WORDWARE GAME DEVELOPER’S LIBRARY

Learn the foundations
ol programming roal
time 3D graphics using
Linuz tools and
librarias,

Dovelop and
undorsiand tho
technigues for creaiing
a reusable 30D
applicallon lbrary.

Craalé I0 modals with
Blender, a modeling and
animation suite
includod on tha
campanion CO.

Graphics
Programming

Norman Lin

Linux 3D
Graphics
Programming

Norman Lin

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Lin, Norman.
Linux 3D graphics programming / by Norman Lin.
p. cm.
Includes bibliographical references and index.
ISBN 1-55622-723-X (pbk.)
1. Computer graphics. 2. Linux. 3. Three-dimensional display systems. |. Title.

T385.L556 2001
006.6'93--dc21 00-69314
CIP

© 2001, Wordware Publishing, Inc.
All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from
Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-723-X
10987654321
0103

Blender is a registered trademark of Not a Number B. V.
Other product names mentioned are used for identification purposes only and may be trademarks of their respective companies.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc., at the above
address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents

Preface e xiii
Acknowledgments XV
Introduction xvil
Chapter 1 Introduction to 3D Graphicsand Linux 1
Why Linux o e 3
LinuxisFreeand Open 3
Linuxis Powerful 4
Linux is Compatible. 5
Linux is Contemporary o v v it 6

A Survey of 3D Graphics Under Linux 6
Stable Ideas, Projects, and Libraries 8
Developing Ideas, Projects, and Libraries 9
Developing APIs 9

3D Applications with Source 10
3DModelers. 10

Dead Ideas, Projects, and Libraries 11
Other Ideas, Projects, and Libraries 11
Scope of This Book, Revisited. 12

Let’s Talk About X 12
Definition of X: A Client-Server System 13
Hardware Acceleration and X Servers. 14
What is Hardware Acceleration? 15
Integrating Hardware Accelerationinto X 17
Summary of Hardware Acceleration 19

“Hello, Linux”: A Sample Program. 20
Entering the Sample Program 20

The Viand Emacs Editors. 20

Basic Editing withEmacs 22
Compiling and Linking the Sample Program 25
Overview of Makefiles 26
Compiling the Program withMake 27
Compiling the Program Manually. 27
Analysis of Makefile L 28
Executing the Sample Program 29
Debugging the Sample Program 30

The Text Debugger—Not Just for Masochists 34

Getting OnlineHelp. 35

Contents

The Online Manual “man™. 35
The Online Info Documentation 37
Other Ways of Finding Information 38
Summary. 38

Chapter 2 AccessingtheScreen39

OVEIVIEW. v o it i e e e e e e e e e 39
X Programming 39
TheRoleof X. 39
Structure of an X Program oL 43
Xlib, the X Toolkit, and the Xt Intrinsics 45
Connectingtothe X Server 46
Creating and Mapping the Window 48
Receiving X Events 50
Respondingto X Events. 51
Critique of the Sample Program. 54
An Object-Oriented Rewrite 55
An Abstract Application Class 59

A Concrete Application Class. 60
Factory Design Pattern 60
An Application Factory and Factory Manager 62
Execution of the Main Program. 63
Object-Oriented: Is It Worth It? 64
Introduction to XImages 65
A Practical Example of OOReuse 66
Running the New Subclassed Program 68
New Classes o v v v v vt e s e 69

X Server Depthand Visual Class 74
Graphics and Double Buffering with XImages 76
Requesting Notification for All Events 78
Visual Event Display 78
Summary. 79
Displaying Graphics in XImages 79
Random Dots 79

A Word on Animation. 83
Summary. 83
Picture Elements—Pixels, 84
2D Pixel Coordinates 84
Byte-to-Pixel Correspondence 86
Colorsand XImages. 88
Developing Reusable Graphics Classes: 13d Library. 92
Sample Program Using 13d. 93
13d Directory Structure 96
Fundamental 13d Concepts 97

Overview of 13d Classes i i i i 104

Contents v

Source Code Walk-through of 13d Classes 105
Abstracting an Event-Driven Graphics Application: 13d_pipeline 105
Abstracting Event Generation: 13d_event source 106
Abstracting the Event Dispatching Loop: 13d_dispatcher. 106
A Dispatcher for X: 13d_dispatcher x11. 107
Abstracting Control of the Screen: 13d screen 108
Abstracting Relevant Screen Attributes: 13d_screen_info. 111
Screen Information for TrueColor: 13d_screen_info rgb 113
Screen Information for Indexed Color: 13d_screen info_indexed 119
A Screen Under X: 13d screen x11 124
Abstracting the Rasterizer: 13d rasterizer 2d 130
A Rasterizer Implementation: 13d_rasterizer 2d imp. 133
A Software Rasterizer Implementation: 13d rasterizer 2d sw_imp 133
Choosing the Concrete Factories. 141
Summary of 13d Classes Covered SoFar 143

Summary 146
Chapter 3 2D Rasterization. ¢ v vt v v v v o 147
OVEIrVIEW oo s i 147
Software Rasterization. 148

Rasterizing Dots. 149

Rasterizing Lines 150
Real Numbers in 13d: Type 13d real 152

Rasterizing Flat-shaded Polygons 154
Specifying Coordinates 156
Two-Part Vertex Lists 162
Defining Polygons: Indices into a Vertex List. 168
Drawing the Polygon., 180
Sub-Pixel Correct Rasterization 184

Polygon Clippingin2D. 187
Discard the Polygon Completely. 188
Discard Invalid VerticesOnly 188
Scissoring or Scanline Clipping 188
Analytical 2D Clipping. 190

The X11 SHM Extension: 13d_screen x11 shm. 196

The X11 DGA Extension. v i .. 200

Sample Programs 201
Sample Program XForm 201
Sample Program Morph2d., 205

Hardware-Accelerated Rasterization 211

Mesaand OpenGL, 212

The OpenGL Utility Toolkit (GLUT) 212

A Sample Program with Mesaand GLUT 212

Mesa and 3DFX Hardware Acceleration. 215

Classes for Using Mesa. 216

vi

Contents

13d screen mesa. 216
13d_screen_info rgb mesa, 13d_screen_info indexed mesa. 219

13d dispatcher mesa. 220

13d rasterizer 2d mesa_imp. L. 222
Running the Sample Programs withMesa 224
Summary 226
Chapter 4 3D Vision and Perception 227
OVEIVIEW oo i 227
The Goal of 3D Graphics 227
Moving from2Dto3D 229
Vision and Optics: 3D in the Physical World 230
The Retina: Biochemical Vision 230
The Geometry of Light 230
Single Point. 231
TwoPoints 232
Lines e 233
ACube 235
Parallax 236
Definition of Parallax 236

How Parallax Comes About 236

Why Parallax is Important 238
“Runway Lights”—A Simple 3D Program. 238
Runway Lights: Physical Situation 238
Code Listing e 239
Summary 246
Chapter 5 Perspective Projection. 247
OVEIVIEW o v o o i it e e 247
Projection from 3D to2D 247
The Inputs and Outputs to the Projection Process 249
Points Form Objects 249
3D Coordinate Systems and Vectors. 250
Definition of Vectors 252
Adding and Subtracting Vectors and Points 254
The Relationship Between Points and Vectors. 256
Multiplying a Vectorby a Scalar 258
Multiplying a Vector by a Vector: the Dot Product 258
The Dot Product and the Concept of Length 259

The Dot Product and Unit Vectors. 260

The Dot Product and the Conceptof Angle 260

The Dot Product and the side_of point Function 262

The Dot Product and the Concept of Vector Projection 263
Multiplying a Vector by a Vector: the Cross Product 264

Left-handed and Right-handed Coordinate Systems. 265

Contents vii

The I3d vectorClass 265
Sample Program Using Vectors. 270
The Mathematics of Projection 273
The Physical Viewing Situation 273
Calculating Intersections 275
Mapping to 2D Pixel Coordinates 278
Field of View: the Connection Between Window Size and Distance 282
Determining the Horizontal Field of View Term. 283
Determining Field of View Term as Ratio of Width/Distance. 283
Determining Field of View Term as the Cotangent of the Field
of View Angle 284
Summary of Perspective Projection 285
Sample Program: Dots. 285
The Partsofa3D Engine 293
The Rendering Pipeline. 293
Database and Database Traversal. 294
Simulation. 295
Perspective Projection and Screen Mapping 298
Culling. e 298
Rasterization 299
Blitting 299
3D Polygonal Graphics 299
Overview of Program “Spikes™. 304
From Dotsto Polygons 305
Summary e e 307
Chapter 6 Matrices and Transformations. 309
OVEIVIEW o v e s e e s e e e 309
Introduction to Transformations. 310
Translation 310
Rotation 312
Scaling. 316
What is... the Matrix? 317
Definitions: Matrices and Vectors 317
A Note on the Term “Vector” 318
Writing 3D Points and 3D Vectors in Matrix Notation 318
The Homogeneous W Coordinate 319
The Meaningof W 319
Why Homogeneous Coordinates. 320
Combining Matrices and Column Vectors 321
Mathematical Operations on Matrices 321
Scalar-Matrix Multiplication. 321
Matrix-Matrix Multiplication, or Composition 322
Multiple Matrix Multiplications 324

The Identity Matrix. 325

viii

Contents

Matrix Inverse L 325
Matrix Transpose. 326

The 13d matrix Class. 326
What’s All This Got to Do with 3D Graphics? 335
Mathematical Equations for Translation, Rotation, and Scaling 336
Translation 336
Rotation. e 337
Scaling 341
Sample Program: Rotspikes 342
Combining Transformations. 348
Simple Sequential Transformations 348
Rotation or Scaling About an Arbitrary Point 350
Arbitrary Camera Position and Orientation 352
How to Specify an Arbitrary Camera Position and Orientation. 353
Deriving the Matrix 353

The Final Camera Transformation Matrix. 355

The 13d moveable Class 356
Theldd cameraClass 362
Rotation About an Arbitrary Axis 363
The 13d_mat rotu Function 367
Sample Program: Camspikes 367
Additional Notes on Matrices 377
Invertinga MatrixX. e 377
Determinant of a Matrix 378
Perspective Projection as a Transformation Matrix 379
OpenGL, Matrices, and Hardware-Accelerated Geometry 381
Matrices and Coordinate Systems 385
Typical Coordinate Systems in 3D Graphics 388
Right-to-left vs. Left-to-right Interpretation 390
Summary e e 392
Chapter 7 Polygonal Modeling and Renderingin3D 393
OVEIVIEW o v vt e e e e e e e e e 393
Reasons for 3D Polygonal Modeling 394
Extending Polygons from 2D into3D. 396
Surface Normal Vectors, 402
Storing Normal Vectors as Base and Tip Points 403
Orientation of Normal Vectors 405
Vertex Normal Vectors 407
Transforming Normal Vectors 408
Transforming 3D Polygons 409
Methods for Transforming a Polygon 410
Step-by-Step Guide to Transforming 3D Polygons 412
Near Z ClLipping o o 0 e 412

Define the Near Z Plane Mathematically. 414

Contents

ix
Define the Inside and Outside Sides of the Near Z Plane 415
Classify a Point as being Inside or Outside 415
Calculate the Intersection Between a Crossing Segment and
theNear ZPlane 415
Putting It All Together 416
Linked Lists of Polygons 417
Drawing 3D Polygons: Flat Shading 418
Sample Program: clipz. 421
Changes to the Spike Class 430
Changes to the Pipeline Class 432
Summary 433
Grouping Polygons into Objects. 433
The 13d objectClass 434
Creating and Copying 3D Objects 439
Defining the Geometry of a 3D Object. 440
Defining Vertices. 440
Defining Polygons 441
Specifying Transformations 444
Implicit Position and Orientation. 445
Inheritable Behavior o 446
Plug-in Behavior 446
The 3D Object Plug-in Interface. 448
Pointers to the Plug-in Functionsand Data 449
WritingaPlug-in. 450
Classes for Loading Plug-ins. 451
A New Factory Manager for Plug-ins 453
Summary of Using Plug-ins 455
Grouping Objectsintoa World 456
The World Database. 460
Interaction with the Pipeline 460
Updating the Entire World 463
Drawing the Entire World. oL 463
Sample Program: fltsim 466
A Subclassed 3D Object 471
APlug-in3D Object 471
Planesin3D e 476
DefiningaPlane 476
SidesofaPlane 478
The I3d plane Class. 478
Clipping Polygons to an Arbitrary 3D Plane. 481
The 13d_polygon 3d clippableClass 481
The 13d_polygon 3d flatshaded clippable Class. 486
The 13d_object clippable Class 487
Sample Program: objcopy 490

Summaryo 495

Contents

Chapter 8 Basic 3D Modeling withBlender 497

OVEIVIEW o o et s e 497
Basics of 3D Modeling. 497
Blender Background 500
The Blender Philosophy 501
Data, Visualize, Edit 501
The Keyboard and the Mouse 502
The Learning Curve. i 502
The Blender Interface 502
The Window System 503
Window Types e 504
Operations on Windows 507
Button Types o 508
The InfoWindow: Setting Global Parameters 509
The ButtonsWindow: Properties of the Current Object 510
The 3DWindow: Editing 3D Objects. 513
Changing the Viewing Parameters. 514
The3D Cursoro 516

The Toolbox and Menus 516
Working with Objects 516
Layers e 521
EditMode. 522

The FileWindow: Saving, Loading, and Exporting Files 526
Tutorial: Creating and Exporting a Spaceship. 529
Create and Link a Thruster Object 529
Createthe MainBody. 534
Checking the Normal Vectors. 538
Rendering Our Creation. 539
Positioning the Camera. 540
AddingalLight. 541
Renderingthe Scene 542
Saving and Exporting the Spaceship 543
Reading a Videoscape Fileinto 13d. 544
Summary e 552
Chapter 9 AdvancedTopics. v ¢ v v v v v v e v v 0 o0 o 553
3D Morphing. 554
Computing Lighting Effects 554
Texture Mapping, Light Mapping, and Shadows 555
Visible Surface Determination. L. 558
Advanced 3D Modeling with Blender. 559
Special Effects 561
Non-Graphical Elements. 563
Content Development Systems 563

Summaryo e 564

Contents i

ALook Ahead L 564
Appendix i i e e e e e e e e e e e e e e e ... D67
CD Installation. e 567
License 567
Contents of the CD-ROM.. 568
Quick Start Guide 568
Directories 568
Installing the Sample Programs and Other Software 569
Installing Linux fromthe CD-ROM 571
Using an Existing Linux Distribution 573
Basic Linux Configuration and Commands 573
Troubleshooting the Sample Programs 574
Some Comments on the Sample Programs 575
Hardware Acceleration. 575
Integer, Floating-Point, and Fixed-Point Math 576
Motivation. e e e e 576
Concepts. 577
Overflow and Underflow 577
Classes and Fixed-PointMath 579
Compiling Fixed-Point Examples 580
Program Listings for Fixed-PointMath 581
Porting the Code to Microsoft Windows 586
Tools Used to Prepare ThisBook 587
Resources. L 588
References L 590

This Page Intentionally Left Blank

xiii

Preface

“3D graphics” is a term that anyone involved with computers has heard and seen; modern pro-
grams of all kinds increasingly use 3D graphics. Similarly, the term “Linux” has worked its way
into everyday usage; the free, zero cost, open source, and community-developed Linux operating
system is a significant player in the ongoing OS wars, and shows no signs of slowing down.

Only very recently, however, have we begun to see the terms “3D graphics” and “Linux”
combined in the same sentence. The suitability of Linux for learning and programming 3D graph-
ics appears to be less well known, or a closely guarded secret. I hope this book helps to change
that. Linux is an excellent and enjoyable environment for interactive 3D graphics programming.

For a programmer—and I assume you are one if you are reading this book—3D graphics is
one of the most challenging and rewarding of problem domains. Programmers in all fields grapple
daily with abstract concepts requiring powerful mental visualization skills. With 3D graphics pro-
gramming, the abstract concepts move into the realm of the concrete. You see the results of your
effort, and with interactive programs, your creations appear to come alive in the most realistic way
technology can produce—in 3D. All programmers know the satisfaction that comes with an ele-
gant solution to a difficult problem. Such inherent satisfaction for a job well done is immeasurably
greater with 3D graphics programs, because the reward also comes in the form of a breathtaking,
animated 3D world—a believable universe conceived and brought to life by the programmer, a
masterpiece of technical and visual synergy. The visual and creative rewards offered by 3D graph-
ics programming are among the highest any field can offer.

Creating 3D programs requires a programming environment. As an absolute minimum, you
need an editor, a compiler, and some standard libraries; a debugger is also practically indispens-
able. In general, programming 3D graphics demands more; you need image manipulation
programs to create texture maps and generate common palettes, 3D modeling programs to gener-
ate 3D worlds and objects, language-parsing utilities to convert between file formats, and libraries
to abstract some areas of the problem domain such as hardware accelerated rasterization.

All of these tools and more are available at no cost, and mostly with source code, for the Linux
system. On other platforms, you must literally pay thousands of dollars just to get started program-
ming 3D graphics: a compiler, a 3D modeler, and of course the operating system itself must all be
purchased or licensed—assuming, of course, that you wish to legally use the software as opposed
to illegally copying it. Under Linux, you can legally get all of this for free.

The low cost of 3D graphics development under Linux opens up this exciting realm to many
creative, innovative, but financially limited individuals who otherwise might never get involved
with 3D graphics. Students, universities, schools, hobbyists, and amateurs are but a few of the
groups for whom Linux represents an economically attractive environment to explore profes-
sional 3D graphics.

Xiv

Preface

But this low cost does not imply that Linux is just a toy system for starving students—indeed,
nothing could be further from the truth! Linux is renowned for its power, stability, and flexibility
in rigorous production environments. Linux workstations have been used to create professional
graphics for Hollywood special effects and commercial 3D games. The freely available develop-
ment and modeling tools are first-rate—Iliterally some of the best software available at any price.
Linux is absolutely a viable and proven production platform for professional programs.

Linux represents a new, open, and economical model of software development and distribu-
tion—one that has proven itself in practice. I am continually surprised and excited by the quality
of software appearing for Linux and the new possibilities it opens. I hope that through this book
you, too, will get a sense for the exciting and infinite possibilities that Linux and 3D graphics have
to offer.

XV

Acknowledgments

In addition to my parents, Forest and Vicki Lin, I would like to thank the following individuals
who directly or indirectly played a role in the completion of this book. Thanks go to my brother
Tony, who persuaded me to download and try out the game Doom, an experience which convinced
me that interactive 3D graphics on the PC was finally possible. Special thanks also to Stan Hall,
who provided encouragement and advice even when it seemed that the book might not see the
light of day.

Solveig Haring and Margit Franz were kind enough to provide me with Internet access and a
cup of coffee for some of the longer nights in the computer lab. Ton Roosendaal provided some
very interesting insights into Blender and 3D graphics in general. My work colleagues Horst
Hortner, Werner Pankart, Klaus Starl, and Thomas Wieser were all supportive and understanding
during those times when work on the book required absence from the office. Andreas Jalsovec and
Dietmar Offenhuber gave me insight into some of the nuances of 3D modeling. Renate Eckmayr,
Viju John, Azita Ghassemi, Manfred Grassegger, Ulrike Gratzer, Andrea Groisbock, Jogi and
Reni Hofmueller, Angelika Kehrer, Astrid Kirchner, Dietmar Lampert, Christine Maitz, Paula
McCaslin, Bernd Oswald, Gabi Raming, Regina Webhofer, and other individuals too numerous to
mention all expressed interest upon hearing that I was writing this book, and gave me much
needed inspiration and motivation.

Professor Deborah Trytten got me started on the right track in 3D graphics during my studies
at the University of Oklahoma. Kevin Seghetti carefully read and checked the text for technical
accuracy and provided many valuable suggestions. Thanks also to everyone at Wordware Pub-
lishing: Wes Beckwith, Kellie Henderson, Beth Kohler, Martha McCuller, Denise McEvoy, Paula
Price, and everyone behind the scenes. Special thanks goes to Jim Hill, who shared my enthusiasm
about the book and was key in actually getting this project out the door.

Last but not least, I would like to thank the countless individuals around the world involved
with the creation and maintenance of the freely available, high quality, open source GNU/Linux
operating system and tools.

This Page Intentionally Left Blank

XVil

Introduction

elcome, reader! I am glad to have you along, and hope that you are as excited as [am
about Linux and interactive 3D graphics programming. Take your time and enjoy the
following few pages as we leisurely discuss the goals and contents of this book.

This book is the first volume of a two-volume work on interactive 3D graphics programming
under Linux. First, let’s look at the two-volume work as a whole; then, we’ll look more specifi-
cally at the contents of this volume.

Taken as a whole, the two-volume work aims to provide you with the knowledge, code, and
tools to program top-notch, object-oriented, real-time 3D games and interactive graphics applica-
tions for Linux, which can also easily be ported to other platforms. By working through both
volumes, you will learn to use the most important techniques, tools, and libraries for Linux 3D
graphics: portals, OpenGL/Mesa, Xlib, 3D hardware acceleration, collision detection, shadows,
object-oriented techniques, and more. We also cover the often neglected topic of 3D modeling,
illustrating in detail how to use the professional 3D modeling package Blender, included on the
CD-ROM, to create animated 3D models and portal worlds for use in our interactive 3D programs.

This first volume, titled simply Linux 3D Graphics Programming, covers the basics of Linux
programming and 3D polygonal graphics. Broadly, this encompasses the following major topics:
Linux programming tools, the X Window System, rasterization, hardware acceleration, Mesa and
OpenGL, 3D-to-2D projection, coordinate systems, vectors, matrices, transformations, arbitrary
camera orientation, 3D polygonal objects, simple hidden surface removal, object-oriented design,
and creation of basic 3D models using the program Blender. Summaries of each chapter in this
volume appear later in this section. The second volume, titled Advanced Linux 3D Graphics Pro-
gramming, covers more advanced techniques needed for realistic display of larger datasets often
used in interactive 3D environments. Topics in the Advanced volume include: advanced rendering
and animation techniques for 3D polygons (3D morphing, texture mapping, light mapping, fog),
the creation of more sophisticated 3D models with Blender (including jointed figures animated
with inverse kinematics), importing such models from Blender into our programs, hidden surface
removal (portals, BSP trees, octrees, z-buffer), non-graphical issues relevant to interactive envi-
ronments (special effects, collision detection, digital sound, TCP/IP networking, particle
systems), and tutorials on using advanced 3D content development systems under Linux (Game
Blender and World Foundry). In both volumes, sample programs are provided, both in the text and
on the CD-ROM, that illustrate the concepts.

The field of interactive 3D graphics programming under Linux is a very exciting area due
mainly to two parallel developments: the explosion of 3D graphics applications and the wide-
spread acceptance of Linux in all areas of computing, including 3D graphics. Furthermore, 3D
graphics has always been an inherently challenging and exciting field, and Linux has always been

xviii

Introduction

an inherently exciting operating system for programmers due to its open source nature and freely
available tools.

Goals of This Text

This text has several objectives.

A primary goal of this text is to give you a solid understanding of the fundamental concepts
involved in interactive 3D graphics programming. Such an understanding not only enables you to
write your own 3D programs, libraries, and games under Linux, but also gives you the knowledge
and confidence you need to analyze and use other 3D graphics texts and programs. In the open
source world of Linux, understanding fundamental concepts is indeed important so that you can
understand and possibly contribute to the common pool of knowledge and code. Furthermore,
learning fundamental 3D graphics concepts also enables you to understand and effectively use
sophisticated 3D applications and libraries such as 3D modelers and OpenGL. After completing
this book, you will have a firm grasp on the theoretical and technical issues involved with 3D
graphics programming.

TIP This intentional emphasis on the foundations prepares you for the Advanced volume or
for further independent studly.

A second goal of this text is to give you plenty of hands-on experience programming 3D graphics
applications under Linux. It is one thing to understand the theoretical mechanics of an algorithm;
it is another to actually implement, debug, and optimize that same algorithm using a particular set
of programming tools. Small standalone programs are scattered throughout this text to demon-
strate key 3D graphics concepts. It is often easy to lose sight of the forest for the trees, particularly
in the complicated world of 3D graphics. Standalone sample programs address this problem by
concisely illustrating how all the necessary components of a 3D program “fit together.” They
reduce the intimidation that often accompanies the study of large, complicated programs, giving
you confidence in developing and modifying complete 3D programs under Linux.

A third goal of this text is to help you develop and understand the techniques for creating a
reusable 3D application framework or library. In addition to the standalone programs mentioned
above, the book also develops a series of generally reusable C++ library classes for 3D graphics,
called the 13d library. This C++ library code follows an object-oriented approach, relying heavily
on virtual functions, (multiple) inheritance, and design patterns. In this manner, the developed
library classes are usable as is but still open for extension through subclassing. Each chapter builds
upon the library classes developed in previous chapters, either adding new classes or combining
existing classes in new ways. The new concepts in each chapter are implemented via new classes
or subclasses which add exactly the new functionality, instead of a time-consuming and wasteful
complete reimplementation via cut-and-paste which is “similar but different” and not reusable. A
constant search for abstract classes, including such less-than-obvious behavior classes as
rasterizer, pipeline, and event dispatcher, yields code that is extremely flexible and modular, run-
ning on a variety of platforms including Linux, Microsoft Windows, and DOS, with and without
hardware acceleration through a Mesa/OpenGL back end. Through subclassing, the library

Introduction XiX

classes can be adapted to work with virtually any hardware or software platform or API. The tech-
niques used to develop the 3D library classes illustrate both valuable 3D abstractions and
generally applicable object-oriented techniques.

A fourth goal of this text is to demonstrate the excellence of the Linux platform as a graphics
programming environment. For a programmer, Linux is a dream come true—all of the source
code is available, all of the operating system features are enabled, a large number of excellent
first-rate software development tools exist, and it is all freely available, being constantly tested
and improved by thousands of programmers around the world. Linux empowers the programmer
with open source, open information, and open standards. Given this outstanding basis for develop-
ment, it is no wonder that programmers in every conceivable application area—including 3D
graphics—have flocked to Linux. This has created a wealth of 3D libraries, tools, and applications
for Linux. Linux is therefore an outstanding software development platform with powerful 3D
tools and software—an ideal environment for learning and practicing 3D graphics programming.

A final, personal goal of this text, and the main reason I am writing this book, is to impart to
you a sense of the excitement that 3D graphics programming offers. You, the 3D programmer,
have the power to model reality. You control every single z-buffered, Gourad-shaded, tex-
ture-mapped, perspective-correct, dynamically morphed, 24-bit, real-time pixel on the flat 2D
screen, and amazingly, your painstakingly coded bits and bytes merge to form a believable 3D
world. And by working under Linux, you are no longer held back by a lack of tools or software.
It’s all out there—free for download, and top quality. Linux software gives you the tools you need
to realize your 3D ideas.

Organization of the Book and the Code

This text follows a bottom-up organization for the presentation order of both concepts and pro-
gram code. This bottom-up organization serves two purposes: pedagogical and practical.

Seen pedagogically, a bottom-up approach means first covering fundamental concepts (such
as 2D graphics) before proceeding to more complex subjects (3D to 2D projection, 3D polygons,
3D objects, and complete interactive 3D worlds). This is a fully natural progression which deals
with computer graphics at ever-increasing levels of abstraction. Seen practically, a bottom-up
approach means that simple C++ classes are developed first, with later, more complicated exam-
ples literally “building upon” the foundation developed earlier through the object-oriented
mechanism of inheritance. This ensures compilable, executable code at each level of abstraction
which is incrementally understandable and extensible. Every chapter has complete, executable
sample programs illustrating the concepts presented.

The bottom-up organization has a rather far-reaching impact on the structure of the code in
general. The principal goal I had in mind when structuring the code for the book was that all parts
of a class presented within a chapter should also be explained within that same chapter. While in
some cases it was not practically feasible to fulfill this requirement completely, in most cases the
chosen code and chapter structure does allow understanding a class as fully as possible within the
context of the current chapter, with minimal references to future chapters. The second most impor-
tant goal for the code was to reuse as much code as possible from previous chapters, typically

XX

Introduction

through subclassing, thus truly illustrating how more complex 3D concepts literally, at the code
level, build upon simpler concepts. To achieve these goals, the overall design of the code relies
heavily on indirection through virtual functions, even in fairly time-critical low-level routines
such as accessing elements of a list. The presence of so many virtual functions allows for a rather
clean, step-by-step, bottom-up, incrementally understandable presentation of the code. The
design is also very flexible; new concepts can be implemented through new subclasses, and
behavior can be swapped out at run time by plugging in new concrete classes.

But as is always the case in computer science, there is a tradeoff between flexibility and per-
formance. The code design chosen for the book is not absolutely as fast as it could be if all the
virtual function calls were eliminated; of course, eliminating virtual function calls leads to
reduced flexibility and increased difficulty extending the code later. Still, the code performs well;
it achieves 30+ frames per second with software rendering on a Pentium II 366 in a 320[240 win-
dow with 24-bit color, and 30+ frames per second in 10247768 with Voodoo3 hardware
acceleration. In spite of its definite educational slant, it is fast enough for real use. Again, this is
one of the great things about doing 3D programming in the 21st century: a straightforward, educa-
tionally biased code structure can still be executed fast enough by consumer hardware for
real-time, interactive 3D environments. Real-time 3D no longer forces you to wrestle with assem-
bly or to have access to expensive dedicated graphics workstations. If you know how to program
in C++, and you understand the geometrical concepts behind 3D graphics, you can program
real-time 3D graphics applications using free tools under Linux.

Let’s now look at the organization of the text itself.

Chapter 1 provides an overview of 3D graphics programming under Linux and reviews the
available tools, trends, and programs. We also write a simple Linux program that displays a win-
dow, with the goal of familiarizing ourselves with the entire process of editing, compiling, and
running C++ programs under Linux.

Chapter 2 explains 2D screen access under Linux, since the foundation of traditional 3D
graphics is the presentation of images that appear to be 3D on a 2D screen. This chapter first gives
a few practical examples of 2D graphics under the X Window System and illustrates
object-oriented techniques for developing reusable code. Basic 2D theory is then covered, includ-
ing discussion of pixels, colors, and 2D screen coordinates. Along the way, we develop reusable
library classes for 2D graphics, separating abstraction from implementation. Sample programs
illustrate the use of the developed library classes.

Chapter 3 discusses 2D rasterization. We look at the algorithms necessary to draw lines and
polygons using individual pixels of the 2D screen. We also discuss convexity, clipping, and
sub-pixel correction, all of which complicate 2D rasterization. Finally, we examine hardware
acceleration with the Mesa library and present new subclasses implementing hardware
acceleration.

Chapter 4 lays the theoretical foundation for understanding what 3D graphics are all about:
fooling the eye into seeing 3D objects on a 2D computer screen. This chapter examines in detail
the processes of vision, visual perception, and light rays. By understanding these subjects, we
understand how the eye can be tricked into seeing a 3D image where only a 2D image exists. We
write a “fake” 3D program using a parallax effect, and explain the “3D effect” in terms of percep-
tual concepts. We then discuss the problems with the sample program’s simple-minded approach

Introduction XXi

to 3D graphics, all of which stem from the lack of a formal model for displaying arbitrary 3D data
realistically on a 2D screen.

Chapter 5 solves the problems of Chapter 4 by developing the mathematical formulas neces-
sary for specifying and projecting arbitrary 3D points onto a 2D plane. We redevelop the example
3D program in a more general, mathematically correct way. We also cover 3D coordinate systems,
3D points, 3D vectors, and operations on 3D vectors. Furthermore, we see how to use point pro-
jection to project entire polygons from 3D into 2D, thereby creating 3D polygonal graphics.
Library classes are developed for all of these concepts.

Chapter 6 serves a number of purposes. First, it explains the idea of transformations as a
manipulation of a 3D point. Second, it justifies the use of matrices to store transformations. Matrix
math can generate a certain aura of mystique or skepticism for new 3D programmers or for those
unfamiliar with the use of matrices in graphics. The justification for matrices is followed by a
series of C++ classes which implement the necessary matrix operations. The chapter then shows
the matrix form of three important transformations: translation, rotation, and scaling of a 3D point.
We demonstrate the power of combining transformations through three practical examples: speci-
fication of an arbitrary camera location and orientation, rotation about an arbitrary axis
(sometimes called “Descent-style” camera rotation, in honor of one of the first PC games incorpo-
rating this technique in real time), and local rotation and scaling. We also discuss some of the
general properties of matrices which are useful for 3D graphics.

Chapter 7 justifies and implements the use of 3D polygons to model individual 3D objects and
entire 3D worlds in computer memory. We also look at basic hidden surface removal, which
allows for a correct display of complex polygonal objects. We discuss how to clip objects against
arbitrary planes in 3D, which is needed for some advanced visible surface determination algo-
rithms covered in the Advanced volume. All of these techniques are implemented in C++ classes.

Chapter 8 introduces Blender, a free and powerful 3D modeling and animation package for
Linux (included on the CD-ROM). The information in the previous chapters gives us the code to
create visually realistic polygonal 3D images, but we still need interesting 3D data to display. Cre-
ating this data is the role of a 3D modeler. We review the extensive features of Blender and then
create, step by step, a basic spaceship model. This 3D model is then imported and displayed in a
3D program.

Chapter 9 briefly introduces a number of advanced topics, all covered in the Advanced vol-
ume. These topics include 3D morphing, more advanced algorithms for visible surface
determination (portals, BSP trees), texture mapping, lighting and light mapping, special visual
effects (particle systems, billboards), and non-graphical elements often used in interactive 3D
graphics programs (collision detection, sound, Newtonian physics).

The Appendix provides installation instructions for the CD-ROM, an explanation of
fixed-point math, information on porting the graphics code to Windows, and a list of useful refer-
ences, both in electronic (WW W) and in print form. Notations in brackets, such as [MEYE97], are
detailed in the “References” section of the Appendix.

The CD-ROM contains the Linux operating system, C++ software development tools, freely
available Linux 3D libraries and applications, the Blender 3D modeling and animation suite, all
sample code from the book, and a series of animated videos illustrating some of the more diffi-
cult-to-visualize 3D concepts discussed in the text (such as the transformation from world space to

XXil

Introduction

camera space). In other words, the CD-ROM contains a complete learning and development envi-
ronment for 3D programming and modeling.

Reader and System Requirements

This book requires you to have a working Linux installation up and running with the XFree86
server for the X Windows System on an IBM PC or compatible system with a Pentium or better
processor. If you don’t yet have Linux installed, you can install the Linux distribution included on
the CD-ROM or download Linux for free from the Internet (see the Appendix). Installing Linux is
no more difficult than installing other common PC operating systems, such as Microsoft Win-
dows. A 3D graphics card with Mesa drivers is necessary for the hardware-accelerated
demonstration programs, although the code will also run acceptably fast without hardware accel-
eration. If your graphics card is supported by the new XFree86 4.0 Direct Rendering
Infrastructure, you can also link the code with the DRI’s OpenGL library to achieve hardware
accelerated rendering in a window.
In order to effectively read this book, you should have a working knowledge of the following:

Executing programs from the command line under Linux
Finding, loading, editing, and saving text files under Linux
Manipulation of windows under the X Window System (dragging, resizing, switching
among, minimizing, maximizing, etc.)
The concepts of “compiling” and “linking” programs (the exact Linux commands are
described later)
Basic to intermediate concepts of the C++ language (bit manipulation, classes, virtual func-
tions, multiple inheritance)
Basic data structures and algorithms (pointers, linked lists, binary trees, recursive traversal,
binary search)
Basic high school mathematics (geometry, trigonometry, linear algebra)
In essence, this means that you should have programmed in C++ before, and that you should have
basic familiarity with using Linux and the X Window System.

NOTE If you need to brush up on some of the above topics, have a look at the references,
both online and in book form, presented in the Appendix.

Even if you are an absolute newcomer to Linux, don’t despair. Linux comes with a variety of
online documents which can help you with installation and basic file and directory manipulation.
Many of these documents are on the CD-ROM; see the Appendix for details.

Introduction xxiii

Typographical Conventions
Used in This Book

The following typographical conventions are used in this book.
Program code, class names, variable names, function names, filenames, and any other text
identifiers referenced by program code or the operating system are printed in a f i xed-
w dth font.
Commands or text to be typed in exactly as shown are printed in boldface.
Key sequences connected by a plus (+) sign (such as Ctrl+C) mean to hold the first key while
typing the second key.

This Page Intentionally Left Blank

Chapter 1

Introduction to 3D
Graphics and Linux

uring the course of the 15th century, great painters of the Renaissance grew very excited

about a new discovery that was sweeping the artistic world. This new discovery, now

termed linear perspective, allowed painters to portray their visions with striking real-
ism—realism that drew viewers into the painting with the feeling of depth. Closer objects
appeared larger, farther objects appeared smaller, parallel lines converged on the horizon, and it
all was done with convincing, mathematical precision. Through the use of perspective,
two-dimensional pictures could finally faithfully capture the elusive third dimension. The art
world was changed forever.

Figure 1-1: A Renaissance-style
image illustrating linear
perspective and the convergence
of parallel lines on the horizon.

The field of computer graphics has experienced a similar revolution. Barely a decade ago, text
interaction was still a standard means for communicating with computers. Graphics, on those
computers supporting them, generally merely enhanced text-based applications by drawing
accompanying 2D pictures or graphs. As graphics capabilities became common on more comput-
ers, graphical user interfaces began to replace command-line interfaces, until completely
graphical operating systems became widely available. Correspondingly, programming languages
incorporated 2D graphics features, or could be linked with 2D graphics libraries.

ke .-F‘ T
L P -
2F by III

.

Chapter 1: Introduction to 3D Graphics and Linux

As soon as 2D graphics capabilities were available, enthusiastic computer scientists com-
bined their knowledge of linear perspective with these 2D graphics capabilities to create so-called
3D graphics. The display on the screen was of course still 2D (although even this has changed in
recent years), yet through perspective, the images appeared to exist and move convincingly in 3D.

The problem was one of computational speed. 3D graphics requires many mathematical com-
putations; the more realistic the image, the more computations needed. Early consumer PCs
simply did not have the raw power needed to display interactive 3D graphics. Computing just one
reasonably realistic image could take minutes—far too slow for interactive displays. Thus, inter-
active 3D graphics was only a reality on expensive, high-end computers, which are far out of the
reach of the average consumer or the average programmer.

But at long last, today, interactive 3D graphics has become widespread. The ever-increasing
computational power of personal computers has reached such a stage that the average consumer’s
PC can now display real-time, interactive, animated 3D graphics—indeed, complete immersive
3D environments. Compiler technology has also matured to such a level that a straightforward
implementation of 3D graphics concepts in a high-level language yields acceptable real-time per-
formance. 3D graphics has become accessible to both the consumer and the programmer.

The proliferation of 3D computer graphics implies increasingly that successful software must
incorporate 3D graphics. Though most evident in the computer games industry, this trend also
affects other software areas: business and scientific software often allow some form of 3D data
visualization; WWW browsers allow 3D navigation through virtual worlds written in VRML;
word processors even offer built-in 3D drawing functions with controllable lighting and perspec-
tive parameters. The consumer has come to expect 3D graphics in modern software of all kinds.

Figure 1-2: 3D graphics comes
to the personal computer.
Here, one of the 3D figures for
this book is being prepared
using a free Linux 3D
modeling package, Blender. A
few years ago, it would have
been impossible to run such a
computationally demanding
3D application on a normal,
consumer-level PC.

Apart from consumer expectation, there is another, perhaps ultimately more compelling rea-
son to program 3D graphics: it’s just plain fun. 3D graphics programmers have the unique

Why

Chapter 1: Introduction to 3D Graphics and Linux

privilege of seeing stunning animated displays as a result of their long hours of coding. However
complicated or intricate 3D graphics might seem at times, it’s important not to lose sight of the
“fun” aspect!

Linux

Linux is an excellent and perhaps unsurpassed environment for learning, programming, and pro-
ducing 3D graphics. Two good examples from the late 1990s include the heavy use of Linux
machines in producing the graphics for the movie Titanic, and the appearance of commercial
games for the Linux platform (Quake from id software is but one example). Let’s examine more
closely why Linux makes such a good environment for 3D graphics programming.

Linux is Free and Open

Linux is a freely available, open source operating system. The operating system and most of the
available software are released under a free software license, typically the GNU General Public
License, abbreviated GPL. The accompanying CD-ROM contains the text of the GPL; Figure 1-3
shows a portion of the license. The GPL ensures the availability of source code for the licensed
product and for all derivative works. In practice, this means that a vast amount of Linux software
is available and will remain available free of charge and with source code.

]

Figure 1-3: An excerpt from

[] GHU GEMERAL PUELIC LICEMSE |i| the GNU General Public
Version 2, Juns 1991 .
License.

Buffers Files Tools Edit Search Hule Help

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Flace, Suite 330, Boston, MA 02111-1307 USA
Everyone 1s permitted to copy and distribute verbsatim copies
ot this license document, but changing 1t is not allowed.

Freamble

The licenses for most softwsre are designed to take away your
freedom to share and change it. By contrast, the GHU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is fres for all its users. This
Gereral Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GHU Library General Fublic License instead.) You can apply it to
your programs, too.

When we spesk of free softwsre, we are referring to freedom, not
1 Gensral Public L e i o to make sure that

" THG Funcame
ile is write protected

Linux therefore offers the 3D graphics programmer a low-cost, open source platform. Freely
available compilers and graphical debuggers make real software development possible, and the
availability of source code for 3D applications allows you to study and learn from others’ code.
You might expect the available 3D graphics source code to be limited to small example programs
written by individuals. Though many examples fall into this category, larger scale 3D programs
are also available with source code for study. This includes blockbuster games from a few years
ago, such as Descent, Doom, and Quake, all of which are now available with source code and free
of charge for the Linux platform.

-4

¢

7%

Chapter 1: Introduction to 3D Graphics and Linux

NOTE As with any other software license, you should read the GPL carefully and make sure
that you understand your rights and obligations. Also note that not all Linux software is
licensed under the GPL; always read the license agreement for the particular software pack-
age in question.

Linux is Powerful

Linux is sometimes viewed as the operating system for “power users.” Its tools are no different:
they are powerful and efficient. Let’s take a quick glance at some of the powerful tools Linux
offers the 3D graphics programmer:

gce: Fully featured optimizing C++ compiler. Features include support for various dialects of
C and C++, configurable debugging and optimization, inline assembly, cross compilation,
several processor targets, and front ends for compiling other computer languages.

gprof: Code profiler. Various reports and graphs illustrate how much time was spent in partic-
ular routines, which routines called which others, or how often a particular source code line
was executed.

gdb: Text-mode debugger. All typical debugger features are supported: setting breakpoints,
single stepping, stack tracing, dynamic inspection, and alteration of data.

xxgdb: Graphical interface to the debugger gdb. Through xxgdb most functions may be
invoked via the mouse, and source code is displayed in its own window with breakpoint.
Blender: Professional 3D modeling and animation package.

rcs: Revision control system for tracking changes to individual files.

cvs: Concurrent version control system fulfilling the same role as rcs, but allowing multiple
developers to simultaneously make changes to the same file; often used for projects which
have a modifiable source code repository accessible through the Internet.

Aegis: Change management system built on top of a version control system; used for tracking
problem reports and changes to sets of files.

Emacs: Multi-file editor with interfaces to compiler, debugger, version control, and more.

Linux has the powerful tools needed to do serious, professional 3D graphics programming—tools
for everything from version control to code profiling to 3D modeling. These tools often surpass
their commercial counterparts that cost thousands of dollars. With the right tools, you can concen-
trate on the task at hand: programming interactive 3D graphics.

Chapter 1: Introduction to 3D Graphics and Linux &
& Ih'

L N
W rern, | BT ower | Y0 woe
W Termi | (@ im<3] [F e o
- m\al:s-aﬂWm.cun
| Buffers Files Tools Edit Search Huls Ces
ACreateblinoow] 3411) WLIE FUNC

Figure 1-4: A typical
desktop under Linux,
using the X Window
System (X) and the K
Desktop Environment
(KDE).

NAME
#Createllindow, XCreateSimple
create windows and window att

SYNTAX
Window XCreatellindow(disolay

class
display;
parent ;
]

int x, u;
unsigred int width, he
int border w

/= Sart the visible facets in dec
gsort(plist, pnum, sizeof(13d_pol

/w Display the facets in the sortd + __'l--'"'l'!'!'!"l- ._ITl_
forlint is0; idprwm; i++) {

o plistlil->drau(rasterizer);
¥

/% Update blirking dot Framerate i
state = l-state;
if{state) {

]
else {
3

}

Loading tabify (compiled)...done
[

S aBasl — = =B I Be

Linux is Compatible

The open source nature of Linux development implies that programmers must eventually agree
upon some standards to support: libraries, languages, protocols, and so on. The many standards
supported in Linux ensure long-term compatibility with a wide range of other systems and
programs.
Some of these standards include:
C++: This is a standardized, widespread, object-oriented language. The GNU/Linux C++
compiler gcc is available on a large number of platforms, including 68000-based Linux sys-
tems, Microsoft Windows, DOS, and even some console game systems. The availability of
the same C++ compiler for all of these systems allows C++ programs developed under Linux
to run on a wide range of platforms with a minimum of code change. In fact, the 3D graphics
programs in this book can also be made to compile and run under Windows and DOS; see the
Appendix for details.
Mesa and OpenGL: OpenGL is a standardized, widespread library for interfacing to 2D and
3D graphics hardware. Mesa is a free library written by Brian Paul, which, in practice, is
source-code compatible with OpenGL. (Mesa is not an “officially” licensed OpenGL imple-
mentation, since the official licensing and conformance testing process costs money, which
programmers working for free cannot be expected to pay.) Under Linux, Mesa offers support
for hardware acceleration on 3DFX cards, and support for other high-performance 3D hard-
ware has just become available through the Direct Rendering Infrastructure, which is part of
XFree86 4.0. OpenGL or Mesa implementations are also available for Microsoft Windows
and DOS.

6 | = Chapter 1: Introduction to 3D Graphics and Linux
¢

VRML: VRML, the Virtual Reality Modeling Language, is an object and scene description
language widely used in WWW pages. The free 3D modeler Blender can import and export
VRML files.

By supporting these 3D graphics standards, Linux allows the 3D graphics programmer to remain
compatible with several platforms. This compatibility allows for easier porting of programs and
exchange of data.

Linux is Contemporary

Linux 3D graphics is constantly evolving. Today, this means support for hardware acceleration
and the development of standardized APIs. Current examples include Mesa’s support for 3DFX
hardware acceleration, and SGI’s release of the Performer scene graph library for Linux. In the
future, this will probably mean increased support for true 3D input and display devices and further
development of 3D operating system interfaces to replace the 2D desktop metaphor. Whatever the
future may hold, this much is certain: the 3D graphics community does not stand still, and neither
does the Linux community. The open source, distributed development philosophy ensures that
Linux can keep up with the most current 3D graphics developments, whether these developments
are in the form of ideas, algorithms, software, or hardware.

A Survey of 3D Graphics Under Linux

Under Linux, programming 3D graphics—or programming any real system, for that matter—
requires a different approach than on commercial systems. With commercial systems, you typi-
cally pay a software vendor for an operating system license and a compiler license. You then read
the compiler manuals to see what libraries and operating system features are available, and pro-
gram your application based on the features that the operating system, the compiler, and its
libraries offer. You build your systems based on the building blocks you buy or license from your
software vendor.

Linux software development is radically different. As mentioned earlier, the operating system
itself has been released under an open source license, in this case the GPL. The GPL requires that
the source code to the product, and all derivative products, always be available to everyone. Most
software available under Linux also falls under either the GPL or a similar open source license
(notable non-GPL but open source products include XFree86 and the Qt graphics library used by
the K Desktop Environment, KDE—though the legal status of Qt was just recently changed). This
unique approach to software development means that you as a programmer literally determine
what features the operating system, the compiler, and available software libraries have to offer.
The entire environment was programmed by programmers like you, and must be extended in the
future by you or programmers like you. It is a radical concept, but one that works amazingly well
in practice due in no small part to the communication possibilities offered by the growing Internet.

This means, however, that there is no official ruling body which will tell you what functions
or libraries are “officially supported.” You must decide for yourself which resources are available
under Linux to help you get your job done. In our case, this job is 3D graphics.

Chapter 1: Introduction to 3D Graphics and Linux B

Figure 1-5 summarizes graphically the important concepts and libraries relevant to Linux 3D
graphics programming. Linux 3D graphics programming, like many other programming endeav-
ors, can be viewed and carried out at various layers of abstraction. In the figure, the topmost layer
is the most abstract; the bottommost, the least abstract. In between are various libraries and con-
cepts which allow your 3D application (top layer) to ultimately create the hardware signals
necessary to display a 3D image on the monitor (bottom layer). The arrows in the figure represent
possible communications between layers. (The solid and dotted lines represent which concepts
are emphasized or not emphasized in this book, respectively, and have no technical significance.)
Notice that a particular layer may not only communicate with the layer immediately beneath it, but
may also bypass the immediately underlying layer to communicate more directly, and thereby
more quickly, with lower layers. Bypassing a lower layer, though, means that the higher layer
must do the bypassed layer’s work as well—usually in a faster, more specific, and less general
way than the lower layer would have done. The higher the layer, the more choices must be made as
to which underlying layers should be used, and which not. This is what makes the figure, and the
practical side of 3D programming, complex.

3D application | 3D application or application framework

for Linux 3D graphics

‘ Figure 1-5: Libraries
programming.

Mesa-based GLX, GLUT, libGGI3d, Performer
3D APL/ library|

[}

1
) OpenGL-based APL: Non-OpenGL-based APL
3D APL/library) gy GAMES (3D), Clanlib (3D),
PHIGS
Tid [
5
3D to 2D math | 3D to 2D projection :_ J 1 —
! a4
51
84
XGGl E ;
H
2D APL/ library| | {ihaar » -
SVGALIB, XFree86, KGL | —
SDL., GAMES (2D},
ClanLib(2D)

I 1 1 1

Hardware APL soltware access 10 2D hardware e » software access 10 3D hardware
(via video memory) -‘_“I'J'x (via hardware APL e.g. Glide)
winiaw
hack

I I

Hardware Hardware, 2D and/or 3D graphics card, electrical signals, wires

¢

'

Chapter 1: Introduction to 3D Graphics and Linux

Let’s now take a closer look at some of the available 3D tools and libraries under Linux. We

first cover projects that are relatively stable, continue with a list of developing projects, and close
with a list of “dead” projects. As you read the following sections, you may want to refer to Figure
1-5 in order to keep the overall structure in mind.

NOTE The following sections are not exhaustive, but do provide a representative view of 3D
graphics development under Linux at the time of this writing. Again, the open source model
requires you fo inform yourself about trends in this area, but at the same time gives you the
freedom to choose and the power to change. The Appendix lists some useful Internet
resources for Linux and 3D graphics, where you can inform yourself about the latest
happenings.

Stable Ideas, Projects, and Libraries

The following list provides an overview of some of the stable and well-established ideas, projects,
and libraries related to 3D graphics programming under Linux.

2D/3D theory: There are no two ways about it—you must understand the geometric and
mathematical theory behind 2D and 3D graphics in order to do any sort of serious 3D graphics
programming. Rest assured, after completing this book, you will indeed have a firm under-
standing of this theory. Coordinate systems, mappings, perspective projection, vectors, matri-
ces, and intersections are but a few of the fundamental topics which every 3D programmer,
and you too, must know by heart. This theory is the very foundation of every 3D program ever
written and is the area where the most exciting new discoveries can be made. Know the the-
ory, and the rest is just implementation.

Hardware: A basic understanding of hardware display technology and raster displays is
essential to programming graphics of any kind.

X Window System/XFree86: The X Window System forms the primary display environment
under Linux. It provides a device-independent, network-transparent interface to graphics
hardware. XFree86 is one freely available implementation of the X Window System. Pro-
grams may draw into a window by using functions provided by X.

Mesa: Mesa is a free graphics library written by Brian Paul, with a syntax identical to that of
the standard graphics library OpenGL. Programs using Mesa can take advantage of hardware
acceleration in a platform-independent way.

GLUT: The OpenGL Utility Toolkit is a free library, written by Mark Kilgard, which is built
on top of OpenGL and which makes the implementation of certain frequently occurring
OpenGL operations much simpler. GLUT is compatible with Mesa.

Blender: Blender is a freely available professional 3D modeling and animation package
which has been used to produce 3D graphics in commercial production environments. Its
advanced features include keyframe animation, motion curves, inverse kinematics, and lattice
deformation—to name just a few.

Chapter 1: Introduction to 3D Graphics and Linux ;0,-,

Figure 1-6: Blender, a
professional 3D
modeling and
animation package.
Blender is included on
the CD-ROM
accompanying this
book.

Developing Ideas, Projects, and Libraries

The following sections provide an overview of some of the significant development efforts taking
place in the field of Linux 3D graphics. These represent works in progress, projects to which you
may eventually wish to contribute.

Developing APIs

The following list summarizes some of the important developing APIs (application programming
interfaces) relevant to Linux and 3D graphics programming. These libraries are in various stages
of development, some more usable than others. You should check the WWW pages of these librar-
ies (provided in the appendix) for more details.
SDL: The Simple DirectMedia Layer (SDL) is a 2D frame buffer, audio, and input API. SDL
works on a number of operating systems including Linux.
GGI: The General Graphics Interface (GGI) aims to develop a portable 2D (ggi2D) and 3D
API (ggi3D) offering Linux graphics developers an alternative to the “SVGALIB or X” deci-
sion for graphics ouptut. GGI has both a kernel part, KGI, which interfaces at a low level to
the OS, and a user part such as XGGI. GGI does not replace X; X is a window system, GGl is a
graphics interface. Mesa can direct its output to 2D GGI devices.
GAMES: The GNU Animation and Multimedia Entertainment System is an object-oriented
2D, sprite, 3D, and sound API for multimedia and games applications.
ClanLib: ClanLib is a gaming library planning to offer 2D and 3D graphics, image, sound,
and networking routines.

10

| = Chapter 1: Introduction to 3D Graphics and Linux

¢

3D Applications with Source

The following list summarizes some important 3D applications available with source code for the
Linux system. These applications illustrate a variety of techniques for 3D graphics programming
and most are being actively extended. You might eventually want to contribute to these projects.

Descent: The game Descent is a commercial, indoor, portal-based 3D game whose source has
been released and ported to Linux.

Doom: Doom was one of the first games with real-time texture mapping for PCs, utilizing
special restrictions on game geometry to speed up texture mapping. Its source has also been
released and ported to Linux.

Golgotha: This is a mostly complete game from crack.com which unfortunately was not com-
pleted. Instead of letting the source code and numerous graphics and music files go to waste,
crack.com released it all to the public for study and use.

Obsidian: This is an Internet, multi-player, client-server virtual reality system, currently
being developed under an open source model.

Crystal Space: This is a portal-based engine aiming to become a general purpose gaming sys-
tem, currently being developed under an open source model.

Flight Gear: This is an open source flight simulator project for PCs with hardware
acceleration.

World Foundry: The World Foundry system is an open source, complete 3D game production
environment with advanced physics, camera, and scripting systems, allowing an extremely
rich variety of virtual worlds to be created with little or no additional programming. Ori-
ginally used to produce commercial games for Windows and the Sony PlayStation, World
Foundry is now being ported to Linux.

7%, NOTE | personally have helped with porting the World Foundry system to Linux. This is one
of the most enticing features of an open source development model: if a project interests you,
and if you know enough about the subject, nothing stops you from jumping in and helping. As
mentioned in the introduction, one of the major goals of this book is to give you a solid
enough foundation and broad enough perspective on Linux 3D graphics so that you too can
participate in or even initiate your own open source 3D projects.

3D Modelers

The following list summarizes some of the many 3D modeling programs available under Linux
that are in various stages of development.
amapi: Modeler with a tool-based interface and various deformation and mesh editing
capabilities.
sced, sceda: Constraint-based scene editor, allowing linking of objects based on “constraints”
(somewhat similar in effect to inverse kinematics). Support for Computational Solid Geome-
try (CSG).
Midnight Modeler: CAD-like modeler with tools for generating and deforming meshes.
Command-line and menu-based interface.

Chapter 1: Introduction to 3D Graphics and Linux 8

3DOM: Open source 3D modeler.
ac3d: Shareware modeler with multiple simultaneous views.

None of these modelers currently matches Blender’s flexibility and power (introduced in the sec-
tion titled “Stable Ideas, Projects, and Libraries”). For this reason, we cover Blender in this book;
Chapter 8 goes into more detail about the specifics of using Blender to create models and portal
worlds.

Dead Ideas, Projects, and Libraries

Not all software projects enjoy great success or even long life. The following list describes some
previously potentially promising but now essentially dead ideas, projects, and libraries relating to
Linux 3D graphics.

SVGALIB: This library provides direct access routines for displaying graphics on SVGA
video cards. The main problems are that SVGALIB programs don’t interface well with X, and
that not all video cards are supported—fewer video cards than are supported by XFree86, for
instance. SVGALIB historically played an important role in early Linux graphics program-
ming because it offered a working, fast graphics solution. However, due to the problems men-
tioned above, it is no longer as important as it once was. The future lies with X and 3D
hardware acceleration integrated into the X server (covered in the next section).

X3D-PEX/PEX/PHIGS: The Programmers Hierarchical Interface Graphics System, PHIGS,
is an ANSI 3D graphics standard which never really enjoyed great acceptance. PEX, or the
PHIGS Extension to X, was an extension to the X Window System to incorporate PHIGS
functions. PHIGS is basically dead; OpenGL and the OpenGL Extension to X (GLX) have
taken its place.

Other Ideas, Projects, and Libraries

Outside of “stable,” “developing,” and “dead,” there are also some other important trends in Linux
3D graphics which go beyond the scope of this book but which deserve mentioning.

VRML/Java/Java 3D: The Virtual Reality Modeling Language is a scene description lan-
guage which also offers facilities for user interaction. Java programs can interface with
VRML worlds, making VRML an attractive language for WW W-based 3D applications. Java
3D is a high-level, scene graph API in Java intended for more direct programming of plat-
form-independent 3D applications (notice that VRML is fundamentally a “modeling lan-
guage,” whereas Java 3D aims to be a high-performance programming API). The main
problem with WWW-based Java and VRML applications is the speed of the network connec-
tion. Linux VRML browsers (such as VRWave and FreeWRL) already exist.

%) NOTE A scene graph is a data structure storing the various components of a 3D scene and
the relationships among these components. That Java 3D is a scene graph APl means that it
provides application programmers access to a data structure representing the 3D scene,
rather than requiring the programmer to define his own data structures to manipulate the 3D
scene. The higher-level access at the scene graph level means that application programmers

.72

¢

Chapter 1: Introduction to 3D Graphics and Linux

can focus on higher-level issues, but also constrains programmers to work within the scene
graph structure as provided by the API.

Non-interactive 3D graphics: A number of packages exist for doing non-interactive,
photorealistic 3D graphics under Linux. Some of the important packages in this area include
POVRay, the Persistence of Vision Raytracer, and BMRT, the Blue Moon Rendering Tools,
which implement the Renderman specification.

Scope of This Book, Revisited

The introduction covered in detail the goals and contents of this book. Given the survey of Linux
3D graphics just presented, we can now understand the book’s scope in a new context: we focus on
stable ideas, projects, and libraries dealing with real-time Linux 3D graphics programming. These
are also the solid arrows in Figure 1-5. Toward the end of the book and in the advanced volume we
also discuss some of the developing trends and provide a list of WWW addresses that often con-
tain information about new developments.

Let’s Talk About X

The graphics programs we write under Linux will display their output under the X Window Sys-
tem. So, let us now examine the X Window System in more detail to understand at a high level
how the system works. As mentioned in the introduction, you should already be familiar with
basic usage of the X Window System; the following discussion is primarily from a programmer’s
point of view, not necessarily a user’s.

The X Window System, as mentioned earlier, is the usual display environment under Linux. If
you have used other operating systems, you may be slightly confused by this terminology. What is
meant by “usual display environment”? Let’s first look at Linux itself: Linux is a variant of the
Unix operating system, and provides access to services such as files, directories, processes, hard-
ware, and network connections. Unlike some other operating systems, Linux does not dictate a
particular display environment. You can, for instance, productively run Linux in an 80x25 text
console. A Linux-based WWW server often does exactly this. For graphics programming, you can
either try to access the video hardware directly, or you can go through a graphical display environ-
ment. But regardless of what your program does, the operating system itself is separate from any
graphical display environment.

That understood, the usual graphical display environment under Linux is, in fact, the X Win-
dow System, also called simply “X” or “X11.” (The term “X Windows” is to be avoided, since it
incorrectly suggests a relationship to a proprietary operating system of a similar name and often
causes confusion.) The particular implementation of the X Window System most commonly used
on Linux systems is XFree86, so named because its target processor family is the Intel x86 family.

Chapter 1: Introduction to 3D Graphics and Linux ;

Definition of X: A Client-Server System

So, what exactly is X?

X is a distributed, hardware-independent windowing system developed at MIT. X is based
upon a client-server model. An X server controls access to the video hardware and runs on the
computer which is physically connected to the monitor. Applications, also called X clients, con-
nect to an X server and send a request to the X server to display something, such as a point,
rectangle, circle, or bitmap image, which then appears on the X server’s screen. X clients can also
send requests to the X server to access the server’s video hardware in other ways, such as to
change a color palette (which we define in Chapter 2). Since it is a windowing system, X handles
the display as being composed of windows (a rectangular area of the display capable of receiving
input and displaying output). Under X, windows may be hierarchically arranged and may overlap.

NOTE From a programming point of view, a window is not necessarily the same as the
informal concept of an application window. For instance, one application window might con-
tain three buttons and a text entry field. Each button and the edit field might be a separate
window, all hierarchically existing as children of the main window. Typically, each application
window in reality contains several child windows. You cannot tell just by looking how many
child windows a particular window has, since a child window does not necessarily have any
visible delineating border.

An important component of X is its network transparency: X clients do not need to be running on
the same machine as the X server. If you are encountering this concept for the first time, its full
impact might not yet be clear. Network transparency means that any machine, running any operat-
ing system, can connect to an X server and display graphics on its screen. You can think of an X
server as a sort of universal monitor on which any program (which understands the X protocol)
can display graphics. For this reason, some vendors produce inexpensive X terminals, which con-
tain nothing more than a monitor, a network card, and an X server in firmware. Such X terminals
simply need to be connected to a network and can immediately display graphics coming from any
program (any X client) reachable via the network—in the case of the Internet, this means world-
wide. As a personal anecdote, [used to use a low-cost X terminal to display graphics coming from
a Cray supercomputer located hundreds of miles away in a different scientific computing center.
Furthermore, dozens of other users were doing the same thing at the same time, each with their
own X terminal, located in various laboratories throughout the world. Here, each X terminal is an
X server controlling access to its own monitor; the Cray in this case runs several X clients, each X
client requesting to display graphics on the X server from the user who started the X client. (If you
are particularly devious, you can try to start an X client requesting to display its output on a differ-
ent X server than your own, which is sometimes desirable but usually viewed as a security risk, for
which reason this is usually disabled by default.)

The terms “X server” and “X client” are often confusing to newcomers to X, because of the
pervasive notion that “the computer running the application is the server.” This notion is too nar-
row: in general, a server controls usage of particular resources. In the Cray example above, the
Cray may therefore be viewed as the application server, controlling usage of the Cray CPU. The X
server is always the machine physically connected to the target monitor. The X server serves

14 | Chapter 1: Introduction to 3D Graphics and Linux
l

requests for display on the target monitor. In other words, from an X viewpoint, your machine is
the X server, the application program is the X client, and the machine running the application pro-
gram is irrelevant (network transparency).

Monitor Maonitor

Display

Display :
image image
X Server and X Server Application Server
Application Server
T I
I
! X commands 1
1 X commands
sent X responses) 1
] ived sent Fm——————— '
Frmmm———=- | receive f !
1 o | NETWORK] Application I
1 Application | |
1 I
| | X responses : :
I | received e — - ———— 4
Figure 1-7: X on a single-user system. Figure 1-8: X in a network environment.

NOTE Even when the X server and client are on the same machine, the communication still
takes place via the same mechanism, namely, network sockets. The client is thus isolated from
the server and generally does not know whether the display is local or not.

The X programs we write in this book will be X clients, which, like all X clients, contact an X
server to do the actual graphics display. Thankfully, we don’t need to write an X server, because
that has already been done for us by the XFree86 team. The XFree86 X server is a stable and freely
available X server supporting a wide range of video cards on PCs using the Intel x86 processor
family. XFree86 undergoes active development and improvement. Lately, much work has gone
into integrating hardware acceleration into the X server. Let’s examine this topic a bit more
closely.

Hardware Acceleration and X Servers

One current field of development in the area of Linux X servers is the ongoing work to integrate
3D hardware acceleration into the X server. In order to understand the significance of this devel-
opment, let us first examine what hardware acceleration is, what the difficulties are, and some
current hardware acceleration projects.

Chapter 1: Introduction to 3D Graphics and Linux »

What is Hardware Acceleration?

The term “hardware acceleration” generally refers to the use of additional hardware components
to offload processing which would otherwise need to be done in the main CPU, thereby freeing the
main CPU for other tasks. Hardware acceleration is therefore a form of parallelism, where the
additional hardware and the CPU perform different processing tasks simultaneously. One of the
oldest examples of hardware acceleration is the now-ubiquitous FPU, or floating-point unit,
which performs time-consuming floating-point operations in a special processor, thereby freeing
the CPU for other calculations.

In 3D graphics, hardware acceleration more specifically refers to hardware which performs
computations specific to 3D graphics. In this way, image quality and/or speed may be improved.

To understand what 3D hardware can accelerate, we need to understand what 3D graphics
programs, in general, do. Covering this in detail is the subject of the rest of the book. For now, here
is a broad generalization of typical processing which 3D programs do, also called a 3D pipeline.
You are not yet expected to fully understand all terms below, such as culling, polygons, or camera
space. These terms are all defined in due course in the coming chapters.

1. Objects in the 3D world or scene are processed. This means updating the position of any
moving objects and coarse culling (rejection) of objects which are deemed to be invisible for
the current camera position (i.e., objects behind the camera or outside of the view frustum).

2. Polygons (more specifically, just their corner points or vertices) belonging to the remaining
objects are rotated and transformed into so-called camera space, finer culling of individual
polygons is performed, and surviving polygons are projected into screen space for display.

3. Pixels for each remaining polygon are computed and displayed. Depending on the type of
surface detail applied to the polygon, there may be a lot of computation done for each pixel:
lighting, texture mapping, fog, antialiasing, z-buffering, and so forth.

The 3D pipeline is executed for each frame (image) to be displayed, where the number of frames

per second for interactive programs is usually anywhere from 10 to 60 or more.

Figures 1-9 through 1-11 illustrate the pipeline graphically. Here, a viewer is looking at a
scene containing several cubes, only two of which are visible. The viewer’s location is represented
by the sphere located at the left of the figures. The large truncated pyramidal shape with its apex at
the camera is the view frustum, which represents the portion of the world visible to the camera.
The figures show object-level, polygon-level, and pixel-level operations, respectively.

Notice that for each object, we have several polygons, and for each polygon, we have several
pixels. Thus the amount of processing at each stage in the pipeline (objects, polygons, and pixels)
increases by an order of magnitude or more.

Gfg NOTE An “order of magnitude” is a difference that is a factor of ten.

16 | Chapter 1: Introduction to 3D Graphics and Linux
L7 i

Figure 1-9: Object-level processing.

.- All objects are first updated. Then,

- based on the camera position, only
the two cube objects in the center
of the picture are retained. Other
objects are culled.

Figure 1-10: Polygon-level
- processing. For the surviving
- e objects, the visible polygons or
- potentially visible polygons are
e e computed and retained. Other
L i polygons are culled. Here, only the

- I polygons facing the camera will be

P = retained, a technique called
PR E back-face culling.
T : 4 = .--.

Figure 1-11: Pixel-level processing.

- Pixels for all surviving polygons are
- e computed and displayed on the
- screen, which is located in the
P e diagram between the camera (left)
ol and the objects (right). Notice the
. large number of pixels displayed
for each polygon.

Chapter 1: Introduction to 3D Graphics and Linux o

In the last stage, at the pixel level, we have the most time-consuming operations: hundreds of
thousands or even millions of operations must be performed per frame. Therefore, this stage was
the first to be accelerated in consumer-level 3D graphics hardware. 3D hardware acceleration at
this level is also called hardware-accelerated rasterization. Such hardware takes over the most
numerous and time-consuming pixel-for-pixel operations required when drawing polygons to the
screen. Hardware acceleration on consumer-level 3D graphics hardware (under $1,000) typically
supports hardware-accelerated rasterization.

The next step is to move polygon-level operations into 3D hardware. This already exists on
high-end ($50,000) graphics workstations, and has recently started to become available for con-
sumer-level PCs. For instance, MMX is a fixed-point math coprocessor which can operate on
multiple scalars simultaneously. This accelerates 3D geometry by allowing effectively more 3D
calculations to be performed in less time than with the main CPU.

Object-level operations will also, eventually, be moved into common consumer-level 3D
hardware. Hardware acceleration at the polygon and object level is also called hardware-acceler-
ated geometry, because the hardware assumes the responsibility for mathematically manipulating
the higher-level geometrical description of the world, as opposed to the lower-level pixel-based
view of rasterization hardware.

NOTE Notice that hardware acceleration, which is most important at the lowest (pixel) level,
cooperates with software-based culling schemes, which are most important at the highest
(object) level. Hardware accelerates the pipeline from the bottom up; software culling accel-
erates the pipeline from the top down. You can think of this as “cull what you can, accelerate
what you can’t.” The companion book Advanced Linux 3D Graphics Programming discusses
culling schemes.

Integrating Hardware Acceleration into X

We have seen that the X Window System forms the primary display environment under Linux. It is
therefore vital that Linux 3D hardware somehow interface with X. The fundamental difficulty is
that X by default views the underlying graphics hardware as being 2D. There are various solutions
to this problem.

The oldest solution was that of 3Dfx graphics cards: the 3D hardware is physically separate
from the 2D hardware and is not controlled by or even known to X. This allows for full-screen
accelerated 3D graphics through a special driver, but not accelerated graphics within an X win-
dow. The next solution was then a hack to copy the image from the 3D card into an X window,
which is slower than full-screen mode (since copying the entire image into an X window is a
time-consuming process), but still faster than non-accelerated rendering. Finally, the newest and
most promising approach is to extend the X server and the Linux kernel to communicate directly
with the 3D hardware.

3Dfx Hardware Acceleration

The company 3Dfx manufactures variants of the Voodoo chipset, which are used in a number of
3D accelerator cards. The earliest cards were 3D-only cards, designed to work in cooperation with
an existing 2D card. The library Glide (from 3 Dfx) forms the programmer’s interface to the

- 18

Chapter 1: Introduction to 3D Graphics and Linux

Voodoo hardware, offering functions for sending 3D data directly to the chips. Daryll Straus wrote
the Linux version of Glide, thereby making accelerated 3D under Linux a reality. David
Bucciarelli then wrote a Glide device driver for Mesa, another important achievement which
allowed normal Mesa programs using standard OpenGL commands to take advantage of 3Dfx
hardware acceleration. For these reasons, 3Dfx hardware has historically been the best supported
3D hardware under Linux.

One reason that 3Dfx hardware works well under Linux is that it is a physically separate card.
Full-screen accelerated programs can be started from within the X Window System without crash-
ing or otherwise disturbing the X server. The normal X display takes place on the 2D graphics
card, while the full-screen 3D accelerated application switches the monitor to use the 3D card for
display. In fact, it is possible to use two completely separate monitors with 3Dfx hardware: one for
the normal 2D display and one for the hardware-accelerated 3D display. The 3D hardware is com-
pletely separate from the 2D hardware, and thus causes no problems with the 2D hardware or the
X server.

Of course, full-screen isn’t always desirable—this is why windowing systems were invented
in the first place. While full-screen mode might be most effective for a 3D game, this is not neces-
sarily the case for a less immersive 3D program, such as a 3D Modeler. We often want both the
speed provided by 3D hardware acceleration and the convenience of display within a window.

To address this need for 3Dfx cards, a special “trick,” called the in-window hack, used the sep-
arate 3Dfx card to render the image, then did a memory copy of the image from the 3Dfx card into
an X window. This is not nearly as fast as full-screen rendering, because the memory copy is slow,
but is in most cases faster than pure Mesa software rendering. Also, you can’t really run more than
one accelerated application at once. If you try this, the applications will fight for use of the 3D
card, creating a somewhat amusing flickering effect among the windows as the competing images
from each application are sent to the card.

While the first generation of 3Dfx hardware provides a working solution, which for a long
time was the only working solution, a more general approach is needed for integrating hardware
acceleration and windowed display under X.

GLX: The OpenGL Extension to X

We have seen that one fundamental problem is that X views display hardware as being 2D. 3Dfx
hardware works well because it is separate and left alone by X, but this makes true integration into
the windowing system difficult. A more direct approach is to extend the X server itself to under-
stand a more sophisticated concept of display system.

GLX is one such X extension. (PEX, as mentioned in the “dead projects” section, was another
which is no longer of great significance today.) GLX is the OpenGL extension to the X protocol,
allowing OpenGL commands to be communicated to a server directly. The X server then commu-
nicates with the 3D hardware.

Though it was originally not open source, Silicon Graphics has since released the source code
to their reference implementation of GLX. This makes the creation of a fully working and compli-
ant Linux GLX implementation much easier, and is a major step in realizing accelerated X servers
making use of 3D hardware.

Chapter 1: Introduction to 3D Graphics and Linux »

Accelerated X Servers of the Future

Hardware acceleration of the future will use GLX to communicate Mesa (OpenGL) commands to
anewer form of X server which can communicate through a software infrastructure with underly-
ing 3D hardware. At the time of this writing, two major projects are currently underway to create
such software infrastructures for communication with the 3D hardware. These projects are DRI,
the Direct Rendering Infrastructure from Precision Insight Inc., and MLX, the Mesa-Linux ker-
nel-X server project from SuSE. The goals of these projects are essentially the same: to allow
multiple simultaneous applications to use 3D hardware acceleration under X. There are a number
of architectural questions raised by such goals (related to context switching and synchronization
with the X server), and it will be interesting to see which ideas from these two projects eventually
flow into the mainstream. Currently, both projects have working demonstrations in the form of
patched X servers with hardware drivers for a small number of 3D cards.

The latest news on this front at the time of this writing (March 2001) is that the DRI has been
integrated into the newest version of XFree86 4.0, and currently offers in-window acceleration for
anumber of 3D graphics cards. The DRI has more or less established itself as the current standard
for 3D acceleration in an X window under Linux. For those cards not yet supported by the DRI,
you might be able to find Linux drivers in the Utah-GLX project (http://utah-
glx.sourceforge.net)—a separate effort with goals similar to those of the DRI, and which
will eventually be integrated into the DRI.

Summary of Hardware Acceleration

Let’s take a step back and summarize the preceding hardware acceleration projects. 3Dfx hard-
ware acceleration works today, and has historically been the best supported Linux 3D hardware.
Future hardware acceleration focuses on a tighter integration with X. Originally this meant a
patched X server with drivers for your particular 3D card, but the recent release of XFree86 4.0
with the DRI provides a more robust solution supporting a wide range of 3D hardware.

But what impact does hardware acceleration have on 3D programming? How can we write
programs which will take advantage of hardware acceleration, when the field is in a constant state
of flux?

The answer, in a word, is OpenGL. For Linux, this means Mesa, the free OpenGL-like library.
OpenGL is a standard, and the projects involving hardware acceleration all focus on using
OpenGL as the interface to the hardware. So, for Linux 3D programming, “hardware accelera-
tion” can currently be equated with “Mesa.” This makes our lives much easier. To take advantage
of hardware acceleration, we simply use Mesa routines where appropriate and don’t worry about
the underlying hardware acceleration infrastructure. Chapter 2 provides a detailed example of
this.

Having completed our introductory X education, let’s now try writing a simple X program
under Linux.

20 |:

¢

Chapter 1: Introduction to 3D Graphics and Linux

“’Hello, Linux"”: A Sample Program

M

This section introduces you to compiling and debugging C++ programs under Linux. The goal is
to familiarize you with the software development tools by entering, compiling, executing, and
debugging a simple program which displays an empty window under X. This is perhaps somewhat
less than spectacular, but it’s at least a start.

First, you should install the software on the CD-ROM. The Appendix provides instructions to
get the software up and running on your Linux system. The software includes development tools
(such as the compiler and debugger), the Mesa graphics library, the Blender 3D modeling and ani-
mation package, and all of the sample programs in the book. After installing the software, you are
ready to get started programming.

Start the X server, enter a command shell, and verify that the DISPLAY and L3D environment
variables are set correctly. If you don’t know how to do this, see the Appendix. From the command
shell, you can start all other applications.

NOTE From now on, if not otherwise specified, it will be assumed that you have started the
X server, have started a command shell, have verified that the DISPLAY and L3D environ-
ment variables are set correctly, and know how to activate the window containing the
command shell. For all commands intended to be passed to the operating system (also called
shell commands), you should activate the window containing the command shell, type the
command to be executed, and press Enter to execute the command.

Entering the Sample Program

We first edit the program using a text editor. This immediately raises the question, which editor?
Two of the most common editors under Linux are vi and Emacs. If you have seriously used

any Unix system before, you will almost certainly have extensively used one or both of these edi-

tors. For those new to Linux and not familiar with these editors, a brief description follows.

The Vi and Emacs Editors

Vi is a single file text editor with keystroke commands designed to minimize typing. Vi has the
advantage of being small, fast, powerful, and available on almost all systems. Once you learn the
commands, you can perform text editing tasks (replacement, indentation, deleting and moving
text) extremely quickly in vi. I used to (and sometimes still do) race other programmers with text
editing tasks, each of us using the text editor of our own choice. I would almost always win with
vi, simply because I know the vi commands by heart, and because the vi philosophy minimizes
keystrokes—even going so far as to place commonly used keys on the touch-typist’s “home row”
(the row containing the keys A-S-D-F) to maximize potential speed. There is no menu to invoke,
no mouse to click; you press a key, and the command is done. Vi’s disadvantages, however, also
stem from this “speed above all” philosophy; its keystroke-based interface is admittedly cryptic
with a steep learning curve. Furthermore, vi is primarily aimed at editing one single text file; while
editing more than two files at once is technically possible, it is extremely inconvenient using vi.
Editing binary files with vi is generally not possible.

Chapter 1: Introduction to 3D Graphics and Linux

7%l NOTE Ithasbeen proved, so | am told, that the expressive power of vi's commands (includ-
ing simple keyboard macros) is equivalent to that of a Turing machine, meaning effectively
that any computational problem can be solved through vi commands! This is amazing when
one considers that vi has no “programming language” as such. This means that, theoreti-
cally, you could write an X server, the Linux operating system, or 3D graphics programs using
only vi commands.

Emacs is a multiple-file, multiple-window, extensible editor for text and binary files. Emacs has
literally no limits and is the most powerful editor available on any system, period. You might think
this statement exaggerated, but it is not: Emacs is programmatically extensible, which means that
its functionality can be infinitely extended through new program modules, with a power and flexi-
bility exceeding that of simple plug-in or macro-based systems. Furthermore, a very large number
of useful modules (packages) do in fact exist, either built-in or available for download. As a small
example of the unmatched integrated functionality which Emacs offers, here are some of its fea-
tures: multiple simultaneous editing of text and binary files, automatic syntax highlighting for
scores of languages, symbol completion, multiple windows, interfaces to compilation, version
control, and debugging systems, multi-byte character set support, class browser, symbolic and
numeric math, directory browser, keyboard macros, desktop save, file differencing, shell inter-
face, calendar, diary, web browser, mail and USENET news reader, fully remappable keyboard
bindings, typesetting modes, and emulation of other editors. Emacs is often viewed as one of the
shining examples of the excellent software that can be developed under the open source model.

< E] . . .
Buffors Files Tools Edit Search Mule Help Figure 1-12: A partial list of
B:lbrev abbreviation handling, typing shortcuts, macros some of fhe C(jf‘egorles of
aik code related to the “bib” bibliography processor .
c support for the C language and related languages (]VCHIObIe Em(JCS pdckdges_
calendar calendar and time management support
comm communications, networking, remote access to files
corvenience convenlence festures for faster editing
data support editing files of data
docs support for Emacs documentation
emulations emulstions of other editors
=xtensions Emacs Lisp language extensions
faces support for multiple fonts
frames support for Emacs frames snd window systems
ganes games, jokes and amusemsnts
narcuware support for interfacing with exotic hardware
help support for on-line help systems
nypermedia support for links betwesn text or other media typss
ilan internationalization and alternate character-set support
internal code for Emacs internals, builld process, defaults
languages specizlized modes Tor editing programming languages
lisp Lisp support, including Emacs Lisp
locsl code local to your site
maint maintenance aids for the Emacs development group
mail modes for electronic-mail handling
matching various sorts of searching and matching
mouse mouse support
news support for netnews reading and posting
oop support for object-oriented programmin
] #F inder# (Finder|--L1--Top

L]

With all of this power, Emacs also has a bit of a learning curve. However, for a while now,
Emacs has provided a drop-down menu system which makes learning much simpler. Furthermore,
Emacs has an extensive online help system. Taking the time to learn Emacs will be paid off by
higher productivity while programming.

The following sections describe how to start and use the Emacs editor to enter the program.
For simple text editing, Emacs is fairly intuitive to use—the normal arrow, cursor movement, and
text deletion keys act as expected and are all that is required.

22

L'

7%

Chapter 1: Introduction to 3D Graphics and Linux

NOTE Although Emacs has a lot of integrated functionality, we will not concentrate on this
aspect, instead using Emacs simply to edit text. Other commands, even if they are integrated
into Emacs, will be entered in a normal command shell. This doesn’t force you to use Emacs if
you don’t want to—for instance, if you already know how to use another text editor and wish
to use it fo edit the program code. If you are interested in learning more about the integrated
features of Emacs, simply start using it and read the online documentation, which includes a
hands-on tutorial section. | personally learned Emacs exactly this way—just by using it regu-
larly and by working through the extensive online documentation.

Basic Editing with Emacs
After this brief excursion into text editors, we are now ready to start Emacs.

1. Enter a command shell.

2. Type cd $SL3D/source/app to change to the directory containing the sample programs. If you
receive the error “No such file or directory,” then either the software is not correctly installed

or the L3D variable is not set correctly. See the Appendix for installation instructions.
3. Type emacs and press Enter. A new Emacs window opens:

00.HFare.com . .
R B k) Figure 1-13: Emacs
Bufferz Files 'lnnls Edit Search Hule Help . d I f .
Belcome to GHU Emace, one component of a Linux-based GHU sustem. immediate Yy arter sfcrt:ng.
Get help C-h [(Hold down CTEL and press h)
Unda changes C—x u Exit Emacs C-x C-c
Get 3 tutorial C-h t Use Info to read docs C-h 1
Mode-specific menu C-mouse-3 (third button, with CTRL)
{*C-" means use the CTRL key. “M-" means use the Meta (or Alt) key.
If you have no Meta key, you may instead type ESC followed by the character.
I+ an Emacs session crashed recently, type M-x recover-session RET
to recover the files you were editing.
GHU Emacs 20.2.1 (i386-suse-linux, % toolkit)
of Tue Au 4 1998 on neumann
Copyright [C) 1997 Free Software Foundation, Inc.
GHU Emacs comes with ABSOLUTELY HO WARRANTY; type C-h C-w for full details.
You may give out copies of Emacs; type C-h £-c to see the conditions.
Types C-h C-d for information on gP'H'lng the latest wersion.
F1 1n{‘or~matmn about the |JHU ProJer't andlts goals, tuype C-h C-p.

If you do not see a new Emacs window but instead see a text-based Emacs program within the
same window, then you have not set the DISPLAY environment variable correctly (as described in

the Appendix). To correct this, you should:

1. Press Ctrl+x, Ctrl+c to quit the text-based Emacs program. You should now again be in the

command shell.
Type export DISPLAY=localhost:0.0 and press Enter.
3. Type emacs and press Enter to restart Emacs in a separate window.

NOTE For key sequences connected by a plus (+) sign (such as Cirl+C), hold the first key
while typing the second key.

Chapter 1: Introduction to 3D Graphics and Linux

Next, open the sample file hello/hello. cc in the sample programs directory. In the Emacs

window:

1. Press Ctrl+x, Ctrl+f to “Find” (i.e., open or create) a file. Notice the words “Find file:” and

the current pathname at the bottom of the screen.

2. Press Tab, Tab to display a completion list. The first Tab tries to complete any partially
entered string you have entered; the second Tab displays a list of possible completions. Notice
the completion window which appears, and the subdirectory hello.

Z00.hare com c O o

%Buﬁ‘u's Files Tools Edit Search Hule Hinibuf Help

This buffer is for notes you don't want to save, and for Lisp evaluation.
If you want to create a file, wisit that file with C-x C=f
then enter the text in that file’s own buffer.

hik (Lisp Interaction)——L5——C0-=@{1]———————————mmm e m——— e —— —]
-2 on a completion to select it.
In this buffer, type RET to select the completion near point.

Fossible completions are:

Ay v
chk2dclipsd chkpolys
chkzclip/ fltsim/
hellaos libs
portals H_rasts

[(—— [

#Completionss (Completion List)—L1—-C0——@fl]l—————————————— |

Find file: shome27nlingfxs1ibad.C003/sourcesapp/]

]

Figure 1-14: Emacs
automatically provides a
completion list.

3. Type hel and press Tab. Notice that Emacs completes this automatically to the subdirectory
hello, the first entry matching “hel.” Then type / to complete the directory name.

4. Press Tab, Tab to again display a completion list. Notice the completion window again

appears and displays the contents of the subdirectory hello.

5. Type hello.c and press Tab. Notice that Emacs completes this automatically to the full

filename hello. cc.

6. Press Enter to accept the filename. Emacs opens and displays the file. The source code is
automatically highlighted in color if your copy of Emacs has been so configured. To manually
toggle the syntax highlighting, press Alt+x, type font-lock-mode, and press Enter.

Buffers Files Tools Edit Search Hule C++ Help
Binclude <¥11/Imtrinsic.h?

#include C(H11/414

#include <std

#def'ine SCREEN_XSIZE 320
ftdefine SCREEN_YSIZE 200
#define BITS_PER_BYTE &

wain{} {
Visual #vis; fisual (visual info about ¥ server)
Display =dpy; splay (connection to X server)
Window w; indow

/¢ establish connmection to ¥ serwver
dpy = ®OpenDisplay (MULL) ;

reate and map (display) an ¥ window for output
vis = DefaultVisuvalldpy,0);

w = ¥Createlindow(dpy,
—:—— hello.cc (C++)——L1--CO-——Top

Loading cc-mode (compiled)...done

Figure 1-15: Emacs after
opening the file
hel l o. cc.

24

Chapter 1: Introduction to 3D Graphics and Linux

If you make a mistake while entering an Emacs command, press Ctrl+g to cancel the com-
mand. You might need to press Ctrl+g multiple times, depending on the command you are
canceling. If you ever get completely lost, press Ctrl+x, Ctrl+c to quit Emacs and try again.

NOTE To create a new file, follow exactly the same procedure described above, but enter
the new filename instead of entering “hello.cc.” Emacs notices that the file does not yet exist
and creates a new file upon saving.

The contents of the file hello. cc are shown in Listing 1-1.

NOTE The code listings in this book have been automatically reformatted so that extrane-
ous comments do not appear in the printed source listings. These comments, however, are
useful if you wish to change or debug the code, so they do appear in the code on the
CD-ROM. Therefore, the actual code you see in Emacs when you open the source files will
likely contain some extra comment lines which you do not see in the printed listings here.

Listing 1-1: hel | 0. cc
#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/X1ib.h>
//- empty line
#define SCREEN_XSIZE 320
#define SCREEN_YSIZE 200

main() {
Display *dpy;
//- establish connection to X server
dpy = XopenDisplay(NULL);

//- create and map (display) an X window for output

Visual *vis;

Window w;
vis = DefaultVisual(dpy,0);
w = XCreateWindow(dpy, //- display
DefaultRootWindow (dpy), //- parent
100, 100, - X, y position
SCREEN_XSIZE, SCREEN_YSIZE, //- width, height
0, //- border width
CopyFromParent, //- depth (we use max. possible)
CopyFromParent, //- visual class (TrueColor etc)
vis, //- visual
0, NULL); //- valuemask, window attributes

XStoreName(dpy, w, "hello");
XMapWindow(dpy, w);
XSelectInput(dpy, w, KeyPressMask);
XEvent event;

char ch;

KeySym keysym;

XComposeStatus xcompstat;

while(1) {

L

Chapter 1: Introduction to 3D Graphics and Linux >

if(XCheckWindowEvent (dpy,w,KeyPressMask,&event)) {
XLookupString (&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {
exit(0);
1
1
1
1
1

Let’s now make a few changes to the file to familiarize ourselves with editing in Emacs. In the

Emacs window:

1. Press the arrow keys, PgUp, and PgDn to scroll through the text. Notice that the cursor moves
and the text scrolls in a completely usual manner. Press Home and End to go to the beginning
and end of file, respectively.

2. Move the cursor to the beginning of the line containing the text “empty line.”

3. Press Del several times until the entire line has been erased.

4. Type the following text: / sample comment.

5. Move the cursor to the space between the words “sample” and “comment.”

6. Type the text new. Notice that the text is inserted at the cursor position and by default does not
overwrite the following text.

7. Save the file by pressing Ctrl+x, Ctrl+s.

8. Close the file (more precisely, the editing buffer containing the file) by pressing Ctrl+x, k,
Enter. The “k” stands for “kill buffer,” and the final Enter confirms the choice of which
buffer to kill, which is by default the current buffer.

You may exit Emacs by pressing Ctrl+x, Ctrl+c. However, during a programming session, it is

useful to leave Emacs itself open, and to open and close individual files as needed.

We now have enough knowledge of Emacs to open, edit, and save files. There are many more
Emacs commands available—enough to fill a book. Since this book is on 3D graphics and not on
Emacs, we won’t go into further detail about the myriad of Emacs commands. I do, however,
encourage you to explore the online documentation available from within Emacs itself. The best
place to start is the online tutorial.

A2 TIP In Emacs, press Ctrl+h, t to invoke the online tutorial.

Compiling and Linking the Sample Program

We use a utility called make to compile and link our program. The make utility searches for a file
called Makefile, reads compilation rules from the Makefile, and executes the proper com-
mands to compile and link the programs (or targets) listed in the Makefile. A Makefile is therefore
simply a description of how to compile a particular program or library.

The general compilation process under Linux is identical to that of other systems. In the first
phase, compilation, a compiler translates the source code files written by a programmer into object
files. Under Linux, the C++ compiler is g++ (which calls the C compiler gcc with special C++

- 26

©)

Chapter 1: Introduction to 3D Graphics and Linux

parameters). By convention, C++ source files have . cc as the filename extension; object files,
. 0. In the second phase, linking, a /inker binds the object files with one another and possibly with
a number of external libraries, resolves all inter-module dependencies which can be statically
determined, and creates an executable program file. Under Linux, the C linker is 1d; the C++
linker, g++. Finally, at run time, dynamic module dependencies, known as shared libraries,
shared object files, or .so files, are loaded during program execution by the dynamic linker and
loader, 1d.so.

For complicated programs, there is a large number of source, object, and executable files—all
possibly in different directory hierarchies. The compilation process must find all of the input files
and create all of the output files in the right places. Manually specifying all of this information dur-
ing every compilation is unmanageable. The make utility addresses this problem by automating
program compilation and collecting compilation information once and for all in Makefiles.

Overview of Makefiles

A Makefile is a non-procedural description of how to compile a program. Similar to a script file or
a batch file, a Makefile in effect does nothing other than execute a series of commands in sequen-
tial order (ignoring some parallelizing variants of make). But unlike a script file, the contents of a
Makefile do not explicitly list the commands in the order to be executed. Instead, a Makefile is
ordered based on rules and dependencies. A rule states how to generate a particular file; for
instance, an object file is created by calling the gcc compiler on the corresponding C++ file, and an
executable file is created by calling the linker on the corresponding object files. A dependency
states which other files are needed to create a particular file; for instance, the executable hello
file depends on the existence of the hello. o object file. The idea of rules and dependencies is
that make can save compilation time by reusing existing object files from previous compilations
instead of recompiling everything every time. Make checks the dependencies, and only executes a
command to create a target if the target does not already exist or is older than its dependents.

CAUTION Incorrect Makefile dependencies can lead to linking of old object files and to
segmentation faults at run time. If in doubt, recompile everything by manually deleting all
object files.

Determining dependencies, though, is a very tricky subject indeed. If your Makefile dependencies
are not 100% correct, then make will sometimes reuse an old object file when it should actually
recompile the file. Such reuse of old object files can lead to segmentation faults at run time,
because of changes in structure or class definitions which have propagated to some but not all
object files. There are tools to automatically generate Makefile dependencies, but unfortunately,
even these sometimes make mistakes! At least, this had been my experience while developing a
system for compilation under Linux, Windows, and DOS. In this case, the automatic dependen-
cies intermittently failed on one of these three platforms, leading intermittently to segmentation
faults. For this reason, the more complicated Makefiles in this book always recompile everything
(by removing all object files beforehand), which is slower but always correct. If you wish to inves-
tigate the more efficient usage of Makefiles, only recompiling files when absolutely necessary, see

Chapter 1: Introduction to 3D Graphics and Linux

the manual entry for the makedepend command, and be aware that mysterious segmentation
faults at run time may be due to incorrect dependencies. When in doubt, recompile everything.

We use Makefiles primarily to save us effort during compilation. Often, we need to pass spe-
cific flags or #define directives to the compiler, and pass several long object filenames and
library names to the linker. With a Makefile, we write the compilation rules once, and every time
thereafter we simply type make.

The Makefile for the he11 o application looks as follows:

LD = g++

LDFLAGS = -L/usr/X11R6/Tib -1X11 -1Xt -Tm
CPPFLAGS = -03

hello: hello.o
$(LD) $(LDFLAGS) $~ -o $@

Let’s first run the make process, then analyze the Makefile.

Compiling the Program with Make

To compile the program using make:

1. Enter a command shell.

2. Type ed SL3D/source/app/hello and press Enter.

3. Typels and press Enter. Notice that the only files in the current directory are hello.ccand
Makefile.

4. Type make and press Enter. Notice the compilation and linking commands which are printed
to the screen and executed. Wait until the command prompt appears again.

5. Type Is and press Enter. Notice that the new files hello.o (object file) and hello
(executable program) have been created by the make process.

NOTE You can compile your program from within Emacs. Press Alt+x, type compile, and
press Enter. Then, type the compilation command make and press Enter. Emacs changes
the current directory to be the directory of the source file and executes the command you
entered. Error and warning messages are displayed in a separate Emacs window, allowing
you to simultaneously view the compile messages and your source code. See the online info
documentation for more information.

TIP Makefiles usually have the filename Makefile. However, you can tell make to use a dif-
ferently named Makefile by specifying the flag -f [filename].

Compiling the Program Manually

After typing make, the following commands are printed on screen and are executed:

g+t+ -03 -c hello.cc -o hello.o
g++ -L/usr/X11R6/1ib -1X11 -1Xt -1m hello.o -o hello

To demonstrate that make has simply executed these commands and only these commands, let’s
execute these commands manually. In the command shell from the previous section:

- 28

Chapter 1: Introduction to 3D Graphics and Linux

1. Type rm hello hello.o and press Enter to remove the executable and object files created by
the previous make process.

2. Type the first command that was executed by make: g++ -O3 -c hello.cc -0 hello.o, and press
Enter. This calls the gcc compiler to create the object file hello.o from the source file
hello.cc. Wait for the command to complete.

3. Type Is and press Enter to verify that the file hello. o has been created.

4. Type the second command that was executed by make: g++ -L/usr/X11R6/1ib -1X11 -IXt -lm
hello.o -0 hello, and press Enter. This calls gcc to link the object file hello. o with the
necessary libraries to create the executable program hello. Wait for the command to
complete.

5. Typels and press Enter to verify that the file he1 1o has been created.

As a final experiment, now type make again and press Enter. The following message appears:
make: 'hello' is up to date.

Make has noticed that the target file hel1lo already exists, and is newer than its dependent file

hello.o. Therefore, nothing needs to be done, and make accordingly does nothing.

NOTE This Makefile, since it is so simple, did not delete the existing object files before
recompilation. It is for exactly this reason that make found the old object files and decided
that nothing needed to be done.

Analysis of Makefile

Let’s now take a closer look at the Makefile to understand its structure. The Makefile’s contents,
once again, are as follows:

LD = g++
LDFLAGS = -L/usr/X11R6/Tib -1X11 -1Xt -1m
CPPFLAGS = -03

hello: hello.o
$(LD) $(LDFLAGS) $~ -o $@

The first line sets the variable named LD to be g++, instead of the standard 1d. The variable
LD—which is written $ (LD) when its value is being read—signifies the name of the program
used as the linker. We change the linker to be g++ instead of ld because we are writing C++ pro-
grams and thus use g++ as a C++ linker.

The second line lists the flags passed to the linker. We include the X11 directory (with the flag
-L/usr/X11R6/1ib), and link in the X11 library (-1X11), the Xt Intrinsics library (-1Xt),
and the math library (-1m).

The third line lists the flags passed to the C++ compiler. Here, we pass —03, which optimizes
the program for speed, at the cost of space.

The next line states that the executable file he1 1o depends on the file hello. o. Below this
line is the rule for making hel 1o once all of its dependencies exist. Assuming hello. o exists,
we invoke the linker (designated by $ (LD) $ (LDFLAGS)) on all dependent object files (desig-
nated by $) to create the target file he11o (designated by —o $@).

©)
o

Chapter 1: Introduction to 3D Graphics and Linux »

CAUTION The rules line(s) should begin with a Tab character, not spaces.

NOTE 3" and $@ are automatic variables which have special meanings in Makefiles. A list
of all internal variables and their meanings appears under the entry for make in the online
info documentation (described later in this chapter, and invoked with command info.).

At this point, you should be wondering, “but where do we call the gcc compiler to compile
hello.cc into hello.o?” Until now, we have said that program hel1lo requires hello.o
to be present, but we have not said where hello. o comes from. Of course, we as programmers
know that the object file hello. o should be compiled from the hello. cc source file. This is
actually also an implicit rule, which is internally known to the make program. Make knows of sev-
eral ways to make a . o file, and one of the ways is to look for a corresponding . cc file. This rule
is so common that it has been built into make and we do not need to specify it explicitly. Since the
file hello. ccis indeed present in the current directory, make realizes that it should invoke the
rule to create a . o file from a . cc file. What exactly is this rule? According to the online info doc-
umentation, the rule is to invoke $ (CXX) —-c $ (CPPFLAGS) $ (CXXFLAGS) . Notice that the
variable CPPFLAGS appears in this implicit rule, which is exactly the reason that the flags set in
CPPFLAGS get passed on to the compiler during compilation. The variable CXX signifies by
default the gcc C++ compiler, and the variable CXXFLAGS allows further compilation flags to be
set. (The actual compilation command which appeared above, g++, simply calls the gcc compiler
with certain C++ specific flags.)

NOTE If you wish to see exactly what rules make is trying to execute, type make -d. This
starts make in debug mode and is useful for understanding the machinery behind make.

Complicated Makefiles for large projects (millions of lines of code over thousands of source files)
can literally span scores of pages. I used to have the pleasure of debugging such Makefiles on a
regular basis, where the —d flag, mentioned above, was invaluable. The Makefiles in this book
will not be nearly this complicated, but it is worth knowing that make can handle very large
projects.

All of the programs in this book come with Makefiles, so you normally need only type make
to compile the sample programs. Detailed instructions for compiling all of the code at once appear
in the Appendix.

For your own programs, you may also wish to use Makefiles. In this case, you can use the
sample Makefile above as a template. You will probably also want to look at some of the more
complicated Makefiles for the other sample programs in this book which illustrate the use of mul-
tiple targets, multiple dependencies per target, and multiple commands per target.

Executing the Sample Program

After compiling the program as described above, execute the sample program as follows. In the

command shell from the previous section:

1. Type hello and press Enter. The program window appears. (Some distributions of Linux by
default do not allow you to execute files in the current directory. If this is the case with your

- 30

¢

Chapter 1: Introduction to 3D Graphics and Linux

system, you must type ./hello to execute the program.) Try moving the window by dragging
its title bar with the mouse, or try resizing the window, and observe the results.

2. Type q in the program window to quit.

— A _ - [0 | Figure 1-16: Output from the sample

program hel | 0. Exact output on your
“/11b3d . COY8 sources/apt system will not be identical to this figure,

IDDH_tE'Xt/CLLT"T"E'Ht/NDT‘dNEIT“E‘/ChE > l for reasons Covered in Chapfer 2.

= L CINAALS, W SIa Ul

hizve tetter renzabilitr and

sacts a bit more
n it at objact-crantad
¥ FURCIASSIN g UL oTizinal

matn haello. oo This i

A detailed explanation of the workings of this program must wait until the next chapter; for now, it
is enough that we have edited, compiled, and executed the program. Now let’s cover every pro-
grammer’s favorite topic: debugging.

Debugging the Sample Program

Life would be great if all programs followed the simple progression “edit, compile, execute.” Our
programs would work perfectly the first time and we could spend our evenings musing about
Turing machines or NP-complete problems.

In reality, of course, we programmers spend our evenings hunched over the keyboard trying to
find that elusive “bug,” caffeinated drink and Kung-Pao chicken close at hand. While not abso-
lutely necessary, a debugger is usually an extremely useful tool for serious bug tracking and real
software development. Naturally, Linux has had good debuggers for some time now.

A debugger is a controlled execution environment for a program. It allows you to step through
the source code one instruction at a time to see what line in your source file is currently being exe-
cuted. You can set breakpoints, which signal the debugger to stop execution at a certain point in
the source code. A debugger also allows dynamic inspection and alteration of data, eliminating or
greatly reducing the need for print £-type statements littered throughout the code just to inspect
data, and which can themselves be a source of errors.

NOTE With the relatively recent industry acceptance of object-oriented programming para-
digms, the importance of tracing data flow, rather than control flow, has increased. This is
because the very notion of object orientation centers around the class, which is an abstract
data type. The flow of control or execution in object-oriented designs tends to be less central-
ized, because good object-oriented designs yield architectures which can be easily
recombined to form new solutions to problems. Enabling such recombination means that an
object-oriented design should generally not be based on a sequential, step-by-step view of
the problem domain, but rather on a data-centered view, trying to find relevant domain

Chapter 1: Introduction to 3D Graphics and Linux »

abstractions as classes. In terms of debugging, this means that understanding the data within
objects and the ways in which it is transformed—in other words, understanding data flow—is
at least as important as understanding the control flow.

The classical Linux debugger is gdb, the GNU Debugger. The gdb is a freely available text-based
debugger which offers all typical debugger features. While fully functional, gdb is somewhat less
than comfortable to use. When stepping through a complicated series of function calls, it is impor-
tant to visualize the context of the current operation within the framework of the program. With a
text-mode debugger, this is somewhat difficult, because we typically only see one line of the pro-
gram at a time—the line currently being executed. While we can easily display the surrounding
context, we must invoke an extra command to do so. This distracts from the main debugging task.
For this reason, graphical front ends to gdb have been developed. These graphical front ends
still use gdb as the core debugger, but have a much more comfortable interface. For instance, they
automatically switch to the appropriate source file, positioning the cursor on the current line. This
allows a much more fluid debugging process which does not interrupt the train of thought.

NOTE Emacs, not surprisingly, has an integrated and easy-to-use interface to gdb. To
invoke it, press Alt+x, type gdb, and press Enter. See the online info documentation for
more information.

To use a debugger, we must compile the program with debugging information included in the
object file. For this, we change the compilation flags to include the debugging flag —g. To do this:

1. Open the Makefile in Emacs.

2. Use the arrow keys to move the cursor to the beginning of the line containing the text
“CPPFLAGS.”

Press Ctrl+k to delete the contents of the current line.

Type CPPFLAGS=-g.

Save the Makefile: Ctrl+x, Ctrl+s.

Close the buffer containing the Makefile: Ctrl+x, k, Enter.

Enter a command shell, type ¢d $SL3D/source/app/hello, and press Enter.

® NN kW

Type rm *.0 and press Enter to remove all old object files. The old object files did not contain
any debugging information.

9. Compile the program again by entering make. Notice that the -g flag appears in the
compilation command instead of the —03 which appeared previously. Wait for the command
to complete.

10. Start the graphical debugger by typing xxgdb hello and pressing Enter.

NOTE Under the Debian Linux distribution included on the CD-ROM, you must be logged
in as the root user (who has all access rights to the system) in order to be able to run xxgdb.
This is apparently due to an unusual default configuration of access rights.

The xxgdb debugger appears as shown in Figure 1-17 on the following page.

32

Chapter 1: Introduction to 3D Graphics and Linux

¥ BT < | Figure 1-17: The
MomezinlingfxAib3d.CO03/sourcelappmellomello.cc 1 xxgdb debugger.

#include <¥11/Intrinzic.h>
#include <H11/%1ib,hx
#include <stdio,h>

/¢ empty line
#define SCREEN_XSIZE 320

#define SCREEN_YSIZE 200
#define BITS_PER_EYTE 2

Iainty 4
Vizual *viz: A4 ¥11ls Wisual (wisual info about ¥ zerver)
DNizplay #dpy; A¢ W11y Display {connection to X server
Windaw wg A K11y Window

/¢ establish connection to ¥ server

dpy = KlpenDisplay<MULL:

Ready for execution

| cont ||next ||Step ||Finish ||break ||tbr‘eak ||delete | | down ||pr‘int ||print * |

|disp1a9||undisplag||3how displag||ar93||loca13||3tack||edit||Search||interrupt||File|

HHGDE comes with ABSOLUTELY MO WARRANMTY,

GDB iz free software and you are welcome to distribute copies of it

under certain conditions: type "show copying" to see the conditions,
There iz abzolutely no warranty for GDE: type "show warranty” for details,
GDE 4,16,patched {id486-unknown-linuee ——target i486-linusxk,

Copyright 1996 Free Software Foundation, Inc,..

Cexgdbd

The xxgdb window is divided into three sub-windows. A sub-window is active and can
receive keyboard input only when the mouse cursor is on top of it.

The top window shows the current source file. Notice that the caret (the position of the cursor
in a non-active window, shown as “*”’) appears on the first function name, ma in. During debug-
ging, if a function in another file is called, xxgdb displays the new file automatically. The scroll
bar on the left or the arrow keys scroll the window.

The middle window contains a number of buttons for executing debugger functions. Some of
these buttons only work if an item is highlighted in the top section of the window. For instance,
you cannot use the Print button (which displays the value of a variable) unless you have already
highlighted a variable. Other buttons, such as the Continue button, require no highlighted items.

The bottom window shows debugger output and also allows direct input of debugger com-
mands via the keyboard. The scroll bar or the arrow keys scroll the window.

Chapter 1: Introduction to 3D Graphics and Linux S

Let’s now set a breakpoint and single step through the program to familiarize ourself with the use
of xxgdb.

1.

Left-click the word main in the top section of the window. Notice that the word “main”
becomes highlighted.

Left-click the Break button in the middle section of the window. This sets a breakpoint at the
symbol highlighted in the top section of the window. Notice the command break main in
the bottom section of the window, the message verifying the setting of the breakpoint, and the
red hand icon in the left margin of the top section. This icon graphically represents the
breakpoint’s location. The breakpoint appears at the first executable line below the clicked
line, which in this case is a few lines later.

Move the mouse cursor on top of the bottom section of the window to activate it. Type run
and press Enter. Alternatively, you can left-click the Run button in the middle section of the
window.

Wait a few moments for the program to initialize. Notice the blue arrow which then appears in
the left margin of the top section, and the message “Breakpoint 1, main()” in the middle and
bottom sections of the window. The blue arrow signifies that the statement is about to be
executed.

Inspect data as follows. Left-click the word dpy in the top window, left-click the Print button,
and notice the output in the bottom section: “$1 = (Display *)0x0.” This indicates that the
value of the variable dpy is currently NULL. This makes sense, since the current line has not
yet been executed.

Left-click the Step button, wait a few moments until the blue arrow reappears, and notice that
the blue arrow now appears next to the following instruction.

Again, left-click the word dpy in the top window, left-click the Print button, and notice the
output in the bottom section: “$2 = (Display *)0x804d7a0.” (The exact hexadecimal address
will be different on your machine.) This indicates that the variable dpy now has a particular
value as a result of the instruction just executed.

Left-click the Cont button to continue program execution normally.

Left-click on the application window to activate it and press q to end the program. Notice the
message “Program exited normally” in the xxgdb window.

We have just worked through the most important functions of xxgdb: setting a breakpoint, exam-
ining data, single stepping through instructions, and resuming execution. You might also want to
try single-stepping through the entire program; simply keep on left-clicking Step instead of Cont.

To summarize the most important features of xxgdb:

The window is divided into three sub-windows: source, buttons, and output/command. A
sub-window is active only when the mouse cursor is positioned on top of it.

Left-clicking an item in the top window highlights it for later use. Left-clicking a button acti-
vates the function, using the highlighted item if appropriate.

34

Chapter 1: Introduction to 3D Graphics and Linux

The Break button sets a breakpoint, Print examines data, Step steps to the next instruction in
the program, and Cont continues execution after a breakpoint.

All button commands can also be entered in the output/command window as text commands,
which are passed directly to the underlying text debugger.

The Text Debugger—Not Just for Masochists

It’s worth noting that in some cases, using the text debugger gdb is actually more convenient than
using a graphical interface. This is particularly the case if your program crashes in such a way that
the stack is corrupted and gdb no longer knows where the program execution stopped.

If the program crashes in this way, then to find the offending statement, you must find the
error just before it occurs; after execution of the offending statement, it is in this case too late—the
debugger will no longer be able to print out the location where execution stopped because of the
corrupted stack. This is one of the classical, rather annoying problems with debugging: needing to
find an error without having any idea where it is.

In this case, you typically set a breakpoint at a statement which you know is executed before
the error can possibly have occurred. You then execute the program and wait until this breakpoint
is reached. Then, you single step through the program until the error occurs, observing as you go
along where the program crashes.

With a graphical debugger, such a continuous step-through operation might require hundreds
of mouse clicks on the Step button. With the text-mode debugger, you can enter the step command
just once, and simply press Enter to execute the last command again. So, by holding down the
Enter key, you can very quickly step through the program execution one step at a time, with each
line being printed as it is executed. Eventually your program will crash and gdb will not allow exe-
cution of any further instructions. At this point you simply scroll back through the text (using the
scroll bar on your shell window) to see the last instruction that was executed before gdb stopped.

Although you can use the same trick within xxgdb (remember, the bottom window in xxgdb is
a direct interface to the underlying debugger), it is much slower than the plain gdb interface,
because xxgdb must find and display the source file for each line it executes. If you enter several
single step instructions in a row, by first clicking Step then pressing Enter several times in the bot-
tom xxgdb window, xxgdb will only be able to step through the program at a very slow rate
because it must always find, load, and display the associated source file after every instruction. (In
fact, as I write this now, xxgdb is still churning away in the background doing exactly this.) With
the text-based gdb, you can step through hundreds of lines in just a few seconds, and scroll back in
the window to see a chronological log of which statements were executed in which order.

To summarize, a graphical debugger such as xxgdb is useful for interactive debugging of
selected, detailed parts of your program, where you must carefully inspect several variables at
each step of execution and visualize the context of each operation within its source file. The text
debugger gdb is useful when you have no idea where the error is occurring and want to step very
quickly through large blocks of code until the program crashes.

Both xxgdb, and the underlying text debugger gdb, have entries in the online manual.

Chapter 1: Introduction to 3D Graphics and Linux ;

7%, NOTE |find that using the Emacs inferface to gdb is the most convenient way of debugging
a program, since | can develop, compile, execute, and debug all within Emacs. It is worth not-
ing, however, that recently a number of fancier graphical debuggers and even IDEs
(integrated development environments) have appeared for Linux. Some of these include
DDD, Code Crusader, and Code Medic.

Getting Online Help

We have referred a number of times to the “online manual” and the “online info documentation.”
Let’s take a closer look at these and other documentation which Linux offers the programmer.

Linux has a staggering amount of online information available. By “online,” we mean acces-
sible in electronic form from your system. This does not mean “online” in the network sense of the
word; that is, you don’t need to download this information off of the Internet. It’s all already avail-
able and installed on a standard Linux system.

It cannot be emphasized enough how vital this online information is to the Linux programmer.
You can learn a lot just by reading other people’s code and looking up the online documentation
for the functions used. In this way, you learn of the existence of a function, its specification, and its
idiomatic use in a certain context.

The information in this book does not, and should not, replace the online manual. The online
documentation is an excellent reference for specific details of particular functions, but often lacks
a broader perspective. For this reason, this book aims to provide this broader perspective, describ-
ing the general purpose and context of a function and leaving the details of exact bytes or
parameters to the copious online documentation. This book and the online documentation thus
complement one another and should be seen as addressing needs at two different levels.

The Online Manual “man”

The most important online reference available to the Linux programmer is the online manual. The
online manual refers collectively to all documentation accessible to the Linux system via the
command man. The online manual, also called the man pages, covers countless numbers of utili-
ties, programs, and functions useful to the programmer.

The online manual is divided into a number of sections. These sections are:

Executable programs or shell commands

System calls (functions provided by the kernel)

Library calls (functions within system libraries)

Special files (usually found in /dev)

File formats and conventions e.g., /etc/passwd

Games

Macro packages and conventions e.g., man(7), groff(7)
System administration commands (usually only for root)

A Ao e

Kernel routines [non-standard]

36

Chapter 1: Introduction to 3D Graphics and Linux

In practice, you usually do not need to know what section of the manual a particular entry is in,
since this is only important if identically named entries appear in different sections of the manual.
In this case, you would need to specify which section of the manual you want (see below).

There are two main ways of using the online manual. The first is if you know the exact name
of the function, utility, or program you want information on. The second is if you need to do a key-
word search on the manual entries.

If you know the exact name of the manual entry, simply type man [entry], where [entry] is the
name of the function, utility, or program. For instance, type man XCreateWindow and press
Enter. The text in Figure 1-18 appears. Press Space to scroll through the text of the manual entry,
and press q to quit.

Sl xterm <3> « B X| Figure 1-18: Manual

DESCRIPTION] _ _ entry for
The ¥Createlindow function creates an unmapped subwindow
for a specified parent window, returns the window ID of
the created window, and causes the ¥ server to generate a
Createfotify event, The created window iz placed on top
in the stacking order with respect to siblings,

XCreateWindow.

The coordinate system haz the ¥ axiz horizontal and the ¥
axiz wertical with the origin [0, 01 at the upper-left
corner, Coordinates are integral, in terms of pixels, and
coincide with pixel centers, Each window and pixmap hasz
itz own coordinate system, For a window, the origin iz
inzide the border st the inzide, upper-left carnse,

The border_width for an InputOnly window must be zero, or
a Baddatch error results, For clazs InputOutput, the
vizual type and depth must be a combination supported for
the screen, or a BadMatch error results, The depth need
not be the zame as the parent, but the parent must not be
a window of claszz InputOnly, or a BadWatch error results,
For an Inputlnly window, the depth must be zero, and the
vizsual must be one supported by the screen. If either
condition iz not met, a BadMatch error results, The par-
ent window, however, may have any depth and clas=, If you
zpecify any irnvalid window attribute for a window, a
fatal par ir line 1

The manual entry contains a detailed, complete specification of the XCreateWindow func-
tion. Standard C library functions, X functions, and Linux system functions all have similarly
complete entries in the online manual.

If you do not know the exact name of the manual entry for which you are looking, you should
invoke man as follows: type man -k [entry]. The “-k” stands for keyword search. For instance,
let’s say you wanted to read up on the X Visual structure. Type man -k visual and press Enter. On
my system, the following list appears:

GetVisual (3) - translate from string to visual

SetVisual (3) - change visual characteristics of window

Tk _GetVisual (3) - translate from string to visual
Tk_SetWindowVisual (3) - change visual characteristics of window
GetVisual (3) - translate from string to visual

SetVisual (3) - change visual characteristics of window

Tk GetVisual (3) - translate from string to visual
Tk_SetWindowVisual (3) - change visual characteristics of window
XGetVisualInfo (3x) - obtain visual information and visual structure

XMatchVisualInfo (3x) - obtain visual information and visual structure

Chapter 1: Introduction to 3D Graphics and Linux ;

XVisualIDFromVisual (3x) - obtain visual information and visual structure
XVisualInfo (3x) - obtain visual information and visual structure
pnmindex (1) - build a visual index of a bunch of anymaps

This list displays the name of the manual entry, the manual section number in parentheses, and a
brief description. You can then refer to the specific manual page by using the first form of the man
command described above.

In the rare event that two or more entries with identical names appear under different sections
of the manual, you need to specify which entry in which section you want. In this case, simply type
man [section] [entry], where [section] is the desired section number of the manual.

For more information on the online manual itself, can you guess where you need to look?
That’s right: the online manual. Type man man and press Enter to see the manual entry on the
manual itself.

TIP Emacs offers an integrated interface to the online manual. Press Alt+x, type man, and
press Enter. Then, enter the manual entry and press Enter. The manual page is displayed in
a separate window within Emacs.

The Online Info Documentation

Many programs, in addition to or instead of the manual entries, have entries in the so-called “info”
or “TeXinfo” documentation. Info offers an Emacs-like hypertext interface with hierarchically
arranged nodes of information. The primary advantage of info over man pages is the hierarchical
organization. Extremely comprehensive documentation, such as the documentation for the gcc
compiler, is better viewed online as a hierarchy of information which can be read a page at a time,
rather than as a linear mass of text.

Info, like Emacs, has a built-in tutorial. Type info, press Enter, and press h to invoke the info
documentation and start the tutorial. It takes about 10 minutes to complete.

When you first invoke info, you see the top level of the information hierarchy. This typically
lists just a few pages of entries which have info documentation. Since the information is hierarchi-
cally arranged, each entry may eventually correspond to many commands; thus, the total amount
of information available is more than it may seem at first.

The most important keystroke commands within info are as follows:

h: Invoke the tutorial.
q: Quit to the shell.
Arrow keys: Scroll the screen.

Enter: Go down one level in the hierarchy, to the node (menu) underneath the cursor.
Selectable nodes are marked with an asterisk (*).

n: Go to the next node at the same level in the hierarchy.
p: Go to the previous node at the same level in the hierarchy.
u: Go up one level in the hierarchy.
1: Go to the last-visited node.
Again, you can learn more by going through the online tutorial.

38 Chapter 1: Introduction to 3D Graphics and Linux

L

Ay)x TIP Yes, Emacs also has an integrated interface to the info documentation. Invoke it by
pressing Alt+x, info, Enter.

Other Ways of Finding Information

There are a few other methods of finding information on a Linux system which deserve mention.
This section covers some of these methods.

Searching header files is always an informative, if somewhat low-level, way of finding and
hopefully understanding structure and class definitions. The header files are usually located in
/usr/include or /usr/local/include and have the file extension . h. You can search
through the header files with a command such as grep or f£ind.

The GNU “binutils” offer routines for manipulating binary files. This is useful to find which
library file contains a particular function. For instance, if you are calling a function in your code
and get a linker error that the function could not be found, you have most likely not specified the
required library name on the linker command line in the Makefile. The question is, which library
contains the function? You can use the nm command, part of the binutils, on a library file (ending
with extension . a or . so) to determine its contents. This can help you find the exact library file
containing a function you need. Library files are usually located in /usr/1lib, /usr/
local/lib, /1ib, and /usr/X11/1ib. You can also use the £ind command to search for
other . a or . so library files on your system.

The HOWTO files are a collection of files describing answers to common “how-to” ques-
tions. Most HOWTO files tend to deal more directly with hardware or configuration issues rather
than programming issues, but the information can be useful for programming in certain areas. The
HOWTO files are usually located in /usr/doc/howto.

Summary

Linux and 3D graphics is a winning combination because of the power, price, and openness of
Linux, and because of the 3D graphics revolution. In this chapter, we looked at available Linux
libraries and tools for doing 3D graphics. We then defined the X Window System and discussed
3D hardware acceleration with X. We familiarized ourselves with the practical side of Linux pro-
gramming by writing a simple program, compiling it, and debugging it. Finally, we looked at
some of the online documentation available to the Linux programmer.

With this experience, we are now ready to dive into writing Linux applications in earnest. The
next chapter explores how to access the 2D screen under Linux. The 3D graphics we create in later
chapters must eventually appear on the screen, so it is natural that we first discuss screen access.

80

Chapter 2

Accessing the Screen

Overview

his chapter explains screen access under Linux. Most consumer PCs have one graphics card
and one flat, 2D screen. Therefore, 3D graphics programs, such as the ones we write in this
book, must ultimately display their results on this single 2D screen. In this chapter, we look
at the terminology, techniques, and program code for initializing and creating some elementary
output on the 2D screen. The next chapter covers rasterization algorithms which build on the ideas
in this chapter to draw specific images on the screen.
This chapter begins by looking at 2D graphics programming under Linux by using Xlib
directly. We then abstract the Xlib concepts to illustrate the development of reusable graphics
classes, called 13d. We extend and build upon these 13d classes throughout the rest of this book.

=)z TIP We also continue to build upon the 13d library in the companion book, Advanced Linux
3D Graphics Programming. The 13d library is available on the CD-ROM and for download
from the Internet; see the Appendix for more information.

This chapter covers the following concepts:
Object-oriented, event-driven programming with the X Window System
Graphics display and event handling under X
Development and use of reusable graphics classes, called 13d
Coordinate systems in 2D

X Programming

We begin this chapter by writing some sample programs which display windows and respond to
user input under X. The 2D code and the object-oriented techniques developed in the following
sections form the theoretical and practical basis for the graphics code in the rest of the book.

The Role of X

Before going into the details of X programming, let us first briefly consider X’s role in graphical
applications under Linux.

L

}

Chapter 2: Accessing the Screen

At a basic level, one goal of computer graphics is to display images on a screen. We use the
term “screen” to denote a number of related but slightly different concepts. Generally, the term
“screen” describes either the entire physical display area or the logical display area into which the
operating system allows a program to write graphics data. The context determines the usage. If we
say that a program writes to the “screen,” we usually mean that it actually writes to a small portion
of the physical screen in a windowing system, and that the rest of the physical screen is occupied
by other applications. On the other hand, if we say “part of the screen,” we usually mean “part of
the entire display area.” Also, the X Window System uses the term “screen” to denote a monitor

number when dealing with multiple-monitor displays.

Physically, the display monitor of your computer translates the electrical signals from the
video card into visible patterns of light. In the early days of computer graphics, applications typi-
cally had exclusive access to the video memory (and often to the entire computer). A graphics
application would write directly to video memory, which the hardware would directly interpret
and display on the monitor. As a result, graphics applications typically took over the entire physi-
cal display area, a practice also called fill-screen mode (Figure 2-1).

memset(0xA0000, 255, 64000);

Program

/

~—

Video Memory () _‘
C] O

r =

Video card

o

()
{4
W
{3

(
‘o”
i

Q
(
(4

s
g
6
e
o:.o
o
O
!.l'

o
"
i
X

{
(G0
‘0.0.0

b
0
5
b

w0
&
&0
i
e

o

X

00

A

{00

TSI
oS 53
S5E525T52S
T

0

&to

£
“

A

o0
5
e

X
SO
BOGEAE
R
’o{o’o’&’t{o’o’
ARG
SO0
(ot
O

k
k

- -

(L

b
0
A

Figure 2-1: Full-screen, direct access to
video hardware.

The emergence of multi-tasking operating systems changed the nature of this practice. Pro-
grams no longer had exclusive access to all computer resources, including the display. The
operating system regulated access to all shared resources and prevented programs from directly
accessing the resource (Figure 2-2). In the case of the screen, a windowing system was given the
responsibility of controlling access to the video memory. The windowing system allowed each
application to use a portion of the physical video memory, called a window, for its display pur-
poses. This system allowed multiple graphical applications to run simultaneously, all sharing one

physical screen.

SR
Chapter 2: Accessing the Screen '-*!.’;;_:_

memset(DxAQO00, 255, 64000);

Program

Windowing System

* Video Memory |_|O_ o /
o [Vs
¥ =

Direct access denied!

Video card

[]

A
Monitor

e

Figure 2-2: Windowing system
controls access to video
hardware

The windowing system forms a middle layer between the application and the video hardware.
Graphics applications can, in general, no longer directly access the video hardware but instead
direct requests to the windowing system to display images within the application’s window (Fig-

ure 2-3).

XPutlmage();

Program

Windowing System

Video Memory () |: o
=4O
o 1
F =

"" "" "" Video card

Monitor

Figure 2-3: Access to screen
through window manager

42

!
¢

Chapter 2: Accessing the Screen

The introduction of a windowing system between the application and the video hardware
imposes a slight performance penalty. In general, we have to live with this performance hit, since
well-behaved graphics programs must be able to function within windows. It cannot be expected
that every graphics application should always be allowed to have complete access to the entire dis-
play, refusing to coexist with other running graphical applications. The performance problem,
however, is not as limiting as it might at first seem. The efforts to incorporate 3D hardware accel-
eration into the X Window System, described in the last chapter, have yielded high-performance X
architectures. With faster 3D hardware and an efficient X interface, the performance penalty
imposed by going through X becomes negligible.

A well-designed program will, however, isolate application code from the underlying screen
access code. An application should only access a screen as a logical output device through an
abstract C++ class interface. This allows the application to display its output on a variety of physi-
cal screens—for instance, on an unaccelerated window under X, full-screen using hardware
acceleration, or on a window using another operating system such as Microsoft Windows.

NOTE An abstract class is one which has at least one pure virtual function and cannot be
instantiated. A concrete class is one which is not abstract, though it may descend from an
abstract class. Abstract classes are the key to good object-oriented design, since they repre-
sent characteristic, fundamental abstractions of the problem domain independent of
“irrelevant” details. The “irrelevant” details are implemented within derived concrete classes
by overriding the pure virtual functions, but users of the class who go through the abstract
interface will remain compatible for all variants, past and future, of the abstract class. The
requirement for this to work is that the abstract class truly be a general, characteristic classifi-
cation of all possible past and future variants of the data type represented by the class,
thereby allowing the future flexibility and compatibility through subclassing. Finding the
appropriate abstract classes is equivalent to identifying or defining the fundamental, univer-
sal abstractions in the problem domain, and is one of the most difficult parts of
object-oriented design.

Thus, from the application’s point of view, its display is directed to a logical output device which
we will call the “screen.” In reality, the screen will usually be a window which has been allocated
by a windowing system and which only uses up part of the physical display, but this fact is hidden
from the application program so that the program may be configured (even at run time) to use dif-
ferent physical output devices.

Under the older Linux operating system, “direct access” to video memory was often done
through a graphics library called SVGALIB. This library, as we saw in Chapter 1, is more or less
outdated. The X Window System now regulates access to the video hardware.

Therefore, with the exception of full-screen hardware-accelerated graphics, when we use the
term “screen” we are actually referring to a display window created under the X Window System.
Let us now see how we create windows under X, then see how to display images in the window.

Chapter 2: Accessing the Screen "

Rt 2

Structure of an X Program

The X Window System, like other windowing systems, is an event-driven system which notifies
individual windows of events of interest, thereby allowing the window to respond accordingly.
For instance, pressing a key when a window is active would automatically (through the window-
ing system) send a keypress event to the window. The application code for this window would
then notice the event and call a function to respond to the event; such an event-handling function is
called a callback function. The calling of the appropriate function in response to an event is called
event dispatching.

Figure 2-4: Structure

Window 4

PROGRAM 1 of an X program.
PROGRAM 2
PROGRAM 3
eventsentto | | ppOGRAM 4 —_
program 4 T

response Lo event

X SERVER

Screen

\ get_eventi);
| if event==click {
do something;

f v while(lexit_condition) {
Y

i

I|

\
N \‘\,fx }

User input (e.g. mouse click, keypress)

event loop for program 4

Programming the X Window System is a very broad area of expertise; volumes have been
written on the subject. For the purposes of this book, we won’t delve too deeply into the intricacies
of X, but will instead simply focus on X as a mechanism for displaying windowed 2D images.
(This alone is complicated enough!) 3D graphics, as will be explained in Chapter 4, also ulti-
mately reduces to 2D images.

Let us begin by examining the typical structure of an X program; in the next section, we then
deal specifically with displaying graphics. In pseudocode, a typical X application would look as
follows:

create_window();

ask_to_be notified of interesting events();

while(1) {

if event_pending_for_window() {
dispatch_event(); // call callback function

}

}

The program is nothing more than a classical event-polling loop. We have an infinite loop which
waits for an event to occur, then reacts to that event. In most cases, some particular event, such as
typing q or clicking on a Quit button, will eventually cause the program to exit the event-polling
loop and terminate execution.

44 | Chapter 2: Accessing the Screen

With this understanding, we can now make a detailed analysis of the sample program hel | 0
from the previous chapter, which created a simple window under X. The program’s code is shown
here again, in Listing 2-1.

Listing 2-1: hel | 0. cc

#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/X1ib.h>

//- empty line

#define SCREEN_XSIZE 320
#define SCREEN_YSIZE 200

main() {
Display *dpy;
//- establish connection to X server
dpy = XopenDisplay(NULL);

//- create and map (display) an X window for output

Visual *vis;

Window w;

vis = DefaultVisual(dpy,0);

w = XCreateWindow(dpy, //- display
DefaultRootWindow(dpy), //- parent
100, 100, //- X, y position
SCREEN_XSIZE, SCREEN_YSIZE, //- width, height
0, //- border width
CopyFromParent, //- depth (we use max. possible)
CopyFromParent, //- visual class (TrueColor etc)
vis, //- visual
0, NULL); //- valuemask, window attributes

XStoreName (dpy, w, "hello");
XMapWindow (dpy, w);
XSelectInput(dpy, w, KeyPressMask);

XEvent event;

char ch;

KeySym keysym;
XComposeStatus xcompstat;

while(1) {
if(XCheckWindowEvent (dpy,w,KeyPressMask,&event)) {
XLookupString (&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {
exit(0);

\
il
(D=

GHE.

iy

Chapter 2: Accessing the Screen

Xlib, the X Toolkit, and the Xt Intrinsics

The program hel | 0. cc begins by including the header files we need to do X programming:

#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/X1ib.h>

Every C programmer is familiar with st di 0. h, the header file for the standard input/output
library, but the X header files may be new to you. The exact location for these files is
fusr/include/ X11/Intrinsic.h and /usr/include/ X11/ Xl'i b. h. You might
want to glance at the contents of these files to get an idea of what you are including.

TIP The location for #i ncl ude files appearing within angle brackets (< >) is the
pathname within the brackets prefaced by / usr/incl ude or /usr/| ocal /i ncl ude.
These directories are the standard include file directories for a Linux system.

The X files in our case don’t contain secret government information, but rather function and struc-
ture definitions for the Xlib library and for the X Toolkit. Xlib is a low-level C library for
controlling output to and input from windows on an X server. The X Toolkit is a higher-level col-
lection of functions for programming X, and is divided into two parts: the Xt Intrinsics and a
widget set. The functions in the Xt Intrinsics allow applications to create user interfaces by com-
bining user interface components, called widgets. Figure 2-5 illustrates graphically the
relationship between Xlib, the Xt Intrinsics, and a widget set.

Figure 2-5: Libraries used by a
Widget set Xt Intrinsics typical X application.

| I

Xlib

A

1 . .
. Network connection

X Server

It should now be clear exactly which header files we have included: XI i b. h contains the
Xlib declarations; | nt ri nsi c. h contains the Xt Intrinsics declarations. We don’t use any wid-
get set in this program (since it doesn’t have any user interface), so we correspondingly do not
include any widget header file.

NOTE In contrast to other windowing systems, it is theoretically possible to write an X appli-
cation without using any X library at all. This is because the X server protocol is defined at the
byte level of network packets. An X client could therefore directly open a TCP/IP network con-
nection to the X server, and manually send, receive, and decode packets of bytes in order to
control the display on the X server. This would, however, be absurdly complicated, but it is
useful to know that, technically speaking, the X libraries are a convenience, not a necessity.

46

!
¢

Chapter 2: Accessing the Screen

Next, we define some constants for the screen size:

#define SCREEN_XSIZE 320
#define SCREEN_YSIZE 200

Connecting to the X Server

Since X is a client-server system, and since our programs are all X clients, we must connect to the
X server in order to create a window and display graphics on the screen. hel | 0. cc declares the
variable dpy, which represents a pointer to an X Di spl ay structure. The display represents the
connection between our application program (the X client) and the X server (connected to the
monitor).
Display *dpy;

The connection between client and server might be a TCP/IP network connection in the case of a
true client-server setup, where the X server and the X client are located on two physically separate
machines. With a local setup, where the X server and the X client are located on the same machine,
the connection will be done through some local interprocess communication protocol.

Let’s take a glance at the definition of the Di spl ay structure. This is located in
/usr/include/ X11/ Xl ib. h:

*
* Display datatype maintaining display specific data.
* The contents of this structure are implementation dependent.

* A Display should be treated as opaque by application code.
*

#ifndef XLIB_ILLEGAL_ACCESS
typedef struct XDisplay Display;
#endif

As seen in the structure definition, we don’t need to—and should not—know more about the inter-
nals of the Di spl ay structure, since its contents are implementation specific and not guaranteed
to remain constant among implementations or versions of XFree86. This is a typical example of
the object-oriented technique of information hiding, where users of a particular class or structure
are protected from the inevitable changes which sooner or later will occur. By treating the Di s-
pl ay structure as opaque, we are guaranteed that our program will continue to compile and
function even in the face of changes to the internal representation of the Di spl ay structure.

NOTE This particular example of information hiding is somewhat extreme, since the Dis-
play structure is completely opaque; as users of this structure, we do not have access to any
part of it. More generally, a class in an object-oriented design will expose a public interface to
the outside world, which must be a relatively stable foundation upon which users of the class
(called client classes) can build. The internal workings of the supplier class (the class being
used by the client class) are much more volatile and therefore “hidden” in the private sections
of the supplier class. These sections may be changed without affecting client classes, since the
compiler prohibits client classes from accessing the private members of a supplier class,
aborting compilation with an error message. This guarantees the public/private separation at
the lowest level. One of the most difficult decisions for object-oriented designs is deciding
which parts of the class declaration should be made public, and which private. A complete
answer to this question exists, but is rather theoretical in nature, being based upon class the-
ory and the theory of abstract data types (ADTs) [MEYE97]. Briefly summarized, the idea is
that it must be impossible to write a client class whose correctness depends in any way on the

Chapter 2: Accessing the Screen ' :

private declarations of the supplier class. In other words, correctness of the clients of a partic-
ular supplier class must be formally provable using only the public declarations of the
supplier class.

With the dpy variable declared, we can establish a connection to the X server by using the
XOpenDi spl ay function:
dpy = XOpenDisplay(NULL);
A complete description of this function appears in the online manual. Hopefully you have already
taken the time to read through some of the entries in the man pages. If not, here is the complete
manual entry for XOpenDi spl ay:
XOpenDisplay(3X11) XLIB FUNCTIONS XOpenDisplay(3X11)

NAME
XOpenDisplay, XCloseDisplay - connect or disconnect to X
server

SYNTAX
Display *XOpenDisplay(display name)
char *display_name;

XCloseDisplay(display)
Display *display;

ARGUMENTS
display Specifies the connection to the X server.

display_name
Specifies the hardware display name, which
determines the display and communications domain
to be used. On a POSIX-conformant system, if
the display_name is NULL, it defaults to the
value of the DISPLAY environment variable.

DESCRIPTION
The XOpenDisplay function returns a Display structure that
serves as the connection to the X server and that contains
all the information about that X server. XOpenDisplay
connects your application to the X server through TCP or
DECnet communications protocols, or through some Tocal
inter-process communication protocol. If the hostname is
a host machine name and a single colon (:) separates the
hostname and display number, XOpenDisplay connects using
TCP streams. If the hostname is not specified, X1ib uses
whatever it believes is the fastest transport. If the
hostname is a host machine name and a double colon (::)
separates the hostname and display number, XOpenDisplay
connects using DECnet. A single X server can support any
or all of these transport mechanisms simultaneously. A
particular X1ib implementation can support many more of
these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display
structure, which is defined in <X11/X1ib.h>. If XopenDis-
play does not succeed, it returns NULL. After a success-
ful call to XOpenDisplay, all of the screens in the dis-
play can be used by the client. The screen number speci-

48

/

'

Chapter 2: Accessing the Screen

fied in the display_name argument is returned by the
DefaultScreen macro (or the XDefaultScreen function). You
can access elements of the Display and Screen structures
only by using the information macros or functions. For
information about using macros and functions to obtain
information from the Display structure, see section 2.2.1.

The XCloseDisplay function closes the connection to the X
server for the display specified in the Display structure
and destroys all windows, resource IDs (Window, Font,
Pixmap, Colormap, Cursor, and GContext), or other
resources that the client has created on this display,
unless the close-down mode of the resource has been
changed (see XSetCloseDownMode). Therefore, these win-
dows, resource IDs, and other resources should never be
referenced again or an error will be generated. Before
exiting, you should call XCloseDisplay explicitly so that
any pending errors are reported as XCloseDisplay performs
a final XSync operation.

XCloseDisplay can generate a BadGC error.
SEE ALSO

Al11Planes(3X11), XFlush(3X11), XSetCloseDownMode(3X11)
X1ib - C Language X Interface

NOTE From now on, you are encouraged to look up the manual entries for the functions
described in the text.

Notice that we passed NULL as the parameter to XOpenDi spl ay. As documented in the man

page, this uses the default display.

Having now established the connection to the X server, we can create a window on the X

server’s display.

Creating and Mapping the Window

The next thing hel | 0. cc does is create a window. Two variables are declared for this purpose:

one to store so-called “visual” information, and one for the window itself:

Visual *vis;

Window w;
The definition for the Vi sual structure is in/ usr/i ncl ude/ X11/ Xl i b. h:
/*
* Visual structure; contains information about colormapping possible.
*
/
typedef struct {
XExtData *ext_data; /* hook for extension to hang data */
VisualID visualid; /* visual id of this visual */
#if defined(__cplusplus) || defined(c_plusplus)
int c_class; /* C++ class of screen (monochrome, etc.) */
#else
int class; /* class of screen (monochrome, etc.) */
#endif
unsigned long red mask, green mask, blue mask; /* mask values */
int bits_per_rgb; /* log base 2 of distinct color values */
int map_entries; /* color map entries */

} Visual;

Chapter 2: Accessing the Screen ' ‘

The Vi sual structure definition is quite simple and well commented. It deals with the color
structure of the X server. We return to this topic shortly, in the section titled “X Server Depth and
Visual Class.” For now, we only need to know the visual so that we may create the window, since
the window creation function requires a visual as a parameter.

The other variable we have declared is from type W ndow. Its declaration, in
[usr/include/ X11/ X. h, is as follows:

typedef unsigned long XID;
typedef XID Window;

A Window is therefore nothing more than an integer identifier.
The first step is to ask the X server for the default visual of the screen, by using the
Def aul t Vi sual macro:
vis = DefaultVisual(dpy,0);
With the display from the previous step and the visual now known to us, we have enough informa-
tion to create the window. The XCr eat eW ndow function creates a window on a particular
display. hel | 0. cc calls this function as follows:

w = XCreateWindow(dpy, //- display
DefaultRootWindow (dpy), //- parent
100, 100, //- X, y position
SCREEN_XSIZE, SCREEN_YSIZE, //- width, height
0, //- border width
CopyFromParent, //- color depth (we use max. possible)
CopyFromParent, //- visual class (TrueColor etc)
vis, //- visual
0, NULL); //- valuemask, window attributes

XStoreName (dpy, w, "hello");
The XCr eat eW ndow function takes a number of parameters, only a few of which need further
explanation. In particular, the parameters labeled par ent, col or dept h,vi sual cl ass,
val uenmask, and wi ndow at t ri but es deserve mention.

The par ent parameter specifies the parent window for the window about to be created. As
mentioned in Chapter 1, windows under X are hierarchically arranged. The parent window is the
immediate ancestor of the child window in the hierarchy. In our case, we have specified that the
parent window is to be the root window, which is the window at the very top of the hierarchy that
encompasses the entire physical screen.

The col or dept h parameter and the vi sual cl ass parameter work closely together to
specify the number and type of colors available to the window. We cover this in more detail in the
section titled “X Server Depth and Visual Class.” In our case, we specify these parameters as
CopyFr onPar ent which simply copies the values from the parent window. The val uemask
and Wi ndow at t ri but es parameters are used together to toggle specific creation options of
the window. The val uemask is interpreted bit-wise and is specified as a logical OR of the
desired options. The valid options are listed in the man page and cover such options as the cursor
for the window or which events should be passed to the window. The Wi ndow at t ri but es
parameter points to a structure of type XSet W ndowAt t r i but es, which specifies the data
needed by the options activated through the val uemask. For now, we do not specify any particu-
lar window attributes.

50

Chapter 2: Accessing the Screen

The next line calls XSt or eNane, which simply associates a text string with the window.
This text string typically appears in the title bar of the window to assist the user in identifying and
finding windows. (We say “typically appears” because this behavior is dependent upon the win-
dow manager being used.)

After calling XCr eat eW ndow, the window has been allocated in memory but is not yet vis-
ible. To display the window, we must map it by calling XMapW ndow:

XMapWindow(dpy, w);

Receiving X Events

hello.cc calls the XSel ect | nput function to request notification for certain types of input
events. Specifically, we ask X to inform us of keypress events, which are generated whenever a
key is pressed within our window:

XSelectInput(dpy, w, KeyPressMask);
The constant Key Pr essMask, along with other masks for watching other events, are defined in
/usr/include/X11/X.h. The list of all event masks is as follows:

* EVENT DEFINITIONS

/

/* Input Event Masks. Used as event-mask window attribute and as arguments
to Grab requests. Not to be confused with event names. */

#define NoEventMask oL

#define KeyPressMask (1L<0)
#define KeyReleaseMask (1L<1)
#define ButtonPressMask (1L<2)
#define ButtonReleaseMask (1L<3)
#define EnterWindowMask (1L<4)
#define LeaveWindowMask (1L<5)
#define PointerMotionMask (1L<6)
#define PointerMotionHintMask (1L<7)
#define ButtonlMotionMask (1L<8)
#define Button2MotionMask (1L<9)
#define Button3MotionMask (1L<10)
#define Button4MotionMask (1L<11)
#define Button5MotionMask (1L<12)
#define ButtonMotionMask (1L<13)
#define KeymapStateMask (1L<14)
#define ExposureMask (1L<15)
#define VisibilityChangeMask (1L<16)
#define StructureNotifyMask (1L<17)
#define ResizeRedirectMask (1L<18)
#define SubstructureNotifyMask (1L<19)
#define SubstructureRedirectMask (1L<20)
#define FocusChangeMask (1L<21)
#define PropertyChangeMask (1L<22)
#define ColormapChangeMask (1L<23)
#define OwnerGrabButtonMask (1L<24)

XSel ect | nput is not the only way to request event notification. We could have achieved the
same effect at window creation time by specifying these parameters in the val uermask and
wi ndow at t ri but es parameters passed to XCr eat e W ndow. We would have declared and
initialized a variable to hold the window parameters:

Chapter 2: Accessing the Screen ' B

XSetWindowAttributes a;
a.event_mask = KeyPressMask;

We then would have passed the values CV\Event Mask, &a as the last two parameters to
XCr eat eW ndow.

Notice that if you do not specify KeyPr essMask in either the window attributes or through
XSel ect | nput , the program will not respond to keyboard events at all. Indeed, any event type
for which you do not request notification will not be sent to your window.

Responding to X Events

The last part of hel | 0. cc is an event loop which checks for keypress events and responds to
them. For this, we use the XCheckWindowEvent function, which searches for any pending
events corresponding to the given window and event mask. If XCheckW ndowEvent finds an
event, it returns it in an XEvent structure, which you specify as the last parameter of the function
call. Other routines which search for relevant events are XNext Event, XPeekEvent,
XW ndowEvent , XCheckW ndowEvent , XMaskEvent , XCheckMaskEvent , XCheck-
TypedEvent , and XCheckTypedW ndowEvent . These routines differ in the way that they
look for events, whether or not they leave the event on the queue, and whether or not they block, or
wait until a matching event can be found. The following list summarizes the available event
checking routines:

XNext Event : Removes and returns the first event from the queue. Blocks if no events could

be found.

XPeekEvent : Returns but does not remove the first event from the event queue. Blocks if

no events could be found.

XW ndowEvent : Searches for, removes, and returns an event matching a particular window

and event mask. Blocks if no matching events could be found.

XCheckW ndowEvent : Searches for, removes, and returns the first event matching a par-

ticular window and event mask. Does not block. Returns TRUE if an event could be found,

FALSE otherwise.

XMaskEvent : Searches for, removes, and returns an event matching a particular event

mask. Blocks if no matching events could be found.

XCheckMaskEvent : Searches for, removes, and returns the first event matching a particu-

lar event mask. Does not block. Returns TRUE if an event could be found, FALSE otherwise.

XCheckTypedEvent : Searches for, removes, and returns the first event matching a partic-

ular type. Does not block. Returns TRUE if an event could be found, FALSE otherwise.

XCheckTypedW ndowEvent : Searches for, removes, and returns the first event matching

a particular window and event type. Does not block. Returns TRUE if an event could be

found, FALSE otherwise.
By using one of the event functions above, we receive an XEvent structure as a result (assuming
some matching event could be found). The XEvent contains detailed information about the par-
ticular event which occurred; the application program then extracts this information out of the
event and responds accordingly. The XEvent structure, defined in Xl i b. h, is actually a union of

52 | Chapter 2: Accessing the Screen

several structures, with a type field to distinguish the actual type of the event (i.e., which element
of the union we should access).
/*
* this union is defined so X1ib can always use the same sized
* event structure internally, to avoid memory fragmentation.
*
/
typedef union XEvent {
int type; /* must not be changed; first element */
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];
} Xevent;

The valid values for the type field are defined in X. h:

/* Event names. Used in "type" field in XEvent structures. Not to be
confused with event masks above. They start from 2 because 0 and 1
are reserved in the protocol for errors and replies. */

#define KeyPress 2
#define KeyRelease 3
#define ButtonPress 4
#define ButtonRelease 5
#define MotionNotify 6
#define EnterNotify 7
#define LeaveNotify 8

#define FocusIn 9
#define FocusOut 10
#define KeymapNotify 11
#define Expose 12

#define GraphicsExpose 13

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

NoExpose
VisibilityNotify
CreateNotify
DestroyNotify
UnmapNotify
MapNotify
MapRequest
ReparentNotify
ConfigureNotify
ConfigureRequest
GravityNotify
ResizeRequest
CirculateNotify
CirculateRequest
PropertyNotify
SelectionClear
SelectionRequest
SelectionNotify
ColormapNotify
ClientMessage
MappingNotify
LASTEvent

Chapter 2: Accessing the Screen ' :

/* must be bigger than any event # */

NOTE The use of a type field is generally frowned upon in object-oriented designs, since
the mechanism of inheritance is used to specify subtypes in a much safer and more flexible
way. Nothing prevents us, for instance, from accidentally changing the type field or accessing
the wrong member of the union. Manipulation of types through type fields cannot be checked
for validity by the compiler, in contrast to a class-based approach. The idea of “class as type”
is therefore central to object orientation in strongly typed languages. The reason X uses a type
field is quite simple: X is written in the C language, which unlike C++ has no true support for
object-oriented mechanisms such as inheritance.

In the case of keyboard events, the returned event is of type KeyPr ess, corresponding to the
member xkey in the XEvent structure. Xxkey is of type XKeyEvent , which is defined as

follows:
typedef

struct {
int type;

unsigned long serial;

Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;

int x, y;

int x_root, y_root;
unsigned int state;
unsigned int keycode;

Bool same_screen;

} XKeyEvent;

typedef XKeyEvent XKeyPressedEvent;

/*
/*
/*

of event */

of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

"event" window it is reported relative to */
root window that the event occured on */
child window */

milliseconds */

pointer x, y coordinates in event window */
coordinates relative to root */

key or xbutton mask */

detail */

same screen flag */

typedef XKeyEvent XKeyReleasedEvent;

The returned event contains detailed information about which key was pressed, and where, when,
and how it was pressed. We could decode all of this information manually, but we don’t have to. X
provides a convenient function to decode keypress events: XLookupStri ng. We use this

54

¢

Chapter 2: Accessing the Screen

function to extract keypress information out of the event structure, and only respond to the q key,
which ends the program. The event loop in hel | 0. cc looks as follows:

XEvent event;

char ch;

KeySym keysym;
XComposeStatus xcompstat;

while(1) {
if(XCheckWindowEvent (dpy,w,KeyPressMask,&event)) {
XLookupString(&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {
exit(0);

TIP Remember that all of these X functions have entries in the online manual.

We’ve now covered all of the important topics relevant to a basic X program. The sample program
hel | 0 is not much more complicated than the pseudocode presented at the beginning of the dis-
cussion. There are a few extra variables and parameters, but the overall structure is quite simple.

Critique of the Sample Program

You may have noticed that the window created by the program hel | 0 is not truly empty, but
instead seems to contain the contents of the window lying “underneath” it. On my computer, the
image looks like Figure 2-6. Exactly what you see depends on your particular video card, since the
X server handles video memory differently for different cards.

—~ A EIYEEEEEEEEEEEE | | Figure 2-6: The window created by the

sample program is not empty, but instead
"/ 11k3d.CO098 sourcesapt| appears to contain “leftover” graphics from

wook_text/current/wordwareschz > | another window.

= L TIRAL S, s S I TR

hizwe better reusbility and

=acts a bit more
it at object-cranted
T SWPEIASAIN & UL oTipinal

mam helle. oo This : %

The reason for the strange window contents is simple: we did not explicitly specify that the
window should be drawn. This means that the background is not even empty, but is instead com-
pletely undefined. In particular, each window under X is always responsible for drawing itself
when requested to do so. This request comes, as you might have guessed, in the form of an

Chapter 2: Accessing the Screen ' ‘

event—specifically, a so-called expose event. This request was indeed sent to our sample pro-
gram, but our program did not watch for this event and therefore never even knew about the
request.

Another thing you have probably noticed about hel | 0. cc is that the code is about as
non-object-oriented as can be. Since this book uses C++ as the language of choice, we should
make use of the object-oriented features of the C++ language to achieve better reusability and
extendibility of our program modules.

Let us now rewrite the program so that it is better structured and reacts a bit more intelligently
to events. We will first restructure the original program in an object-oriented (class-based) fash-
ion, then implement an improved event handler by subclassing our original application class.

An Object-Oriented Rewrite

Listings 2-2 through 2-11 are an object-oriented rewrite of the program hel | 0. cc. This code is
located in directory $L3DY sour ce/ app/ hel | o_oo.
Listing 2-2: ch2_app. h

#ifndef _ CH2_APP_H
#define __CH2_APP_H

#include <stdio.h>

class ch2_app {
protected:
virtual void create window(void) = 0;
virtual void ask_to_be notified of interesting events(void) = 0;
virtual void event_Toop(void) = 0;

pubTic:
virtual ~ch2_app(void) {};
virtual void execute(void);
1s
#endif

Listing 2-3: ch2_app. cc
#include "ch2_app.h"

void ch2_app::execute(void) {
create_window();
ask_to_be notified of interesting events();
event_Toop();

}

Listing 2-4: ch2_app_x. h
#ifndef _ CH2_APP_X H
#define _ CH2_APP X_H
#include "ch2_app.h"

#include <X11/Intrinsic.h>
#include <X11/X1ib.h>

class ch2_app_x : public ch2_app {
protected:
const static int screen_xsize = 320;
const static int screen_ysize = 200;
Visual *vis;

56

/

Chapter 2: Accessing the Screen

Display *dpy;
Window w;

void create_window(void);
void ask_to_be notified of interesting events(void);
void event_loop(void);

public:
virtual ~ch2_app_x(void) {};
1s
#endif
Listing 2-5: ch2_app_x. cc
#include "ch2_app_x.h"
#include <stdio.h>

void ch2_app_x::create_window(void) {
dpy = XopenDisplay(NULL);

vis = DefaultVisual(dpy,0);

w = XcreateWindow(dpy,
DefaultRootWindow(dpy),
100, 100,
screen_xsize, screen_ysize,
0,
CopyFromParent,
CopyFromParent,
vis,
0, NULL);

XMapWindow(dpy, w);
}

void ch2_app_x::ask_to_be notified of interesting events(void)
XSelectInput(dpy, w, KeyPressMask);
}

void ch2_app_x::event_loop(void) {
XEvent event;
char ch;
KeySym keysym;
XComposeStatus xcompstat;

while(1) {
if(XCheckWindowEvent (dpy,w,KeyPressMask,&event)) {
XLookupString(&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {
exit(0);

Chapter 2: Accessing the Screen |

]

Listing 2-6: ch2_appfactory. h
#ifndef _ CH2_APPFACTORY H
#define _ CH2_APPFACTORY H

#include "ch2_app.h"

class ch2_appfactory {
public:
virtual ch2_app *create(void) = 0;

1s
#endif

Listing 2-7: ch2_appfactory_x.h
#ifndef _ CH2_APPFACTORY X H
#define _ CH2_APPFACTORY X _H

#include "ch2_appfactory.h"

class ch2_appfactory x : public ch2_appfactory {
ch2_app *create(void);
}s
#endif
Listing 2-8: ch2_appf act ory_x. cc

#include "ch2_appfactory_x.h"
#include "ch2_app_x.h"

ch2_app *ch2_appfactory x::create(void) {
return new ch2_app_x;
}
Listing 2-9: ch2_f act or ymanager . h

#ifndef _ CH2_FACTORYMANAGER_H
#define _ CH2_FACTORYMANAGER_H
#include "ch2_appfactory.h"

class ch2_factorymanager {
public:
static ch2_appfactory *appfactory;
void choose factories(void);

1s
#endif

Listing 2-10: ch2_f act or ymanager . cc
#include "ch2_factorymanager.h"

#include "ch2_appfactory x.h"
ch2_appfactory *ch2_factorymanager::appfactory = 0;

void ch2_factorymanager::choose factories(void) {
int i;

printf("Which Appfactory should create your application?");
printf("1. Appfactory creating the simple X app");

scanf("%d", &i);

9

.
¥

Fard

58 r Chapter 2: Accessing the Screen
¢

switch(i) {
case 1: {
appfactory = new ch2_appfactory x;

1s

break;
1
1

Listing 2-11: ch2_hel | 0. cc
#include "ch2_factorymanager.h"
main() {

ch2_app *application;
ch2_factorymanager fm;

fm.choose factories();
application = fm.appfactory->create();
application->execute();

}
Figure 2-7 illustrates the class hierarchy for these files. The notation used in the class diagram is
similar to UML, the Unified Modeling Language. The following list explains the diagrammatical
conventions.

A class is represented by a rectangle with three sections. From top to bottom, these sections
are: class names, class attributes (variables), and class methods (functions).

A line without an arrowhead between two classes indicates a component relationship. A com-
ponent relationship relates two classes: the containing class, marked with a pound sign (#),
and the contained class, not marked with a pound sign. The numbers on each side of the com-
ponent relationship indicate the cardinality of the relationship. The label on the component
relationship indicates the name of the member variable within the containing class. An aster-
isk before the component relationship name indicates that a pointer to the component object,
rather than the component object itself, is stored.

The solid arrows indicate inheritance relationships and are labeled with the text “is_a.”

For instance, the class ch2_f act or ymanager contains a variable named appf act ory (the
label on the component relationship). This variable is a pointer (indicated by the asterisk in the
label) to an object of type ch2_appf act ory (the contained class, indicated by the lack of a
pound sign on that side of the relationship). The cardinality of the relationship is 1:1—that is, one
object of type ch2_factorymanager has a pointer to exactly one object of type
ch2_appfactory. Furthermore, the class ch2_appfactory_x inherits from class
ch2_appf act ory, indicated by the “is_a” arrow.

Chapter 2: Accessing the Screen E‘

Figure 2-7: Class diagram for
sample program ch2_hel | o.

C++ main program

main()

#1 W1

* application fm
n 4
ch2_app ch2_factorymanager
wvirtual create_window() =0 choose_factories()

virtual ask_to_be notified of interesting_events() = 0
virtual event_loop() = 0
virtual execute()

T#1

“appfactory
A
) 1
is a
1 ch2_applactory
ch2 app x
Visual *vis virtual ch2_app “create() = 0
Display “dpy x
Window w
is a
create_window()
ask_to_be notified_of_interesting_events()
event_loop{) ch2_appfactory_x

ch2_app “create()

To compile the code, follow the same instructions as before. Change to the source directory by
typing c¢d $L3D/source/app/hello_oo and pressing Enter. Type make and press Enter. After suc-
cessful compilation, type ch2_hello_oo and press Enter to execute the program. Notice the new
question which appears:

Which Appfactory should create your application?
1. Appfactory creating the simple X app

The section titled “Factory Design Pattern™ discusses the concept of an application factory in
detail. For now, type 1 and press Enter. Notice that the program then does exactly the same thing
ashel | 0. cc—it creates an empty window with undefined contents. Press q to exit the program.

Program ch2_hel | o_oo illustrates a number of important object-oriented techniques that
will be used throughout the rest of this book. Therefore, understanding the design techniques used
is very important and the subject of the following sections.

An Abstract Application Class

Let us begin with the class ch2_app (filesch2_app. h and ch2_app. cc). This is an abstract
class, as defined earlier, since it has at least one pure virtual function. This class represents the gen-
eral structure of an event-driven application. The function execut e starts execution of the
application. Notice that the code for execut e calls, quite logically, the following three functions
in order:

void ch2_app::execute(void) {
create_window() ;
ask_to_be notified_of _interesting events();
event_Toop();

}

60

!
¢

@

Chapter 2: Accessing the Screen

All of these function calls are purely virtual. This means that the ch2_app class cannot function
as it is, but must be subclassed to “fill in the blanks” left by the virtual functions. What the abstract
class does is define that an execution of an event-driven program consists of the three steps listed
above. In the original discussion of event-driven programs, we said that exactly these three steps
formed the general structure of all event-driven programs. We have therefore captured the essence
of the problem domain clearly and concisely within this abstract class.

CAUTION If you use polymorphic assignment, make sure your destructors are virtual.

Notice that the destructor for ch2_app is virtual, since we will be using polymorphic assign-
ments, and destructor calls should also be virtual in this case. Without a virtual destructor, the
compiler would call the destructor based upon the type of the pointer, not the type of the object
pointed to. In other words, resolution of a destructor call in the face of polymorphic assignment
takes place in the same manner as resolution of any other function call with polymorphic
assignment.

A Concrete Application Class

The next class of interest is ch2_app_x, which is derived from class ch2_app. This class
defines an event-driven application implemented under the X Window System. Notice that noth-
ing in the abstract ch2_app class is in any way dependent on X; there is not a single #i ncl ude
of an X header file. Only in the ch2_app_X descendant do we introduce platform-specific code.
Accordingly, ch2_app_x includes the X header files and defines the protected variables neces-
sary for windowed display under X: the visual, the display, and the window. Finally, class
ch2_app_x overrides the pure virtual functions declared in ch2_app: cr eat e_w ndow,
ask_to_be_notified of _interesting_events,andevent_| oop.

In other words, ch2_app_ X fills in the spaces left open by the abstract ch2_app class, and
in particular, fills in these spaces with X-specific code. Class ch2_app_X, therefore, is a con-
crete class, one of many possible concretely realized implementations of the abstract ch2_app
concept. Class ch2_app_X can be instantiated and used at run time, whereas ch2_app cannot;
an attempt to create an object of type ch2_app would cause the linker to abort with an error mes-
sage that the virtual table for class ch2_app could not be resolved. (Try it.)

The codein classch2_app_x is the same as appeared in hel | 0. ¢cc—the only difference is
that the code has been logically restructured to fit within the three-step framework provided by the
abstract class. This is an important property of object-oriented designs: they tend to restructure
designs into abstract frameworks representing the problem domain.

Factory Design Pattern

The next few classes are factory classes that represent an important design pattern in
object-oriented architectures: the so-called abstract factory pattern. A design pattern is an archi-
tectural combination of classes in a particular way which solves a recurring type of problem
occurring in object-oriented designs. Design Patterns: Elements of Reusable Object-Oriented
Software [GAMMO95] was the milestone publication which introduced this object-oriented tech-
nique in a coherent manner for the first time. The key thing to understand about design patterns is

Chapter 2: Accessing the Screen ' 6

that a number of classes must cooperate in a particular way to solve a particular type of problem.
The specification of the roles of the classes and the communication between them, which is appli-
cable in a broad range of contexts, forms a design pattern.

The factory design pattern is something like a “virtual constructor.” The idea is that instead of
creating an object directly (via the C++ operator new), we ask some other object, called the fac-
tory, to create an object for us and return a pointer to the newly created object. What is the
advantage of such an apparently roundabout scheme?

The advantage is that by going through a factory, the program requesting the object only
needs to maintain an abstract class pointer to the object being created. The factory creates a con-
crete object (indeed, only concrete objects can be created at all), but returns a pointer of the more
general, less specific abstract type. This means that the factory can be extended to create new
types of concrete objects, without needing to modify the main program.

Consider the following analogy. Assume you are a carpenter, and that you need to build a lad-
der to climb on your roof. You actually don’t care too much for building ladders; you just want to
reach your roof to get your job done. The process of building your own ladder is analogous to cre-
ating an object directly with the C++ operator new. That is to say, if you want to build your own
ladder, you must specifically know everything about the ladder to create it: the material, the spac-
ing between the rungs, the length of the ladder, and so forth. If you only know how to build one
type of ladder, say a wooden ladder, and one day decide that you need a metal ladder, you must
learn to build a metal ladder. In a similar manner, a program which directly creates objects using
the C++ new operator must know, specifically, the exact class of the object being created, even
though this knowledge might distract from the main task of the program. If, in the future, the pro-
gram needs to be modified to work with new kinds of objects, the code of the main program must
be changed to invoke newon the new class, just as the carpenter needing new metal ladders must
first learn how to create metal ladders.

The factory analogy extends to the carpenter as follows: instead of building your own ladder
to climb on the roof, you call up a ladder factory and tell them, “give me a ladder.” Depending on
what factory you call, they might give you a wooden ladder, a metal ladder, with wide or narrow
spacing between the rungs, extendable or not, and so on. But you as the carpenter no longer need
to know, or care, about the exact fabrication process or even what kind of ladder you receive. All
you know and care about is that you are getting a “ladder” which fulfills your specifications and
with which you can do your job. The exact type of ladder and its creation are unknown to you; you
only deal with the ladder factory.

The reasoning is the same with software factories and the factory design pattern. A class
requesting object creation through a factory does not want to be burdened by knowing the exact
concrete type (i.e., the exact concrete class) of the objects being created by the factory; its only
condition is that the returned object belong to a particular abstract class. The carpenter doesn’t
care if the ladder is wooden or metal (the concrete class); he only cares about the fact that it is a
ladder (the abstract class).

Moving object creation into an external factory object eliminates the dependency between the
main program (or more generally the client class) and the myriad of possible concrete classes
which the factory might produce. The factory can be extended to create new kinds of objects

62

¢

Chapter 2: Accessing the Screen

without even needing a recompile of the client class. Plug-in architectures, which have become
quite popular recently for programs such as WWW browsers, also use a similar scheme: the
browser cannot possibly anticipate the different kinds of plug-ins which might be plugged into the
browser, yet through a factory the browser can indeed request creation of some plug-in object
without knowing its concrete type.

An Application Factory and Factory Manager

In the case of our program ch2_hel | 0_00, the factory creates an application object conforming
to a ch2_app abstract interface. The abstract factory class is therefore called
ch2_appf act or y—itis an application factory, which creates an application object. The object
creation function is, surprisingly enough, the cr eat e function. Notice that cr eat e returns an
abstract pointer to a ch2_app object, not a concrete pointer to a ch2_app_Xx object:
class ch2_appfactory { o
pubTic:
virtual ch2_app *create(void) = 0;
}s
We then create a concrete factory, which, concretely speaking, returns objects of type
ch2_app_x. This factory is implemented in class ch2_appf act ory_x. Notice that the
creat e function of this concrete factory actually creates an object of the concrete type
ch2_app_x, yet returns a pointer of abstract type ch2_app. This is called upcasting and is a
form of type-safe polymorphic assignment, where a pointer of one type points to an object of a dif-
ferent (but related) type.
ch2_app *ch2_appfactory x::create(void) {
return new ch2_app_x;
}
Some class in the program must know about the existence of this concrete factory; otherwise,
there is no possible way any part of the program could ever use it. That is to say, some class, even-
tually, has to actually create the concrete factory so that it may be used by other classes, albeit
through an abstract interface. Managing the concrete factory or factories is the role of the factory
manager class, ch2_f act or ynmanager. This class is a singleton class, which means that it will
be created once during program execution. This single instance is declared in the main program, in
the new version of ch2_hel | 0. cc:
main() {
ch2_app *application;
ch2_factorymanager fm;
The ch2_f act or ymanager class has a static member appf act ory which points to the
actual application factory that the main program will call in order to receive its application object.
This appfactory is initialized by the factory manager’s choose factories () method, which
interactively asks the user which factory he wants to use. This information could also be read out
of a configuration file or set to a default value.
fm.choose factories();

Chapter 2: Accessing the Screen Y.

Execution of the Main Program

As we just saw, the first thing the main program does is create a factory manager and ask it
(through the user) to select the appropriate application factory. Having chosen an application fac-
tory, the next step is for the main program to ask the factory to create an application. We don’t
know and don’t care what kind of application, because we know that we have already selected the
right factory and that the factory will give us the proper type of object.

application = fm.appfactory->create();
application->execute();

}
Finally, once we have our application object, we call execut e on it to start. This is a virtual func-
tion call, since we have no idea what kind of application lies behind the abstract interface. But we
know that it is an application, and we know therefore that it must support the execut e method.
We call it, the virtual function call is resolved through the virtual function table, and execution
begins in the execut e method of the concrete class, which we, in this case, know to be
ch2_app_x (since that is the only factory we have defined so far).

The execut e method of ch2_app_Xx has not been overridden, so the version from
ch2_app, the ancestor class, is called. From here, the three-step process, which we already
described above, begins: create_wi ndow, ask_to_be_notified_of_interest-
i ng_event s, and event _| oop.

You might find it useful to step through this program with the debugger. Set a breakpoint on
the mai n function and single step through every instruction. Figure 2-8 illustrates the execution
order of the program graphically. Each oval represents an object (not a class) at run time. The
numbered arrows represent the order of function calls within the program. To summarize the
entire execution process, based on Figure 2-8:

1. The main program object asks the factory manager to choose the appropriate factories.

2. The factory manager creates, via the new operator, the appropriate concrete appfactory, in
this case of type ch2_appf act ory_x.

3. The main program asks the newly created appfactory to create an application.
The appfactory creates, via the new operator, an application of type ch2_app_Xx.

5. The main program asks the newly created application, fresh from the factory, to begin
execution.

6. Theapplication’s execut e method first asks the application (i.e., itself) to create a window.

7. The application’s execut e method next asks the application to take the necessary steps to
be notified in case of interesting events.

8. The application’s execut e method finally asks the application to enter its event loop.

64

¢

]

Chapter 2: Accessing the Screen

Figure 2-8:

a_ch2_factory_manager Run-time order
. of function

calls among
objects for

create() sample
2. new ch2_appfactory_x

——

A_C++_main_program

1. choose_factories()

5. executa()

B program
6. create_windowl() | »! ch2_hel / o_
" (o]0
7. ask_to_be_notified_of | r
; ! 4. new ch2_app_x
interesting_events() > ach2 app x <€ k a_ch2_appfactory_x
8. event_loop() | >

Object-Oriented: Is It Worth It?

If this is your first encounter with design patterns or the general indirection techniques achievable
through virtual functions, your head might be spinning at this point. You might wonder if such
techniques are really worth the apparent extra effort they incur. Let’s consider the alternative for a
moment.

In this example, we used a factory design pattern to move creation of the application object
out of the main program. It would have been very tempting indeed to have allowed the main pro-
gram to directly create the concrete ch2_app_X object itself. But by doing this, we would have
infected the main program with a physical dependency (in the form of an #i ncl ude) on the
ch2_app_x. h file. We would have forever tied our application code to the concrete
ch2_app_x class. Suppose that we then write a new descendant of the abstract ch2_app class,
which implements the event loop under a completely different operating system, say Microsoft
Windows. (Indeed, the Appendix discusses how to do exactly this.) We then have a problem—our
main program is physically tied to the ch2_app_x class because of the #i ncl ude. The main
program will not even compile under Microsoft Windows, which does not have the X include
files. We would have to have conditional compilation statements in the main program—if X11,
then include the ch2_app_x header file, otherwise include the ch2_app_wi ndows file. Simi-
lar type-based conditional statements would litter our code as well—if X11, then do this; if
Windows, then that. The problem gets even worse. Any new variation of the abstract class requires
extending all of the conditional compilation and execution statements. From personal experience,
I can say that maintaining such code over a period of years becomes a programmer’s worst
nightmare.

We solve this once and for all by moving all platform-specific code—that is, all concrete or
non-abstract code—into subclasses in separate files. The abstract class simply contains
placeholders, in the form of virtual functions, for those functions which will be implemented in a
platform-specific way in the concrete subclasses. We then ensure that our main program only
directly uses the abstract class, and not any concrete class. In this way the program is kept at a
higher level of abstraction, can be compiled on a variety of platforms, and can be extended with

Chapter 2: Accessing the Screen ' ‘

minimal impact through subclassing. Through virtual function calls, the proper platform-specific
code is called at run time. The hard part is finding that abstract class in the first place, i.e., recog-
nizing that an abstraction exists or can be justified.

The problems which object-oriented design addresses might appear insignificant with small
example programs of a few hundred lines. But exactly these problems—and the solutions offered
by object orientation—become absolutely critical with programs consisting of thousands, tens of
thousands, or even hundreds of thousands or millions of lines of code, developed by different peo-
ple over several years. Object orientation is currently one of the most effective weapons that
software architects have to combat the number one enemy of software development: complexity.

To check if your object-oriented design is really as modular as you think it is, try making all of
your source and object files read-only, with the chnmod command. Then create a new concrete
subclass implementing your new functionality. See how many existing files you need to
change—this will be evident because to change a file, you must first make it writable again. If you
find that you have to change more than a few files, your concrete classes have probably infected
your main program too greatly. While a few extra #i ncl ude dependencies on concrete classes
might seem harmless, they very quickly destroy the extensibility and reusability of the class, espe-
cially in other contexts. Trying to port the code at an early stage to another operating system is also
a good test (though not necessarily comprehensive) of system modularity.

Creating modular object-oriented architectures requires a different perspective on program-
ming. It requires a search for abstractions, for underlying fundamental characteristics of the
problem at hand. The sequential step-by-step execution of “the main program” is secondary. You
need to look beyond the immediate problem for more general abstractions. You need to constantly
ask yourself, “how can the functionality of my program be seen as operations on some abstract
data type? Do these operations generally characterize all possible variants of the abstracted data
type? If I were to use this code in a different environment, would my abstractions still be valid?”’

Abstraction, indirection, virtual functions, abstract classes, concrete classes, factories, design
patterns—these are some of the object-oriented techniques which we use for the code throughout
this book. Through such techniques we will develop graphics classes which work with and with-
out hardware acceleration, under Linux and Microsoft Windows. The object-oriented perspective
on software construction might seem a bit awkward at first, but it is worth it, and it does yield
architectures that are much more resilient to change than traditional function-oriented programs.

Introduction to XImages

The previous program, while better structured, still suffers from the same technical shortcoming
as the first: its display is undefined because it does not respond to X events. The next program cor-
rects this. It displays a black background and prints in real time all events being sent to the
window. It is quite instructive to see exactly what events X is sending to the window and when—
when the mouse pointer moves, when the window loses or gains focus, when a key is pressed,
when part of the window is exposed, and so forth.

This program has three goals: to illustrate extension of existing code through subclassing, to
illustrate basic use of XImages, and to reinforce the event-handling concepts by displaying in real
time all events.

66

¢

Chapter 2: Accessing the Screen

A Practical Example of OO Reuse

The code for this program is in directory $L3D/ sour ce/ app/ hel | o_oo_event . The code
in this directory is not complete in and of itself, but rather uses the classes from the previous pro-
gram and extends them by adding new classes. This is a key goal of object-oriented software:
instead of copying heaps of source code and destroying carefully created structures in the original
code with new specializations, we leave the original code untouched and build upon it with new
derived classes.

The Makefile is the key to the practical side of this reuse process. To reuse the original source
and object files in another project located in another directory, the compiler and linker need to be
able to find the original files. In our case, the original directory is hel | 0_00 and the new direc-
tory is hel | o_oo_event . The Makefile for the new project is located in hel | 0_oo_event,
and contains specific compiler and linker flags referring to the original hel | 0_0o0 directory. The
new Makefile is shown in Listing 2-12.

Listing 2-12: The Makefile for the hel | 0_oo_event program
References to the old hello_oo directory, which are necessary so that the original code may be reused, are underlined.
OLDDIR 00 = ../hello_oo

LD = gcc
LDFLAGS = -L/usr/X11/1ib -Tg++ -1X11 -1Xt -1m
CPPFLAGS = -g -I$(OLDDIR 00)

ch2_hello_oo_event:\
$(OLDDIR 00)/ch2_hello.o\
$(OLDDIR 00) /ch2_app.o\
$(OLDDIR_00) /ch2_app_x.0\
$ (OLDDIR_00) /ch2_appfactory_x.o\
ch2_factorymanager.o \
ch2_app_xevent.o \
ch2_appfactory_xevent.o

$(LD) $(LDFLAGS) $~ -0 $@

The first line in the Makefile defines a (string) variable named CLDDI R_QO, containing the name
of the original directory. Then, the line with CPPFLAGS, which indicates the flags to be passed to
the C++ compiler, includes the directive - 1 $(OLDDI R_QO) . This indicates that header files
during compilation should also be searched for in this directory. Finally, the dependency lines for
the Makefile indicate that the object files containing the classes we want to reuse are also located
in the original directory, indicated by the $(OLDDI R_0OO) preceding the object file name. For the
newly created or changed source files, we want to use the new files, and therefore do not specify
$(OLDDI R_0OO) on the dependency line. In this particular example, we are reusing four object
files, containing four classes, exactly as is from the previous example. We changed slightly the
original class ch2_f act or ymanager, located in file ch2_f act or ymanager . cc, and
compiled into object file ch2_f act or ymanager . o. Since we changed this class, we don’t
specify $(OLDDI R_QO0O) on the dependency line, so that our new version is compiled and linked.
The other two object files, ch2_app_event . o and ch2_appf act ory_xevent. o, corre-
spond to source files containing completely new classes, so naturally these must also come from
the new directory.

7N

Chapter 2: Accessing the Screen ' ‘

When you compile this program (as usual, simply with make), you will notice that none of the
object files in the old directory need to be recompiled. Thus, code reuse at the programming lan-
guage level (through inheritance) also translates directly into object-file reuse at the linker level.
This means that the new directory contains exactly the new code. All of the old code we reused
appears, unchanged and in its pristine state, in the original directory. “Reused code” is therefore
really “reused” and not “copied.” This makes maintenance easier; instead of needing to maintain
the original and copied versions of the code, you can physically treat the new code and the old
code as separate modules.

TIP |If you find that it is impossible for you to extend a program by creating new subclasses,
instead requiring you to copy the original source code into a new file and to modify the origi-
nal source code directly, you almost certainly do not have an object-oriented design.

The following list summarizes the theoretical side (source code level) and practical side (file-
system level) of object-oriented code reuse:

At the source code level, we do reuse a class either by declaring a new class inheriting from
the original class (the inheritance relationship), or by creating an instance of the original class
as is and using its features in a new context (the client relationship, not illustrated above). We
don’t copy the source code from the old class into a new class.

At the file-system level, we do reuse a class by physically compiling and linking the program
with the original class’s header, source, and object files. We don’t copy the original class’s
files and modify the copied file.

At the source code level, the technical mechanisms allowing for code reuse are virtual func-
tions and inheritance. Through inheritance, a derived class reuses (inherits) all the attributes
and functions of the ancestor class. Through virtual functions, a derived class can selectively
redefine specific parts of the original class, in a type-compatible way, without needing access
to its source code. Through new declarations in the derived class, the derived class can offer
new features not present in the ancestor class. Through object-oriented C++ mechanisms we
thus achieve code reuse, selective code adaptation, and code extension, all without modifying
the original source code.

At the file-system level, the technical mechanisms allowing for code reuse are search direc-
tives for the compilation and linking commands, located in the makefile.

NOTE Code reuse through inheritance is called the inheritance relationship between
classes and represents a type-compatible form of reuse: instances of classes of the derived
type may be assigned to variables of the ancestor type. Another form of reuse is the client
relationship and simply entails creating an instance of an existing class, the supplier class,
and reusing its features (its functions and variables) in a new context to perform a new job.
However, a client class simply reusing the features of a supplier class will not, in general, be
type compatible with the supplier class—although it could be, if both classes inherited (possi-
bly through multiple inheritance) from a common ancestor class.

68

¢

Chapter 2: Accessing the Screen

Running the New Subclassed Program

After compilation of the new subclassed program, the executable file named ch2_hel | o_
00_event is created. Execute the program as follows.

1.
2.

Type ch2_hello_oo_event and press Enter.

Notice the new appfactory which appears in the list at program start. Previously, only one
factory was listed, but now two appear. Remember: our main program file, ch2_hel | 0. o,
has not been changed at all and was linked from the original object file in the original
directory, yet we have introduced new behavior indirectly into the unchanged main program
by supplying a new factory. This is very difficult or tedious to achieve with non-object-
oriented designs.

Which Appfactory should create your application?
1. Appfactory creating the simple X app
2. Appfactory creating the simple X app with event display

Type 2 and press Enter. This creates an instance of the new application class (described in
detail in the next section). Notice the messages which appear in the shell window. The first
few lines display information about the X display. Then follows a list of all X events received
by the program.

max depth of display 24

bytes per pixel: 4

Vis is TrueColor

1sb first

Event type PropertyNotify

Event type PropertyNotify

Event type PropertyNotify

Event type ReparentNotify

Event type PropertyNotify

Event type ConfigureNotify

Event type PropertyNotify

Event type PropertyNotify

Event type PropertyNotify

Event type PropertyNotify

Event type PropertyNotify

Event type MapNotify

Event type VisibilityNotify

Event type Expose

Event type PropertyNotify

Event type PropertyNotify

Event type FocusIn

Notice the new window which appears. See Figure 2-9. The background is black, not
undefined as previously, and a status line in the window displays the same event messages
which appear in the shell window.

Move the mouse cursor within the window. Notice the event messages that are generated, and
that the string “hello!” is printed underneath the mouse cursor.

Press some random keys (avoiding the key q) in the window. Notice the event messages that
are generated. Notice that keys such as Shift or Alt by themselves also generate events.

Type q to quit the program.

Chapter 2: Accessing the Screen s

— W - Bl X | Figure 2-9: The subclassed hel | o_oo_event

program, which displays X events in real time on a
black XImage background.

hellol

This program provides a good illustration of event-based programming under X by showing
all of the many events that a typical X window can receive. If you are new to event-based pro-
gramming, you may be surprised at the large number of events which are generated, all
automatically and transparently by the X Window System.

Let us now see exactly what new classes we have added to the program, and how they respond
to X events in a better way than the original program, which silently ignored most events.

New Classes

Figure 2-10 shows the updated class diagram for the new classes we have created. Listings 2-13
through 2-17 contain the code for the new classes.

Figure 2-10: Updated

G+ main program . .
class diagram with new

Imam[] event-handling classes.
/n 1 # 1\\
* applicagitn fm
}“ \\
/ AN
1 .
ch2_app ch2_factorymanager
virtual create_windowi) = 0 choose_factories()
virtual ask_to be_notified_of_interesting events() = 0 L
virtual event_loop() =0 #1
virtual executed)
* appfactory
A
15 a 1
ch2_applaciory
ch2_app_x
Visual *vis
Display *dpy wirtual ch2_app “create() =0
Window w 4
isa/ \\\hS a
create_window() / N
ask_to_be notified_of_interssting_events() -
event_loop() ch2_applactory_x ch2_applactory_xevent
A
5.4 ch2_app “create() ch2_app “create()

ch2_app xevent
Visual *vis
Display *dpy
Window w

create_window()
ask_to_be_notified_of_interesting_events()
event_loop()

70 | Chapter 2: Accessing the Screen

Listing 2-13: ch2_appf act ory_xevent . h

#ifndef _ CH2_APPFACTORY XEVENT H
#define _ CH2_APPFACTORY XEVENT H

#include "ch2_appfactory.h"

class ch2_appfactory xevent : public ch2_appfactory
ch2_app *create(void);
1s

#endif

Listing 2-14: ch2_appf act ory_xevent. cc

#include "ch2_appfactory_xevent.h"
#include "ch2_app_xevent.h"

ch2_app *ch2_appfactory xevent::create(void) {
return new ch2_app_xevent;

}

Listing 2-15: ch2_app_xevent . h

#ifndef _ CH2_APP_XEVENT H
#define __ CH2_APP_XEVENT H

#include "ch2_app_x.h"

class ch2_app_xevent : public ch2_app x {
protected:
char *screen;
XImage *ximg;
int depth, bytespp, scanline_pad;

const char *event_name(int type) const;

void create window(void);

void ask_to_be notified of interesting_events(void);
void event_Toop(void);

public:
virtual ~ch2_app_xevent(void);
}s
#endif
Listing 2-16: ch2_app_xevent . cc

#include "ch2_app_xevent.h"
#include <stdio.h>

const char *ch2_app_xevent::event name(int e_type) const {
static char text[80];

switch (e_type) {
//- event types from X11.h

case KeyPress : sprintf(text, "KeyPress"); break;

case KeyRelease : sprintf(text, "KeyRelease"); break;

case ButtonPress : sprintf(text, "ButtonPress"); break;
case ButtonRelease : sprintf(text, "ButtonRelease"); break;
case MotionNotify : sprintf(text, "MotionNotify"); break;

Chapter 2: Accessing the Screen :‘

case EnterNotify : sprintf(text, "EnterNotify"); break;
case LeaveNotify : sprintf(text, "LeaveNotify"); break;
case FocusIn : sprintf(text, "FocusIn"); break;
case FocusOut : sprintf(text, "FocusOut"); break;
case KeymapNotify : sprintf(text, "KeymapNotify"); break;
case Expose : sprintf(text, "Expose"); break;
case GraphicsExpose : sprintf(text, "GraphicsExpose"); break;
case NoExpose : sprintf(text, "NoExpose"); break;
case VisibilityNotify : sprintf(text, "VisibilityNotify"); break;
case CreateNotify : sprintf(text, "CreateNotify"); break;
case DestroyNotify : sprintf(text, "DestroyNotify"); break;
case UnmapNotify : sprintf(text, "UnmapNotify"); break;
case MapNotify : sprintf(text, "MapNotify"); break;
case MapRequest : sprintf(text, "MapRequest"); break;
case ReparentNotify : sprintf(text, "ReparentNotify"); break;
case ConfigureNotify : sprintf(text, "ConfigureNotify"); break;
case ConfigureRequest : sprintf(text, "ConfigureRequest"); break;
case GravityNotify : sprintf(text, "GravityNotify"); break;
case ResizeRequest : sprintf(text, "ResizeRequest"); break;
case CirculateNotify : sprintf(text, "CirculateNotify"); break;
case CirculateRequest : sprintf(text, "CirculateRequest"); break;
case PropertyNotify : sprintf(text, "PropertyNotify"); break;
case SelectionClear : sprintf(text, "SelectionClear"); break;
case SelectionRequest : sprintf(text, "SelectionRequest"); break;
case SelectionNotify : sprintf(text, "SelectionNotify"); break;
case ColormapNotify : sprintf(text, "ColormapNotify"); break;
case ClientMessage : sprintf(text, "ClientMessage"); break;
case MappingNotify : sprintf(text, "MappingNotify"); break;
case LASTEvent : sprintf(text, "LASTEvent"); break;

}

return text;

}

ch2_app_xevent::~ch2_app_xevent(void) {
if(screen) {delete [] screen; }

}

void ch2_app_xevent::create window(void) {
XPixmapFormatValues *pixmap_formats;
int i, count;
const int bits_per byte = 8;

//- establish connection to X server
dpy = XopenDisplay(NULL);
//- find deepest pixmap format allowable

pixmap_formats = XListPixmapFormats(dpy, &count);
for(i=0, depth=0; i<count; i++) {
if(pixmap_formats[i].depth > depth) {
depth = pixmap_formats[i].depth;
bytespp = pixmap_formats[i].bits_per pixel / bits_per byte;
scanline_pad = pixmap_formats[i].scanline pad;
1
1
Xfree(pixmap_formats);
printf("max depth of display %d", depth);

72 I~ Chapter 2: Accessing the Screen

printf("bytes per pixel: %d", bytespp);
//- print out some information about the visual

vis = DefaultVisual(dpy,0);

switch(vis->c_class) {
case PseudoColor: printf("Vis is pseudocolor");break;
case StaticColor: printf("Vis is StaticColor");break;
case GrayScale: printf("Vis is GrayScale");break;
case StaticGray: printf("Vis is StaticGray");break;
case DirectColor: printf("Vis is DirectColor");break;
case TrueColor: printf("Vis is TrueColor");break;

}

//- create and map the window using max. possible depth

w = XCreateWindow(dpy, DefaultRootWindow(dpy), 100, 100,
screen_xsize, screen_ysize,
0,
depth, CopyFromParent, vis,
0, NULL);
XStoreName (dpy, w,"hello_oo_event");
XMapWindow (dpy, w);

//- create XImage and offscreen buffer
screen = new char[screen_xsize*screen_ysize*bytespp];

if (ImageByteOrder(dpy) == LSBFirst) {
printf("1sb first");

telse {
printf("msb first");

1

ximg = XCreatelmage(dpy, vis, depth,
Zpixmap,
0,
screen,
screen_xsize, screen_ysize,
scanline_pad,
0);

XSetForeground(dpy, DefaultGC(dpy, 0), ~0);
XSetBackground (dpy, DefaultGC(dpy, 0), 0);
1

void ch2_app_xevent::ask_to_be notified of_interesting events(void) {
XSelectInput(dpy, w, OxOOFFFFFF ~ PointerMotionHintMask);
}

void ch2_app_xevent::event_Toop(void) {
XEvent event;
char ch;
KeySym keysym;
XComposeStatus xcompstat;

int mouse_x, mouse_y;
while(1) {
XNextEvent (dpy, &event);
char event_text[80];

Chapter 2: Accessing the Screen :‘

sprintf(event_text, "Event type %s ", event_name(event.type));
printf("%s", event text);

switch(event.type) {
case KeyPress: {
XLookupString (&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {
case 'q': {
exit(0);
1
1
}

break;

case MotionNotify: {
printf("x %d y %d", event.xmotion.x,event.xmotion.y);
mouse_x = event.xmotion.x;
mouse_y = event.xmotion.y;

XEvent e;

e.type = Expose;

.xexpose.send_event = TRUE;

.xexpose.display = dpy;

.xexpose.window = w;

.Xexpose.x = e.xexpose.y = e.xexpose.width = e.xexpose.height =
e.xexpose.count = 0;

™ ® @™ D

XSendEvent (dpy, w, TRUE, ExposureMask, &e);
1

break;

case Expose: {
if(event.xexpose.count==0) {
XPutImage(dpy, w, DefaultGC(dpy,0), ximg,
0,0,0,0, /* source x,y; destination x,y */
screen_xsize, screen_ysize);

XDrawString(dpy, w, DefaultGC(dpy, 0), mouse x, mouse y, "hello!", 6);
1
1

break;

}

XDrawImageString(dpy, w, DefaultGC(dpy, 0), 50, 50, event_ text,
strien(event _text));
1

}
Listing 2-17: The changed ch2_f act ory_nanager . cc

#include "ch2_factorymanager.h"

#include "ch2_appfactory x.h"
#include "ch2_appfactory_xevent.h"

ch2_appfactory *ch2_factorymanager::appfactory = 0;

void ch2_factorymanager::choose factories(void) {
int i;

printf("Which Appfactory should create your application?");

74

¢

Chapter 2: Accessing the Screen

printf("1. Appfactory creating the simple X app");
printf("2. Appfactory creating the simple X app with event display");

scanf("%d", &i);

switch(i) {
case 1: {
appfactory = new ch2_appfactory x;
1s

break;

case 2: {
appfactory = new ch2_appfactory xevent;
1s
break;
}
1

Referring to the class diagram, it should be clear what we have done: we have added a new class
ch2_app_xevent, derived from class ch2_app_x. We have also added a new application
factory class, ch2_appfactory_xevent, which descends directly from class
ch2_appf act ory and is responsible for creating objects of type ch2_app_xevent . We
have made a minor change to the factory manager to allow selection of the new factory. This is the
only change we made to the original source code and is indeed minimal.

The new factory class requires little explanation, as its function is exactly the same as the
existing factory class, only returning a different kind of application object. The new application
class is where the improved event handling takes place. Let’s take a closer look at the functions
defined in the ch2_app_xevent class.

X Server Depth and Visual Class

The first routine which is called is ch2_app_xevent: : creat e_wi ndow. This routine
begins as usual by connecting to the X server with XOpenDi spl ay. Then, we call
XLi st Pi xmapFor mat s to obtain a list of image formats supported by the X server. The image
formats are returned as a list of XPi xrmapFor mat Val ues structures, which is defined as
follows.

typedef struct {
int depth;
int bits_per pixel;
int scanline_pad;

} XpixmapFormatValues;

The reason we need to query the server in this way is that we are going to create a black back-
ground image to fill the window. In order to create any sort of image, we need to know some
details about how the image is to be stored so we know how much memory to allocate. In particu-
lar, we need to know how many bits to allocate for each pixel in the image. A pixel is the smallest
physically addressable element of an image; the section “Picture Elements—Pixels” covers this in
more detail.

The number of bits per pixel, returned in the bi t S_per _pi xel member of the structure, is
also known as the color depth or simply depth of the image. If we consider the 2D area of an image
to be its width and height, we can imagine the color as being an additional dimension, thus leading

Chapter 2: Accessing the Screen ' 7

to the concept of color “depth.” The greater the depth, the more colors can be displayed and the
higher the potential image quality.

The depth of an image sent to an X server must be supported by the X server; otherwise, the
results will probably be unrecognizable. This is why we ask the server, through
XLi st Pi xmapFor mat s, which image depths are supported.

As described in the Appendix, you control the depth of the X server by specifying extra
parameters to the St ar t x command. For instance, startx -- -bpp 32 starts the X server with 32
bits per pixel (bpp), while startx -- -bpp 8 starts with 8 bits per pixel. Your video hardware and
your X server configuration determine the maximum depth supported. You can use the
xdpyi nf 0 command to find out what depth(s) your X server supports.

Because our application program can’t know beforehand the depth of the X server, it has to be
flexible enough to query the X server for its depth and configure itself accordingly.
ch2_app_xevent chooses the maximum depth supported by the X server, and then uses the
depth information to calculate the correct number of bytes to allocate for an empty (black) image.
For an X server with 8 bits per pixel, we have to allocate one byte for every pixel in the display. For
an X server with 32 bits per pixel, we have to allocate four bytes (32 bits divided by 8 bits per byte)
for every pixel in the display.

Alternatively, we could have chosen to only support one depth, for instance 8 bits per pixel,
aborting the program if the X server does not support exactly this depth. Some programs do this,
but it is rather frustrating to have to shut down the X server and start it in another depth just to run a
program. It is a bit more difficult to make a program which adaptively supports multiple depths,
but this makes the user’s life easier.

After querying the supported depths, the ch2_app_xevent program also prints out some
information about the types of visuals supported by the X server. (Remember, a “visual” describes
a color structure supported by an X server.) The “type” of visual is called its class. The following
six visual classes are supported by X, as defined in X. h.

/* Display classes used in opening the connection
* Note that the statically allocated ones are even numbered and the
* dynamically changeable ones are odd numbered */

#define StaticGray
#define GrayScale
#define StaticColor
#define PseudoColor
#define TrueColor
#define DirectColor

We mentioned earlier, in the discussion of XCr eat eW ndow, that the depth and visual class
work closely together to specify the number and type of colors available to the window. We can
now understand this more precisely. With a depth of N bits per pixel, the visual class determines
how these N bits for each pixel are used to display a color on the screen. The following list
describes the meaning of each visual.

GO W N = O

StaticGray: The N bits for each pixel are interpreted as an index into a static grayscale
colormap with 2N entries.

GrayScale: The N bits for each pixel are interpreted as an index into a dynamically change-
able grayscale colormap with 2N entries.

76

¢

Chapter 2: Accessing the Screen

StaticColor: The N bits for each pixel are interpreted as an index into a static colormap with
2N entries.

PseudoColor: The N bits for each pixel are interpreted as an index into a dynamically change-
able colormap with 2N entries.

TrueColor: The N bits for each pixel are divided into R bits for red, G bits for green, and B bits
for blue, where R+G+B = N. The R, G, and B bits map statically to 2R, 2*G, and 2B red,
green, and blue intensities, respectively.

DirectColor: The N bits for each pixel are divided into R bits for red, G bits for green, and B

bits for blue, where R+G+B =N. The R, G, and B bits are interpreted as indices into a dynami-

cally changeable red, green, and blue colormap, respectively.
Note that most colors can be defined as a combination of intensities of red, green, and blue; those
which cannot (such as some pastel colors) form only a small part of the color spectrum and are
ignored in the RGB color model.

A colormap, also sometimes called a color palette, is simply a table containing color values.
When a colormap is used, we refer to a color by its index within the colormap. In other words,
instead of saying, “the color with red intensity 128, green intensity 64, and blue intensity 96,” we
might say, “the color at location 25 in the colormap.” Colormapped color models are also called
indexed or paletted color. We usually use a colormap when the video hardware physically cannot
display more than a certain number of colors at once. The X color model allows for both static and
dynamic colormaps. With a static colormap, the color of each entry is predefined; with a dynamic
colormap, each entry may be individually set by the application program.

The most common visuals you will probably encounter are 8-bit PseudoColor (256 simulta-
neous arbitrary colors), 16-bit TrueColor (65,536 simultaneous colors), and 24-bit TrueColor
(16,777,216 simultaneous colors, though a typical display does not have that many pixels).

After retrieving the visual and maximum depth from the server, the ch2_app_xevent pro-
gram creates and maps a window with this visual and depth. The next step is to create an empty
background image compatible with the visual and depth.

Graphics and Double Buffering with XImages

Our first program, hel | 0. cc, did not respond to requests that the window redraw itself (the
expose event). Indeed, the program did not draw anything at all.

To correct this, ch2_app_xevent creates an empty image to fill the window, and draws
this when requested. This image is of type XI mage.

An XImage is an off-screen graphics image which can be copied to the screen with the func-
tion XPut | mage. An XImage stores the image in a region of memory which is allocated by and
accessible to the application program. Therefore, modifying the image data for an XImage simply
requires setting the appropriate bytes in the memory region used by the XImage, then calling
XPut | mage to display the changes on-screen.

The idea of making image changes off-screen then copying them to the screen is called double
buffering; the copying of the off-screen image to the screen is sometimes called blitting (from the
phrase “bit block transfer,” yielding the infinitive which only a computer scientist could invent,
“to blit”). The alternative to double buffering is a drawing scheme which directly and immediately

Chapter 2: Accessing the Screen

updates the display after every drawing operation. The reason we use double buffering is to reduce
flickering. We perform all drawing operations invisibly off-screen; then, when the entire image
has been prepared, we copy the finished image as quickly as possible to the screen with a single
function call. Updating the screen after every drawing operation would allow the user to see the
partial image as it is still being drawn, which causes flickering and is visually very distracting.

NOTE A pixmap is another X structure which stores an off-screen image, similar to an
XImage. However, the image data for a pixmap cannot be accessed directly, but must instead
be manipulated through Xlib functions (XDr awlLi ne, XDr awPoi nt , XDr awRect angl e,
XDr awAr ¢, and so forth). This is too slow for interactive displays, where every single pixel
must be updated for each new image. Also, it is possible to use Xlib functions to draw directly
to a visible window, in which case the window is updated immediately. This, too, is not ideal
for interactive displays due to the flickering effect mentioned above.

For now, we just create an image, but don’t fill it with any data. ch2_app_xevent first allo-
cates the off-screen image data for the XI mage as follows:
screen = new char[screen_xsize*screen_ysize*bytespp];
Notice that the total number of bytes to be allocated must be multiplied by the number of bytes per
pixel, which we determined earlier (in the form of bits per pixel, which we divide by 8 to get bytes
per pixel) by querying the X server.
With the off-screen image data (also called the off-screen buffer or the frame buffer) allocated,
we can then create the XImage itself:
ximg = XCreateImage(dpy, vis, depth,

Zpixmap,

0,

screen,

screen_xsize, screen_ysize,

scanline_pad,

0);
The first three parameters to XCr eat el mage specify the display, visual, and depth. The next
parameter will for our purposes always be the constant ZPi xmap. This parameter specifies the
ordering of bits for each pixel in the image. ZPixmap specifies that each byte in the image data
corresponds to at most one pixel. (The other option would be to allow the individual bits of each
byte to correspond to different pixels.) The fifth parameter specifies the number of pixels to ignore
at the beginning of each line; we set this to zero. The sixth parameter is a pointer to the off-screen
buffer which we just allocated. The seventh and eighth parameters specify the dimensions in pix-
els of the image. The scanl i ne_pad parameter indicates that one horizontal line in the image is
a multiple of this many bits long; we use the same value which we received from the X server ear-
lier with the XLi st Pi xmapFor mat s function. The last parameter specifies the number of
bytes per line in the image; if the image data is continuous in memory (which for the programs in
this book will always be the case), then we can set this parameter to zero and let the function auto-
matically compute this value itself.

The last thing that ch2_app_event : : cr eat e_wi ndowdoes is set the foreground and

background color for future drawing operations. These are used by the text output functions.

78

¢

Chapter 2: Accessing the Screen

Requesting Notification for All Events

The next function which is called in the ch2_app_event class is the function
ask to be notified of interesting events. We use XSel ect | nput with a
mask consisting of all 1s in the lower 24 bits. We use 24 bits because according to the X header
files, all event masks are currently defined in the lower 24 bits. We explicitly exclude one event
type, Poi nt er Mot i onHi nt Mask, because this interferes with continuous tracking of
Poi nt er Mbt i on events.

Since the application has specified 23 of the 24 possible event masks, all of these events will
be reported to the window.

Visual Event Display

The next function which is called in the ch2_app_event class is the function event _| oop.
The event loop begins by taking the next event out of the queue with XNext Event . We then have
a case statement which handles the event based upon its type.

If the event was a keypress event, we check if it was q and if so, exit.

If the event is a motion notify event, we know that the mouse pointer just moved. We store the
current location for later use, and then generate an expose event to force the window to redraw
itself. We do this by declaring a variable of type XEvent , initializing its fields as required for an
expose event, and sending this message to the window with XSendEvent .

If the event is an expose event, we check to see if this is the last of a series of expose events, by
seeing if the nuber parameter is zero. An expose event, which is a request for a window to
redraw itself, need not apply to an entire window; it might only apply to part of a window. Appli-
cations that want to optimize redrawing will only redraw that part of the window which is
specified in the expose event. For our application, we won’t optimize at this level, instead redraw-
ing the entire image. In general, 3D programs must regenerate the entire image every time the
screen is updated anyway. In any case, once we decide that this expose event is one which needs
acting upon—one with zero as the nunber parameter—we do two things: we copy our empty
XImage to the screen, ensuring a blank background, and then we draw the string “hello!” under-
neath the mouse cursor, the position of which we saved during the last motion notify event.

The XPut | mage function copies the XImage to the window; the XDr awSt r i ng function
draws a text string to the window. Both of these functions have quite simple parameter lists requir-
ing no further explanation. The only parameter of note to both of these functions is the third
parameter, which specifies the graphics context, abbreviated GC. A graphics context is a context
for doing graphics operations; it stores “global parameters” which then apply to all graphics oper-
ations occurring within this context. These parameters include such things as line width,
foreground color, background color, fill patterns, fonts, and so on. You can think of a GC as a
saveable set of parameters for graphics operations. Since we aren’t using any built-in drawing
functions, instead manipulating the XImage data directly, we don’t need to allocate or manipulate
our own GC. We just use the default GC of the display.

The last thing that the event loop of class ch2_app_event does is draw a string in the win-
dow displaying the type of the event just received. The helper function event _namne converts
the event type code to a string.

Chapter 2: Accessing the Screen ' ‘

Summary

This program, subclassed from the previous one, displayed all events received by the window in

real time. Its techniques introduced us to XImages by creating an empty XImage and copying it

into the window on an expose event. Creating an XImage requires us to ask the X server about the

supported depths, so that we know how many bits per pixel to allocate for the image data. The

visual class of the X server determines how the bits for each pixel are interpreted to form a color.

The data of an XImage may be changed by directly manipulating the bytes in an off-screen buffer.
The next thing we would like to do is display graphics in the XImage.

Displaying Graphics in XImages
As we saw earlier, an XImage stores an off-screen graphical image in a region of memory accessi-
ble to the application program. The last program didn’t put any data into the off-screen buffer,

which is why the background was empty. Let’s try putting some data into the buffer and see what
happens.

Random Dots

Our first experiment will be to put completely random data into the buffer. Listings 2-18 through
2-22 illustrate the program changes necessary. The source code for this program is in directory
$L3D/ sour ce/ app/ hel | o_oo_i nmage, and the class diagram appears in Figure 2-11.
Listing 2-18: ch2_appf act ory_xi mage. h

#ifndef _ CH2_APPFACTORY XIMAGE H
#define _ CH2_APPFACTORY XIMAGE H

#include "ch2_appfactory.h"

class ch2_appfactory ximage : public ch2_appfactory {
ch2_app *create(void);

1s
#endif
Listing 2-19: ch2_appf act ory_xi nage. cc

#include "ch2_appfactory_ ximage.h"
#include "ch2_app_ximage.h"

ch2_app *ch2_appfactory ximage::create(void) {
return new ch2_app_ximage;

}
Listing 2-20: ch2_app_xi mage. h

#ifndef _ CH2_APP_XIMAGE H
#define _ CH2_APP_XIMAGE_H

#include "ch2_app_xevent.h"

class ch2_app_ximage : public ch2_app_xevent {
protected:
void event_loop(void);
void ask to be notified of interesting events(void);

| = Chapter 2: Accessing the Screen

public:
virtual ~ch2_app_ximage(void) {};

}s

#endif
G-+ main program Figure 2-11: CIOSS
diagram for
main) hel | o_oo_i mage.
#1 #1
* application fm
ch2 app ch2_factorymanager
virual create_window() =0 choose_factories()
virtual ask_to_be_notified_of_interesting_events() = 0 .
virtual event_loop() = 0 #1
virtual execute()
X * apptactory
is_a |
- ch2_appfactory
ch2_app_x
Visual “vig Tt o o veer s o |
Dispiay “dpy vinual ch2_app “create() = 0

Window w - A .
is.a is_a
create_window() s 8

ask_to_be_notified_of_interesting_events()
event_loop() ch2_applactory_x ch2_appfactory_xevent
A
is 8 ch2_app ‘create() ch2_app ‘create()
ch2_app_xewvent
Visual *vis ch2_applactory_ximage
Display “dpy
Window w
ch2_app “create()
create_windaw() L
ask_to_be_notified_of interesting_events()
event_loop()
A
s a
ch2_app_ximage

ask_to_be_notified_of_interesting_events()
event_loop()

Listing 2-21: ch2_app_xi mage. cc
#include "ch2_app_ximage.h"
#include <stdio.h>
#include <stdlib.h>

void ch2_app_ximage::ask_to_be notified of interesting events(void) {
XSelectInput(dpy, w, KeyPressMask);
}

void ch2_app_ximage::event Toop(void) {
XEvent event;
char ch;
KeySym keysym;

Chapter 2: Accessing the Screen :‘

XComposeStatus xcompstat;

int mouse_x, mouse y;
while(1) {
if (XCheckWindowEvent (dpy, w, KeyPressMask, &event)) {
XLookupString (&event.xkey, &ch, 1, &keysym, &xcompstat);
switch(ch) {

case 'q': {
exit(0);
1
1
}
int i,3,k;
char *c;

c = screen;
for(i=0; i<screen xsize; i++) {
for(j=0; j<screen ysize; j++) {
for(k=0; k<bytespp; k++) {
*c++ = rand() % 255;
1
1
}

XPutImage(dpy, w, DefaultGC(dpy,0), ximg,
0,0,0,0, /* source x,y; destination x,y */
screen_xsize, screen_ysize);
1
1

Listing 2-22: The changed ch2_f act or ymanager . cc

#include "ch2_factorymanager.h"

#include "ch2_appfactory_x.h"
#include "ch2_appfactory_xevent.h"
#include "ch2_appfactory_ximage.h"

ch2_appfactory *ch2_factorymanager::appfactory = 0;

void ch2_factorymanager::choose factories(void) {
int i;

printf("Which Appfactory should create your application?");
printf("1. Appfactory creating the simple X app");

printf("2. Appfactory creating the simple X app with event display");
printf("3. Appfactory creating the random dots app");

scanf("%d", &i);

switch(i) {
case 1: {
appfactory = new ch2_appfactory x;
1s

break;

case 2: {
appfactory = new ch2_appfactory xevent;
1s

break;

82

¢

]

Chapter 2: Accessing the Screen

case 3: {
appfactory = new ch2_appfactory ximage;
}s

break;
}
1

The new application factory and the updated factory manager should look quite familiar to you
now. As usual, the new application class, in this case ch2_app_xi mage, is where the action is.

The new class ch2_app_xi mage descends from the existing ch2_app_xi mage class,
overriding the event notification and event loop. The window creation and XImage initialization
remain the same. (It is for this reason, incidentally, that the title bar of the window for this program
still displays the name of the previous program; the window creation, which includes setting the
title text, is inherited from the previous program’s class.)

In the event notification routine ask to_be notified of interesting_
event s, we again revert to only monitoring keypress events. Monitoring events we are not inter-
ested in creates unnecessary communication between the server and the application, resulting in
poorer performance.

You might think that we still need to monitor expose events, but in this particular case we
do not, because in the main loop, after we look for an event to process (with
XCheckW ndowEvent), we update and copy the XImage to the screen. This takes place regard-
less of whether any event occurred or not. Therefore, our application is pushing images as fast as it
can to the display, even in the absence of any events, and does not need to worry about expose
events: another image will be generated within a fraction of a second anyway.

The following code from class ch2_app_xi mage updates and copies the image to the
screen:

int 1,3,k;

char *c;

C = screen;

for(i=0; i<screen xsize; i++) {

for(j=0; j<screen ysize; j++) {
for(k=0; k<bytespp; k++) {
*c++ = rand() % 255;

}

}
}

XPutImage(dpy, w, DefaultGC(dpy,0), ximg,
0,0,0,0, /* source x,y; destination x,y */
screen_xsize, screen_ysize);

First we initialize the pointer C to point to the beginning of the off-screen image data which we
allocated earlier and connected with the XImage. We then have three nested for loops which iter-
ate through all bytes in the image. The for loops iterate along the width, height, and depth of the
image, respectively. In the innermost loop, we set the current byte of the image to a random value
and increase the pointer to point to the next byte in the image.

Compile and run the program. Type 3 and press Enter to select the new application factory for
this program. Notice that a window appears and is filled with a randomly changing pattern of dots.
Press q to quit.

Chapter 2: Accessing the Screen ha;

—H * B X\ Figure 2-12: The output of program

hel | o_oo_i mage, which displays random dots in
an XImage.

A Word on Animation

Although simple, this program illustrates a fundamental animation technique: draw off-screen,
copy to screen, repeat. Our “drawing” in this case simply consists of filling the buffer with random
dots, but the random pattern of dots changes every frame. (A frame is simply a single image in an
animated sequence of images.) Since the image is changed and displayed several times a second,
we see a moving pattern reminiscent of television static.

The exact same technique is used for 2D or 3D animation: we draw our complete 2D or 3D
scene in an off-screen buffer, then copy this image to the screen to make it visible. While the image
is visible, we draw the next frame, and display it as soon as it is ready. We repeat this process for
the duration of the program.

Summary

Now we’re starting to see some practical results. We have an application which creates an X win-
dow, queries the X server for allowable image depths, creates an off-screen image of the correct
depth, directly manipulates the bytes in the image, copies this image to the screen, animates the
image in real time, and responds to user events. This is a lot indeed. We’ve overcome the first hur-
dle and have created a fully functional X program under Linux.

However, so far, we have either created no image at all or created a completely random image.
Both of these tasks are similarly easy because they do not require us to understand exactly how the
order of bytes in the image memory corresponds to the physical pixel order on the screen. We sim-
ply fill the entire buffer, but have no idea which bytes correspond to which pixels on-screen. The
next section discusses controlling individual pixels in the image. We also begin with the develop-
ment of generally reusable graphics classes which will be reused throughout the book.

84

r'
>

Chapter 2: Accessing the Screen

Picture Elements—Pixels

Up to this point, we have fairly casually referred to “pixels” as they relate to 2D images. We have
used the concept of “pixel” somewhat loosely in reference to “bytes per pixel” and the “pixels”
making up an XImage. It’s now time to take a closer look at exactly what pixels are, since we must
control them exactly in image memory to create graphics.

Physically, images on a 2D raster display consist of a 2D, evenly spaced grid of individually
controllable rectangular picture elements, called pixels. This grid is also called a raster, hence the
term “raster graphics.” A pixel is the smallest individually addressable visible element of an
image on a raster display. In particular, “individually addressable” means “addressable by the
video hardware”—in other words, a pixel is the smallest element of an image which can be con-
trolled by the hardware.

Each pixel is the same size as other pixels, and may be assigned a color (in the case of color
displays), an intensity level (in the case of gray-level displays), or an on/off status (in the case of
monochrome displays). We may say that pixels are “set” or “on” if they have been assigned a visi-
ble color or intensity value. We say that pixels are “unset” or “off” if they have been assigned a
color or intensity which is the same as the background color (e.g., black). Figure 2-13 illustrates a
sample line drawing and its approximation on a raster display. Each shaded box represents a set
pixel. Pixels can only form a discrete approximation to an image, but the finer the grid of pixels,
the more accurate the image.

Figure 2-13: Pixels form an approximation to an
image.

2D Pixel Coordinates

In general, a coordinate system provides a unique way of identifying points, or locations in space.
In particular, a 2D pixel coordinate system allows specifying physical pixel locations on the
screen. (In this case, by “screen” we mean the logical display device, which for our current pur-
poses is a window under X.) The 2D pixel coordinate system, by definition, exactly covers the
number of pixels which may be displayed on the screen—no more and no less.

NOTE The term coordinate space, or simply space, describes the same concept as a coor-
L

dinate system. We may thus say “a 2D pixel coordinate system,” “2D pixel coordinates,” “a
2D pixel coordinate space,” or “2D pixel space” interchangeably.

Chapter 2: Accessing the Screen '

Since computer screens and windows are flat and rectangular, being oriented in a normal upright
position (as opposed to, for instance, standing on a corner), it makes sense to refer to pixels in rela-
tion to horizontal (x) and vertical (y) axes. A pixel may then be uniquely identified by its position
along the x and y axes, which is written in the form of a coordinate pair (x,)). In order for a coordi-
nate pair (x,)) to have any meaning, we must define a coordinate system which specifies how
values of x and values of y should be interpreted. There are two main coordinate systems we can
use for specifying pixels: 2D Cartesian coordinates and “reversed-)” coordinates.

2D Cartesian Coordinate System

The 2D Cartesian coordinate system, which you may recall from high school geometry, is illus-
trated in Figure 2-14. In this coordinate system, two perpendicular (or orthogonal) coordinate
axes, the x axis and the y axis, specify horizontal and vertical positions. Values of x increase as they
move towards the right, and values of y increase as they move upwards. Given a coordinate pair of
the form (x,y), the corresponding pixel is found by starting at the origin, whose coordinates are
(0,0), and moving x pixels horizontally and y pixels vertically. This coordinate system is a “natu-
ral” system, in that it corresponds to the “natural” way we usually measure sizes or distances. For
instance, rulers (in Western cultures) are marked with digits from left to right, with the larger num-
bers representing larger horizontal distances appearing towards the right. This corresponds to the
left-to-right ordering of values along the x axis in 2D Cartesian coordinates. Furthermore, when
we speak of “height” in everyday usage, we expect that an item 10 cm “higher” than another item
extends 10 cm upwards above the shorter item. This corresponds to the bottom-to-top ordering of
values along the y axis in 2D Cartesian coordinates. Display systems which implement 2D Carte-
sian coordinates usually place point (0,0) at the lower left of the physical screen. All pixels in the
display thus have coordinates in the shaded portion of the diagram.

Figure 2-14: Cartesian coordinate system.
Shaded area represents region visible
on-screen. Pixels at (1,1) and (4,3) are
highlighted.

-~ 86

!
¢

Chapter 2: Accessing the Screen

Reversed-y or 2D Screen Coordinate System

Figure 2-15 illustrates a similar coordinate system, but with the y axis “reversed.” That is, values
ofy increase as they move downwards, in contrast to the standard 2D Cartesian coordinate system.
Values of x still increase as they move towards the right, just as in the normal Cartesian system.
Graphics systems which implement this coordinate system usually place the point (0,0) at the
upper left of the screen. All pixels in the display thus have coordinates in the shaded portion of the
figure. This system is somewhat unnatural in the vertical direction, because larger values of y,
which correspond to larger height values, grow downward, instead of upward as in standard 2D
Cartesian coordinates.

A Figure 2-15: Reversed-y coordinate system.
: Pixels at (1,1) and (4,3) are highlighted.

The reversed-y coordinate system is the more commonly used system to specify pixel coordi-
nates, and is the one we use for this book. The reason for this is mainly due to the fact that the 2D
grid of pixels is often physically a linear sequence of bytes in memory representing the rows of
pixels from the top down (as discussed in the next section). The “top down” ordering implies the
reversal of y orientation. We will assume from now on when we refer to physical screen coordi-
nates that we are using this reversed-y coordinate system, and we will refer to this as the 2D pixel
coordinate system.

Byte-to-Pixel Correspondence

As far as we are concerned, we manipulate bytes in an off-screen buffer to control pixels; this
oft-screen buffer is attached to an XImage and may be displayed by calling XPut | mage. A rele-
vant question then is: “how do the bytes in an XImage’s image data map to the actual pixels
forming the image?”’

NOTE The XFree86 DGA extension, which we cover briefly later in this chapter, allows direct
access to the video memory as the video hardware sees it. This physical video memory is very
often not linearly arranged. This is why we specifically phrased the question above in relation

Chapter 2: Accessing the Screen " a7

RS
Pl

to XImage image data; in general, there is no single definitive way for mapping a set of bytes
onto a set of pixels.

With an XImage in ZPixmap format, the answer is relatively simple. The 2D grid of pixels in the
image is treated as a linear sequence of pixels, starting at the upper left-hand corner of the image,
traversing all pixels from left to right in the first line, then continuing with the leftmost pixel of the
second line, finally ending up at the last pixel in the lower right-hand corner of the image. Given
this pixel ordering, the bytes in the image data are then mapped to the pixels in the image in this
same order.

There are two complications we must consider. First, multiple bytes may map to just one
pixel, and second, we must somehow interpret the bits that make up one pixel.

The first problem is that multiple bytes may map to one pixel. With 8-bit depths, we conve-
niently have one byte (i.e., 8 bits) per pixel, a situation which is easy to understand and implement.
The problem arises with greater display depths. As with scuba diving, increased depth means
more problems but also increased beauty. The greater visual quality possible with greater color
depths implies that the color information for one pixel cannot be stored in one single byte, and that
pixel plotting routines must deal with a variable number of bits (and thus bytes) per pixel. With a
32-bit color depth, for instance, we need 4 bytes per pixel. Figures 2-16 and 2-17 illustrate the cor-
respondence between bytes in memory and pixels for display depths of 8 and 32 bits, respectively.

Bytes in the framebuffer = 1byte Figure 2-16: Correspondence between bits
e o ® and pixels, with a depth of 8 bits per pixel.

Pixels

Bytes in the image dara [_|= 1 byre Figure 2-17.’

(I IIT T IIT T TT] &« e e[JITTTIITTTT] Correspondence
between bits and
pixels, with a depth of
32 bits per pixel.

Pixels

88

!
¢

Chapter 2: Accessing the Screen

The following formula maps a pixel location to offset image memory to the first byte associ-
ated with the pixel. Given a pixel located in row x and column y of the image:

offset = (x + (width x y)) * bytes _per pizel

The width of the image in pixels is represented by width; the number of bytes per pixel, by
bytes per pixel (which must be a positive integer value). This formula assumes that the leftmost
row and the topmost column are labeled zero, that the x axis increases to the right, and that the y
axis increases downward. These are exactly the conditions describing the 2D pixel coordinate sys-
tem discussed previously. The linear arrangement of pixels, the fact that the first pixel corresponds
to the upper-left corner of the image, and the use of a reversed-y pixel coordinate system yield the
intuitive formula presented above. (With a Cartesian pixel coordinate system, we would need to
reverse the y orientation by subtracting the y value from the image height.)

So now we know which bytes correspond to which pixels. The next question is, what data do
we put into these bytes to give a pixel a certain color?

Colors and XImages

The second problem mentioned above is the interpretation of the bits making up a pixel. With the
above formula and the bytes per pixel, we can figure out exactly which bytes in the image buffer
correspond to a particular pixel. But what values do we assign to this byte or these bytes to make a
color appear?

We actually already addressed this question earlier during our discussion of X visual classes.
The visual class determines the interpretation of the bits making up each pixel.

Indexed, Colormapped, or Paletted Color

If the visual is StaticGray, GrayScale, StaticColor, or PseudoColor, then the bits of the pixel are
interpreted as being an index into a colormap. As mentioned earlier, this is called indexed,
colormapped, or paletted color.

There may be multiple bytes per pixel. If so, then the pixel value is obtained by interpreting all
bits of all bytes in least-significant-byte first (LSBFirst) order. Expressed as a formula, this means
that for all bytes of a pixel, the LSBFirst value is computed as follows:

final_value = first byte+
256 * second_ byte+
65536 * third byte+
16777216 fourth byte

With only one byte per pixel, we ignore the second_byte, third_byte, and fourth byte terms; with
two bytes per pixel, we ignore the third_byte and fourth _byte; with three bytes per pixel, we ignore
the fourth byte; with four bytes per pixel, we use all four terms.

NOTE To be completely portable, we would theoretically have to question this byte order
assumption. The | mageByt eOr der macro provided by Xlib indicates whether the bits are to
be interpreted LSBFirst (also called little endian) or MSBFirst (also called big endian).

Chapter 2: Accessing the Screen |

e
R

b TSRS
Pl e 2 2

However, it's a pretty safe bet that on x86-based Linux machines running XFree86, the byte

order will be little endian.

The final value of each pixel is then used as an index into a colormap. The colormap is simply a
table containing a specific color for each index. We need to create a colormap and fill it with colors
before we can use it. Under X, the general process of creating a colormap is as follows:

1. Create a colormap with the XCr eat eCol or map function.

2.

Allocate empty color cells for the colormap with the XAl | ocCol or Cel | s function.

3. For each empty entry within the colormap, declare a temporary variable of type XCol or , fill

the XCol or variable with the appropriate RGB

values, and call XAl | ocCol or and

XSt or eCol or to enter this color into the colormap.

Image

Physical order of image byies for ane pixel in memary

|0 l|c:|0 ||0t:|0| 0|c:|0|u|1 lJ|o 0|
EEEEEE — —
EEE .--""- T ——Byleswap__——
EEE Logical byte order _r,f—f""’ _h“"‘““—-_h__q___
|ﬂ00|0 ||0|0|0||0|||U|0|1 0|ﬂ 0|
— < —>
MEH {most significant byte) LSH (et signilicunt byte)
= decimal value 2120
Colormap Red, Green, and Blue values
T 0 = R=10, G=10, B=10
.//
// 1 = R=1163, G=12400, B=2550
I"r
\ 2 —= R=3051, G=65312, B=0
\ 3 =R=1500, G=25320, B=12288
.
\\
\\.\ 4 —= R=235, G=63535, B=0
.
N
\\.\
.
~ see
™
.
\‘ 2120 ‘—- R=1723, G=11503, B=60000
see
mas_palette = Rall, Gal), BatiN)

Figure 2-18: Color interpretation of bits for indexed color. The colormap indices in the image are
computed by taking all bytes corresponding to one pixel and using the LSBFirst rule. These colormap
indices are then looked up in the colormap to determine the final red, green, and blue color values.

NOTE The red, green, and blue values in the XCol or structure are always specified in the
range O (lowest intensity) to 65535 (highest intensity); the X server then scales these RGB val-
ues to the actual red, green, and blue values needed by the video hardware.

90 .,; Chapter 2: Accessing the Screen
J ¢

4. After initializing all entries within the colormap, assign it to your window with
XSet W ndowCol or map.

The class | 3d_screen_x11, presented in the section titled “Developing Reusable Graphics
Classes,” illustrates this process in source code.

TrueColor and DirectColor

For TrueColor and DirectColor visuals, the bits for each pixel are divided into red, green, and blue
components. We have to determine which bits are responsible for red, green, and blue. Unfortu-
nately, this is a rather confusing issue, because of logical and physical bit orders. Let’s see how this
works.

X provides the function XMat chVi sual | nf o function to find and return extra information
about a particular visual. The information is returned in an XVi sual | nf 0 structure. For
TrueColor and DirectColor visuals, the XVi sual | nf 0 structure contains three members of
interest: r ed_rmask, gr een_mask, and bl ue_nmask, each of type unsi gned | ong. For the
matching visual structure, these fields contain the bit masks necessary to access the red part of the
pixel, the green part of the pixel, and the blue part of the pixel.

The confusing part is that these masks assume a most-significant-byte first order (MSBFirst),
while the XImage (on Linux x86 systems) stores the bytes in least-significant-byte first order
(LSBFirst). Thus, to correctly interpret the bit masks, we have to swap the byte order.

An example will make this clear. Let’s say your X server is running at 16 bits per pixel. After
querying the visual with XMat chVi sual | nf 0, we would obtain values such as the following:

red_mask = 63488
green_mask = 2016
blue_mask = 31

Let’s see what these numbers are in binary. To do this we can use the command line calculator bc
as follows:

1. Type be and press Enter.

2. Notice the welcome message. Type obase=2 and press Enter to set the output number base to
be base 2 (binary).

Type 63488, the decimal value of the red mask, and press Enter.

Notice the output 1111100000000000.

Type 2016, the decimal value of the green mask, and press Enter.

Notice the output 11111100000.

Type 31, the decimal value of the blue mask, and press Enter.

Notice the output 11111.

Press Ctrl+D to quit.

Notice that these bit masks define different, contiguous, non-overlapping positions of bits within

the 16 bits of color depth we have available. If we denote the bits in the red mask by “r,” the green
mask by “g,” and the blue mask by “b,” we would obtain the following result:

rrrrrggggggbbbbb

XN kW

Chapter 2: Accessing the Screen

We have 5 bits of red resolution, 6 bits of green, and 5 bits of blue. This is often called “565 RGB.”
We interpret the red bits, green bits, and blue bits separately. Within the red bits, for instance, we
have 5 bits and can thus specify 25 = 32 shades of red, where 0 is the least intense and 31 the
most. For the green bits, we can specify 26 = 64 shades of green, with 0 being the least intense
and 63 the most intense. Finally, for the blue bits, we again have 25 = 32 shades of blue, from 0 to
31. This gives a total of 32 * 64 * 32 = 65536 possible combinations of red, green, and blue—in
other words, 65,536 possible colors.

Each section of bits is interpreted in normal binary fashion, with the leftmost bits being more
significant than the rightmost bits. For instance, to specify a color with red=10, green=20, and
blue=30, we would first convert these values to binary:

red = 10 = 1010 in binary
green = 20 = 10100 in binary
bTue = 30 = 11110 in binary

We then fill the red bits into the 5 bits for red, the green bits in the 6 bits for green, and blue bits in
the 5 bits for blue, padding each section on the left with Os if needed:

rrrrrggggggbbbbb
0101001010011110

So far, so good. The problem is that these 16 bits of color resolution are too much to fit in one byte,
so they are divided into two bytes as follows:

Bytel: rrrrrggg
Byte 2: gggbbbbb

Notice that the green values have been split across a byte boundary. For our example of red=10,
green=20, and blue=30, the bytes would then look as follows:
Byte 1:

Byte 2: gggbbbbb
10011110
The confusing part (if you are not already confused!) is that byte 2, the least significant byte, is
stored first in memory, followed by byte 1. So, in memory, the values look like this:
Byte 1: gggbbbbb
10011110

Byte2: rrrrrggg
01010010

So, you see that the byte order in memory must be reversed in order to use the bit mask returned by
XMat chVi sual | nf 0. Whenever we write pixels to memory, we must take this byte-swapping
into account. What makes the situation even more enjoyable is that each particular color depth has
its own red mask, green mask, and blue mask, since the total number of color bits is different in
each case.

Fortunately, we can encapsulate this rather confusing calculation once and for all within a
class, so that we can then just say “draw this pixel, with this color” and be assured that the right bits
get set.

E 9207

¢

Chapter 2: Accessing the Screen

Image Figure 2-79.’
Physical order of image bytes for one pixel in memory
Color

EEEEEE -/_VG|G G|B B n|n n||R|n R|R R|G|G|G| interpretation
EEEE ',,--"" T Byte .S\A_raf____ff""f_- of bits for

EEE Logical byte order ‘_____,---""____F -q__h"“--h-.,___} TrueColor or
R|R R|R R G|G G||G|(j G|B B|B|B|B| RGB color.

o — —
red green hlue

Developing Reusable Graphics Classes:
13d Library

As we just saw in the preceding discussion of colors and XImages, X programming can be a bit
tedious at times. Just plotting a single pixel requires us to know the image depth, the RGB masks,
and whether the visual is based on an indexed or a TrueColor model. And plotting a pixel in an
XImage is only the beginning. We want to develop much more advanced graphics routines—
incorporating shading, texture mapping, hardware acceleration, and other interesting effects—all
of which fundamentally rely upon plotting pixels in particular colors at particular locations on a
screen. It is absolutely vital that we create a solid, understandable, and extendable foundation so
that more advanced graphics routines don’t need to worry about the infinitude of irrelevant and
distracting implementation details such as window creation, event monitoring, byte swapping,
RGB masks, or color depths. Without a solid foundation, we’ll never be able to program advanced
graphics routines; they would quickly become far too complicated if they had to take care of every
single implementation detail themselves.

Starting now, we will therefore be developing some library classes which encapsulate all of
the graphics concepts we have discussed so far and which will be useful throughout the rest of this
book. In fact, these classes are useful beyond the scope of this book, since good object-oriented
designs yield classes which can be used in a variety of situations.

NOTE Recall at the beginning of this chapter we said that we would first look at Xlib pro-
gramming, then abstract the Xlib concepts into a more general framework. This more general
framework is the 13d library presented and used in the following sections.

If you’ve cast even a fleeting glance at the sample code, you will have noticed that all of the
classes so far have begun with the prefix ch2_. This indicates that these classes, while very possi-
bly being reused within the current chapter, are generally illustrative in nature and are not
completely fit as is for general-purpose use. The library classes, in contrast to the chapter-specific
classes, all begin with the prefix | 3d_, which stands for “library 3d.”

The developed 13d classes strictly separate the abstraction (plotting a pixel) from the imple-
mentation (setting particular bits in an XImage using RGB masks obtained from an
XVi sual | nf o structure). As you have probably guessed, this is accomplished through use of an

Chapter 2: Accessing the Screen

abstract class specifying the abstraction, and a concrete class for the X implementation. A differ-
ent derived, concrete class can implement the same abstraction using hardware acceleration
(illustrated in Chapter 3) or a different operating system (discussed in the Appendix).

Sample Program Using 13d

Before looking at the 13d code itself, let’s first look at a sample program which uses 13d. This will
give you a practical perspective on the code before looking at the following sections, which go
into more detail on the inner workings of the classes. For the most part, the library classes don’t
introduce many new ideas; we have already covered most of the important technical issues related
to 2D programming under X and Linux.

The next sample program is called dr awdot and illustrates usage of the 13d library classes in
order to move a green dot around the screen, thereby forming a simple drawing program. Signifi-
cantly, this is the first program where we draw a pixel at a specific location and with a specific
color. This program works with visuals of any color depth and in both TrueColor or indexed color
modes. This is no mean feat—as we saw earlier, calculation of pixel position and pixel contents is
all quite complicated due to the multitude of possible color depths and color models. These com-
plicated calculations have all been encapsulated in easy-to-use classes. Incidentally, as we see
later, the program not only works with “normal” X windows, but also can use shared-memory or
hardware-accelerated output devices.

el 154 application : Figure 2-20: Output from sample program
drawdot .

Listing 2-23: dr awdot . cc

#include <stdlib.h>
#include <stdio.h>

#include "../1ib/tool_2d/screen.h"
#include "../1ib/tool_os/dispatch.h"
#include "../1ib/raster/rasteriz.h"
#include "../1ib/tool_2d/scrinfo.h"
#include "../1ib/system/factorys.h"
//

/1-

//- STEP 1: CHOOSE THE FACTORIES

/1-

94 | Chapter 2: Accessing the Screen

/1

void choose factories(void) {
factory manager_v_0_l.choose factories();

}

//
/-
//- STEP 2: DECLARE A PIPELINE SUBCLASS
/-
//

class my_pipeline : public 13d_pipeline {
protected:
13d_rasterizer_2d_imp *ri;
13d_rasterizer_2d *r;

int x, y, dx, dy;
unsigned Tong color;

public:
13d_screen *s;
my pipeline(void);
virtual ~my pipeline(void);

void key_event(int ch); //- from dispatcher
void update event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

1s

my pipeline::my pipeline(void) {
s = factory manager v 0 1.screen_factory->create(320,200);
ri = factory manager_v_0 1l.ras_2d_imp_factory->create(320,200,s->sinfo);
r = new 13d_rasterizer_2d(ri);

s->sinfo->ext_max_red =
s->sinfo->ext_max_green =
s->sinfo->ext_max_blue = 255;

s->sinfo->ext_to_native(0, 0, 0); //- allocate background color
color = s->sinfo->ext_to_native(0, 255, 128);
s->refresh palette();

}

my_pipeline::~my_pipeline(void) {
delete s;
delete ri;
delete r;

}

void my pipeline::key event(int ch) {

switch(ch) {
case 'h': dx=-1; dy=0; break;
case '1': dx=1; dy=0; break;
case 'j': dx=0; dy=1; break;
case 'k': dx=0; dy=-1; break;
case ' ': dx=0;dy=0; break;
case 'q': {

Chapter 2: Accessing the Screen "

exit(0);

}
}

void my pipeline::update event() {
x += dx;
y +=dy;

if(x <0) x = 0;
if(x > s->xsize-1) x = s->xsize-1;
if(y <0) y=0;
if(y > s->ysize-1) y = s->ysize-1;

}

void my pipeline::draw_event(void) {
r->draw_point(x,y, color);
s->b1it_screen();

}

main() {
choose_factories();

13d_dispatcher *d;
my_pipeline *p;

1/
/-
//- STEP 3: CREATE A DISPATCHER
/-
/!

d = factory manager_v_0_l.dispatcher_factory->create();

1/
/-
//- STEP 4: CREATE A PIPELINE
/-
//

//- plug our custom behavior pipeline into the dispatcher
p = new my pipeline();

/1
/-
//- STEP 5: START DISPATCHER
/-
/1

d->pipeline = p; //- polymorphic assignment
d->event_source = p->s;
d->start();

delete d;
delete p;

NOTE Notice that this program is rather short and declares only one class. This is because
the 13d library has already declared several useful classes to simplify application programs.

96

¢

Chapter 2: Accessing the Screen

First, let’s look at compiling the program, since the programs using 13d have a slightly different
directory structure. Then, we look at the structure program itself. Finally, we discuss the 13d
classes themselves.

The source code for the sample program is located in directory $L3D/ sour ce/ app/
dr awdot . In contrast to the other sample programs we have seen so far, the source and binary
files are located in different directory trees. The next section discusses this in detail. For now,
compile and run the program as follows:

1. Compile the 13d library: type ed S$L3D/source/app/lib, press Enter, type make -f
makeall.Inx, and press Enter. Notice that this Makefile has a different filename than the
standard name of “Makef i | e”; therefore we specify the - f flag to tell the make command
which file is the Makefile.

2. Change to the source directory for dr awdot : type ¢d $L3D/source/app/drawdot and press
Enter. Compile dr awdot : type make -f makeall.lnx and press Enter.

3. Change to the binaries directory: type ed $L3D/binaries/linux_x/float/app/drawdot and
press Enter.

4. Notice the object and executable files from the compilation process are placed in the
corresponding binary directory. Type drawdot and press Enter to run the program.

5. Notice the question, “which configuration?” Type 1 for now to select a normal X11 window,
and press Enter.

6. Notice the empty, black window which appears. Type 1. Notice the green line which moves
from left to right across the very top of the display, and that the line continues moving after
you release the key.

7. Type j. Notice that the green line moves downward.

8. Control the movement of the line with the following keys: h to move left, 1 to move right, j to
move down, k to move up, and Space to stop movement.

9. Type q to end the program.

Having now successfully executed the program, let’s now take a look at the organization of the 13d
directory structure, then examine the dr awdot program itself.

I3d Directory Structure

The library classes and the applications using them follow a different directory structure than that
of the sample programs we have looked at so far. Up until now, the source and binary files for the
programs were in the same directory. By contrast, the library classes and applications using the
library classes are split into separate source and binary directory trees.

The reason we split the source files and binary files into two separate trees is that the same
source code can be compiled on a number of different platforms. Keeping the binary files, which
vary from platform to platform, in the same directory as the source files, which remain the same,
leads to a rather chaotic organization. While chaos theory is a rich and fascinating field of scien-
tific study, we don’t necessarily want to organize our directory structure on this basis. Splitting
source and binary directories allows for a neater multi-platform directory structure.

Specifically, the following directory structure is used:

Chapter 2: Accessing the Screen B

$L3D/ sour ce: All source files.

$L3D/ sour ce/ uti | : Non-C++ source files (preprocessing scripts, etc.).

$L3D/ sour ce/ app: C++ source files related directly to 3D applications.

$L3D/ sour ce/ app/ | i b: C++ source for the 13d library classes.

$L3D/ sour ce/ app/ [progr am nane] : C++ source for example programs. A few sim-
ple programs (such as the ones we have seen until now) place the binary files in the source
directory, but most programs place them in the binaries directory.

$L3D/ bi nari es/ | i nux_x: Linux binary files compiled for the X Window System.
$L3D/ bi nari es/ i nux_x/fi xed: Linux binary files compiled with fixed-point math
(a topic covered in more detail in the Appendix). Subdirectory structure is the same as that
under the float subdirectory.

$L3D/ bi nari es/ | i nux_x/fl oat: Linux binary files compiled with floating-point
math. This is the primary output directory for binary files.

$L3D/ bi nari es/ i nux_x/float/app/lib: Linux floating-point binary files for
the 13d library.

$L3D/ bi nari es/linux_x/float/app/[program nane]: Linux floating-point
binary files for example programs.

The Makefiles automatically place the binary files in the corresponding binary directory. You typ-
ically invoke make -f makeall.Inx in the source directory for an application program, which then
compiles all of the Linux binaries and places them in the appropriate binaries directories.

NOTE Remember, the Appendix provides instructions on how to compile all of the sample
programs at once. The preceding discussion is primarily to give you an idea of the directory
structure and the reasoning behind it.

To summarize, then, the source files for the 13d library are in $L3D/ sour ce/ app/ | i b, and the
source files for the sample programs are all in $L3D/ sour ce/ app. The primary binaries are in
$L3D/ bi nari es/ | i nux_x/fl oat/ app.

Fundamental 13d Concepts

Let’s now turn our attention to the exact workings of the dr awdot program, since it illustrates
compactly many key ideas of the 13d library.

The dr awdot program can be broken up into five steps, which are representative of pro-
gramming with 13d. In fact, these steps are representative of event-based programming in general,
on a variety of platforms, as evidenced by the fact that the following scheme also can be applied to
event-driven programs under various operating systems.

The five steps are as follows.

1. Choose the proper factories for three classes: the screen, the rasterizer implementation, and
the event dispatcher.

2. Declare a pipeline subclass. The pipeline must directly or indirectly ask the factory to create a
screen and a rasterizer implementation (typically in the pipeline constructor). Override the

98

!
¢

Chapter 2: Accessing the Screen

abstract pipeline methods to allow your program to respond to events, to update itself, and to
draw to the screen using the rasterizer implementation.

3. Create a dispatcher, by using the factory.

4. Create a pipeline. Y our pipeline should in its constructor ask the factory to create a screen and
a rasterizer implementation, and store these objects locally. Connect the pipeline and the
screen to the dispatcher.

5. Start the dispatcher. The dispatcher enters an event loop, extracts events from the screen, and
calls your pipeline periodically to allow your pipeline to do its work, respond to input, and
draw to the screen.

Let’s examine each step in detail to understand the general 13d structure within the context of the
sample dr awdot program. This serves two goals: first, to understand the general 13d structure,
and second, to understand the specific functions called by dr awdot in order to draw to the
screen. Then, we will take a look at the 13d classes themselves, which we build upon throughout
the book to incorporate increasingly advanced and reusable 3D graphics concepts.

Step 1. Choose the Proper Factories

The first step in writing an 13d application is to choose the proper factories for the program. This is
done by calling the choose_f act or i es function defined in the so-called “factory manager.”
We encountered this concept earlier: to localize object creation and free applications from needing
to know specific details of concrete classes, we used the factory design pattern. The factory man-
ager is the central location where all concrete factories, globally visible to the entire program, are
accessible. The following line chooses the factories within the factory manager:

factory manager v 0 _1.choose factories();

NOTE The class name has the suffix v_0_1 to represent the fact that this is the first version
of the factory manager. In a later chapter, we subclass this first version of the factory manager
to create a new factory manager which manages more factories. This is an example of how
subclassing can provide a historical record of program development, within the source code
itself.

Choosing the factories essentially means customizing, at run time, all customizable behavior
which then takes effect for the duration of the program. In particular, the 13d factory manager man-
ages three factories:

1. A screen factory, producing objects corresponding to the abstract interface | 3d_scr een.
Class | 3d_screen represents the physical output device—a window under XI11, a
full-screen hardware-accelerated window using Mesa, or even a DIBSection under Microsoft
Windows.

2. A rasterizer implementation factory, producing objects corresponding to the abstract
interface | 3d_rasteri zer _2d_i np.Class| 3d_rasteri zer _2d_i np represents a
particular implementation of 2D rasterization concepts. We use the term “rasterizer” to
denote a software interface to a rasterizer implementation. A rasterizer implementation, then,
is a particular hardware or software component which draws 2D graphics primitives
(triangles, lines, dots) into a frame buffer. Two important types of rasterizer implementations

Chapter 2: Accessing the Screen ' ‘

are software rasterizer implementations, which write directly into an off-screen buffer, and
hardware rasterizer implementations, which use specialized, faster functions for
hardware-accelerated pixel operations. See Chapter 3 for details on rasterization.

3. A (dispatcher factory, producing objects corresponding to the abstract interface
| 3d_di spat cher. Class | 3d_di spat cher represents a generalized event dispatcher
in a particular operating system environment. Under X, the dispatcher intercepts X events
within a window’s event loop and passes them on transparently to our application. Using
hardware acceleration with Mesa, the dispatcher works within the event framework provided
by Mesa and GLUT, again forwarding events in a transparent way to our application. Under
another operating system, the dispatcher would need to call any OS-specific routines
necessary to capture and forward events.

All of these factories represent system-specific information: the output device, the rasterizer
implementation, and the event dispatcher. Therefore, by choosing the factories, we are essentially
dynamically configuring the program to use the desired run-time environment. In our case, the
factory manager simply asks the user which factories should be used, but more sophisticated solu-
tions are also possible. We could, for instance, have an auto-detect routine which searches for the
existence of particular hardware, and which, depending on whether or not it finds it, configures the
factory to create the appropriate software component accordingly.

Step 2. Declare a Pipeline Subclass

The second step in writing an 13d application is to declare a pipeline subclass. A pipeline is simply
a sequence of operations on data. The main loop in a game or graphics program is typically called
the pipeline. Therefore, the pipeline contains, directly or indirectly, your application’s main data
and functionality.

We say “directly or indirectly” because the pipeline might do nothing other than create
another object, to which it then delegates the main program’s responsibility. In such a case, the
pipeline is not directly responsible for the application’s data and functionality, but instead merely
serves as an interface between the dispatcher and the object actually doing the real work. We see
this in Chapter 7, where an | 3d_wor | d class manages an entire 3D world.

The pipeline does not control execution of the program. Instead, it responds to events. The
abstract| 3d_pi pel i ne class provides a set of virtual event functions, which are automatically
called by an event dispatcher (class | 3d_di spat cher, covered in the next section). By declar-
ing a subclass of | 3d_pi pel i ne, you can override the virtual event functions to provide
specific responses to specific events, without needing to know how or when these functions are
invoked.

In particular, an | 3d_pi pel i ne subclass should do three things:

1. Directly or indirectly create and store a screen object, a rasterizer implementation object, and
a rasterizer object. This is typically done in the constructor. The first two objects, the screen
and rasterizer implementation, must be created by using the already chosen factories. The
third object, the rasterizer itself, is directly created via the C++ operator new, since the
rasterizer itself contains no platform-specific dependencies. (Such dependencies are all in the
rasterizer implementation, not the rasterizer.)

100 .,; Chapter 2: Accessing the Screen

¢

Declare internal variables, functions, and objects to store the current state of the virtual world.

3. Override the | 3d_pi pel i ne virtual event functions to handle input, update internal
objects, and draw output to the screen. Handling input and updating internal objects are both
done by using data structures specific to the application program. Drawing output to the
screen is done by using the screen, rasterizer, and rasterizer implementation objects created in
the constructor.

The first responsibility ofan | 3d_pi pel i ne subclass is easy to understand. The pipeline repre-
sents the application. The application should display interactive graphics on the screen. We
therefore create and store a screen object, representing the output device, and a rasterizer imple-
mentation, representing a strategy for drawing graphics to the screen. The rasterizer itself presents
a high-level interface to rasterization functionality, implemented by the low-level tools offered by
a rasterizer implementation. Again, remember that a rasterizer implementation can be either a
software rasterizer implementation, directly manipulating bytes in an off-screen frame buffer, or a
hardware rasterizer implementation, calling hardware API functions to instruct the hardware to
draw the graphics for us. Therefore, through the rasterizer, rasterizer implementation, and screen,
our program has an interface to screen and screen-drawing functionality.

NOTE Theoretically, the screen object could also be created outside of the pipeline. (The
following discussion also applies to the rasterizer and rasterizer implementation objects.)
There is no technical reason why the screen absolutely must be created within the pipeline
constructor. In practice, though, this would make little sense. Consider this: the pipeline rep-
resents the entire application logic. Creating a screen outside of the pipeline would also
mean needing to destroy the screen outside of the pipeline. This would imply some sort of a
“higher-level” layer of functionality which creates and destroys objects the pipeline needs in
order to function. This would only make sense if the screen object often needed to be used
outside of the context of the pipeline, at this “higher-level” layer. Given the current premise
that the pipeline is the application, a higher-level layer makes no sense. Therefore, in the cur-
rent architecture, there is no reason to move management of the screen object outside of the
pipeline.

The second responsibility of an | 3d_pi pel i ne subclass, declaring data, is also intuitive. Since
it represents the application, the pipeline subclass must contain all data necessary for maintaining
and updating the current state of everything within the virtual world. This might include such
things as the current positions and velocities for objects of interest, energy levels for spaceships,
the prevailing wind velocity, or anything else being modeled. All of this data is stored within the
| 3d_pi pel i ne subclass in the form of member variables or objects.

The third and final responsibility of an | 3d_pi pel i ne subclass is to override virtual event
functions to respond to events. An | 3d_pi pel i ne subclass can override any of the following
virtual functions declared in | 3d_pi pel i ne:

void key event(int ch); //- from dispatcher
void update event(void); //- from dispatcher
void draw_event(void); //- from dispatcher

The key_event function is automatically called whenever a key is pressed in the application
window. The function is called with a parameter indicating the ASCII value of the key pressed,
thereby allowing the application to respond to the particular key pressed.

Chapter 2: Accessing the Screen ' ‘

The updat e_event function is automatically called whenever the application is allowed to
update itself. You can think of your program as being a giant clockwork, with everything happen-
ing at each tick of the clock. This event function represents one “tick” in your program. At this
point you update the internal variables storing the positions of various objects, update velocities,
check for collisions, and so on.

TIP The calling frequency of updat e_event is not necessarily guaranteed to be constant.
That is to say, the amount of physical time which elapses between successive calls may be
slightly different. For accurate physical simulations, where velocities or other physical quanti-
ties should be updated based on time, we can store an internal variable recording the value
of the system clock the last time that updat e_event was called. We can then compare the
current system clock to the value of the variable to determine how much physical time has
elapsed, and update the time-dependent quantities accordingly. The companion book
Advanced Linux 3D Graphics Programming contains examples of this sort of code.

The dr aw_event function is called whenever the application is allowed to draw its output
to the screen. This function typically will be called immediately after updat e_event , but this
does not necessarily have to be the case. In other words, the updating of the virtual world and the
drawing of the virtual world can be thought of as two separate threads of control, which are usually
but not necessarily synchronized.

With this general understanding of a pipeline’s structure (creation of screen, storage of vari-
ables, and response to events), we can take a closer look at the particular details of the pipeline in
the dr awdot program.

The constructor for the dr awdot pipeline takes care of the first responsibility of an
| 3d_pi pel i ne subclass: creation of screen, rasterizer implementation, and rasterizer objects.
In the constructor, we first ask the screen factory to create a screen and the rasterizer implementa-
tion factory to create a rasterizer implementation. We then create a rasterizer which uses the
created rasterizer implementation. The member variables S, ri, and r represent the screen,
rasterizer implementation, and rasterizer, respectively.

The constructor also takes care of the second responsibility of an | 3d_pi pel i ne subclass:
management of data representing our virtual world. In our case, our virtual world consists of a sin-
gle pixel (a humble start). The following member variables are declared and initialized to keep
track of the dot’s status: col or, X, y, dx, and dy. Variables X, y, dX, and dy represent the dot’s
current horizontal and vertical positions and velocities, and are all initialized to zero. The variable
col or represents the dot’s current color, and is specified as follows. First, we logically define the
maximum red, green, and blue values to be 255. Then, we specify a color of (0, 255, 128), which
means a red intensity of 0, a green intensity of 255, and a blue intensity of 128, all being measured
in relation to the logical maximum of 255 which we just set. Finally, we convert this RGB color to
a “native” color appropriate for the current screen’s color depth and color model. The conversion
is done via an object of type | 3d_scr een_i nf o, which encapsulates the complicated color
calculation discussed earlier. The color conversion function is called ext _to _nati ve, as it
changes a color from an “external” RGB format into a format “native” to the XImage.

102

¢

Chapter 2: Accessing the Screen

The drawdot pipeline then overrides the key_ event, update_event, and
dr aw_event methods to respond to events. This fulfills the third and final responsibility of an
| 3d_pi pel i ne subclass, responding to events.

The key_event for the dr awdot pipeline checks if any one of the directional keys was
pressed, and updates the dx and dy variables, representing the horizontal and vertical velocities,
accordingly.

The updat e_event for the dr awdot pipeline adds the velocities to the positional vari-
ables, and makes sure the position stays within the bounds of the screen. In other words, X += dxX
andy += dy.

The dr aw_event for the dr awdot pipeline first calls the dr aw_poi nt routine of the
rasterizer, which then forwards the request to the rasterizer implementation to draw a pixel at a
particular point in a particular color. Remember that the drawing occurs off-screen (double buffer-
ing). The pixel color must be specified in “native” format for the current color depth and color
model. We already computed and stored this color earlier by using the function
| 3d_screen_i nfo::ext_to_native.After plotting the point, wecallbl i t _screento
cause the off-screen graphics to be copied to the screen.

Let us summarize the main idea behind the pipeline. A pipeline represents the main function-
ality of an application and is subclassed from | 3d_pi pel i ne. Anl 3d_pi pel i ne subclass
has three responsibilities: creating screen-access objects, declaring world data, and responding to
events. Creating screen-access objects (screen, rasterizer implementation, and rasterizer) allows
access to the screen and screen-drawing functions. Declaring world data allows the program to
keep track of the state of all objects in the virtual world. Responding to events is how the pipeline
responds to input (through key_event), updates the virtual world (through updat e_event),
and draws to the screen (through dr aw_event , using the previously created screen-access
objects).

The pipeline does not need to worry about how or when events occur; it merely responds to
them. The pipeline’s virtual event functions are thus called from an outside source. This outside
source is the dispatcher.

Step 3. Create a Dispatcher

The third step in writing an 13d application is to create an event dispatcher object. The event dis-
patcher serves as an interface between an event source and an event receiver. The event receiver in
our case is the pipeline. The event source is a window created under a specific event-driven win-
dowing system. The role of the dispatcher is to receive events from the system-specific window,
and to call the appropriate pipeline functions to allow the pipeline to respond to the events.

The whole idea is to isolate the pipeline (i.e., your application logic) from the details of the
underlying event generating mechanism. This way, the pipeline’s logic can focus exclusively on
application-specific responses to events, without needing to know exactly how the windowing
system generates and transmits events. The dispatcher handles all the messy details of event cap-
turing and translates this into a clean, simple, virtual function call to the pipeline. This allows your
pipeline to work on a variety of platforms, with a variety of event generating mechanisms.

The event dispatcher must be created using the factory chosen in step 1. This is because the
dispatcher represents system-specific code, and should thus be created through an abstract factory.

Chapter 2: Accessing the Screen

Step 4. Create a Pipeline

The fourth step in creating an 13d application is to create your pipeline object. This step is easy.
Having already declared and defined an | 3d_pi pel i ne subclass, which fulfills the three pipe-
line responsibilities (creating screen-access objects, declaring world data, and overriding event-
handling functions), we simply create the pipeline directly with the C++ new operator. This in
turn invokes the pipeline’s constructor, which creates the screen, rasterizer implementation, and
rasterizer objects.

At this point, the application is ready to respond to events. We just need to pump events to the
pipeline in order to allow it to respond to input, update itself internally, and draw to the screen. To
start the entire event process, we start the dispatcher.

Step 5. Start the Dispatcher

The fifth step in writing an 13d application is to start the dispatcher. We must do three things:
1. Assign a pipeline to the dispatcher.

2. Assign an event source to the dispatcher.

3. Callstart.

A moment’s reflection makes it clear why the two assignments are necessary. The dispatcher takes
events from the event source, interprets them minimally, and calls the appropriate pipeline virtual
event function to allow the pipeline to respond. The pi pel i ne member of the dispatcher object
is set to the pipeline which we just created. The event _sour ce member of the dispatcher
object is set to the screen object created in the pipeline’s constructor—in other words, the screen
(in our case the X window) is the source of events. With these two member variables set, the dis-
patcher can then begin to extract events from event_source and pass them on to
pi pel i ne—a process set in motion by calling st art .

Summary of Fundamental 13d Concepts

The five-step process presented above is typical of 13d programs. First, you choose the proper fac-
tories to configure the program to its environment. Then, you declare a pipeline representing your
application and its data. You create an instance of the pipeline, which in turn creates screen,
rasterizer implementation, and rasterizer objects. You “plug in” this pipeline into an event dis-
patcher. Your application pipeline responds to events from the dispatcher by filling in the blanks
left by the virtual functionskey_event ,updat e_event ,anddr aw_event . The application
pipeline draws to the screen by using the screen, rasterizer implementation, and rasterizer objects
it created within its constructor. This forms a complete, interactive, event-driven, hardware-inde-
pendent graphics program.

Having understood the sample 13d program, we are now ready to look at the specific 13d
classes in a bit more detail.

Overview of I13d Classes

Let us first consider, at a very high level, the roles of the 13d library classes we are about to discuss
in the following sections. This overview will help keep the class descriptions, found in the

104

¢

Chapter 2: Accessing the Screen

following sections, in perspective. Again, the classes do not really introduce any concepts we have
not already covered. They do, however, reorganize the concepts into general, reusable, abstract
classes.

The main application is subclassed from | 3d_pi pel i ne. The | 3d_di spat cher takes
events from an | 3d_event _sour ce and automatically calls the appropriate event-handling
routines in | 3d_pi pel i ne. Class | 3d_di spat cher _x11 is the X specific dispatcher.

Class | 3d_scr een is subclassed from | 3d_event _sour ce, and represents an output
device into which an | 3d_rasteri zer _2d_i np (next paragraph) can draw. The screen,
under this model, must also be able to provide event notification to other objects, which is the role
of the parent class | 3d_event _sour ce. Class| 3d_scr een_x11 isascreen under X, in the
form of an X window with an XI nage in it.

Class| 3d_r ast eri zer _2d represents a high-level interface to 2D rasterization concepts;
class | 3d_rasterizer_2d_i np represents a low-level implementation of 2D rasterization
functions using either software or hardware. Class | 3d_rasterizer_2d wuses
| 3d_rasterizer_2d_i np to do its work. Class | 3d_rasterizer_2d_sw inpisa
software rasterizer implementation.

Class | 3d_scr een_i nf o provides the rasterizer implementation with information about
the screen which is necessary in order to perform rasterization. The ext _t 0_nat i ve function
transparently converts arbitrary RGB colors into the native bit format required by the
screen—tegardless of the color depth and color model. The |l i ght _nati veandf og_nati ve
methods apply a light or a fog factor to a particular color in native format, altering the color appro-
priately. Class | 3d_screen_i nf o_r gb handles information about screens based upon a
direct RGB color specification, while class | 3d_scr een_i nf o_i ndexed handles informa-
tion about screens based upon an indexed color model. Class | 3d_screen_i nf o_i ndexed
also manages a palette of RGB colors, which is simply a dynamically allocated array containing
entries of type | 3d_r gb.

Class | 3d_f act ory_nmanager _v_0_1 is the factory manager which centrally manages
all factories for the entire program. One global instance of this class is automatically created, with
the name f act ory_manager _v_0_1. An application chooses its factories through variable
factory manager _v_0_1.

An X application using 13d will follow the five-step process illustrated by dr awdot : choose
factories, declare pipeline subclass, create dispatcher, create pipeline, start dispatcher. The facto-
ries are chosen by calling f act ory_manager _v_0_1. choose_f act ori es. For now, the
chosen factories will be of types | 3d_di spat cher _factory_x11,1 3d_screen_fac-
tory_x11,andl 3d_rasterizer_2d_sw_i np_f act ory. This means that the dispatcher
(I 3d_di spat cher _x11 knows how to handle X events, and that the screen
(1 3d_screen_x11) knows how to communicate with and display XImages on the X server.
Drawing into the XImage’s off-screen buffer is done by using a 2D, software rasterizer implemen-
tation (I 3d_rasteri zer_2d_sw_i np).

NOTE Later, we see how to use hardware-accelerated rasterizer implementations and
shared memory screen factories. So, the preceding paragraph is not a hard-and-fast rule

