right—functions as well. Internal functions can be executed by
outside program code or used internally only from within the class.

Look back at the empty class (cClass) | created; you can add the visibility keywords,
plus start listing variables and functions under them:

class cClassName
{
public:
// Place public variables and functions here
long m_PublicVar;
lTong PublicFunction();

private:
// Place private variables and functions here
long m_PrivateVar;
long PrivateFunction();

protected:
// Place protected variables and functions here
long m_ProtectedVar;
long ProtectedFunction();
s

You can now instance this class just like a structure and begin accessing data within
it, but remember that some of the data is protected. The following code bit shows
you what can and can’t be accessed:

cClassName MyClass;
MyClass.m_PublicVar = 10; /] 0OK!

MyClass.PublicFunction(); // 0OK!
MyClass.m_PrivateVar = 11; // Not acceptable

Classes m

MyClass.PrivateFunction(); // Not acceptable = =
MyClass.m_ProtectedVar = 12; // Not acceptable TIP

MyClass.ProtectedFunction(); // Not acceptable Just as you prefix global

How do you then access those protected functions data with g_, you prefix
and variables? Only code from within the same class variables with m_ to
class can access those protected variables and signify that they belong to

a class. Again, this is stan-

functions (as shown in Figure 4.7). Some exam- _ X
dard Hungarian Notation.

ples of this are coming up.
1 1

Class Variables and Functions [

There’s not much to defining a variable or function inside a class, as you previously
saw. For variables, just inserting the variable declaration under the appropriate
access keyword handles it. In the preceding class declaration, you can see that |
defined three variables.

Only the public data is accessible to outside code, such as the case with m_PublicVar
and PublicFunction. Attempting to access anything else from outside will generate an
error. The only way to access the other data is within the class, which is usually in
the form of a function.

Just as you define the visibility of variables in the class, so do you with functions.
Function declarations are identical to all other declarations; they just belong to the
class only. From the prior example class, you can call only PublicFunction, but inter-
nally you have access to all three functions.

From here, the next step is to write the code to the functions themselves in the .cpp
source file belonging to the class. Each function you write must have the class
name prefixed by two colons, as shown here:

Tong cClassName::PublicFunction(void)

Figure 4.7
1 oun
A class can access its own functions, but can
N) determine which functions can't be accessed
MyFunction1 (); «—> i
C Outside from code outside the class.

MyFunction3 (); [sTor | A

Code

C @ souce

E <4. Starting with C++

This addition of the colons informs the compiler that the upcoming function is
part of that class. A source file might or might not contain functions contained
within a class, so adding the two colons is the only way to link the functions to their
respective classes (as illustrated in Figure 4.8).

The preceding function takes no arguments and returns a long value. Not too hard
so far, so let’s go on. Taking the sample class again, have each function return its
respective variable, with the public function returning the sum of the three (by
adding the public variable, private variable, and the return value of the protected
function).

Tong cClassName::PublicFunction()
{
return m_PublicVar + ProtectedFunction() + m_PrivateVar;

Tong cClassName::ProtectedFunction()
{
return m_ProtectedVar;

lTong cClassName::PrivateFunction()
{

return m_PrivateVar;
}

As you can see, the public function is freely accessing the other data and functions
inside the class. In this way, you can alter the way a class accesses its internal data,
but still present it in the same manner to outside code.

Figure 4.8

Source files can contain many
Class i i
F | e ()| functions, but those functions

related to classes need to be
| AnotherFunction () | linked via colons.

\

MyFunctiont () |1

MyFunction2 () |y | SomeFunction ()

N

Class : MyFunction2 () |

Classes E

Another bonus to using functions in classes is that you can define the function
inside the class declaration. Doing so is useful for smaller functions that you don’t
need to waste space with in the source file. The following example, which is based
on the preceding code, shows what | mean:

class cClass
{
public:
lTong PublicFunction(void) { return m_PublicVar + \
ProtectedFunction() + m_PrivateVar; }
// rest of class declaration [

Using Static Variables and Functions

Normally, class instances have access to their own copy of internal data. If you
instance a class, it has no knowledge of any other instances of it. In order to share
data between classes, you must use a static variable or function, which makes it
global to all instances of the class.

Start by prefixing the variable or function with the keyword static:

class cClassName
{
public:
static Tong m_Variable;
static Tong Function();
}s

A default value should be set for static variables in the class code portion (declared
globally):

lTong cClassName::m_Variable = 100;

Now, just access the variable as you L L
normally would inside an instance

of that class. It will be the same CAUTION

value for all instances of the class, Notice that static is used a little different-
and any instance modifying it will ly than it was previously. These differences

can get confusing at times, so take care

change it for the rest (as shown in :
not to get the two mixed up.

Figure 4.9).

1 1

m <4. Starting with C++

Figure 4.9

Class Instance Class Instance

A static class variable remains

fixed, no matter how many
class instances access the

variable.

Class Static Variable

RN

:I Class Instance Class Instance

As for functions, declaring one as static makes it accessible to all instances, but the
function itself has no knowledge of the calling class instance. For this, you might
want to provide the static function with a pointer to the calling class.

This example program declares both a static variable and function and then
demonstrates their use.

class cClassName
{
pubTic:
static Tong m_Var;
static long Function();

}; LT LT
g CAUTION ?

// declare the default value of static variable

Remember that static
lTong cClassName.m_Var = 10; functions have no knowl-
edge of the class instances
Tong cClassName::Function() themselves. Keep that in
{ mind while coding your
m_Var++; // increase static value classes. You can see how to
return m_Var; // return it use these methods effec-
} i tively in later chapters. j
1 1
main()

{
cClassName Classl, Class2;
printf("%Tu\r\n", Classl.Function()); // prints 11
printf("#Tu\r\n", Class2.Function()); // prints 12

Classes

The Constructor and Destructor

Along with the functions you provide, every class contains two built-in functions
called the constructor and destructor, which are called when an instance is created
and destroyed, respectively. These declarations can be overloaded (remember
function overloading!) for your use under public visibility, and they always have
the same name as the class (with the deconstructor prefixed by a tilde character),
as shown here:

class cClassName
{

public:
cClassName(); // default constructor
cClassName(long Varl, long Var2); // overloaded constructor
cClassName(char *Data); // overloaded constructor
~cClassName(); // destructor

cClassName::cClassName()
{
// do whatever class initialization here

cClassName::cClassName(long Varl, long Var2)

{
// do whatever class initialization here with two variables
// even call on the other constructor or other functions!
cClassName();

cClassName::cClassName(char *Data)
{
// And again - do whatever here

cClassName::~cClassName()
{
// free whatever used data here

m <4. Starting with C++

A constructor is called whenever the class is instanced or allocated (with new) and
can be overloaded to provide multiple ways of setting up the internal data when
instanced. A destructor does not take arguments and is called when out of scope
or deleted. Neither of the two returns values. Here are some examples of using
constructors and destructors:

cClassName MyClass; // default constructor called when program
// is first started

main()
I
cClassName SomeClass(10, 22); // 1st overloaded constructor
// called when main start
cClassName My2ndClass("Hello"); // 2nd constructor called
// when main starts

cClassName *ClassPtr; // not yet
ClassPtr = new cClassName; // now constructor called
delete ClassPtr; // destructor called now

// My2ndClass destructor called when this function exits
}

// MyClass called now that program has terminated

Operator Functions

Class functions can also take the form of operators. No, not those nice people you
get when you press 0 on the phone, but operators such as add, subtract, multiply,
and divide (along with others found in Table 4.1).

You need to know a few things in order to use operators. First, the return type must
be the class name (using operators such as += or = that return a value to another class
of the same type) or a standard data type (= for comparing a value). Second, you
must use the operator keyword, followed by the operator to use. Last is the standard
function argument list.

Here’s a sample that uses two operators (= and +=) to manipulate an internal number:

class cClassName
{
public:
cClassName operator=(long Val);

Classes

cClassName operator+ (Tong Val);
long Value() { return m_Value; } // return protected value

protected:
Tong m_Value;
// No need for return value

cClassName::operator=(long Val)

{
m_Value = Val; [

// returns value to another class of same type
cClassName cClassName::operator+=(long Val)
{

m_Value += Val;

main()
{
cClassName MyClass;
MyClass = 10;
MyClass += 20;
printf("%Tu\r\n", MyClass.Value()); // prints 30

Table 4.1 Overloadable Operators

+ = & / % 2
4= - *= /= 9= A=
++ = < > ! =
& | « > 1= -
&= |= (= >= 0 []

& || K= >>= new delete

<4. Starting with C++

Using the this Keyword

At times, a class needs to know a pointer to itself, and that’s the purpose of the this
keyword. The this keyword is a reserved pointer that every class has; as a matter of
fact, it is inserted into every class function call (although invisible to you). To see
what | mean, take this typical C++ class function:

lTong cClassName::SomeFunction(long Val)
{

return Val + 10;
])

This function, when compiled and with the hidden argument added, looks like this:

lTong cClassName::SomeFunction(cClassName *this, long Val)
{

return this->Val + 10;
}

NOTE
The biggest use of this is with static You can use the this keyword in
functions or other functions that need order to access internal data, but
a pointer to the calling class. Just pass there’s really no need to because the
the this pointer to a function, and use compiler does it for you. Static func-

it as a reference, as shown here: tions are the only functions inside a
class that do not have the this key-

class cClassName . . .
word inserted into the argument list.

{

public: ‘
cClassName() { SomeFunction(this); }
long m_PublicVar;

void SomeFunction(cClassName *Ptr)
{
Ptr->m_PublicVar = 10;

main()
{
cClassName cl; // cl.m_PublicVar now equals 10

Tmm-FIiJ :

Classes m

Class Friends

When declaring multiple classes, it sometimes becomes necessary to share informa-
tion between them, but still limit their visibility to outside code. For example, if you
have a protected variable in C1ass1 that Class2 needs access to, how do you go about
using that variable without having to write a public function? And in that instance,
how do you make sure that no outside code takes advantage of this newly created
public function?

One simple way is by classifying variables, functions, or even entire classes as
friends. You do this within the class from which you want to share data. However, [
this sharing of data is not mutual—a class can share data only with other functions
and classes that it knows about.

For example, if the first class declares a second class as a friend, the second class
has free access to the first. This does not give the first class access to the second,
however, because the first class needs to be declared as a friend in the second class
(as shown in Figure 4.10).

Code is worth a thousand words, so check this following bit to see what | mean:

class cClassl

{
friend cClass?2; // cClass2 can access my data

protected:
Tong m_Value;

pubTlic:
// next Tine not acceptable as cClass2
// has not declared me as a friend
cClassl() { cClass2 MyClass; MyClass.m_Value = 1; }

class cClass?
{
// cClassl cannot access me as it's not declared as a friend
protected:
lTong m_Value;
public:
// next Tine acceptable
cClass2() { cClassl MyClass; MyClass.m_Value = 2; }
s

m <4. Starting with C++

Figure 4.10
Class1 Class2 Classes can allow free access to
-— each other, but they need to be
Class2 is friend. Only Class1 | fri fi
Class3 is not. is friend. declared as friends first.
J Class3
Only Class2 is

my friend.

You can see that cClass2 can access cClass1 because it is a friend, but it’s not neces-
sarily mutual. cClass1 has no access rights to cClass2 unless cClass2 defines cClass1 as
a friend. You’ll see many examples of using this “friendly” feature throughout the
book.

Derived Classes

When it comes time to add functionality to an existing class, you merely piggy-back
onto it, borrowing its foundation of data and then adding your own or improving
on existing functions and variables. This method of creating a new class based on
an existing class’s data is called inheritance.

With inheritance, you are actually deriving a new object from an existing one. The
original class you use is called the base class, while the new class you are creating is
called the derived class, as illustrated in Figure 4.11.

When you want to derive a class, define it in the following way:

class cDerivedClass : public cBaseClass
{

// Derived Class Data goes here

// This data is in addition to data already in cBaseClass
}s

Because the original data already exists in cBaseClass, there’s no need to duplicate it
here; just add the new data. You can still access the base class’s variables and func-
tions, except for those in the base declared as private.

Classes m

Figure 4.11
(Base Class) - 5 (Dertved) Derived classes are
Uil Sl constructed from a base
class. You can also derive
/ \ a class from a previously
(Derived) (Derived) derived class.
cMonster cPlayer
(De£ed) I:
cBoss Monster

Here’s an example of a derived class NOTE

being created from a base class: By prefixing the cBaseClass class
name with the public keyword, | am
telling the compiler that any further
derived classes from cDeriveClass

class cBaseClass
{

public: ,
: BubTicVar: can freely access the base class’s
ong m_rublicyars data.To protect the base class’s data
i from further derived classes, | can
use the private or protected keyword
class cDerivedClass : public cBaseClass instead of public.
{
public:
lTong m_PublicVar2;
}; LT LT
a0 CAUTION
(Private data in the base class does
cBaseClass BClass: not become visible to a derived class,
cDerivedClass CClass: but it still exists.You accomplish this

BClass.m_PublicVar = 10: by using private visibility, and it is

DC1ass .m_Pubh'cVarz = 100; useful when there is a piece of crucial

DClass.m_PublicVar = 11: data that you absolutely do not want
- to get modified, not even by a 5

}
i derived class.
1 1

E <4. Starting with C++

Functions that use a base class as an argument can use derived classes as well.
Such functions simply treat the derived class as the base class and can access only
the data defined in the base class, as shown here:

class cBase NeJ=
{ This ability to call a base

pubTiic: function from any derived
long m_Var; K
(or base class) is called
¥ polymorphism. You’ll see
. . many examples of this
J class cDerived : public cBase throughout the book.
{
public:
cDerived(Tong Var) { m_Var = Var; } // using m_Var from

// inherited cBase
}s

long AddValue(cBase *Base, long ToAdd)
{
m_Var += ToAdd; // Add the specified value to cBase m_Var
// even though passed class might be
// derived from it

main()

{
cDerived MyClass(50); // instance class, set m_Var to 50
AddValue(&MyClass, 100); // MyClass.m_Var now equals 150

}

LT LT

TIP

From the last example, you can see the derived
class has been passed by reference to a function,

. which is completely acceptable. But in order to pro-
der“{ec_l class acc?ss by tect data in the class from the calling function, you
specifying the private or need to specify the class argument as a const “vari-
protected keyword in the able in the calling function.

derived class declaration,

as in the following:

As | previously noted, a
base class’s data can be
protected from further

1 1

class cBaseClass { private: Tong Var; };
class cDerivedClass : private cBaseClass { private: Tong Var2; };

Classes E

class cDerivedAgainClass : public cDerivedClass
{
public:
long GetValue() { return Var; } // Error - can't access
}s

In the preceding code, by declaring the cDerivedClass from cBaseClass (this time
declaring the base class access as private), only instances of the cberivedClass (and
Not cDerivedAgain) can access Var.

Virtual Functions [

With derived classes, there will be times when you will want to overwrite the
functionality of a base class function using the derived class’s function instead.
For example, if you want a class to print a specific number, do the following:

class cBaseClass
{
pubTic:
void PrintIt() { PrintNum(1); }
void PrintNum(long Num) { printf("%1u", Num); }
b

When you call the cBaseClass’s PrintIt function, it will print the number 1. To add
better features to the base class, say print the number with a little text, you can
derive a class and declare the new printNum function:

class cDerivedClass : public cBaseClass
{
public:
void PrintNum(long Num) { printf("The number is %1u",Num); }
b

If you were to instance cDerivedClass and call the printit function (which in turn
calls printNum), you might expect the output to be as follows:

The number is 1

However, instead of seeing the preceding line of text, you’ll see only the number 1,
which means that the base class’s printNum function is being called instead of the
derived class’s printNum function. This is correct, because the compiler doesn’t really
know about the derived class’s version of the PrintNum function—after all, the
base class knows only about itself, not derived classes of it.

m <4. Starting with C++

To remedy this problem, let me introduce you to virtual. By marking the function
in the base class declaration as virtual, you inform the class that a derived class may
or may not override the function. If the function is overridden, the class is to use
the derived version.

Knowing this, you can rewrite the base class declaration as follows:

class cBaseClass
{
pubTic:
void PrintIt() { PrintNum(1); }
J virtual void PrintNum(long Num) { printf("%lu", Num); }
s

Declaring your derived class (no need to declare anything as virtual) and calling
printIt will now have the desired effect of printing the whole line of text shown
previously. The compiler is merely seeing that the function has been overridden
in the derived class and uses that version (as illustrated in Figure 4.12).

Later in the book, you see virtual functions put to some great use. By creating a
skeleton class of sorts (one that contains the bare-bones code to define the class),
you can derive the class and add better features to it.

Figure 4.12

DEITIEE CIEES Using virtual,the compiler can
n the functions in th |
sca tg unctions t.ebasecass
and derived class looking for the
proper one to call, which in this
case, is the derived class’s version.

Base Class

\ Not the function | wanted!

| Derived Class : : Function |

Derived Class

/ Ahh, there it is!

| Derived Class : : Function |

Classes E

Using Const with Classes

I’ve mentioned how the const keyword protects variables by declaring them as read-
only, so now is the time to show you how you can use classes. The first way is by
declaring the entire class as const, as follows:

const cClass MyClass(Var);

From now on, even the class itself can modify nothing in that class. On the other
hand, if you want to declare a function as one that reads only class data, declare it
as const by appending it to the function declaration: [

lTong cClass::ReadValue() const

{
return m_Value; // Only returning the value

}

In fact, if you declare a class as const and then declare a function as const, the com-
piler will not complain as much. Doing this ensures that the compiler knows the
function is not trying to modify any of the class data, thus allowing the function
access to this data.

Advanced Structures

It might seem as though structures were given the old boot with the invention of
classes, but don’t throw them out yet. Even structures can have functions embed-
ded within them (including constructors and destructors), just like a class!

This point (of using embedded functions) becomes handy when you want to use a
structure to contain information, but set the variables to a default value. For exam-
ple, | can create the following structure that allocates its own memory and then
deallocates it when destroyed:

typedef struct sMyStruct {

char *Ptr;
sMyStruct() {
Ptr = new char[100];
}
~sMyStruct { NOTE
delete[] Ptr: In fact, structures are C++ classes.
} The only difference between a class
} sMyStruct; and structure is that a structure

specifies its data as public by default.

m <4. Starting with C.++

main()
{
sMyStruct *MyStruct;

MyStruct = new sMyStruct;
MyStruct->Ptr[50] = 10;
delete MyStruct;

}

Just follow the ways of the classes, and you should fully understand using advanced
:I structures!

Wrapping Up C++

Whew! There’s a lot to C++, but at least now you have a fighting chance. As you go
through the book, you’ll see that | make heavy use of the techniques discussed in
this chapter, so it pays to fully understand all the material. If you find yourself hav-
ing trouble with code, you can always refer to this chapter.

sl e MRS .,._1_,._._[7—_.-.7_-.1 = 1 W—r
e d l

= IJL"J—,_"_| |__"_Ii'_,_|—‘_—'l_|—'_{_'_L1 1 [——— R _’_l'—|f.___m

CHAPTER 5

FPROGRANMING
1T H

LDJUINDOWS

AND
HPPPLICATION

& EASsiIcs

m 5. Programming with\Windows[and Application Basics

Many moons ago, developers had to rely on their DOS skills to milk their com-
puter systems for every last drop of processing power in order to get their
games to run smoothly. At that time, Windows was a business-oriented application
platform, but not a viable platform for gaming.

As time went on, Windows 95 was released, and then with the release of DirectX

:I (a product that aids programmers in the development of games), Windows blasted
onto the scene of game development. With no reason to deal with the restrictions

of DOS, programmers slowly worked their way to writing only Windows-supported

games. So, my programming friend, you need to know the basics for programming

Windows in order to survive as a programmer of games.

Tackling the subject of Windows programming is by no means an easy task, espe-
cially in this limited space. Entire volumes have been written on this topic (such as
Charles Petzold’s Programming Windows, Fifth Edition, by Microsoft Press), and I'll
leave it to them to give you the level of detail that you need to fully understand the
topic. In this chapter, you can find the basic information that you need to get a
Windows program up and running.

In addition, because you need to start your projects on the “right foot,” | cover the
basics for structuring an application and tell you how to make your programming
tasks a little easier.

In this chapter, you learn how to do the following:

= Think in Windows’ terms

= Create your windows and deal with messages

m Use advanced Windows features

= Prepare yourself for using DirectX

= Organize the program flow of execution

= Do modular programming

= Use states and processes and handle application data

= Build an application framework and debug your programs

Programming with Windows m

Programming with Windows

You program Windows using the Win32 SDK (Windows 32-bit software develop-
ment kit) and a compiler (typically C/C++). The development kit has been around
as long as Windows, so the SDK is packed to the brim with functions that ease the
development of both business and gaming applications.

Microsoft wanted to provide a stable development platform that everybody could
understand. To that end, Microsoft created and maintains the Win32 SDK, which is
a set of standards to which all its applications and development kits abide. One of

the most notable things that Microsoft worked on was its coding conventions. [

Coding Conventions

Microsoft’s coding conventions are vast (and esoteric at times), but the ones you’re
likely to notice are those that dictate the naming of variables and functions and
that declare data types.

Hungarian Notation

Microsoft’s coding conventions include specifications on declaring variables, called
Hungarian Notation. Named after its Hungarian creator, Charles Simonyi, this seem-
ingly ingenious method involves prefixing variable names with specific characters
that define what data type the variable is: a char, byte, long, const, class member,
global variable, and so on. Table 5.1 shows several common Hungarian prefixes
and an example of how to use them.

Although using Hungarian Notation might seem like a good idea, doing so makes
the variable names appear unreadable at times. When dealing with Windows-
related programming in this book, I tend to maintain this convention, but | don’t
stick to it consistently.

Win32 Data Types

The Win32 SDK also uses predefined data types. These are just macros that you
substitute for a standard data type when declaring variables, making your code
smaller and at times more readable. Table 5.2 lists several of the common data
type macros that you’ll encounter during your programming endeavors.

m 5. Programming with \Windows|and Application Basics

Table 5.1 Typical Hungarian Notation Prefixes

Prefix Data Type Example
f Boolean BOOL fFlag;
b Byte char bVariable;
dw Double word (long) Tong dwValue;
J h 32-bit handle Tong hWindow;
i Integer int iNumber;
p Pointer void *pData;
I Interface IUnknown *IInterface;
q_ Global char g_GlobalVariable;
m Member short m_MemberData;

To use one of these data type macros, just replace the macro with your variable
data type:

BOOL bValue; // Holds the value TRUE or FALSE
DWORD dwValue; // an unsigned long value

E ti N . e NOTE

unction arming You will find the standard data
Typical function naming consists of words types and these data macros
packed together, with no underscores or throughout the book. Because they
spaces between words, and each word is are interchangeable, you don’t
capitalized in order to separate it from have to worry about your compiler

other words, as in the following: complaining or the code breaking.

DWORD MyFunctionName(); 1

At times, however, you’ll notice that this convention is broken by leaving the first
letter of the function name in lowercase, as shown here:

DWORD myFunctionName(); // notice m in my is lowercase

Programming with Windows m

Table 5.2 Common Win32 Data Types

Macro Description

BOOL A Boolean value (TRUE or FALSE)

BYTE An 8-bit integer that is not signed (unsigned char)

DWORD A 32-bit unsigned integer (unsigned long)

LONG A 32-bit signed integer (signed long) [

LPARAM A 32-bit value passed as a parameter to a window procedure or
callback function

LPCSTR A 32-bit pointer to a constant character string

LPSTR A 32-bit pointer to a character string

LPVOID A 32-bit pointer to an unspecified type

LRESULT A 32-bit value returned from a window procedure or callback function

UINT A 32-bit unsigned integer on Win32

WNDPROC A 32-bit pointer to a window procedure

WORD A 16-bit unsigned integer (unsigned short)

WPARAM A value passed as a parameter to a window procedure or callback
function

I personally prefer (and use in this book) the method of every word beginning with
an uppercase letter; doing so makes the code cleaner and easier to read. Another
problem arises with function arguments (and sometimes data structures) in which
the notation method is used in some variables and not in others, as shown here:

HRESULT MyFunction(
DWORD Variable, /] where's dw?
DWORD dwVariable2); // here it is!

That’s right, even Microsoft isn’t able to stick to Hungarian Notation at times,
which is readily apparent when you browse its SDK. You see this lapse of using the
notation in Chapters 6 through 9 when you use DirectX; it’s no big deal.

m 5. Programming with\Windows[and Application Basics

Working Inside a Window

The majority of programs operate inside a window, the area onscreen in which text,
pictures, animation, scroll bars, menus, and many other objects and information
are displayed, as illustrated in Figure 5.1.

One great advantage to working with a
window is that Windows does much of the NOTE
lower-level processing. Most of the controls
(such as buttons and edit boxes) update and
:| draw themselves, so their content and the
user’s interaction with them are all that you
have to worry about.

A window can consume the

entire screen, and this is the
typical display used for games.

Generally, with little effort on your part, you can minimize or maximize windows
(shrink them so that they appear as an icon on the Windows desktop or taskbar
or enlarge them so that they fill up the entire screen); you can also drag them to
different locations within the screen and resize them.

The whole idea of programming for Windows is to design the look of your pro-
gram first (by laying out windows, buttons, edit controls, and so on) and then add
the functionality. To start your own programming escapades, you’ll need to first
understand the basics of every Windows program—ifrom what files need to be
included with your project to what is expected of you as the programmer and
from Windows’ maintenance of the application.

AF| Mrew Test Dincument bt - Hotepad =10 =] FigU re 51
Eie Et fewch Hep

f A typical Windows application is
contained within a window and has
everything you need to interface with
the application—from menus and icons
to toolbars and scrollbars.

Programming with Windows m

Including the Headers

When developing applications for Windows, you need to include header files to
ensure that your compiler knows what is going on. Here is the most typical header
file of the bunch (and the one you’ll always use):

#include <windows.h>

It’s rarely necessary to include additional library files because the default project
space that Visual C/C++ creates at the start of every new application does a decent
job of including the proper library files. Throughout the book, I let you know

when it’s time to link in additional library files or include additional header files. [

The WinMain Function

When working with a C program in DOS, the entry point of an application is the
main function. This function begins executing the program. For Windows, this entry
function is WinMain, which looks like this:

int WINAPI WinMain(

HINSTANCE hlInstance, // Instance handle of application
HINSTANCE hPrevInstance, // Unused

LPSTR TpCmdLine, // Command Tine options (if any)
int nCmdShow) ; // Show window flag

Whenever your application is executed, it is assigned an instance handle (hInstance)
that you can use to refer to the process running your program. The biggest reason
for using and maintaining an instance handle is that you can have multiple
instances of the application running at once, so at times, you must be able to

refer to each one by its handle.

A Windows application can receive command-line options (as do DOS programs).
Your application receives these command-line options in the form of a string
pointer (1pCmdLine), which you can parse to your liking. You’ll rarely deal with the
command line when using Windows applications, however.

Last is ncmdshow, Which tells you how the user configured the application to open
when executed: minimized, maximized, normal size, and so on. These configura-
tions are not mandatory; you can do what you like with the nctmdShow variable.

m 5. Programming with \Windows|and Application Basics

At this point, you can create an empty WinMain function as follows:

int WINAPI WinMain(HINSTANCE hInstance, \
HINSTANCE hPrevInstance, LPSTR 1pCmdLine, int nCmdShow)

return 0;
}

From this point on, you have complete control of execution, and you’re now about
to start hacking away at that code and creating a Windows application. Before

] going any further, however, you need to understand how Windows communicates
vital information to your application.

Events and Messages

Old-school programmers probably remember the DOS days in which you had
complete control of everything. Although good in some aspects, this usually meant
that you spent a major chunk of your processing time scanning the input, sound,
and graphics devices to see whether they needed updating.

On the flip side, Windows introduced the idea of letting the operating system

inform the application when something comes up. Say that the user moves the
mouse. This action creates an event, which Windows receives and processes. In
turn, Windows sends this event to the application in the form of a message.

Windows has a global queue in which it stores all messages; Windows slowly weeds its
way through them and sends them off to the applications that are running, stuffing
the various messages into an application message queue. Inside your program is some-
thing called a message pump (or message loop) that continually scans the message
gueue looking for messages to process.

The message pump pulls out application
messages and sends them to a function NOTE
called the window message procedure,
which is located within your program.
This function processes individual mes-
sages. You don’t have to deal with every of messages are prefixed with WH_).
message though. Some messages are For example, when a user closes
discarded or passed back to Windows, your application, your message
where it handles the message with a procedure eventually receives a
default set of functions. WM_DESTROY message.

All messages have an ID associated
with them, such as WM_, which stands
for window message (the majority

=

Programming with Windows m

Figure 5.2 demonstrates the path a message takes from the moment it is created as
an event to the moment you process it via the event handler.

Once executed, your application starts receiving many messages, including just
about every type that you can think of: device input, multimedia functions,
Windows operations, menu navigation, buttons clicked—the list goes on. In the
section “Common Messages,” later in this chapter, you will learn about the mes-
sages you need to deal with at this point in your life as a programmer.

Registering a Windows (Class [

Every Windows object (such as the window, button, text field, and so on) is orga-
nized and controlled by means of classes. Every class of objects has special proper-
ties and methods of processing, much like you see in Figure 5.3.

Many of these classes are already built into Windows, such as the push button class
or edit box class. For your Windows application, you need to create a custom class
structure that describes the application and basically how Windows should treat it.

Figure 5.2

(((@ A message has a long way to

go from creation to completion.
lEvent

Windows Event Handler

|

Windows Global Queue

|

Application Message Queue

|

Message Pump

|

WindowProc (. . .);

|

WM_MOUSEMOVE

m 5. Programming with\Windows[and Application Basics

R [o>]| Figure 5.3
o || IO Most Windows objects are classified by ... classes! Each class

e B is specific in its control of the object or objects it represents.
List Class

Scrolbar class

A 2

Filling in a special structure called WNDCLASSEX with the information about your custom
class and registering it with Windows does this:

typedef struct _WNDCLASSEX {

UINT cbSize; // Size of this structure

UINT style; // Style of window

WNDPROC TpfnWndProc; // Window message procedure

int cbClsExtra; /10

int cbWndExtra; /10

HANDLE hInstance; // Instance handle from WinMain
HICON hIcon; // Handle to application icon
HCURSOR hCursor; // Handle to application cursor

HBRUSH hbrBackground; // Handle to background brush

LPCTSTR TpszMenuName; // Handle to application menu

LPCTSTR TpszClassName; // Class name

HICON hIconSm; // Handle to small application icon
} WNDCLASSEX;

To simplify this process of creating your custom class, let me explain the basic way
to use this structure. First and foremost is to set the style variable with the desired
method of dealing with the application window. This field has a selection of about
11 flags that you can combine and use, but realistically you’ll use only three.

These three flags are ¢S_CLASSDC, CS_HREDRAW, and CS_VREDRAW. The second and third flags
tell Windows that you want the window redrawn anytime it’s horizontal (CS_HREDRAW) or
vertical (CS_VREDRAW) size changes. You commonly use CS_HREDRAW and CS_VREDRAW when
creating a non-DirectX game.

cs_cLassoc tells Windows to share the drawing resources with all windows that use
the same class. This way, a single process finishes what it is drawing before the next
process begins to draw. This is the flag you use when working with DirectX for
graphics.

Programming with Windows

Next, you see the pointer to your message procedure (1pfnWndProc). This message
procedure is a function you’ll write later on, and one that you see in the later sec-
tion “The Window Message Procedure.” Moving on, you see that hinstance is the
variable you set to the instance handle of your program (which you received from
the winMain function). Skipping ahead a bit, you see 1pszClassName, which is a pointer
to a string that holds the name of the class you are creating.

Throughout the WNDCLASSEX structure, you see several handles: the background
brush, application icon, menu, and cursor. These are the default objects Windows
uses to draw your application’s window and associated controls. For example, if you
assign an hourglass cursor in hcursor, your application will use the hourglass icon
until the cursor is specifically changed.

Normally, the only handle that you provide is one to an application icon (you use a
standard Windows object for the other handles). If you’re not creating a game, the
only other handle you have to worry about is the background brush, which will be
the window’s background color when it is redrawn.

Because you bought this book in order to learn how to create games—not learn
the intricacies of Windows programming—here is the basic (and seemingly stan-
dard) setup that you use for the WNDCLASSEX structure. Actually, the following code
shows two structures, one for games and the other for standard applications:

// for DirectX games, use:

WNDCLASSEX wcex = { sizeof (WNDCLASSEX), CS_CLASSDC, \
WindowProc, 0L, OL, hInstance, \
NULL, NULL, NULL, NULL, \
"GameClass", NULL };

// for standard applications, use:

WNDCLASSEX wcex = { sizeof (WNDCLASSEX), \
CS_HREDRAW | CS_VREDRAW, \
WindowProc, 0L, OL, hInstance, \
LoadIcon(NULL, IDI_APPLICATION), \
LoadCursor(NULL, IDC_ARRQOW), \
(HBRUSH)GetStockObject (LTGRAY_BRUSH), \

NULL, "AppClass", NULL };

Registering your window’s class is accomplished via the RegisterClassex function, which
takes a single parameter—the WNDCLASSEX structure that you’ve already created:

ATOM RegisterClassEx(CONST WNDCLASSEX *Tpwcx);

107

m 5. Programming with \Windows|and Application Basics

When you finish with the application, you can (and should) unregister the class as
follows:

BOOL UnregisterClass(Nexn=

LPCTSTR TpClassName, // Class name to unregister)
HINSTANCE hInstance); // Instance handle If it succeeds, the

RegisterClassEx
Using the preceding information, you can rework your function returns a
WinMain function to look something like this: non-zero value; if it
int WINAPI WinMain(HINSTANCE hInstance, \ goes 21, e
. . it returns 0. The
J HINSTANCE hPrevInstance, LPSTR TpCmdLine, int nCmdShow) ATOM return vals
{ is rarely needed.
WNDCLASSEX wcex = { sizeof (WNDCLASSEX), CS_CLASSDC, \
WindowProc, 0L, OL, hInstance, \
NULL, NULL, NULL, NULL, \

"GameClass", NULL };

// Register the class and exit on error
if(!RegisterClassEx(&wcex))
return FALSE;

// Do other application stuff here

// Unregister class
UnregisterClass("GameClass", hInstance);

// Exit application
return 0;

Creating a Window

Now that you’ve created and registered your class, it is time to create the actual
window, which you do using the CreateWindow function:

HWND CreateWindow(
LPCTSTR TpClassName, // Class to use
LPCTSTR TpWindowName, // Window name (caption)

DWORD dwStyle, // Style of window
int x, // x coordinate of window
int vy, // y coordinate of window

int nWidth, // width of window

Programming with Windows

int nHeight, // height of window

HWND hWndParent, // NULL

HMENU hMenu, // NULL (or menu handle)
HANDLE hInstance, // instance handle from WinMain
LPVOID TpParam); // NULL

This function returns a HWND variable, which is the handle to your newly created
window, or NULL if there was an error. As for 1pClassName, use the name of the class
you've already registered and set 1piindowName with the string you want displayed as
the window caption (the title of the application).

To size and position the window, fill in the nWidth, nHeight, x, and y fields; they are
measured in pixels. For example, you can create a 640 x 480 window at x=0,y=0. Be
sure to also set the hinstance field to the instance handle you received from WinMain.

I saved the best for last. The dwStyle field holds the settings that determine your
window’s appearance. The dwStyle variable can be a combination of the flags in
Table 5.3.

If you want to create a window that is sizable

(you can drag the edges to resize the win- n NOTE

dow), use the WS_OVERLAPPEDWINDOW style. On Typically, in games (and the

the other hand, if you don’t want the user majority of this book), you use

to resize the window, use a WS_BORDER style. WS_OVERLAPPEDWINDOW (DirectX
Graphics resizes the view as it

You can expand the previous WinMain function is displayed).

by adding the following:

// ... previous WinMain code

// Register the class and exit on error
if(!RegisterClassEx(&wcex))
return FALSE;

// Create the window (320x240 at 0,0 using overlapped style)

HWND hWnd; // our window's handle

hWnd = CreateWindow("GameClass", "My Game Title", \
WS_OVERLAPPEDWINDOW, 320, 240, 0, O, \
NULL, NULL, hInstance, NULL);

// Return on error creating the window
if(hWnd == NULL)
return FALSE;

m 5. Programming with\Windows[and Application Basics

Table 5.3 CreateWindow’s dwStyle flags

Flag

WS_BORDER
WS_DLGFRAME
WS_THICKFRAME
WS_CAPTION
WS_SYSMENU
WS_MINIMIZEBOX
WS_MAXIMIZEBOX
WS_HSCROLL
WS_VSCROLL
WS_MINIMIZE
WS_MAXIMIZE
WS_OVERLAPPED
WS_POPUP

WS_OVERLAPPEDWINDOW

WS_POPUPWINDOW

Description

Creates a window with a thin border.
Creates a window with a dialog box border.
Creates a window with a thick sizable border.
Creates a window with a caption (title).

A system menu is displayed at top of the window.
Window displays a minimize box.

Window displays a maximize box.

Creates a horizontal scroll bar in the window.
Creates a vertical scroll bar in window.
Window is minimized on creation.

Window is maximized on creation.

Creates an overlapped window.

Creates a pop-up window.

Same as using the WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX flags.

Same as using the WS_BORDER, WS_POPUP, and WS_SYSMENU flags.

// Show the window
ShowWindow(hWnd, SW_SHOWNORMAL);
UpdateWindow(hWnd);

// Do other application stuff here

// ... go on with WinMain

New in this code are the ShowWindow and UpdateWindow functions. These ensure that
your window appears where you want it to be and that all visible objects within the
window are drawn.

Programming with Windows m

The Message Pump

You’re getting down to the nitty-gritty of a Windows application now—the message
pump. Here’s where your application is going to enter an endless loop, waiting for
Windows to start throwing messages at you. As your application receives these mes-
sages from the message queue via a call to GetMessage Or PeekMessage, you send them
off to your message procedure to handle, much as shown in Figure 5.4.

The code to a standard message pump that you’ll use in an application looks some-
thing like this:

// ... previous RegisterClass and CreateWindow function calls [

MSG Msg;

while(GetMessage(&Msg, NULL, 0, 0)) {
TranslateMessage(&Msg);
DispatchMessage(&Msg);

}

First you see the msg declaration, which is a structure that Windows uses to store
message-related information. The GetMessage function fills the MsG structure with
waiting messages (or waits until a message is available).

After the call to GetMessage, you give the message structure to the TranslateMessage
function, which in turn translates key presses into message information. At long last
is the call to the DispatchMessage function, which sends the message off to your applica-
tion’s message procedure. This loop continues until the GetMessage function receives a
quit message (signified by a return value of 0), which will cause the loop to break.

Figure 5.4
Windows Message Queue The application

message pump

continuously asks

| Application Message Queue | Windows whether any
/_’ messages are waiting

L BEL D to be processed. If 59,
WM_MOUSEMOVE |PeekMessage(.......);| the message makes its
CSLEETEONR way to the window’s

k message procedure to
| WindowProc(. . ., . .)| be processed.

m 5. Programming with\Windows[and Application Basics

Here’s the winMain function in its entirety (it uses all that you’ve learned up to this
point about creating the application window and filtering through the messages
using a message pump):

int WINAPT WinMain(HINSTANCE hInstance, \
HINSTANCE hPrevInstance, LPSTR 1pCmdLine, int nCmdShow)

WNDCLASSEX wcex = { sizeof (WNDCLASSEX), CS_CLASSDC, \
WindowProc, 0L, OL, hInstance, \
NULL, NULL, NULL, NULL, \

J "GameClass", NULL };

// Register the class and return on error
if(!RegisterClassEx(&wcex))
return FALSE;

// Create the Window (320x240 at 0,0 using overlapped style)

HWND hWnd; // our window's handle

hWnd = CreateWindow("GameClass", "My Game Title", \
WS_OVERLAPPEDWINDOW, 320, 240, 0, O, \
NULL, NULL, hInstance, NULL);

// return on error creating the window

if(hWnd == NULL)

return FALSE;

// Show the window
ShowWindow(hWnd, SW_SHOWNORMAL);
UpdateWindow(hWnd);

// Enter the message pump

MSG Msg;

while(GetMessage(&Msg, NULL, 0, 0)) {
TranslateMessage(&Msg);
DispatchMessage(&Msg);

// Unregister class

UnregisterClass("GameClass", hInstance);

// Exit application
return 0;

Programming with Windows m

When creating games, your use of the message pump changes a bit. With the previ-
ous method, the application waited until a message came along and then handled it.
For games, you can’t just sit there and wait—input must be processed, graphics must
be drawn, sound must be played, all in real time. You can change the way you deal
with Window’s messages by creating the following new-and-improved message

pump:
MSG Msg;

// Clear out the message structure
ZeroMemory (&Msg, sizeof(MSG)); [

// Loop endlessly until you receive a quit message
while(Msg.message != WM_QUIT) {
// Peek into the queue and see if there's a message waiting
if(PeekMessage(&Msg, NULL, 0, 0, PM_REMOVE)) {
// There's a message! Handle it normally.
TranslateMessage(&Msg);
DispatchMessage(&Msg);
} else {
// No messages waiting. Go ahead and do time-crucial
// stuff here, such as rendering the game's graphics.

}

Wow! That’s a lot bigger, but in essence it’s simple. You start out with a zeroed out
MSG structure, then enter a loop that scans for a specific message (WM_quiT), which
then breaks the loop. Instead of using GetMessage, yoU use PeekMessage, which looks in
the message queue to see if a message is waiting.

If there is a message, PeekMessage pulls it out and handles it with TranslateMessage and
DispatchMessage. If there are no messages waiting, then the flow is passed on to what-
ever time-crucial processing you need to perform, such as processing your per-
frame game information.

The Window Message Procedure

Because of the Windows “Don’t call me, I'll call you” scheme, you are required to
supply your application with a window message procedure (aka, the window procedure)
that receives the incoming flow of messages. You declare the procedure as follows:

LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, \

m 5. Programming with\Windows[and Application Basics

WPARAM wParam, LPARAM 1Param);

Not many parameters are being passed here, but you can do plenty with what you
receive. The hind argument is the handle to the window to which the message
belongs. The uMsg is the generated message that needs to be processed, whereas
wParam and 1Param contain information that is pertinent to the message (they could
be values or pointers).

What you do inside this function is essential to your application. As the messages

roll in, you must determine whether you want to process them. If a message is

:I important to your application and you want to process it, do so and then allow
Windows to resume its operations by returning a value of 0 (signifying that you

have processed the message). If the message in question is not required by your

application, let Windows deal with it, using the following line of code:

return DefWindowProc(hWnd, uMsg, wParam, 1Param);

Let me show you a common window procedure that takes a message and uses a
switch...case Statement to determine what to do with the message—either handle
it here by yourself or let Windows handle it:

LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, \
WPARAM wParam, LPARAM TParam)
switch(uMsg) {
case WM_DESTROY:
PostQuitMessage(0); // Tell Windows to close application
break;

// Pass remaining messages to the default message handler
default: return DefWindowProc(hWnd, uMsg, wParam, 1Param);

return 0;

}

The preceding is one of the most common window procedures you will use—it
looks for a single message that tells you to shut down your application and passes
all other messages to the default window procedure function for Windows to handle.
As you can see, processing messages is a simple task; it just requires knowing which
messages you need to process.

Programming with Windows m

Common Messaqges

I can’t possibly deal with all the Windows messages in this book. Instead, I'll just go
over the ones that you are most likely to encounter while programming your games
(see Table 5.4 for this list of messages). Again, the majority of the messages that
you must work with are assigned macros that begin with wm_.

When Windows sends you a message, you need to know the type of parameters and
the extra information that Windows is sending with the message. This extra data is
stored in the wparam and 1Param arguments of the message procedure. For the specifics
on each message (plus a list of all Windows messages), consult the Win32 SDK. [

Table 5.4 Standard Windows Messages

Message Description

WM_CREATE Sent whenever a window is created via CreateWindow or
CreateWindowEx.

WM_DESTROY Sent whenever a window is destroyed.

WM_RESIZE Sent when the application window is resized.

WM_ACTIVATE Sent when your window has been activated or deactivated.

WM_PAINT Sent when a portion of the window needs to be redrawn.

WM_COMMAND Sent when a user selects a command item (such as a menu item

or when the user clicks a button).

WM_MOUSEMOVE Periodically sent to inform the application that the mouse has
been moved.

WM_LBUTTONDOWN Sent when the left mouse is pressed.
WM_LBUTTONUP Sent when the left mouse is released.
WM_RBUTTONDOWN Sent when the right mouse is pressed.
WM_RBUTTONUP Sent when the right mouse is released.
WM_KEYDOWN Sent when a key is pressed.

WM_KEYUP Sent when a key is released.

m 5. Programming with\Windows[and Application Basics

As a quick example, examine the wM_MOUSEMOVE message. According the Win32 SDK,
the low-word value (lowest 16-bits) of the 1raram contains the X-coordinate of the
mouse cursor, although the high-word value (highest 16-bits) of the 1Param contains
the Y-coordinate of the mouse cursor. To extract the low- and high-word values,
use the LOWORD and HIWORD macros, as you see here:

int XCoordinate
int YCoordinate

LOWORD(1Param);
HIWORD(1Param);

In order to deal with the messages inside your message procedure, you can borrow
:I from my previous example and use a switch...case Statement:

LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, \
WPARAM wParam, LPARAM T1Param)

switch(uMsg) {
case WM_CREATE:
// handle window creation information here
break;

case WM_DESTROY:

PostQuitMessage(0); // Tell Windows to close application
break;

case WM_COMMAND:
// handle user-defined operation here
break;

default: return DefWindowProc(hWnd, uMsg, wParam, 1Param);

return 0;
}

Throughout the book’s demo programs, you will find many of the Windows mes-
sages that | present in this chapter, so I’ll make sure to comment the code so you
know how the window procedure’s parameters are being used when processing the
various messages.

An Application Shell

The following code is the complete code for a shell application, an application that cre-
ates only a window (such as the one in Figure 5.5) and that enters the message pump
(a game-style message pump, that is).

nming with Windows nz

11 My Game Title g Figure 55

A simple window shell, as shown here, will form the basis
for all the demos and the game | create in this book.

The only message that needs processing at this point is WM_DESTR0Y, which informs you
that the application is being closed (quit).

f#include <windows.h>

// Function prototypes
int WINAPT WinMain(HINSTANCE hInstance, \
HINSTANCE hPrevInstance, LPSTR 1pCmdLine, int nCmdShow);
LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, \
WPARAM wParam, LPARAM 1Param);

int WINAPI WinMain(HINSTANCE hlnstance, \
HINSTANCE hPrevInstance, LPSTR 1pCmdLine, int nCmdShow)

HWND hWnd;

MSG Msg;

WNDCLASSEX wcex = { sizeof(WNDCLASSEX), CS_CLASSDC, \
WindowProc, OL, OL, hInstance, \
NULL, NULL, NULL, NULL, \
"GameClass", NULL };

// Register the class and exit on error
if(!RegisterClassEx(&wcex))
return FALSE;

m 5. Programming with\Windows[and Application Basics

// Create the window (400 x 400 at 0,0 using overlapped style)

hWnd = CreateWindow("GameClass", "My Game Title", \
WS_OVERLAPPEDWINDOW, 0, 0, 400, 400, \
NULL, NULL, hInstance, NULL);

// return on error creating the window
if(hWnd = NULL)
return FALSE;

// Show the window
] ShowWindow(hWnd, SW_SHOWNORMAL);
UpdateWindow(hWnd);

// Clear out the message structure
ZeroMemory (&Msg, sizeof(MSG));

// Loop endlessly until you receive a quit message
while(Msg.message != WM_QUIT) {
// Peek into queue and see if there's a message waiting
if(PeekMessage(&Msg, NULL, 0, 0, PM_REMOVE)) {
// There's a message! Handle it normally.
TranslateMessage(&Msg);
DispatchMessage(&Msg);
} else {
// No messages waiting. Go ahead and do time-crucial
// stuff here, such as a rendering graphics.

// Unregister class
UnregisterClass("GameClass", hInstance);

// Exit application

return 0;

// The message procedure
LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, \
WPARAM wParam, LPARAM 1Param)

switch(uMsg) {

Programming with Windows m

case WM_DESTROY:
PostQuitMessage(0); // Tell Windows to close application
break;

// Handle every other message
default: return DefWindowProc(hWnd, uMsg, wParam, 1Param);

return 0;
| [
Although there’s much more to Windows programming, you really don’t need to

go into much greater detail when using DirectX to create games. However, you do
need to know about a few advanced features, which | introduce in the next section.

Advanced Features

Although I couldn’t possibly cover the vast range of advanced features here, let me
show you a few that you’re most likely to use in your game-programming endeavors
—features such as using simplified windows to relay quick bits of information,
attaching data to the application’s executable file, and ways to execute multiple
sections of code simultaneously.

Using Message Boxes

Conveying information to the user is at times a difficult task. The text that you out-
put must be in a window, and creating a window is somewhat involved. You must
register a window class, create a window, and monitor the message queue; it’s
almost not worth it.

This is where a message box comes in handy. A message box is a window that contains a
caption, a message, an optional icon, and up to three buttons (as illustrated in Figure
5.6). Once displayed, a message box simply waits for the user to click on a button, at
which point, the message box closes and returns execution to the calling code.

The message box function is easy to use. Take a look at its prototype:

int MessageBox(
HWND hWnd, // Parent window or NULL for none
LPCTSTR TpText, // Message to display in box
LPCTSTR TpCaption, // Caption of window to use
UINT uType); // Buttons and icon settings

m 5. Programming with\Windows[and Application Basics

This iz a message box.

& Thiz iz a message box text area.

Figure 5.6

A message box is the simplest window you can work with. It's useful
for relaying small bits of information that might be crucial to the
program’s execution.

uType is a combination of flags determining which buttons to display, as well as

complete list of flags).

optional icons to display with the window’s text. You can compose the uType variable
:I from a combination of the flags shown in Table 5.5 (consult the Win32 SDK for a

After selecting the type of buttons and icons (if any) to use, set the caption
(1pcaption) and message (1pText). As one final step, pass the handle to the parent

window that owns the message box, or use NULL to specify no owner.

Table 5.5 MessageBox Display Flags

Flag

MB_OK

MB_OKCANCEL
MB_RETRYCANCEL
MB_YESNO
MB_YESNOCANCEL
MB_ABORTRETRYFAIL
MB_ICONEXCLAMATION
MB_ICONINFORMATION
MB_ICONQUESTION
MB_ICONSTOP
MB_DEFBUTTON1
MB_DEFBUTTONZ
MB_DEFBUTTON3
MB_DEFBUTTON4

Description

Displays an 0K button.

Displays 0K and CANCEL buttons.

Displays RETRY and CANCEL buttons.

Displays YES and NO buttons.

Displays YES, N0, and CANCEL buttons.

Displays ABORT, RETRY, and FAIL buttons.

An exclamation icon is displayed.

An icon with an encircled lowercase i is displayed.

An question-mark icon is displayed.

A stop-sign icon is displayed.

The first button is clicked when the user presses enter.
The second button is clicked when the user presses enter.
The third button is clicked when the user presses enter.

The fourth button is clicked when the user presses enter.

Programming with Windows m

Table 5.6 ReturnValues from MessageBox

Value Reason

IDABORT ABORT button was clicked.

IDCANCEL CANCEL button was clicked.

IDIGNORE IGNORE button was clicked.

IDNO NO button was clicked. [
IDOK 0K button was clicked.

IDRETRY RETRY button was clicked.

IDYES YES button was clicked.

After a button is selected, the MessageBox function returns one of the values shown
in Table 5.6.

Here’s an example using the message box function that directs users to click on YES
or No when they are asked if they want to exit the program without saving. For
added visual appeal, a question mark icon is displayed inside the message box:

int Result = MessageBox(
NULL,
"Exit program without saving changes?"
"Exit Program",
MB_YESNO | MB_ICONQUESTION);

If the user clicks the YES button, MessageBox returns IDYES. If the user clicks N0, a value
of 10NO is returned.

Dialog Boxes

Dialog boxes are another advanced feature of Windows. A dialog box is an applica-
tion window created by using a template designed through utilizing a dialog box
resource editor. The reasons for using a dialog box are many. First, layout of the
controls is a breeze. You just point and click where you want a control to be placed
in the application window.

E 5. Programming with\Windows[and Application Basics

Second, with a dialog box, you can quickly create an application window or multi-
ple windows using the same template. These dialog box windows are identical to a
regular window—they all use a window message procedure to process messages.
With dialog boxes, however, some of the messages change. Instead of receiving a
WM_CREATE message when the application window is created, a dialog box receives a
WM_INITDIALOG message. These differences in messages from a regular application
window and a dialog box window are shown in the Microsoft Win32 SDK help files.

As for this book, | tend to use dialog boxes to quickly construct application win-

dows full of controls ranging from push buttons to text boxes. When you’re brows-
:I ing through the book’s projects, you’ll sometimes notice an attached dialog box
resource. If this resource exists, that project creates the application window using
the dialog box template.

To create an application window from a dialog box template, use the following
function:

HWND CreateDialog(
HINSTANCE hInstance, // Handle to application instance
LPCTSTR TpTemplate, // Dialog box template name pointer
HWND hWndParent, // Handle to owner window
DLGPROC 1pDialogFunc); // Dialog box's message procedure

Even though you haven’t learned about them yet, a resource file contains the dialog
box template. A unique identifier names each template. To create the window from a
dialog box template, you need to pass this unique identifier along with the applica-
tion’s instance handle and message procedure function to the createdialog function.
After calling createdialog, you receive a handle to the newly created application window.

You’ve already seen how a window processes messages using the message procedure
in the section “Working Inside a Window,” so let’s move on and look at how to
store a dialog box template using resources.

Resources

Resources are data appended to the end of an application’s executable file. These
resources can range from program-specific data to icons, menu definitions, and
even bitmap images (see Figure 5.7, which shows a breakdown of an application’s
executable file).

By packaging these resources together inside the file, you save space and ensure
that the data exists when your program needs it. You can save any type of data in a

Programming with Windows E

Windows
Application
.EXE

Program
Code

Resource:
Bitmap

Resource:
Icon

Resource:
Custom

OXO0000000

Aowa
abelolg
%sia

Y
OXFFFFFFFFF

Figure 5.7

Resources such as bitmaps and menus are appended to
the program’s executable file.

resource—nbitmaps, sound files, icons, and even game-related data such as dialogue.
You just have to know how to insert that data as resources into your application.

Attaching Resources to an Application

Visual C/C++ comes with a built-in resource manager that makes attaching
resources to your program a breeze. To attach a resource file, open your project
and choose Insert, Resource. A list of typical resource types, such as menus and
dialog boxes, appears.

Windows comes with a set of default resources, such as bitmaps and icons, but aside
from those, you must do a little work in order to use your custom resources (the
resources you’re interested in at this point):

1. To attach a custom resource, click IMPORT, select your file, and, if asked,
give it a resource type name. (For example, if you were to attach a custom
file named MYMAP.MAP, you might use the name GameMaps. From then on,
anytime you attach a *.MAP file, it would be placed under the GameMaps
listing of resources inside the project editor.)

2. Enter the resource list inside your project navigator. The resources are listed
by their types, with each resource having a different name. These names
might begin with 1pc_ (for cursors), 108_ (for bitmaps), or 10M_ (for menus).
Use your prefix-naming convention here, with the default custom resource
using 1DR_.

m 5. Programming with\Windows[and Application Basics

3. To rename a resource, right-click it and choose Properities (or press
Alt+Enter). Go ahead and change the name of the resource in the ID box as
you see fit. Just remember this name, because you’ll use it later to access the
resource. (I'll name the map resource 1DR_MAP1 and use that name in upcom-
ing examples.)

Retrieving Resource Data

After a custom resource is attached to an application, you can access the resource
directly with a memory pointer that is obtained by using the three functions shown
:I in Table 5.7.

The first function, FindResource, locates the resource attached to your application
and returns a handle to it that is used during the LoadResource call. As you might
guess, the Loadresource call loads the resource into memory and returns yet another
handle used to access the resource with the LockResource function. At long last, you
can lock the resource memory, thus retrieving a data pointer to it for your own use.

Here are the function prototypes for FindResource, LoadResource, and LoadResource:

HRSRC FindResource(
HMODULE hModule, // Module handle from WinMain
LPCTSTR TpName, // Resource name
LPCTSTR TpType); // Type of resource

Using the hModule field is easy—set it to the instance handle received from WinMain.
TpName iS the name of your resource (such as 1DR_MAP1), and 1pType is the name of
your custom resource (GameMaps). Be sure to include the parentheses as I’ve done
here (the compiler usually adds those for you in the resource type name).

Table 5.7 aResource Handling Functions

Function Description
FindResource Finds an attached resource and returns a handle to it.
LoadResource Loads a resource into global memory and returns a handle to it.

LockResource Locks the resource memory and returns a memory pointer to it.

Programming with Windows E

CAUTION

The MAKEINTRESOURCE macro converts the resource’s name into a
string pointer that is used by certain functions. For example, you
obtain the IDR_MAP1 resource pointer with the following code:

LPTSTR *ResourcePointer = MAKEINTRESOURCE(IDR_MAP1)

1 1

HGLOBAL LoadResource([
HMODULE hModule, // here's the module handle again!
HRSRC hResInfo); // handle from FindResource call

There’s not too much to explain here; you can actually combine the LoadResource
function with the FindResource function into one call:

HGLOBAL hResource = LoadResource(hInstance, FindResource(\
hinstance, MAKEINTRESOURCE(IDR_MAP1), "GameMaps"));

At long last is the LockResource function, which takes only one parameter; the handle
received from the LoadResource function call (the return value from the LockResource
value is a void pointer that you can cast to any data type you like):

LPVOID LockResource(HGLOBAL hResData);

As an example of loading your own resource, say that you attach a text file called
readme.txt and give it a resource type of "TExT". Say that you name the resource 1DR_TEXTI.
This short code will load the resource for you and display it within a message box:

HGLOBAL hResource = LoadResource(hInst, FindResource(hlnst, \
MAKEINTRESOURCE(IDR_TEXT1), "TEXT"));
if(hResource != NULL) {
char *pText = (char*)LockResource(hResource);
MessageBox(NULL, pText, "Text", MB_0K);

Threads and Multithreading

Windows 95 introduced programmers to the idea of using a multitasking system
(even though Windows really isn’t a true multitasking system because it uses pre-
emptive multitasking, which processes small bits of many programs, one at a time).
The idea is that you can have multiple processes (applications) operating at the
same time, each taking a portion of processing time (called a time slice).

m 5. Programming with\Windows[and Application Basics

Multitasking also enables each process to split into separate processes, called
threads. Each thread has its own purpose, such as scanning for network data, han-
dling user input, or playing sounds when required. Using more than one thread
in an application is called multithreading.

Creating additional threads within your application really isn’t difficult. To create a
thread, you create a function (using a special function prototype) that contains the
code you want to execute. The prototype to use for the thread function looks like this:

DWORD WINAPI ThreadProc(LPVOID 1pParameter);

:I The 1ppParameter argument is a user-defined pointer that you provide when you cre-
ate the thread, which you accomplish with a call to CreateThread:

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES TpThreadAbilities, // NULL

DWORD dwStackSize, /10
LPTHREAD_START_ROUTINE TpStartAddress, // thread function
LPVOID TpParameter, // user supplied pointer- can be NULL
DWORD dwCreationFlags, // 0O

LPDWORD TpThreadId); // receives thread identifier

This is a complex function, so | will not go into the details here, other than to give
you an example to follow. Here’s a simple thread function and the call to initialize it:

// The custom thread function
DWORD WINAPI MyThread(LPVOID TpParameter)
{

BOOL *Active;

Active = (BOOL*)TpParameter;
*Active = TRUE; // flag thread as active

// Insert custom code here

1T T

CAUTION

The return value of this function is a handle, which must be closed
when you’re done, or the system resources will not be released.
Release the resources used by the thread with a call to CloseHandle:

CloseHandle(hThread); // use handle received from CreateThread

1 1

Programming with Windows 127

// Terminate the thread
*Active = FALSE; // flag thread as no longer active
ExitThread(0); // special call to close thread

void InitThread()
{
HANDLE hThread;
DWORD ThreadId;
BOOL Active; [

// Create the thread, passing a user-defined variable that

// is used to store the status of the thread.

hThread = CreateThread(NULL, O, \
(LPTHREAD_START_ROUTINE)MyThread, (void*)&Active, \
0, &Threadld);

// Wait for the thread to complete by continuously
// checking the state of the flag.
while(Active == TRUE);

NOTE
// Close the thread handle ExitThread is not the only way to
CloseHandle(hThread); stop a thread’s execution. Any func-

} tion outside the thread can call
TerminateThread, which will immedi-
ately stop the thread’s execution.
This is really not desirable; it wastes

The preceding code creates a thread,
which executes immediately when the

CreateThread function completes. During system resources in most cases and
the creation call, you supply a pointer to can cause a system crash. Only use
a BooL variable that tracks the state of the TerminateThread if you absolutely
thread; the flag signifies when the thread must. To call TerminateThread, provide
is active by storing a value of TRUE (the two arguments—the first parameter
thread is active) or FALSE (the thread is being the thread handle and the

not active). second being the termination code

o to return):
When the thread’s execution is complete,

you flag the thread as being no longer TerninateThread(hThread...0) :‘

active (by storing a value of FALSE in the

previously mentioned BooL variable) and terminate it with a call to ExitThread, which
has a single parameter—the termination code of the thread, or rather the purpose for
which the thread was closed. It’s safe to just use a value of 0 in the call to ExitThread.

m 5. Programming with\Windows[and Application Basics

Basically, a thread is just a function that runs concurrently with your application.
In Chapter 8, “Playing Sound with DirectX Audio,” you find more about how to use
threads.

Critical Sections

Because Windows is a multitasking system, Windows applications can really get in
the way of each other, especially applications using multiple threads. For example,
what if one thread is filling a data structure with some crucial data when suddenly
:I a second thread alters or accesses that very data?

There is a way to make sure that only one thread (calied a process) has complete
control when needed, and this is by using critical sections. When activated, a critical
section will block all processes from trying to access shared memory (the applica-
tion’s memory that all threads utilize), thus allowing each process to individually
alter the application data without having to worry about other processes interfer-
ing. To use a critical section, you must first declare and initialize one:

CRITICAL_SECTION CriticalSection;
InitializeCriticalSection(&CriticalSection);

At this point, you can enter a critical section, process your crucial data, and leave
the critical section, as done in the following example:

EnterCriticalSection(&CriticalSection);
// Do crucial data processing here
LeaveCriticalSection(&CriticalSection);

When you finish with the critical section (such as when the application is closing),
you release it with a call to

DeleteCriticalSection(&CriticalSection);

Although I'd like to go into more detail about the use of critical sections, there
really isn’t a need to. Using them is easy and a must for multithreaded applications.
The only rule to remember is to make sure that the code contained within a criti-
cal section executes quickly; you’re locking up the system’s processes, and that
could lead to a system crash if your program takes too long.

Using COM

COM, or Component Object Module, is a programming technique adopted by Microsoft.
With COM, you can create software components so that their functionality is compat-
ible with all programs. Take Internet Explorer v4+, for example. | bet you didn’t

Programming with Windows E

know that the toolbar and browser window are COM objects. What’s more, you can
use those objects in your applications!

Although that is a cool reason to start using COM, the biggest reason is DirectX;
DirectX is composed entirely of COM-based components.

Initializing COM
You’ll have to initialize the COM system in order to use COM objects. To initialize
COM, you use these two functions:

// For single-threaded applications [
HRESULT Colnitialize(
LPVOID pvReserved); // NULL

// For multithreaded applications
HRESULT CoInitializeEx(
void *pvReserved, // NULL
DWORD dwColInit); // concurrency model

Either of the two preceding functions will work, but when you’re using multi-
threaded applications, you must use the second function, ColnitializeEx because
you must specify the COINIT_MULTITHREADED flag in dwCoInit in order for the COM
system to work correctly.

When you finish with the COM system, you shut it down with a call to CoUninitialize,
which takes no parameters:

void CoUninitialize();

You follow each call to ColInitialize and CoInitializeEx with an equal number of calls
to CoUninitialize. If you call CoInitialize twice (which is allowed), you need to follow
with two calls to CoUnitialize. You can see this in the following code:

// Initialize the COM system
CoInitialize(NULL);

// Initialize COM with a multithreaded concurrency
ColnitializeEx(NULL, COINIT_MULTITHREADED);

// Release the COM (twice)
CoUninitialize();
CoUninitialize();

m 5. Programming with\Windows[and Application Basics

IUnknown

IUnknown is the base class for all COM interfaces. It contains only three functions:
AddRef, Release, and QueryInterface. AddRef initializes whatever it needs and increases
the reference count of the number of times this class has been instanced. You must
match the number of reference counts with the same number of Releases, which
frees all the data that the object instance is using.

You use the third function, queryInterface, to obtain the interfaces to contained
objects, including newer interfaces. Such is the case when objects can span through
] multiple versions, as in DirectX. You can still use an older interface, but to get a
newer one, query for it. If a newer interface exists, the object pointer is passed;
otherwise, QueryInterface returns NULL to represent no interface or an error.

In order to build on functions, an object will need to derive a class from the IUnknown
object and insert the extra functions into the derived class declaration. It’s interest-
ing to note that the COM standard that Microsoft maintains states that objects can-
not expose their variables—only functions.

Functions are required to return an HRESULT value that represents an error or success
code. To retrieve any type of value from a COM object, you pass a pointer to a
variable (which must be a word or double word—no bytes are allowed here) to

a function used to retrieve the value contained within the object.

As an example, you can create a simple object (derived from Iunknown) that takes two
numbers, adds them together, and returns the result in a third provided variable:

class IMyComObject : public IUnknown
{
pubTic:
HRESULT Add(long *Numl, long *Num2, long *Result);

HRESULT IMyComObject::Add(Tong *Numl, Tong *Num2, long *Result)
{
// Add the numbers and store in result
*Result = *Numl + *NumZ;

NOTE
/] return a success code Notice that all COM objects begin
return S_OK; with an uppercase I rather than the
) letter C.This is to signify that the

object is a COM interface.

Programming with Windows m

Initializing and Releasing Objects

To use a COM object, you must create it (and the code library loaded by Windows)
using the coCreatelnstance function:

STDAPI CoCreatelnstance(
REFCLSID rclsid, // Class identifier of object
LPUNKNOWN pUnkQuter, // NULL
DWORD dwClsContext, // CLSCTX_INPROC
REFIID riid, // Reference to interface identifier
LPVOID *ppv); // Pointer to received object [

To make use of CoCreatelInstance, you have to know the object’s class and interface
identifiers. The class identifier, prefixed with cLs1D_, is the class of object that you
are creating, and the reference, prefixed with 110_, is the exact interface for which
you are looking.

Say that you have a class called Math that has a class identifier of cLSID_MATH. The
Math class contains three objects: 1Add (reference identifier 110_IAdd), ISubtract
(11D_ISubtract), and 1Add2 (11D_IAdd2). To reference the 1Add2 object, a call to
CoCreatelnstance looks like this:

TAdd2 *pAdd?;
if(FAILED(CoCreateInstance(CLSID_MATH, NULL, CLSCTX_INPROC, \
I1D_IAdd2, (void**)&pAdd2))) {

// Error occurred
}

All COM objects you create must eventually be released. This is the purpose of the
IUnknown: :Release function, which takes no parameters:

HRESULT IUnknown::Release();
After you finish with the 1Add2 interface, you need to release it with the following:

IAdd2->Release();

Querying Interfaces

One of the best things about COM is that it is backward-compatible. If you have a
newer COM object (containing new interfaces), you still have full access to old
interfaces through the object. This method of keeping old interfaces ensures that
your code will not break if the end user has newer COM obijects installed.

This also means that older interfaces will be able to query for newer interfaces.

E 5. Programming with\Windows[and Application Basics

This is done by using the IUnknown::QueryInterface method:

HRESULT IUnknown::QueryInterface(
REFIID iid, // Reference identifier of new interface
void **ppv0Object); // New object pointer

Because the original object calling the query function has already been created,
there’s no need to worry about class identifiers here, just the reference identifier
of the new interface that you want. Going back to the Math class object, say that you
want to obtain an 1Add interface and then query for the 1Add2 interface:

J TAdd *pAdd;
TAdd2 *pAdd?;

// Get the IAdd interface first
if(FAILED(CoCreateInstance(CLSID_MATH, NULL, CLSCTX_INPROC, \
IID_IAdd, (void**)&pAdd))) {
// Error occurred

// Query for the IAdd2 interface
if(SUCCEEDED(pAdd->QueryInterface(IID_IAdd2, (void**)&pAdd2))) {
// Interface obtained, release the first
IAdd->Release();
}

Although there’s much more information on COM, I've covered the information
that you need to start using DirectX. Speaking of DirectX, now is the time to take
a quick look at it.

DirectX

According to the introduction in the DirectX Software Development Kit (DX SDK)
documents:

Microsoft® DirectX® is a set of low-level application programming inter-
faces (APIs) for creating games and other high-performance multimedia
applications. It includes support for two-dimensional (2-D) and three-
dimensional (3-D) graphics, sound effects and music, input devices, and
support for networked applications such as multiplayer games.

As stated in the SDK, DirectX is a set of programming interfaces that will help you
create high-performance games and applications. Now let me tell you what DirectX
is not.

DirectX is not a game-creation package; it merely aids in the development of your
applications through the use of APIs designed to interface directly with your com-
puter’s hardware. If the hardware is equipped with DirectX drivers, you have access
to the accelerated functions that device provides. If no accelerated functions exist,
DirectX will emulate them.

This means that you will have a consistent interface with which to work, and you [
will not have to worry about things such as hardware features. If a feature doesn’t

exist on the card, it’s still likely that the feature will work through DirectX’s emula-
tion functions. No fuss, no muss; just program the game and rest assured that it will
work on the majority of systems.

New versions of DirectX are frequently released, with each new version adding
newer features and improving older ones. At the time of this writing, version 8 has
been released and that is the version on which this book is based. The following
major components are included in DirectX 8:

DirectX Graphics. A complete 3-D graphics system

DirectX Audio. Includes sound and music systems
DirectPlay. Network (Internet) functionality at its simplest
Directlnput. Easy access to keyboards, mice, and joysticks

Version 8 represents a major change for DirectX. Gone is DirectDraw, the 2-D
graphics library. Instead, it has been merged with Direct3D to create a single,
easier-to-use graphics interface called DirectX Graphics. The same goes for

DirectSound and DirectMusic—these have been merged into DirectX Audio.

DirectX 8 gives you an interface that is streamlined for beginners, while still
remaining powerful enough to give advanced users full control. You might com-
pare its ease of use to that of OpenGL.

The DirectX SDK also comes with various helper classes and libraries, such as
D3DX, which makes using DirectX easier by giving you some handy classes with
which to work. D3DX is a great library, and | tend to use it as much as possible
throughout this book.

I don’t want to make DirectX out to be something that it is not. As I’ve mentioned,
it is only a method of accessing low-level functions, not a game-creation package.

m 5. Programming with\Windows[and Application Basics

Also, it does lack some features as of version 8. DirectDraw is sorely missed, which
means that if you want straight 2-D functionality, you’ll have to use the version 7
interface of DirectDraw.

This means that you cannot mix DirectX 8’s 3-D capabilities with DirectX 7’s 2-D
functions. Although this might seem like a major drawback, don’t worry—I’ll work
around it. By using 3-D functions for emulating 2-D, you’ll get the benefit of extra
features, as you see in Chapter 11, “Using 2-D Graphics.”

] Downloading and Installing DirectX

If you haven’t already, go ahead and install DirectX 8.0 on your system. The SDK is on
the CD-ROM at the back of this book. You can find the installation instructions for
DirectX in Appendix A, “Installing DirectX and Configuring the Compiler.” You can
also download the DirectX SDK straight from Microsoft’s Web site. Just point your
browser to http://msdn.microsoft.com/directx and look for the download section.

Including DirectX in Your Project

Including DirectX in your project takes a little set-up work. Again, refer to
Appendix A for instructions on installing DirectX and configuring your compiler.

Understanding
the Program Flow

When immersing yourself in a major project, it becomes all too easy to be over-
whelmed with house-keeping chores such as modifying the code to work with some-
thing that you’ve added, modified, or removed. These chores take precious time
that could be better spent working on your game.

By starting with a solid understanding of what your needs are, you’ll be able to
structure your program’s flow of operation (called the program flow) and ensure
that you can make changes easily. Because you’ve already written a design docu-
ment (you did, didn’t you?), there is little left to do but build a structure of the
processing flow.

A typical program begins by initializing all systems and data and then entering the
main loop. The main loop is where the majority of things happen. Depending on
the game state (title screen, menu screen, in-game-play, and so on) that is occur-
ring, you’ll need to process input and output differently.

Understanding the Program Flow E

Here are the steps that you follow in a standard game application:

1. Initialize the systems (Windows, graphics, input, sound, and so on).

Prepare data (load configuration files).

Configure the default state (typically the title screen).

Start with the main loop.

Determine state and process it by grabbing input, processing, and outputting.
Return to Step 5 until application terminates and then go to Step 7.

Clean up data (release memory resources, and so on). [
8. Release the systems (windows, graphics, input, and so on).

N o ks DN

Steps 1 through 3 are typical for every game: set up the entire system, load the nec-
essary support files (graphics, sound, and so on), and prepare for the actual game
play. Your application will spend the majority of time handling the in-game process-
ing (Step 5), which can be broken into three parts: pre-frame processing, per-frame
processing, and post-frame processing.

The pre-frame processing deals with small tasks, such as getting the current time
(for timed events such as synching) and other details (such as updating the game
elements). The per-frame processing deals with updating objects (if not already
done in the pre-frame stage) and rendering the graphics. The post-frame process-
ing deals with the remaining functions, such as synching by the time or even dis-
playing the graphics already rendered.

Here’s a kicker for you. In your game, you might have multiple per-frame states:
one that handles the main menu, one that handles the in-game play, and so on.
Maintaining multiple states like that can lead to some messy code, but employing
something known as state-processing can help ease the burden a bit. You learn more
about state processing in the section “Application States,” later in this chapter.

Cleaning data and shutting down the system (Steps 7 and 8) release the system and
resources that you allocated when you started up the game. Graphics need to be
freed from memory, the application window destroyed, and so on. Skipping these
steps is a definite no-no, as it would leave your system in a wacky state that could
lead to a system crash!

Every step in the program flow is represented by an associated block of code, so
the better the structure of that code, the easier your application will be to create.
To aid in better structuring your program code, you can utilize a common pro-
gramming technique known as modular programming.

E 5. Programming with\Windows[and Application Basics

Modular Programming

Modular programming is the basis for many techniques used in programming today,
including C++ and COM. Modular programming creates independent code mod-
ules that are fully self-sustaining; they need no external help and, in a lot of cases,
can be used on a multitude of operating platforms. Imagine a true modular pro-
gramming system in which a program you write will work on all existing computers!
You may not have to wait long—such things are on their way (or are already here).

:I You can think of a modular program as a C++ class. It contains its own variables
and functions. If the code is written properly, the class needs no outside assistance.
Given your class, any application can utilize the features within the class only by
knowing how to call the functions (through the use of function prototypes).
Calling a class function is as simple as instancing a class and calling its functions:

cClass MyClass; // Instance the class
MyClass.Functionl(); // Call a class function

To obtain true modularity, your code must protect its data. Doing so is easy because
using C++, you can classify variables as protected. To gain access to those class vari-
ables, you have to write public functions that outside code can use. This is actually
the basis of COM.

Take a look at some code that demonstrates what 1I’m talking about. Here a class
holds a counter. You can increment the counter, set it to a specific number, and
retrieve the current counter value, all by using the following class:

class cCounter
{
private:
DWORD m_dwCount;

public:
cCounter() { m_dwCount = 0; }
BOOL Increment() { m_dwCount++; return TRUE; }

BOOL Get(DWORD *Var) { *Var = m_dwCount; return TRUE; }
BOOL Set(DWORD Var) { m_dwCount = Var; return TRUE; }
s

The cCounter class sets the m_dwCount variable as private. In that way, even derived
classes can’t access it. The other functions are pretty much self-explanatory. The
only notable function is Get, which takes a pointer to a bworD variable. The function

States and Processes

stores the current count value in that variable and returns TRUE (as all functions in
the cCounter class).

That is a pretty basic example of modular programming. A more complex example
is DirectX, which is completely modular. If you want to use only a single feature of
DirectX, say DirectSound, then you need only include the proper DirectSound
objects. DirectSound does not depend on other DirectX components in order

to operate.

Throughout the book, I incorporate modular coding techniques, most notably to
create a core of gaming libraries, each independent of one another. To use these
libraries, just include them in your project and hack away!

States and Processes

Trying to optimize the program flow should be one of your top priorities from the
get-go. While small, your application’s code is easy to manage. However, once that
application grows in size, it becomes increasingly difficult to work with, requiring a
major rewrite to change even the slightest bit.

Think of this—your game project is well under way, and you decide to add a new
feature to the game that opens an inventory display screen whenever the user
presses the | key. The inventory display screen can be displayed only while playing
the game, not while viewing the main menu screen. This means that you must
embed the code that detects when the | key is pressed, and when pressed, it must
render the inventory display screen instead of the normal game-play screen.

If you’ve locked yourself into using a single function that renders each display
screen out depending on what the user is doing in the game (such as viewing the
main menu or playing the game), you’re going to quickly come to the realization
that the rendering function can become quite large and complicated, having to
encompass all possible states in which the game can exist.

Application States

Did | just mention states—what are those? A state is short for a state of operation,
which is the current process your application is involved in executing. The main
menu to your game is a state much like the in-game-play state is. The inventory
display you want to add to the game is a state as well.

137

m 5. Programming with\Windows[and Application Basics

When you start adding the various states to your application, you’ll also need to
provide a way to determine how to process those states based on the current state
of operation (which changes during project execution). Deciding which state your
application needs to process each frame can result in something as horrible looking
as this:

switch(CurrentState) {
case STATE_TITLESCREEN:
DoTitleScreen();
break;
] case STATE_MAINMENU:
DoMainMenu();
break;
case STATE_INGAME:
DoGameFrame();
break;

}

Ack! You can tell something like that won’t do, especially when your game has a
truckload of states to work with, and even worse, trying to process a state for each
frame! Instead, you can use something I like to call state-based programming, or SBP
for short. In essence, SBP branches (directs) execution based on a stack of states.
Each state represents an object or set of functions. As you require functions, you
can add them to the stack. When you’re done with the functions, remove them
from the stack. You can see this demonstrated in Figure 5.8.

You add, remove, and process states by using a state manager. When a state is added,
it is pushed into the stack, thus having current control when the manager is
processed. Once popped, the topmost state is discarded, leaving the next highest
state to be processed next.

For the preceding reasons, you need to implement a state manager that accepts
pointers to functions (which represent the states). Pushing a state adds the func-
tion pointer to the stack. It’s your job to call the state manager, which will process
the topmost state on the stack. The state manager is really easy to work with, so let
me quickly show you the state manager object that does it all:

class cStateManager
{
// A structure that stores a function pointer and linked 1list
typedef struct sState {
void (*Function)();

States and Processes m

Figure 5.8
State: State: A stack lets you push and
User Options User Options
pop states as needed.
Firsﬂ grs't Out
In-Game
State
Title Screen
State I:
Main State
State

sState *Next;
} sState;

protected:
sState *m_StateParent; // The top state in the stack
// (the head of the stack)

pubTlic:
cStateManager() { m_StateParent = NULL; }

~cStateManager()

{
sState *StatePtr;

// Remove all states from the stack
while((StatePtr = m_StateParent) != NULL) {
m_StateParent = StatePtr->Next;
delete StatePtr;

m 5. Programming with\Windows[and Application Basics

// Push a function on to the stack
void Push(void (*Function)())
{
// Don't push a NULL value
if(Function != NULL) {
// Allocate a new state and push it on stack
sState *StatePtr = new sState;
StatePtr->Next = m_StateParent;

m_StateParent = StatePtr;
StatePtr->Function = Function;
| }
}
BOOL Pop()

{
sState *StatePtr = m_StateParent;

// Remove the head of stack (if any)
if(StatePtr != NULL) {
m_StateParent = StatePtr->Next;
delete StatePtr;

// return TRUE if more states exist, FALSE otherwise
if(m_StateParent == NULL)

return FALSE;
return TRUE;

BOOL Process()
{
// return an error if no more states
if(m_StateParent == NULL)
return FALSE;
// Process the top-most state (if any)
m_StateParent->Function();
return TRUE;

States and Processes m

You can see that the class is tiny, but don’t let it fool you. With the cStateManager
object, you can continually add states as needed, and during the frame-rendering
function, you can call only the Process, resting assured that the proper function will
be called. Here’s an example:

cStateManager SM;

// Macro to ease the use of MessageBox function
ffdefine MB(s) MessageBox(NULL, s, s, MB_O0K);

// State function prototypes - must follow this prototype! [
void Funcl() { MB("1"); SM.Pop(); }
void Func2() { MB("2"); SM.Pop(); }
void Func3() { MB("3"); SM.Pop(); }

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

SM.Push(Funcl);

SM.Push(Func2);

SM.Push(Func3);

while(SM.Process() == TRUE);
}

With the preceding little program, you can track three states, each displaying a
message box with a number. Each state pops itself from the stack and gives the next
state in the stack a turn, until finally all the states are exhausted, and the program
exits. Pretty neat, huh?

Think of the preceding more as being embedded in the per-frame message pump
now. Say that you need to display a message to the user, but darn it, you're in the
middle of the in-game screen routines. No problem, just push the message display
function on the stack and call the process function next frame!

Processes

Moving on, allow me to introduce you to another technique that simplifies the use
of per-frame function calling. If you’re using separate modules to handle the medial
functions (called processes) such as input, network, and sound processing, instead
of calling each individually, you can create an object that handles it all for you.

m 5. Programming with\Windows[and Application Basics

class cProcessManager

{
// A structure that stores a function pointer and linked 1ist
typedef struct sProcess {
void (*Function)();
sProcess *Next;

} sProcess;
protected:
sProcess *m_ProcessParent; // The top state in the stack
J // (the head of the stack)
public:

cProcessManager() { m_ProcessParent = NULL; }

~cProcessManager()
{
sProcess *ProcessPtr;

// Remove all processes from the stack
while((ProcessPtr = m_ProcessParent) != NULL) {
m_ProcessParent = ProcessPtr->Next;
delete ProcessPtr;

// Add function on to the stack
void Add(void (*Process)())
{
// Don't push a NULL value
if(Process != NULL) {
// Allocate a new process and push it on stack
sProcess *ProcessPtr = new sProcess;
ProcessPtr->Next = m_ProcessParent;
m_ProcessParent = ProcessPtr;
ProcessPtr->Function = Process;

States and Processes m

// Process all functions
void Process()

{
sProcess *ProcessPtr = m_ProcessParent;

while(ProcessPtr != NULL) {
ProcessPtr->Function();
ProcessPtr = ProcessPtr->Next;

}
}; [
Again, this is a simple object much like the cStateManager object, with one major

difference. The cProcessManager Object only adds processes; it does not remove them.
Here’s an example using cProcessManager:

cProcessManager PM;

// Macro to ease the use of MessageBox function
fidefine MB(s) MessageBox(NULL, s, s, MB_OK);

// Processfunction prototypes - must follow this prototype!
void Funcl() { MB("1"); }
void Func2() { MB("2"); }
void Func3() { MB("3"); }

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

PM.Add(Funcl);

PM.Add(Func2);

PM.Add(Func3);

PM.Process();

PM.Process();
}

Note that every time Process is called, all processes on the stack are called (as
demonstrated in Figure 5.9). This is very useful for calling frequent functions
quickly. You can maintain a different process manager object for different situa-
tions—for example, one that handles input and network processing and one
that handles input and sound.

m 5. Programming with\Windows[and Application Basics

Figure 5.9
Per Frame Function .
A process stack is composed

Execute Processes of frequently called functions.

Process Stack Every function added to the
Read Keyboard Process’s Flow manager is subsequently executed
Process when cProcessManager: :Process
Read Mouse is called.

Process
:I Read Joystick

Process
Read Network

Process

Update Data | 5 Continue Program Execution
Process

Handling Application Data

All applications use data in some form or another, especially in games. You know
that game character you’ve been playing in your favorite game for the last three
weeks? Every little bit of information about that character is application data—his
name, hit points, experience level, and armor and weapons the character is carry-
ing. Every time you quit the game, your character’s data is saved, only to be waiting
for you to load later.

Using Data Packaging

The easiest way to deal with application data is to create a data packaging system
that handles saving and loading the data. By creating an object that contains a
buffer of data, you can add a few functions that save and load it for you. To see
what | mean first, take a look at this class:

class cDataPackage
{

protected:
// Data buffer and size
void *m_Buf;

unsigned long m_Size;

Handling Application Data m

public:
cDataPackage() { m_Buf = NULL; m_Size = 0; }
~cDataPackage() { Free(); }

void *Create(unsigned Tong Size)

{
// Free a previously created buffer
Free();
// Allocate some memory and return a pointer
return (m_Buf = (void*)new char[(m_Size = Size)l); [

// Free the allocated memory
void Free() { delete m_Buf; m_Buf = NULL; m_Size = 0; }

BOOL Save(char *Filename)
{
FILE *fp;

// Make sure there's something to write
if(m_Buf != NULL && m_Size) {
// Open file, write size and data
if((fp=fopen(Filename, "wb")) != NULL) {
fwrite(&m_Size, 1, 4, fp);
fwrite(m_Buf, 1, m_Size, fp);
fclose(fp);
return TRUE;

return FALSE;

void *Load(char *Filename, unsigned long *Size)
{
FILE *fp;

// Free a prior buffer
Free();

m 5. Programming with\Windows[and Application Basics

if((fp=fopen(Filename, "rb"))!=NULL) {
// Read in size and data
fread(&m_Size, 1, 4, fp);
if((m_Buf = (void*)new char[m_Sizel) != NULL)
fread(m_Buf, 1, m_Size, fp);
fclose(fp);

// Store size to return
if(Size != NULL)
J *Size = m_Size;

// return pointer
return m_Buf;

return NULL;

b

The cDataPackage class contains only four functions that you can use (actually six
including the constructor and destructor). The first function you’ll want to call is
create, which allocates a block of memory according to the size you give it. The Free
function frees this block of memory. As for save and Load, they do just that—save
the data block and load it from hard drive, using the filename you supplied.

Notice that the create and Load functions each return a pointer. That pointer is to
the data buffer, so you can use it to cast your own data pointer.

Testing the Data Package System

Imagine that you want to create a data package that stores a list of names, and you
want to use a custom structure to work with the names. By creating a data package
and casting the return pointer to a structure, you can quickly work with the name,
as in the following:

// A structure to contain a name
typedef struct {

char Name[32];
} sName;

Handling Application Data 147

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)

cDataPackage DP;
DWORD Size;

// Create the data package (w/64 bytes) and get the
// pointer, casting it to an sName structure type.
sName *Names = (sName*)DP.Create(64);

// Since there are 64 bytes total, and each name uses [
// 32 bytes, then I can have 2 names stored.
strcpy(Names[0].Name, "Jim");
strcpy(Names[1].Name, "Adams");

// Save the names to disk and free the data buffer
DP.Save("names.dat");
DP.Free();

// Load the names from disk. Size will equal 64
// when the Toad function returns.
Names = (sName*)DP.Load("names.dat", &Size);

// Display the names
MessageBox(NULL, Names[0].Name, "lst Name", MB_O0K);
MessageBox(NULL, Names[1].Name, "2nd Name", MB_O0K);

// Free up the data package
DP.Free();
}

Looking more closely at the data buffer in use, you see that out of the 64 bytes
used, two blocks of 32 bytes each are used to store the names, as illustrated in
Figure 5.10.

The possibilities for using data packing are enormous. By creating a few small data
package objects, you can cast all the pointers you want, keeping all your application
data in a single, contained object that can save and load itself.

m 5. Programming with \Windows|and Application Basics

Figure 5.10
64-Byte

Data char Data[64]; The data buffer is
large enough to
store every instance
of a person’s name.

IN[a[m]e[1] | [| [IN[a[m[e[2] [[| | this case, two
32 Bytes 32 Bytes names are stored,
char Name[32]; char Name[32]; each using 32
bytes, giving the
:| total buffer a size
of 64 bytes.

Building an
Applicaticn Framework

I’m sure you’ll agree that having to retype the same code again and again—the
code to create a window, draw graphics, play sounds . . . you get the idea—every
time you start a new project is bothersome. Why not just create a main library of
those functions that you can plug into your new project, leaving you more time to
program the actual application.

That’s the idea behind an application framework. At the basic level, a framework
should contain the code to initialize the application window, various engines
(graphics, input, network, and sound), handle initialization, per-frame routines,
and shutdown functions. Using modular-coding techniques also helps because the
major components, such as the engines, can be contained in individual objects.

The goal at this point is to build a
simple project that you can use as a base NOTE
for your applications. Start with a new
project and name it framework (Or some
other descriptive name). Within this
project, you create a file, called

In the project settings, be sure to
include the proper search paths for

the various headers (such as DirectX)

o oo and to link in all the libraries you are
WinMain.cpp. This file represents the likely to use, such as D3DX8.LIB (the

entry point of your application. DirectX helper library).

Building an \Application Framework m

The WinMain.cpp source code will be very minimal, containing only the code needed
to initialize the window. Take a look at the WinMain.cpp source file that | typically use
for my base framework:

// Include files
fHinclude <windows.h>
fHinclude <stdio.h>
#Hinclude <stdarg.h>

// Main application instances
HINSTANCE g_hInst; // Global instance handle [
HWND g_hWnd; // Global window handle

// Application window dimensions, type, class and window name
ftdefine WNDWIDTH 400

fidefine WNDHEIGHT 400

jtdefine WNDTYPE ~ WS_OVERLAPPEDWINDOW

const char g_szClass[] = "FrameClass";

const char g_szCaption[] = "FrameCaption";

// Main application prototypes

// Entry point

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow);

// Function to display an error message

void AppError(BOOL Fatal, char *Text, ...);

// Message procedure
lTong FAR PASCAL WindowProc(HWND hWnd, UINT uMsg, \
WPARAM wParam, LPARAM TParam);

// Functions to register and unregister windows' classes
BOOL RegisterWindowClasses(HINSTANCE hInst);
BOOL UnregisterWindowClasses(HINSTANCE hInst);

// Function to create the application window
HWND CreateMainWindow(HINSTANCE hInst);

// Functions to init, shutdown, and handle per-frame functions
BOOL DolInit();

m 5. Programming with\Windows[and Application Basics

BOOL DoShutdown();
BOOL DoPreFrame();
BOOL DoFrame();

BOOL DoPostFrame();

int PASCAL WinMain(HINSTANCE hInst, HINSTANCE hPrev, \
LPSTR szCmdLine, int nCmdShow)
{
MSG Msg;
J // Save application instance

g_hInst = hlnst;

// Register window classes - return on FALSE
if(RegisterWindowClasses(hInst) == FALSE)
return FALSE;

// Create window - return on FALSE
if((g_hWnd = CreateMainWindow(hInst)) == NULL)
return FALSE;

// Do application initialization - return on FALSE
if(DoInit() == TRUE) {

// Enter the message pump
ZeroMemory (&Msg, sizeof(MSG));
while(Msg.message != WM_QUIT) {

// Handle Windows messages (if any)
if(PeekMessage(&Msg, NULL, 0, 0, PM_REMOVE)) {
TranslateMessage(&Msg);
DispatchMessage(&Msg);
} else {
// Do pre-frame processing, break on FALSE return value
if(DoPreFrame() == FALSE)
break;

// Do per-frame processing, break on FALSE return value
if(DoFrame() == FALSE)
break;

Building an \Application Framework m

// Do post-frame processing, break on FALSE return value
if(DoPostFrame() == FALSE)
break;

// Do shutdown functions
DoShutdown();

// Unregister window [
UnregisterWindowClasses(hInst);

return TRUE;

BOOL RegisterWindowClasses(HINSTANCE hInst)
{
WNDCLASSEX wcex;

// Create the window class here and register it

wcex.cbSize = sizeof(wcex);

wcex.style = CS_CLASSDC;

wcex.1pfnWndProc = WindowProc;

wcex.chbClsExtra = 0;

wcex.cbWndExtra = 0;

wcex.hInstance = hlnst;

wcex.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
wcex.hbrBackground = NULL;

wcex.lpszMenuName = NULL;

wcex.1pszClassName = g_sz(Class;

wcex.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

if(!RegisterClassEx(&wcex))
return FALSE;

return TRUE;

BOOL UnregisterWindowClasses(HINSTANCE hInst)
{

E 5. Programming with\Windows[and Application Basics

// Unregister the window class
UnregisterClass(g_szClass, hlnst);

return TRUE;

HWND CreateMainWindow(HINSTANCE hlInst)
{
HWND hWnd;

J // Create the Main Window
hWnd = CreateWindow(g_szClass, g_szCaption,
WNDTYPE, 0, 0, WNDWIDTH, WNDHEIGHT,
NULL, NULL, hInst, NULL);
if(!hWnd)
return NULL;

// Show and update the window
ShowWindow(hWnd, SW_NORMAL);
UpdateWindow(hWnd);

// Return the window handle
return hWnd;

void AppError(BOOL Fatal, char *Text, ...)
{

char CaptionText[12];

char ErrorText[2048];

va_list valist;

// Build the message box caption based on fatal flag
if(Fatal == FALSE)

strcpy(CaptionText, "Error");
else

strcpy(CaptionText, "Fatal Error");

// Build variable text buffer
va_start(valist, Text);
vsprintf(ErrorText, Text, valist);
va_end(valist);

Building an \Application Framework E

// Display the message box
MessageBox(NULL, ErrorText, CaptionText, \
MB_OK | MB_ICONEXCLAMATION);

// Post a quit message if error was fatal
if(Fatal == TRUE)

PostQuitMessage(0);
}
// The message procedure - empty except for destroy message
Tong FAR PASCAL WindowProc(HWND hWnd, UINT uMsg, \ [

WPARAM wParam, LPARAM T1Param)

switch(uMsg) {
case WM_DESTROY:
PostQuitMessage(0);
return 0;

return DefWindowProc(hWnd, uMsg, wParam, T1Param);

BOOL DolInit()

{
// Perform application initialization functions here
// such as those that set up the graphics, sound, network, etc.
// Return a value of TRUE for success, FALSE otherwise.

return TRUE;

BOOL DoShutdown()

{
// Perform application shutdown functions here
// such as those that shut down the graphics, sound, etc.
// Return a value of TRUE for success, FALSE otherwise

return TRUE;

m 5. Programming with\Windows[and Application Basics

BOOL DoPreFrame()

{
// Perform pre-frame processing, such as setting up a timer.
// Return TRUE on success, FALSE otherwise.
return TRUE;

BOOL DoFrame()
{
// Perform per-frame processing, such as rendering.
J // Return TRUE on success, FALSE otherwise.
return TRUE;

BOOL DoPostFrame()

{
// Perform post-frame processing, such as time synching, etc.
// Return TRUE on success, FALSE otherwise.
return TRUE;

}

The preceding framework code will initialize a window and enter a message pump
waiting for the destruction of the application. All the functions are in place to handle
all aspects of setting up and shutting down the application. Note that the application
window created has no background; it is suitable for using with DirectX Graphics,
which you learn about in Chapter 6, “Drawing with DirectX Graphics.”

To alter any of the window settings, such as the width, height, or type, you can
change the definitions at the top of the code. The same goes for the window class
and caption, which are defined in two const variables declared at the beginning of
the code.

Notice that | added a function that doesn’t appear to be called anywhere. That
function is AppError, which I like to use to display error messages to the user.
Passing a value of TRUE as the Fatal parameter forces Windows to close the applica-
tion window, whereas a value of FALSE allows the program to continue.

In each function, you see the comments on what each function does—it’s your job
to insert the code that handles the initialization of objects, loading graphics, per-
frame processing, and so on.

Debuqgging Your Program E

Structuring a Project

At the start of each project, many options are available to you. All the various func-
tions that compose your application can be combined into a single source file, or
split into separate files by their individual functionality. For example, graphics func-
tions go into a graphics source file, sound functions go into a sound source file,
and so on. As long as you include those files in your project and provide a source
header file for each, there’s nothing to worry about.

I always start my programs with the winMain.cpp file. This file contains the entry

point for the application. It initializes the window and calls all the necessary setup, [
per-frame, and shutdown functions (which might be located in separate source
files). In fact, | use that methodology throughout the book.

Chapter 10, “Creating the Game Core,” introduces a series of class objects that

I use to speed the development of my games. You can include these files, all sepa-
rated by their functionality (graphics, sound, network, and so on), in your project
(as well as their respective include files). All you have to do is create a class
instance of the individual objects you want to use and hack away.

The bottom line is this: Arrange your entire project in easy-to-use modules that will
not overwhelm you.

Debugging Your Program

A perfect programmer is indeed rare, so you will spend part of your coding time
tracking down those awful bugs that love to crash your programs. Getting to know
your way around a debugging program helps in the long run, but don’t spend too
much time on it. Although the debugger can help a lot, there are those times when
you can pull out your hair trying to figure out what is going wrong.

Typical bugs are misspelled variables, incorrect values, and use of uninitialized
pointers. The first mistake you can make when programming is to give variables
similar names, such as the following:

char *MyName;
char *MyNames;

The simple addition of the letter s creates the possibility of getting the two vari-
ables mixed up at an inopportune time. Be sure to avoid this mistake.

You can use the assert function to track incorrect values and uninitialized pointers.

m 5. Programming with\Windows[and Application Basics

The sole purpose of the assert function is to evaluate an expression. When the eval-
uation returns a value of FALSE, a debug message is displayed (much like the mes-
sage seen in Figure 5.11), and the application aborts.

By placing assert function calls at strategic positions in your code, you can verify
that a variable is set appropriately or that a pointer is initialized. If that is not the
case, you’ll be notified and can track down the nasty bugs. What’s cool is that after
you fix the bug, you can leave the assert function calls in place and have the com-
piler skip them just by defining a macro at the top of your code.

:I First, though, check out this code, which shows you how to work with assert:

// Include assert header - a must!
fHinclude <assert.h>

// Instance a variable and pointer to work with
lTong dwValue = 10;
char *pPtr = NULL;

// check variable (looking for 20)
assert(dwValue == 20);

// check pointer (must not be NULL)
assert(pPtr != NULL);

Note that at each assert function call, an error message is displayed because neither
expression is true. The dwValue is initialized with a value of 10, but the call to assert
wants to make sure that a value of 20 is stored, which is not the case. The same goes
for pptr, which needs to be non-nULL. At each point, an error is displayed, and the
program aborts.

Figure 5.11
Q feioniaied The assert error message is useful for

P ;. KTOPYRPGEBOOKACDABOOKCODENGTESTSDEBUGAGTEST.EXE H N .

Fie: C i NDOW/5\D 2cKtop\RPGEB0oK\CD \B ackCadebgtestwint, . tracking down uninitialized or incorrectly set

Line: 244 . .
variables. As seen here, assert has informed

_ _ _ me what the error is, which file the error is
For information on how your program can cause an assertion

failure, see the Visual C++ documentation on asserts in, and the |ine number in Wh|Ch | can expect
[Press Retry to debug the application - JIT must be enabled) to see the problem

Expression: Ptr == MULL

BRetry lgnore

Wrapping Up-Windows and Application Basics 157

Now, assume that you’ve worked out the bugs and don’t want assert to work its magic
anymore. Going through your source code and clipping out all the assert statements
that you’ve added is a lot of work. Not to worry; the addition of this single line of

code at the beginning of your source code will

LT LT
cause the compiler to skip all assert calls:
TIP
f#define NDEBUG L o I like to track bugs by using
// Follow NDEBUG definition with include statements assert and occasionally
.. displaying the value of the
variables and pointers using
// Include assert header - a must! the MessageBox procedure. I:
finclude <assert.h> Find what works best for
Other than using your compiler’s debugger yo”’,a”d for goodness_s?kes,
features, that’s it folks. don’t pull out your hairl
1 1

Wrapping Up Windows and
Application Basics

Getting Windows to work in your game project is really a simple chore. By knowing
only the basics to creating a window and processing the window’s messages, you’re
able to begin concentrating on the real task at hand—creating your game.

Speaking of creating your game, using the information in this chapter, such as
state-based processing and data packaging, you’ll be able to manage any size pro-
ject with minimal effort. Correctly structuring your project is your first and highest
priority. Take advantage of the techniques in this chapter and see just how quickly
you can get a game project up and running.

m 5. Programming with Windows and-Application ' Basics

Programs on the CD-ROM

Programs that demonstrate the code discussed in this chapter are
located on the CD-ROM at the back of this book.You can find the
following demo programs in the \BookCode\ChapO05\ directory:

¢ State. Demonstrates using the state stack methods used
in this chapter. Location: \BookCode\Chap05\State\.

:I ¢ Process. Demonstrates using a process stack, as shown
in this chapter. Location: \BookCode\Chap05\Process\.

¢ Data. A data packaging example application.
Location: \BookCode\ChapO5\Data\.

¢ Shell. A complete shell application used to create a window
and call various functions in order to ease development time.
Location: \BookCode\Chap05\Shell\.

—H_.f_l—‘.__ﬁ_"_._;‘w = p W_F
R I vy My |y P i — oM

CHAPTER 6

DRAWING
LI1TH
DII1RECTX
GRAPHICS

m 6. Drawing with DirectX| Graphies

Recent games have dazzled us with their remarkable graphics and awesome
effects. It’s those graphical effects that catch most players’ eyes, so graphics
are a major component in your projects. Fortunately, most graphics engines and
the concepts behind them are straightforward and easy to understand. By applying
the basics of drawing graphics, you can re-create the awesome effects you see in
games and also create some new effects of your own.

] Now that it’s time to create your own graphics engine, you can turn to DirectX
Graphics, the graphical component of DirectX. In this chapter, 1 show you how
to use DirectX Graphics, including basic drawing techniques and the DirectX
Graphics advanced features such as texture-mapping and alpha blending. By the
end of this chapter, you’ll be a graphics-programming pro!

In this chapter, you learn about the following:
= DirectX graphics
= How to work in 3-D
= Matrix math
= Using the D3DX Library
s Drawing with vertices and polygons
= Working with texture maps
= Using alpha blending
» Billboarding and particles
= Working with meshes
s Using .X files
= Animating meshes

The Heart of 3-D Graphics

Although jumping to a topic as advanced as 3-D at this point in the book might not
seem logical, doing so is actually very logical. Specifically, the entire graphics sys-
tem of DirectX is based on Microsoft’s 3-D foray, which is Direct3D. For that rea-
son, everything you do with DirectX Graphics is couched in 3-D terminology and
usage.

The Heart of 3-D Graphics m

Everything, and | mean everything,
drawn with Direct3D is composed of poly- NOTE

gons. A polygon is typically a triangular In this section, | want to introduce

shape composed of three points, called you to 3-D terminology and the

vertices. A vertex is the smallest unit in 3-D; theory of drawing with 3-D graphics.

it is a single point (coordinate) located in In the section “Getting Down to

2-D or 3-D space. You create edges (lines) Drawing,” later in this chapter, you

by joining two vertices together, with apply theory to practice by beginning

three edges forming a polygon. to draw using DirectX Graphics.

You can think of this relationship of : [

vertices, edges, and polygons as a sort

of connect-the-dots game. The dots are vertices, and the lines you draw are edges.
The connected edges form a polygon face, and the whole picture is called a mesh (a
mesh is the culmination of all basic drawing objects—uvertices, edges, and polygons)
or a model. You can see the relationship of vertices, edges, polygons, and meshes
demonstrated in Figure 6.1.

Figure 6.1

Connect-the-dots to create
a 3-D object.

Polygon Faces

m 6. Drawing with DirectX| Graphies

In order to present a more realistic looking 3-D object, Direct3D uses what is called
materials to fill the empty polygons of a mesh with colors you designate. A material
is represented by a combination of color components, as well as an optional bitmap
image, known as a texture, that is stretched onto the surface of a polygon when the
polygon is being rendered.

Coordinate Systems

You might already be familiar with using 2-D coordinates when dealing with images;
:I they have a width and height, measured in pixels. The horizontal span of the width

is considered the X-coordinate, while the vertical span is the Y-coordinate. Each coordi-
nate is measured from its offset from the upper-left corner of the image.

In Figure 6.2, you can see the coordinates in place. The X-coordinate runs left to
right, with the origin (X-coordinate = 0) at the far left. The Y-coordinate runs top to
bottom, with the origin (Y-coordinate = 0) at the very top. These coordinates extend
in a positive direction to the other end of their respective spans. In Direct3D, 2-D
coordinates are commonly referred to as transformed coordinates because they repre-

sent the final coordinates used to draw
objects to the display.

In 3-D, an additional coordinate is
added, the Z-coordinate. Typically, the Z-
coordinate represents the depth of the
image. More importantly, the Y-coordi-
nate is flipped, running from bottom to
top (the positive direction moving up).

You can see this layout of the three coor-

dinates in Figure 6.3.

You can use the Z-coordinate two ways:
with the positive direction going from
the origin forward (away from you) or
backward (towards you). These two ways
are commonly called left-handed and
right-handed coordinate systems, respec-
tively. In this book, I use the left-handed
coordinate system.

NOTE

The left- and right-handed coordinate
systems got their names from the fact
that you can determine in which
directions the three coordinates run
by using your hands. Stick your left
hand out with your palm facing
upward. Point your thumb forward
away from you (your fingers should be
pointing right).Your thumb is pointing
in the positive Z direction, and your
fingers are pointing in the positive X
direction. Now, point your fingers up
(without moving your hand), and
they’ll be pointed in the positive Y
direction. This is the left-handed coor-
dinate system. Do the same with the
right hand (with your fingers pointed
right) to achieve the right-handed
coordinate system layout.

The Heart of 3-D Graphics m

Figure 6.2

X-Coordinate * You measure an image by the width and height in

pixels.You reference coordinates in the image by
using the appropriate X- and Y-coordinates.

<«— Width —>

Image

<«— WybioH ——>

+ <—— SJBUIPIOOD-A «—— |

Figure 6.3

The three dimension coordinates: X,Y, and Z.
X andY are analogous to the display, while
the Z-coordinate represents the depth of the
display, or rather the depth of a displayed
image.

Height

Y-Coordinate ——» +
+

Oriai X-Coordinate ——» +
rigin Width

0,0,0

Everything in the 3-D world is measured in those coordinate systems—2-D for
images and video display and 3-D for everything else. So, if you were to define a
point in space (using 3-D coordinates) that is in front of you (along the Z-axis),
slightly to your right (along the X-axis), and at about eye-level (along the Y-axis),
you would state those coordinates as X=100, Y=50, Z=200. Those coordinates would
represent a coordinate that is 100 units to your right, 50 units above the ground,
and 200 units in front of you, respectively.

m 6. Drawing with DirectX| Graphies

As for 2-D coordinates, you would say that a picture on the wall is 200 units wide
by 200 unit in height. The center of that picture would be at X=100, Y=100, and the
upper-left corner of the picture would be at X=0, Y=0.

Those 3-D coordinates are referred to as untransformed coordinates because they do
not represent the final coordinates that are used to render an object to the display.
On the other hand, 2-D coordinates are referred to as transformed coordinates, as
they map directly to the display’s coordinates. Later in this chapter, in the section
“The Math of 3-D,” you find out how to convert an untransformed coordinate into
a transformed coordinate, but for now let’s focus on how to define objects using

:I the coordinates you just read about.

Constructing Objects

When constructing objects such as meshes and models (and even flat 2-D images),
you begin at the vertex level. Each vertex has an X-, Y-, and Z-coordinate assigned
to it. You can specify these coordinates in three ways: screen space (using trans-
formed coordinates), model space (using untransformed coordinates), and world
space (also using untransformed coordinates).

You use screen space to map vertices to the actual screen coordinates. Model space
(also called local space) refers to coordinates you place around an arbitrary origin
that represents the center of a model. The vertices in local space belong to a
model, and you can move them with the object in order to draw it appropriately.

You convert the vertices contained in local space into world space before rendering
the object. When rendering the object, you convert the world space coordinates
into screen space coordinates.

Vertices placed in world space represent the final position used to render an object.
World space is the actual position around a fixed point in the 3-D world. For exam-

ple, consider yourself a mesh. Your joints are vertices that are defined in local space,
because they can be defined with coordinates from the center of your chest.

As you move around your house (which is world space), the coordinates of your
joints move around in the world but remain local to your body, as demonstrated in
Figure 6.4.

After deciding on the type of coordinates to use to draw an object (in screen, local,
or world space), you then place the vertices (numbering them by the order in
which they are placed). You then join these vertices in groups of three to create
triangular polygon faces. Figure 6.5 shows a couple of polygon faces being con-
structed by grouping vertices.

The Heart of 3-D Graphics E

Figure 6.4

Rarely do you refer to an
object’s vertex coordinates
directly when moving the object
around the world. Instead, you

(]|

| Your House |

A specify an object’s placement by
World Coord World Coord its world space coordinates and
XY XY .
10,30 o 100,30 let Direct3D worry about the
% A A placement of the vertices.
Y Y [
X X
>
X
Figure 6.5
0 3 . .
You use six vertices to draw two
polygons. Each polygon must be
triangular, so each polygon uses
only three vertices.
1 4
2 5

Lists, Strips, and Fans

Something you must consider when constructing the polygon faces is the sharing
of vertices (that is, a polygon can use the same vertex, or vertices, as another poly-
gon). A set of polygon faces can fall into three categories: triangle lists, triangle
strips, and triangle fans.

A triangle list is a set of faces with no common vertices, so each polygon gets its own
trio of vertices. A triangle strip is a set of faces with common vertices, so each poly-
gon shares an edge with another polygon. A triangle fan occurs when a number of
faces share a single vertex, almost like a fan does at its base. These three categories
are shown in Figure 6.6.

m 6. Drawing with DirectX| Graphies

Figure 6.6

Triangle lists don’t allow vertices

to be shared, unlike triangle

strips and fans. Using strips

and fans reduces the number
List Strip of vertices, thus saving on

memory and increasing
rendering speeds.

Fan

g NOTE
Vertex Drdering Even lines and pixels can be drawn

Later, when you get into rendering the with Di.rect3D using vertices and poly-
polygons, the order of the vertices you 32:;5‘@?:2?;;?% IZSZ':Z ﬂ:jt uosﬁsone
use to define a face becomes important that us,e two vertices Botﬂ p)i/>g<els Sy
giiﬁzsfa)c/gl:sr:hu;tf?oe:te;r::lin\(/evr\?;::];]dil i':: lines are created using triangle lists.

-
back. For your current purposes, you
want to order the vertices that define a
face in a clockwise fashion (when viewed

from the front side of the polygon), as NOTE
shown in Figure 6.7. This way, you know In a 3-D engine, the backside of a face
you're looking at the front of the face if is normally not drawn, so it is skipped
the vertices constructing the face are during the rendering process.This is
defined in a clockwise order. known as backface culling and is a

. major optimization that should be
Agtute reao!erg prgbably noticed that the performed. If you are using a right-
triangle strip in Figure 6.7 has every handed coordinate system, this clock-
other one of the face’s vertex order wise order is reversed and all polygon

reversed. This reversal of vertex ordering — [IRE=0al=l=lo o) o1=No) 1o [=10 hlg |
is a requirement for drawing triangle counter-clockwise manner.
strips using Direct3D.

The Heart of 3-D Graphics

3 Figure 6.7
1
0 — 4 — 3 Watch how you order
/ 5 the vertices, because
\ you'll need to construct
1 0 the triangle lists, strips,
5 o —= and fans using a specific
2 List Strip 4 order of those vertices.
0_____ > g1

Coloring Polygons

Once you define a group of polygons or a mesh, you are ready to color the polygon
faces. Direct3D has two simple techniques that I discuss in this book. The first tech-
nique involves defining materials, which are basically single colors. Materials are
defined by their diffuse, ambient, and specular color components. The diffuse

and ambient colors are typically the same color—the color that represents the actual
color of the object. Specular is the color of the highlight that appears when a nearby
light brightens an object. (See the section “Materials and Colors,” later in this chap-
ter, for more on these color components.)

The second technique, called texture-mapping, involves painting the polygon with an
image. Texture maps are images that are typically loaded from a bitmap file. These
bitmap images are stretched or tiled (repeated) across the face of a polygon.

Transformations

After you define a model (or even just a set of polygons), you are ready to place it
into the world at the desired location. Figure 6.8 shows a couple of models that are
placed inside the 3-D world. You can move, scale, and rotate any object as you see fit,
so you can use the same model to draw a bunch of objects in different orientations.

167

m 6. Drawing with DirectX| Graphies

Figure 6.8

Objects Y Although you define 3-D objects

in their own local space, you can

v @ v Q position them within world space.
World

.
>

Y

X

You refer to these actions of moving (also called translating), rotating, and scaling
as transformations. A number of transformations are required to take an object from
its model space into a set of coordinates ready to view.

First, there is the world transformation, which is a transformation used to convert

from the local coordinates to world coordinates. This includes scaling, rotation on
the X-, Y-, and Z-axis, and translating (specifically in that order). The second trans-
formation is the view transformation, which orients all objects around a viewing posi-
tion within the 3-D world, thus converting world coordinates into view coordinates.

The last important transformation is the projection transformation, which is the trans-
formation used to flatten the 3-D world into a 2-D image. It acts almost like a cam-
era lens, with different zooms, short and wide-angles, and various other effects such
as fisheye distortion.

Getting Started with
DirectX Graphics

Now that you’re acquainted with the basics on drawing 3-D graphics, it is time to start
applying that knowledge. Before you can move on, however, you need to understand

Getting Started with DirectX Graphics

how to prepare the graphical system for your use. In this section, | introduce you to
the components of DirectX graphics that | use throughout this book and to how to
get the graphics system running and ready for drawing. Prior to DirectX version 8,
programmers were able to draw 2-D graphics using the DirectDraw component of
DirectX. With the release of DirectX 8, however, DirectDraw was merged into
Direct3D, resulting in DirectX Graphics.

Even DirectX veterans might need a bit
of time getting accustomed to all the new NOTE
and altered features in the latest version
of DirectX. Don’t let this fact daunt you,
however, because Microsoft did simplify
the use of the graphics system.

Even though the new graphics com-
ponent is called DirectX Graphics,

I commonly refer to it as Direct3D,
as all 3-D graphics objects utilize it.
To begin, always be sure to include
D3D8.H in your source code and link in
the p3p8.L18 library. (Appendix A, “Installing DirectX and Configuring the
Compiler,” has information on how to link in files. Consult that appendix to find
out how to link in p3p8.L1B.) These are the essential files you need to start using
Direct3D. You’ll notice that your project begins adding many different external
include files when using Direct3D; but you’ll never have to worry about them—
just let Direct3D do its thing to get you up and running.

Direct30D Components

Direct3D separates the graphics func-
tionality into a multitude of COM

objects. Each object has its own purpose, NOTE

such as an 1Direct308 object used to con- Although there are a few more
trol the overall graphics system, or an Direct3D components to deal with,
IDirect3DDevices object used to control they are beyond the scope (and

usefulness) of this book.You can
refer to the DirectX SDK docu-
ments for more information on
those additional objects.

how graphics are rendered to the dis-
play. In this book, I show you only those
objects listed in Table 6.1; those are the
objects that you’re most likely to use in
your game development project.

6. Drawing with DirectX| Graphies

Table 6.1 The Major Direct3D Components

Component Description
IDirect3D8 Use this object to gather information about the graphics
hardware and setup device interfaces.

IDirect3DDevice8 Deals directly with the 3-D hardware. With it, you ren-
der graphics, handle image resources, create and set
render states and shade filters, and so much more.

IDirect3DVertexBuffer8 Contains an array of vertex information used to draw
polygons.

IDirect3DTexture8 Utilize this object to store all images used to paint the
faces of 3-D (and 2-D) images.

Initializing the System
Starting to use the graphics system is an easy task, thanks to the simplification of
Direct3D. Here are the four general steps for setting up and running the graphics
system:

1. Obtain an interface to Direct3D.

2. Select a display mode.

3. Set the presentation method.

4. Create the device interface and initialize the display.

That’s a pretty sparse list! | told you that getting the graphics system up and run-
ning is a simple task, so let’s get a move on and find out how to handle each step.

Obtaining the Direct3dD Interface

The first step to using graphics is to initialize an 1direct3ps object. Using the
Direct3DCreate8 function does this for you:

IDirect3D8 *Direct3DCreate8(
UINT SDKVersion); // D3D_SDK_VERSION

Getting Started with DirectX Graphics

The one and only argument to this
function should be p3D_SDK_VERSION, which NOTE

signifies the version of the SDK that you The majority of DirectX functions

are using. The return variable is a (as well as all COM objects) return
pointer to the newly created 1Direct3D8 an HRESULT value. Every now and
object that you need, or the return vari- then, you’ll see functions (such as
able is NULL if an error occurred during Direct3DCreate8) return a non-HRESULT

creation of the Direct3D interface. value, so keep a close watch!

Using this function is as simple as
instancing an 1pirect308 object and calling
the create function:

IDirect3D8 g_D3D; // global IDirect3D8 object

if((g_D3D = Direct3DCreate8(D3D_SDK_VERSION)) == NULL) {
// Error occurred

Selecting a Display Mode

After the 1Direct3D object is created, you can begin querying it for information
about the graphics system, which includes the display modes that Direct3D can
handle. In fact, you can also query the 1direct3D object for information about the
current display mode if you want to use that format.

Display modes are categorized by their dimensions (width and height in pixels),
color depth (number of displayable colors), and refresh rate. For example, you
might want to use a 640 x 480 resolution with a 16-bit color depth display mode
and the adapter default for the refresh rate.

This display mode information is stored in a D3DDISPLAYMODE Structure:

typedef struct _D3DDISPLAYMODE {
UINT Width; // Screen width in pixels
UINT Height; // Screen height in pixels
UINT RefreshRate; // Refresh rate (0=default)
D3DFORMAT Format; // Color format

} D3DDISPLAYMODE;

You can see the width, height, and refresh rate, but what about the color format?
In graphics, you usually have a choice of the number of bits to use per pixel

(16, 24, or 32) to store color information. The more bits you use, the more colors
you’re able to display (and the more memory you use).

6. Drawing with DirectX| Graphies

You commonly refer to color modes by the number of bits each color component
(red, green, blue, and sometimes alpha) takes. For example, say that | want a 16-bit
color mode—>5 bits for red, 5 bits for green, 5 bits for blue, and 1 bit for an alpha
value. With 5 bits of storage, each color component can use 32 shades. The alpha
value has one bit, meaning that it’s either off or on.

When you refer to a color mode, you don’t say 16-bit, but the number of bits per
color component, as in 1555 (1 alpha, 5 red, 5 green, and 5 blue). Standard colors
modes are 555 (5 red, 5 green, 5 blue, no alpha), 565 (5 red, 6 green, 5 blue), and
888 (8 bits per color component). Notice that the alpha value isn’t required at times.

Direct3D defines these color modes as enum values, which you can see in Table
6.2.

At this point, say that you want to start setting up a display mode that is 640 x 480
and uses the p3DFMT_R5G6B5 color format. Here’s how you set up the D3DDISPLAYMODE
structure:

D3DDISPLAYMODE d3ddm;

d3ddm.Width = 640;
d3ddm.Height = 480;
d3ddm.RefreshRate = 0; // use default

Table 6.2 Direct3D Color Mode Macros

Value Format Description
D3DFMT_R8G8B8 (24-bit) 8 red, 8 green, 8 blue
D3DFMT_A8BRBG8B8 (32-bit) 8 alpha, 8 red, 8 green, 8 blue
D3DFMT_X8RBGBB8 (32-bit) 8 unused, 8 red, 8 green, 8 blue
D3DFMT_R5G6B5 (16-bit) 5 red, 6 green, 5 blue
D3DFMT_X1R5G5B5 (16-bit) 1 unused, 5 red, 5 green, 5 blue

D3DFMT_A1R5G5B5 (16-bit) 1 alpha, 5 red, 5 green, 5 blue

Getting Started with DirectX Graphics

d3ddm.Format = D3DFMT_R5G6B5;

To check whether the display adapter can handle the color format you want, fill
the D3DDISPLAYFORMAT structure with the required information and give a call to

// g_pD3D = pre-initialized Direct3D object
// d3ddm = pre-initialized D3DDISPLAYMODE structure

// Check if display mode exists
if(FATLED(m_pD3D->CheckDeviceType(D3DADAPTER_DEFAULT, \
D3DDEVTYPE_HAL, &d3ddm, &d3ddm, FALSE))) {
// Error occurred - color mode not supported
}

LT LT
NOTE g CAUTION
As do all COM interfaces, Direct3D Certain display adapters are unable
returns an HRESULT value. A value of to use specific display modes. It’s
D3D_O0K means that the function call your job to determine whether an
was successful; anything else is a fail- adapter can or cannot support the
ure.You can use the standard FAILED various modes. If you are using
or SUCCEEDED macros to easily test | windowed mode, this is not a big
the return codes. problem because Direct3D handles

the color mode settings for you.

1 1

.

Setting the display mode information assumes that you are using a full screen.

If, on the other hand, you want to support windowed mode (such as a standard
Windows application), you have Direct3D fill in the display mode information for
you. You accomplish this with the following call:

// g_pD3D = pre-initialized Direct3D object
D3DDISPLAYMODE d3ddm;
if(FAILED(g_pD3D->GetDisplayMode(\
D3DADAPTER_DEFAULT, &d3ddm))) {
// Error occurred
}

Upon success, the preceding call to 1Direct308::GetDisplayMode will return a valid
D3DDISPLAYMODE structure.

6. Drawing with DirectX| Graphies

Setting the Presentation Method

The next step to setting up Direct3D is to decide how to present the graphics to
the user. Do you want to do so within a window, a full screen, or a backbuffer

(see the upcoming note for more on backbuffers)? What refresh rate will you use?
All this information (and more as you’ll see) is stored with a D3DPRESENT_PARAMETERS

structure:
typedef struct _D3DPRESENT_PARAMETERS {
UINT BackBufferWidth; // Width of backbuffer
J UNIT BackBufferHeight; // Height of backbuffer
D3DFORMAT BackBufferFormat; // Same as display mode format
UINT BackBufferCount; /11
D3DMULTISAMPLE_TYPE MultiSampleType; // 0
D3DSWAPEFFECT SwapEffect; // how to display backbuffer
HWND hDeviceWindow; // NULL
BOOL Windowed; // TRUE for windowed mode
// FALSE for fullscreen mode
BOOL EnableAutoDepthStencil; // FALSE
D3DFORMAT AutoDepthStencilFormat; /10
DWORD FTags; // 0
UINT FullScreen_RefreshRateInHz; /10

UINT FullScreen_PresentationInterval; // 0
} D3DPRESENT_PARAMETERS;

|
NOTE

AI_thOUQh th'_S operation A backbuffer is an off-screen drawing surface
might seem involved, you (the same size as a window or video screen) that
really don’t have to deal receives all drawing operations. In order to view
with the majority of the the graphics drawn on a backbuffer, you use an
fields in the operation known as a flip, which displays the con-
D3DPRESENT_PARAMETERS tents of the backbuffer on the video screen or
structure; however, you do window. This operation displays smooth updates—
need to understand the the user never sees what is being drawn until you

fields related to the back- are ready to display it.

buffer. You can see this concept demonstrated in Figure
6.9, which shows the front (display) and back (off-
screen) screens.You draw on the back screen, and
when you finish drawing, you flip the two screens
to display the back one.

Getting Started with DirectX Graphics 175

Figure 6.9

Draw Graphics .
to évackbﬁﬁ;r Drawing on the backbuffer keeps things out

of view until you flip the two screens.

(6o oo oo
» a

Backbuffer [
Display

Flip

Backbuffer

Display

Here are two possible setups that you can use, depending on whether you are using
a windowed or a full-screen graphics mode:

// d3ddm = pre-initialized D3DDISPLAYMODE structure
D3DPRESENT_PARAMETERS d3dpp;

// Clear out the structure
ZeroMemory (&d3dpp, sizeof(D3DPRESENT_PARAMETERS));

// For windowed mode, use:

d3dpp.Windowed = TRUE;

d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = d3ddm.Format; // use same color mode

6. Drawing with DirectX| Graphies

// For fullscreen mode, use:

d3dpp.Windowed = FALSE;

d3dpp.SwapEffect = D3DSWAPEFFECT_FLIP;

d3dpp.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;

d3dpp.FullScreen_PresentationInterval = \
D3DPRESENT_INTERVAL_DEFAULT;

d3dpp.BackBufferFormat = d3ddm.Format; // use same color mode

Creating the Device Interface

and Initializing the Display

At last you’re able to create the Direct3D device interface, which is the workhorse
of the 3-D system. Using the D3DDISPLAYMODE and D3DPRESENT_PARAMETERS structures that

you previously set up, call the 1Direct3D8::CreateDevice function to create and initial-
ize the display interface:

HRESULT IDirect3D8::CreateDevice(

UINT Adapter, // D3DADAPTER_DEFAULT
D3DDEVTYPE DeviceType, // D3DDEVTYPE_HAL
HWND hFocusWindow, // window handle to use for rendering

DWORD BehaviorFlags, // D3DCREATE_SOFTWARE_VERTEXPROCESSING
D3DPRESENT_PARAMETERS *pPresentationParameters, // d3dpp
IDirect3DDevice8 *ppReturnedDevicelnterface); // device object

In the createDevice function, you see where to pass the presentation structure that
you created, plus the handle to the window that belongs to your application (and
which Direct3D will use to display the rendered graphics). The rest of the argu-
ments are pretty standard fare, and you rarely change them. The last argument

is the pointer to the Direct3D device object that you are creating. A call to the
IDirect3D8::CreateDevice might look something like this:

// g_pD3D = pre-initialized Direct3D object

// hWnd = window handle to use for rendering

// d3dpp = pre-initialized presentation structure
IDirect3DDevice8 *g_pD3DDevice;

if(FAILED(g_pD3D->CreateDevice(D3DADAPTER_DEFAULT, \
D3DDEVTYPE_HAL, hWnd, D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &g_pD3DDevice))) {
// Error occurred

Getting Started with DirectX Graphics

Losing the Device

Normally, the device interface operates as expected, and everything works great;
graphics are drawn, and memory resources are maintained. Although it would be
great to think that your device will stay in this operational state, there will be times
when it just can’t. Enter the world of lost devices.

A lost device is one that has lost control of the graphics resources for one reason
or another. It could be that another application gained control of the graphics
adapter and dumped all the memory that contained your application’s graphics
data. It could be that Windows powered down the system while entering sleep
mode. Whatever the reason, your control of the graphics device is gone, and you
need to get it back.

How do you know when control is lost? By examining the return calls to any device
function that you call! For example, in the section “Presenting the Scene,” later in
this chapter, you see how to display graphics to the video display. During that call,
if the device object returns a value of D3DERR_DEVICELOST, you’ll know that the device
is lost.

Regaining control of the device is a drastic step, in a manner of speaking. It’s all
done through the following function:

HRESULT IDirect3DDevice8::Reset(
D3DPRESENT_PARAMETERS *pPresentationParameters);

The one and only parameter is the presentation structure that you used when you
initialized the device:

// g_pD3DDevice = pre-initialized device object
// d3dpp = pre-setup presentation structure
g_pD3DDevice->Reset(&d3dpp);

I’d like to say that this is a magic function that handles everything for you when
restoring a device, but I'm sorry to convey some bad news. Calling the reset
function resets the device and wipes out all resources—which really isn’t too bad,
because there’s a chance they’ve already been lost (because the device was lost).

The bottom line is that you’ll need to reload all resources that have to do with the
graphics (such as textures), and you’ll need to restore the device states (the set-
tings). Much of what is lost is data you haven’t yet learned about, so now I’ll bring
you up to speed.

177

178

6. Drawing with DirectX| Graphies

Introducing D30X

Dealing with Direct3D is at times a major task. Although Microsoft has simplified
many of the interfaces, you still have a bit of work to do. To help speed up applica-
tion development time, Microsoft created the D3DX library.

The D3DX library is packed to the brim with useful functions for dealing with
graphics, such as meshes, textures, fonts, math, and so on. Throughout this book,
you will see how to utilize the D3DX library in order to make your game-program-
ming quest a little smoother.

To use the D3DX library in your project, you include only p30x8.H and link
in p3Dx8.L1B. All D3DX functions start with the prefix D3DX (for example,
D3DXCreateFont). Not only does the D3DX library contain functions, but it also
contains COM objects, such as 1D3DXBaseMesh.

The Math of 3-D

As you can probably tell by now, using 3-D graphics involves considerable math,
and dealing with so many numbers can bog things down quickly. Many years ago,
real-time 3-D graphics were a dream rather than a reality. Computers just couldn’t
handle the computations fast enough.

Of course, things got better with time, and now we’re able to achieve some awe-
some effects. Advancements in the math involved with 3-D graphics is one reason
for this change.

Matrix Math

No, this section is not about Keanu Reeves and his next movie in which he is stuck
inside a calculator. Matrix math is a form of linear algebra that simplifies and
reduces certain calculations. For your current purposes, the calculations are the
3-D transformations I just mentioned.

Because each 3-D obiject is composed of many vertices, Direct3D’s job is to trans-
form those vertices into coordinates that are ready to render the graphics to the
display. You could transform thousands of vertices that construct a scene for each
frame. That’s some serious math—enough to choke any college math professor.

Direct3D deals with all the transformations by using matrices. A matrix is a grid of
numbers, with each element in the grid having a specific meaning. For your current

The Math of 3-D

—T L—T

purposes, the numbers repre-

sent the transformations you CAUTION
want to apply to the vertices. Note that matrix math is involved only when
By coml_Jlnln_g all the necessary you work with 3-D coordinates. If you're using
calculations into a packed transformed coordinates (coordinates in
form, such as a matrix, the screen space), you do not have to apply
math is greatly simplified. further transformations to them.
1 1
Matrix Construction [

A matrix comes in many sizes, but as far as you need to be concerned right now,
its size is 4 x 4, which means that you have a grid with four rows and four columns.
Direct3D stores a matrix as a D3DMATRIX structure:

typedef struct _D3DMATRIX {
D3DVALUE _11, _12, _13, _14; NOTE
D3DVALUE _21, _22, _23, _24;
D3DVALUE _31, _32, _33, _34;
D3DVALUE _41, _42, _43, _44;
} D3DMATRIX;

D3DVALUE is a macro that expands to
a float data type.

In order to fill a matrix with the transformation data you’ll use, you can actually
use the D3DX library. Instead of using the p3DMATRIX structure, make use of the
D3DXMATRIX Object, which contains the same variables as D3DMATRIX, along with a
number of useful functions.

Each transformation you will use has its own matrix to start with, whereas the rota-
tion takes three matrices (one for each axis). This means that you need five trans-
formation matrices: X-rotation, Y-rotation, Z-rotation, translation, and scaling. The
first set of functions is used to set up the rotation matrices:

D3DXMATRIX *D3DXMatrixRotationX(
D3DXMATRIX *pOut, // output matrix
FLOAT Angle); // X angle around center

D3DXMATRIX *D3DXMatrixRotationY(
D3DXMATRIX *pOut, // output matrix
FLOAT Angle); // Y angle around center

D3DXMATRIX *D3DXMatrixRotationZz(
D3DXMATRIX *pQut, // output matrix
FLOAT Angle); // 7 angle around center

m 6. Drawing with DirectX| Graphies

By passing each of the ‘

preceding functions with NOTE

a matrix and providing a Notice that all the matrix functions used by D3DX
rotational value (in radians also return a D3DXMATRIX pointer. This is a pointer to
representing the angle the output matrix, and it enables you to use the
along the axis origin), you matrix functions inline with another function, as
obtain the values with shown here:

which you need to work. D3DXMATRIX matMatrix, matResult;

The next function creates matResult = D3DXMatrixRotationZ(&matMatrix, 1.57f);
:I a translation matrix, which

is used to move objects:

-

D3DXMATRIX *D3DXMatrixTranslation(
D3DXMATRIX *pOut, // output matrix

FLOAT X, // X coordinate offset
FLOAT vy, // Y coordinate offset
FLOAT z); // 71 coordinate offset

The coordinates are actually offsets based on the origin of the object. The transla-
tion values are used to convert an object from local space coordinates to world space
coordinates. Next in line is the function that scales objects around their origin:

D3DXMATRIX *D3DXMatrixScaling(
D3DXMATRIX *pOut, // output matrix

FLOAT sx, // X scale
FLOAT sy, // Y scale
FLOAT sz); // 1 scale

An object’s scale is normally 1.0. To double the size of an object, specify a value of
2.0; to make the object half its size, use 0.5.

You’ll also use a special type of matrix called an identity matrix. It has all but a few
values set to zero; the others are set to one. When applied to another matrix, the
identity matrix has no effect and leaves the resulting values the same as the original
ones. ldentity matrices are useful when you have to combine two matrices but don’t
want the original one altered.

In order to create an identity matrix, you can use the following function (which
takes only the output matrix as a parameter):

D3DXMATRIX *D3DXMatrixIdentity(D3DXMATRIX *pOut);

The Math of 3-D0 [EIB

Although the function prototypes are not much to look at, here are some examples:

D3DXMATRIX matXRot, matYRot, matZRot;
D3DXMATRIX matTrans, matScale;

// Setup the rotations at 45 degrees (.785 radians)
D3DXMatrixRotationX(&matXRot, 0.785f);
D3DXMatrixRotationY(&matYRot, 0.785f);
D3DXMatrixRotationZ(&matZRot, 0.785f);

// Setup the translation to move to 100,200,300 [
D3DXMatrixTranslation(&matTrans, 100.0f, 200.0f, 300.0f);

// Scale object to twice the size in all directions
D3DXMatrixScaling(&matScale, 2.0f, 2.0f, 2.0f);

Combining Matrices

After filling the various matrices with the values used in transformations, you can
apply them to each individual vertex. In fact, to make it even easier, you can com-
bine the separate matrices that contain the values for translating, rotating, and
scaling into a single matrix by multiplying them together. This procedure is known
as matrix concatenation, and it is the heart of optimizing all matrix calculations.

By constructing a single matrix once per frame, you can then use this matrix for
every vertex in the scene. When applied to a vertex, this single matrix has the same
effect as applying the separate matrices in succession.

Matrices are not hard to use. They just take a little understanding. In fact, with the
power of D3DX, you’re able to combine the matrices effortlessly with the use of the
D3DXMatrixMultiply function:

D3DXMATRIX *D3DXMatrixMultiply(
D3DXMATRIX *pOut, // output matrix
CONST D3DXMATRIX *pM1, // Source matrix 1
CONST D3DXMATRIX *pM2); // Source matrix 2

By passing two matrices as pM1 and pM2, you get a resulting matrix (pout) calculated
from multiplying the first two matrices. To expand on the example scaling, rota-
tion, and translation matrices created in the previous section, combine them all
into a single matrix that represents all the transformations:

D3DXMATRIX matResult; // The resulting matrix

E 6. Drawing with DirectX| Graphies

// Clear the resulting matrix to identity
D3DXMatrixIdentity(&matResult);

// Multiply in the scaling matrix
D3DXMatrixMultiply(&matResult, &matResult, &matScale);

// Multiply in rotation matrices

D3DXMatrixMultiply(&matResult, &matResult, &matXRot);
D3DXMatrixMultiply(&matResult, &matResult, &matYRot);
J D3DXMatrixMultiply(&matResult, &matResult, &matZRot);

// Multiply in translation matrix
D3DXMatrixMultiply(&matResult, &matResult, &matTrans);

Notice that the order in which you combine the matrices is essential. In the preced-
ing example, | combined them in this order: scale, X-rotation, Y-rotation, Z-rotation,
and translation. If you were to combine the matrices in any other order, the resulting
matrix would be different and would cause some future undesirable results.

The Steps from Local to View Coordinates

In order for a vertex to be used to render a face, the vertex must be converted
from its local coordinates (untransformed coordinates) to world coordinates.
The world coordinates are then converted to view coordinates, and then finally
projected into 2-D coordinates (transformed coordinates).

You convert local coordinates to
world coordinates using a world
transformation matrix (or world

NOTE

matrix for short). This matrix con- When working with the view transforma-
tion, you must use the reverse values of
the viewing position to orient objects into
view.You do so because a viewing position
actually stays locked at coordinates 0,0,0.

tains the transformations used to
position the object in the 3-D
world (local to world). The second
transformation matrix, which is

.) When the view “moves,” the world and all
used to transform the object into

objects in it are actually moving around

viewing coordinates, is called the you. For example, if you want to walk for-
viewing matrix. Last is the projection ward 10 units, move the world’s objects
matrix, which converts 3-D coordi- 10 units back toward you instead. Look
nates from the viewing coordinates left 10 degrees, and the world’s objects

into transformed vertices that are rotate 10 degrees right around you.
used to render graphics. m m

The Math of 3-D0 [[CER

When constructing the world matrix and the view matrix, you must pay close atten-
tion to the order in which you combine the individual matrices. For a world trans-
formation, you combine the individual transformation matrices in this order:

R=S*X*Y*Z*T
R is the resulting matrix, S is the scale matrix, X is the X-axis rotation matrix, Y is
the Y-axis rotation matrix, Z is the Z-axis rotation, and T is the translation matrix.

The view matrix must combine the individual transformation matrices in this order
(using only translating and rotation):

R=T*X*Y*Z I:

The projection matrix is a special case and is a little harder to work with. You must
take many things into consideration when building a projection matrix because it
doesn’t work with transformations such as translation, scaling, or rotation. I’ll be
using the D3DX library to help construct the projection matrix later on in the
section “The Projection Transformation.”

Figure 6.10 shows the path that a vertex takes through the various transformations
to its final set of drawing coordinates.

Figure 6.10
Un-t f d .
: r\‘j‘grstec;rme An untransformed vertex passes through various
transformation matrices in order to obtain its final
/ rendering coordinates.

World View
Transformation Transformation
Matrix Matrix

d

Projection
Matrix

l

Output
Transformed
Vertex

m 6. Drawing with DirectX| Graphies

Getting Down to Drawing

Enough of the basics; it’s time to check out how Direct3D actually draws graphics.
In this section, | cover the basics on using vertices and polygons to draw graphics.
You learn about the various ways Direct3D uses vertices to draw polygons, how to
color those polygons, and finally how to present those graphics to the user.

It’s the little things that make it count, so check out how to deal with vertices and
move up from there.

Using Vertices

Direct3D gives you the freedom to define a vertex in many different ways. For
example, if you’re using 2-D graphics, you can specify coordinates in 2-D screen
coordinates (transformed coordinates).

On the other hand, if you’re using local or world space coordinates, you can specify
coordinates in 3-D (untransformed coordinates). How about using colors and tex-
tures? You can choose to include that information as well in your vertex definitions.

How do you keep track of all that information and make sure that Direct3D knows
what you’re doing? Behold the flexible vertex format.

Flexible Vertex Format

The flexible vertex format (or FVF for short) is used to construct the custom vertex
data for use in your applications. With FVF, you get to decide what information to
use for your vertices; information such as the 3-D coordinates, 2-D coordinates,
color, and so on.

You construct the FVF using a standard structure in which you add only the
components you want. There are some restrictions of course, as you must list the
components in a specific order, and certain components cannot conflict with others
(such as using 2-D and 3-D coordinates at the same time). Once the structure is
complete, you construct a FVF descriptor, which is a combination of flags that
describe your vertex format.

The following code bit contains a vertex structure using the various variables
allowed with FVF (or at least those | use in this book). The variables in the struc-
ture are listed in the exact order they should appear in your own structures; if you
cut any variables, make sure you maintain the order as shown:

Getting Down to Drawing E

typedef struct {
FLOAT x, y, z, rhw; // 2-D coordinates

FLOAT x, vy, z; // 3-D coordinates

FLOAT nx, ny, nz; // Normals

D3DCOLOR diffuse; // Diffuse color

FLOAT u, v; // Texture coordinates
} sVertex;

As you can see, the only conflicting variables are those for the coordinates, includ-
ing the normals. Normals are coordinates that define a direction and can be used
only in conjunction with 3-D coordinates. You need to pick which set of coordi- [
nates (either 2-D or 3-D) to keep and which to discard. If you are using the 2-D
coordinates, you cannot include the 3-D coordinates, and vice versa.

The only real difference between the 2-D and 3-D coordinates is the addition of the
rhw variable, which is the reciprocal of the homogeneous W. In English, this typi-
cally represents the distance from the viewpoint to the vertex along the Z-axis. You
can safely set rhw to 1.0 in most cases.

Notice also that the svertex structure uses the data type FLOAT (which is a floating-
point value), but what about D3DCOLOR? D3DCOLOR is a DWORD value you use to store color
values in Direct3D. To construct a color value to use for b3pCOLOR, you choose from
two functions: D3DCOLOR_RGBA and D3DCOLOR_COLORVALUE:

D3DCOLOR D3DCOLOR_RGBA(Red, Green, Blue, Alpha);
D3DCOLOR D3DCOLOR_COLORVALUE(Red, Green, Blue, Alpha);

Each function (actually they are macros) takes four parameters, which are the
amount of each color component to use, including an alpha value (transparency).
These values can range from 0 to 255 for the p3pc0LOR_RGBA macro and 0.0 to 1.0
(fractional) for D3DCOLOR_COLORVALUE. If you are using solid colors (opaque), always
specify 255 (or 1.0) for the alpha value.

As an example, say that you need to include only the 3-D coordinates and a diffuse
color component in your own vertex structure:

typedef struct {
FLOAT x, vy, z;
D3DCOLOR diffuse;
} sVertex;

The next step in constructing your FVF is to create the FVF descriptor using any
combination of the flags listed in Table 6.3.

m 6. Drawing with DirectX| Graphies

Table 6.3 Flexible Vertex Format Descriptor Flags

Flag Description
D3DFVF_XYZ 3-D coordinates are included.
D3DFVF_XYZRHW 2-D coordinates are included.
D3DFVF_NORMAL Includes normals (a vector).

:| D3DFVF_DIFFUSE A diffuse color component is included.
D3DFVF_TEX1 Texture coordinates are included.

In order to describe a FVF descriptor, you combine all the appropriate flags into a defi-
nition (assuming that you’re using the 3-D coordinates and diffuse color component):

fidefine VertexFVF (D3DFVF_XYZ | D3DFVF_DIFFUSE)

Just make sure that all the flags match the components that you added to your ver-
tex structure, and everything will go smoothly.

Using Vertex Buffers

After you construct your vertex structure and descriptor, you create an object that
contains an array of vertices. Direct3D gives you two objects with which to work:
IDirect3DVertexBuffer8 and IDirect3DIndexBuffers. The object that I’ll use for this book
is IDirect3DVertexBuffer8, which stores the vertices used to draw triangle lists, triangle
strips, and triangle fans.

Used with triangle lists, the 1Direct3DvertexBuffers object stores at least three vertices
for each polygon to be drawn (with the vertices arranged in a clockwise order).
With triangle strips, the first polygon to be drawn uses three vertices, while each
subsequently drawn polygon uses one additional vertex. As for triangle fans, there
is one central vertex stored, while each polygon to be drawn has two additional
vertices stored.

Figure 6.11 should help you better understand how you use stored vertices and in
which order you arrange those vertices. In the figure, there is a square that can be
defined in one of three ways. In the first way, using a triangle list, you need to use

Getting Down to DOrawing

Figure 6.11
You can store a simple

2 3
0 \ l polygon like this box
«— —_— T (with four vertices
5 and two polygons)
17«———"0 ber of
) ; Strp: anum gro ways.
List 4 Vertices Depending on the
6 Vertices vertex storage, you can
0 1 use up to six vertices
to define the square. [
3 Fan: 2
4 Vertices

six vertices to define the square—three

vertices for each of the two triangles. NOTE
The second way of ordering the square A pqugon can use one, two, or three
is to use a triangle strip. The triangle vertices, depending on what you're

strip uses only four vertices, defined drawing. Pixels need only a single
expressly as shown in the figure. The
first three vertices construct the first
face, and the last polygon defines the
second face. As for the third method of
ordering, the triangle fan, you again use
only four vertices. With a fan, however, the first vertex you define becomes the base
of the fan, while additional vertices define the faces.

vertex, lines take two, and a triangle
polygon takes three. Throughout this
book, | mainly deal with and refer to _
triangular polygons.

I —

Creating a Vertex Buffer
You create a vertex buffer object by using the initialized 1Direct3DDevice8 Object:

HRESULT IDirect3DDevice8::CreateVertexBuffer(

UINT Length, // # of bytes to use
// in multiples of vertex structure size
DWORD Usage, // D3DCREATE_WRITEONLY
DWORD FVF, // FVF descriptor
D3DPOOL Pool, // D3DPOOL_MANAGED

IDirect3DVertexBuffer **ppVertexBuffer); // the buffer

6. Drawing with DirectX| Graphies

The only real parameter you want to change in the CreateVertexBuffer call is the
Usage flag, which tells Direct3D how to treat the memory. You will rarely need to
set Usage to a value other than D3DCREATE_WRITEONLY, but if you do, you can use
D3DCREATE_SOFTWAREPROCESSING as an alternative. | explain those special cases as they
arise in the book.

Here’s a quick example (building on my earlier vertex format—in the section
“Flexible Vertex Format”—that uses only the 3-D coordinates and diffuse color
component) for constructing a vertex buffer containing four vertices:

// g_pD3DDevice = pre-initialized device object
// sVertex = pre-defined vertex structure

// VertexFVF = pre-defined Vertex FVF descriptor
IDirect3DVertexBuffer8 *pD3DVB = NULL;

// Create the vertex buffer
if(FAILED(g_pD3DDevice->CreateVertexBuffer(\
sizeof(sVertex) * 4, D3DCREATE_WRITEONLY, VertexFVF, \
D3DPOOL_MANAGED, &pD3DVB))) {

// Error occurred

} Nea=

As always, be sure to release the

Locking the vertex buffer COM objects when
Vertex Buffer you are done with them by calling
Before you can add vertices to the vertex their Release function.

buffer object, you must lock the memory
that the buffer uses. This ensures that
the vertex storage memory is in an accessible memory area. You then use a mem-
ory pointer to access the vertex buffer memory. You lock the vertex buffer’s mem-
ory and retrieve a memory pointer by calling the buffer object’s Lock function:

HRESULT IDirect3DVertexBuffer8::Lock(
UINT OffsetTolLock, // offset to lock buffer, in bytes

UINT SizeTolock, // how many bytes to lock, 0=all
BYTE** ppbData, // pointer to a pointer (to access data)
DWORD FTags /10

)3

Here you have the offset into the buffer at the position you want to access (in
bytes), as well as the number of bytes you want to access (0 for all). Then all that

Getting Down to Drawing m

you need to do is give the function the pointer to the memory pointer that you’re
going to use to access the vertex buffer (cast to a BYTE data type). Here’s a sample
call that locks the entire vertex buffer:

// pD3DVB = pre-initialized vertex buffer object
BYTE *Ptr;

// Lock the vertex buffer memory and get a pointer to it
if(FAILED(pD3DVB->Lock(0, 0, (BYTE**)&Ptr, 0))) {

// Error occurred
| [
After you finish accessing the vertex buffer, always follow up every call to Lock with a
call to 1Direct3DVertexBuffers::Unlock:

HRESULT IDirect3DVertexBuffer8::Unlock();

Stuffing in Vertex Data

Now you have your vertex structure, description, and buffer, and you’re locked and
ready to store vertex data. Because you’ve already received the data pointer to the
vertex buffer memory from the call to Lock, all you need to do is copy the appropri-
ate number of vertices into the vertex buffer.

Continuing my example and using the vertex format I’ve defined (using 3-D coor-
dinates and the diffuse color components), | create a local set of vertex data inside
an array:

sVertex Verts[4] = {
{ -100.0f, 100.0f, 100.0f, D3DCOLOR_RGBA(255,255,255,255) 1},
{ 100.0f, 100.0f, 100.0f, D3DCOLOR_RGBA(255, 0, 0,255)
{ 100.0f, -100.0f, 100.0f, D3DCOLOR_RGBA(0,255, 0,255)
{ -100.0f, -100.0f, 100.0f, D3DCOLOR_RGBA(0, 0,255,255) }

1,
1,
bs

Lock the vertex buffer, thus getting a pointer to the vertex buffer memory, and then
copy over the local vertex data (and unlocking the vertex buffer when complete):

// pD3DVB = pre-initialized vertex buffer object
BYTE *Ptr;

// Lock the vertex buffer memory and get a pointer to it
if(SUCCEEDED(pD3DVB->Lock(0, 0, (BYTE**)&Ptr, 0))) {

m 6. Drawing with DirectX| Graphies

// Copy local vertices into vertex buffer
memcpy (Ptr, Verts, sizeof(Verts));

// Unlock the vertex buffer
pD3DVB->UnTock();
}

That’s all there is to constructing a vertex buffer and filling it with vertex data!
Now you only have to assign a stream source and vertex shader in order to use the
vertex information.

Vertex Streams

Direct3D 8 enables you to feed the vertices to the renderer through a series of mul-
tiple streams called vertex streams. You can create very impressive results by merging
multiple streams of vertex data into a single stream, but in this book, I use only a
single stream because the complexity of using multiple streams is beyond this
book’s scope.

In order to assign your vertex data to a stream, you use the
IDirect3DDevice8: :SetStreamSource function:

HRESULT IDirect3DDevice8::SetStreamSource(

UINT StreamNumber, // 0
IDirect3DVertexBuffer8* pStreamData, // Vertex buffer object
UINT Stride); // Size of vertex structure

All you do now to set the vertex stream source is call this function with the pointer
to the vertex buffer object and supply the number of bytes used to store the vertex
structure (using sizeof). From my example of storing vertices in a vertex buffer in
the previous section, you can use the following:

// g_pD3DDevice = pre-initialized device object
// pD3DVB = pre-initialized vertex buffer
if(FAILED(g_pD3DDevice->SetStreamSource(0, \
pD3DVB, sizeof(sVertex)))) {
// Error occurred

Vertex Shaders

As a final step in using vertices to draw graphics, you need to understand the con-
cept of vertex shaders. A vertex shader is a mechanism that handles the loading and

Getting Down to Drawing m

processing of vertices; which includes modifying vertex coordinates, applying color
and fogging, and numerous other vertex components.

A vertex shader can take two forms. It can be a fixed vertex shader (in which all the
functionality needed for typical functions is already built in), or it can be a program-
mable vertex shader (in which you can customize routines to modify vertex informa-
tion before rendering to the display).

Trying to explain programmable vertex shaders, which involves programming in

a low-level assembly-like language, is beyond the scope of this book. Instead, | con-
centrate on using fixed vertex shaders because they contain all the functionality [
that you will ever need.

In order to use a fixed vertex shader on your vertices, you pass your custom vertex
FVF descriptor to the IDirect3DDevice8::SetVertexShader function:

HRESULT IDirect3DDevice8::SetVertexShader(
DWORD Handle); // Custom vertex FVF

Using the preceding function is as easy as this:

// g_pD3DDevice = pre-initialized device object

// VertexFVF = pre-defined vertex FVF descriptor

if(FATLED(g_pD3DDevice->SetVertexShader(VertexFVF))) {
// Error occurred

}

You’ve now set up the vertex information. The next step is to set up the various
transformations needed to position the vertices (in local space) to their world
space coordinates. Of course, that is the case only if you are using 3-D coordinates.

Transformations

So far, you’ve learned how to initialize the graphics system and create vertices.

If you’re dealing with 3-D objects, such as polygons, the vertices are likely to be
defined in local space. If so, you pass the vertices through a few transformations
(the world, view, and projection) to make sure that they are positioned correctly
when you render the objects.

Each transformation requires the construction of a special matrix that represents
the appropriate orientation (or projection) values. The next few sections show you
how to construct and use each of those three transformations, starting with the
world transformation.

m 6. Drawing with DirectX| Graphies

The World Transformation

Vertices that are defined in local space need to be oriented into their respective
coordinates within world space. For example, if you create a box from vertices (in
local space) and you want it to appear at a specific location in the world, you apply
a world transformation to it (as illustrated in Figure 6.12).

Use your old friend, the D3DX library, to help construct the world transformation
matrix. In order to orient an object, you need to construct three rotation matrices
(one for each axis), a translation matrix, and a scaling matrix:

J D3DXMATRIX matWorld;
D3DXMATRIX matRotX, matRotY, matRotZ;
D3DXMATRIX matTrans;
D3DXMATRIX matScale;

// Create the rotation matrices

D3DXMatrixRotationX(&matRotX, XAngle);
D3DXMatrixRotationY(&matRotY, YAngle);
D3DXMatrixRotationZ(&matRotZ, ZAngle);

// Create the translation matrix
D3DXMatrixTranslation(&matTrans, XPos, YPos, ZPos);

// Create the scaling matrix
D3DXMatrixScaling(&matScale, XScale, YScale, ZScale);

Next, you combine all the matrices into the world transformation matrix. They
must be combined in this order: scale, X-rotation, Y-rotation, Z-rotation, and then
translation:

// Set matWorld to identity
D3DXMatrixIdentity(&matWorld);

// Combine all matrices into world transformation matrix
D3DXMatrixMultiply(&matWorld, &matWorld, &matScale);
D3DXMatrixMultiply(&matWorld, &matWorld, &matRotX);
D3DXMatrixMultiply(&matWorld, &matWorld, &matRotY);
D3DXMatrixMultiply(&matWorld, &matWorld, &matRotZ);
D3DXMatrixMultiply(&matWorld, &matWorld, &matTrans);

Getting Down to Drawing @

Figure 6.12

A box created in local
space needs to be

World Space

rendering.

Local Space . .
P v Zi' oriented in world
v @ ——> | World Transformation| ——> " space before

X

You’re just about done. Now, you just tell Direct3D to use the world transformation
matrix that was just created. You do this through the following function:

HRESULT IDirect3DDevice8::SetTransform(
D3DTRANSFORMSTATETYPE State, // D3DTS_WORLD
CONST D3DMATRIX *pMatrix); // World matrix to set

Notice that the second parameter is a pointer to a D3DMATRIX structure, but thankfully,
you can use the D3DXMATRIX object that you constructed. Setting the first parameter as
D3DTS_WORLD tells Direct3D that the matrix is used for the world transformation and
that anything drawn afterward needs to be oriented by the supplied matrix.

If you have more than one object to orient in the world, simply construct a new
world transformation matrix for each one (in their respective orientations) and
then call setTransform again, being sure to draw the object before going to the next
world transformation.

The View Transformation

In basic terms, the view transformation acts as a camera (called the viewpoint). By
creating a matrix that contains the offsets in which you orient vertices in the world,
you can align the entire scene around the viewpoint. All vertices must be oriented
(using the view transformation) around the center of the world at the same relative
position in which they are located around the viewpoint.

To create the view transformation, you build a matrix from the viewpoint position
and rotation, this time going in this order: translation, Z-rotation, Y-rotation, and
X-rotation. The trick, however, is that you use the opposite values for the position
and rotation. For example, if the viewpoint is at x=10, Y=0, z=-150, you use the
values x=-10, Y=0, Z=150.

m 6. Drawing with DirectX| Graphies

Here’s the code that builds the view transformation matrix:

D3DXMATRIX matView;
D3DXMATRIX matRotX, matRotY, matRotZ;
D3DXMATRIX matTrans;

// Create the rotation matrices (opposite values)
D3DXMatrixRotationX(&matRotX, -XAngle);
D3DXMatrixRotationY(&matRotY, -YAngle);
D3DXMatrixRotationZ(&matRotZ, -ZAngle);

// Create the translation matrix (opposite values)
D3DXMatrixTranslation(&matTrans, -XPos, -YPos, -ZPos);

// Set matView to identity
D3DXMatrixIdentity(&matView);

// Combine all matrices into view transformation matrix
D3DXMatrixMultiply(&matView, & matView, &matTrans);
D3DXMatrixMultiply(&matView, & matView, &matRotZ);
D3DXMatrixMultiply(&matView, & matView, &matRotY);
D3DXMatrixMultiply(&matView, & matView, &matRotX);

To have Direct3D use the view transformation matrix you created, use the
IDirect3DDevice8::SetTransform function again, this time specifying p30TS_VIEW for the
State parameter:

// g_pD3DDevice = pre-initialized device object

if(FAILED(g_pD3DDevice->SetTransformat(D3DTS_VIEW, &matView))) {
// Error occurred

1

You can see that setting the view transformation is easy; it’s constructing the view
matrix that is a problem. To make things easier, D3DX comes with a function that,
in a single call, sets up the view transformation matrix:

D3DXMATRIX* D3DXMatrixLookAtLH(
D3DXMATRIX* pOut, // output view transformation matrix
CONST D3DXVECTOR3* pEye, // coordinates of viewpoint
CONST D3DXVECTOR3* pAt, // coordinates at target
CONST D3DXVECTOR3* pUp); // up direction

Getting Down to Drawing @

At first glance, the D3DXMatrixLookatLH function doesn’t make too much sense. You

can see the typical output matrix pointer, but what are the three pD3DXVECTOR3 objects?
D3DXVECTOR3 is much like a D3DXMATRIX object, except that it contains only three values—
in this case, three coordinates values. This D3DXVECTOR3 object is called a vector object.

pEye represents the coordinates of the viewpoint, and pAt represents the target
coordinates at which the viewpoint is looking. pUp is the vector that represents the
upward direction of the viewpoint. Normally, pup can be set to 0,1,0 (meaning that
up is in a positive direction along the Y-axis), but since the viewpoint can tilt
(much like you tilt your head side to side), the upward direction can point in any
direction and along any axis. [

In order to use the p3bxMatrixLookAtLH function, you can use the following bit of code
(assuming that viewpoint is at XPos, YPos, ZPos and that it’s looking at the origin):

D3DXMATRIX matView;
D3DXVECTOR3 vecVP, vecTP, vecUp(0.0f, 1.0f, 0.0f);

vecVP.x = XPos;

vecVP.y = YPos;

vecVP.z = ZPos;

vecTP.x = vecTP.y = vecTP.z = 0.0f;
D3DXMatrixLookAtLH(&matView, &vecVP, &vecTP, &veclp);

The Projection Transformation

Last comes the projection transformation, which converts 3-D vertices (untrans-
formed) into 2-D coordinates (transformed) that Direct3D uses to draw your
graphics to the display. Think of the projection transformation as a way of squish-
ing the 3-D graphics onto your display (as illustrated in Figure 6.13).

A number of aspects come into play when dealing with the projection transforma-
tion, such as the aspect ratio of the viewport, field of view, and the near and far
clipping ranges.

The clipping what? When drawing 3-D graphics, sometimes objects are too near or
too far from the viewpoint; you let Direct3D know when to clip out those sections
(in order to speed things up). In order to construct the projection matrix and
define the area in which objects are seen and not clipped out, you use the
D3DXMatrixPerspectiveFovLH function:

D3DXMATRIX* D3DXMatrixPerspectiveFovLH(
D3DXMATRIX* pOut, // Output matrix

m 6. Drawing with DirectX| Graphies

FLOAT fovy, // Field of view, in radians
FLOAT Aspect, // Aspect ratio

FLOAT zn, /] Z-value of near clipping plane
FLOAT zf); // Z-value of far clipping plane

The fovy parameter indicates the width of the projected view, so the higher the
number, the more you see. This is a double-edged sword, however, because the view
becomes distorted if you use a value too
small or too large. A typical value for fovy
is D30X_P1/4, which is one-fourth of pi. NOTE

The D3DXMatrixPerspectiveFovLH func-
tion builds a perspective transfor-
mation matrix using a left-handed

:I The next important parameter is Aspect,
which is the aspect ratio of the viewing

area. If you have a window that is 400 x
400 pixels, the aspect ratio is 1:1, or 1.0

coordinate system. If you are using

" A right-handed coordinates, use the
(because it is square). If you have a win- D3DXMatrixPerspectiveFovRH function
dow that is 400 x 200 (twice as wide as it instead (which uses the same argu- o
is high), the aspect ratio is 2:1, or 2.0. To ment as the left-handed version).
calculate this value, divide the width of
the window by the height of the window:

000000

FLOAT Aspect = (FLOAT)WindowWidth / (FLOAT)WindowHeight;

The zn and zf parameters are the values for the near and far clipping plane and are
measured in the same units that you used for defining the 3-D vertices. Typical val-
ues for the near and far clipping are 1.0 and 1000.0, respectively. These two values

Figure 6.13

A projection transformation makes
it possible to see objects defined by
using 3-D coordinates on a flat, 2-D
display.

Projection
Matrix

[co oo oo
» a

Getting Down to DOrawing

mean that polygons closer than 1.0 units (and 1000.0 units away) to the viewpoint
are not drawn. You might want to set zf to a higher value in your own projects if
you need to draw objects further than 1000.0 units away.

After you construct the projection matrix, you set the projection transformation
matrix using the IDirect3DDevice8::SetTransform function, this time specifying
D3DTS_PROJECTION as the State parameter:

// g_pD3DDevice = pre-initialized device object
D3DXMATRIX matProj;

// Create the projection transformation matrix [
D3DXMatrixPerspectiveFovLH(&matProj, D3DX_PI/4, \
1.0f, 1.0f, 1000.0f))) {

// Set the projection matrix with Direct3D
if(FAILED(g_pD3DDevice->SetTransform(D3DTS_PROJECTION, \
&matProj))) {
// Error occurred

Materials and Colors

You’ve already seen how to declare colors in the vertex information, but when

it comes to polygons, they too can have special color attributes assigned to them.
Colors that you apply to a polygon face are called materials. Before drawing a poly-
gon using Direct3D, you have the option of assigning a material to be used (if you
choose not to use materials, you can use the vertex colors, if any exist).

Each material has a number of color values to describe it. With Direct3D, the color
values that define a material are stored in a structure:

typedef struct _D3DMATERIAL8 {
D3DCOLORVALUE Diffuse; // Diffuse color component
D3DCOLORVALUE Ambient; // Ambient color component
D3DCOLORVALUE Specular; // Specular color component
D3DCOLORVALUE Emissive; // Emissive color component
float Power; // Sharpness of specular highlights
} D3DMATERIALS;

Realistically, you want to deal with only one color component: Diffuse. You can set
the Ambient value to the same value as Diffuse, and you can set Specular to 0.0 or 1.0

m 6. Drawing with DirectX| Graphies

(with power set to 0.0). | suggest that you work with the values a bit, just to get an
idea about the effect each component produces.

For current purposes, you apply the piffuse color to a polygon face; the material’s
color can take the place of the vertex diffuse color component. If you were to apply
a material’s color to a polygon face that also uses colored vertices, you would cause
a perceivable (and usually unwanted) change in the polygon’s color. So, it’s best to
use either materials or vertex colors, not both.

When dealing with the material color components, you set the color component

:I directly instead of using a macro such as b3pcoLOR_RGBA. Not to worry though—each
color component is represented by its first letter (r for red, g for green, b for blue,

and a for alpha) and by its range in value (from 0.0 to 1.0). If you were to create a

material to use as the color yellow, you would set up the material structure as follows:

D3DMATERIAL8 d3dm;

// Clear out the material structure
ZeroMemory (&d3dm, sizeof(D3DMATERIAL8));

// Fi1l Diffuse and Ambient to Yellow color
d3dm.Diffuse.r = d3dm.Ambient.r = 1.0f; // red
d3dm.Diffuse.g = d3dm.Ambient.g 1.0f; // green
d3dm.Diffuse.b = d3dm.Ambient.b = 0.0f; // blue
d3dm.Diffuse.a = d3dm.Ambient.a = 1.0f; // alpha

How you set up the material structure is your choice, but once that structure is set
up, you need to tell Direct3D to use it before rendering a polygon. This is the job
of the IDirect3DDevice8: :SetMaterial function, which only takes a pointer to your
material structure as a parameter:

IDirect3DDevice8::SetMaterial (CONST D3DMATERIAL8 *pMaterial);

Once called, all polygons rendered afterward will use the material settings. Here’s
an example that sets the previously defined yellow material:

g_pD3DDevice->SetMaterial(&d3dm);

Clearing the Viewport

You need to wipe the backbuffer clean in order to prepare it for drawing, thus
clearing graphics that might exist there. This is a simple chore using
IDirect3DDevice8::Clear

Getting Down to Drawing @

HRESULT IDirect3DDevice8::Clear(

DWORD Count, // 0

CONST D3DRECT* pRects, // NULL

DWORD FTags, // D3DCLEAR_TARGET
D3DCOLOR Color, // Color to clear to
float Z, // 1.0f

DWORD Stencil); /10

The only parameter to worry about at this time is color, which is the color you want
the backbuffer cleared to. The color value to use can be constructed using the typi-
cal D3DCOLOR_RGBA Or D3DCOLOR_COLORVALUE macros that you’ve grown to love. Say that
you want to clear the backbuffer to a light blue:

// g_pD3DDevice = pre-initialized device object
if(FAILED(g_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET, \
D3DCOLOR_RGBA(0,0,192,255), 1.0f, 0))) {
// Error occurred

Beginning and Ending a Scene

Before you can render anything, you must tell Direct3D to prepare itself. This is the
purpose of the 1direct3bDevice8::BeginScene function (which takes no parameters):

HRESULT IDirect3DDevice8::BeginScene();

When you finish rendering a scene, you need to inform Direct3D using the EndScene
function:

HRESULT IDirect3DDevice8::EndScene();

You don’t have to embed the clear function call between BeginScene and EndScene;
you can do so before you call the BeginScene. The only thing that must be sand-
wiched between the beginning and ending scene calls are the function calls that
render the polygons.

Rendering Polygons

At long last, you are ready to render the polygons! A typical frame of your game
engine will clear the backbuffer, begin the scene, set the material to use, draw the
polygons, and end the scene. You’ve seen how to do all of this, except for drawing
the actual polygons.

m 6. Drawing with DirectX| Graphies

You draw with an Idirect3DVertexBufferg object using the following function (after
the calls to set the vertex stream and shader, of course):

HRESULT IDirect3DDevice8::DrawPrimitive
D3DPRIMITIVETYPE PrimitiveType, // Primitives to draw
UINT StartVertex, // Vertex to start with (0)
UINT PrimitiveCount); // # of primitives to draw

The first parameter, PrimitiveType, tells Direct3D what type of polygons to draw
(which can be one of those listed in Table 6.4). The StartVertex enables you to
] decide from which vertex to start drawing (typically 0). You set PrimitiveCount to
the total number of primitives (polygons) that you want to draw.

The primitive type you use depends on how you stuff the vertex data into the buffer.
If you use three vertices per polygon, you use the D3DPT_TRIANGLELIST type. If you use
a more efficient type, such as triangle strips, use the D3DPT_TRIANGLESTRIP type.

The only thing to remember at this point is that you must start a scene with
IDirect3DDevice8: :BeginScene before rendering polygons; otherwise, the DrawPrimitive
function call will fail.

Say that you’ve created a vertex buffer that contains six vertices that construct two
triangle polygons that form a square. Rendering them (with the addition of the

Table 6.4 DrawPrimitive Primitive Types

Type Description

D3DPT_POINTLIST Draws all vertices as pixels.

D3DPT_LINELIST Draws a list of isolated lines using two vertices each.
D3DPT_LINESTRIP Draws a list of lines connected to each other.
D3DPT_TRIANGLELIST Draws polygons using three vertices per polygon face.

D3DPT_TRIANGLESTRIP Draws a strip of polygons using the first three vertices for
the first polygon and then an additional vertex for each
subsequently drawn polygon.

D3DPT_TRIANGLEFAN Draws polygons as a fan using the first vertex as the
handle (all polygons are attached to it).

Getting Down to Drawing m

BeginScene and EndScene functions as well as setting the vertex stream and shader)
looks something like this:

// g_pD3DDevice = pre-initialized device object
// pD3DVB = pre-initialized vertex buffer

// sVertex = pre-constructed vertex structure
// VertexFVF = pre-constructed FVF descriptor

// Set the vertex stream and shader
g_pD3DDevice->SetStreamSource(0, pD3DVB, sizeof(sVertex));
g_pD3DDevice->SetVertexShader(VertexFVF); [

if(SUCCEEDED(g_pD3DDevice->BeginScene())) {
// Render the polygons
if(FAILED(g_pD3DDevice->DrawPrimitive(D3DPT_TRIANGLELIST, \
0, 2))) {

// Error occurred

// End the scene
g_pD3DDevice->EndScene();

Presenting the Scene

At long last, you’re ready to flip the backbuffer to the viewport and show the user
your graphics, which you do using the following function:

HRESULT IDirect3DDevice8::Present(
CONST RECT* pSourceRect,
CONST RECT* pDestRect,
HWND hDestWindowOverride,
CONST RGNDATA* pDirtyRegion);

You can safely set all arguments in the IDirect3DDevice8: :Present function to NULL,
which tells Direct3D to update the entire screen (because this function is capable
of displaying small portions at a time), as in the following code:

// g_pD3DDevice = pre-initialized device object
if(FAILED(g_pD3DDevice->Present (NULL, NULL, NULL, NULL))) {
// Error occurred

m 6. Drawing with DirectX| Graphies

That’s it! In order to create more realistic scenes, you use a multitude of different
vertex buffers used to draw the various 3-D objects in your world. Another way to
increase the realism of your graphics is to use texture-mapping.

Using Texture Maps

Although you’ve learned to draw 3-D objects to the display, the plain colored poly-
gons are rather bland. It’s time to spice things up a bit and add a little detail. One

of the easiest ways to increase the detail of 3-D objects is to use a technique known
] as texture-mapping. Texture-mapping is the technique you use to paint a polygon
face with an image (as shown in Figure 6.14), thus increasing the visual appearance
of rendered objects. Bitmaps are generally referred to as textures, so | use the two
terms interchangeably when discussing 3-D rendering.

With texture-mapping, you assign each vertex in the polygon a pair of coordinates.
These coordinates (called the U,V coordinates) define a point inside the texture
image. The U,V coordinates are analogous to the texture image’s X,Y coordinates,
but instead of specifying the coordinates based on the texture image’s width and
height in pixels, you specify the coordinates in a range from 0.0 to 1.0.

Figure 6.14

With texture-mapping, you
can take plain polygons and
N - paint pictures on their
surfaces.

Texture Map

Polygons

Using Texture Maps @

Typically, the X- and Y-coordinates range from zero to the image’s width and
height, respectively, so if you have an image 640 x 480 in size, X will range from 0
to 639, and Y will range from 0 to 479. To access a pixel in the middle of the image,
you specify x=319 and Y=239.

The U- and V-coordinates range in the value - -

from O (the top or left edge of an image) to TP

1 (the right or bottom edge of an image), as | Here’s anifty trick.You can specify [
shown in Figure 6.15. To access a pixel in a U- or V-coordinate value over

the center of a 640 x 480 image, you use the L.0. This will causETNENExXtiNg to

coordinates x=0.5 and Y=o.5. wrap around as it’s being ren(_jered [
to the polygon. For example, if you
The U- and V-coordinate arrangement use a U value of 2.0, the texture
might seem a little strange at first. However, will be drawn twice (wrapped
it works great because you can quickly swap around once) horizontally. A
out textures that are different sizes without U value of 3.0 means that the
having to worry about their dimensions. texture is wrapped around three
:| times. The same goes for the

Textures can be anything you want, V-coordinate.

although they are almost always bitmap

. L 1 1
images. Recent advances in video hardware
have added bump-mapping technology, which takes a texture and treats it as a
rough surface, making the rendered 3-D object appear as though it has bumps on it.

Using bump maps is a little too advanced for our current purposes, so to keep
things simple, I’'m only going to show you how to apply texture images to a polygon
surface to enhance the visual appearance of your graphics system.

Figure 6.15

The U- and V-coordinates of a texture image are
constant, regardless of the size of the image.

0,0 ——> U-Coordinate —>> 1,0
Width —>

Texture

Sizes: 64 x 64
u} 128 x 128
u} 256 x 256

<“——— SJBUIPIOOD-\ «————
«—— wbieH

-
o

m 6. Drawing with DirectX| Graphies

Using Texture-Mapping with Direct3D0

Textures are controlled with Direct3D via an IDirect3DTexture8 object. This object
holds the texture information and provides access to the texture information
(including a pointer to the pixel data of the texture image).

When you first use textures, you begin to realize some of the restrictions placed
on them by Direct3D and the various hardware manufacturers. First, a texture is
limited in its dimensions, which must be a power of two (such as 8, 32, 128, and
256). Normally, you would use the same size for the texture’s width and height,

:I such as 128 x 128 or 256 x 256. Watch out, however, as there is a catch when using
3-D graphics: Quite a few video cards don’t allow differing widths and heights of a
texture (such as 128 x 64 or 32 x 256).

For those reasons, you should always try to use textures with the same width and
height. In addition, you should ensure that your textures don’t exceed 256 x 256
in size, which seems to be the maximum size that most video cards can handle
(and you want to make sure that your game is as compatible as possible).

Finally, don’t use too many textures. Although the process of rendering a texture-
mapped polygon is easy for the graphics hardware to handle, preparing the texture
for use is not easy. Every time the hardware

needs a texture, Direct3D and your video - -

card must do a little work to prepare TP

themselves for the texture. :| To alleviate the setup time that a |:
))) graphics card uses when preparing

This work includes copying the texture a texture, you can pack multiple

into the appropriate memory (if it is not images into a single-texture

already there) and setting up the color image. Doing so ensures that the

format to match the display mode (as well texture needs to be set up only

as its internal color mode usage). This once; then all images can be pulled

process is a time-consuming one, and the from the textures as needed.You

less you use it, the better. see examples of this technique

throughout the rest of this book.
[1 [1

Loading a Texture

To obtain texture images, you generally load them from a disk or another resource.
In fact, the D3DX library contains a number of functions to load and manage tex-
tures for you, making your job much easier. These D3DX texture-loading functions
are shown in Table 6.5.

Using Texture Maps @

Table 6.5 D3DX Texture-Loading Functions

Function Description
D3DXCreateTextureFromFile Loads a texture image from a bitmap file.
D3DXCreateTextureFromFileEx A more advanced version of the

D3DXCreateTextureFromFile function.

D3DXCreateTextureFromFileInMemory Loads a texture image from a file already
loaded in memory. [

D3DXCreateTextureFromFileInMemoryEx An advanced version of the
D3DXCreateTextureFromFilelInMemory

function.
D3DXCreateTextureFromResource Loads a texture image from a resource.
D3DXCreateTextureFromResourceEx An advanced version of the

D3DXCreateTextureFromResource function.

You can see from Table 6.5 that the texture-loading functions each have two versions,
one is the quick-and-easy version of loading textures, whereas those ending with Ex
are advanced versions that give greater control over the texture creation process.

To start your texture-mapping odyssey, check out b3bXCreateTextureFromFile, the first
and easiest function to use:

HRESULT D3DXCreateTextureFromFile(
IDirect3DDevice8 *pDevice, // pre-initialized device object
LPCSTR pSrcFile, // filename of bitmap to load
IDirect3DTexture8 **ppTexture); // texture object to create

Again, this function is not difficult to deal with; just pass it the pre-initialized 3-D
device object you created, the filename of the bitmap image you want to load, and
the pointer to the 1Direct3dTexture8 object you are creating. Here’s an example
using the p3bxCreateTextureFromFile function to load a bitmap titled texture.bmp into
a texture object:

// g_pD3DDevice = pre-initialized 3-D device object
IDirect3DTexture8 *pD3DTexture;

m 6. Drawing with DirectX| Graphies

if(FAILED(D3DXCreateTextureFromFile(g_pD3DDevice, \
"texture.bmp", (void**)&pD3DTexture))) {
// Error occurred
}

The great thing about this function is that it handles all initialization for you and
“sticks” the texture in the p3pP00L_MANAGED memory class, which means that the tex-
ture remains in memory (lost textures were a major pain that pre-DX8 program-

mers had to deal with).

] Setting the Texture

As noted in the earlier section “Using Texturing-Mapping with Direct3D,” a 3-D
device needs to prepare itself to use a texture for rendering. This preparation must
be done before a polygon is rendered using the texture. If you have 1,000 polygons
with each polygon using a different texture, you loop through each polygon, set its
texture, and render it.

You repeat this process until each polygon is rendered. If multiple polygons use the
same texture, to be efficient, set the texture and then render all the polygons that
use it, rather than use the set-then-render loop for each polygon.

To set a texture, use the IDirect3DDevice8::SetTexture function:

HRESULT IDirect3DDevice8::SetTexture(
DWORD Stage, // Texture stage 0-7
IDirect3DBaseTexture8 *pTexture); // Texture object to set

You can see where to pass the texture object you created (as pTexture), but what is
the stage parameter? This is called texture stages, and it is one of the most exciting
Direct3D texture-mapping techniques.

Texture-mapping with Direct3D is highly versatile. A texture does not have to come
from a single source, but can be built from as many as eight different sources.
These sources, called texture stages, are numbered from 0 to 7.

When rendering polygons, for each pixel to be drawn, Direct3D starts at stage 1
and queries for a texture pixel. From there, Direct3D moves to stage 2 and asks
for another texture pixel or allows you to modify the previous texture pixel. This
process continues until all 8 stages are processed.

Each stage can alter the texture pixel however it wants, including blending the
pixel with a new texture pixel, increasing or decreasing the color or brightness, or
even performing a special effect known as alpha blending (a technique that blends

Using Texture Maps

the colors of multiple pixels). You can see this process illustrated in Figure 6.16, in
which an input pixel goes through each stage, starting with stage 0 in which the dif-
fuse color component (the red, green, and blue color levels) of a pixel is pulled
from the texture. From there, the pixel is alpha-blended and then darkened, lead-
ing to the final output pixel that is rendered to the display.

With texture stages, the possibilities are endless, and unfortunately | don’t have the
space to go into detail about them. In this book, I use only a single texture stage
that will pull the pixel color from the texture, apply the polygon color information,
and render the resulting colored pixel onto a polygon.

The following code bit selects a texture to use in stage 0 and tells the renderer to grab
a texture pixel, apply the vertex color information to it, and disable alpha blending:

// g_pD3DDevice is a pre-initialized 3-D Device object
// pD3DTexture is a loaded texture object

// Set texture in stage 0
g_pD3DDevice->SetTexture(0, pTexture);

// Set stage parameters - only need to do this once in program

g_pD3DDevice->SetTextureStageState(0, \
D3DTSS_COLOROP, D3DTOP_MODULATE) ;
g_pD3DDevice->SetTextureStageState(0, \
D3DTSS_COLORARGL, D3DTA_TEXTURE);
g_pD3DDevice->SetTextureStageState(0, \
D3DTSS_COLORARGZ, D3DTA_DIFFUSE);
g_pD3DDevice->SetTextureStageState(0, \

D3DTSS_ALPHAOP, D3DTOP_DISABLE);

Figure 6.16
Texture

| Stages | Each texture stage

. modifies the final
(ovrra) —| o’ || 8t || | > @) |t et n o
number of ways.
Here an input pixel
goes through a
number of alterations
to arrive at the final
output pixel.

207

m 6. Drawing with DirectX| Graphies

This is the basic set of texture operations, so you’re likely to see it quite a bit. Note
that you set the stage state parameters only once and then just rely on the SetTexture
call from then on. For more information on using stage state parameters, consult
the DX SDK.

When you finish using a texture (after rendering the polygons), you call the
SetTexture function once more, specifying NULL as the pTexture argument as follows:

g_pD3DDevice->SetTexture(0, NULL);

This releases the texture from memory and the hardware processor. Failing to do
:I S0 can cause a memory leak and maybe even cause your game to crash.

Using Texture Filters

Every now and then, you will see references to texture filtering. Texture filtering
comes into play when rendering polygons with textures. Because the display has a
finite resolution, images tend to have little visual anomalies, such as jagged edges
when drawing diagonal lines or pixilated (oversized) samples of a texture image
when it is scaled up.

For these reasons (plus many more), filters were created to smooth out these little
imperfections. Direct3D uses a number of filters that seamlessly ensure that your
graphics have a cleaner look. In order for Direct3D to use a filter, you must make
use of the IDirect3DDevice8::SetTextureStageState function:

HRESULT IDirect3DDevice8::SetTextureStageState(

DWORD Stage, // Texture State 0-7
D3DTEXTURESTAGESTATETYPE Type, // State to set
DWORD Value); // Value to use

Again, you see the use of the texture stages, but the second and third arguments
are of concern here. The Type argument is the state of the texture stage that you
are modifying; in this case, it is either D3DTSS_MAGFILTER Or D3DTSS_MINFILTER.

Both of these states determine how Direct3D blends surrounding pixels inside a
texture before outputting a pixel to the display. You use the first state, D3DTSS_MAG-
FILTER, when magnifying a texture (enlarging it) on a polygon, whereas you use
D3DTSS_MINFILTER when minimizing a texture (shrinking it).

The value argument can be one of those listed in Table 6.6.

Using Texture Maps

Table 6.6 Direct3D Texture Stage State Filter Values

Value Description
D3DTEXF_NONE Don't use a filter.
D3DTEXF_POINT The fastest mode of filtering. Uses a single pixel color from

the texture map.

D3DTEXF_LINEAR Bilinear interpolation mode. This mode combines four
pixels from the texture map to produce a blended output
pixel. A fairly quick mode of texture-mapping that produces
nice, smooth pixels.

D3DTEXF_ANISOTROPIC Anisotropic filtering compensates for angular differences from
the screen and the texture-mapped polygon. Nice but slow.

Typically, you would use the D3DTEXF_POINT Or D3DTEXF_LINEAR filter modes; they are
quick, with the linear mode producing a smoother output. In order to use either
filter mode, just use the following code:

// g_pD3DDevice = pre-initialized device object

// Set magnification filter
if(FAILED(g_pD3DDevice->SetTextureStageState(0, \
D3DTSS_MAGFILTER, D3DTEXF_POINT))) {
// Error occurred

// Set minification filter
if(FAILED(g_pD3DDevice->SetTextureStageState(0, \
D3DTSS_MINFILTER, D3DTEXF_POINT))) {
// Error occurred

m 6. Drawing with DirectX| Graphies

Rendering Textured 0Objects

Before an object (a polygon or series of polygons) can be drawn with a texture, you
must ensure that the polygon vertices include a pair of U,V coordinates. A custom
vertex structure that contains only a set of 3-D coordinates and texture coordinates
is as follows:

typedef struct {

D3DVECTOR3 Position; // vertex position vector

float tu, tv; // Adding texture coordinates here!
J } sVertex;

At this point, you have to construct your flexible vertex format macro to inform
Direct3D of the vertex components you are using, and in this case those compo-
nents are the untransformed 3-D coordinates and a pair of texture coordinates.
Using the p3DFVF_xYz and D3DFVF_TEX1 values accomplishes this:

fidefine VERTEXFMT (D3DFVF_XYZ | D3DFVF_TEX1)

Now for the fun part—placing your graphics onscreen. With the addition of a few
lines of code, you can expand a simple polygon drawing function to include your tex-
ture. Assuming that you’ve initialized the device, defined the vertex buffer with the
texture information, and have the world, viewing, and projection matrices set, here’s
an example of loading a texture and using it to draw a triangle list of polygons:

// g_pD3DDevice = pre-initialized device object

// NumPolys = number of primitive polygons to draw

// g_pD3DVertexBuffer = pre-created vertex buffer w/polygon info
IDirect3DTexture8 *pD3DTexture; // Texture object

// Load the texture
D3DXCreateTextureFromFile(g_pD3DDevice, "texture.bmp", \
(void**)&pD3DTexture);

if(SUCCEEDED(g_pD3DDevice->BeginScene())) {
// Set the texture
g_pD3DDevice->SetTexture(0, pD3DTexture);

// Set the stream source and vertex shader

g_pD3DDevice->SetStreamSource(0, g_pD3DVertexBuffer, \
sizeof(sVertex));

g_pD3DDevice->SetVertexShader (VERTEXFMT) ;

// Draw triangle 1ist

g_pD3DDevice->DrawPrimitive(D3DPT_TRIANGLELIST, 0, NumPolys);

// End the scene
g_pD3DDevice->EndScene();

// Free the texture resources
g_pD3DDevice->SetTexture(0, NULL);

Alpha Blending

Imagine standing inside one of the world’s tallest buildings, walking up to a win-
dow, and peering out over the vast city below. The slight blue hue of the colored

window gives everything a peaceful shade similar to that of the morning sky.

Imagine the same scene, this time in the language of 3-D graphical. The entire
world is constructed from polygons, which for all practical purposes are solid
objects. You can’t see through them. What if you want a see-through window in
your game? What about the nice hue that the window gave everything?

Not only do you want cool effects like those just mentioned, but how about things such
as transparent blits (that is, you want to draw a polygon with portions completely trans-
parent). Think of drawing as a partially transparent object in terms of a wall with a hole
in its center. The hole is completely transparent, even though the wall is solid; your

view through the hole is unobstructed.

These effects are possible using a technique
known as alpha blending. Using alpha blend-
ing, you can alter the transparency of a poly-
gon so that you can see through it. If the
polygon is colored, that color will blend with
anything behind the polygon. What'’s better,
you can even use a texture on the polygon
to create some awesome effects!

An object’s degree of transparency is known
as an alpha value. As you might have already
noticed, Direct3D uses an alpha value in a
number of ways. Using textures, for exam-
ple, you can specify a format that uses an
alpha value. The alpha values are stored in
what’s called an alpha channel.

NOTE

An alpha channel is a value

much like a color component
(red, green, blue). It specifies the
amount of transparency to apply,
with each pixel of a surface hav-
ing an alpha channel of its own.

This alpha channel can range
anywhere from 1 to 8 bits. If you
have an 8-bit alpha channel, you
can specify 256 alpha values
(0-255). A 4-bit alpha channel
uses 16 alpha values (0-15).

m 6. Drawing with DirectX| Graphies

Enabling Alpha Blending

Enabling the Direct3D alpha-blending functions is as easy as setting the proper ren-
der states using the IDirect3DDevice8::SetRenderState function. The first render state,
which actually enables the alpha blending, is D3DRS_ALPHABLENDENABLE:

// g_pD3DDevice = pre-initialized 3-D device object

// To enable alpha-blending, use:
g_pD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

// Set the type of alpha blending

g_pD3DDevice->SetRenderState(D3DRS_SRCBLEND, \
D3DBLEND_SRCALPHA);
g_pD3DDevice->SetRenderState(D3DRS_DESTBLEND, \

D3DBLEND_INVSRCALPHA);

// To disable alpha-blending, use:
g_pD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);

Note the two additional render states (D3DRS_SRCBLEND and D3DRS_DESTBLEND) in the pre-
ceding code. Those two tell Direct3D that you want to specify the alpha values to use
when rendering. At times, you’ll see that the D3DRS_DESTBLEND value is set to D3DBLEND_ONE
rather than D3DBLEND_INVSRCALPHA. I’ll point that out to you whenever it occurs.

Drawing with Alpha Blending

The only other information you need in order to use alpha blending is how to add
the alpha values to your custom vertex information. You accomplish this by adding
the diffuse color component to the custom vertex structure and descriptor. When
you define the diffuse color, you must then specify the alpha value.

The following example sets up a simple vertex structure that stores the 3-D coordi-
nates, plus the diffuse color component (that now includes an alpha value):

// The custom vertex structure and descriptor
typedef struct {
FLOAT x, vy, z;
D3DCOLOR diffuse;
} sVertex;
fidefine VertexFVF (D3DFVF_XYZ | D3DFVF_DIFFUSE)

// Define 3 vertices in a local array

sVertex Verts[3] = {
{ 0.0f, 100.0f, 0.0f, D3DCOLOR_RGBA(255,0,0,64) },
{ 100.0f, -100.0f, 0.0f, D3DCOLOR_RGBA(0,255,0,128) },
{ -100.0f, -100.0f, 0.0f, D3DCOLOR_RGBA(0,0,255,255) }

b

The first vertex is set to a red color and is % translucent (% of the color will blend
through). The second vertex is green, using % translucency (% of the color will

blend through). The third vertex is blue and fully opaque, meaning that no color
will blend through. [

If you add texture map coordinates and set a valid texture, you can set the diffuse
color to full (255 for red, green, and blue) and then specify the alpha value to
blend the texture.

Transparent Blitting
with Alpha Testing

Alpha testing is a technique of testing the alpha values of pixels before they are
drawn to the display. Pixels that have alpha values that do not fall into a specified
range are rejected and, therefore, do not reach the rendering stage. Similarly to
the way you achieve semi-transparent effects in the preceding section, you can use
alpha testing to render polygons that contain completely transparent sections.

Using the hole-in-the-wall example in the preceding section, imagine that the wall
is a polygon and you want to draw a hole in its center. You want the polygon to be
completely opaque (solid) except for the hole. You want the hole to be completely
transparent. To accomplish that effect, you use a technique called transparent blit,
which enables you to exclude portions of a texture while rendering, thereby allow-
ing background graphics to peek through the blank spots.

The secret to transparent blitting is to set up your texture and assign a single color as
the color key. The color key is the color that will not be drawn when the polygon is ren-
dered. For example, if you have a texture that has a circle in the middle surrounded
by black (as illustrated in Figure 6.17), you can set the color key to black. When the
texture is applied to a polygon and that polygon is drawn, Direct3D will not draw
those black pixels, thereby leaving only the circle in the middle to be rendered.

In actuality, it’s not the color key that marks pixels as being transparent, but the
pixels” alpha values. In order for a pixel to be completely transparent, its alpha
value must be set to zero. In order for the pixel to be drawn, the alpha value must

m 6. Drawing with DirectX| Graphies

Figure 6.17

A texture with a circle in the middle can use transparent
blitting to exclude the dark surrounding area.

be at its highest, which is typically 255. As you might guess, pixels that match the
color key have an alpha value of O; all others use a higher alpha value.

Loading Textures with Color Keying

When using alpha testing in this manner, you don’t have to specify the diffuse
color component in your custom vertex structure or descriptor. The alpha values
are stored directly in the texture pixel data. In order to set the alpha values in the
texture pixel data, you load the texture using the expanded version of the
D3DXCreateTextureFromFile function, which is as follows:

HRESULT D3DXCreateTextureFromFileEx(
LPDIRECT3DDEVICE8 pDevice, // device object to create with

LPCSTR pSrcFile, // filename of texture to Toad
UINT Width, // D3DX_DEFAULT

UINT Height, // D3DX_DEFAULT

UINT MiplLevels, // D3DX_DEFAULT

DWORD Usage, /10

D3DFORMAT Format, // color format to use
D3DPOOL Pool, // D3DPOOL_MANAGED
DWORD Filter, // D3DX_FILTER_TRIANGLE
DWORD MipFilter, // D3DX_FILTER_TRIANGLE
D3DCOLOR ColorKey, // Color key to use!
D3DXIMAGE_INFO* pSrcInfo, // NULL

PALETTEENTRY* pPalette, // NULL

LPDIRECT3DTEXTURE8* ppTexture); // texture object to create

Most of the parameters use the default settings shown. The only things that you
need to supply are the filename of the bitmap to load, which 3-D device object to
use when creating the texture, which color format to use when loading the texture
(p3pFMT_* type, which must use an alpha value such as D3DFMT_A8R8G8B8), and the color
key (in a p3pcoLor format).

When specifying the color key value, use the b3DCOLOR_RGBA Or D3DCOLOR_COLORVALUE
macros to specify the color you want. For example, if you want to exclude the color
black from being drawn, load the texture using a color key value:

D3DCOLOR_RGBA(0,0,0,255); [

Notice the value of 255 for alpha. This is very important! When loading bitmap files
(.BMP), you must also specify a value of 255 for the alpha value. If you are dealing
with non-bitmap files (such as .TGA) that already include alpha channel values, you
must match the alpha value with the alpha values already stored in the image file.
In this book, I use only bitmap files, so just remember to use an alpha value of 255.

After setting the alpha values for each pixel in the texture, it’s a simple matter of
using alpha testing to reject the pixels based on their alpha values.

Enabling Alpha Testing

Once the texture is loaded (and the color key and alpha values are set), you can
enable alpha testing by adding the following code during your initialization or
rendering loop:

// g_pD3DDevice = pre-initialized device object
g_pD3DDevice->SetRenderState(D3DRS_ALPHATESTENABLE, TRUE);
g_pD3DDevice->SetRenderState(D3DRS_ALPHAREF, 0x08);
g_pD3DDevice->SetRenderState(D3DRS_ALPHAFUNC, \
D3DCMP_GREATEREQUAL) ;

The D3DRS_ALPHAREF state is the magic one because it tells Direct3D which alpha values
to allow (ranging from a value of 0 to 255). After the three functions just shown are
called, all pixels with an alpha value lower than 8 are rejected. If you set your color
key up correctly, the three function calls will force all textures with an alpha value of
zero to be excluded from the rendering stage, thereby making them transparent!

A Transparent Blitting Example

Enough talk; it’s time for some code! Here’s a small example that loads a button
image and displays it onscreen. The black pixels of the texture are excluded,
allowing the background color to peek through.

m 6. Drawing with DirectX| Graphies

// g_pD3DDevice = pre-initialized device object

// Custom vertex structure and descriptor
typedef struct {
FLOAT x, y, z, rhw; // Screen coordinates
FLOAT u, v; // Texture coordinates
} sVertex;
fidefine VertexFVF (D3DFVF_XYZRHW | D3DFVF_TEX1)

// Vertex buffer and texture
J IDirect3DVertexBuffer8 *g_pVB = NULL;
IDirect3DTexture8 *g_pTexture = NULL;

// Set up the vertex buffer and texture

// assuming a 400x400 window

BYTE *Ptr;

sVertex Verts[4] = {
{ 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f },
{ 399.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f },
{ 0.0f, 399.0f, 0.0f, 1.0f, 0.0f, 1.0f },
{ 399.0f, 399.0f, 0.0f, 1.0f, 1.0f, 1.0f }

by

// Create vertex buffer and stuff in data

g_pD3DDevice->CreateVertexBuffer(sizeof(sVertex)*4, 0, \
VertexFVF, D3DPOOL_DEFAULT, &g_pVB))) {

g_pVB->Lock(0,0, (BYTE**)&Ptr, 0)))

memcpy (Ptr, Verts, sizeof(Verts));

g_pVB->Unlock();

// Get texture

D3DXCreateTextureFromFileEx(g_pD3DDevice, "button.bmp", \
D3DX_DEFAULT, D3DX_DEFAULT, D3DX_DEFAULT, O, \
D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, D3DX_FILTER_TRIANGLE, \

_—

D3DX_FILTER_TRIANGLE, D3DCOLOR_RGBA(0,0,0,255), NULL,
NULL, &g_pTexture);

// Set alpha testing
g_pD3DDevice->SetRenderState(D3DRS_ALPHATESTENABLE, TRUE);
g_pD3DDevice->SetRenderState(D3DRS_ALPHAREF, 0x01);
g_pD3DDevice->SetRenderState(D3DRS_ALPHAFUNC, \

Lighting

D3DCMP_GREATEREQUAL) ;

// Clear device backbuffer
g_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET, \
D3DCOLOR_RGBA(0,128,128,255), 1.0f, 0);

if(SUCCEEDED(g_pD3DDevice->BeginScene())) {
// Set stream source to particle vertex buffer
g_pD3DDevice->SetStreamSource(0, g_pVB, sizeof(sVertex));

// Set vertex shader to particle type
g_pD3DDevice->SetVertexShader(VertexFVF);

/] Set texture
g_pD3DDevice->SetTexture(0, g_pTexture);

// Draw vertex buffer
g_pD3DDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);

g_pD3DDevice->EndScene();

// Clear texture
g_pD3DDevice->SetTexture(0, NULL);

// Turn off alpha testing
g_pD3DDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);

// Flip surfaces to display work
g_pD3DDevice->Present (NULL, NULL, NULL, NULL);

Lighting

Next on the list of advanced graphics techniques is the use of lighting. Unlike in
real-life, most games fully illuminate the scene, which does make graphics look
sharp, albeit unrealistic. To get a more true-to-life scene, and to give your graphics
those subtle lighting effects that players will go ga-ga over, you need to utilize
Direct3D’s lighting capabilities. You can use four types of light in Direct3D:
ambient, point, spot, and directional.

217

m 6. Drawing with DirectX| Graphies

Ambient light is a constant source of light that illuminates everything in the scene
with the same level of light. Because it is part of the device component, ambient
light is the only lighting component handled separately from the lighting engine.

The other three lights (illustrated in Figure 6.18) have unique properties. A point
light illuminates everything around it (like a light bulb does). Spotlights point in a
specific direction and emit a cone-shaped light. Everything inside the cone is
illuminated, whereas objects outside the cone are not illuminated. A directional light
(a simplified spotlight), merely casts light in a specific direction.

:I Lights are placed in a scene just as other 3-D objects are—by using X-, Y-, and Z-
coordinates. Some lights, such as spotlights, also have a direction vector that deter-

mines which way they point. Each light has an intensity level, a range, attenuation

factors, and color. That’s right, even colored lights are possible with Direct3D!

With the exception of the ambient light, each light uses a D3DLIGHTS data structure
to store its unique information. This structure is defined as follows:

typedef struct _D3DLIGHT8 {
D3DLIGHTTYPE Type; // Type of light
D3DCOLORVALUE Diffuse; // Diffuse color
D3DCOLORVALUE Specular; // Specular color
D3DCOLORVALUE Ambient; // Ambient color

D3DVECTOR Position; // Position of light

D3DVECTOR Direction; // Direction light is pointing
float Range; // Range of light

float Falloff; // Falloff of spotlight

float AttenuationO; // Light attenuation 0

float Attenuationl; // Light attenuation 1

float Attenuation2; // Light attenuation 2

float Theta; // Angle of inner cone

float Phi; // Angle of outer cone

} D3DLIGHTS;

Wow! That’s a big puppy, but it contains all the information you need in order
to describe a light. Although the lights don’t necessarily use every variable in the
D3DLIGHTS structure, all the lights share a few common fields.

The first variable you set is Type, which is the type of light you are using. This can be
D3DLIGHT_POINT for a point light, p3pL1GHT_SPOT for a spotlight, or D3DLIGHT_DIRECTIONAL
for a directional light.

Figure 6.18

Point lights, spotlights, and directional
lights cast light in different ways.

Point Light

Spotlight

é [

Directional

Next in line is the color of the light. You’ll use the Diffuse field most often; it deter-
mines the color of the light emitted. Notice that the color fields are in the form
D3DCOLORVALUE, which is a structure that looks like this:

typedef struct _D3DCOLORVALUE {
float r; // Red value (0.0 to 1.0)
float g; // Green value (0.0 to 1.0)

| N | N
float b; // Blue value (0.0 to 1.0)
float a; // Alpha value (Unused) TIP
} D3DCOLORVALUE; In addition to using the color lev-

els of a light to illuminate an

You can set each color component in the object, you also can use them to

structure in the range of 0.0 (off) to 1.0 darken the object. Instead. of using
(full). A red light will be r=1.0, ¢=0.0, positive color values, use negative
b=0.0, and a white light will be r=1.0, g=1.0, values and watch the results!

b=1.0. Because you’re dealing with lights,
the alpha value is not used here.

1 1

The Specular and Ambient light fields in the p3DL1GHTS structure determine the high-
light color and ambient color, respectively. You can safely set both fields for each

color component to 1.0 (except for Specular, which you can set to 0.0 values if you
don’t want to use highlights).

@ 6. Drawing with DirectX| Graphies

As | mentioned previously, each light can be positioned in the 3-D scene using an
XYZ-coordinate (the world coordinates), which is stored in the vector position. The
Direction is also a vector, but is used to point the light in a specific direction. You
can find more on using the direction vector in the section “Using Spotlights.”

The Range variable determines how far the light can travel before falling off (fal1off
is the value used to determine how quickly a light fades from the inner to outer
cone). Typically, a falloff value of 1.0 creates a smooth transition.) No objects
beyond this distance are illuminated by the light. The trio of attenuation fields
determines how fast the light falls off over distance—those three attenuation fields
:I are typically all set at zero. Whether you use the rest of the variables depends on
the type of light you are using.

Using Point Lights
Point lights are the easiest lights with which to work; you just set their positions,

color components, and ranges. To set up a point light, instance the p3DLIGHTS Struc-
ture and fill it with the required information:

D3DLIGHT8 PointLight;

// Clear out the Tight data
ZeroMemory (&PointLight, sizeof(D3DLIGHT8));

// Position the 1ight at 0.0, 100.0, 200.0
PointLight.Position = D3DVECTOR3(0.0f, 100.0f, 200.0f);

// Set the diffuse and ambient colors to white

PointLight.Diffuse.r PointLight.Ambient.r = 1.0f;
PointLight.Diffuse.g PointLight.Ambient.g 1.0f;
PointLight.Diffuse.b = PointLight.Ambient.b = 1.0f;

// Set the range to 1000 units
PointLight.Range = 1000.0f;

Using Spotlights

Spotlights work a little differently than the other lights do because spotlights cast
light in a cone shape away from the source. The light is brightest in the center,
dimming as it reaches the outer portion of the cone. Nothing outside the cone is
illuminated.

1T T

You define a spotlight by its posi-
tion, direction, color components, CAUTION

range, falloff, attenuation, and the Spotlights are the most computational
radius of the inner and outer light source you can use, so it’s a good idea
cone. You don’t have to worry not to have too many of them in the scene.
about falloff and attenuation, but

you do need to think about both

radiuses of the cone.

1 1

The phi variable in the p3pLIGHT8 structure determines the size of the outer cone.
Phi, as well as Theta, are represented as angles (in radians). The farther the light
travels from the spotlight source, the wider the projected radius becomes.
Programmers determine which values to use, and you’ll just have to play around
until you find the values you like.

The following creates a spotlight that sets up the position, color, range, falloff, and
cone radiuses:

D3DLIGHT8 Spotlight;

// Clear out the Tight data
ZeroMemory (&SpotLight, sizeof(D3DLIGHT8));

// Position the Tight at 0.0, 100.0, 200.0
SpotLight.Position = D3DVECTOR3(0.0f, 100.0f, 200.0f);

// Set the diffuse and ambient colors to white

SpotLight.Diffuse.r = SpotLight.Ambient.r = 1.0f;
SpotLight.Diffuse.g SpotLight.Ambient.g 1.0f;
SpotLight.Diffuse.b = SpotLight.Ambient.b 1.0f;

// Set the range
SpotLight.Range = 1000.0f;

// Set the falloff
SpotLight.Falloff = 1.0f;

// Set the cone radiuses
Spotlight.Phi = (0.3488; // outer 20 degrees
Spotlight.Theta = 0.1744; // inner 10 degrees

@ 6. Drawing with DirectX| Graphies

Now, you point the spotlight in a specific direction. D3DX comes to the rescue
again with a duo of functions that help you point the spotlight (and any light for
that matter). One function is the D3DXVECTOR3 object’s overloaded constructor that
lets you specify the three coordinates.

For these three coordinates, you use world space coordinates to define the distance
from the origin. If you have a spotlight anywhere in the scene and you want it to
point upward at a target 500 units above the light, you set the vector object’s values
to x=0, Y=500, 7=0 (notice that these three coordinates are relative to the light’s
position). For example, the following code sets the vectors values:

J D3DXVECTOR3 Direction = D3DXVECTOR3(0.0f, 500.0f, 0.0f);

The only problem with the preceding — L
Direction vector declaration is that CAUTION

Direct3D likes the vectors to be normal-

ized, which means that the coordinates P N T U) - S
need to be in the range 0 to 1. No prob- not 0. In other words, you cannot
lem, because the second D3DX function, specify a direction of X=0, Y=0, Z=0.
D3DXVec3Normalize, handles this for you:

A light’s directional vector must

1 1

D3DXVECTOR3 *D3DXVec3Normalize(
D3DXVECTOR3 *pOut, // normalized vector
CONST D3DXVECTOR3 *pV); // source vector

When you pass the original vector (for example, the preceding one that
contains the coordinates x=0, Y=500, 7z=0) and the pointer to a new vector, the
D3DXVecNormalize function converts the coordinates into values that range between
0 and 1. The new vector now contains the directional values you can use for light
direction field in the D3DLIGHTS Sstructure.

Continuing with the previous example, set up the direction of the spotlight by
pointing it up and normalizing the vector and storing it in the D3DLIGHTS structure:

D3DXVECTOR3 Dir = D3DXVECTOR3(0.0f, 500.0f, 0.0f);
D3DXVec3Normalize((D3DXVECTOR3*)&Spotlight.Direction, &Dir);

Using Directional Lights

In terms of processing, directional lights are the fastest type of light that you can use.
They illuminate every polygon that faces them. To ready a directional light for use,
you just set the direction and color component fields in the D3DLIGHTS structure.

If you’re wondering why a position vector isn’t used, the answer is logical. Think of a
directional light as an infinitely large river flowing in one direction. Regardless of the
position of objects in the river, the flow of the water remains the same; it’s the direc-
tion of the flow that makes a difference. Using this analogy with lighting, the water
represents the light’s rays, and the direction that the water flows represents the angle
of the light. Any object in the world, regardless of its position, receives light.

Recalling the techniques for the previous two types of light, take a look at this
example, which sets up a yellowish light that is cast down on your scene:

D3DLIGHT8 DirLight; [

// Clear out the Tight data
ZeroMemory (&DirLight, sizeof(D3DLIGHT8));

// Set the diffuse and ambient colors to yellow

DirLight.Diffuse.r = DirLight.Ambient.r = 1.0f;
DirLight.Diffuse.g = DirLight.Ambient.g = 1.0f;
DirLight.Diffuse.b = DirLight.Ambient.b = 0.0f;

D3DXVECTOR3 Dir = D3DXVECTOR3(0.0f, 500.0f, 0.0f);
D3DXVec3Normalize((D3DXVECTOR3*)&Dirlight.Direction, &Dir);

Ambient Light

Ambient lighting is the only type of light that Direct3D handles differently. Direct3D
applies the ambient light to all polygons without regard to their angles or to their
light sources, so no shading occurs. Ambient light is a constant level of light, and like
the other types of light (point, spot, and directional), you can color it as you like.

You set the ambient light level by setting the render state D3DRS_AMBIENT and passing
the p3pcoLor (using the D3DCOLOR_COLORVALUE macro, specifying the red, green, and
blue levels to use in a range from 0.0 to 1.0) value that you want to use:

g_pD3DDevice->SetRenderState(D3DRS_AMBIENT, \
D3DCOLOR_COLORVALUE(0.0f, Red, Green, Blue));

Setting the Light

After you set up the D3DLIGHTS structure, you pass it to Direct3D using the
IDirect3DDevice8::SetLight function:

HRESULT IDirect3DDevice8::SetLight(

@ 6. Drawing with DirectX| Graphies

DWORD Index, // Index of light to set
CONST D3DLIGHT8 #*pLight); // D3DLIGHT8 structure to use

You can see that pLight passes the D3DLIGHT8 structure, but the Index field is some-
thing different. Direct3D allows you to set multiple lights in a scene, so Index is the
zero-based index of the light you want to set. For example, if you are using four
lights in a scene, index 0 is the first light, index 1 is the second, index 2 is the
third, and index 3 is the fourth and last.

There doesn’t seem to be a limit to the number of lights that you can use in a

] scene with Direct3D 8, but | recommend keeping the number of lights to four or
less. Each light that you add to the scene increases the complexity and the time

required for rendering.

Using Normals

In order for Direct3D to properly illuminate polygon faces from the lights that you
provide, you must first provide each vertex in the polygon with a normal. A normal
is a 3-D vector that defines the direction in which an object (such as a vertex or
polygon) that a vector is attached to is facing. You generally use normals in a com-
plex calculation that determines how much illumination the object receives from
any given light.

If you take a close look at a polygon face (similar to the one in Figure 6.19), you’ll
see that the three vertices have a direction, which is the normal. When light hits
these vertices, it bounces off at an angle based on the normals. Using normals
ensures that all polygon faces are illuminated correctly and shaded according to
their angle relative to the viewer and the lights.

Figure 6.19

Each vertex has a normal that points in a
Vertex Normals particular direction.You use the angle of the
normal to determine how light bounces off the
polygon’s face and how to perform shading
calculations.

Adding a normal to your custom vertex information is as easy as providing texture
information. You just insert the normal as a D3DVECTOR3 type and redefine the cus-
tom flexible vertex format (including D3DFVF_NORMAL), as shown here:

typedef struct {
D3DVECTOR3 Position; // Vector coordinates

D3DVECTOR3 Normal; // Normal
D3DCOLOR Color; // Color
} sVertex;

fidefine VERTEXFMT (D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_NORMAL)

You calculate a normal the same way that you created a directional vector when work- [
ing with lights, in the earlier section “Using Spotlights.” When you begin to deal with
3-D models, the task of calculating normals is taken off your hands—because the 3-D
modeling programs used to generate the models typically calculate the normals.

The following function (borrowed from the DirectX SDK examples) generates
a cylinder and gives each vertex a normal that points away from the middle of the
cylinder (see also Figure 6.20):

// g_pD3DDevice = pre-initialized 3-D device object
IDirect3DVertexBuffer8 *GenerateCylinder()
{

IDirect3DVertexBuffer8 *pD3DVertexBuffer;

sVertex *pVertex;

DWORD 1;

FLOAT theta;

// Create the vertex buffer

if(SUCCEEDED(g_pD3DDevice->CreateVertexBuffer(\
50 * 2 * sizeof(sVertex), 0, VERTEXFMT, \
D3DPOOL_DEFAULT, &pD3DVertexBuffer))) {

// Fill the vertex buffer with the cylinder information
if(SUCCEEDED(pD3DVertexBuffer->Lock(0, 0, \
(BYTE**)&pVertex, 0))) {
for(i=0; i<50; i++) {
theta = (2 * D3DX_PI * i) / (50 - 1);
pVertex[2*i+0].Position = D3DXVECTOR3(sinf(theta), \
-1.0f, cosf(theta));

6. Drawing with DirectX| Graphies

D3DXVECTOR3(sinf(theta),
0.0f, cosf(theta));

pVertex[2*i+0].Normal \
)
D3DXVECTOR3(sinf(theta), \
)
\
)

pVertex[2*i+1].Position
1.0f, cosf(theta));
pVertex[2*i+1]1.Normal = D3DXVECTOR3(sinf(theta),
0.0f, cosf(theta));

}
pD3DVertexBuffer->Unlock();

// Return a pointer to new vertex buffer
J return pD3DVertexBuffer;

// Return NULL on error
return NULL;

Figure 6.20
The GenerateCylinder function creates a
— _— cylinder object with normals that point away from
the center.
/4 l\
\' /
/l I\

Using Fonts

Let There Be Light!

Now that you’ve decided on the type of light to use and have set up its respective
structure, it is time to activate the lighting pipeline and turn on the light(s). To
activate the lighting pipeline, you set a single rendering state, D3DRS_LIGHTING tO TRUE:

// g_pD3DDevice = pre-initializing device object
_pD3DDevice->SetRenderState(D3DRS_LIGHTING, TRUE);

To deactivate the lighting pipeline, use the following code:

// g_pD3DDevice = pre-initializing device object
g_pD3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE);

After activating the lighting pipeline, you turn the individual lights on and off using
the IDirect3DDevice8::LightEnable function. Here’s the prototype for LightEnable:

IDirect3DDevice8::LightEnable(
DWORD LightIndex, // Light index, 0 - max # Tlights
BOOL bEnable); // TRUE to turn on, FALSE to turn off

If you’ve already set up a point light as LightIndex 0, you can turn it on and off with
the following code:

// g_pD3DDevice = pre-initializing device object

// Turn Tight on
g_pD3DDevice->LightEnable(0, TRUE);

// Turn Tight off
g_pD3DDevice->LightEnable(0, FALSE);

That’s it for using Direct3D’s lighting system! One last word of warning before
moving on: Direct3D does a decent job of using lights in the graphics system, but if
a user’s video card does not support lighting, Direct3D has to emulate the lighting
effects. While not a bad thing, emulation can slow down rendering if lighting is
used. Don’t let the threat of light emulation stop you, however, as using light
effects in your game enhances your graphics tremendously.

Using Fonts

One drawback to DirectX 8 is its lack of font support. Older versions of DirectX are
able to harness Window’s font-drawing functions. With version 8, you must manually

ec7

@ 6. Drawing with DirectX| Graphies

draw a font onto a texture surface and draw each font letter as a small texture-
mapped polygon.

Managing a texture that contains a font is a bit much to do just to draw text, but
thanks to D3DX, you have access to a special object, 1D3DxFont, that handles those
texture map fonts for you. The 1D3DXFont Object contains only one useable function,
ID3DXFont: :DrawText, which you use to draw the fonts. Before you go any further,
however, take a look at how to create a font.

] Creating the Font

In order to use the 1D3DXFont Object, you must first initialize it with the
D3DXCreateFontIndirect function:

HRESULT D3DXCreateFontIndirect(
IDirect3DDevice8 *pDevice, // Device to associate font to
CONST LOGFONT* pLogFont, // Structure defining font
ID3DXFont **ppFont); // Pointer to created font object

You supply this function with the pre-initialized device object and pointer to the
ID3DXFont Object that you are initializing, but what do you do with the plLogFont para-
meter? As you can see, the pLogFont points to a LoGFONT (which stands for logical font)
structure, which looks like this:

typedef struct tagLOGFONT {
LONG TfHeight;
LONG TfWidth;
LONG 1fEscapement;
LONG T1fOrientation;
LONG TfWeight;
BYTE 1fItalic;
BYTE 1fUnderline;
BYTE 1fStrikeQut;
BYTE 1fCharSet;
BYTE 1fOutPrecision;
BYTE 1fClipPrecision;
BYTE 1fQuality;
BYTE 1fPitchAndFamily;
TCHAR 1fFaceName[LF_FACESIZE];
} LOGFONT;

Using Fonts @

Wow, that’s a lot of information! You can safely skip setting most of the fields in the
LOGFONT structure shown and stick with the default values that I’ve shown. The only
ones that you’re bound to work with are 1fHeight, 1fWeight, 1fItalic, 1fUnderline, and
1fFaceName.

Starting with the easiest ones, you can set 1fItalic and 1fUnderline to O or 1 to set or
clear the use of italics and underlines, respectively. With 1fWeight, you can set the
level of boldness to use when drawing; you can set it to 0 for normal or 700 for
bold. 1fHeight represents the point size of the font. The 1fHeight value is a bit tricky
because it doesn’t take a direct size per se. Instead, you must give it a negative value
that represents the approximate height in pixels. For example, for a font that is 16 [
pixels in height, you use a value of -16.

Last is 1fFaceName, which is the name of the font that you want to use. It might be
Times New Roman, Courier New, or any other font installed on your system. You
just copy the name into the 1fFaceName field.

Here’s an example that uses the Times New Roman font with a point size of 16:

// g_pD3DDevice = pre-initialized device object
// hWnd = handle to parent window

ID3DXFont *pD3DFont;

LOGFONT 1f;

// Clear out the font structure
ZeroMemory (&1f, sizeof(LOGFONT));

// Set the font name and height
strcepy(1f.1fFaceName, "Times New Roman");
1fHeight = -16;

// Create the font object
if(FAILED(D3DXCreateFontIndirect(g_pD3DDevice, \
&1f, &pD3DFont))) {
// Error occurred

 I— E—

CAUTION

Because ID3DXFont is a COM object, always be
sure to release it when you are done with it.

—1 |

m 6. Drawing with DirectX| Graphies

Drawing with Fonts

Once your ID3DXFont object is initialized, you can begin drawing text using the
ID3DXFont::DrawText function:HRESULT ID3DXFont::DrawText(
LPCSTR pString, // String to print

INT Count, /1 -1
LPRECT pRect, // Area to draw text in
DWORD Format, /10

D3DCOLOR Color); // Color to use to draw with

:I The only thing to watch out for when using the drawText function is the pRect parame-
ter, which is a pointer to a RECT structure that contains the area in which to draw the

text. You can set this area to the size of the screen, or if you want to contain the text

within a specific area, use those screen coordinates. The RecT structure looks like this:

typedef struct tagRECT {

LONG Teft; // Left coordinate

LONG top; // Top coordinate

LONG right; // Right coordinate

LONG bottom; // Bottom coordinate
} RECT;

Last in the prawText function is the color parameter, which determines the color to
use for drawing the text. Use the handy D3DCOLOR_RGBA Or D3DCOLOR_COLORVALUE macro
to define the color for drawing the text.

The following example assumes that you’ve initialized the font object and are ready
to draw text:

// g_pD3DDevice = pre-initialized device object
// pD3DXFont = pre-initialized font object

// Setup the RECT structure with drawable area
RECT rect = { 0, 0, 200, 100 };

// Begin the drawing code block
if(SUCCEEDED(g_pD3DDevice->BeginScene())) {

// Draw some text
pD3DXFont->DrawText("I can draw with text!", -1, \
&rect, 0, D3DCOLOR_RGBA(255,255,255,255);

// End the scene
g_pD3DDevice->EndScene();
}

Billboards [[EEI

Billboards

Billboarding is a cool technique that allows 2-D objects to appear in three dimen-
sions. For example, a complex object such as a tree can be rendered from a side
view in a modeling program and then drawn as a texture on a rectangular polygon.
This rectangular polygon always faces the viewpoint, so regardless of the angle from
which the polygon is viewed, it will appear as though the tree texture is viewed
from the side at which it was rendered (as illustrated in Figure 6.21).

Many programmers use billboarding for creating games because they can easily [
implement it. A perfect example of billboarding use can be seen in Paper Mario

for the N64. All the characters are drawn in 2-D and then texture-mapped onto
polygons. The game adds a twist by allowing you to see the billboard polygons as
they turn around, thereby giving the graphics a rather comical style.

Billboarding works by using a world matrix that aligns the polygons with the view.
Because you already know the angle of the view (or can obtain a view transformation
matrix), you only need to construct a matrix using the opposite view angles. You
don’t have to alter the position of the polygon because only the angle concerns you.

The first way to construct the billboard world matrix (which you can apply to a
mesh or polygons) is to use the opposite values of the view angles that you already
know. For example, assume that a vertex buffer is already set up with the vertices.

Figure 6.21

Billboarding ensures that
polygons face the
viewpoint regardless

of the position or angle

Other Pol Other Pol .
< errolygons) (errolygons) from which the polygon
is viewed.

Scene from Above

<— Billboard —— > Billboard —

Vlewpomt Vlewpomt

@ 6. Drawing with DirectX| Graphies

The viewpoint angles are stored as XRot, YRot, and zRot, and the billboard object’s
coordinates are XCoord, YCoord, ZCoord. Here’s how to set up the matrix to use for
rendering the billboard vertex buffer:

// g_pD3DDevice = pre-initialized device object
D3DXMATRIX matBillboard;

D3DXMATRIX matBBXRot, matBBYRot, matBBZRot;
D3DXMATRIX matBBTrans;

// Construct the billboard matrix

// Use the opposite angles of the viewpoint to align to view
D3DXMatrixRotationX(&matBBXRot, -XRot);
D3DXMatrixRotationY(&matBBYRot, -YRot);
D3DXMatrixRotationZ(&matBBZRot, -ZRot);

// Use the billboard object coordinates to position
D3DXMatrixTranslation(&matBBTrans, XCoord, YCoord, ZCoord);

// Combine the matrices

D3DXMatrixIdentity(&matBillboard);
D3DXMatrixMultiply(&matBillboard, &matBillboard, &matBBTrans);
D3DXMatrixMultiply(&matBillboard, &matBillboard, &matBBZRot);
D3DXMatrixMultiply(&matBillboard, &matBillboard, &matBBYRot);
D3DXMatrixMultiply(&matBillboard, &matBillboard, &matBBXRot);

// Set the matrix
g_pD3DDevice->SetTransform(D3DTS_WORLD);

// Continue to draw the vertex buffer, which is aligned
// to face the viewport, but at the proper coordinates.

After the last line of code, the world transformation matrix is set up and ready to
be used to render the billboard object.

The second way to create a billboard world matrix is to grab the current view
matrix from Direct3D and transpose it (inverse it). This transposed matrix will
align everything properly to face the view. You just apply the mesh’s translation
matrix to position the mesh properly in your world. Here’s how to construct the
billboard matrix from the view matrix and use it to draw the billboard object:

// g_pD3DDevice = pre-initialized device object

Particles @

D3DXMATRIX matTrans, matWorld, matTransposed;

// Get the current Direct3D view matrix
g_pD3DDevice->GetTransform(D3DTS_VIEW, &matTranspose);

// Create the mesh's translation matrix
D3DXMatrixTranslation(&matTrans, XCoord, YCoord, ZCoord);

// Multiply them together to form world transformation matrix
D3DXMatrixMultiply(&matWorld, &matTranspose, &matTrans); [

// Set the world transformation matrix
g_pD3DDevice->SetTransform(D3DTS_WORLD, &matWorld);

// Continue to draw the vertex buffer, which is aligned
// to face the viewport, but at the proper coordinates.

Billboarding is a powerful technique that is actually the basis to some other special
effects, such as particles.

Particles

Huge explosions, smoke trails, and even those tiny sparkles of light that trail off the
tail of a hurdling magic missile are all the work of a special effect known as particles.
Particles follow the same principles as billboarding and are just as easy to use.

With particles, you set up polygons that are texture-mapped with smoke, fire,
sparks, or whatever graphics you want to use. At the appropriate time, you enable
alpha blending (optional) and draw the particles so that they face the viewpoint
(using billboarding). The result is a collage of blended objects that you can use for
some awesome effects.

The cool thing about particles is that they can be virtually any size, because you can
create a scaling matrix to combine with the world transformation matrix of the par-
ticle polygon. This means that you need to use only a single polygon to draw all
your particles, except when the particle texture varies, in which case the number of
polygons should match the number of textures.

It’s time to create a particle image. You might start with a circle shape that is solid
(opaqgue) in the center and that gradually becomes transparent on the way to the
outside edge (as illustrated in Figure 6.22).

m 6. Drawing with DirectX| Graphies

Figure 6.22

You generally draw a particle using a circular image,
as shown here.When you use materials, the image is
colored when drawn.

Now, set up four vertices that use two polygons (using a triangle strip for optimiza-
tion). The vertex’s coordinates represent the default size of a particle that you’ll
scale to size later on. Each particle can have unique properties, including its own
color (by using materials).

You then use this structure, combined with a single vertex buffer containing two
polygons (creating a square), to render the polygons to the 3-D device. Before being
drawn, each particle is oriented by its own world matrix (using billboarding, of
course). You combine the world transformation matrix with each particle’s scale
matrix transformation. Then you set a material (using the 1Direct3DDevice8::SetMaterial
function) to change the color of the particle, and finally you draw the particle.

Here’s an example that creates a particle vertex buffer and draws it to a device:

// g_pD3DDevice = pre-initialized device object

// define a custom vertex structure and descriptor
typedef struct {
FLOAT x, vy, z; // Local 3-D coordinates
FLOAT u, v; // Texture coordinates
} sVertex;
fidefine VertexFVF (D3DFVF_XYZ | D3DFVF_TEX1)

// Particle vertex buffer and texture
IDirect3DVertexBuffer8 *g_pParticleVB = NULL;
IDirect3DTexture8 *g_pParticleTexture = NULL;

Particles @

BOOL SetupParticle()
{
BYTE *Ptr;
sVertex Verts[4] = {
{ -1.0f, 1.0f, 0.0f, 0.0f, 0.0f },
{ 1.0f, 1.0f, 0.0f, 1.0f, 0.0f },
{ -1.0f, -1.0f, 0.0f, 0.0f, 1.0f },
{ 1.0f, -1.0f, 0.0f, 1.0f, 1.0f }

// Create particle vertex buffer and stuff in data [
if(FAILED(g_pD3DDevice->CreateVertexBuffer(\
sizeof(sVertex)*4, 0, VertexFVF, \
D3DPOOL_DEFAULT, &g_pParticleVB)))
return FALSE;
if(FAILED(g_pParticleVB->Lock(0,0, (BYTE**)&Ptr, 0)))
return FALSE;
memcpy (Ptr, Verts, sizeof(Verts));
g_pParticleVB->Unlock();

// Get particle texture
D3DXCreateTextureFromFile(g_pD3DDevice, "particle.bmp", \
&g_pParticleTexture);

return TRUE;

BOOL DrawParticle(float x, float y, float z, float scale)
{

D3DXMATRIX matWorld, matView, matTransposed;

D3DXMATRIX matTrans, matScale;

D3DMATERIAL8 d3dm;

// Set render states (alpha blending and attributes)
g_pD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
g_pD3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
g_pD3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);

// Turn on ambient 1ighting
g_pD3DDevice->SetRenderState(D3DRS_AMBIENT, Oxffffffff);

// Set stream source to particle vertex buffer

@ 6. Drawing with DirectX| Graphies

g_pD3DDevice->SetStreamSource(0, g_pParticleVB, sizeof(sVertex));

// Set vertex shader to particle type
g_pD3DDevice->SetVertexShader(VertexFVF);

// Set texture
g_pD3DDevice->SetTexture(0, g_pParticleTexture);

// Set the particle color
J ZeroMemory (&d3dm, sizeof(D3DMATERIALS8));

d3dm.Diffuse.r = d3dm.Ambient.r = 1.0f;
d3dm.Diffuse.g = d3dm.Ambient.g = 1.0f;
d3dm.Diffuse.b = d3dm.Ambient.b = 0.0f;

d3dm.Diffuse.a = d3dm.Ambient.a = 1.0f;
g_pD3DDevice->SetMaterial(&d3dm);

// Build scaling matrix
D3DXMatrixScaling(&matScale, scale, scale, scale);

// Build translation matrix
D3DXMatrixTranslation(&matTrans, x, y, z);

// Build the billboard matrix
g_pD3DDevice->GetTransform(D3DTS_VIEW, &matView);
D3DXMatrixTranspose(&matTransposed, &matView);

// Combine matrices to form world translation matrix
D3DXMatrixMultiply(&matWorld, &matScale, &matTransposed);
D3DXMatrixMultiply(&matWorld, &matWorld, &matTrans);

// Set world transformation
g_pD3DDevice->SetTransform(D3DTS_WORLD, &matWorld);

// Draw particle
g_pD3DDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);

// Turn off alpha blending
g_pD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);

return TRUE;

Depth Sorting and Z-Buffering

These two functions demonstrate setting up a vertex buffer and texture to use for
the particle and drawing the actual particle. The code for a full particle example
is fairly lengthy. I just wanted to give you a glimpse at how to handle a single parti-
cle. For a complete example application that demonstrates using particles to a
higher degree, check out the Particle project on this book’s CD-ROM (look for
\BookCode\Chap06\Particle).

Depth Sorting
and Z-Buffering I

It quickly becomes apparent that while you are rendering polygon mesh objects to
the scene, the objects farther from the viewer need to be obscured by those objects
that are closer. This is call depth sorting, of which there are two common methods.

The first method is called the painter’s algorithm. This method breaks objects apart
by their polygons and sorts these polygons from back to front, thus drawing them
in that order (as illustrated in Figure 6.23). Drawing in this manner ensures that
a polygon is always drawn in front of a polygon behind it.

Figure 6.23

Pixel . . .
e When one pixel overlaps another, only the pixel with a lower
Z-value is drawn. Here, only three pixels are drawn, because the
two farthest pixels are overdrawn with the closer pixels.

Viewpoint

@ 6. Drawing with DirectX| Graphies

The second way of depth sorting, and one that graphics hardware devices use the
most, is called the Z-Buffer method. This method works on a per-pixel basis, with
each pixel having a Z value (the distance from the viewer).

As each pixel is being written, the renderer first checks to see whether a pixel with a
smaller Z-value is already there. If not, the pixel is drawn; if so, the pixel is skipped.
You can see this concept illustrated in Figure 6.23.

Most accelerated 3-D graphics cards have a built-in Z-Buffer, so that is the depth-sorting
method o