THOMSON

Profiessional s Techaical w Refersece *

1S

GAME ENGINE
TOOLSET
DEVELOPMENT

GrRAHAM WIHLIDAL

| |
GAHE ENGINE
_ TOOLSET
DEVELOPMENT

D

GRAHAM WIHLIDAL

THOIVISON

e

COURSE TECHNOLOGY

Professional m Technical m Reference

© 2006 Thomson Course Technology, a division of Thomson Learning
Inc. All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or
retrieval system without written permission from Thomson Course
Technology PTR, except for the inclusion of brief quotations in a review.

The Thomson Course Technology PTR logo and related trade dress are
trademarks of Thomson Course Technology, a division of Thomson
Learning Inc., and may not be used without written permission.

The .NET logo is a trademark of Microsoft Corporation in the United
States and/or other countries.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s technical
support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted
throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the man-
ufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of
the fact that the Internet is an ever-changing entity. Some facts may have
changed since this book went to press.

Educational facilities, companies, and organizations interested in multiple
copies or licensing of this book should contact the Publisher for quantity
discount information. Training manuals, CD-ROMs, and portions of this
book are also available individually or can be tailored for specific needs.

ISBN: 1-59200-963-8

Library of Congress Catalog Card Number: 2005929829
Printed in the United States of America
0607080910PH 10987654321

Thomson Course Technology PTR,
a division of Thomson Learning Inc.
25 Thomson Place

Boston, MA 02210

http://www.courseptr.com

THOMSON

+ ™

COURSE TECHNOLOGY

Professional m Technical m Reference

Publisher and General Manager,
Thomson Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah O’Donnell

Manager of Editorial Services:
Heather Talbot

Marketing Manager:
Heather Hurley

Senior Acquisitions Editor:
Emi Smith

Marketing Coordinator:
Jordan Casey

Project Editor:
Sandy Doell

Technical Reviewer:
John Flynt

PTR Editorial Services Coordinator:
Elizabeth Furbish

Interior Layout:
Shawn Morningstar

Cover Designer:
Mike Tanamachi

Indexer:
Larry Sweazy

Proofreader:
Sean Medlock

http://www.courseptr.com

This book is dedicated to my family (Kathy, Lois, Arthur, and Lisa),
and to my grade three teacher who told my parents
I would never be employable.

I present this book in respectful memory of Eric Dybsand and Jan Horn.
The gaming community will forever miss you.

Remembrance and reflection how allied.
What thin partitions divides sense from thought.

—Alexander Pope

FOREWORD

Meeting Graham is like walking into a sports stadium for the final game of the season.
You are not quite sure how it will end, but you know it's going to be exciting. This
was the impression I had when I first met Graham. Graham's passion for his work
is evident in everything he says and does. At the same time, he remains open to
new ideas and seems to be constantly looking for new ways to improve his per-
sonal skills. He is one of the most technically knowledgeable people I know, and at
the same time he is able to amicably communicate ideas and concepts.

My project team was looking for some professional help on a project we were
working on and Graham had been referred to us as someone who might be able
to help. Our project was facing some challenges, as we had a client who was very
demanding and it looked like there might not be enough resources to complete the
project on time. We were hoping that someone could help us out with some of the
internal tools we had developed to support the project team and help us become
more efficient.

Graham employed many of the techniques discussed in this book to expedite our
project, which helped us achieve many of our project goals without disrupting the
team dynamics and workflow we had previously established. I do not come from
a game development background, but game engine tools are essentially business
software, with differing stakeholders and business rules. Business software often
requires additional tools and utilities to improve workflow or produce content,
and this book discusses concepts and techniques that are applicable to any .NET

Foreword

software project. I know firsthand the development benefits from the .NET platform
and clearly see the value in using this platform to build robust and scalable game
engine tools.

I expect that readers of this book will be in a similar position to mine when I met
Graham. You are probably a little excited at the prospect of learning new tech-
niques and methodologies and, at the same time, do not want to reinvent the way
you have worked in the past. Graham's ideas and concepts will enable you and, I
suspect, your team to become more efficient in your projects and will do so in a
way that is unobtrusive to your current working methodologies and techniques. I
expect you will find reading this book to be a rewarding experience, and I hope
you will be able to share in Graham's passion for his profession.

John Eldridge
M.B.A., .Net MCSD, MCDBA, MCSE & CMC

John is a senior Solution Architect who consults on a variety of enterprise projects in
North America and Asia.

Vi

ACKNOWLEDGMENTS

I would like to express my gratitude to the following people for their never-ending
support and assistance in helping to make this book a reality:

Kathy, you are my soul mate, and I am overjoyed to be spending the rest of my life
together with you. Your love, admiration, and support made this book a reality,
and I could not have done it without you. Thank you for your love and patience.

Thank you to my family (Arthur, Lois, and Lisa) for your love and support and for
putting up with my incessant ramblings about game development all these years.
I still remember the first game I ever made, and how proud I was to show it to you,
only to have the hero’s clothes fall off when he picked up the sword from the
ground—in addition to his sword and shield protruding from inappropriate places.
Yes, even games have bugs....

Anthony Whitaker, my good friend. I have always enjoyed discussing the pro-
grammable pipeline, spatial partitioning, tools development, and countless other
topics with you. I value our friendship, and I am thrilled to know such a knowl-
edgeable person.

Wayne Larson, you have become both my mentor and friend. Your teachings have
improved me on both a personal and professional level. Thank you for inspiring
me to strive for bigger and better things; I am grateful.

Peter Hansen, thank you for giving me the opportunity to host a practicum for
your Digital & Interactive Media Design students, and thanks for your continued
support and direction.

Acknowledgments

Thank you to my friends on #graphicsdev, #gamedev, and #mdxinfo on the AfterNET
IRC server. You all have supported me and offered advice and insight throughout
the life cycle of this book; especially Sean Kent, Oluseyi Sonaiya, Henrik Stuart,
Promit Roy, Kyle Kaitan, Pieter Germishuys, Josh Jersild, and David Crooks. Thanks
also go out to Osayuki Emokpae for her inspiration and guidance in the planning
stages of the book. Special thanks to my friend Zane Bogach for providing a few
textures for a couple chapters. A big thanks to Dave Astle (GameDev.net) for intro-
ducing me to Emi Smith and Mitzi Koontz.

Thank you to my close friends Sam Montasser, Dave Vani, Eric Fredin, and Ben
Thieson. We have shared a lot of good memories, and I look forward to sharing more
over the years to come.

Emi Smith, Stacy Hiquet, Sandy Doell, Heather Talbot, John Flynt, and Shawn
Morningstar, thank you all for being so wonderful to work with. You helped steer
this project from inception, and I appreciate your time and effort. I would also like
to thank everyone else at Course Technology PTR who was responsible for bringing
this book into existence.

I would also like to thank my employer, CGI Group, Inc., for permitting me to
write this book alongside my work. Special thanks go to Glenn Mitchell, John
Eldridge, Darryl Kotton, Andrew Stipdonk, Matthew Christopher, Michael Mah,
Ghassan Karwchan, Ibraheem Yan, Tim Hill, Art Gartner, and Glenn Steinke for
being such great people to work with. It was a pleasure to work with all of you on
our last project, and I hope to work with all of you again.

Warm-hearted thanks also go to Don Moar (BioWare), John Walker (High Voltage
Software), Aaron Walker (Electronic Arts), Roy Eltham (Sony Online Entertainment),
Anthony Whitaker (Boanerges Studios), Ryan Hummer (Raven Software), and
Yggy King (Electronic Arts). I felt enlightened after speaking with all of you about
tools development and the state of the industry. Thank you for your opinions and
support, especially during crunch time. I look forward to seeing all of you again at
the next Game Developers Conference.

Thanks to Matt Collins (Atari), Steven Bercu (LIME Law), Frederic Chesnais (Atari),
Teresa Cotesta (BioWare), and Tim Johnson (Artificial Studios) for granting me
permission to print copyrighted material in the book.

I would like to thank the readers, you who made everything possible! This book
was written for all of you, and I hope you enjoy reading it as much as I enjoyed
writing it.

vii

viii

ABOUT THE AUTHOR

Graham Wihlidal is a consultant at CGI Group, specializing in Microsoft tech-
nologies at an enterprise level. Prior to his current employment, he was the lead
developer of a distributed workflow automation framework using C#NET, SQL
Server, and Windows SharePoint Services. He has several years of experience as a
freelance developer and consultant, designing and implementing business soft-
ware solutions with C#, C++, and Java for a variety of sectors. Aside from normal
development work, he also has experience as a configuration manager for Rational
ClearCase at an enterprise level. Graham graduated Computer Systems Technology
at the head of his class while attending the Northern Alberta Institute of Technology,
and he is a Microsoft Certified Solution Developer and an Early Adopter for NET 2.0.

Aside from his professional life, Graham has been an active member in the game
development community for the past seven years, with an undying passion to both
play and develop computer games. In his spare time, he is constructing a high-
performance 3D engine and accompanying toolset.

CONTENTS

Introduction i e e xvii
PART I: TooLsSeT DESIGN FUNDAMENTALS 1
Chapter 1 What Is a Tool? WhatlIsaToolset?c.o... 3
Stakeholders: Internal Versus External i 4
Who Builds the ToOoIs? i e 5
How Large Are Tools TEaMS? .. .ottt e e et 7
Chapter 2 Why Use C#? Why Use .NET?oiiiiiiiiiiiinnnnn 9
Overview Of INET ..o e e 10
Overview Of G ... L e 11
Legacy Interoperability 12
BENefitS . .ot 14
Chapter 3 Examples of Commercial Toolsets 17
Case Study: BioWare Corporationt 18
Case Study: Artificial Studios i 22
Chapter 4 Everything Starts withaPlan 27
YT o o 28
Stakeholders 28
Reusability 29
Architecture e 29
Requirements 30
Design Standards 30
Coding Standardst e 30
Documentation e 31
Testing ..o 32
Defect Trackingot 33
Life CyCle .ot e 33
Development Environment e 33
Staging Environment e 34
Production Environment 34
Chapter 5 Development Phasesof aToolccoiinnnnnnn 37
Phase: Planning 38
Phase: ANalysist e 39
Phase: DeSIgN . . .ot e 39
Phase: Implementation 40

Contents

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Measurement Metrics for Tool Quality 43
Metric: Maintainability 44
Metric: Traceabilityo e a4
Metric: Performance i e 45
Metric: Usabilityo e 45
Metric: Testability o e 46
Metric: Portability 46
Metric: Reliability e 47
Metric: Efficiencyo e 47
Fundamentals of User Interface Design 49
Principle of CoNSISteNCYottt e 50
Principle of Transparencyo.i ittt e 50
Principle of Feedback e 51
Principle of Refinement i e 52
Principle of Exploration i e 52
Principle of Modality 53
Principle of Self-Evidence i s 53
Principle of Moderation e 54
Principle of Customization e 54
Distributed Componential Architecture Design 57
Architecture OVerVIEWot 58
Core COMPONENTS . . vttt et e e e e e e e e e e e 58
SPECTIC TOOI LOGIC v vt ittt et e e e e e e e 59
Console Entry Point e 59
Windows Entry Point e 59
Other Entry Points e 60
Architecture Example e 61
Alternate Architecture Structure i e 74
Solutions to Bridge Domain Gapsc.covoviernnrnnnnnns 77
Compositional Friction 78
Cause: Domain CoVEragettt e et 78
Cause: Design Intentions 79
Cause: FrameWork Gap vvvui ettt e e e e e e e 79
Cause: Entity Overlapo 80
Cause: Legacy Componentst i 81
Cause: SOUICe CoOAE ACCESS . .. v v vttt ettt e e e et e e e et 81
Relevant Design Patterns e e 82
Unit Testing with NUnit i, 89
Overview of Unit Testing i 90
Introducing NUNIt e 91
Creating an NUNIt Projecto i e 92
Attribute OVerview e 93
Expected Outcome Assertionot 98
A Simple EXxample 102
RUNNING TeStS . . .ot e e e e e 105

Debugging with Visual Studio 107

Contents

Chapter 11 Code Documentation with NDocand XML 111
Configuringthe Project 112
Supported XML Markupo e 114
Commenting Example e 116
Generating the Documentation i 117
Chapter 12 Microsoft Coding Conventions 121
Styles of Capitalization e 122
NamiNg Classes . . . oo vttt e e 123
Naming Interfacest e e 123
Naming NamesSpacesottt e e 124
Naming Attributes e 125
Naming Enumerations 125
Naming Static Fields 125
Naming Parameters i 126
Naming Methods 126
Naming Properties 126
Naming Events 127
Abbreviations e 128
Chapter 13 Enforcing Coding Policies with FxCop 129
Installing FXCOp . ..o 130
Creatingan FxCop Project 131
Configuring Built-In Rules 131
Analyzing Your Projecto e 132
Building Custom Rules e 136
Chapter 14 Best Practices for Robust Exception Handling 143
External Data IS EVil o e 144
Creating Custom EXceptions 144
Throwing EXceptions i e 146
Structured Exception Handlers 147
Logging Exception Information 148
Mechanisms for Cleanupo e 148
Unhandled and Thread Exception Eventsociiiinininnen... 150
PART Il: TECHNIQUES FOR ARBITRARY TOOLS 153
Chapter 15 Compressing Data to Reduce Memory Footprint 155
Types of COMPressioNt e e 156
GZipStream Compression in .NET 2.0 ittt 156
Implementation for ArbitraryData ... 157
Implementation for Serializable Objects oo .. 159
Chapter 16 Protecting Sensitive Data with Encryption 163
Encryption Rudiments e 164
Selecting @ Cipher 169

ICryptoTransform Interface it i 170

Xi

Xii

Contents
Chapter 17 Generic Batch File Processing Framework 173
GOAlS oot 174
Proposed SolUtion e 174
Implementation e 175
Chapter 18 Ensuring a Single Instance of an Application 183
Early Solutions 184
Journey to the Dark Side e 187
The Solution o 188
Chapter 19 Implementing a Checksum to Protect Data Integrity 193
Implementation e 194
USO8 ittt et e e e 196
ARernative 197
Chapter 20 Using the Property Grid Control with Late Binding 199
Designing a Bindable Class i e 200
Ordering Propertiest e 205
Using the PropertyGrid i e 208
Chapter 21 Adding Printing Support for ArbitraryData 211
Printing Regular Text o i e 211
Supporting Printer Selection 215
Supporting Page Setup 216
Supporting Print Preview 217
Chapter 22 Flexible CommandLine Tokenizer 221
Formatting Styles e 222
Implementation e 223
SAMPIE USage . . o e ittt 226
Chapter 23 Layering Windows Forms on Console Applications 229
Implementation e 230
SAMPIE USagE . . ottt 231
Chapter 24 Overview of Database Access with ADO.NET 233
Advantages of ADO.NETttt et et e 234
ADO.NET Object Modelot e e e 235
Working with a DataReaderttt 236
Working with a DataAdapter 237
Working with XML s 238
Potion Database Editor 239
PART lll: TECHNIQUES FOR GRAPHICAL TOOLS 241
Chapter 25 Using Direct3D Swap Chains with MDI Applications 243
What Is a Swap Chain? e 244
Thoughts for SDI and MDI Applicability 246
Common Pitfalls e 246

The Proposed Solution 247

Chapter 26 Constructing an Aesthetic Texture Browser Control

Swappable Loader Interface i
Windows GDI+ Loadert
Managed Direct3D Loadert
Storing Texture Information i
Building the Thumbnail Control
Handling Custom User Events i,
Building the Viewer Control
Using the Control
Loading Textures from a Directorycooiiuiiiunnenen ..
Loading Textures from a MemoryStream
Loading Textures fromaBitmap,
Texture Browser Demot

Chapter 27 Converting from Screen Space to World Space
Transforming Screen Coordinates iiiinnon..
Computing the PickingRay i,
Bounding Sphere Intersection Tests,
Improving Intersection Accuracyc.i ...,
Using Built-In D3DX Functionality

Chapter 28 Asynchronous Input Device Polling
Asynchronous Mouse Polling
Asynchronous Keyboard Polling
Sample Usageo i i

PART IV: TEcHNIQUES FOR NETWORK TooLSs

Contents Xiii

Chapter 29 Downloading Network Files Asynchronously
HttpWebRequest and HttpWebResponse
The Request Objectttt e
Maintaining DataState i
The Core System e
Sample Usageo o

PART V: TECHNIQUES FOR LEGACY INTEROPERABILITY

Chapter 30 Exchanging Data Between Applications
What Microsoft.NET Providescooiiiiiinennan..
What Microsoft.NET Should Provide
Building a Wrapper Around WM_COPYDATA,

Chapter 31 Interacting with the Clipboard
The Clipboard Class and IDataObject
Storing Built-In Types i
Storing Custom Data Formats
Querying Available Data Formatsciiiiiinan.
Complete Solution i

Xiv

Contents
Chapter 32 Using .NET Assemblies as COM Objects 355
COM Callable Wrappers (CCW)ottt e e e 356
Applying Interop Attributes 357
Registering with COM e 361
Accessing from Unmanaged Codeiiiiriiiiiiiin i, 363
Deployment Considerationst e 364
Chapter 33 Managing Items in the Recent Documents List 367
Implementation e 368
Example Usage ot e 369
PART VI: TECHNIQUES TO IMPROVE PERFORMANCE 371
Chapter 34 Playing Nice with the Garbage Collector 373
Overview of the Garbage Collector 374
Collecting the Garbageot e 375
Allocation Profile 376
CLR Profiler and GCMonitoring 377
Finalization and the Dispose Pattern i .. 384
Weak Referencingt e 389
Explicit Controlo e 391
Chapter 35 Using Unsafe Code and Pointers 393
Rudiments of Pointer Notation 394
Using an Unsafe Contextouun ittt 397
Pinning Memory with the Fixed Statement 398
Disabling Arithmetic Overflow Checkingcco ... 399
Allocating High Performance Memory i iiiiiinnen.. 399
Getting Size 0f Data TYPeS . ..ot ittt e 401
Example: Array Iteration and Value Assignment 402
Example: Data Block CoOpYing ooiit it 403
Example: WIN32 API ACCESS . . o . vttt ettt e e e et 405
Chapter 36 Investigating Managed Code Performance 407
Investigating Performance i 407
Avoid Manual Optimization i e 408
String COmMPariSON 409
String Formatting 411
String Reversal 413
Compiling Regular EXPressionsoui ittt e i 413
Use the Most Specific Type oot e e 415
Avoid Boxing and Unboxingt e 415
Use Value Types Sensibly 416
The Myth About Foreach Loops i e 417
Use Asynchronous Calls e 418
Efficient IO Buffer Sizes i 418
Minimize the Working Set i 418
Perform Chunky Calls 419
Minimize Exception Throwing 420

Thoughts AboUt NGen e 420

Chapter 37 Responsive Ul During Intensive Processing
Implementing the Worker Logic
Reporting Operation Progress,
Supporting User Cancellation o...
Executing the Worker Thread

PART VII: TECHNIQUES TO ENHANCE UsSABILITY

Contents XV

Chapter 38 Designing an Extensible Plugin-Based Architecture

Designing a Common Interface
Embedding Plugin Metadata Information
Building a Proxy Wrapperttt
Loading Plugins Throughthe Proxy
Reloading Plugins During Runtime
Runtime Compilation of Plugins
Enforcing a Security Policy

Chapter 39 Persisting Application Settings to Isolated Storage

Concept of Isolated Storage
Accessing Isolated Storage
Levels of Isolation
Management and Debugging i

Chapter 40 Designing a Reusable and Versatile Loading Screen

Splash Dialog . ..o
Goforthe GUStOot e
Concept of Loading Jobs
Responsive Processingt
Simple Example

Chapter 41 Writing Context Menu Shell Extensions
Unmanaged Interfaces
Reusable Framework i i
Sample Usage—Standalone i,
Sample Usage—Integrated,
Component Registration i
Debugging Techniques,

PART VIII: TECHNIQUES TO INCREASE PRODUCTIVITY

Chapter 42 Automating Workflow Using Job Scheduling
Benefits . ..o
Solution Goals
Implementation

Chapter 43 MVC Object Model Automation with CodeDom
Advantages of an Automatable Object Model
Comparison with Model-View-Controller Pattern
A Simple Object Model Architecture
Plugin-Based Architectureso ...

XVi

Contents
Controlling an Object Model with Scripts 537
Implementing a C# Command Window, 539
Simple Automation and MVC Example il 543
PART IX: TECHNIQUES FOR DEPLOYMENT AND SUPPORT 551
Chapter 44 Deployment and Versioning with ClickOnce 553
ClickOnce and MSI COmMPariSONottt et 555
Creating the Application 556
Publishing the Application 557
Launching the Application 560
Deployment Configuration i 561
Pushing Application Updatesco i 564
Programmatically Handling Updates i, 565
Chapter 45 Testing for the Availability of the .NET Framework 569
The SolUtioN o 570
Example Usageot e 572
Chapter 46 Building and Customizing an MSl Installer 575
CreatingaSetup Project i 577
Project Configuration i e 579
Deployment Configuration i e 584
Custom Installer ACtions it s 587
Deploying the Installer 590
Chapter 47 Determining Binary File Differences 593
What Is Levenshtein Distance?ottt 594
Generating a Difference List it 595
Transforming Data Using a Difference List 597
Thoughts for Usability and Deploymento .. 599
INndeX ... e e 603
PART X: BoNus WEB SITE CHAPTERS ON WEB SITE
Bonus 1 Distributed Computing Using .NET Remoting

Bonus 2 Building a Managed Wrapper with C++/CLI

INTRODUCTION

Developers are required to continually learn new techniques and approaches,
which can often lead to issues meeting deadlines, especially when inadequate
research results in fatal design flaws. Almost every aspect of information technology
is affected by this issue, most notably the game development industry. Game devel-
opers continuously push the envelope on a per project basis in terms of visual
aesthetics, game play, and design. The need to overcome limitations is encountered
frequently, since there is such an enormous variety in hardware, operating systems,
and end user expectations.

The importance of designing reusable and maintainable code cannot be stressed
enough and can break a company if disregarded. Even though a significant por-
tion of source code from each project is too specific to be reusable, a core founda-
tion always exists that, if designed properly, can be reused for the majority of
future projects. For example, every game requires access to the file system to store
media assets; therefore, components that manage file system interaction should be
modular enough to plug into any project.

Even though the reusability of existing components can significantly reduce the
costs associated with project development, there are other improvements that are
very advantageous to the design process. As technology advances, so do the tools
that interact with that technology. Utilizing the C# language and the robust Microsoft
.NET 2.0 Framework, this book will present development methodologies that not
only accomplish the goals specified for a project, but do the job in a timesaving
manner.

Toolset development is an extremely broad topic, yet the intent of this book is to
provide you with a core set of skills and a comprehensive insight that will aid you
in the development of game engine utilities, significantly reducing the time asso-
ciated with the construction phase of a project.

The book content is fairly suitable to a wide variety of developers, with the exception
of developers new to programming. Readers with very little experience building
Windows-based applications may struggle a bit, but this book will teach them the
proper way to implement the functionality needed for their project.

An introductory working knowledge of C# and the .NET 2.0 Framework is expected,
allowing the content of each chapter to be directed towards the subject and avoiding

XVii

XViii

Introduction

trivial and introductory explanations. To benefit from this book, readers do not
require any experience developing game engine tools; terminology and design fun-
damentals specific to toolset development are clearly depicted and explained.

All material is at a level of quality suitable for production code, making the book
an exceptional reference and asset for industry professionals and hobbyists. Readers
will learn how to build reusable components and optimize existing code for max-
imum performance, a critical issue when building processor-intensive tools.

[feel strongly that technical books should not be written in a linear manner, which
is why the decision was made to isolate the information in this book into chapters
that are an independent read from one another. Readers should not have to read a
quarter of the book over again just to refresh their memory about a certain com-
ponent. Readers should be able to jump right to a topic that interests them and
begin reading without the need to reference other chapters.

The focus of this book, in terms of technology, is on the .NET 2.0 Framework and
the C# language. However, because of the nature of a “gems” style book, some
chapters include other technologies specifically related to that topic of discussion.
Due to the approach used in this book, all gems are independent of each other
unless otherwise stated as being coupled.

C# and the .NET Framework are evangelized, but an important issue regarding
toolset development is the maintenance and support of legacy code and utilities;
hence the decision to include a variety of topics that cover communication
between managed and unmanaged applications, as well as topics that address gen-
eral interoperability concerns. Because of this, C++ is covered in a couple of gems
that discuss inter-process communication, interoperability, and interacting with
unmanaged code. Furthermore, a decent amount of graphical and multimedia-
oriented gems are implemented with functionality present in Managed DirectX. If
you do not have experience or interest with a particular technology used in a chapter,
fear not. All gems are independent of each other, so you will not be missing out on
anything by skipping it until the topic is relevant to your project.

Tools development is an exciting and rewarding area of game development and is
sometimes scoffed at by other developers who do not wish to give up their romantic
notions of game development. The truth is, good tools make good games. Someone
has to make them, and be glad it’s you!

I worked hard to produce this book for you, but I also had a lot of fun writing it. I
feel that a wide range of applicable topics were covered, and hope that you run to
this book time and time again. Thanks very much for supporting my work and for
your interest in a topic that I am so passionate about.

PART |

|
TOOLSET DESIGN
FUNDAMENTALS

...the cost of adding a feature isn’t just the time it takes to code it. The cost
also includes the addition of an obstacle to future expansion. ... The trick
is to pick the features that don’t fight each other.
John Carmack

The main purpose of this book is not to function as a book on toolset design, but
rather on implementation issues facing tools developers. In order to properly illus-
trate some techniques discussed later on in this book, the chapters in this part focus
on design fundamentals and tools discussion to help introduce you to the concepts
behind tools development. The chapters in this part cover many of the core aspects
and fundamentals of toolset design, including defining what a toolset is, common
applications, describing why flexible and reusable tools are important, and also
discussing a few commercial toolsets that have shipped with titles.

Also covered are some techniques and approaches used to properly design and
manage the development of a toolset. The common life cycle of development is
explained, summarizing the four phases of the “waterfall” methodology; planning,
analysis, design, and implementation. There are also a number of .NET-specific
topics that cover everything from coding conventions to architecture implementa-
tion. There is also a chapter that describes what unit testing is, and how to perform
unit testing in C#.NET.

It is important to recognize that there is never a single way to approach and solve
a problem, as successful resolutions are dependent on the context of the problem.
However, it is important to understand a variety of methodologies and techniques
in order to identify a proper solution to a problem. Some solutions follow the
“mop it” approach, which entails treating, tolerating, or redirecting the problem.
The “mop it” approach can be described like a water leak, where instead of fixing
the leak, you mop up the water. Other solutions follow the “stop it” approach, which
entails preventing, eliminating, or reducing the problem. Whatever solution your
resources allow, many of the chapters in this part can help you in reaching your goal.

CHAPTER 1

WHAT Is A TooL?
WHAT Is A TOOLSET?

Programming today is a race between software engineers striving to build
bigger and better idiot-proof programs, and the Universe trying to produce
bigger and better idiots. So far, the Universe is winning.

Rich Cook

A tool is a software application used in either the construction or modification of
game-related content, where the content can be virtually anything that makes up
a game. Tools can be extremely simple, such as an application that removes all the
tab characters from a text file, or an application that copies files from one location
to another. Tools can also be quite complex, such as a full-featured world editing
suite. The complexity of the tool is directly proportional to the complexity of the
problem the tool is supposed to solve.

A toolset is a collection of tools that make up the content production pipeline of
a game. Any tool from a toolset can be reused in multiple projects as long as the
tool was designed with reusability in mind. Some tools are created for a single pur-
pose, in which the tool cannot be reused because a lot of the tool was hard coded
to reduce development time. A tool that is hard coded for a single purpose is often
referred to as a throw-away or skunk works tool.

As games move toward higher expectations of the quality and quantity of content
displayed, so do the tools that produce the content. Without producing exception-
al tools, you cannot produce an exceptional game.

Chapter 1 ® What Is a Tool? What Is a Toolset?

Stakeholders: Internal Versus External

Defined as anyone who stands to gain or lose from the success or failure of an
application, the stakeholders greatly affect the quality and functionality of a tool.
They are the users who are most affected by the introduction of a tool, and they
ultimately contribute to the design and goals. If the tool is meant only for internal
use, there is typically little to no documentation, and the user interface is general-
ly unintuitive or “messy.” If the tool is meant to ship with a game to provide mod-
ification abilities, then the tool is typically feature and user interface rich, and is
accompanied with excellent documentation and tutorials.

Most tools never ship with the game, and constantly evolve as the game is devel-
oped. Many tools are developed for internal use and, if written properly, can be
reused across multiple projects as well.

If the tool is designed for use by the developer only, it is typically as featureless and
unintuitive as possible. The code is usually horrible to navigate, and maintainabil-
ity is almost impossible. Since tools are generally designed to produce content for
the game itself, far less time is spent developing good tools. There is a fine balance
between wasting too much time and resources on the tools for a game, and not
spending enough time making tools that are actually worthwhile. Ideally, you
would want to build the tools as quickly as possible, but with a reasonable level of
quality. This is where improvements to development workflow and component
reusability play a large part in the success of a tool and the developers behind it.

If the common components of your tools have a loosely coupled design and solid
modularity, then more time can be spent making better tools because you do not have
to keep redeveloping common functionality duplicated across different projects.

To describe an example later detailed in this book, imagine that you have three
batch file processing tools that each process files differently, yet share the same
logic behind traversing the directory structure and selecting target files using pat-
tern matching. If you hard code three tools as quickly as possible, you end up
debugging the common functionality three times, individually debugging the
logic each tool performs, and limiting yourself in terms of future improvements
and maintainability.

Now, if that core functionality were separated into a reusable library and extra
time spent ensuring that the code was stable and generically configurable, all three
tools could interface with the library and debugging time would be minimized to
just the tool logic itself. The result is a better tool, and one change to the base
framework propagates to all three tools. This common functionality could now be

Who Builds the Tools?

used for any batch file processing tool needed in the future, drastically reducing
development and debugging time.

The time saved thanks to reusability can allow you to build more tools of decent
quality, or the time can be spent improving the user interface or accompanying
documentation so that the stakeholders have an easier time understanding and
using the tool.

Well written and fairly bug-free tools can make everyone’s life easier on the devel-
opment team, whereas poorly documented or written tools can hamper develop-
ment or even jeopardize the success of the project.

Who Builds the Tools?

There are five main models a game development studio can be classified into in
regards to the creation and support of tools. Keep in mind that the models described
are generalizations, and some studios can use a hybrid of multiple models. The
different organizational models for tools development are shown in Table 1.1.

Table 1.1 Organizational Models of Tools Development

Organizational Model Description

Dedicated Tools Team This model is based around a team that takes a tool from
inception all the way to supporting it. This model works
extremely well, though it generally requires a liaison with both
technical and design skills to help facilitate effective
communication between the tools team and the target
audience when discussing features and workflow using the tool.

A strong example of a game development studio following
this model is BioWare Corp.

Developer Ownership “You build it, you support it.”

This model is where the individual or team responsible for a
particular game system is in charge of creating and
supporting the tools that interact with it. This model works
reasonably well since the developers creating the tools are
the most knowledgeable about how the game system works.
There are some issues with this method; the team does not
generally put a lot of care into the accompanying tools, so
the usability, documentation, and user interface typically
suffer as a result. An example of a game development studio
that successfully uses this model is Raven Software.

Tools are sometimes developed by one individual or group, and
later end up being supported by another individual or group.

6 Chapter 1 ® What Is a Tool? What Is a Toolset?

Table 1.1 Organizational Models of Tools Development (continued)

Organizational Model

Description

Game Team Develops; Tools Team Supports

Engine Team Develops; Game Team Supports

Content Team Develops and Supports

This model attempts to solve the issues with the
developer ownership model by still having the game
team build the tools. But when the tool matures,

it is handed off to a dedicated tools team where it is
updated and supported for future projects and use.
A game development studio that successfully uses
this model is Microsoft Game Studios.

This model is similar to “Game Team Develops, Tools
Team Supports,” except the engine team builds the
tools to work with the core engine technology, and
then the tool is passed off to the game team. They
adapt the tool to work with their own project-specific
data and content requirements.

A game development studio that successfully uses
this model is High Voltage Software.

This model is typically used in specific situations
where the content creators wish to build tools to
help them be more productive or test logic through
the creation of rules simulators, for example.
BioWare has successfully used this model for certain
situations.

Third-party middleware could be thought of as a model, but it is felt that middle-

ware can fit into one of the above models when used. Middleware sometimes

requires enhancements or customizations, and someone within the game devel-

opment studio has to do them.

Often the structure of the tools department in a studio is largely determined by
available financing. Some studios may feel it more desirable to have a dedicated
tools team, but budget constraints can force a studio into using a less desirable

model.

Every studio manages its tools development differently, but generally any studio
will fit into one of the above categories. One of the biggest differences between stu-
dios is the size of the tools development team.

Conclusion 7

How Large Are Tools Teams?

At Game Developers Conference 2005, 16 professional game developers were sur-
veyed on the ratio between the number of tool programmers and game program-
mers in their company. The results from the survey are listed in Table 1.2.

Table 1.2 Ratio of Tool Programmers to Game Programmers

% Tools % Game # Studios
20 80 1
30 70 5
40 60 2
50 50 2

* Six developers did not know the ratio used in their company or did not wish to discuss it.

The results indicate that currently only a third of the programmers in most game
development studios are involved with the production of tools.

This ratio has fairly little to do with the actual performance of the above teams,
though, as different ratios work for different companies. When it comes down to
it, if the company has put out great games, they must be doing something right! It
is interesting to see how much variation there is between companies regarding the
structure of their tools programming department.

Conclusion

This chapter covered defining what a tool and toolset is, and how the gaming
industry views tools development. There is currently a lot of variation in how tools
teams are structured in the industry, and it is unlikely that this will ever become
consistent and uniform. Different structures and techniques work differently for
various companies, and they will continue to use whatever approach works for them.
However, we can believe that studios will need to standardize how tools are
designed and developed in order to adapt for the next generation games driven by
a multitude of content.

No single technology or programming language is better than another, as each has
a shining role to play in different problem domains. However, it is our firm belief
that the .NET platform is best suited for tools development, and migrating to man-
aged code will bring a number of benefits to a development studio and its projects.

Chapter 1 ® What Is a Tool? What Is a Toolset?

Next-generation games will require more and higher-quality content. The only
foreseeable way to adapt to this need is to produce better tools that create content
at both a higher volume and quality in a shorter amount of time. It is absolutely
vital that tools be available to designers earlier, and with very few bugs.
Additionally, the tools should also have user interfaces that are intuitive to design-
ers, and require as few clicks as possible to perform common tasks.

Reusability is also tremendously important, so that technology may be reused
across multiple projects, saving additional time and money. The .NET platform is
geared towards componential architectures and distributed software reusability,
making it an excellent choice in this regard.

The .NET platform even offers improvements to software deployment. One com-
mon problem plaguing deployment managers is the issue of “DLL Hell,” where an
older version of a library can be referenced on a system that has multiple versions
installed, generally causing software instability. .NET assemblies support a built-in
versioning system that solves the issue of incorrect library referencing, reducing
many problems related to deployment. The .NET platform is covered in greater
detail in the next chapter.

CHAPTER 2

WHY UsgeE C#?
WHY UsgeE .NET?

As soon as we started programming, we found out to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging had to
be discovered. I can remember the exact instant when I realized that a large
part of my life from then on was going to be spent in finding mistakes in my
own programs.

Maurice Wilkes

Ever since the introduction of computers, there has been exponential growth in
businesses embracing technology to solve their corporate problems. Computers
have evolved and matured enough to support massively distributed and heteroge-
neous applications in both desktop and Internet environments. As the technology
becomes more complex, so do the problems that developers have to solve in order to
produce a good product. While there are many technologies and development tools
available, there are also numerous issues that inhibit productivity or development.

There is the ongoing controversy surrounding the right programming language
and platform for the job. Many times, certain features are only available with cer-
tain programming languages, such as automatic memory management, which
often ends up dictating the language to use for the job. In a perfect world, the lan-
guage should be chosen based on the problem domain, not the specifics of the
underlying operating system. Microsoft’s COM and COM+ technology tried to fix
this problem, but they were only successful to a certain degree, as their internal
structures are quite convoluted. While COM and COM+ made great progress in

10

Chapter 2 = Why Use C#? Why Use .NET?

bridging this domain gap, it just wasn’t the answer. This is one of the main reasons
Microsoft proposed .NET, a new computing platform that simplifies application
development in highly distributed environments.

Overview of .NET

There are two main components to Microsoft .NET: the Common Language
Runtime and the .NET Class Framework. Microsoft.NET is based around the idea
that code is in a managed environment; that is, it executes within a managed runtime
(known as the Common Language Runtime, or CLR for short). The CLR acts as a
barrier between managed applications (.NET) and the operating system. The CLR
also offers a much richer set of services than normally provided by the operating
system. The Common Language Runtime architecture is overviewed in Figure 2.1.

4 i)

Managed Code

Common Language Runtime

& Win32 Operating System)

Figure 2.1 Overview of the Common Language Runtime architecture.

The Common Language Runtime manages code at execution time, providing core
services such as memory management, thread management, and remoting. The CLR
also enforces strict type safety and other forms of code accuracy that ensure secu-
rity and robustness.

In order to have a language-independent CLR, a liaison is needed to facilitate the
understanding of the language in the CLR. Every development tool for .NET com-
piles source code files to what is known as the Microsoft Intermediate Language,
(MSIL, or IL for short), as shown in Figure 2.2.

All development tools produce the same MSIL regardless of the programming lan-
guage, so all the CLR is required to do is understand the IL. Microsoft currently
provides CLR-compliant versions of C#, Visual Basic, C++, JScript, and Java. Since
any company can write a CLR-compliant language, third parties are introducing
many others like COBOL, Delphi, Python, APL, and Perl.

Overview of C#

. :licmsglftte lato

nrermedia Pla m

@#VE, Sy [Lanouae e
(MSIL) oce

Figure 2.2 Source code compilation into MSIL.

The intermediate language code (IL) cannot run on its own. It must first be com-
piled by the Just-in-Time (JIT) compiler for the target platform to turn the IL into
platform-specific machine-level code. This architecture provides Microsoft .NET
with a certain level of platform independence. Work is currently being done by
third parties to port the CLR to other platforms like UNIX and MacOS X.

The .NET platform also gives the capability to build durable system-level compo-
nents thanks to the following features:

® Robustness provided through type safety and garbage collection

® Code security provided intrinsically through code trust mechanisms

Support for extensible meta-data concepts

Existing code integration support

® Versioning to provide ease of administration and deployment

Full interoperability is also possible with other languages across multiple platforms,
thanks to full XML support for web-based component interaction and COM+
support.

Aside from the Common Language Runtime, the other main component of the
.NET platform is the Class Framework, which provides reusable functionality and
technologies to any .NET compliant language and compiler.

Overview of C#

While there are a number of available languages supported by the .NET platform,
C# is the most popular one for many reasons. The C# language is an elegant yet
simple, type-safe, object-oriented language that allows for the development of a
breadth of enterprise and highly distributed applications.

11

12

Chapter 2 = Why Use C#? Why Use .NET?

C# also provides access to the common API styles: COM+, Automation, .NET
Class Framework, and C-style APIs. Also available is an unsafe mode, where point-
ers can be used when you want to manipulate memory that is not under control
of the garbage collector.

The C# language is also an evolution of C++ and Java, and supports many of their
features in the areas of expressions, statements, and operators. As a result, the
learning curve for C# is generally quite rapid due to the comfort level when
migrating from either C++ or Java.

Legacy Interoperability

Most game development studios have numerous legacy tools that do not have the
available resources or need to migrate to the .NET platform. Microsoft realizes
that migration does not magically happen overnight, and has provided some
mechanisms to foster interoperability between managed and unmanaged compo-
nents. The interoperability mechanisms permit developers to slowly migrate lega-
cy components into managed applications piece by piece, while allowing them to
build a complete application with a combination of unmanaged and managed
components.

When building new .NET applications, there are provisions for using Win32 DLL
exports and COM objects. There are also provisions for legacy applications to use
a .NET assembly as if it were an ordinary COM object, and provisions to use an
individual routine from a .NET assembly.

In addition to the interoperability mechanisms below, the .NET platform also
includes support for Win32 sockets and Web Services, which can be utilized for
interoperability between managed and unmanaged applications.

Platform Invocation Service (P/Invoke)

Interfacing with C-style functions in native DLLs is offered through the Platform
Invocation Service, also known as P/Invoke, and although both Win32 API rou-
tines and custom exports are supported, the most common distinctive use is for
accessing system routines that are not generally available to .NET developers. For
example, when performing high-accuracy timing, you must use P/Invoke to call
QueryPerformanceCounter and QueryPerformanceFrequency.

There is quite a varying degree of data types for both the Win32 and .NET plat-
forms, and marshaling is required to transform data into the appropriate data

Legacy Interoperability

types for each platform. The marshaling of parameters and return values between
managed and unmanaged applications is handled through the Interop Marshaler,
also used by COM Interop.

Platform Invocation Service is covered in much greater detail in Part V, “Techniques
for Legacy Interoperability,” along with sample code on how to reference DLL
exports in C#.

COM and Runtime Callable Wrappers

At some point you may need to interact with a COM object in a .NET application,
and reconciliation between the .NET garbage collection model and the COM ref-
erence counting model is needed to allow both platforms to communicate with
each other. In order for .NET to use a COM object, a Runtime Callable Wrapper
(RCW) must be generated to cater to the differences between the lifetime man-
agement of NET and COM objects. Runtime Callable Wrappers manage the ref-
erence counted lifetime of COM objects and also handle the marshaling of para-
meters and return types.

Additionally, .NET objects can also be exported to act like a COM object to use
within a legacy application. This functionality is useful for applications that must
remain unmanaged for the time being, but would benefit from the robustness of
the .NET Class Framework.

Runtime Callable Wrappers and COM interoperability are covered in much
greater detail in Part V along with sample code on how to use COM objects in
.NET, and how to use .NET objects like COM objects in legacy applications.

C++/CLI (Managed Extensions for C++)

With such a following of developers using unmanaged C++ for application devel-
opment, especially in the game development industry, there was a need for an
enhancement to the C++ language that would allow programs written in C++ to
use the .NET Class Framework and target the Common Language Runtime. It was
for this reason that Microsoft created C++/CLI (formerly known as Managed
Extensions for C++), an extension of the C++ language that could use the benefits
from the .NET platform without requiring the user to learn a new programming
language.

In other CLR languages like Visual Basic and C#, the only way to invoke Win32
API routines is through explicit use of the P/Invoke mechanism. Developers using

13

14

Chapter 2 = Why Use C#? Why Use .NET?

C++/CLI do not need to use P/Invoke and can include the appropriate header files
and call the unmanaged routines directly. This feature is called “It Just Works,” or
IJW, and both P/Invoke and IJW use the same underlying mechanism so it is bene-
ficial to understand that mechanism.

C++/CLI can also be used to wrap a C++ class or a COM object. Wrapping a COM
object can provide better performance than using the COM interface and a Runtime
Callable Wrapper because of reduced interoperability overhead, commonly referred
to as “thunking.” It also allows for closer control of how members are wrapped.

For some COM objects, it may not be possible to use the Type Library Importer
utility (tlbimp.exe) to generate an RCW for the COM object, and C++/CLI provides
a solution to this problem.

Benefits

There are quite a number of benefits when the .NET platform is used for game
engine tools development. Probably the largest benefit is the massive amount of
productivity gain. Building applications in Microsoft. NET is much faster than any
other RAD environment, because of the excellent IDEs available, as well as a very
robust core framework that all managed applications can take advantage of. You
can have a functional UI for simple tools created in under a couple of minutes,
spending less time on UI and more time on functionality and usability. Being able
to build a functional Ul so quickly is very beneficial to a number of projects, most
notably “throw-away” or “skunk works” tools that need a quick and dirty user inter-
face, with the majority of the development time spent on building functionality.

Microsoft. NET also offers ease of deployment, solving the “DLL hell” agony.
Through a built-in versioning mechanism available to all .NET assemblies, specific
versions of a library can be targeted.

Other benefits are the promotion of scaleable architectures and the ability to choose
architectures that are robust, reliable, and secure. Scaleable architectures promote
reusability and strong design.

The interoperability support for legacy applications and components allows for
easier migration from an existing code base to the .NET platform. A number of
methods for bridging communication between managed and unmanaged applica-
tions exist, and these methods are covered in much greater detail later in the book.

Robustness is provided through type-safety and garbage collection. The compiler
catches all invalid conversion operations and throws the appropriate exception. A

Conclusion

.NET application can catch every error in the system, allowing for graceful error
handling and termination. The only time when additional work must be done to
ensure proper error handling is when an exception is thrown from a legacy appli-
cation wrapped into a managed assembly. In addition to excellent error handling,
.NET applications allocate and release memory through a reference counting
garbage collector by default, ensuring that the application does not leak memory
and the lifetimes of all objects are managed.

There are numerous other benefits when using .NET for tools, many of which will
be covered in greater detail later in the book.

Conclusion

In reality, a game engine tool can be developed in many different languages: Perl,
Python, C\C++, Java, and Visual Basic, to name a few. So why use .NET? Tools
enhance workflow and manage game content, so it is desirable to build these tools
as quickly as possible. The faster a tool is developed, the sooner the end user can
begin using it, improving productivity or producing game content earlier, most
likely saving money or man hours in the process.

The .NET platform promotes robust design with a rapid application development
nature, which is a perfect match for tools development. Many times a lot of utility
functionality must be developed before the actual logic for the tool is addressed.
The .NET framework provides countless functionality for technologies like XML,
encryption, file system access, security, and data manipulation, to name a few.
Development time for a tool can be better spent on logic and usability, rather than,
on utility functionality that the tool is dependent on.

15

This page intentionally left blank

CHAPTER 3

EXAMPLES OF
COMMERCIAL TOOLSETS

The most likely way for the world to be destroyed, most experts agree, is
by accident. That’s where we come in; we’re computer professionals. We cause
accidents.

Nathaniel S. Borenstein

In order to help define what a tool is, and how the interface should be designed,
this chapter will introduce and discuss a couple of popular toolsets that are used
in the creation of game content and shipped with commercial products.

Although external tools that ship with the final product require a higher level of
quality when the fans themselves will be using the tools to build expansive content,
internal tools still follow proper development standards in terms of documenta-
tion, maintainability, and quality of design.

The two case studies selected for discussion were both developed for external use
and clearly show a high level of quality in terms of user interface design, logical
functionality, and ease of use.

Many different types of tools are used in the creation and modification of game
content, but the following two were chosen because of the success of the companies
and the products the tools are associated with.

17

18

Chapter 3 = Examples of Commercial Toolsets

Case Study: BioWare Corporation

BioWare is perhaps one of the most widely known and respected developers, espe-
cially in the role-playing game (RPG) world. BioWare’s mission is to produce the
best story-driven games worldwide, and it is succeeding based on all the awards
and recognition the company has received for its games. Although an exasperating
amount of work is contributed by everyone at the company to produce their
exceptional games, many fans just see the finished product. This is unfortunate
because the tools and the people who build them play a critical role in the pro-
duction of a successful AAA title, but with the exception of mod builders, they
often are unnoticed by the fan community.

A couple of years ago, BioWare released the critically acclaimed RPG NeverWinter
Nights, which has won numerous writing and technology awards. The game was
based on the Dungeons & Dragons rule set placed in the Forgotten Realms world,
and it took players on a compelling story-driven fantasy adventure. The game had
hours and hours of game time, but that didn’t stop the fan community from build-
ing custom campaigns and adventures. The game shipped with the NeverWinter
Nights Aurora Toolset, which gave players the power to build custom adventures
using the same tools that BioWare utilized in the production of the original game.

The Aurora Toolset produces campaigns and adventures in the form of modules,
which are composed of various components, such as areas, creatures, doors, con-
versations, scripts, and triggers, to name a few. The toolset offers functionality to
build either an indoor or outdoor world, and then populate that environment with
entities and triggers.

Figure 3.1 shows the main user interface for the Aurora Toolset, where other child
dialogs are launched and where entity instantiation and placement occurs. On the
left is a tree view that shows all areas in the module and all the instantiated entities
that are associated with each area. Additionally, there is also a listing for conversa-
tion dialog as well as module scripts. Module developers do not have access to a
core low-level API, but instead interface with the game engine using a scripting
language developed for the game and toolset.

A multitude of assets and source art that can be reused across custom modules is
included, with the ability to add your own custom work if so desired. All the mon-
sters and items from NeverWinter Nights are available to module developers, and
can even be customized from their original properties and attributes. The tree
view on the right lists all the assets that can be instantiated and placed in an area.

Case Study: BioWare Corporation

BioWare Aurora Neverwinter Nights Toolset - Graham Mod.mod* =15 5‘
File Edit View Environment Build Tools Wizards Help

@@l #|

[ss@e=ez] e waEREREeEele elJIl?nW

= Areas 0 @
= Castle
=) Creatures ’g@ ARadeol
| Farus [Sewsad | Guson |
i Half-Celestial warrior e =
E] DootiswndA'Chm - Constructs
- Parteulis Dragons
Encounters -- Elem;anlals
il
L;eEnzham -- Humanoid
- Placeables Insects
Sounds - Magical Beasts
- Triggers “ gl::sael\lanenus
Waypoints
- Conversal\oyrz El Celestial
- Scripts - Celestial Avenger
Half-Celestial Warrior
- Hound Archon
Lantern Archon
- Fiendish
B Imps
El- Other
- Baer
- Azer
- Fenhound
Farmian Myrmarch
- Formian Queen
Farmian T askmaster
- Formian W armior
Farmian Worker
- Tiefling
- Slaad —
[#- Shapechangers
[Undead ;I
+ > 4¢] >« AV aja] clo I Shovre
|
=l
Mause (366 y:33) Grid{row:8 col:6) Tile(tic01_|16_01) [Select

Figure 3.1 Main interface window of the Aurora Toolset.

At the top of the main window is a toolbar that offers tool selection and the abili-
ty to toggle certain display and functionality settings. Another toolbar at the bot-
tom of the main viewport controls the scene camera. The camera can be panned,
translated, rotated, and zoomed.

Figure 3.2 shows the properties of the Azer monster, and all the attributes that can
be customized or extended for it. Creatures in role-playing games are often com-
posed of a vast number of properties and scripts that define its behavior and abil-
ities. As such, this complexity can clutter the user interface of tools that are
designed to modify those properties and scripts. The way the Aurora Toolset
addresses this design issue is through the use of tab pages that each contain prop-
erties associated to a certain group. Users should never feel overwhelmed by large
numbers of data fields, so breaking the properties into groups represented on dif-
ferent tab pages was a good design move.

19

Chapter 3 = Examples of Commercial Toolsets

Another nice touch to the dialog shown in Figure 3.2 is the real-time 3D preview
of the edited creature in question. Although it doesn’t propose much in regards to
functionality, the preview pane spices up the user interface and makes it much
more interesting to work with, as opposed to a normal data entry tool.

Creature Properties _XI

Advanced | Feats | Spells | Special Abilties | Camments
Basic | Statistics | Appeaance | Classes | Skils | Serpts
—Profile

First Name: [jzer B
Last Mame: I _I_I
Tag [x2_azErRom il
Race | Outsicer =]
Appearance |azer, Male =l

FPhenatype | j

Gender [hiale =l
Discription [fszers are dwarves native to the Elsmental P |

Challenge Rating |2
—Partrait
1Y Ipo_azerman_ _I

- Conversatior

I j | Edit | ™ Nolnterupt

Figure 3.2 Property window used to modify creature attributes.

The goal of the Aurora Toolset was to cater to novice users, not necessarily people
who have experience with other world editing tools such as Hammer, Q3Radiant,
or any other complex brush- and constructive solid geometry-based editors. The
toolset had to allow users to build rooms and outdoor environments quite easily.
The toolset does not support polygonal or brush-based editing; instead it has a
collection of rooms, each with several variations in appearance from which to
choose. This functionality makes the tool easier to understand and use, but it also
supports enough customization to keep advanced users happy.

The Aurora Toolset harnesses an embedded viewport that renders the current area
as you would see it in-game. This functionality is great in the sense that you can
preview roughly how the area would appear in the game itself without the need to
launch NeverWinter Nights.

Case Study: BioWare Corporation

Figure 3.3 shows an area that was created in the editor and is now shown in the
actual game.

Figure 3.3 Screenshot of a map created with the Aurora Toolset running in-game.

It is important to note that the embedded viewport does not manage any physics,
networking, or gameplay functionality while running the editor. The scene is
merely displayed using a visual representation only, and the game won’t actually
execute until the module is run from within the game engine.

The Aurora Toolset is a great piece of software, but it is only one, albeit big, tool
amongst numerous others that produce the content for a game. The NeverWinter
Nights module developer community appreciates the work put into the Aurora
Toolset, but only because the toolset shipped with the game. Had the toolset been
created for internal use only, the community would not have appreciated its value
as much or even known about it.

21

22

Chapter 3 = Examples of Commercial Toolsets

BioWare keeps putting out AAA titles and recognizes that great tools produce great
games. In addition to their own titles, the technology behind those games is also
reusable enough that third-party companies have licensed it to produce some
other exceptional games. BioWare is leading the way in role-playing games and has
one of the most respected dedicated tools teams.

Note

For more information, please visit http://www.bioware.com.

Case Study: Artificial Studios

As a game studio that also markets its own middleware products, Artificial Studios
is dedicated to advancing the state of professional game development solutions.
They have a flagship product titled Reality Engine, which is a total solution for games
using next-generation graphics, dynamic physics, and high-performance graphics.

The Reality Engine SDK also provides a next-generation toolset titled Reality
Builder and is powered by C#NET technology. The engine itself is developed in
unmanaged C++, but Reality Builder has a harness that displays its scenes using
the Reality Engine within the editor as a WYSIWYG display.

Shown in Figure 3.4 is the main interface for Reality Builder, where entities can be
selected and transformed, as well as a property grid control on the right side that
allows easy access to the properties of the currently selected entity. You can also see
another dialog being displayed that shows the assets available to the world designer.

Another nice accessibility feature is a menu at the top which contains some quick
launch buttons and edit fields for commonly used operations or properties. This
is a very handy feature for designers, and can often improve workflow to some
extent by reducing the number of clicks required to perform common operations.

Visual cues are another feature of graphical tools that make them easier to use.
Notice the barrel in Figure 3.4; there is a selection bounding box around the enti-
ty, and there are widgets to adjust the X, Y, and Z position of the selected entity.
The same functionality could have been implemented using a numeric input field,
but doing so would make the interface less intuitive to the designers.

An excellent feature that is seen in most cutting-edge graphical tools is in-game
rendering, where the tool displays the world as it would look in-game. This doesn’t
necessarily mean that the game itself is running within the tool but merely that the ren-
dering subsystem is attached to the tool’s viewport to render the world appropriately.

http://www.bioware.com

Case Study: Artificial Studios

" Fragislliota, i - Reatity Bulldar mex|

| Beresel | Ferdiing | Solaciion it | Staix
=4 =
B oo
Hare WhiteBonel

CaldnsFia
GhasiDbict False
Inside

s Lsdms Washioht o' fhem runkive cache]
Con Licernee has exvered the gane on Team 1

1 sclocted: Whtcbarrel

Figure 3.4 Main interface window of Reality Builder.

Reality Builder supports in-game rendering, and you can see this in Figure 3.5. The
concepts behind software architecture design are extremely important to imple-
ment this feature, and require a graphics engine that is modular in nature. Bonus
Chapter 2, “Building a Managed Wrapper with C++/CLI,” shows how to create a
Direct3D context in unmanaged code, and then build a managed harness around it.

Reality Builder also provides script support to designers using the C# language and
the CodeDom compiler. By using C# as their scripting language, the tools and
engine can take advantage of compiled code that also has the ability to interface
with the robust .NET class framework.

All .NET applications have access to the Windows Forms class framework, which
offers a number of feature-rich and intuitive controls. Additionally, if a specific
control is not available, it is very easy to build a custom one that functions the way
you desire. Figure 3.6 shows another screenshot of Reality Builder displaying its
rich user interface.

23

24 Chapter 3 = Examples of Commercial Toolsets

Simfirmen) G
P Fava
Ran 2048
[
T ot e 1.3
Frobrvatni B Falen -

Fars
Light v smviwd i g ey
S AL I S e DA

(=111 Tew ZT1RT =
seicta: B0, i, BT £ »

Figure 3.6 Reality Builder showcasing a rich user interface.

Conclusion

Artificial Studios is a relatively new company, but their custom technology is
cutting-edge, and their embracement of C# and the .NET platform is admirable.
They were recently purchased by Epic Games, and it will be interesting to see what
comes of the acquisition, and whether Epic Games will maintain a strong stand for
the .NET platform. Trends in the industry are pointing toward a larger percentage
of companies migrating legacy technology or tools to managed code. The old saying
“Time is money” is quite applicable to this issue, and if .NET can save a project a
significant amount of money, then its usage is justified.

Note

For more information, please check out http://www.artificialstudios.com.

Conclusion

In this chapter, I discussed a few commercial-grade tools that have been used in
the development of some best-selling games. I hope the case studies presented
have given you some extra insight into building high quality tools and some use-
ful interface features to improve workflow. See each product’s user manual for
more information on the specifics of each application.

Remember that the .NET class framework offers rich user interface controls and
should be used to improve the accessibility and workflow of your tools. An intel-
ligent user interface can save countless hours when it takes very few navigation
actions to perform a particular task.

As an example, imagine you have a tool that takes 7 seconds to perform a partic-
ular task. With this task being performed four times a day in a 22-workday month,
12 months of the year, you end up with a total time of two hours. Now imagine
that you have 20 designers performing this task. The total time spent on this task
would be 40 hours. If you introduce an accessibility feature that causes that same
task to take 2 seconds, with one designer, the total time spent is 35.2 minutes,
roughly a 342 percent improvement in efficiency. With 20 designers, the total time
spent would be 12 hours, saving you 29 hours that could be directed elsewhere.

25

http://www.artificialstudios.com

This page intentionally left blank

CHAPTER 4

EVERYTHING STARTS
WITH A PLAN

There are two ways of constructing a software design. One way is to make
it so simple that there are obviously no deficiencies. And the other way is to
mabke it so complicated that there are no obvious deficiencies.

C.A.R. Hoare

All software applications receive some form of initial planning as to what their
goals are, but quite often the planning occurs in the mind of the developer. A great
approach to planning is the creation of an actual software development plan that
addresses many high level design issues, as well as technical issues like coding stan-
dards and architecture.

A software development plan is an action plan for developing the application. It
describes how the work will be done in terms of design, implementation, docu-
mentation, and testing.

Software planning is an iterative process, and as unexpected problems arise,
change requests will occur that require plan revisions. A good software develop-
ment plan anticipates that changes may occur, and the plan should be able to
accommodate them appropriately.

The software development plan should be kept up to date, typically through reg-
ular team meetings. The plan should be modified accordingly for all changes,
progress, and problems. Doing so will ensure that the maximum benefit from the
planning effort is gained.

27

28

Chapter 4 = Everything Starts with a Plan

Vision
Also known as design goals, this section of the software development plan ulti-
mately asks the question, “What is the tool going to do?”

Briefly describe what the tool will do and ultimately how it will either improve
workflow productivity or affect the content creation pipeline. Outline the current
problems existing without the tool, and how the introduction of the tool will
attempt to solve them.

Describe whether or not the tool will be used for a single purpose throw-away, or
whether it will be applicable for multiple purposes or projects.

Also list the people who will use the tool. As a simple example: “The technical artists
will build programmable shaders using the Visual Shader Designer plug-in from
within 3D Studio Max, and export a binary file that follows the specifications of our
proprietary VSD (.vsd) format.”

The Vision section of the software development plan could be thought of as an
overview and summary of the other sections that follow.

Stakeholders

Every software application has stakeholders who will either gain or lose from the
success or failure of a tool, and they ultimately shape the design of the tool to meet
their needs. After all, the stakeholders for a tool are typically the people who will
actually be using it to produce game content or enhance workflow.

The software development plan should define who the stakeholders are, and how
they will be directly affected by the tool. The easiest way to determine who your
stakeholders are is to think of everyone who will be affected by your work, whether
the stakeholders are internal or external to the company. The majority of tools
developed for internal use are catered to the needs of artists or technical designers,
who don’t always possess strong technical aptitude.

One of the biggest problems with software development planning is gathering user
requirements that do not solve the problems of the stakeholders. It is very impor-
tant that you ask the right questions of your stakeholders, especially if they do not
have a technical background. A lot of design and development time is wasted
because of incorrect user requirements. Getting them right from the start will help
alleviate this problem.

Architecture

After the stakeholders have been defined, the last step is to sort them by priority
and influence. A common approach is to take note of the influence, interest, goals,
and objections to your tool. Prioritize your stakeholders as high or low interest, and
as high or low influence. It is important to remember that the stakeholders do not
always agree with each other, which presents problems with both communication
and requirements gathering.

Reusability

The issue of reusability is important in any software project, but is very important
when developing tools. If a tool is a throw-away, not meant to be reusable, then
only the minimum amount of time to implement the basic functionality should
be spent on it. A common problem is when a tool is not meant to be reused in the
foreseeable future, but has the potential for reuse. In this situation, it is advisable
to build the tool with future maintainability in mind. If the code is just slapped
together to meet deadlines or save money, all those benefits will be for naught
when a considerable amount of time must be spent refactoring the tool for a later
project when it should have been designed that way from the start.

Designing with reusability in mind, and the level of abstraction or agnostic design
to consider, is definitely a judgment call, especially if the stakeholders are putting
pressure or constraints on you to prevent you from doing so. Maintainability even
comes in the shape of following coding guidelines, commenting any complex con-
structs, and never using hard-coded values or “magic numbers.”

The golden rule is, build reusable code if the functionality of the tool would be
useful in a future project, and if it is feasible to spend a little extra development
time building it. You will gain in the long run when the time comes to build a tool
that solves a problem encountered before.

Architecture

This section outlines the architecture of the tool or toolset. For a simple tool, this
section will be quite brief, just outlining whether the application is console-,
Windows-, or web-based, and other technical issues related to the application.

However, more detail must be discussed with complex tools or toolsets, tools utiliz-
ing a wide range of technologies, or complex component dependencies. Outlining
the architecture is especially important when thinking about reusable software com-
ponent design, and how to write software with future reusability in mind.

29

30

Chapter 4 = Everything Starts with a Plan

Requirements

This section addresses what the tool is supposed to do. As mentioned earlier, stake-
holders are the people using the tool, so the requirements are generally centered
on their goals and expectations. I cannot stress the importance of this section
enough. The majority of tools that fail to deliver are because of malpractice with
gathering user requirements. Developers often over-complicate interfaces or build
complex functionality when all the stakeholders wanted was a throw-away utility
to perform a simple process.

If user requirements are gathered correctly from the start, you will save both your-
self and your stakeholders a lot of grief and expense. The old saying, “Time is
money, describes this problem best. When you are on a tight schedule to produce
tools that are required to build the content for a game or improve workflow to
meet deadlines, time cannot be wasted on building tools that are of no or limited
use to the end user.

Design Standards

Every software application goes through a design phase to some extent, and it is
important that you standardize how the design of the tool is expressed or mod-
eled. A common method is through the use of the Unified Modeling Language, or
UML for short. UML is definitely beyond the scope of this book, but I personally
use it and advise that you at least read up on it if you are not currently using
another modeling language.

I will admit that UML has a time and a place in regards to software design. Some
tools are so simple or unimportant in the scheme of things that it would be a waste
of time to utilize UML. A modeling language serves as a way to visualize how all
the components of your tool or toolset fit together at a high level, and also aids
with future maintainability if the code itself is not self-explanatory.

However you design the functionality and communication of your tools or com-
ponents, be sure to document your standards in this section and follow them.

Coding Standards

A tool or software application in general cannot be considered great strictly on
functionality and performance alone. Since the importance of reusability should
be quite clear by now, it is apparent that the source code for the application must
be easy to read, understand, and maintain for future versions of the software. It is
a common fact that every developer has a unique style to his code, which is perfectly

Documentation

acceptable for personal projects but unacceptable for commercial software. All
developers should follow a common style so that no matter who wrote the code, it
always looks like a single person programmed the entire application.

A common practice to outline how all code should be formatted is to release a cod-
ing standards document to the developers. They are to abide by the rules and best
practices set forth in the document to promote the creation of code that is easy to
read and maintain. Looking through code that you did not write is much easier
when everything follows the same style and is neatly commented, with explanations
for all the complicated constructs present in the code. Using coding standards will
increase both productivity and efficiency through a consistent style, delivering the
end product at a lower cost. In addition, coding standards reduce the risk of inte-
gration with other components developed by other companies, groups, or team
members.

The usage of design patterns and how modules are coupled can also be described
in the coding standards document. Some design patterns are frowned upon
because they typically promote tightly coupled design, making the code harder to
unit test among other things. This document can be used to define acceptable
design patterns to use, and which ones to use only if necessary.

In addition to documented standards, Microsoft has released a great tool to help
with the actual enforcement of coding and development standards. Microsoft has
published design guidelines for all NET applications to follow, and FxCop is a tool
that uses reflection, MSIL parsing, and call-graph analysis to inspect assemblies
for over 200 violations of the design guidelines. Custom rules can also be created
specifically to your own guidelines and used within FxCop. Some of the default
rules check for conformance issues with library design, localization, naming con-
ventions, performance, and security.

Note

FxCop can be downloaded at http://www.gotdotnet.com/team/fxcop/.

Documentation

As discussed numerous times throughout this book, the importance of developing
tools that promote maintainability and reusability cannot be stressed enough.
Documentation is a deliverable that will assist developers working on future mod-
ification or reuse of a tool or component. Documentation can be created for either
source code or usability, and requires standardization just like source code.

31

http://www.gotdotnet.com/team/fxcop/

32

Chapter 4 = Everything Starts with a Plan

Source code documentation is primarily aimed at developers who want to under-
stand the functionality of a given component without the need to look at the
source code to understand what is going on. The .NET framework has a standard-
ized way to document source code, expressed as XML. Chapter 11, “Code
Documentation with NDoc and XML,” outlines the way Microsoft wants develop-
ers to document source code to remain consistent with the core framework. When
a .NET assembly is compiled, an option exists to export all the XML-based source
code comments to a file that can be referenced by a number of documentation
generators.

An excellent tool exists that can take a .NET assembly and the associated XML
comments file and build documentation. The tool is called NDoc, and it supports
pluggable exporters including the MSDN-style HTML Help (.chm), the Visual
Studio .NET format (HTML Help 2), and the MSDN-online style Web pages. This
tool is very popular within the .NET community and is the most commonly used
documentation generator for .NET.

Note

NDoc can be downloaded at http://ndoc.sourceforge.net/.

Usability documentation comes in the form of training manuals or reference
materials that instruct users how to use the tool, or how to solve real-world prob-
lems with the tool. This type of documentation is high level and does not discuss
the inner workings of the software; it merely shows users how to use the tool.

The Documentation section should discuss the documentation standards to use,
such as NDoc or a specific template to use in Microsoft Word. Also describe how
function descriptions, properties, property accessors, and classes are worded.

Testing

Testing is a very important part of any software development project, and the
intent of this section is to standardize how testing takes place within the project.
There are different types of testing that can be performed, such as unit, automated,
functionality, and performance. Each type of test should be documented and
should list all the proper procedures and guidelines to follow, along with all the
necessary software to use to perform the testing, such as Rational Robot, ANTS
Profiler, NUnit, and csUnit.

http://ndoc.sourceforge.net/

Development Environment

Defect Tracking

Standards must also be in place for how issues are handled when they appear in
tests. This section should outline where issues and defects are tracked and regis-
tered, and how to handle them. Certain defects and issues are more important
than others, and should generally be handled in terms of priority and influence on
the stability and functionality of the tool. Be sure to describe how to prioritize cer-
tain issues and handle them accordingly. Also specify where defects and issues are
stored, such as Rational ClearQuest or TestTrack Pro, for example.

Life Cycle

The Life Cycle section of the software development plan outlines how the software
will be developed, and describes the software development methodology that will
be used: Rational Unified Process (RUP), SCRUM, and the Waterfall approach, for
example.

This section could potentially list the milestones and deadlines for the project if
they are known, but typically the specific project dates reside in a project schedule,
a topic outside the scope of this book.

There is a detailed overview of the software development life cycle (SDLC) in
Chapter 5, “Development Phases of a Tool.”

The approach covered in Chapter 5 is the Waterfall approach, though there are
many different methodologies that are in use in the industry.

Development Environment

The Development Environment section of the software development plan outlines
the development environment and resources necessary to design and build the tool.

First, describe the hardware specifications of the development computer(s). Also
describe what operating system(s) will be installed on the computer(s). If multiple
operating systems will be installed for testing, describe whether or not they will all
be accessed using a dual boot loader or a virtual operating system manager. Also
specify what networking requirements are needed, such as Internet access or per-
mission to access specific local domains.

Second, you should outline the software that will be needed, such as compilers,
debuggers, IDEs, frameworks, and libraries.

33

34

Chapter 4 = Everything Starts with a Plan

Last, discuss workflow processes that will be used, such as which document con-
trol and versioning system(s) will be used, as well as how the project will be backed
up and at what time intervals.

Staging Environment

Every software application, in general, requires a certain level of testing. Tools that
enhance workflow productivity or produce game content require an extra level of
consideration for quality assurance, as a faulty tool can harm productivity or pro-
duce corrupt game content that requires time to fix or redo.

It is important to outline an environment suitable for testing, and it is recom-
mended that this environment not be shared with the development environment.
Using a unique staging environment allows testers and developers to locate con-
flicts with missing dependencies, hard coded values, or system variables, and other
issues that could lead to deployment problems. It is also advisable to periodically
rebuild your test environment to make sure that other issues do not slip through
before staging deployment.

The staging environment should typically mimic the production environment,
and only have the absolute necessary software and libraries installed. Never install
development software in the staging environment or do any modifications there.
Fully uninstall your application after testing, modify the source in the develop-
ment environment, and redeploy your application to the staging environment.
This may seem like a trivial and inefficient process, but doing so will save you a lot
of headaches during production deployment.

The staging environment should also contain a relatively diverse range of hard-
ware and software configurations that could potentially be used in the production
environment. If the application requires 3D acceleration, be sure to test a variety
of graphics cards, especially older cards that do not support the features your
application requires, like a programmable pipeline, for example. Be sure to test
configurations that are guaranteed to fail, and observe that all fatal errors are han-
dled gracefully.

Production Environment

The Production Environment section of the software development plan outlines
and describes the environment in which the final application will run. Some tools
will only be run on one type of configuration or computer, which often is the case
when the tool is developed for internal use. With a tool developed for external use,

Conclusion

this environment is any computer or configuration that is managed by the stake-
holders of the tool. The production environment is fairly similar to the staging
environment. All the deployment issues should be resolved when the application
reaches this environment, allowing for a clean install with no missing dependen-
cies or settings.

Conclusion

Building a software development plan with standards plays an important role in
development. A comprehensive plan is typically a waste for small tools, though
even a brief description in each section is generally sufficient enough. Keep in
mind that if you have standards that are applicable to other projects, if not all of
them, the extra time you spend writing a comprehensive section for a small tool
will be justified when you reuse those same standards in other tools that are of a
much larger scale.

Why not wait to write a detailed standard until it is needed for a larger project? You
can definitely do this if you want, but if you define the standards immediately, you can
build all of your tools to follow your specifications, promoting ease of maintain-
ability across all your projects.

On much larger projects, a thorough development plan and development stan-
dards are basically a requirement, especially when working with multiple developers,
each with his own coding and documentation style. Remember that consistency is
extremely important, and the best way to achieve consistency is through defined
standards.

35

This page intentionally left blank

CHAPTER 5

DEVELOPMENT
PHASES OF A TooL

Large software projects will never be without some risk, but if risks can be
brought down to acceptable levels, that will be a good beginning.

Capers Jones, 1998

The process of understanding the project and its goals, building it, and delivering
it to users is often referred to as the Software Development Life Cycle (SDLC).
Such a process sounds straightforward, but this is not the case, as more than 50%
of all development projects fail. The project is canceled before the product is com-
pleted, the product is never used after it is deployed, or the end result fails to pro-
vide the outcomes that were expected. Presented in this topic are several funda-
mental concepts and pragmatic techniques that you can use to increase the prob-
ability that your project will be successful.

The development life cycle is composed of four phases: planning, analysis, design,
and implementation. Although the focus and approach to each may differ among
projects, all projects have elements of these four phases. Each phase is composed
of a series of steps, which produce deliverables that provide understanding about
the project. The development life cycle is a process of iterative refinement, where
each phase takes in a deliverable from the previous phase, and further outlines in
more detail how the product will be built, eventually leading to a finished product.
Each phase generally proceeds in a logical path from start to finish, though some
project teams move through the steps consecutively, iteratively, or incrementally.

37

38

Chapter 5 m Development Phases of a Tool

PLANNING ANALYSIS DESIGN IMPLEMENTATION

Figure 5.1 Phases of the software development life cycle.

There are many more variations of the development life cycle than what is being
described throughout this chapter, though the rudiments behind each phase
remain the same.

In many ways, the development life cycle is similar to building a house. First, the
original idea for the house is presented. Second, this idea is transformed into a
simple drawing that is refined over several iterations until the customer agrees that
the drawing depicts what he or she wants. Third, a set of blueprints is created that
presents extensive detail about the house, including power outlets, support beams,
and door arches. Finally, the house is built following the blueprints, often with
changes made by the customer as the house is being constructed.

It is important to mention that the length of and approach to each phase of the
software development life cycle is dependent on the methodology used. This chapter
covers only the waterfall approach, although there are roughly six other method-
ologies that are used in software development. There is no right approach; each
methodology has a purpose and a place. The waterfall approach is covered in this
chapter because it is the easiest and shortest to cover. Other methodologies, like
the Rational Unified Process (RUP), are more complex and detailed.

Phase: Planning

The first phase of the development life cycle is the fundamental process of under-
standing why a product should be built, and determining how the project team
will go about building it. It is in this stage that the value to the developers is iden-
tified, and technical, economic, and organizational feasibility are determined. This
is known as a feasibility analysis.

A feasibility analysis evaluates if the final outcome of the project will lower costs
or increase profit, and whether or not there are enough organizational and tech-
nical resources to build it. The level of risk is also assessed, contributing to the final
decision about whether or not the project is a worthwhile investment. Are the

Phase: Design

developers familiar with the application and technology utilized? Less familiarity
generates more risk because now the developers have to conduct additional
research to build the final product and support it. How large is the project? Larger
projects also generate more risk, due to the extensive scope that must be managed
through development. What will be the development and operating costs? Do the
costs of managing this project outweigh the benefits of the expected outcome? All
of these factors must be addressed before development can continue to the next
phase.

If the project is evaluated and developers are given the go-ahead, the resultant
deliverable of this phase is a project plan that describes how the project team will
go about developing the product. The project plan is composed of a technical
brief, business rules, development requirements, milestones, deliverables, budget,
and quality assurance procedures. This deliverable is given to the development
team for design and implementation.

Phase: Analysis

The second phase of the development life cycle answers the questions of what the
product will do, who will use the product, and when and where the product will
be used. During this phase, the project team develops a concept for the new prod-
uct. If a product already exists, then the project team identifies areas to improve
on the existing design.

The project team sets out on an information-gathering process, where the main
users of the product are interviewed or fill out a questionnaire. The analysis of this
information, in conjunction with input from the project sponsor and project team
managers, leads to a concept for the new product. The product concept is then
used as a guide to produce a set of business analysis models that identifies how the
product will be used within the company.

The analysis, product concept, and models are combined into a deliverable called
the product proposal, which contains a high-level initial design.

Phase: Design

After the strategic decisions have been made in the previous two phases, the design
phase determines how the product will operate in terms of hardware, software,
and network infrastructure. Several specifications are created that detail the vari-
ous components of the product.

39

40

Chapter 5 m Development Phases of a Tool

The first step in the design phase is to develop the design strategy specification.
This specification describes whether the product will be developed by program-
mers employed by the company, whether the product will be outsourced to anoth-
er firm (usually a consulting firm), or whether the company will buy an existing
software package. This leads to the architecture specification, which describes the
hardware, software, and network infrastructure that will be used.

After the architecture specification is completed, the project team develops the
interface specification, which specifies how the users will interact with the system
(e.g. navigation methods such as menus, buttons, or command line input). Next,
the database and file specifications are developed, which define exactly what data
will be stored, including where it will be stored. Finally, the analysis team develops
the program specification, which defines the programs that need to be written and
exactly what each program will do.

All these specifications form the system specification deliverable that is handed to
the programming team for implementation.

Phase: Implementation

This is the phase where the product is actually built. Notably, this phase gets the
most attention because it is the longest and most expensive part of the develop-
ment process.

The first step in the implementation phase is construction, during which the prod-
uct is built and then tested to ensure that it performs the way it was designed.
Testing and quality assurance are the most critical steps in this phase, because the
cost of bugs can be immense. The majority of companies spend more time on
quality assurance than on the actual development of the product.

Once the product has passed acceptance, it is ready to be installed. If an existing
product was in place before this new one, both products move through conversion.
This is a process by which the old product is deactivated, and the new product is
activated.

The conversion process may be a direct cut-over approach (in which the new
product immediately replaces the old product), a phased approach (in which the
new product is installed in one division of the company as a trial before installing
it in the other divisions of the company), or a parallel approach (in which both the
old and new products are operated for a couple months until the support team is
sure there are no bugs in the new product).

Conclusion

One of the most critical aspects of the conversion process is the creation of a train-
ing plan to instruct users on how to operate the new product, and help manage the
changes caused by the new product.

Once the product has been deployed and tested, the project team establishes a sup-
port and maintenance plan for the new product. This plan usually includes a post-
implementation review, as well as a method to identify the changes needed for the
product. Optionally included are retirement plans for the product, generally
affected by changing technology and business rules.

Conclusion

The development methodology described in this topic is commonly known as the
Waterfall approach. This model is one of the oldest versions of the software devel-
opment life cycle. The Waterfall model is linear and sequential, and once a stage
has been completed, there is no turning back.

Imagine a waterfall rushing over a rocky cliff. Once the water has flowed over the
cliff, it cannot turn back. This is the same idea behind waterfall development. Once
a phase transitions into another, there is no turning back.

Waterfall development is advantageous in that it allows for managerial control. A
schedule is set with deadlines for each development stage, and the product can
proceed through the development process and be delivered on time, in theory.
Each phase of development transitions into the next phase in strict linear order,
without any overlapping or iterative steps.

The disadvantage to the waterfall development model is that it does not allow for
reflection or revision. Once an application is in the testing phase, it is very difficult
to modify something that was not explored in the concept state.

There are a number of popular software development methodologies, and each
model works best for different types of companies. Other development method-
ologies include SCRUM\Agile, iteration and increment, eXtreme programming
(XP), feature-driven development, Rational Unified Process (RUP), and Microsoft
Solutions Framework (MSF).

Development of a game itself generally utilizes the SCRUM\Agile approach,
whereas tools development typically follows either the waterfall approach or a cus-
tom model when there are only a handful of developers working on it.

The best development methodology to use depends on your company and project.

41

This page intentionally left blank

CHAPTER 6

MEASUREMENT METRICS
FOR TooL QuALITY

There is an old saying with software that three years from now, no one will
remember if you shipped an awesome software release a few months late.
What customers will still remember three years from now is if you shipped
a software release that wasn’t ready a few months too soon. It takes multiple
product releases to change people’s quality perception about one bad release.

Scott Guthrie

The risk of failure for software development is increasing at a rapid rate because
of the need for higher quality software that is also more cost effective and deliv-
ered in a timely manner. With the growing focus on quality, there is a definite need
to improve the quality of software to meet the needs of the industry. One common
problem when trying to determine how to improve quality is establishing a mean-
ingful way to measure quality so that you can quantify your results. If a developer
told you that a piece of software was top-notch quality, just what does that mean?
If a developer told you that a piece of software has only failed twice in over three
years of usage, there would be more value behind that statement. The only differ-
ence between the two statements is that the second one presents a quantifiable
measurement detailing the number of times the software failed in a three-year
period. Both statements could be referring to the same piece of software, yet the
second statement is the only one that is an acceptable and accurate description of
software quality.

43

44

Chapter 6 = Measurement Metrics for Tool Quality

When performing any kind of measurement, you need what is known as a metric,
which is commonly defined as a quantitative measure of the degree to which a sys-
tem, component, or process possesses a given attribute. Software development
quality can be measured by a number of metrics, including maintainability, per-
formance, usability, testability, portability, reliability, and efficiency.

The International Standards Organization (ISO) has created a set of software qual-
ity standards and also describes how to collect metrics for them. The metrics dis-
cussed in this topic are a compressed overview of their work.

Tools, like any software project, require a high level of quality, especially when the
tools produce game content or enhance workflow, and the rate of failure for the
tool must be extremely low. This topic presents some measurement metrics and
concepts for development that all greatly impact the lifetime cost of a tool.

Metric: Maintainability

Perhaps one of the most important metrics to consider in software development,
and definitely evangelized in this book, is maintainability, which characterizes any
successful tool. The greatest amount of development time in the game industry is
spent on maintenance, by extending or enhancing a product that already exists. A
tool should always be designed with maintainability in mind, designed so that the
code is easy to repair and extend for future products or processes.

This metric typically looks at how many times a certain tool has been reused across
multiple products or processes, how much additional time was needed to relearn
the inner workings of the code, and how much development time was spent
enhancing the tool to suits the needs of another product.

Metric: Traceability

The idea of traceability has been mainly introduced by object-oriented software
engineering, and is the idea that documentation should be able to show why a par-
ticular implementation decision was made. Typically, a tool, especially one that’s
medium to large scale in terms of size, will have a design document detailing how
the application will function, and may even be represented using the Unified
Modeling Language (UML). The ability to look at a functionality requirement in
a design document, known as use cases when utilizing UML, and easily understand
how to perform that task in the application itself is referred to as traceability.

Metric: Usability

There are a multitude of ways to discuss traceability and how to achieve it, but
basically it all boils down to how well the application and underlying architecture
follow the design document specifications. Actors in a design document, the peo-
ple using a certain component in the system, should be easily identifiable in the
object model, and all functions should be named similarly to the associated use
cases. For example, if the design document specifies that there is a feature called
Search Entities and its associated code function is labeled FindEntitylList, the
traceability between the documentation and code is low because further investiga-
tion is needed to make sure that function performs the correct task. If the function
was labeled SearchEntities, the traceability between the documentation and code
would be better.

Metric: Performance

Generally, one of the most difficult areas of any software product of ample com-
plexity is performance profiling and tuning. Performance describes issues like
memory leaks or how responsive the user interface is.

This metric typically profiles the application for declines in performance or misuse
of resources. Performance is very important to game tools because a responsive user
interface yields much more productivity than a tool with a sluggish user interface.

Some chapters later on in the book cover performance, such as accessing perfor-
mance counters to profile operations and optimization tips and tricks for the NET
platform.

The performance metric is sometimes combined with the efficiency metric in some
measurement contexts.

Metric: Usability

Another important issue in regards to software development is how easy it is to
reuse or extend a piece of software. In order to accomplish this, it is important that
the interfaces for the software are well-documented and easy to use.

A developer should be able to read the documentation for the tool and understand
what the tool is supposed to do at a high level. Additionally, a developer should be
able to read the source code and easily understand what is going on behind the scenes.

The usability metric is sometimes combined with the maintainability metric in
some measurement contexts.

45

46

Chapter 6 = Measurement Metrics for Tool Quality

Metric: Testability

Testing is a required step in any software project, and there are certain considera-
tions for building software that is easy to test. Unit testing is easiest to perform in
loosely coupled architectures where individual objects can be tested with minimal
dependency on other objects. If testing can be performed on components in iso-
lation from each other, there is a much greater chance that performance issues and
hard-to-find bugs will be discovered.

Avoid design patterns like the singleton, where architectures become tightly cou-
pled; design software for testability so that the work of testers is not as difficult and
can be done in a much shorter period of time.

Metric: Portability

The portability metric involves moving software from one operating system to
another. Some game development studios target multiple operating systems and
platforms with their products, so portability is important to them. Therefore, it is
important to build common components that are easily portable to other plat-
forms. Even if the game development studio typically relies on outsourcing other
cross-platform work to another development company, there are some practices
that should be followed. The longer it takes to port the original code to another
platform, the greater the overall cost of the conversion process. The more a soft-
ware component relies on platform-specific technology, the more code must be
written in the porting process.

The biggest practice to follow is that all calls to the operating system should be in
specific components. Abstraction is very useful in this situation, because interfaces
can be written that define how a particular component will communicate with the
system, and operating system-specific components can be written that implement
that interface, creating a flexible plugin-based architecture.

Plugin-based architectures are commonly used with 3D API agnostic graphic
engines that can use either OpenGL or Direct3D. Aside from the benefits of an
abstracted rendering system on Windows alone, OpenGL is pretty much the only
cross-platform hardware-accelerated 3D API that can be employed in games. By
using an abstracted rendering system that supports OpenGL, you do not have to
worry about porting the graphic engine to other platforms, as you have already
accounted for the differences.

Operating system agnostic design can also be used for other hardware-based ser-
vices like audio, video, input, and networking.

Metric: Efficiency

Metric: Reliability

An extremely important factor in the success of any software project is its reliability.
A tool is pretty useless to designers if it crashes or corrupts the data almost every
time it is used. The reliability metric is a measure of failure rates surrounding the
software project. If you run a certain tool a thousand times, what percentage of
those times will it fail? The resulting data from this test is generally referred to as
the meantime to failure.

There are different acceptable failure rates for different stages in software develop-
ment. At the beginning of development, the software fails quite often. As develop-
ment progresses, bugs are removed, and the failure rate declines to the point where
the tool rarely fails. The failure rate is rare when the software is ready for integra-
tion and deployment, at which point the failure rate is said to be acceptable.

Workflow productivity using a tool is directly tied to reliability. Losing work or
requiring tedious workarounds to maintain stability is a frustrating process, and
should be minimized at all costs. Spending the extra time to stabilize a tool can
save the designers much more time in the long run.

Metric: Efficiency

Judging the efficiency of an application is relatively difficult to do, because there
are several things you must take into consideration. Some measurement contexts
also combine the efficiency metric with the performance metric, while others do not.

Some measurements of efficiency include the size of the application, especially in
circumstances where available disk space is limited, such as handheld or other
resource-limited platforms. Smaller applications typically gain a slight perfor-
mance boost over larger applications, due to how the operating system manages
memory associated with processes.

The amount of memory required by the application to function optimally is also
important to measure, especially in situations where memory is limited. If you had
an application that performed a task in four seconds with 1IMB of memory, it
would be more efficient compared to an application that performed a task in two
seconds with 9MB of memory.

The speed of an algorithm can also be measured in terms of efficiency. An algo-
rithm can be evaluated in terms of the time it takes to complete its work, and how
it goes about doing that work. Issues like memory access, disk access, and network
access can all be considered in this measurement.

47

48

Chapter 6 = Measurement Metrics for Tool Quality

Aside from efficiency or performance, complexity of the implementation relative
to the task performed can also be considered. If an application or component is
mired in complexity, it might not be the most efficient implementation of a solution,
even if its performance is as good as or better than another less complex solution.

The efficiency metric involves studying several important variables in order to
determine whether the solution, even when meeting business objectives, is an effi-
cient implementation.

Conclusion

In this chapter, I discussed what software quality measurements and metrics are,
and why they are important. Also discussed were some development models and
calculation methods used to produce and analyze high-quality software.

Note

For more information, refer to the book Metrics and Models in Software Quality Engineering,
Second Edition by Stephen H. Kan.

CHAPTER 7

FUNDAMENTALS OF
UseER INTERFACE DESIGN

I think another good principle is separating presentation or user interface
(UI) from the real essence of what your app is about. By following that
principle I have gotten lucky with changes time and time again. So I think
that’s a good principle to follow.

Martin Fowler

User interface design is a software development issue that spans numerous books,
so covering the subject in one chapter is quite ambitious, perhaps impossible to
do. Yet, user interface design is very important to tools development, so I felt the
need to cover at least a generalization of some important rules to follow while
designing your interfaces.

The importance of a good user interface design cannot be stressed enough, and it
can make or break the success and adoption of your tools. The backend may have
been written exceptionally well, yet an interface that is unintuitive to users will dis-
courage them from using your tool. Additionally, productivity will not be as high,
and users will feel incompetent when using the tool.

In this chapter, I will discuss some of the most important rules and guidelines for
designing user interfaces. The term control will be used in this context to describe
any element or widget on the user interface that either accepts input or displays
output. Some controls include buttons, static labels, textboxes, scrollbars, and menus.

49

50

Chapter 7 = Fundamentals of User Interface Design

Principle of Consistency

Almost every platform has a guideline written for user interface design. Microsoft
has published the Design Guidelines for Class Library Developers, which you should
follow when building .NET software. If you feel the need to improve upon the
design, chances are you will remove your “improvements” when users begin to
complain about the application not working the way they would normally expect.

If you are doing cross-platform development, maintain consistency by following the
design guidelines for the host platform. Never make the different platform appli-
cations function the same if they break one of the guidelines of the platform.
Chances are your users will be switching between applications on one platform, not
switching between applications on different platforms. Users should be able to use
the knowledge gained in other programs on a certain platform to anticipate the
behavior of your program.

Users should also be able to anticipate the behavior of a control from its visual
appearance and properties. For example, if a pushbutton on one of your user
interfaces responds to single mouse click, every other button should respond to
one mouse click as well.

When you develop a custom control, it is important that you try to make it behave
in a similar fashion to other system controls. If you build a custom control that
allows the user to type text into it, that control should have a blinking insertion
pointer; it should have a vertical scrollbar if multi-line input is supported. If you
build a custom control that allows the user to click on it, the control should behave
in a similar fashion to a regular button.

If you have a custom control that behaves in a fashion that users are not accus-
tomed to, be sure to give the control a distinct appearance so that users can asso-
ciate that type of control with a unique behavior.

Consistency is also important to interface abstractions like accelerator keys, place-
ment of menus and toolbars, and mouse gestures.

Principle of Transparency

The concept of user interface transparency is a design that allows users to accom-
plish their tasks while being minimally aware of the interface itself. Interface trans-
parency occurs when the attention of the user is drawn away from the interface
and directed at the task itself.

Principle of Feedback

Certain interface abstractions, such as accelerator (hot) keys, are quite useful in
achieving interface transparency, but the best way to design a transparent interface
is through iterative user testing throughout software development.

Watching how a user operates a tool and witnessing how quickly he learns an
interface is an excellent way to gain an idea of what should be redesigned to
improve the transparency of an interface.

Principle of Feedback

This concept applies to the controls and activity of your tool, and is about the
importance of providing adequate feedback to users. Users expect feedback while
using an application, so they are aware of the current state of the application. It is
a typical action and reaction situation, where something should happen when a
user does something.

For example, when a button is clicked, it first draws itself in a depressed state, and
then draws itself in a normal state when the mouse button is released. This is a
method of user feedback that informs the user that he successfully clicked the but-
ton. If this visual appearance did not occur when the button was clicked, the user
generally understands that he did not actually click the button and should do so
again until the visual feedback is witnessed. You can imagine the frustration of
your users if buttons in your application did not display this visual feedback when
they were clicked.

As another example, a checkbox control changes its appearance when it is select-
ed or deselected to inform the user whether the checkbox is checked or not. Again,
this visual feedback is important to show users the current application state.

With any tool, there are instances when an operation occurs that takes longer than
a few milliseconds to complete and requires visual feedback to inform the user that
the application is performing a lengthy operation and did not actually lock up.
When brief delays are to occur, one of the more popular methods is to change the
mouse cursor into an hourglass. If a longer operation will occur, use a progress bar
control so that users can see how long the operation will take to complete. An
hourglass cursor will not suffice for a lengthy operation because users will still
think that the application has locked up.

Lastly, every screen should be designed so the user knows what steps have been
performed, especially any critical steps that have been performed.

51

52

Chapter 7 = Fundamentals of User Interface Design

Principle of Refinement

One common mistake a lot of developers make is to throw a warning or error
exception when the user performs an invalid operation. In actuality, you should
view every warning and error message generated by your application as an oppor-
tunity to improve the interface and task sequencing techniques.

A good user interface is when warning and error messages are rarely generated,
with the exception of disk failures or interrupted network connections. Otherwise,
all other warning and error messages can be considered as design flaws.

Instead of letting the user do whatever he wants and throwing a warning or error
message when he does something invalid, consider the prevention of these mes-
sages as a better design alternative.

The majority of erroneous user operations result from invalid input data and
inappropriate task sequencing. If your program requires formatted data, such as
dates or particular numeric ranges, help users enter correct data by using bound-
ed input controls that limit input choices. Rather than letting the user enter what-
ever data he wants and complaining about the input when the user clicks the Save
button, instead force the user to enter correct data using controls that strip invalid
characters and perform automatic formatting.

If a particular step in the application cannot be legitimately performed until the
user completes other steps, the dependent step should be disabled so that the user
cannot attempt to perform it until all the dependencies of the step are satisfied.
User action should be limited to only valid steps through the use of disabled con-
trols. Most user interfaces have a dim appearance for disabled controls, and this
visual feedback informs the user that the functionality of that control is unavail-
able until another step is completed.

Principle of Exploration

The human race was born to be explorers, and our curious nature causes us to
attempt certain things just to see what the outcome is. When prehistoric cavemen
created fire, it is safe to assume there was at least one curious individual who want-
ed to see what happened when they touched fire—obviously burning themselves
in the process. From that point on, everyone knew what would happen if they did
the same thing, so their curiosity was satisfied.

The same analogy can be used for interfaces and user exploration. Humans want
to explore any environment, but with tools, they risk corrupting the database or
game content. This concept is based on the idea that the user interface and application

Principle of Self-Evidence

should foster an environment safe for exploration. Safe environments are achieved
through the use of undo and redo functionality. A great interface design invites
and rewards user exploration, and offers the thrill of discovery and the satisfaction
of unassisted accomplishment. Undo and redo functionality encourages your users
to explore the application without fear of corrupting the database or game content.

Another great design advantage of undo and redo functionality is that it eliminates
the need for dialogs requesting permission to perform an erroneous function. This
is also a great technique to enhance interface transparency.

Principle of Modality

The use of modal dialogs is quite common in a user interface, yet they must be
used wisely for a number of reasons. Programs generally use modal dialogs to
force users to perform steps in a specific order. Modal dialogs are very advanta-
geous for wizard tools that simplify complex tasks, and are also used to display
warning and error messages for a critical issue that the user must first address
before returning to the task.

The problem with modal dialogs is that they make users uncomfortable because
they restrict natural or intuitive responses. Modality also interrupts user concen-
tration and goal-oriented behavior, decreasing productivity with the tool.

Modal dialogs are a great way to build easy-to-use and straightforward interfaces,
but they have to be used sparingly. Task sequencing techniques can be applied so
that modal dialogs are only used when absolutely necessary.

Principle of Self-Evidence

Good applications have online reference materials and comprehensive manuals
that explain features of the application and help to solve real-world problems. If a
user is stuck on a particular problem, in theory he should be able to read the ref-
erence material, move past his issues, and resume productivity.

Great applications have online reference materials and comprehensive manuals
available to the user, but users rarely need to refer to them to figure out how to per-
form a particular task. This is where the concept of a self-evident application
comes into play.

A number of factors contribute to an interface that is self-evident; some of the
factors include consistency, feedback, modality, and an environment that is safe for
exploration.

53

54

Chapter 7 = Fundamentals of User Interface Design

Following the platform guidelines eliminates the problem of users becoming frus-
trated with the interface itself, and reduces the learning curve required to under-
stand the application.

Proper feedback helps the user understand what the application is doing behind
the scenes, and helps reduce the chances that the user will feel “in the dark” about
the current state of the application.

Modality plays a big part in helping guide the user towards performing steps in the
correct sequence, and it helps the user to understand how a complex interface works.

Lastly, with an environment safe for exploration, the user can attempt to guess
what to do next if he is stuck on something, without fear of corrupting his data. A
user will often try a couple of things through guesswork before going to the refer-
ence material, if he can do so without undue worry that he will break things in the
application or project.

Remember that the difference between a good and a great interface is how self-
evident it is. If time is short for the development of a tool, instead of investing time
in producing reference material, a self-evident interface will be more than enough
of a reference for users.

Principle of Moderation

Most platforms have written conventions that describe the appropriate use of ani-
mation, color, sound, and multimedia clips, and they should be used sparingly.

You should never use sound and color as your sole means of communication with
the user; many users are colorblind or hearing impaired. The application should
be able to run with full functionality and productivity without any multimedia
features.

Following the platform conventions, only use multimedia where it makes sense,
and always allow the option to turn off multimedia features like sound effects.
Some users find them distracting, and this decreases productivity.

Principle of Customization

This concept is centered on the idea that users love to customize their work envi-
ronment to match their own personal style and preferences. Generally, offering
work environment customization increases productivity because users can set up
where toolbars are positioned, select fonts and colors that are easier to read, and
show only the dialogs that they use often.

Conclusion

Another reason that customization is important is because there is such a wide
variety of hardware that applications can run on, and the default appearance does
not always look good on different hardware configurations.

The biggest issue is in regards to video options like screen size, resolution, and
color depth. Your application may look fine on 1024x768 and 32bpp, but it may look
absolutely terrible on 800x600 and 16bpp.

Allowing users to tailor the basic interface, such as fonts, toolbar location and
appearance, menu entries, color scheme, and sound scheme, helps to alleviate this
problem.

While customization is important, this feature is somewhat useless if the settings
are not persistent between different instances of the application. If the user
changes the settings, closes the application, and restarts it, the application should
be in the same state it was left at in the previous session.

Persisting changes to the settings is a simple registry key with a single user, but
multiple users present additional issues that must be addressed with an alternative
solution. If your application supports multiple users on a single workstation, then
consider recording preferences as user specific profiles, rather than as a single pro-
file from the last time the application was run.

Conclusion

It is a misrepresentation of software to think of a user interface as “intuitive”
because software applications simply do as they are instructed. It is the users who
must “intuit” an application, meaning an interface that is intuitive to one user may
be unintuitive to another.

The best way to design an interface that users can intuit is by designing an inter-
face to respond just like all the other applications they are used to. The way to
accomplish this is by following the Design Guidelines for Class Library Developers,
as well as the principles and concepts in this chapter. It is also advantageous to look
at similar applications and take note of how they operate.

A technique I have professionally used in the past is to open up any popular
Microsoft product like Office and look at how the interface works in it. Microsoft
has invested millions of dollars in user interface design research, and their research
can be adapted into your applications by mimicking how their products work.

55

56

Chapter 7 = Fundamentals of User Interface Design

You can get the Design Guidelines for Class Library Developers off the corporate
Microsoft site. These guidelines should be followed to produce a user interface that
users can intuit, and to achieve interface transparency.

User interface design is necessary for any software application, especially when the
application is a tool that is distributed to an external audience.

CHAPTER 8

DisTRIBUTED COMPONENTIAL
ARCHITECTURE DESIGN

Design and programming are human activities; forget that and all is lost.

Bjarne Stroustrup

One of the most important issues facing developers building reusable frameworks
and tools is how the architecture is structured and the dependencies that are
required by each modular component. Not all tools have the luxury of a solid design,
but if at least the core functionality is separated from the tool into external com-
ponents, then the initial design helps promote reusability.

Another issue facing developers is designing an architecture that allows for multi-
ple entry points into the application, such as console support for batch processing,
and a Windows interface for usability. Building two separate applications is a waste
of time, and one of the two won’t do in a situation like this. This chapter shows a
great way to decouple the core functionality of a tool into reusable components,
and build a stackable architecture that easily promotes multiple entry points. Keep
in mind that supporting all the entry points discussed in this chapter is generally
overkill for a tool, but they are presented together to portray the “big picture.” Mix
and match the modules shown in this chapter, designing your solution with mod-
ularity in mind.

The .NET platform encourages the design of distributed architectures, and it is
extremely advisable to build any applications or components with that in mind.

57

58

Chapter 8 = Distributed Componential Architecture Design

Architecture Overview

The architecture presented in Figure 8.1 is not for every tool, but should be used
when possible to promote enhanced reusability and easier maintenance. On
another note, this architecture is one that can be built upon over time, and if the
design remains loosely coupled, new layers can be added as the tool matures, and
more entry points can be defined as needed.

Reusable Reusable Reusable
Functionality Functionality Functionality
| |

Web - Specific - Remoting
Entry Point Tool Logic Entry Point
Console

Entry Point

Windows
Entry Point

Figure 8.1 Overview of the proposed architecture.

Core Components

Core components, labeled “Reusable Functionality” in Figure 8.1, are the core libraries
that all your tools can reference when needed and are designed to be loosely coupled
and modular. Such functionality can include regular or virtual file system access, user
security, data compression and encryption, string parsing, image processing, and other
common code that can be useful to a variety of tools in your projects.

Windows Entry Point

The core components should try to avoid external dependencies to other assemblies
at all costs, unless linking to another core component that contains required func-
tionality. Core components should also never contain any application entry points.

Optionally, you can also expose a COM interface from these core components if
your design warrants it, though I do present an alternative in the specific tool logic.

It is advisable that you assign a strong name key to the core component assemblies.
The only time you cannot do so is when the assembly references unsafe code, such
as an ActiveX object.

Specific Tool Logic

This module should contain all the logic that is unique to the tool you are building.
There is generally no code here that would be reused anywhere else, and typically
just the driver functions are implemented in this module. The specific tool logic
references whatever core components are needed for the tool, yet it does not
implement any entry points. This module can export a COM interface quite easily
to be called from unmanaged legacy applications.

Console Entry Point

Users prefer a rich GUI interface over a simple console one, but activities like batch
processing generally feed commands and parameters into command line tools in
an automated fashion. For that reason, it is important to support command line
access for a tool that could be used with batch processing later. Obviously, the
interface does not have to be fancy, but it should be clean enough that a user could
launch the console entry point manually and easily use the tool. Proper menu
descriptions and selection logic help out greatly in this regard.

Windows Entry Point

This entry point is relatively easy to construct if a decent console entry point has
been made. There are two main ways this entry point could be developed, but I
personally prefer the stackable method where the standard input, output, and
error streams are redirected from the console entry point. This method requires
less code, in that we are basically slapping a rich GUI interface on top of the con-
sole entry point.

The other approach for designing this entry point is through bypassing the con-
sole entry point and implementing similar logic that interfaces directly with the
specific tool logic.

59

60

Chapter 8 = Distributed Componential Architecture Design

Other Entry Points

The nature of this architecture promotes loosely coupled design and distributed
services or entry points. This architecture could be extended to provide its func-
tionality to other technologies in many ways, but I will briefly mention three of the
more common ones.

Many different entry points could be added to this architecture, and the design
promotes both maintainability and reusability. There is nothing very complicated
about this architecture, yet the benefits make it a worthwhile design idea to adopt
into your development practices.

Remoting

There are a number of excellent reasons for supporting a remoting entry point. The
biggest advantage is that the tool logic resides on a server machine and clients request
a proxy object to it, greatly simplifying deployment and versioning. Changing the
specific tool logic on the server would be instantly reflected by all client applications
accessing it, completely avoiding the need to update the client applications.

Later in this chapter, an alternate architecture is presented that uses remoting as a
bridge between entry points and the specific tool logic to promote simple push
deployment to users.

Web Access

There are a couple of worthwhile possibilities with this entry point in regards to
reporting and statistics. Functionality could be added to the specific tool logic that
can return a report of the files affected by the tool, the user who accessed the tool
last, total size of files modified, and any other information that would be useful to
record for the tool.

A web entry point could also be useful for launching processes remotely, without
requiring an application installed on the client machine to do so. For example,
imagine a tool that would back up a certain directory to another server when run.
A tool like this would normally need to be installed on all client machines that
needed to use it, but with a web entry point, the backup could be launched remotely
through a normal web browser.

COM Interface

Migrating components to the .NET platform will take some time, and definitely
won’t take place overnight. The ability to migrate each component one at a time

Architecture Example

and have them interface with legacy components is fairly important, and one way
to do so is by exposing a COM interface for your .NET components so that lega-
cy applications can use them.

Later in this chapter, an example is discussed that covers exposing a COM inter-
face for a .NET component so that legacy applications can access its functionality.
The discussion is relatively brief though, since COM interoperability is covered in
much greater detail in Chapter 32, “Using .NET Assemblies as COM Objects.”

Architecture Example

Now that the overall design of the architecture has been discussed, it is also impor-
tant that an example be presented to offer a tangible reference point for properly
designing a distributed componential architecture.

As an example, we will build a very simple solution that contains a few object def-
initions, some functionality to process the objects, and a variety of entry points to
access the tool using an assortment of different technologies.

Object Definitions

Most systems define objects that represent business entities in the system, and
these objects are typically used throughout an application in a variety of contexts
and locations. To promote strong design, it is important that these business enti-
ties exist alone in an independent library away from processing functionality.

This example assembly contains a single object named SimpleObject, and contains
a single string property that describes the name of the object.

Here is the code for the SimpleObject entity definition:

public class SimpleObject
{

private string _name = "";

public string Name

{
get { return _name; }
set { _name = value; }

}

public SimpleObject(string name)
{

61

62

Chapter 8 = Distributed Componential Architecture Design

this._name = name;

}

As you will notice when viewing the solution files on the Companion Web site, the
entity definitions reside in an independent library, completely isolated from any
processing functionality that uses these entities.

This module fits into the “Reusable Functionality” category in Figure 8.1.

Object Processing

Almost every system defines objects that represent business entities, and almost
every system provides functionality that performs processing on these entities.
This is one area where it is important that future reusability be taken into consid-
eration. All functionality placed in this module should have the potential for
applicability towards multiple projects. It is essential that you refrain from placing
specific tool logic in this module.

This example assembly contains a single static method that inputs a SimpleObject
and builds an alert message based on its name.

Here is the code for the simple object processing method for this example:

using ObjectDefinitions;
public class Library
{
public static string FormatOutput(SimpleObject simpleObject)
{
return String.Format("The name of this SimpleObject is {0}!",
simpleObject.Name);

}

Notice how this assembly references the other class library containing the entity
object definitions.

This module fits into the “Reusable Functionality” category in Figure 8.1.

Alert Object Tool Interface

Now that our simple framework has been created, it is time to build our tool! In
order to facilitate either a COM or remoting entry point, we must define a public
interface that our tool implements. That is what this module is for.

Architecture Example

Another gotcha when using remoting is that it is ideal for the interface to exist in
its own assembly, away from the classes that provide implementation. The beauty
of remoting is that you can give each client machine an assembly containing only
the public interface of the tool, and each machine can build a proxy object to
access the actual implementation remotely. If you keep the interface and imple-
mentation together in the same file, however, it defeats the purpose of remoting
because clients have access to a local copy of the implementation.

There is one problem with keeping the interface in a separate assembly from the
implementation, and that is when also exposing a COM interface. In order for
COM to work, it must know what both the interface and the implementation are
defined as. When paired together in the same assembly, COM has no trouble find-
ing either the interface or the implementation, but when the interface exists by
itself in a separate assembly, COM will not register output for that interface, com-
plaining that it cannot find any suitable types to generate COM output for. This
error will cause registration to fail for the implementation output because the
interface will be unknown, even when the interface library is referenced correctly.
One method of fixing this error is to create a dummy class that implements the
interface and place it in the interface assembly. By setting the ClassInterface
attribute to ClassInterfaceType.None, no class interface will be generated and the
dummy class will only be visible through late-binding. The purpose of the dummy
class is to force COM output registration for the interface assembly so that it is
available to the implementation assembly when it registers for COM output.

If you do not wish to support remoting, you can pair the interface and imple-
mentation together, but keep in mind that you need to be committed to the archi-
tecture you choose. Going back to separate the interface into a separate assembly
would be much more difficult than doing it right from the get-go.

Here is the interface for the tool-specific code, along with attributes for COM
interoperability:

[Guid("D64A81A4-FFOC-4916-B92C-47BA3D2EC0O5D")]
[InterfaceType(ComInterfaceType.InterfacelsDual)]
public interface IAlertObjectToollogic
{

string GetFirstAlertObjectName();

string GetSecondAlertObjectName();

string GetThirdAlertObjectName();

63

64

Chapter 8 = Distributed Componential Architecture Design

[Guid("6E789399-D074-407a-8715-6C72A3C70D7F")]
[ClassInterface(ClassInterfaceType.None)]
[Progld("ATertObjectToolInterface.IgnoreMe")]
public class AlertObjectToolBase : IAlertObjectToollogic
{

public string GetFirstAlertObjectName()

{

return String.Empty;
}

public string GetSecondAlertObjectName()
{

return String.Empty;
}

public string GetThirdAlertObjectName()
{
return String.Empty;
}
}

This module fits into the “Specific Tool Logic” category in Figure 8.1.

Note

Any assemblies that expose components to COM must have Register for COM Interop enabled in
the project Configuration Properties.

Alert Object Tool

It is fairly obvious that an interface alone will not offer any useful functionality to
users, so the next step is to build the tool implementation. This module can be
considered the meat of the tool, because all logic specific to the tool in question
resides within this module. Just like the interface, this assembly can be registered
for COM Interop if desired.

This module references the entity definitions and processing assemblies, as well as
the interface definition it needs to implement. The example provided is very sim-
ple, with three methods that each returns a different formatted alert string. Each
method instantiates a SimpleObject entity definition with the name specified, and
then passes the entity off for processing, returning the alert string.

Architecture Example

Here is the code for the specific tool logic:

using ObjectDefinitions;
using ObjectProcessing;
using AlertObjectToolInterface;

[Guid("F6D5AB09-E2C1-4ff3-B023-01A94CC7C276")]
[ClassInterface(ClassInterfaceType.AutoDual)]
[ProgId("AlertObjectTool.ATertObjectToollogic")]

public class AlertObjectToollLogic : MarshalByRefObject, IAlertObjectToollogic

{
public string GetFirstAlertObjectName()

{
SimpleObject simpleObject = new SimpleObject("Testl");
return Library.FormatOutput(simpleObject);

}

public string GetSecondAlertObjectName()

{
SimpleObject simpleObject = new SimpleObject("Test2");
return Library.FormatOutput(simpleObject);

}

public string GetThirdAlertObjectName()

{
SimpleObject simpleObject = new SimpleObject("Test3");
return Library.FormatOutput(simpleObject);

}

[ComVisible(false)]
public override object InitializelifetimeService()

{
return null;

}
}

For remoting support, you will notice that the class inherits from MarshalByRefObject,
which is important because doing so allows remoting to create a proxy object out
of this object to pass to clients. Also, you will notice the method Initializelifetime
Service, which allows us to explicitly handle the lifetime of proxy objects. By returning
null, we are telling remoting services to keep the allocated object in memory indef-
initely until explicitly told to release it. Be aware of the ComVisible(false) attribute
that is set on the method, so as to not be exported with the COM interface.

65

66

Chapter 8 = Distributed Componential Architecture Design

For COM support, you will again notice the COM attributes set on the class. Also,
make sure that the project Configuration Properties has the Register for COM
Interop flag enabled.

This module fits into the “Specific Tool Logic” category in Figure 8.1.

Alert Object Console

We can begin discussing entry points now that the specific tool logic has been
developed. The first entry point covered will be the command line console, which
is widely used for automated build processes or batch processes. Some developers
also have a personal preference for using console applications over GUI applications.

This example is quite simple; it takes in a 1, 2, or 3 and spits out the formatted alert
message from the associated call to the tool logic.

Here is the code for the console entry point:

using AlertObjectTool;

[STAThread]

static void Main(string[] args)

{
// Nery simple input parameter.
// Either 1, 2, or 3
/] 1: GetFirstAlertObjectName()
// 2: GetSecondAlertObjectName()
/1 3: GetThirdAlertObjectName()

if (args.Length >= 1)
{
AlertObjectToollLogic Togic = new AlertObjectToollogic();

switch (args[0].Trim())
{
case "1":
{
Console.Write(logic.GetFirstAlertObjectName());
break;

Architecture Example

case "2":
{
Console.Write(logic.GetSecondAlertObjectName());

break;

}

case "3":

{
Console.Write(logic.GetThirdATertObjectName());
break;

}

Alert Object Windows—Direct

The first method for a WinForms-based entry point is the direct approach, where
you reference and call the specific tool logic in the same way you would do in the
console entry point.

Here is the code for the WinForms entry point using the direct approach:

using AlertObjectTool;

private void FirstTestDirectButtonClick(object sender, System.EventArgs e)
{
AlertObjectToolLogic Togic = new AlertObjectToolLogic();
MessageBox.Show(Togic.GetFirstAlertObjectName());
}

private void SecondTestDirectButtonClick(object sender, System.EventArgs e)
{
AlertObjectToolLogic Togic = new AlertObjectToolLogic();
MessageBox.Show(Togic.GetSecondAlertObjectName());
}

private void ThirdTestDirectButtonClick(object sender, System.EventArgs e)
{
AlertObjectToolLogic Togic = new AlertObjectToolLogic();
MessageBox.Show(Togic.GetThirdAlertObjectName());

67

68

Chapter 8 = Distributed Componential Architecture Design

Alert Object Windows—Wrapper

The second method for a WinForms-based entry point is the wrapper approach,
where the WinfForms application layers on top of the console entry point and redi-
rects all standard input and output through itself.

This approach is beneficial in the sense that there is less to code, since the major-
ity of the entry point code exists within the console entry point. Another benefit
is that this project does not require any references to the underlying framework or
specific tool logic.

Using this method also reduces the chances for bugs since one code base is main-
tained, and fixing a bug affects both entry points.

Here is the code for the WinForms entry point using the wrapper approach:

private void FirstTestWrapperButtonClick(object sender, System.EventArgs e)
{
LaunchConsoleWrapper("1");

}

private void SecondTestWrapperButtonClick(object sender, System.EventArgs e)
{
LaunchConsolelrapper("2");

private void ThirdTestWrapperButtonClick(object sender, System.EventArgs e)
{

LaunchConsoleWrapper("3");
}

private void LaunchConsoleWrapper(string parameter)

{
Process process = new Process();
process.StartInfo.UseShellExecute = false;
process.StartInfo.RedirectStandardOutput = true;
process.StartInfo.CreateNoWindow = true;
process.StartInfo.Arguments = parameter;
process.StartInfo.FileName = Application.StartupPath +

@"\AlertObjectConsole.exe";

if (process.Start())

{
MessageBox.Show(process.StandardOutput.ReadToEnd());
process.WaitForExit();

Architecture Example

}

else
{
MessageBox.Show("Error Taunching console application”);

}

The function LaunchConsolelrapper takes in the argument string to pass to the con-
sole entry point, and launches the console entry point with redirected standard
output.

Alert Object Remoting

A great feature of the .NET platform is the ability to invoke remote procedure calls
(RPC) from proxy objects published by a server machine. remoting solves a num-
ber of deployment concerns and allows for a variety of distributed architectures.
Clients can have a local copy of the tool interface, except the implementation itself
exists on a remote machine. A client would connect to the remote machine,
request a proxy object of a certain type, and use the proxy object as if it were a local
system variable.

In order to support Remoting, the first thing to do (aside from building an object
that inherits from MarshalByRefObject) is to open a remoting channel and publish
an object on it that clients will use.

Here is the code to open a remoting channel on a specific port number and pub-
lish an object on it:

// The Tcp channel to publish the proxy on
private TcpChannel _channel = null;

// A reference to the remoted proxy object
private AlertObjectTool.AlertObjectToolLogic _remotedlogic = null;

/1 A reference to the proxy information
private ObjRef _remotedLogicRef = null;

private void ActionButton_Click(object sender, System.EventArgs e)
{
if (ActionButton.Text.Equals("Start Listening"))
{
ActionButton.Text = "Stop Listening";

69

70 Chapter 8 = Distributed Componential Architecture Design

_channel = new TcpChannel((int)PortField.Value);
ChannelServices.RegisterChannel(_channel);

_remotedLogic = new AlertObjectTool.AlertObjectToollogic();
_remotedLogicRef = RemotingServices.Marshal(_remotedlogic,
"AlertObjectToolLlogic");

else
ActionButton.Text = "Start Listening";
RemotingServices.Disconnect(_remotedLogic);

_remotedLogicRef = null;
_remotedlLogic = null;

ChannelServices.UnregisterChannel(_channel);

Alert Object Remoting Example

With the specific tool logic published on a remoting channel, we can now request
a reference to the proxy object and begin invoking calls.

Here is the code for a remoting entry point that invokes the specific tool logic
using a proxy object:

/1 A reference to the tool logic proxy
private IAlertObjectToollogic _logicProxy = null;
private void ActionButtonClick(object sender, System.EventArgs e)
{
if (ActionButton.Text.Equals("Connect to Proxy"))
{
ActionButton.Text = "Release Proxy";

_logicProxy =
(IATertObjectToollogic)Activator.GetObject(typeof(IATertObjectToollogic),
"tcp://Tocalhost:" + ((int)PortField.Value).ToString() + "/AlertObjectToollogic");

TestFirstButton.Enabled = true;
TestSecondButton.Enabled = true;
TestThirdButton.Enabled = true;

Architecture Example

PortField.Enabled = false;

1

else

{
ActionButton.Text = "Connect to Proxy";
_logicProxy = null;
TestFirstButton.Enabled = false;
TestSecondButton.Enabled = false;
TestThirdButton.Enabled = false;
PortField.Enabled = true;

}

}

private void TestFirstButtonClick(object sender, System.EventArgs e)
{

try
{
if (_logicProxy != null)
{
MessageBox.Show(_TogicProxy.GetFirstAlertObjectName());
else
{
MessageBox.Show("Proxy Object not Created");
}
}
catch (System.Runtime.Remoting.RemotingException)
{
MessageBox.Show("remoting Endpoint not Bound");
}
catch (System.Net.Sockets.SocketException)
{
MessageBox.Show("remoting Endpoint not Bound");
}

}

private void TestSecondButtonClick(object sender, System.EventArgs e)
{
try
{
if (_logicProxy != null)
{

71

72 Chapter 8 = Distributed Componential Architecture Design

MessageBox.Show(_logicProxy.GetSecondAlertObjectName());
}
else
{
MessageBox.Show("Proxy Object not Created");
}
}
catch (System.Runtime.Remoting.RemotingException)
{
MessageBox.Show("remoting Endpoint not Bound");

}
catch (System.Net.Sockets.SocketException)
{
MessageBox.Show("remoting Endpoint not Bound");
}
}
private void TestThirdButtonClick(object sender, System.EventArgs e)
{
try
{
if (_logicProxy != null)
{
MessageBox.Show(_logicProxy.GetThirdAlertObjectName());
}
else

{
MessageBox.Show("Proxy Object not Created");
}
}
catch (System.Runtime.Remoting.RemotingException)
{
MessageBox.Show("remoting Endpoint not Bound");
}
catch (System.Net.Sockets.SocketException)
{
MessageBox.Show("remoting Endpoint not Bound");

Architecture Example

Unmanaged COM Support

As discussed earlier, sometimes it is important to slowly migrate individual com-
ponents in a legacy environment over to the .NET platform. Doing so requires the
ability for .NET and legacy components to communicate with each other. This is
made possible by exposing a COM interface that legacy components can invoke.
We already discussed how to export a COM interface for the specific tool logic, so
now it is time to show the manner in which a legacy component invokes a .NET
component.

When a .NET project is marked with Register for COM Interop, a .tlb file is gener-
ated that contains the exported symbols registered with COM. You can import this

file in an unmanaged application and have all the necessary information to invoke
the COM object.

Here is the code for an unmanaged application invoking the specific tool logic
assembly via COM:

finclude <windows.h>
fFinclude <atlbase.h>
finclude <atlcom.h>
finclude <comutil.h>

// Import the IAlertObjectToollogic interface type library
fimport "..\\AlertObjectToolInterface\\bin\\Debug\\AlertObjectToolInterface.t1b"
raw_interfaces_only

// Import the AlertObjectToollogic type library
fFimport "..\\AlertObjectTool\\bin\\Debug\\AlertObjectTool.t1b" raw_interfaces_only

WINAPT WinMain(HINSTANCE instance, HINSTANCE prevInstance, LPSTR commandLine, int show)
{
::Colnitialize(NULL);

// Define an interface pointer suitable for the COM class
CComPtr<AlertObjectToolInterface::IATertObjectToolLlogic> toollogic;

// Determine the Guid of the COM class to instantiate
CLSID alertObjectToolClassID = __uuidof(AlertObjectTool::AlertObjectToollogic);

// Attempt to instantiate the COM class

if (SUCCEEDED(toolLogic.CoCreateInstance(alertObjectToolClassID,
Os
CLSCTX_ALL)))

73

74

Chapter 8 = Distributed Componential Architecture Design

{
CComBSTR firstObjectNameProxy;
CComBSTR secondObjectNameProxy;
CComBSTR thirdObjectNameProxy;
HRESULT hr;
// Call the first test Togic method
hr = toollogic ->GetFirstAlertObjectName(&firstObjectNameProxy.m_str);
// Call the second test logic method
hr = toollogic ->GetSecondAlertObjectName(&secondObjectNameProxy.m_str);
// Call the third test Togic method
hr = toollogic ->GetThirdAlertObjectName(&thirdObjectNameProxy.m_str);
_bstr_t firstObjectName = firstObjectNameProxy;
_bstr_t secondObjectName = secondObjectNameProxy;
_bstr_t thirdObjectName = thirdObjectNameProxy;
MessageBox(0, (char*)firstObjectName, "First Object", 0);
MessageBox(0, (char*)secondObjectName, "Second Object", 0);
MessageBox(0, (char*)thirdObjectName, "Third Object", 0);
else
MessageBox(0, "Could not instantiate COM object", "Error", 0);
}

::CoUninitialize();
return S_OK;

Alternate Architecture Structure

An alternative to the proposed architecture is removing the remoting entry point
and placing it as a bridge between the specific tool logic and all other entry points.
Doing so would convert the architecture into something like a client and server
environment, storing a single copy of the specific tool logic on the server. The
clients would not require the tool logic, just an interface definition they can cast to
a Remoted proxy wrapper.

Conclusion

This architecture would work great in environments where numerous machines
need to use a particular tool, but issues and concerns with deployment and ver-
sioning present problems. Aside from the first client application and interface def-
inition installation, the only time the client machines would ever need an update
would be if the interface changed. If the interface definition were stored in a sep-
arate assembly, a simple push technology could be used to force all client machines
to remain up to date.

Conclusion

This topic discussed a certain way to design your .NET applications and libraries
so reusability and maintainability are promoted as much as possible.

There is really only one spot that cannot be independently developed at any time.
The Windows entry point in the example on the companion web site typically just
redirects standard input and output streams from the console entry point, helping
to reduce the amount of code to maintain both types of entry points. Because of
this, the Windows entry point cannot be developed before the console entry point
unless both are developed independently of each other. Thanks to the tool logic
residing in a separate module, no matter how you structure the entry points, you
only need to change the code in one spot to affect how the tool works everywhere. A
single module for the logic also helps with maintenance, versioning, and deployment.

As touched on with the alternative architecture described in this chapter, remoting
can be used as a barrier between all the entry points and the specific tool logic to
convert the architecture into a client and server design. The tool logic can reside
on one development server, and all client machines using the tool can access it
through a Remoted proxy object. Clients would just need the interface definition
the Remoted object implements, and the actual code can stay on the server. This
type of architecture would greatly improve deployment by only requiring a change
to the server code, and all clients would instantly start accessing the latest version.

Not all types of tools would benefit from this architecture, most notably any tool
that intensively accesses the local file system. However, if the server had share
access to each client, the tool could be designed to accommodate file system access
over the network.

The example overviewed in this topic is also available on the Companion Web site;
it shows how to structure an application with this architecture, and even how to
export a COM interface and register with Remoting. Keep in mind that these topics
are covered in much greater depth later in this book, so no time will be spent

75

76

Chapter 8 = Distributed Componential Architecture Design

describing what the code is doing. If you are lost regarding how things are working,
please revisit this chapter later, when you are more comfortable with the technol-
ogy and services used.

CHAPTER 9

SOLUTIONS TO BRIDGE
DoMAIN GAPS

The idea has been to treat legacy systems as a black box and deal with them
at more than arm’s length. All of this has made it possible to make many of
these systems look like they were part of the 21st Century, leaving the tough
stuff—the data and the business rules—untouched. If it ain’t broke, don’t
fix it, right? Well, not exactly. Of course, old systems don’t get better by just
being ignored. They get worse.

Ken Orr

One of the major goals for software engineering in the past decade has been to
build software that promotes abstracted reusability. Because of this, developers
witnessed the emergence of the object-oriented paradigm, which resulted in the
introduction of reusable object-oriented frameworks. An object-oriented frame-
work can be defined as a set of classes that embody an abstract design for solutions
to a collection of related problems in a given problem domain.

The high reusability of frameworks is quite evident to software engineers, and it
has solved many problems related to the goal of improved component reusability.
With the emergence of new disciplines comes new issues and problems that must
be addressed. Where single frameworks were originally used, we are now seeing a
shift towards multiple frameworks that must communicate with each other in a
cohesive fashion. Often there are problems communicating across dissimilar
domain gaps, especially when each framework is being developed by a different

77

78

Chapter 9 = Solutions to Bridge Domain Gaps

development team. The source code to other frameworks is typically unavailable
to developers who are not explicitly involved in its development, which generally
leads to a number of integration issues between frameworks.

In this chapter, I will address the reasons behind the friction existing between multiple
frameworks, and I offer some pragmatic approaches to building a cohesive design,
even when you do not have access to the source code of other frameworks employed in
your application. Throughout this chapter, I will refer to communication problems
between frameworks in different problem domains as compositional friction.

Compositional Friction

There are numerous reasons why compositional friction can exist between two or
more frameworks, and even on a solitary level between classes in a single framework.
Although friction can exist between classes in a single framework, these issues can
be solved through an iterative refactoring process with the availability of source
code. This chapter is directed at eliminating friction between multiple frameworks,
where one framework typically only has access to external frameworks through
their public interfaces, and these interfaces cannot be modified or refactored.

Many software development issues can cause compositional friction, but a few of
the most notable ones include domain coverage, design intentions, framework
gap, entity overlap, and source code access.

Cause: Domain Coverage

The general purpose of a framework is to provide an abstract design for applica-
tions in a particular problem domain. It is important to realize that the framework
does not need to cover the entire problem domain, but rather only a subset of rel-
evant entities in the given problem domain. The amount of domain coverage to
target with a framework is fairly subjective, though, because problem domains are
not generally defined in extensive detail. Determining how much coverage to
employ is up to the solution architect, and iterative refactoring helps to improve
domain coverage.

When composing two frameworks, there are three levels of domain overlap that
can occur, each with different implications and solutions. If no overlap occurs,
there is no risk of integration issues when composing overlapping entities, but
there may be a gap between frameworks that must be managed. If there is a rela-
tively small amount of domain overlap between frameworks, the best solution is
to evolve a few classes in both frameworks to communicate with each other with

Cause: Framework Gap

little to no compositional friction. However, when considerable domain overlap
occurs, there are some important decisions to make. Sometimes it would be more
advantageous to rewrite one or both of the frameworks from scratch when frame-
work reuse is threatened. It can be more problematic to refactor communication
between both frameworks when the expected lifetime of the product is quite long.
If an application using the frameworks will be evolving over a long period of time,
the frameworks must be continuously updated for each consecutive version of the
application. Remember to make your decision based on the problem domain and
the coverage of the framework.

Cause: Design Intentions

A well known design philosophy is that reusable software must be written for reuse
through composition and adaptation. Generally, frameworks are designed to be
reused through adaptation, but not through composition. Designing software
reusability through composition is very important, and there are two composition
directions that can occur. The first direction is parallel composition, which targets
frameworks that exist on the same layer in the application. Parallel is the easiest
composition direction because both frameworks do not rely directly on the ser-
vices each other provides to properly operate. The other composition direction is
perpendicular, which exists in a software application that supports a layered archi-
tecture where frameworks can depend on services provided by another framework
in a different layer. One issue that is independent of the composition direction is
the communication support, which can be either half-duplex (one-way, or sim-
plex) or full-duplex (two-way). Half-duplex communication is fairly easy to
design for, but full-duplex communication can present additional design prob-
lems when composing multiple frameworks.

Cause: Framework Gap

A framework gap occurs when multiple frameworks need to be composed to sat-
isfy requirements, but both frameworks do not completely cover the requirements.
This problem typically occurs because each framework does not have ample
domain coverage, leading to domain gaps or overlaps.

There are a few solutions to this problem, the first one being the use of wrapper
class that encapsulates the existing functionality and extends any missing func-
tionality, also providing a uniform public interface so that clients are unaware of
the internal architecture.

79

80

Chapter 9 = Solutions to Bridge Domain Gaps

An alternative is to develop a software liaison, which is basically an application
that exposes the public interface to clients and handles the communication and
extension of functionality between the frameworks. This approach works great for
situations where source code is inaccessible, or the base frameworks should not be
modified.

Lastly, if source code is available, the cleanest solution is to bridge domain gaps by
providing missing functionality, or remove domain overlaps through refactoring
methods.

Cause: Entity Overlap

When more than one framework presents the same entity in a particular problem
domain, each from a different perspective, the composition of these frameworks
requires that the related entities be composed as well. This problem is known as
entity overlap, and it occurs when the same problem and entities are modeled dif-
ferently between multiple frameworks. Entity overlap is a common problem when
composing multiple frameworks, and the solution can be fairly tricky due to the
cohesive nature of entity classes and their need to sometimes notify the other
frameworks when certain actions occur.

One solution to the problem of entity overlap is the use of multiple inheritance,
but this method presents a problem when properties of an entity are not mutual-
ly exclusive. Multiple inheritance accomplishes the composition objective by han-
dling the conversion between related entities in the frameworks and routing nec-
essary events. It is possible to use this solution in development environments
where source is inaccessible and cannot be modified.

An alternative solution is to use aggregation, where an aggregate class is used to
represent a framework in parts. Each aggregate class is the entity definition for the
application, but this approach requires that source code be available so that all ref-
erences to a particular entity can be changed to point to the new aggregate classes.
A drawback to this solution is that all interfaces for each representation of a cer-
tain entity must exist in the aggregate class, and there is a lot of additional over-
head when using aggregation to bridge domain gaps.

A final solution is through the use of subclassing, where each framework is sub-
classed and each subclass handles the bidirectional communication of updates and
conversion between other subclasses. Additionally, each subclass must override the
operations in the superclass. This solution can also be used in situations where
source code is inaccessible and cannot be modified. The major drawback of this

Cause: Source Code Access

solution is that the represented entity is partitioned across multiple frameworks.
Another improvement to this solution is to use an aggregate class that contains all
the subclasses and facilitates the communication and conversion between parts.

Cause: Legacy Components

There are times when the classes in a framework do not satisfy the problem
domain solution, and the design warrants that a legacy component be used in con-
junction with a framework to fill the gap. This situation can also arise if there is
considerable time and expense invested in a legacy component (such as a game
engine or utility library), and a business decision is made to reuse existing tech-
nology within a new framework (unmanaged and managed interoperability, for
example). Using legacy components can cause severe compositional friction in
your framework unless dealt with accordingly.

One method of removing the composition implications is to modify the frame-
work to reference the legacy component instead of classes within the framework,
though this solution requires access to the source code.

An alternative solution is to employ the adapter pattern and build a class that lies
between the framework and the legacy component, acting as an interpreter so that
both parts can communicate with each other. The latter part of this chapter focus-
es on this method in much greater detail.

Cause: Source Code Access

Quite often, multiple frameworks are developed by multiple teams, and develop-
ment rules regulate that a certain team only has access to their own source code,
and can only access functionality in the other frameworks using the public interfaces
of compiled libraries or assemblies. This constraint is good in that it restricts each
team from having a varying source code version of another team’s framework, but
there is a problem as well. There are times when behavior must be added to anoth-
er framework to allow for communication between the other frameworks.
Without access to source code, each team must send numerous waves of change
requests to the other teams, asking for modifications, and then other issues may arise
when the public interfaces do not satisfy the needs of the team that requested them.

One solution to this problem is the use of wrappers encapsulating an external
framework and attempting to build new functionality on top of the existing
library. This approach has some problems though, such as considerable amounts
of additional code and severe performance penalties. Additionally, if any logic is

81

82

Chapter 9 = Solutions to Bridge Domain Gaps

changed in the base framework, a change request must be sent to the development
team of the framework.

The best solution is to either get the source code or establish a reliable and effec-
tive change request system where requests are dealt with almost immediately, and
have a liaison from your team overseeing the modifications to make sure that
requirements and needs are met correctly.

Relevant Design Patterns

Design patterns provide reusable solutions to commonly encountered program-
ming problems, and there are a few that are applicable to this topic. The facade and
adapter patterns are very beneficial to architectures that suffer from composition-
al friction, and can be employed to reduce the friction between multiple frame-
works when used correctly.

Facade Design Pattern

This design pattern provides a unified high-level interface to a set of interfaces in
a subsystem, thus making the subsystem easier to use. A subsystem can be defined
as a set of classes or libraries that provide a solution to a given problem domain.
A framework can be thought of as a subsystem in the context of this topic. A depic-
tion of an architecture that is tightly coupled is shown in Figure 9.1. The fagade
pattern is depicted in Figure 9.2.

Client Client Client

Figure 9.1 Depiction of tightly coupled architecture.

Client Client

Client

\ /

Facade

Figure 9.2 Depiction of the facade pattern.

Relevant Design Patterns

One benefit of this pattern is that classes in a subsystem are decoupled from the
client interface, causing the architecture to be more portable and maintainable.
Additionally, using the facade pattern reduces component dependencies, which
can dramatically reduce compilation times of large software projects.

The following code shows how to implement the facade pattern in C#:

private class SubSysteml
{
public void DoSomethingSpecific()
{
MessageBox.Show("Hello World #1"
}
}

private class SubSystem?
{
public void DoSomethingSpecific()
{
MessageBox.Show("Hello World #2"
}

)

)

83

Chapter 9 = Solutions to Bridge Domain Gaps

private class SubSystem3

{
public void DoSomethingSpecific()
{
MessageBox.Show("Hello World #3");
}
}

public class Facade

{
private SubSysteml _subSysteml = new SubSysteml();
private SubSystem? _subSystem2 = new SubSystem2();
private SubSystem3 _subSystem3 = new SubSystem3();

public void DoSomething()

{
_subSysteml.DoSomethingSpecific();
_subSystem2.DoSomethingSpecific();
}
public void DoAnotherThing()
{
_subSysteml.DoSomethingSpecific();
_subSystem3.DoSomethingSpecific();
}

}

public class Client

{
public void Run(Facade facade)
{
facade.DoSomething();
facade.DoAnotherThing();
}
}

The fagade pattern is quite useful when building new frameworks, but because this
chapter is mainly addressing cohesion issues between existing frameworks, the
adapter pattern is best suited for this problem.

Relevant Design Patterns

Adapter Design Pattern

This design pattern is similar to the facade pattern, except the adapter pattern
makes two existing interfaces work together instead of defining a new one. In
order to fully understand the adapter pattern, there are some terms that should be
defined. These terms are shown in Table 9.1.

Table 9.1 Adapter Pattern Elements

Name Description

Target The domain-specific interface that the client will use.

Adapter An object that adapts the adaptee interface to the target interface.
Adaptee An interface that needs adaptation to the target interface.

Client The application that collaborates with the target interface.

It is possible to have the adapter class inherit from an adaptee, but doing so can
lead to design problems when adapting to the target interface. A better approach
is to store an instance of the adaptee inside the adapter class and access the
instance explicitly. The adapter pattern is depicted in Figure 9.3.

Target

Client Interface

N

Adaptee

N

Derived Derived

Target Target Adapter

Figure 9.3 Depiction of the adapter pattern.

85

86

Chapter 9 = Solutions to Bridge Domain Gaps

The following code shows how to implement the adapter pattern in C#:

interface Target

{
void DoSomething();
}

class Adaptee
{
public void DoSomethingSpecific()
{
MessageBox.Show("Hello World!");
}
}

class Adapter : Target
{
private Adaptee _adaptee = new Adaptee();

public void DoSomething()
{
_adaptee.DoSomethingSpecific();
}
}

class Client
{
public void Run(Target target)
{
target.DoSomething();
}
}

The adapter pattern is not complicated to implement, but can be a great design
move when you run into issues composing legacy components that do not support
the required interface.

Even though there are a number of ways to reduce compositional friction and
improve component cohesion, it was felt that extended coverage of adapters was
important.

When dealing with unmanaged code (legacy components) that must interface
with managed code, the adapter pattern is utilized often, whether explicitly or

Conclusion

implicitly. If you think about it, exporting a COM interface from a managed appli-
cation can be thought of as an implicit instance of the adapter pattern so that
unmanaged applications can communicate with managed code. On a higher level,
Windows Forms can also be thought of as an object-oriented adapter between any
CLR-compliant language like C# and the traditional procedural controls available
in the Win32 API. Lastly, you can find some adapters present in the .NET Class
Framework itself. The database connection functionality employs adapters to
interface with a variety of database engines. While each database engine is differ-
ent, the base interfaces for dealing with them remain abstract and consistent.

It is important to note that there is increased performance overhead when using
adapters because all methods called in the adaptee must first be called through the
adapter methods. The best approach, disregarding any time, environment, or bud-
get constraints, is to just refactor the code, but this is rarely the case when devel-
oping tools or games in general.

Part V, “Techniques for Legacy Interoperability,” covers interoperability between
managed and unmanaged code, and specific real-world examples of using adapters
are covered.

Conclusion

The introduction of object-oriented frameworks was a huge step forward in the
area of software component reuse, but recently there has been a push towards the
use of multiple frameworks within a single application. In this chapter, I discussed
the issues behind using multiple frameworks, problems that occur from doing so,
and some possible solutions to overcome these problems. Currently, there are
some solutions to reduce compositional friction, such as the adapter pattern and
employing wrapper objects, but these solutions only partially solve the problem
when they too require a considerable amount of implementation effort. The best
approach for framework reusability is to carefully study the problem domain to
find the appropriate domain coverage, and build your frameworks from the
ground up with a loosely coupled and maintainable architecture.

87

This page intentionally left blank

cHAPTER 10

UNIT TESTING
WITH NUNIT

Testing by itself does not improve software quality. Test results are an indi-
cator of quality, but in and of themselves, they don’t improve it. Trying to
improve software quality by increasing the amount of testing is like trying
to lose weight by weighing yourself more often. What you eat before you
step onto the scale determines how much you will weigh, and the software
development techniques you use determine how many errors testing will
find. If you want to lose weight, don’t buy a new scale; change your diet. If
you want to improve your software, don’t test more; develop better.

Steve C. McConnell, “Code Complete”

Testing is an important aspect of any software project, and there are many differ-
ent kinds of tests that can be performed. An important, yet often misunderstood
or ignored method of testing is the unit test. Unit testing is an inexpensive way that
developers can write better code—faster. Large companies tend to spend a lot of
time and resources on testing, yet usually do so near the end of a project, often
meaning the testing is minimized or reduced because of budget and schedule con-
straints. In actuality, testing should be done extremely early in development, as
well as continuously thereafter.

Programmers generally think of testing as a nuisance, because they would rather
be writing code. Unit testing is not a grand quality initiative for large companies;
unit testing is done by programmers for programmers. Many developers write
throwaway code to test functionality, but doing so can introduce some problems
and decrease the credibility of the test cases.

89

90

Chapter 10 = Unit Testing with NUnit

It is important to note that this chapter does not attempt to sell you on the idea of
testing, as it is assumed that you have adopted this excellent practice already, since
you are reading the chapter. Additionally, this chapter will only briefly cover the
basics behind unit testing; it will in no way attempt to cover all the fundamentals
of unit testing. The main focus of this chapter is on performing unit tests with the
NUnit framework and application.

Overview of Unit Testing

Basically, unit testing focuses on a single unit—the class. Each class is tested alone
in an attempt to discover errors in its code. The idea is to test anything in a class
that could conceivably fail. If something in the class is changed, all tests, not just
your own, are run again. If any fail, the programmer immediately goes back, fixes
the problem, and runs the tests again. This process is performed in an iterative
manner until all tests are successful.

After unit testing is complete on a group of modules, they are combined into pro-
gressively more complex groupings, which are also tested. This integration processes
will continue until the entire application has been assembled and tested.

There are two main approaches when performing unit testing, as discussed in
Table 10.1.

Table 10.1 Unit Testing Approaches
Approach Description

Black-Box Approach The black-box approach is the most commonly used method, in which
each class represents an encapsulated object. The black-box approach
is driven by all the preconstruction specifications for each class.

Each item in the specification becomes a test, and several test cases
are developed for it. The tests are focused on whether or not the class
meets the requirements in the specification, rather than the
programmer’s interpretation.

White-Box Approach The white-box approach is based on the method specifications
associated with each class. The white-box approach is generally used
instead of the black-box approach when the complexity of the class is
high. The tester may discover errors or assumptions by looking through
the code that are not generally obvious to a tester using the black-box
approach.

There are quite a few benefits to unit testing, but some of the most notable ones
are discussed in Table 10.2.

Introducing NUnit

Table 10.2 Unit Testing Benefits

Benefit Description

Requires the programmer to slow down and think ~ When refactoring or adding a new
feature, testing forces you to think about
what the code is supposed to do. You end
up thinking about how the public APl is
accessed and what the outcome should
be, ending up with a clean design that
does exactly what you expect it to do.

Protects you against other programmers Sometimes bugs only manifest themselves
in rare situations. If another programmer
changes a class but does not run the new
code with all the problematic situations,
bugs may slip through. If a unit test exists
to test that particular situation, then the
bug will be found when the unit tests are
run again after changing the code.

Forces you to design better code Testing forces you to make your code easy
to test, relying less on the usage of
singletons and global variables. Tightly
coupled design is often difficult to test and
generally requires complex initialization.
Testing generally enforces loosely coupled
design to make testing easier.

Promotes refactoring without breaking code Testing allows you to refactor at any time
without the fear of breaking your code, so
that the design of your program can
improve over numerous iterations. Each
time the code is changed, the tests are
run again to ensure that all the existing
modules remain stable.

Introducing NUnit

In order to properly perform unit testing, a framework must be employed to facil-
itate the testing. This is where NUnit comes into play. NUnit is a unit testing tool
for the Microsoft .NET Framework. It targets test-driven development with all NET
languages, including C#, Visual Basic .NET, J#, and C++/CLI.

NUnit was developed by Jim Newkirk, Alexei Vorontsov, Michael Two, and Charlie
Pool, based on the original NUnit version by Philip Craig. NUnit is very similar to
the eXtreme Programming test frameworks (xUnits) with a couple of significant
differences.

92

Chapter 10 = Unit Testing with NUnit

Just like .NET, the NUnit framework is language-independent, in the sense that
any CLR-compliant language may be used to write tests and NUnit will execute
them just fine.

Attributes are a wonderful feature of .NET, and are used by NUnit to identity tests
and test fixtures, without requiring that tests inherit from classes within a testing
framework. Using attributes to define tests allows code to remain clean and fairly
independent of any test support files.

With the creation of tests, you perform the testing by launching either the GUI or
console version of the NUnit application, and target the assemblies that you wish
to test. NUnit uses reflection to interrogate the assemblies for tests and then exe-
cutes them one at a time. All tests have the ability to execute setup and teardown
methods, allowing for each test to be independent of the others.

Creating an NUnit Project

There are a few ways you can develop your unit tests. Some developers prefer to
place test functions directly inside the source code of the project that is being test-
ed. If this is something you wish to do, be sure to use the #if and #endif pre-
processor tags to strip unit tests from release mode.

Other developers like to place tests inside separate files within the project being
tested. Again, don’t forget to strip these tests out in release mode.

The most common approach, unless you're testing internal objects, is to build your
tests in external assemblies. The benefit to this approach is that all test code is
decoupled from the project itself.

Use whichever method you are comfortable with. The example for this chapter has
the test code in a separate assembly. Start by creating a new class library project for
your unit test assembly.

The next thing to do is reference nunit.framework.dll in your unit test assembly. If
you installed NUnit using the typical approach, you should have all the NUnit
assemblies installed into the Global Assembly Cache (GAC). If not, you can press
the Browse button and manually navigate to the assembly in the installation fold-
er. The default installation path for the NUnit framework is C:\Program
Files\NUnit 2.2\bin.

Figure 10.1 shows the Add Reference dialog with the nunit.framework assembly
showing up in the GAC.

Attribute Overview

Add Reference 2=l
NET |COM I Projects I Brawsel REcentI

Component Mame Version |2l
MSDDSP 7.0.3300.0
nonamespace-assembly 2.2.0.0 \
notestfixtures-assembly 2.2.0.0 N
nunit.core 2.2.0.0 \

\

nunit.extensions 2.2.0.0
nunit, framework u
nunit.mocks 1.0.0.0 \

nunit. tests 2.2.0.0 \
nunit, uikit 2.20.0 W
nunit,util 2,200 \
Office 7.0.3300.0 \—I
Sand.Services.CodeXchange. Client 1.0.1958...
stdole 7.0.3300.0
stdole 7.0.3300.0
stdole 7.0.3300.0 ¥

4| | »

Figure 10.1

o | canl | Add Reference dialog for the

NUnit framework.

After the NUnit framework reference has been added to your unit test project, you
should have something similar to Figure 10.2. Also be aware that Visual Studio
automatically adds System.Data and System.Xm1, and they have been removed from
the references list because they are not needed for this example.

The SimpleLibrary project contains the object we

Solution Explorer - SimpleLibrary.UnitTesting ~ & X

EEIaE: want to test, and the SimpleLibrary.UnitTesting con-
5’3“3%.535:?“”“”‘5 (2pretect) tains the unit tests that NUnit will execute against

r References . .
3 system SimpleLibrary.
#] AssemblyInfo.cs

: 4 simpleClass.cs
C:l<mpictbrory nitTesting

| References

<3 nunit. framework.
=+ SimpleLibrary
«3 System

: #] assemblyInfo.cs H
Lo] UnitTests.cs Flgur:e 10.2)
Overview of the example project structure.

Attribute Overview

Traditionally, NUnit provided test declaration using inheritance, but this design
posed some problems with languages like C#, where multiple inheritance is not sup-
ported, and the only way to use the test framework is with complex inheritance hier-
archies. The latest version of NUnit now offers a method of declaring tests with
attributes, which is basically a .NET feature that can inject meta-data into an object.

Attributes do not reflect the code being run, but attributes do provide extra infor-
mation about a particular object. The NUnit runner scans all the targeted assemblies
for classes and methods that contain certain attributes and acts on them accordingly.

93

94

Chapter 10 = Unit Testing with NUnit

[TestFixture]

A class containing the methods that make up the testing performed on a class is
marked with the [TestFixture] attribute. A common naming convention used is to
take the name of the class you want to test, and append Tests on to the end. For
example, if we are testing SimpleClass, it is common to name our test fixture
SimpleClassTests. These will be the names used in the provided examples.

The following code snippet shows how to use this attribute:

[TestFixture]

public class SimpleClassTests
{

}

Note

Classes marked with the [TestFixture] attribute must have a public default constructor or no
constructors at all. Without any constructors, a public default constructor will be created implicitly.

[Test]

A method in a test fixture marked with the [Test] attribute will be executed when
the test fixture is tested with NUnit.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{
[Test]
public void TestSomething()
{
}

Note

It is important that a [Test] method be marked public, return void, and not take in any parame-
ters.

[SetUp]

A method in a [TestFixture] marked with the [SetUp] attribute will be executed
immediately before each test is run.

Attribute Overview

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{
[SetUp]
public void SetUp()
{
// Do some initialization for the tests
}

Note

It is important that a [SetUp] method be marked public, return void, and not take in any parame-
ters.

[TearDown]

A method in a [TestFixture] marked with the [TearDown] attribute will be executed
immediately after each test is run.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{
[TearDown]
public void TearDown()
{
// Do some cleanup for the tests
}

Note

It is important that a [TearDown] method be marked public, return void, and not take in any para-
meters.

[Ignore]

There may be times when you want to temporarily disable a test or test fixture
from being run, and without commenting out the code for it so that you are still
reminded of the exemption within NUnit. Any method or class marked with either
the [Test] or [TestFixture] attribute can be marked with the [Ignore] attribute.

95

96

Chapter 10 = Unit Testing with NUnit

This attribute causes the test or test fixture to be exempt from testing. This attribute
must accept a string parameter describing why the test or test fixture is ignored.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{
[Test]
[Ignore("Broken functionality at the moment, so testing is pointless")]
public void TestSomething()
{
}
}

[ExpectedException]

There may be situations where it is expected that an exception should be thrown,
and this attribute exists to avoid the need for an ugly try-catch block. When a test
is marked with the [ExpectedException] attribute and the expected exception that
is specified in this attribute is thrown, the test is still successful. The only way a
thrown exception will cause this test to fail is if the exception is not the same type
specified using this attribute. Also keep in mind that multiple [ExpectedException]
attributes can be specified if more than one expected exception should be ignored.

The following code snippet shows how to use this attribute:

[TestFixture]

public class SimpleClassTests

{
[Test]
[ExpectedException(typeof(InterfaceDesignerException))]
public void TestSomething()
{
}

Caution

You must be very specific when stating the expected exception since NUnit is not aware of excep-
tion inheritance. If the exception thrown is derived from InterfaceDesignerException, the test
would fail. The expected exception stated must be identical to the exception that will be thrown.

Attribute Overview

[Explicit]

If a test or a test fixture is marked with the [Explicit] attribute, the only way it will
run is when it has been explicitly selected in the GUI to run, or passed to the com-
mand line version.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{
[Test, Explicit]
public void ExplicitTest()
{
}
}

[TestFixture, Explicit]
pubTic class ExplicitTests
{

}

Note

If NUnit encounters an explicit test, it will treat the test as if it were marked with the [Ignore]
attribute.

[Category]

There may be times when you want to categorize or group related tests, especially
when working with a project of reasonable size. The [Category] attribute can be
used to specify a category name for a test or test fixture to group it with other tests
or test fixtures sporting the same category name.

When a specific category is selected to run, only tests or test fixtures belonging to
the selected category are run.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{
[Test, Category("ProcessorIntensive")]
public void TestLongRunningProcess()
{
}

97

98

Chapter 10 = Unit Testing with NUnit

Note

When a specific category is selected to run, only tests or test fixtures belonging to the selected
category are run.

Expected Outcome Assertion

The Assert class is used within test methods to verify known values and conditions.
For example, Assert.AreEqual () can be used after running a particular test to con-
firm that a property has a specific value.

Following are the static member methods for the Assert class and an overview of
what each one does:

Assert.AreEqual()

This comparison method tests for equality, and is perhaps the best assertion to use
because both the expected and actual values are reported. Also, the overloaded sig-
natures allow for equality comparison between equal values of varying numeric
types. This allows for assertions like the following to succeed:

Assert.AreEqual(7, 7.0);
The following are all the method signatures available for this method:

Assert.AreEqual(int expected, int actual);

Assert.AreEqual(int expected, int actual, string message);

Assert.AreEqual(int expected, int actual, string message, object[] parameters);

Assert.AreEqual(decimal expected, decimal actual);

Assert.AreEqual(decimal expected, decimal actual, string message);

Assert.AreEqual(decimal expected, decimal actual, string message, object[] parameters);

Assert.AreEqual(float expected, float actual, float tolerance);

Assert.AreEqual(float expected, float actual, float tolerance, string message);

Assert.AreEqual(float expected, float actual, float tolerance, string message,
object[] parameters);

Assert.AreEqual(double expected, double actual, double tolerance);

Assert.AreEqual(double expected, double actual, double tolerance, string message);

Assert.AreEqual(double expected, double actual, double tolerance, string message,
object[] parameters);

Assert.AreEqual(object expected, object actual);

Assert.AreEqual(object expected, object actual, string message);

Assert.AreEqual(object expected, object actual, string message, object[] parameters);

Assert.AreSame(object expected, object actual);

Assert.AreSame(object expected, object actual, string message);

Assert.AreSame(object expected, object actual, string message, object[] parameters);

Expected Outcome Assertion

The following code snippet shows how to use this comparison method:

[TestFixture]
public class SimpleClassTests
{
[Test]
public void TestSomething()
{
string testData = "Hello World";
Assert.AreEqual("Hello World", testData", "The strings do not match!");

}

Assert.AreSame()

This comparison method tests that same objects are referenced by both arguments.

The following are all the method signatures available for this method:

Assert.AreSame(object expected, object actual);
Assert.AreSame(object expected, object actual, string message);
Assert.AreSame(object expected, object actual, string message, object[] parameters);

The following code snippet shows how to use this comparison method:

[TestFixture]
public cTass SimpleClassTests
{
[Test]
public void TestSomething()
{
object objectl = this;
object object? = this;
Assert.AreSame(objectl, object2, "The objects do not match!");

}

Assert.IsTrue()
This condition method tests that the condition parameter evaluates to true.
The following are all the method signatures available for this method:

Assert.IsTrue(bool condition);
Assert.IsTrue(bool condition, string message);
Assert.IsTrue(bool condition, string message, object[] parameters);

99

100 Chapter 10 = Unit Testing with NUnit

The following code snippet shows how to use this comparison method:

[TestFixture]
public class SimpleClassTests
{
[Test]
public void TestSomething()
{
bool testData = true;
Assert.IsTrue(testData, "testData is false!");

}

Assert.IsFalse()

This condition method tests that the condition parameter evaluates to false.
The following are all the method signatures available for this method:

Assert.IsFalse(bool condition);
Assert.IsFalse(bool condition, string message);
Assert.IsFalse(bool condition, string message, object[] parameters);

The following code snippet shows how to use this comparison method:

[TestFixture]
public class SimpleClassTests
{
[Test]
public void TestSomething()
{
bool testData = false;
Assert.IsFalse(testData, "testData is true!");

}

Assert.IsNull()
This condition method tests that the condition parameter evaluates to null.
The following are all the method signatures available for this method:

Assert.IsNull(object anObject);
Assert.IsNull(object anObject, string message);
Assert.IsNull(object anObject, string message, object[] parameters);

Expected Outcome Assertion

The following code snippet shows how to use this comparison method:

[TestFixture]
public class SimpleClassTests
{
[Test]
public void TestSomething()
{
object anObject = null;
Assert.IsNull(anObject, "anObject is not null!");

}

Assert.IsNotNull()

This condition method tests that the condition parameter does not evaluate to null.
The following are all the method signatures available for this method:

Assert.IsNotNull(object anObject);
Assert.IsNotNull(object anObject, string message);
Assert.IsNotNull(object anObject, string message, object[] parameters);

The following code snippet shows how to use this comparison method:

[TestFixture]
public cTass SimpleClassTests
{
[Test]
public void TestSomething()
{
object anObject = null;
Assert.IsNotNull(anObject, "anObject is null!l");

}

Assert.Fail()
This utility method allows you to generate test failure exceptions, often used when
performing project-specific assertions.

The following are all the method signatures available for this method:

Assert.Fail()
Assert.Fail(string message)
Assert.Fail(string message, object[] parameters)

101

102

Chapter 10 = Unit Testing with NUnit

The following code snippet shows how to use this utility method:

[TestFixture]
public class SimpleClassTests
{
[Test]
public void TestSomething()
{
Assert.Fail("I was explicitly thrown!");
}
}

Assert.Ignore()

This utility methods allows you to ignore a particular test during runtime, but
should be used sparingly. A better approach is to use the [Category] attribute and
run the test groups applicable at the time.

The following are all the method signatures available for this method:

Assert.Ignore()
Assert.Ignore(string message)
Assert.Ignore(string message, object[] parameters)

The following code snippet shows how to use this utility method:

[TestFixture]
public class SimpleClassTests
{
[Test]
public void TestSomething()
{
Assert.Fail("I was explicitly thrown!");
}

A Simple Example

In order to perform testing, we obviously need a class to test against. Defined
below is a simple class we can use for unit testing. As described by its name, the
class is extremely simplistic, so I will just show the code for it and move right on
to the creation of a test fixture.

using System;

namespace Simplelibrary

}

A Simple Example

public class SimpleClass

{

private string _simpleProperty = "";

public string SimpleProperty

{

get { return _simpleProperty; }

set { _simpleProperty = value; }
}
public void BrokenMethod()
{

throw new ApplicationException("I am a faulty method! Fix me!");
}
public void GoodMethod()
{

throw new NotImplementedException();
}
public static int AddTwoNumbers(int Teft, int right)
{

return left - right;

}

Now that we have a simple class to test against, we need to create the test fixture
that NUnit will use to coordinate the tests:

using System;
using NUnit.Framework;

namespace SimplelLibrary.UnitTesting

{

[TestFixture]
public class ExampleFixture

private SimplelLibrary.SimpleClass _simpleClass = null;

[SetUp]
public void SetUp()

103

104 Chapter 10 = Unit Testing with NUnit

{
_simpleClass = new SimplelLibrary.SimpleClass();
}

[TearDown]
public void TearDown()
{
_simpleClass = null;
}
[Test]

public void AddTwoNumbersTest()

{
int result = Simplelibrary.SimpleClass.AddTwoNumbers(5, 7);
Assert.AreEqual(12, result);

}

[Test]

public void SimplePropertyTest()
{

Assert.AreEqual("", _simpleClass.SimpleProperty);
_simpleClass.SimpleProperty = "This is a test";
Assert.AreEqual("This is a test", _simpleClass.SimpleProperty);

}

[Test]
public void ExplicitFailureTest()
{

_simpleClass.BrokenMethod();
}

[Test, Ignore("This is a deprecated test")]
public void DeprecatedTest()
{
_simpleClass.GoodMethod();
}

[Test, ExpectedException(typeof(NotImplementedException))]
public void GoodMethodTest()
{
_simpleClass.GoodMethod();
}

Running Tests

Notice that the above class has been marked with the [TestFixture] attribute. This
is required so that NUnit can identify the test fixtures to run by searching all classes
within the assembly that have this attribute type.

Running Tests

After the test fixture is created, it is time to begin testing. As mentioned previous-
ly, there are two interfaces for NUnit: console and GUI. This chapter will cover the
GUI version. For now, we will explicitly launch the NUnit application, but later on,
an alternative method is discussed that shows how to attach NUnit to the start
event in Visual Studio. There is also an open source project called TestDriven.NET
that offers enhanced .NET unit testing functionality, including integration sup-
port between Visual Studio and various unit testing frameworks like NUnit; defi-
nitely worth looking at.

Start by launching the NUnit GUI version, and you should be presented with a
dialog similar to the one shown in Figure 10.3.

i

File Tools Help
Tests |Categcries|

Run Siop |

Ermors and Failures |Tests Mot Run I Console.Emor | Console Out

H
-
4 »
e =
L :
Unloaded Test Cases : 0 |
nioa = 525 4

Figure 10.3 Screenshot of main NUnit interface.

You will be prompted to save the NUnit project somewhere, and it is common to
place the .nunit file in the same directory as the project file for the assembly being
tested. After the project file is saved, you need to add the assemblies that contain
your test fixtures. You can do this by selecting Project>Add Assembly from the
main menu.

Figure 10.4 shows the NUnit interface after the example test fixture for this chap-
ter has been added to it.

105

106

Chapter 10 = Unit Testing with NUnit

5in|pleLihrarv.Un'rtTesting.dll - NUnit i =101 =]
File View Project Tools Help
Tests |Categories
- Run Stop. | CAD and Settings'adminihy
: - - D ChronoStorm\GETDBook\CD Content
=~ SimpleLibrary
E| UnitTesting |
B~ ExampleFixture ;
O AddTwoNumbersTest Errors and Failures |Te5ts Not Run | Console Emor | Console Out
DeprecatedTest ;I
ExplicitFailureTest
GoodMethodTest
SimplePropertyTest =
] — _’l_I
o) 21 L ’
Ready Test Cases : 5 | | | y

Figure 10.4 Screenshot of NUnit after adding a target assembly.

NUnit displays all the test assemblies and fixtures in a hierarchical fashion, and it
executes tests in a similar way. Clicking the Run button will begin the tests, and all
the tests below the currently selected node in the assembly tree will execute. This
allows you to target all, some, or specific tests to run. You can group tests into cat-
egories as well.

Figure 10.5 shows the NUnit interface after the tests have been executed. You will
notice that the output from errors and ignored tests appear in the tab group on the
right, whereas successful tests are not as verbose. Successful tests appear green in
the assembly tree, errors appear red, and ignored tests appear yellow.

Your assemblies may require a configuration file to function correctly, in which case
it is important to note that NUnit creates a new AppDomain for each test assembly,
so the configuration file must reside in the same directory as the assembly.

B2 simpleLibrary.UnitTesting.dll - NUnit b o =] £
File View Project Tools Help
Tests |Categones|

E|. C\Documents and Settings\admin\My Doc Bun I Stop | SimpleLibrary UnitTesting.dll
E. SimpleLibrary
E|. UnitTesting

=] . ExampleFixture -

@ AddTwoNumbersTest Emors and Failures |Te5ts Not Run | Console Eror | Console Out

SimpleLibrary.UnitTesting. ExampleFixture. AddTwoNumber sTed
expected:<12x

DeprecatedTest

ExplicitFailureTest but was:<-2»
GoodMethodTest SimpleLibrary.UnitTesting. ExampleFixture.ExplicitFailure
SimpleProperyTest =
| — ;IJ
-] o
|Ccmp\e¢ed Test Cases : 5 Tests Run : 4 Failures : 2 Time : 0.09375 4
i

Figure 10.5 Screenshot of NUnit after running the tests.

Debugging with Visual Studio

For example, Simplelibrary.UnitTests.d11 and SimpleLibrary.UnitTests.d11.config
should be paired together in the same folder.

Debugging with Visual Studio

There may be times when you wish to debug the code while performing unit tests,
and sometimes you may even want to debug the unit tests themselves. NUnit and
Visual Studio both execute code in different AppDomains, so any breakpoints you set
in the Visual Studio IDE will not fire when NUnit is run. There is a trick you can
use to accomplish this, though. Visual Studio offers the ability to attach external
programs to its debugging features when assemblies are consumed.

Open the property pages for the assembly you wish to consume externally, and
navigate to the Debug page in the project properties. You should be presented with
a dialog similar to the one shown in Figure 10.6.

5impIeLibrarv_Un'rtTesting*] - X

Application
Configuration: |Active (Debug) 'l Platform: |Acﬁve {Any CPU) 'I

Build

Start Action

Build Events @ Start project

Debug™ " Start external program: | _I
Settings " Start browser with URL: |

Resources Start Options

e Pattis Command line arguments: |

Sigring Working directory: | _I

™ Use remote machine |
Code Analysis

Enable Debuggers

™ Enable unmanaged code debugging
I Enable SQL Server debugging
¥ Enable the Visual Studio hosting process

Figure 10.6 Debugging property page.

Under Start Action, select the Start external program option, and set the field value
to the file system path of either the GUI or command line executable of NUnit.

You must specify the assemblies to load in the command line arguments; otherwise,
NUnit will launch with the last loaded project if there is one. Each assembly path
should be separated by a space, and be sure to use double quotes around the path
if spaces exist in it. You can alter the command line arguments to automatically
start running your tests after NUnit opens. If you prefix the arguments line with

107

108 Chapter 10 = Unit Testing with NUnit

/run and a space before the list of assemblies, NUnit will launch and immediately
begin processing. Figure 10.7 shows the property page after it has been configured
to be consumed externally.

ﬁmplelibrary.UnitTEting] - X

Application
Configuration: |.-'-\cnve{Debug) | Platform: IAchve (Any CPU) 'I

Build

Start Action
Build Events

" Start project
Debug % Start external program: |C:\.Program Files\MUnit 2, 2\pinnunit-gui, exe _l
Settings " Start browser with URL: I
Resources Start Options
Reference Paths Command line arguments: Ifrun "C:'Full_Path_To_SimpleLibrary. UnitTesting.dl™
S Working directory: I _I

™ Use remote machine I
Code Analysis

Enable Debuggers

™ Enable unmanaged code debugging
™ Enable 5QL Server debugging
¥ Enable the Visual Studio hosting process

Figure 10.7 Debugging property page configured.

At this point, you can have the test’s assembly selected as the startup project and run
everything. If configured correctly, NUnit will fire up with your assembly loaded.

Conclusion

Unit testing is a worthwhile habit to pick up that is extremely beneficial on both a
professional and personal software development level. This chapter covered a fair
amount of unit testing and performing unit tests on the .NET platform, but the
concept of unit testing is much more complex than what I have described here.
There are many are topics like regression tests, integration tests, mock objects, and
data-driven testing, which are beyond the scope of the information presented here.

Links to additional information and resources are listed below.
® http://www.testdriven.net
® http://www.nunit.org
® http://www.csunit.org (NUnit alternative)

® http://www.mockobjects.com

http://www.testdriven.net
http://www.nunit.org
http://www.csunit.org
http://www.mockobjects.com

Conclusion

® http://www.sourceforge.net/projects/dotnetmock/

® http://www.xprogramming.com

In addition to NUnit, there are a couple of other unit testing frameworks available
for C#.NET, such as csUnit. Some versions of Visual Studio 2005 also have a unit
testing framework built in, but this chapter was meant to focus on a solution that
does not require a particular IDE version to work.

Use whichever framework you feel comfortable with; I chose NUnit because it
works great for all my projects and is widely accepted throughout the .NET devel-
opment community. I have used csUnit for other projects when its use is a require-
ment for the project, and transitioning between csUnit and NUnit is extremely
easy. The attribute names are all the same, with the exception of varying support
for FixtureSetUp and FixtureTearDown, and a comparable Assert class exists in both
frameworks. There are a couple of naming differences between the Assert classes
in both frameworks, but they are minor. The biggest difference is that you will
need to reference the correct framework for csUnit and remove the reference to the
NUnit framework.

Note

You can download NUnit at http://www.nunit.org.

109

http://www.sourceforge.net/projects/dotnetmock/
http://www.xprogramming.com
http://www.nunit.org

This page intentionally left blank

CcHAPTER 11

CobE DOCUMENTATION
wiTH NDoc AND XML

Documentation is like sex; when it’s good, it’s very, very good, and when it’s
bad, it’s better than nothing.

Dick Brandon

An important deliverable for most projects, or as simply a good thing to do, is the
creation and updating of source code documentation. Properly documented source
code can improve the overall maintainability of your project, and shorten the
amount of time needed for a new developer, or an existing developer for that matter,
to familiarize herself with the source code. The purpose of source code documen-
tation is so a developer can understand a particular component without actually
looking at the source code.

Thankfully, Visual Studio .NET has introduced a wonderful build tool for gener-
ating source code documentation, and it is built right into the IDE. A properly
configured project can be set up to export documentation expressed as XML for
the source code each time the build process is run. This exported documentation
can be plugged into an excellent open source utility called NDoc, which can take
a .NET assembly and the exported XML and build documentation in a variety of
formats. NDoc supports pluggable exporters, including the MSDN-style HTML
Help (.chm), the Visual Studio .NET format (HTML Help 2), and the MSDN
online-style web pages. This tool is very popular within the NET community and
is the most commonly used documentation generator for .NET.

111

112

Chapter 11 = Code Documentation with NDoc and XML

Note

NDoc can be downloaded at http://ndoc.sourceforge.net/.

Additionally, when source code is commented properly in the standard XML format,
Visual Studio registers the documentation and makes it available to IntelliSense.
Another great feature is that when you reference a .NET assembly which has com-
menting enabled, the generated XML comment file is copied locally, along with
the reference assembly, to make IntelliSense information available across multiple
projects.

This chapter shows how to properly configure a .NET project for code commenting,
and how to generate MSDN-style documentation using the XML documentation
file and standardized commenting techniques.

Configuring the Project

As discussed earlier, the first step to generating documentation for your source
code is configuring your project to export an XML documentation file. This file
will be used later by NDoc to produce our documentation files.

Start by bringing up the project properties window; the easiest way to do this is by
right-clicking on your project in the solution explorer and selecting Properties.
After you navigate to the Build tab, you should see the dialog shown in Figure 11.1.

Output
Output path: Ih\n\Dehug'\ Browse...
¥ %ML documentation file: Ib\n\,DEbug\,l\lDucExamp\E.xml

™| Redister for COM interop

Generate serialization assembly: Auto i

Advanced...

Figure 11.1 Build configuration properties for a project.

You will notice that there is a property called XML documentation file under the
Output property group; that is the path that must be set for the documentation
file to be generated at. This path is relative to the project directory, and standards
suggest that the file name match the name of the assembly. For example,
NDocExample.dll should have an XML documentation file named NDocExample.xml.

http://ndoc.sourceforge.net/

Configuring the Project

Once a valid file path is specified, when the project is compiled, an XML file will
be generated that contains all the XML comment tags that were embedded in the
source code.

You may have some projects that will be compiled from the command line, and the
way to generate the XML documentation file in such a situation is by using the /doc
flag.

csc /doc:NDocExample.xml NDocExample.cs

In either situation, command line or through an IDE, the /doc compiler switch will
be ignored in a compilation that uses the /incremental build switch. Therefore, you
should use the /incremental- switch to disable the incremental build and ensure
that your XML documentation file remains up-to-date.

After your project is configured to output an XML documentation file, any com-
ments that are suggested to be included will not prevent compilation, assuming
you do not have warnings set to errors, but will instead show up as a warning in
the task list. You can simply double-click on the warning in the task list to jump to
the location where a comment should be added, much as any other error or warn-
ing can be navigated to.

Figure 11.2 shows the source code location where the comment should be inserted.

public MainForm()

|Missing %ML comment for publicly visible type or member 'NDu:ucExampIe.MainFu:urm.MainFormD'|
'/ Reguired for Windows Form Designer support
InitializeComponent () :

Figure 11.2 Example of a source code location that should be commented.

Figure 11.3 shows a comment missing from the constructor of Mainform, and sug-
gests that it be added for standards compliance.

An extremely useful feature that improves documentation productivity is a macro
that inserts basic commenting tags for a particular method or class. Simply place
the text insertion pointer on the line above the method or class header in question
and press the / (forward slash) key three times. A summary tag block is inserted,
along with all the parameter tags for the method, if applicable. Additional tags can
be added to the basic blocks that were inserted, but they have to be added manually.

113

114

Chapter 11 = Code Documentation with NDoc and XML

A
@ 0Errars || 1\ 1Warning || (i) 0 Messages
Description File Line Project

ML comment for publicy visible type or member |MainForm.cs |16 MNDocExample

‘MDocExample. MainForm. MainForm{)'

Figure 11.3 Missing comment warning in the Visual Studio C#.NET task list.

Supported XML Markup

There are quite a few supported XML tags and tag attributes that can be used for
different purposes when documenting your code; those tags are described in Table
11.1, along with instructions for when they should be used.

Keep in mind that in order to generate correct XML, the compiler must be given
correct documentation comments. Additionally, the compiler will generate a
warning and embed an error message in the documentation file if it is given XML
that is not well-formed. By well-formed XML, I mean XML that follows the rules
listed in the W3C Recommendation for XML 1.0.

A list of the standard tags available for inline documentation are presented in
Table 11.1.

The commenting structure is fairly loose and flexible, but you will notice that any
suggested comments to include will appear as warnings in your task list now that
your project is configured for commenting.

Keep in mind that since the compiler recognizes /// as a comment line when parsing
source code for embedded XML, the following documentation will be rejected by
the compiler:

/1] <summary>

/11

/1 </summary>

Public void FooBar() {}

Obviously, all documentation comments must be associated with a valid code con-
struct, otherwise they will be ignored. Valid code constructs are a class, struct,
enum, property, field, method, delegate, indexer, or event.

Note

Namespaces are not considered code constructs because they are not limited to any one assembly,
so they cannot be considered a member of any one particular assembly.

Supported XML Markup 115

Table 11.1 List of Standard Tags

Tag Description

<c> This tag is used to specify that a certain group of words should be formatted as
text.

<code> This tag is used to specify multiple lines of code in a block of text. In order to
embed XML source, you must specify the tag attribute escaped="true"” on the
code tag so that the documentation compiler does not strip out the XML sample.

<example> This tag is used to specify how to use a particular method or type. Typically, the

<exception>

<include>
<list>
<item>
<newpara>

<param>

<paramref>

<permission>

<remarks>

<returns>

<see>
<seealso>
<summary>

<value>

code tag is also used with this tag to give implementation details.
This tag is used to specify the exceptions that a particular class can throw.

This tag is used to refer to comments in an external file, avoiding the need to
embed other comments in your source code.

This tag is used to define a heading row of either a table or a definition list. Each
item in the list is specified with an <item> tag, and a list or table can have as
many <item> tags as desired.

This tag is used to define an item in a table or a definition list.
This tag is used inside text to allow for formatted structuring.
This tag is used to specify a parameter for a method declaration.

This tag allows you to specify that a particular word is a parameter so that it can
be formatted distinctly.

This tag allows you to specify the security access to a member.

This tag allows you to specify overview information about a class or type. You can
also use the summary tag to describe a member for a type.

This tag is used to describe the return value for a method declaration.

This tag allows you to specify a link to appear within text. You can also use the
<seealso> tag to place text that you want to appear in the See Also section.

This tag allows you to place text that you want to appear in the See Also section.
You can use the <see> tag to specify a link to appear within text.

This tag should be used to describe a member for a type. You can also use the
<remarks> tag to list information about the type itself.

This tag is used to describe a property and is suggested for use on all properties.
You will notice that the auto commenting macro for properties only inserts the
summary tag, so you will have to add this tag manually to all your properties.

Some documentation tags are further defined through the use of XML attributes.
The tag attributes used by inline documentation are presented in Table 11.2.

116 Chapter 11 =

Code Documentation with NDoc and XML

Table 11.2 List of Standard Tag Attributes

Tag Attribute

Description

<cref>

<hame>

This attribute can be attached to any tag to provide a reference to a code
element. It is important to note that the compiler will verify that this code
element exists, and will issue a warning if the verification fails. The compiler
also respects any using statements when looking for a type described in
this attribute.

This attribute describes the name of a parameter in a <param> or
<paramref> tag.

Commenting Example

In order to illustrate the entire process of documenting source code, we will define

and discuss a simple example in a linear fashion.

We will start by defining a simple method called SaveApplicationSettings that will
accept a string parameter and not return anything. This method won’t do anything
in terms of functionality, but it will show how to properly document a code con-

struct.

/1] <summary>

/11 Saves the application settings to a text file named by
/1] the fileName property, and saved in isolated storage.

/1] </summary>

/// <param name="fileName">
/// The name of the file to store the application settings in.

/1] </param>
/1] <example>

/// The following code shows how to properly call this method.

/1] <code>

/1] SaveApplicationSettings("MyApplication.xml");

/11 </code>
/1] </example>

/1] <permission cref="System.Security.PermissionSet">
/// This method can be accessed by everyone

/1] </permission>

public void SaveApplicationSettings(string fileName)

{

MessageBox.Show("This is where the settings would actually be saved");

Generating the Documentation

As you can see in the above code example, we have documented the source code
for the SaveApplicationSettings method, and now that we have done so, it is avail-
able for IntelliSense. Now whenever you start typing out the name of the method,
IntelliSense will fire up and give you information about the method and the para-
meters it expects. This is illustrated in Figure 11.4.

private wvoid ClickMeButton Click({object sender, System.EventArgs e)

SavelpplicationSettings [l

} woid MainForm. 5aveApplicationSettings (string fileName)
fileName:
The name of the file to store the application settings in.

Figure 11.4 Example of on-the-fly IntelliSense documentation.

Aside from on-the-fly IntelliSense, you can also mouse over a documented method
or type and see the documentation overview for it. This is depicted in Figure 11.5.

private wvoid ClickMeButton Click(cbject sender, System.Eventhrgs &)

SavelpplicationSettings ("MylApplication.xml"™) :

H void MainForm. SaveApplicationSettings (string fileMame)
Saves the application settings to a text file named by the fileMame property, and saved in isolated storage.

Figure 11.5 Example of IntelliSense type overview.

Generating the Documentation

IntelliSense information is a handy tool, but using XML documentation for
IntelliSense alone is a waste compared to the wonderful documentation that can
be generated from the XML documentation file. There are two main ways to gen-
erate your documentation, but the NDoc approach will be the evangelized method
in this chapter.

The first method, and the one this chapter will not cover, is the built-in docu-
mentation tool in Visual Studio .NET. Under the Tools menu is an option titled
Build Comment Web Pages..., which will produce help files in the Visual Studio NET

117

118

Chapter 11 = Code Documentation with NDoc and XML

format. While this method works and is convenient because of the IDE integration,
NDoc produces much better documentation in a variety of formats.

For starters, launch the NDoc application and select the New from Visual Studio
Solution option from the toolbar at the top of the window, as shown in Figure
11.6. At this stage, we must let NDoc know which assemblies have commenting
enabled and should have corresponding documentation generated for them. This
step could be done manually, although referencing the assemblies automatically
from your project solution is much easier and faster.

RIS

Selectiew from Visual Studio Snlutin:uni Figure 11.6 ,
. ——— | Toolbar option to import assemblies.

Selecting the toolbar option should bring up a dialog that asks you to select the
solution configuration of the project to use. I typically use debug mode, but it gen-
erally doesn’t matter when you stick with default solution configurations. This
dialog should look like the one shown in Figure 11.7.

Solution NDocExample i x|

Select a solution configuration:
Release

oK

Cancel Figure 11.7
Dialog asking to select the solution

configuration to use.

After the appropriate solution configuration to use has been selected, the NDoc
window should populate with all the referenced assemblies for the solution. There
are a number of formatting and configuration settings that can be modified for an
NDoc project, but for the most part, we will use the default values for the purpose
of this discussion. You should end up with a dialog similar to the one shown in
Figure 11.8. The final step (yes, it is that easy) is to build the documentation by
clicking on the Build Documentation button in the toolbar, or by using the
Ctrl+Shift+B shortcut.

Conclusion

G0 Mocoameles =

Project Documentation View Help
G- =R EAe)

Select Assemblies to uni\d Documentation (Ctr|+5hiFt+B)||

NDocExample exe Add
Edit
Femaove
Mamespace
Summaries
Select and Configure D
Documentation Type: IMSDN vl
e
HtmlHelphame Documentation -
IncludedssemblyVersion Falze
IncludeHierarchy False
OutputDirectany Adoch J
OutputTarget HimlHelpAndWeb
Preliminary Falze
ReferencesPath
Show\isualBasic False
Title A Simple NDoc Example
UselamespacelocSummaries Falze
UseNDocXmiFile
B E ibil -
FilesToinclude
Specifies external files that must be included in the compiled CHM file. Multiple files must be
separated by a pipe (7.

Ready 4

Figure 11.8
Main NDoc interface showing the loaded assemblies and project properties.

Once the Build Documentation button is clicked, the XML documentation file will
be processed and an MSDN-style .chm file will be generated at the location spec-
ified by the OutputDirectory property in the NDoc solution. Keep in mind that
you can switch the documenter plugin if you do not want MSDN-style documen-
tation and would prefer an alternative format. The MSDN-style .chm documenta-
tion will look something like Figure 11.9.

Conclusion

Source code documentation has always been regarded as a hassle to create, yet it is
important to promote maintainability. In this chapter, we saw another situation
where the .NET platform improved workflow productivity, specifically in terms of
generating source code documentation. Developers are generally conscientious
about source code commenting, and luckily most organizations have coding stan-
dards that enforce a certain level of consistency, but commenting your source code
and producing aesthetic documentation are two different challenges in themselves.

119

120

Chapter 11 = Code Documentation with NDoc and XML

@ voamentaionticp R
= 2> 8 fa} B
Hide Locate Back Fonward Stop Refresh Home Prnt Options

Conterts | Index I e I A Simple NDoc Example ;I
MainForm.SaveApplicationSettings Method

NDocExample
u MainForm Class Saves the application settings to a text file named by the fileName

@ MainForm Members property, and saved in isolated storage.

@ MainForm Constructar
=] tg Methods public wvoid SaveApplicationSettings(

0 Dispose Metho i string fileNawe

@ SavelpplicationS i
Parameters
fileName

The name of the file to store the application =ettings in.

Example
The following code shows how to properly call this methed.

SavelpplicationSettings (™ lication.xml™);

Requirements
.NET Framework Security:

* System.Security.PermissionSet This method can be accessed
by everyone

See Also

LI |_}| MainForm Class | NDocExample Namespace

Figure 11.9 Example MSDN-style .chm documentation created with Ndoc.

This chapter described a great way to transition from commented source code to
deployment-quality documentation using a core architecture primitive in the

NET platform.

Note

On the Companion Web site is the code from the simple example discussed throughout this chapter,
along with the NDoc project and the generated documentation. The example is extremely simplis-
tic but can serve as a reference point or general overview on how to properly set up a project for

code documentation with NDoc.

CHAPTER 12

MiIcrROsOFT CODING
CONVENTIONS

All parts should go together without forcing. You must remember that the
parts you are reassembling were disassembled by you. Therefore, if you
can’t get them together again, there must be a reason. By all means, do not
use a hammer.

1925 IBM Maintenance Manual

With all the fuss about how important it is to create maintainable code, a huge
issue that sparks numerous techno-religious debates is the idea that code should
follow a specific naming convention. The main problem is summed up by the
question: What naming convention should be used? There are a number of naming
conventions documented for developers, but typically the answer is left to person-
al preference. However, Microsoft is pushing the idea of “best practice” for a num-
ber of areas of .NET development, including standardized coding conventions. A
common problem with legacy Win32 API code is the variation among naming
conventions. It is not uncommon to find two components in the API that use
completely different conventions. However, Microsoft has enforced standards for
the .NET Class Framework that define how code should be named and formatted.
While you do not have to follow the proposed standard, it is recommended that
you do so for consistency and to make your code easier to read by other .NET
developers.

121

122

Chapter 12 = Microsoft Coding Conventions

This chapter summarizes the standard coding conventions set forth by Microsoft
that should be employed in your code. Keep in mind that you should still read the
Microsoft Design Guidelines for Class Library Developers, but this chapter should
be enough of a generalization to get you started.

Styles of Capitalization

The .NET class framework uses three types of capitalization styles, presented in
Table 12.1.

Table 12.1 .NET Class Framework Capitalization Styles

Case Type Description

Pascal Case Make the first letter uppercase as well as the first letter of each subsequent
word. All other letters remain lowercase. An example would be XmiSerializer.

Camel Case Identical to Pascal case, except the first letter is not uppercase. An example would
be remotingEndpoint.

Uppercase Make all letters capitalized when an identifier consists of less than three letters.
An example would be System./O.

There are different situations when a certain capitalization style is appropriate.
The situations suitable for certain capitalization styles are presented in Table 12.2.

Table 12.2 Capitalization Style Situations

Situation Appropriate Style Notes

Class Pascal Case

Enum Type Pascal Case

Enum Value Pascal Case

Event Pascal Case

Exception Class Pascal Case Suffixed with Exception
Read-Only Static Field Pascal Case

Interface Pascal Case Prefixed with |

Method Pascal Case

Namespace Pascal Case

Parameter Camel Case

Property Pascal Case

Protected Instance Field Camel Case Better to use a property

Public Instance Field Pascal Case Better to use a property

Naming Interfaces

Note

There may be times when you need to deviate from the “best practice” naming conventions, espe-
cially when working with legacy components that expect traditionally named symbols; do so spar-
ingly and only when absolutely necessary.

Naming Classes

When naming classes, the standard is to use Pascal case. Additionally, classes
should be named using a noun or a noun phrase. Finally, never use an underscore
in a class name either.

One traditional style common among many developers is to use prefixes such as
cFileStream or CFileStream. Never use prefixes anywhere with the exception of
interfaces. The proper naming would be FileStream in this example.

Abbreviations should be used only when absolutely necessary. They cause confusion
when reading code, and break from the standards used in the class framework.

Derived classes should be named in a compounded fashion where the second half
of the name is the base class name. An example would be the derived class
SystemException, which inherits from the base class Exception. This guideline is to
be used at your discretion, as derived class names should only be compounded
when it makes sense to do so.

Example:

public class SimpleException : Exception
{
}

Naming Interfaces

When naming interfaces, the standard is to use Pascal case. Additionally, interfaces
should be named using a noun or noun phrase, or an adjective that describes its
behavior. Finally, never use an underscore in a class name either.

Interfaces should always be prefixed with I, as in IBaseController. This is the only
situation where an identifier should be prefixed in the .NET class framework.

When a class implements an interface, the naming should only differ by the prefix
I on the interface name.

Abbreviations should be used only when absolutely necessary. They cause confusion
when reading code, and break from the standards used in the .NET Class Framework.

123

124

Chapter 12 = Microsoft Coding Conventions

Example:

public interface IBaseController
{
}

public class BaseController : IBaseController
{

}

Naming Namespaces

When naming namespaces, there are some common rules that should be followed
for consistency. Use Pascal case, and separate all logical components with periods.

The typical formatting is as follows:

CompanyName.TechnologyName.Feature[.Design]

Design is an optional namespace path that can be used when you have design time
code that you are separating from the feature code itself.

Prefixing the namespace with the company name helps to avoid type name conflicts
with another company that’s possibly offering the same technology and features.

Additionally, types in a namespace should have dependencies to types in the con-
taining namespace. For example, Wihlidal.Networking.DeadReckoning would have
dependencies to types in Wihlidal.Networking.

Never use the same name for both a class and a namespace. For example, do not
have the namespace Wih1idal.Utilities.Log and have a contained class called Log.

Lastly, just because a particular assembly wuses the namespace
Wihlidal.Networking.DeadReckoning, it does not have to contain any code in the
Wihlidal.Networking namespace. It is perfectly acceptable and common to have
multiple assemblies associated with a particular namespace.

Example:

Wihlidal.Networking.DeadReckoning
or

Wihlidal.Controls.InterfaceBuilder
Wihlidal.Controls.InterfaceBuilder.Design

Naming Static Fields

Naming Attributes

There are not a lot of guidelines for attribute naming, but be sure to use Pascal
case. The only rule is to suffix the attribute type name with Attribute.

Example:

InterfaceControlAttribute

Naming Enumerations

When naming enumerations, the standard is to use Pascal case for both type and
value identifiers.

Abbreviations should be used only when absolutely necessary. They cause confusion
when reading code, and they break from the standards used in the class framework.

Never suffix an enumeration with Enum. The identifier name should also be singu-
lar unless it is a bit field, in which case the name would be plural. Additionally, bit
fields should always be marked with [FlagsAttribute].

Example:

public enum InterfaceColor
{

Red,

Black,

Yellow
}

[FlagsAttribute]
public enum InterfaceColors : short
{
Red
Blac 1,

= 0’
k =
Yellow = 2

Naming Static Fields

When naming static fields, the standard is to use Pascal case. Additionally, static
fields should be named using a noun, noun phrase, or abbreviations of nouns.
Lastly, never use Hungarian notation or any other sort of prefixes or suffixes.

125

126

Chapter 12 = Microsoft Coding Conventions

It is “best practice” to use a static property instead of a static field whenever possible.

Example:

private static int MyStaticField;

Naming Parameters

When naming parameters, the standard is to use Camel case. Additionally, para-
meter names should be descriptive enough that their use should be evident by
their name alone.

Use a parameter name that describes its meaning rather than its type. Use type-
based names only when necessary.

Never use reserved parameters. These parameters are reserved for data that can be
added in with a later version of a particular component, and storing your data in
a reserved property can lead to issues with invalid data or software instability.

Never name parameters using Hungarian notation.
Example:

Type GetType(string typeName)
string Format(string format, object[] args)

Naming Methods

When naming methods, the standard is to use Pascal case. Additionally, method
names should be named using verbs or verb phrases. Method names should be
very descriptive, and the behavior of the method should be easily determined from
the name alone.

Example:

GetInterfaceControl()
ExecuteBatchProcess()
InsertRecord()

Naming Properties

When naming properties, the standard is to use Pascal case. Additionally, proper-
ties should be named using a noun or noun phrase, and never use Hungarian
notation.

Naming Events

It is a good idea to name your properties the same name as the underlying types
when applicable.

Example:

private Color backColor;
public Color BackColor
{
get { return backColor; }
set { backColor = value; }

Naming Events

When naming events, the standard is to use Pascal case. Additionally, events
should never have a prefix or a suffix, and never use Hungarian notation.

Events should be named with a verb such as Launched, Clicked, Closing, or Paint.
Events in a pre-event context should be named with the -ing form of a verb, and
events in a post-event context should be named with the past tense of a verb.

Event handlers should have an EventHandler suffix. Additionally, event argument
types should have an EventArgs suffix.

Example:

public delegate void InterfaceControlEventHandler(object sender,
InterfaceControlEventArgs e);

public InterfaceControlEventHandler InterfaceControlClicked;

public class InterfaceControlEventArgs : EventArgs
{
private InterfaceControl _selectedControl = null;

public InterfaceControl SelectedControl
{
get { return _selectedControl; }

public InterfaceControlEventArgs(InterfaceControl selectedControl)
{

_selectedControl = selectedControl;
}

127

128

Chapter 12 = Microsoft Coding Conventions

Abbreviations

There are guidelines regarding abbreviations. Disregarding these guidelines can
lead to issues with interoperability or general confusion about the purpose of a
particular identifier.

Identifiers should not have contracted or abbreviated parts. Use SendReplyMessage
instead of SendReplyMsg.

Acronyms should be formatted using either Pascal or Camel case when consisting
of more than two letters. Never use acronyms that are not generally accepted or
known in the computing world.

Use abbreviations to replace lengthy phrases, such as Http instead of
HyperTextTransferProtocol.

Identifiers and parameters should not be abbreviated. If you must use abbrevia-
tions, then you should use Camel case when the abbreviated word consists of three
or more letters.

Conclusion

The main focus of this chapter was to present an overview of the standardized
coding conventions that Microsoft encourages .NET developers to adopt. This is
in no way the full convention, but it is enough of a subset to show how code should
be written in C#.NET. For more information, please review the Microsoft Design
Guidelines for Class Library Developers located on MSDN.

CHAPTER 13

ENFORCING CODING
PoLicieEs wiTH FxCop

The trouble with programmers is that you can never tell what a programmer
is doing until it’s too late.

Seymour Cray

People write bad code. It is a common reality, and poorly written code can lead to
many maintenance and design issues. Microsoft realizes this and has presented a
couple of well thought out solutions, such as the Design Guidelines for Class
Library Developers, which helps promulgate best practices and coding standards to
maintain consistency among .NET assemblies. Having a set of guidelines can do
wonders if developers follow them in an almost religious fashion. However, this is
not always the case, and many times source code deviates from the proposed
norm. This prompted Microsoft to create the FxCop utility, which tests .NET code
to confirm that it follows the best practices and design guidelines.

The developers of FxCop could have designed the tool to perform conformance
analysis at a source code level like most tools of a similar nature, but instead chose
to use the powerful features of the .NET platform to make a tool that performed
analysis on a much grander scale. Rich and extensible meta-data concepts along-
side powerful reflection support, MSIL parsing, and call-graph analysis allow for
the inspection of many different areas of your software instead of just analyzing
source code. FxCop looks for over 200 different defects and issues in regards to
library design, naming conventions, localization, security, and performance. There
is also an SDK that allows you to write custom rules to enforce conventions specific
to your needs.

129

130

Chapter 13 = Enforcing Coding Policies with FxCop

On top of Reflection, the latest version of FxCop has exposed another method of
analyzing your assemblies using an introspection engine. This engine provides a
rich set of analysis functionality and can analyze large applications much more
quickly than the regular reflection-based engine. On top of speed, the introspection
engine also supports multithreaded application analysis. Lastly, the introspection
engine is different from the reflection engine in that it does not lock assemblies
when it performs analysis, allowing you to fix and recompile assemblies while
FxCop remains open instead of shutting down FxCop to release locked assemblies.

The purpose of this chapter is to introduce you to the wonderful world of enforced
coding policies, and the tool that makes it all possible. After reading this chapter,
you should be able to analyze your code for convention violations, design custom
violation rules, and know how to configure FxCop to suit your development pref-
erences.

Caution

The engine and SDK specification for FxCop have not yet been finalized, so the common pattern is that
each release breaks backward compatibility with existing plug-ins, forcing the developer to update
the custom rules to reflect API changes. This chapter was written using FxCop 1.32 for Whidbey
Beta 2 (.NET 2.0 Beta 2). I still felt that the information presented in this chapter is important, so |
decided to keep this chapter in the book and present this little warning about the changing API. Hope-
fully the next release version of FxCop supports an easy migration path from the 1.32 API.

This is just a warning that you may not be able to compile the examples in this chapter straight out
of the book; you may need to update the examples to reflect the latest API specification. With this
in mind, let's continue on to discovering what FxCop is, and how you and your code can benefit
from its use.

Installing FxCop

Note

The first thing you need to do is install the FxCop tool; you can get the installer at the companion
Web site for this book, or from http://www.gotdotnet.com/team/fxcop/.

There are no custom configuration options, so the installation itself is very simple.
FxCop can be accessed from either a WinForms applications or the command line
using the FxCopCMD application. You can actually integrate FxCop analysis into
your build process, which is a great idea because you can fix conformance viola-
tions as they occur, instead of letting them build up into a huge list that you have
to cull through at a later time. If you want to get as much speed as possible during

http://www.gotdotnet.com/team/fxcop/

Configuring Built-In Rules

the build process, you can also stick to running FxCop on a daily basis instead.
This is the approach that Microsoft is pushing to its developers. The longer you
wait between each running of FxCop, the more possible violations will have been
amassed, resulting in more time spent fixing these issues. Making FxCop an inte-
gral part of your work schedule ensures increased familiarity with the guidelines
and eases the design work. For example, imagine that you create a property which
is named in such a way that it does not follow design guidelines. With FxCop inte-
grated with your build process, you would notice this violation immediately the
next time your post-build process executes. If instead, you run FxCop on a week-
ly basis, you would have to go back and modify a week’s worth of work in all places
where that property was accessed. There are increased productivity benefits when
running FxCop analysis as often as possible.

Creating an FxCop Project

The first thing to do is create an FxCop project where you can select the assemblies
to target for analysis, and specify the rules to enforce. Launch the FxCop tool and
start adding assemblies through the Project>Add Targets menu, or by using the
Ctrl+Shift+A hotkey. Once you have selected the assemblies you want to analyze,
you should end up with a window similar to Figure 13.1.

The left tree view shows the hierarchy of the loaded assemblies and the compo-
nents available for analysis. You can uncheck code that you do not want analyzed,
though it is recommended that you only do so if absolutely necessary.

The right view pane has a list view that will populate with rule violations once
analysis has been completed. The bottom view pane will display detailed informa-
tion about a rule violation when one has been selected in the violations list view.

Once the target assemblies have been added to the project, you are now at the
point where you can configure the rules engine for the project.

Configuring Built-In Rules

Now that the FxCop project has been created and assemblies have been targeted
for analysis, it is time to move on to the configuration of the rules engine. Some
people stick to the default configuration, but many developers customize the con-
figuration to suit their own preferences where applicable.

The left view pane contains a tab control with a Rules tab. Selecting that tab will pre-
sent a listing of the available rules that can be enforced upon the targeted assemblies,
and each rule can be enabled or disabled using the checkbox to the left of the rule.

131

132

Chapter 13 = Enforcing Coding Policies with FxCop

- Microsoft FxCop - FxCop Deme [C:\Decuments and Settings\admin\Desktop\FxCopDemo\FxCo i =] B3]

File Edit Project Tools Help
O &% | > wmave |2
Targets |H|_||eg| Active | Excluded In Project | Absent |

B ~ [FxCatogoy | Cortainty[Fuls

Demao
FxCopDemo.di
[FE] fucopdemo di
E| {} FExCopDemo

B [A%g BadClass

: =% BadClass()
% simpleVarable:Int32
GoodClass
% _simpleVariable:Int32
GoodClass()

EH' SimpleVanable:Int32
B¢ SpelChek
0 SpelChek()

Ready

Output Properties I

Figure 13.1 Screen capture of an FxCop project with an assembly targeted for analysis.

Some rules may not be applicable or favorable to a developer, which warrants the
disabling of the rule. For example, even though the .NET runtime implicitly ini-
tializes all managed memory to a default value, many developers feel that all vari-
ables should be explicitly initialized even when the initialized value and the default
value for that data type are the same. Yes, doing so can be viewed as a redundant
step as there is a performance rule that prohibits unnecessary initialization, yet
other developers feel that explicit initialization is necessary in the spirit of main-
tainability. Figure 13.2 shows a screen capture of the rules configuration tab.

Analyzing Your Project

Once your FxCop project has been created and the target assemblies have been
specified, it is time to perform analysis. You do so by clicking the Analyze button
shown in Figure 13.3.

The most advisable approach for fixing guideline violations is to sort the violations
by message level with the errors at the top of the list, and to fix each violation one
by one. It should be noted that there are two types of errors: regular and critical.

Analyzing Your Project

File Edit Project Tools Help

- Microsoft FxCop - FxCop Demo [C:\Documents and Settings\admin\Desktop\FxCopDemeo\FxCa

I [=[5]

O | %D % aaze |2

Targets Fules |

@ Avoid unsealed attributes
@ Avoid unused private fields

Do not cast unnecessarity

Do not intialize unnecessarily
Mark methods as static
Properties should not retum amays

@ Remove empty finalizers
. [FA: Remove unused locals

<

El

@ Dispose methods should call SuppressFinalize
@ Do not call propeties that clone values in loops

5 inside loops

4

@ Inttialize reference type static fields inline

@ Cvemide equals and operator equals on value type:
@ Prefer jagged amays over multidimensional

| of®

D active message(s) for DoMotIntialize Unnecessarily

IAdi\re | Excluded In Project | Absent |

had Fix Categol Certai

Fule

<

FxCop Rule DoNotInitializeUnnecessarily

BreaksBuild : False (Boolean)

Checked : False (Boolean)

Children : Count == (NodeBaseDictionaryCollection)
Container : Count == 21 (NodeBaseDictionary)
DisplayName : Do not initialize unnecessarily (String)
Enabled 1 True (Boolean)

FullyQmalifiedName : DoNotInitializeUnnecessarily (String)

Output Properties I

Figure 13.2 Screen capture of the rules configuration tab.

BlE Help

| b Anayze | 2]

Figure 13.3 Screen capture of the button that starts the analysis.

Both types are fairly subjective in nature, and many rule developers feel that it
would have made their lives a lot easier if Microsoft had just simplified the mes-
sage levels to errors, warnings, and informational messages.

Aside from the message level, you will notice that there are a few other statistics for

each violation. The fix category indicates whether or not your code will break if

the violation is resolved by itself. Breaking indicates that fixing the violation with-
out modifying the rest of your code will cause compilation errors, such as chang-
ing a property name referenced elsewhere. Nonbreaking indicates that fixing the
violation without modifying the rest of your code should still result in a success-
ful compilation, such as adding an attribute to a class definition. Figure 13.4 shows
the FxCop project window after an analysis has been performed.

133

134

Chapter 13 =

Enforcing Coding Policies with FxCop

- Microsoft FxCop - FxCop Demo [C:\Documents and Settings\admin\Desktop)FxCopDemo’|FxCo

File Edit Project Tools Help

g [

OE E S| s |2

Targets | Rules | | Ietive | Excluded In Project | Absert |
= EAE! FxCop Demo ~ | Fx Catego [Cetairty | Rule

; . egon’ Ity

- FxCopDemo.di 1] Mon Breaking 95% Assemblies should have valid strong nams

= @ f?;o;i?mobdll ?6 Breaking 95% Assemblies should declare minimum secur
E"" 1% °B'° dém ?€3 Non Breaking 95% Mark assemblies with ComVisible
6 Botioes) €3 Non Breaking 95% Mark assemblies with CLSCompliant
@ simpleVariable:Int32 8 ing iz :::;:::Im ﬁ:ﬁ;‘:‘w m::::‘;

%2 GoodClass

[Flg# _simpleVariable:Int32

7/8 Breaking
H

Identifiers should be spelled comectly

[=% GoodClass() & Breaking 50% Awoid namespaces with few types
@' SimpleVariable:Int32 & Nen Breaking 90% De not initialize unnecessarily
= [F%¢ SpelChek
i =@ SpelChek()
4] | 2l
1 messagels) selected
CriticalWarning, Certainty 75, for IdentifiersShouldBeSpelledCorrectly o
Target 1 FxCopDemo.SpelChek (IntrospectionTargetIyvpe)
Id : Chek (String)

: "Correct the spelling of the nnrecognized token
"Chek' in type name "FxCopDemo.SpelChek'."

Resolution

Help : http://www.gotdotnet.com/tean/ fxcop/docs/rules. aspx?version=unstabled

Category : Microsoft.Naming (S5tring)

CheckId : CR1TO4 (String) =
] E— DRI e | LI_I

Figure 13.4 Screen capture of the FxCop tool after analysis has been performed.

It may be acceptable to exclude certain rule violations from the analysis, and you
can accomplish this by right-clicking on the rule in question and selecting Exclude.
Exclusion should be done rarely and only with a solid reason. It is now mandatory
to give a reason why a particular rule violation was excluded. Figure 13.5 shows this.

Certain rules that FxCop throws an exception for can be somewhat vague, but
thankfully each rule has a referenced documentation page located on the FxCop
web site that discusses the rule in greater detail, including possible causes for why
a certain exception was thrown. Figure 13.6 shows the web page detailing a spell
check exception.

It is also important to keep in mind that not all errors are your fault, as even the
pre-2005 Visual Studio generation wizards have code that does not conform to
the design guideline standards. If you notice any errors resulting within the
InitializeComponent method, or any other auto-generated regions for that matter,
it is safe to exclude them.

Analyzing Your Project

Add Exclusion Note =

Lizer: admin

Tent: This particular rule violation is not valid because improper naming had to be utilized
50 this property could imterface with a legacy application.

Cancel
ok | |£

Figure 13.5 Dialog used to specify a reason why a rule violation was excluded.

%) 1dentifiersShouldBeSpelledCorrectly - Mozilla Firefox -10] x|
File Edit View Go Bookmarks Tools Help 0:}

O O @ O @ [httli':.I'J'Www.gotdntnet.comfteamffxcopfdocsm‘vl [@]
g FxCop

Documentation

Identifiers should be spelled correctly

TypeName: IdentifiersShouldBeSpelledCorrectly
CheckId: CAL704

Category: Microsoft.Maming

Message Level: CriticalWarning

Certainty: 75%

Breaking Change: Breaking
Cause: The name of an externzlly visible identifier contains ene or more words that are not recognized

by the Microsoft spelling checker library. This rule does not check constructors or special-named
members such as get and set property accessors.

Rule Description

This rule parses the identifier inte tokens and checks the spelling of each token. The parsing algerithm
performs the following transformations:

* Capital letters start a new token. For example, MyNamelsloe tokenizes to "My", "Name", "Is", @

| Dane

Figure 13.6 Documentation web page detailing a spell check exception.

135

136

Chapter 13 = Enforcing Coding Policies with FxCop

Another point to note is that FxCop has a fairly rigid spell checker integrated right
into the tool, and will generally complain about any product or company names
that are not a composition of dictionary words. Additionally, there may be some
acronyms you wish to keep in full uppercase, yet FxCop will complain that they
break design guidelines. It is quite easy to configure FxCop to ignore certain cases
of a rule exception, and this can be done by modifying the CustomDictionary.xml
file that resides in the installation folder of FxCop. If you're working in a multi-
developer environment, be sure to add this file to source control so that all developers
have access to the custom configuration you specify.

Building Custom Rules

You may be reading all the built-in rules available for FxCop and thinking that
they enforce all the policies you have. If this is the case, you do not need to extend
the rules engine. However, some projects require the enforcement of custom rules,
in which case you will need to extend the rules engine in FxCop. The latter half of
this chapter covers building custom FxCop rules and enabling them for enforce-
ment in your projects.

The first thing to do is to create a new C#NET class library project and reference
the FxCop SDK. Navigate to the installation folder of the FxCop tool, and refer-
ence the FxCopSdk and Microsoft.Cci assemblies. Figure 13.7 shows the assembly
reference screen that should resemble what you see.

Select Component N x|
Lock in: |||j Microsoft FxCop 1.32RC 1 j & | @ ¥ O ~ Tools ~
— JEngines
% i () Repository
History @R"'IES
) Xml

™ ficop.exe
™ Fxcoptmd.exe

My Projects Lﬁ FxCopCommon.dll

Desktop
| * i
Favorites
] 5 "
]Q:-— File name: - £
My Metwork I J o
Flaces Files of type: IComponent Files (=.dll;*.tb; *.olb; *.00¢*.exe) j Cancel
4

Figure 13.7 Dialog shown when referencing the FxCop SDK.

Building Custom Rules

For an extremely simple yet practical example, we will make a custom FxCop rule
that requires all namespaces to be prefixed with Nexus.Wor1dBuilder.

We need to start by creating an XML file in the project that will eventually be com-
piled as an embedded resource during the build process. This file defines all the
rules that FxCop will load, including configuration and resolution information. It
is here that you can set the warning level, description, and resolution for each rule.
The name of the file at this point is fairly flexible.

<?xml version="1.0" encoding="utf-8" 7>
{Rules>
<Rule TypeName="NamespacePrefix" Category="Nexus.Naming" CheckId="NX0001">
<Owner>Graham Wihlidal</Owner>
<Email>graham@wihlidal.ca</Email>
<{Name>Namespaces must be prefixed with Nexus.WorldBuilder</Name>
{Messagelevel Certainty="95">Error</Messagelevel>
<Description>All namespaces should be prefixed with Nexus.WorldBuilder
for consistency</Description>
{LongDescription>A1l namespaces should be prefixed with Nexus.WorldBuilder
for consistency</LongDescription>
Ur1>http://Ur1-To-A-Help-Page</Ur1>
<Resolution Name="Default">The namespace '{0}' is not prefixed with
Nexus.WorldBuilder</Resolution>
<{FixCategories>Breaking</FixCategories>
</Rule>
</Rules>

You must set the Build Action property to Embedded Resource so that this XML file
will be embedded in the rule assembly file; otherwise FxCop will not be able to
find it and will report that there are no rules to load.

The best approach to structuring the code for a rules assembly is creating a base
rule from which other rules can inherit. This is because there are a few arguments
that must be repeated for each rule, and proper class design urges the normaliza-
tion of repeating data.

Here is the code for the base rule class:

using System;

using Microsoft.Cci;

using Microsoft.Tools.FxCop.Sdk;

using Microsoft.Tools.FxCop.Sdk.Introspection;

137

138

Chapter 13 = Enforcing Coding Policies with FxCop

namespace NexusRules.Naming
{

[CLSCompTiant(false)]

abstract public class BaseNexusNamingRule : BaseIntrospectionRule

{

protected BaseNexusNamingRule(string name)
: base(name, "NexusRules.Naming.NamingRules",
typeof(BaseNexusNamingRule).Assembly)

}

You will notice the arguments being passed into the base constructor. The first
argument is the name of the rule, and it is passed in through the constructor of
each custom rule inheriting from BaseNexusNamingRule. The last two arguments
require more explanation. The second argument is the fully qualified name of the
embedded configuration XML file without the extension. In this example, the
assembly is NexusRules.Naming.d11 and the XML configuration file is NamingRules. xm1,
resulting in NexusRules.Naming.NamingRules. The third argument is a reference to
the assembly containing the rules.

It is also important to note the need for [CLSCompliant(false)]; the FxCop SDK is
not CLS-compliant, so it is required that this attribute be placed so that the code
compiles correctly.

With the base rule class defined, we can create our first FxCop rule. The magic
behind the FxCop SDK is the Check method. There are many different overloaded
versions, all of which get run when an assembly is analyzed; it becomes a matter of
picking the right overloaded method for the job.

Here is the code for the example FxCop rule:

using System;

using Microsoft.Cci;
using Microsoft.Tools.FxCop.Sdk;
using Microsoft.Tools.FxCop.Sdk.Introspection;

namespace NexusRules.Naming

{
[CLSCompliant(false)]
public class NamespacePrefix : BaseNexusNamingRule
{

Building Custom Rules

public NamespacePrefix() : base("NamespacePrefix")
{
}

public override ProblemCollection Check(string namespaceName,
TypeNodelist types)
{
if (InamespaceName.StartsWith("Nexus.WorldBuilder"))
{
string[] arguments = new string[1] { namespaceName };
Resolution resolution = GetNamedResolution("Default", arguments);
Problems.Add(new Problem(resolution));
}

return Problems;

}

You should notice that there is a collection called Problems with no apparent dec-
laration. This property is declared in the BaseIntrospectionRule class, and is the
collection you must add Problem objects to and return from the Check method. Do
not create a new ProblemCollection as it will not work. Be sure to return null if no
errors occurred. Lastly, you need to modify AssemblyInfo.cs in a couple of places
and also give the assembly a strong name key.

Add the following lines near the other assembly attributes:

[assembly:CLSCompliant(true)]
[assembly:ComVisible(false)]

If everything compiles correctly, you are halfway there! The real parlor trick is getting
FxCop to recognize the rules in your assembly. The custom rules importer is very
strict, and quite often it forces you to pull your hair out just to get custom rules to
import. Thankfully, the latest version of FxCop outputs XML configuration errors,
whereas the older versions did not and required some clever debugging to fix. You
can import custom rule assemblies by selecting Add Rules from the Project menu.

If FxCop fails to load your rules, be sure to read the messages left in the output
window of FxCop. If the custom rules loaded correctly, you can try them out. You
should have output similar to Figure 13.8 after analyzing an assembly that violates
the namespace prefix rule defined in this example.

139

140

Chapter 13 = Enforcing Coding Policies with FxCop

:. Microsoft FxCop - My FxCop Project* ;IEIEI

File Edit Project Tools Help

RN

Tangets |H_|_||eg I IActi\re | Excluded In Project | Absent |
: = Level | FixCategory | Certairty | Rule | tem |
BatchFileFrameworkcdl Breaking 95% N must be prefixed with Nexus WorldBuilder BatchFileFramework

Ready
Error, Certainty 95, for NamespacePrefix 1=

Target : BatchFileFramework (TargetNamespace)

Resolution : "The namespace 'BatchFileFramework' is not prefixed

with Nexus.WorldBuilder"

Help : http://url-to-a-help-page/ (String)

Category : Nexus.Naming (String)

CheckId : NX0001 {String)

RuleFile : NexusRules.Naming.dll (String)

Info : "All namespaces should be prefixed with Nexus.WorldBuilder

for consistency™

Created : 5/30/2005 T7:41:26 M (DateTime)

LastSeen 1 5/30/2005 T7:41:26 AM (DateTime)

Status 1 Bctive (MessageStatus)

Fix Category : Breaking (FixCategories)
N =

[

Oulpst Properties I

Figure 13.8 Output from custom rule violation.

Lastly, it is important to mention that Microsoft has integrated FxCop analysis
into Visual Studio 2005. To enable integrated analysis, just go to the properties
page of the project, and then select the Code Analysis tab. Check the Enable Code
Analysis checkbox and configure the rules that you want to conform to.

You should end up with a dialog like the one shown in Figure 13.9.

The previous step has now configured your project to perform integrated code
analysis during the build process. By default, analysis issues and rule violations will
appear as warnings in the error list window, as shown in Figure 13.10.

Conclusion

This chapter discussed the importance of coding guidelines and using FxCop to
enforce them. Also surfacing was the apparent need to deviate from the proposed
norm, and ways to configure FxCop to perform customized analysis and enforce-
ment of both Microsoft- and project-specific policies.

Lastly, there are a number of online resources that cover how to build more complex
custom rules, one of which is the June 04 Bugslayer column from MSDN maga-
zine: http://msdn.microsoft.com/msdnmag/issues/04/06/Bugslayer/default.aspx.

http://msdn.microsoft.com/msdnmag/issues/04/06/Bugslayer/default.aspx

e 7 7 W W | o9 o w7 T T T [¥ TToug T T
BILIEEEEEIE T LY
}g ntegratedAnalvsis'l’st‘rProgram.cs]
z
S Application®
g Pe Configuration: IAch’ve (Debug) j Platform: IAch’ve {Any CPU) j
= | euid
¥ Enable Code Analysis
Build Events
Advanced |
Debug
Settings Rules | Status
[¥ Design Rules !:!\'\Jarning
Resources [¥ Globalization Rules !}!\'\iarning
W Interoperability Rules [;!\'\darning
Refererce Paths ¥ Maintainability Rules F1¥ warning
- ¥ Naming Rules !:!\'\darnmg
Signing n
[V Performance Rules m\'\iarnmg
Security v Relial?ility Rules !ﬂ\'\iarn?ng
¥ Security Rules !:!\'\Jarnmg
Publish [¥ Usage Rules !:!\'\Jarning
Code Analysis

Figure 13.9 Visual Studio 2005 integrated code analysis configuration.

Error List |
Q 0 Errors | _:3 20 Warnings | Q) 0 Messages
|| Description [F.2 [ine [Propect [=1]

|10

{String, String, String):Boolean’ to catch a more
spedific exception than 'System.Exception’ or rethrow
the exception.

CA1060 : Microsoft.Design : Because itis a DllImport Test.cs 15
method, Test.GetPrivateProfileSectionNamesA(Byte[],

Int32, String):Int32 should be defined in a dass

named NativeMethods, SafeNativeMethods, or
UnsafeNativeMethods,

CA1401 : Microsoft. Interoperability : Change the Testcs 15
accessibility of Dlllmport
Test.GetPrivateProfileSectionMamesAByte[], Int32,

String):Int32' so that it is no longer visible from

outside its assembly.

CA1720 : Microsoft.Naming : Remove the type Test.cs 18
identifier from parameter name 'returnedString’.

IntegratedAnalysisTest

IntegratedAnalysisTest

IntegratedAnalysisTest

|

Figure 13.10 Code analysis results in the error list window.

Perhaps the best place to learn the art of building FxCop rules is by disassembling
the built-in rules provided by Microsoft. You can do this by downloading Reflector
for .NET, an extremely useful tool written by Lutz Roeder, which allows you to
browse classes and disassemble non-obfuscated code into a humanly readable format.

Conclusion

You can download Reflector for .NET at http://www.aisto.com/roeder/dotnet/.

141

http://www.aisto.com/roeder/dotnet/

This page intentionally left blank

CHAPTER 14

BEsT PRACTICES FOR
RoBusT EXCEPTION
HANDLING

Computers allow you to make more mistakes faster than any other invention
in human history with the possible exception of handguns and tequila.

Mitch Ratcliffe

In the development world, it is nearly impossible to write bug-free software. The
best we can do is write stable software that, when a problem occurs, displays
enough information to solve it. There is no way to write software that is bug-free,
but by employing exception handling, at least we can gracefully handle any anom-
alous situations that occur.

An exception can be defined as unexpected behavior or an error condition occur-
ring in a software application. The name itself comes from the idea that, although
an error condition can occur, the error condition occurs infrequently. The major-
ity of a developer’s time is spent on user input and error handling. Thankfully,
there is some functionality in the .NET Class Framework that provides error han-
dling, but there are certain best practices that should be followed in terms of
design concerns and performance issues.

Many developers misuse or overuse exception handling, and this chapter is all
about best practices for using .NET exception handling. This chapter is not centered
on the design aspects of user interface integration, but rather serves to enlighten
readers about the proper way to handle errors while aiming for maximum perfor-
mance and adherence to framework guidelines.

143

144

Chapter 14 = Best Practices for Robust Exception Handling

External Data Is Evil

Typically, exceptions in an application are thrown because of invalid or nonexis-
tent data. External data can be provided from a database, keyboard input, files, a
registry, or a network socket. You can never trust external data because there is no
way to be certain that the external data exists or is valid. You may also end up with
insufficient privileges to access the external data.

Aside from reading data, most external data sources have write capability, in which
case there is also some sort of repository for the data as well. You may end up with
insufficient privileges or not enough memory, or the device can suffer from a phys-
ical fault as well. It is important to recognize that the best thing to do is build solid
code that handles external data errors in a stable and informative manner.

The safest approach when dealing with external data is to validate the data before
doing anything else with it.

Creating Custom Exceptions

There is a common misconception among developers regarding the use of
System.Exception and System.ApplicationException. These exception types are used
throughout the .NET Class Framework and form the base of many derived types,
but you should never throw them explicitly. The truth is, these types are much too
broad and generic to be thrown; you should instead be creating and throwing cus-
tom exceptions if a suitable exception type does not yet exist.

Another fallacy is that custom exceptions should be derived from
System.Applicationtxception. This used to be the correct approach but has now
been identified by Microsoft as incorrect. You should instead be deriving all cus-
tom exceptions from System.Exception. One of the main reasons for this change is
an assortment of issues when using third-party libraries in your code. You may
have a function that calls a third-party method, which in turn throws a
System.ApplicationException, and you may also throw that same exception later on
in your code. When the exception leaves the method and arrives at the exception
handler, who threw it? The best approach is to create exception class hierarchies
that are as wide and shallow as possible, the same approach typically used with the
structuring of class hierarchies.

All custom exceptions should also support the three default constructors to pro-
mote consistency between your custom exceptions and the built-in framework
exceptions.

Creating Custom Exceptions

These constructors are:

const string defaultMessage = "Your default message";

public YourException()
: base(defaultMessage);

public YourException(string message)
: base(String.Format("{0} - {1}", defaultMessage, message));

public YourException(string message, Exception inner)
: base(String.Format("{0} - {1}", defaultMessage, message), inner);

There are some rules that must be followed in regards to the message property. Do
not store exception information in the message property. Instead, create separate
properties in the exception class to hold the data. Storing information in the mes-
sage property also means that users will have to perform string parsing to retrieve
the data, which is an obvious hassle. Also consider the problems that localization
would present if you were attempting to parse different pieces of information from
the exception message when the formatting of the string was based on the current
culture locale.

Lastly, be sure to mark your exceptions with the [Serializable] attribute. You
never know when your methods will be called from Remoting or a Web Service.

Here is a complete example of a custom exception in its simplest form:

[Serializable]
public class NexusException : System.Exception
{
const string defaultMessage = "A runtime error occurred within" +
"Nexus World Builder";

public NexusException()

: base(defaultMessage)
{
}

public NexusException(string message)

: base(String.Format("{0} - {1}", defaultMessage, message))
{
1

145

146 Chapter 14 = Best Practices for Robust Exception Handling

public NexusException(string message, Exception inner)

: base(String.Format("{0} - {1}", defaultMessage, message), inner)
{
}

Throwing Exceptions

A trait of exceptions is that they cannot be ignored, so it is a good idea to use
exceptions in place of return values when a particular operation must be success-
ful to proceed. It is also wise to rely more on throwing an exception than using
Debug.Assert. Keep in mind that assertions are removed from release code, so
errors will be much harder to track down in a production environment.

The stack trace is a critical piece of information to have when an exception is
thrown, and extra care must be taken when re-throwing exceptions to ensure that
the stack trace is preserved. Many times you need to catch a particular exception,
perform cleanup logic such as a transaction rollback, and then re-throw the excep-
tion so that another exception handler can process it.

Consider the following code:

try

{
// Code that throws an exception

}

catch (Exception exception)

{
// Code that performs cleanup \ rollback
throw exception;

}

In this example, the exception is caught and thrown back to the next exception
handler, but using a new exception object without the stack trace. The proper way
to re-throw the exception while preserving the stack trace information is shown in
the following code:

try
{
// Code that throws an exception
}
catch (Exception exception)
{

Structured Exception Handlers

// Code that performs cleanup \ rollback
throw;
}

Just calling throw alone will re-throw the exact same exception object that arrived
at the catch statement in the first place.

Also, be sure to add a semantic value if you re-throw an exception under a differ-
ent type. Sometimes you may wish to take a few specific exceptions and re-throw
them under a more generalized type, but it is advisable to at least attach the old
exception as the inner exception property when re-throwing it. That way, the orig-
inal exception is readily available if there is a need for re-specialization.

Lastly, it is bad design to use exceptions as a means of returning information from
amethod. One reason is that exception handling is fairly slow, so overuse and mis-
use of exception handling can introduce many performance bottlenecks into your
code.

Structured Exception Handlers

There are some rules that should be followed when building your exception han-
dlers and deciding what exception types to catch. Never catch a base-type excep-
tion when you are always expecting a more specialized one. For example, do not
catch System.Exception when the only exception that will ever be thrown is a
System.ArgumentNullException. Generic handlers create many problems, and should
be avoided whenever possible. A general rule of thumb is that System.Exception
should only ever be caught once per thread.

If you want more reasoning behind this rule, consider the following example.

Imagine that you build a library that offers fairly basic functionality, and it is used
by a Windows Forms application. Now, normally a method in this library will
throw System.ArgumentNullException when a specified parameter is null. If the
Windows Forms application has a structured exception handler that catches
System.Exception, error handling will work as expected in a perfect situation. In the
event that the library assembly cannot be referenced by the Windows Forms appli-
cation because it is missing, the Common Language Runtime will throw a
System.10.FileNotFoundException, indicating that the library assembly could not be
found. When this exception occurs, the Windows Forms application believes that
anull parameter was specified, when in reality the entire library could not be found.
However, if the Windows Forms application did not catch generic exceptions, this
problem would be avoided.

147

148

Chapter 14 = Best Practices for Robust Exception Handling

Lastly, one of the absolute worst things you can do is catch an exception and do
nothing with it. Catching an exception with an empty code block is commonly
referred to as exception swallowing; do not do this! If you do not wish to handle a
certain type of exception, don’t write an exception handler for it.

Logging Exception Information

At first glance, it may look correct to spit out the contents of Exception.Message to
whatever logging medium you are using, but such an assumption would be incor-
rect. The Exception.Message property only contains the high-level message, which
could be as informative as Object reference not set to an instance of an object.
A better approach instead is to log Exception.ToString(), which will result in the
logging of the message, the inner exception, and the stack trace of the exception—
information that is much more useful when it comes time to debug a problem.

Mechanisms for Cleanup

There are a number of classes in the .NET class framework that require cleanup
after their role has been fulfilled, and certain classes (like file system access) can
lead to locking or other problems when not properly disposed.

Consider the following code:

public void DoSomething(string fileName)

{
StreamReader reader = new StreamReader(string fileName);
ProcessStream(reader);
reader.Close();

}

All is well if no errors occur, but consider the situation where ProcessStream throws
an exception. The close method for the StreamReader would never be called, and the
resource would remain active.

One solution to this problem is to introduce an exception handler that closes the
StreamReader when an error occurs, and then re-throws the exception.

Consider the following code:

public void DoSomething(string fileName)
{

StreamReader reader = null;

try

{

}

reader = new StreamReader(string fileName);
ProcessStream(reader);
reader.Close();
}
catch (Exception exception)
{
If (reader != null)
{
reader.Close();

}
throw;

Mechanisms for Cleanup 149

This solution will ensure that the reader is always closed, but the design of it is
somewhat messy; code is duplicated and it is harder to read.

Structured exception handling in .NET also offers the finally block, which exe-
cutes when the runtime leaves the exception handler, regardless of whether or not
the try or the catch fired.

The following code shows how this would look:

public void DoSomething(string fileName)

{

}

StreamReader = null;
try
{

reader = new StreamReader(string fileName);

ProcessStream(reader);

}
finally

{
if (reader != null)

{
reader.Close();

}

To present an even better approach than the finally mechanism, C# has the won-
derful keyword using that implicitly implements the disposable design pattern and
ensures that the resource it is attached to cleans up, even in the event that an
exception occurs. The using keyword only works on classes that implement the

150

Chapter 14 = Best Practices for Robust Exception Handling

IDisposable interface, but that also means you can create custom classes that
require a cleanup process and use this keyword on them.

The following code shows how the using keyword works:

public void DoSomething(string fileName)

{
using (StreamReader reader = new StreamReader(string fileName))

{
ProcessStream(reader);
}
}

This solution is much more elegant than an ugly exception handler, and still
ensures that the resource is released when it is no longer needed.

Unhandled and Thread Exception Events

There are a few issues when using either the AppDomain.UnhandledException event or
the Application.ThreadException event. The notification fires so late that by the
time you receive the exception notification, your application will be unable to
respond to it. Additionally, you will not receive any notifications if your exception
was thrown from the main thread or unmanaged code.

It is also very difficult to write a generic exception handler for the entire applica-
tion that is robust and flexible enough to accommodate and correctly handle every
erroneous situation. Because a generic handler would not have access to the local
variables present when the exception was thrown, the need to rely on global vari-
ables and singletons will be increased, which is something that should be ulti-
mately avoided.

With such faults, you are probably wondering why these events should be used in
the first place. Consider them as “safety nets” for the situations where an exception
slips through and would be normally handled by the default exception handler
provided by the Common Language Runtime.

Conclusion

Structured exception handling is and will remain an integral part of any software
project. This chapter covered some best practices for using .NET exception handling,
and it is highly advisable that you adopt these new techniques and approaches into
your development projects. Doing so will improve both the design and perfor-
mance of your code and will increase the overall maintainability of your software.

Conclusion

While you could build your own exception handling manager that offers many fancy
features that other developers would be envious of, it is important to remember
that software development is about building software that meets business needs
and doing so in a timely manner. Reinventing the wheel is generally ridiculed, so
there are a couple of components available from Microsoft that can be used when
there is a need for advanced exception handling support.

The first component is the Exception Handling Application Block that offers the
ability to create a consistent strategy for processing exceptions on all architectural
layers of an application. This component is not limited to service boundaries,
which is an important feature for distributed architectures. Several tools are
included with the installation that help you create and configure exception poli-
cies for your application. The Exception Handling Application Block can be down-
loaded from MSDN.

The other component is the Logging and Instrumentation Application Block,
which allows for .NET applications to be built for manageability in a production
environment. Applications can leverage existing logging, tracing, and eventing
mechanisms built into Windows, and can issue a variety of warnings, errors,
audits, diagnostic events, and business-specific events. This component also pro-
vides statistics like average execution time for a process or service. This component
can also be downloaded from MSDN.

151

This page intentionally left blank

PART Il

I
TECHNIQUES FOR
ARBITRARY TooOLs

It’s hard to read through a book on the principles of magic without glancing
at the cover periodically to make sure it isn’t a book on software design.

Bruce Tognazzini

Each and every tool is unique, but there are always core elements that are common
to them all. Designing these core elements to be modular and reusable is advanta-
geous and will save money and time when building subsequent tools that need the
same functionality. Many developers build elaborate solutions to a simple prob-
lem, often reinventing the wheel in the process. These solutions are often complex
and hard to maintain, costing additional resources that are better spent on other
areas of an application that are more deserving of the time.

The chapters in Part II cover arbitrary elements that are applicable to almost any tool,
independent of the feature list or specifications. The accompanying components to the
chapters are also flexible enough that they can be plugged into these arbitrary tools
with little to no modification. It is this reusability that will save a project additional
resources that can be spent elsewhere. The majority of the chapters cover techniques
that are relevant to the storage and manipulation of arbitrary data in a common form.
Some techniques include data compression, encryption, printing support, using the
PropertyGrid control, and a generic framework for handling batch file processing.

This page intentionally left blank

CHAPTER 15

COMPRESSING DATA TO
REDUCE MEMORY FOOTPRINT

The programmer’s primary weapon in the never-ending battle against slow
systems is to change the intramodular structure. Our first response should
be to reorganize the modules’ data structures.

Frederick P. Brooks

Games are being produced with multiple gigabytes of game assets, and it is pro-
jected that file sizes will increase at an exponential rate in the years to come. One
of the largest issues for building reusable and efficient tools comes down to scala-
bility, and how to build tools that can manage countless assets. One way to achieve
this goal is through the use of data compression to reduce the file size of each game
asset.

A variety of software development projects employ data compression, and almost
all operating systems and platforms have libraries and tools available to perform
data compression for different types of situations and datasets. Fortunately, NET
2.0 introduced some new data compression components that make the whole
process very easy.

As for a definition, data compression removes redundancy from data, which can
come in a lot of different forms depending on the type of data in question. On a
small scale, repeated bit sequences (11111111) or repeated byte sequences
(XXXXXXXX) can be transformed. On a larger scale, redundancies tend to come

155

156

Chapter 15 = Compressing Data to Reduce Memory Footprint

from sequences of varying lengths that are relatively common. Basically, data com-
pression aims at finding algorithmic transformations of a dataset that will produce
a more compact representation of the original dataset.

Choosing the best compression algorithm depends on a number of factors, such
as expected patterns and regularities in the data, storage and data persistence
requirements, and both CPU and memory limits. This chapter briefly covers some
data compression theory, but it mostly covers implementation of data compres-
sion using the built-in C# components.

Types of Compression

Data compression basically comes in two flavors, lossy and lossless.

Lossy compression is a representation of the original dataset that is “close enough”
in comparison. File sizes are significantly reduced by losing a reasonable amount
of data in the compression process. Lossy compression can produce far more com-
pact dataset representations than lossless compression. The main problem with
lossy compression is that valid data is actually lost and unrecoverable, but this lim-
itation is all right for images, sound files, and video clips where data loss is accept-
able because humans can only perceive a subset of the actual data anyway. In the
data persistence world, where data cannot be lost or corruption would occur, lossy
compression algorithms will not suffice. Storing a “close enough” representation of
a data file would be useless. Lossy compression also does not generally provide a
decompression algorithm because of the data loss.

Lossless compression is a representation of the original dataset that enables repro-
duction of the exact contents of the original dataset by performing a decompres-
sion transformation. No data is ever lost in the compression process, making it the
perfect solution for compressing data that must maintain integrity. This chapter
only covers lossless data compression, because we generally want tools to maintain
100 percent data integrity unless we are dealing with image compression.

GZipStream Compression in .NET 2.0

Microsoft .NET 1.1 did not include any data compression components other than
third-party solutions. Recently introduced in .NET 2.0 is the System.10.Compression
namespace that provides compression and decompression services for streams.
There are currently two supported algorithms: deflate and gzip. This chapter cov-
ers the gzip algorithm exclusively.

Implementation for Arbitrary Data

The gzip algorithm is a lossless data format that is safe from patents. The gzip
implementation provided by Microsoft is completely compatible with the unix
gzip functionality, though the .NET implementation has a slightly weaker com-
pression algorithm. The gzip implementation follows the format from RFC 1952.
Microsoft .NET 2.0 provides gzip functionality through the GZipStream class.

Another great feature of the gzip format is that there is a cyclic redundancy check-
sum that is used to detect data corruption.

Note

The GZipStream class cannot be used to compress files larger than four gigabytes in size.

Implementation for Arbitrary Data

The first step to use the GZipStream class is to include the appropriate namespaces.

using System;
using System.IO;
using System.I0.Compression;

The following method is used to compress arbitrary data stored in a byte array and
return a byte array containing the compressed data. Notice that the input data
length is written as the first four bytes of the stream. This is so the decompression
method can decompress that data without having to determine the original file
size of the data. This was done to improve performance and speed, sacrificing
compatibility with other gzip implementations. We want to know the original size
of the data before compression so we can allocate enough memory to store the
data after decompression.

Data is compressed on the fly as it is written into the GZipStream. Notice that the
constructor for GZipStream references the memory stream that will hold the resul-
tant data. This compression can be done against any stream object, including,
FileStreanm for files.

internal static byte[] CompressData(byte[] input)
{
try
{
using (MemoryStream output = new MemoryStream())
{
output.Write(BitConverter.GetBytes(input.Length), 0, 4);

157

158

Chapter 15 = Compressing Data to Reduce Memory Footprint

}

using (GZipStream zipStream = new GZipStream(output,

CompressionMode.Compress, true))
{

zipStream.Write(input, 0, input.length);
}

return output.ToArray();

catch (Exception)

{

}
}

return null;

Decompression is handled in the same way as compression, except the
CompressionMode.Decompress enum value is used. The first step is to read the initial
four data bytes from the stream as an integer describing the buffer size for the
decompressed data. Then the data buffer is created and the input data is decom-
pressed and read into it.

internal static byte[] DecompressData(byte[] input)

{

try

{

using (MemoryStream inputData = new MemoryStream(input))
{
byte[] TengthData = new byte[4];

if (inputData.Read(TengthData, 0, 4) == 4)

{
int decompressedLength = BitConverter.ToInt32(1engthData, 0);
using (GZipStream zipStream = new GZipStream(inputData,

CompressionMode.Decompress))
{

byte[] decompressedData = new byte[decompressedlLength];
if (zipStream.Read(decompressedData,
0,

decompressedLength) == decompressedLength)

return decompressedData;

Implementation for Serializable Objects

return null;
}
catch (Exception)
{

return null;

Implementation for Serializable Objects

A powerful feature of the .NET platform is the ability to serialize objects into an
XML or binary representation to make storing, sending, or transforming data
extremely easy. Serialization is common practice and is used in many facets of
.NET application or systems development. The BinaryFormatter class can serialize
and deserialize data into a stream, which makes GZipStream a suitable target for
data transformation.

The first step is to include the appropriate namespaces.

using System;

using System.IO;

using System.I0.Compression;

using System.Runtime.Serialization.Formatters.Binary;

The following code describes a simple serializable class that is used in the accom-
panying example for this chapter. It shows how to create a serializable class and
properly decorate it with the SerializableAttribute.

[Serializable]

internal class TestObject

{
private string testString;
private int testInteger;

public string TestString

{
get { return testString; }
set { testString = value; }

159

160 Chapter 15 = Compressing Data to Reduce Memory Footprint

public int TestInteger
{
get { return testinteger; }
set { testInteger = value; }
}

internal TestObject()

{
testString = string.Empty;
testInteger = 0;

}

The next method is used to compress TestObject instances into a byte array contain-
ing the compressed data. You will notice that the code is very similar to compressing
arbitrary data except the BinaryFormatter is in charge of writing to the GZipStreanm.

internal static byte[] CompressTestObject(TestObject testObject)
{
try
{
using (MemoryStream output = new MemoryStream())

{
using (GZipStream zipStream = new GZipStream(output,
CompressionMode.Compress))

{
BinaryFormatter formatter = new BinaryFormatter();
formatter.Serialize(zipStream, testObject);

}

return output.ToArray();

}
catch (Exception)

{

return null;
}
}

Decompression works the same as the compression method, except the input data
is decompressed and deserialized into a TestObject instance. This approach does
not require the data length to be written to the stream because BinaryFormatter
knows how big the class data is.

Conclusion

internal static TestObject DecompressTestObject(byte[] input)

{

try

{

}

using (MemoryStream output = new MemoryStream(input))
{
using (GZipStream zipStream = new GZipStream(output,
CompressionMode.Decompress))
{
BinaryFormatter formatter = new BinaryFormatter();
return (formatter.Deserialize(zipStream) as TestObject);

catch (Exception)

{

}

return null;

Conclusion

This chapter briefly covered part of data compression theory, though barely
scratching the surface of a complex topic, and then later jumped into implemen-
tation details for the GZipStream class introduced in .NET 2.0.

Data compression has been and always will be a crucial element of many tools,
especially with the projected increase in the volume of game content over the next
couple of years. Data compression also has its place with network tools where
bandwidth and transfer speed is limited.

161

This page intentionally left blank

CHAPTER 16

PROTECTING SENSITIVE
DATA WITH ENCRYPTION

The only thing more frightening than a programmer with a screwdriver or
a hardware engineer with a program is a user with a pair of wire cutters
and the root password.

Elizabeth Zwicky

With the highly distributed software populating the computing world these days,
there is often a need to protect sensitive data so that it is accessible only by a select
group of people. Some applications are network- or Internet-driven, and they must
maintain secure communication so that malicious attackers cannot modify incom-
ing and outgoing packets. Other applications need to store sensitive data locally in
the file system or a remote database in a format that is unreadable by humans.

Developers look towards encryption to accomplish this feat, but very few of them
implement it correctly. These developers throw around buzzwords like “128-bit
encryption” and claim that their applications are secure, when, in fact, they have
introduced security flaws that can be exploited by anyone with the knowledge to
do so.

Some developers also think that they can roll their own implementation of a par-
ticular algorithm and claim that it works correctly. Just because you see data that
you think is encrypted does not actually mean that it is. Many of these developers
could probably hand their implementations over to a knowledgeable cryptologist

163

164

Chapter 16 = Protecting Sensitive Data with Encryption

who would discover flaws. Experts were hired to implement the algorithms pro-
vided in the .NET Class Framework, and it is advisable to use their implementa-
tions because they more than likely have a better understanding of encryption
than you do.

This chapter covers the encryption ciphers available in the .NET Class Framework,
how to implement encryption properly, and common pitfalls and issues when
securing data with encryption.

Encryption Rudiments

Encryption is a complex subject, and it is impossible to cover all aspects in a single
chapter. While still quite ambitious, in this chapter, I will attempt to summarize the
common characteristics of encryption and present a solution that takes care of the
majority of the underlying mechanisms and theory behind encryption. This chap-
ter will only cover the usage of algorithm implementations currently provided by
the .NET Class Framework, and not how to implement the algorithms yourself.

To fully understand this chapter and encryption in general, we must define a few
common characteristics and terms.

Public-Key Encryption

This type of encryption is commonly referred to as asymmetric encryption and
uses a public and private key pair to perform encryption or decryption of data.
The public key is available to everyone and is used to encrypt data that will be
decrypted by the owner of the private key. The private key is kept secure by the
owner and is used to decrypt data that has been encrypted with the public key.

Asymmetric encryption is generally only efficient on relatively small sets of data.
The .NET Class Framework contains two asymmetric encryption algorithms:
Digital Signature Algorithm (DSA) and RSA.

Private-Key Encryption

This type of encryption is commonly referred to as symmetric encryption and uses
a single key to perform encryption or decryption of data. The private key must be
kept safe from anyone other than the owner of the data.

Symmetric encryption is generally fast and can operate on large sets of data. The
NET Class Framework contains four symmetric encryption algorithms: DES, Triple
DES, RC2, and Rijndael.

Encryption Rudiments

Ciphers

Ciphers are cryptographic algorithms that use a private key to transform plain text
input into an encrypted output, also known as cipher text. There are two forms of
ciphers: block-based and stream-based.

A block-based cipher takes a fixed size input block and transforms the data into a
fixed size cipher text block.

A stream-based cipher does not encrypt data but instead generates a key stream
that produces the cipher text by XORing the stream bytes with the input bytes.

The .NET Class Framework only provides block-based ciphers, but it is possible to
make a block-based cipher behave in a streaming fashion.

Block Padding

Block ciphers were designed to operate on complete blocks of data. Padding is
used when processing a partial block of data to append extra data to the incom-
plete block, making it an even multiple of the block size.

The .NET 2.0 Class Framework supports three types of block padding, as described
in Table 16.1.

Table 16.1 Padding Modes Available in .NET 2.0

Padding Mode Description

PaddingMode.None Informs the cipher that no padding should occur. This mode requires that
you ensure that only complete blocks are processed or any exception will
be thrown.

PaddingMode.Zeros Informs the cipher that zeros should be appended to the incomplete data
block to make it an even multiple of the block size.

The problem with this mode is that the decryption process will not be
able to distinguish the padding from the actual data, which will result in
the padding being appended to the decrypted data.

A possible solution is to transmit the padding length with the data so that
the padding can be removed when the decryption process has finished.

PaddingMode.PKCS7 Informs the cipher to append a sequence of bytes that has a value equal
to the number of padding bytes.

In a 128-bit data block, if the source data looks like [AA BB CC DD], then
12 padding bytes must be added to make it an even multiple of the block
size. The hex value [0C] represents the numeric value 12 in base 10, so
the final data block will look like: [AA BB CC DD 0C 0C 0C 0C 0C 0C 0C
0C 0C 0C 0C 0C].

165

166 Chapter 16 = Protecting Sensitive Data with Encryption

Table 16.1 Padding Modes Available in .NET 2.0 (continued)
Padding Mode Description

PaddingMode.ISO10126 This padding mode works very much like PaddingMode.PKCS7, except it
sets the value of the final byte in the block to the number of padding
bytes and sets the remaining padding bytes to random data.

PaddingMode.ANSIX923 This padding mode works very much like PaddingMode.PKCS7, except it
sets the value of the final byte in the block to the number of padding
bytes and sets the remaining padding bytes to zero.

It is advisable to use PaddingMode.PKCS7 when developing with .NET 1.1 and
PaddingMode.1S010126 when developing with .NET 2.0. Both versions of the .NET
framework default to PaddingMode.PKCS7, so you will have to explicitly set the
padding mode to ISO10126.

Keep in mind that your software does not exist in a vacuum, so it is important that
you make sure that using a different padding mode will not break any existing code.

Key Strength

The key strength, also known as key size, of an encryption algorithm refers to the
length of the underlying key, and the higher the number the better. Consider the
case of an 8-bit key. It would take an attacker roughly 256 guesses to land on the
key, whereas a 40-bit key would take an attacker roughly over a trillion guesses to
land on the key. The key length is very important, as is the data comprising the key.

Pseudo-random number generators (PRNG) are sometimes used by developers to
generate private keys. Computers are fairly predictable, so achieving randomness
is difficult to do. Do not try to create your own PRNG classes; use the built-in
functionality provided by the RNGCryptoServiceProvider class in the .NET Class
Framework.

Lastly, some developers also derive the key from a password, which may result in
a key of substantial length, but the key is only as random as its source. If a 256-bit
key is derived from a 12-character password, the key is not as secure as one might
think. If a malicious attacker understands how the key is derived, he only has to
attack the 12-character password to reveal the key itself.

Encryption Rudiments

Cipher Modes

One of the most important security issues to correctly configure is the cipher
mode. This mode determines how the individual blocks of a transform are assem-
bled to form the final data.

Messages are usually more than one block in length, so how does the data get
encrypted? The obvious solution would be to encrypt each block individually and
slap them all together in the end. In actuality, this is one of the most insecure cipher
modes (ECB—Electronic Code Book), which can lead to security compromises of
the encrypted data.

Cipher modes are used to modify the encryption process based on data carried
over from previous block encryptions. The resulting encryption provides a much
higher level of security than performing a simple block-level encryption.

The .NET class framework has a variety of other cipher modes available at your
disposal, each with its own pros and cons. These cipher modes are listed in Table
16.2. We will be using the CBC mode for this chapter as it offers the best security.

Table 16.2 Cipher Modes Available in .NET 2.0
Cipher Mode Description

CipherMode.CBC This cipher mode (Cipher Block Chaining Mode) appends a number of
bytes equal to the number of padding bytes used. Before each block is
encrypted, it is combined with the previous block using an exclusive
bitwise OR operation. This allows for each cipher block to be unique.
The initialization vector is combined with the first plain text block before
encryption occurs. If a single bit of the cipher block is corrupted, the
corresponding plain text block will also be corrupted. In addition, a bit
in the subsequent block in the same position will also be corrupted.

CipherMode.CFB This cipher mode (Cipher Feedback Mode) processes small amounts of
plain text instead of an entire block at a time. A shift register is used that
is one block in length and is divided into sections. If the block size is eight
bytes, the shift register is divided into eight sections. If a bit in the cipher
text is corrupted, a plain text bit is corrupted as well as the shift register.
Then all results in the next several plain text processes will be corrupted
until the bad bit is shifted out of the register.

CipherMode.CTS This cipher mode (Cipher Text Stealing Mode) handles any length of plain
text data and produces cipher text that has a length equal to the plain text
length. This cipher mode behaves exactly like the CBC mode except for the
last two blocks of plain text.

167

168 Chapter 16 = Protecting Sensitive Data with Encryption

Table 16.2 Cipher Modes Available in .NET 2.0 (continued)

Cipher Mode

Description

CipherMode.ECB

CipherMode.OFB

Note

This cipher mode (Electronic Code Book) encrypts each block individually.
Any blocks of plain text that are in the same message or in a different
message using the same key will produce identical cipher text blocks.

If the plain text contains a large amount of repetition, it is quite possible
to break the cipher one block at a time. It is also possible to substitute and
exchange cipher blocks without detection. If a single bit in the cipher text
is corrupted, the entire corresponding plain text will also be corrupted.

This cipher mode (Output Feedback Mode) processes small amounts of
plain text instead of an entire block at a time. This cipher mode is very
similar to CipherMode. CFB except the shift register is filled differently.
If a bit in the cipher text is corrupted, the corresponding bit of plain text
will also be mangled. If there are missing bits from the cipher text, the
plain text will be corrupted from that point on.

CTS and OFB are defined but not currently implemented by any algorithms in the .NET framework.

Initialization Vectors

Symmetric algorithms will encrypt the same input block into the same output
block based on the key. This is a weakness that can be potentially exploited by
malicious attackers if they determine the structure of the data. Attackers could
locate patterns and eventually reverse-engineer the private key.

In order to protect against this, the algorithms in the .NET Class Framework per-
form data chaining, where information from the previously encrypted block is used
to encrypt the current block. This technique requires what is known as an initializa-
tion vector (IV) to perform the encryption with increased cryptographic variance.

There are a couple of ways to generate an initialization vector, but one approach is
to run a hashing algorithm on a secret phrase and use a segment of the result as

the encryption IV.

The following code shows how to do this:

using System.Security.Cryptography;

static public byte[] GenerateIV(byte[] key, int size)

Selecting a Cipher

byte[]1 result = new byte[sizel;

SHA384Managed sha384 = new SHA384Managed();
sha384.ComputeHash(key);

for (int bytelndex = 0; byteIndex < result.Length; bytelndex++)

{
result[bytelndex] = sha384.Hash[bytelndex];

}

return result;
}

The following generates a correctly sized key using a variation of the code for the
initialization vector generation.

static public bytel[] GenerateKey(byte[] key, int size)
{
byte[] result = new byte[sizel;

SHA384Managed sha384 = new SHA384Managed();
sha384.ComputeHash(key);

int counter = 0;

for (int bytelIndex = sha384.Hash.Length - 1;
byteIndex > = (sha384.Hash.Length - size);
byteIndex-)

{
resultlcounter++] = sha384.Hash[bytelndex];

}

return result;

Selecting a Cipher

As discussed previously, there are a few ciphers that can be used for private-key
encryption. They all fundamentally do the same thing, except there are some notable
differences between them in terms of performance, efficiency, and security.

169

170

Chapter 16 = Protecting Sensitive Data with Encryption

The symmetric encryption algorithms provided by the .NET Class Framework are
described in Table 16.3.

Table 16.3 .NET Symmetric Encryption Algorithms
Algorithm Description

DES This symmetric algorithm, also known as the Digital Encryption Standard, has
existed for quite some time and is fairly weak by current standards. The DES
algorithm was specifically designed to be efficient when implemented in
hardware and inefficient when implemented in software. Because of its design,
this algorithm is relatively slow compared to more modern algorithms. Another
limitation is the short block and key sizes, available only in a 64-bit flavor.

Triple DES This symmetric algorithm is basically a strengthened version of DES, offering
stronger keys of 128-bit and 192-bit. Triple DES runs the DES algorithm over the
input data three times, resulting in an algorithm that is stronger but three times
slower than DES.

RC2 This symmetric algorithm is fairly good, and it performs more than twice as fast
as DES when implemented in software. The 64-bit block size is relatively small,
but at least the algorithm supports key lengths of 40 to 128 bits in 8-bit
increments.

Rijndael This symmetric algorithm, also known as the Advanced Encryption Standard
(AES), supports block and key sizes of 128, 192, and 256 bits.

While scrutinized for being new and not yet standing the test of time, the
Rijndael algorithm has become a U.S. Federal Government standard, and is
the recommended symmetric encryption algorithm to use whenever possible.

ICryptoTransform Interface

All symmetric encryption implementations provided in the .NET Class
Framework implement the ICryptoTransform interface, which provides a uniform
way to encrypt and decrypt data independently of the selected cipher.

Table 16.4 describes the members of the ICryptoTransform interface.

Since all symmetric algorithms inherit from this interface, encryption and decryp-
tion is accomplished using the same calls independently of the cipher used. The
following code shows how to encrypt or decrypt binary data of arbitrary length.

ICryptoTransform Interface

Table 16.4 Members of the ICryptoTransform Interface

Member Name Description

CanReuseTransform This property indicates whether the current transform can be
reused or not. All ciphers in the .NET Class Framework always
return true.

CanTransformMultipleBlocks This property indicates whether or not multiple blocks can be
transformed in a single call to either TransformBlock or
TransformFinalBlock. All ciphers in the .NET Class
Framework always return true.

InputBTockSize This property indicates the size of the input blocks, which will
always be identical to the QutputBlockSize. The return
value is dependent on the value of the B1ockSize property
set in the cipher.

OutputBlockSize This property indicates the size of the output blocks, which
will always be identical to the InputBlockSize. The return
value is dependent on the value of the B1ockSize property
set in the cipher.

TransformBlock This method encrypts or decrypts one or more blocks before
the end of the message.

TransformFinalBlock This method encrypts or decrypts one or more blocks at the
end of the message. Ending blocks must be transformed
differently from other blocks due to padding issues.

using System.Security.Cryptography;

static public bytel[] EncryptMessage(SymmetricAlgorithm cipher,
bytel[] key,
byte[] plainText)

{
ICryptoTransform transform = cipher.CreateEncryptor(GenerateKey(key, 16),
GeneratelIV(key, 16));
byte[] result = transform.TransformFinalBlock(plainText, 0, plainText.Length);
return result;
}

static public byte[] DecryptMessage(SymmetricAlgorithm cipher,
bytel[] key,
byte[] cipherText)

ICryptoTransform transform = cipher.CreateDecryptor(GenerateKey(key, 16),
GeneratelIV(key, 16));

171

172

Chapter 16 = Protecting Sensitive Data with Encryption

}

You will notice in the above example that TransformFinalBlock is called, but
TransformBlock is never called. Since we know that CanTransformMultipleBlocks will
always return true with any of the symmetric algorithms in the .NET Class

byte[] result = transform.TransformFinalBlock(cipherText, 0, cipherText.Length);

return result;

Framework, we can transform all of our data in one pass.

The following code shows a simple example using the code shown in this chapter.

using System.Text;

static void Main(string[] args)

{
byte[] key = Encoding.Default.GetBytes("This is my secret key!");
string plainText = "This is a test!";
// You can also use RC2, DES, and TripleDES
RijndaelManaged cipher = new RijndaelManaged();
cipher.Mode = CipherMode.CBC;
Console.WriteLine("Original: [" + plainText + "1");
byte[] encryptedData = EncryptMessage(cipher, key,

Encoding.Default.GetBytes(plainText));
Console.WriteLine("Encrypted: [" +
Encoding.Default.GetString(encryptedData) + "1");

byte[] decryptedData = DecryptMessage(cipher, key, encryptedData);
string decryptedText = Encoding.Default.GetString(decryptedData);
Console.WriteLine("Decrypted: [" + decryptedText + "1");
Console.WritelLine("");
Console.WriteLine("Press any key to continue.");
Console.Read();

}

Conclusion

This chapter covered the theory and implementation details of using the built-in
cryptography functionality in the .NET framework. While the presented solution
could be improved upon and extended into a more reusable encryption manager,

the fundamental code stays the same.

CHAPTER 17

GENERIC BATCH FILE
PROCESSING FRAMEWORK

Simple things should be simple and complex things should be possible.
Alan Kay

Of all the common elements in the majority of development tools, batch file pro-
cessing is used quite frequently by game tool programmers. It is not uncommon
for a game to contain multiple gigabytes of game content files, so batch file pro-
cessing is a must when a large volume of data is in need of alteration.

Some examples of batch file processing include generation of normal and texture
maps from a collection of source art, deleting all files where the file name match-
es a particular search string, and recursively copying a folder hierarchy to another
location when the directory layout is restructured.

The type of processing done on the files could be pretty much anything, although
the code behind recursively iterating through directories and files remains relatively
generic. Because effective use of time is essential when developing tools that our
coworkers are waiting on, especially when the tool is not overly complex, reusability
of common code is crucial. In this chapter, I present a generic batch file processing
framework that promotes reusability, strong design, and flexibility.

173

174

Chapter 17 = Generic Batch File Processing Framework

Goals

The main goal of this framework is to promote reusability of the code that exists
in all batch file processing tools, and to ensure that this framework will be suffi-
ciently flexible for all the tools utilizing it.

The framework must be designed to work in either a console or WinForm envi-
ronment, so the code should remain in a class library and only reference the core
assemblies.

Strong design should be promoted through the use of solid OOP techniques.
Maintainability is extremely important in any project, so a framework with a solid
design results in better tools.

Developers must be able to quickly build tools without using a cumbersome API;
the framework should be easy to configure and execute.

A verbose mode where operation progress can be reported to the user should also
be available, keeping in mind that other tools should be able to run in silent mode
as well.

The framework must have extremely low overhead because large operations
demand performance.

Special situations where files are read-only should also be handled safely; the
framework should be able to ignore read-only files or force writing if configured
to do so. Configuration of the common base code is important, so other options,
such as whether or not to recursively travel down directory structures, will also be
available.

Lastly, the framework should be able to cancel the current operation. Support that
will enable cancellation on a per-transaction basis will be integrated; that is, can-
cellation will not be supported halfway through the modification of a file, but
rather after the current operation finishes. A mechanism will be available to devel-
opers so that they can support cancellation during an operation if they wish to
worry about data integrity themselves.

Proposed Solution

In order to make a truly generic framework, we have to isolate the code that is dif-
ferent than other batch file processing tools, and build our framework around the
code that remains. The work that these utilities perform is the variant data, so a

Implementation

generic framework must be able to support an interface that allows different func-
tions to be attached to it, depending on the work needed. There are two ways that
our framework will allow the worker function to be defined: through the use of
delegates and through the use of virtual functions accessible through inheritance.

Delegates, the equivalent to function pointers in C++, will allow our system to
specify the worker function without requiring inheritance. The delegate approach
should only be used in throwaway tools where time is more important than main-
tainability, because delegates generally promote bad design when compared to the
alternate OOP approach.

The other way that we will be able to specify the worker functions will be through
inheriting from the base framework class. A virtual function will be called when a
file is to be processed and the super class can take care of it appropriately.

For example, if you have a tool that has to recursively open all .txt files in a direc-
tory and replace occurrences of a certain phrase with another, you would create a
class that inherits from the base framework, and override the process method. In
this method, you would open the file, read in the text, perform the substitution,
and save the new text back to disk. All the code that handles the recursion, file
attributes, pattern matching, and other common I/O operations would be left to
the framework, loosely coupled from the tool itself.

The properties, events, and methods of the base framework class will be defined in
an interface to ensure strong OOP design. This will allow for a modular approach
to even the framework engine itself, if more than one engine is ever used.

A delegate will exist for progress notification, so that users will be able to watch the
status of the current operation.

The framework will also provide support for handling read-only files. The ability
to skip read-only files will be available, as will the ability to remove the read-only
attribute from the file before passing the file off to the worker function.

Implementation

Based on the above goals and proposed solution, the following two components
make up the batch file processing framework. See Tables 17.1-17.3 for description
of Delegate Definitions.

The following interface defines the properties, events, and methods that the frame-
work engine must realize. The code is quite simple, but I will go over the code for
the sake of clarity.

175

176 Chapter 17 = Generic Batch File Processing Framework

Delegate Definitions

Table 17.1 Delegate Definitions

Delegate

Description

FileAccessProcess

FileAccessNotify

This event is fired when the worker function wishes to notify the user
about the operation. This delegate is available to the tool regardless of
the method chosen to specify the worker function.

This event is fired when the worker function wishes to notify the user
about the operation. This delegate is available to the tool regardless of
the method chosen to specify the worker function.

Table 17.2 Property Definitions

Property

Description

Recursive

SkipReadOnTy

ForceWriteable

FilePattern

Cancelled

This property is used to specify whether or not directories are traversed in
a recursive fashion. If this property is false, then only the top-level directory
is actually processed.

This property is used to specify whether or not files that are marked with a
read-only attribute should be processed by the worker function.

This property is used to specify whether or not files that are marked with a
read-only attribute should be made writeable and then processed by the
worker function.

This property is used to specify the pattern to match when choosing the
files to process in a directory. The default pattern is *.*, which processes
every file. If the pattern were set to *.txt, then only text files would be
processed.

This property is used to specify whether or not the operation has been
cancelled. The worker function can check this property each time it is called
to see if cancellation is occurring.

Table 17.3 Method Definitions
Method Description

Execute This method is called by the tool when processing should begin using the set
options and worker function. The full path to the directory to begin processing
with is sent in as a parameter.

Implementation 177

Table 17.3 Method Definitions (continued)
Method Description

Cancel This method is fairly self-explanatory; it cancels all remaining operations that
have not yet been started, and it sets the Cancel1ed property so that the
worker function knows that it should either stop what it is doing or finish up.

Notify This method is called by the worker function to fire the OnNoti fy event. As long
as the tool has set this delegate to a function, it will fire when a notification is sent.

The following code composes the file access interface that powers the logic behind
each batch processing tool. This interface is implemented and customized for each
tool.

using System;
using System.IO;

namespace BatchFileFramework

{
public delegate void FileAccessProcess(IFileAccessLogic Togic, Filelnfo filelnfo);
public delegate void FileAccessNotify(string message);

public interface IFileAccesslogic

{
bool Recursive
{
get;
set;
}
bool SkipReadOnly
{
get;
set;
}
bool Forcelriteable
{
get;
set;

178

Chapter 17 =

string FilePattern

{

get;
set;

}

bool Cancelled

{

get;
set;

}

void Execute(string fullPath);
void Cancel();
void Notify(string message);

event FileAccessProcess OnProcess;
event FileAccessNotify OnNotify;

}

Generic Batch File Processing Framework

The following class implements the [FileAccessLogic interface and houses a lot of
the common functionality that is present in almost every batch file processing tool.

using System;
using System.IO;

namespace BatchFileFramework

{

public class FileAccessLogic :

{
private
private
private
private

private

private
private

1 verbose = false;
1 recursive = false
bool skipReadOnly = fa

1 forcelriteable =

se;
.l s
1se
fa]se
string filePattern = "* *";

bool cancelled

false;
bool running 1se;

false

public event FileAccessProcess OnProcess

public event FileAccessNotify OnNotify =

IFiTeAccesslogic

= null;
null;

public bool Verbose

{
get { return verbose; }
set
{
if (lthis.running)
verbose = value;
}
}
public bool Recursive
{
get { return recursive; }
set
{
if (Ithis.running)
recursive = value;
}
}
public bool SkipReadOnly
{
get { return skipReadOnly; }
set
{
if (lthis.running)
skipReadOnly = value;
}
}
public bool ForceWriteable
{
get { return forceWriteable; }
set
{
if (!this.running)
forceWriteable = value;
}
}

public string FilePattern
{

Implementation

179

180

Chapter 17 = Generic Batch File Processing Framework

get { return filePattern; }
set

{
if (!'this.running)
filePattern = value;

}

public bool Cancelled

{
get { return cancelled; }
set { cancelled = value; }
}
public void Execute(string fullPath)
{
cancelled = false;
running = true;
if (File.Exists(fullPath))
Process(this, new FileInfo(fullPath));
else if (Directory.Exists(fullPath))
ProcessDirectory(fullPath);
running = false;
}
public void Cancel()
{
cancelled = true;
}

public void Notify(string message)
{
if (lverbose)
{
if (this.OnNotify != null)
this.OnNotify(message);

Implementation

private void ProcessDirectory(string directoryPath)
{

ProcessDirectory(new DirectoryInfo(directoryPath));

}
private void ProcessDirectory(DirectoryInfo directoryInfo)
{
if (cancelled)
return;

ProcessFiles(directoryInfo);

if (recursive)

{
foreach (DirectoryInfo subDirectoryInfo in
directoryInfo.GetDirectories())
ProcessDirectory(subDirectoryInfo);
}

private void ProcessFiles(DirectoryInfo directoryInfo)

{
foreach (FileInfo filelnfo in directoryInfo.GetFiles(this.filePattern))
{
if (cancelled)
return;

FileAttributes attributes = File.GetAttributes(fileInfo.FullName);

if ((attributes & FileAttributes.ReadOnly) = FileAttributes.ReadOnly)

{
if (skipReadOnly)
continue;
else if (forceWriteable)
File.SetAttributes(fileInfo.FullName, FileAttributes.Normal);
else
continue;
}

Process(this, filelnfo);

181

182 Chapter 17 = Generic Batch File Processing Framework

}

protected virtual void Process(IFileAccessLogic logic, FileInfo filelnfo)

{
if (OnProcess != null)
OnProcess(this, filelnfo);

Conclusion
On the Companion Web site are two examples showing a number of features of
this framework.

There is a simple listing example that does not perform any file modification, so it
is safe to run from the top-level directory of your hard drive for the best perfor-
mance results. This example shows how to use the delegate approach to specify the
worker function.

The other example is a search and replace process that searches for all .txt files in the
directory structure and replaces a particular search pattern with another specified
word.

Caution

The search and replace example should be used with care so you do not modify the wrong files!

CHAPTER 18

ENSURING A SINGLE
INSTANCE OF AN APPLICATION

Never allow the same bug to bite you twice.

Steve Maguire

With most modern operating systems, multiple instances or processes of an appli-
cation can be launched, each with its own internal state and memory. Some tools
are not affected by multiple instances being launched, but other tools are. Imagine
a tool that, when launched, creates a network socket and binds it to a specific port
through which to receive data. If a second instance of that tool were launched, the
initialization would fail because the network port would already be in use. As
another example, look at Adobe Photoshop or any other fully featured image edit-
ing suite. How frustrating do you think it would be if, every time you double-clicked
an image on your desktop, a new instance of Adobe Photoshop would launch?
When a file associated with a specific application is launched from Windows
Explorer, the file name is not passed to a current running process if there is one.
The application that handles the file is determined and a new instance is launched
with the file name as a parameter.

A solution to this problem would be a system that could determine whether there
are any running instances of a particular application, redirect launch parameters
to the running instance, and abort the launching of any additional instances.

183

184

Chapter 18 = Ensuring a Single Instance of an Application

This chapter presents a couple of ways to determine whether there is a running
instance of the application, pass command line arguments to an existing instance,
and bring its main window to the foreground.

Early Solutions

I have used a few strategies in the past to implement single application instances.
One method is to create a threading Mutex with a unique name that identifies the
application set to the full path to the executing assembly. The Mutex class can be
used to protect a shared resource from simultaneous access by multiple threads
and processes. A Mutex has two states: signaled or non-signaled. When the state is
signaled, the Mutex is not owned by any thread. When the state is non-signaled,
that means there is a thread that currently possesses ownership of the Mutex. The
ownership of a Mutex is only available to a single thread, so when two threads try
to write to the shared memory at the same time, the first thread to do so acquires
ownership, while the second thread waits for ownership to be released.

The first time an application starts up, it will perform a check for a uniquely
named Mutex to see if there are any other running instances. It will not find any, so
the next step will be to create a Mutex with a unique name so that other application
instances can see that another instance is already running; the unique name will be
the full system path to the executing assembly’s location. With the Mutex created,
we must now call the WaitOne() method so that we set the state to non-signaled and
grant ownership to the thread of this application. At this point, the application
instance can completely load and make itself available to the end user.

All subsequent application instances that start up will perform the same check that
the first instance did, except they will fail. Each new instance will create a Mutex class
using the same name that the first instance used, but all further calls to WaitOne()
will return false because the ownership is currently bound to the thread of the first
instance.

The following code shows a simplified implementation using this approach.

using System.Threading;

[STAThread]
static void Main()
{
Mutex mutex = new Mutex(false, Assembly.GetExecutingAssembly().Location);

if (Imutex.WaitOne(l, true))
{

}

else

{

}

Early Solutions

MessageBox.Show("There is already an instance of this executable " +
"running as a process");

// Keep the mutex alive until the process terminates
GC.KeepATlive(mutex);

AppTlication.Run(new MainForm());

Another method is to use Windows Management Instrumentation (WMI) to
query the operating system for a listing of active processes filtered by name. Some
developers may favor this approach to the other solutions, so the following code
has been included to show an implementation using WMI. The Companion Web
site has the full source code with additional comments.

public sealed class ProcessCountManager

{

public static int Query(string applicationName)

{

}

return QueryRunningProcessCount(applicationName);

public static int Query(System.Reflection.Assembly assembly)

{

// Break the full path to the executing assembly into
// a string array of parts
string[] TocationParts = assembly.Location.Split("\\".ToCharArray());

// Retrieve the application name from the last element
// of the Tocation array
string applicationName = TocationParts[locationParts.Length - 11;

// Return the running process count for the specified application name
return QueryRunningProcessCount(applicationName);

public static bool IsRunning(string applicationName)

{

// Add 1 to account for the application doing the check
return Query(applicationName) > 1;

185

186 Chapter 18 = Ensuring a Single Instance of an Application

}
public static bool IsRunning(System.Reflection.Assembly assembly)
{
// Add 1 to account for the application doing the check
return Query(assembly) > 1;
}
private static int QueryRunningProcessCount(string applicationName)
{
// Build a formatted WMI management query to select all
/1 processes matching a specific name
string query = String.Format("SELECT Name FROM CIM_Process " +
"WHERE Name = '{0}'",
applicationName);
// Build an enumerator for the management query results
ManagementObjectSearcher searcher = new ManagementObjectSearcher(query);
// Return the number of results (process count) in the management query
return searcher.Get().Count;
}

}

The WMI implementation has a class composed of static methods that can deter-
mine the number of running processes filtered by name. The easiest and most
maintainable way to use this implementation is to pass the executing assembly
object into the manager. This way, if the assembly name changes, you do not have
to update the code to reflect these changes. The following code shows the proper
usage of the WMI approach.

[STAThread]
static void Main()
{
if (ProcessCountManager.IsRunning(Assembly.GetExecutingAssembly()))
{
MessageBox.Show("There is already an instance of this " +
"executable running as a process");
}
else

Application.Run(new MainForm());

Journey to the Dark Side

Finally, another approach, though a simplified version of the WMI implementa-
tion, is to use the Process object from the System.Diagnostics namespace. While the
WMI version is extremely extensible and robust, the following code using the Process
object is better suited to our needs because it is lightweight.

using System.Diagnostics;

[STAThread]
static void Main()
{
Process process = Process.GetCurrentProcess();

if (Process.GetProcessesByName(process.ProcessName).Count > 1)
{
MessageBox.Show("There is already an instance of this " +
"executable running as a process");
1
else
Application.Run(new MainForm());
}

So far we have discussed a couple of the earlier ways to implement single instance
applications, but with the advent of .NET 2.0, a new integrated approach was pro-
vided that takes care of all the ugly details behind the scenes.

Journey to the Dark Side

Every CLR-compliant language for the .NET platform can reproduce identical
functionality by sharing a common set of framework components. This is because
CLR-compliant languages must support the interoperability with other assemblies
that can be written in a variety of managed languages, meaning that an assembly
written in Visual Basic .NET must be accessible from within a C# application with-
out any performance overhead related to data conversion or “thunking.”

Legacy versions of Visual Basic provided a variety of pre-built components that
aided in the development of applications. Visual Basic .NET exposes a similar
library of components that are generally accessed through the property pages of
the project. One component in particular is the ability to restrict an application so
that it may only be launched once, and redirect the command line parameters
from subsequent instances to the initial one. Visual Basic .NET has a checkbox in
the project properties that enables this functionality, but Visual C# .NET does not
provide it at this time.

187

188

Chapter 18 = Ensuring a Single Instance of an Application

Upon closer inspection of a single instance VB.NET application with a disassem-
bler, Microsoft.VisualBasic.d11 is referenced by the runtime. This assembly exposes
the WindowsFormsApplicationBase class that exists in the Microsoft.VisualBasic.
ApplicationServices namespace. This class provides a mechanism to restrict an
application so that it may only be launched once, and this mechanism supports the
redirection of command line parameters to itself. Microsoft.VisualBasic.d11 is a
common framework component, and it is accessible from any managed language
because it is merely a library of compiled MSIL byte code.

The Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase class
will be used to implement the solution, as presented in the next section.

The Solution

The following namespaces are used by the solution, and the only other namespace
below worth mentioning is System.Collections.ObjectModel. This namespace pro-
vides a generic ReadOnlyCollection that wraps a data type into a strongly typed,
read-only list.

using System;

using System.Windows.Forms;

using System.Collections.ObjectModel;

using Microsoft.VisualBasic.ApplicationServices;

The solution in this chapter will require a way to send a notification to the main
application instance when another instance attempts to launch. The following
class describes the event arguments that will be passed with the notification. It
merely stores a reference to the main form of the application and a collection of
string parameters that were passed by the command line.

internal class SinglelInstanceEventArgs : EventArgs
{

private ReadOnlyCollection<string> commandlLine;
private Form mainForm;
internal ReadOnlyCollection<string> CommandLine

{

get { return commandLine; }

internal Form MainForm

The Solution

get { return mainForm; }

internal SinglelnstanceEventArgs(ReadOnlyCollection<string> commandLine,
Form mainForm)
{
this.commandLine = commandLine;
this.mainForm = mainForm;

}

An important goal of this solution is to transition easily from the standard launch-
ing approach for an application to our new single instance version. This goal war-
ranted the design of a static class that exposes a simple Run method, much like the
Application class. The Run method takes in a reference to the main form of the
application and a delegate to the method that will handle subsequent instance
notifications. The WindowsFormsApplicationBase has a StartupNextInstance event
that is fired when another instance is launched. This solution handles this event
behind the scenes and redirects the event arguments with additional information
to the SinglelnstanceEvent delegate.

internal class SinglelnstanceApplication : WindowsFormsApplicationBase
{
private SinglelnstanceApplication()
{
base.IsSingleInstance = true;

}
private static EventHandler<SinglelnstanceEventArgs> SinglelnstanceEvent;
private static SinglelnstanceApplication applicationBase;
internal static void Run(Form form,
EventHandler<SingleInstanceEventArgs> handler)

{
SinglelnstanceEvent += handler;

applicationBase = new SinglelnstanceApplication();
applicationBase.MainForm = form;

applicationBase.StartupNextInstance += StartupNextInstanceEventHandler;
applicationBase.Run(Environment.GetCommandLineArgs());

189

190 Chapter 18 = Ensuring a Single Instance of an Application

private static void StartupNextInstanceEventHandler(object sender,
StartupNextInstanceEventArgs e)

{
if (SinglelnstanceEvent != null)
{
SingleInstanceEvent(applicationBase,
new SinglelnstanceEventArgs(e.CommandLine, applicationBase.MainForm));
}
}

}

The following code shows how a WinForms application is generally launched.

[STAThread]
static void Main()
{
// The old way to Taunch the application
Application.EnableVisualStyles();
Application.Run(new MainForm());
}

The following code shows the new way a WinForms application will be launched
using the single instance component.

[STAThread]
static void Main()
{
Application.EnableVisualStyles();
SinglelnstanceApplication.Run(new MainForm(), StartupNextInstanceEventHandler);
}

You should have noticed the StartupNextInstanceEventHandler. This parameter is a
delegate that will be fired when a subsequent instance is launched, and the main
instance should be notified and given the command line parameters. The follow-
ing code shows how to implement this delegate, activate the main form of the
application, and pass command line parameters to the form.

private static void StartupNextInstanceEventHandler(object sender,
SinglelnstanceEventArgs e)
{
// Restore the window if it is currently minimized
if (e.MainForm.WindowState == FormWindowState.Minimized)

Conclusion

{
e.MainForm.WindowState = FormWindowState.Normal;

}

// Activate the main form
e.MainForm.Activate();

((MainForm)e.MainForm).HandleCommandLine(e.CommandLine);
}

The MainForm class is a simple form that has a method called Hand1eCommandLine.
This method takes in a ReadOnTyCollection<string> instance that contains the com-
mand line parameters. It is now up to you how to determine how these parame-
ters are handled!

Conclusion

In this chapter I began by discussing the necessity of the singleton pattern for
application instances, and then later I detailed a variety of ways to implement such
a pattern. Each method is better suited to a different situation, though the best
approach when at all possible is to use the ApplicationServices component. This
approach offers the least amount of work to implement, and is trivial to maintain.

Perhaps in the future, this functionality will be refactored into a more general
component that is “natively” supported by Visual C# .NET, but at the moment, it
seems to be the best way to handle single application instances with the least
amount of code and effort to maintain it.

Aside from the ApplicationServices component, the other approaches did not
show how to pass command line parameters to the initial instance. This can be
done using .NET Remoting, a TCP\IP loopback channel, or even the WM_COPYDATA
event and the Win32 message pump. This functionality is beyond the scope of this
chapter, but is covered in Parts IV and V of this book.

The Companion Web site contains the full source code and examples to the solu-
tions presented in this chapter.

191

This page intentionally left blank

CHAPTER 19

IMPLEMENTING A CHECKSUM
TO PROTECT DATA INTEGRITY

Where is the information?
Lost in data.
Where is the data?
Lost in the #@%!¢~ database!
Joe Celko

Nearly all software applications handle the manipulation of data through a trans-
mission medium. A transmission medium could be the registry, memory, disk
files, or a database, to name a few. Each medium handles and stores data in a dif-
ferent way, but every transmission medium is unreliable and has the potential to
fail. It is for this reason that the CRC-32 (Cyclic Redundancy Check) algorithm
came to be, which is used to verify that there has been no corruption or errors in
a data transmission. This algorithm is given arbitrary data of arbitrary length, and
computes a 32-bit checksum number representing the contents of the supplied
data, which is transmitted along with the data through the transmission medium
that is used. Once the data arrives at its destination, a new checksum is recalculated
on the data that was received, and it is compared to the checksum calculated before
the transmission. If the values match, the transmission most likely was successful,
but if the values do not match, you know that the transmission encountered an
error of some sort and the data received is incomplete, modified, or corrupted.

193

194

Chapter 19 = Implementing a Checksum to Protect Data Integrity

This algorithm has also been used to detect any tampering done to data files for
games (or any software application for that matter). Checksum values are typical-
ly created for all files before a game ships; those pre-calculated values are checked
against the runtime calculated version when the game launches and detect
whether data has been modified from its original state.

This chapter covers an implementation of the CRC-32 checksum algorithm in C#
and later goes on to show an alternative algorithm provided by Microsoft. The
mathematical proofs and reasoning behind this algorithm will not be covered.

Implementation

The implementation for the CRC-32 algorithm is fairly straightforward and exists
in a few flavors. The implementation provided in this chapter precalculates a
lookup table using a specified polynomial value, and the calculation is based on
the algebra of polynomials over the values (mod 2) using the cached lookup table.

The code is as follows:

public class Crc32

{
private static uint[] _lookupTable;

public uint Calculate(System.I0.Stream stream)

{
unchecked

{
uint result = OxFFFFFFFF;

byte[] buffer

new byte[10247;

int byteCount = stream.Read(buffer, 0, 1024);
while (byteCount > 0)
{
for (int bytelndex = 0; bytelndex < byteCount; bytelndex++)
{
result = ((result) > 8) *
_lookupTable[(buffer[byteIndex]) *
((result) & 0x000000FF)1;

Implementation

byteCount = stream.Read(buffer, 0, 1024);

}
return ~result;
}
}
public uint Calculate(byte[] buffer)
{
unchecked
{
uint result = OxFFFFFFFF;
for (int bytelIndex = 0; bytelndex < buffer.Length; byteIndex++)
{
result = ((result) > 8) *
_lookupTable[(buffer[byteIndex]) *
((result) & 0x000000FF)];
1
return ~result;
}
}

// This static constructor pregenerates the lookup table that our crc32
// algorithm will use to compute more efficiently.
static Crc32()
{
unchecked
{
uint polynomial = 0xADB11320;
uint iterationIndex;
uint bitIndex;
uint crc32Value;

_TookupTable = new uint[2561;
for (iterationIndex = 0; iterationIndex < 256; iterationIndex++)
{

crc32Value = iterationIndex;

for (bitIndex = 8; bitIndex > 0; bitIndex—)
{

195

196

Chapter 19 = Implementing a Checksum to Protect Data Integrity

if ((crc32Value & 1) ==1)
{
crc32Value = (crc32Value >> 1) * polynomial;

else
{
crc32Value >>= 1;
}
}
_lookupTable[iterationIndex] = crc32Value;

}

You will notice the _lookupTable array variable and the static constructor; the
implementation precalculates the checksum values using the provided polynomial
and stores them in a lookup table to improve and speed up calculation performance.

After instantiation and the precalculation of the lookup table, you can call either
signature for the Calculate method. One version accepts a byte array containing
the data to generate the checksum for, and the other version accepts a
System.I0.Stream instead.

Usage

Using the functionality defined in the implementation class is fairly straightfor-
ward. The class will calculate the internal lookup table the first time you instantiate
it, and all you have to worry about is calling the Calculate() method. The Calculate
method is overloaded to accept either a byte array or a System.10.Stream object.

The following code shows the proper way to use this class with a byte array:

byte[] data = new byte[DATA_SIZE];
Crc32 crc = new Crc32();
byte[] result = crc.Calculate(data);

The following code shows the proper way to use this class with a System.10.Stream:

byte[] data = new byte[DATA_SIZE];
using (System.I0.MemoryStream stream = new System.I0.MemoryStream(data))
{

Alternative

Crc32 crc = new Crc32();
byte[] result = crc.Calculate(stream);
}

Using the data “This is a test” will result in a 32-bit checksum value of 2042881507.

The result will be a 32-bit (4-octet) checksum of the data that was provided to the
CRC-32 algorithm, and will subsequently be compared against a future checksum
calculation.

Alternative

There is one potential problem with the CRC-32 Checksum algorithm in regards
to malicious security attacks. Generally, these issues are not important for verifi-
cation of simple data integrity, but it may be advisable to seek an alternative algo-
rithm in environments where security is a concern; verifying the integrity of pack-
ets in a multiplayer environment, for example.

The problem with the CRC-32 (Cyclic Redundancy Checksum) algorithm is that
it is not collision-proof, meaning that it is possible to generate two checksum val-
ues that are identical. This is not an extremely common occurrence, but it intro-
duces enough exploitability that a malicious plain-text attack could be used to
spoof an integrity check. The probability that two dlfferent blocks of data will have
the same checksum value in an N-bit checksum is 1/2". The larger the value rep-
resented by N, the lower the probability that two different blocks of data will have
the same checksum value. So the probability that our CRC-32 1mplementat10n will
generate an identical checksum for two different blocks of data is 127, a percent-
age that is reasonable enough for most situations.

As an alternative, you can utilize the built-in MD5 algorithm from the
System.Security.Cryptography namespace. This algorithm is known so far to be
collision-proof, and may be used in place of CRC-32 for better security and cred-
ibility with a bit of increased overhead.

Implementing the built-in functionality from Microsoft is very easy. Reference the
System.Security.Cryptography namespace and use the following code:

byte[] data = new byte[DATA_SIZE];
MD5 md5 = new MD5CryptoServiceProvider();
byte[] result = md5.ComputeHash(data);

197

198

Chapter 19 = Implementing a Checksum to Protect Data Integrity

The result will be a 128-bit (16-octet) checksum hash of the data that was provided
to the MD5 algorithm, and will subsequently be compared against a future check-
sum calculation.

Conclusion

This chapter covered two ways of generating a checksum value that can be used to
verify data integrity. Each method has different pros and cons, which can be eval-
uated on a per-project basis. The CRC-32 algorithm can be used in situations
where you are basically testing for data corruption, and also in situations where
speed is important. The MD5 algorithm has some added overhead, but its usage
offers more credible and relatively secure checksums.

Regardless of the algorithm you choose to implement, verifying data integrity
using checksums is a popular and low overhead way to ensure that you are always
processing complete and unmodified data. Reliability of tools is very important,
and using checksums offers a quick way to verify that the data that users are cre-
ating is valid, rather than finding out after the application throws an error when it
tries to process the data at a later stage.

CHAPTER 20

UsING THE PROPERTY
GRID CONTROL WITH
LATE BINDING

The only way to discover the limits of the possible is to go beyond them into
the impossible.

Arthur C. Clarke

With the advent of the Microsoft .NET platform, development time has been
decreased significantly because of many improvements to workflow and the tech-
nologies we use. Perhaps one of the most exciting introductions is the idea behind
extensible metadata and reflection, which can be used to interrogate class proper-
ties, methods, and attributes.

Many tools and utilities have a need to work with class objects and also provide a
way to modify the properties of a class. Traditionally, a dialog would have been
built that contained controls which, when modified, would find the currently
selected class and alter the appropriate property; building this dialog is often a very
time-consuming and tedious task. If you work with Visual Studio .NET, you will
have interacted with the PropertyGrid control, which displays information about a
selected user interface element. Figure 20.1 shows the PropertyGrid control in action
within Visual Studio .NET.

199

200

Chapter 20 = Using the Property Grid Control with Late Binding

|
MainForm System.\Windows.Forms.Form -
A EIEA=!
Cursor Default -
Font Microsoft Sans Serif, 8.25pt
ForeColor Hl controlText
FormBorderStyle Sizable
RightToLeft Mo
RightToLeftLayout False
Text Property Grid Example
UseWaitCursor False
El Behavior
AllowDrop False
AutoValidate EnablePreventFocusChange
ContextMenuStrip (none)
DoubleBuffered False
Enabled True
ImeMode MoControl
Bl Data
{ApplicationSettings)
{DataBindings)
Tag
E Design
(Mame) MainForm
| ANOLANE (Default) L"
Accessibility

Figure 20.1 Screenshot of a PropertyGrid in the Visual Studio .NET IDE.

A PropertyGrid can be bound to any managed object and programmatically build
a user interface that can modify the public properties of the object with hardly any
work! In this chapter, I will show you how to create a class with bindable properties,
and then show you how to bind an instance of this class to a PropertyGrid control.
There is too much information on the PropertyGrid to be covered in a short chapter,
but the core functionality should be summarized enough to be applicable to the
majority of tools and utilities.

Designing a Bindable Class

There really is no configuration that has to happen on the PropertyGrid control,
because all the configuration information is specified in the classes that are bound
to the PropertyGrid. The PropertyGrid control interrogates bound classes to find
certain attributes of properties that describe things, such as what category they are
in, the description of the property, and what the default value is. You can also hide
properties from being shown in the PropertyGrid with an attribute as well.

Designing a Bindable Class

The [DefaultPropertyAttribute] specifies the name of the property that will act as the
default property for the PropertyGrid. [CategoryAttribute] specifies the name of the
category that the property is located in. Categories are automatically created based
on these names. The [DescriptionAttribute] specifies the description text that appears
at the bottom of the PropertyGrid when a property is selected. The TypeConverter
and PropertyOrder attributes will be covered in the next section. You can create
read-only properties simply by providing a get construct. You can also hide prop-
erties from showing up in the PropertyGrid by using a [Browsable(false)] attribute.

The following code shows an example of a bindable class that can be visualized
and modified using the PropertyGrid control. Notice the attributes that are used to
specify names, descriptions, and ordering for the visualized properties.

public enum Gender
{
Male,
Female,
Unspecified
}

public enum Position

{
Programmer,
Tester,
Director,
Architect,
Analyst,
Unspecified

}

[TypeConverter(typeof(PropertyOrderConverter)),
DefaultPropertyAttribute("FirstName")]
pubTic class PersonnelRecord
{
// Contact Information
private string firstName;
private string lastName;
private string phoneNumber;
private string email;

// Biological Information
private DateTime birthDate;

201

202 Chapter 20 = Using the Property Grid Control with Late Binding

private int age;

private Color hairColor;
private Color eyeColor;
private Gender gender;

// Employee Information
private int employeeld;
private Position position;
private bool probationary;

public PersonnelRecord()

{
firstName = String.Empty;
TastName = String.Empty;
phoneNumber = String.Empty;
email = String.Empty;

birthDate = new DateTime();
age = 0;
gender = Gender.Unspecified;

employeeld = 0;
position = Position.Unspecified;
probationary = true;

[CategoryAttribute("Contact Information"),
DescriptionAttribute("First name of the employee."),
PropertyOrder(0)]
public string FirstName
{

get { return firstName; }

set { firstName = value; }

}

[CategoryAttribute("Contact Information"),
DescriptionAttribute("Last name of the employee."),
PropertyOrder(1)]
public string LastName
{

get { return TastName; }

set { TastName = value; }

Designing a Bindable Class

[CategoryAttribute("Contact Information"),
DescriptionAttribute("Phone number of the employee. (HHHE-fHHE-HHHE)"),
PropertyOrder(2)]
public string PhoneNumber
{

get { return phoneNumber; }

set { phoneNumber = value; }

[CategoryAttribute("Contact Information"),
DescriptionAttribute("Email of the employee. Format: *@*.*"),
PropertyOrder(3)]
public string Email
{

get { return email; }

set { email = value; }
}

[CategoryAttribute("Biological Information"),
DescriptionAttribute("Birth date of the employee."),
PropertyOrder(0)]
public DateTime BirthDate
{
get { return birthDate; }
set
{
birthDate = value;
age = DateTime.Now.Year - birthDate.Year;

}

[CategoryAttribute("Biological Information"),
DescriptionAttribute("Age of the employee."),
PropertyOrder(1)]
public int Age
{

get { return age; }

[CategoryAttribute("Biological Information"),
DescriptionAttribute("Hair color of the employee. (Optional)"),

203

204 Chapter 20 = Using the Property Grid Control with Late Binding

PropertyOrder(2)]
public System.Drawing.Color HairColor
{

get { return hairColor; }

set { hairColor = value; }

[CategoryAttribute("Biological Information"),
DescriptionAttribute("Eye color of the employee. (Optional)"),
PropertyOrder(3)]
public System.Drawing.Color EyeColor
{

get { return eyeColor; }

set { eyeColor = value; }

[CategoryAttribute("Biological Information"),
DescriptionAttribute("Gender of the employee. (Optional)"),
PropertyOrder(4)]
public Gender Gender
{

get { return gender; }

set { gender = value; }

[CategoryAttribute("Employee Information"),
DescriptionAttribute("Id of the employee as referenced by the HR database."),
PropertyOrder(0)]
public int Employeeld
{
get { return employeeld; }
set { employeeld = value; }

[CategoryAttribute("Employee Information"),
DescriptionAttribute("Position of the employee within the organization."),
PropertyOrder(1)]
public Position Position
{
get { return position; }
set { position = value;)

Ordering Properties

[CategoryAttribute("Employee Information"),

DescriptionAttribute("True or false value indicating a probationary period."),
PropertyOrder(2)]

public bool Probationary

{
get { return probationary; }
set { probationary = value; }

Ordering Properties

Strangely enough, there is no attribute that handles the ordering of properties in
the PropertyGrid. There is, however, a way we can make our own attribute and
custom type converter that can accomplish this for us. First, we will define an
attribute that we can use to specify the sort order for properties in a class.

[AttributeUsage(AttributeTargets.Property)]
public class PropertyOrderAttribute : Attribute
{

private int order;

public PropertyOrderAttribute(int order)
{
this.order = order;

public int Order
{
get { return order; }

}
}

The following code describes a custom type converter class that interrogates the
PropertyOrder attribute in class properties, sorts the property list based on the values,
and returns a descriptor list that can tell the PropertyGrid the order to display the
properties in.

public class PropertyOrderConverter : ExpandableObjectConverter

{
internal class SortablePair : IComparable<SortablePair>

{
private int order;

205

206 Chapter 20 = Using the Property Grid Control with Late Binding

private string name;

public string Name
{
get { return name; }

}

public SortablePair(string name, int order)
{

this.order = order;

this.name = name;

public int CompareTo(SortablePair pair)
{
int result;

if (pair.order == order)
{
result = string.Compare(name, pair.name);
}
else if (pair.order > order)
{

result = -1;

else

I
—

result
}

return result;

public override bool GetPropertiesSupported(ITypeDescriptorContext context)
{
return true;

public override PropertyDescriptorCollection GetProperties(ITypeDescriptorContext cx,
object component,
Attributel] attrib)

Ordering Properties

{
List<SortablePair> propertylList = new List<SortablePair>();

PropertyDescriptorCollection descList = TypeDescriptor.GetProperties(component,
attrib);

foreach (PropertyDescriptor descriptor in desclList)

{
Attribute attribute
= descriptor.Attributes[typeof(PropertyOrderAttribute)];

if (attribute != null)

{
PropertyOrderAttribute orderAttribute = (PropertyOrderAttribute)attribute;
propertylist.Add(new SortablePair(descriptor.Name,
orderAttribute.Order));

}
else

{
propertylList.Add(new SortablePair(descriptor.Name, 0));

}

propertyList.Sort();

List<String> propertyNames = new List<String>();

foreach (SortablePair sortablePair in propertylist)

{ propertyNames.Add(sortablePair.Name);

}

return descriptorlist.Sort(propertyNames.ToArray());
}

Using the type converter class is fairly easy. Just decorate your class declaration
with the attribute, as shown in the following code. Then decorate your properties
with a PropertyOrder attribute to specify the sort order.

207

208

Chapter 20 = Using the Property Grid Control with Late Binding

[TypeConverter(typeof(PropertyOrderConverter))]
public class PersonnelRecord
{
/.
}

NOTE

| did have a workaround for category ordering in Microsoft .NET 1.1, but this workaround had unde-
sired results when used with .NET 2.0. At this point in time, | have not figured out a way to do this.

Using the PropertyGrid

With a bindable class created and a custom TypeConverter created to handle prop-
erty ordering, using the PropertyGrid control is super easy. All you need to do is
drag the PropertyGrid control from the Visual Studio .NET toolbox onto your
form. The only other thing you need to do now is set the SelectedObject property
of the PropertyGrid, to an instance of our bindable class PersonnelRecord.

Figure 20.2 shows the PropertyGrid control item in the Visual Studio .NET toolbox.

L TTHLESS

[ProgressBar

. RV Figure 20.2

% pr

|ﬁi m | Screenshot of the PropertyGrid control
(&) RadioButton item in the Visual Studio .NET toolbox.

The following code snippet shows the load event for the main form in the accom-
panying example. Notice how easy it is to instantiate our PersonnelRecord, set some
initial values, and then bind it to the PropertyGrid.

private void MainForm_Load(object sender, EventArgs e)

{
PersonnelRecord record = new PersonnelRecord();

record.FirstName = "John";

record.LastName = "Smith";
record.PhoneNumber = "555-123-4567";
record.Email = "john.smith@company.com";

record.BirthDate
record.HairColor
record.EyeColor
record.Gender

Convert.ToDateTime("1980-04-10");
Color.Brown;

Color.Blue;

Gender.Male;

Conclusion

record.Employeeld = 12345;
record.Position = Position.Programmer;
record.Probationary = false;

PropertyGridEditor.SelectedObject = record;
}

Running the code snippet that instantiates a PersonnelRecord with initial values and
binds it to the PropertyGrid will produce results similar to those shown in Figure 20.3.

Property Grid Example i -0l x|
EE=
El Biological Information
Birth Date 4/10/1980
Age 25
HairColor I Brown
EyeColor Il Blue
Gender Male
El Contact Information
FirstName John
LastName Smith
PhoneMumber 555-123-4567
Email john_smith@company_com
E Employee Information
Employeeld 12345
Posttion Programmer
Probationany False
Employeeld .
Id of the employee as referenced by the Human Resources database. Flgure 20.3
Screenshot of the accompanying
PropertyGrid example.

The Companion Web site contains the full source code to the bindable class,
PropertyOrder type converter, and example usage.

Conclusion

This chapter discussed the implementation details around the PropertyGrid control
in the NET framework. As mentioned before, the bulk of the implementation lies in
attribute decoration in the bindable class, since all you need do to use the PropertyGrid
is instantiate a PropertyGrid control and set the SelectedObject property to your
class instance.

It should be noted that in this chapter I covered a large chunk of the implementation
details, but there was no coverage of localization of properties or the development
of custom type editors. Both subjects require a fair amount of explanation and code.
Feel free to visit MSDN to investigate these features.

209

This page intentionally left blank

CHAPTER 21

ADDING PRINTING SUPPORT
FOR ARBITRARY DATA

The boldness of asking deep questions may require unforeseen flexibility if
we are to accept the answers.

Brian Greene

One of the more common and important tasks in a Windows application is the
ability to print text or graphics. Printing was somewhat tricky to implement in
the days prior to .NET, but now there is a versatile framework to support it with-
in the System.Drawing.Printing namespace. The majority of the print mechanism
is within the PrintDocument class, which represents a component that sends output
to a printer. This class is very modular, so it allows you to implement either sim-
ple or complex printing logic and execute it using this class alone. Other classes
exist to support printer configuration and page setup properties such as orientation.
This chapter is all about using the managed mechanisms within the .NET Class
Framework to implement printing support within applications. You should have a
basic familiarity with the Graphics class within the System.Drawing namespace.

Printing Regular Text

The first thing that we must implement is the actual printing logic, which is done
by linking into events on PrintDocument. There is a method on PrintDocument called
Print() which, you guessed it, prints the document. When this method is called, a
BeginPrint event is fired, followed by a PrintPage event for each page, and finally

211

212

Chapter 21 = Adding Printing Support for Arbitrary Data

stopping with an EndPrint event. You do not really have to do much with the begin
and end events; the core logic exists in the PrintPage event. This event is passed a
PrintPageEventArgs parameter that contains a property called HasMorePages. If this
property is set to true, a new page is created and the PrintPage event is raised again
when the event handler returns.

The pseudologic for the PrintPage event handler is basically: Print the page content
using the page setting information provided, using the Graphics context provided.
Determine if more pages are needed to completely print all the content for the
document. If yes, set HasMorePages to true; otherwise set it to false.

The following code shows how to instantiate a PrintDocument, wire up to the
PrintPage event handler, and start printing.

PrintDocument printDocument = new PrintDocument();
printDocument.PrintPage += new PrintPageEventHandler(printDocument_PrintPage);
printDocument.Print();

The following code describes the simplest implementation of the PrintPage event
handler, assuming that no additional pages are needed.

private void printDocument_PrintPage(Object sender, PrintPageEventArgs e)
{
string outputText = "Game Engine Toolset Development rocks!";
Font printFont = new Font("Verdana",
9.75F,
FontStyle.Regular,
GraphicsUnit.Point,
((byte)(0)));

e.Graphics.DrawString(outputText,
printFont,
Brushes.Black,
0,
0);
}

Complex printing logic that you wish to reuse across multiple places requires that
you inherit from PrintDocument, handling the PrintPage event by overriding the
OnPrintPage method instead of using the event handler. The following code shows
a sample implementation of a PrintDocument that correctly handles text printing
that spans multiple pages with varying font and page settings.

Printing Regular Text

public class SimplePrintDocument : PrintDocument

{

private StringReader inputStream = null;
private string bufferOverflow = null;
private Font printFont = null;

public SimplePrintDocument(StringReader inputStream, Font printFont)

: base()
{
this.inputStream = inputStream;
this.printFont = printFont;
}
protected override void OnBeginPrint(PrintEventArgs e)
{
base.0nBeginPrint(e);
bufferOverflow = null;
}

protected override void OnPrintPage(PrintPageEventArgs e)
{
base.OnPrintPage(e);

// Figure out how many lines can fit within the page boundaries
float linesPerPage = e.MarginBounds.Height /
printFont.GetHeight(e.Graphics);

int TineCount = 0;

// Deal with any remaining overflow lines from a previous page first
while (TineCount < TinesPerPage && bufferOverflow != null)
{
float positionY = e.MarginBounds.Top +
(TineCount * printFont.GetHeight(e.Graphics));
TineCount += PrintLine(e, bufferOverflow, positionY);
}

// Now handle the current Tine buffer
string line = null;
while (TineCount < TinesPerPage &&
((Tine = inputStream.ReadLine()) != null))
{

213

214 Chapter 21 = Adding Printing Support for Arbitrary Data

float positionY = e.MarginBounds.Top +
(TineCount * printFont.GetHeight(e.Graphics));
TineCount += PrintLine(e, line, positionY);

}

// Print a new page if there are more Tines to print
if (Tine != null)
e.HasMorePages

true;
else

e.HasMorePages = false;
}

private int PrintLine(PrintPageEventArgs e, string text, float positionY)
{

RectangleF rectangle = new RectangleF(e.PageSettings.Margins.Left,
positiony,
e.MarginBounds.Width,
e.MarginBounds.Height);

int lines;
int characters;

StringFormat format = new StringFormat();

e.Graphics.MeasureString(text,
printFont,
rectangle.Size,
format,
out characters,
out Tines);

// Total text will not fit on page; bump to overflow buffer for next page
if (characters < text.Length)

{
bufferOverflow = text.Substring(characters);
}
else
{
bufferOverflow = null;

Supporting Printer Selection

e.Graphics.DrawString(text,
printFont,
Brushes.Black,
rectangle,
format);

// Handle empty Tines
lines = lines == 0 ? 1 : lines;
return lines;

}

Using the new SimplePrintDocument class is easy; instantiate it as you did with
PrintDocument and call the Print() method!

Supporting Printer Selection

We currently have the logic for printing support implemented, so the next logical
step is to provide the ability to select a printer using the standard Windows Print
dialog. Right now, you are simply calling the print method on the document, but
in a real world application, you let the user select the printer she wants to use and
also support the ability to cancel printing. Using the PrintDialog class, we can pro-
vide this functionality to users. Attach the print document to the Document proper-
ty of the dialog and show the dialog as normal. If the dialog returns successfully,
call the print method of the document. The following code shows a sample imple-
mentation of printer selection.

private void PrintButton_Click(object sender, EventArgs e)

{
using (StringReader inputText = new StringReader(PrintTextField.Text))

{
SimplePrintDocument printDocument = new SimplePrintDocument(inputText,
printFont);

PrintDialog printDialog = new PrintDialog();
printDialog.Document = printDocument;

if (printDialog.ShowDialog() == DialogResult.0K)
printDocument.Print();

}

Figure 21.1 shows the printer selection dialog in action.

215

216

Chapter 21 = Adding Printing Support for Arbitrary Data

(S8 Fages fron; te)f
_ I'H .'E .'H ™ Collate
€ Selectior z2j-d] =

2RI

Figure 21.1 Printer selection dialog in action.

Supporting Page Setup

Another common print feature provided by real-world applications is the ability
to choose page settings like the orientation of the paper or the margin sizes. This
can be done with the PageSetupDialog class and a stored instance of the PageSettings
class, as shown with the following code.

private void PageSetupButton_Click(object sender, EventArgs e)

{
PageSetupDialog pageSetupDialog = new PageSetupDialog();
if (cachedSettings == null)
cachedSettings = new PageSettings();
pageSetupDialog.PageSettings = cachedSettings;
pageSetupDialog.ShowDialog();
}

You can now alter the printing logic to set the page settings to our cached instance,
as shown with the following code.

private void PrintButton_Click(object sender, EventArgs e)

{
using (StringReader inputText = new StringReader(PrintTextField.Text))
{

Supporting Page Setup 217

SimplePrintDocument printDocument = new SimplePrintDocument(inputText,
printFont);

if (cachedSettings != null)
printDocument.DefaultPageSettings = cachedSettings;

PrintDialog printDialog = new PrintDialog();
printDialog.Document = printDocument;

if (printDialog.ShowDialog() == DialogResult.0K)
printDocument.Print();

}

Figure 21.2 shows the Page Setup dialog in action.

Page Setup

Figure 21.2 Page Setup dialog in action.

Supporting Print Preview

The last common print feature is the ability to preview a document before actually
printing it. This is done with the PrintPreviewDialog class. Simply attach your print
document to the Document property of the dialog and show the dialog as usual. The
following code shows how to do this.

218

Chapter 21 = Adding Printing Support for Arbitrary Data

private void PrintPreviewButton_Click(object sender, EventArgs e)
{
using (StringReader inputText = new StringReader(PrintTextField.Text))
{
SimplePrintDocument printDocument = new SimplePrintDocument(inputText,
printFont);

if (cachedSettings != null)
printDocument.DefaultPageSettings = cachedSettings;

PrintPreviewDialog printPreviewDialog = new PrintPreviewDialog();

printPreviewDialog.Document = printDocument;
printPreviewDialog.ShowDialog();

Figure 21.3 shows the print preview dialog in action.

) Print preview =] B3
& L - |0 D @ @ @ o Page| 13

Figure 21.3 Print preview dialog in action.

Conclusion

Conclusion

This chapter covered the full implementation of a PrintDocument class that can print
arbitrary text with varying fonts and page settings. The user can select which printer
to use and can modify page properties before printing. In addition to configura-
tion, the user can also bring up a print preview dialog that shows the document as
it would print out before actually committing himself to a print job.

Although this chapter did not cover printing graphics, remember that the
PrintPage event handler is passed a Graphics context that functions like any other
context. You can call methods like FillRectangle() or DrawEllipse() on it and
achieve the desired effect. It is a little trickier when you start introducing graphics,
because you need to implement some form of flow layout to determine the lines
per page and how you position your content when printing.

The Companion Web site contains the full source code from this chapter, along
with an example utilizing the custom print logic. Figure 21.4 shows the interface
of the example, which is simply a front-end to the code discussed throughout this
chapter.

Frinting Demo o] I
Page Setup | Frint Preview | Print |

Lorem ipsumn dolor sit amet, consectetuer adipiscing elit, Etiam accumsan, &
Praesent lectus elit, ultrices quis, posuere a, laoreet guis, ante. Praesent

at nisl hendrerit mi interdum suscipit, Aliqguam sagittis ipsum sit amet elit,
Quisque eget mauris, Fusce at dolor, Cras sed sapien ut dui mallis ultrices.

Ut pellentesque volutpat magna. Cum sociis natogue penatibus et magnis

dis parturient montes, nascetur ridiculus mus, In auctor erat ac dui

consequat cursus, Donec eget purus ac elit lacinia pulvinar. Mam sit amet
pede, Sed vehicula condimentum erat. Aenean porttitor fermentum orci,

Sed feugiat, mauris in interdum volutpat, nisi nulla hendrerit mi, non

rhoncus eros eros et tellus,

Sed suscipit, Etiam eros. Sed aliquet, diam venenatis tempus facilisis, diam
tortor rhoncus lacus, et conwvallis nulla sem blandit massa. Curabitur blandit
molestie nisi, Etiam wvestibulum enim ut urna, Maecenas volutpat convallis
ipsurn. Integer dolor orci, rhoncus a, nonummy ut, lacinia ac, lorem.
Pellentesque sollicitudin odio et guam. Mam pellentesque turpis vitae odio.
Pellentesque congue purus quis sapien. Donec nonummy dui sed augue,
Cras cursus odio eget justo. aliquam erat volutpat, Morbi venenatis
commodo dui. Ut tortor, Suspendisse laoreet arcu id lectus, Sed feugiat
erat nec nisi. Sed vitae pede, Yestibulum sodales sollicitudin massa.

Maecenas eu eros at nisl pulvinar iaculis. Integer dolor diam, luctus vel,
lacreet eu, nonumrmy at, mauris. Cras luctus scelerisque arcu, Mauris tellus,

-

Figure 21.4 Screenshot of the Companion Web site example.

219

This page intentionally left blank

CHAPTER 22

FLEXIBLE COMMAND
LINE TOKENIZER

Always design a thing by considering it in its next larger context—a chair
in a room, a room in a house, a house in an environment, an environment in
a city plan.

Eliel Saarinen—“Time,” July 2, 1956

Command line utilities have always been a favorite among tools developers,
generally because of how quick they are to make. Command line utilities do not
require that code and time be spent on a graphical user interface, which dramati-
cally reduces development time. These tools can also have complex configuration
options that are hidden from the user unless explicitly specified, making the tool
easier to learn and operate. The one disadvantage that command line utilities have
is that they must parse the command line parameters and act on them according-
ly. This can be quite a nuisance, especially when the only input validation is done
by the user before the parameters are parsed by the utility. It can be difficult to cor-
rectly parse a parameter string, including fault tolerance for data input errors.

A tokenizer is code that extracts tokens (substrings) from a given string. The
tokens in the string can be separated by one or more character delimiters. This
chapter discusses a reusable and flexible command line tokenizer that can break an
arbitrary parameter string into name-value pairs.

221

222

Chapter 22 = Flexible Command Line Tokenizer

Formatting Styles

When parsing command line parameters, developers generally come up with
unique ways to express parameter syntax. This has led to some confusion about
consistency and has brought forth the emergence of a number of formatting styles
from the UNIX and Windows worlds.

In order to build a tokenizer that favors a variety of standards, a number of for-
matting styles have been merged into a common syntax for parsing.

The tokenizer syntax supports three styles of prefixes to signify a parameter. A
parameter can be prefixed with a forward slash (/), a hyphen (-), or a double
hypen (-).

Some examples include:
/name

-value

-screenMode

Parameters typically have values associated with them, but if they do not then true
is used as a default value just to show that a particular parameter was specified.
Parameter values come after the parameter token and can be prefixed with a space
(), an equals sign (=), or a colon (:).

Some examples include:
/name Graham

-value=54
-screenMode:normal

Parameter values can also be surrounded by either single or double quotes to pre-
serve white space.

/name "Graham Wihlidal"

—-screenMode = 'normal’

Visualizing a generic syntax expression for the above styles results in the following:
{-,/,~}param{ ,=,:}((",")value(","))

Using the above syntax expression will allow us to parse a variety of formatting
styles.

Implementation

Implementation

The real magic behind this tokenizer is from the regular expression capabilities of
.NET. There were a couple versions of this source code before regular expressions
were used, and this version is by far the shortest in length and the most maintainable.

using System;
using System.Collections.Generic;
using System.Text.RegularExpressions;

namespace ConsoleTokenizerlLibrary
{
public sealed class ConsoleTokenizer
{
private readonly Dictionary<string, string> _parameters
= new Dictionary<string, string>();

private readonly List<string> _files = new List<string>();

public Dictionary<string, string> Parameters
{
get { return _parameters; }

public List<string> Files
{

get { return _files; }
}

A C# indexer operator has been provided to pull tokens from the parameter list.
This is merely an alternate way of obtaining these tokens with shorter code. Files
must still be accessed normally through the property.

public string this[string token]
{

get { return _parameters[tokenl; }
}

This constructor takes a single string and breaks it into an array of arguments

using a regular expression. The arguments array is then passed into the Tokenize()
method.

223

224 Chapter 22 = Flexible Command Line Tokenizer

public ConsoleTokenizer(string arguments)

{

}

Regex tokenizer = new Regex(@"(['""J[A""I+['""I)\s*| ([\s]+)\s*",
RegexOptions.IgnoreCase |
RegexOptions.Compiled);

MatchCollection matches = tokenizer.Matches(arguments);

List<string> tokenizedList = new List<string>();

for (int matchIndex = 1;
matchIndex < matches.Count - 1;
matchIndex++)
{
tokenizedlList.Add(matches[matchIndex].Value);
}

Tokenize(tokenizedList.ToArray());

This constructor simply calls the Tokenize method with an array of arguments.

public ConsoleTokenizer(string[] arguments)

{

}

Tokenize(arguments);

The following method is the heart of the tokenizer. It uses a regular expression to
break up a group of arguments into name-value pairs based on the formatting
styles described earlier.

private void Tokenize(string[] arguments)

{

string pattern = @"A([/-1|-){1}(?<name>\w+) ([:=1)?(?<value>.+)?$";
Regex tokenizer = new Regex(pattern,
RegexOptions.IgnoreCase |
RegexOptions.Compiled);

char[] trimCharacters = { '"', "\'' };
string currentToken = null;

foreach (string argument in arguments)
{

Match match = tokenizer.Match(argument);

Implementation

if (!match.Success)
{

Check if a parameter has already been determined and that the current character
selection is its value.

if (currentToken != null)

{
_parameters[currentToken] = argument.Trim(trimCharacters);

}

If an argument was specified that is not in the form of a parameter, then it is most
likely a file to process, so here we add the argument to the files collection.

else

{
_files.Add(argument);

}

else

{
currentToken = match.Groups["name"].Value;

string tokenValue =
match.Groups["value"].Value.Trim(trimCharacters);

If no value was found, specify true as the default parameter value. Having a default
value of true basically means that a flag or switch was specified (on or off value).

if (tokenValue.Length == 0)

{
_parameters[currentToken] = "true";

}

If a value was determined, associate the string dictionary key with it.

else

{
_parameters[currentToken] = tokenValue;

225

226

Chapter 22 = Flexible Command Line Tokenizer

Sample Usage

Using the command line tokenizer is very simple. Console applications have a
string array that is passed into the main entry point, and this string array contains
the command line parameters specified at the command prompt. Instantiate a
new instance of the ConsoleTokenizer class and pass this string array into it. At this
point everything has been parsed, and you can either access the Parameters or Files
property of the tokenizer instance. Parameters is a string dictionary that uses the
parameter name as a key, and then points to the associated value. Here is an example
of how to get the parameter value for a parameter named mode.

static void Main(string[] args)
{
ConsoleTokenizer tokenizer = new ConsoleTokenizer(args);

string mode = tokenizer.Parameters["mode"];
}

Alternatively, the indexer operator has been overloaded to reference the Parameters
dictionary as well, making your code even cleaner.

static void Main(string[] args)

{
ConsoleTokenizer tokenizer = new ConsoleTokenizer(args);
string mode = tokenizer["mode"];

}

There may be some optional parameters that you want to use if they are present.
If you access the Parameters string dictionary using a key that does not exist, you
will be returned null. This is to signify that no such parameter was found. Every
parameter should be tested for null to prevent null reference exceptions. This is
also how you would enforce required parameters.

static void Main(string[] args)
{
ConsoleTokenizer tokenizer = new ConsoleTokenizer(args);

string mode = string.Empty;
if (tokenizer["mode"] != null)
{

mode = tokenizer["mode"];

Sample Usage

The following code shows a complete console application example that uses the
ConsoleTokenizer to parse command line arguments, and then dumps the values to
the console window.

using System;

using System.Collections.Generic;
using System.Text;

using ConsoleTokenizerLibrary;

namespace ConsoleTokenizerDemo

{

class Program

{

static void Main(string[] args)

{

ConsoleTokenizer tokenizer = new ConsoleTokenizer(args);

Console.WriteLine("");

Console.WriteLine("Console Tokenizer Demo Application");
Console.WritelLine("Pass a parameter string to tokenize it");
Console.WriteLine("");

if (tokenizer.Files.Count > 0)

{
Console.WritelLine("Files");
Conso]e.wrjteLjne(“*****************************");
foreach (string file in tokenizer.Files)
{
Console.WriteLine(String.Format("File: {0}", file));
}
Console.WriteLine("");
Console.WriteLine("");
}

if (tokenizer.Parameters.Keys.Count > 0)
{

Console.WriteLine("Parameters");
Conso]e.wrjteLjne(“*****************************“);

227

228 Chapter 22 = Flexible Command Line Tokenizer

foreach (string key in tokenizer.Parameters.Keys)

{
Console.WriteLine(String.Format("Name: {0}\tValue: {1}",

key,
tokenizer[keyl));

Conclusion

This chapter discussed common formatting styles of command line arguments,
and went on to building a tokenizer using .NET regular expressions. Command
line utilities are extremely popular among tools developers, so having a flexible
and reusable tokenizer is very important. Having one means that even less time
can be spent on developing these tools, which are fast to develop as it is.

CHAPTER 23

LAYERING WINDOWS FORMS
ON CONSOLE APPLICATIONS

Discovery consists of seeing what everybody has seen and thinking what
nobody has thought.

Albert Gyorgyi

Console applications are perhaps the most common application type used for
tools because of their lightning-fast development nature, and because they provide
a simple interface that is easy to learn. Users of console tools generally feel com-
fortable with console-based interfaces because they all typically function the same
way, and it is very easy to pick up a new tool when the interface is consistent with
old tools. Some advanced users also write or record scripts that automate the
workflow of a particular set of tasks. Authoring scripts for console applications is
much easier to do than for graphical user interfaces.

Tools development is all about reusability at both the code and application level.
There may be some situations where an existing console application solves an
intricate problem, but a graphical user interface version of the tool is wanted by a
certain group of users. There are a few solutions to this problem. The first solution
is to develop a Windows Forms version of the tool, using a fresh new code base.
This solution requires the maintenance of two separate code bases, and can lead to
support and synchronization problems. It also takes considerable time to build a
new tool. The next solution is to develop a Windows Forms version of the tool and
share the same code base. This might not be achievable if the console application
is unmanaged and building a managed wrapper is out of the question.

229

230

Chapter 23 = Layering Windows Forms on Console Applications

An even more desirable solution is to build a Windows Forms wrapper around the
console application, and redirect startup parameters and standard input and output.
This solution offers the greatest level of maintainability and speed of development.
If a change happens in the console application, it is immediately accessible by the
Windows Forms version. Additionally, we do not have to worry about the console
application being managed or unmanaged, since the redirection will happen at the
process level, not at the code level.

Implementation

You can use the Process component to start and stop processes and retrieve infor-
mation about the processes currently running on your system. We will be using
this component to launch a console application, specify startup parameters, and
redirect standard input and output. This component exists in the System.Diagnostics
namespace.

using System.Diagnostics;

The following code defines a method that launches a redirected console applica-
tion using the specified file path and argument list. Most of the code is fairly self-
explanatory, though we set UseShellExecute to false so Windows Explorer is not
used to launch the process. RedirectStandardInput is set to true so that we can get
a stream handle to the console output. We also set CreateNoWindow to true so that a
command prompt window is not launched alongside our Windows Forms appli-
cation when the process is started.

The StandardOutput property returns a StreamReader that can retrieve the output
data from the console application. The HasExited property can be queried while
data is being read from the output stream.

public void LaunchConsoleApplication(string fileName, string arguments)
{
if (IFile.Exists(fileName))
{
MessageBox.Show("Invalid path to console application!");
return;

Process process = new Process();

process.StartInfo.FileName = fileName;
process.StartInfo.UseShellExecute = false;

Implementation

process.StartInfo.RedirectStandardOutput = true;
process.StartInfo.Arguments = arguments;
process.StartInfo.CreateNoWindow = true;

process.Start();
StreamReader reader = process.StandardOutput;

while (!process.HasExited)

{
OuputField.Text += reader.ReadlLine() + Environment.NewlLine;
Application.DoEvents();

}

The last piece of important code is to be placed in the closing event of the Form
wrapping the console application. This code checks if the process is valid and if it
has not exited yet. If true, the process is aborted. Obviously, this event has to have
a reference to the process created by LaunchConsoleApplication.

The following code shows this event logic.

private void MainForm_FormClosing(object sender, FormClosingEventArgs e)
{
if (_process != null && !_process.HasExited)
{
_process.Kil1();

Sample Usage

The example provided alongside the implementation for this chapter is very simple.
The demo console application is given two arguments: an iteration count and a
message to print. The message is printed out however many iterations are specified.

The following code in the Windows Forms demo makes the console application
print “Hello World” out five times. The number of iterations to print the message
out is dependent on the iteration count specified as a parameter to the launch
method.

231

232

Chapter 23 = Layering Windows Forms on Console Applications

private void LaunchButton_Click(object sender, EventArgs e)
{
string message = "\"Hello World\"";
LaunchConsoleApplication("SimpleConsoleApplication.exe",
"5 " + message);

}

The following code shows the logic for the demo console application.

static void Main(string[] args)

{
int count = Convert.ToInt32(args[0]);
string message;
if (args[1] !'= null && args[11.Trim().Length > 0)
message = args[1];
else
message = "No Message";
for (int index = 0; index < count; index++)
{
Console.WriteLine(message + " - # " + (index + 1).ToString());
System.Threading.Thread.S1eep(300);
}
}
Conclusion

In this chapter, I discussed how to launch a console application process with para-
meters and redirect output to a Windows Forms application. This technique is very
useful when you want to create a graphical user interface for an already existing
console utility, while saving as much development and maintenance time as possible.

CHAPTER 24

OVERVIEW OF DATABASE
AccEss WITH ADO.NET

“Form follows function.”

Louis Henri Sullivan—“Lippincott’s Magazine,” March, 1896

In ancient times and legends of lore, information was shepherded amongst a col-
lective of elders, magicians, storytellers, and jesters. This collective served as the
data storehouse for all that was known and catalogued in the world. This method
for data storage and retrieval resulted in an entropic fallacy of facts and events.
Technology advanced, and information started to be written down on parchment,
greatly increasing its accuracy. Data eventually started to be stored in voluminous
repositories of books. Time passed, and the world ultimately began storing data in
the first “databases,” known as libraries. These libraries established the idea of
standardizing how data was stored and retrieved. Without standards, finding spe-
cific information would prove to be a chaotic and grueling process. The usefulness
of any data storage is proportional to the storage size and retrieval efficiency.
Hundreds of years have passed since those ancient times, and we have evolved into
an era where computers can store more information than the human brain.

Almost every application handles and stores data to some extent, whether in the
form of a database, a spreadsheet, or a flat text file. Today, developers have a
multitude of databases and persistence frameworks that can be used to store and
retrieve millions of records at lightning speed. As time passes, so do these databases
and frameworks. The latest and greatest data access technology from Microsoft is
ADO.NET, which is basically a collection of classes, methods, and attributes that are
used to facilitate the efficient communication between an application and a data

233

234

Chapter 24 = Overview of Database Access with ADO.NET

store. Functionally, ADO.NET is an overhaul of ADO (ActiveX Data Objects) with
a continuation and extension of the key concepts.

Because of dependencies, overhead, or maintenance support, most games do not
have a database system to store information; tools used in content creation, how-
ever, especially those used for role-playing games, often store information about
game entities in a database for a variety of reasons. Technical designers using a
content tool connected to a database benefit from real-time changes that are
immediately in effect when another designer makes a change to the data. Imagine
if game entity information were stored in XML files that had to be versioned
somehow amongst all the technical designers so that everyone worked off the same
data. A centralized data store is the solution to this problem, and implementing
such a beast is very easy using ADO.NET.

In this chapter, I discuss the advantages of ADO.NET and cover the ADO.NET
object model. I then proceed into some simple vanilla examples of using some
components of ADO.NET, and finish off with an editor front-end for editing data-
base entries for potion items.

Advantages of ADO.NET

Perhaps the greatest glory of ADO.NET is its ability to access structured data from
a variety of diverse data sources, like Microsoft SQL Server, XML, and other data
sources that are exposed with OLE DB. Microsoft SQL Server and OLE DB do not
need much of an introduction, but the XML support is a real gem for ADO.NET.
Interoperability support is very strong, since all data in ADO.NET is transferred in
XML so that any platform can understand the data. This allows developers to sep-
arate data processing and the user interface onto separate servers, greatly improv-
ing performance and maintainability for systems where scalability is important.

In addition to the XML structure, ADO.NET also supports disconnected datasets
along with the typical client-server model, without retaining locks or connections
that consume limited system resources. Disconnected datasets also allow for user
growth without demanding many additional resources for the server. In addition
to disconnected datasets, ADO.NET also includes support for automatic connec-
tion pooling.

Even though there is a learning curve, once you have grasped the concepts behind
ADO.NET, your overall development time will decrease, and you will produce
more bug-free code. Therefore, productivity gains can also be considered when
describing the advantages and benefits of ADO.NET.

ADO.NET Object Model

ADO.NET Object Model

The ADO.NET object model is divided into a couple of group classifications: con-
tent components and managed provider components. The content components
are those that actually store the data. These components include the DataSet,
DataView, DataTable, DataRelation, DataColumn, and DataRow classes. The managed
provider components are those that communicate with the data sources to facili-
tate the retrieval and updating of data. These components include the various con-
nection, command, and data reader classes. In fact, managed provider compo-
nents themselves are divided into two group classifications. The first group con-
tains provider components that interface with regular data sources
(System.Data.01eDb). The second group contains a provider that is finely tuned and
optimized for use with SQL Server 2000 or higher (System.Data.Sq1Client).

DataView

The DataView class is quite similar to a view you would use in the database. A
DataView can be customized to display a subset of data from a DataTable class. This
feature allows you to have two controls bound to the same DataTable object but
showing a different subset of data. You can also apply filtering and sorting rules
against the data rows without altering the actual data itself. For example, you can
configure a DataView to only show rows that have been deleted from a DataTable.

DataSet

The DataSet class is very similar to the old Recordset class that existed in ADO,
except it can hold multiple tables of data. The DataSet class also has the ability to
define internal constraints and relationships, as well as enforcing them. DataSet
serves as a storage container for data traveling to and from the database.

In addition to database usage, you can also use a DataSet to load and manipulate
XML data. Microsoft recognizes that the industry has largely embraced the use of
XML for cross-platform communication, and so it has built a number of classes to
work with XML data (including the DataSet class).

You can access the XML functionality of the DataSet class with the ReadXml(),
WriteXml(), and GetXm1() methods.

235

236

Chapter 24 = Overview of Database Access with ADO.NET

DataProvider

There are two group classifications for managed provider components: one to com-
municate with regular data sources and one that is optimized for communication
with SQL Server 2000 and higher. All of these providers comply with the standards
defined in the System.Data.Common namespace.

The first component is the connection object. Just like ADO, this object manages
the connection string and connection state. This object still has the usual Open()
and Close() methods. There is now a BeginTransaction() method that is used to
control a database transaction. The regular group has the 01eDbConnection, while
the optimized SQL Server provider is Sq1Connection.

The next component is the command object. This object serves as the transfer pipe
for the data. You can execute queries that do not return any rows (using the
ExecuteNonQuery() method), execute a query that returns a single value like an ID
(using the ExecuteScalar() method), or execute a query that returns a data reader
(using the ExecuteReader() method). The regular group has the 01eDbCommand, while
the optimized SQL Server provider is Sq1Command.

Another component is the data reader object. This object associates itself with a
data stream from the command object and provides a mechanism to perform for-
ward-only reading. This method is very efficient, but intensive queries should be
avoided since this uses a server-side cursor, tying up a connection resource until it
finishes. The regular group has the 0leDbDataReader, while the optimized SQL
Server provider is SqlDataReader.

The last component is the data adapter. This object consolidates many of the other
components into this easy-to-use class. A data adapter basically uses your connec-
tion to retrieve results, and then passes the data to a DataSet, which can then be
updated or displayed. If rows are changed, the DataSet can be passed back into the
data adapter to be persisted into the database. You can set the SQL statements
using the InsertCommand, UpdateCommand, SelectCommand, and DeleteCommand proper-
ties. The regular group has the 01eDbDataAdapter, while the optimized SQL Server
provider is Sq1DataAdapter.

Working with a DataReader

The following example shows how to select rows from an Access database file and
display a message box for all the rows in SomeTextColumn.

Working with a DataAdapter

using System;

using System.Data.0leDb;
using System.Data.Common;
using System.Windows.Forms;

string connectionString

= @"Provider=Microsoft.Jet.0LEDB.4.0;Data Source=C:\YourDB.mdb";
0leDbConnection connection = new 0leDbConnection(connectionString);
0leDbCommand command = new 0leDbCommand("SELECT * FROM YourTable", connection);
connection.Open();

OleDbDataReader reader = null;

try

{
command.ExecuteReader();
while (reader.Read())

{
MessageBox.Show((string)reader["SomeTextColumn"1);
1
}
catch (0TeDbException exception)
{
// ... Handle database exceptions here
}
finally
{
if (reader != null)
reader.Close();
if (connection != null)
connection.Close();
}

Working with a DataAdapter

The following example shows how to select rows from an Access database file, fill a
DataSet with the rows, and display a message box for the first row in SomeTextColumn.

237

238

Chapter 24 = Overview of Database Access with ADO.NET

using System;

using System.Data;

using System.Data.0leDb;
using System.Data.Common;
using System.Windows.Forms;

string connectionString

= @"Provider=Microsoft.Jet.0LEDB.4.0;Data Source=C:\YourDB.mdb";
0TeDbConnection connection = new 0TeDbConnection(connectionString);
OleDbDataAdapter adapter = new OleDbDataAdapter("SELECT * FROM YourTable",

connection);

DataSet dataSet = new DataSet();
adapter.Fill(dataSet, "YourTable");
MessageBox.Show((string)dataSet.Tables["YourTable"].Rows[0]1["SomeTextColumn"]);

This example only shows the select, but after any sort of editing, you can call the
following method to persist your changes back to the database.

adapter.Update(dataSet);

Working with XML

Before showing how to load an XML document, we should first define a simple
XML document that we can load (Books.xml).

<?xml version='1.0"'?>
{I-- This file represents a fragment of a book store inventory database >
<bookstore>
<book genre="autobiography" publicationdate="1981" ISBN="1-861003-11-0">
<title>The Autobiography of Benjamin Franklin</title>
<author>
{first-name>Benjamin</first-name>
<{last-name>Franklin</Tast-name>
</author>
<price>8.99</price>
</book>
<book genre="novel" publicationdate="1967" ISBN="0-201-63361-2">
<title>The Confidence Man</title>
<author>
{first-name>Herman</first-name>
{last-name>Melville</Tast-name>
</author>
<price>11.99</price>

Potion Database Editor

</book>

<book genre="philosophy" publicationdate="1991" ISBN="1-861001-57-6">
{title>The Gorgias</title>
<author>

<name>PTlato</name>

</author>
<price>9.99</price>

</book>

<{/bookstore>

The following example shows how to load an XML file into a DataSet and then
retrieve and update node values.

using System;
using System.Data;
using System.Windows.Forms;

DataSet dataSet = new DataSet();
dataSet.ReadXm1(@"C:\Books.xm1");

MessageBox.Show("Row Count: " + dataSet.Tables["book"].Rows.Count.ToString());
MessageBox.Show("First Author => Last Name: " +
(string)dataSet.Tables["author"].Rows[0]["Tast-name"]);

// Update the Tast name of the first author
dataSet.Tables["author"].Rows[0]["Tast-name"] = "Wihlidal";

// Persist the changes back out to the xml file
dataSet.WriteXml(@"C:\Books.xm1");

Potion Database Editor

The Companion Web site contains an example for this chapter that demonstrates
how to use a data reader to build a simple editor. The editor is for a fictitious role-
playing game, and it handles the database management of potions. You can add
new potions, modify the stats of existing potions, or delete potions from the data-
base. This editor could have been built using any number of the objects discussed
throughout this chapter but was done with a data reader because of personal pref-
erence. The editor uses a simple Access database file so that you do not have to
configure SQL Server to run this example.

Figure 24.1 shows the interface for the potion editor on the Companion Web site.

239

240

Chapter 24 =

Overview of Database Access with ADO.NET

Potion Database Editor 9 [=] 3 I
Load Records
1D [Mame |_Strength (+/) [Stamina (+/] [Irteligence [+ | wisdom (+/] [Desteity (+/) | Vitalty [+/]
1 Light Healing 1] i i 1] 1] 25
2 tedium Healing o a a 1] o 50
3 Heavy Healing u] 1] 1] 1] u] 75
4 Full Healing] 0 0 0 1] 100
5 Minotaur's Strength 10 i} i} a 1] 1]
B Wizdom of the Ages o a a =) o o
7 Elixir of Restaration 0 100 il 1] 0 100
o Aura o i i} 3 3] i} 0
El A | 0 a 1 1] 2
10 Strong Poison Bal Ral a 1] o E5
— Add Potion todify Pation
Pation Mame Pation Mame |'/=ak Poison
Strength [+4] [0 3: Strength [+/-] IU 3:
Stamina [+/~] |0 3: Stamina [+/-] |.3 3:
Intelligence [+4] [n 3: Inteligence [+/-] IU 3:
‘wisdom [+4] |0 3: ‘wizdam [+/-] IU 3:
Desterity [+/] |0 3: Dexterity [+/-] IU 3:
Witalitw (+4] [0 3: Witality [+4-] |.25 3:
Add Recaord Delzte Record | Save Record |

Figure 24.1 Screenshot of the potion database editor example on the Companion Web site.

Conclusion

Many applications store data in some fashion or another, but typically, any appli-
cation that processes significantly large amounts of data is using some sort of data-
base like SQL Server. The need arises when there are complex queries to perform,
or there are a number of associated entities and constraints to enforce. Database
servers are optimized for this type of storage and retrieval, so developing a home-
grown system will only work in certain situations. Databases also allow you to
enforce security settings determining which accounts can do certain tasks, and this
can aid in ensuring data integrity and thwarting data tampering.

There are some new features that have just been introduced with .NET 2.0 that are
not addressed by this chapter (like the new TableAdapter). Since this chapter only
serves as a quick overview of basic ADO.NET functionality, I reccommend that you
investigate the latest version of ADO.NET in greater detail if you are planning on
doing any significant work with it.

PART Il

|
TECHNIQUES FOR
GRAPHICAL ToOOLS

The programmer, like the poet, works only slightly removed from pure
thought-stuff. He builds castles in the air, from air, creating by exertion of
the imagination. Few media of creation are so flexible, so easy to polish and
rework, so readily capable of realizing grand conceptual structures. Yet the
program construct, unlike the poet’s words, is real in the sense that it moves
and works, producing visible outputs separate from the construct itself. It
prints results, draws pictures, produces sounds, moves arms. The magic of
myth and legend has come true in our time. One types the correct incanta-
tion on a keyboard, and a display screen comes to life, showing things that
never were nor could be... . The computer resembles the magic of legend in
this respect, too. If one character, one pause, of the incantation is not strictly
in proper form, the magic doesn’t work. Human beings are not accustomed
to being perfect, and few areas of human activity demand it. Adjusting to
the requirement for perfection is, I think, the most difficult part of learning
to program.

Frederick P. Brooks, The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition (2nd Edition)

As time progresses, the technology powering games improves at an exponential
rate, and gamers begin to expect more out of a game as each year goes by. Almost
all cutting-edge games these days use 3D hardware to render virtual environments
that immerse the player in a sort of simulated reality. Earlier 3D games such as
Castle Wolfenstein, with its 2D ray caster and vertical scan-line rasterization, were
rudimentary enough that simple tools could produce suitable game content. Over
the years, the capabilities of computers and 3D hardware have grown considerably,
and more complex tools are required in order to produce content suitable for
today’s games.

A large number of content tools for game development visualize data using a 3D
API, such as Direct3D. These tools require additional consideration and planning
in regards to performance and functionality. The chapters in Part III focus on top-
ics such as swap chain management, texture browsing control creation, converting
from screen space to world space, and asynchronous input polling to improve
responsiveness and performance.

A graphical tool can be anything that visualizes data using some sort of drawing
or rendering API, but the majority of these tools are world editors that create envi-
ronments for games, or are tools that perform some sort of 3D geometry process-
ing to create static assets like radiosity lightmaps or ambient occlusion maps, and
visually display the in-process results to the user. These tools must be designed
carefully and pragmatically if they are to be of any value to the intended users.
Graphical tools are typically processor- and resource-intensive, so more time must
be spent developing these tools than any other.

The chapters in this part will cover some common techniques and approaches to
problems that exist in the majority of graphical tools.

CHAPTER 25

UsING DIRECT3D SwaP
CHAINS WITH MDI
APPLICATIONS

Mostly, when you see programmers, they aren’t doing anything. One of the
attractive things about programmers is that you cannot tell whether or not
they are working simply by looking at them. Very often they’re sitting there
seemingly drinking coffee and gossiping, or just staring into space. What the
programmer is trying to do is get a handle on all the individual and unre-
lated ideas that are scampering around in his head.

Charles M. Strauss

Almost every game displays itself in a single window, which is a single active device
within Direct3D. Many tools, on the other hand, display multiple windows to the
users so they may view multiple aspects of the game when designing content. The
core purpose of Direct3D is to serve as a high-performance 3D API for real-time
games, and because of this, it was designed to be most efficient rendering to a single
device. Using a device for every display window in an editor or tool would be
extremely inefficient and negatively affect performance.

The efficient way of rendering to multiple windows (or contexts) with a single
Direct3D device is through the use of swap chains. Unfortunately, there are a
scarce number of examples showing how to use them, and the SDK documenta-
tion is extremely vague. The purpose of this chapter is to fill the gap and provide
you with extensive information about using swap chains within an MDI (or SDI)
application.

243

244

Chapter 25 = Using Direct3D Swap Chains with MDI Applications

What Is a Swap Chain?

An application utilizing Direct3D to render real-time 3D graphics organizes an
animated sequence into a series of frames that are stored in a collection of buffers,
and renders them in the correct sequence. These buffers are grouped into swap
chains that flip to the screen one after the other. A swap chain can render an
upcoming frame in the background and present the frame to the screen when
ready. This mechanism solves a common problem known as “tearing” and offers
smoother animation.

Every Direct3D device that is created automatically instantiates a single implicit
swap chain. When a surface flip is requested through the execution of
Device.Present, the pointers for the front and back buffer(s) are swapped, and a
new frame is presented to the viewer. If there is more than one back buffer in a
swap chain, the pointers are swapped in a circular order.

Additional swap chains can be created within a given device, though a device can
only contain a single full-screen swap chain. Each swap chain renders into a col-
lection of buffers and can be presented to a different window from the main device.
The back buffer for a swap chain can be accessed with SwapChain.GetBackBuffer.

NOTE

Before continuing, it is important to note that, by the term window, | am referring to any control.
This association goes back to the unmanaged Win32 API.

A great benefit of using swap chains with a single device is the notion that resources,
such as meshes and textures, are shared across all swap chains using a single loca-
tion in memory.

Creating a swap chain is very easy to do, and the only prerequisite is that a valid
Direct3D is already available. The first thing to do is to create a PresentParameters
object and specify some rendering properties about the swap chain. Most of the
properties are familiar from regular device settings, but the important ones to note
are DeviceWindow, BackBufferWidth, and BackBufferHeight. All three refer to the han-
dle, width, and height of the window (control) that the swap chain will be bound
to for rendering. The variable of this control is called renderTarget and is of type
System.Windows.Forms.Control.

The following code shows how to build present parameters for a swap chain.

PresentParameters presentParams = new PresentParameters();
presentParams.AutoDepthStencilFormat = DepthFormat.D16;

What Is a Swap Chain?

presentParams.Windowed = true;
presentParams.SwapEffect = SwapEffect.Discard;
presentParams.EnableAutoDepthStencil = true;
presentParams.DeviceWindow = renderTarget;
presentParams.BackBufferWidth = renderTarget.Width;
presentParams.BackBufferHeight = renderTarget.Height;

With the present parameters built, we can move on to building a swap chain
object. The following code shows how to do this, where the first parameter is a
reference to the Direct3D device, and the second parameter is a reference to the
PresentParameters structure that we just built.

SwapChain swapChain = new SwapChain(device, presentParams);

The next important piece of code to show is the rendering logic that is executed
each time a frame is rendered. This code is similar to a normal Direct3D applica-
tion, except the back buffer must be set as a render target, and the swap chain pre-
sents the frame to the screen, not the device itself.

public void RenderSwapChain(SwapChain swapChain, Control renderTarget)
{
using (Surface backBuffer = swapChain.GetBackBuffer(0,
BackBufferType.Mono))
{

swapChain.Device.SetRenderTarget(0, backBuffer);

// Perform rendering here without calling Device.Present()

swapChain.Present(renderTarget);

NOTE

Rendering is performed as normal, except Present () is called on the swap chain rather than the
device.

Now that the basics have been covered about how to create and render a Direct3D
swap chain, it is time to expand on this topic and cover applicability towards MDI
and SDI applications.

245

246

Chapter 25 = Using Direct3D Swap Chains with MDI Applications

Thoughts for SDI and MDI Applicability

There are two common windowing modes for a Windows application: SDI and
MDI. An SDI application (Single Document Interface) is typically used when you
want to work with one data set at a time in a single window. A commonly known
SDI application is Notepad.

An MDI application (Multiple Document Interface) has a primary window (par-
ent) that contains a set of child windows within its client region. A child window
is constrained to the boundaries of the parent window, and typically shares the
menu bar, tool bar, and other common parts of the parent interface. MDI appli-
cations are commonly used in situations where the user wants to work on multi-
ple data sets at the same time.

Swap chains are applicable to either windowing mode, but are more commonly
used within MDI applications. An SDI application can use swap chains, but they
should only be used when rendering to multiple controls when the problem can-
not be solved with the use of viewports. Typically, the swap chains for an SDI
application are created after the form is first opened and a Direct3D device is
bound to it.

An MDI application has a few more issues to be taken into consideration when
using swap chains within the child windows. Swap chains are only valid while the
device is still active; the swap chains become invalid as soon as the device is lost or
disposed. The device should be bound to the parent window since child windows
cannot exist without it, and the swap chains should be created within each indi-
vidual child window.

Multiple child windows will result in a system that must keep track of the swap chains
at a much more intimate level and handle their creation, assignment, and release.

Before diving into the solution and implementation, it is important to discuss sev-
eral “gotchas” and limitations that must be considered.

Common Pitfalls

An MDI application typically supports the resizing of child windows, so it is
important to take this issue into consideration when using swap chains. Direct3D
has a built-in mechanism to handle child window resizing, but the results may not
be desirable. A stretch blit is used by default to present the frame buffer if the client
area dimensions are not the same size as the frame buffer of the swap chain. This
mechanism can lead to artifacts and aliasing unless the swap chain is re-created
and the render target size is recalculated.

The Proposed Solution

Another issue to take into consideration, which is more of a design concern, is the
fact that a device automatically creates an implicit swap chain when it is created.
Swap chains can be queried from a device by an indexer, where the implicit swap
chain starts at 0 and the other swap chains increment by 1 thereafter. A common
approach is to assign the swap chain indexer to the child window associated with
it and release the swap chain when the window closes. The problem lies in assign-
ing the implicit swap chain to a child window and trying to release it when the
window closes. One solution to this problem is covered in the next section, “The
Proposed Solution.”

As mentioned earlier, swap chains have the benefit of sharing data from a single
device, requiring a single location in memory. While this feature can offer signifi-
cant memory and performance gains, it can also lead to some headaches. Swap
chains do not have their own collection of device settings, so each swap chain must
be responsible for the management of settings, such as textures, view state, and
render states. It is important that you remain careful and attentive when using
swap chains so that you do not end up with settings that transfer over from one
swap chain to another by forgetting to set new values.

There are increased render state changes that happen through the use of swap
chains, so batching and minimization of changes are important so that perfor-
mance is not impacted. Swap chains are still much more efficient than using mul-
tiple devices, so the performance issues go with the territory of rendering to multiple
regions.

Multiple windows are hard to maintain and track, especially when swap chains are
associated to them. Luckily, .NET makes MDI application development a breeze,
so there is no real concern for this solution.

The Proposed Solution

In this chapter, I present a manager that handles the construction, usage, and
destruction of swap chains within either an MDI or SDI application. The manag-
er correctly handles the resizing of child windows to prevent artifacts and aliasing,
and it transparently wraps a lot of the swap chain calls into a reusable and exten-
sible framework.

Each child window within the MDI application will be responsible for handling its
own rendering, but the swap chain manager must have a way to inform the child
window that it should render a frame. The following interface is extremely sim-
plistic but will provide a common mechanism that the manager can call, depending

247

248

Chapter 25 = Using Direct3D Swap Chains with MDI Applications

on which child it wants to render. The IRenderWindow interface will be implemented
by all child windows to make the Render() method publicly accessible.

public interface IRenderWindow
{
void Render();

}

The next section of code describes an associative container class that contains ref-
erences to a swap chain, present parameters, back buffer, and render target control.
This class also contains a unique identifier and makes the association of a swap
chain to a child window extremely easy.

internal class SwapChainInstance
{
private int _id;
private SwapChain _swapChain;
private PresentParameters _presentParameters;
private Surface _backBuffer;
private Control _renderTarget;

public int Id

{
get { return _id; }
set { _id = value; }
}
public SwapChain SwapChain
{
get { return _swapChain; }
set { _swapChain = value; }
}
public PresentParameters PresentParameters
{
get { return _presentParameters; }
set { _presentParameters = value; }
}

public Surface BackBuffer

{
get { return _backBuffer; }
set { _backBuffer = value; }

The Proposed Solution

public Control RenderTarget

{

get { return _renderTarget; }
set { _renderTarget = value; }

public SwapChainInstance(int id,

SwapChain swapChain,
PresentParameters presentParameters)

this._id = id;
this._swapChain = swapChain;
this._presentParameters = presentParameters;

}

As discussed earlier, there is an issue regarding the implicit swap chain of the
device. Perhaps the best way to avoid any problems is to simply ignore the implic-
it swap chain. This approach is used for the solution, although an alternative
approach had been tried with minor success prior to settling on this one.

The next class encompasses the bulk of the swap chain framework. The manager
class is responsible for the construction, usage, and destruction of swap chains, and
is also accountable for handling the association of a swap chain with a child window.

public sealed class SwapChainManager

{
private
private
private
private
private
private
private

List<SwapChainInstance> _swapChainList = new List<{SwapChainInstance>();
SwapChainInstance _activeSwapChain;

int _idCounter;

Device _device;

bool _ready;

Mesh _teapotMesh;

Mesh _sphereMesh;

public Device Device

{

get { return _device; }

public bool Ready

{

249

250 Chapter 25 = Using Direct3D Swap Chains with MDI Applications

get { return _ready; }

}

public Mesh TeapotMesh

{ get { return _teapotMesh; }
}

public Mesh SphereMesh

{ get { return _sphereMesh; }
}

The following method is a critical part of the manager. It is responsible for build-
ing present parameters and creating a swap chain object that becomes referenced
by the manager with a unique identifier.

public int CreateSwapChain(Control renderTarget)
{
_idCounter++;

PresentParameters presentParams = new PresentParameters();

presentParams.AutoDepthStencilFormat = DepthFormat.D16;
presentParams.Windowed = true;

presentParams.SwapEffect = SwapEffect.Discard;
presentParams.EnableAutoDepthStencil = true;
presentParams.DeviceWindow = renderTarget;
presentParams.BackBufferWidth = renderTarget.Width;
presentParams.BackBufferHeight = renderTarget.Height;

if (renderTarget != null && _device != null)

{
SwapChain swapChain = new SwapChain(_device, presentParams);

SwapChainInstance instance = new SwapChainInstance(_idCounter,
swapChain,
presentParams);

instance.RenderTarget = renderTarget;

_swapChainlist.Add(instance);

The Proposed Solution

return _idCounter;
}

This method is fairly simple. It accepts a unique swap chain identifier, finds the
associated object, and releases the swap chain object from the manager.

public void DestroySwapChain(int id)

{
SwapChainInstance instance = FindSwapChainInstance(id);
if (instance != null)
{
DestroySwapChain(instance.SwapChain);
instance.SwapChain = null;
_swapChainList.Remove(instance);
}
}

This method works very similarly to DestroySwapChain(), except instead of destroy-
ing the swap chain, it simply resets it. A specific use for this method is after a child
window has been resized and the swap chain(s) must be reset to reflect the new
render target region(s).

public void ResetSwapChain(int id)

{
SwapChainInstance instance = FindSwapChainInstance(id);
ResetSwapChain(instance);

}

This method accepts a unique identifier, locates the referenced swap chain object
in the manager, and returns a reference to it.

private SwapChainInstance FindSwapChainInstance(int id)

{
foreach (SwapChainInstance instance in _swapChainList)
{
if (instance.Id.Equals(id))
return instance;
}

return null;

251

252

Chapter 25 = Using Direct3D Swap Chains with MDI Applications

This method is used to re-create a swap chain after a device reset has occurred.
First, the old swap chain is destroyed, and then a new swap chain with the new ren-
der target size is created.

private void ResetSwapChain(SwapChainlnstance instance)

{
if (instance != null)
{
DestroySwapChain(instance.SwapChain);
instance.PresentParameters.BackBufferWidth =
instance.RenderTarget.Width;
instance.PresentParameters.BackBufferHeight =
instance.RenderTarget.Height;
instance.SwapChain = new SwapChain(_device,
instance.PresentParameters);
}
}

This method is simply used to release the memory associated with a Direct3D
swap chain.

private void DestroySwapChain(SwapChain swapChain)
{
if (swapChain != null)
swapChain.Dispose();

}

This method is very important because it begins the rendering process for a spe-
cific swap chain that is referenced by a unique identifier. Notice the ready flag that
breaks out of rendering if its value is set to false. This flag is used to prevent errors
from occurring if the device is invalid.

public void BeginSwapChainRender(int id)
{
if (l_ready)
return;

SwapChainInstance instance = FindSwapChainInstance(id);
if (instance != null && instance.SwapChain != null)

{

_activeSwapChain = instance;

The Proposed Solution

instance.BackBuffer = instance.SwapChain.GetBackBuffer(0,
BackBufferType.Mono);

if (instance.BackBuffer != null)
{
instance.SwapChain.Device.SetRenderTarget(0,
instance.BackBuffer);

}
This method completes the rendering process for a specific swap chain that is ref-
erenced by a unique identifier.

public void EndSwapChainRender(int id)
{
if (!_ready)
return;

SwapChainInstance instance = null;

if (_activeSwapChain != null)

{
if (_activeSwapChain.Id == id)
instance = _activeSwapChain;
else
_activeSwapChain = instance = FindSwapChainInstance(id);
}
if (instance != null)
{
if (instance.BackBuffer != null && instance.SwapChain != null)
{
using (instance.BackBuffer)
{
instance.SwapChain.Present(instance.RenderTarget);
}
instance.BackBuffer = null;
}
}

_activeSwapChain = null;

253

254 Chapter 25 = Using Direct3D Swap Chains with MDI Applications

The swap chains are obviously in need of a valid device to render with, and that is
the responsibility of this method. A parent window is specified (either the MDI
parent form or the SDI form), and the device is created and bound to this window.

public void CreateDevice(Form containingWindow)

{
if (_device !=null)
{
_device.Dispose();
_device = null;

}

PresentParameters presentParams = new PresentParameters();

presentParams.AutoDepthStencilFormat = DepthFormat.D16;

presentParams.Windowed = true;

presentParams.SwapEffect = SwapEffect.Discard;

presentParams.PresentationInterval = PresentInterval.Immediate;

presentParams.EnableAutoDepthStencil = true;

_device = new Device(O0,
DeviceType.Hardware,
containingWindow,
CreateFlags.SoftwareVertexProcessing,
presentParams);

_device.Devicelost += new EventHandler(Devicelost);

_device.DeviceReset += new EventHandler(DeviceReset);

DeviceReset(null, null);

_ready = true;

}

The following method handles the device lost event. The only job of this method
is to flip the ready flag to false so that errors do not occur when the application
attempts to render with an invalid device.

private void Devicelost(object sender, EventArgs e)
{
_ready = false;

The Proposed Solution

The last method in our manager handles the device reset event. The purpose of this
method is to re-create the swap chains with the recalculated render target size, and
then re-create the resources that are shared across all swap chains. The ready flag is
also flipped to true so that the application can begin rendering the scenes once again.

private void DeviceReset(object sender, EventArgs e)
{
foreach (SwapChainInstance instance in _swapChainList)
ResetSwapChain(instance);

_teapotMesh
_SphereMesh

Mesh.Teapot(_device);
Mesh.Sphere(_device, 1.0f, 30, 30);

_device.Lights[0].Type = LightType.Directional;
_device.Lights[0].Diffuse = System.Drawing.Color.White;
_device.Lights[0].Enabled = true;

_device.RenderState.Lighting = true;
_device.RenderState.Ambient = Color.White;
_device.RenderState.CulTMode = Cull.CounterClockwise;
_device.RenderState.ShadeMode = ShadeMode.Gouraud;

Material material = new Material();
material.Ambient = Color.ForestGreen;
material.Diffuse = Color.0live;

material;

_device.Material

_ready = true;

}

The implementation of the swap chain manager is complete, so the discussion will
now focus on using the manager. The following code insertions are methods and
properties extracted directly from the example on the Companion Web site that
should offer insight into using the solution if the interfaces alone are not enough.
The code snippets are from the single context window that uses the entire window
as a display context.

The first property is a unique identifier that references a SwapChainInstance object
within the swap chain manager. It is initialized in the DeviceReset() method that is
described later in this chapter.

private int _swapChain;

255

256

Chapter 25 = Using Direct3D Swap Chains with MDI Applications

The next property is a reference to the swap chain manager instance that will typ-
ically be created in the parent form if the application uses an MDI windowing
mode. In an SDI application, the manager can be instantiated with a device bound
to the SDI window.

This example has the manager reference passed in through the child form con-
structor from the parent form.

private SwapChainManager _manager;

The next method is executed when the rendering device is lost or reset and the
swap chain(s) must be re-created. You will notice that the methods requiring a
control are passed a this keyword that references the entire Form. It is perfectly
acceptable to pass a reference to a Control residing on the form if you want to target
the rendering within a specific Control like a panel. The CreateSwapChain() method
creates a swap chain for the entire window and returns a unique identifier back to
the user. This unique identifier can be later used to return the swap chain object
from the manager.

private void DeviceReset()
{
_swapChain = _manager.CreateSwapChain(this);

}

Typically, a device is lost before it is reset, and the purpose of this method is to
destroy an existing swap chain before the reset method is executed and a new swap
chain is created.

private void Devicelost()
{

_manager.DestroySwapChain(_swapChain);
}

The following event is fired when the window is first loaded, resulting in the cre-
ation of a swap chain.

private void ContextWindow_Load(object sender, System.EventArgs e)
{

DeviceReset();
}

The Proposed Solution

One of the common pitfalls mentioned in this chapter are the aliasing and artifacts
that result from a client region size not matching the size of the swap chain frame
buffer. This normally occurs after the swap chain has been created and the associated
window resizes. To account for this, there is a ResetSwapChain() method in the
manager that will be executed when the window is resized using the event below.

private void ContextWindow_Resize(object sender, System.EventArgs e)

{
_manager.ResetSwapChain(_swapChain);

}

Finally, we hit the interesting snippet, the Render() method. It is here that we first
make sure the manager exists and is ready to render; if not, we skip the current
frame. After that, it is important to set the render and view states for the swap
chain in case they were altered by another swap chain in existence on the same
device. The example does not employ many render state settings, but it is important
to recalculate the projection, world, and view matrices so that the scene renders
correctly.

Rendering is then initiated with a call to BeginSwapChainRender(), passing in the
unique identifier for the swap chain created when the child window was first
loaded. Rendering then proceeds as normal, except at the very end there is a call to
EndSwapChainRender() instead of calling Present() on the device.

public void Render()
{
if (_manager == null)
return;

if (!_manager.Ready)
return;

CalculateProjection();

_manager.Device.Transform.World = Matrix.Identity;

Vector3 position = new Vector3(0.0f, 0.0f, -5.0f);

Vector3 target = new Vector3(0.0f, 0.0f, 0.0f);

Vector3 upVector = new Vector3(0.0f, 1.0f, 0.0f);

_manager.Device.Transform.View = Matrix.LookAtLH(position,
target,
upVector);

257

258 Chapter 25 = Using Direct3D Swap Chains with MDI Applications

_manager.BeginSwapChainRender(_swapChain);
_manager.Device.Clear(ClearFlags.Target | ClearFlags.ZBuffer,
unchecked((int)-8454144),
1.0F,
0);
_manager.Device.BeginScene();

_manager.SphereMesh.DrawSubset(0);

_manager.Device.EndScene();
_manager.EndSwapChainRender(_swapChain);
}

The following method was included in this topic for completeness, though it does
not directly deal with the swap chain manager. This method recalculates the pro-
jection matrix after the render target client region is resized.

private void CalculateProjection()

{
if (this.Height == 0)
return;

float aspect = (float)this.Width / this.Height;

_manager.Device.Transform.Projection = Matrix.PerspectiveFovLH((float)Math.PI / 4,
aspect,
1.0f,
60.0f);
}

The example provided on the Companion Web site is an MDI application that
uses the swap chain manager described in this topic to render into multiple child
windows and multiple controls within a child window. You can see two different
types of child windows using the swap chain manager in Figure 25.1, and one of
the child windows is maximized in Figure 25.2.

Both the sphere and teapot meshes are loaded into the single Direct3D device and
are shared across all child windows in the example.

The Proposed Solution 259

¥ 101 Derect 30 Swap Chain Example

Figure 25.1 Variety of child windows using the swap chain manager.

1 1901 Derect S0 Swap Chain Exasmple - [Viewport Wisdew]
By New Window Window

Figure 25.2 Maximized child window using the swap chain manager.

260

Chapter 25 = Using Direct3D Swap Chains with MDI Applications

Conclusion

This chapter covered what a swap chain is, how to create them, applicability with
MDI applications, and how to effectively create and manage swap chains within
an MDI application.

Overall, the solution presented in this chapter is very flexible and extensible, although
there are a couple of areas that could be refactored to improve performance or
promote more reusability. For example, the device and swap chain creation could
be routed through a virtual function that allows the user to specify settings and
parameters on a per override basis. On another note, earlier it was mentioned that
swap chains increase the number of render state changes, so it would be advanta-
geous to implement a batching mechanism to reduce the total number of changes
per frame.

The Companion Web site contains the full source code for the manager presented
in this chapter, including a demo application that uses it within an MDI applica-
tion in a variety of ways.

CHAPTER 26

CONSTRUCTING AN
AESTHETIC TEXTURE
BRowser CONTROL

If builders built buildings the way programmers wrote programs, then the
first woodpecker that came along would destroy civilization.

Weinberg’s Second Law

The number of art assets used in the majority of games today can be anywhere
from thousands to hundreds of thousands. These assets can be used in numerous
places throughout a variety of in-game environments, and typically, the level
designers are in charge of determining which assets go where. Some game studios
build their own level editors that can manipulate world geometry and handle the
placement and scripting of entities. These editors typically offer the ability to select
an arbitrary mesh or primitive and assign a texture asset to the geometry. When
you have thousands of textures available, designers are more productive if the edi-
tor is able to display a thumbnail preview of the different textures available for an
environment instead of a textual listing. It is much more appealing to scroll
through a collection of texture thumbnails than to scroll through a listing of file-
names that might not even describe the contents in an adequate fashion. Texture
browsing has its place in a variety of tools, but the most common place to offer it
is within a world editor.

This chapter is geared toward building a control that offers texture or image
browsing from both local image files and Managed Direct3D Texture resources.

261

262

Chapter 26 = Constructing an Aesthetic Texture Browser Control

The System.Drawing namespace supports a variety of image formats, but some texture
formats, such as DDS, are not supported unless a custom loader is written or the
data is loaded through Managed Direct3D. The control will display textures that
have been resized to fit within a thumbnail control, with support for both single
and multiple selection of texture thumbnails. Each thumbnail will have a label for
the filename and a label for the dimensions of the original image. All thumbnails
will sit within a parent container control.

Swappable Loader Interface

One of the goals outlined for this component is the ability to switch the loader that
processes the image files. While Managed Direct3D and Windows GDI+ are the
only loaders supported by this chapter, it would be advantageous to design the
component so that any loader implementing the appropriate interface could be
plugged into the component. This component makes use of an interface and
abstract class to define the common interface of all image loaders so that they can
be swapped in and out.

The interface provides two Load methods, which are used to create a Bitmap object
from an image file on the hard drive or from a memory stream. Some loaders may
also require a handle to a resource, such as a window handle for the Direct3D
loader, so this interface provides the ContextHandle property to support this
requirement.

The following code defines the base loader interface and abstract class.

public interface IAbstractloader

{
System.IntPtr ContextHandle
{
get;
set;
}

Bitmap Load(string fileName);
Bitmap Load(MemoryStream stream);
}

With the loader interface defined, it is time to define the abstract loader class that
implements the interface. This class stores the context handle of a control that cer-
tain loaders may need to operate correctly. The GDI+ loader does not use this, but

Windows GDI+ Loader

Direct3D uses this handle to create a device with which the textures can be loaded.
The following code defines the abstract loader class.

public abstract class AbstractlLoader : IAbstractloader

{
private System.IntPtr _contextHandle;

public System.IntPtr ContextHandle
{
get { return _contextHandle; }
set { _contextHandle = value; }
1

public virtual Bitmap Load(string fileName)
{

return null;
}

public virtual Bitmap Load(MemoryStream stream)

{

return null;

}

protected AbstractlLoader(System.IntPtr contextHandle)

{
_contextHandle = contextHandle;
}

NOTE

You will need to reference System. 10 for the MemoryStream object, as well as System.Drawing
for the Bitmap object.

Windows GDI+ Loader

This is by far the easiest loader to implement, since it only takes a single line of code
to load an image file. Windows GDI+ is available to all .NET applications without
the reliance on any external dependencies, so it is an excellent choice when stan-
dard image formats like JPEG, BMP and GIF will do the job.

263

264

Chapter 26 = Constructing an Aesthetic Texture Browser Control

The following code implements the Windows GDI+ image loader.

public class Nativeloader : AbstractlLoader

{

public override Bitmap Load(string fileName)
{
try
{
return new Bitmap(Image.FromFile(fileName));
}
catch
{
return null;
}
}

public override Bitmap Load(MemoryStream stream)
{
try
{
stream.Position = 0;
return new Bitmap(Image.FromStream(stream));
}
catch
{
return null;
}
}

public Nativeloader(System.IntPtr contextHandle) : base(contextHandle) {}

NOTE

You will need to reference System. 10 for the MemoryStream object, as well as System.Drawing

for the Bitmap object.

Managed Direct3D Loader

It is very easy to use Windows GDI+ to load images, unless, of course, the image
format is not supported. Image formats that are not supported by Windows GDI+
require a different loader to process any unsupported image formats, so we are pre-

sented with two possibilities.

Managed Direct3D Loader

The first option is to write a custom loader that can read in the binary data and
extract the image information. After the image information (for instance, the
number of channels and the pixel data) has been extracted, the information would
be used to build an Image object. This method can be somewhat problematic, espe-
cially if the image format comes in different variations, such as different compres-
sion options and 3D-specific values such as the Microsoft DirectDraw Surface
(DDS) format for example. The custom loader can become quite large in size, and
debugging could prove to be difficult.

The alternate solution, and the one covered in this chapter, is to wrap the built-in
texture-loading capabilities of Microsoft Direct3D into a loader. There are a num-
ber of advantages to building this wrapper over building a custom loader from
scratch. The biggest advantage is the time and money saved by not having to rein-
vent the wheel. Additionally, unless you have a custom image format that neither
GDI+ nor Direct3D support, one that requires a custom loader, the formats sup-
ported by the TexturelLoader utility of Managed Direct3D will almost always suffice
for your project.

Now, before you jump into the code, it is important to address the main issue
behind wrapping Managed Direct3D into a loader. The TexturelLoader loads image
files into Texture objects, not Image or Bitmap objects, meaning that a valid device
must first be created before any loading can occur. This may sound like a daunt-
ing or cumbersome process, but it really isn’t all that bad. The main requirement
for a device is a window handle, and because Windows defines a window as any
control element, we can create a device using the window handle of our texture
browsing control!

The loader will create a Managed Direct3D and bind it to the texture browser con-
trol, at which point the image files are loaded into texture resources. The image
data is then extracted from these resources and saved into Bitmap objects. The
device is released after the images are generated; at no point does any actual ren-
dering occur.

The following code implements the Managed Direct3D device and image loader.

public class Direct3DLoader : AbstractLoader, IDisposable
{

private Device _device;

public override Bitmap Load(string fileName)
{
try

265

266 Chapter 26 = Constructing an Aesthetic Texture Browser Control

{
Bitmap result = null;
if (_device == null)
{
PresentParameters presentParams = new PresentParameters();
presentParams.Windowed = true;
presentParams.SwapEffect = SwapEffect.Discard;
_device = new Device(0,
DeviceType.Reference,
ContextHandle,
CreateFlags.SoftwareVertexProcessing,
presentParams);
}
using (Texture texture = TexturelLoader.FromFile(_device, fileName))
{
using (GraphicsStream stream
= TexturelLoader.SaveToStream(ImageFileFormat.Bmp, texture))
{
result = new Bitmap(stream);
}
}
return result;
}
catch
{
return null;
}
}
public override Bitmap Load(MemoryStream stream)
{
try
{

Bitmap result = null;

if (_device == null)

{

Managed Direct3D Loader 267

PresentParameters presentParams = new PresentParameters();
presentParams.Windowed = true;
presentParams.SwapEffect = SwapEffect.Discard;
device = new Device(0,
DeviceType.Reference,
ContextHandle,
CreateFlags.SoftwareVertexProcessing,
presentParams);

stream.Position = 0;

using (Texture texture = TexturelLoader.FromStream(_device, stream))

{
using (GraphicsStream processedStream
= TexturelLoader.SaveToStream(ImageFileFormat.Bmp, texture))
{
result = new Bitmap(processedStream);
}
}

return result;

}
catch

{
return null;
}
public Direct3DLoader(System.IntPtr contextHandle) : base(contextHandle) {}

public void Dispose()

{
if (_device != null)
{
_device.Dispose();
_device = null;
}

268

Chapter 26 = Constructing an Aesthetic Texture Browser Control

Note

You will need to reference System. 10 for the MemoryStream object, as well as System.Drawing
for the Bitmap object. Additionally, you will need to reference both Microsoft.DirectX and
Microsoft.DirectX.Direct3D for the Managed Direct3D support.

Storing Texture Information

The texture browser will support three ways of loading an image as a texture: from
an image file stored on the local hard drive, from raw binary data in memory, and
from a preloaded bitmap. In order to provide a unified and straightforward way of
accessing textures that are loaded in the browser, we need to create a container
class that wraps the three load methods into a common interface. This interface
will be known as a texture handle; it will store the appropriate data depending on
the source of the image, and it will keep track of simple state information to sup-
port caching.

Texture handles will need to keep track of the image data and where the data orig-
inated from, so the enum defined below will be used to accomplish this.

public enum TextureHandleType
{

FileSystem,

Bitmap,

RawData
}

The texture handle class has several different constructors, each with a different
signature and parameter list. The texture handle type is set when one of the con-
structors is fired, and depending on the constructor, the appropriate type value is
set.

If one of the constructors accepting a FileInfo object is used, then it is assumed
that the image is being loaded from the hard drive, so the handle type will be set
to TextureHandleType.FileSystem.

If a constructor is used that accepts a Bitmap object, it is assumed that the object
contains the image data, and the handle type should be set to TextureHandleType.Bitmap.

Lastly, if a constructor is used that accepts a MemoryStream object, it is assumed that
the memory stream contains the raw binary data of the image, and that the han-
dle type should be set to TextureHandleType.MemoryStream.

Storing Texture Information

Texture handles need a humanly readable way to distinguish themselves from one
another. Since the image data does not have to come from the file system and can
come directly from raw memory, the filename cannot be used as an identifier. It is
for this reason that the Name property was introduced into the texture handle class.

The two boolean properties Generate and Loaded will be covered later in this chap-
ter. They are flags describing whether or not the textures need to be regenerated,
and whether or not the image itself was able to be loaded.

You should also notice that the TextureHandle class implements the IDisposable
interface. This is because of the MemoryStream object, which the Dispose method will
close if required.

The following code implements the texture handle class in its entirety.

pubTic class TextureHandle : IDisposable
{
private string _name;
private FileInfo _file;
private Bitmap _image;
private MemoryStream _data;
private bool _generate = true;
private TextureHandleType _type;
private bool _loaded;

public string Name

{
get { return _name; }
set { _name = value; }

}

public Filelnfo File

{
get { return _file; }
set { _file = value; }

}

public Bitmap Image

{
get { return _image; }
set { _image = value; }

269

270 Chapter 26 = Constructing an Aesthetic Texture Browser Control

public MemoryStream Data
{
get { return _data; }
set { _data = value;)
}

public bool Generate
{
get { return _generate; }
set { _generate = value; }
}

public TextureHandleType Type
{
get { return _type; }
set { _type = value; }
}

public bool Loaded
{
get { return _loaded; }
set { _loaded = value; }
}

public TextureHandle(FileInfo file) : this(file, file.Name) { }

public TextureHandle(FileInfo file, string name)
{

_file = file;

_name = name;

_type = TextureHandleType.FileSystem;

}

public TextureHandle(string filePath, string name)
{

_file = new FileInfo(filePath);
_name = name;
_type = TextureHandleType.FileSystem;

}

public TextureHandle(string name, Bitmap image)
{

Building the Thumbnail Control

_hame = name;

_image = image;

_type = TextureHandleType.Bitmap;
}

public TextureHandle(string name, MemoryStream stream)
{

_hame = name;
_data = new MemoryStream(stream.ToArray());
_type = TextureHandleType.RawData;

}

public TextureHandle(string name, byte[] data)
{

_name = name;

_data = new MemoryStream(data);

_type = TextureHandleType.RawData;

public void Dispose()
{
if (_data != null)
{
_data.Close();
_data = null;

Note

You will need to reference System.I0 for the MemoryStream and FileInfo objects, as well as
System.Drawing for the Bitmap object.

Building the Thumbnail Control

With the loaders built, it is time to build the user interface controls. We will start
with the thumbnail control, which will show the image to the user, along with a
summarized amount of information. This control will operate as an independent
and modular unit of code, and it will be used by the texture browser.

The processing of the image data is performed by the loaders, but the original tex-
ture size will generally be too big for the thumbnail display. The thumbnail control

271

272

Chapter 26 = Constructing an Aesthetic Texture Browser Control

takes the image data of the associated texture handle, resizes it to the appropriate
size, and then uses a resized copy of the original image for the display.

The thumbnail control also handles the visual appearance for selection. The con-
structor accepts a reference to the texture browser instance so that visual proper-
ties can be used and applied to the thumbnail control.

Aside from visual properties, the reference to the texture browser is used by the
thumbnail control to relay event information back to the browser control.

The following code defines the thumbnail control and its related properties and
functionality.

public partial class TextureThumbnail : UserControl
{

private TextureBrowser _container;

private TextureHandle _texture;

private bool _selected;

public TextureHandle Texture
{

get { return _texture; }
}

public bool Selected
{

get { return _selected; }
set

{

if (_container == null)
return;

if (value)
{
this.BackColor = Color.Blue;

FileNameLabel.BackColor
FileNameLabel.ForeColor

_container.BackgroundColorSelected;
_container.ForegroundColorSelected;

DimensionsLabel.BackColor
DimensionsLabel.ForeColor

_container.BackgroundColorSelected;
_container.ForegroundColorSelected;

Building the Thumbnail Control 273

this.BackColor = SystemColors.ActiveCaption;

FileNamelLabel.BackColor
FileNameLabel.ForeColor

DimensionsLabel.BackColor
DimensionsLabel.ForeColor

_selected = value;

public TextureThumbnail(TextureBrowser
{
InitializeComponent();

_container = container;
_texture = texture;

if (_container != null)

{
this.FileNameLabel.BackColor =
this.FileNameLabel.ForeColor =
this.DimensionsLabel.BackColor
this.DimensionsLabel.ForeColor
}

GenerateThumbnail();
DisplayInformation();

private void GenerateThumbnail()
{
if (_texture.Image == null)
return;

_container.BackgroundColor;
_container.ForegroundColor;

= _container.BackgroundColor;
_container.ForegroundColor;

container, TextureHandle texture)

_container.BackgroundColor;
_container.ForegroundColor;

= _container.BackgroundColor;
= _container.ForegroundColor;

int maxDimension = Math.Min(MaterialPreview.Width,
MaterialPreview.Height);

int resizedWidth

_texture.Image.Width;

274 Chapter 26 = Constructing an Aesthetic Texture Browser Control

int resizedHeight = _texture.Image.Height;

if (_texture.Image.Width > maxDimension ||
_texture.Image.Height > maxDimension)

{
if (_texture.Image.Width > _texture.Image.Height)
{
resizedWidth = maxDimension;
resizedHeight = (int)(_texture.Image.Height *
maxDimension / _texture.Image.Width);
else
resizedWidth = (int)(_texture.Image.Width *
maxDimension / _texture.Image.Height);
resizedHeight = maxDimension;
}

MaterialPreview.Image = new Bitmap(_texture.Image,

resizedWidth,
resizedHeight);
}
private void DisplayInformation()
{
if (_texture.Image != null)
{
this.FileNamelLabel.Text = _texture.Name;
this.DimensionsLabel.Text = String.Format(CultureInfo.CurrentCulture,
"{0} x {1}",
_texture.Image.Size.Width,
_texture.Image.Size.Height);
}
}

private void ToggleSelection()
{
if (_container != null)
_container.PerformSelect(this);

Building the Thumbnail Control 275

private void MaterialPreview_MouseClick(object sender, MouseEventArgs e)

{
if (e.Button == MouseButtons.Left)

{
ToggleSelection();

else if (e.Button == MouseButtons.Right)

if (_container != null)
_container.PerformRightClicked(this);

}

private void MaterialPreview_MouseDoubleClick(object sender, MouseEventArgs e)
{

if (_container != null)
_container.PerformActivated(this);

}

Figure 26.1 shows the texture thumbnail control shown in the designer. There are
two labels for the filename and dimensions, as well as a picture box in the middle

to display the resized image.

bl B L R =

-) -]
- TextureThumbnail.cs [Design]* ||
File Mame
i
Dimensions
F]

Figure 26.1 Screenshot of the thumbnail control in design mode.

276

Chapter 26 = Constructing an Aesthetic Texture Browser Control

Handling Custom User Events

The various notifications raised by the thumbnail and texture browser controls are
going to need a way to reach the application consuming them, so we need to pro-
vide events that the consuming application can tie into.

Basically, all of the events provided by the controls will send the same information,
so we can define a single class to hold the event arguments that will be sent to the
various event delegates. The different events will be covered in the next section
when the viewer control is discussed.

The event arguments class only tracks a single texture handle instance, which is a
reference to the texture handle associated to the event being executed.

The following code defines the event arguments class for the controls.

public class TextureBrowserEventArgs : EventArgs

{
private TextureHandle _texture;

public TextureHandle Texture
{
get { return _texture; }
set { _texture = value; }
}

public TextureBrowserEventArgs(TextureHandle texture)
{

_texture = texture;

Building the Viewer Control

The viewer control is fairly straightforward. It is basically a user control with a panel
that contains the thumbnail controls. This control determines the spacing and posi-
tioning of the thumbnails, handles notification events, and exposes appearance and
functional settings. It also manages the loading, displaying, and caching of thumb-
nails using the appropriate loader. The following source code describes the texture
browser control in its entirety. The source code listing is somewhat lengthy, one
reason why I will not comment much on each piece individually, but the full source
is needed to fully enable you to understand the control without referring to the
Companion Web site. The source code on the Web site is fully commented if there
is a specific piece that you wish to fully investigate.

Building the Viewer Control 277

public partial class TextureBrowser : UserControl

{
public enum LoaderType
{
Native,
Direct3D
}
public enum SelectionMode
{
Single,
Multiple
}

public event EventHandler<TextureBrowserEventArgs> TextureSelected;
public event EventHandler<TextureBrowserEventArgs> TextureDeselected;
public event EventHandler<TextureBrowserEventArgs> TextureActivated;
public event EventHandler<TextureBrowserEventArgs> TextureRightClicked;

private LoaderType _loader = LoaderType.Native;

private SelectionMode _selection = SelectionMode.Single;
private int _margin = 5;
private bool _cachelmages;

private Color _canvasColor = SystemColors.ControlDark;

private Color _backgroundColor = SystemColors.Control;

private Color _foregroundColor = SystemColors.ControlText;

private Color _backgroundColorSelected = SystemColors.Highlight;
private Color _foregroundColorSelected = SystemColors.HighlightText;

private AbstractLoader _imageloader;
private Size _oldSize;
private bool _rebuildCache = true;

private bool _applyAppearance = true;

private List<TextureHandle> _textures = new List<TextureHandle>();
private List<TextureThumbnail> _thumbnails = new List<TextureThumbnail>();

[CategoryAttribute("Texture Browser Settings"),

278 Chapter 26 = Constructing an Aesthetic Texture Browser Control

DescriptionAttribute("Loader system to use when processing images")]
public LoaderType Loader

{
get { return _loader; }
set
{
if (_loader != value)
{
_rebuildCache = true;
_loader = value;
switch (_Toader)
{
case LoaderType.Native:
{
_imagelLoader = new Nativeloader(this.Handle);
break;
}
case LoaderType.Direct3D:
{
_imagelLoader = new Direct3DLoader(this.Handle);
break;
}
}
}
else if (_imagelLoader == null)
_imagelLoader = new Nativeloader(this.Handle);
DisplayThumbnails();
}
}

[CategoryAttribute("Texture Browser Settings"),
DescriptionAttribute("Selection mode of the control")]
public SelectionMode Selection
{
get { return _selection; }
set { _selection = value; }

Building the Viewer Control 279

[CategoryAttribute("Texture Browser Settings"),
DescriptionAttribute("Whether or not to cache loaded images")]
public bool Cachelmages
{
get { return _cacheImages; }
set { _cachelmages = value; }
}

[CategoryAttribute("Texture Browser Settings"),
DescriptionAttribute("Background color of the texture browser panel")]
public Color CanvasColor

{
get { return _canvasColor; }
set
{
_canvasColor = value;
ThumbnailPanel.BackColor = _canvasColor;
}
}

[CategoryAttribute("Texture Browser Settings"),
DescriptionAttribute("Background color of the thumbnail control")]
public Color BackgroundColor
{
get { return _backgroundColor; }

set

{
_backgroundColor = value;
_applyAppearance = true;
DisplayThumbnails();

}

[CategoryAttribute("Texture Browser Settings"),
DescriptionAttribute("Foreground color of the thumbnail control")]
public Color ForegroundColor

{
get { return _foregroundColor; }
set
{
_foregroundColor = value;
_applyAppearance = true;

280 Chapter 26 = Constructing an Aesthetic Texture Browser Control

DisplayThumbnails();
}

[CategoryAttribute("Texture Browser Settings"),
DescriptionAttribute("Background color of selected thumbnails")]
public Color BackgroundColorSelected
{

get { return _backgroundColorSelected; }

set

{
_backgroundColorSelected = value;
_applyAppearance = true;
DisplayThumbnails();

}

[CategoryAttribute("Texture Browser Settings"),
DescriptionAttribute("Foreground color of selected thumbnails")]
public Color ForegroundColorSelected
{

get { return _foregroundColorSelected; }

set

{
_foregroundColorSelected = value;
_applyAppearance = true;
DisplayThumbnails();

}

}

public TextureBrowser()
{
InitializeComponent();
this.Loader = LoaderType.Native;
}

public void AddTexture(TextureHandle texture)
{
if (texture != null)
{
_textures.Add(texture);
_rebuildCache = true;

Building the Viewer Control 281

DisplayThumbnails();
}
}
public void AddTextures(TextureHandle[] textures)
{
foreach (TextureHandle texture in textures)
{
AddTexture(texture);
}
}
public void AddTextures(List<TextureHandle> textures)
{
foreach (TextureHandle texture in textures)
{
AddTexture(texture);
}

public void RemoveTexture(TextureHandle texture)

{
if (texture != null)
{
_textures.Remove(texture);
_rebuildCache = true;
DisplayThumbnails();
}
}
public void RemoveTextures(TextureHandle[] textures)
{
foreach (TextureHandle texture in textures)
{
RemoveTexture(texture);
}
}

public void RemoveTextures(List<TextureHandle> textures)

{
foreach (TextureHandle texture in textures)

{

282 Chapter 26 = Constructing an Aesthetic Texture Browser Control

RemoveTexture(texture);

}
}
public void GenerateTexture(TextureHandle texture)
{

try

{

texture.Loaded = false;

switch (texture.Type)

{
case TextureHandleType.FileSystem:
{
texture.Image = _imageloader.Load(texture.File.FullName);
break;
}
case TextureHandleType.RawData:
{
texture.Image = _imageloader.lLoad(texture.Data);
break;
}
case TextureHandleType.Bitmap:
{
// Do nothing, data already there
break;
}
}
if (texture.Image != null)
{
texture.Loaded = true;
if (_cacheImages)
{
texture.Generate = false;
}
}

}
catch (System.OutOfMemoryException)

Building the Viewer Control

{
throw;
}
}
public void GenerateTextures(TextureHandle[] textures)
{
foreach (TextureHandle texture in textures)
{
GenerateTexture(texture);
}
}
public void GenerateTextures(List<TextureHandle> textures)
{
foreach (TextureHandle texture in textures)
{
GenerateTexture(texture);
}
}

public TextureHandle FindTexture(string name)
{
TextureHandle result = null;

foreach (TextureHandle texture in _textures)

{
if (texture.Name.Equals(name))

{
result = texture;
break;

return result;

public TextureHandle FindTexture(FileInfo file)

{
return FindTexture(file, false);

283

284 Chapter 26 = Constructing an Aesthetic Texture Browser Control

public TextureHandle FindTexture(FileInfo file, bool fullPath)
{
TextureHandle result = null;

foreach (TextureHandle texture in _textures)
{
if (fullPath)
{
if (texture.File.FullName.Equals(file.FullName))
{

result = texture;
break;

else
if (texture.File.Name.Equals(file.Name))
{
result = texture;
break;

}

return result;
}

public void SelectAl1()

{

foreach (TextureThumbnail thumbnail in _thumbnails)
{

thumbnail.Selected = true;

if (TextureSelected != null)

TextureSelected(this,
new TextureBrowserEventArgs(thumbnail.Texture));

}

}

public void DeselectAl1()
{

DeselectAl1(null);
}

Building the Viewer Control 285

private void DeselectAl1(TextureThumbnail skip)

{
foreach (TextureThumbnail thumbnail in _thumbnails)
{
if (skip != null && thumbnail.Equals(skip))
continue;
thumbnail.Selected = false;
if (TextureDeselected != null)
TextureDeselected(this,
new TextureBrowserEventArgs(thumbnail.Texture));
}
}

private void DisplayThumbnails()
{
_thumbnails.Clear();

if (_rebuildCache)

{
while (ThumbnailPanel.Controls.Count > 0)
{
TextureThumbnail th = (TextureThumbnail)ThumbnailPanel.Controls[0];
th.Dispose();
ThumbnailPanel.Controls.Remove(th);
}
foreach (TextureHandle texture in _textures)
{
if (texture.Generate)
{
GenerateTexture(texture);
}

if (texture.Loaded)
{
TextureThumbnail thumbnail = new TextureThumbnail(this,
texture);
_thumbnails.Add(thumbnail);

286 Chapter 26 = Constructing an Aesthetic Texture Browser Control

_rebuildCache = false;

}
else

{
foreach (TextureThumbnail thumbnail in ThumbnailPanel.Controls)

{
_thumbnails.Add(thumbnail);
}

ThumbnailPanel.Controls.Clear();
}

int numberHorizontal = -1;

foreach (TextureThumbnail thumbnail in _thumbnails)

{

if (numberHorizontal < 0)

{
// determine how many thumbnails can be displayed on one row
numberHorizontal = (int)(ThumbnailPanel.Width / (thumbnail.Width != 0

? thumbnail.Width : 1));
if (numberHorizontal <= 0)
numberHorizontal = 1;
}

thumbnail.Left = _margin + (thumbnail.Width + _margin)
* (ThumbnailPanel.Controls.Count %
numberHorizontal);

thumbnail.Top = _margin + (thumbnail.Height + _margin)
* (ThumbnailPanel.Controls.Count /
numberHorizontal);

ThumbnailPanel.Controls.Add(thumbnail);
}

if (_applyAppearance)
{
foreach (TextureThumbnail thumbnail in ThumbnailPanel.Controls)

{
if (thumbnail.Selected)

Building the Viewer Control 287

{
thumbnail.BackColor = BackgroundColorSelected;
thumbnail.ForeColor = ForegroundColorSelected;
}
else
{
thumbnail.BackColor = BackgroundColor;
thumbnail.ForeColor = ForegroundColor;
}
}
_applyAppearance = false;
}
1
internal void PerformSelect(TextureThumbnail thumbnail)
{
switch (_selection)
{
case SelectionMode.Single:
{
DeselectAl1();
thumbnail.Selected = true;
if (TextureSelected != null)
TextureSelected(this,
new TextureBrowserEventArgs(thumbnail.Texture));
break;
}

case SelectionMode.Multiple:
{
if (Control.ModifierKeys == Keys.Control)
{
thumbnail.Selected = !thumbnail.Selected;

if (thumbnail.Selected)
{
if (TextureSelected != null)
TextureSelected(this,
new TextureBrowserEventArgs(thumbnail.Texture));

288

Chapter 26 = Constructing an Aesthetic Texture Browser Control

else
{
if (TextureDeselected != null)
TextureDeselected(this,
new TextureBrowserEventArgs(thumbnail.Texture));
}
break;
}
else
{
DeselectAl1();
thumbnail.Selected = true;
if (TextureSelected != null)
TextureSelected(this,
new TextureBrowserEventArgs(thumbnail.Texture));
}
break;

}

internal void PerformActivated(TextureThumbnail thumbnail)
{
if (TextureActivated != null)
TextureActivated(this, new TextureBrowserEventArgs(thumbnail.Texture));
}

internal void PerformRightClicked(TextureThumbnail thumbnail)
{
if (TextureRightClicked != null)
TextureRightClicked(this,
new TextureBrowserEventArgs(thumbnail.Texture));
}

private void ThumbnailPanel_MouseClick(object sender, MouseEventArgs e)
{
DeselectAl1();

Using the Control

private void TextureBrowser_Resize(object sender, System.EventArgs e)

{
if (_oldSize != ThumbnailPanel.Size)

{
_01dSize = ThumbnailPanel.Size;
this.DisplayThumbnails();

}

Figure 26.2 shows the texture browser control in design mode. The control is now
complete, which means that we can start consuming it in our applications. The
next section shows how to use it.

’,/Texl:ureﬂmwser.(s [Daign}*]

o .

Figure 26.2 Screenshot of the texture browser control in design mode

Using the Control

Using the new control is very easy. The first thing you want to do is add a refer-
ence to the control assembly. The next step is to add the texture browser control
into your toolbox. You can do this by right-clicking on the toolbox and selecting
the Choose Items... option. The Choose Toolbox Items dialog will appear, show-
ing all the assemblies loaded in the Global Assembly Cache (GAC). The control
library is not registered in the GAC, so you will need to click the Browse button

289

290

Chapter 26 = Constructing an Aesthetic Texture Browser Control

and navigate to the assembly of the library. An entry called TextureBrowser will be
selected in the list. You should now be able to click OK and see the control appear
in your toolbox.

You can now drag the texture browser control from the toolbox onto your form.
Resize the control to your liking and then go to its properties. Aside from the normal
properties that are available for all Windows Forms controls, there is a new section
called Texture Browser Settings that are control-specific settings. These settings are
shown in Figure 26.3.

B Texture Browser Settings
BackgroundColor |:| Control
Bad{gruundCDIarSelect&c- Highlight
Cachelmages False
CanvasColor B controlDark
ForegroundColor Il controlText
ForegruundCDIorSelectecD HighlightText
Loader Mative
Selection Single

Figure 26.3 Properties for the texture browser control.

Change these settings to your liking, and then you can move onto the code for
adding textures to the control.

Loading Textures from a Directory

Early in the chapter, I mentioned that the loaders support three different sources for
image data. The most common source will be from files located in the file system,
and the following code shows how to iterate through a directory and load the image
files into the texture browser control. Be sure to reference the System. 10 namespace.

DirectoryInfo directorylnfo = new DirectoryInfo(path);
if (directoryInfo.Exists)
{

FileInfo[] files = directoryInfo.GetFiles();

foreach (FileInfo file in files)
TextureBrowserInstance.AddTexture(new TextureHandle(file));

Texture Browser Demo

Loading Textures from a MemoryStream

The second source type for loading textures is from raw binary data stored in a
MemoryStream object. This type is useful when images are extracted from storage
archives, pulled off of a network connection, or programmatically generated. The
following code shows how to load an image into the texture browser control from
memory. Be sure to reference the System.Drawing and System. 10 namespaces.

Image image = Image.FromFile(@".\MemoryImage.bmp");

MemoryStream stream = new MemoryStream();

image.Save(stream, ImageFormat.Png);
TextureBrowserInstance.AddTexture(new TextureHandle("My Image", stream));

Loading Textures from a Bitmap

The last source type provides the ability to use an existing bitmap image when cre-
ating a texture handle. This method does not require any additional loading, since
the image data has already been loaded into the bitmap object. This approach is
useful when retrieving embedded resource content from an assembly resource
stream, or images that are programmatically generated. The following code shows
how to load a texture from an existing bitmap.

Image image = Image.FromFile(@".\MemoryImage.bmp");
TextureBrowserInstance.AddTexture(new TextureHandle("My Image", image));

Texture Browser Demo

The Companion Web site has the complete source code for the library presented
in this chapter, along with a simple demo that utilizes it. The demo just loads images
located in a folder with the application, but supports the ability to switch image
loaders at runtime.

Multiple selection is enabled, and you just have to hold down the Ctrl key while
selecting multiple thumbnails. A context menu is bound to the right-click event of
the thumbnails to present a dialog that shows simple information about the image.
Lastly, the Activated event, (double-click), for the thumbnails shows a simple mes-
sage box where other functionality could be implemented in a real-world applica-
tion. An example of real-world functionality might be the ability to double-click a
thumbnail and have a selected model mesh reference the texture as its color map.

Figure 26.4 shows a screenshot of the texture browser demo application.

291

292

Chapter 26 = Constructing an Aesthetic Texture Browser Control

=101 x]

Select Al | Deselect Al | [Managed Direct2D =

Amor1 dds
L]

> '_
T

Figure 26.4 Screenshot of the demo application using the texture browser.

Conclusion

This chapter covered the construction of a reusable control that can display images
in a visually appealing way, and can also manage the handling and notification of
events associated with the control.

There are some places where refactoring could improve the overall design of the
component, but the most notable place is the Managed Direct3D loader. The point
of having pluggable interfaces is to decouple the reliance on external dependencies
when a particular component is not in use. Consider the situation where it is preferred
that an application consuming this control does not use the Managed Direct3D
loader, but instead uses the native GDI+ version. Sure, the loader can be set to
native, but the component is still referencing the managed DirectX assemblies. If
the consuming application is launched on a system without these assemblies, then
a File Not Found exception would be thrown during execution, even though the
Managed Direct3D loader is never used.

Conclusion

This problem could be solved by compiling the abstract loader interface into a sep-
arate assembly, along with both loader types compiled into their own assemblies.
The texture browser component and both loaders would reference the abstract
loader interface, and the texture browser component would dynamically reference
the appropriate loader at runtime using reflection.

With such a problem, you are probably wondering why the component was not
designed to accommodate this decoupling in the first place. Reflection and plug-
in—based architectures would be the ideal “best practice” way to design the com-
ponent, but this chapter is meant to cover how to build the component itself,
hence why the component was designed the way it is. Removing this dependency
on Direct3D can be done two ways, both very easily. You can exclude the Direct3D
loader code from the texture browser component and recompile it; do not forget
to remove the assembly references as well. Or you can refactor the component to
support a plugin—based architecture, which is covered in Chapter 38, “Designing
an Extensible Plugin-Based Architecture.”

Opverall, this chapter presents a solid and reusable component that can be employed
in a number of tools.

293

This page intentionally left blank

CHAPTER 27

CONVERTING FROM SCREEN
SPACE TO WORLD SPACE

A mathematician is a device for turning coffee into theorems.

Paul Erdos

When working with standard applications, users are accustomed to clicking on a
control or widget and having some degree of interaction with the control. Take a
push button, for example; users click on a push button and a visual cue is used that
presents the button in a depressed state, and the button launches an on-click event
that performs some action. Users are also accustomed to this same level of inter-
action with 3D applications.

Many 3D applications have dialogs that can modify and manage data without the
need to interact with the scene, but visual interaction is much easier and faster to
perform than clicking through dialog after dialog. For example, 3D applications
typically allow the user to reposition objects within a scene by using the mouse
and by typing in coordinates in a dialog box. It does not take a lot of thought to
figure out which method is faster and more productive. If using the mouse is eas-
ier and more productive, why bother with field-driven dialog boxes at all? Using
the mouse is quick, but typing coordinates into a dialog is much more precise than
using the mouse and trying to coerce an object into a specific location.

295

296

Chapter 27 = Converting from Screen Space to World Space

In order to handle mouse-clicking, the application must be able to read mouse click
events, extract the coordinate (X, Y), and perform an intersection test against a par-
ticular control to see if it was activated. Thankfully, this process is automatically
handled by Win32 user interface controls, but we are not so lucky in the 3D world.

This chapter will cover the math and implementation behind converting coordi-
nates in screen space to world space and performing intersection tests, otherwise
known as picking.

Transforming Screen Coordinates

Performing intersecting tests against Win32 controls is very simple, since the
mouse coordinates and the control bounds are both in screen space (X, Y).
Intersection tests from screen space coordinates to world space bounds (X, Y, Z)
require a bit of math since we do not know the relationship between the 3D object
and its projection. It is also important to state that we are using a left-handed coor-
dinate system, which is the default for Direct3D. OpenGL uses a right-handed
coordinate system, so the math and code will have to be adapted to get it working.
Take a look at the source code for the glulnproject function of OpenGL if you are
unsure of how to do this.

Figure 27.1 shows the relationship between the origin of projection (screen space)
and the projection window (world space).

4 Far Plane”

z=1 ~

w
y

Projection Window

/)
“Origin of Projection

Figure 27.1 Relationship between the origin of project and the projection window.

Transforming Screen Coordinates

Figure 27.1 shows that the teapot was projected to the area surrounding W on the
projection window, corresponding to screen point S. With that said, we can compute
a picking ray that will project from the origin and pass through W. Intersection tests
can then be performed against all objects in the scene to determine which objects
were picked by the user. It is possible that the intersection tests performed on the
scene objects will return no hits. This simply means that the user did not click on
any objects.

Note

The point W on the projection window corresponds to the clicked screen point S.

We must first transform the clicked screen point S to point W on the projection
window. This is done by working backwards from the equations that transform
projection window points to screen points. The viewport transformation matrix
used in the equations is shown here:

viewportWidth
—_— 0 0 0
2
viewportHeight
0 — M 0 0
2
0 0 MaxZ — MinZ 0
viewportWidth viewportHeight
P > Y+ P > g MinZ 1

Working backwards, transforming a world space point W (X, Y, Z) by the viewport
transformation matrix, yields the screen space point S (X, Y). Following are the
two equations to solve for S. The 2D image displayed by your graphics card after
rasterization does not contain any depth information (Z).

viewportWidth viewportWidth
Sy= Wy > + X+ 5

Sy =W, <wewportHelght> Y+ viewportHeight

2 2
These two equations are great when converting from world space to screen space,
but they will serve no purpose unless we can get them into a more useful state.
Solving for variable W, we get the following new equations.

297

298

Wa= viewportWidth

Chapter 27 = Converting from Screen Space to World Space

2Sy — 2X — viewportWidth
x= viewportWidth

2Sy + 2Y + viewportHeight
ve viewportHeight

The X and Y members of the viewport are almost always 0, so we can go one step
further and come up with the following equations. The projection window also
coincides with the plane where Z = 1, so we can now set the Z component of the
3D coordinate we are trying to calculate.

2.8, 1

2.8,

Wy = viewportHeight 1

W, =1

There is one last factor that must be considered to correctly solve for W. Different
fields of view can be used to present a scene, and the projection matrix scales the
points on the projection window to simulate these fields of view. To reclaim the
original values before scaling occurs, we must transform the points by the inverse
of the scaling operations. The variable projection will be used to signify the pro-
jection matrix, and the subscripts represent the matrix entries. Entries 00 and 11
of a transformation matrix scale the X and Y values, so we can produce the fol-
lowing equations.

W, 2X ’ 1
X~ \ viewportWidth ~ projection,,

-2Y 1
Wy = (viewportHeight * 1)(projection,,)

W,= 1

Note

The Managed Direct3D Matrix object uses a slightly different numbering convention for row and
column entries. The properties M11 and M22 represent the 00 and 11, respectively.

Computing the Picking Ray

With the final transformation equations, we can move on to computing the pick-
ing ray that will test for objects picked by the user.

Computing the Picking Ray
A ray can be represented by the parametric equation P(t) =P + t * D, where Pis a
point in the ray and D is a vector that provides the direction of the ray. In our sit-
uation, the origin of the ray is also the origin of the view space, so P = (0, 0, 0). If
P is a point on the project window to shoot the picking ray through, then we can
solve for D with the following equation.

D=P-P,=(PxPy,1)-(0,0,0)=P

The following code is used to compute the picking ray for intersection testing.

private PickingRay ComputePickingRay(Entity entity, int x, int y)
{

float viewportWidth = device.Viewport.Width;

float viewportHeight = device.Viewport.Height;

float projection00 = device.Transform.Projection.M11;
float projectionll = device.Transform.Projection.M22;

float pX
float pY

((C 2.0F * x) / viewportWidth) - 1.0F) / projection00;
(((-2.0F * y) / viewportHeight) + 1.0F) / projectionll;

Matrix invWorldView = Matrix.Identity;

invWorldView.Translate(entity.Position);
invWorldView.Multiply(device.Transform.View);
invWorldView.Invert();

Vector3 rayDirection = new Vector3(pX, pY, 1.0f);

return new PickingRay(rayDirection, invWorldView);
}

After computing the picking ray, we must also transform it into world space to
correctly represent the objects in the scene. Transforming the picking ray to world
space is done in the constructor of the following struct. The transformation matrix
supplied to the constructor is the inverse world-view matrix that was created when
the picking ray was computed. The following code is used to transform the picking
ray into world space so that the ray and the objects are in the same coordinate system.

299

300 Chapter 27 = Converting from Screen Space to World Space

internal struct PickingRay

{
internal Vector3 Origin;
internal Vector3 Direction;

public PickingRay(Vector3 direction, Matrix transform)
{

Origin = new Vector3(0.0F, 0.0F, 0.0F);

Direction = direction;

Origin.TransformCoordinate(transform);
Direction.TransformNormal(transform);
Direction.Normalize();

Note

Vector3.TransformCoordinate() is used to transform points because it sets the fourth com-
ponent to W = 1, whereas Vector3.TransformNormal() is used to transform vectors because
it sets the fourth componentto W = 0.

Bounding Sphere Intersection Tests

At this point, we are converting screen space coordinates to world space and com-
puting a ray that will be used for picking. Intersection tests will be performed
against objects in the scene using the computed ray to determine which objects the
user has selected.

In order to perform intersection tests, we need a 3D shape to test against.
Bounding spheres are common because their approximated nature makes them
fast to compute and use. Each object is represented by a bounding sphere that
describes the approximated volume of the object.

A sphere is represented by its center ¢ and its radius r. Points can be tested for
whether they belong to a sphere if their distance from the center is equal to the
radius, shown by the following equation.

oBl=lp—cl=r

Intersecting a ray with a sphere can be found with the following equation, where
p is substituted with o+ td to represent the ray.

Bounding Sphere Intersection Tests

r=|o+td-c|=|cd+1d|
We can square both sides of the equation to obtain the following equation.
re=|cof +2(co - d)*t+|df*t?

This equation can then be written as a quadratic equation.

At*+ Bt+ C=0
A= |d?

B =2(co- d)
C=|co|—r>

We can calculate the discriminant and use it to determine at first glance whether any
solutions exist. Ignoring t, we can calculate the discriminant with A = B*> - 4AC.

When the discriminant is less than zero, there are no solutions, so an intersection
did not occur.

When the discriminant is equal to zero, there is only one solution, which is gener-
ally a tangency. The solution for this case is given by the following equation:

—B/(2A)

When the discriminant is greater than zero, there are two solutions. Two solutions
for this case are given by the following equation:

~B/(2A)

Rays only extend in one direction (positive), so any solutions where t < 0 have to
be ignored. We just need to know if any solution was found, so we can skip the sec-

ond case altogether and jump right into the third case. If any solution is > 0, we
can safely say that an intersection was found.

The following code shows the intersection code for ray-sphere.

private bool IntersectRaySphere(Entity entity, int x, int y)
{
PickingRay ray = ComputePickingRay(entity, x, y);

Vector3 vec = ray.Origin - entity.BoundingSphere.Center;

301

302

Chapter 27 = Converting from Screen Space to World Space

float b = 2.0F * Vector3.Dot(ray.Direction, vec);

float center = Vector3.Dot(vec, vec) - (entity.BoundingSphere.Radius *
entity.BoundingSphere.Radius);

float discriminant = (b * b) - (4.0F * center);

if (discriminant < 0.0F)
return false;

discriminant = (float)Math.Sqrt((double)discriminant);

float s0
float sl

(-b + discriminant) / 2.0F;
(-b - discriminant) / 2.0F

’

if (s0 >= 0.0F || s1 >= 0.0F)
return true;

return false;

NOTE

The picking ray extends infinitely, so there is a possibility that multiple objects can be intersected.
The object closest to the camera is the one the user selected because it will always occlude the
other selected objects.

Improving Intersection Accuracy

Testing for object intersection with bounding sphere volumes works, and the tests
are straightforward and fast to compute. A disadvantage to using bounding sphere
volumes is a fair level of inaccuracy. Bounding sphere volumes are ideal for any
spherical object, although most of the time intersections are performed against an
arbitrary mesh, which means that selections can occur by clicking near the object.

A solution to this problem is to perform triangle intersections against all the poly-
gons within the arbitrary mesh. This process takes longer to compute, but the
results are much more accurate than bounding sphere volumes. For the purposes
of this example, we will use the built-in Mesh.Intersect() method of Managed
Direct3D to perform intersection at the polygon level. The picking ray is computed
in the same way as in the previous example, but the picking ray origin and direc-
tion are passed into the intersection method.

Using Built-In D3DX Functionality 303

The following code shows an intersect variation with improved accuracy.

private bool IntersectRayMesh(Entity entity, int x, int y)
{
PickingRay ray = ComputePickingRay(entity, x, y);
return entity.Mesh.Intersect(ray.Origin, ray.Direction);

Using Built-In D3DX Functionality

Reinventing the wheel is generally frowned upon, but a developer can always argue
that he would rather reinvent the wheel in some cases if it means he will walk away
understanding the mechanics of the solution at a lower level. This chapter has dis-
cussed the math and implementation behind converting a screen space coordinate
into world space, as well as computing a picking ray that can be used to perform
intersection tests against objects. I then went on to showing an improvement to
the intersection tests using built-in functionality of the Direct3D Mesh class. There
is actually enough built-in functionality with Managed Direct3D to implement a
full picking solution with only a few lines of code.

The Vector3 class has a method called Unproject that can be used to project a vec-
tor from screen space into world space. We can make two vectors that represent the
near and far clipping planes (Z = 0 and 1, respectively), unproject both of them,
and then subtract the near vector from the far vector to produce a picking ray suit-
able for Mesh. Intersect().

The following code shows this.

private bool IntersectUnprojectMesh(Entity entity, int x, int y)
{

Vector3 near;

Vector3 far;

near = new Vector3(x, y, 0);
far = new Vector3(x, y, 1);

Matrix world = Matrix.Identity;
world.Translate(entity.Position);

near.Unproject(device.Viewport,
device.Transform.Projection,
device.Transform.View,
world);

304

Chapter 27 = Converting from Screen Space to World Space

far.Unproject(device.Viewport,
device.Transform.Projection,
device.Transform.View,
world);

far.Subtract(near);

return entity.Mesh.Intersect(near, far);

—

Conclusion

This chapter covered the math and implementation details behind converting screen
space coordinates into world space, and performing intersection tests to determine
objects that have been picked in a scene.

Remember the following steps:

® Given the screen point S, find its corresponding point (W) on the projection
window.

® Compute the picking ray shooting from the origin through point W.

® Transform the picking ray into the same space as each object.

® Perform intersection tests to determine the objects picked by the user.
The Companion Web site has the full source code for the example that is frag-
mented throughout this chapter. The example displays several teapots; the user

can click on a teapot and it will turn a different color when selected. Figure 27.2
shows the example provided with this chapter.

=

@ @
@

Figure 27.2
Screenshot of the provided
example for mouse picking.

CHAPTER 28

ASYNCHRONOUS INPUT
DEVICE POLLING

Why do we never have time to do it right, but always have time to do it over?

Anonymous

The Principle of Feedback (Chapter 7, “Fundamentals of User Interface Design”)
is perhaps the most important concept of application design. This principle entails
visual cues that easily describe the state of the application, but this principle also
covers responsiveness of the user interface and cues related to waiting periods.

The standard Microsoft Windows message pump typically works well for most
applications, but applications that update their state each time the mouse is moved
can suffer from performance penalties. This is usually felt by applications that
employ the use of 3D real-time graphics technologies like Direct3D.

The Microsoft DirectX library has a technology called DirectInput that communi-
cates directly with device hardware drivers, completely avoiding the Microsoft
Windows message pump. DirectInput offers considerable performance boosts over
the message pump, and also supports asynchronous polling and data buffering.

This chapter focuses on using DirectInput to asynchronously read the mouse and
keyboard devices. The mouse positions are expressed as deltas (difference) between
the current and last positions. This chapter also shows how to read the mouse but-
tons. This is a useful technique for using the mouse to control a 3D camera. You will
also learn how to check whether a key is depressed on the keyboard.

305

306

Chapter 28 = Asynchronous Input Device Polling

Asynchronous Mouse Polling

The first step is to include and reference the appropriate namespaces. You should
add a reference to Microsoft.DirectX and Microsoft.DirectX.DirectInput and use
the following namespaces.

using System;

using System.Threading;

using Microsoft.DirectX;

using Microsoft.DirectX.DirectInput;

The following class encapsulates all the nitty gritty details of using DirectInput for
mouse polling. After instantiation, the Initialize method is executed to create the
mouse input device and to spawn the asynchronous polling thread.

public class AsynchronousMouse : IDisposable
{

The Device object is used to manage Microsoft DirectInput devices and associated
properties, specify behavior, manage force-feedback effects, interact with the device’s
control panel, and perform device initialization.

private Device _device = null;

private Thread _threadData = null;
private AutoResetEvent _eventTrigger = null;

private byte[] _buttons;
private int _x;
private int _y;
private int _z;

private System.Windows.Forms.Form _context;

public delegate void MovementDelegate(int x,
int vy,
int z,
bool Teft,
bool middle,
bool right);

private delegate void PollTriggerDelegate();

public event MovementDelegate MouseMovement;

Asynchronous Mouse Polling

public byte[] Button
{

get { return _buttons; }
}

public int X
{

get { return _x; }
}

public int Y

{
get { return _y; }
}

public int Z
{

get { return _z; }
}

The initialization method instantiates the device, sets the cooperative level, and
sets the notification event that is used to control the polling thread.

The following code shows the initialization method.

public bool Initialize(System.Windows.Forms.Form context)
{

_context = context;
The next two lines create a new thread that asynchronously polls the mouse device
for state changes and dispatches them back to the user.

_threadData = new Thread(new ThreadStart(this.AsynchronousPolling));
_threadData.Start();

The _eventTrigger is used by DirectInput to notify threads when the mouse state
changes. We use this event to control the asynchronous polling thread.

_eventTrigger = new AutoResetEvent(false);

try
{

SystemGuid contains constant identifiers for system devices for use with DirectInput.
SystemGuid.Mouse is associated with a mouse that has up to four buttons, or another
device that is behaving like a mouse.

307

308 Chapter 28 = Asynchronous Input Device Polling

_device = new Device(SystemGuid.Mouse);
_device.SetDataFormat(DeviceDataFormat.Mouse);
}
catch (InputException)
{
return false;
}

You must also specify the cooperative level for DirectInput devices. The different
flags are described in Table 28.1.

Table 28.1 Directlnput Device Cooperative Level Flags

Flag Description

Exclusive This flag means that we want priority for control of the device.
NonExclusive This flag means that we do not need priority for control of the device.

Foreground This flag means that we only want data from the device if the window passed
into the SetCooperativelevel method has focus.

Background This flag means that we always want data from the device.

NoWindowsKey This flag is used to ignore the Windows logo key, and is generally used in full
screen mode to prevent interruptions.

We always want data and we do not want to stall other applications using the input
devices, so we use the NonExclusive | Background level.

_device.SetCooperativelevel(_context,
CooperativelevelFlags.NonExclusive |
CooperativelevelFlags.Background);

_device.SetEventNotification(_eventTrigger);

Acquire();
return true;

}

The polling thread runs in a loop, and each cycle is executed when the mouse is
moved. A cycle polls the mouse device to update the cached state information, and
then the callback method is fired. The callback method is registered by the con-
sumer of the component, and can be used to update the user interface or calculate
a 3D camera, for example.

Asynchronous Mouse Polling

private void AsynchronousPolling()
{
while (_context.Created)

{

The AutoResetEvent.WaitOne() method is used to pause thread execution until it
receives a notification event (in this case the mouse state changing).

_eventTrigger.WaitOne(-1, false);

try

{
if (_device == null)
{

continue;
}

The next line retrieves the current mouse state.

_device.Po11();
}
catch (InputException)
{

continue;

}

The next two lines are used to asynchronously execute the trigger method that
routes mouse state information back to the client through a registered callback.

if (_context.Created && !_context.Disposing)
_context.BeginInvoke(new Pol1TriggerDelegate(Poll1Trigger));

}

The following code shows the trigger logic that gets the current mouse informa-
tion and sends it to the user event.

private void Pol1Trigger()
{
if (MouseMovement != null)
{
MouseState stateData = _device.CurrentMouseState;

_buttons = stateData.GetMouseButtons();

309

310 Chapter 28 = Asynchronous Input Device Polling

bool Teft = (_buttons[0] != 0);
bool right = (_buttons[1] != 0);
bool middle = (_buttons[2] != 0);

x = stateData.X;
_y = stateData.yY;
z = stateData.Z;

MouseMovement (stateData.X,
stateData.Y,
stateData.Z,
left,
middle,
right);

}

The following method is used to gain access to the mouse device. This is a required
step before data can be read from the device.

public void Acquire()

{
if (_device != null)
{
try
{
_device.Acquire();
}
catch
{
}
}
}

The following methods are used to properly dispose of the device and trigger
objects using the IDisposable pattern.

public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}

protected virtual void Dispose(bool disposing)

Asynchronous Keyboard Polling

if (disposing)
{
if (_eventTrigger != null)
_eventTrigger.Set();

if (_device != null)

{
_device.Unacquire();
_device.Dispose();
_device = null;

_eventTrigger = null;

Asynchronous Keyboard Polling

Just as with the mouse class, you need to include and reference the appropriate
namespaces. You should add a reference to Microsoft.DirectX and
Microsoft.DirectX.DirectInput and use the following namespaces.

using System;

using System.Threading;

using Microsoft.DirectX;

using Microsoft.DirectX.DirectInput;

The following class encapsulates all the nitty gritty details of using DirectInput for
mouse polling. The code is almost identical to the AsynchronousMouse class, so only
the new sections will be discussed.

public class AsynchronousKeyboard : IDisposable
{

private Device _device = null;

private Thread _threadData = null;

private AutoResetEvent _eventTrigger = null;

private System.Windows.Forms.Form _context;
private bool _acquired = false;

private delegate void Poll1TriggerDelegate();

311

312 Chapter 28 = Asynchronous Input Device Polling

public delegate void ActionDelegate();
public event ActionDelegate KeyboardAction;

private KeyboardState _keyboardState;
public bool Initialize(System.Windows.Forms.Form context)
{

_context = context;

_threadData = new Thread(new ThreadStart(this.AsynchronousPolling));
_threadData.Start();

_eventTrigger = new AutoResetEvent(false);

try
{
_device = new Device(SystemGuid.Keyboard);
_device.SetDataFormat(DeviceDataFormat.Keyboard);
}

catch (InputException)
{
return false;

device.SetCooperativelevel(_context,
CooperativelevelFlags.NonExclusive |
CooperativelevelFTags.Background);

device.SetEventNotification(_eventTrigger);

Acquire();

return true;
}

The following method is used to query the keyboard state to determine whether a
particular key is depressed. The keyboard state is cached each time the state
changes within the asynchronous polling thread.

public bool KeyDown(Key key)

{
if (_keyboardState != null && _keyboardState[key])
{

Asynchronous Keyboard Polling 313

return true;
}

return false;
}

private void AsynchronousPolling()

{
while (_context.Created)

{
_eventTrigger.WaitOne(-1, false);

try
{
if (_device == null)

{

continue;
}
Acquire();

if (_acquired)
{

Retrieve and cache the current keyboard state so that the KeyDown method can use it.

_keyboardState = _device.GetCurrentKeyboardState();
}

}
catch (InputException)
{

continue;

}

if (_context.Created && !_context.Disposing)
_context.BeginInvoke(new Pol1TriggerDelegate(Pol1Trigger));

}

private void PollTrigger()
{
if (KeyboardAction != null)
KeyboardAction();

314 Chapter 28 = Asynchronous Input Device Polling

public void Acquire()

{
if (_device != null)
{
try
{
if (l_acquired)
{
_device.Acquire();
_acquired = true;
}
}
catch
{
_acquired = false;
}
}
}
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
protected virtual void Dispose(bool disposing)
{
if (disposing)
{
if (_eventTrigger != null)
_eventTrigger.Set();
if (_device != null)
{
_device.Unacquire();
_device.Dispose();
_device = null;
}
_eventTrigger = null;
}
}

Sample Usage 315

Sample Usage

Using the two classes in this chapter is very easy. The following code is from the
example for this chapter on the Companion Web site. A callback is used to report
keyboard state changes, although AsynchronousKeyboard.KeyDown() can be called at
any time outside of the callback. The Buttons, X, Y, Z properties of the
AsynchronousMouse class can also be called outside of the callback too.

public partial class MainForm : Form

{
private AsynchronousMouse _mouse;
private AsynchronousKeyboard _keyboard;

public MainForm()
{
InitializeComponent();

_mouse = new AsynchronousMouse();
_mouse.MouseMovement +=
new AsynchronousMouse.MovementDelegate(MouseMovementCallback);

_keyboard = new AsynchronousKeyboard();
_keyboard.KeyboardAction +=
new AsynchronousKeyboard.ActionDelegate(KeyboardActionCallback);
}

void KeyboardActionCallback()
{
if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.UpArrow))

{

UpArrowState.Text = "Down";
else

UpArrowState.Text = "Up";
}

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.DownArrow))
{
DownArrowState.Text = "Down";

else
{

316

Chapter 28 = Asynchronous Input Device Polling

DownArrowState.Text = "Up";

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.RightArrow))
{

RightArrowState.Text = "Down";

}
else
{
RightArrowState.Text = "Up";
}

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.LeftArrow))
{

LeftArrowState.Text = "Down";
}
else
{
LeftArrowState.Text = "Up";
}

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.A))
{

AState.Text = "Down";
}

else
{

AState.Text = "Up";

}

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.D))
{

DState.Text = "Down";
}
else
{
DState.Text = "Up";
}

void MouseMovementCallback(int x,

int vy,
int z,

bool Tleft,
bool middle,
bool right)

if (left)
{
LeftButtonState.BackColor = Color.LimeGreen;

else

LeftButtonState.BackColor = Color.Maroon;
}

if (middle)
{
MiddleButtonState.BackColor = Color.LimeGreen;

else
{

MiddleButtonState.BackColor = Color.Maroon;

}

if (right)
{

RightButtonState.BackColor = Color.LimeGreen;

else

RightButtonState.BackColor = Color.Maroon;
}

ListViewItem TistItem = new ListViewItem();
TistItem.Text = x.ToString();

TistItem.SubItems.Add(y.ToString());
TistItem.SubItems.Add(z.ToString());

Coordinatelist.Items.Add(1istItem);

Coordinates.Text = String.Format("Coordinates ({0}, {1},

Sample Usage

317

318 Chapter 28 = Asynchronous Input Device Polling

}
private void MainForm_Load(object sender, EventArgs e)
{
if (!_mouse.Initialize(this))
{
MessageBox.Show("Error initializing asynchronous mouse. Exiting.");
Application.Exit();
}
if (!_keyboard.Initialize(this))
{
MessageBox.Show("Error initializing async device. Exiting.");
Application.Exit();
}
}

private void MainForm_Activated(object sender, EventArgs e)
{

if (_mouse != null)

{
_mouse.Acquire();

}

if (_keyboard != null)

{
_keyboard.Acquire();
}
}
}
Conclusion

This chapter briefly discussed DirectInput and some advantages of using DirectInput
over the standard Microsoft Windows message pump. A solution was later pre-
sented that shows how to read input device data asynchronously from the mouse
or keyboard. This technique is very useful for graphic-intensive programs where

smooth input is required.

PART IV

I
TECHNIQUES FOR
NETWORK TooLs

The Internet? We are not interested in it.

Bill Gates, 1993

For the most part, tools only need to manage data that exists on the host machine
of the tool, but there is an increasing demand for tools of a distributed nature for
certain processes. Some tools need to access a remote database containing schemas
for game entities, while some tools require the ability to download files off a remote
file share when appropriate. Some more advanced topics include distributed com-
puting architectures in order to disperse processor-intensive tasks over multiple
processing nodes. Another common use for network tools is to pass information
between applications that exist on the same machine. Creating a loopback endpoint
has been used by a number of tools to pass information between a managed and an
unmanaged application process without worrying about data formatting. However,
this approach will not be covered in this book since superior techniques are shown
in Part V, “Techniques for Legacy Interoperability,” when discussing interoperability
with legacy applications.

The chapter in this part does not cover the low-level details of the OSI model or
any common network protocols like UDP or TCP\IP because of the abstracted
nature of the stream model in .NET. It does, however, cover building a distributed
grid computing architecture with .NET remoting, and how to download files asyn-
chronously across HTTP.

There is a growing need for network-oriented tools when dealing with distributed
architectures, though the majority of tools do not usually require this functionality.
Although fairly specific, the chapters covered in this part will come in handy when
the need arises.

CHAPTER 29

DoOWNLOADING NETWORK
FILES ASYNCHRONOUSLY

Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not smart
enough to debug it.

Brian Kernigan

A common task of network applications is the downloading of files off a network
or Internet server. Traditionally, the developer would have to implement a TCP\IP
socket layer that implemented a subset of the HT'TP protocol to retrieve these files.
As with many other common tasks, Microsoft has provided this functionality in
the NET framework with the HttpWebRequest and HttpWebResponse classes. These
classes provide both synchronous and asynchronous approaches to interacting with
universal resource identifiers (URI). The synchronous approach is very straight-
forward, and requires little instruction on usage. The asynchronous approach,
however, can be tricky to implement and use.

In this chapter I will discuss the asynchronous functionality of the HttpWebRequest
and HttpWebResponse classes, and present a reusable solution to download files
asynchronously off a network or Internet server.

321

322

Chapter 29 = Downloading Network Files Asynchronously

HttpWebRequest and HttpWebResponse

The .NET framework provides the abstract class WebRequest, which is the request
and response model for accessing data from the Internet. This model is protocol-
agnostic, specialized by classes inheriting from the abstract class. There are a variety
of specialized descendents of WebRequest, like FileWebRequest for handling file://
paths, but this chapter will focus on the HTTP protocol using HttpWebRequest.

The HTTP protocol is the primary transport mechanism for communicating with
Internet resources. A developer may use this mechanism to download application
updates and configuration information that constantly changes or even to post
messages to a dynamic environment like an ASPNET application. The HttpWebRequest
class implements the WebRequest class, providing a specialized request class to com-
municate over the HTTP protocol. This class enables an application to interact
directly with servers using HTTP.

Server resources are identified by uniform resource identifiers (URI), and the
NET framework provides the Uri class, which defines the properties and methods
for handling uniform resource identifiers, such as comparing, combing, and pars-
ing. Requests are sent from an application to a URI, such as a zipped fie or web
page. The requests are sent using HttpWebRequest to the remote server, using the
HTTP protocol as the transport mechanism to access the resource.

Note

If an error occurs with a request, a WebException is thrown that contains details about why
the request failed. The Status property is of type WebRequestStatus, and if the value is
WebRequestStatus.ProtocolError, the response returned from the server is contained in the
WebException.Response property.

The remainder of the chapter will cover the construction of an asynchronous
wrapper around HttpWebRequest and HttpWebResponse.

The Request Object

The first component of our asynchronous wrapper is the request object, which
serves as the public interface between the application and the rest of the wrapper.
This wrapper executes the core system and fires a download complete event when
the file has finished downloading. There is also a progress update event that you
can subscribe to in order to display download progress to the users.

public class AsyncFileDownloadRequest
{

Maintaining Data State

public event AsyncDownloadCompleteHandler DownloadComplete;
public event AsyncDownloadProgressHandler ProgressUpdate;

private Uri address = null;

public Uri Address

{
get { return address; }
set { address = value; }

}

public void Initiate()

{
Thread thread = new Thread(new ThreadStart(InitiateThread));
thread.Start();

}

private void InitiateThread()
{
if (DownloadComplete != null && address != null)
{
AsyncFileDownloadSystem system = new AsyncFileDownloadSystem();
byte[] data = system.DownloadFile(address, ProgressUpdate);
DownloadComplete(data);

Maintaining Data State

The asynchronous mechanism provided by the HttpWebRequest object relies on a
chain of successively executed methods that process data in chunks. In order to
associate the data with the asynchronous mechanism, we need to build a simple
state object that will be used to store information and data related to state. The
asynchronous mechanism allows us to pass an arbitrary object between methods,
so the following class will be used as a container to pass within the asynchronous
model.

internal class AsyncFileDownloadState

public AsyncDownloadProgressHandler ProgressUpdate;

323

324 Chapter 29 = Downloading Network Files Asynchronously

private const int bufferSize = 1024;

private WebRequest request = null;
private Stream responseStream;
private bool fixedSizeBuffer = true;
private byte[] processBuffer;
private byte[] staticBuffer;

private List<byte> dynamicBuffer;
private int datalength = -1;

private int bytesRead = 0;

public WebRequest Request

{
get { return request; }
set { request = value; }
}
public Stream ResponseStream
{
get { return responseStream; }
set { responseStream = value; }
}
public bool FixedSizeBuffer
{
get { return fixedSizeBuffer; }
set { fixedSizeBuffer = value; }
}
public byte[] ProcessBuffer
{
get { return processBuffer; }
set { processBuffer = value; }
}
public byte[] StaticBuffer
{
get { return staticBuffer; }
set { staticBuffer = value; }
}

public List<byte> DynamicBuffer

The Core System

get { return dynamicBuffer; }
set { dynamicBuffer = value; }

}

public int Datalength
{
get { return datalength; }
set { datalength = value; }
}

public int BytesRead
{
get { return bytesRead; }
set { bytesRead = value; }
}

public AsyncFileDownloadState()
{

processBuffer = new byte[bufferSizel;

The Core System

The solution presented in this chapter encapsulates a lot of the implementation
details of HttpWebRequest and asynchronous communication into a wrapper class.
There are a number of ways to implement an asynchronous model; some are
extremely simple, while some are complex and robust. The solution for this chap-
ter sits somewhere between those extremes.

The following code describes the core system that handles asynchronous web
requests and responses.

public delegate void AsyncDownloadCompleteHandler(byte[] data);
public delegate void AsyncDownloadProgressHandler(int bytesRead,

int datalength);

internal class AsyncFileDownloadSystem
{

325

326

Chapter 29 = Downloading Network Files Asynchronously

The following is a constant that describes the temporary buffer size of incoming
data when the content length is unknown.

private const int bufferSize = 1024;

The following object is used to signal that the download is complete. ManualResetEvent
allows threads to communicate with each other; it is typically used when one
thread must be completed before others can proceed.

public ManualResetEvent completeEvent = new ManualResetEvent(false);

The following method downloads the data of a file pointed to by the address
string. The specified callback is used to report progress status.

public byte[] DownloadFile(string address,
AsyncDownloadProgressHandler callback)
{
Uri addressUri = new Uri(address);
return DownloadFile(addressUri, callback);
}

The following method downloads the data of a file pointed to by the Uri. The spec-
ified callback is used to report progress status.

public byte[] DownloadFile(Uri address, AsyncDownloadProgressHandler callback)
{

Set the complete event state to un-signaled.

completeEvent.Reset();

Create a new HttpWebRequest object by passing in the address to the resource.
Passing in a file:// address will result in a FilelebRequest object being created,
working transparently with the existing code because of the protocol-agnostic
model used.

WebRequest request = WebRequest.Create(address);
Instantiate a new asynchronous state object and reference the request for later use.

AsyncFileDownloadState state = new AsyncFileDownloadState();
state.Request = request;

Set the progress update callback on the state object.

state.ProgressUpdate += callback;

The Core System

Launch an asynchronous request to access a web resource.

IAsyncResult result =
request.BeginGetResponse(new AsyncCallback(ResponseCallback),
state) as IAsyncResult;

Wait for the complete event to be set so that the data is not returned until the call-
back finishes