

Game Engine
Toolset

Development

Graham Wihlidal

© 2006 Thomson Course Technology, a division of Thomson Learning
Inc. All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or
retrieval system without written permission from Thomson Course
Technology PTR, except for the inclusion of brief quotations in a review.

The Thomson Course Technology PTR logo and related trade dress are
trademarks of Thomson Course Technology, a division of Thomson
Learning Inc., and may not be used without written permission.

The .NET logo is a trademark of Microsoft Corporation in the United
States and/or other countries.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s technical
support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted
throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the man-
ufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of
the fact that the Internet is an ever-changing entity. Some facts may have
changed since this book went to press.

Educational facilities, companies, and organizations interested in multiple
copies or licensing of this book should contact the Publisher for quantity
discount information. Training manuals, CD-ROMs, and portions of this
book are also available individually or can be tailored for specific needs.

ISBN: 1-59200-963-8

Library of Congress Catalog Card Number: 2005929829

Printed in the United States of America

06 07 08 09 10 PH 10 9 8 7 6 5 4 3 2 1

Thomson Course Technology PTR,

a division of Thomson Learning Inc.

25 Thomson Place

Boston, MA 02210

http://www.courseptr.com

Publisher and General Manager,
Thomson Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah O’Donnell

Manager of Editorial Services:
Heather Talbot

Marketing Manager:
Heather Hurley

Senior Acquisitions Editor:
Emi Smith

Marketing Coordinator:
Jordan Casey

Project Editor:
Sandy Doell

Technical Reviewer:
John Flynt

PTR Editorial Services Coordinator:
Elizabeth Furbish

Interior Layout:
Shawn Morningstar

Cover Designer:
Mike Tanamachi

Indexer:
Larry Sweazy

Proofreader:
Sean Medlock

http://www.courseptr.com

This book is dedicated to my family (Kathy, Lois, Arthur, and Lisa),
and to my grade three teacher who told my parents

I would never be employable.

I present this book in respectful memory of Eric Dybsand and Jan Horn.
The gaming community will forever miss you.

Remembrance and reflection how allied.
What thin partitions divides sense from thought.

—Alexander Pope

Meeting Graham is like walking into a sports stadium for the final game of the season.
You are not quite sure how it will end, but you know it's going to be exciting. This
was the impression I had when I first met Graham. Graham's passion for his work
is evident in everything he says and does. At the same time, he remains open to
new ideas and seems to be constantly looking for new ways to improve his per-
sonal skills. He is one of the most technically knowledgeable people I know, and at
the same time he is able to amicably communicate ideas and concepts.

My project team was looking for some professional help on a project we were
working on and Graham had been referred to us as someone who might be able
to help. Our project was facing some challenges, as we had a client who was very
demanding and it looked like there might not be enough resources to complete the
project on time. We were hoping that someone could help us out with some of the
internal tools we had developed to support the project team and help us become
more efficient.

Graham employed many of the techniques discussed in this book to expedite our
project, which helped us achieve many of our project goals without disrupting the
team dynamics and workflow we had previously established. I do not come from
a game development background, but game engine tools are essentially business
software, with differing stakeholders and business rules. Business software often
requires additional tools and utilities to improve workflow or produce content,
and this book discusses concepts and techniques that are applicable to any .NET

iv

Foreword

software project. I know firsthand the development benefits from the .NET platform
and clearly see the value in using this platform to build robust and scalable game
engine tools.

I expect that readers of this book will be in a similar position to mine when I met
Graham. You are probably a little excited at the prospect of learning new tech-
niques and methodologies and, at the same time, do not want to reinvent the way
you have worked in the past. Graham's ideas and concepts will enable you and, I
suspect, your team to become more efficient in your projects and will do so in a
way that is unobtrusive to your current working methodologies and techniques. I
expect you will find reading this book to be a rewarding experience, and I hope
you will be able to share in Graham's passion for his profession.

John Eldridge
M.B.A., .Net MCSD, MCDBA, MCSE & CMC

John is a senior Solution Architect who consults on a variety of enterprise projects in
North America and Asia.

Foreword v

vi

I would like to express my gratitude to the following people for their never-ending
support and assistance in helping to make this book a reality:

Kathy, you are my soul mate, and I am overjoyed to be spending the rest of my life
together with you. Your love, admiration, and support made this book a reality,
and I could not have done it without you. Thank you for your love and patience.

Thank you to my family (Arthur, Lois, and Lisa) for your love and support and for
putting up with my incessant ramblings about game development all these years.
I still remember the first game I ever made, and how proud I was to show it to you,
only to have the hero’s clothes fall off when he picked up the sword from the
ground—in addition to his sword and shield protruding from inappropriate places.
Yes, even games have bugs….

Anthony Whitaker, my good friend. I have always enjoyed discussing the pro-
grammable pipeline, spatial partitioning, tools development, and countless other
topics with you. I value our friendship, and I am thrilled to know such a knowl-
edgeable person.

Wayne Larson, you have become both my mentor and friend. Your teachings have
improved me on both a personal and professional level. Thank you for inspiring
me to strive for bigger and better things; I am grateful.

Peter Hansen, thank you for giving me the opportunity to host a practicum for
your Digital & Interactive Media Design students, and thanks for your continued
support and direction.

Acknowledgments

Thank you to my friends on #graphicsdev, #gamedev, and #mdxinfo on the AfterNET
IRC server. You all have supported me and offered advice and insight throughout
the life cycle of this book; especially Sean Kent, Oluseyi Sonaiya, Henrik Stuart,
Promit Roy, Kyle Kaitan, Pieter Germishuys, Josh Jersild, and David Crooks. Thanks
also go out to Osayuki Emokpae for her inspiration and guidance in the planning
stages of the book. Special thanks to my friend Zane Bogach for providing a few
textures for a couple chapters. A big thanks to Dave Astle (GameDev.net) for intro-
ducing me to Emi Smith and Mitzi Koontz.

Thank you to my close friends Sam Montasser, Dave Vani, Eric Fredin, and Ben
Thieson. We have shared a lot of good memories, and I look forward to sharing more
over the years to come.

Emi Smith, Stacy Hiquet, Sandy Doell, Heather Talbot, John Flynt, and Shawn
Morningstar, thank you all for being so wonderful to work with. You helped steer
this project from inception, and I appreciate your time and effort. I would also like
to thank everyone else at Course Technology PTR who was responsible for bringing
this book into existence.

I would also like to thank my employer, CGI Group, Inc., for permitting me to
write this book alongside my work. Special thanks go to Glenn Mitchell, John
Eldridge, Darryl Kotton, Andrew Stipdonk, Matthew Christopher, Michael Mah,
Ghassan Karwchan, Ibraheem Yan, Tim Hill, Art Gartner, and Glenn Steinke for
being such great people to work with. It was a pleasure to work with all of you on
our last project, and I hope to work with all of you again.

Warm-hearted thanks also go to Don Moar (BioWare), John Walker (High Voltage
Software), Aaron Walker (Electronic Arts), Roy Eltham (Sony Online Entertainment),
Anthony Whitaker (Boanerges Studios), Ryan Hummer (Raven Software), and
Yggy King (Electronic Arts). I felt enlightened after speaking with all of you about
tools development and the state of the industry. Thank you for your opinions and
support, especially during crunch time. I look forward to seeing all of you again at
the next Game Developers Conference.

Thanks to Matt Collins (Atari), Steven Bercu (LIME Law), Frederic Chesnais (Atari),
Teresa Cotesta (BioWare), and Tim Johnson (Artificial Studios) for granting me
permission to print copyrighted material in the book.

I would like to thank the readers, you who made everything possible! This book
was written for all of you, and I hope you enjoy reading it as much as I enjoyed
writing it.

Acknowledgments vii

Graham Wihlidal is a consultant at CGI Group, specializing in Microsoft tech-
nologies at an enterprise level. Prior to his current employment, he was the lead
developer of a distributed workflow automation framework using C#.NET, SQL
Server, and Windows SharePoint Services. He has several years of experience as a
freelance developer and consultant, designing and implementing business soft-
ware solutions with C#, C++, and Java for a variety of sectors. Aside from normal
development work, he also has experience as a configuration manager for Rational
ClearCase at an enterprise level. Graham graduated Computer Systems Technology
at the head of his class while attending the Northern Alberta Institute of Technology,
and he is a Microsoft Certified Solution Developer and an Early Adopter for .NET 2.0.

Aside from his professional life, Graham has been an active member in the game
development community for the past seven years, with an undying passion to both
play and develop computer games. In his spare time, he is constructing a high-
performance 3D engine and accompanying toolset.

viii

About the Author

Contents

ix

Introduction .xvii

Part I: Toolset Design Fundamentals 1

Chapter 1 What Is a Tool? What Is a Toolset? .3
Stakeholders: Internal Versus External .4
Who Builds the Tools? .5
How Large Are Tools Teams? .7

Chapter 2 Why Use C#? Why Use .NET? .9
Overview of .NET .10
Overview of C# .11
Legacy Interoperability .12
Benefits .14

Chapter 3 Examples of Commercial Toolsets .17
Case Study: BioWare Corporation .18
Case Study: Artificial Studios .22

Chapter 4 Everything Starts with a Plan .27
Vision .28
Stakeholders .28
Reusability .29
Architecture .29
Requirements .30
Design Standards .30
Coding Standards .30
Documentation .31
Testing .32
Defect Tracking .33
Life Cycle .33
Development Environment .33
Staging Environment .34
Production Environment .34

Chapter 5 Development Phases of a Tool .37
Phase: Planning .38
Phase: Analysis .39
Phase: Design .39
Phase: Implementation .40

Contentsx

Chapter 6 Measurement Metrics for Tool Quality .43
Metric: Maintainability .44
Metric: Traceability .44
Metric: Performance .45
Metric: Usability .45
Metric: Testability .46
Metric: Portability .46
Metric: Reliability .47
Metric: Efficiency .47

Chapter 7 Fundamentals of User Interface Design .49
Principle of Consistency .50
Principle of Transparency .50
Principle of Feedback .51
Principle of Refinement .52
Principle of Exploration .52
Principle of Modality .53
Principle of Self-Evidence .53
Principle of Moderation .54
Principle of Customization .54

Chapter 8 Distributed Componential Architecture Design 57
Architecture Overview .58
Core Components .58
Specific Tool Logic .59
Console Entry Point .59
Windows Entry Point .59
Other Entry Points .60
Architecture Example .61
Alternate Architecture Structure .74

Chapter 9 Solutions to Bridge Domain Gaps .77
Compositional Friction .78
Cause: Domain Coverage .78
Cause: Design Intentions .79
Cause: Framework Gap .79
Cause: Entity Overlap .80
Cause: Legacy Components .81
Cause: Source Code Access .81
Relevant Design Patterns .82

Chapter 10 Unit Testing with NUnit .89
Overview of Unit Testing .90
Introducing NUnit .91
Creating an NUnit Project .92
Attribute Overview .93
Expected Outcome Assertion .98
A Simple Example .102
Running Tests .105
Debugging with Visual Studio .107

Contents xi

Chapter 11 Code Documentation with NDoc and XML111
Configuring the Project .112
Supported XML Markup .114
Commenting Example .116
Generating the Documentation .117

Chapter 12 Microsoft Coding Conventions .121
Styles of Capitalization .122
Naming Classes .123
Naming Interfaces .123
Naming Namespaces .124
Naming Attributes .125
Naming Enumerations .125
Naming Static Fields .125
Naming Parameters .126
Naming Methods .126
Naming Properties .126
Naming Events .127
Abbreviations .128

Chapter 13 Enforcing Coding Policies with FxCop .129
Installing FxCop .130
Creating an FxCop Project .131
Configuring Built-In Rules .131
Analyzing Your Project .132
Building Custom Rules .136

Chapter 14 Best Practices for Robust Exception Handling 143
External Data Is Evil .144
Creating Custom Exceptions .144
Throwing Exceptions .146
Structured Exception Handlers .147
Logging Exception Information .148
Mechanisms for Cleanup .148
Unhandled and Thread Exception Events .150

Part II: Techniques for Arbitrary Tools 153

Chapter 15 Compressing Data to Reduce Memory Footprint155
Types of Compression .156
GZipStream Compression in .NET 2.0 .156
Implementation for Arbitrary Data .157
Implementation for Serializable Objects .159

Chapter 16 Protecting Sensitive Data with Encryption163
Encryption Rudiments .164
Selecting a Cipher .169
ICryptoTransform Interface .170

Chapter 17 Generic Batch File Processing Framework 173
Goals .174
Proposed Solution .174
Implementation .175

Chapter 18 Ensuring a Single Instance of an Application183
Early Solutions .184
Journey to the Dark Side .187
The Solution .188

Chapter 19 Implementing a Checksum to Protect Data Integrity 193
Implementation .194
Usage .196
Alternative .197

Chapter 20 Using the Property Grid Control with Late Binding199
Designing a Bindable Class .200
Ordering Properties .205
Using the PropertyGrid .208

Chapter 21 Adding Printing Support for Arbitrary Data 211
Printing Regular Text .211
Supporting Printer Selection .215
Supporting Page Setup .216
Supporting Print Preview .217

Chapter 22 Flexible CommandLine Tokenizer .221
Formatting Styles .222
Implementation .223
Sample Usage .226

Chapter 23 Layering Windows Forms on Console Applications229
Implementation .230
Sample Usage .231

Chapter 24 Overview of Database Access with ADO.NET 233
Advantages of ADO.NET .234
ADO.NET Object Model .235
Working with a DataReader .236
Working with a DataAdapter .237
Working with XML .238
Potion Database Editor .239

Part III: Techniques for Graphical Tools 241

Chapter 25 Using Direct3D Swap Chains with MDI Applications243
What Is a Swap Chain? .244
Thoughts for SDI and MDI Applicability .246
Common Pitfalls .246
The Proposed Solution .247

Contentsxii

Contents xiii

Chapter 26 Constructing an Aesthetic Texture Browser Control 261
Swappable Loader Interface .262
Windows GDI+ Loader .263
Managed Direct3D Loader .264
Storing Texture Information .268
Building the Thumbnail Control .271
Handling Custom User Events .276
Building the Viewer Control .276
Using the Control .289
Loading Textures from a Directory .290
Loading Textures from a MemoryStream .291
Loading Textures from a Bitmap .291
Texture Browser Demo .291

Chapter 27 Converting from Screen Space to World Space 295
Transforming Screen Coordinates .296
Computing the Picking Ray .299
Bounding Sphere Intersection Tests .300
Improving Intersection Accuracy .302
Using Built-In D3DX Functionality .303

Chapter 28 Asynchronous Input Device Polling .305
Asynchronous Mouse Polling .306
Asynchronous Keyboard Polling .311
Sample Usage .315

Part IV: Techniques for Network Tools 319

Chapter 29 Downloading Network Files Asynchronously 321
HttpWebRequest and HttpWebResponse .322
The Request Object .322
Maintaining Data State .323
The Core System .325
Sample Usage .329

Part V: Techniques for Legacy Interoperability 331

Chapter 30 Exchanging Data Between Applications .333
What Microsoft.NET Provides .334
What Microsoft.NET Should Provide .339
Building a Wrapper Around WM_COPYDATA .339

Chapter 31 Interacting with the Clipboard .345
The Clipboard Class and IDataObject .346
Storing Built-In Types .346
Storing Custom Data Formats .348
Querying Available Data Formats .350
Complete Solution .350

Chapter 32 Using .NET Assemblies as COM Objects .355
COM Callable Wrappers (CCW) .356
Applying Interop Attributes .357
Registering with COM .361
Accessing from Unmanaged Code .363
Deployment Considerations .364

Chapter 33 Managing Items in the Recent Documents List 367
Implementation .368
Example Usage .369

Part VI: Techniques to Improve Performance 371

Chapter 34 Playing Nice with the Garbage Collector 373
Overview of the Garbage Collector .374
Collecting the Garbage .375
Allocation Profile .376
CLR Profiler and GC Monitoring .377
Finalization and the Dispose Pattern .384
Weak Referencing .389
Explicit Control .391

Chapter 35 Using Unsafe Code and Pointers .393
Rudiments of Pointer Notation .394
Using an Unsafe Context .397
Pinning Memory with the Fixed Statement .398
Disabling Arithmetic Overflow Checking .399
Allocating High Performance Memory .399
Getting Size of Data Types .401
Example: Array Iteration and Value Assignment .402
Example: Data Block Copying .403
Example: Win32 API Access .405

Chapter 36 Investigating Managed Code Performance 407
Investigating Performance .407
Avoid Manual Optimization .408
String Comparison .409
String Formatting .411
String Reversal .413
Compiling Regular Expressions .413
Use the Most Specific Type .415
Avoid Boxing and Unboxing .415
Use Value Types Sensibly .416
The Myth About Foreach Loops .417
Use Asynchronous Calls .418
Efficient IO Buffer Sizes .418
Minimize the Working Set .418
Perform Chunky Calls .419
Minimize Exception Throwing .420
Thoughts About NGen .420

Contentsxiv

Contents xv

Chapter 37 Responsive UI During Intensive Processing 423
Implementing the Worker Logic .424
Reporting Operation Progress .427
Supporting User Cancellation .428
Executing the Worker Thread .429

Part VII: Techniques to Enhance Usability 431

Chapter 38 Designing an Extensible Plugin-Based Architecture 433
Designing a Common Interface .434
Embedding Plugin Metadata Information .434
Building a Proxy Wrapper .437
Loading Plugins Through the Proxy .442
Reloading Plugins During Runtime .448
Runtime Compilation of Plugins .456
Enforcing a Security Policy .461

Chapter 39 Persisting Application Settings to Isolated Storage 465
Concept of Isolated Storage .466
Accessing Isolated Storage .467
Levels of Isolation .470
Management and Debugging .471

Chapter 40 Designing a Reusable and Versatile Loading Screen 475
Splash Dialog .476
Go for the Gusto .484
Concept of Loading Jobs .487
Responsive Processing .488
Simple Example .489

Chapter 41 Writing Context Menu Shell Extensions .493
Unmanaged Interfaces .494
Reusable Framework .502
Sample Usage—Standalone .511
Sample Usage—Integrated .513
Component Registration .516
Debugging Techniques .519

Part VIII: Techniques to Increase Productivity 521

Chapter 42 Automating Workflow Using Job Scheduling 523
Benefits .524
Solution Goals .524
Implementation .525

Chapter 43 MVC Object Model Automation with CodeDom 531
Advantages of an Automatable Object Model .532
Comparison with Model-View-Controller Pattern .533
A Simple Object Model Architecture .535
Plugin-Based Architectures .536

Controlling an Object Model with Scripts .537
Implementing a C# Command Window .539
Simple Automation and MVC Example .543

Part IX: Techniques for Deployment and Support 551

Chapter 44 Deployment and Versioning with ClickOnce 553
ClickOnce and MSI Comparison .555
Creating the Application .556
Publishing the Application .557
Launching the Application .560
Deployment Configuration .561
Pushing Application Updates .564
Programmatically Handling Updates .565

Chapter 45 Testing for the Availability of the .NET Framework 569
The Solution .570
Example Usage .572

Chapter 46 Building and Customizing an MSI Installer575
Creating a Setup Project .577
Project Configuration .579
Deployment Configuration .584
Custom Installer Actions .587
Deploying the Installer .590

Chapter 47 Determining Binary File Differences .593
What Is Levenshtein Distance? .594
Generating a Difference List .595
Transforming Data Using a Difference List .597
Thoughts for Usability and Deployment .599

Index .603

Part X: Bonus Web Site Chapters On Web Site

Bonus 1 Distributed Computing Using .NET Remoting

Bonus 2 Building a Managed Wrapper with C++/CLI

Contentsxvi

Developers are required to continually learn new techniques and approaches,
which can often lead to issues meeting deadlines, especially when inadequate
research results in fatal design flaws. Almost every aspect of information technology
is affected by this issue, most notably the game development industry. Game devel-
opers continuously push the envelope on a per project basis in terms of visual
aesthetics, game play, and design. The need to overcome limitations is encountered
frequently, since there is such an enormous variety in hardware, operating systems,
and end user expectations.

The importance of designing reusable and maintainable code cannot be stressed
enough and can break a company if disregarded. Even though a significant por-
tion of source code from each project is too specific to be reusable, a core founda-
tion always exists that, if designed properly, can be reused for the majority of
future projects. For example, every game requires access to the file system to store
media assets; therefore, components that manage file system interaction should be
modular enough to plug into any project.

Even though the reusability of existing components can significantly reduce the
costs associated with project development, there are other improvements that are
very advantageous to the design process. As technology advances, so do the tools
that interact with that technology. Utilizing the C# language and the robust Microsoft
.NET 2.0 Framework, this book will present development methodologies that not
only accomplish the goals specified for a project, but do the job in a timesaving
manner.

Toolset development is an extremely broad topic, yet the intent of this book is to
provide you with a core set of skills and a comprehensive insight that will aid you
in the development of game engine utilities, significantly reducing the time asso-
ciated with the construction phase of a project.

The book content is fairly suitable to a wide variety of developers, with the exception
of developers new to programming. Readers with very little experience building
Windows-based applications may struggle a bit, but this book will teach them the
proper way to implement the functionality needed for their project.

An introductory working knowledge of C# and the .NET 2.0 Framework is expected,
allowing the content of each chapter to be directed towards the subject and avoiding xvii

Introduction

trivial and introductory explanations. To benefit from this book, readers do not
require any experience developing game engine tools; terminology and design fun-
damentals specific to toolset development are clearly depicted and explained.

All material is at a level of quality suitable for production code, making the book
an exceptional reference and asset for industry professionals and hobbyists. Readers
will learn how to build reusable components and optimize existing code for max-
imum performance, a critical issue when building processor-intensive tools.

I feel strongly that technical books should not be written in a linear manner, which
is why the decision was made to isolate the information in this book into chapters
that are an independent read from one another. Readers should not have to read a
quarter of the book over again just to refresh their memory about a certain com-
ponent. Readers should be able to jump right to a topic that interests them and
begin reading without the need to reference other chapters.

The focus of this book, in terms of technology, is on the .NET 2.0 Framework and
the C# language. However, because of the nature of a “gems” style book, some
chapters include other technologies specifically related to that topic of discussion.
Due to the approach used in this book, all gems are independent of each other
unless otherwise stated as being coupled.

C# and the .NET Framework are evangelized, but an important issue regarding
toolset development is the maintenance and support of legacy code and utilities;
hence the decision to include a variety of topics that cover communication
between managed and unmanaged applications, as well as topics that address gen-
eral interoperability concerns. Because of this, C++ is covered in a couple of gems
that discuss inter-process communication, interoperability, and interacting with
unmanaged code. Furthermore, a decent amount of graphical and multimedia-
oriented gems are implemented with functionality present in Managed DirectX. If
you do not have experience or interest with a particular technology used in a chapter,
fear not. All gems are independent of each other, so you will not be missing out on
anything by skipping it until the topic is relevant to your project.

Tools development is an exciting and rewarding area of game development and is
sometimes scoffed at by other developers who do not wish to give up their romantic
notions of game development. The truth is, good tools make good games. Someone
has to make them, and be glad it’s you!

I worked hard to produce this book for you, but I also had a lot of fun writing it. I
feel that a wide range of applicable topics were covered, and hope that you run to
this book time and time again. Thanks very much for supporting my work and for
your interest in a topic that I am so passionate about.

Introductionxviii

Toolset Design
Fundamentals

…the cost of adding a feature isn’t just the time it takes to code it. The cost
also includes the addition of an obstacle to future expansion. … The trick
is to pick the features that don’t fight each other.

John Carmack

The main purpose of this book is not to function as a book on toolset design, but
rather on implementation issues facing tools developers. In order to properly illus-
trate some techniques discussed later on in this book, the chapters in this part focus
on design fundamentals and tools discussion to help introduce you to the concepts
behind tools development. The chapters in this part cover many of the core aspects
and fundamentals of toolset design, including defining what a toolset is, common
applications, describing why flexible and reusable tools are important, and also
discussing a few commercial toolsets that have shipped with titles.

Also covered are some techniques and approaches used to properly design and
manage the development of a toolset. The common life cycle of development is
explained, summarizing the four phases of the “waterfall” methodology; planning,
analysis, design, and implementation. There are also a number of .NET-specific
topics that cover everything from coding conventions to architecture implementa-
tion. There is also a chapter that describes what unit testing is, and how to perform
unit testing in C#.NET.

PART I

It is important to recognize that there is never a single way to approach and solve
a problem, as successful resolutions are dependent on the context of the problem.
However, it is important to understand a variety of methodologies and techniques
in order to identify a proper solution to a problem. Some solutions follow the
“mop it” approach, which entails treating, tolerating, or redirecting the problem.
The “mop it” approach can be described like a water leak, where instead of fixing
the leak, you mop up the water. Other solutions follow the “stop it” approach, which
entails preventing, eliminating, or reducing the problem. Whatever solution your
resources allow, many of the chapters in this part can help you in reaching your goal.

3

What Is a Tool?
What Is a Toolset?

chapter 1

Programming today is a race between software engineers striving to build
bigger and better idiot-proof programs, and the Universe trying to produce
bigger and better idiots. So far, the Universe is winning.

Rich Cook

A tool is a software application used in either the construction or modification of
game-related content, where the content can be virtually anything that makes up
a game. Tools can be extremely simple, such as an application that removes all the
tab characters from a text file, or an application that copies files from one location
to another. Tools can also be quite complex, such as a full-featured world editing
suite. The complexity of the tool is directly proportional to the complexity of the
problem the tool is supposed to solve.

A toolset is a collection of tools that make up the content production pipeline of
a game. Any tool from a toolset can be reused in multiple projects as long as the
tool was designed with reusability in mind. Some tools are created for a single pur-
pose, in which the tool cannot be reused because a lot of the tool was hard coded
to reduce development time. A tool that is hard coded for a single purpose is often
referred to as a throw-away or skunk works tool.

As games move toward higher expectations of the quality and quantity of content
displayed, so do the tools that produce the content. Without producing exception-
al tools, you cannot produce an exceptional game.

Stakeholders: Internal Versus External
Defined as anyone who stands to gain or lose from the success or failure of an
application, the stakeholders greatly affect the quality and functionality of a tool.
They are the users who are most affected by the introduction of a tool, and they
ultimately contribute to the design and goals. If the tool is meant only for internal
use, there is typically little to no documentation, and the user interface is general-
ly unintuitive or “messy.” If the tool is meant to ship with a game to provide mod-
ification abilities, then the tool is typically feature and user interface rich, and is
accompanied with excellent documentation and tutorials.

Most tools never ship with the game, and constantly evolve as the game is devel-
oped. Many tools are developed for internal use and, if written properly, can be
reused across multiple projects as well.

If the tool is designed for use by the developer only, it is typically as featureless and
unintuitive as possible. The code is usually horrible to navigate, and maintainabil-
ity is almost impossible. Since tools are generally designed to produce content for
the game itself, far less time is spent developing good tools. There is a fine balance
between wasting too much time and resources on the tools for a game, and not
spending enough time making tools that are actually worthwhile. Ideally, you
would want to build the tools as quickly as possible, but with a reasonable level of
quality. This is where improvements to development workflow and component
reusability play a large part in the success of a tool and the developers behind it.

If the common components of your tools have a loosely coupled design and solid
modularity, then more time can be spent making better tools because you do not have
to keep redeveloping common functionality duplicated across different projects.

To describe an example later detailed in this book, imagine that you have three
batch file processing tools that each process files differently, yet share the same
logic behind traversing the directory structure and selecting target files using pat-
tern matching. If you hard code three tools as quickly as possible, you end up
debugging the common functionality three times, individually debugging the
logic each tool performs, and limiting yourself in terms of future improvements
and maintainability.

Now, if that core functionality were separated into a reusable library and extra
time spent ensuring that the code was stable and generically configurable, all three
tools could interface with the library and debugging time would be minimized to
just the tool logic itself. The result is a better tool, and one change to the base
framework propagates to all three tools. This common functionality could now be

Chapter 1 ■ What Is a Tool? What Is a Toolset?4

used for any batch file processing tool needed in the future, drastically reducing
development and debugging time.

The time saved thanks to reusability can allow you to build more tools of decent
quality, or the time can be spent improving the user interface or accompanying
documentation so that the stakeholders have an easier time understanding and
using the tool.

Well written and fairly bug-free tools can make everyone’s life easier on the devel-
opment team, whereas poorly documented or written tools can hamper develop-
ment or even jeopardize the success of the project.

Who Builds the Tools?
There are five main models a game development studio can be classified into in
regards to the creation and support of tools. Keep in mind that the models described
are generalizations, and some studios can use a hybrid of multiple models. The
different organizational models for tools development are shown in Table 1.1.

Who Builds the Tools? 5

Table 1.1 Organizational Models of Tools Development

Organizational Model Description

Dedicated Tools Team This model is based around a team that takes a tool from
inception all the way to supporting it. This model works
extremely well, though it generally requires a liaison with both
technical and design skills to help facilitate effective
communication between the tools team and the target
audience when discussing features and workflow using the tool.
A strong example of a game development studio following
this model is BioWare Corp.

Developer Ownership “You build it, you support it.”
This model is where the individual or team responsible for a
particular game system is in charge of creating and
supporting the tools that interact with it. This model works
reasonably well since the developers creating the tools are
the most knowledgeable about how the game system works.
There are some issues with this method; the team does not
generally put a lot of care into the accompanying tools, so
the usability, documentation, and user interface typically
suffer as a result. An example of a game development studio
that successfully uses this model is Raven Software.
Tools are sometimes developed by one individual or group, and
later end up being supported by another individual or group.

Chapter 1 ■ What Is a Tool? What Is a Toolset?6

Table 1.1 Organizational Models of Tools Development (continued)

Organizational Model Description

Game Team Develops; Tools Team Supports This model attempts to solve the issues with the
developer ownership model by still having the game
team build the tools. But when the tool matures,
it is handed off to a dedicated tools team where it is
updated and supported for future projects and use.
A game development studio that successfully uses
this model is Microsoft Game Studios.

Engine Team Develops; Game Team Supports This model is similar to “Game Team Develops, Tools
Team Supports,” except the engine team builds the
tools to work with the core engine technology, and
then the tool is passed off to the game team. They
adapt the tool to work with their own project-specific
data and content requirements.
A game development studio that successfully uses
this model is High Voltage Software.

Content Team Develops and Supports This model is typically used in specific situations
where the content creators wish to build tools to
help them be more productive or test logic through
the creation of rules simulators, for example.
BioWare has successfully used this model for certain
situations.

Third-party middleware could be thought of as a model, but it is felt that middle-
ware can fit into one of the above models when used. Middleware sometimes
requires enhancements or customizations, and someone within the game devel-
opment studio has to do them.

Often the structure of the tools department in a studio is largely determined by
available financing. Some studios may feel it more desirable to have a dedicated
tools team, but budget constraints can force a studio into using a less desirable
model.

Every studio manages its tools development differently, but generally any studio
will fit into one of the above categories. One of the biggest differences between stu-
dios is the size of the tools development team.

How Large Are Tools Teams?
At Game Developers Conference 2005, 16 professional game developers were sur-
veyed on the ratio between the number of tool programmers and game program-
mers in their company. The results from the survey are listed in Table 1.2.

The results indicate that currently only a third of the programmers in most game
development studios are involved with the production of tools.

This ratio has fairly little to do with the actual performance of the above teams,
though, as different ratios work for different companies. When it comes down to
it, if the company has put out great games, they must be doing something right! It
is interesting to see how much variation there is between companies regarding the
structure of their tools programming department.

Conclusion
This chapter covered defining what a tool and toolset is, and how the gaming
industry views tools development. There is currently a lot of variation in how tools
teams are structured in the industry, and it is unlikely that this will ever become
consistent and uniform. Different structures and techniques work differently for
various companies, and they will continue to use whatever approach works for them.
However, we can believe that studios will need to standardize how tools are
designed and developed in order to adapt for the next generation games driven by
a multitude of content.

No single technology or programming language is better than another, as each has
a shining role to play in different problem domains. However, it is our firm belief
that the .NET platform is best suited for tools development, and migrating to man-
aged code will bring a number of benefits to a development studio and its projects.

Conclusion 7

Table 1.2 Ratio of Tool Programmers to Game Programmers

% Tools % Game # Studios

20 80 1
30 70 5
40 60 2
50 50 2

* Six developers did not know the ratio used in their company or did not wish to discuss it.

Next-generation games will require more and higher-quality content. The only
foreseeable way to adapt to this need is to produce better tools that create content
at both a higher volume and quality in a shorter amount of time. It is absolutely
vital that tools be available to designers earlier, and with very few bugs.
Additionally, the tools should also have user interfaces that are intuitive to design-
ers, and require as few clicks as possible to perform common tasks.

Reusability is also tremendously important, so that technology may be reused
across multiple projects, saving additional time and money. The .NET platform is
geared towards componential architectures and distributed software reusability,
making it an excellent choice in this regard.

The .NET platform even offers improvements to software deployment. One com-
mon problem plaguing deployment managers is the issue of “DLL Hell,” where an
older version of a library can be referenced on a system that has multiple versions
installed, generally causing software instability. .NET assemblies support a built-in
versioning system that solves the issue of incorrect library referencing, reducing
many problems related to deployment. The .NET platform is covered in greater
detail in the next chapter.

Chapter 1 ■ What Is a Tool? What Is a Toolset?8

9

Why Use C#?
Why Use .NET?

chapter 2

As soon as we started programming, we found out to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging had to
be discovered. I can remember the exact instant when I realized that a large
part of my life from then on was going to be spent in finding mistakes in my
own programs.

Maurice Wilkes

Ever since the introduction of computers, there has been exponential growth in
businesses embracing technology to solve their corporate problems. Computers
have evolved and matured enough to support massively distributed and heteroge-
neous applications in both desktop and Internet environments. As the technology
becomes more complex, so do the problems that developers have to solve in order to
produce a good product. While there are many technologies and development tools
available, there are also numerous issues that inhibit productivity or development.

There is the ongoing controversy surrounding the right programming language
and platform for the job. Many times, certain features are only available with cer-
tain programming languages, such as automatic memory management, which
often ends up dictating the language to use for the job. In a perfect world, the lan-
guage should be chosen based on the problem domain, not the specifics of the
underlying operating system. Microsoft’s COM and COM+ technology tried to fix
this problem, but they were only successful to a certain degree, as their internal
structures are quite convoluted. While COM and COM+ made great progress in

bridging this domain gap, it just wasn’t the answer. This is one of the main reasons
Microsoft proposed .NET, a new computing platform that simplifies application
development in highly distributed environments.

Overview of .NET
There are two main components to Microsoft .NET: the Common Language
Runtime and the .NET Class Framework. Microsoft.NET is based around the idea
that code is in a managed environment; that is, it executes within a managed runtime
(known as the Common Language Runtime, or CLR for short). The CLR acts as a
barrier between managed applications (.NET) and the operating system. The CLR
also offers a much richer set of services than normally provided by the operating
system. The Common Language Runtime architecture is overviewed in Figure 2.1.

The Common Language Runtime manages code at execution time, providing core
services such as memory management, thread management, and remoting. The CLR
also enforces strict type safety and other forms of code accuracy that ensure secu-
rity and robustness.

In order to have a language-independent CLR, a liaison is needed to facilitate the
understanding of the language in the CLR. Every development tool for .NET com-
piles source code files to what is known as the Microsoft Intermediate Language,
(MSIL, or IL for short), as shown in Figure 2.2.

All development tools produce the same MSIL regardless of the programming lan-
guage, so all the CLR is required to do is understand the IL. Microsoft currently
provides CLR-compliant versions of C#, Visual Basic, C++, JScript, and Java. Since
any company can write a CLR-compliant language, third parties are introducing
many others like COBOL, Delphi, Python, APL, and Perl.

Chapter 2 ■ Why Use C#? Why Use .NET?10

Figure 2.1 Overview of the Common Language Runtime architecture.

The intermediate language code (IL) cannot run on its own. It must first be com-
piled by the Just-in-Time (JIT) compiler for the target platform to turn the IL into
platform-specific machine-level code. This architecture provides Microsoft .NET
with a certain level of platform independence. Work is currently being done by
third parties to port the CLR to other platforms like UNIX and MacOS X.

The .NET platform also gives the capability to build durable system-level compo-
nents thanks to the following features:

■ Robustness provided through type safety and garbage collection

■ Code security provided intrinsically through code trust mechanisms

■ Support for extensible meta-data concepts

■ Existing code integration support

■ Versioning to provide ease of administration and deployment

Full interoperability is also possible with other languages across multiple platforms,
thanks to full XML support for web-based component interaction and COM+
support.

Aside from the Common Language Runtime, the other main component of the
.NET platform is the Class Framework, which provides reusable functionality and
technologies to any .NET compliant language and compiler.

Overview of C#
While there are a number of available languages supported by the .NET platform,
C# is the most popular one for many reasons. The C# language is an elegant yet
simple, type-safe, object-oriented language that allows for the development of a
breadth of enterprise and highly distributed applications.

Overview of C# 11

Figure 2.2 Source code compilation into MSIL.

C# also provides access to the common API styles: COM+, Automation, .NET
Class Framework, and C-style APIs. Also available is an unsafe mode, where point-
ers can be used when you want to manipulate memory that is not under control
of the garbage collector.

The C# language is also an evolution of C++ and Java, and supports many of their
features in the areas of expressions, statements, and operators. As a result, the
learning curve for C# is generally quite rapid due to the comfort level when
migrating from either C++ or Java.

Legacy Interoperability
Most game development studios have numerous legacy tools that do not have the
available resources or need to migrate to the .NET platform. Microsoft realizes
that migration does not magically happen overnight, and has provided some
mechanisms to foster interoperability between managed and unmanaged compo-
nents. The interoperability mechanisms permit developers to slowly migrate lega-
cy components into managed applications piece by piece, while allowing them to
build a complete application with a combination of unmanaged and managed
components.

When building new .NET applications, there are provisions for using Win32 DLL
exports and COM objects. There are also provisions for legacy applications to use
a .NET assembly as if it were an ordinary COM object, and provisions to use an
individual routine from a .NET assembly.

In addition to the interoperability mechanisms below, the .NET platform also
includes support for Win32 sockets and Web Services, which can be utilized for
interoperability between managed and unmanaged applications.

Platform Invocation Service (P/Invoke)
Interfacing with C-style functions in native DLLs is offered through the Platform
Invocation Service, also known as P/Invoke, and although both Win32 API rou-
tines and custom exports are supported, the most common distinctive use is for
accessing system routines that are not generally available to .NET developers. For
example, when performing high-accuracy timing, you must use P/Invoke to call
QueryPerformanceCounter and QueryPerformanceFrequency.

There is quite a varying degree of data types for both the Win32 and .NET plat-
forms, and marshaling is required to transform data into the appropriate data

Chapter 2 ■ Why Use C#? Why Use .NET?12

types for each platform. The marshaling of parameters and return values between
managed and unmanaged applications is handled through the Interop Marshaler,
also used by COM Interop.

Platform Invocation Service is covered in much greater detail in Part V,“Techniques
for Legacy Interoperability,” along with sample code on how to reference DLL
exports in C#.

COM and Runtime Callable Wrappers
At some point you may need to interact with a COM object in a .NET application,
and reconciliation between the .NET garbage collection model and the COM ref-
erence counting model is needed to allow both platforms to communicate with
each other. In order for .NET to use a COM object, a Runtime Callable Wrapper
(RCW) must be generated to cater to the differences between the lifetime man-
agement of .NET and COM objects. Runtime Callable Wrappers manage the ref-
erence counted lifetime of COM objects and also handle the marshaling of para-
meters and return types.

Additionally, .NET objects can also be exported to act like a COM object to use
within a legacy application. This functionality is useful for applications that must
remain unmanaged for the time being, but would benefit from the robustness of
the .NET Class Framework.

Runtime Callable Wrappers and COM interoperability are covered in much
greater detail in Part V along with sample code on how to use COM objects in
.NET, and how to use .NET objects like COM objects in legacy applications.

C++/CLI (Managed Extensions for C++)
With such a following of developers using unmanaged C++ for application devel-
opment, especially in the game development industry, there was a need for an
enhancement to the C++ language that would allow programs written in C++ to
use the .NET Class Framework and target the Common Language Runtime. It was
for this reason that Microsoft created C++/CLI (formerly known as Managed
Extensions for C++), an extension of the C++ language that could use the benefits
from the .NET platform without requiring the user to learn a new programming
language.

In other CLR languages like Visual Basic and C#, the only way to invoke Win32
API routines is through explicit use of the P/Invoke mechanism. Developers using

Legacy Interoperability 13

C++/CLI do not need to use P/Invoke and can include the appropriate header files
and call the unmanaged routines directly. This feature is called “It Just Works,” or
IJW, and both P/Invoke and IJW use the same underlying mechanism so it is bene-
ficial to understand that mechanism.

C++/CLI can also be used to wrap a C++ class or a COM object. Wrapping a COM
object can provide better performance than using the COM interface and a Runtime
Callable Wrapper because of reduced interoperability overhead, commonly referred
to as “thunking.” It also allows for closer control of how members are wrapped.

For some COM objects, it may not be possible to use the Type Library Importer
utility (tlbimp.exe) to generate an RCW for the COM object, and C++/CLI provides
a solution to this problem.

Benefits
There are quite a number of benefits when the .NET platform is used for game
engine tools development. Probably the largest benefit is the massive amount of
productivity gain. Building applications in Microsoft.NET is much faster than any
other RAD environment, because of the excellent IDEs available, as well as a very
robust core framework that all managed applications can take advantage of. You
can have a functional UI for simple tools created in under a couple of minutes,
spending less time on UI and more time on functionality and usability. Being able
to build a functional UI so quickly is very beneficial to a number of projects, most
notably “throw-away” or “skunk works” tools that need a quick and dirty user inter-
face, with the majority of the development time spent on building functionality.

Microsoft.NET also offers ease of deployment, solving the “DLL hell” agony.
Through a built-in versioning mechanism available to all .NET assemblies, specific
versions of a library can be targeted.

Other benefits are the promotion of scaleable architectures and the ability to choose
architectures that are robust, reliable, and secure. Scaleable architectures promote
reusability and strong design.

The interoperability support for legacy applications and components allows for
easier migration from an existing code base to the .NET platform. A number of
methods for bridging communication between managed and unmanaged applica-
tions exist, and these methods are covered in much greater detail later in the book.

Robustness is provided through type-safety and garbage collection. The compiler
catches all invalid conversion operations and throws the appropriate exception. A

Chapter 2 ■ Why Use C#? Why Use .NET?14

.NET application can catch every error in the system, allowing for graceful error
handling and termination. The only time when additional work must be done to
ensure proper error handling is when an exception is thrown from a legacy appli-
cation wrapped into a managed assembly. In addition to excellent error handling,
.NET applications allocate and release memory through a reference counting
garbage collector by default, ensuring that the application does not leak memory
and the lifetimes of all objects are managed.

There are numerous other benefits when using .NET for tools, many of which will
be covered in greater detail later in the book.

Conclusion
In reality, a game engine tool can be developed in many different languages: Perl,
Python, C\C++, Java, and Visual Basic, to name a few. So why use .NET? Tools
enhance workflow and manage game content, so it is desirable to build these tools
as quickly as possible. The faster a tool is developed, the sooner the end user can
begin using it, improving productivity or producing game content earlier, most
likely saving money or man hours in the process.

The .NET platform promotes robust design with a rapid application development
nature, which is a perfect match for tools development. Many times a lot of utility
functionality must be developed before the actual logic for the tool is addressed.
The .NET framework provides countless functionality for technologies like XML,
encryption, file system access, security, and data manipulation, to name a few.
Development time for a tool can be better spent on logic and usability, rather than,
on utility functionality that the tool is dependent on.

Conclusion 15

This page intentionally left blank

17

Examples of
Commercial Toolsets

chapter 3

The most likely way for the world to be destroyed, most experts agree, is
by accident. That’s where we come in; we’re computer professionals. We cause
accidents.

Nathaniel S. Borenstein

In order to help define what a tool is, and how the interface should be designed,
this chapter will introduce and discuss a couple of popular toolsets that are used
in the creation of game content and shipped with commercial products.

Although external tools that ship with the final product require a higher level of
quality when the fans themselves will be using the tools to build expansive content,
internal tools still follow proper development standards in terms of documenta-
tion, maintainability, and quality of design.

The two case studies selected for discussion were both developed for external use
and clearly show a high level of quality in terms of user interface design, logical
functionality, and ease of use.

Many different types of tools are used in the creation and modification of game
content, but the following two were chosen because of the success of the companies
and the products the tools are associated with.

Case Study: BioWare Corporation
BioWare is perhaps one of the most widely known and respected developers, espe-
cially in the role-playing game (RPG) world. BioWare’s mission is to produce the
best story-driven games worldwide, and it is succeeding based on all the awards
and recognition the company has received for its games. Although an exasperating
amount of work is contributed by everyone at the company to produce their
exceptional games, many fans just see the finished product. This is unfortunate
because the tools and the people who build them play a critical role in the pro-
duction of a successful AAA title, but with the exception of mod builders, they
often are unnoticed by the fan community.

A couple of years ago, BioWare released the critically acclaimed RPG NeverWinter
Nights, which has won numerous writing and technology awards. The game was
based on the Dungeons & Dragons rule set placed in the Forgotten Realms world,
and it took players on a compelling story-driven fantasy adventure. The game had
hours and hours of game time, but that didn’t stop the fan community from build-
ing custom campaigns and adventures. The game shipped with the NeverWinter
Nights Aurora Toolset, which gave players the power to build custom adventures
using the same tools that BioWare utilized in the production of the original game.

The Aurora Toolset produces campaigns and adventures in the form of modules,
which are composed of various components, such as areas, creatures, doors, con-
versations, scripts, and triggers, to name a few. The toolset offers functionality to
build either an indoor or outdoor world, and then populate that environment with
entities and triggers.

Figure 3.1 shows the main user interface for the Aurora Toolset, where other child
dialogs are launched and where entity instantiation and placement occurs. On the
left is a tree view that shows all areas in the module and all the instantiated entities
that are associated with each area. Additionally, there is also a listing for conversa-
tion dialog as well as module scripts. Module developers do not have access to a
core low-level API, but instead interface with the game engine using a scripting
language developed for the game and toolset.

A multitude of assets and source art that can be reused across custom modules is
included, with the ability to add your own custom work if so desired. All the mon-
sters and items from NeverWinter Nights are available to module developers, and
can even be customized from their original properties and attributes. The tree
view on the right lists all the assets that can be instantiated and placed in an area.

Chapter 3 ■ Examples of Commercial Toolsets18

At the top of the main window is a toolbar that offers tool selection and the abili-
ty to toggle certain display and functionality settings. Another toolbar at the bot-
tom of the main viewport controls the scene camera. The camera can be panned,
translated, rotated, and zoomed.

Figure 3.2 shows the properties of the Azer monster, and all the attributes that can
be customized or extended for it. Creatures in role-playing games are often com-
posed of a vast number of properties and scripts that define its behavior and abil-
ities. As such, this complexity can clutter the user interface of tools that are
designed to modify those properties and scripts. The way the Aurora Toolset
addresses this design issue is through the use of tab pages that each contain prop-
erties associated to a certain group. Users should never feel overwhelmed by large
numbers of data fields, so breaking the properties into groups represented on dif-
ferent tab pages was a good design move.

Case Study: BioWare Corporation 19

Figure 3.1 Main interface window of the Aurora Toolset.

Chapter 3 ■ Examples of Commercial Toolsets20

Another nice touch to the dialog shown in Figure 3.2 is the real-time 3D preview
of the edited creature in question. Although it doesn’t propose much in regards to
functionality, the preview pane spices up the user interface and makes it much
more interesting to work with, as opposed to a normal data entry tool.

The goal of the Aurora Toolset was to cater to novice users, not necessarily people
who have experience with other world editing tools such as Hammer, Q3Radiant,
or any other complex brush- and constructive solid geometry-based editors. The
toolset had to allow users to build rooms and outdoor environments quite easily.
The toolset does not support polygonal or brush-based editing; instead it has a
collection of rooms, each with several variations in appearance from which to
choose. This functionality makes the tool easier to understand and use, but it also
supports enough customization to keep advanced users happy.

The Aurora Toolset harnesses an embedded viewport that renders the current area
as you would see it in-game. This functionality is great in the sense that you can
preview roughly how the area would appear in the game itself without the need to
launch NeverWinter Nights.

Figure 3.2 Property window used to modify creature attributes.

Case Study: BioWare Corporation 21

Figure 3.3 shows an area that was created in the editor and is now shown in the
actual game.

It is important to note that the embedded viewport does not manage any physics,
networking, or gameplay functionality while running the editor. The scene is
merely displayed using a visual representation only, and the game won’t actually
execute until the module is run from within the game engine.

The Aurora Toolset is a great piece of software, but it is only one, albeit big, tool
amongst numerous others that produce the content for a game. The NeverWinter
Nights module developer community appreciates the work put into the Aurora
Toolset, but only because the toolset shipped with the game. Had the toolset been
created for internal use only, the community would not have appreciated its value
as much or even known about it.

Figure 3.3 Screenshot of a map created with the Aurora Toolset running in-game.

Chapter 3 ■ Examples of Commercial Toolsets22

BioWare keeps putting out AAA titles and recognizes that great tools produce great
games. In addition to their own titles, the technology behind those games is also
reusable enough that third-party companies have licensed it to produce some
other exceptional games. BioWare is leading the way in role-playing games and has
one of the most respected dedicated tools teams.

N o t e

For more information, please visit http://www.bioware.com.

Case Study: Artificial Studios
As a game studio that also markets its own middleware products, Artificial Studios
is dedicated to advancing the state of professional game development solutions.
They have a flagship product titled Reality Engine, which is a total solution for games
using next-generation graphics, dynamic physics, and high-performance graphics.

The Reality Engine SDK also provides a next-generation toolset titled Reality
Builder and is powered by C#.NET technology. The engine itself is developed in
unmanaged C++, but Reality Builder has a harness that displays its scenes using
the Reality Engine within the editor as a WYSIWYG display.

Shown in Figure 3.4 is the main interface for Reality Builder, where entities can be
selected and transformed, as well as a property grid control on the right side that
allows easy access to the properties of the currently selected entity. You can also see
another dialog being displayed that shows the assets available to the world designer.

Another nice accessibility feature is a menu at the top which contains some quick
launch buttons and edit fields for commonly used operations or properties. This
is a very handy feature for designers, and can often improve workflow to some
extent by reducing the number of clicks required to perform common operations.

Visual cues are another feature of graphical tools that make them easier to use.
Notice the barrel in Figure 3.4; there is a selection bounding box around the enti-
ty, and there are widgets to adjust the X, Y, and Z position of the selected entity.
The same functionality could have been implemented using a numeric input field,
but doing so would make the interface less intuitive to the designers.

An excellent feature that is seen in most cutting-edge graphical tools is in-game
rendering, where the tool displays the world as it would look in-game. This doesn’t
necessarily mean that the game itself is running within the tool but merely that the ren-
dering subsystem is attached to the tool’s viewport to render the world appropriately.

http://www.bioware.com

Reality Builder supports in-game rendering, and you can see this in Figure 3.5. The
concepts behind software architecture design are extremely important to imple-
ment this feature, and require a graphics engine that is modular in nature. Bonus
Chapter 2, “Building a Managed Wrapper with C++/CLI,” shows how to create a
Direct3D context in unmanaged code, and then build a managed harness around it.

Reality Builder also provides script support to designers using the C# language and
the CodeDom compiler. By using C# as their scripting language, the tools and
engine can take advantage of compiled code that also has the ability to interface
with the robust .NET class framework.

All .NET applications have access to the Windows Forms class framework, which
offers a number of feature-rich and intuitive controls. Additionally, if a specific
control is not available, it is very easy to build a custom one that functions the way
you desire. Figure 3.6 shows another screenshot of Reality Builder displaying its
rich user interface.

Case Study: Artificial Studios 23

Figure 3.4 Main interface window of Reality Builder.

Chapter 3 ■ Examples of Commercial Toolsets24

Figure 3.5 Reality Builder with support for in-game rendering.

Figure 3.6 Reality Builder showcasing a rich user interface.

Artificial Studios is a relatively new company, but their custom technology is
cutting-edge, and their embracement of C# and the .NET platform is admirable.
They were recently purchased by Epic Games, and it will be interesting to see what
comes of the acquisition, and whether Epic Games will maintain a strong stand for
the .NET platform. Trends in the industry are pointing toward a larger percentage
of companies migrating legacy technology or tools to managed code. The old saying
“Time is money” is quite applicable to this issue, and if .NET can save a project a
significant amount of money, then its usage is justified.

N o t e

For more information, please check out http://www.artificialstudios.com.

Conclusion
In this chapter, I discussed a few commercial-grade tools that have been used in
the development of some best-selling games. I hope the case studies presented
have given you some extra insight into building high quality tools and some use-
ful interface features to improve workflow. See each product’s user manual for
more information on the specifics of each application.

Remember that the .NET class framework offers rich user interface controls and
should be used to improve the accessibility and workflow of your tools. An intel-
ligent user interface can save countless hours when it takes very few navigation
actions to perform a particular task.

As an example, imagine you have a tool that takes 7 seconds to perform a partic-
ular task. With this task being performed four times a day in a 22-workday month,
12 months of the year, you end up with a total time of two hours. Now imagine
that you have 20 designers performing this task. The total time spent on this task
would be 40 hours. If you introduce an accessibility feature that causes that same
task to take 2 seconds, with one designer, the total time spent is 35.2 minutes,
roughly a 342 percent improvement in efficiency. With 20 designers, the total time
spent would be 12 hours, saving you 29 hours that could be directed elsewhere.

Conclusion 25

http://www.artificialstudios.com

This page intentionally left blank

27

Everything Starts
with a Plan

chapter 4

There are two ways of constructing a software design. One way is to make
it so simple that there are obviously no deficiencies. And the other way is to
make it so complicated that there are no obvious deficiencies.

C.A.R. Hoare

All software applications receive some form of initial planning as to what their
goals are, but quite often the planning occurs in the mind of the developer. A great
approach to planning is the creation of an actual software development plan that
addresses many high level design issues, as well as technical issues like coding stan-
dards and architecture.

A software development plan is an action plan for developing the application. It
describes how the work will be done in terms of design, implementation, docu-
mentation, and testing.

Software planning is an iterative process, and as unexpected problems arise,
change requests will occur that require plan revisions. A good software develop-
ment plan anticipates that changes may occur, and the plan should be able to
accommodate them appropriately.

The software development plan should be kept up to date, typically through reg-
ular team meetings. The plan should be modified accordingly for all changes,
progress, and problems. Doing so will ensure that the maximum benefit from the
planning effort is gained.

Vision
Also known as design goals, this section of the software development plan ulti-
mately asks the question, “What is the tool going to do?”

Briefly describe what the tool will do and ultimately how it will either improve
workflow productivity or affect the content creation pipeline. Outline the current
problems existing without the tool, and how the introduction of the tool will
attempt to solve them.

Describe whether or not the tool will be used for a single purpose throw-away, or
whether it will be applicable for multiple purposes or projects.

Also list the people who will use the tool. As a simple example: “The technical artists
will build programmable shaders using the Visual Shader Designer plug-in from
within 3D Studio Max, and export a binary file that follows the specifications of our
proprietary VSD (.vsd) format.”

The Vision section of the software development plan could be thought of as an
overview and summary of the other sections that follow.

Stakeholders
Every software application has stakeholders who will either gain or lose from the
success or failure of a tool, and they ultimately shape the design of the tool to meet
their needs. After all, the stakeholders for a tool are typically the people who will
actually be using it to produce game content or enhance workflow.

The software development plan should define who the stakeholders are, and how
they will be directly affected by the tool. The easiest way to determine who your
stakeholders are is to think of everyone who will be affected by your work, whether
the stakeholders are internal or external to the company. The majority of tools
developed for internal use are catered to the needs of artists or technical designers,
who don’t always possess strong technical aptitude.

One of the biggest problems with software development planning is gathering user
requirements that do not solve the problems of the stakeholders. It is very impor-
tant that you ask the right questions of your stakeholders, especially if they do not
have a technical background. A lot of design and development time is wasted
because of incorrect user requirements. Getting them right from the start will help
alleviate this problem.

Chapter 4 ■ Everything Starts with a Plan28

After the stakeholders have been defined, the last step is to sort them by priority
and influence. A common approach is to take note of the influence, interest, goals,
and objections to your tool. Prioritize your stakeholders as high or low interest, and
as high or low influence. It is important to remember that the stakeholders do not
always agree with each other, which presents problems with both communication
and requirements gathering.

Reusability
The issue of reusability is important in any software project, but is very important
when developing tools. If a tool is a throw-away, not meant to be reusable, then
only the minimum amount of time to implement the basic functionality should
be spent on it. A common problem is when a tool is not meant to be reused in the
foreseeable future, but has the potential for reuse. In this situation, it is advisable
to build the tool with future maintainability in mind. If the code is just slapped
together to meet deadlines or save money, all those benefits will be for naught
when a considerable amount of time must be spent refactoring the tool for a later
project when it should have been designed that way from the start.

Designing with reusability in mind, and the level of abstraction or agnostic design
to consider, is definitely a judgment call, especially if the stakeholders are putting
pressure or constraints on you to prevent you from doing so. Maintainability even
comes in the shape of following coding guidelines, commenting any complex con-
structs, and never using hard-coded values or “magic numbers.”

The golden rule is, build reusable code if the functionality of the tool would be
useful in a future project, and if it is feasible to spend a little extra development
time building it. You will gain in the long run when the time comes to build a tool
that solves a problem encountered before.

Architecture
This section outlines the architecture of the tool or toolset. For a simple tool, this
section will be quite brief, just outlining whether the application is console-,
Windows-, or web-based, and other technical issues related to the application.

However, more detail must be discussed with complex tools or toolsets, tools utiliz-
ing a wide range of technologies, or complex component dependencies. Outlining
the architecture is especially important when thinking about reusable software com-
ponent design, and how to write software with future reusability in mind.

Architecture 29

Requirements
This section addresses what the tool is supposed to do. As mentioned earlier, stake-
holders are the people using the tool, so the requirements are generally centered
on their goals and expectations. I cannot stress the importance of this section
enough. The majority of tools that fail to deliver are because of malpractice with
gathering user requirements. Developers often over-complicate interfaces or build
complex functionality when all the stakeholders wanted was a throw-away utility
to perform a simple process.

If user requirements are gathered correctly from the start, you will save both your-
self and your stakeholders a lot of grief and expense. The old saying, “Time is
money,” describes this problem best. When you are on a tight schedule to produce
tools that are required to build the content for a game or improve workflow to
meet deadlines, time cannot be wasted on building tools that are of no or limited
use to the end user.

Design Standards
Every software application goes through a design phase to some extent, and it is
important that you standardize how the design of the tool is expressed or mod-
eled. A common method is through the use of the Unified Modeling Language, or
UML for short. UML is definitely beyond the scope of this book, but I personally
use it and advise that you at least read up on it if you are not currently using
another modeling language.

I will admit that UML has a time and a place in regards to software design. Some
tools are so simple or unimportant in the scheme of things that it would be a waste
of time to utilize UML. A modeling language serves as a way to visualize how all
the components of your tool or toolset fit together at a high level, and also aids
with future maintainability if the code itself is not self-explanatory.

However you design the functionality and communication of your tools or com-
ponents, be sure to document your standards in this section and follow them.

Coding Standards
A tool or software application in general cannot be considered great strictly on
functionality and performance alone. Since the importance of reusability should
be quite clear by now, it is apparent that the source code for the application must
be easy to read, understand, and maintain for future versions of the software. It is
a common fact that every developer has a unique style to his code, which is perfectly

Chapter 4 ■ Everything Starts with a Plan30

acceptable for personal projects but unacceptable for commercial software. All
developers should follow a common style so that no matter who wrote the code, it
always looks like a single person programmed the entire application.

A common practice to outline how all code should be formatted is to release a cod-
ing standards document to the developers. They are to abide by the rules and best
practices set forth in the document to promote the creation of code that is easy to
read and maintain. Looking through code that you did not write is much easier
when everything follows the same style and is neatly commented, with explanations
for all the complicated constructs present in the code. Using coding standards will
increase both productivity and efficiency through a consistent style, delivering the
end product at a lower cost. In addition, coding standards reduce the risk of inte-
gration with other components developed by other companies, groups, or team
members.

The usage of design patterns and how modules are coupled can also be described
in the coding standards document. Some design patterns are frowned upon
because they typically promote tightly coupled design, making the code harder to
unit test among other things. This document can be used to define acceptable
design patterns to use, and which ones to use only if necessary.

In addition to documented standards, Microsoft has released a great tool to help
with the actual enforcement of coding and development standards. Microsoft has
published design guidelines for all .NET applications to follow, and FxCop is a tool
that uses reflection, MSIL parsing, and call-graph analysis to inspect assemblies
for over 200 violations of the design guidelines. Custom rules can also be created
specifically to your own guidelines and used within FxCop. Some of the default
rules check for conformance issues with library design, localization, naming con-
ventions, performance, and security.

N o t e

FxCop can be downloaded at http://www.gotdotnet.com/team/fxcop/.

Documentation
As discussed numerous times throughout this book, the importance of developing
tools that promote maintainability and reusability cannot be stressed enough.
Documentation is a deliverable that will assist developers working on future mod-
ification or reuse of a tool or component. Documentation can be created for either
source code or usability, and requires standardization just like source code.

Documentation 31

http://www.gotdotnet.com/team/fxcop/

Source code documentation is primarily aimed at developers who want to under-
stand the functionality of a given component without the need to look at the
source code to understand what is going on. The .NET framework has a standard-
ized way to document source code, expressed as XML. Chapter 11, “Code
Documentation with NDoc and XML,” outlines the way Microsoft wants develop-
ers to document source code to remain consistent with the core framework. When
a .NET assembly is compiled, an option exists to export all the XML-based source
code comments to a file that can be referenced by a number of documentation
generators.

An excellent tool exists that can take a .NET assembly and the associated XML
comments file and build documentation. The tool is called NDoc, and it supports
pluggable exporters including the MSDN-style HTML Help (.chm), the Visual
Studio .NET format (HTML Help 2), and the MSDN-online style Web pages. This
tool is very popular within the .NET community and is the most commonly used
documentation generator for .NET.

N o t e

NDoc can be downloaded at http://ndoc.sourceforge.net/.

Usability documentation comes in the form of training manuals or reference
materials that instruct users how to use the tool, or how to solve real-world prob-
lems with the tool. This type of documentation is high level and does not discuss
the inner workings of the software; it merely shows users how to use the tool.

The Documentation section should discuss the documentation standards to use,
such as NDoc or a specific template to use in Microsoft Word. Also describe how
function descriptions, properties, property accessors, and classes are worded.

Testing
Testing is a very important part of any software development project, and the
intent of this section is to standardize how testing takes place within the project.
There are different types of testing that can be performed, such as unit, automated,
functionality, and performance. Each type of test should be documented and
should list all the proper procedures and guidelines to follow, along with all the
necessary software to use to perform the testing, such as Rational Robot, ANTS
Profiler, NUnit, and csUnit.

Chapter 4 ■ Everything Starts with a Plan32

http://ndoc.sourceforge.net/

Defect Tracking
Standards must also be in place for how issues are handled when they appear in
tests. This section should outline where issues and defects are tracked and regis-
tered, and how to handle them. Certain defects and issues are more important
than others, and should generally be handled in terms of priority and influence on
the stability and functionality of the tool. Be sure to describe how to prioritize cer-
tain issues and handle them accordingly. Also specify where defects and issues are
stored, such as Rational ClearQuest or TestTrack Pro, for example.

Life Cycle
The Life Cycle section of the software development plan outlines how the software
will be developed, and describes the software development methodology that will
be used: Rational Unified Process (RUP), SCRUM, and the Waterfall approach, for
example.

This section could potentially list the milestones and deadlines for the project if
they are known, but typically the specific project dates reside in a project schedule,
a topic outside the scope of this book.

There is a detailed overview of the software development life cycle (SDLC) in
Chapter 5, “Development Phases of a Tool.”

The approach covered in Chapter 5 is the Waterfall approach, though there are
many different methodologies that are in use in the industry.

Development Environment
The Development Environment section of the software development plan outlines
the development environment and resources necessary to design and build the tool.

First, describe the hardware specifications of the development computer(s). Also
describe what operating system(s) will be installed on the computer(s). If multiple
operating systems will be installed for testing, describe whether or not they will all
be accessed using a dual boot loader or a virtual operating system manager. Also
specify what networking requirements are needed, such as Internet access or per-
mission to access specific local domains.

Second, you should outline the software that will be needed, such as compilers,
debuggers, IDEs, frameworks, and libraries.

Development Environment 33

Last, discuss workflow processes that will be used, such as which document con-
trol and versioning system(s) will be used, as well as how the project will be backed
up and at what time intervals.

Staging Environment
Every software application, in general, requires a certain level of testing. Tools that
enhance workflow productivity or produce game content require an extra level of
consideration for quality assurance, as a faulty tool can harm productivity or pro-
duce corrupt game content that requires time to fix or redo.

It is important to outline an environment suitable for testing, and it is recom-
mended that this environment not be shared with the development environment.
Using a unique staging environment allows testers and developers to locate con-
flicts with missing dependencies, hard coded values, or system variables, and other
issues that could lead to deployment problems. It is also advisable to periodically
rebuild your test environment to make sure that other issues do not slip through
before staging deployment.

The staging environment should typically mimic the production environment,
and only have the absolute necessary software and libraries installed. Never install
development software in the staging environment or do any modifications there.
Fully uninstall your application after testing, modify the source in the develop-
ment environment, and redeploy your application to the staging environment.
This may seem like a trivial and inefficient process, but doing so will save you a lot
of headaches during production deployment.

The staging environment should also contain a relatively diverse range of hard-
ware and software configurations that could potentially be used in the production
environment. If the application requires 3D acceleration, be sure to test a variety
of graphics cards, especially older cards that do not support the features your
application requires, like a programmable pipeline, for example. Be sure to test
configurations that are guaranteed to fail, and observe that all fatal errors are han-
dled gracefully.

Production Environment
The Production Environment section of the software development plan outlines
and describes the environment in which the final application will run. Some tools
will only be run on one type of configuration or computer, which often is the case
when the tool is developed for internal use. With a tool developed for external use,

Chapter 4 ■ Everything Starts with a Plan34

this environment is any computer or configuration that is managed by the stake-
holders of the tool. The production environment is fairly similar to the staging
environment. All the deployment issues should be resolved when the application
reaches this environment, allowing for a clean install with no missing dependen-
cies or settings.

Conclusion
Building a software development plan with standards plays an important role in
development. A comprehensive plan is typically a waste for small tools, though
even a brief description in each section is generally sufficient enough. Keep in
mind that if you have standards that are applicable to other projects, if not all of
them, the extra time you spend writing a comprehensive section for a small tool
will be justified when you reuse those same standards in other tools that are of a
much larger scale.

Why not wait to write a detailed standard until it is needed for a larger project? You
can definitely do this if you want, but if you define the standards immediately, you can
build all of your tools to follow your specifications, promoting ease of maintain-
ability across all your projects.

On much larger projects, a thorough development plan and development stan-
dards are basically a requirement, especially when working with multiple developers,
each with his own coding and documentation style. Remember that consistency is
extremely important, and the best way to achieve consistency is through defined
standards.

Conclusion 35

This page intentionally left blank

37

Development
Phases of a Tool

chapter 5

Large software projects will never be without some risk, but if risks can be
brought down to acceptable levels, that will be a good beginning.

Capers Jones, 1998

The process of understanding the project and its goals, building it, and delivering
it to users is often referred to as the Software Development Life Cycle (SDLC).
Such a process sounds straightforward, but this is not the case, as more than 50%
of all development projects fail. The project is canceled before the product is com-
pleted, the product is never used after it is deployed, or the end result fails to pro-
vide the outcomes that were expected. Presented in this topic are several funda-
mental concepts and pragmatic techniques that you can use to increase the prob-
ability that your project will be successful.

The development life cycle is composed of four phases: planning, analysis, design,
and implementation. Although the focus and approach to each may differ among
projects, all projects have elements of these four phases. Each phase is composed
of a series of steps, which produce deliverables that provide understanding about
the project. The development life cycle is a process of iterative refinement, where
each phase takes in a deliverable from the previous phase, and further outlines in
more detail how the product will be built, eventually leading to a finished product.
Each phase generally proceeds in a logical path from start to finish, though some
project teams move through the steps consecutively, iteratively, or incrementally.

There are many more variations of the development life cycle than what is being
described throughout this chapter, though the rudiments behind each phase
remain the same.

In many ways, the development life cycle is similar to building a house. First, the
original idea for the house is presented. Second, this idea is transformed into a
simple drawing that is refined over several iterations until the customer agrees that
the drawing depicts what he or she wants. Third, a set of blueprints is created that
presents extensive detail about the house, including power outlets, support beams,
and door arches. Finally, the house is built following the blueprints, often with
changes made by the customer as the house is being constructed.

It is important to mention that the length of and approach to each phase of the
software development life cycle is dependent on the methodology used. This chapter
covers only the waterfall approach, although there are roughly six other method-
ologies that are used in software development. There is no right approach; each
methodology has a purpose and a place. The waterfall approach is covered in this
chapter because it is the easiest and shortest to cover. Other methodologies, like
the Rational Unified Process (RUP), are more complex and detailed.

Phase: Planning
The first phase of the development life cycle is the fundamental process of under-
standing why a product should be built, and determining how the project team
will go about building it. It is in this stage that the value to the developers is iden-
tified, and technical, economic, and organizational feasibility are determined. This
is known as a feasibility analysis.

A feasibility analysis evaluates if the final outcome of the project will lower costs
or increase profit, and whether or not there are enough organizational and tech-
nical resources to build it. The level of risk is also assessed, contributing to the final
decision about whether or not the project is a worthwhile investment. Are the

Chapter 5 ■ Development Phases of a Tool38

Figure 5.1 Phases of the software development life cycle.

developers familiar with the application and technology utilized? Less familiarity
generates more risk because now the developers have to conduct additional
research to build the final product and support it. How large is the project? Larger
projects also generate more risk, due to the extensive scope that must be managed
through development. What will be the development and operating costs? Do the
costs of managing this project outweigh the benefits of the expected outcome? All
of these factors must be addressed before development can continue to the next
phase.

If the project is evaluated and developers are given the go-ahead, the resultant
deliverable of this phase is a project plan that describes how the project team will
go about developing the product. The project plan is composed of a technical
brief, business rules, development requirements, milestones, deliverables, budget,
and quality assurance procedures. This deliverable is given to the development
team for design and implementation.

Phase: Analysis
The second phase of the development life cycle answers the questions of what the
product will do, who will use the product, and when and where the product will
be used. During this phase, the project team develops a concept for the new prod-
uct. If a product already exists, then the project team identifies areas to improve
on the existing design.

The project team sets out on an information-gathering process, where the main
users of the product are interviewed or fill out a questionnaire. The analysis of this
information, in conjunction with input from the project sponsor and project team
managers, leads to a concept for the new product. The product concept is then
used as a guide to produce a set of business analysis models that identifies how the
product will be used within the company.

The analysis, product concept, and models are combined into a deliverable called
the product proposal, which contains a high-level initial design.

Phase: Design
After the strategic decisions have been made in the previous two phases, the design
phase determines how the product will operate in terms of hardware, software,
and network infrastructure. Several specifications are created that detail the vari-
ous components of the product.

Phase: Design 39

The first step in the design phase is to develop the design strategy specification.
This specification describes whether the product will be developed by program-
mers employed by the company, whether the product will be outsourced to anoth-
er firm (usually a consulting firm), or whether the company will buy an existing
software package. This leads to the architecture specification, which describes the
hardware, software, and network infrastructure that will be used.

After the architecture specification is completed, the project team develops the
interface specification, which specifies how the users will interact with the system
(e.g. navigation methods such as menus, buttons, or command line input). Next,
the database and file specifications are developed, which define exactly what data
will be stored, including where it will be stored. Finally, the analysis team develops
the program specification, which defines the programs that need to be written and
exactly what each program will do.

All these specifications form the system specification deliverable that is handed to
the programming team for implementation.

Phase: Implementation
This is the phase where the product is actually built. Notably, this phase gets the
most attention because it is the longest and most expensive part of the develop-
ment process.

The first step in the implementation phase is construction, during which the prod-
uct is built and then tested to ensure that it performs the way it was designed.
Testing and quality assurance are the most critical steps in this phase, because the
cost of bugs can be immense. The majority of companies spend more time on
quality assurance than on the actual development of the product.

Once the product has passed acceptance, it is ready to be installed. If an existing
product was in place before this new one, both products move through conversion.
This is a process by which the old product is deactivated, and the new product is
activated.

The conversion process may be a direct cut-over approach (in which the new
product immediately replaces the old product), a phased approach (in which the
new product is installed in one division of the company as a trial before installing
it in the other divisions of the company), or a parallel approach (in which both the
old and new products are operated for a couple months until the support team is
sure there are no bugs in the new product).

Chapter 5 ■ Development Phases of a Tool40

One of the most critical aspects of the conversion process is the creation of a train-
ing plan to instruct users on how to operate the new product, and help manage the
changes caused by the new product.

Once the product has been deployed and tested, the project team establishes a sup-
port and maintenance plan for the new product. This plan usually includes a post-
implementation review, as well as a method to identify the changes needed for the
product. Optionally included are retirement plans for the product, generally
affected by changing technology and business rules.

Conclusion
The development methodology described in this topic is commonly known as the
Waterfall approach. This model is one of the oldest versions of the software devel-
opment life cycle. The Waterfall model is linear and sequential, and once a stage
has been completed, there is no turning back.

Imagine a waterfall rushing over a rocky cliff. Once the water has flowed over the
cliff, it cannot turn back. This is the same idea behind waterfall development. Once
a phase transitions into another, there is no turning back.

Waterfall development is advantageous in that it allows for managerial control. A
schedule is set with deadlines for each development stage, and the product can
proceed through the development process and be delivered on time, in theory.
Each phase of development transitions into the next phase in strict linear order,
without any overlapping or iterative steps.

The disadvantage to the waterfall development model is that it does not allow for
reflection or revision. Once an application is in the testing phase, it is very difficult
to modify something that was not explored in the concept state.

There are a number of popular software development methodologies, and each
model works best for different types of companies. Other development method-
ologies include SCRUM\Agile, iteration and increment, eXtreme programming
(XP), feature-driven development, Rational Unified Process (RUP), and Microsoft
Solutions Framework (MSF).

Development of a game itself generally utilizes the SCRUM\Agile approach,
whereas tools development typically follows either the waterfall approach or a cus-
tom model when there are only a handful of developers working on it.

The best development methodology to use depends on your company and project.

Conclusion 41

This page intentionally left blank

43

Measurement Metrics
for Tool Quality

chapter 6

There is an old saying with software that three years from now, no one will
remember if you shipped an awesome software release a few months late.
What customers will still remember three years from now is if you shipped
a software release that wasn’t ready a few months too soon. It takes multiple
product releases to change people’s quality perception about one bad release.

Scott Guthrie

The risk of failure for software development is increasing at a rapid rate because
of the need for higher quality software that is also more cost effective and deliv-
ered in a timely manner. With the growing focus on quality, there is a definite need
to improve the quality of software to meet the needs of the industry. One common
problem when trying to determine how to improve quality is establishing a mean-
ingful way to measure quality so that you can quantify your results. If a developer
told you that a piece of software was top-notch quality, just what does that mean?
If a developer told you that a piece of software has only failed twice in over three
years of usage, there would be more value behind that statement. The only differ-
ence between the two statements is that the second one presents a quantifiable
measurement detailing the number of times the software failed in a three-year
period. Both statements could be referring to the same piece of software, yet the
second statement is the only one that is an acceptable and accurate description of
software quality.

When performing any kind of measurement, you need what is known as a metric,
which is commonly defined as a quantitative measure of the degree to which a sys-
tem, component, or process possesses a given attribute. Software development
quality can be measured by a number of metrics, including maintainability, per-
formance, usability, testability, portability, reliability, and efficiency.

The International Standards Organization (ISO) has created a set of software qual-
ity standards and also describes how to collect metrics for them. The metrics dis-
cussed in this topic are a compressed overview of their work.

Tools, like any software project, require a high level of quality, especially when the
tools produce game content or enhance workflow, and the rate of failure for the
tool must be extremely low. This topic presents some measurement metrics and
concepts for development that all greatly impact the lifetime cost of a tool.

Metric: Maintainability
Perhaps one of the most important metrics to consider in software development,
and definitely evangelized in this book, is maintainability, which characterizes any
successful tool. The greatest amount of development time in the game industry is
spent on maintenance, by extending or enhancing a product that already exists. A
tool should always be designed with maintainability in mind, designed so that the
code is easy to repair and extend for future products or processes.

This metric typically looks at how many times a certain tool has been reused across
multiple products or processes, how much additional time was needed to relearn
the inner workings of the code, and how much development time was spent
enhancing the tool to suits the needs of another product.

Metric: Traceability
The idea of traceability has been mainly introduced by object-oriented software
engineering, and is the idea that documentation should be able to show why a par-
ticular implementation decision was made. Typically, a tool, especially one that’s
medium to large scale in terms of size, will have a design document detailing how
the application will function, and may even be represented using the Unified
Modeling Language (UML). The ability to look at a functionality requirement in
a design document, known as use cases when utilizing UML, and easily understand
how to perform that task in the application itself is referred to as traceability.

Chapter 6 ■ Measurement Metrics for Tool Quality44

There are a multitude of ways to discuss traceability and how to achieve it, but
basically it all boils down to how well the application and underlying architecture
follow the design document specifications. Actors in a design document, the peo-
ple using a certain component in the system, should be easily identifiable in the
object model, and all functions should be named similarly to the associated use
cases. For example, if the design document specifies that there is a feature called
Search Entities and its associated code function is labeled FindEntityList, the
traceability between the documentation and code is low because further investiga-
tion is needed to make sure that function performs the correct task. If the function
was labeled SearchEntities, the traceability between the documentation and code
would be better.

Metric: Performance
Generally, one of the most difficult areas of any software product of ample com-
plexity is performance profiling and tuning. Performance describes issues like
memory leaks or how responsive the user interface is.

This metric typically profiles the application for declines in performance or misuse
of resources. Performance is very important to game tools because a responsive user
interface yields much more productivity than a tool with a sluggish user interface.

Some chapters later on in the book cover performance, such as accessing perfor-
mance counters to profile operations and optimization tips and tricks for the .NET
platform.

The performance metric is sometimes combined with the efficiency metric in some
measurement contexts.

Metric: Usability
Another important issue in regards to software development is how easy it is to
reuse or extend a piece of software. In order to accomplish this, it is important that
the interfaces for the software are well-documented and easy to use.

A developer should be able to read the documentation for the tool and understand
what the tool is supposed to do at a high level. Additionally, a developer should be
able to read the source code and easily understand what is going on behind the scenes.

The usability metric is sometimes combined with the maintainability metric in
some measurement contexts.

Metric: Usability 45

Metric: Testability
Testing is a required step in any software project, and there are certain considera-
tions for building software that is easy to test. Unit testing is easiest to perform in
loosely coupled architectures where individual objects can be tested with minimal
dependency on other objects. If testing can be performed on components in iso-
lation from each other, there is a much greater chance that performance issues and
hard-to-find bugs will be discovered.

Avoid design patterns like the singleton, where architectures become tightly cou-
pled; design software for testability so that the work of testers is not as difficult and
can be done in a much shorter period of time.

Metric: Portability
The portability metric involves moving software from one operating system to
another. Some game development studios target multiple operating systems and
platforms with their products, so portability is important to them. Therefore, it is
important to build common components that are easily portable to other plat-
forms. Even if the game development studio typically relies on outsourcing other
cross-platform work to another development company, there are some practices
that should be followed. The longer it takes to port the original code to another
platform, the greater the overall cost of the conversion process. The more a soft-
ware component relies on platform-specific technology, the more code must be
written in the porting process.

The biggest practice to follow is that all calls to the operating system should be in
specific components. Abstraction is very useful in this situation, because interfaces
can be written that define how a particular component will communicate with the
system, and operating system-specific components can be written that implement
that interface, creating a flexible plugin-based architecture.

Plugin-based architectures are commonly used with 3D API agnostic graphic
engines that can use either OpenGL or Direct3D. Aside from the benefits of an
abstracted rendering system on Windows alone, OpenGL is pretty much the only
cross-platform hardware-accelerated 3D API that can be employed in games. By
using an abstracted rendering system that supports OpenGL, you do not have to
worry about porting the graphic engine to other platforms, as you have already
accounted for the differences.

Operating system agnostic design can also be used for other hardware-based ser-
vices like audio, video, input, and networking.

Chapter 6 ■ Measurement Metrics for Tool Quality46

Metric: Reliability
An extremely important factor in the success of any software project is its reliability.
A tool is pretty useless to designers if it crashes or corrupts the data almost every
time it is used. The reliability metric is a measure of failure rates surrounding the
software project. If you run a certain tool a thousand times, what percentage of
those times will it fail? The resulting data from this test is generally referred to as
the meantime to failure.

There are different acceptable failure rates for different stages in software develop-
ment. At the beginning of development, the software fails quite often. As develop-
ment progresses, bugs are removed, and the failure rate declines to the point where
the tool rarely fails. The failure rate is rare when the software is ready for integra-
tion and deployment, at which point the failure rate is said to be acceptable.

Workflow productivity using a tool is directly tied to reliability. Losing work or
requiring tedious workarounds to maintain stability is a frustrating process, and
should be minimized at all costs. Spending the extra time to stabilize a tool can
save the designers much more time in the long run.

Metric: Efficiency
Judging the efficiency of an application is relatively difficult to do, because there
are several things you must take into consideration. Some measurement contexts
also combine the efficiency metric with the performance metric, while others do not.

Some measurements of efficiency include the size of the application, especially in
circumstances where available disk space is limited, such as handheld or other
resource-limited platforms. Smaller applications typically gain a slight perfor-
mance boost over larger applications, due to how the operating system manages
memory associated with processes.

The amount of memory required by the application to function optimally is also
important to measure, especially in situations where memory is limited. If you had
an application that performed a task in four seconds with 1MB of memory, it
would be more efficient compared to an application that performed a task in two
seconds with 9MB of memory.

The speed of an algorithm can also be measured in terms of efficiency. An algo-
rithm can be evaluated in terms of the time it takes to complete its work, and how
it goes about doing that work. Issues like memory access, disk access, and network
access can all be considered in this measurement.

Metric: Efficiency 47

Aside from efficiency or performance, complexity of the implementation relative
to the task performed can also be considered. If an application or component is
mired in complexity, it might not be the most efficient implementation of a solution,
even if its performance is as good as or better than another less complex solution.

The efficiency metric involves studying several important variables in order to
determine whether the solution, even when meeting business objectives, is an effi-
cient implementation.

Conclusion
In this chapter, I discussed what software quality measurements and metrics are,
and why they are important. Also discussed were some development models and
calculation methods used to produce and analyze high-quality software.

N o t e

For more information, refer to the book Metrics and Models in Software Quality Engineering,
Second Edition by Stephen H. Kan.

Chapter 6 ■ Measurement Metrics for Tool Quality48

49

Fundamentals of
User Interface Design

chapter 7

I think another good principle is separating presentation or user interface
(UI) from the real essence of what your app is about. By following that
principle I have gotten lucky with changes time and time again. So I think
that’s a good principle to follow.

Martin Fowler

User interface design is a software development issue that spans numerous books,
so covering the subject in one chapter is quite ambitious, perhaps impossible to
do. Yet, user interface design is very important to tools development, so I felt the
need to cover at least a generalization of some important rules to follow while
designing your interfaces.

The importance of a good user interface design cannot be stressed enough, and it
can make or break the success and adoption of your tools. The backend may have
been written exceptionally well, yet an interface that is unintuitive to users will dis-
courage them from using your tool. Additionally, productivity will not be as high,
and users will feel incompetent when using the tool.

In this chapter, I will discuss some of the most important rules and guidelines for
designing user interfaces. The term control will be used in this context to describe
any element or widget on the user interface that either accepts input or displays
output. Some controls include buttons, static labels, textboxes, scrollbars, and menus.

Principle of Consistency
Almost every platform has a guideline written for user interface design. Microsoft
has published the Design Guidelines for Class Library Developers, which you should
follow when building .NET software. If you feel the need to improve upon the
design, chances are you will remove your “improvements” when users begin to
complain about the application not working the way they would normally expect.

If you are doing cross-platform development, maintain consistency by following the
design guidelines for the host platform. Never make the different platform appli-
cations function the same if they break one of the guidelines of the platform.
Chances are your users will be switching between applications on one platform, not
switching between applications on different platforms. Users should be able to use
the knowledge gained in other programs on a certain platform to anticipate the
behavior of your program.

Users should also be able to anticipate the behavior of a control from its visual
appearance and properties. For example, if a pushbutton on one of your user
interfaces responds to single mouse click, every other button should respond to
one mouse click as well.

When you develop a custom control, it is important that you try to make it behave
in a similar fashion to other system controls. If you build a custom control that
allows the user to type text into it, that control should have a blinking insertion
pointer; it should have a vertical scrollbar if multi-line input is supported. If you
build a custom control that allows the user to click on it, the control should behave
in a similar fashion to a regular button.

If you have a custom control that behaves in a fashion that users are not accus-
tomed to, be sure to give the control a distinct appearance so that users can asso-
ciate that type of control with a unique behavior.

Consistency is also important to interface abstractions like accelerator keys, place-
ment of menus and toolbars, and mouse gestures.

Principle of Transparency
The concept of user interface transparency is a design that allows users to accom-
plish their tasks while being minimally aware of the interface itself. Interface trans-
parency occurs when the attention of the user is drawn away from the interface
and directed at the task itself.

Chapter 7 ■ Fundamentals of User Interface Design50

Certain interface abstractions, such as accelerator (hot) keys, are quite useful in
achieving interface transparency, but the best way to design a transparent interface
is through iterative user testing throughout software development.

Watching how a user operates a tool and witnessing how quickly he learns an
interface is an excellent way to gain an idea of what should be redesigned to
improve the transparency of an interface.

Principle of Feedback
This concept applies to the controls and activity of your tool, and is about the
importance of providing adequate feedback to users. Users expect feedback while
using an application, so they are aware of the current state of the application. It is
a typical action and reaction situation, where something should happen when a
user does something.

For example, when a button is clicked, it first draws itself in a depressed state, and
then draws itself in a normal state when the mouse button is released. This is a
method of user feedback that informs the user that he successfully clicked the but-
ton. If this visual appearance did not occur when the button was clicked, the user
generally understands that he did not actually click the button and should do so
again until the visual feedback is witnessed. You can imagine the frustration of
your users if buttons in your application did not display this visual feedback when
they were clicked.

As another example, a checkbox control changes its appearance when it is select-
ed or deselected to inform the user whether the checkbox is checked or not. Again,
this visual feedback is important to show users the current application state.

With any tool, there are instances when an operation occurs that takes longer than
a few milliseconds to complete and requires visual feedback to inform the user that
the application is performing a lengthy operation and did not actually lock up.
When brief delays are to occur, one of the more popular methods is to change the
mouse cursor into an hourglass. If a longer operation will occur, use a progress bar
control so that users can see how long the operation will take to complete. An
hourglass cursor will not suffice for a lengthy operation because users will still
think that the application has locked up.

Lastly, every screen should be designed so the user knows what steps have been
performed, especially any critical steps that have been performed.

Principle of Feedback 51

Principle of Refinement
One common mistake a lot of developers make is to throw a warning or error
exception when the user performs an invalid operation. In actuality, you should
view every warning and error message generated by your application as an oppor-
tunity to improve the interface and task sequencing techniques.

A good user interface is when warning and error messages are rarely generated,
with the exception of disk failures or interrupted network connections. Otherwise,
all other warning and error messages can be considered as design flaws.

Instead of letting the user do whatever he wants and throwing a warning or error
message when he does something invalid, consider the prevention of these mes-
sages as a better design alternative.

The majority of erroneous user operations result from invalid input data and
inappropriate task sequencing. If your program requires formatted data, such as
dates or particular numeric ranges, help users enter correct data by using bound-
ed input controls that limit input choices. Rather than letting the user enter what-
ever data he wants and complaining about the input when the user clicks the Save
button, instead force the user to enter correct data using controls that strip invalid
characters and perform automatic formatting.

If a particular step in the application cannot be legitimately performed until the
user completes other steps, the dependent step should be disabled so that the user
cannot attempt to perform it until all the dependencies of the step are satisfied.
User action should be limited to only valid steps through the use of disabled con-
trols. Most user interfaces have a dim appearance for disabled controls, and this
visual feedback informs the user that the functionality of that control is unavail-
able until another step is completed.

Principle of Exploration
The human race was born to be explorers, and our curious nature causes us to
attempt certain things just to see what the outcome is. When prehistoric cavemen
created fire, it is safe to assume there was at least one curious individual who want-
ed to see what happened when they touched fire—obviously burning themselves
in the process. From that point on, everyone knew what would happen if they did
the same thing, so their curiosity was satisfied.

The same analogy can be used for interfaces and user exploration. Humans want
to explore any environment, but with tools, they risk corrupting the database or
game content. This concept is based on the idea that the user interface and application

Chapter 7 ■ Fundamentals of User Interface Design52

should foster an environment safe for exploration. Safe environments are achieved
through the use of undo and redo functionality. A great interface design invites
and rewards user exploration, and offers the thrill of discovery and the satisfaction
of unassisted accomplishment. Undo and redo functionality encourages your users
to explore the application without fear of corrupting the database or game content.

Another great design advantage of undo and redo functionality is that it eliminates
the need for dialogs requesting permission to perform an erroneous function. This
is also a great technique to enhance interface transparency.

Principle of Modality
The use of modal dialogs is quite common in a user interface, yet they must be
used wisely for a number of reasons. Programs generally use modal dialogs to
force users to perform steps in a specific order. Modal dialogs are very advanta-
geous for wizard tools that simplify complex tasks, and are also used to display
warning and error messages for a critical issue that the user must first address
before returning to the task.

The problem with modal dialogs is that they make users uncomfortable because
they restrict natural or intuitive responses. Modality also interrupts user concen-
tration and goal-oriented behavior, decreasing productivity with the tool.

Modal dialogs are a great way to build easy-to-use and straightforward interfaces,
but they have to be used sparingly. Task sequencing techniques can be applied so
that modal dialogs are only used when absolutely necessary.

Principle of Self-Evidence
Good applications have online reference materials and comprehensive manuals
that explain features of the application and help to solve real-world problems. If a
user is stuck on a particular problem, in theory he should be able to read the ref-
erence material, move past his issues, and resume productivity.

Great applications have online reference materials and comprehensive manuals
available to the user, but users rarely need to refer to them to figure out how to per-
form a particular task. This is where the concept of a self-evident application
comes into play.

A number of factors contribute to an interface that is self-evident; some of the
factors include consistency, feedback, modality, and an environment that is safe for
exploration.

Principle of Self-Evidence 53

Following the platform guidelines eliminates the problem of users becoming frus-
trated with the interface itself, and reduces the learning curve required to under-
stand the application.

Proper feedback helps the user understand what the application is doing behind
the scenes, and helps reduce the chances that the user will feel “in the dark” about
the current state of the application.

Modality plays a big part in helping guide the user towards performing steps in the
correct sequence, and it helps the user to understand how a complex interface works.

Lastly, with an environment safe for exploration, the user can attempt to guess
what to do next if he is stuck on something, without fear of corrupting his data. A
user will often try a couple of things through guesswork before going to the refer-
ence material, if he can do so without undue worry that he will break things in the
application or project.

Remember that the difference between a good and a great interface is how self-
evident it is. If time is short for the development of a tool, instead of investing time
in producing reference material, a self-evident interface will be more than enough
of a reference for users.

Principle of Moderation
Most platforms have written conventions that describe the appropriate use of ani-
mation, color, sound, and multimedia clips, and they should be used sparingly.

You should never use sound and color as your sole means of communication with
the user; many users are colorblind or hearing impaired. The application should
be able to run with full functionality and productivity without any multimedia
features.

Following the platform conventions, only use multimedia where it makes sense,
and always allow the option to turn off multimedia features like sound effects.
Some users find them distracting, and this decreases productivity.

Principle of Customization
This concept is centered on the idea that users love to customize their work envi-
ronment to match their own personal style and preferences. Generally, offering
work environment customization increases productivity because users can set up
where toolbars are positioned, select fonts and colors that are easier to read, and
show only the dialogs that they use often.

Chapter 7 ■ Fundamentals of User Interface Design54

Another reason that customization is important is because there is such a wide
variety of hardware that applications can run on, and the default appearance does
not always look good on different hardware configurations.

The biggest issue is in regards to video options like screen size, resolution, and
color depth. Your application may look fine on 1024×768 and 32bpp, but it may look
absolutely terrible on 800×600 and 16bpp.

Allowing users to tailor the basic interface, such as fonts, toolbar location and
appearance, menu entries, color scheme, and sound scheme, helps to alleviate this
problem.

While customization is important, this feature is somewhat useless if the settings
are not persistent between different instances of the application. If the user
changes the settings, closes the application, and restarts it, the application should
be in the same state it was left at in the previous session.

Persisting changes to the settings is a simple registry key with a single user, but
multiple users present additional issues that must be addressed with an alternative
solution. If your application supports multiple users on a single workstation, then
consider recording preferences as user specific profiles, rather than as a single pro-
file from the last time the application was run.

Conclusion
It is a misrepresentation of software to think of a user interface as “intuitive”
because software applications simply do as they are instructed. It is the users who
must “intuit” an application, meaning an interface that is intuitive to one user may
be unintuitive to another.

The best way to design an interface that users can intuit is by designing an inter-
face to respond just like all the other applications they are used to. The way to
accomplish this is by following the Design Guidelines for Class Library Developers,
as well as the principles and concepts in this chapter. It is also advantageous to look
at similar applications and take note of how they operate.

A technique I have professionally used in the past is to open up any popular
Microsoft product like Office and look at how the interface works in it. Microsoft
has invested millions of dollars in user interface design research, and their research
can be adapted into your applications by mimicking how their products work.

Conclusion 55

You can get the Design Guidelines for Class Library Developers off the corporate
Microsoft site. These guidelines should be followed to produce a user interface that
users can intuit, and to achieve interface transparency.

User interface design is necessary for any software application, especially when the
application is a tool that is distributed to an external audience.

Chapter 7 ■ Fundamentals of User Interface Design56

57

Distributed Componential
Architecture Design

chapter 8

Design and programming are human activities; forget that and all is lost.

Bjarne Stroustrup

One of the most important issues facing developers building reusable frameworks
and tools is how the architecture is structured and the dependencies that are
required by each modular component. Not all tools have the luxury of a solid design,
but if at least the core functionality is separated from the tool into external com-
ponents, then the initial design helps promote reusability.

Another issue facing developers is designing an architecture that allows for multi-
ple entry points into the application, such as console support for batch processing,
and a Windows interface for usability. Building two separate applications is a waste
of time, and one of the two won’t do in a situation like this. This chapter shows a
great way to decouple the core functionality of a tool into reusable components,
and build a stackable architecture that easily promotes multiple entry points. Keep
in mind that supporting all the entry points discussed in this chapter is generally
overkill for a tool, but they are presented together to portray the “big picture.” Mix
and match the modules shown in this chapter, designing your solution with mod-
ularity in mind.

The .NET platform encourages the design of distributed architectures, and it is
extremely advisable to build any applications or components with that in mind.

Architecture Overview
The architecture presented in Figure 8.1 is not for every tool, but should be used
when possible to promote enhanced reusability and easier maintenance. On
another note, this architecture is one that can be built upon over time, and if the
design remains loosely coupled, new layers can be added as the tool matures, and
more entry points can be defined as needed.

Core Components
Core components, labeled “Reusable Functionality” in Figure 8.1, are the core libraries
that all your tools can reference when needed and are designed to be loosely coupled
and modular. Such functionality can include regular or virtual file system access, user
security, data compression and encryption, string parsing, image processing, and other
common code that can be useful to a variety of tools in your projects.

Chapter 8 ■ Distributed Componential Architecture Design58

Figure 8.1 Overview of the proposed architecture.

The core components should try to avoid external dependencies to other assemblies
at all costs, unless linking to another core component that contains required func-
tionality. Core components should also never contain any application entry points.

Optionally, you can also expose a COM interface from these core components if
your design warrants it, though I do present an alternative in the specific tool logic.

It is advisable that you assign a strong name key to the core component assemblies.
The only time you cannot do so is when the assembly references unsafe code, such
as an ActiveX object.

Specific Tool Logic
This module should contain all the logic that is unique to the tool you are building.
There is generally no code here that would be reused anywhere else, and typically
just the driver functions are implemented in this module. The specific tool logic
references whatever core components are needed for the tool, yet it does not
implement any entry points. This module can export a COM interface quite easily
to be called from unmanaged legacy applications.

Console Entry Point
Users prefer a rich GUI interface over a simple console one, but activities like batch
processing generally feed commands and parameters into command line tools in
an automated fashion. For that reason, it is important to support command line
access for a tool that could be used with batch processing later. Obviously, the
interface does not have to be fancy, but it should be clean enough that a user could
launch the console entry point manually and easily use the tool. Proper menu
descriptions and selection logic help out greatly in this regard.

Windows Entry Point
This entry point is relatively easy to construct if a decent console entry point has
been made. There are two main ways this entry point could be developed, but I
personally prefer the stackable method where the standard input, output, and
error streams are redirected from the console entry point. This method requires
less code, in that we are basically slapping a rich GUI interface on top of the con-
sole entry point.

The other approach for designing this entry point is through bypassing the con-
sole entry point and implementing similar logic that interfaces directly with the
specific tool logic.

Windows Entry Point 59

Other Entry Points
The nature of this architecture promotes loosely coupled design and distributed
services or entry points. This architecture could be extended to provide its func-
tionality to other technologies in many ways, but I will briefly mention three of the
more common ones.

Many different entry points could be added to this architecture, and the design
promotes both maintainability and reusability. There is nothing very complicated
about this architecture, yet the benefits make it a worthwhile design idea to adopt
into your development practices.

Remoting
There are a number of excellent reasons for supporting a remoting entry point. The
biggest advantage is that the tool logic resides on a server machine and clients request
a proxy object to it, greatly simplifying deployment and versioning. Changing the
specific tool logic on the server would be instantly reflected by all client applications
accessing it, completely avoiding the need to update the client applications.

Later in this chapter, an alternate architecture is presented that uses remoting as a
bridge between entry points and the specific tool logic to promote simple push
deployment to users.

Web Access
There are a couple of worthwhile possibilities with this entry point in regards to
reporting and statistics. Functionality could be added to the specific tool logic that
can return a report of the files affected by the tool, the user who accessed the tool
last, total size of files modified, and any other information that would be useful to
record for the tool.

A web entry point could also be useful for launching processes remotely, without
requiring an application installed on the client machine to do so. For example,
imagine a tool that would back up a certain directory to another server when run.
A tool like this would normally need to be installed on all client machines that
needed to use it, but with a web entry point, the backup could be launched remotely
through a normal web browser.

COM Interface
Migrating components to the .NET platform will take some time, and definitely
won’t take place overnight. The ability to migrate each component one at a time

Chapter 8 ■ Distributed Componential Architecture Design60

and have them interface with legacy components is fairly important, and one way
to do so is by exposing a COM interface for your .NET components so that lega-
cy applications can use them.

Later in this chapter, an example is discussed that covers exposing a COM inter-
face for a .NET component so that legacy applications can access its functionality.
The discussion is relatively brief though, since COM interoperability is covered in
much greater detail in Chapter 32, “Using .NET Assemblies as COM Objects.”

Architecture Example
Now that the overall design of the architecture has been discussed, it is also impor-
tant that an example be presented to offer a tangible reference point for properly
designing a distributed componential architecture.

As an example, we will build a very simple solution that contains a few object def-
initions, some functionality to process the objects, and a variety of entry points to
access the tool using an assortment of different technologies.

Object Definitions
Most systems define objects that represent business entities in the system, and
these objects are typically used throughout an application in a variety of contexts
and locations. To promote strong design, it is important that these business enti-
ties exist alone in an independent library away from processing functionality.

This example assembly contains a single object named SimpleObject, and contains
a single string property that describes the name of the object.

Here is the code for the SimpleObject entity definition:

public class SimpleObject
{

private string _name = “”;

public string Name
{

get { return _name; }
set { _name = value; }

}

public SimpleObject(string name)
{

Architecture Example 61

this._name = name;
}

}

As you will notice when viewing the solution files on the Companion Web site, the
entity definitions reside in an independent library, completely isolated from any
processing functionality that uses these entities.

This module fits into the “Reusable Functionality” category in Figure 8.1.

Object Processing
Almost every system defines objects that represent business entities, and almost
every system provides functionality that performs processing on these entities.
This is one area where it is important that future reusability be taken into consid-
eration. All functionality placed in this module should have the potential for
applicability towards multiple projects. It is essential that you refrain from placing
specific tool logic in this module.

This example assembly contains a single static method that inputs a SimpleObject
and builds an alert message based on its name.

Here is the code for the simple object processing method for this example:

using ObjectDefinitions;
public class Library
{

public static string FormatOutput(SimpleObject simpleObject)
{

return String.Format(“The name of this SimpleObject is {0}!”,
simpleObject.Name);

}
}

Notice how this assembly references the other class library containing the entity
object definitions.

This module fits into the “Reusable Functionality” category in Figure 8.1.

Alert Object Tool Interface
Now that our simple framework has been created, it is time to build our tool! In
order to facilitate either a COM or remoting entry point, we must define a public
interface that our tool implements. That is what this module is for.

Chapter 8 ■ Distributed Componential Architecture Design62

Another gotcha when using remoting is that it is ideal for the interface to exist in
its own assembly, away from the classes that provide implementation. The beauty
of remoting is that you can give each client machine an assembly containing only
the public interface of the tool, and each machine can build a proxy object to
access the actual implementation remotely. If you keep the interface and imple-
mentation together in the same file, however, it defeats the purpose of remoting
because clients have access to a local copy of the implementation.

There is one problem with keeping the interface in a separate assembly from the
implementation, and that is when also exposing a COM interface. In order for
COM to work, it must know what both the interface and the implementation are
defined as. When paired together in the same assembly, COM has no trouble find-
ing either the interface or the implementation, but when the interface exists by
itself in a separate assembly, COM will not register output for that interface, com-
plaining that it cannot find any suitable types to generate COM output for. This
error will cause registration to fail for the implementation output because the
interface will be unknown, even when the interface library is referenced correctly.
One method of fixing this error is to create a dummy class that implements the
interface and place it in the interface assembly. By setting the ClassInterface
attribute to ClassInterfaceType.None, no class interface will be generated and the
dummy class will only be visible through late-binding. The purpose of the dummy
class is to force COM output registration for the interface assembly so that it is
available to the implementation assembly when it registers for COM output.

If you do not wish to support remoting, you can pair the interface and imple-
mentation together, but keep in mind that you need to be committed to the archi-
tecture you choose. Going back to separate the interface into a separate assembly
would be much more difficult than doing it right from the get-go.

Here is the interface for the tool-specific code, along with attributes for COM
interoperability:

[Guid(“D64A81A4-FF0C-4916-B92C-47BA3D2EC05D”)]
[InterfaceType(ComInterfaceType.InterfaceIsDual)]
public interface IAlertObjectToolLogic
{

string GetFirstAlertObjectName();
string GetSecondAlertObjectName();
string GetThirdAlertObjectName();

}

Architecture Example 63

[Guid(“6E789399-D074-407a-8715-6C72A3C70D7F”)]
[ClassInterface(ClassInterfaceType.None)]
[ProgId(“AlertObjectToolInterface.IgnoreMe”)]
public class AlertObjectToolBase : IAlertObjectToolLogic
{

public string GetFirstAlertObjectName()
{

return String.Empty;
}

public string GetSecondAlertObjectName()
{

return String.Empty;
}

public string GetThirdAlertObjectName()
{

return String.Empty;
}

}

This module fits into the “Specific Tool Logic” category in Figure 8.1.

N o t e

Any assemblies that expose components to COM must have Register for COM Interop enabled in
the project Configuration Properties.

Alert Object Tool
It is fairly obvious that an interface alone will not offer any useful functionality to
users, so the next step is to build the tool implementation. This module can be
considered the meat of the tool, because all logic specific to the tool in question
resides within this module. Just like the interface, this assembly can be registered
for COM Interop if desired.

This module references the entity definitions and processing assemblies, as well as
the interface definition it needs to implement. The example provided is very sim-
ple, with three methods that each returns a different formatted alert string. Each
method instantiates a SimpleObject entity definition with the name specified, and
then passes the entity off for processing, returning the alert string.

Chapter 8 ■ Distributed Componential Architecture Design64

Here is the code for the specific tool logic:

using ObjectDefinitions;
using ObjectProcessing;
using AlertObjectToolInterface;

[Guid(“F6D5AB09-E2C1-4ff3-B023-01A94CC7C276”)]
[ClassInterface(ClassInterfaceType.AutoDual)]
[ProgId(“AlertObjectTool.AlertObjectToolLogic”)]
public class AlertObjectToolLogic : MarshalByRefObject, IAlertObjectToolLogic
{

public string GetFirstAlertObjectName()
{

SimpleObject simpleObject = new SimpleObject(“Test1”);
return Library.FormatOutput(simpleObject);

}

public string GetSecondAlertObjectName()
{

SimpleObject simpleObject = new SimpleObject(“Test2”);
return Library.FormatOutput(simpleObject);

}

public string GetThirdAlertObjectName()
{

SimpleObject simpleObject = new SimpleObject(“Test3”);
return Library.FormatOutput(simpleObject);

}

[ComVisible(false)]
public override object InitializeLifetimeService()
{

return null;
}

}

For remoting support, you will notice that the class inherits from MarshalByRefObject,
which is important because doing so allows remoting to create a proxy object out
of this object to pass to clients. Also, you will notice the method InitializeLifetime
Service, which allows us to explicitly handle the lifetime of proxy objects. By returning
null, we are telling remoting services to keep the allocated object in memory indef-
initely until explicitly told to release it. Be aware of the ComVisible(false) attribute
that is set on the method, so as to not be exported with the COM interface.

Architecture Example 65

For COM support, you will again notice the COM attributes set on the class. Also,
make sure that the project Configuration Properties has the Register for COM
Interop flag enabled.

This module fits into the “Specific Tool Logic” category in Figure 8.1.

Alert Object Console
We can begin discussing entry points now that the specific tool logic has been
developed. The first entry point covered will be the command line console, which
is widely used for automated build processes or batch processes. Some developers
also have a personal preference for using console applications over GUI applications.

This example is quite simple; it takes in a 1, 2, or 3 and spits out the formatted alert
message from the associated call to the tool logic.

Here is the code for the console entry point:

using AlertObjectTool;

[STAThread]
static void Main(string[] args)
{

// Very simple input parameter.
// Either 1, 2, or 3
// 1: GetFirstAlertObjectName()
// 2: GetSecondAlertObjectName()
// 3: GetThirdAlertObjectName()

if (args.Length >= 1)
{

AlertObjectToolLogic logic = new AlertObjectToolLogic();

switch (args[0].Trim())
{

case “1”:
{

Console.Write(logic.GetFirstAlertObjectName());
break;

}

Chapter 8 ■ Distributed Componential Architecture Design66

case “2”:
{

Console.Write(logic.GetSecondAlertObjectName());
break;

}

case “3”:
{

Console.Write(logic.GetThirdAlertObjectName());
break;

}
}

}
}

Alert Object Windows—Direct
The first method for a WinForms-based entry point is the direct approach, where
you reference and call the specific tool logic in the same way you would do in the
console entry point.

Here is the code for the WinForms entry point using the direct approach:

using AlertObjectTool;

private void FirstTestDirectButtonClick(object sender, System.EventArgs e)
{

AlertObjectToolLogic logic = new AlertObjectToolLogic();
MessageBox.Show(logic.GetFirstAlertObjectName());

}

private void SecondTestDirectButtonClick(object sender, System.EventArgs e)
{

AlertObjectToolLogic logic = new AlertObjectToolLogic();
MessageBox.Show(logic.GetSecondAlertObjectName());

}

private void ThirdTestDirectButtonClick(object sender, System.EventArgs e)
{

AlertObjectToolLogic logic = new AlertObjectToolLogic();
MessageBox.Show(logic.GetThirdAlertObjectName());

}

Architecture Example 67

Alert Object Windows—Wrapper
The second method for a WinForms-based entry point is the wrapper approach,
where the WinForms application layers on top of the console entry point and redi-
rects all standard input and output through itself.

This approach is beneficial in the sense that there is less to code, since the major-
ity of the entry point code exists within the console entry point. Another benefit
is that this project does not require any references to the underlying framework or
specific tool logic.

Using this method also reduces the chances for bugs since one code base is main-
tained, and fixing a bug affects both entry points.

Here is the code for the WinForms entry point using the wrapper approach:

private void FirstTestWrapperButtonClick(object sender, System.EventArgs e)
{

LaunchConsoleWrapper(“1”);
}

private void SecondTestWrapperButtonClick(object sender, System.EventArgs e)
{

LaunchConsoleWrapper(“2”);
}

private void ThirdTestWrapperButtonClick(object sender, System.EventArgs e)
{

LaunchConsoleWrapper(“3”);
}

private void LaunchConsoleWrapper(string parameter)
{

Process process = new Process();
process.StartInfo.UseShellExecute = false;
process.StartInfo.RedirectStandardOutput = true;
process.StartInfo.CreateNoWindow = true;
process.StartInfo.Arguments = parameter;
process.StartInfo.FileName = Application.StartupPath +

@”\AlertObjectConsole.exe”;

if (process.Start())
{

MessageBox.Show(process.StandardOutput.ReadToEnd());
process.WaitForExit();

Chapter 8 ■ Distributed Componential Architecture Design68

}
else
{

MessageBox.Show(“Error launching console application”);
}

}

The function LaunchConsoleWrapper takes in the argument string to pass to the con-
sole entry point, and launches the console entry point with redirected standard
output.

Alert Object Remoting
A great feature of the .NET platform is the ability to invoke remote procedure calls
(RPC) from proxy objects published by a server machine. remoting solves a num-
ber of deployment concerns and allows for a variety of distributed architectures.
Clients can have a local copy of the tool interface, except the implementation itself
exists on a remote machine. A client would connect to the remote machine,
request a proxy object of a certain type, and use the proxy object as if it were a local
system variable.

In order to support Remoting, the first thing to do (aside from building an object
that inherits from MarshalByRefObject) is to open a remoting channel and publish
an object on it that clients will use.

Here is the code to open a remoting channel on a specific port number and pub-
lish an object on it:

// The Tcp channel to publish the proxy on
private TcpChannel _channel = null;

// A reference to the remoted proxy object
private AlertObjectTool.AlertObjectToolLogic _remotedLogic = null;

// A reference to the proxy information
private ObjRef _remotedLogicRef = null;

private void ActionButton_Click(object sender, System.EventArgs e)
{

if (ActionButton.Text.Equals(“Start Listening”))
{

ActionButton.Text = “Stop Listening”;

Architecture Example 69

_channel = new TcpChannel((int)PortField.Value);
ChannelServices.RegisterChannel(_channel);

_remotedLogic = new AlertObjectTool.AlertObjectToolLogic();
_remotedLogicRef = RemotingServices.Marshal(_remotedLogic,

“AlertObjectToolLogic”);
}
else
{

ActionButton.Text = “Start Listening”;

RemotingServices.Disconnect(_remotedLogic);

_remotedLogicRef = null;
_remotedLogic = null;

ChannelServices.UnregisterChannel(_channel);
}

}

Alert Object Remoting Example
With the specific tool logic published on a remoting channel, we can now request
a reference to the proxy object and begin invoking calls.

Here is the code for a remoting entry point that invokes the specific tool logic
using a proxy object:

// A reference to the tool logic proxy
private IAlertObjectToolLogic _logicProxy = null;
private void ActionButtonClick(object sender, System.EventArgs e)
{

if (ActionButton.Text.Equals(“Connect to Proxy”))
{

ActionButton.Text = “Release Proxy”;

_logicProxy =
(IAlertObjectToolLogic)Activator.GetObject(typeof(IAlertObjectToolLogic),
“tcp://localhost:” + ((int)PortField.Value).ToString() + “/AlertObjectToolLogic”);

TestFirstButton.Enabled = true;
TestSecondButton.Enabled = true;
TestThirdButton.Enabled = true;

Chapter 8 ■ Distributed Componential Architecture Design70

PortField.Enabled = false;
}
else
{

ActionButton.Text = “Connect to Proxy”;
_logicProxy = null;

TestFirstButton.Enabled = false;
TestSecondButton.Enabled = false;
TestThirdButton.Enabled = false;
PortField.Enabled = true;

}
}

private void TestFirstButtonClick(object sender, System.EventArgs e)
{

try
{

if (_logicProxy != null)
{

MessageBox.Show(_logicProxy.GetFirstAlertObjectName());
}
else
{

MessageBox.Show(“Proxy Object not Created”);
}

}
catch (System.Runtime.Remoting.RemotingException)
{

MessageBox.Show(“remoting Endpoint not Bound”);
}
catch (System.Net.Sockets.SocketException)
{

MessageBox.Show(“remoting Endpoint not Bound”);
}

}

private void TestSecondButtonClick(object sender, System.EventArgs e)
{

try
{

if (_logicProxy != null)
{

Architecture Example 71

MessageBox.Show(_logicProxy.GetSecondAlertObjectName());
}
else
{

MessageBox.Show(“Proxy Object not Created”);
}

}
catch (System.Runtime.Remoting.RemotingException)
{

MessageBox.Show(“remoting Endpoint not Bound”);
}
catch (System.Net.Sockets.SocketException)
{

MessageBox.Show(“remoting Endpoint not Bound”);
}

}

private void TestThirdButtonClick(object sender, System.EventArgs e)
{

try
{

if (_logicProxy != null)
{

MessageBox.Show(_logicProxy.GetThirdAlertObjectName());
}
else
{

MessageBox.Show(“Proxy Object not Created”);
}

}
catch (System.Runtime.Remoting.RemotingException)
{

MessageBox.Show(“remoting Endpoint not Bound”);
}
catch (System.Net.Sockets.SocketException)
{

MessageBox.Show(“remoting Endpoint not Bound”);
}

}

Chapter 8 ■ Distributed Componential Architecture Design72

Unmanaged COM Support
As discussed earlier, sometimes it is important to slowly migrate individual com-
ponents in a legacy environment over to the .NET platform. Doing so requires the
ability for .NET and legacy components to communicate with each other. This is
made possible by exposing a COM interface that legacy components can invoke.
We already discussed how to export a COM interface for the specific tool logic, so
now it is time to show the manner in which a legacy component invokes a .NET
component.

When a .NET project is marked with Register for COM Interop, a .tlb file is gener-
ated that contains the exported symbols registered with COM. You can import this
file in an unmanaged application and have all the necessary information to invoke
the COM object.

Here is the code for an unmanaged application invoking the specific tool logic
assembly via COM:

#include <windows.h>
#include <atlbase.h>
#include <atlcom.h>
#include <comutil.h>

// Import the IAlertObjectToolLogic interface type library
#import “..\\AlertObjectToolInterface\\bin\\Debug\\AlertObjectToolInterface.tlb”
raw_interfaces_only

// Import the AlertObjectToolLogic type library
#import “..\\AlertObjectTool\\bin\\Debug\\AlertObjectTool.tlb” raw_interfaces_only

WINAPI WinMain(HINSTANCE instance, HINSTANCE prevInstance, LPSTR commandLine, int show)
{

::CoInitialize(NULL);

// Define an interface pointer suitable for the COM class
CComPtr<AlertObjectToolInterface::IAlertObjectToolLogic> toolLogic;

// Determine the Guid of the COM class to instantiate
CLSID alertObjectToolClassID = __uuidof(AlertObjectTool::AlertObjectToolLogic);

// Attempt to instantiate the COM class
if (SUCCEEDED(toolLogic.CoCreateInstance(alertObjectToolClassID,

0,
CLSCTX_ALL)))

Architecture Example 73

{
CComBSTR firstObjectNameProxy;
CComBSTR secondObjectNameProxy;
CComBSTR thirdObjectNameProxy;

HRESULT hr;

// Call the first test logic method
hr = toolLogic ->GetFirstAlertObjectName(&firstObjectNameProxy.m_str);

// Call the second test logic method
hr = toolLogic ->GetSecondAlertObjectName(&secondObjectNameProxy.m_str);

// Call the third test logic method
hr = toolLogic ->GetThirdAlertObjectName(&thirdObjectNameProxy.m_str);

_bstr_t firstObjectName = firstObjectNameProxy;
_bstr_t secondObjectName = secondObjectNameProxy;
_bstr_t thirdObjectName = thirdObjectNameProxy;

MessageBox(0, (char*)firstObjectName, “First Object”, 0);
MessageBox(0, (char*)secondObjectName, “Second Object”, 0);
MessageBox(0, (char*)thirdObjectName, “Third Object”, 0);

}
else
{

MessageBox(0, “Could not instantiate COM object”, “Error”, 0);
}

::CoUninitialize();
return S_OK;

}

Alternate Architecture Structure
An alternative to the proposed architecture is removing the remoting entry point
and placing it as a bridge between the specific tool logic and all other entry points.
Doing so would convert the architecture into something like a client and server
environment, storing a single copy of the specific tool logic on the server. The
clients would not require the tool logic, just an interface definition they can cast to
a Remoted proxy wrapper.

Chapter 8 ■ Distributed Componential Architecture Design74

This architecture would work great in environments where numerous machines
need to use a particular tool, but issues and concerns with deployment and ver-
sioning present problems. Aside from the first client application and interface def-
inition installation, the only time the client machines would ever need an update
would be if the interface changed. If the interface definition were stored in a sep-
arate assembly, a simple push technology could be used to force all client machines
to remain up to date.

Conclusion
This topic discussed a certain way to design your .NET applications and libraries
so reusability and maintainability are promoted as much as possible.

There is really only one spot that cannot be independently developed at any time.
The Windows entry point in the example on the companion web site typically just
redirects standard input and output streams from the console entry point, helping
to reduce the amount of code to maintain both types of entry points. Because of
this, the Windows entry point cannot be developed before the console entry point
unless both are developed independently of each other. Thanks to the tool logic
residing in a separate module, no matter how you structure the entry points, you
only need to change the code in one spot to affect how the tool works everywhere. A
single module for the logic also helps with maintenance, versioning, and deployment.

As touched on with the alternative architecture described in this chapter, remoting
can be used as a barrier between all the entry points and the specific tool logic to
convert the architecture into a client and server design. The tool logic can reside
on one development server, and all client machines using the tool can access it
through a Remoted proxy object. Clients would just need the interface definition
the Remoted object implements, and the actual code can stay on the server. This
type of architecture would greatly improve deployment by only requiring a change
to the server code, and all clients would instantly start accessing the latest version.

Not all types of tools would benefit from this architecture, most notably any tool
that intensively accesses the local file system. However, if the server had share
access to each client, the tool could be designed to accommodate file system access
over the network.

The example overviewed in this topic is also available on the Companion Web site;
it shows how to structure an application with this architecture, and even how to
export a COM interface and register with Remoting. Keep in mind that these topics
are covered in much greater depth later in this book, so no time will be spent

Conclusion 75

describing what the code is doing. If you are lost regarding how things are working,
please revisit this chapter later, when you are more comfortable with the technol-
ogy and services used.

Chapter 8 ■ Distributed Componential Architecture Design76

77

Solutions to Bridge
Domain Gaps

chapter 9

The idea has been to treat legacy systems as a black box and deal with them
at more than arm’s length. All of this has made it possible to make many of
these systems look like they were part of the 21st Century, leaving the tough
stuff—the data and the business rules—untouched. If it ain’t broke, don’t
fix it, right? Well, not exactly. Of course, old systems don’t get better by just
being ignored. They get worse.

Ken Orr

One of the major goals for software engineering in the past decade has been to
build software that promotes abstracted reusability. Because of this, developers
witnessed the emergence of the object-oriented paradigm, which resulted in the
introduction of reusable object-oriented frameworks. An object-oriented frame-
work can be defined as a set of classes that embody an abstract design for solutions
to a collection of related problems in a given problem domain.

The high reusability of frameworks is quite evident to software engineers, and it
has solved many problems related to the goal of improved component reusability.
With the emergence of new disciplines comes new issues and problems that must
be addressed. Where single frameworks were originally used, we are now seeing a
shift towards multiple frameworks that must communicate with each other in a
cohesive fashion. Often there are problems communicating across dissimilar
domain gaps, especially when each framework is being developed by a different

development team. The source code to other frameworks is typically unavailable
to developers who are not explicitly involved in its development, which generally
leads to a number of integration issues between frameworks.

In this chapter, I will address the reasons behind the friction existing between multiple
frameworks, and I offer some pragmatic approaches to building a cohesive design,
even when you do not have access to the source code of other frameworks employed in
your application. Throughout this chapter, I will refer to communication problems
between frameworks in different problem domains as compositional friction.

Compositional Friction
There are numerous reasons why compositional friction can exist between two or
more frameworks, and even on a solitary level between classes in a single framework.
Although friction can exist between classes in a single framework, these issues can
be solved through an iterative refactoring process with the availability of source
code. This chapter is directed at eliminating friction between multiple frameworks,
where one framework typically only has access to external frameworks through
their public interfaces, and these interfaces cannot be modified or refactored.

Many software development issues can cause compositional friction, but a few of
the most notable ones include domain coverage, design intentions, framework
gap, entity overlap, and source code access.

Cause: Domain Coverage
The general purpose of a framework is to provide an abstract design for applica-
tions in a particular problem domain. It is important to realize that the framework
does not need to cover the entire problem domain, but rather only a subset of rel-
evant entities in the given problem domain. The amount of domain coverage to
target with a framework is fairly subjective, though, because problem domains are
not generally defined in extensive detail. Determining how much coverage to
employ is up to the solution architect, and iterative refactoring helps to improve
domain coverage.

When composing two frameworks, there are three levels of domain overlap that
can occur, each with different implications and solutions. If no overlap occurs,
there is no risk of integration issues when composing overlapping entities, but
there may be a gap between frameworks that must be managed. If there is a rela-
tively small amount of domain overlap between frameworks, the best solution is
to evolve a few classes in both frameworks to communicate with each other with

Chapter 9 ■ Solutions to Bridge Domain Gaps78

little to no compositional friction. However, when considerable domain overlap
occurs, there are some important decisions to make. Sometimes it would be more
advantageous to rewrite one or both of the frameworks from scratch when frame-
work reuse is threatened. It can be more problematic to refactor communication
between both frameworks when the expected lifetime of the product is quite long.
If an application using the frameworks will be evolving over a long period of time,
the frameworks must be continuously updated for each consecutive version of the
application. Remember to make your decision based on the problem domain and
the coverage of the framework.

Cause: Design Intentions
A well known design philosophy is that reusable software must be written for reuse
through composition and adaptation. Generally, frameworks are designed to be
reused through adaptation, but not through composition. Designing software
reusability through composition is very important, and there are two composition
directions that can occur. The first direction is parallel composition, which targets
frameworks that exist on the same layer in the application. Parallel is the easiest
composition direction because both frameworks do not rely directly on the ser-
vices each other provides to properly operate. The other composition direction is
perpendicular, which exists in a software application that supports a layered archi-
tecture where frameworks can depend on services provided by another framework
in a different layer. One issue that is independent of the composition direction is
the communication support, which can be either half-duplex (one-way, or sim-
plex) or full-duplex (two-way). Half-duplex communication is fairly easy to
design for, but full-duplex communication can present additional design prob-
lems when composing multiple frameworks.

Cause: Framework Gap
A framework gap occurs when multiple frameworks need to be composed to sat-
isfy requirements, but both frameworks do not completely cover the requirements.
This problem typically occurs because each framework does not have ample
domain coverage, leading to domain gaps or overlaps.

There are a few solutions to this problem, the first one being the use of wrapper
class that encapsulates the existing functionality and extends any missing func-
tionality, also providing a uniform public interface so that clients are unaware of
the internal architecture.

Cause: Framework Gap 79

An alternative is to develop a software liaison, which is basically an application
that exposes the public interface to clients and handles the communication and
extension of functionality between the frameworks. This approach works great for
situations where source code is inaccessible, or the base frameworks should not be
modified.

Lastly, if source code is available, the cleanest solution is to bridge domain gaps by
providing missing functionality, or remove domain overlaps through refactoring
methods.

Cause: Entity Overlap
When more than one framework presents the same entity in a particular problem
domain, each from a different perspective, the composition of these frameworks
requires that the related entities be composed as well. This problem is known as
entity overlap, and it occurs when the same problem and entities are modeled dif-
ferently between multiple frameworks. Entity overlap is a common problem when
composing multiple frameworks, and the solution can be fairly tricky due to the
cohesive nature of entity classes and their need to sometimes notify the other
frameworks when certain actions occur.

One solution to the problem of entity overlap is the use of multiple inheritance,
but this method presents a problem when properties of an entity are not mutual-
ly exclusive. Multiple inheritance accomplishes the composition objective by han-
dling the conversion between related entities in the frameworks and routing nec-
essary events. It is possible to use this solution in development environments
where source is inaccessible and cannot be modified.

An alternative solution is to use aggregation, where an aggregate class is used to
represent a framework in parts. Each aggregate class is the entity definition for the
application, but this approach requires that source code be available so that all ref-
erences to a particular entity can be changed to point to the new aggregate classes.
A drawback to this solution is that all interfaces for each representation of a cer-
tain entity must exist in the aggregate class, and there is a lot of additional over-
head when using aggregation to bridge domain gaps.

A final solution is through the use of subclassing, where each framework is sub-
classed and each subclass handles the bidirectional communication of updates and
conversion between other subclasses. Additionally, each subclass must override the
operations in the superclass. This solution can also be used in situations where
source code is inaccessible and cannot be modified. The major drawback of this

Chapter 9 ■ Solutions to Bridge Domain Gaps80

solution is that the represented entity is partitioned across multiple frameworks.
Another improvement to this solution is to use an aggregate class that contains all
the subclasses and facilitates the communication and conversion between parts.

Cause: Legacy Components
There are times when the classes in a framework do not satisfy the problem
domain solution, and the design warrants that a legacy component be used in con-
junction with a framework to fill the gap. This situation can also arise if there is
considerable time and expense invested in a legacy component (such as a game
engine or utility library), and a business decision is made to reuse existing tech-
nology within a new framework (unmanaged and managed interoperability, for
example). Using legacy components can cause severe compositional friction in
your framework unless dealt with accordingly.

One method of removing the composition implications is to modify the frame-
work to reference the legacy component instead of classes within the framework,
though this solution requires access to the source code.

An alternative solution is to employ the adapter pattern and build a class that lies
between the framework and the legacy component, acting as an interpreter so that
both parts can communicate with each other. The latter part of this chapter focus-
es on this method in much greater detail.

Cause: Source Code Access
Quite often, multiple frameworks are developed by multiple teams, and develop-
ment rules regulate that a certain team only has access to their own source code,
and can only access functionality in the other frameworks using the public interfaces
of compiled libraries or assemblies. This constraint is good in that it restricts each
team from having a varying source code version of another team’s framework, but
there is a problem as well. There are times when behavior must be added to anoth-
er framework to allow for communication between the other frameworks.
Without access to source code, each team must send numerous waves of change
requests to the other teams, asking for modifications, and then other issues may arise
when the public interfaces do not satisfy the needs of the team that requested them.

One solution to this problem is the use of wrappers encapsulating an external
framework and attempting to build new functionality on top of the existing
library. This approach has some problems though, such as considerable amounts
of additional code and severe performance penalties. Additionally, if any logic is

Cause: Source Code Access 81

Chapter 9 ■ Solutions to Bridge Domain Gaps82

changed in the base framework, a change request must be sent to the development
team of the framework.

The best solution is to either get the source code or establish a reliable and effec-
tive change request system where requests are dealt with almost immediately, and
have a liaison from your team overseeing the modifications to make sure that
requirements and needs are met correctly.

Relevant Design Patterns
Design patterns provide reusable solutions to commonly encountered program-
ming problems, and there are a few that are applicable to this topic. The façade and
adapter patterns are very beneficial to architectures that suffer from composition-
al friction, and can be employed to reduce the friction between multiple frame-
works when used correctly.

Façade Design Pattern
This design pattern provides a unified high-level interface to a set of interfaces in
a subsystem, thus making the subsystem easier to use. A subsystem can be defined
as a set of classes or libraries that provide a solution to a given problem domain.
A framework can be thought of as a subsystem in the context of this topic. A depic-
tion of an architecture that is tightly coupled is shown in Figure 9.1. The façade
pattern is depicted in Figure 9.2.

Figure 9.1 Depiction of tightly coupled architecture.

One benefit of this pattern is that classes in a subsystem are decoupled from the
client interface, causing the architecture to be more portable and maintainable.
Additionally, using the façade pattern reduces component dependencies, which
can dramatically reduce compilation times of large software projects.

The following code shows how to implement the façade pattern in C#:

private class SubSystem1
{

public void DoSomethingSpecific()
{

MessageBox.Show(“Hello World #1”);
}

}

private class SubSystem2
{

public void DoSomethingSpecific()
{

MessageBox.Show(“Hello World #2”);
}

}

Relevant Design Patterns 83

Figure 9.2 Depiction of the façade pattern.

private class SubSystem3
{

public void DoSomethingSpecific()
{

MessageBox.Show(“Hello World #3”);
}

}

public class Facade
{

private SubSystem1 _subSystem1 = new SubSystem1();
private SubSystem2 _subSystem2 = new SubSystem2();
private SubSystem3 _subSystem3 = new SubSystem3();

public void DoSomething()
{

_subSystem1.DoSomethingSpecific();
_subSystem2.DoSomethingSpecific();

}

public void DoAnotherThing()
{

_subSystem1.DoSomethingSpecific();
_subSystem3.DoSomethingSpecific();

}
}

public class Client
{

public void Run(Facade facade)
{

facade.DoSomething();
facade.DoAnotherThing();

}
}

The façade pattern is quite useful when building new frameworks, but because this
chapter is mainly addressing cohesion issues between existing frameworks, the
adapter pattern is best suited for this problem.

Chapter 9 ■ Solutions to Bridge Domain Gaps84

Adapter Design Pattern
This design pattern is similar to the façade pattern, except the adapter pattern
makes two existing interfaces work together instead of defining a new one. In
order to fully understand the adapter pattern, there are some terms that should be
defined. These terms are shown in Table 9.1.

It is possible to have the adapter class inherit from an adaptee, but doing so can
lead to design problems when adapting to the target interface. A better approach
is to store an instance of the adaptee inside the adapter class and access the
instance explicitly. The adapter pattern is depicted in Figure 9.3.

Relevant Design Patterns 85

Table 9.1 Adapter Pattern Elements

Name Description

Target The domain-specific interface that the client will use.

Adapter An object that adapts the adaptee interface to the target interface.

Adaptee An interface that needs adaptation to the target interface.

Client The application that collaborates with the target interface.

Figure 9.3 Depiction of the adapter pattern.

The following code shows how to implement the adapter pattern in C#:

interface Target
{

void DoSomething();
}

class Adaptee
{

public void DoSomethingSpecific()
{

MessageBox.Show(“Hello World!”);
}

}

class Adapter : Target
{

private Adaptee _adaptee = new Adaptee();

public void DoSomething()
{

_adaptee.DoSomethingSpecific();
}

}

class Client
{

public void Run(Target target)
{

target.DoSomething();
}

}

The adapter pattern is not complicated to implement, but can be a great design
move when you run into issues composing legacy components that do not support
the required interface.

Even though there are a number of ways to reduce compositional friction and
improve component cohesion, it was felt that extended coverage of adapters was
important.

When dealing with unmanaged code (legacy components) that must interface
with managed code, the adapter pattern is utilized often, whether explicitly or

Chapter 9 ■ Solutions to Bridge Domain Gaps86

implicitly. If you think about it, exporting a COM interface from a managed appli-
cation can be thought of as an implicit instance of the adapter pattern so that
unmanaged applications can communicate with managed code. On a higher level,
Windows Forms can also be thought of as an object-oriented adapter between any
CLR-compliant language like C# and the traditional procedural controls available
in the Win32 API. Lastly, you can find some adapters present in the .NET Class
Framework itself. The database connection functionality employs adapters to
interface with a variety of database engines. While each database engine is differ-
ent, the base interfaces for dealing with them remain abstract and consistent.

It is important to note that there is increased performance overhead when using
adapters because all methods called in the adaptee must first be called through the
adapter methods. The best approach, disregarding any time, environment, or bud-
get constraints, is to just refactor the code, but this is rarely the case when devel-
oping tools or games in general.

Part V, “Techniques for Legacy Interoperability,” covers interoperability between
managed and unmanaged code, and specific real-world examples of using adapters
are covered.

Conclusion
The introduction of object-oriented frameworks was a huge step forward in the
area of software component reuse, but recently there has been a push towards the
use of multiple frameworks within a single application. In this chapter, I discussed
the issues behind using multiple frameworks, problems that occur from doing so,
and some possible solutions to overcome these problems. Currently, there are
some solutions to reduce compositional friction, such as the adapter pattern and
employing wrapper objects, but these solutions only partially solve the problem
when they too require a considerable amount of implementation effort. The best
approach for framework reusability is to carefully study the problem domain to
find the appropriate domain coverage, and build your frameworks from the
ground up with a loosely coupled and maintainable architecture.

Conclusion 87

This page intentionally left blank

89

Unit Testing
with NUnit

chapter 10

Testing by itself does not improve software quality. Test results are an indi-
cator of quality, but in and of themselves, they don’t improve it. Trying to
improve software quality by increasing the amount of testing is like trying
to lose weight by weighing yourself more often. What you eat before you
step onto the scale determines how much you will weigh, and the software
development techniques you use determine how many errors testing will
find. If you want to lose weight, don’t buy a new scale; change your diet. If
you want to improve your software, don’t test more; develop better.

Steve C. McConnell, “Code Complete”

Testing is an important aspect of any software project, and there are many differ-
ent kinds of tests that can be performed. An important, yet often misunderstood
or ignored method of testing is the unit test. Unit testing is an inexpensive way that
developers can write better code—faster. Large companies tend to spend a lot of
time and resources on testing, yet usually do so near the end of a project, often
meaning the testing is minimized or reduced because of budget and schedule con-
straints. In actuality, testing should be done extremely early in development, as
well as continuously thereafter.

Programmers generally think of testing as a nuisance, because they would rather
be writing code. Unit testing is not a grand quality initiative for large companies;
unit testing is done by programmers for programmers. Many developers write
throwaway code to test functionality, but doing so can introduce some problems
and decrease the credibility of the test cases.

It is important to note that this chapter does not attempt to sell you on the idea of
testing, as it is assumed that you have adopted this excellent practice already, since
you are reading the chapter. Additionally, this chapter will only briefly cover the
basics behind unit testing; it will in no way attempt to cover all the fundamentals
of unit testing. The main focus of this chapter is on performing unit tests with the
NUnit framework and application.

Overview of Unit Testing
Basically, unit testing focuses on a single unit—the class. Each class is tested alone
in an attempt to discover errors in its code. The idea is to test anything in a class
that could conceivably fail. If something in the class is changed, all tests, not just
your own, are run again. If any fail, the programmer immediately goes back, fixes
the problem, and runs the tests again. This process is performed in an iterative
manner until all tests are successful.

After unit testing is complete on a group of modules, they are combined into pro-
gressively more complex groupings, which are also tested. This integration processes
will continue until the entire application has been assembled and tested.

There are two main approaches when performing unit testing, as discussed in
Table 10.1.

There are quite a few benefits to unit testing, but some of the most notable ones
are discussed in Table 10.2.

Chapter 10 ■ Unit Testing with NUnit90

Table 10.1 Unit Testing Approaches

Approach Description

Black-Box Approach The black-box approach is the most commonly used method, in which
each class represents an encapsulated object. The black-box approach
is driven by all the preconstruction specifications for each class.
Each item in the specification becomes a test, and several test cases
are developed for it. The tests are focused on whether or not the class
meets the requirements in the specification, rather than the
programmer’s interpretation.

White-Box Approach The white-box approach is based on the method specifications
associated with each class. The white-box approach is generally used
instead of the black-box approach when the complexity of the class is
high. The tester may discover errors or assumptions by looking through
the code that are not generally obvious to a tester using the black-box
approach.

Introducing NUnit
In order to properly perform unit testing, a framework must be employed to facil-
itate the testing. This is where NUnit comes into play. NUnit is a unit testing tool
for the Microsoft .NET Framework. It targets test-driven development with all .NET
languages, including C#, Visual Basic .NET, J#, and C++/CLI.

NUnit was developed by Jim Newkirk, Alexei Vorontsov, Michael Two, and Charlie
Pool, based on the original NUnit version by Philip Craig. NUnit is very similar to
the eXtreme Programming test frameworks (xUnits) with a couple of significant
differences.

Introducing NUnit 91

Table 10.2 Unit Testing Benefits

Benefit Description

Requires the programmer to slow down and think When refactoring or adding a new
feature, testing forces you to think about
what the code is supposed to do. You end
up thinking about how the public API is
accessed and what the outcome should
be, ending up with a clean design that
does exactly what you expect it to do.

Protects you against other programmers Sometimes bugs only manifest themselves
in rare situations. If another programmer
changes a class but does not run the new
code with all the problematic situations,
bugs may slip through. If a unit test exists
to test that particular situation, then the
bug will be found when the unit tests are
run again after changing the code.

Forces you to design better code Testing forces you to make your code easy
to test, relying less on the usage of
singletons and global variables. Tightly
coupled design is often difficult to test and
generally requires complex initialization.
Testing generally enforces loosely coupled
design to make testing easier.

Promotes refactoring without breaking code Testing allows you to refactor at any time
without the fear of breaking your code, so
that the design of your program can
improve over numerous iterations. Each
time the code is changed, the tests are
run again to ensure that all the existing
modules remain stable.

Chapter 10 ■ Unit Testing with NUnit92

Just like .NET, the NUnit framework is language-independent, in the sense that
any CLR-compliant language may be used to write tests and NUnit will execute
them just fine.

Attributes are a wonderful feature of .NET, and are used by NUnit to identity tests
and test fixtures, without requiring that tests inherit from classes within a testing
framework. Using attributes to define tests allows code to remain clean and fairly
independent of any test support files.

With the creation of tests, you perform the testing by launching either the GUI or
console version of the NUnit application, and target the assemblies that you wish
to test. NUnit uses reflection to interrogate the assemblies for tests and then exe-
cutes them one at a time. All tests have the ability to execute setup and teardown
methods, allowing for each test to be independent of the others.

Creating an NUnit Project
There are a few ways you can develop your unit tests. Some developers prefer to
place test functions directly inside the source code of the project that is being test-
ed. If this is something you wish to do, be sure to use the #if and #endif pre-
processor tags to strip unit tests from release mode.

Other developers like to place tests inside separate files within the project being
tested. Again, don’t forget to strip these tests out in release mode.

The most common approach, unless you’re testing internal objects, is to build your
tests in external assemblies. The benefit to this approach is that all test code is
decoupled from the project itself.

Use whichever method you are comfortable with. The example for this chapter has
the test code in a separate assembly. Start by creating a new class library project for
your unit test assembly.

The next thing to do is reference nunit.framework.dll in your unit test assembly. If
you installed NUnit using the typical approach, you should have all the NUnit
assemblies installed into the Global Assembly Cache (GAC). If not, you can press
the Browse button and manually navigate to the assembly in the installation fold-
er. The default installation path for the NUnit framework is C:\Program
Files\NUnit 2.2\bin.

Figure 10.1 shows the Add Reference dialog with the nunit.framework assembly
showing up in the GAC.

After the NUnit framework reference has been added to your unit test project, you
should have something similar to Figure 10.2. Also be aware that Visual Studio
automatically adds System.Data and System.Xml, and they have been removed from
the references list because they are not needed for this example.

The SimpleLibrary project contains the object we
want to test, and the SimpleLibrary.UnitTesting con-
tains the unit tests that NUnit will execute against
SimpleLibrary.

Attribute Overview
Traditionally, NUnit provided test declaration using inheritance, but this design
posed some problems with languages like C#, where multiple inheritance is not sup-
ported, and the only way to use the test framework is with complex inheritance hier-
archies. The latest version of NUnit now offers a method of declaring tests with
attributes, which is basically a .NET feature that can inject meta-data into an object.

Attributes do not reflect the code being run, but attributes do provide extra infor-
mation about a particular object. The NUnit runner scans all the targeted assemblies
for classes and methods that contain certain attributes and acts on them accordingly.

Attribute Overview 93

Figure 10.1
Add Reference dialog for the
NUnit framework.

Figure 10.2
Overview of the example project structure.

[TestFixture]

A class containing the methods that make up the testing performed on a class is
marked with the [TestFixture] attribute. A common naming convention used is to
take the name of the class you want to test, and append Tests on to the end. For
example, if we are testing SimpleClass, it is common to name our test fixture
SimpleClassTests. These will be the names used in the provided examples.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{
}

N o t e

Classes marked with the [TestFixture] attribute must have a public default constructor or no
constructors at all. Without any constructors, a public default constructor will be created implicitly.

[Test]

A method in a test fixture marked with the [Test] attribute will be executed when
the test fixture is tested with NUnit.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{

[Test]
public void TestSomething()
{
}

}

N o t e

It is important that a [Test] method be marked public, return void, and not take in any parame-
ters.

[SetUp]

A method in a [TestFixture] marked with the [SetUp] attribute will be executed
immediately before each test is run.

Chapter 10 ■ Unit Testing with NUnit94

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{

[SetUp]
public void SetUp()
{

// Do some initialization for the tests
}

}

N o t e

It is important that a [SetUp] method be marked public, return void, and not take in any parame-
ters.

[TearDown]

A method in a [TestFixture] marked with the [TearDown] attribute will be executed
immediately after each test is run.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{

[TearDown]
public void TearDown()
{

// Do some cleanup for the tests
}

}

N o t e

It is important that a [TearDown] method be marked public, return void, and not take in any para-
meters.

[Ignore]

There may be times when you want to temporarily disable a test or test fixture
from being run, and without commenting out the code for it so that you are still
reminded of the exemption within NUnit. Any method or class marked with either
the [Test] or [TestFixture] attribute can be marked with the [Ignore] attribute.

Attribute Overview 95

This attribute causes the test or test fixture to be exempt from testing. This attribute
must accept a string parameter describing why the test or test fixture is ignored.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{

[Test]
[Ignore(“Broken functionality at the moment, so testing is pointless”)]
public void TestSomething()
{
}

}

[ExpectedException]

There may be situations where it is expected that an exception should be thrown,
and this attribute exists to avoid the need for an ugly try-catch block. When a test
is marked with the [ExpectedException] attribute and the expected exception that
is specified in this attribute is thrown, the test is still successful. The only way a
thrown exception will cause this test to fail is if the exception is not the same type
specified using this attribute. Also keep in mind that multiple [ExpectedException]
attributes can be specified if more than one expected exception should be ignored.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{

[Test]
[ExpectedException(typeof(InterfaceDesignerException))]
public void TestSomething()
{
}

}

C a u t i o n

You must be very specific when stating the expected exception since NUnit is not aware of excep-
tion inheritance. If the exception thrown is derived from InterfaceDesignerException, the test
would fail. The expected exception stated must be identical to the exception that will be thrown.

Chapter 10 ■ Unit Testing with NUnit96

[Explicit]

If a test or a test fixture is marked with the [Explicit] attribute, the only way it will
run is when it has been explicitly selected in the GUI to run, or passed to the com-
mand line version.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{

[Test, Explicit]
public void ExplicitTest()
{
}

}

[TestFixture, Explicit]
public class ExplicitTests
{
}

N o t e

If NUnit encounters an explicit test, it will treat the test as if it were marked with the [Ignore]
attribute.

[Category]

There may be times when you want to categorize or group related tests, especially
when working with a project of reasonable size. The [Category] attribute can be
used to specify a category name for a test or test fixture to group it with other tests
or test fixtures sporting the same category name.

When a specific category is selected to run, only tests or test fixtures belonging to
the selected category are run.

The following code snippet shows how to use this attribute:

[TestFixture]
public class SimpleClassTests
{

[Test, Category(“ProcessorIntensive”)]
public void TestLongRunningProcess()
{
}

}

Attribute Overview 97

N o t e

When a specific category is selected to run, only tests or test fixtures belonging to the selected
category are run.

Expected Outcome Assertion
The Assert class is used within test methods to verify known values and conditions.
For example, Assert.AreEqual() can be used after running a particular test to con-
firm that a property has a specific value.

Following are the static member methods for the Assert class and an overview of
what each one does:

Assert.AreEqual()

This comparison method tests for equality, and is perhaps the best assertion to use
because both the expected and actual values are reported. Also, the overloaded sig-
natures allow for equality comparison between equal values of varying numeric
types. This allows for assertions like the following to succeed:

Assert.AreEqual(7, 7.0);

The following are all the method signatures available for this method:

Assert.AreEqual(int expected, int actual);
Assert.AreEqual(int expected, int actual, string message);
Assert.AreEqual(int expected, int actual, string message, object[] parameters);
Assert.AreEqual(decimal expected, decimal actual);
Assert.AreEqual(decimal expected, decimal actual, string message);
Assert.AreEqual(decimal expected, decimal actual, string message, object[] parameters);
Assert.AreEqual(float expected, float actual, float tolerance);
Assert.AreEqual(float expected, float actual, float tolerance, string message);
Assert.AreEqual(float expected, float actual, float tolerance, string message,

object[] parameters);
Assert.AreEqual(double expected, double actual, double tolerance);
Assert.AreEqual(double expected, double actual, double tolerance, string message);
Assert.AreEqual(double expected, double actual, double tolerance, string message,

object[] parameters);
Assert.AreEqual(object expected, object actual);
Assert.AreEqual(object expected, object actual, string message);
Assert.AreEqual(object expected, object actual, string message, object[] parameters);
Assert.AreSame(object expected, object actual);
Assert.AreSame(object expected, object actual, string message);
Assert.AreSame(object expected, object actual, string message, object[] parameters);

Chapter 10 ■ Unit Testing with NUnit98

The following code snippet shows how to use this comparison method:

[TestFixture]
public class SimpleClassTests
{

[Test]
public void TestSomething()
{

string testData = “Hello World”;
Assert.AreEqual(“Hello World”, testData”, “The strings do not match!”);

}
}

Assert.AreSame()

This comparison method tests that same objects are referenced by both arguments.

The following are all the method signatures available for this method:

Assert.AreSame(object expected, object actual);
Assert.AreSame(object expected, object actual, string message);
Assert.AreSame(object expected, object actual, string message, object[] parameters);

The following code snippet shows how to use this comparison method:

[TestFixture]
public class SimpleClassTests
{

[Test]
public void TestSomething()
{

object object1 = this;
object object2 = this;
Assert.AreSame(object1, object2, “The objects do not match!”);

}
}

Assert.IsTrue()

This condition method tests that the condition parameter evaluates to true.

The following are all the method signatures available for this method:

Assert.IsTrue(bool condition);
Assert.IsTrue(bool condition, string message);
Assert.IsTrue(bool condition, string message, object[] parameters);

Expected Outcome Assertion 99

The following code snippet shows how to use this comparison method:

[TestFixture]
public class SimpleClassTests
{

[Test]
public void TestSomething()
{

bool testData = true;
Assert.IsTrue(testData, “testData is false!”);

}
}

Assert.IsFalse()

This condition method tests that the condition parameter evaluates to false.

The following are all the method signatures available for this method:

Assert.IsFalse(bool condition);
Assert.IsFalse(bool condition, string message);
Assert.IsFalse(bool condition, string message, object[] parameters);

The following code snippet shows how to use this comparison method:

[TestFixture]
public class SimpleClassTests
{

[Test]
public void TestSomething()
{

bool testData = false;
Assert.IsFalse(testData, “testData is true!”);

}
}

Assert.IsNull()

This condition method tests that the condition parameter evaluates to null.

The following are all the method signatures available for this method:

Assert.IsNull(object anObject);
Assert.IsNull(object anObject, string message);
Assert.IsNull(object anObject, string message, object[] parameters);

Chapter 10 ■ Unit Testing with NUnit100

The following code snippet shows how to use this comparison method:

[TestFixture]
public class SimpleClassTests
{

[Test]
public void TestSomething()
{

object anObject = null;
Assert.IsNull(anObject, “anObject is not null!”);

}
}

Assert.IsNotNull()

This condition method tests that the condition parameter does not evaluate to null.

The following are all the method signatures available for this method:

Assert.IsNotNull(object anObject);
Assert.IsNotNull(object anObject, string message);
Assert.IsNotNull(object anObject, string message, object[] parameters);

The following code snippet shows how to use this comparison method:

[TestFixture]
public class SimpleClassTests
{

[Test]
public void TestSomething()
{

object anObject = null;
Assert.IsNotNull(anObject, “anObject is null!”);

}
}

Assert.Fail()

This utility method allows you to generate test failure exceptions, often used when
performing project-specific assertions.

The following are all the method signatures available for this method:

Assert.Fail()
Assert.Fail(string message)
Assert.Fail(string message, object[] parameters)

Expected Outcome Assertion 101

The following code snippet shows how to use this utility method:

[TestFixture]
public class SimpleClassTests
{

[Test]
public void TestSomething()
{

Assert.Fail(“I was explicitly thrown!”);
}

}

Assert.Ignore()

This utility methods allows you to ignore a particular test during runtime, but
should be used sparingly. A better approach is to use the [Category] attribute and
run the test groups applicable at the time.

The following are all the method signatures available for this method:

Assert.Ignore()
Assert.Ignore(string message)
Assert.Ignore(string message, object[] parameters)

The following code snippet shows how to use this utility method:

[TestFixture]
public class SimpleClassTests
{

[Test]
public void TestSomething()
{

Assert.Fail(“I was explicitly thrown!”);
}

}

A Simple Example
In order to perform testing, we obviously need a class to test against. Defined
below is a simple class we can use for unit testing. As described by its name, the
class is extremely simplistic, so I will just show the code for it and move right on
to the creation of a test fixture.

using System;

namespace SimpleLibrary

Chapter 10 ■ Unit Testing with NUnit102

{
public class SimpleClass
{

private string _simpleProperty = “”;

public string SimpleProperty
{

get { return _simpleProperty; }
set { _simpleProperty = value; }

}

public void BrokenMethod()
{

throw new ApplicationException(“I am a faulty method! Fix me!”);
}

public void GoodMethod()
{

throw new NotImplementedException();
}

public static int AddTwoNumbers(int left, int right)
{

return left - right;
}

}
}

Now that we have a simple class to test against, we need to create the test fixture
that NUnit will use to coordinate the tests:

using System;
using NUnit.Framework;

namespace SimpleLibrary.UnitTesting
{

[TestFixture]
public class ExampleFixture
{

private SimpleLibrary.SimpleClass _simpleClass = null;

[SetUp]
public void SetUp()

A Simple Example 103

{
_simpleClass = new SimpleLibrary.SimpleClass();

}

[TearDown]
public void TearDown()
{

_simpleClass = null;
}

[Test]
public void AddTwoNumbersTest()
{

int result = SimpleLibrary.SimpleClass.AddTwoNumbers(5, 7);
Assert.AreEqual(12, result);

}

[Test]
public void SimplePropertyTest()
{

Assert.AreEqual(“”, _simpleClass.SimpleProperty);
_simpleClass.SimpleProperty = “This is a test”;
Assert.AreEqual(“This is a test”, _simpleClass.SimpleProperty);

}

[Test]
public void ExplicitFailureTest()
{

_simpleClass.BrokenMethod();
}

[Test, Ignore(“This is a deprecated test”)]
public void DeprecatedTest()
{

_simpleClass.GoodMethod();
}

[Test, ExpectedException(typeof(NotImplementedException))]
public void GoodMethodTest()
{

_simpleClass.GoodMethod();
}

}
}

Chapter 10 ■ Unit Testing with NUnit104

Notice that the above class has been marked with the [TestFixture] attribute. This
is required so that NUnit can identify the test fixtures to run by searching all classes
within the assembly that have this attribute type.

Running Tests
After the test fixture is created, it is time to begin testing. As mentioned previous-
ly, there are two interfaces for NUnit: console and GUI. This chapter will cover the
GUI version. For now, we will explicitly launch the NUnit application, but later on,
an alternative method is discussed that shows how to attach NUnit to the start
event in Visual Studio. There is also an open source project called TestDriven.NET
that offers enhanced .NET unit testing functionality, including integration sup-
port between Visual Studio and various unit testing frameworks like NUnit; defi-
nitely worth looking at.

Start by launching the NUnit GUI version, and you should be presented with a
dialog similar to the one shown in Figure 10.3.

You will be prompted to save the NUnit project somewhere, and it is common to
place the .nunit file in the same directory as the project file for the assembly being
tested. After the project file is saved, you need to add the assemblies that contain
your test fixtures. You can do this by selecting Project>Add Assembly from the
main menu.

Figure 10.4 shows the NUnit interface after the example test fixture for this chap-
ter has been added to it.

Running Tests 105

Figure 10.3 Screenshot of main NUnit interface.

NUnit displays all the test assemblies and fixtures in a hierarchical fashion, and it
executes tests in a similar way. Clicking the Run button will begin the tests, and all
the tests below the currently selected node in the assembly tree will execute. This
allows you to target all, some, or specific tests to run. You can group tests into cat-
egories as well.

Figure 10.5 shows the NUnit interface after the tests have been executed. You will
notice that the output from errors and ignored tests appear in the tab group on the
right, whereas successful tests are not as verbose. Successful tests appear green in
the assembly tree, errors appear red, and ignored tests appear yellow.

Your assemblies may require a configuration file to function correctly, in which case
it is important to note that NUnit creates a new AppDomain for each test assembly,
so the configuration file must reside in the same directory as the assembly.

Chapter 10 ■ Unit Testing with NUnit106

Figure 10.4 Screenshot of NUnit after adding a target assembly.

Figure 10.5 Screenshot of NUnit after running the tests.

For example, SimpleLibrary.UnitTests.dll and SimpleLibrary.UnitTests.dll.config
should be paired together in the same folder.

Debugging with Visual Studio
There may be times when you wish to debug the code while performing unit tests,
and sometimes you may even want to debug the unit tests themselves. NUnit and
Visual Studio both execute code in different AppDomains, so any breakpoints you set
in the Visual Studio IDE will not fire when NUnit is run. There is a trick you can
use to accomplish this, though. Visual Studio offers the ability to attach external
programs to its debugging features when assemblies are consumed.

Open the property pages for the assembly you wish to consume externally, and
navigate to the Debug page in the project properties. You should be presented with
a dialog similar to the one shown in Figure 10.6.

Under Start Action, select the Start external program option, and set the field value
to the file system path of either the GUI or command line executable of NUnit.

You must specify the assemblies to load in the command line arguments; otherwise,
NUnit will launch with the last loaded project if there is one. Each assembly path
should be separated by a space, and be sure to use double quotes around the path
if spaces exist in it. You can alter the command line arguments to automatically
start running your tests after NUnit opens. If you prefix the arguments line with

Debugging with Visual Studio 107

Figure 10.6 Debugging property page.

/run and a space before the list of assemblies, NUnit will launch and immediately
begin processing. Figure 10.7 shows the property page after it has been configured
to be consumed externally.

At this point, you can have the test’s assembly selected as the startup project and run
everything. If configured correctly, NUnit will fire up with your assembly loaded.

Conclusion
Unit testing is a worthwhile habit to pick up that is extremely beneficial on both a
professional and personal software development level. This chapter covered a fair
amount of unit testing and performing unit tests on the .NET platform, but the
concept of unit testing is much more complex than what I have described here.
There are many are topics like regression tests, integration tests, mock objects, and
data-driven testing, which are beyond the scope of the information presented here.

Links to additional information and resources are listed below.

■ http://www.testdriven.net

■ http://www.nunit.org

■ http://www.csunit.org (NUnit alternative)

■ http://www.mockobjects.com

Chapter 10 ■ Unit Testing with NUnit108

Figure 10.7 Debugging property page configured.

http://www.testdriven.net
http://www.nunit.org
http://www.csunit.org
http://www.mockobjects.com

■ http://www.sourceforge.net/projects/dotnetmock/

■ http://www.xprogramming.com

In addition to NUnit, there are a couple of other unit testing frameworks available
for C#.NET, such as csUnit. Some versions of Visual Studio 2005 also have a unit
testing framework built in, but this chapter was meant to focus on a solution that
does not require a particular IDE version to work.

Use whichever framework you feel comfortable with; I chose NUnit because it
works great for all my projects and is widely accepted throughout the .NET devel-
opment community. I have used csUnit for other projects when its use is a require-
ment for the project, and transitioning between csUnit and NUnit is extremely
easy. The attribute names are all the same, with the exception of varying support
for FixtureSetUp and FixtureTearDown, and a comparable Assert class exists in both
frameworks. There are a couple of naming differences between the Assert classes
in both frameworks, but they are minor. The biggest difference is that you will
need to reference the correct framework for csUnit and remove the reference to the
NUnit framework.

N o t e

You can download NUnit at http://www.nunit.org.

Conclusion 109

http://www.sourceforge.net/projects/dotnetmock/
http://www.xprogramming.com
http://www.nunit.org

This page intentionally left blank

111

Code Documentation
with NDoc and XML

chapter 11

Documentation is like sex; when it’s good, it’s very, very good, and when it’s
bad, it’s better than nothing.

Dick Brandon

An important deliverable for most projects, or as simply a good thing to do, is the
creation and updating of source code documentation. Properly documented source
code can improve the overall maintainability of your project, and shorten the
amount of time needed for a new developer, or an existing developer for that matter,
to familiarize herself with the source code. The purpose of source code documen-
tation is so a developer can understand a particular component without actually
looking at the source code.

Thankfully, Visual Studio .NET has introduced a wonderful build tool for gener-
ating source code documentation, and it is built right into the IDE. A properly
configured project can be set up to export documentation expressed as XML for
the source code each time the build process is run. This exported documentation
can be plugged into an excellent open source utility called NDoc, which can take
a .NET assembly and the exported XML and build documentation in a variety of
formats. NDoc supports pluggable exporters, including the MSDN-style HTML
Help (.chm), the Visual Studio .NET format (HTML Help 2), and the MSDN
online-style web pages. This tool is very popular within the .NET community and
is the most commonly used documentation generator for .NET.

N o t e

NDoc can be downloaded at http://ndoc.sourceforge.net/.

Additionally, when source code is commented properly in the standard XML format,
Visual Studio registers the documentation and makes it available to IntelliSense.
Another great feature is that when you reference a .NET assembly which has com-
menting enabled, the generated XML comment file is copied locally, along with
the reference assembly, to make IntelliSense information available across multiple
projects.

This chapter shows how to properly configure a .NET project for code commenting,
and how to generate MSDN-style documentation using the XML documentation
file and standardized commenting techniques.

Configuring the Project
As discussed earlier, the first step to generating documentation for your source
code is configuring your project to export an XML documentation file. This file
will be used later by NDoc to produce our documentation files.

Start by bringing up the project properties window; the easiest way to do this is by
right-clicking on your project in the solution explorer and selecting Properties.
After you navigate to the Build tab, you should see the dialog shown in Figure 11.1.

You will notice that there is a property called XML documentation file under the
Output property group; that is the path that must be set for the documentation
file to be generated at. This path is relative to the project directory, and standards
suggest that the file name match the name of the assembly. For example,
NDocExample.dll should have an XML documentation file named NDocExample.xml.

Chapter 11 ■ Code Documentation with NDoc and XML 112

Figure 11.1 Build configuration properties for a project.

http://ndoc.sourceforge.net/

Once a valid file path is specified, when the project is compiled, an XML file will
be generated that contains all the XML comment tags that were embedded in the
source code.

You may have some projects that will be compiled from the command line, and the
way to generate the XML documentation file in such a situation is by using the /doc
flag.

csc /doc:NDocExample.xml NDocExample.cs

In either situation, command line or through an IDE, the /doc compiler switch will
be ignored in a compilation that uses the /incremental build switch. Therefore, you
should use the /incremental- switch to disable the incremental build and ensure
that your XML documentation file remains up-to-date.

After your project is configured to output an XML documentation file, any com-
ments that are suggested to be included will not prevent compilation, assuming
you do not have warnings set to errors, but will instead show up as a warning in
the task list. You can simply double-click on the warning in the task list to jump to
the location where a comment should be added, much as any other error or warn-
ing can be navigated to.

Figure 11.2 shows the source code location where the comment should be inserted.

Figure 11.3 shows a comment missing from the constructor of MainForm, and sug-
gests that it be added for standards compliance.

An extremely useful feature that improves documentation productivity is a macro
that inserts basic commenting tags for a particular method or class. Simply place
the text insertion pointer on the line above the method or class header in question
and press the / (forward slash) key three times. A summary tag block is inserted,
along with all the parameter tags for the method, if applicable. Additional tags can
be added to the basic blocks that were inserted, but they have to be added manually.

Configuring the Project 113

Figure 11.2 Example of a source code location that should be commented.

Supported XML Markup
There are quite a few supported XML tags and tag attributes that can be used for
different purposes when documenting your code; those tags are described in Table
11.1, along with instructions for when they should be used.

Keep in mind that in order to generate correct XML, the compiler must be given
correct documentation comments. Additionally, the compiler will generate a
warning and embed an error message in the documentation file if it is given XML
that is not well-formed. By well-formed XML, I mean XML that follows the rules
listed in the W3C Recommendation for XML 1.0.

A list of the standard tags available for inline documentation are presented in
Table 11.1.

The commenting structure is fairly loose and flexible, but you will notice that any
suggested comments to include will appear as warnings in your task list now that
your project is configured for commenting.

Keep in mind that since the compiler recognizes /// as a comment line when parsing
source code for embedded XML, the following documentation will be rejected by
the compiler:

/// <summary>
///
// </summary>
Public void FooBar() {}

Obviously, all documentation comments must be associated with a valid code con-
struct, otherwise they will be ignored. Valid code constructs are a class, struct,
enum, property, field, method, delegate, indexer, or event.

N o t e

Namespaces are not considered code constructs because they are not limited to any one assembly,
so they cannot be considered a member of any one particular assembly.

Chapter 11 ■ Code Documentation with NDoc and XML 114

Figure 11.3 Missing comment warning in the Visual Studio C#.NET task list.

Some documentation tags are further defined through the use of XML attributes.
The tag attributes used by inline documentation are presented in Table 11.2.

Supported XML Markup 115

Table 11.1 List of Standard Tags

Tag Description

<c> This tag is used to specify that a certain group of words should be formatted as
text.

<code> This tag is used to specify multiple lines of code in a block of text. In order to
embed XML source, you must specify the tag attribute escaped=”true” on the
code tag so that the documentation compiler does not strip out the XML sample.

<example> This tag is used to specify how to use a particular method or type. Typically, the
code tag is also used with this tag to give implementation details.

<exception> This tag is used to specify the exceptions that a particular class can throw.

<include> This tag is used to refer to comments in an external file, avoiding the need to
embed other comments in your source code.

<list> This tag is used to define a heading row of either a table or a definition list. Each
item in the list is specified with an <item> tag, and a list or table can have as
many <item> tags as desired.

<item> This tag is used to define an item in a table or a definition list.

<newpara> This tag is used inside text to allow for formatted structuring.

<param> This tag is used to specify a parameter for a method declaration.

<paramref> This tag allows you to specify that a particular word is a parameter so that it can
be formatted distinctly.

<permission> This tag allows you to specify the security access to a member.

<remarks> This tag allows you to specify overview information about a class or type. You can
also use the summary tag to describe a member for a type.

<returns> This tag is used to describe the return value for a method declaration.

<see> This tag allows you to specify a link to appear within text. You can also use the
<seealso> tag to place text that you want to appear in the See Also section.

<seealso> This tag allows you to place text that you want to appear in the See Also section.
You can use the <see> tag to specify a link to appear within text.

<summary> This tag should be used to describe a member for a type. You can also use the
<remarks> tag to list information about the type itself.

<value> This tag is used to describe a property and is suggested for use on all properties.
You will notice that the auto commenting macro for properties only inserts the
summary tag, so you will have to add this tag manually to all your properties.

Chapter 11 ■ Code Documentation with NDoc and XML 116

Commenting Example
In order to illustrate the entire process of documenting source code, we will define
and discuss a simple example in a linear fashion.

We will start by defining a simple method called SaveApplicationSettings that will
accept a string parameter and not return anything. This method won’t do anything
in terms of functionality, but it will show how to properly document a code con-
struct.

/// <summary>
/// Saves the application settings to a text file named by
/// the fileName property, and saved in isolated storage.
/// </summary>
/// <param name=”fileName”>
/// The name of the file to store the application settings in.
/// </param>
/// <example>
/// The following code shows how to properly call this method.
/// <code>
/// SaveApplicationSettings(“MyApplication.xml”);
/// </code>
/// </example>
/// <permission cref=”System.Security.PermissionSet”>
/// This method can be accessed by everyone
/// </permission>
public void SaveApplicationSettings(string fileName)
{

MessageBox.Show(“This is where the settings would actually be saved”);
}

Table 11.2 List of Standard Tag Attributes

Tag Attribute Description

<cref> This attribute can be attached to any tag to provide a reference to a code
element. It is important to note that the compiler will verify that this code
element exists, and will issue a warning if the verification fails. The compiler
also respects any using statements when looking for a type described in
this attribute.

<name> This attribute describes the name of a parameter in a <param> or
<paramref> tag.

Generating the Documentation 117

As you can see in the above code example, we have documented the source code
for the SaveApplicationSettings method, and now that we have done so, it is avail-
able for IntelliSense. Now whenever you start typing out the name of the method,
IntelliSense will fire up and give you information about the method and the para-
meters it expects. This is illustrated in Figure 11.4.

Aside from on-the-fly IntelliSense, you can also mouse over a documented method
or type and see the documentation overview for it. This is depicted in Figure 11.5.

Generating the Documentation
IntelliSense information is a handy tool, but using XML documentation for
IntelliSense alone is a waste compared to the wonderful documentation that can
be generated from the XML documentation file. There are two main ways to gen-
erate your documentation, but the NDoc approach will be the evangelized method
in this chapter.

The first method, and the one this chapter will not cover, is the built-in docu-
mentation tool in Visual Studio .NET. Under the Tools menu is an option titled
Build Comment Web Pages..., which will produce help files in the Visual Studio .NET

Figure 11.4 Example of on-the-fly IntelliSense documentation.

Figure 11.5 Example of IntelliSense type overview.

format. While this method works and is convenient because of the IDE integration,
NDoc produces much better documentation in a variety of formats.

For starters, launch the NDoc application and select the New from Visual Studio
Solution option from the toolbar at the top of the window, as shown in Figure
11.6. At this stage, we must let NDoc know which assemblies have commenting
enabled and should have corresponding documentation generated for them. This
step could be done manually, although referencing the assemblies automatically
from your project solution is much easier and faster.

Selecting the toolbar option should bring up a dialog that asks you to select the
solution configuration of the project to use. I typically use debug mode, but it gen-
erally doesn’t matter when you stick with default solution configurations. This
dialog should look like the one shown in Figure 11.7.

After the appropriate solution configuration to use has been selected, the NDoc
window should populate with all the referenced assemblies for the solution. There
are a number of formatting and configuration settings that can be modified for an
NDoc project, but for the most part, we will use the default values for the purpose
of this discussion. You should end up with a dialog similar to the one shown in
Figure 11.8. The final step (yes, it is that easy) is to build the documentation by
clicking on the Build Documentation button in the toolbar, or by using the
Ctrl+Shift+B shortcut.

Chapter 11 ■ Code Documentation with NDoc and XML 118

Figure 11.6
Toolbar option to import assemblies.

Figure 11.7
Dialog asking to select the solution
configuration to use.

Once the Build Documentation button is clicked, the XML documentation file will
be processed and an MSDN-style .chm file will be generated at the location spec-
ified by the OutputDirectory property in the NDoc solution. Keep in mind that
you can switch the documenter plugin if you do not want MSDN-style documen-
tation and would prefer an alternative format. The MSDN-style .chm documenta-
tion will look something like Figure 11.9.

Conclusion
Source code documentation has always been regarded as a hassle to create, yet it is
important to promote maintainability. In this chapter, we saw another situation
where the .NET platform improved workflow productivity, specifically in terms of
generating source code documentation. Developers are generally conscientious
about source code commenting, and luckily most organizations have coding stan-
dards that enforce a certain level of consistency, but commenting your source code
and producing aesthetic documentation are two different challenges in themselves.

Conclusion 119

Figure 11.8
Main NDoc interface showing the loaded assemblies and project properties.

This chapter described a great way to transition from commented source code to
deployment-quality documentation using a core architecture primitive in the
.NET platform.

N o t e

On the Companion Web site is the code from the simple example discussed throughout this chapter,
along with the NDoc project and the generated documentation. The example is extremely simplis-
tic but can serve as a reference point or general overview on how to properly set up a project for
code documentation with NDoc.

Chapter 11 ■ Code Documentation with NDoc and XML 120

Figure 11.9 Example MSDN-style .chm documentation created with Ndoc.

121

Microsoft Coding
Conventions

chapter 12

All parts should go together without forcing. You must remember that the
parts you are reassembling were disassembled by you. Therefore, if you
can’t get them together again, there must be a reason. By all means, do not
use a hammer.

1925 IBM Maintenance Manual

With all the fuss about how important it is to create maintainable code, a huge
issue that sparks numerous techno-religious debates is the idea that code should
follow a specific naming convention. The main problem is summed up by the
question: What naming convention should be used? There are a number of naming
conventions documented for developers, but typically the answer is left to person-
al preference. However, Microsoft is pushing the idea of “best practice” for a num-
ber of areas of .NET development, including standardized coding conventions. A
common problem with legacy Win32 API code is the variation among naming
conventions. It is not uncommon to find two components in the API that use
completely different conventions. However, Microsoft has enforced standards for
the .NET Class Framework that define how code should be named and formatted.
While you do not have to follow the proposed standard, it is recommended that
you do so for consistency and to make your code easier to read by other .NET
developers.

This chapter summarizes the standard coding conventions set forth by Microsoft
that should be employed in your code. Keep in mind that you should still read the
Microsoft Design Guidelines for Class Library Developers, but this chapter should
be enough of a generalization to get you started.

Styles of Capitalization
The .NET class framework uses three types of capitalization styles, presented in
Table 12.1.

There are different situations when a certain capitalization style is appropriate.
The situations suitable for certain capitalization styles are presented in Table 12.2.

Chapter 12 ■ Microsoft Coding Conventions122

Table 12.1 .NET Class Framework Capitalization Styles

Case Type Description

Pascal Case Make the first letter uppercase as well as the first letter of each subsequent
word. All other letters remain lowercase. An example would be XmlSerializer.

Camel Case Identical to Pascal case, except the first letter is not uppercase. An example would
be remotingEndpoint.

Uppercase Make all letters capitalized when an identifier consists of less than three letters.
An example would be System.IO.

Table 12.2 Capitalization Style Situations

Situation Appropriate Style Notes

Class Pascal Case
Enum Type Pascal Case
Enum Value Pascal Case
Event Pascal Case
Exception Class Pascal Case Suffixed with Exception
Read-Only Static Field Pascal Case
Interface Pascal Case Prefixed with I
Method Pascal Case
Namespace Pascal Case
Parameter Camel Case
Property Pascal Case
Protected Instance Field Camel Case Better to use a property
Public Instance Field Pascal Case Better to use a property

N o t e

There may be times when you need to deviate from the “best practice” naming conventions, espe-
cially when working with legacy components that expect traditionally named symbols; do so spar-
ingly and only when absolutely necessary.

Naming Classes
When naming classes, the standard is to use Pascal case. Additionally, classes
should be named using a noun or a noun phrase. Finally, never use an underscore
in a class name either.

One traditional style common among many developers is to use prefixes such as
cFileStream or CFileStream. Never use prefixes anywhere with the exception of
interfaces. The proper naming would be FileStream in this example.

Abbreviations should be used only when absolutely necessary. They cause confusion
when reading code, and break from the standards used in the class framework.

Derived classes should be named in a compounded fashion where the second half
of the name is the base class name. An example would be the derived class
SystemException, which inherits from the base class Exception. This guideline is to
be used at your discretion, as derived class names should only be compounded
when it makes sense to do so.

Example:

public class SimpleException : Exception
{
}

Naming Interfaces
When naming interfaces, the standard is to use Pascal case. Additionally, interfaces
should be named using a noun or noun phrase, or an adjective that describes its
behavior. Finally, never use an underscore in a class name either.

Interfaces should always be prefixed with I, as in IBaseController. This is the only
situation where an identifier should be prefixed in the .NET class framework.

When a class implements an interface, the naming should only differ by the prefix
I on the interface name.

Abbreviations should be used only when absolutely necessary. They cause confusion
when reading code, and break from the standards used in the .NET Class Framework.

Naming Interfaces 123

Example:

public interface IBaseController
{
}

public class BaseController : IBaseController
{
}

Naming Namespaces
When naming namespaces, there are some common rules that should be followed
for consistency. Use Pascal case, and separate all logical components with periods.

The typical formatting is as follows:

CompanyName.TechnologyName.Feature[.Design]

Design is an optional namespace path that can be used when you have design time
code that you are separating from the feature code itself.

Prefixing the namespace with the company name helps to avoid type name conflicts
with another company that’s possibly offering the same technology and features.

Additionally, types in a namespace should have dependencies to types in the con-
taining namespace. For example, Wihlidal.Networking.DeadReckoning would have
dependencies to types in Wihlidal.Networking.

Never use the same name for both a class and a namespace. For example, do not
have the namespace Wihlidal.Utilities.Log and have a contained class called Log.

Lastly, just because a particular assembly uses the namespace
Wihlidal.Networking.DeadReckoning, it does not have to contain any code in the
Wihlidal.Networking namespace. It is perfectly acceptable and common to have
multiple assemblies associated with a particular namespace.

Example:

Wihlidal.Networking.DeadReckoning

or

Wihlidal.Controls.InterfaceBuilder
Wihlidal.Controls.InterfaceBuilder.Design

Chapter 12 ■ Microsoft Coding Conventions124

Naming Attributes
There are not a lot of guidelines for attribute naming, but be sure to use Pascal
case. The only rule is to suffix the attribute type name with Attribute.

Example:

InterfaceControlAttribute

Naming Enumerations
When naming enumerations, the standard is to use Pascal case for both type and
value identifiers.

Abbreviations should be used only when absolutely necessary. They cause confusion
when reading code, and they break from the standards used in the class framework.

Never suffix an enumeration with Enum. The identifier name should also be singu-
lar unless it is a bit field, in which case the name would be plural. Additionally, bit
fields should always be marked with [FlagsAttribute].

Example:

public enum InterfaceColor
{

Red,
Black,
Yellow

}

[FlagsAttribute]
public enum InterfaceColors : short
{

Red = 0,
Black = 1,
Yellow = 2

}

Naming Static Fields
When naming static fields, the standard is to use Pascal case. Additionally, static
fields should be named using a noun, noun phrase, or abbreviations of nouns.
Lastly, never use Hungarian notation or any other sort of prefixes or suffixes.

Naming Static Fields 125

It is “best practice” to use a static property instead of a static field whenever possible.

Example:

private static int MyStaticField;

Naming Parameters
When naming parameters, the standard is to use Camel case. Additionally, para-
meter names should be descriptive enough that their use should be evident by
their name alone.

Use a parameter name that describes its meaning rather than its type. Use type-
based names only when necessary.

Never use reserved parameters. These parameters are reserved for data that can be
added in with a later version of a particular component, and storing your data in
a reserved property can lead to issues with invalid data or software instability.

Never name parameters using Hungarian notation.

Example:

Type GetType(string typeName)
string Format(string format, object[] args)

Naming Methods
When naming methods, the standard is to use Pascal case. Additionally, method
names should be named using verbs or verb phrases. Method names should be
very descriptive, and the behavior of the method should be easily determined from
the name alone.

Example:

GetInterfaceControl()
ExecuteBatchProcess()
InsertRecord()

Naming Properties
When naming properties, the standard is to use Pascal case. Additionally, proper-
ties should be named using a noun or noun phrase, and never use Hungarian
notation.

Chapter 12 ■ Microsoft Coding Conventions126

It is a good idea to name your properties the same name as the underlying types
when applicable.

Example:

private Color backColor;
public Color BackColor
{

get { return backColor; }
set { backColor = value; }

}

Naming Events
When naming events, the standard is to use Pascal case. Additionally, events
should never have a prefix or a suffix, and never use Hungarian notation.

Events should be named with a verb such as Launched, Clicked, Closing, or Paint.
Events in a pre-event context should be named with the -ing form of a verb, and
events in a post-event context should be named with the past tense of a verb.

Event handlers should have an EventHandler suffix. Additionally, event argument
types should have an EventArgs suffix.

Example:

public delegate void InterfaceControlEventHandler(object sender,
InterfaceControlEventArgs e);

public InterfaceControlEventHandler InterfaceControlClicked;

public class InterfaceControlEventArgs : EventArgs
{

private InterfaceControl _selectedControl = null;

public InterfaceControl SelectedControl
{

get { return _selectedControl; }
}

public InterfaceControlEventArgs(InterfaceControl selectedControl)
{

_selectedControl = selectedControl;
}

}

Naming Events 127

Abbreviations
There are guidelines regarding abbreviations. Disregarding these guidelines can
lead to issues with interoperability or general confusion about the purpose of a
particular identifier.

Identifiers should not have contracted or abbreviated parts. Use SendReplyMessage
instead of SendReplyMsg.

Acronyms should be formatted using either Pascal or Camel case when consisting
of more than two letters. Never use acronyms that are not generally accepted or
known in the computing world.

Use abbreviations to replace lengthy phrases, such as Http instead of
HyperTextTransferProtocol.

Identifiers and parameters should not be abbreviated. If you must use abbrevia-
tions, then you should use Camel case when the abbreviated word consists of three
or more letters.

Conclusion
The main focus of this chapter was to present an overview of the standardized
coding conventions that Microsoft encourages .NET developers to adopt. This is
in no way the full convention, but it is enough of a subset to show how code should
be written in C#.NET. For more information, please review the Microsoft Design
Guidelines for Class Library Developers located on MSDN.

Chapter 12 ■ Microsoft Coding Conventions128

129

Enforcing Coding
Policies with FxCop

chapter 13

The trouble with programmers is that you can never tell what a programmer
is doing until it’s too late.

Seymour Cray

People write bad code. It is a common reality, and poorly written code can lead to
many maintenance and design issues. Microsoft realizes this and has presented a
couple of well thought out solutions, such as the Design Guidelines for Class
Library Developers, which helps promulgate best practices and coding standards to
maintain consistency among .NET assemblies. Having a set of guidelines can do
wonders if developers follow them in an almost religious fashion. However, this is
not always the case, and many times source code deviates from the proposed
norm. This prompted Microsoft to create the FxCop utility, which tests .NET code
to confirm that it follows the best practices and design guidelines.

The developers of FxCop could have designed the tool to perform conformance
analysis at a source code level like most tools of a similar nature, but instead chose
to use the powerful features of the .NET platform to make a tool that performed
analysis on a much grander scale. Rich and extensible meta-data concepts along-
side powerful reflection support, MSIL parsing, and call-graph analysis allow for
the inspection of many different areas of your software instead of just analyzing
source code. FxCop looks for over 200 different defects and issues in regards to
library design, naming conventions, localization, security, and performance. There
is also an SDK that allows you to write custom rules to enforce conventions specific
to your needs.

On top of Reflection, the latest version of FxCop has exposed another method of
analyzing your assemblies using an introspection engine. This engine provides a
rich set of analysis functionality and can analyze large applications much more
quickly than the regular reflection-based engine. On top of speed, the introspection
engine also supports multithreaded application analysis. Lastly, the introspection
engine is different from the reflection engine in that it does not lock assemblies
when it performs analysis, allowing you to fix and recompile assemblies while
FxCop remains open instead of shutting down FxCop to release locked assemblies.

The purpose of this chapter is to introduce you to the wonderful world of enforced
coding policies, and the tool that makes it all possible. After reading this chapter,
you should be able to analyze your code for convention violations, design custom
violation rules, and know how to configure FxCop to suit your development pref-
erences.

C a u t i o n

The engine and SDK specification for FxCop have not yet been finalized, so the common pattern is that
each release breaks backward compatibility with existing plug-ins, forcing the developer to update
the custom rules to reflect API changes. This chapter was written using FxCop 1.32 for Whidbey
Beta 2 (.NET 2.0 Beta 2). I still felt that the information presented in this chapter is important, so I
decided to keep this chapter in the book and present this little warning about the changing API. Hope-
fully the next release version of FxCop supports an easy migration path from the 1.32 API.

This is just a warning that you may not be able to compile the examples in this chapter straight out
of the book; you may need to update the examples to reflect the latest API specification. With this
in mind, let’s continue on to discovering what FxCop is, and how you and your code can benefit
from its use.

Installing FxCop
N o t e

The first thing you need to do is install the FxCop tool; you can get the installer at the companion
Web site for this book, or from http://www.gotdotnet.com/team/fxcop/.

There are no custom configuration options, so the installation itself is very simple.
FxCop can be accessed from either a WinForms applications or the command line
using the FxCopCMD application. You can actually integrate FxCop analysis into
your build process, which is a great idea because you can fix conformance viola-
tions as they occur, instead of letting them build up into a huge list that you have
to cull through at a later time. If you want to get as much speed as possible during

Chapter 13 ■ Enforcing Coding Policies with FxCop130

http://www.gotdotnet.com/team/fxcop/

the build process, you can also stick to running FxCop on a daily basis instead.
This is the approach that Microsoft is pushing to its developers. The longer you
wait between each running of FxCop, the more possible violations will have been
amassed, resulting in more time spent fixing these issues. Making FxCop an inte-
gral part of your work schedule ensures increased familiarity with the guidelines
and eases the design work. For example, imagine that you create a property which
is named in such a way that it does not follow design guidelines. With FxCop inte-
grated with your build process, you would notice this violation immediately the
next time your post-build process executes. If instead, you run FxCop on a week-
ly basis, you would have to go back and modify a week’s worth of work in all places
where that property was accessed. There are increased productivity benefits when
running FxCop analysis as often as possible.

Creating an FxCop Project
The first thing to do is create an FxCop project where you can select the assemblies
to target for analysis, and specify the rules to enforce. Launch the FxCop tool and
start adding assemblies through the Project>Add Targets menu, or by using the
Ctrl+Shift+A hotkey. Once you have selected the assemblies you want to analyze,
you should end up with a window similar to Figure 13.1.

The left tree view shows the hierarchy of the loaded assemblies and the compo-
nents available for analysis. You can uncheck code that you do not want analyzed,
though it is recommended that you only do so if absolutely necessary.

The right view pane has a list view that will populate with rule violations once
analysis has been completed. The bottom view pane will display detailed informa-
tion about a rule violation when one has been selected in the violations list view.

Once the target assemblies have been added to the project, you are now at the
point where you can configure the rules engine for the project.

Configuring Built-In Rules
Now that the FxCop project has been created and assemblies have been targeted
for analysis, it is time to move on to the configuration of the rules engine. Some
people stick to the default configuration, but many developers customize the con-
figuration to suit their own preferences where applicable.

The left view pane contains a tab control with a Rules tab. Selecting that tab will pre-
sent a listing of the available rules that can be enforced upon the targeted assemblies,
and each rule can be enabled or disabled using the checkbox to the left of the rule.

Configuring Built-In Rules 131

Some rules may not be applicable or favorable to a developer, which warrants the
disabling of the rule. For example, even though the .NET runtime implicitly ini-
tializes all managed memory to a default value, many developers feel that all vari-
ables should be explicitly initialized even when the initialized value and the default
value for that data type are the same. Yes, doing so can be viewed as a redundant
step as there is a performance rule that prohibits unnecessary initialization, yet
other developers feel that explicit initialization is necessary in the spirit of main-
tainability. Figure 13.2 shows a screen capture of the rules configuration tab.

Analyzing Your Project
Once your FxCop project has been created and the target assemblies have been
specified, it is time to perform analysis. You do so by clicking the Analyze button
shown in Figure 13.3.

The most advisable approach for fixing guideline violations is to sort the violations
by message level with the errors at the top of the list, and to fix each violation one
by one. It should be noted that there are two types of errors: regular and critical.

Chapter 13 ■ Enforcing Coding Policies with FxCop132

Figure 13.1 Screen capture of an FxCop project with an assembly targeted for analysis.

Both types are fairly subjective in nature, and many rule developers feel that it
would have made their lives a lot easier if Microsoft had just simplified the mes-
sage levels to errors, warnings, and informational messages.

Aside from the message level, you will notice that there are a few other statistics for
each violation. The fix category indicates whether or not your code will break if
the violation is resolved by itself. Breaking indicates that fixing the violation with-
out modifying the rest of your code will cause compilation errors, such as chang-
ing a property name referenced elsewhere. Nonbreaking indicates that fixing the
violation without modifying the rest of your code should still result in a success-
ful compilation, such as adding an attribute to a class definition. Figure 13.4 shows
the FxCop project window after an analysis has been performed.

Analyzing Your Project 133

Figure 13.2 Screen capture of the rules configuration tab.

Figure 13.3 Screen capture of the button that starts the analysis.

It may be acceptable to exclude certain rule violations from the analysis, and you
can accomplish this by right-clicking on the rule in question and selecting Exclude.
Exclusion should be done rarely and only with a solid reason. It is now mandatory
to give a reason why a particular rule violation was excluded. Figure 13.5 shows this.

Certain rules that FxCop throws an exception for can be somewhat vague, but
thankfully each rule has a referenced documentation page located on the FxCop
web site that discusses the rule in greater detail, including possible causes for why
a certain exception was thrown. Figure 13.6 shows the web page detailing a spell
check exception.

It is also important to keep in mind that not all errors are your fault, as even the
pre-2005 Visual Studio generation wizards have code that does not conform to
the design guideline standards. If you notice any errors resulting within the
InitializeComponent method, or any other auto-generated regions for that matter,
it is safe to exclude them.

Chapter 13 ■ Enforcing Coding Policies with FxCop134

Figure 13.4 Screen capture of the FxCop tool after analysis has been performed.

Analyzing Your Project 135

Figure 13.5 Dialog used to specify a reason why a rule violation was excluded.

Figure 13.6 Documentation web page detailing a spell check exception.

Another point to note is that FxCop has a fairly rigid spell checker integrated right
into the tool, and will generally complain about any product or company names
that are not a composition of dictionary words. Additionally, there may be some
acronyms you wish to keep in full uppercase, yet FxCop will complain that they
break design guidelines. It is quite easy to configure FxCop to ignore certain cases
of a rule exception, and this can be done by modifying the CustomDictionary.xml
file that resides in the installation folder of FxCop. If you’re working in a multi-
developer environment, be sure to add this file to source control so that all developers
have access to the custom configuration you specify.

Building Custom Rules
You may be reading all the built-in rules available for FxCop and thinking that
they enforce all the policies you have. If this is the case, you do not need to extend
the rules engine. However, some projects require the enforcement of custom rules,
in which case you will need to extend the rules engine in FxCop. The latter half of
this chapter covers building custom FxCop rules and enabling them for enforce-
ment in your projects.

The first thing to do is to create a new C#.NET class library project and reference
the FxCop SDK. Navigate to the installation folder of the FxCop tool, and refer-
ence the FxCopSdk and Microsoft.Cci assemblies. Figure 13.7 shows the assembly
reference screen that should resemble what you see.

Chapter 13 ■ Enforcing Coding Policies with FxCop136

Figure 13.7 Dialog shown when referencing the FxCop SDK.

For an extremely simple yet practical example, we will make a custom FxCop rule
that requires all namespaces to be prefixed with Nexus.WorldBuilder.

We need to start by creating an XML file in the project that will eventually be com-
piled as an embedded resource during the build process. This file defines all the
rules that FxCop will load, including configuration and resolution information. It
is here that you can set the warning level, description, and resolution for each rule.
The name of the file at this point is fairly flexible.

<?xml version=”1.0” encoding=”utf-8” ?>
<Rules>

<Rule TypeName=”NamespacePrefix” Category=”Nexus.Naming” CheckId=”NX0001”>
<Owner>Graham Wihlidal</Owner>
<Email>graham@wihlidal.ca</Email>
<Name>Namespaces must be prefixed with Nexus.WorldBuilder</Name>
<MessageLevel Certainty=”95”>Error</MessageLevel>
<Description>All namespaces should be prefixed with Nexus.WorldBuilder
for consistency</Description>
<LongDescription>All namespaces should be prefixed with Nexus.WorldBuilder
for consistency</LongDescription>
<Url>http://Url-To-A-Help-Page</Url>
<Resolution Name=”Default”>The namespace ‘{0}’ is not prefixed with
Nexus.WorldBuilder</Resolution>
<FixCategories>Breaking</FixCategories>

</Rule>
</Rules>

You must set the Build Action property to Embedded Resource so that this XML file
will be embedded in the rule assembly file; otherwise FxCop will not be able to
find it and will report that there are no rules to load.

The best approach to structuring the code for a rules assembly is creating a base
rule from which other rules can inherit. This is because there are a few arguments
that must be repeated for each rule, and proper class design urges the normaliza-
tion of repeating data.

Here is the code for the base rule class:

using System;
using Microsoft.Cci;
using Microsoft.Tools.FxCop.Sdk;
using Microsoft.Tools.FxCop.Sdk.Introspection;

Building Custom Rules 137

namespace NexusRules.Naming
{

[CLSCompliant(false)]
abstract public class BaseNexusNamingRule : BaseIntrospectionRule
{

protected BaseNexusNamingRule(string name)
: base(name, “NexusRules.Naming.NamingRules”,

typeof(BaseNexusNamingRule).Assembly)
{
}

}
}

You will notice the arguments being passed into the base constructor. The first
argument is the name of the rule, and it is passed in through the constructor of
each custom rule inheriting from BaseNexusNamingRule. The last two arguments
require more explanation. The second argument is the fully qualified name of the
embedded configuration XML file without the extension. In this example, the
assembly is NexusRules.Naming.dll and the XML configuration file is NamingRules.xml,
resulting in NexusRules.Naming.NamingRules. The third argument is a reference to
the assembly containing the rules.

It is also important to note the need for [CLSCompliant(false)]; the FxCop SDK is
not CLS-compliant, so it is required that this attribute be placed so that the code
compiles correctly.

With the base rule class defined, we can create our first FxCop rule. The magic
behind the FxCop SDK is the Check method. There are many different overloaded
versions, all of which get run when an assembly is analyzed; it becomes a matter of
picking the right overloaded method for the job.

Here is the code for the example FxCop rule:

using System;

using Microsoft.Cci;
using Microsoft.Tools.FxCop.Sdk;
using Microsoft.Tools.FxCop.Sdk.Introspection;

namespace NexusRules.Naming
{

[CLSCompliant(false)]
public class NamespacePrefix : BaseNexusNamingRule
{

Chapter 13 ■ Enforcing Coding Policies with FxCop138

public NamespacePrefix() : base(“NamespacePrefix”)
{
}

public override ProblemCollection Check(string namespaceName,
TypeNodeList types)

{
if (!namespaceName.StartsWith(“Nexus.WorldBuilder”))
{

string[] arguments = new string[1] { namespaceName };
Resolution resolution = GetNamedResolution(“Default”, arguments);
Problems.Add(new Problem(resolution));

}

return Problems;
}

}
}

You should notice that there is a collection called Problems with no apparent dec-
laration. This property is declared in the BaseIntrospectionRule class, and is the
collection you must add Problem objects to and return from the Check method. Do
not create a new ProblemCollection as it will not work. Be sure to return null if no
errors occurred. Lastly, you need to modify AssemblyInfo.cs in a couple of places
and also give the assembly a strong name key.

Add the following lines near the other assembly attributes:

[assembly:CLSCompliant(true)]
[assembly:ComVisible(false)]

If everything compiles correctly, you are halfway there! The real parlor trick is getting
FxCop to recognize the rules in your assembly. The custom rules importer is very
strict, and quite often it forces you to pull your hair out just to get custom rules to
import. Thankfully, the latest version of FxCop outputs XML configuration errors,
whereas the older versions did not and required some clever debugging to fix. You
can import custom rule assemblies by selecting Add Rules from the Project menu.

If FxCop fails to load your rules, be sure to read the messages left in the output
window of FxCop. If the custom rules loaded correctly, you can try them out. You
should have output similar to Figure 13.8 after analyzing an assembly that violates
the namespace prefix rule defined in this example.

Building Custom Rules 139

Lastly, it is important to mention that Microsoft has integrated FxCop analysis
into Visual Studio 2005. To enable integrated analysis, just go to the properties
page of the project, and then select the Code Analysis tab. Check the Enable Code
Analysis checkbox and configure the rules that you want to conform to.

You should end up with a dialog like the one shown in Figure 13.9.

The previous step has now configured your project to perform integrated code
analysis during the build process. By default, analysis issues and rule violations will
appear as warnings in the error list window, as shown in Figure 13.10.

Conclusion
This chapter discussed the importance of coding guidelines and using FxCop to
enforce them. Also surfacing was the apparent need to deviate from the proposed
norm, and ways to configure FxCop to perform customized analysis and enforce-
ment of both Microsoft- and project-specific policies.

Lastly, there are a number of online resources that cover how to build more complex
custom rules, one of which is the June 04 Bugslayer column from MSDN maga-
zine: http://msdn.microsoft.com/msdnmag/issues/04/06/Bugslayer/default.aspx.

Chapter 13 ■ Enforcing Coding Policies with FxCop140

Figure 13.8 Output from custom rule violation.

http://msdn.microsoft.com/msdnmag/issues/04/06/Bugslayer/default.aspx

Perhaps the best place to learn the art of building FxCop rules is by disassembling
the built-in rules provided by Microsoft. You can do this by downloading Reflector
for .NET, an extremely useful tool written by Lutz Roeder, which allows you to
browse classes and disassemble non-obfuscated code into a humanly readable format.
You can download Reflector for .NET at http://www.aisto.com/roeder/dotnet/.

Conclusion 141

Figure 13.9 Visual Studio 2005 integrated code analysis configuration.

Figure 13.10 Code analysis results in the error list window.

http://www.aisto.com/roeder/dotnet/

This page intentionally left blank

143

Best Practices for
Robust Exception
Handling

chapter 14

Computers allow you to make more mistakes faster than any other invention
in human history with the possible exception of handguns and tequila.

Mitch Ratcliffe

In the development world, it is nearly impossible to write bug-free software. The
best we can do is write stable software that, when a problem occurs, displays
enough information to solve it. There is no way to write software that is bug-free,
but by employing exception handling, at least we can gracefully handle any anom-
alous situations that occur.

An exception can be defined as unexpected behavior or an error condition occur-
ring in a software application. The name itself comes from the idea that, although
an error condition can occur, the error condition occurs infrequently. The major-
ity of a developer’s time is spent on user input and error handling. Thankfully,
there is some functionality in the .NET Class Framework that provides error han-
dling, but there are certain best practices that should be followed in terms of
design concerns and performance issues.

Many developers misuse or overuse exception handling, and this chapter is all
about best practices for using .NET exception handling. This chapter is not centered
on the design aspects of user interface integration, but rather serves to enlighten
readers about the proper way to handle errors while aiming for maximum perfor-
mance and adherence to framework guidelines.

External Data Is Evil
Typically, exceptions in an application are thrown because of invalid or nonexis-
tent data. External data can be provided from a database, keyboard input, files, a
registry, or a network socket. You can never trust external data because there is no
way to be certain that the external data exists or is valid. You may also end up with
insufficient privileges to access the external data.

Aside from reading data, most external data sources have write capability, in which
case there is also some sort of repository for the data as well. You may end up with
insufficient privileges or not enough memory, or the device can suffer from a phys-
ical fault as well. It is important to recognize that the best thing to do is build solid
code that handles external data errors in a stable and informative manner.

The safest approach when dealing with external data is to validate the data before
doing anything else with it.

Creating Custom Exceptions
There is a common misconception among developers regarding the use of
System.Exception and System.ApplicationException. These exception types are used
throughout the .NET Class Framework and form the base of many derived types,
but you should never throw them explicitly. The truth is, these types are much too
broad and generic to be thrown; you should instead be creating and throwing cus-
tom exceptions if a suitable exception type does not yet exist.

Another fallacy is that custom exceptions should be derived from
System.ApplicationException. This used to be the correct approach but has now
been identified by Microsoft as incorrect. You should instead be deriving all cus-
tom exceptions from System.Exception. One of the main reasons for this change is
an assortment of issues when using third-party libraries in your code. You may
have a function that calls a third-party method, which in turn throws a
System.ApplicationException, and you may also throw that same exception later on
in your code. When the exception leaves the method and arrives at the exception
handler, who threw it? The best approach is to create exception class hierarchies
that are as wide and shallow as possible, the same approach typically used with the
structuring of class hierarchies.

All custom exceptions should also support the three default constructors to pro-
mote consistency between your custom exceptions and the built-in framework
exceptions.

Chapter 14 ■ Best Practices for Robust Exception Handling144

These constructors are:

const string defaultMessage = “Your default message”;

public YourException()
: base(defaultMessage);

public YourException(string message)
: base(String.Format(“{0} - {1}”, defaultMessage, message));

public YourException(string message, Exception inner)
: base(String.Format(“{0} - {1}”, defaultMessage, message), inner);

There are some rules that must be followed in regards to the message property. Do
not store exception information in the message property. Instead, create separate
properties in the exception class to hold the data. Storing information in the mes-
sage property also means that users will have to perform string parsing to retrieve
the data, which is an obvious hassle. Also consider the problems that localization
would present if you were attempting to parse different pieces of information from
the exception message when the formatting of the string was based on the current
culture locale.

Lastly, be sure to mark your exceptions with the [Serializable] attribute. You
never know when your methods will be called from Remoting or a Web Service.

Here is a complete example of a custom exception in its simplest form:

[Serializable]
public class NexusException : System.Exception
{

const string defaultMessage = “A runtime error occurred within” +
“Nexus World Builder”;

public NexusException()
: base(defaultMessage)

{
}

public NexusException(string message)
: base(String.Format(“{0} - {1}”, defaultMessage, message))

{
}

Creating Custom Exceptions 145

public NexusException(string message, Exception inner)
: base(String.Format(“{0} - {1}”, defaultMessage, message), inner)

{
}

}

Throwing Exceptions
A trait of exceptions is that they cannot be ignored, so it is a good idea to use
exceptions in place of return values when a particular operation must be success-
ful to proceed. It is also wise to rely more on throwing an exception than using
Debug.Assert. Keep in mind that assertions are removed from release code, so
errors will be much harder to track down in a production environment.

The stack trace is a critical piece of information to have when an exception is
thrown, and extra care must be taken when re-throwing exceptions to ensure that
the stack trace is preserved. Many times you need to catch a particular exception,
perform cleanup logic such as a transaction rollback, and then re-throw the excep-
tion so that another exception handler can process it.

Consider the following code:

try
{

// Code that throws an exception
}
catch (Exception exception)
{

// Code that performs cleanup \ rollback
throw exception;

}

In this example, the exception is caught and thrown back to the next exception
handler, but using a new exception object without the stack trace. The proper way
to re-throw the exception while preserving the stack trace information is shown in
the following code:

try
{

// Code that throws an exception
}
catch (Exception exception)
{

Chapter 14 ■ Best Practices for Robust Exception Handling146

// Code that performs cleanup \ rollback
throw;

}

Just calling throw alone will re-throw the exact same exception object that arrived
at the catch statement in the first place.

Also, be sure to add a semantic value if you re-throw an exception under a differ-
ent type. Sometimes you may wish to take a few specific exceptions and re-throw
them under a more generalized type, but it is advisable to at least attach the old
exception as the inner exception property when re-throwing it. That way, the orig-
inal exception is readily available if there is a need for re-specialization.

Lastly, it is bad design to use exceptions as a means of returning information from
a method. One reason is that exception handling is fairly slow, so overuse and mis-
use of exception handling can introduce many performance bottlenecks into your
code.

Structured Exception Handlers
There are some rules that should be followed when building your exception han-
dlers and deciding what exception types to catch. Never catch a base-type excep-
tion when you are always expecting a more specialized one. For example, do not
catch System.Exception when the only exception that will ever be thrown is a
System.ArgumentNullException. Generic handlers create many problems, and should
be avoided whenever possible. A general rule of thumb is that System.Exception
should only ever be caught once per thread.

If you want more reasoning behind this rule, consider the following example.

Imagine that you build a library that offers fairly basic functionality, and it is used
by a Windows Forms application. Now, normally a method in this library will
throw System.ArgumentNullException when a specified parameter is null. If the
Windows Forms application has a structured exception handler that catches
System.Exception, error handling will work as expected in a perfect situation. In the
event that the library assembly cannot be referenced by the Windows Forms appli-
cation because it is missing, the Common Language Runtime will throw a
System.IO.FileNotFoundException, indicating that the library assembly could not be
found. When this exception occurs, the Windows Forms application believes that
a null parameter was specified, when in reality the entire library could not be found.
However, if the Windows Forms application did not catch generic exceptions, this
problem would be avoided.

Structured Exception Handlers 147

Lastly, one of the absolute worst things you can do is catch an exception and do
nothing with it. Catching an exception with an empty code block is commonly
referred to as exception swallowing; do not do this! If you do not wish to handle a
certain type of exception, don’t write an exception handler for it.

Logging Exception Information
At first glance, it may look correct to spit out the contents of Exception.Message to
whatever logging medium you are using, but such an assumption would be incor-
rect. The Exception.Message property only contains the high-level message, which
could be as informative as Object reference not set to an instance of an object.
A better approach instead is to log Exception.ToString(), which will result in the
logging of the message, the inner exception, and the stack trace of the exception—
information that is much more useful when it comes time to debug a problem.

Mechanisms for Cleanup
There are a number of classes in the .NET class framework that require cleanup
after their role has been fulfilled, and certain classes (like file system access) can
lead to locking or other problems when not properly disposed.

Consider the following code:

public void DoSomething(string fileName)
{

StreamReader reader = new StreamReader(string fileName);
ProcessStream(reader);
reader.Close();

}

All is well if no errors occur, but consider the situation where ProcessStream throws
an exception. The close method for the StreamReader would never be called, and the
resource would remain active.

One solution to this problem is to introduce an exception handler that closes the
StreamReader when an error occurs, and then re-throws the exception.

Consider the following code:

public void DoSomething(string fileName)
{

StreamReader reader = null;
try
{

Chapter 14 ■ Best Practices for Robust Exception Handling148

reader = new StreamReader(string fileName);
ProcessStream(reader);
reader.Close();

}
catch (Exception exception)
{

If (reader != null)
{

reader.Close();
}
throw;

}
}

This solution will ensure that the reader is always closed, but the design of it is
somewhat messy; code is duplicated and it is harder to read.

Structured exception handling in .NET also offers the finally block, which exe-
cutes when the runtime leaves the exception handler, regardless of whether or not
the try or the catch fired.

The following code shows how this would look:

public void DoSomething(string fileName)
{

StreamReader = null;
try
{

reader = new StreamReader(string fileName);
ProcessStream(reader);

}
finally
{

if (reader != null)
{

reader.Close();
}

}
}

To present an even better approach than the finally mechanism, C# has the won-
derful keyword using that implicitly implements the disposable design pattern and
ensures that the resource it is attached to cleans up, even in the event that an
exception occurs. The using keyword only works on classes that implement the

Mechanisms for Cleanup 149

IDisposable interface, but that also means you can create custom classes that
require a cleanup process and use this keyword on them.

The following code shows how the using keyword works:

public void DoSomething(string fileName)
{

using (StreamReader reader = new StreamReader(string fileName))
{

ProcessStream(reader);
}

}

This solution is much more elegant than an ugly exception handler, and still
ensures that the resource is released when it is no longer needed.

Unhandled and Thread Exception Events
There are a few issues when using either the AppDomain.UnhandledException event or
the Application.ThreadException event. The notification fires so late that by the
time you receive the exception notification, your application will be unable to
respond to it. Additionally, you will not receive any notifications if your exception
was thrown from the main thread or unmanaged code.

It is also very difficult to write a generic exception handler for the entire applica-
tion that is robust and flexible enough to accommodate and correctly handle every
erroneous situation. Because a generic handler would not have access to the local
variables present when the exception was thrown, the need to rely on global vari-
ables and singletons will be increased, which is something that should be ulti-
mately avoided.

With such faults, you are probably wondering why these events should be used in
the first place. Consider them as “safety nets” for the situations where an exception
slips through and would be normally handled by the default exception handler
provided by the Common Language Runtime.

Conclusion
Structured exception handling is and will remain an integral part of any software
project. This chapter covered some best practices for using .NET exception handling,
and it is highly advisable that you adopt these new techniques and approaches into
your development projects. Doing so will improve both the design and perfor-
mance of your code and will increase the overall maintainability of your software.

Chapter 14 ■ Best Practices for Robust Exception Handling150

While you could build your own exception handling manager that offers many fancy
features that other developers would be envious of, it is important to remember
that software development is about building software that meets business needs
and doing so in a timely manner. Reinventing the wheel is generally ridiculed, so
there are a couple of components available from Microsoft that can be used when
there is a need for advanced exception handling support.

The first component is the Exception Handling Application Block that offers the
ability to create a consistent strategy for processing exceptions on all architectural
layers of an application. This component is not limited to service boundaries,
which is an important feature for distributed architectures. Several tools are
included with the installation that help you create and configure exception poli-
cies for your application. The Exception Handling Application Block can be down-
loaded from MSDN.

The other component is the Logging and Instrumentation Application Block,
which allows for .NET applications to be built for manageability in a production
environment. Applications can leverage existing logging, tracing, and eventing
mechanisms built into Windows, and can issue a variety of warnings, errors,
audits, diagnostic events, and business-specific events. This component also pro-
vides statistics like average execution time for a process or service. This component
can also be downloaded from MSDN.

Conclusion 151

This page intentionally left blank

Techniques for
Arbitrary Tools

It’s hard to read through a book on the principles of magic without glancing
at the cover periodically to make sure it isn’t a book on software design.

Bruce Tognazzini

Each and every tool is unique, but there are always core elements that are common
to them all. Designing these core elements to be modular and reusable is advanta-
geous and will save money and time when building subsequent tools that need the
same functionality. Many developers build elaborate solutions to a simple prob-
lem, often reinventing the wheel in the process. These solutions are often complex
and hard to maintain, costing additional resources that are better spent on other
areas of an application that are more deserving of the time.

The chapters in Part II cover arbitrary elements that are applicable to almost any tool,
independent of the feature list or specifications. The accompanying components to the
chapters are also flexible enough that they can be plugged into these arbitrary tools
with little to no modification. It is this reusability that will save a project additional
resources that can be spent elsewhere. The majority of the chapters cover techniques
that are relevant to the storage and manipulation of arbitrary data in a common form.
Some techniques include data compression, encryption, printing support, using the
PropertyGrid control, and a generic framework for handling batch file processing.

PART II

This page intentionally left blank

155

Compressing Data to
Reduce Memory Footprint

chapter 15

The programmer’s primary weapon in the never-ending battle against slow
systems is to change the intramodular structure. Our first response should
be to reorganize the modules’ data structures.

Frederick P. Brooks

Games are being produced with multiple gigabytes of game assets, and it is pro-
jected that file sizes will increase at an exponential rate in the years to come. One
of the largest issues for building reusable and efficient tools comes down to scala-
bility, and how to build tools that can manage countless assets. One way to achieve
this goal is through the use of data compression to reduce the file size of each game
asset.

A variety of software development projects employ data compression, and almost
all operating systems and platforms have libraries and tools available to perform
data compression for different types of situations and datasets. Fortunately, .NET
2.0 introduced some new data compression components that make the whole
process very easy.

As for a definition, data compression removes redundancy from data, which can
come in a lot of different forms depending on the type of data in question. On a
small scale, repeated bit sequences (11111111) or repeated byte sequences
(XXXXXXXX) can be transformed. On a larger scale, redundancies tend to come

from sequences of varying lengths that are relatively common. Basically, data com-
pression aims at finding algorithmic transformations of a dataset that will produce
a more compact representation of the original dataset.

Choosing the best compression algorithm depends on a number of factors, such
as expected patterns and regularities in the data, storage and data persistence
requirements, and both CPU and memory limits. This chapter briefly covers some
data compression theory, but it mostly covers implementation of data compres-
sion using the built-in C# components.

Types of Compression
Data compression basically comes in two flavors, lossy and lossless.

Lossy compression is a representation of the original dataset that is “close enough”
in comparison. File sizes are significantly reduced by losing a reasonable amount
of data in the compression process. Lossy compression can produce far more com-
pact dataset representations than lossless compression. The main problem with
lossy compression is that valid data is actually lost and unrecoverable, but this lim-
itation is all right for images, sound files, and video clips where data loss is accept-
able because humans can only perceive a subset of the actual data anyway. In the
data persistence world, where data cannot be lost or corruption would occur, lossy
compression algorithms will not suffice. Storing a “close enough” representation of
a data file would be useless. Lossy compression also does not generally provide a
decompression algorithm because of the data loss.

Lossless compression is a representation of the original dataset that enables repro-
duction of the exact contents of the original dataset by performing a decompres-
sion transformation. No data is ever lost in the compression process, making it the
perfect solution for compressing data that must maintain integrity. This chapter
only covers lossless data compression, because we generally want tools to maintain
100 percent data integrity unless we are dealing with image compression.

GZipStream Compression in .NET 2.0
Microsoft .NET 1.1 did not include any data compression components other than
third-party solutions. Recently introduced in .NET 2.0 is the System.IO.Compression
namespace that provides compression and decompression services for streams.
There are currently two supported algorithms: deflate and gzip. This chapter cov-
ers the gzip algorithm exclusively.

Chapter 15 ■ Compressing Data to Reduce Memory Footprint156

Implementation for Arbitrary Data 157

The gzip algorithm is a lossless data format that is safe from patents. The gzip
implementation provided by Microsoft is completely compatible with the unix
gzip functionality, though the .NET implementation has a slightly weaker com-
pression algorithm. The gzip implementation follows the format from RFC 1952.
Microsoft .NET 2.0 provides gzip functionality through the GZipStream class.

Another great feature of the gzip format is that there is a cyclic redundancy check-
sum that is used to detect data corruption.

N o t e

The GZipStream class cannot be used to compress files larger than four gigabytes in size.

Implementation for Arbitrary Data
The first step to use the GZipStream class is to include the appropriate namespaces.

using System;
using System.IO;
using System.IO.Compression;

The following method is used to compress arbitrary data stored in a byte array and
return a byte array containing the compressed data. Notice that the input data
length is written as the first four bytes of the stream. This is so the decompression
method can decompress that data without having to determine the original file
size of the data. This was done to improve performance and speed, sacrificing
compatibility with other gzip implementations. We want to know the original size
of the data before compression so we can allocate enough memory to store the
data after decompression.

Data is compressed on the fly as it is written into the GZipStream. Notice that the
constructor for GZipStream references the memory stream that will hold the resul-
tant data. This compression can be done against any stream object, including,
FileStream for files.

internal static byte[] CompressData(byte[] input)
{

try
{

using (MemoryStream output = new MemoryStream())
{

output.Write(BitConverter.GetBytes(input.Length), 0, 4);

using (GZipStream zipStream = new GZipStream(output,
CompressionMode.Compress, true))

{
zipStream.Write(input, 0, input.Length);

}

return output.ToArray();
}

}
catch (Exception)
{

return null;
}

}

Decompression is handled in the same way as compression, except the
CompressionMode.Decompress enum value is used. The first step is to read the initial
four data bytes from the stream as an integer describing the buffer size for the
decompressed data. Then the data buffer is created and the input data is decom-
pressed and read into it.

internal static byte[] DecompressData(byte[] input)
{

try
{

using (MemoryStream inputData = new MemoryStream(input))
{

byte[] lengthData = new byte[4];

if (inputData.Read(lengthData, 0, 4) == 4)
{

int decompressedLength = BitConverter.ToInt32(lengthData, 0);
using (GZipStream zipStream = new GZipStream(inputData,

CompressionMode.Decompress))
{

byte[] decompressedData = new byte[decompressedLength];

if (zipStream.Read(decompressedData,
0,
decompressedLength) == decompressedLength)

{
return decompressedData;

}

Chapter 15 ■ Compressing Data to Reduce Memory Footprint158

}
}

}

return null;
}
catch (Exception)
{

return null;
}

}

Implementation for Serializable Objects
A powerful feature of the .NET platform is the ability to serialize objects into an
XML or binary representation to make storing, sending, or transforming data
extremely easy. Serialization is common practice and is used in many facets of
.NET application or systems development. The BinaryFormatter class can serialize
and deserialize data into a stream, which makes GZipStream a suitable target for
data transformation.

The first step is to include the appropriate namespaces.

using System;
using System.IO;
using System.IO.Compression;
using System.Runtime.Serialization.Formatters.Binary;

The following code describes a simple serializable class that is used in the accom-
panying example for this chapter. It shows how to create a serializable class and
properly decorate it with the SerializableAttribute.

[Serializable]
internal class TestObject
{

private string testString;
private int testInteger;

public string TestString
{

get { return testString; }
set { testString = value; }

}

Implementation for Serializable Objects 159

public int TestInteger
{

get { return testInteger; }
set { testInteger = value; }

}

internal TestObject()
{

testString = string.Empty;
testInteger = 0;

}
}

The next method is used to compress TestObject instances into a byte array contain-
ing the compressed data. You will notice that the code is very similar to compressing
arbitrary data except the BinaryFormatter is in charge of writing to the GZipStream.

internal static byte[] CompressTestObject(TestObject testObject)
{

try
{

using (MemoryStream output = new MemoryStream())
{

using (GZipStream zipStream = new GZipStream(output,
CompressionMode.Compress))

{
BinaryFormatter formatter = new BinaryFormatter();
formatter.Serialize(zipStream, testObject);

}

return output.ToArray();
}

}
catch (Exception)
{

return null;
}

}

Decompression works the same as the compression method, except the input data
is decompressed and deserialized into a TestObject instance. This approach does
not require the data length to be written to the stream because BinaryFormatter
knows how big the class data is.

Chapter 15 ■ Compressing Data to Reduce Memory Footprint160

internal static TestObject DecompressTestObject(byte[] input)
{

try
{

using (MemoryStream output = new MemoryStream(input))
{

using (GZipStream zipStream = new GZipStream(output,
CompressionMode.Decompress))

{
BinaryFormatter formatter = new BinaryFormatter();
return (formatter.Deserialize(zipStream) as TestObject);

}
}

}
catch (Exception)
{

return null;
}

}

Conclusion
This chapter briefly covered part of data compression theory, though barely
scratching the surface of a complex topic, and then later jumped into implemen-
tation details for the GZipStream class introduced in .NET 2.0.

Data compression has been and always will be a crucial element of many tools,
especially with the projected increase in the volume of game content over the next
couple of years. Data compression also has its place with network tools where
bandwidth and transfer speed is limited.

Conclusion 161

This page intentionally left blank

163

Protecting Sensitive
Data with Encryption

chapter 16

The only thing more frightening than a programmer with a screwdriver or
a hardware engineer with a program is a user with a pair of wire cutters
and the root password.

Elizabeth Zwicky

With the highly distributed software populating the computing world these days,
there is often a need to protect sensitive data so that it is accessible only by a select
group of people. Some applications are network- or Internet-driven, and they must
maintain secure communication so that malicious attackers cannot modify incom-
ing and outgoing packets. Other applications need to store sensitive data locally in
the file system or a remote database in a format that is unreadable by humans.

Developers look towards encryption to accomplish this feat, but very few of them
implement it correctly. These developers throw around buzzwords like “128-bit
encryption” and claim that their applications are secure, when, in fact, they have
introduced security flaws that can be exploited by anyone with the knowledge to
do so.

Some developers also think that they can roll their own implementation of a par-
ticular algorithm and claim that it works correctly. Just because you see data that
you think is encrypted does not actually mean that it is. Many of these developers
could probably hand their implementations over to a knowledgeable cryptologist

who would discover flaws. Experts were hired to implement the algorithms pro-
vided in the .NET Class Framework, and it is advisable to use their implementa-
tions because they more than likely have a better understanding of encryption
than you do.

This chapter covers the encryption ciphers available in the .NET Class Framework,
how to implement encryption properly, and common pitfalls and issues when
securing data with encryption.

Encryption Rudiments
Encryption is a complex subject, and it is impossible to cover all aspects in a single
chapter. While still quite ambitious, in this chapter, I will attempt to summarize the
common characteristics of encryption and present a solution that takes care of the
majority of the underlying mechanisms and theory behind encryption. This chap-
ter will only cover the usage of algorithm implementations currently provided by
the .NET Class Framework, and not how to implement the algorithms yourself.

To fully understand this chapter and encryption in general, we must define a few
common characteristics and terms.

Public-Key Encryption
This type of encryption is commonly referred to as asymmetric encryption and
uses a public and private key pair to perform encryption or decryption of data.
The public key is available to everyone and is used to encrypt data that will be
decrypted by the owner of the private key. The private key is kept secure by the
owner and is used to decrypt data that has been encrypted with the public key.

Asymmetric encryption is generally only efficient on relatively small sets of data.
The .NET Class Framework contains two asymmetric encryption algorithms:
Digital Signature Algorithm (DSA) and RSA.

Private-Key Encryption
This type of encryption is commonly referred to as symmetric encryption and uses
a single key to perform encryption or decryption of data. The private key must be
kept safe from anyone other than the owner of the data.

Symmetric encryption is generally fast and can operate on large sets of data. The
.NET Class Framework contains four symmetric encryption algorithms: DES, Triple
DES, RC2, and Rijndael.

Chapter 16 ■ Protecting Sensitive Data with Encryption164

Ciphers
Ciphers are cryptographic algorithms that use a private key to transform plain text
input into an encrypted output, also known as cipher text. There are two forms of
ciphers: block-based and stream-based.

A block-based cipher takes a fixed size input block and transforms the data into a
fixed size cipher text block.

A stream-based cipher does not encrypt data but instead generates a key stream
that produces the cipher text by XORing the stream bytes with the input bytes.

The .NET Class Framework only provides block-based ciphers, but it is possible to
make a block-based cipher behave in a streaming fashion.

Block Padding
Block ciphers were designed to operate on complete blocks of data. Padding is
used when processing a partial block of data to append extra data to the incom-
plete block, making it an even multiple of the block size.

The .NET 2.0 Class Framework supports three types of block padding, as described
in Table 16.1.

Encryption Rudiments 165

Table 16.1 Padding Modes Available in .NET 2.0

Padding Mode Description

PaddingMode.None Informs the cipher that no padding should occur. This mode requires that
you ensure that only complete blocks are processed or any exception will
be thrown.

PaddingMode.Zeros Informs the cipher that zeros should be appended to the incomplete data
block to make it an even multiple of the block size.

The problem with this mode is that the decryption process will not be
able to distinguish the padding from the actual data, which will result in
the padding being appended to the decrypted data.

A possible solution is to transmit the padding length with the data so that
the padding can be removed when the decryption process has finished.

PaddingMode.PKCS7 Informs the cipher to append a sequence of bytes that has a value equal
to the number of padding bytes.

In a 128-bit data block, if the source data looks like [AA BB CC DD], then
12 padding bytes must be added to make it an even multiple of the block
size. The hex value [0C] represents the numeric value 12 in base 10, so
the final data block will look like: [AA BB CC DD 0C 0C 0C 0C 0C 0C 0C
0C 0C 0C 0C 0C].

It is advisable to use PaddingMode.PKCS7 when developing with .NET 1.1 and
PaddingMode.ISO10126 when developing with .NET 2.0. Both versions of the .NET
framework default to PaddingMode.PKCS7, so you will have to explicitly set the
padding mode to ISO10126.

Keep in mind that your software does not exist in a vacuum, so it is important that
you make sure that using a different padding mode will not break any existing code.

Key Strength
The key strength, also known as key size, of an encryption algorithm refers to the
length of the underlying key, and the higher the number the better. Consider the
case of an 8-bit key. It would take an attacker roughly 256 guesses to land on the
key, whereas a 40-bit key would take an attacker roughly over a trillion guesses to
land on the key. The key length is very important, as is the data comprising the key.

Pseudo-random number generators (PRNG) are sometimes used by developers to
generate private keys. Computers are fairly predictable, so achieving randomness
is difficult to do. Do not try to create your own PRNG classes; use the built-in
functionality provided by the RNGCryptoServiceProvider class in the .NET Class
Framework.

Lastly, some developers also derive the key from a password, which may result in
a key of substantial length, but the key is only as random as its source. If a 256-bit
key is derived from a 12-character password, the key is not as secure as one might
think. If a malicious attacker understands how the key is derived, he only has to
attack the 12-character password to reveal the key itself.

Chapter 16 ■ Protecting Sensitive Data with Encryption166

Table 16.1 Padding Modes Available in .NET 2.0 (continued)

Padding Mode Description

PaddingMode.ISO10126 This padding mode works very much like PaddingMode.PKCS7, except it
sets the value of the final byte in the block to the number of padding
bytes and sets the remaining padding bytes to random data.

PaddingMode.ANSIX923 This padding mode works very much like PaddingMode.PKCS7, except it
sets the value of the final byte in the block to the number of padding
bytes and sets the remaining padding bytes to zero.

Cipher Modes
One of the most important security issues to correctly configure is the cipher
mode. This mode determines how the individual blocks of a transform are assem-
bled to form the final data.

Messages are usually more than one block in length, so how does the data get
encrypted? The obvious solution would be to encrypt each block individually and
slap them all together in the end. In actuality, this is one of the most insecure cipher
modes (ECB—Electronic Code Book), which can lead to security compromises of
the encrypted data.

Cipher modes are used to modify the encryption process based on data carried
over from previous block encryptions. The resulting encryption provides a much
higher level of security than performing a simple block-level encryption.

The .NET class framework has a variety of other cipher modes available at your
disposal, each with its own pros and cons. These cipher modes are listed in Table
16.2. We will be using the CBC mode for this chapter as it offers the best security.

Encryption Rudiments 167

Table 16.2 Cipher Modes Available in .NET 2.0

Cipher Mode Description

CipherMode.CBC This cipher mode (Cipher Block Chaining Mode) appends a number of
bytes equal to the number of padding bytes used. Before each block is
encrypted, it is combined with the previous block using an exclusive
bitwise OR operation. This allows for each cipher block to be unique.
The initialization vector is combined with the first plain text block before
encryption occurs. If a single bit of the cipher block is corrupted, the
corresponding plain text block will also be corrupted. In addition, a bit
in the subsequent block in the same position will also be corrupted.

CipherMode.CFB This cipher mode (Cipher Feedback Mode) processes small amounts of
plain text instead of an entire block at a time. A shift register is used that
is one block in length and is divided into sections. If the block size is eight
bytes, the shift register is divided into eight sections. If a bit in the cipher
text is corrupted, a plain text bit is corrupted as well as the shift register.
Then all results in the next several plain text processes will be corrupted
until the bad bit is shifted out of the register.

CipherMode.CTS This cipher mode (Cipher Text Stealing Mode) handles any length of plain
text data and produces cipher text that has a length equal to the plain text
length. This cipher mode behaves exactly like the CBC mode except for the
last two blocks of plain text.

N o t e

CTS and OFB are defined but not currently implemented by any algorithms in the .NET framework.

Initialization Vectors
Symmetric algorithms will encrypt the same input block into the same output
block based on the key. This is a weakness that can be potentially exploited by
malicious attackers if they determine the structure of the data. Attackers could
locate patterns and eventually reverse-engineer the private key.

In order to protect against this, the algorithms in the .NET Class Framework per-
form data chaining, where information from the previously encrypted block is used
to encrypt the current block. This technique requires what is known as an initializa-
tion vector (IV) to perform the encryption with increased cryptographic variance.

There are a couple of ways to generate an initialization vector, but one approach is
to run a hashing algorithm on a secret phrase and use a segment of the result as
the encryption IV.

The following code shows how to do this:

using System.Security.Cryptography;

static public byte[] GenerateIV(byte[] key, int size)

Chapter 16 ■ Protecting Sensitive Data with Encryption168

Table 16.2 Cipher Modes Available in .NET 2.0 (continued)

Cipher Mode Description

CipherMode.ECB This cipher mode (Electronic Code Book) encrypts each block individually.
Any blocks of plain text that are in the same message or in a different
message using the same key will produce identical cipher text blocks.
If the plain text contains a large amount of repetition, it is quite possible
to break the cipher one block at a time. It is also possible to substitute and
exchange cipher blocks without detection. If a single bit in the cipher text
is corrupted, the entire corresponding plain text will also be corrupted.

CipherMode.OFB This cipher mode (Output Feedback Mode) processes small amounts of
plain text instead of an entire block at a time. This cipher mode is very
similar to CipherMode.CFB except the shift register is filled differently.
If a bit in the cipher text is corrupted, the corresponding bit of plain text
will also be mangled. If there are missing bits from the cipher text, the
plain text will be corrupted from that point on.

{
byte[] result = new byte[size];

SHA384Managed sha384 = new SHA384Managed();
sha384.ComputeHash(key);

for (int byteIndex = 0; byteIndex < result.Length; byteIndex++)
{

result[byteIndex] = sha384.Hash[byteIndex];
}

return result;
}

The following generates a correctly sized key using a variation of the code for the
initialization vector generation.

static public byte[] GenerateKey(byte[] key, int size)
{

byte[] result = new byte[size];

SHA384Managed sha384 = new SHA384Managed();
sha384.ComputeHash(key);

int counter = 0;

for (int byteIndex = sha384.Hash.Length - 1;
byteIndex > = (sha384.Hash.Length - size);
byteIndex—)

{
result[counter++] = sha384.Hash[byteIndex];

}

return result;
}

Selecting a Cipher
As discussed previously, there are a few ciphers that can be used for private-key
encryption. They all fundamentally do the same thing, except there are some notable
differences between them in terms of performance, efficiency, and security.

Selecting a Cipher 169

The symmetric encryption algorithms provided by the .NET Class Framework are
described in Table 16.3.

ICryptoTransform Interface
All symmetric encryption implementations provided in the .NET Class
Framework implement the ICryptoTransform interface, which provides a uniform
way to encrypt and decrypt data independently of the selected cipher.

Table 16.4 describes the members of the ICryptoTransform interface.

Since all symmetric algorithms inherit from this interface, encryption and decryp-
tion is accomplished using the same calls independently of the cipher used. The
following code shows how to encrypt or decrypt binary data of arbitrary length.

Chapter 16 ■ Protecting Sensitive Data with Encryption170

Table 16.3 .NET Symmetric Encryption Algorithms

Algorithm Description

DES This symmetric algorithm, also known as the Digital Encryption Standard, has
existed for quite some time and is fairly weak by current standards. The DES
algorithm was specifically designed to be efficient when implemented in
hardware and inefficient when implemented in software. Because of its design,
this algorithm is relatively slow compared to more modern algorithms. Another
limitation is the short block and key sizes, available only in a 64-bit flavor.

Triple DES This symmetric algorithm is basically a strengthened version of DES, offering
stronger keys of 128-bit and 192-bit. Triple DES runs the DES algorithm over the
input data three times, resulting in an algorithm that is stronger but three times
slower than DES.

RC2 This symmetric algorithm is fairly good, and it performs more than twice as fast
as DES when implemented in software. The 64-bit block size is relatively small,
but at least the algorithm supports key lengths of 40 to 128 bits in 8-bit
increments.

Rijndael This symmetric algorithm, also known as the Advanced Encryption Standard
(AES), supports block and key sizes of 128, 192, and 256 bits.

While scrutinized for being new and not yet standing the test of time, the
Rijndael algorithm has become a U.S. Federal Government standard, and is
the recommended symmetric encryption algorithm to use whenever possible.

using System.Security.Cryptography;

static public byte[] EncryptMessage(SymmetricAlgorithm cipher,
byte[] key,
byte[] plainText)

{
ICryptoTransform transform = cipher.CreateEncryptor(GenerateKey(key, 16),

GenerateIV(key, 16));
byte[] result = transform.TransformFinalBlock(plainText, 0, plainText.Length);
return result;

}

static public byte[] DecryptMessage(SymmetricAlgorithm cipher,
byte[] key,
byte[] cipherText)

{
ICryptoTransform transform = cipher.CreateDecryptor(GenerateKey(key, 16),

GenerateIV(key, 16));

ICryptoTransform Interface 171

Table 16.4 Members of the ICryptoTransform Interface

Member Name Description

CanReuseTransform This property indicates whether the current transform can be
reused or not. All ciphers in the .NET Class Framework always
return true.

CanTransformMultipleBlocks This property indicates whether or not multiple blocks can be
transformed in a single call to either TransformBlock or
TransformFinalBlock. All ciphers in the .NET Class
Framework always return true.

InputBlockSize This property indicates the size of the input blocks, which will
always be identical to the OutputBlockSize. The return
value is dependent on the value of the BlockSize property
set in the cipher.

OutputBlockSize This property indicates the size of the output blocks, which
will always be identical to the InputBlockSize. The return
value is dependent on the value of the BlockSize property
set in the cipher.

TransformBlock This method encrypts or decrypts one or more blocks before
the end of the message.

TransformFinalBlock This method encrypts or decrypts one or more blocks at the
end of the message. Ending blocks must be transformed
differently from other blocks due to padding issues.

byte[] result = transform.TransformFinalBlock(cipherText, 0, cipherText.Length);
return result;

}

You will notice in the above example that TransformFinalBlock is called, but
TransformBlock is never called. Since we know that CanTransformMultipleBlocks will
always return true with any of the symmetric algorithms in the .NET Class
Framework, we can transform all of our data in one pass.

The following code shows a simple example using the code shown in this chapter.

using System.Text;

static void Main(string[] args)
{

byte[] key = Encoding.Default.GetBytes(“This is my secret key!”);
string plainText = “This is a test!”;

// You can also use RC2, DES, and TripleDES
RijndaelManaged cipher = new RijndaelManaged();
cipher.Mode = CipherMode.CBC;

Console.WriteLine(“Original: [“ + plainText + “]”);

byte[] encryptedData = EncryptMessage(cipher, key,
Encoding.Default.GetBytes(plainText));

Console.WriteLine(“Encrypted: [“ +
Encoding.Default.GetString(encryptedData) + “]”);

byte[] decryptedData = DecryptMessage(cipher, key, encryptedData);
string decryptedText = Encoding.Default.GetString(decryptedData);
Console.WriteLine(“Decrypted: [“ + decryptedText + “]”);

Console.WriteLine(“”);
Console.WriteLine(“Press any key to continue.”);
Console.Read();

}

Conclusion
This chapter covered the theory and implementation details of using the built-in
cryptography functionality in the .NET framework. While the presented solution
could be improved upon and extended into a more reusable encryption manager,
the fundamental code stays the same.

Chapter 16 ■ Protecting Sensitive Data with Encryption172

173

Generic Batch File
Processing Framework

chapter 17

Simple things should be simple and complex things should be possible.

Alan Kay

Of all the common elements in the majority of development tools, batch file pro-
cessing is used quite frequently by game tool programmers. It is not uncommon
for a game to contain multiple gigabytes of game content files, so batch file pro-
cessing is a must when a large volume of data is in need of alteration.

Some examples of batch file processing include generation of normal and texture
maps from a collection of source art, deleting all files where the file name match-
es a particular search string, and recursively copying a folder hierarchy to another
location when the directory layout is restructured.

The type of processing done on the files could be pretty much anything, although
the code behind recursively iterating through directories and files remains relatively
generic. Because effective use of time is essential when developing tools that our
coworkers are waiting on, especially when the tool is not overly complex, reusability
of common code is crucial. In this chapter, I present a generic batch file processing
framework that promotes reusability, strong design, and flexibility.

Goals
The main goal of this framework is to promote reusability of the code that exists
in all batch file processing tools, and to ensure that this framework will be suffi-
ciently flexible for all the tools utilizing it.

The framework must be designed to work in either a console or WinForm envi-
ronment, so the code should remain in a class library and only reference the core
assemblies.

Strong design should be promoted through the use of solid OOP techniques.
Maintainability is extremely important in any project, so a framework with a solid
design results in better tools.

Developers must be able to quickly build tools without using a cumbersome API;
the framework should be easy to configure and execute.

A verbose mode where operation progress can be reported to the user should also
be available, keeping in mind that other tools should be able to run in silent mode
as well.

The framework must have extremely low overhead because large operations
demand performance.

Special situations where files are read-only should also be handled safely; the
framework should be able to ignore read-only files or force writing if configured
to do so. Configuration of the common base code is important, so other options,
such as whether or not to recursively travel down directory structures, will also be
available.

Lastly, the framework should be able to cancel the current operation. Support that
will enable cancellation on a per-transaction basis will be integrated; that is, can-
cellation will not be supported halfway through the modification of a file, but
rather after the current operation finishes. A mechanism will be available to devel-
opers so that they can support cancellation during an operation if they wish to
worry about data integrity themselves.

Proposed Solution
In order to make a truly generic framework, we have to isolate the code that is dif-
ferent than other batch file processing tools, and build our framework around the
code that remains. The work that these utilities perform is the variant data, so a

Chapter 17 ■ Generic Batch File Processing Framework174

generic framework must be able to support an interface that allows different func-
tions to be attached to it, depending on the work needed. There are two ways that
our framework will allow the worker function to be defined: through the use of
delegates and through the use of virtual functions accessible through inheritance.

Delegates, the equivalent to function pointers in C++, will allow our system to
specify the worker function without requiring inheritance. The delegate approach
should only be used in throwaway tools where time is more important than main-
tainability, because delegates generally promote bad design when compared to the
alternate OOP approach.

The other way that we will be able to specify the worker functions will be through
inheriting from the base framework class. A virtual function will be called when a
file is to be processed and the super class can take care of it appropriately.

For example, if you have a tool that has to recursively open all .txt files in a direc-
tory and replace occurrences of a certain phrase with another, you would create a
class that inherits from the base framework, and override the process method. In
this method, you would open the file, read in the text, perform the substitution,
and save the new text back to disk. All the code that handles the recursion, file
attributes, pattern matching, and other common I/O operations would be left to
the framework, loosely coupled from the tool itself.

The properties, events, and methods of the base framework class will be defined in
an interface to ensure strong OOP design. This will allow for a modular approach
to even the framework engine itself, if more than one engine is ever used.

A delegate will exist for progress notification, so that users will be able to watch the
status of the current operation.

The framework will also provide support for handling read-only files. The ability
to skip read-only files will be available, as will the ability to remove the read-only
attribute from the file before passing the file off to the worker function.

Implementation
Based on the above goals and proposed solution, the following two components
make up the batch file processing framework. See Tables 17.1-17.3 for description
of Delegate Definitions.

The following interface defines the properties, events, and methods that the frame-
work engine must realize. The code is quite simple, but I will go over the code for
the sake of clarity.

Implementation 175

Chapter 17 ■ Generic Batch File Processing Framework176

Delegate Definitions

Table 17.1 Delegate Definitions

Delegate Description

FileAccessProcess This event is fired when the worker function wishes to notify the user
about the operation. This delegate is available to the tool regardless of
the method chosen to specify the worker function.

FileAccessNotify This event is fired when the worker function wishes to notify the user
about the operation. This delegate is available to the tool regardless of
the method chosen to specify the worker function.

Table 17.2 Property Definitions

Property Description

Recursive This property is used to specify whether or not directories are traversed in
a recursive fashion. If this property is false, then only the top-level directory
is actually processed.

SkipReadOnly This property is used to specify whether or not files that are marked with a
read-only attribute should be processed by the worker function.

ForceWriteable This property is used to specify whether or not files that are marked with a
read-only attribute should be made writeable and then processed by the
worker function.

FilePattern This property is used to specify the pattern to match when choosing the
files to process in a directory. The default pattern is *.*, which processes
every file. If the pattern were set to *.txt, then only text files would be
processed.

Cancelled This property is used to specify whether or not the operation has been
cancelled. The worker function can check this property each time it is called
to see if cancellation is occurring.

Table 17.3 Method Definitions

Method Description

Execute This method is called by the tool when processing should begin using the set
options and worker function. The full path to the directory to begin processing
with is sent in as a parameter.

The following code composes the file access interface that powers the logic behind
each batch processing tool. This interface is implemented and customized for each
tool.

using System;
using System.IO;

namespace BatchFileFramework
{

public delegate void FileAccessProcess(IFileAccessLogic logic, FileInfo fileInfo);
public delegate void FileAccessNotify(string message);

public interface IFileAccessLogic
{

bool Recursive
{

get;
set;

}

bool SkipReadOnly
{

get;
set;

}

bool ForceWriteable
{

get;
set;

}

Implementation 177

Table 17.3 Method Definitions (continued)

Method Description

Cancel This method is fairly self-explanatory; it cancels all remaining operations that
have not yet been started, and it sets the Cancelled property so that the
worker function knows that it should either stop what it is doing or finish up.

Notify This method is called by the worker function to fire the OnNotify event. As long
as the tool has set this delegate to a function, it will fire when a notification is sent.

string FilePattern
{

get;
set;

}

bool Cancelled
{

get;
set;

}

void Execute(string fullPath);
void Cancel();
void Notify(string message);

event FileAccessProcess OnProcess;
event FileAccessNotify OnNotify;

}
}

The following class implements the IFileAccessLogic interface and houses a lot of
the common functionality that is present in almost every batch file processing tool.

using System;
using System.IO;

namespace BatchFileFramework
{

public class FileAccessLogic : IFileAccessLogic
{

private bool verbose = false;
private bool recursive = false;
private bool skipReadOnly = false;
private bool forceWriteable = false;

private string filePattern = “*.*”;

private bool cancelled = false;
private bool running = false;

public event FileAccessProcess OnProcess = null;
public event FileAccessNotify OnNotify = null;

Chapter 17 ■ Generic Batch File Processing Framework178

public bool Verbose
{

get { return verbose; }
set
{

if (!this.running)
verbose = value;

}
}

public bool Recursive
{

get { return recursive; }
set
{

if (!this.running)
recursive = value;

}
}

public bool SkipReadOnly
{

get { return skipReadOnly; }
set
{

if (!this.running)
skipReadOnly = value;

}
}

public bool ForceWriteable
{

get { return forceWriteable; }
set
{

if (!this.running)
forceWriteable = value;

}
}

public string FilePattern
{

Implementation 179

get { return filePattern; }
set
{

if (!this.running)
filePattern = value;

}
}

public bool Cancelled
{

get { return cancelled; }
set { cancelled = value; }

}

public void Execute(string fullPath)
{

cancelled = false;
running = true;

if (File.Exists(fullPath))
Process(this, new FileInfo(fullPath));

else if (Directory.Exists(fullPath))
ProcessDirectory(fullPath);

running = false;
}

public void Cancel()
{

cancelled = true;
}

public void Notify(string message)
{

if (!verbose)
{

if (this.OnNotify != null)
this.OnNotify(message);

}
}

Chapter 17 ■ Generic Batch File Processing Framework180

private void ProcessDirectory(string directoryPath)
{

ProcessDirectory(new DirectoryInfo(directoryPath));
}

private void ProcessDirectory(DirectoryInfo directoryInfo)
{

if (cancelled)
return;

ProcessFiles(directoryInfo);

if (recursive)
{

foreach (DirectoryInfo subDirectoryInfo in
directoryInfo.GetDirectories())
ProcessDirectory(subDirectoryInfo);

}
}

private void ProcessFiles(DirectoryInfo directoryInfo)
{

foreach (FileInfo fileInfo in directoryInfo.GetFiles(this.filePattern))
{

if (cancelled)
return;

FileAttributes attributes = File.GetAttributes(fileInfo.FullName);

if ((attributes & FileAttributes.ReadOnly) == FileAttributes.ReadOnly)
{

if (skipReadOnly)
continue;

else if (forceWriteable)
File.SetAttributes(fileInfo.FullName, FileAttributes.Normal);

else
continue;

}

Process(this, fileInfo);

Implementation 181

}
}

protected virtual void Process(IFileAccessLogic logic, FileInfo fileInfo)
{

if (OnProcess != null)
OnProcess(this, fileInfo);

}
}

}

Conclusion
On the Companion Web site are two examples showing a number of features of
this framework.

There is a simple listing example that does not perform any file modification, so it
is safe to run from the top-level directory of your hard drive for the best perfor-
mance results. This example shows how to use the delegate approach to specify the
worker function.

The other example is a search and replace process that searches for all .txt files in the
directory structure and replaces a particular search pattern with another specified
word.

C a u t i o n

The search and replace example should be used with care so you do not modify the wrong files!

Chapter 17 ■ Generic Batch File Processing Framework182

183

Ensuring a Single
Instance of an Application

chapter 18

Never allow the same bug to bite you twice.

Steve Maguire

With most modern operating systems, multiple instances or processes of an appli-
cation can be launched, each with its own internal state and memory. Some tools
are not affected by multiple instances being launched, but other tools are. Imagine
a tool that, when launched, creates a network socket and binds it to a specific port
through which to receive data. If a second instance of that tool were launched, the
initialization would fail because the network port would already be in use. As
another example, look at Adobe Photoshop or any other fully featured image edit-
ing suite. How frustrating do you think it would be if, every time you double-clicked
an image on your desktop, a new instance of Adobe Photoshop would launch?
When a file associated with a specific application is launched from Windows
Explorer, the file name is not passed to a current running process if there is one.
The application that handles the file is determined and a new instance is launched
with the file name as a parameter.

A solution to this problem would be a system that could determine whether there
are any running instances of a particular application, redirect launch parameters
to the running instance, and abort the launching of any additional instances.

This chapter presents a couple of ways to determine whether there is a running
instance of the application, pass command line arguments to an existing instance,
and bring its main window to the foreground.

Early Solutions
I have used a few strategies in the past to implement single application instances.
One method is to create a threading Mutex with a unique name that identifies the
application set to the full path to the executing assembly. The Mutex class can be
used to protect a shared resource from simultaneous access by multiple threads
and processes. A Mutex has two states: signaled or non-signaled. When the state is
signaled, the Mutex is not owned by any thread. When the state is non-signaled,
that means there is a thread that currently possesses ownership of the Mutex. The
ownership of a Mutex is only available to a single thread, so when two threads try
to write to the shared memory at the same time, the first thread to do so acquires
ownership, while the second thread waits for ownership to be released.

The first time an application starts up, it will perform a check for a uniquely
named Mutex to see if there are any other running instances. It will not find any, so
the next step will be to create a Mutex with a unique name so that other application
instances can see that another instance is already running; the unique name will be
the full system path to the executing assembly’s location. With the Mutex created,
we must now call the WaitOne() method so that we set the state to non-signaled and
grant ownership to the thread of this application. At this point, the application
instance can completely load and make itself available to the end user.

All subsequent application instances that start up will perform the same check that
the first instance did, except they will fail. Each new instance will create a Mutex class
using the same name that the first instance used, but all further calls to WaitOne()
will return false because the ownership is currently bound to the thread of the first
instance.

The following code shows a simplified implementation using this approach.

using System.Threading;

[STAThread]
static void Main()
{

Mutex mutex = new Mutex(false, Assembly.GetExecutingAssembly().Location);

if (!mutex.WaitOne(1, true))
{

Chapter 18 ■ Ensuring a Single Instance of an Application184

MessageBox.Show(“There is already an instance of this executable “ +
“running as a process”);

}
else
{

// Keep the mutex alive until the process terminates
GC.KeepAlive(mutex);

Application.Run(new MainForm());
}

}

Another method is to use Windows Management Instrumentation (WMI) to
query the operating system for a listing of active processes filtered by name. Some
developers may favor this approach to the other solutions, so the following code
has been included to show an implementation using WMI. The Companion Web
site has the full source code with additional comments.

public sealed class ProcessCountManager
{

public static int Query(string applicationName)
{

return QueryRunningProcessCount(applicationName);
}

public static int Query(System.Reflection.Assembly assembly)
{

// Break the full path to the executing assembly into
// a string array of parts
string[] locationParts = assembly.Location.Split(“\\”.ToCharArray());

// Retrieve the application name from the last element
// of the location array
string applicationName = locationParts[locationParts.Length - 1];

// Return the running process count for the specified application name
return QueryRunningProcessCount(applicationName);

}

public static bool IsRunning(string applicationName)
{

// Add 1 to account for the application doing the check
return Query(applicationName) > 1;

Early Solutions 185

}

public static bool IsRunning(System.Reflection.Assembly assembly)
{

// Add 1 to account for the application doing the check
return Query(assembly) > 1;

}

private static int QueryRunningProcessCount(string applicationName)
{

// Build a formatted WMI management query to select all
// processes matching a specific name
string query = String.Format(“SELECT Name FROM CIM_Process “ +

“WHERE Name = ‘{0}’”,
applicationName);

// Build an enumerator for the management query results
ManagementObjectSearcher searcher = new ManagementObjectSearcher(query);

// Return the number of results (process count) in the management query
return searcher.Get().Count;

}
}

The WMI implementation has a class composed of static methods that can deter-
mine the number of running processes filtered by name. The easiest and most
maintainable way to use this implementation is to pass the executing assembly
object into the manager. This way, if the assembly name changes, you do not have
to update the code to reflect these changes. The following code shows the proper
usage of the WMI approach.

[STAThread]
static void Main()
{

if (ProcessCountManager.IsRunning(Assembly.GetExecutingAssembly()))
{

MessageBox.Show(“There is already an instance of this “ +
“executable running as a process”);

}
else

Application.Run(new MainForm());
}

Chapter 18 ■ Ensuring a Single Instance of an Application186

Finally, another approach, though a simplified version of the WMI implementa-
tion, is to use the Process object from the System.Diagnostics namespace. While the
WMI version is extremely extensible and robust, the following code using the Process
object is better suited to our needs because it is lightweight.

using System.Diagnostics;

[STAThread]
static void Main()
{

Process process = Process.GetCurrentProcess();

if (Process.GetProcessesByName(process.ProcessName).Count > 1)
{

MessageBox.Show(“There is already an instance of this “ +
“executable running as a process”);

}
else

Application.Run(new MainForm());
}

So far we have discussed a couple of the earlier ways to implement single instance
applications, but with the advent of .NET 2.0, a new integrated approach was pro-
vided that takes care of all the ugly details behind the scenes.

Journey to the Dark Side
Every CLR-compliant language for the .NET platform can reproduce identical
functionality by sharing a common set of framework components. This is because
CLR-compliant languages must support the interoperability with other assemblies
that can be written in a variety of managed languages, meaning that an assembly
written in Visual Basic .NET must be accessible from within a C# application with-
out any performance overhead related to data conversion or “thunking.”

Legacy versions of Visual Basic provided a variety of pre-built components that
aided in the development of applications. Visual Basic .NET exposes a similar
library of components that are generally accessed through the property pages of
the project. One component in particular is the ability to restrict an application so
that it may only be launched once, and redirect the command line parameters
from subsequent instances to the initial one. Visual Basic .NET has a checkbox in
the project properties that enables this functionality, but Visual C# .NET does not
provide it at this time.

Journey to the Dark Side 187

Upon closer inspection of a single instance VB.NET application with a disassem-
bler, Microsoft.VisualBasic.dll is referenced by the runtime. This assembly exposes
the WindowsFormsApplicationBase class that exists in the Microsoft.VisualBasic.
ApplicationServices namespace. This class provides a mechanism to restrict an
application so that it may only be launched once, and this mechanism supports the
redirection of command line parameters to itself. Microsoft.VisualBasic.dll is a
common framework component, and it is accessible from any managed language
because it is merely a library of compiled MSIL byte code.

The Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase class
will be used to implement the solution, as presented in the next section.

The Solution
The following namespaces are used by the solution, and the only other namespace
below worth mentioning is System.Collections.ObjectModel. This namespace pro-
vides a generic ReadOnlyCollection that wraps a data type into a strongly typed,
read-only list.

using System;
using System.Windows.Forms;
using System.Collections.ObjectModel;
using Microsoft.VisualBasic.ApplicationServices;

The solution in this chapter will require a way to send a notification to the main
application instance when another instance attempts to launch. The following
class describes the event arguments that will be passed with the notification. It
merely stores a reference to the main form of the application and a collection of
string parameters that were passed by the command line.

internal class SingleInstanceEventArgs : EventArgs
{

private ReadOnlyCollection<string> commandLine;

private Form mainForm;

internal ReadOnlyCollection<string> CommandLine
{

get { return commandLine; }
}

internal Form MainForm

Chapter 18 ■ Ensuring a Single Instance of an Application188

{
get { return mainForm; }

}

internal SingleInstanceEventArgs(ReadOnlyCollection<string> commandLine,
Form mainForm)

{
this.commandLine = commandLine;
this.mainForm = mainForm;

}
}

An important goal of this solution is to transition easily from the standard launch-
ing approach for an application to our new single instance version. This goal war-
ranted the design of a static class that exposes a simple Run method, much like the
Application class. The Run method takes in a reference to the main form of the
application and a delegate to the method that will handle subsequent instance
notifications. The WindowsFormsApplicationBase has a StartupNextInstance event
that is fired when another instance is launched. This solution handles this event
behind the scenes and redirects the event arguments with additional information
to the SingleInstanceEvent delegate.

internal class SingleInstanceApplication : WindowsFormsApplicationBase
{

private SingleInstanceApplication()
{

base.IsSingleInstance = true;
}

private static EventHandler<SingleInstanceEventArgs> SingleInstanceEvent;

private static SingleInstanceApplication applicationBase;

internal static void Run(Form form,
EventHandler<SingleInstanceEventArgs> handler)

{
SingleInstanceEvent += handler;

applicationBase = new SingleInstanceApplication();
applicationBase.MainForm = form;
applicationBase.StartupNextInstance += StartupNextInstanceEventHandler;
applicationBase.Run(Environment.GetCommandLineArgs());

The Solution 189

}

private static void StartupNextInstanceEventHandler(object sender,
StartupNextInstanceEventArgs e)

{
if (SingleInstanceEvent != null)
{

SingleInstanceEvent(applicationBase,
new SingleInstanceEventArgs(e.CommandLine, applicationBase.MainForm));

}
}

}

The following code shows how a WinForms application is generally launched.

[STAThread]
static void Main()
{

// The old way to launch the application
Application.EnableVisualStyles();
Application.Run(new MainForm());

}

The following code shows the new way a WinForms application will be launched
using the single instance component.

[STAThread]
static void Main()
{

Application.EnableVisualStyles();
SingleInstanceApplication.Run(new MainForm(), StartupNextInstanceEventHandler);

}

You should have noticed the StartupNextInstanceEventHandler. This parameter is a
delegate that will be fired when a subsequent instance is launched, and the main
instance should be notified and given the command line parameters. The follow-
ing code shows how to implement this delegate, activate the main form of the
application, and pass command line parameters to the form.

private static void StartupNextInstanceEventHandler(object sender,
SingleInstanceEventArgs e)

{
// Restore the window if it is currently minimized
if (e.MainForm.WindowState == FormWindowState.Minimized)

Chapter 18 ■ Ensuring a Single Instance of an Application190

{
e.MainForm.WindowState = FormWindowState.Normal;

}

// Activate the main form
e.MainForm.Activate();

((MainForm)e.MainForm).HandleCommandLine(e.CommandLine);
}

The MainForm class is a simple form that has a method called HandleCommandLine.
This method takes in a ReadOnlyCollection<string> instance that contains the com-
mand line parameters. It is now up to you how to determine how these parame-
ters are handled!

Conclusion
In this chapter I began by discussing the necessity of the singleton pattern for
application instances, and then later I detailed a variety of ways to implement such
a pattern. Each method is better suited to a different situation, though the best
approach when at all possible is to use the ApplicationServices component. This
approach offers the least amount of work to implement, and is trivial to maintain.

Perhaps in the future, this functionality will be refactored into a more general
component that is “natively” supported by Visual C# .NET, but at the moment, it
seems to be the best way to handle single application instances with the least
amount of code and effort to maintain it.

Aside from the ApplicationServices component, the other approaches did not
show how to pass command line parameters to the initial instance. This can be
done using .NET Remoting, a TCP\IP loopback channel, or even the WM_COPYDATA
event and the Win32 message pump. This functionality is beyond the scope of this
chapter, but is covered in Parts IV and V of this book.

The Companion Web site contains the full source code and examples to the solu-
tions presented in this chapter.

Conclusion 191

This page intentionally left blank

193

Implementing a Checksum
to Protect Data Integrity

chapter 19

Where is the information?

Lost in data.

Where is the data?

Lost in the #@%!& database!

Joe Celko

Nearly all software applications handle the manipulation of data through a trans-
mission medium. A transmission medium could be the registry, memory, disk
files, or a database, to name a few. Each medium handles and stores data in a dif-
ferent way, but every transmission medium is unreliable and has the potential to
fail. It is for this reason that the CRC-32 (Cyclic Redundancy Check) algorithm
came to be, which is used to verify that there has been no corruption or errors in
a data transmission. This algorithm is given arbitrary data of arbitrary length, and
computes a 32-bit checksum number representing the contents of the supplied
data, which is transmitted along with the data through the transmission medium
that is used. Once the data arrives at its destination, a new checksum is recalculated
on the data that was received, and it is compared to the checksum calculated before
the transmission. If the values match, the transmission most likely was successful,
but if the values do not match, you know that the transmission encountered an
error of some sort and the data received is incomplete, modified, or corrupted.

This algorithm has also been used to detect any tampering done to data files for
games (or any software application for that matter). Checksum values are typical-
ly created for all files before a game ships; those pre-calculated values are checked
against the runtime calculated version when the game launches and detect
whether data has been modified from its original state.

This chapter covers an implementation of the CRC-32 checksum algorithm in C#
and later goes on to show an alternative algorithm provided by Microsoft. The
mathematical proofs and reasoning behind this algorithm will not be covered.

Implementation
The implementation for the CRC-32 algorithm is fairly straightforward and exists
in a few flavors. The implementation provided in this chapter precalculates a
lookup table using a specified polynomial value, and the calculation is based on
the algebra of polynomials over the values (mod 2) using the cached lookup table.

The code is as follows:

public class Crc32
{

private static uint[] _lookupTable;

public uint Calculate(System.IO.Stream stream)
{

unchecked
{

uint result = 0xFFFFFFFF;

byte[] buffer = new byte[1024];

int byteCount = stream.Read(buffer, 0, 1024);

while (byteCount > 0)
{

for (int byteIndex = 0; byteIndex < byteCount; byteIndex++)
{

result = ((result) >> 8) ^
_lookupTable[(buffer[byteIndex]) ^
((result) & 0x000000FF)];

}

Chapter 19 ■ Implementing a Checksum to Protect Data Integrity194

byteCount = stream.Read(buffer, 0, 1024);
}

return ~result;
}

}

public uint Calculate(byte[] buffer)
{

unchecked
{

uint result = 0xFFFFFFFF;

for (int byteIndex = 0; byteIndex < buffer.Length; byteIndex++)
{

result = ((result) >> 8) ^
_lookupTable[(buffer[byteIndex]) ^
((result) & 0x000000FF)];

}

return ~result;
}

}

// This static constructor pregenerates the lookup table that our crc32
// algorithm will use to compute more efficiently.
static Crc32()
{

unchecked
{

uint polynomial = 0xADB11320;
uint iterationIndex;
uint bitIndex;
uint crc32Value;

_lookupTable = new uint[256];

for (iterationIndex = 0; iterationIndex < 256; iterationIndex++)
{

crc32Value = iterationIndex;

for (bitIndex = 8; bitIndex > 0; bitIndex—)
{

Implementation 195

if ((crc32Value & 1) == 1)
{

crc32Value = (crc32Value >> 1) ^ polynomial;
}
else
{

crc32Value >>= 1;
}

}
_lookupTable[iterationIndex] = crc32Value;

}
}

}
}

You will notice the _lookupTable array variable and the static constructor; the
implementation precalculates the checksum values using the provided polynomial
and stores them in a lookup table to improve and speed up calculation performance.

After instantiation and the precalculation of the lookup table, you can call either
signature for the Calculate method. One version accepts a byte array containing
the data to generate the checksum for, and the other version accepts a
System.IO.Stream instead.

Usage
Using the functionality defined in the implementation class is fairly straightfor-
ward. The class will calculate the internal lookup table the first time you instantiate
it, and all you have to worry about is calling the Calculate() method. The Calculate
method is overloaded to accept either a byte array or a System.IO.Stream object.

The following code shows the proper way to use this class with a byte array:

byte[] data = new byte[DATA_SIZE];
Crc32 crc = new Crc32();
byte[] result = crc.Calculate(data);

The following code shows the proper way to use this class with a System.IO.Stream:

byte[] data = new byte[DATA_SIZE];
using (System.IO.MemoryStream stream = new System.IO.MemoryStream(data))
{

Chapter 19 ■ Implementing a Checksum to Protect Data Integrity196

Crc32 crc = new Crc32();
byte[] result = crc.Calculate(stream);

}

Using the data “This is a test” will result in a 32-bit checksum value of 2042881507.

The result will be a 32-bit (4-octet) checksum of the data that was provided to the
CRC-32 algorithm, and will subsequently be compared against a future checksum
calculation.

Alternative
There is one potential problem with the CRC-32 Checksum algorithm in regards
to malicious security attacks. Generally, these issues are not important for verifi-
cation of simple data integrity, but it may be advisable to seek an alternative algo-
rithm in environments where security is a concern; verifying the integrity of pack-
ets in a multiplayer environment, for example.

The problem with the CRC-32 (Cyclic Redundancy Checksum) algorithm is that
it is not collision-proof, meaning that it is possible to generate two checksum val-
ues that are identical. This is not an extremely common occurrence, but it intro-
duces enough exploitability that a malicious plain-text attack could be used to
spoof an integrity check. The probability that two different blocks of data will have
the same checksum value in an N-bit checksum is 1/2

N
. The larger the value rep-

resented by N, the lower the probability that two different blocks of data will have
the same checksum value. So the probability that our CRC-32 implementation will
generate an identical checksum for two different blocks of data is 1/2

32
, a percent-

age that is reasonable enough for most situations.

As an alternative, you can utilize the built-in MD5 algorithm from the
System.Security.Cryptography namespace. This algorithm is known so far to be
collision-proof, and may be used in place of CRC-32 for better security and cred-
ibility with a bit of increased overhead.

Implementing the built-in functionality from Microsoft is very easy. Reference the
System.Security.Cryptography namespace and use the following code:

byte[] data = new byte[DATA_SIZE];
MD5 md5 = new MD5CryptoServiceProvider();
byte[] result = md5.ComputeHash(data);

Alternative 197

The result will be a 128-bit (16-octet) checksum hash of the data that was provided
to the MD5 algorithm, and will subsequently be compared against a future check-
sum calculation.

Conclusion
This chapter covered two ways of generating a checksum value that can be used to
verify data integrity. Each method has different pros and cons, which can be eval-
uated on a per-project basis. The CRC-32 algorithm can be used in situations
where you are basically testing for data corruption, and also in situations where
speed is important. The MD5 algorithm has some added overhead, but its usage
offers more credible and relatively secure checksums.

Regardless of the algorithm you choose to implement, verifying data integrity
using checksums is a popular and low overhead way to ensure that you are always
processing complete and unmodified data. Reliability of tools is very important,
and using checksums offers a quick way to verify that the data that users are cre-
ating is valid, rather than finding out after the application throws an error when it
tries to process the data at a later stage.

Chapter 19 ■ Implementing a Checksum to Protect Data Integrity198

199

Using the Property
Grid Control with
Late Binding

chapter 20

The only way to discover the limits of the possible is to go beyond them into
the impossible.

Arthur C. Clarke

With the advent of the Microsoft .NET platform, development time has been
decreased significantly because of many improvements to workflow and the tech-
nologies we use. Perhaps one of the most exciting introductions is the idea behind
extensible metadata and reflection, which can be used to interrogate class proper-
ties, methods, and attributes.

Many tools and utilities have a need to work with class objects and also provide a
way to modify the properties of a class. Traditionally, a dialog would have been
built that contained controls which, when modified, would find the currently
selected class and alter the appropriate property; building this dialog is often a very
time-consuming and tedious task. If you work with Visual Studio .NET, you will
have interacted with the PropertyGrid control, which displays information about a
selected user interface element. Figure 20.1 shows the PropertyGrid control in action
within Visual Studio .NET.

A PropertyGrid can be bound to any managed object and programmatically build
a user interface that can modify the public properties of the object with hardly any
work! In this chapter, I will show you how to create a class with bindable properties,
and then show you how to bind an instance of this class to a PropertyGrid control.
There is too much information on the PropertyGrid to be covered in a short chapter,
but the core functionality should be summarized enough to be applicable to the
majority of tools and utilities.

Designing a Bindable Class
There really is no configuration that has to happen on the PropertyGrid control,
because all the configuration information is specified in the classes that are bound
to the PropertyGrid. The PropertyGrid control interrogates bound classes to find
certain attributes of properties that describe things, such as what category they are
in, the description of the property, and what the default value is. You can also hide
properties from being shown in the PropertyGrid with an attribute as well.

Chapter 20 ■ Using the Property Grid Control with Late Binding200

Figure 20.1 Screenshot of a PropertyGrid in the Visual Studio .NET IDE.

The [DefaultPropertyAttribute] specifies the name of the property that will act as the
default property for the PropertyGrid. [CategoryAttribute] specifies the name of the
category that the property is located in. Categories are automatically created based
on these names. The [DescriptionAttribute] specifies the description text that appears
at the bottom of the PropertyGrid when a property is selected. The TypeConverter
and PropertyOrder attributes will be covered in the next section. You can create
read-only properties simply by providing a get construct. You can also hide prop-
erties from showing up in the PropertyGrid by using a [Browsable(false)] attribute.

The following code shows an example of a bindable class that can be visualized
and modified using the PropertyGrid control. Notice the attributes that are used to
specify names, descriptions, and ordering for the visualized properties.

public enum Gender
{

Male,
Female,
Unspecified

}

public enum Position
{

Programmer,
Tester,
Director,
Architect,
Analyst,
Unspecified

}

[TypeConverter(typeof(PropertyOrderConverter)),
DefaultPropertyAttribute(“FirstName”)]
public class PersonnelRecord
{

// Contact Information
private string firstName;
private string lastName;
private string phoneNumber;
private string email;

// Biological Information
private DateTime birthDate;

Designing a Bindable Class 201

private int age;
private Color hairColor;
private Color eyeColor;
private Gender gender;

// Employee Information
private int employeeId;
private Position position;
private bool probationary;

public PersonnelRecord()
{

firstName = String.Empty;
lastName = String.Empty;
phoneNumber = String.Empty;
email = String.Empty;

birthDate = new DateTime();
age = 0;
gender = Gender.Unspecified;

employeeId = 0;
position = Position.Unspecified;
probationary = true;

}

[CategoryAttribute(“Contact Information”),
DescriptionAttribute(“First name of the employee.”),
PropertyOrder(0)]
public string FirstName
{

get { return firstName; }
set { firstName = value; }

}

[CategoryAttribute(“Contact Information”),
DescriptionAttribute(“Last name of the employee.”),
PropertyOrder(1)]
public string LastName
{

get { return lastName; }
set { lastName = value; }

}

Chapter 20 ■ Using the Property Grid Control with Late Binding202

[CategoryAttribute(“Contact Information”),
DescriptionAttribute(“Phone number of the employee. (###-###-####)”),
PropertyOrder(2)]
public string PhoneNumber
{

get { return phoneNumber; }
set { phoneNumber = value; }

}

[CategoryAttribute(“Contact Information”),
DescriptionAttribute(“Email of the employee. Format: *@*.*"),
PropertyOrder(3)]
public string Email
{

get { return email; }
set { email = value; }

}

[CategoryAttribute(“Biological Information”),
DescriptionAttribute(“Birth date of the employee.”),
PropertyOrder(0)]
public DateTime BirthDate
{

get { return birthDate; }
set
{

birthDate = value;
age = DateTime.Now.Year - birthDate.Year;

}
}

[CategoryAttribute(“Biological Information”),
DescriptionAttribute(“Age of the employee.”),
PropertyOrder(1)]
public int Age
{

get { return age; }
}

[CategoryAttribute(“Biological Information”),
DescriptionAttribute(“Hair color of the employee. (Optional)”),

Designing a Bindable Class 203

PropertyOrder(2)]
public System.Drawing.Color HairColor
{

get { return hairColor; }
set { hairColor = value; }

}

[CategoryAttribute(“Biological Information”),
DescriptionAttribute(“Eye color of the employee. (Optional)”),
PropertyOrder(3)]
public System.Drawing.Color EyeColor
{

get { return eyeColor; }
set { eyeColor = value; }

}

[CategoryAttribute(“Biological Information”),
DescriptionAttribute(“Gender of the employee. (Optional)”),
PropertyOrder(4)]
public Gender Gender
{

get { return gender; }
set { gender = value; }

}

[CategoryAttribute(“Employee Information”),
DescriptionAttribute(“Id of the employee as referenced by the HR database.”),
PropertyOrder(0)]
public int EmployeeId
{

get { return employeeId; }
set { employeeId = value; }

}

[CategoryAttribute(“Employee Information”),
DescriptionAttribute(“Position of the employee within the organization.”),
PropertyOrder(1)]
public Position Position
{

get { return position; }
set { position = value; }

}

Chapter 20 ■ Using the Property Grid Control with Late Binding204

[CategoryAttribute(“Employee Information”),
DescriptionAttribute(“True or false value indicating a probationary period.”),
PropertyOrder(2)]
public bool Probationary
{

get { return probationary; }
set { probationary = value; }

}
}

Ordering Properties
Strangely enough, there is no attribute that handles the ordering of properties in
the PropertyGrid. There is, however, a way we can make our own attribute and
custom type converter that can accomplish this for us. First, we will define an
attribute that we can use to specify the sort order for properties in a class.

[AttributeUsage(AttributeTargets.Property)]
public class PropertyOrderAttribute : Attribute
{

private int order;

public PropertyOrderAttribute(int order)
{

this.order = order;
}

public int Order
{

get { return order; }
}

}

The following code describes a custom type converter class that interrogates the
PropertyOrder attribute in class properties, sorts the property list based on the values,
and returns a descriptor list that can tell the PropertyGrid the order to display the
properties in.

public class PropertyOrderConverter : ExpandableObjectConverter
{

internal class SortablePair : IComparable<SortablePair>
{

private int order;

Ordering Properties 205

private string name;

public string Name
{

get { return name; }
}

public SortablePair(string name, int order)
{

this.order = order;
this.name = name;

}

public int CompareTo(SortablePair pair)
{

int result;

if (pair.order == order)
{

result = string.Compare(name, pair.name);
}
else if (pair.order > order)
{

result = -1;
}
else
{

result = 1;
}

return result;
}

}

public override bool GetPropertiesSupported(ITypeDescriptorContext context)
{

return true;
}

public override PropertyDescriptorCollection GetProperties(ITypeDescriptorContext cx,
object component,

Attribute[] attrib)

Chapter 20 ■ Using the Property Grid Control with Late Binding206

{
List<SortablePair> propertyList = new List<SortablePair>();

PropertyDescriptorCollection descList = TypeDescriptor.GetProperties(component,
attrib);

foreach (PropertyDescriptor descriptor in descList)
{

Attribute attribute
= descriptor.Attributes[typeof(PropertyOrderAttribute)];

if (attribute != null)
{
PropertyOrderAttribute orderAttribute = (PropertyOrderAttribute)attribute;

propertyList.Add(new SortablePair(descriptor.Name,
orderAttribute.Order));

}
else
{

propertyList.Add(new SortablePair(descriptor.Name, 0));
}

}

propertyList.Sort();

List<String> propertyNames = new List<String>();

foreach (SortablePair sortablePair in propertyList)
{

propertyNames.Add(sortablePair.Name);
}

return descriptorList.Sort(propertyNames.ToArray());
}

}

Using the type converter class is fairly easy. Just decorate your class declaration
with the attribute, as shown in the following code. Then decorate your properties
with a PropertyOrder attribute to specify the sort order.

Ordering Properties 207

[TypeConverter(typeof(PropertyOrderConverter))]
public class PersonnelRecord
{

// …
}

N O T E

I did have a workaround for category ordering in Microsoft .NET 1.1, but this workaround had unde-
sired results when used with .NET 2.0. At this point in time, I have not figured out a way to do this.

Using the PropertyGrid
With a bindable class created and a custom TypeConverter created to handle prop-
erty ordering, using the PropertyGrid control is super easy. All you need to do is
drag the PropertyGrid control from the Visual Studio .NET toolbox onto your
form. The only other thing you need to do now is set the SelectedObject property
of the PropertyGrid, to an instance of our bindable class PersonnelRecord.

Figure 20.2 shows the PropertyGrid control item in the Visual Studio .NET toolbox.

The following code snippet shows the load event for the main form in the accom-
panying example. Notice how easy it is to instantiate our PersonnelRecord, set some
initial values, and then bind it to the PropertyGrid.

private void MainForm_Load(object sender, EventArgs e)
{

PersonnelRecord record = new PersonnelRecord();

record.FirstName = “John”;
record.LastName = “Smith”;
record.PhoneNumber = “555-123-4567”;
record.Email = “john.smith@company.com”;

record.BirthDate = Convert.ToDateTime(“1980-04-10”);
record.HairColor = Color.Brown;
record.EyeColor = Color.Blue;
record.Gender = Gender.Male;

Chapter 20 ■ Using the Property Grid Control with Late Binding208

Figure 20.2
Screenshot of the PropertyGrid control
item in the Visual Studio .NET toolbox.

record.EmployeeId = 12345;
record.Position = Position.Programmer;
record.Probationary = false;

PropertyGridEditor.SelectedObject = record;
}

Running the code snippet that instantiates a PersonnelRecord with initial values and
binds it to the PropertyGrid will produce results similar to those shown in Figure 20.3.

The Companion Web site contains the full source code to the bindable class,
PropertyOrder type converter, and example usage.

Conclusion
This chapter discussed the implementation details around the PropertyGrid control
in the .NET framework. As mentioned before, the bulk of the implementation lies in
attribute decoration in the bindable class, since all you need do to use the PropertyGrid
is instantiate a PropertyGrid control and set the SelectedObject property to your
class instance.

It should be noted that in this chapter I covered a large chunk of the implementation
details, but there was no coverage of localization of properties or the development
of custom type editors. Both subjects require a fair amount of explanation and code.
Feel free to visit MSDN to investigate these features.

Conclusion 209

Figure 20.3
Screenshot of the accompanying
PropertyGrid example.

This page intentionally left blank

211

Adding Printing Support
for Arbitrary Data

chapter 21

The boldness of asking deep questions may require unforeseen flexibility if
we are to accept the answers.

Brian Greene

One of the more common and important tasks in a Windows application is the
ability to print text or graphics. Printing was somewhat tricky to implement in
the days prior to .NET, but now there is a versatile framework to support it with-
in the System.Drawing.Printing namespace. The majority of the print mechanism
is within the PrintDocument class, which represents a component that sends output
to a printer. This class is very modular, so it allows you to implement either sim-
ple or complex printing logic and execute it using this class alone. Other classes
exist to support printer configuration and page setup properties such as orientation.
This chapter is all about using the managed mechanisms within the .NET Class
Framework to implement printing support within applications. You should have a
basic familiarity with the Graphics class within the System.Drawing namespace.

Printing Regular Text
The first thing that we must implement is the actual printing logic, which is done
by linking into events on PrintDocument. There is a method on PrintDocument called
Print() which, you guessed it, prints the document. When this method is called, a
BeginPrint event is fired, followed by a PrintPage event for each page, and finally

stopping with an EndPrint event. You do not really have to do much with the begin
and end events; the core logic exists in the PrintPage event. This event is passed a
PrintPageEventArgs parameter that contains a property called HasMorePages. If this
property is set to true, a new page is created and the PrintPage event is raised again
when the event handler returns.

The pseudologic for the PrintPage event handler is basically: Print the page content
using the page setting information provided, using the Graphics context provided.
Determine if more pages are needed to completely print all the content for the
document. If yes, set HasMorePages to true; otherwise set it to false.

The following code shows how to instantiate a PrintDocument, wire up to the
PrintPage event handler, and start printing.

PrintDocument printDocument = new PrintDocument();
printDocument.PrintPage += new PrintPageEventHandler(printDocument_PrintPage);
printDocument.Print();

The following code describes the simplest implementation of the PrintPage event
handler, assuming that no additional pages are needed.

private void printDocument_PrintPage(Object sender, PrintPageEventArgs e)
{

string outputText = “Game Engine Toolset Development rocks!”;
Font printFont = new Font(“Verdana”,

9.75F,
FontStyle.Regular,
GraphicsUnit.Point,
((byte)(0)));

e.Graphics.DrawString(outputText,
printFont,
Brushes.Black,
0,
0);

}

Complex printing logic that you wish to reuse across multiple places requires that
you inherit from PrintDocument, handling the PrintPage event by overriding the
OnPrintPage method instead of using the event handler. The following code shows
a sample implementation of a PrintDocument that correctly handles text printing
that spans multiple pages with varying font and page settings.

Chapter 21 ■ Adding Printing Support for Arbitrary Data212

public class SimplePrintDocument : PrintDocument
{

private StringReader inputStream = null;
private string bufferOverflow = null;
private Font printFont = null;

public SimplePrintDocument(StringReader inputStream, Font printFont)
: base()

{
this.inputStream = inputStream;
this.printFont = printFont;

}

protected override void OnBeginPrint(PrintEventArgs e)
{

base.OnBeginPrint(e);
bufferOverflow = null;

}

protected override void OnPrintPage(PrintPageEventArgs e)
{

base.OnPrintPage(e);

// Figure out how many lines can fit within the page boundaries
float linesPerPage = e.MarginBounds.Height /

printFont.GetHeight(e.Graphics);

int lineCount = 0;

// Deal with any remaining overflow lines from a previous page first
while (lineCount < linesPerPage && bufferOverflow != null)
{

float positionY = e.MarginBounds.Top +
(lineCount * printFont.GetHeight(e.Graphics));

lineCount += PrintLine(e, bufferOverflow, positionY);
}

// Now handle the current line buffer
string line = null;
while (lineCount < linesPerPage &&

((line = inputStream.ReadLine()) != null))
{

Printing Regular Text 213

float positionY = e.MarginBounds.Top +
(lineCount * printFont.GetHeight(e.Graphics));

lineCount += PrintLine(e, line, positionY);
}

// Print a new page if there are more lines to print
if (line != null)

e.HasMorePages = true;
else

e.HasMorePages = false;
}

private int PrintLine(PrintPageEventArgs e, string text, float positionY)
{

RectangleF rectangle = new RectangleF(e.PageSettings.Margins.Left,
positionY,
e.MarginBounds.Width,
e.MarginBounds.Height);

int lines;
int characters;

StringFormat format = new StringFormat();

e.Graphics.MeasureString(text,
printFont,
rectangle.Size,
format,
out characters,
out lines);

// Total text will not fit on page; bump to overflow buffer for next page
if (characters < text.Length)
{

bufferOverflow = text.Substring(characters);
}
else
{

bufferOverflow = null;
}

Chapter 21 ■ Adding Printing Support for Arbitrary Data214

e.Graphics.DrawString(text,
printFont,
Brushes.Black,
rectangle,
format);

// Handle empty lines
lines = lines == 0 ? 1 : lines;
return lines;

}
}

Using the new SimplePrintDocument class is easy; instantiate it as you did with
PrintDocument and call the Print() method!

Supporting Printer Selection
We currently have the logic for printing support implemented, so the next logical
step is to provide the ability to select a printer using the standard Windows Print
dialog. Right now, you are simply calling the print method on the document, but
in a real world application, you let the user select the printer she wants to use and
also support the ability to cancel printing. Using the PrintDialog class, we can pro-
vide this functionality to users. Attach the print document to the Document proper-
ty of the dialog and show the dialog as normal. If the dialog returns successfully,
call the print method of the document. The following code shows a sample imple-
mentation of printer selection.

private void PrintButton_Click(object sender, EventArgs e)
{

using (StringReader inputText = new StringReader(PrintTextField.Text))
{

SimplePrintDocument printDocument = new SimplePrintDocument(inputText,
printFont);

PrintDialog printDialog = new PrintDialog();
printDialog.Document = printDocument;

if (printDialog.ShowDialog() == DialogResult.OK)
printDocument.Print();

}
}

Figure 21.1 shows the printer selection dialog in action.

Supporting Printer Selection 215

Supporting Page Setup
Another common print feature provided by real-world applications is the ability
to choose page settings like the orientation of the paper or the margin sizes. This
can be done with the PageSetupDialog class and a stored instance of the PageSettings
class, as shown with the following code.

private void PageSetupButton_Click(object sender, EventArgs e)
{

PageSetupDialog pageSetupDialog = new PageSetupDialog();

if (cachedSettings == null)
cachedSettings = new PageSettings();

pageSetupDialog.PageSettings = cachedSettings;
pageSetupDialog.ShowDialog();

}

You can now alter the printing logic to set the page settings to our cached instance,
as shown with the following code.

private void PrintButton_Click(object sender, EventArgs e)
{

using (StringReader inputText = new StringReader(PrintTextField.Text))
{

Chapter 21 ■ Adding Printing Support for Arbitrary Data216

Figure 21.1 Printer selection dialog in action.

SimplePrintDocument printDocument = new SimplePrintDocument(inputText,
printFont);

if (cachedSettings != null)
printDocument.DefaultPageSettings = cachedSettings;

PrintDialog printDialog = new PrintDialog();
printDialog.Document = printDocument;

if (printDialog.ShowDialog() == DialogResult.OK)
printDocument.Print();

}
}

Figure 21.2 shows the Page Setup dialog in action.

Supporting Print Preview
The last common print feature is the ability to preview a document before actually
printing it. This is done with the PrintPreviewDialog class. Simply attach your print
document to the Document property of the dialog and show the dialog as usual. The
following code shows how to do this.

Supporting Page Setup 217

Figure 21.2 Page Setup dialog in action.

private void PrintPreviewButton_Click(object sender, EventArgs e)
{

using (StringReader inputText = new StringReader(PrintTextField.Text))
{

SimplePrintDocument printDocument = new SimplePrintDocument(inputText,
printFont);

if (cachedSettings != null)
printDocument.DefaultPageSettings = cachedSettings;

PrintPreviewDialog printPreviewDialog = new PrintPreviewDialog();
printPreviewDialog.Document = printDocument;
printPreviewDialog.ShowDialog();

}
}

Figure 21.3 shows the print preview dialog in action.

Chapter 21 ■ Adding Printing Support for Arbitrary Data218

Figure 21.3 Print preview dialog in action.

Conclusion
This chapter covered the full implementation of a PrintDocument class that can print
arbitrary text with varying fonts and page settings. The user can select which printer
to use and can modify page properties before printing. In addition to configura-
tion, the user can also bring up a print preview dialog that shows the document as
it would print out before actually committing himself to a print job.

Although this chapter did not cover printing graphics, remember that the
PrintPage event handler is passed a Graphics context that functions like any other
context. You can call methods like FillRectangle() or DrawEllipse() on it and
achieve the desired effect. It is a little trickier when you start introducing graphics,
because you need to implement some form of flow layout to determine the lines
per page and how you position your content when printing.

The Companion Web site contains the full source code from this chapter, along
with an example utilizing the custom print logic. Figure 21.4 shows the interface
of the example, which is simply a front-end to the code discussed throughout this
chapter.

Conclusion 219

Figure 21.4 Screenshot of the Companion Web site example.

This page intentionally left blank

221

Flexible Command
Line Tokenizer

chapter 22

Always design a thing by considering it in its next larger context—a chair
in a room, a room in a house, a house in an environment, an environment in
a city plan.

Eliel Saarinen—“Time,” July 2, 1956

Command line utilities have always been a favorite among tools developers,
generally because of how quick they are to make. Command line utilities do not
require that code and time be spent on a graphical user interface, which dramati-
cally reduces development time. These tools can also have complex configuration
options that are hidden from the user unless explicitly specified, making the tool
easier to learn and operate. The one disadvantage that command line utilities have
is that they must parse the command line parameters and act on them according-
ly. This can be quite a nuisance, especially when the only input validation is done
by the user before the parameters are parsed by the utility. It can be difficult to cor-
rectly parse a parameter string, including fault tolerance for data input errors.

A tokenizer is code that extracts tokens (substrings) from a given string. The
tokens in the string can be separated by one or more character delimiters. This
chapter discusses a reusable and flexible command line tokenizer that can break an
arbitrary parameter string into name-value pairs.

Formatting Styles
When parsing command line parameters, developers generally come up with
unique ways to express parameter syntax. This has led to some confusion about
consistency and has brought forth the emergence of a number of formatting styles
from the UNIX and Windows worlds.

In order to build a tokenizer that favors a variety of standards, a number of for-
matting styles have been merged into a common syntax for parsing.

The tokenizer syntax supports three styles of prefixes to signify a parameter. A
parameter can be prefixed with a forward slash (/), a hyphen (-), or a double
hypen (—).

Some examples include:

/name

-value

—screenMode

Parameters typically have values associated with them, but if they do not then true
is used as a default value just to show that a particular parameter was specified.
Parameter values come after the parameter token and can be prefixed with a space
(), an equals sign (=), or a colon (:).

Some examples include:

/name Graham

-value=54

—screenMode:normal

Parameter values can also be surrounded by either single or double quotes to pre-
serve white space.

/name “Graham Wihlidal”

—screenMode = ‘normal’

Visualizing a generic syntax expression for the above styles results in the following:

{-,/,—}param{ ,=,:}((“,’)value(“,’))

Using the above syntax expression will allow us to parse a variety of formatting
styles.

Chapter 22 ■ Flexible Command Line Tokenizer222

Implementation
The real magic behind this tokenizer is from the regular expression capabilities of
.NET. There were a couple versions of this source code before regular expressions
were used, and this version is by far the shortest in length and the most maintainable.

using System;
using System.Collections.Generic;
using System.Text.RegularExpressions;

namespace ConsoleTokenizerLibrary
{

public sealed class ConsoleTokenizer
{

private readonly Dictionary<string, string> _parameters
= new Dictionary<string, string>();

private readonly List<string> _files = new List<string>();

public Dictionary<string, string> Parameters
{

get { return _parameters; }
}

public List<string> Files
{

get { return _files; }
}

A C# indexer operator has been provided to pull tokens from the parameter list.
This is merely an alternate way of obtaining these tokens with shorter code. Files
must still be accessed normally through the property.

public string this[string token]
{

get { return _parameters[token]; }
}

This constructor takes a single string and breaks it into an array of arguments
using a regular expression. The arguments array is then passed into the Tokenize()
method.

Implementation 223

public ConsoleTokenizer(string arguments)
{

Regex tokenizer = new Regex(@”([‘“”][^””]+[‘“”])\s*|([^\s]+)\s*”,
RegexOptions.IgnoreCase |
RegexOptions.Compiled);

MatchCollection matches = tokenizer.Matches(arguments);

List<string> tokenizedList = new List<string>();

for (int matchIndex = 1;
matchIndex < matches.Count - 1;
matchIndex++)

{
tokenizedList.Add(matches[matchIndex].Value);

}

Tokenize(tokenizedList.ToArray());
}

This constructor simply calls the Tokenize method with an array of arguments.

public ConsoleTokenizer(string[] arguments)
{

Tokenize(arguments);
}

The following method is the heart of the tokenizer. It uses a regular expression to
break up a group of arguments into name-value pairs based on the formatting
styles described earlier.

private void Tokenize(string[] arguments)
{

string pattern = @”^([/-]|—){1}(?<name>\w+)([:=])?(?<value>.+)?$”;
Regex tokenizer = new Regex(pattern,

RegexOptions.IgnoreCase |
RegexOptions.Compiled);

char[] trimCharacters = { ‘“‘, ‘\’’ };

string currentToken = null;

foreach (string argument in arguments)
{

Match match = tokenizer.Match(argument);

Chapter 22 ■ Flexible Command Line Tokenizer224

if (!match.Success)
{

Check if a parameter has already been determined and that the current character
selection is its value.

if (currentToken != null)
{

_parameters[currentToken] = argument.Trim(trimCharacters);
}

If an argument was specified that is not in the form of a parameter, then it is most
likely a file to process, so here we add the argument to the files collection.

else
{

_files.Add(argument);
}

}
else
{

currentToken = match.Groups[“name”].Value;

string tokenValue =
match.Groups[“value”].Value.Trim(trimCharacters);

If no value was found, specify true as the default parameter value. Having a default
value of true basically means that a flag or switch was specified (on or off value).

if (tokenValue.Length == 0)
{

_parameters[currentToken] = “true”;
}

If a value was determined, associate the string dictionary key with it.

else
{

_parameters[currentToken] = tokenValue;
}

}
}

}
}

}

Implementation 225

Sample Usage
Using the command line tokenizer is very simple. Console applications have a
string array that is passed into the main entry point, and this string array contains
the command line parameters specified at the command prompt. Instantiate a
new instance of the ConsoleTokenizer class and pass this string array into it. At this
point everything has been parsed, and you can either access the Parameters or Files
property of the tokenizer instance. Parameters is a string dictionary that uses the
parameter name as a key, and then points to the associated value. Here is an example
of how to get the parameter value for a parameter named mode.

static void Main(string[] args)
{

ConsoleTokenizer tokenizer = new ConsoleTokenizer(args);

string mode = tokenizer.Parameters[“mode”];
}

Alternatively, the indexer operator has been overloaded to reference the Parameters
dictionary as well, making your code even cleaner.

static void Main(string[] args)
{

ConsoleTokenizer tokenizer = new ConsoleTokenizer(args);
string mode = tokenizer[“mode”];

}

There may be some optional parameters that you want to use if they are present.
If you access the Parameters string dictionary using a key that does not exist, you
will be returned null. This is to signify that no such parameter was found. Every
parameter should be tested for null to prevent null reference exceptions. This is
also how you would enforce required parameters.

static void Main(string[] args)
{

ConsoleTokenizer tokenizer = new ConsoleTokenizer(args);

string mode = string.Empty;
if (tokenizer[“mode”] != null)
{

mode = tokenizer[“mode”];
}

}

Chapter 22 ■ Flexible Command Line Tokenizer226

The following code shows a complete console application example that uses the
ConsoleTokenizer to parse command line arguments, and then dumps the values to
the console window.

using System;
using System.Collections.Generic;
using System.Text;

using ConsoleTokenizerLibrary;

namespace ConsoleTokenizerDemo
{

class Program
{

static void Main(string[] args)
{

ConsoleTokenizer tokenizer = new ConsoleTokenizer(args);

Console.WriteLine(“”);
Console.WriteLine(“Console Tokenizer Demo Application”);
Console.WriteLine(“Pass a parameter string to tokenize it”);
Console.WriteLine(“”);

if (tokenizer.Files.Count > 0)
{

Console.WriteLine(“Files”);
Console.WriteLine(“*****************************”);

foreach (string file in tokenizer.Files)
{

Console.WriteLine(String.Format(“File: {0}”, file));
}

Console.WriteLine(“”);
Console.WriteLine(“”);

}

if (tokenizer.Parameters.Keys.Count > 0)
{

Console.WriteLine(“Parameters”);
Console.WriteLine(“*****************************”);

Sample Usage 227

foreach (string key in tokenizer.Parameters.Keys)
{

Console.WriteLine(String.Format(“Name: {0}\tValue: {1}”,
key,
tokenizer[key]));

}
}

}
}

}

Conclusion
This chapter discussed common formatting styles of command line arguments,
and went on to building a tokenizer using .NET regular expressions. Command
line utilities are extremely popular among tools developers, so having a flexible
and reusable tokenizer is very important. Having one means that even less time
can be spent on developing these tools, which are fast to develop as it is.

Chapter 22 ■ Flexible Command Line Tokenizer228

229

Layering Windows Forms
on Console Applications

chapter 23

Discovery consists of seeing what everybody has seen and thinking what
nobody has thought.

Albert Gyorgyi

Console applications are perhaps the most common application type used for
tools because of their lightning-fast development nature, and because they provide
a simple interface that is easy to learn. Users of console tools generally feel com-
fortable with console-based interfaces because they all typically function the same
way, and it is very easy to pick up a new tool when the interface is consistent with
old tools. Some advanced users also write or record scripts that automate the
workflow of a particular set of tasks. Authoring scripts for console applications is
much easier to do than for graphical user interfaces.

Tools development is all about reusability at both the code and application level.
There may be some situations where an existing console application solves an
intricate problem, but a graphical user interface version of the tool is wanted by a
certain group of users. There are a few solutions to this problem. The first solution
is to develop a Windows Forms version of the tool, using a fresh new code base.
This solution requires the maintenance of two separate code bases, and can lead to
support and synchronization problems. It also takes considerable time to build a
new tool. The next solution is to develop a Windows Forms version of the tool and
share the same code base. This might not be achievable if the console application
is unmanaged and building a managed wrapper is out of the question.

An even more desirable solution is to build a Windows Forms wrapper around the
console application, and redirect startup parameters and standard input and output.
This solution offers the greatest level of maintainability and speed of development.
If a change happens in the console application, it is immediately accessible by the
Windows Forms version. Additionally, we do not have to worry about the console
application being managed or unmanaged, since the redirection will happen at the
process level, not at the code level.

Implementation
You can use the Process component to start and stop processes and retrieve infor-
mation about the processes currently running on your system. We will be using
this component to launch a console application, specify startup parameters, and
redirect standard input and output. This component exists in the System.Diagnostics
namespace.

using System.Diagnostics;

The following code defines a method that launches a redirected console applica-
tion using the specified file path and argument list. Most of the code is fairly self-
explanatory, though we set UseShellExecute to false so Windows Explorer is not
used to launch the process. RedirectStandardInput is set to true so that we can get
a stream handle to the console output. We also set CreateNoWindow to true so that a
command prompt window is not launched alongside our Windows Forms appli-
cation when the process is started.

The StandardOutput property returns a StreamReader that can retrieve the output
data from the console application. The HasExited property can be queried while
data is being read from the output stream.

public void LaunchConsoleApplication(string fileName, string arguments)
{

if (!File.Exists(fileName))
{

MessageBox.Show(“Invalid path to console application!”);
return;

}

Process process = new Process();

process.StartInfo.FileName = fileName;
process.StartInfo.UseShellExecute = false;

Chapter 23 ■ Layering Windows Forms on Console Applications230

process.StartInfo.RedirectStandardOutput = true;
process.StartInfo.Arguments = arguments;
process.StartInfo.CreateNoWindow = true;

process.Start();

StreamReader reader = process.StandardOutput;

while (!process.HasExited)
{

OuputField.Text += reader.ReadLine() + Environment.NewLine;
Application.DoEvents();

}
}

The last piece of important code is to be placed in the closing event of the Form
wrapping the console application. This code checks if the process is valid and if it
has not exited yet. If true, the process is aborted. Obviously, this event has to have
a reference to the process created by LaunchConsoleApplication.

The following code shows this event logic.

private void MainForm_FormClosing(object sender, FormClosingEventArgs e)
{

if (_process != null && !_process.HasExited)
{

_process.Kill();
}

}

Sample Usage
The example provided alongside the implementation for this chapter is very simple.
The demo console application is given two arguments: an iteration count and a
message to print. The message is printed out however many iterations are specified.

The following code in the Windows Forms demo makes the console application
print “Hello World” out five times. The number of iterations to print the message
out is dependent on the iteration count specified as a parameter to the launch
method.

Implementation 231

private void LaunchButton_Click(object sender, EventArgs e)
{

string message = “\”Hello World\””;
LaunchConsoleApplication(“SimpleConsoleApplication.exe”,

“5 “ + message);
}

The following code shows the logic for the demo console application.

static void Main(string[] args)
{

int count = Convert.ToInt32(args[0]);

string message;

if (args[1] != null && args[1].Trim().Length > 0)
message = args[1];

else
message = “No Message”;

for (int index = 0; index < count; index++)
{

Console.WriteLine(message + “ - # “ + (index + 1).ToString());
System.Threading.Thread.Sleep(300);

}
}

Conclusion
In this chapter, I discussed how to launch a console application process with para-
meters and redirect output to a Windows Forms application. This technique is very
useful when you want to create a graphical user interface for an already existing
console utility, while saving as much development and maintenance time as possible.

Chapter 23 ■ Layering Windows Forms on Console Applications232

233

Overview of Database
Access with ADO.NET

chapter 24

“Form follows function.”

Louis Henri Sullivan—“Lippincott’s Magazine,” March, 1896

In ancient times and legends of lore, information was shepherded amongst a col-
lective of elders, magicians, storytellers, and jesters. This collective served as the
data storehouse for all that was known and catalogued in the world. This method
for data storage and retrieval resulted in an entropic fallacy of facts and events.
Technology advanced, and information started to be written down on parchment,
greatly increasing its accuracy. Data eventually started to be stored in voluminous
repositories of books. Time passed, and the world ultimately began storing data in
the first “databases,” known as libraries. These libraries established the idea of
standardizing how data was stored and retrieved. Without standards, finding spe-
cific information would prove to be a chaotic and grueling process. The usefulness
of any data storage is proportional to the storage size and retrieval efficiency.
Hundreds of years have passed since those ancient times, and we have evolved into
an era where computers can store more information than the human brain.

Almost every application handles and stores data to some extent, whether in the
form of a database, a spreadsheet, or a flat text file. Today, developers have a
multitude of databases and persistence frameworks that can be used to store and
retrieve millions of records at lightning speed. As time passes, so do these databases
and frameworks. The latest and greatest data access technology from Microsoft is
ADO.NET, which is basically a collection of classes, methods, and attributes that are
used to facilitate the efficient communication between an application and a data

store. Functionally, ADO.NET is an overhaul of ADO (ActiveX Data Objects) with
a continuation and extension of the key concepts.

Because of dependencies, overhead, or maintenance support, most games do not
have a database system to store information; tools used in content creation, how-
ever, especially those used for role-playing games, often store information about
game entities in a database for a variety of reasons. Technical designers using a
content tool connected to a database benefit from real-time changes that are
immediately in effect when another designer makes a change to the data. Imagine
if game entity information were stored in XML files that had to be versioned
somehow amongst all the technical designers so that everyone worked off the same
data. A centralized data store is the solution to this problem, and implementing
such a beast is very easy using ADO.NET.

In this chapter, I discuss the advantages of ADO.NET and cover the ADO.NET
object model. I then proceed into some simple vanilla examples of using some
components of ADO.NET, and finish off with an editor front-end for editing data-
base entries for potion items.

Advantages of ADO.NET
Perhaps the greatest glory of ADO.NET is its ability to access structured data from
a variety of diverse data sources, like Microsoft SQL Server, XML, and other data
sources that are exposed with OLE DB. Microsoft SQL Server and OLE DB do not
need much of an introduction, but the XML support is a real gem for ADO.NET.
Interoperability support is very strong, since all data in ADO.NET is transferred in
XML so that any platform can understand the data. This allows developers to sep-
arate data processing and the user interface onto separate servers, greatly improv-
ing performance and maintainability for systems where scalability is important.

In addition to the XML structure, ADO.NET also supports disconnected datasets
along with the typical client-server model, without retaining locks or connections
that consume limited system resources. Disconnected datasets also allow for user
growth without demanding many additional resources for the server. In addition
to disconnected datasets, ADO.NET also includes support for automatic connec-
tion pooling.

Even though there is a learning curve, once you have grasped the concepts behind
ADO.NET, your overall development time will decrease, and you will produce
more bug-free code. Therefore, productivity gains can also be considered when
describing the advantages and benefits of ADO.NET.

Chapter 24 ■ Overview of Database Access with ADO.NET234

ADO.NET Object Model
The ADO.NET object model is divided into a couple of group classifications: con-
tent components and managed provider components. The content components
are those that actually store the data. These components include the DataSet,
DataView, DataTable, DataRelation, DataColumn, and DataRow classes. The managed
provider components are those that communicate with the data sources to facili-
tate the retrieval and updating of data. These components include the various con-
nection, command, and data reader classes. In fact, managed provider compo-
nents themselves are divided into two group classifications. The first group con-
tains provider components that interface with regular data sources
(System.Data.OleDb). The second group contains a provider that is finely tuned and
optimized for use with SQL Server 2000 or higher (System.Data.SqlClient).

DataView
The DataView class is quite similar to a view you would use in the database. A
DataView can be customized to display a subset of data from a DataTable class. This
feature allows you to have two controls bound to the same DataTable object but
showing a different subset of data. You can also apply filtering and sorting rules
against the data rows without altering the actual data itself. For example, you can
configure a DataView to only show rows that have been deleted from a DataTable.

DataSet
The DataSet class is very similar to the old Recordset class that existed in ADO,
except it can hold multiple tables of data. The DataSet class also has the ability to
define internal constraints and relationships, as well as enforcing them. DataSet
serves as a storage container for data traveling to and from the database.

In addition to database usage, you can also use a DataSet to load and manipulate
XML data. Microsoft recognizes that the industry has largely embraced the use of
XML for cross-platform communication, and so it has built a number of classes to
work with XML data (including the DataSet class).

You can access the XML functionality of the DataSet class with the ReadXml(),
WriteXml(), and GetXml() methods.

ADO.NET Object Model 235

DataProvider
There are two group classifications for managed provider components: one to com-
municate with regular data sources and one that is optimized for communication
with SQL Server 2000 and higher. All of these providers comply with the standards
defined in the System.Data.Common namespace.

The first component is the connection object. Just like ADO, this object manages
the connection string and connection state. This object still has the usual Open()
and Close() methods. There is now a BeginTransaction() method that is used to
control a database transaction. The regular group has the OleDbConnection, while
the optimized SQL Server provider is SqlConnection.

The next component is the command object. This object serves as the transfer pipe
for the data. You can execute queries that do not return any rows (using the
ExecuteNonQuery() method), execute a query that returns a single value like an ID
(using the ExecuteScalar() method), or execute a query that returns a data reader
(using the ExecuteReader() method). The regular group has the OleDbCommand, while
the optimized SQL Server provider is SqlCommand.

Another component is the data reader object. This object associates itself with a
data stream from the command object and provides a mechanism to perform for-
ward-only reading. This method is very efficient, but intensive queries should be
avoided since this uses a server-side cursor, tying up a connection resource until it
finishes. The regular group has the OleDbDataReader, while the optimized SQL
Server provider is SqlDataReader.

The last component is the data adapter. This object consolidates many of the other
components into this easy-to-use class. A data adapter basically uses your connec-
tion to retrieve results, and then passes the data to a DataSet, which can then be
updated or displayed. If rows are changed, the DataSet can be passed back into the
data adapter to be persisted into the database. You can set the SQL statements
using the InsertCommand, UpdateCommand, SelectCommand, and DeleteCommand proper-
ties. The regular group has the OleDbDataAdapter, while the optimized SQL Server
provider is SqlDataAdapter.

Working with a DataReader
The following example shows how to select rows from an Access database file and
display a message box for all the rows in SomeTextColumn.

Chapter 24 ■ Overview of Database Access with ADO.NET236

using System;
using System.Data.OleDb;
using System.Data.Common;
using System.Windows.Forms;

string connectionString
= @”Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\YourDB.mdb”;

OleDbConnection connection = new OleDbConnection(connectionString);
OleDbCommand command = new OleDbCommand(“SELECT * FROM YourTable”, connection);
connection.Open();

OleDbDataReader reader = null;

try
{

command.ExecuteReader();
while (reader.Read())
{

MessageBox.Show((string)reader[“SomeTextColumn”]);
}

}
catch (OleDbException exception)
{

// ... Handle database exceptions here
}
finally
{

if (reader != null)
reader.Close();

if (connection != null)
connection.Close();

}

Working with a DataAdapter
The following example shows how to select rows from an Access database file, fill a
DataSet with the rows, and display a message box for the first row in SomeTextColumn.

Working with a DataAdapter 237

using System;
using System.Data;
using System.Data.OleDb;
using System.Data.Common;
using System.Windows.Forms;

string connectionString
= @”Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\YourDB.mdb”;

OleDbConnection connection = new OleDbConnection(connectionString);
OleDbDataAdapter adapter = new OleDbDataAdapter(“SELECT * FROM YourTable”,

connection);
DataSet dataSet = new DataSet();
adapter.Fill(dataSet, “YourTable”);
MessageBox.Show((string)dataSet.Tables[“YourTable”].Rows[0][“SomeTextColumn”]);

This example only shows the select, but after any sort of editing, you can call the
following method to persist your changes back to the database.

adapter.Update(dataSet);

Working with XML
Before showing how to load an XML document, we should first define a simple
XML document that we can load (Books.xml).

<?xml version=’1.0’?>
<!— This file represents a fragment of a book store inventory database —>
<bookstore>

<book genre=”autobiography” publicationdate=”1981” ISBN=”1-861003-11-0”>
<title>The Autobiography of Benjamin Franklin</title>
<author>

<first-name>Benjamin</first-name>
<last-name>Franklin</last-name>

</author>
<price>8.99</price>

</book>
<book genre=”novel” publicationdate=”1967” ISBN=”0-201-63361-2”>

<title>The Confidence Man</title>
<author>

<first-name>Herman</first-name>
<last-name>Melville</last-name>

</author>
<price>11.99</price>

Chapter 24 ■ Overview of Database Access with ADO.NET238

</book>
<book genre=”philosophy” publicationdate=”1991” ISBN=”1-861001-57-6”>

<title>The Gorgias</title>
<author>

<name>Plato</name>
</author>
<price>9.99</price>

</book>
</bookstore>

The following example shows how to load an XML file into a DataSet and then
retrieve and update node values.

using System;
using System.Data;
using System.Windows.Forms;

DataSet dataSet = new DataSet();
dataSet.ReadXml(@”C:\Books.xml”);

MessageBox.Show(“Row Count: “ + dataSet.Tables[“book”].Rows.Count.ToString());
MessageBox.Show(“First Author => Last Name: “ +

(string)dataSet.Tables[“author”].Rows[0][“last-name”]);

// Update the last name of the first author
dataSet.Tables[“author”].Rows[0][“last-name”] = “Wihlidal”;

// Persist the changes back out to the xml file
dataSet.WriteXml(@”C:\Books.xml”);

Potion Database Editor
The Companion Web site contains an example for this chapter that demonstrates
how to use a data reader to build a simple editor. The editor is for a fictitious role-
playing game, and it handles the database management of potions. You can add
new potions, modify the stats of existing potions, or delete potions from the data-
base. This editor could have been built using any number of the objects discussed
throughout this chapter but was done with a data reader because of personal pref-
erence. The editor uses a simple Access database file so that you do not have to
configure SQL Server to run this example.

Figure 24.1 shows the interface for the potion editor on the Companion Web site.

Potion Database Editor 239

Conclusion
Many applications store data in some fashion or another, but typically, any appli-
cation that processes significantly large amounts of data is using some sort of data-
base like SQL Server. The need arises when there are complex queries to perform,
or there are a number of associated entities and constraints to enforce. Database
servers are optimized for this type of storage and retrieval, so developing a home-
grown system will only work in certain situations. Databases also allow you to
enforce security settings determining which accounts can do certain tasks, and this
can aid in ensuring data integrity and thwarting data tampering.

There are some new features that have just been introduced with .NET 2.0 that are
not addressed by this chapter (like the new TableAdapter). Since this chapter only
serves as a quick overview of basic ADO.NET functionality, I recommend that you
investigate the latest version of ADO.NET in greater detail if you are planning on
doing any significant work with it.

Chapter 24 ■ Overview of Database Access with ADO.NET240

Figure 24.1 Screenshot of the potion database editor example on the Companion Web site.

Techniques for
Graphical Tools

The programmer, like the poet, works only slightly removed from pure
thought-stuff. He builds castles in the air, from air, creating by exertion of
the imagination. Few media of creation are so flexible, so easy to polish and
rework, so readily capable of realizing grand conceptual structures. Yet the
program construct, unlike the poet’s words, is real in the sense that it moves
and works, producing visible outputs separate from the construct itself. It
prints results, draws pictures, produces sounds, moves arms. The magic of
myth and legend has come true in our time. One types the correct incanta-
tion on a keyboard, and a display screen comes to life, showing things that
never were nor could be… . The computer resembles the magic of legend in
this respect, too. If one character, one pause, of the incantation is not strictly
in proper form, the magic doesn’t work. Human beings are not accustomed
to being perfect, and few areas of human activity demand it. Adjusting to
the requirement for perfection is, I think, the most difficult part of learning
to program.

Frederick P. Brooks, The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition (2nd Edition)

PART III

As time progresses, the technology powering games improves at an exponential
rate, and gamers begin to expect more out of a game as each year goes by. Almost
all cutting-edge games these days use 3D hardware to render virtual environments
that immerse the player in a sort of simulated reality. Earlier 3D games such as
Castle Wolfenstein, with its 2D ray caster and vertical scan-line rasterization, were
rudimentary enough that simple tools could produce suitable game content. Over
the years, the capabilities of computers and 3D hardware have grown considerably,
and more complex tools are required in order to produce content suitable for
today’s games.

A large number of content tools for game development visualize data using a 3D
API, such as Direct3D. These tools require additional consideration and planning
in regards to performance and functionality. The chapters in Part III focus on top-
ics such as swap chain management, texture browsing control creation, converting
from screen space to world space, and asynchronous input polling to improve
responsiveness and performance.

A graphical tool can be anything that visualizes data using some sort of drawing
or rendering API, but the majority of these tools are world editors that create envi-
ronments for games, or are tools that perform some sort of 3D geometry process-
ing to create static assets like radiosity lightmaps or ambient occlusion maps, and
visually display the in-process results to the user. These tools must be designed
carefully and pragmatically if they are to be of any value to the intended users.
Graphical tools are typically processor- and resource-intensive, so more time must
be spent developing these tools than any other.

The chapters in this part will cover some common techniques and approaches to
problems that exist in the majority of graphical tools.

243

Using Direct3D Swap
Chains with MDI
Applications

chapter 25

Mostly, when you see programmers, they aren’t doing anything. One of the
attractive things about programmers is that you cannot tell whether or not
they are working simply by looking at them. Very often they’re sitting there
seemingly drinking coffee and gossiping, or just staring into space. What the
programmer is trying to do is get a handle on all the individual and unre-
lated ideas that are scampering around in his head.

Charles M. Strauss

Almost every game displays itself in a single window, which is a single active device
within Direct3D. Many tools, on the other hand, display multiple windows to the
users so they may view multiple aspects of the game when designing content. The
core purpose of Direct3D is to serve as a high-performance 3D API for real-time
games, and because of this, it was designed to be most efficient rendering to a single
device. Using a device for every display window in an editor or tool would be
extremely inefficient and negatively affect performance.

The efficient way of rendering to multiple windows (or contexts) with a single
Direct3D device is through the use of swap chains. Unfortunately, there are a
scarce number of examples showing how to use them, and the SDK documenta-
tion is extremely vague. The purpose of this chapter is to fill the gap and provide
you with extensive information about using swap chains within an MDI (or SDI)
application.

What Is a Swap Chain?
An application utilizing Direct3D to render real-time 3D graphics organizes an
animated sequence into a series of frames that are stored in a collection of buffers,
and renders them in the correct sequence. These buffers are grouped into swap
chains that flip to the screen one after the other. A swap chain can render an
upcoming frame in the background and present the frame to the screen when
ready. This mechanism solves a common problem known as “tearing” and offers
smoother animation.

Every Direct3D device that is created automatically instantiates a single implicit
swap chain. When a surface flip is requested through the execution of
Device.Present, the pointers for the front and back buffer(s) are swapped, and a
new frame is presented to the viewer. If there is more than one back buffer in a
swap chain, the pointers are swapped in a circular order.

Additional swap chains can be created within a given device, though a device can
only contain a single full-screen swap chain. Each swap chain renders into a col-
lection of buffers and can be presented to a different window from the main device.
The back buffer for a swap chain can be accessed with SwapChain.GetBackBuffer.

N O T E

Before continuing, it is important to note that, by the term window, I am referring to any control.
This association goes back to the unmanaged Win32 API.

A great benefit of using swap chains with a single device is the notion that resources,
such as meshes and textures, are shared across all swap chains using a single loca-
tion in memory.

Creating a swap chain is very easy to do, and the only prerequisite is that a valid
Direct3D is already available. The first thing to do is to create a PresentParameters
object and specify some rendering properties about the swap chain. Most of the
properties are familiar from regular device settings, but the important ones to note
are DeviceWindow, BackBufferWidth, and BackBufferHeight. All three refer to the han-
dle, width, and height of the window (control) that the swap chain will be bound
to for rendering. The variable of this control is called renderTarget and is of type
System.Windows.Forms.Control.

The following code shows how to build present parameters for a swap chain.

PresentParameters presentParams = new PresentParameters();
presentParams.AutoDepthStencilFormat = DepthFormat.D16;

Chapter 25 ■ Using Direct3D Swap Chains with MDI Applications244

presentParams.Windowed = true;
presentParams.SwapEffect = SwapEffect.Discard;
presentParams.EnableAutoDepthStencil = true;
presentParams.DeviceWindow = renderTarget;
presentParams.BackBufferWidth = renderTarget.Width;
presentParams.BackBufferHeight = renderTarget.Height;

With the present parameters built, we can move on to building a swap chain
object. The following code shows how to do this, where the first parameter is a
reference to the Direct3D device, and the second parameter is a reference to the
PresentParameters structure that we just built.

SwapChain swapChain = new SwapChain(device, presentParams);

The next important piece of code to show is the rendering logic that is executed
each time a frame is rendered. This code is similar to a normal Direct3D applica-
tion, except the back buffer must be set as a render target, and the swap chain pre-
sents the frame to the screen, not the device itself.

public void RenderSwapChain(SwapChain swapChain, Control renderTarget)
{

using (Surface backBuffer = swapChain.GetBackBuffer(0,
BackBufferType.Mono))

{
swapChain.Device.SetRenderTarget(0, backBuffer);

// Perform rendering here without calling Device.Present()

swapChain.Present(renderTarget);
}

}

N O T E

Rendering is performed as normal, except Present() is called on the swap chain rather than the
device.

Now that the basics have been covered about how to create and render a Direct3D
swap chain, it is time to expand on this topic and cover applicability towards MDI
and SDI applications.

What Is a Swap Chain? 245

Thoughts for SDI and MDI Applicability
There are two common windowing modes for a Windows application: SDI and
MDI. An SDI application (Single Document Interface) is typically used when you
want to work with one data set at a time in a single window. A commonly known
SDI application is Notepad.

An MDI application (Multiple Document Interface) has a primary window (par-
ent) that contains a set of child windows within its client region. A child window
is constrained to the boundaries of the parent window, and typically shares the
menu bar, tool bar, and other common parts of the parent interface. MDI appli-
cations are commonly used in situations where the user wants to work on multi-
ple data sets at the same time.

Swap chains are applicable to either windowing mode, but are more commonly
used within MDI applications. An SDI application can use swap chains, but they
should only be used when rendering to multiple controls when the problem can-
not be solved with the use of viewports. Typically, the swap chains for an SDI
application are created after the form is first opened and a Direct3D device is
bound to it.

An MDI application has a few more issues to be taken into consideration when
using swap chains within the child windows. Swap chains are only valid while the
device is still active; the swap chains become invalid as soon as the device is lost or
disposed. The device should be bound to the parent window since child windows
cannot exist without it, and the swap chains should be created within each indi-
vidual child window.

Multiple child windows will result in a system that must keep track of the swap chains
at a much more intimate level and handle their creation, assignment, and release.

Before diving into the solution and implementation, it is important to discuss sev-
eral “gotchas” and limitations that must be considered.

Common Pitfalls
An MDI application typically supports the resizing of child windows, so it is
important to take this issue into consideration when using swap chains. Direct3D
has a built-in mechanism to handle child window resizing, but the results may not
be desirable. A stretch blit is used by default to present the frame buffer if the client
area dimensions are not the same size as the frame buffer of the swap chain. This
mechanism can lead to artifacts and aliasing unless the swap chain is re-created
and the render target size is recalculated.

Chapter 25 ■ Using Direct3D Swap Chains with MDI Applications246

Another issue to take into consideration, which is more of a design concern, is the
fact that a device automatically creates an implicit swap chain when it is created.
Swap chains can be queried from a device by an indexer, where the implicit swap
chain starts at 0 and the other swap chains increment by 1 thereafter. A common
approach is to assign the swap chain indexer to the child window associated with
it and release the swap chain when the window closes. The problem lies in assign-
ing the implicit swap chain to a child window and trying to release it when the
window closes. One solution to this problem is covered in the next section, “The
Proposed Solution.”

As mentioned earlier, swap chains have the benefit of sharing data from a single
device, requiring a single location in memory. While this feature can offer signifi-
cant memory and performance gains, it can also lead to some headaches. Swap
chains do not have their own collection of device settings, so each swap chain must
be responsible for the management of settings, such as textures, view state, and
render states. It is important that you remain careful and attentive when using
swap chains so that you do not end up with settings that transfer over from one
swap chain to another by forgetting to set new values.

There are increased render state changes that happen through the use of swap
chains, so batching and minimization of changes are important so that perfor-
mance is not impacted. Swap chains are still much more efficient than using mul-
tiple devices, so the performance issues go with the territory of rendering to multiple
regions.

Multiple windows are hard to maintain and track, especially when swap chains are
associated to them. Luckily, .NET makes MDI application development a breeze,
so there is no real concern for this solution.

The Proposed Solution
In this chapter, I present a manager that handles the construction, usage, and
destruction of swap chains within either an MDI or SDI application. The manag-
er correctly handles the resizing of child windows to prevent artifacts and aliasing,
and it transparently wraps a lot of the swap chain calls into a reusable and exten-
sible framework.

Each child window within the MDI application will be responsible for handling its
own rendering, but the swap chain manager must have a way to inform the child
window that it should render a frame. The following interface is extremely sim-
plistic but will provide a common mechanism that the manager can call, depending

The Proposed Solution 247

on which child it wants to render. The IRenderWindow interface will be implemented
by all child windows to make the Render() method publicly accessible.

public interface IRenderWindow
{

void Render();
}

The next section of code describes an associative container class that contains ref-
erences to a swap chain, present parameters, back buffer, and render target control.
This class also contains a unique identifier and makes the association of a swap
chain to a child window extremely easy.

internal class SwapChainInstance
{

private int _id;
private SwapChain _swapChain;
private PresentParameters _presentParameters;
private Surface _backBuffer;
private Control _renderTarget;

public int Id
{

get { return _id; }
set { _id = value; }

}

public SwapChain SwapChain
{

get { return _swapChain; }
set { _swapChain = value; }

}

public PresentParameters PresentParameters
{

get { return _presentParameters; }
set { _presentParameters = value; }

}

public Surface BackBuffer
{

get { return _backBuffer; }
set { _backBuffer = value; }

Chapter 25 ■ Using Direct3D Swap Chains with MDI Applications248

}

public Control RenderTarget
{

get { return _renderTarget; }
set { _renderTarget = value; }

}

public SwapChainInstance(int id,
SwapChain swapChain,
PresentParameters presentParameters)

{
this._id = id;
this._swapChain = swapChain;
this._presentParameters = presentParameters;

}
}

As discussed earlier, there is an issue regarding the implicit swap chain of the
device. Perhaps the best way to avoid any problems is to simply ignore the implic-
it swap chain. This approach is used for the solution, although an alternative
approach had been tried with minor success prior to settling on this one.

The next class encompasses the bulk of the swap chain framework. The manager
class is responsible for the construction, usage, and destruction of swap chains, and
is also accountable for handling the association of a swap chain with a child window.

public sealed class SwapChainManager
{

private List<SwapChainInstance> _swapChainList = new List<SwapChainInstance>();
private SwapChainInstance _activeSwapChain;
private int _idCounter;
private Device _device;
private bool _ready;
private Mesh _teapotMesh;
private Mesh _sphereMesh;

public Device Device
{

get { return _device; }
}

public bool Ready
{

The Proposed Solution 249

get { return _ready; }
}

public Mesh TeapotMesh
{

get { return _teapotMesh; }
}

public Mesh SphereMesh
{

get { return _sphereMesh; }
}

The following method is a critical part of the manager. It is responsible for build-
ing present parameters and creating a swap chain object that becomes referenced
by the manager with a unique identifier.

public int CreateSwapChain(Control renderTarget)
{

_idCounter++;

PresentParameters presentParams = new PresentParameters();

presentParams.AutoDepthStencilFormat = DepthFormat.D16;
presentParams.Windowed = true;
presentParams.SwapEffect = SwapEffect.Discard;
presentParams.EnableAutoDepthStencil = true;
presentParams.DeviceWindow = renderTarget;
presentParams.BackBufferWidth = renderTarget.Width;
presentParams.BackBufferHeight = renderTarget.Height;

if (renderTarget != null && _device != null)
{

SwapChain swapChain = new SwapChain(_device, presentParams);

SwapChainInstance instance = new SwapChainInstance(_idCounter,
swapChain,
presentParams);

instance.RenderTarget = renderTarget;

_swapChainList.Add(instance);
}

Chapter 25 ■ Using Direct3D Swap Chains with MDI Applications250

return _idCounter;
}

This method is fairly simple. It accepts a unique swap chain identifier, finds the
associated object, and releases the swap chain object from the manager.

public void DestroySwapChain(int id)
{

SwapChainInstance instance = FindSwapChainInstance(id);

if (instance != null)
{

DestroySwapChain(instance.SwapChain);
instance.SwapChain = null;
_swapChainList.Remove(instance);

}
}

This method works very similarly to DestroySwapChain(), except instead of destroy-
ing the swap chain, it simply resets it. A specific use for this method is after a child
window has been resized and the swap chain(s) must be reset to reflect the new
render target region(s).

public void ResetSwapChain(int id)
{

SwapChainInstance instance = FindSwapChainInstance(id);
ResetSwapChain(instance);

}

This method accepts a unique identifier, locates the referenced swap chain object
in the manager, and returns a reference to it.

private SwapChainInstance FindSwapChainInstance(int id)
{

foreach (SwapChainInstance instance in _swapChainList)
{

if (instance.Id.Equals(id))
return instance;

}

return null;
}

The Proposed Solution 251

This method is used to re-create a swap chain after a device reset has occurred.
First, the old swap chain is destroyed, and then a new swap chain with the new ren-
der target size is created.

private void ResetSwapChain(SwapChainInstance instance)
{

if (instance != null)
{

DestroySwapChain(instance.SwapChain);

instance.PresentParameters.BackBufferWidth =
instance.RenderTarget.Width;

instance.PresentParameters.BackBufferHeight =
instance.RenderTarget.Height;

instance.SwapChain = new SwapChain(_device,
instance.PresentParameters);

}
}

This method is simply used to release the memory associated with a Direct3D
swap chain.

private void DestroySwapChain(SwapChain swapChain)
{

if (swapChain != null)
swapChain.Dispose();

}

This method is very important because it begins the rendering process for a spe-
cific swap chain that is referenced by a unique identifier. Notice the ready flag that
breaks out of rendering if its value is set to false. This flag is used to prevent errors
from occurring if the device is invalid.

public void BeginSwapChainRender(int id)
{

if (!_ready)
return;

SwapChainInstance instance = FindSwapChainInstance(id);

if (instance != null && instance.SwapChain != null)
{

_activeSwapChain = instance;

Chapter 25 ■ Using Direct3D Swap Chains with MDI Applications252

instance.BackBuffer = instance.SwapChain.GetBackBuffer(0,
BackBufferType.Mono);

if (instance.BackBuffer != null)
{

instance.SwapChain.Device.SetRenderTarget(0,
instance.BackBuffer);

}
}

}

This method completes the rendering process for a specific swap chain that is ref-
erenced by a unique identifier.

public void EndSwapChainRender(int id)
{

if (!_ready)
return;

SwapChainInstance instance = null;

if (_activeSwapChain != null)
{

if (_activeSwapChain.Id == id)
instance = _activeSwapChain;

else
_activeSwapChain = instance = FindSwapChainInstance(id);

}

if (instance != null)
{

if (instance.BackBuffer != null && instance.SwapChain != null)
{

using (instance.BackBuffer)
{

instance.SwapChain.Present(instance.RenderTarget);
}
instance.BackBuffer = null;

}
}

_activeSwapChain = null;
}

The Proposed Solution 253

The swap chains are obviously in need of a valid device to render with, and that is
the responsibility of this method. A parent window is specified (either the MDI
parent form or the SDI form), and the device is created and bound to this window.

public void CreateDevice(Form containingWindow)
{

if (_device != null)
{

_device.Dispose();
_device = null;

}

PresentParameters presentParams = new PresentParameters();

presentParams.AutoDepthStencilFormat = DepthFormat.D16;
presentParams.Windowed = true;
presentParams.SwapEffect = SwapEffect.Discard;
presentParams.PresentationInterval = PresentInterval.Immediate;
presentParams.EnableAutoDepthStencil = true;

_device = new Device(0,
DeviceType.Hardware,
containingWindow,
CreateFlags.SoftwareVertexProcessing,
presentParams);

_device.DeviceLost += new EventHandler(DeviceLost);
_device.DeviceReset += new EventHandler(DeviceReset);

DeviceReset(null, null);

_ready = true;
}

The following method handles the device lost event. The only job of this method
is to flip the ready flag to false so that errors do not occur when the application
attempts to render with an invalid device.

private void DeviceLost(object sender, EventArgs e)
{

_ready = false;
}

Chapter 25 ■ Using Direct3D Swap Chains with MDI Applications254

The last method in our manager handles the device reset event. The purpose of this
method is to re-create the swap chains with the recalculated render target size, and
then re-create the resources that are shared across all swap chains. The ready flag is
also flipped to true so that the application can begin rendering the scenes once again.

private void DeviceReset(object sender, EventArgs e)
{

foreach (SwapChainInstance instance in _swapChainList)
ResetSwapChain(instance);

_teapotMesh = Mesh.Teapot(_device);
_sphereMesh = Mesh.Sphere(_device, 1.0f, 30, 30);

_device.Lights[0].Type = LightType.Directional;
_device.Lights[0].Diffuse = System.Drawing.Color.White;
_device.Lights[0].Enabled = true;

_device.RenderState.Lighting = true;
_device.RenderState.Ambient = Color.White;
_device.RenderState.CullMode = Cull.CounterClockwise;
_device.RenderState.ShadeMode = ShadeMode.Gouraud;

Material material = new Material();
material.Ambient = Color.ForestGreen;
material.Diffuse = Color.Olive;

_device.Material = material;

_ready = true;
}

}

The implementation of the swap chain manager is complete, so the discussion will
now focus on using the manager. The following code insertions are methods and
properties extracted directly from the example on the Companion Web site that
should offer insight into using the solution if the interfaces alone are not enough.
The code snippets are from the single context window that uses the entire window
as a display context.

The first property is a unique identifier that references a SwapChainInstance object
within the swap chain manager. It is initialized in the DeviceReset() method that is
described later in this chapter.

private int _swapChain;

The Proposed Solution 255

The next property is a reference to the swap chain manager instance that will typ-
ically be created in the parent form if the application uses an MDI windowing
mode. In an SDI application, the manager can be instantiated with a device bound
to the SDI window.

This example has the manager reference passed in through the child form con-
structor from the parent form.

private SwapChainManager _manager;

The next method is executed when the rendering device is lost or reset and the
swap chain(s) must be re-created. You will notice that the methods requiring a
control are passed a this keyword that references the entire Form. It is perfectly
acceptable to pass a reference to a Control residing on the form if you want to target
the rendering within a specific Control like a panel. The CreateSwapChain() method
creates a swap chain for the entire window and returns a unique identifier back to
the user. This unique identifier can be later used to return the swap chain object
from the manager.

private void DeviceReset()
{

_swapChain = _manager.CreateSwapChain(this);
}

Typically, a device is lost before it is reset, and the purpose of this method is to
destroy an existing swap chain before the reset method is executed and a new swap
chain is created.

private void DeviceLost()
{

_manager.DestroySwapChain(_swapChain);
}

The following event is fired when the window is first loaded, resulting in the cre-
ation of a swap chain.

private void ContextWindow_Load(object sender, System.EventArgs e)
{

DeviceReset();
}

Chapter 25 ■ Using Direct3D Swap Chains with MDI Applications256

One of the common pitfalls mentioned in this chapter are the aliasing and artifacts
that result from a client region size not matching the size of the swap chain frame
buffer. This normally occurs after the swap chain has been created and the associated
window resizes. To account for this, there is a ResetSwapChain() method in the
manager that will be executed when the window is resized using the event below.

private void ContextWindow_Resize(object sender, System.EventArgs e)
{

_manager.ResetSwapChain(_swapChain);
}

Finally, we hit the interesting snippet, the Render() method. It is here that we first
make sure the manager exists and is ready to render; if not, we skip the current
frame. After that, it is important to set the render and view states for the swap
chain in case they were altered by another swap chain in existence on the same
device. The example does not employ many render state settings, but it is important
to recalculate the projection, world, and view matrices so that the scene renders
correctly.

Rendering is then initiated with a call to BeginSwapChainRender(), passing in the
unique identifier for the swap chain created when the child window was first
loaded. Rendering then proceeds as normal, except at the very end there is a call to
EndSwapChainRender() instead of calling Present() on the device.

public void Render()
{

if (_manager == null)
return;

if (!_manager.Ready)
return;

CalculateProjection();

_manager.Device.Transform.World = Matrix.Identity;
Vector3 position = new Vector3(0.0f, 0.0f, -5.0f);
Vector3 target = new Vector3(0.0f, 0.0f, 0.0f);
Vector3 upVector = new Vector3(0.0f, 1.0f, 0.0f);
_manager.Device.Transform.View = Matrix.LookAtLH(position,

target,
upVector);

The Proposed Solution 257

_manager.BeginSwapChainRender(_swapChain);
_manager.Device.Clear(ClearFlags.Target | ClearFlags.ZBuffer,

unchecked((int)-8454144),
1.0F,
0);

_manager.Device.BeginScene();

_manager.SphereMesh.DrawSubset(0);

_manager.Device.EndScene();
_manager.EndSwapChainRender(_swapChain);

}

The following method was included in this topic for completeness, though it does
not directly deal with the swap chain manager. This method recalculates the pro-
jection matrix after the render target client region is resized.

private void CalculateProjection()
{

if (this.Height == 0)
return;

float aspect = (float)this.Width / this.Height;

_manager.Device.Transform.Projection = Matrix.PerspectiveFovLH((float)Math.PI / 4,
aspect,
1.0f,
60.0f);

}

The example provided on the Companion Web site is an MDI application that
uses the swap chain manager described in this topic to render into multiple child
windows and multiple controls within a child window. You can see two different
types of child windows using the swap chain manager in Figure 25.1, and one of
the child windows is maximized in Figure 25.2.

Both the sphere and teapot meshes are loaded into the single Direct3D device and
are shared across all child windows in the example.

Chapter 25 ■ Using Direct3D Swap Chains with MDI Applications258

The Proposed Solution 259

Figure 25.1 Variety of child windows using the swap chain manager.

Figure 25.2 Maximized child window using the swap chain manager.

Conclusion
This chapter covered what a swap chain is, how to create them, applicability with
MDI applications, and how to effectively create and manage swap chains within
an MDI application.

Overall, the solution presented in this chapter is very flexible and extensible, although
there are a couple of areas that could be refactored to improve performance or
promote more reusability. For example, the device and swap chain creation could
be routed through a virtual function that allows the user to specify settings and
parameters on a per override basis. On another note, earlier it was mentioned that
swap chains increase the number of render state changes, so it would be advanta-
geous to implement a batching mechanism to reduce the total number of changes
per frame.

The Companion Web site contains the full source code for the manager presented
in this chapter, including a demo application that uses it within an MDI applica-
tion in a variety of ways.

Chapter 25 ■ Using Direct3D Swap Chains with MDI Applications260

261

Constructing an
Aesthetic Texture
Browser Control

chapter 26

If builders built buildings the way programmers wrote programs, then the
first woodpecker that came along would destroy civilization.

Weinberg’s Second Law

The number of art assets used in the majority of games today can be anywhere
from thousands to hundreds of thousands. These assets can be used in numerous
places throughout a variety of in-game environments, and typically, the level
designers are in charge of determining which assets go where. Some game studios
build their own level editors that can manipulate world geometry and handle the
placement and scripting of entities. These editors typically offer the ability to select
an arbitrary mesh or primitive and assign a texture asset to the geometry. When
you have thousands of textures available, designers are more productive if the edi-
tor is able to display a thumbnail preview of the different textures available for an
environment instead of a textual listing. It is much more appealing to scroll
through a collection of texture thumbnails than to scroll through a listing of file-
names that might not even describe the contents in an adequate fashion. Texture
browsing has its place in a variety of tools, but the most common place to offer it
is within a world editor.

This chapter is geared toward building a control that offers texture or image
browsing from both local image files and Managed Direct3D Texture resources.

The System.Drawing namespace supports a variety of image formats, but some texture
formats, such as DDS, are not supported unless a custom loader is written or the
data is loaded through Managed Direct3D. The control will display textures that
have been resized to fit within a thumbnail control, with support for both single
and multiple selection of texture thumbnails. Each thumbnail will have a label for
the filename and a label for the dimensions of the original image. All thumbnails
will sit within a parent container control.

Swappable Loader Interface
One of the goals outlined for this component is the ability to switch the loader that
processes the image files. While Managed Direct3D and Windows GDI+ are the
only loaders supported by this chapter, it would be advantageous to design the
component so that any loader implementing the appropriate interface could be
plugged into the component. This component makes use of an interface and
abstract class to define the common interface of all image loaders so that they can
be swapped in and out.

The interface provides two Load methods, which are used to create a Bitmap object
from an image file on the hard drive or from a memory stream. Some loaders may
also require a handle to a resource, such as a window handle for the Direct3D
loader, so this interface provides the ContextHandle property to support this
requirement.

The following code defines the base loader interface and abstract class.

public interface IAbstractLoader
{

System.IntPtr ContextHandle
{

get;
set;

}

Bitmap Load(string fileName);
Bitmap Load(MemoryStream stream);

}

With the loader interface defined, it is time to define the abstract loader class that
implements the interface. This class stores the context handle of a control that cer-
tain loaders may need to operate correctly. The GDI+ loader does not use this, but

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control262

Direct3D uses this handle to create a device with which the textures can be loaded.
The following code defines the abstract loader class.

public abstract class AbstractLoader : IAbstractLoader
{

private System.IntPtr _contextHandle;

public System.IntPtr ContextHandle
{

get { return _contextHandle; }
set { _contextHandle = value; }

}

public virtual Bitmap Load(string fileName)
{

return null;
}

public virtual Bitmap Load(MemoryStream stream)
{

return null;
}

protected AbstractLoader(System.IntPtr contextHandle)
{

_contextHandle = contextHandle;
}

}

N O T E

You will need to reference System.IO for the MemoryStream object, as well as System.Drawing
for the Bitmap object.

Windows GDI+ Loader
This is by far the easiest loader to implement, since it only takes a single line of code
to load an image file. Windows GDI+ is available to all .NET applications without
the reliance on any external dependencies, so it is an excellent choice when stan-
dard image formats like JPEG, BMP and GIF will do the job.

Windows GDI+ Loader 263

The following code implements the Windows GDI+ image loader.

public class NativeLoader : AbstractLoader
{

public override Bitmap Load(string fileName)
{

try
{

return new Bitmap(Image.FromFile(fileName));
}
catch
{

return null;
}

}

public override Bitmap Load(MemoryStream stream)
{

try
{

stream.Position = 0;
return new Bitmap(Image.FromStream(stream));

}
catch
{

return null;
}

}

public NativeLoader(System.IntPtr contextHandle) : base(contextHandle) {}
}

N O T E

You will need to reference System.IO for the MemoryStream object, as well as System.Drawing
for the Bitmap object.

Managed Direct3D Loader
It is very easy to use Windows GDI+ to load images, unless, of course, the image
format is not supported. Image formats that are not supported by Windows GDI+
require a different loader to process any unsupported image formats, so we are pre-
sented with two possibilities.

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control264

The first option is to write a custom loader that can read in the binary data and
extract the image information. After the image information (for instance, the
number of channels and the pixel data) has been extracted, the information would
be used to build an Image object. This method can be somewhat problematic, espe-
cially if the image format comes in different variations, such as different compres-
sion options and 3D-specific values such as the Microsoft DirectDraw Surface
(DDS) format for example. The custom loader can become quite large in size, and
debugging could prove to be difficult.

The alternate solution, and the one covered in this chapter, is to wrap the built-in
texture-loading capabilities of Microsoft Direct3D into a loader. There are a num-
ber of advantages to building this wrapper over building a custom loader from
scratch. The biggest advantage is the time and money saved by not having to rein-
vent the wheel. Additionally, unless you have a custom image format that neither
GDI+ nor Direct3D support, one that requires a custom loader, the formats sup-
ported by the TextureLoader utility of Managed Direct3D will almost always suffice
for your project.

Now, before you jump into the code, it is important to address the main issue
behind wrapping Managed Direct3D into a loader. The TextureLoader loads image
files into Texture objects, not Image or Bitmap objects, meaning that a valid device
must first be created before any loading can occur. This may sound like a daunt-
ing or cumbersome process, but it really isn’t all that bad. The main requirement
for a device is a window handle, and because Windows defines a window as any
control element, we can create a device using the window handle of our texture
browsing control!

The loader will create a Managed Direct3D and bind it to the texture browser con-
trol, at which point the image files are loaded into texture resources. The image
data is then extracted from these resources and saved into Bitmap objects. The
device is released after the images are generated; at no point does any actual ren-
dering occur.

The following code implements the Managed Direct3D device and image loader.

public class Direct3DLoader : AbstractLoader, IDisposable
{

private Device _device;

public override Bitmap Load(string fileName)
{

try

Managed Direct3D Loader 265

{
Bitmap result = null;

if (_device == null)
{

PresentParameters presentParams = new PresentParameters();
presentParams.Windowed = true;
presentParams.SwapEffect = SwapEffect.Discard;
_device = new Device(0,

DeviceType.Reference,
ContextHandle,
CreateFlags.SoftwareVertexProcessing,
presentParams);

}

using (Texture texture = TextureLoader.FromFile(_device, fileName))
{

using (GraphicsStream stream
= TextureLoader.SaveToStream(ImageFileFormat.Bmp, texture))

{
result = new Bitmap(stream);

}
}

return result;
}
catch
{

return null;
}

}

public override Bitmap Load(MemoryStream stream)
{

try
{

Bitmap result = null;

if (_device == null)
{

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control266

PresentParameters presentParams = new PresentParameters();
presentParams.Windowed = true;
presentParams.SwapEffect = SwapEffect.Discard;
_device = new Device(0,

DeviceType.Reference,
ContextHandle,
CreateFlags.SoftwareVertexProcessing,
presentParams);

}

stream.Position = 0;

using (Texture texture = TextureLoader.FromStream(_device, stream))
{

using (GraphicsStream processedStream
= TextureLoader.SaveToStream(ImageFileFormat.Bmp, texture))

{
result = new Bitmap(processedStream);

}
}

return result;
}
catch
{

return null;
}

}

public Direct3DLoader(System.IntPtr contextHandle) : base(contextHandle) {}

public void Dispose()
{

if (_device != null)
{

_device.Dispose();
_device = null;

}
}

}

Managed Direct3D Loader 267

N o t e

You will need to reference System.IO for the MemoryStream object, as well as System.Drawing
for the Bitmap object. Additionally, you will need to reference both Microsoft.DirectX and
Microsoft.DirectX.Direct3D for the Managed Direct3D support.

Storing Texture Information
The texture browser will support three ways of loading an image as a texture: from
an image file stored on the local hard drive, from raw binary data in memory, and
from a preloaded bitmap. In order to provide a unified and straightforward way of
accessing textures that are loaded in the browser, we need to create a container
class that wraps the three load methods into a common interface. This interface
will be known as a texture handle; it will store the appropriate data depending on
the source of the image, and it will keep track of simple state information to sup-
port caching.

Texture handles will need to keep track of the image data and where the data orig-
inated from, so the enum defined below will be used to accomplish this.

public enum TextureHandleType
{

FileSystem,
Bitmap,
RawData

}

The texture handle class has several different constructors, each with a different
signature and parameter list. The texture handle type is set when one of the con-
structors is fired, and depending on the constructor, the appropriate type value is
set.

If one of the constructors accepting a FileInfo object is used, then it is assumed
that the image is being loaded from the hard drive, so the handle type will be set
to TextureHandleType.FileSystem.

If a constructor is used that accepts a Bitmap object, it is assumed that the object
contains the image data, and the handle type should be set to TextureHandleType.Bitmap.

Lastly, if a constructor is used that accepts a MemoryStream object, it is assumed that
the memory stream contains the raw binary data of the image, and that the han-
dle type should be set to TextureHandleType.MemoryStream.

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control268

Texture handles need a humanly readable way to distinguish themselves from one
another. Since the image data does not have to come from the file system and can
come directly from raw memory, the filename cannot be used as an identifier. It is
for this reason that the Name property was introduced into the texture handle class.

The two boolean properties Generate and Loaded will be covered later in this chap-
ter. They are flags describing whether or not the textures need to be regenerated,
and whether or not the image itself was able to be loaded.

You should also notice that the TextureHandle class implements the IDisposable
interface. This is because of the MemoryStream object, which the Dispose method will
close if required.

The following code implements the texture handle class in its entirety.

public class TextureHandle : IDisposable
{

private string _name;
private FileInfo _file;
private Bitmap _image;
private MemoryStream _data;
private bool _generate = true;
private TextureHandleType _type;
private bool _loaded;

public string Name
{

get { return _name; }
set { _name = value; }

}

public FileInfo File
{

get { return _file; }
set { _file = value; }

}

public Bitmap Image
{

get { return _image; }
set { _image = value; }

}

Storing Texture Information 269

public MemoryStream Data
{

get { return _data; }
set { _data = value; }

}

public bool Generate
{

get { return _generate; }
set { _generate = value; }

}

public TextureHandleType Type
{

get { return _type; }
set { _type = value; }

}

public bool Loaded
{

get { return _loaded; }
set { _loaded = value; }

}

public TextureHandle(FileInfo file) : this(file, file.Name) { }

public TextureHandle(FileInfo file, string name)
{

_file = file;
_name = name;
_type = TextureHandleType.FileSystem;

}

public TextureHandle(string filePath, string name)
{

_file = new FileInfo(filePath);
_name = name;
_type = TextureHandleType.FileSystem;

}

public TextureHandle(string name, Bitmap image)
{

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control270

_name = name;
_image = image;
_type = TextureHandleType.Bitmap;

}

public TextureHandle(string name, MemoryStream stream)
{

_name = name;
_data = new MemoryStream(stream.ToArray());
_type = TextureHandleType.RawData;

}

public TextureHandle(string name, byte[] data)
{

_name = name;
_data = new MemoryStream(data);
_type = TextureHandleType.RawData;

}
public void Dispose()
{

if (_data != null)
{

_data.Close();
_data = null;

}
}

}

N o t e

You will need to reference System.IO for the MemoryStream and FileInfo objects, as well as
System.Drawing for the Bitmap object.

Building the Thumbnail Control
With the loaders built, it is time to build the user interface controls. We will start
with the thumbnail control, which will show the image to the user, along with a
summarized amount of information. This control will operate as an independent
and modular unit of code, and it will be used by the texture browser.

The processing of the image data is performed by the loaders, but the original tex-
ture size will generally be too big for the thumbnail display. The thumbnail control

Building the Thumbnail Control 271

takes the image data of the associated texture handle, resizes it to the appropriate
size, and then uses a resized copy of the original image for the display.

The thumbnail control also handles the visual appearance for selection. The con-
structor accepts a reference to the texture browser instance so that visual proper-
ties can be used and applied to the thumbnail control.

Aside from visual properties, the reference to the texture browser is used by the
thumbnail control to relay event information back to the browser control.

The following code defines the thumbnail control and its related properties and
functionality.

public partial class TextureThumbnail : UserControl
{

private TextureBrowser _container;
private TextureHandle _texture;
private bool _selected;

public TextureHandle Texture
{

get { return _texture; }
}

public bool Selected
{

get { return _selected; }
set
{

if (_container == null)
return;

if (value)
{

this.BackColor = Color.Blue;

FileNameLabel.BackColor = _container.BackgroundColorSelected;
FileNameLabel.ForeColor = _container.ForegroundColorSelected;

DimensionsLabel.BackColor = _container.BackgroundColorSelected;
DimensionsLabel.ForeColor = _container.ForegroundColorSelected;

}
else
{

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control272

this.BackColor = SystemColors.ActiveCaption;

FileNameLabel.BackColor = _container.BackgroundColor;
FileNameLabel.ForeColor = _container.ForegroundColor;

DimensionsLabel.BackColor = _container.BackgroundColor;
DimensionsLabel.ForeColor = _container.ForegroundColor;

}

_selected = value;
}

}

public TextureThumbnail(TextureBrowser container, TextureHandle texture)
{

InitializeComponent();

_container = container;
_texture = texture;

if (_container != null)
{

this.FileNameLabel.BackColor = _container.BackgroundColor;
this.FileNameLabel.ForeColor = _container.ForegroundColor;

this.DimensionsLabel.BackColor = _container.BackgroundColor;
this.DimensionsLabel.ForeColor = _container.ForegroundColor;

}

GenerateThumbnail();
DisplayInformation();

}

private void GenerateThumbnail()
{

if (_texture.Image == null)
return;

int maxDimension = Math.Min(MaterialPreview.Width,
MaterialPreview.Height);

int resizedWidth = _texture.Image.Width;

Building the Thumbnail Control 273

int resizedHeight = _texture.Image.Height;

if (_texture.Image.Width > maxDimension ||
_texture.Image.Height > maxDimension)

{
if (_texture.Image.Width > _texture.Image.Height)
{

resizedWidth = maxDimension;
resizedHeight = (int)(_texture.Image.Height *

maxDimension / _texture.Image.Width);
}
else
{

resizedWidth = (int)(_texture.Image.Width *
maxDimension / _texture.Image.Height);

resizedHeight = maxDimension;
}

}

MaterialPreview.Image = new Bitmap(_texture.Image,
resizedWidth,
resizedHeight);

}

private void DisplayInformation()
{

if (_texture.Image != null)
{

this.FileNameLabel.Text = _texture.Name;
this.DimensionsLabel.Text = String.Format(CultureInfo.CurrentCulture,

“{0} x {1}”,
_texture.Image.Size.Width,
_texture.Image.Size.Height);

}
}

private void ToggleSelection()
{

if (_container != null)
_container.PerformSelect(this);

}

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control274

private void MaterialPreview_MouseClick(object sender, MouseEventArgs e)
{

if (e.Button == MouseButtons.Left)
{

ToggleSelection();
}
else if (e.Button == MouseButtons.Right)
{

if (_container != null)
_container.PerformRightClicked(this);

}
}

private void MaterialPreview_MouseDoubleClick(object sender, MouseEventArgs e)
{

if (_container != null)
_container.PerformActivated(this);

}
}

Figure 26.1 shows the texture thumbnail control shown in the designer. There are
two labels for the filename and dimensions, as well as a picture box in the middle
to display the resized image.

Building the Thumbnail Control 275

Figure 26.1 Screenshot of the thumbnail control in design mode.

Handling Custom User Events
The various notifications raised by the thumbnail and texture browser controls are
going to need a way to reach the application consuming them, so we need to pro-
vide events that the consuming application can tie into.

Basically, all of the events provided by the controls will send the same information,
so we can define a single class to hold the event arguments that will be sent to the
various event delegates. The different events will be covered in the next section
when the viewer control is discussed.

The event arguments class only tracks a single texture handle instance, which is a
reference to the texture handle associated to the event being executed.

The following code defines the event arguments class for the controls.

public class TextureBrowserEventArgs : EventArgs
{

private TextureHandle _texture;

public TextureHandle Texture
{

get { return _texture; }
set { _texture = value; }

}

public TextureBrowserEventArgs(TextureHandle texture)
{

_texture = texture;
}

}

Building the Viewer Control
The viewer control is fairly straightforward. It is basically a user control with a panel
that contains the thumbnail controls. This control determines the spacing and posi-
tioning of the thumbnails, handles notification events, and exposes appearance and
functional settings. It also manages the loading, displaying, and caching of thumb-
nails using the appropriate loader. The following source code describes the texture
browser control in its entirety. The source code listing is somewhat lengthy, one
reason why I will not comment much on each piece individually, but the full source
is needed to fully enable you to understand the control without referring to the
Companion Web site. The source code on the Web site is fully commented if there
is a specific piece that you wish to fully investigate.

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control276

public partial class TextureBrowser : UserControl
{

public enum LoaderType
{

Native,
Direct3D

}

public enum SelectionMode
{

Single,
Multiple

}

public event EventHandler<TextureBrowserEventArgs> TextureSelected;
public event EventHandler<TextureBrowserEventArgs> TextureDeselected;
public event EventHandler<TextureBrowserEventArgs> TextureActivated;
public event EventHandler<TextureBrowserEventArgs> TextureRightClicked;

private LoaderType _loader = LoaderType.Native;

private SelectionMode _selection = SelectionMode.Single;

private int _margin = 5;
private bool _cacheImages;

private Color _canvasColor = SystemColors.ControlDark;
private Color _backgroundColor = SystemColors.Control;
private Color _foregroundColor = SystemColors.ControlText;
private Color _backgroundColorSelected = SystemColors.Highlight;
private Color _foregroundColorSelected = SystemColors.HighlightText;

private AbstractLoader _imageLoader;

private Size _oldSize;
private bool _rebuildCache = true;
private bool _applyAppearance = true;

private List<TextureHandle> _textures = new List<TextureHandle>();
private List<TextureThumbnail> _thumbnails = new List<TextureThumbnail>();

[CategoryAttribute(“Texture Browser Settings”),

Building the Viewer Control 277

DescriptionAttribute(“Loader system to use when processing images”)]
public LoaderType Loader
{

get { return _loader; }
set
{

if (_loader != value)
{

_rebuildCache = true;
_loader = value;

switch (_loader)
{

case LoaderType.Native:
{

_imageLoader = new NativeLoader(this.Handle);
break;

}

case LoaderType.Direct3D:
{

_imageLoader = new Direct3DLoader(this.Handle);
break;

}
}

}
else if (_imageLoader == null)

_imageLoader = new NativeLoader(this.Handle);
DisplayThumbnails();

}
}

[CategoryAttribute(“Texture Browser Settings”),
DescriptionAttribute(“Selection mode of the control”)]

public SelectionMode Selection
{

get { return _selection; }
set { _selection = value; }

}

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control278

[CategoryAttribute(“Texture Browser Settings”),
DescriptionAttribute(“Whether or not to cache loaded images”)]

public bool CacheImages
{

get { return _cacheImages; }
set { _cacheImages = value; }

}

[CategoryAttribute(“Texture Browser Settings”),
DescriptionAttribute(“Background color of the texture browser panel”)]

public Color CanvasColor
{

get { return _canvasColor; }
set
{

_canvasColor = value;
ThumbnailPanel.BackColor = _canvasColor;

}
}

[CategoryAttribute(“Texture Browser Settings”),
DescriptionAttribute(“Background color of the thumbnail control”)]

public Color BackgroundColor
{

get { return _backgroundColor; }
set
{

_backgroundColor = value;
_applyAppearance = true;
DisplayThumbnails();

}
}

[CategoryAttribute(“Texture Browser Settings”),
DescriptionAttribute(“Foreground color of the thumbnail control”)]

public Color ForegroundColor
{

get { return _foregroundColor; }
set
{

_foregroundColor = value;
_applyAppearance = true;

Building the Viewer Control 279

DisplayThumbnails();
}

}

[CategoryAttribute(“Texture Browser Settings”),
DescriptionAttribute(“Background color of selected thumbnails”)]
public Color BackgroundColorSelected
{

get { return _backgroundColorSelected; }
set
{

_backgroundColorSelected = value;
_applyAppearance = true;
DisplayThumbnails();

}
}

[CategoryAttribute(“Texture Browser Settings”),
DescriptionAttribute(“Foreground color of selected thumbnails”)]
public Color ForegroundColorSelected
{

get { return _foregroundColorSelected; }
set
{

_foregroundColorSelected = value;
_applyAppearance = true;
DisplayThumbnails();

}
}

public TextureBrowser()
{

InitializeComponent();
this.Loader = LoaderType.Native;

}

public void AddTexture(TextureHandle texture)
{

if (texture != null)
{

_textures.Add(texture);
_rebuildCache = true;

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control280

DisplayThumbnails();
}

}

public void AddTextures(TextureHandle[] textures)
{

foreach (TextureHandle texture in textures)
{

AddTexture(texture);
}

}

public void AddTextures(List<TextureHandle> textures)
{

foreach (TextureHandle texture in textures)
{

AddTexture(texture);
}

}

public void RemoveTexture(TextureHandle texture)
{

if (texture != null)
{

_textures.Remove(texture);
_rebuildCache = true;
DisplayThumbnails();

}
}

public void RemoveTextures(TextureHandle[] textures)
{

foreach (TextureHandle texture in textures)
{

RemoveTexture(texture);
}

}

public void RemoveTextures(List<TextureHandle> textures)
{

foreach (TextureHandle texture in textures)
{

Building the Viewer Control 281

RemoveTexture(texture);
}

}

public void GenerateTexture(TextureHandle texture)
{

try
{

texture.Loaded = false;

switch (texture.Type)
{

case TextureHandleType.FileSystem:
{

texture.Image = _imageLoader.Load(texture.File.FullName);
break;

}

case TextureHandleType.RawData:
{

texture.Image = _imageLoader.Load(texture.Data);
break;

}

case TextureHandleType.Bitmap:
{

// Do nothing, data already there
break;

}
}

if (texture.Image != null)
{

texture.Loaded = true;

if (_cacheImages)
{

texture.Generate = false;
}

}
}
catch (System.OutOfMemoryException)

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control282

{
throw;

}
}

public void GenerateTextures(TextureHandle[] textures)
{

foreach (TextureHandle texture in textures)
{

GenerateTexture(texture);
}

}

public void GenerateTextures(List<TextureHandle> textures)
{

foreach (TextureHandle texture in textures)
{

GenerateTexture(texture);
}

}

public TextureHandle FindTexture(string name)
{

TextureHandle result = null;

foreach (TextureHandle texture in _textures)
{

if (texture.Name.Equals(name))
{

result = texture;
break;

}
}

return result;
}

public TextureHandle FindTexture(FileInfo file)
{

return FindTexture(file, false);
}

Building the Viewer Control 283

public TextureHandle FindTexture(FileInfo file, bool fullPath)
{

TextureHandle result = null;

foreach (TextureHandle texture in _textures)
{

if (fullPath)
{

if (texture.File.FullName.Equals(file.FullName))
{

result = texture;
break;

}
}
else
{

if (texture.File.Name.Equals(file.Name))
{

result = texture;
break;

}
}

}

return result;
}

public void SelectAll()
{

foreach (TextureThumbnail thumbnail in _thumbnails)
{

thumbnail.Selected = true;

if (TextureSelected != null)
TextureSelected(this,

new TextureBrowserEventArgs(thumbnail.Texture));
}

}

public void DeselectAll()
{

DeselectAll(null);
}

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control284

private void DeselectAll(TextureThumbnail skip)
{

foreach (TextureThumbnail thumbnail in _thumbnails)
{

if (skip != null && thumbnail.Equals(skip))
continue;

thumbnail.Selected = false;

if (TextureDeselected != null)
TextureDeselected(this,

new TextureBrowserEventArgs(thumbnail.Texture));
}

}

private void DisplayThumbnails()
{

_thumbnails.Clear();

if (_rebuildCache)
{

while (ThumbnailPanel.Controls.Count > 0)
{

TextureThumbnail th = (TextureThumbnail)ThumbnailPanel.Controls[0];
th.Dispose();
ThumbnailPanel.Controls.Remove(th);

}

foreach (TextureHandle texture in _textures)
{

if (texture.Generate)
{

GenerateTexture(texture);
}

if (texture.Loaded)
{

TextureThumbnail thumbnail = new TextureThumbnail(this,
texture);

_thumbnails.Add(thumbnail);
}

}

Building the Viewer Control 285

_rebuildCache = false;
}
else
{

foreach (TextureThumbnail thumbnail in ThumbnailPanel.Controls)
{

_thumbnails.Add(thumbnail);
}

ThumbnailPanel.Controls.Clear();
}

int numberHorizontal = -1;

foreach (TextureThumbnail thumbnail in _thumbnails)
{

if (numberHorizontal < 0)
{

// determine how many thumbnails can be displayed on one row
numberHorizontal = (int)(ThumbnailPanel.Width / (thumbnail.Width != 0

? thumbnail.Width : 1));

if (numberHorizontal <= 0)
numberHorizontal = 1;

}

thumbnail.Left = _margin + (thumbnail.Width + _margin)
* (ThumbnailPanel.Controls.Count %

numberHorizontal);

thumbnail.Top = _margin + (thumbnail.Height + _margin)
* (ThumbnailPanel.Controls.Count /

numberHorizontal);

ThumbnailPanel.Controls.Add(thumbnail);
}

if (_applyAppearance)
{

foreach (TextureThumbnail thumbnail in ThumbnailPanel.Controls)
{

if (thumbnail.Selected)

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control286

Building the Viewer Control 287

{
thumbnail.BackColor = BackgroundColorSelected;
thumbnail.ForeColor = ForegroundColorSelected;

}
else
{

thumbnail.BackColor = BackgroundColor;
thumbnail.ForeColor = ForegroundColor;

}
}

_applyAppearance = false;
}

}

internal void PerformSelect(TextureThumbnail thumbnail)
{

switch (_selection)
{

case SelectionMode.Single:
{

DeselectAll();
thumbnail.Selected = true;
if (TextureSelected != null)

TextureSelected(this,
new TextureBrowserEventArgs(thumbnail.Texture));

break;
}

case SelectionMode.Multiple:
{

if (Control.ModifierKeys == Keys.Control)
{

thumbnail.Selected = !thumbnail.Selected;

if (thumbnail.Selected)
{

if (TextureSelected != null)
TextureSelected(this,
new TextureBrowserEventArgs(thumbnail.Texture));

}

else
{

if (TextureDeselected != null)
TextureDeselected(this,

new TextureBrowserEventArgs(thumbnail.Texture));
}

break;
}
else
{

DeselectAll();

thumbnail.Selected = true;

if (TextureSelected != null)
TextureSelected(this,

new TextureBrowserEventArgs(thumbnail.Texture));
}
break;

}
}

}

internal void PerformActivated(TextureThumbnail thumbnail)
{

if (TextureActivated != null)
TextureActivated(this, new TextureBrowserEventArgs(thumbnail.Texture));

}

internal void PerformRightClicked(TextureThumbnail thumbnail)
{

if (TextureRightClicked != null)
TextureRightClicked(this,

new TextureBrowserEventArgs(thumbnail.Texture));
}

private void ThumbnailPanel_MouseClick(object sender, MouseEventArgs e)
{

DeselectAll();
}

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control288

private void TextureBrowser_Resize(object sender, System.EventArgs e)
{

if (_oldSize != ThumbnailPanel.Size)
{

_oldSize = ThumbnailPanel.Size;
this.DisplayThumbnails();

}
}

}

Figure 26.2 shows the texture browser control in design mode. The control is now
complete, which means that we can start consuming it in our applications. The
next section shows how to use it.

Using the Control
Using the new control is very easy. The first thing you want to do is add a refer-
ence to the control assembly. The next step is to add the texture browser control
into your toolbox. You can do this by right-clicking on the toolbox and selecting
the Choose Items… option. The Choose Toolbox Items dialog will appear, show-
ing all the assemblies loaded in the Global Assembly Cache (GAC). The control
library is not registered in the GAC, so you will need to click the Browse button

Using the Control 289

Figure 26.2 Screenshot of the texture browser control in design mode

and navigate to the assembly of the library. An entry called TextureBrowser will be
selected in the list. You should now be able to click OK and see the control appear
in your toolbox.

You can now drag the texture browser control from the toolbox onto your form.
Resize the control to your liking and then go to its properties. Aside from the normal
properties that are available for all Windows Forms controls, there is a new section
called Texture Browser Settings that are control-specific settings. These settings are
shown in Figure 26.3.

Change these settings to your liking, and then you can move onto the code for
adding textures to the control.

Loading Textures from a Directory
Early in the chapter, I mentioned that the loaders support three different sources for
image data. The most common source will be from files located in the file system,
and the following code shows how to iterate through a directory and load the image
files into the texture browser control. Be sure to reference the System.IO namespace.

DirectoryInfo directoryInfo = new DirectoryInfo(path);
if (directoryInfo.Exists)
{

FileInfo[] files = directoryInfo.GetFiles();

foreach (FileInfo file in files)
TextureBrowserInstance.AddTexture(new TextureHandle(file));

}

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control290

Figure 26.3 Properties for the texture browser control.

Loading Textures from a MemoryStream
The second source type for loading textures is from raw binary data stored in a
MemoryStream object. This type is useful when images are extracted from storage
archives, pulled off of a network connection, or programmatically generated. The
following code shows how to load an image into the texture browser control from
memory. Be sure to reference the System.Drawing and System.IO namespaces.

Image image = Image.FromFile(@”.\MemoryImage.bmp”);
MemoryStream stream = new MemoryStream();
image.Save(stream, ImageFormat.Png);
TextureBrowserInstance.AddTexture(new TextureHandle(“My Image”, stream));

Loading Textures from a Bitmap
The last source type provides the ability to use an existing bitmap image when cre-
ating a texture handle. This method does not require any additional loading, since
the image data has already been loaded into the bitmap object. This approach is
useful when retrieving embedded resource content from an assembly resource
stream, or images that are programmatically generated. The following code shows
how to load a texture from an existing bitmap.

Image image = Image.FromFile(@”.\MemoryImage.bmp”);
TextureBrowserInstance.AddTexture(new TextureHandle(“My Image”, image));

Texture Browser Demo
The Companion Web site has the complete source code for the library presented
in this chapter, along with a simple demo that utilizes it. The demo just loads images
located in a folder with the application, but supports the ability to switch image
loaders at runtime.

Multiple selection is enabled, and you just have to hold down the Ctrl key while
selecting multiple thumbnails. A context menu is bound to the right-click event of
the thumbnails to present a dialog that shows simple information about the image.
Lastly, the Activated event, (double-click), for the thumbnails shows a simple mes-
sage box where other functionality could be implemented in a real-world applica-
tion. An example of real-world functionality might be the ability to double-click a
thumbnail and have a selected model mesh reference the texture as its color map.

Figure 26.4 shows a screenshot of the texture browser demo application.

Texture Browser Demo 291

Conclusion
This chapter covered the construction of a reusable control that can display images
in a visually appealing way, and can also manage the handling and notification of
events associated with the control.

There are some places where refactoring could improve the overall design of the
component, but the most notable place is the Managed Direct3D loader. The point
of having pluggable interfaces is to decouple the reliance on external dependencies
when a particular component is not in use. Consider the situation where it is preferred
that an application consuming this control does not use the Managed Direct3D
loader, but instead uses the native GDI+ version. Sure, the loader can be set to
native, but the component is still referencing the managed DirectX assemblies. If
the consuming application is launched on a system without these assemblies, then
a File Not Found exception would be thrown during execution, even though the
Managed Direct3D loader is never used.

Chapter 26 ■ Constructing an Aesthetic Texture Browser Control292

Figure 26.4 Screenshot of the demo application using the texture browser.

This problem could be solved by compiling the abstract loader interface into a sep-
arate assembly, along with both loader types compiled into their own assemblies.
The texture browser component and both loaders would reference the abstract
loader interface, and the texture browser component would dynamically reference
the appropriate loader at runtime using reflection.

With such a problem, you are probably wondering why the component was not
designed to accommodate this decoupling in the first place. Reflection and plug-
in–based architectures would be the ideal “best practice” way to design the com-
ponent, but this chapter is meant to cover how to build the component itself,
hence why the component was designed the way it is. Removing this dependency
on Direct3D can be done two ways, both very easily. You can exclude the Direct3D
loader code from the texture browser component and recompile it; do not forget
to remove the assembly references as well. Or you can refactor the component to
support a plugin–based architecture, which is covered in Chapter 38, “Designing
an Extensible Plugin-Based Architecture.”

Overall, this chapter presents a solid and reusable component that can be employed
in a number of tools.

Conclusion 293

This page intentionally left blank

295

Converting from Screen
Space to World Space

chapter 27

A mathematician is a device for turning coffee into theorems.

Paul Erdos

When working with standard applications, users are accustomed to clicking on a
control or widget and having some degree of interaction with the control. Take a
push button, for example; users click on a push button and a visual cue is used that
presents the button in a depressed state, and the button launches an on-click event
that performs some action. Users are also accustomed to this same level of inter-
action with 3D applications.

Many 3D applications have dialogs that can modify and manage data without the
need to interact with the scene, but visual interaction is much easier and faster to
perform than clicking through dialog after dialog. For example, 3D applications
typically allow the user to reposition objects within a scene by using the mouse
and by typing in coordinates in a dialog box. It does not take a lot of thought to
figure out which method is faster and more productive. If using the mouse is eas-
ier and more productive, why bother with field-driven dialog boxes at all? Using
the mouse is quick, but typing coordinates into a dialog is much more precise than
using the mouse and trying to coerce an object into a specific location.

In order to handle mouse-clicking, the application must be able to read mouse click
events, extract the coordinate (X, Y), and perform an intersection test against a par-
ticular control to see if it was activated. Thankfully, this process is automatically
handled by Win32 user interface controls, but we are not so lucky in the 3D world.

This chapter will cover the math and implementation behind converting coordi-
nates in screen space to world space and performing intersection tests, otherwise
known as picking.

Transforming Screen Coordinates
Performing intersecting tests against Win32 controls is very simple, since the
mouse coordinates and the control bounds are both in screen space (X, Y).
Intersection tests from screen space coordinates to world space bounds (X, Y, Z)
require a bit of math since we do not know the relationship between the 3D object
and its projection. It is also important to state that we are using a left-handed coor-
dinate system, which is the default for Direct3D. OpenGL uses a right-handed
coordinate system, so the math and code will have to be adapted to get it working.
Take a look at the source code for the gluUnproject function of OpenGL if you are
unsure of how to do this.

Figure 27.1 shows the relationship between the origin of projection (screen space)
and the projection window (world space).

Chapter 27 ■ Converting from Screen Space to World Space296

Figure 27.1 Relationship between the origin of project and the projection window.

Figure 27.1 shows that the teapot was projected to the area surrounding W on the
projection window, corresponding to screen point S. With that said, we can compute
a picking ray that will project from the origin and pass through W. Intersection tests
can then be performed against all objects in the scene to determine which objects
were picked by the user. It is possible that the intersection tests performed on the
scene objects will return no hits. This simply means that the user did not click on
any objects.

N o t e

The point W on the projection window corresponds to the clicked screen point S.

We must first transform the clicked screen point S to point W on the projection
window. This is done by working backwards from the equations that transform
projection window points to screen points. The viewport transformation matrix
used in the equations is shown here:

Working backwards, transforming a world space point W (X, Y, Z) by the viewport
transformation matrix, yields the screen space point S (X, Y). Following are the
two equations to solve for S. The 2D image displayed by your graphics card after
rasterization does not contain any depth information (Z).

These two equations are great when converting from world space to screen space,
but they will serve no purpose unless we can get them into a more useful state.
Solving for variable W, we get the following new equations.

Transforming Screen Coordinates 297

The X and Y members of the viewport are almost always 0, so we can go one step
further and come up with the following equations. The projection window also
coincides with the plane where Z = 1, so we can now set the Z component of the
3D coordinate we are trying to calculate.

There is one last factor that must be considered to correctly solve for W. Different
fields of view can be used to present a scene, and the projection matrix scales the
points on the projection window to simulate these fields of view. To reclaim the
original values before scaling occurs, we must transform the points by the inverse
of the scaling operations. The variable projection will be used to signify the pro-
jection matrix, and the subscripts represent the matrix entries. Entries 00 and 11
of a transformation matrix scale the X and Y values, so we can produce the fol-
lowing equations.

N o t e

The Managed Direct3D Matrix object uses a slightly different numbering convention for row and
column entries. The properties M11 and M22 represent the 00 and 11, respectively.

Chapter 27 ■ Converting from Screen Space to World Space298

With the final transformation equations, we can move on to computing the pick-
ing ray that will test for objects picked by the user.

Computing the Picking Ray
A ray can be represented by the parametric equation P(t) = P + t * D, where P is a
point in the ray and D is a vector that provides the direction of the ray. In our sit-
uation, the origin of the ray is also the origin of the view space, so P = (0, 0, 0). If
P is a point on the project window to shoot the picking ray through, then we can
solve for D with the following equation.

The following code is used to compute the picking ray for intersection testing.

private PickingRay ComputePickingRay(Entity entity, int x, int y)
{

float viewportWidth = device.Viewport.Width;
float viewportHeight = device.Viewport.Height;

float projection00 = device.Transform.Projection.M11;
float projection11 = device.Transform.Projection.M22;

float pX = (((2.0F * x) / viewportWidth) - 1.0F) / projection00;
float pY = (((-2.0F * y) / viewportHeight) + 1.0F) / projection11;

Matrix invWorldView = Matrix.Identity;

invWorldView.Translate(entity.Position);
invWorldView.Multiply(device.Transform.View);
invWorldView.Invert();

Vector3 rayDirection = new Vector3(pX, pY, 1.0f);

return new PickingRay(rayDirection, invWorldView);
}

After computing the picking ray, we must also transform it into world space to
correctly represent the objects in the scene. Transforming the picking ray to world
space is done in the constructor of the following struct. The transformation matrix
supplied to the constructor is the inverse world-view matrix that was created when
the picking ray was computed. The following code is used to transform the picking
ray into world space so that the ray and the objects are in the same coordinate system.

Computing the Picking Ray 299

internal struct PickingRay
{

internal Vector3 Origin;
internal Vector3 Direction;

public PickingRay(Vector3 direction, Matrix transform)
{

Origin = new Vector3(0.0F, 0.0F, 0.0F);
Direction = direction;

Origin.TransformCoordinate(transform);
Direction.TransformNormal(transform);
Direction.Normalize();

}
}

N o t e

Vector3.TransformCoordinate() is used to transform points because it sets the fourth com-
ponent to W = 1, whereas Vector3.TransformNormal() is used to transform vectors because
it sets the fourth component to W = 0.

Bounding Sphere Intersection Tests
At this point, we are converting screen space coordinates to world space and com-
puting a ray that will be used for picking. Intersection tests will be performed
against objects in the scene using the computed ray to determine which objects the
user has selected.

In order to perform intersection tests, we need a 3D shape to test against.
Bounding spheres are common because their approximated nature makes them
fast to compute and use. Each object is represented by a bounding sphere that
describes the approximated volume of the object.

A sphere is represented by its center c and its radius r. Points can be tested for
whether they belong to a sphere if their distance from the center is equal to the
radius, shown by the following equation.

Intersecting a ray with a sphere can be found with the following equation, where
p is substituted with to represent the ray.

Chapter 27 ■ Converting from Screen Space to World Space300

We can square both sides of the equation to obtain the following equation.

This equation can then be written as a quadratic equation.

We can calculate the discriminant and use it to determine at first glance whether any
solutions exist. Ignoring t, we can calculate the discriminant with .

When the discriminant is less than zero, there are no solutions, so an intersection
did not occur.

When the discriminant is equal to zero, there is only one solution, which is gener-
ally a tangency. The solution for this case is given by the following equation:

When the discriminant is greater than zero, there are two solutions. Two solutions
for this case are given by the following equation:

Rays only extend in one direction (positive), so any solutions where t < 0 have to
be ignored. We just need to know if any solution was found, so we can skip the sec-
ond case altogether and jump right into the third case. If any solution is > 0, we
can safely say that an intersection was found.

The following code shows the intersection code for ray-sphere.

private bool IntersectRaySphere(Entity entity, int x, int y)
{

PickingRay ray = ComputePickingRay(entity, x, y);

Vector3 vec = ray.Origin - entity.BoundingSphere.Center;

Bounding Sphere Intersection Tests 301

float b = 2.0F * Vector3.Dot(ray.Direction, vec);

float center = Vector3.Dot(vec, vec) - (entity.BoundingSphere.Radius *
entity.BoundingSphere.Radius);

float discriminant = (b * b) - (4.0F * center);

if (discriminant < 0.0F)
return false;

discriminant = (float)Math.Sqrt((double)discriminant);

float s0 = (-b + discriminant) / 2.0F;
float s1 = (-b - discriminant) / 2.0F;

if (s0 >= 0.0F || s1 >= 0.0F)
return true;

return false;
}

N O T E

The picking ray extends infinitely, so there is a possibility that multiple objects can be intersected.
The object closest to the camera is the one the user selected because it will always occlude the
other selected objects.

Improving Intersection Accuracy
Testing for object intersection with bounding sphere volumes works, and the tests
are straightforward and fast to compute. A disadvantage to using bounding sphere
volumes is a fair level of inaccuracy. Bounding sphere volumes are ideal for any
spherical object, although most of the time intersections are performed against an
arbitrary mesh, which means that selections can occur by clicking near the object.

A solution to this problem is to perform triangle intersections against all the poly-
gons within the arbitrary mesh. This process takes longer to compute, but the
results are much more accurate than bounding sphere volumes. For the purposes
of this example, we will use the built-in Mesh.Intersect() method of Managed
Direct3D to perform intersection at the polygon level. The picking ray is computed
in the same way as in the previous example, but the picking ray origin and direc-
tion are passed into the intersection method.

Chapter 27 ■ Converting from Screen Space to World Space302

Using Built-In D3DX Functionality 303

The following code shows an intersect variation with improved accuracy.

private bool IntersectRayMesh(Entity entity, int x, int y)
{

PickingRay ray = ComputePickingRay(entity, x, y);
return entity.Mesh.Intersect(ray.Origin, ray.Direction);

}

Using Built-In D3DX Functionality
Reinventing the wheel is generally frowned upon, but a developer can always argue
that he would rather reinvent the wheel in some cases if it means he will walk away
understanding the mechanics of the solution at a lower level. This chapter has dis-
cussed the math and implementation behind converting a screen space coordinate
into world space, as well as computing a picking ray that can be used to perform
intersection tests against objects. I then went on to showing an improvement to
the intersection tests using built-in functionality of the Direct3D Mesh class. There
is actually enough built-in functionality with Managed Direct3D to implement a
full picking solution with only a few lines of code.

The Vector3 class has a method called Unproject that can be used to project a vec-
tor from screen space into world space. We can make two vectors that represent the
near and far clipping planes (Z = 0 and 1, respectively), unproject both of them,
and then subtract the near vector from the far vector to produce a picking ray suit-
able for Mesh.Intersect().

The following code shows this.

private bool IntersectUnprojectMesh(Entity entity, int x, int y)
{

Vector3 near;
Vector3 far;

near = new Vector3(x, y, 0);
far = new Vector3(x, y, 1);

Matrix world = Matrix.Identity;
world.Translate(entity.Position);

near.Unproject(device.Viewport,
device.Transform.Projection,
device.Transform.View,
world);

far.Unproject(device.Viewport,
device.Transform.Projection,
device.Transform.View,
world);

far.Subtract(near);

return entity.Mesh.Intersect(near, far);
}

Conclusion
This chapter covered the math and implementation details behind converting screen
space coordinates into world space, and performing intersection tests to determine
objects that have been picked in a scene.

Remember the following steps:

■ Given the screen point S, find its corresponding point (W) on the projection
window.

■ Compute the picking ray shooting from the origin through point W.

■ Transform the picking ray into the same space as each object.

■ Perform intersection tests to determine the objects picked by the user.

The Companion Web site has the full source code for the example that is frag-
mented throughout this chapter. The example displays several teapots; the user
can click on a teapot and it will turn a different color when selected. Figure 27.2
shows the example provided with this chapter.

Chapter 27 ■ Converting from Screen Space to World Space304

Figure 27.2
Screenshot of the provided
example for mouse picking.

305

Asynchronous Input
Device Polling

chapter 28

Why do we never have time to do it right, but always have time to do it over?

Anonymous

The Principle of Feedback (Chapter 7, “Fundamentals of User Interface Design”)
is perhaps the most important concept of application design. This principle entails
visual cues that easily describe the state of the application, but this principle also
covers responsiveness of the user interface and cues related to waiting periods.

The standard Microsoft Windows message pump typically works well for most
applications, but applications that update their state each time the mouse is moved
can suffer from performance penalties. This is usually felt by applications that
employ the use of 3D real-time graphics technologies like Direct3D.

The Microsoft DirectX library has a technology called DirectInput that communi-
cates directly with device hardware drivers, completely avoiding the Microsoft
Windows message pump. DirectInput offers considerable performance boosts over
the message pump, and also supports asynchronous polling and data buffering.

This chapter focuses on using DirectInput to asynchronously read the mouse and
keyboard devices. The mouse positions are expressed as deltas (difference) between
the current and last positions. This chapter also shows how to read the mouse but-
tons. This is a useful technique for using the mouse to control a 3D camera. You will
also learn how to check whether a key is depressed on the keyboard.

Asynchronous Mouse Polling
The first step is to include and reference the appropriate namespaces. You should
add a reference to Microsoft.DirectX and Microsoft.DirectX.DirectInput and use
the following namespaces.

using System;
using System.Threading;
using Microsoft.DirectX;
using Microsoft.DirectX.DirectInput;

The following class encapsulates all the nitty gritty details of using DirectInput for
mouse polling. After instantiation, the Initialize method is executed to create the
mouse input device and to spawn the asynchronous polling thread.

public class AsynchronousMouse : IDisposable
{

The Device object is used to manage Microsoft DirectInput devices and associated
properties, specify behavior, manage force-feedback effects, interact with the device’s
control panel, and perform device initialization.

private Device _device = null;

private Thread _threadData = null;
private AutoResetEvent _eventTrigger = null;

private byte[] _buttons;
private int _x;
private int _y;
private int _z;

private System.Windows.Forms.Form _context;

public delegate void MovementDelegate(int x,
int y,
int z,
bool left,
bool middle,
bool right);

private delegate void PollTriggerDelegate();

public event MovementDelegate MouseMovement;

Chapter 28 ■ Asynchronous Input Device Polling306

public byte[] Button
{

get { return _buttons; }
}

public int X
{

get { return _x; }
}

public int Y
{

get { return _y; }
}

public int Z
{

get { return _z; }
}

The initialization method instantiates the device, sets the cooperative level, and
sets the notification event that is used to control the polling thread.

The following code shows the initialization method.

public bool Initialize(System.Windows.Forms.Form context)
{

_context = context;

The next two lines create a new thread that asynchronously polls the mouse device
for state changes and dispatches them back to the user.

_threadData = new Thread(new ThreadStart(this.AsynchronousPolling));
_threadData.Start();

The _eventTrigger is used by DirectInput to notify threads when the mouse state
changes. We use this event to control the asynchronous polling thread.

_eventTrigger = new AutoResetEvent(false);

try
{

SystemGuid contains constant identifiers for system devices for use with DirectInput.
SystemGuid.Mouse is associated with a mouse that has up to four buttons, or another
device that is behaving like a mouse.

Asynchronous Mouse Polling 307

Chapter 28 ■ Asynchronous Input Device Polling308

_device = new Device(SystemGuid.Mouse);
_device.SetDataFormat(DeviceDataFormat.Mouse);

}
catch (InputException)
{

return false;
}

You must also specify the cooperative level for DirectInput devices. The different
flags are described in Table 28.1.

We always want data and we do not want to stall other applications using the input
devices, so we use the NonExclusive | Background level.

_device.SetCooperativeLevel(_context,
CooperativeLevelFlags.NonExclusive |
CooperativeLevelFlags.Background);

_device.SetEventNotification(_eventTrigger);

Acquire();
return true;

}

The polling thread runs in a loop, and each cycle is executed when the mouse is
moved. A cycle polls the mouse device to update the cached state information, and
then the callback method is fired. The callback method is registered by the con-
sumer of the component, and can be used to update the user interface or calculate
a 3D camera, for example.

Table 28.1 DirectInput Device Cooperative Level Flags

Flag Description

Exclusive This flag means that we want priority for control of the device.

NonExclusive This flag means that we do not need priority for control of the device.

Foreground This flag means that we only want data from the device if the window passed
into the SetCooperativeLevel method has focus.

Background This flag means that we always want data from the device.

NoWindowsKey This flag is used to ignore the Windows logo key, and is generally used in full
screen mode to prevent interruptions.

private void AsynchronousPolling()
{

while (_context.Created)
{

The AutoResetEvent.WaitOne() method is used to pause thread execution until it
receives a notification event (in this case the mouse state changing).

_eventTrigger.WaitOne(-1, false);

try
{

if (_device == null)
{

continue;
}

The next line retrieves the current mouse state.

_device.Poll();
}
catch (InputException)
{

continue;
}

The next two lines are used to asynchronously execute the trigger method that
routes mouse state information back to the client through a registered callback.

if (_context.Created && !_context.Disposing)
_context.BeginInvoke(new PollTriggerDelegate(PollTrigger));

}
}

The following code shows the trigger logic that gets the current mouse informa-
tion and sends it to the user event.

private void PollTrigger()
{

if (MouseMovement != null)
{

MouseState stateData = _device.CurrentMouseState;

_buttons = stateData.GetMouseButtons();

Asynchronous Mouse Polling 309

bool left = (_buttons[0] != 0);
bool right = (_buttons[1] != 0);
bool middle = (_buttons[2] != 0);

_x = stateData.X;
_y = stateData.Y;
_z = stateData.Z;

MouseMovement(stateData.X,
stateData.Y,
stateData.Z,
left,
middle,
right);

}
}

The following method is used to gain access to the mouse device. This is a required
step before data can be read from the device.

public void Acquire()
{

if (_device != null)
{

try
{

_device.Acquire();
}
catch
{
}

}
}

The following methods are used to properly dispose of the device and trigger
objects using the IDisposable pattern.

public void Dispose()
{

Dispose(true);
GC.SuppressFinalize(this);

}

protected virtual void Dispose(bool disposing)

Chapter 28 ■ Asynchronous Input Device Polling310

{
if (disposing)
{

if (_eventTrigger != null)
_eventTrigger.Set();

if (_device != null)
{

_device.Unacquire();
_device.Dispose();
_device = null;

}

_eventTrigger = null;
}

}
}

Asynchronous Keyboard Polling
Just as with the mouse class, you need to include and reference the appropriate
namespaces. You should add a reference to Microsoft.DirectX and
Microsoft.DirectX.DirectInput and use the following namespaces.

using System;
using System.Threading;
using Microsoft.DirectX;
using Microsoft.DirectX.DirectInput;

The following class encapsulates all the nitty gritty details of using DirectInput for
mouse polling. The code is almost identical to the AsynchronousMouse class, so only
the new sections will be discussed.

public class AsynchronousKeyboard : IDisposable
{

private Device _device = null;
private Thread _threadData = null;
private AutoResetEvent _eventTrigger = null;

private System.Windows.Forms.Form _context;

private bool _acquired = false;

private delegate void PollTriggerDelegate();

Asynchronous Keyboard Polling 311

public delegate void ActionDelegate();
public event ActionDelegate KeyboardAction;

private KeyboardState _keyboardState;

public bool Initialize(System.Windows.Forms.Form context)
{

_context = context;

_threadData = new Thread(new ThreadStart(this.AsynchronousPolling));
_threadData.Start();

_eventTrigger = new AutoResetEvent(false);

try
{

_device = new Device(SystemGuid.Keyboard);
_device.SetDataFormat(DeviceDataFormat.Keyboard);

}
catch (InputException)
{

return false;
}

_device.SetCooperativeLevel(_context,
CooperativeLevelFlags.NonExclusive |
CooperativeLevelFlags.Background);

_device.SetEventNotification(_eventTrigger);

Acquire();

return true;
}

The following method is used to query the keyboard state to determine whether a
particular key is depressed. The keyboard state is cached each time the state
changes within the asynchronous polling thread.

public bool KeyDown(Key key)
{

if (_keyboardState != null && _keyboardState[key])
{

Chapter 28 ■ Asynchronous Input Device Polling312

return true;
}

return false;
}

private void AsynchronousPolling()
{

while (_context.Created)
{

_eventTrigger.WaitOne(-1, false);

try
{

if (_device == null)
{

continue;
}

Acquire();

if (_acquired)
{

Retrieve and cache the current keyboard state so that the KeyDown method can use it.

_keyboardState = _device.GetCurrentKeyboardState();
}

}
catch (InputException)
{

continue;
}

if (_context.Created && !_context.Disposing)
_context.BeginInvoke(new PollTriggerDelegate(PollTrigger));

}
}

private void PollTrigger()
{

if (KeyboardAction != null)
KeyboardAction();

}

Asynchronous Keyboard Polling 313

public void Acquire()
{

if (_device != null)
{

try
{

if (!_acquired)
{

_device.Acquire();
_acquired = true;

}
}
catch
{

_acquired = false;
}

}
}

public void Dispose()
{

Dispose(true);
GC.SuppressFinalize(this);

}

protected virtual void Dispose(bool disposing)
{

if (disposing)
{

if (_eventTrigger != null)
_eventTrigger.Set();

if (_device != null)
{

_device.Unacquire();
_device.Dispose();
_device = null;

}

_eventTrigger = null;
}

}
}

Chapter 28 ■ Asynchronous Input Device Polling314

Sample Usage
Using the two classes in this chapter is very easy. The following code is from the
example for this chapter on the Companion Web site. A callback is used to report
keyboard state changes, although AsynchronousKeyboard.KeyDown() can be called at
any time outside of the callback. The Buttons, X, Y, Z properties of the
AsynchronousMouse class can also be called outside of the callback too.

public partial class MainForm : Form
{

private AsynchronousMouse _mouse;
private AsynchronousKeyboard _keyboard;

public MainForm()
{

InitializeComponent();

_mouse = new AsynchronousMouse();
_mouse.MouseMovement +=

new AsynchronousMouse.MovementDelegate(MouseMovementCallback);

_keyboard = new AsynchronousKeyboard();
_keyboard.KeyboardAction +=

new AsynchronousKeyboard.ActionDelegate(KeyboardActionCallback);
}

void KeyboardActionCallback()
{

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.UpArrow))
{

UpArrowState.Text = “Down”;
}
else
{

UpArrowState.Text = “Up”;
}

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.DownArrow))
{

DownArrowState.Text = “Down”;
}
else
{

Sample Usage 315

DownArrowState.Text = “Up”;
}

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.RightArrow))
{

RightArrowState.Text = “Down”;
}
else
{

RightArrowState.Text = “Up”;
}

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.LeftArrow))
{

LeftArrowState.Text = “Down”;
}
else
{

LeftArrowState.Text = “Up”;
}

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.A))
{

AState.Text = “Down”;
}
else
{

AState.Text = “Up”;
}

if (_keyboard.KeyDown(Microsoft.DirectX.DirectInput.Key.D))
{

DState.Text = “Down”;
}
else
{

DState.Text = “Up”;
}

}

void MouseMovementCallback(int x,
int y,
int z,

Chapter 28 ■ Asynchronous Input Device Polling316

bool left,
bool middle,
bool right)

{
if (left)
{

LeftButtonState.BackColor = Color.LimeGreen;
}
else
{

LeftButtonState.BackColor = Color.Maroon;
}

if (middle)
{

MiddleButtonState.BackColor = Color.LimeGreen;
}
else
{

MiddleButtonState.BackColor = Color.Maroon;
}

if (right)
{

RightButtonState.BackColor = Color.LimeGreen;
}
else
{

RightButtonState.BackColor = Color.Maroon;
}

ListViewItem listItem = new ListViewItem();

listItem.Text = x.ToString();
listItem.SubItems.Add(y.ToString());
listItem.SubItems.Add(z.ToString());

CoordinateList.Items.Add(listItem);

Coordinates.Text = String.Format(“Coordinates ({0}, {1}, {2})”,
x,
y,
z);

Sample Usage 317

}

private void MainForm_Load(object sender, EventArgs e)
{

if (!_mouse.Initialize(this))
{

MessageBox.Show(“Error initializing asynchronous mouse. Exiting.”);
Application.Exit();

}

if (!_keyboard.Initialize(this))
{

MessageBox.Show(“Error initializing async device. Exiting.”);
Application.Exit();

}
}

private void MainForm_Activated(object sender, EventArgs e)
{

if (_mouse != null)
{

_mouse.Acquire();
}

if (_keyboard != null)
{

_keyboard.Acquire();
}

}
}

Conclusion
This chapter briefly discussed DirectInput and some advantages of using DirectInput
over the standard Microsoft Windows message pump. A solution was later pre-
sented that shows how to read input device data asynchronously from the mouse
or keyboard. This technique is very useful for graphic-intensive programs where
smooth input is required.

Chapter 28 ■ Asynchronous Input Device Polling318

Techniques for
Network Tools

The Internet? We are not interested in it.

Bill Gates, 1993

For the most part, tools only need to manage data that exists on the host machine
of the tool, but there is an increasing demand for tools of a distributed nature for
certain processes. Some tools need to access a remote database containing schemas
for game entities, while some tools require the ability to download files off a remote
file share when appropriate. Some more advanced topics include distributed com-
puting architectures in order to disperse processor-intensive tasks over multiple
processing nodes. Another common use for network tools is to pass information
between applications that exist on the same machine. Creating a loopback endpoint
has been used by a number of tools to pass information between a managed and an
unmanaged application process without worrying about data formatting. However,
this approach will not be covered in this book since superior techniques are shown
in Part V, “Techniques for Legacy Interoperability,” when discussing interoperability
with legacy applications.

PART IV

The chapter in this part does not cover the low-level details of the OSI model or
any common network protocols like UDP or TCP\IP because of the abstracted
nature of the stream model in .NET. It does, however, cover building a distributed
grid computing architecture with .NET remoting, and how to download files asyn-
chronously across HTTP.

There is a growing need for network-oriented tools when dealing with distributed
architectures, though the majority of tools do not usually require this functionality.
Although fairly specific, the chapters covered in this part will come in handy when
the need arises.

321

Downloading Network
Files Asynchronously

chapter 29

Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not smart
enough to debug it.

Brian Kernigan

A common task of network applications is the downloading of files off a network
or Internet server. Traditionally, the developer would have to implement a TCP\IP
socket layer that implemented a subset of the HTTP protocol to retrieve these files.
As with many other common tasks, Microsoft has provided this functionality in
the .NET framework with the HttpWebRequest and HttpWebResponse classes. These
classes provide both synchronous and asynchronous approaches to interacting with
universal resource identifiers (URI). The synchronous approach is very straight-
forward, and requires little instruction on usage. The asynchronous approach,
however, can be tricky to implement and use.

In this chapter I will discuss the asynchronous functionality of the HttpWebRequest
and HttpWebResponse classes, and present a reusable solution to download files
asynchronously off a network or Internet server.

HttpWebRequest and HttpWebResponse
The .NET framework provides the abstract class WebRequest, which is the request
and response model for accessing data from the Internet. This model is protocol-
agnostic, specialized by classes inheriting from the abstract class. There are a variety
of specialized descendents of WebRequest, like FileWebRequest for handling file://
paths, but this chapter will focus on the HTTP protocol using HttpWebRequest.

The HTTP protocol is the primary transport mechanism for communicating with
Internet resources. A developer may use this mechanism to download application
updates and configuration information that constantly changes or even to post
messages to a dynamic environment like an ASP.NET application. The HttpWebRequest
class implements the WebRequest class, providing a specialized request class to com-
municate over the HTTP protocol. This class enables an application to interact
directly with servers using HTTP.

Server resources are identified by uniform resource identifiers (URI), and the
.NET framework provides the Uri class, which defines the properties and methods
for handling uniform resource identifiers, such as comparing, combing, and pars-
ing. Requests are sent from an application to a URI, such as a zipped fie or web
page. The requests are sent using HttpWebRequest to the remote server, using the
HTTP protocol as the transport mechanism to access the resource.

N o t e

If an error occurs with a request, a WebException is thrown that contains details about why
the request failed. The Status property is of type WebRequestStatus, and if the value is
WebRequestStatus.ProtocolError, the response returned from the server is contained in the
WebException.Response property.

The remainder of the chapter will cover the construction of an asynchronous
wrapper around HttpWebRequest and HttpWebResponse.

The Request Object
The first component of our asynchronous wrapper is the request object, which
serves as the public interface between the application and the rest of the wrapper.
This wrapper executes the core system and fires a download complete event when
the file has finished downloading. There is also a progress update event that you
can subscribe to in order to display download progress to the users.

public class AsyncFileDownloadRequest
{

Chapter 29 ■ Downloading Network Files Asynchronously322

public event AsyncDownloadCompleteHandler DownloadComplete;
public event AsyncDownloadProgressHandler ProgressUpdate;

private Uri address = null;

public Uri Address
{

get { return address; }
set { address = value; }

}

public void Initiate()
{

Thread thread = new Thread(new ThreadStart(InitiateThread));
thread.Start();

}

private void InitiateThread()
{

if (DownloadComplete != null && address != null)
{

AsyncFileDownloadSystem system = new AsyncFileDownloadSystem();
byte[] data = system.DownloadFile(address, ProgressUpdate);
DownloadComplete(data);

}
}

}

Maintaining Data State
The asynchronous mechanism provided by the HttpWebRequest object relies on a
chain of successively executed methods that process data in chunks. In order to
associate the data with the asynchronous mechanism, we need to build a simple
state object that will be used to store information and data related to state. The
asynchronous mechanism allows us to pass an arbitrary object between methods,
so the following class will be used as a container to pass within the asynchronous
model.

internal class AsyncFileDownloadState
{

public AsyncDownloadProgressHandler ProgressUpdate;

Maintaining Data State 323

private const int bufferSize = 1024;

private WebRequest request = null;
private Stream responseStream;
private bool fixedSizeBuffer = true;
private byte[] processBuffer;
private byte[] staticBuffer;
private List<byte> dynamicBuffer;
private int dataLength = -1;
private int bytesRead = 0;

public WebRequest Request
{

get { return request; }
set { request = value; }

}

public Stream ResponseStream
{

get { return responseStream; }
set { responseStream = value; }

}

public bool FixedSizeBuffer
{

get { return fixedSizeBuffer; }
set { fixedSizeBuffer = value; }

}

public byte[] ProcessBuffer
{

get { return processBuffer; }
set { processBuffer = value; }

}

public byte[] StaticBuffer
{

get { return staticBuffer; }
set { staticBuffer = value; }

}

public List<byte> DynamicBuffer

Chapter 29 ■ Downloading Network Files Asynchronously324

{
get { return dynamicBuffer; }
set { dynamicBuffer = value; }

}

public int DataLength
{

get { return dataLength; }
set { dataLength = value; }

}

public int BytesRead
{

get { return bytesRead; }
set { bytesRead = value; }

}

public AsyncFileDownloadState()
{

processBuffer = new byte[bufferSize];
}

}

The Core System
The solution presented in this chapter encapsulates a lot of the implementation
details of HttpWebRequest and asynchronous communication into a wrapper class.
There are a number of ways to implement an asynchronous model; some are
extremely simple, while some are complex and robust. The solution for this chap-
ter sits somewhere between those extremes.

The following code describes the core system that handles asynchronous web
requests and responses.

public delegate void AsyncDownloadCompleteHandler(byte[] data);
public delegate void AsyncDownloadProgressHandler(int bytesRead,

int dataLength);

internal class AsyncFileDownloadSystem
{

The Core System 325

The following is a constant that describes the temporary buffer size of incoming
data when the content length is unknown.

private const int bufferSize = 1024;

The following object is used to signal that the download is complete. ManualResetEvent
allows threads to communicate with each other; it is typically used when one
thread must be completed before others can proceed.

public ManualResetEvent completeEvent = new ManualResetEvent(false);

The following method downloads the data of a file pointed to by the address
string. The specified callback is used to report progress status.

public byte[] DownloadFile(string address,
AsyncDownloadProgressHandler callback)

{
Uri addressUri = new Uri(address);
return DownloadFile(addressUri, callback);

}

The following method downloads the data of a file pointed to by the Uri. The spec-
ified callback is used to report progress status.

public byte[] DownloadFile(Uri address, AsyncDownloadProgressHandler callback)
{

Set the complete event state to un-signaled.

completeEvent.Reset();

Create a new HttpWebRequest object by passing in the address to the resource.
Passing in a file:// address will result in a FileWebRequest object being created,
working transparently with the existing code because of the protocol-agnostic
model used.

WebRequest request = WebRequest.Create(address);

Instantiate a new asynchronous state object and reference the request for later use.

AsyncFileDownloadState state = new AsyncFileDownloadState();
state.Request = request;

Set the progress update callback on the state object.

state.ProgressUpdate += callback;

Chapter 29 ■ Downloading Network Files Asynchronously326

Launch an asynchronous request to access a web resource.

IAsyncResult result =
request.BeginGetResponse(new AsyncCallback(ResponseCallback),

state) as IAsyncResult;

Wait for the complete event to be set so that the data is not returned until the call-
back finishes.

completeEvent.WaitOne();

if (state.FixedSizeBuffer)
{

return state.StaticBuffer;
}
else
{

return state.DynamicBuffer.ToArray();
}

}

The following callback is used when an asynchronous response occurs.

private void ResponseCallback(IAsyncResult asyncResult)
{

Pull the asynchronous state object out of the result object, and then retrieve the request.

AsyncFileDownloadState state =
(AsyncFileDownloadState)asyncResult.AsyncState;

WebRequest request = state.Request;

Complete the asynchronous response and get the response object.

WebResponse response = request.EndGetResponse(asyncResult);

As an optimization, we check to see whether the data length of the requested
resource is known, so that an appropriate storage buffer can be used. With a
known length, a static buffer can be used, whereas a dynamic buffer is used when
the length is unknown, resulting in decreased performance.

if (response.ContentLength != -1)
{

state.DataLength = Convert.ToInt32(response.Content Length);
state.StaticBuffer = new byte[state.DataLength];

The Core System 327

}
else
{

state.FixedSizeBuffer = false;
state.DynamicBuffer = new List<byte>(bufferSize);

}

Retrieve the response object for the request so that data can now be read from the
stream.

Stream responseStream = response.GetResponseStream();
state.ResponseStream = responseStream;

Begin reading stream data asynchronously.

IAsyncResult readResult
= responseStream.BeginRead(state.ProcessBuffer,

0,
bufferSize,
new AsyncCallback(ReadCallback),
state);

}

The following callback is used when an asynchronous data read occurs.

private void ReadCallback(IAsyncResult asyncResult)
{

Pull the asynchronous state object out of the result object.

AsyncFileDownloadState state =
(AsyncFileDownloadState)asyncResult.AsyncState;

Retrieve the ResponseStream from the state object that was set in the ResponseCallback.

Stream responseStream = state.ResponseStream;

Check if there is any more data to read.

int bytesRead = responseStream.EndRead(asyncResult);
if (bytesRead > 0)
{

Copy the temporary data buffer into the appropriate data buffer that holds the
final data.

if (state.FixedSizeBuffer)
{

Chapter 29 ■ Downloading Network Files Asynchronously328

Array.Copy(state.ProcessBuffer,
0,
state.StaticBuffer,
state.BytesRead,
bytesRead);

}
else
{

byte[] data = new byte[bytesRead];
Array.Copy(state.ProcessBuffer, 0, data, 0, bytesRead);
state.DynamicBuffer.AddRange(data);

}

state.BytesRead += bytesRead;

Notify any callbacks attached to the progress update event.

if (state.ProgressUpdate != null)
state.ProgressUpdate(state.BytesRead, state.DataLength);

Call another data read cycle until there are no more bytes to read.

IAsyncResult readResult
= responseStream.BeginRead(state.ProcessBuffer,

0,
bufferSize,

new AsyncCallback(ReadCallback),
state);

}
else
{

All the data has been downloaded, so we can now close the response stream and
signal the complete event.

responseStream.Close();
completeEvent.Set();

}
}

}

Sample Usage
Using the asynchronous download system is very easy. Simply specify the resource
address, and bind the two callbacks to handle progress updates and the download
complete event. After which, call the Initiate() method to begin downloading.

The Core System 329

The following code shows this.

AsyncFileDownloadRequest request = new AsyncFileDownloadRequest();

// Specify the address of the file to download
request.Address = new Uri(“http://yourdomain/thefile”);

// Assign a delegate to handle download complete events
request.DownloadComplete

+= new AsyncDownloadCompleteHandler(DownloadCompleteCallback);

// Assign a delegate to handle progress update events
request.ProgressUpdate

+= new AsyncDownloadProgressHandler(DownloadProgressCallback);

// Request the file
request.Initiate();

Conclusion
This chapter discussed the HttpWebRequest and HttpWebResponse classes, and then
presented a reusable solution using these classes to asynchronously download files
off a network or Internet server.

The Companion Web site has the full source code to the download system, includ-
ing a simple demo that shows how to use the system. Figure 29.1 shows the main
interface of the provided example.

As mentioned earlier, there are a number of ways that files can be downloaded
asynchronously from a network location, but the solution presented in this chap-
ter fully utilizes the built-in functionality of the .NET Class Framework.

Chapter 29 ■ Downloading Network Files Asynchronously330

Figure 29.1 Screenshot of the demo application on the Companion Web site.

Techniques
for Legacy

Interoperability
Programming is like sex: one mistake and you have to support it for the rest
of your life.

Michael Sinz

The .NET platform is relatively new technology, so the majority of game develop-
ment studios still have legacy code that they have invested large amounts of time
and money into developing. Conversions and ports do not happen overnight, and
some situations require that a wrapper or interface be built around legacy technol-
ogy instead of updating it. Considerable resources have been spent on researching
and attempting ways to interoperate between managed and unmanaged applica-
tions. The long-term goal of a tools team should be to have a purely managed code
base, but it will take some time and commitment to reach such an objective. For a
short-term plan, a solid course of action will be to slowly migrate key components
over to managed code, exposing wrappers that allow the existing legacy applica-
tions to still consume them without errors. As each component is migrated and as
dependencies on legacy components are reduced, you will be able to start getting
rid of unmanaged wrappers. Obviously, any new components will targeted at the
managed runtime. Over time, you will end up with a purely managed solution that
exists solely on the managed runtime.

PART V

In order to accomplish even the short-term goal, an understanding must be fos-
tered regarding how to go about writing wrappers and exposing unmanaged inter-
faces from managed components. In addition to exposing unmanaged interfaces,
some conversion strategies may include migrating the application harness to the
managed runtime, and slowly move the unmanaged components across. In this
situation, you will need to know how to consume an unmanaged component from
within a managed application or component.

The chapters in Part V focus on such topics as exchanging data between applica-
tions, and exposing wrapper interfaces between various components. These tech-
niques can be used to support a solid migration plan for legacy components to
managed code.

333

Exchanging Data
Between Applications

chapter 30

Less than 10% of the code has to do with the ostensible purpose of the system;
the rest deals with input-output, data validation, data structure maintenance,
and other housekeeping.

Mary Shaw

Inter-Process Communication, also known as IPC, addresses the techniques and
mechanisms that allow processes to communicate and share data with each other.
The processes can exist on the same machine or on a network. Now, why do
processes require special mechanisms to facilitate communication with each other?
If you ever took a class on operating system fundamentals, you should remember
that each running instance of a program, a process if you would, is allotted a
unique memory space by the operating system kernel. No memory spaces will ever
overlap, which allows for the safe operation of processes but prohibits processes
from sharing data with each other. This is the reason that a communication medi-
um is required to handle the exchange of data between applications.

Why do processes need to communicate? Well, the reason is not very apparent
simply because you do not notice the ongoing exchange of data between process-
es. If Inter-Process Communication were not possible and you, as a user, had to
manage the communication of shared data, the critical need for IPC mechanisms
would be perceptible.

As discussed in Chapter 18, “Ensuring a Single Instance of an Application,” imag-
ine that you have Adobe Photoshop open and you double-click on another image
file on your desktop and, instead of the image opening up within the current
instance of Photoshop, the application remains silent. Once an already running
process of a particular application is located, the common approach to inform the
current instance of the new file is, you guessed it, Inter-Process Communication.

Now that we have discussed the importance of a process communication medium,
what can be used? Since the operating system kernel is in charge of memory and
process management, the kernel can be utilized to handle the communication for us.

What Microsoft.NET Provides
The .NET framework provides a number of mechanisms for inter-process com-
munication, each with its own advantages and disadvantages. A brief overview of
each built-in IPC mechanism will be described, but only a few of them will be
implemented.

Web Services
A Web Service is often defined as being a software system identified by a Universal
Resource Indicator (URI), whose public interfaces are defined and described using
the XML format. Its definition can then be discovered by other software systems
by communicating with Universal Description Discovery and Integration (UDDI)
registries. Other software systems can then interact with a Web Service-enabled
application through the manner described by its definition, using XML-based
messages conveyed over common Internet protocols like TCP\IP.

This method of communication is excellent for applications that exist on remote
machines, and because the transport protocol is XML-based, both applications
can be written in entirely different languages yet still communicate effectively with
each other. Web Service communication comes at a fairly hefty price though.
Deployment requires an HTTP server that understands Web Services such as IIS,
packet sizes tend to be fairly large because of plain text XML messages, XML seri-
alization incurs a significant performance cost, and transport speed is quite slow.

Remoting
Web Services are very powerful, but surely there must be another method of work-
ing with remote objects with increased performance? Welcome to the world of
.NET Remoting.

Chapter 30 ■ Exchanging Data Between Applications334

Remoting accomplishes nearly the same inter-process communication goals of
Web Services, but it does not have the same level of overhead, making it both a
powerful and high-performance method of working with remote objects between
different applications. The applications can be located on the same computer, on
different computers located on the same network, or on computers existing in dif-
ferent network domains. Remoting is much easier to use than Java Remote
Method Invocation (RMI), but it is not as easy to use as Web Services. In the past,
the majority of inter-process communication was made possible using the
Distributed Component Object Model (DCOM), which accomplishes many of the
goals that Web Services and Remoting do, except DCOM uses a proprietary bina-
ry protocol that hinders object models from supporting platform neutrality.

Remoting has two main types of communications methods: TCP and HTTP.
Communication via the TCP protocol is accessible through the TcpServerChannel
object and is best for local networks because of the increased performance over the
HTTP protocol. Firewalls generally block Remoting using the TCP protocol, thus
making HttpServerChannel the common choice for Internet-based communication.

N o t e

In order to use the Remoting functionality present in the .NET framework, you must reference the
System.Runtime.Remoting.dll assembly.

A solid design for Remoting architecture entails creating a separate library that
contains the shared vocabulary of all serializable objects both client and server will
use to communicate. The definition to all serializable objects must be available to
every application handling those objects; hence the need for an external library to
house them.

Figure 30.1 shows the relationship between the client, server, and shared vocabulary
assemblies.

The Companion Web site includes a simple server that accepts a string from a
client, converts the text to Pig Latin, and returns the modified string back to the
client. The vocabulary library for this example is quite simple, and only contains
one class that facilitates the communication between client and server;
PigLatinController has only one method called Convert, which accepts a string con-
taining the text to convert, and returns a string containing the converted text.

What Microsoft.NET Provides 335

You should notice that PigLatinController is inheriting from MarshalByRefObject,
which is necessary to make the object available to clients requesting it. Remoting
does not return a copy of the object; instead a proxy object is used to invoke meth-
ods in the remote object.

Every public method you define in the remote object will be available to clients,
with the same rules that would apply if the object were accessed locally in a system.

using System;

namespace PigLatinRemoting
{

public class PigLatinController : MarshalByRefObject
{

public string ConvertToPigLatin(string input)
{

…
}

}
}

As you can see in the preceding code, there is one public method the server will
make available to all clients requesting the proxy of this object.

Once the vocabulary is defined, a server must be created that registers the vocabu-
lary over a channel which clients will use to request the proxy. This is accomplished

Chapter 30 ■ Exchanging Data Between Applications336

Figure 30.1 Relationship between the client, server, and shared vocabulary assemblies.

by first instantiating either TcpServerChannel or HttpServerChannel, depending on
the protocol you wish to use. The constructor accepts the port number that this
channel resides on over the protocol used.

N o t e

The server application must reference the shared vocabulary assembly so that the remote object
definition is available to the server.

TcpServerChannel serverChannel = new TcpServerChannel(9978);

This code creates a Remoting channel on port 9978 using the Tcp protocol. The
following code shows the same thing using the Http protocol.

HttpServerChannel serverChannel = new HttpServerChannel(9978);

After the channel is initialized, it must be registered with the static ChannelServices
object, used in the registration of Remoting channels, resolution, and URL discovery.

ChannelServices.RegisterChannel(serverChannel);

After the channel is registered, it is time to register the vocabulary so that clients
can begin requesting the proxy objects. This is done using the static
RemotingConfiguration object, used for configuring the Remoting infrastructure.

Remote object lifetime management is an important factor to consider when
designing your system. There are two lifetime types available to remote objects:
SingleCall and Singleton. SingleCall means that every incoming message will be
serviced with a new instance of the registered type. Singleton means that every
incoming message will be serviced with a shared instance of the registered type.

Since our object does not even have variables to store data, it would be most effi-
cient to use a singleton instance of the remote object. We call RegisterWellKnown
ServiceType to register our class as a well known type on the service end.

RemotingConfiguration.RegisterWellKnownServiceType(typeof(PigLatinController),
“PigLatinController”,
WellKnownObjectMode.Singleton);

That’s it! The server has been created and is now making our remote object vocab-
ulary accessible to any clients that request it. The last step is to create the client
application that will use the remote object.

Creating the client is even easier than creating the server; the remote object can be
accessed using just one line of code!

What Microsoft.NET Provides 337

PigLatinController controller = Activator.GetObject(typeof(PigLatinController),
“tcp://localhost:9978/PigLatinController”)

as PigLatinController;

N o t e

In order to use the Remoting functionality present in the .NET framework, you must reference the
System.Runtime.Remoting.dll assembly.

Now we can use our public method ConvertToPigLatin() and see Remoting in action.

string result = controller.ConvertToPigLatin(“Remoting Rocks”);

When this line is executed, the result is Emotingray Ocksray.

Remoting is an excellent choice for managed inter-process communication over a
network between multiple machines, but it is overkill for many projects. This sec-
tion briefly skimmed the surface of .NET Remoting, so it is recommended that
you read up on additional information if you plan on using Remoting extensively
in your applications.

Clipboard
The Clipboard mechanism is a collection of functions and messages that allow for
the transfer of data between multiple applications or within a single application.
Since all applications have access to the Clipboard, it can also serve as an IPC
mechanism. Its usage is a special case though, and is generally used as a storage
system for a user to manually move data in memory between multiple applica-
tions. Using the Clipboard mechanism is covered in a separate chapter of this book.

TCP\IP Loopback Communication
Another common method of inter-process communication is though the use of
TCP\IP communication to pass data between processes. This approach can be
used to communicate between different machines, or the loopback address
(127.0.0.1) can be used to communicate with endpoints on the same machine.
While this approach has its uses, it may not be the best way if you are doing a large
number of chatty calls, or if you do not want to manage designated port numbers
for your applications. This approach is natively supported in Microsoft.NET, so it
may be useful to you if performance isn’t critical and you just want an easy way to
pass data between processes on the same machine or across a network.

Chapter 30 ■ Exchanging Data Between Applications338

What Microsoft.NET Should Provide
There are a couple mechanisms that Microsoft.NET should provide that are only
accessible through unmanaged Interop.

Named Pipes
A common IPC mechanism that exists on the majority of modern operating sys-
tems is referred to as a pipe. Windows has named pipes, which are one-way or
duplex for communication between a pipe server and one-to-many pipe clients.
All instances of a named pipe share the same name, though each instance has a
reserved and separate set of buffers and handles. Any process can function as both
a server and a client, which allows for peer-to-peer communication. Named pipes
can also provide communication between processes on the same machine or
between processes across a network.

Named pipes can be accessed by any process, making them ideal candidates for
simple communication between related or unrelated processes. Named pipes are
also much more efficient than Remoting when using chatty calls, as named pipes
avoid binary serialization. Named pipes are not natively supported by Microsoft.NET,
so developers must resort to legacy Interop in order to use them.

WM_COPYDATA
A simple communication method that Win32 applications can use to send data
between processes is the WM_COPYDATA message in the Windows API. WM_COPYDATA
runs at a low level, so it is capable of sending data between process address spaces.
This message is very useful for sending data between applications, but it requires
cooperation between the sending and receiving applications. Both applications
must know the format of the data being sent, and must respond to it appropriate-
ly. The sender must ensure that it does not modify any data referenced by point-
ers sent to receiving applications, and any pointers used must be accessible from
any application. This means that you cannot send a pointer that references mem-
ory in the local address space of the sender application.

Building a Wrapper Around WM_COPYDATA
WM_COPYDATA is not natively supported by Microsoft.NET, so it is only accessible
through Platform Invocation Services. The remainder of this chapter will focus on
sending and receiving data between managed and unmanaged applications.

Building a Wrapper Around WM_COPYDATA 339

The Companion Web site contains a robust wrapper and manager around
WM_COPYDATA. There is a version for managed applications and also a version for
unmanaged applications.

Communicating from Unmanaged Applications
In order to focus purely on the implementation details behind WM_COPYDATA, we will
first look at usage from an unmanaged application so we can avoid Platform
Invocation Services.

The WM_COPYDATA message is sent to an application by calling the SendMessage()
method; the PostMessage() method should not be used. The first parameter is the
window handle of the target you are sending the data to; this handle will be refer-
encing a window that is in use by another application. The second parameter is the
event ID that is being sent. In this case we are using the WM_COPYDATA identifier. The
third parameter (WPARAM) is the handle of the window that is sending the data.
Finally, the last parameter (LPARAM) is a pointer to a COPYDATASTRUCT structure that
contains the data that will be sent to the other application.

COPYDATASTRUCT has three members: dwData allows you to send 32 bits of data, and
the remaining two members are used to pass a pointer to the other application.
The cbData member describes the data length (in bytes) that is pointed to by the
member lpData. You do not have to pass a pointer; lpData can be null if you just
wish to pass values in dwData.

COPYDATASTRUCT copyData;
copyData.dwData = 0;
copyData.cbData = dataPointerSize;
copyData.lpData = dataPointer;

The following code shows how to construct the SendMessage() call. That’s all there
is to sending data with WM_COPYDATA!

SendMessage(targetHWND,
WM_COPYDATA,
(WPARAM)senderHWND,
(LPARAM)(LPVOID)©Data);

BOOL success = (GetLastError() == 0 ? 1 : 0);

In order to receive WM_COPYDATA messages, you must add a message handler in the
Windows message processing loop. When a WM_COPYDATA message is received, you
have a pointer to a COPYDATASTRUCT instance where you can extract the data sent to
you.

Chapter 30 ■ Exchanging Data Between Applications340

C a u t i o n

The receiving application should consider the data read-only, as the data is only valid during pro-
cessing. The receiving application should also not attempt to free the memory sent to it. If the
receiving application needs to manipulate the data, it should store a local copy.

The following code shows a culled version of a message handler, only showing the
WM_COPYDATA handler.

LRESULT CALLBACK WinProc(HWND handle,
UINT message,
WPARAM wParam,
LPARAM lParam)

{
switch (message)
{

case WM_COPYDATA:
{

PCOPYDATASTRUCT copyData = (PCOPYDATASTRUCT)lParam;
// Start using the elements in copyData
return 0;

}
}

return DefWindowProc(handle, message, wParam, lParam);
}

Communicating from Managed Applications
Using WM_COPYDATA from a managed application is pretty much identical to using it
from an unmanaged application, except that we need to declare some of the types
and identifiers we will need.

The following code shows the P/Invoke signature for the COPYDATASTRUCT type.

[StructLayout(LayoutKind.Sequential)]
private struct COPYDATASTRUCT
{

public IntPtr _dataType;
public int _dataSize;
public IntPtr _dataPointer;

}

Building a Wrapper Around WM_COPYDATA 341

As mentioned earlier, we pass the WM_COPYDATA identifier into the SendMessage()
method. In order to do so, we need to define the WM_COPYDATA identifier because
Microsoft.NET does not natively recognize its value.

private const int WM_COPYDATA = 0x4A;

The following two lines of code show the P/Invoke signature for the SendMessage()
method that is located in user32.dll.

[DllImport(“user32.dll”, CharSet=CharSet.Auto)]
private extern static int SendMessage(IntPtr handle, int msg, int param, ref
COPYDATASTRUCT copyData);

In order to send a data pointer to another process, we need to allocate a global
block of memory that is not managed by the garbage collector. We can do this by
calling Marshal.AllocCoTaskMem(). It will return a pointer to an allocated block of
memory that can now have contents copied into it. A subsequent call to Marshal.Copy()
can copy a byte array to that location in memory.

byte[] dataToSend = new byte[123];
IntPtr dataPointer = Marshal.AllocCoTaskMem(dataToSend.Length);
Marshal.Copy(dataToSend, 0, dataPointer, dataToSend.Length);

Just like using WM_COPYDATA in an unmanaged application, we need to instantiate a
COPYDATASTRUCT instance and specify the data that we will be sending to the receiv-
ing application.

COPYDATASTRUCT copyData = new COPYDATASTRUCT();
copyData._dataType = IntPtr.Zero;
copyData._dataSize = dataToSend.Length;
copyData._dataPointer = dataPointer;

The next few lines of code show the call to SendMessage(). You can get an unmanaged
handle (HWND) to any managed Form in .NET by accessing the Handle property. You
need to find out the handle of the target form, which again is not natively sup-
ported by .NET, although you can use a function like FindWindow() to help you out.
You will have to tap into P/Invoke for this one too. The example and library on the
Companion Web site show how to do this.

IntPtr target = TargetForm.Handle;
IntPtr sender = YourForm.Handle;
int result = SendMessage(target, WM_COPYDATA, sender.ToInt32(), ref copyData);
// Successful if result is 0

Chapter 30 ■ Exchanging Data Between Applications342

After you have successfully sent the data, it is important that you free the memory
from Windows, because this memory is not managed by the .NET garbage collector.
Remember that receiving applications are not supposed to manipulate or free the
memory referenced by this pointer, so it is your responsibility to do so.

Marshal.FreeCoTaskMem(dataPointer);

Perhaps the trickiest part about using WM_COPYDATA with a managed application is
that you cannot just tap into the message handler of a form. You need to create a
wrapper class that inherits from NativeWindow, and assign to NativeWindow the han-
dle of the form you are using. The following code shows the implementation of the
NativeWindow wrapper class. You will also notice that the pointer we received gets
Marshaled back into a COPYDATASTRUCT instance.

public sealed class CopyDataWindow : NativeWindow, IDisposable
{

protected override void WndProc(ref System.Windows.Forms.Message message)
{

switch (message.Msg)
{

case WM_COPYDATA:
{

COPYDATASTRUCT copyData = Marshal.PtrToStructure(message.LParam,
typeof(COPYDATASTRUCT))
as COPYDATASTRUCT;

if (copyData._dataSize > 0)
{

byte[] data = new byte[copyData._dataSize];
Marshal.Copy(copyData._dataPointer,

data,
0,
copyData._dataSize);

message.Result = (IntPtr)1;
}

}

break;
}

base.WndProc(ref message);
}

}

Building a Wrapper Around WM_COPYDATA 343

You can instantiate this class after your form exists and call AssignHandle() on the
NativeWindow instance, passing in the Handle property of your form instance.

Conclusion
This chapter started off by discussing what inter-process communication is and
why it is important, and then described some IPC mechanisms that are native to
Microsoft.NET, and then some IPC mechanisms that are only available through
Platform Invocation Services. Remoting was briefly covered, but nowhere near
close to the level of detail that is available from books that are dedicated to the sub-
ject. I recommend that you pick up the book Advanced .NET Remoting by Ingo
Rammer (ISBN: 1590590252) if you want to investigate this awesome technology
in greater detail.

A large number of IPC mechanisms were at least briefly covered in this chapter, though
some were left out since the chapter is generally directed towards WM_COPYDATA.
Some excluded IPC mechanisms are shared memory spaces and overlapped I/O.

Be sure to check out the Companion Web site for a robust library that wraps and
manages communication between managed and unmanaged applications, includ-
ing an example that shows library usage. There are two flavors of the library: one
for managed applications and one for unmanaged applications. This library allows
you to group messages into channels, so that you can perform filtering or classifi-
cation of messages and associated data.

Chapter 30 ■ Exchanging Data Between Applications344

345

Interacting with
the Clipboard

chapter 31

I object to doing things that computers can do.

Olin Shivers

Microsoft has always spearheaded the movement to constantly increase produc-
tivity using the Windows operating system. One productivity feature that has allowed
people to work smarter and faster is the Windows Clipboard. The Clipboard is a
temporary storage area that Windows uses to hold information that is being trans-
ferred between documents or applications. Most Windows applications support
cutting or copying data to the Clipboard and pasting data from the Clipboard.

The Windows Clipboard can store many types of data, including text, formatted
text, images, audio, and binary files. Even though any Clipboard data can be shared
by all Windows applications, it is important to note that supported data formats
vary between applications. Most applications know how to handle text, but not all
applications know how to handle other data formats.

The Clipboard can only hold one data item at a time. When the Clipboard receives
new data, the previous data is overwritten with the new contents. Contents can be
pasted numerous times, because the contents remain in the Clipboard until cleared,
overwritten by newer contents, or when Windows is shut down.

This chapter describes how to use the standard Windows Clipboard API from
within your .NET applications.

The Clipboard Class and IDataObject
Accessing the Clipboard and storing data is made possible by the Clipboard class
in the System.Windows.Forms namespace, specifically the SetDataObject() and
GetDataObject() methods.

SetDataObject() is used to store arbitrary data on the Clipboard, and it defines
whether or not the data remains persisted after the application exits. Similarly,
GetDataObject() is used to retrieve arbitrary data that is stored on the Clipboard.
GetDataObject() can also be used to determine whether data exists on the
Clipboard, and what format the data is. Both methods use the IDataObject inter-
face, which is a format-independent mechanism that is used for data transfer and
notification of changes in data. The IDataObject interface is used in this situation
because arbitrary data can be stored on the Clipboard, and we need an initial way
to determine what format the data is before we can work with it.

The SetDataObject() method has two overloaded definitions. The first one (shown
in the following line of code) is used to store an object on the Clipboard, releasing
the data when the application exits.

public static void SetDataObject(object data);

The following method has a copy parameter that specifies whether the data should
be persisted on the Clipboard after the application exits.

public static void SetDataObject(object data, bool copy);

The GetData() method can be used to get the associated data and convert it to the
appropriate type.

Storing Built-In Types
Storing built-in types is very simple, especially since .NET automatically handles
conversion between similar data formats (ANSI and Unicode text, for example).

The following code shows how to store a built-in type (DataFormats.Text for this
example).

string text = “This is a test!”;

IDataObject dataObject = new DataObject();
dataObject.SetData(DataFormats.Text, true, text);
Clipboard.SetDataObject(dataObject, true);

The following code shows how to retrieve the text from the Clipboard.

Chapter 31 ■ Interacting with the Clipboard346

Storing Built-In Types 347

IDataObject dataObject = Clipboard.GetDataObject();

string text = null;

if (dataObject.GetDataPresent(DataFormats.Text))
{

text = (string)dataObject.GetData(DataFormats.Text);
}

There are many built-in types available, as shown in Table 31.1.

Table 31.1 Available Data Formats

Data Format Description

Bitmap Specifies a Windows bitmap format.

CommaSeparatedValue Specifies a comma-separated value (CSV) format that is a common
interchange format for spreadsheet applications.

Dib Specifies the Windows device-independent bitmap format.

Dif Specifies the Windows data interchange format.

EnhancedMetafile Specifies the Windows enhanced metafile format.

FileDrop Specifies the Windows file drop format.

Html Specifies text consisting of HTML data.

Locale Specifies the Windows culture format.

MetafilePict Specifies the Windows metafile format.

OemText Specifies the standard Windows original equipment manufacturer
(OEM) text format.

Palette Specifies the Windows palette format.

PenData Specifies the Windows pen data format, used to store pen strokes for
handwriting software.

Riff Specifies the Resource Interchange File Format (RIFF) audio format.

Rtf Specifies text consisting of rich text format data.

Serializable Specifies a format that encapsulates any type of Windows Forms object.

StringFormat Specifies the Windows Forms string class format, used by Windows
Forms to store string objects.

SymbolicLink Specifies the Windows symbolic link format.

Text Specifies the standard ANSI text format.

Tiff Specifies the Tagged Image File format.

UnicodeText Specifies the standard Windows Unicode text format.

WaveAudio Specifies the wave audio format.

Storing Custom Data Formats
Situations arise when your application needs to store custom data on the
Clipboard, either for use within the same application or so that other related
applications can use the data. The .NET framework allows you to store any serial-
izable data type on the Clipboard. To start, we will define a simple custom data
object that will be stored on the Clipboard. This object is described with the fol-
lowing code.

[Serializable]
public class CustomData
{

private static DataFormats.Format dataFormat;

public static DataFormats.Format DataFormat
{

get { return dataFormat; }
}

static CustomData()
{

dataFormat = DataFormats.GetFormat(typeof(CustomData).FullName);
}

private string testString;
private int testInteger;

public CustomData()
{

testString = string.Empty;
testInteger = 0;

}

public CustomData(string testString, int testInteger)
{

this.testString = testString;
this.testInteger = testInteger;

}

public string TestString
{

get { return testString; }
set { testString = value; }

}

Chapter 31 ■ Interacting with the Clipboard348

public int TestInteger
{

get { return testInteger; }
set { testInteger = value; }

}

public override string ToString()
{

return string.Format(“TestString:{0}, TestInteger{1}”,
testString,
testInteger);

}
}

Custom data requires a unique format descriptor, which is created with the fol-
lowing line of code.

dataFormat = DataFormats.GetFormat(typeof(CustomData).FullName);

The simple data object has a static constructor that sets the static dataFormat prop-
erty so that the format can easily be plugged into the storage operation of the
Clipboard.

The following code shows how to copy the CustomData object to the Clipboard.

CustomData data = new CustomData();
data.TestString = “This is a test”;
data.TestInteger = 12345;

IDataObject dataObject = new DataObject();
dataObject.SetData(format, true, data);
Clipboard.SetDataObject(dataObject, true);

Similarly, the following code shows how to retrieve the CustomData object from the
Clipboard.

IDataObject dataObject = Clipboard.GetDataObject();

CustomData data = null;

if (dataObject.GetDataPresent(CustomData.DataFormat.Name))
{

data = (CustomData)dataObject.GetData(CustomData.DataFormat.Name);
}

Storing Custom Data Formats 349

Querying Available Data Formats
You already know that only a single chunk of data can be stored on the Clipboard
at any one time, but it is also important to point out that some data types can be
easily converted to a variety of different formats. .NET supports both implicit and
explicit conversions between multiple data formats, but you generally need to be
aware of the formats that a certain type format can convert to; attempting to con-
vert data to an unsupported format will cause exceptions.

IDataObject has a useful method called GetFormats() that can be used to query the
formats that the stored data can be converted to, provided that auto conversion
was true when the data was stored on the Clipboard.

There are two overloaded definitions for GetFormats() shown in the following. The
first definition retrieves all the formats that the stored data can be converted to.

public string[] IDataObject.GetFormats();

The next definition allows you to specify whether or not to include all convertible
formats, or only list native types.

public string[] IDataObject.GetFormats(bool autoConvert);

N o t e

Call GetFormats() to get the supported formats before calling GetData().

Complete Solution
The code snippets in this chapter have been consolidated into a helper class that
makes it easier to work with the Clipboard. .NET 2.0 has introduced several wrap-
per methods around SetDataObject() and GetDataObject() that are specific to cer-
tain data types. The intent of this chapter is to show how the low-level API for
the Clipboard works, because all the wrapper methods do is encapsulate the
SetDataObject() approach.

The complete source code for the helper class is shown below.

internal static class ClipboardHelper
{

internal static string[] GetCurrentFormats()
{

IDataObject dataObject = Clipboard.GetDataObject();
string[] formats = dataObject.GetFormats(true);

Chapter 31 ■ Interacting with the Clipboard350

return formats;
}

internal static void CopyText(string text)
{

CopyArbitraryData(DataFormats.Text, (object)text);
}

internal static void CopyImage(Image image)
{

CopyArbitraryData(DataFormats.Bitmap, (object)image);
}

internal static void CopyCustomData(CustomData data)
{

CopyArbitraryData(CustomData.DataFormat.Name, (object)data);
}

internal static string PasteText()
{

object rawData = PasteArbitraryData(DataFormats.Text, true);

string text = null;

if (rawData != null && rawData is string)
{

text = (string)rawData;
}

return text;
}

internal static Image PasteImage()
{

object rawData = PasteArbitraryData(DataFormats.Bitmap, true);

Image image = null;

if (rawData != null && rawData is Image)
{

image = (Image)rawData;
}

Complete Solution 351

return image;
}

internal static CustomData PasteCustomData()
{

object rawData = PasteArbitraryData(CustomData.DataFormat.Name,
false);

CustomData data = null;

if (rawData != null && rawData is CustomData)
{

data = (CustomData)rawData;
}

return data;
}

private static void CopyArbitraryData(string format, object data)
{

IDataObject dataObject = new DataObject();
dataObject.SetData(format, true, data);
Clipboard.SetDataObject(dataObject, true);

}

private static object PasteArbitraryData(string format, bool autoConvert)
{

object data = null;

IDataObject dataObject = Clipboard.GetDataObject();

if (dataObject.GetDataPresent(format))
{

if (autoConvert)
{

data = dataObject.GetData(format, true);
}
else
{

data = dataObject.GetData(format);
}

}

Chapter 31 ■ Interacting with the Clipboard352

return data;
}

}

Conclusion
This chapter described what the Windows Clipboard is used for and how to store
and retrieve arbitrary data on it. The Clipboard is a standard Windows feature that
users expect to work in all applications, so it is advisable that you implement
Clipboard functionality where appropriate in order to promote comfortable user
interfaces.

Additionally, Clipboard functionality in terms of availability in the user interface
is only meaningful in certain contexts. The Cut and Copy commands should only
be enabled when data is selected. The Paste command should only be enabled
when appropriate data is on the Clipboard. Be sure to design user interfaces that
are easy for users to intuit and understand.

The Companion Web site includes the complete source code shown in this chap-
ter, including a simple WinForms application that uses the Clipboard helper class.
This demo application is shown in Figure 31.1.

The Clipboard is fairly simple to understand, though it is important to properly
implement its functionality because users are so accustomed to its existence.

Conclusion 353

Figure 31.1 Screenshot of the demo application on the Companion Web site.

This page intentionally left blank

355

Using .NET Assemblies
as COM Objects

chapter 32

The lowest form of thinking is the bare recognition of the object. The highest,
the comprehensive intuition of the man who sees all things as part of a system.

Plato

Microsoft engineers have devoted a significant amount of work to the Component
Object Model (COM) since its inception in 1998. Many software projects invested
a lot of time and resources into adopting COM because it made sense at the time.
With the introduction of the .NET platform, software projects are starting to build
reusable components as strongly named .NET assemblies rather than dealing with
COM. Some companies have the available resources to migrate entire projects over
to .NET, while most companies only have the resources to migrate individual sub-
systems to the .NET platform one component at a time.

Thankfully for projects on a tight budget or schedule, the .NET framework provides
tools and strategies to promote easy integration with legacy components, and the
ability to allow legacy components to interact with .NET components. This chap-
ter covers the interoperability support that allows .NET components to be registered
for COM, thus allowing legacy applications to communicate with managed code
without being managed themselves.

Chapter 32 ■ Using .NET Assemblies as COM Objects356

COM Callable Wrappers (CCW)
The Component Object Model is a binary format that represents reusable objects
with a model that can be used from any programming language that can interface
with COM. When a COM client asks for an instance of an object, the server will
instantiate that object and return a reference to the client. COM acts as a binary
contract between the caller and callee, defined in a document called a Type library
(.tlb). This library document describes the services that are exposed to clients from
an object.

Figure 32.1 describes the communication between a client and a COM component.

N o t e

Figure 32.1 is meant to provide a high-level overview of communication. Methods specific to the
COM mechanism, such as AddRef, QueryInterface, and Release, are not shown because we
do not need to directly invoke them in this chapter.

COM components communicate with clients through a set of common interfaces,
while .NET communicates with components directly through assembly metadata
in the objects. This object-based communication is not understandable by COM
applications, so a mechanism known as a COM Callable Wrapper (CCW) can be
used to wrap .NET components so that they are accessible by COM and legacy
applications. Creating a CCW is covered later in this chapter.

Figure 32.2 shows communication between a client and a .NET object through a
COM Callable Wrapper.

Figure 32.1 Communication between a client and a COM component.

An additional layer of overhead is introduced to your application when using
COM Interop, but this penalty is typically quite small and often unnoticeable. The
biggest performance bottleneck comes from marshaling between wrappers and
environments. So if you suspect that your performance problems are coming from
COM Interop, verify this by creating a COM worker class to wrap your chatty calls
into a single function that can be invoked by your managed application; doing so
will decrease the amount of marshaling between the two layers.

Applying Interop Attributes
Exposing .NET components as COM objects is nearly autonomous, though there
are some attributes that must be decorated on exposed classes so that COM can
understand them correctly.

COM relies on identifying public components through the Windows registry, so
perhaps the most important attribute is decoration of unique identifiers on all
exposed classes and interfaces. This is done with the Guid attribute, as shown in the
following example.

[Guid(“04F08063-8226-4b5d-941C-C2F5E3027126”)]
public interface IMyComponent
{

// …
}

You can easily create unique identifiers for your types with the Tools->Create
GUID->Registry Format menu item in the Visual Studio IDE. Globally unique
identifiers (GUID) are the equivalent of CLSIDs. Also good to know, you can set a
humanly readable form of the unique identifier using the ProgId attribute, although
the accompanying example does not use it.

Applying Interop Attributes 357

Figure 32.2 Communication between a client and a .NET object through a COM Callable Wrapper.

The next attribute to cover is InterfaceType, which is used to explicitly set how a
managed interface is exposed to COM. Managed interfaces are exposed as dual to
COM by default, which offers the flexibility of late binding or the performance of
early binding. You can explicitly state that a managed interface can only be
exposed as IDispatch, only supporting late binding. The following example shows
this attribute.

[Guid(“50B39BFD-FC05-4f28-AF75-084E0394A55E”),
InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
public interface IMyComponentEvents
{

// …
}

Similar to the InterfaceType attribute, the ClassInterface attribute is used to spec-
ify how classes are wrapped for COM. By default, a boilerplate interface is gener-
ated for classes exposed to COM, but this can be turned off using this attribute if
a custom interface is desired. While the ability to automatically generate interfaces
may seem easy, their use is strongly discouraged. The positioning of methods can
change to the point where clients think they are calling one method, but are in fact
calling a completely different method. Explicitly defining a custom interface for
your components is the safe way around this problem. The following example
shows how to use this attribute so that no interfaces are generated automatically.

[Guid(“9DB1F428-B027-408d-BEDF-6A8398F0AAF8”),
ClassInterface(ClassInterfaceType.None)]
public class MyComponent : IMyComponent
{

// …
}

You can explicitly set the COM dispatch identifier (DISPID) for a member, property,
or field with the DispId attribute. The constructor for this attribute takes an inte-
ger that specifies the identifier to associate with the type. The following example
shows this attribute in action.

[Guid(“AB8C32F0-9DA1-4afb-8B91-E8B035412DBD”)]
public interface IMyComponent
{

[DispId(1)]
void CustomMethod1();

Chapter 32 ■ Using .NET Assemblies as COM Objects358

[DispId(2)]
int CustomMethod2();

[DispId(3)]
string CustomMethod3(string param);

}

Okay, I lied. The most important attribute is ComVisible, which identifies a class or
interface within an assembly as a COM object when registered. Adding a
ComVisible(true) attribute to a class or interface exposes the type to COM. The fol-
lowing code shows the source code for the.NET-based COM component for the
accompanying example. The first code snippet describes the interface that clients
can communicate to the object with.

[Guid(“AB8C32F0-9DA1-4afb-8B91-E8B035412DBD”),
ComVisible(true)]
public interface IMyComponent
{

[DispId(1)]
void CustomMethod1();

[DispId(2)]
int CustomMethod2();

[DispId(3)]
string CustomMethod3(string param);

}

The next code snippet describes the event source interface that would serve more
of a purpose if the accompanying example used COM events. We cannot use reg-
ular .NET event delegates with a regular COM client, so we will not cover COM
events aside from showing how to register the event source interface.

[Guid(“50B39BFD-FC05-4f28-AF75-084E0394A55E”),
InterfaceType(ComInterfaceType.InterfaceIsIDispatch),
ComVisible(true)]
public interface IMyComponentEvents
{

// This is where events would be defined.
// This example does not use them

}

Applying Interop Attributes 359

Finally, the following class implements the functionality of our COM component
that implements the IMyComponent interface. The ComSourceInterfaces attribute is
used to specify all the event source interfaces for our component.

using System.Windows.Forms;

[Guid(“9DB1F428-B027-408d-BEDF-6A8398F0AAF8”),
ClassInterface(ClassInterfaceType.None),
ComSourceInterfaces(typeof(IMyComponentEvents)),
ComVisible(true)]
public class MyComponent : IMyComponent
{

public void CustomMethod1()
{

// Do something useful
MessageBox.Show(“This was called from CustomMethod1()!”);

}

public int CustomMethod2()
{

return 1234;
}

public string CustomMethod3(string param)
{

return String.Format(“You entered the string: ‘{0}’!”, param);
}

}

The type library generator for .NET components does a fine job of wrapping
almost every type, though there are some rules to follow in order to ensure inter-
operability. These rules are:

■ Avoid using parameterized constructors and static methods.

■ Define interfaces for event sources in managed code.

■ Utilize HRESULT for user-defined exceptions.

■ Understand that differences in inheritance may occur.

■ Supply unique identifiers for appropriate types.

Following these rules will ensure that type library generation goes smoothly and is
utilized seamlessly.

Chapter 32 ■ Using .NET Assemblies as COM Objects360

Registering with COM
After your .NET component is compiled, you have to generate a type library file
(.tlb) so that COM clients can consume and invoke the new functionality. There
are a couple of ways to do this.

The first approach is to use the type library exporter utility (tlbexp.exe) to convert
the exposed classes and interfaces into a COM type library. This approach creates
a type library, but does not register the COM component in the registry. This step
must be performed elsewhere.

Another approach is to use the TypeLibConverter class in the System.Runtime.
InteropServices namespaces to programmatically generate a type library. This
class produces the same output as the type library exporter utility.

A third approach is to use the .NET services installation tool (regsvcs.exe), which
can generate, register, and install type libraries into existing COM+ 1.0 applica-
tions, in addition to loading and registering assemblies.

One of the easiest ways is to use the assembly registration tool (regasm.exe) which
generates a type library using the /tlb switch, but it also places the appropriate
entries into the Win32 registry to make COM clients aware of the component. The
following line shows how to generate a type library for a .NET component and
install it into the Win32 registry.

regasm.exe MyComponent.dll /tlb:MyComponent.tlb

You can automatically perform this step during the build process in the Visual
Studio IDE by enabling Register for COM Interop in the Build project page, as
shown in Figure 32.3.

We can use the Microsoft Oleview utility to inspect the generated type library to see
what is there. Figure 32.4 shows Oleview inspecting the type library for MyComponent.

Registering with COM 361

Figure 32.3 The Register for COM Interop property in the Visual Studio IDE Build page.

N o t e

Microsoft’s Oleview utility is available for download from their web site (http://www.microsoft.com).

Inspecting the registry, you will notice entries related to the registered component,
as shown in Figure 32.5.

Chapter 32 ■ Using .NET Assemblies as COM Objects362

Figure 32.4 Oleview utility inspecting the type library for MyComponent.

Figure 32.5 Registry entry for the InteropTest.MyComponent registration.

http://www.microsoft.com

Accessing from Unmanaged Code
The hardest part is over; you can now work with your exposed component and
start invoking its methods. As covered in the last section, you are now left with a
type library file (.tlb) that you can import into a C++ application (or any other
platform or language supporting COM) to recognize your exposed component.
The unmanaged ClientTest example located on the Companion Web site shows
how to consume the exposed component. The following code describes the source
code to the ClientTest executable (standard Win32 project, unmanaged C++).
Notice how the type library file (.tlb) is referenced with the import directive. The
linker will actually generate a second file from this one called a type library header,
which contains some specific C++ wrapper functionality. Both files can be used to
get a better understanding of what is going on behind the scenes of COM Interop.

#include <windows.h>
#include <atlbase.h>
#include <atlcom.h>
#include <comutil.h>

#import “MyComponent.tlb” no_namespace

int WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{

::CoInitialize(NULL);

CComPtr<IMyComponent> myComponent;

// Acquire the unique identifier of the COM server (.NET Component)
CLSID myComponentClassID = __uuidof(MyComponent);

// Acquired a reference to the COM server (.NET Component)
if (SUCCEEDED(myComponent.CoCreateInstance(myComponentClassID,

0, CLSCTX_ALL)))
{

char output[64];

if (SUCCEEDED(myComponent->CustomMethod1()))
{

::MessageBox(0,
“Successfully invoked CustomMethod1()!”,
“Test CustomMethod1()”,
0);

}

Accessing from Unmanaged Code 363

long result = myComponent->CustomMethod2();
sprintf(output, “Result: %d”, result);
::MessageBox(0, output, “Test CustomMethod2()”, 0);

//Note: System.String is Marshaled into a _bstr_t with COM Interop
_bstr_t inputMessage = _T(“This is a test”);

_bstr_t message = myComponent->CustomMethod3(inputMessage);

sprintf(output, “Message: %s”, (char *)message);
::MessageBox(0, output, “Test CustomMethod3()”, 0);

}
else
{

::MessageBox(0, “Error loading MyComponent COM object!”, “Error”, 0);
}

::CoUninitialize();
}

As you can see, consuming exposed .NET components is easy once they have been
properly configured and registered for COM Interop. The biggest gotcha when
consuming exposed components is finding out what complex types in .NET are
marshaled, as in the type library (System.String to _bstr_t, for example). This is
easy enough to spot by looking at the generated type library file.

Deployment Considerations
Managed .NET assemblies can be deployed as private or shared. Private deploy-
ment makes an assembly only available to clients that exist in the same directory
as the private assembly, while shared assemblies are installed into the Global
Assembly Cache (GAC), making them available to any local client. Ultimately, the
choice about whether to deploy your .NET assemblies as private or shared is up to
you.

If you choose to use private assemblies, you should also use the /codebase switch
with the regasm.exe utility. You must ensure that you deploy all private assemblies
alongside the client applications that utilize them.

COM exposed assemblies must be strongly named, so you can use the sn.exe tool
to create a strong name key that that you can sign your assembly with. Afterwards,
you can install your shared assembly into the GAC by using the gacutil.exe tool.

Chapter 32 ■ Using .NET Assemblies as COM Objects364

The following line shows how to install the MyComponent.dll assembly into the
Global Assembly Cache.

gacutil.exe /i MyComponent.dll

An important deployment issue to consider is the system requirements for COM
Interop. Because COM Interop merely provides a wrapper around a .NET com-
ponent, you now have a dependency on the minimum system requirements to
host the .NET framework. The .NET framework must be installed or the exposed
components will not be able to function.

Lastly, there is also a way to support registration-free activation through the use of
component and client manifest files that are linked or deployed with the appro-
priate executables after compiling. Although registration-free activation is not
covered in this chapter, it may be worthwhile for you to look into if you want to
avoid registering your exposed components in the Win32 registry.

Conclusion
This chapter started off by introducing COM Callable Wrappers and how they can
be used to wrap a .NET component so that COM clients can utilize its function-
ality. Afterwards, the appropriate attributes to expose a .NET component were dis-
cussed, and then used in the context of the example on the Companion Web site.
Component registration was then addressed, including a number of ways to per-
form the registration and type library generation. Finally, some deployment con-
siderations were discussed that may not be the most obvious when working with
COM Interop.

COM Interop and COM Callable Wrappers offer easy migration from traditional
COM to the .NET platform by allowing individual components to be migrated
one at a time, rather than trying to migrate an entire application or system in one
go. Having such a powerful migration strategy can prove to be extremely advanta-
geous in terms of budget and time constraints, and also makes debugging much
easier by decreasing the volume of new code to test at a single time.

Conclusion 365

This page intentionally left blank

367

Managing Items in the
Recent Documents List

chapter 33

Technology… the knack of so arranging the world that we don’t have to
experience it.

Max Frisch

An important feature of almost any software application is the ability to persist
and remember settings between different instances of the application. Putting user
interface customization aside, remembering commonly or previously accessed
files and providing the ability to reopen those files with a shortcut can be quite a
useful feature. Having recent document shortcuts without the need to navigate
through the traditional file system dialog can save a significant amount of time,
increasing productivity in the end.

The Documents folder (My Recent Documents folder on Windows XP and 2003)
on the Start menu contains a listing of recently accessed files and documents. One
of the most important design considerations for software is the concept of inter-
face transparency. An application should behave the same as other applications on
the operating system. This is so the user can easily navigate the application by
using knowledge learned from other applications. Users have come to expect that
recently opened or saved files from your application appear in the recent documents
list, so this topic will show how to programmatically interact with this feature of
Windows.

Implementation
The code to implement this feature is very simple. The solution involves a few
P\Invoke calls, so the first logical step is to include the appropriate namespace.

using System.Runtime.InteropServices;

The API signatures we will invoke are described in the following code. The first
signature is sent the pointer type, along with a pointer to the actual data. The sec-
ond signature is nearly identical to the first, except a string is passed into it instead
of a pointer.

[DllImport(“shell32.dll”)]
internal static extern void SHAddToRecentDocs(UInt32 pointerType, IntPtr pointer);

[DllImport(“shell32.dll”)]
internal static extern void SHAddToRecentDocs(UInt32 pointerType,

[MarshalAs(UnmanagedType.LPWStr)] string pointer);

There are three flavors of the SHAddToRecentDocs method that can be used, specified
by the PointerType enumeration. These pointer types are defined in the following
code, and are described in Table 33.1.

internal enum PointerType
{

SHARD_PIDL = 0x00000001,
SHARD_PATHA = 0x00000002,
SHARD_PATHW = 0x00000003,

}

Using the method is very easy. You can either pass in the PIDL of the file if you have
it, or simply specify the system path to the file as a string. Doing so will create a

Chapter 33 ■ Managing Items in the Recent Documents List368

TABLE 33.1 SHAddToRecentDocs Pointer Types

Pointer Type Description

SHARD_PIDL Pointer to a PIDL (ITEMIDLIST structure) identifying the file to add to the
recent documents menu

SHARD_PATHA Pointer to a null terminated string with the path and filename of the object

SHARD_PATHW Pointer to a null terminated string with the path and filename of the object;
Unicode formatting

shortcut to the file and place it in the Recent Documents folder. The following
code shows how to do this.

SHAddToRecentDocs(Convert.ToUInt32(PointerType.SHARD_PATHW),
path);

Clearing the Recent Documents folder is even easier! Passing a null PIDL pointer
into the method will clear all the entries. The following code shows how to do this.

SHAddToRecentDocs(Convert.ToUInt32(PointerType.SHARD_PIDL)
IntPtr.Zero);

N o t e

The SHAddToRecentDocs method does not check if the files passed to it are valid, so it is the
responsibility of your application to pass qualified file paths.

Example Usage
Using the code is extremely straightforward. The following example clears all cur-
rent entries in the Recent Documents menu, and then adds four new entries to it.

SHAddToRecentDocs(Convert.ToUInt32(PointerType.SHARD_PIDL),
IntPtr.Zero);

SHAddToRecentDocs(Convert.ToUInt32(PointerType.SHARD_PATHW),
@”C:\MyFolder\File1.txt”);

SHAddToRecentDocs(Convert.ToUInt32(PointerType.SHARD_PATHW),
@”C:\MyOtherFolder\File2.doc”);

SHAddToRecentDocs(Convert.ToUInt32(PointerType.SHARD_PATHW),
@”C:\Images\File3.gif”);

SHAddToRecentDocs(Convert.ToUInt32(PointerType.SHARD_PATHW),
@”C:\MyFolder\File4.zip”);

Conclusion
Managing items in the recent documents folder is extremely trivial, but do not
underestimate the significance of implementing features like this. Users expect all
applications to function the same way; if they don’t, you end up breaking interface
transparency, and users will hate your program because of it.

Conclusion 369

This page intentionally left blank

Techniques to
Improve

Performance
…with proper design, the features come cheaply. This approach is arduous,
but continues to succeed.

Dennis Ritchie

Regardless of what a tool does, it has to feel responsive to the user and report
appropriate status information and visual cues to the user when a long-running
task is being performed. Performance is a measurement of how well an application
handles responsiveness, scalability, memory footprint, or throughput. While some
optimizations can be done later on in development, the majority of performance
improvements originate from an architecture that is well designed and constructed.
It is important to build responsiveness and scalability into your processor- and
resource-intensive tools early on in order to achieve optimal performance.

The chapters in Part VI cover ways to investigate and improve performance in a
managed environment, where performance can be any process or task that can be
measured quantitatively with a stopwatch. Performance testing and optimization
has been around since pretty much the beginning of software development, but
.NET is a relatively new platform, so there is a learning curve that developers must
follow in order to learn the techniques and approaches to improve performance
and write efficient code. The chapters in this part will attempt to alleviate most
of the burden on developers new and old to the .NET platform who are building
performance-critical tools.

PART VI

This page intentionally left blank

373

Playing Nice with the
Garbage Collector

chapter 34

In software, the chain isn’t as strong as its weakest link; it’s as weak as all
the weak links multiplied together.

Steve C McConnell

A common concern about using managed code and the .NET platform is the idea
that control over the allocation and deallocation of memory is handled by an
automated process, otherwise known as the garbage collector (GC) intrinsic to the
Common Language Runtime. Automated memory management has been around
for quite some time, most notably in the Java world, but there have been some
innovative deviations from the norm to produce a more efficient and better per-
forming garbage collector. One reason that C++ developers generally feel uneasy
making the transition from unmanaged to managed code is because they love the
control and power offered by such a low-level language and do not wish to give it
up. On the other hand, those same developers are torn because even experienced
C++ developers have to utilize patterns like smart pointers to produce reliable
software.

The inner workings of the GC are by no means simplistic, resulting in developers
making mistakes that considerably degrade performance. Although the .NET run-
time handles a lot of the nitty gritty aspects of automated memory management,
there are some best practices that should be followed to maximize performance in
this area. This topic covers some of the proper ways to work with managed data
and the .NET garbage collector.

Chapter 34 ■ Playing Nice with the Garbage Collector374

Overview of the Garbage Collector
The CLR garbage collector is a generational mark-and-compact collector (also
known as an ephemeral garbage collector), offering excellent performance and effi-
ciency by taking some fundamental notions into consideration. The primary notion
is that short-lived objects tend to be smaller and are accessed more often. The GC
divides the memory allocation graph into sub-allocation graphs titled generations,
each with a specific purpose. The three generations are shown in Table 34.1.

The managed heap originally starts in an empty state. Objects that are allocated
initially go into the generation 0 portion. When a collection occurs, the GC deter-
mines which objects are garbage (no more references pointing to them) and which
objects are surviving and need to be compacted. When an object is compacted, it
moves into an older generation.

Currently there are three generations, but you can query the maximum number
of generations if needed. You do so by getting the value from the GC.MaxGeneration
property, which will always return 2. This may change in future versions of the
GC. Any objects in generation 2 that get compacted will remain in generation 2.
More information on interacting with the garbage collector is covered later in this
chapter.

The main advantage of a generational garbage collector is that collections of a por-
tion of the heap take less time than collecting the entire heap. The garbage collector
can choose to examine only objects in generation 0, and because it mostly contains
objects with a short life span, there is a good chance that a lot of memory will be
reclaimed without the need to examine other generations.

Table 34.1 CLR Garbage Collector Generations

Generation Description

Generation 0 (Gen0) This generation contains newly allocated objects that are frequently
used. This generation is typically the smallest in size, taking roughly 10
milliseconds to collect.

Generation 1 (Gen1) This generation is for larger and older objects that are used
infrequently. When Gen1 is collected, Gen0 is collected as well.

Generation 2 (Gen2) This generation is for larger and older objects that are used
infrequently, except it is also a full collection that can be optimized
for intelligent CPU caching by the underlying system if supported.

Another performance benefit of the managed garbage collector comes from local-
ity of reference. With the traditional unmanaged heap, memory was allocated
wherever free space was found. Sometimes related data could be separated by
megabytes. However, the managed heap allocates consecutive objects in a contigu-
ous manner. There is an assumption that short-lived objects tend to have strong
relationships with each other and are typically accessed around the same time.
Many situations will allow all the related objects to reside in the CPU cache, which
provides extremely fast access without having cache misses that require RAM access.

Collecting the Garbage
Garbage collection is automatically called by the CLR runtime, alleviating the bur-
den of you having to explicitly do it yourself. It is important to know when and
how collections occur in order to optimize effectively. Understanding how the GC
works internally can offer some great insight into ways that your applications
should be built to maximize memory management performance.

Developers transitioning from an unmanaged to a managed environment are
often concerned with the performance of automatic memory management, more
specifically, how the GC compares to the explicit management of memory like in
C++.

When a memory allocation occurs, the CLR garbage collector determines whether
or not a collection should occur. The GC looks at different factors, such as the cur-
rent size of each generation, the size of each collection, and the size of the data that
must be allocated. The GC then uses a heuristic evaluation to decide if a collection
should occur. CLR garbage collection is as fast as or faster than C++ until a col-
lection occurs. Essentially, a collection occurs when generation 0 does not have
enough free space to accommodate a new object.

Collection usually occurs because:

■ The application explicitly calls the collection routine of the GC.

■ Generation 0 reaches max storage size.

■ An AppDomain is unloaded by the CLR.

■ The CLR itself is unloaded.

Each application has a set of roots, which identify storage locations for objects on
the managed heap and objects that are set to null. These roots are made accessible
by the garbage collector to determine whether a particular object is strongly refer-
enced or if it should be collected (garbage).

Collecting the Garbage 375

The algorithm used by the CLR garbage collector is fairly straightforward, but has
been optimized extensively. When a collection occurs, the GC starts with the
assumption that all objects in the heap are garbage. It begins building a hierarchi-
cal graph of the roots and walks the tree to determine which objects cannot be
accessed by the application. Objects that are unreachable from the application are
considered garbage and can be removed during the next collection. The GC then
walks the roots in a linear fashion, looking for contiguous blocks of memory that
can be freed. The garbage is removed and all the remaining objects are shifted
down in memory to remove gaps in the heap.

Allocation Profile
The level of exertion required by the garbage collector to handle the memory of a
managed application is known as an allocation profile, which is a function of the
object allocation count, the lifetime of each object, and the size of the allocations.
As the level of exertion increases, so does the number of processor cycles the
garbage collector takes, resulting in less time for the processor to run the applica-
tion code. There are a couple techniques to optimize the allocation profile for your
application, alleviating a good percentage of overhead as a result of garbage col-
lection.

The most apparent way to relieve pressure is by allocating fewer objects. While the
object-oriented paradigm introduced many great design and development con-
cepts, it also resulted in a vast increase in the number of objects used to solve a
problem.

An allocation profile is known to be either friendly or unfriendly with the garbage
collector. An unfriendly profile will have many short life span objects allocated in
the Large Object Heap, or many objects surviving in generation 2 for a long time
before being collected. Objects in older generations that reference objects in
younger generations increase the level of exertion by the garbage collector to man-
age collection. A friendly profile will allocate most of the objects when the appli-
cation loads for the first time, and other objects will have a short life span and exist
mainly in generation 0. Additionally, any objects with a long life span will contain
few or no references to objects with a short life span.

It is important that you determine and constantly tune your allocation profile so
that you can eliminate many performance issues as a result of automatic garbage
collection.

Chapter 34 ■ Playing Nice with the Garbage Collector376

CLR Profiler and GC Monitoring 377

CLR Profiler and GC Monitoring
Proper measurement metrics are a necessity when performance tuning an appli-
cation, so you will need quantifiable methods to determine your allocation profile.
Two such methods are described in this section: performance counters and the
CLR Profiler.

Performance Counters
The Microsoft runtime team created a variety of performance counters to evaluate
a few core .NET components, including the garbage collector, which can be used
to study the garbage collector in a multitude of ways.

The first thing to do is launch the Performance Counter utility, which you can do
by typing perfmon.exe into the Run dialog from the Start Menu or directly at the
command prompt. Once the utility launches, you need to add the appropriate per-
formance counter(s) by pressing Ctrl+I, or by clicking on the plus sign button like
the one shown in Figure 34.1.

The performance counters applicable to the garbage collector reside in the .NET
CLR Memory performance object. Perhaps the most important counter metric in
this performance object is the total processor time that is spent on garbage collec-
tion, known as the % Time in GC performance counter. Launch the managed appli-
cation that you wish to profile and select it from the instance list for the % Time in
GC counter. You should be presented with a dialog similar to the one shown in
Figure 34.2.

After selecting the performance counters that you wish to analyze, you will imme-
diately begin seeing the graph display data for the metrics you have selected. You
can now test functionality in your application and witness the level of exertion by
the GC in managing your memory. Figure 34.3 shows the performance monitor
utility displaying the % Time in GC performance counter for the World Builder appli-
cation.

Figure 34.1
The button to add counters to the performance monitor utility.

Chapter 34 ■ Playing Nice with the Garbage Collector378

Figure 34.2 Dialog shown to select performance counters to utilize.

Figure 34.3 Example of the % Time in GC performance counter.

If the total processor time spent on garbage collection falls on average above 30%,
you should consider tuning your allocation profile. Some applications can warrant
high activity, whereas others cannot; having an average above 30% does not neces-
sarily mean that your application is inefficient with memory. The course of action
to take is a judgment call, depending on the type of application and whether or not
there are performance issues.

An application with a good allocation profile will have most of its objects in
generation 0. You can tune this aspect of your profile by comparing the # Gen 0
Collections and # Gen 2 Collections. Figure 34.4 shows the performance monitor
utility with a variety of additional counters installed.

The performance counters available in the .NET CLR Memory performance
object are described in Table 34.2.

CLR Profiler and GC Monitoring 379

Figure 34.4 Showcase of a variety of GC performance counters.

Chapter 34 ■ Playing Nice with the Garbage Collector380

Table 34.2 Performance Counters in .NET CLR Memory

Performance Counter Description

Bytes in all Heaps Total bytes in all three generations, including the large object
heap. This value indicates the total amount of memory used by
the garbage collector to store allocated objects.

GC Handles Total number of active handles used by the garbage collector.

Gen 0 Collections Number of collections of objects in generation 0.

Gen 1 Collections Number of collections of objects in generation 1.

Gen 2 Collections Number of collections of objects in generation 2.

Induced GC Number of times garbage collection was run from an explicit call,
rather than during an allocation.

Pinned Objects This performance counter has not yet been implemented.

of Sink Blocks in use Sink blocks are used by synchronization primitives, and their data
is allocated on demand belonging to an object. This metric
determines the number of sink blocks currently in use.

Total Committed Bytes Total committed byte count from all managed heaps.

Total Reserved Bytes Total reserved byte count of the virtual memory reserved by the
garbage collector for the application.

% Time in GC Total time a sample spent performing garbage collection, divided
by the total time since the last sample.

Allocated Bytes/Sec Rate of bytes allocated per second by the garbage collector.
This value is updated during a collection, and the time between
garbage collections will be 0 because this metric evaluates to a
rate.

Finalization Survivors Number of garbage-collected classes that have survived because
of a strong reference to them created by their finalizer.

Gen 0 Heap Size Total size (in bytes) of the generation 0 managed heap.

Gen 0 Promoted Bytes/Sec Total size (in bytes per second) of memory that has been
promoted from generation 0 to generation 1 after surviving a
garbage collection.

Gen 1 Heap Size Total size (in bytes) of the generation 1 managed heap.

Gen 1 Promoted Bytes/Sec Total size (in bytes per second) of memory that has been
promoted from generation 1 to generation 2 after surviving a
garbage collection.

Gen 2 Heap Size Total size (in bytes) of the generation 1 managed heap.

Large Object Heap Size Total size (in bytes) of the large object heap.

There are many performance counters available to track the .NET garbage collec-
tion, reducing the amount of work required to analyze your allocation profile in a
quantitative manner.

Profiling API and the CLR Profiler
The CLR contains an extremely powerful API that allows third parties to create
custom applications that can profile managed applications. In addition to the API,
the Microsoft CLR runtime team developed an unsupported tool that can analyze
managed memory using the Profiling API. This tool is called the CLR Profiler, and
has a variety of uses.

N o t e

Download the tool by navigating to the following URL or accessing the Companion Web site:
http://msdn.microsoft.com/netframework/downloads/tools/default.aspx

Launching the application will present a dialog like the one shown in Figure 34.5.
From here you can target an application to test, and specify what you want to profile.

Profiling API and the CLR Profiler 381

Table 34.2 Performance Counters in .NET CLR Memory (continued)

Performance Counter Description

Promoted Memory from Gen 0 Total bytes of memory that are promoted from
generation 0 to generation 1 after a garbage
collection.

Promoted Memory from Gen 1 Total bytes of memory that are promoted from
generation 1 to generation 2 after a garbage
collection.

Promoted Finalization Memory from Gen 0 Total bytes of memory that are promoted from
generation 0 to generation 1 because they are waiting
to be finalized. This counter is non-cumulative, so the
value observed at the end of the last garbage
collection is displayed.

Promoted Finalization Memory from Gen 1 Total bytes of memory that are promoted from
generation 1 to generation 2 because they are waiting
to be finalized. This counter is non-cumulative, so the
value observed at the end of the last garbage
collection is displayed. If the last collection was
generation 0 only, then the counter is reset to 0.

http://msdn.microsoft.com/netframework/downloads/tools/default.aspx

Start by targeting an application to profile by using the main menu and selecting
File>Profile Application… as shown in Figure 34.6. After targeting and applica-
tion, you can click the Start Application… button to begin profiling.

You now begin using the functionality that you want to profile in your application.
The profile reports are accessible when the application is running or after it has
been closed down, so you can either profile as you use the application or view the
reports after the application has closed.

There is a wide variety of reports that you can view, such as the Histogram by Size
for Allocated Objects shown in Figure 34.7. This report is useful in determining
how much data was allocated, and separated by object type.

Another way to analyze your allocation profile is by viewing the memory manage-
ment time line that depicts usage patterns for object types in your application as
well as generation statistics for the garbage collector. This report is shown in
Figure 34.8.

Another useful report is the allocation graph, which allows you to walk through
the allocation tree for any objects in the application. This report is shown in Figure
34.9.

Chapter 34 ■ Playing Nice with the Garbage Collector382

Figure 34.5
Main dialog of CLR Profiler.

Figure 34.6
Menu to specify an application for profiling.

Profiling API and the CLR Profiler 383

Figure 34.7 Histogram of object allocation sizes.

Figure 34.8 Time line of memory management by object type.

The CLR Profiler is accompanied by a high-performance overhead, making certain
analysis tests difficult to do, but it is very useful in other areas, such as memory effi-
ciency and usage.

Finalization and the Dispose Pattern
Even though automatic memory management handles releasing the memory of an
allocation when the resource is no longer needed, some resources have some spe-
cial steps that must be performed before releasing the memory.

Finalization
The Common Language Runtime provides a mechanism that automatically handles
resource cleanup before memory is freed by the garbage collector. This mechanism
is called finalization, and it is used to release native resources such as operating
system handles or database connections.

Chapter 34 ■ Playing Nice with the Garbage Collector384

Figure 34.9 CLR Profiler allocation graph.

The CLR does not use reference counting, so finalization was created to accom-
modate the issue behind releasing resources when references reach zero.
Finalization is used in situations where an object’s lifetime is unknown and the
object requires cleanup.

The finalization mechanism increases the level of exertion required by the garbage
collector, so it should be used appropriately. Objects requiring finalization are
entered in a finalizable queue (f-reachable) that is searched by the garbage collec-
tor during a collection. The garbage collector manages a separate finalizer thread
that processes objects that require finalization. Objects being finalized are moved
into the next generation because the garbage collector may require their state. The
memory for finalized objects will be released during the following collection.

There are two ways to implement finalization, each accomplishing the same thing
but using different syntax. The first approach is overriding the Finalize method
available to any object. This approach is illustrated by the following code:

public class YourClass
{

public YourClass ()
{
}

protected override void Finalize()
{

// Perform cleanup here
}

}

The other method to implement finalization is using the same syntax that C++
uses for class destructors. It is important to know that even though the syntax is
identical, the C# version does not fire when the object goes out of scope. Instead,
it fires when the finalization thread gets around to releasing the object. This
approach is illustrated by the following code:

public class YourClass
{

public YourClass ()
{
}

~YourClass()
{

Finalization and the Dispose Pattern 385

// Perform cleanup here
}

}

Objects requiring finalization should be wrapped into the smallest object possible.
If your class accesses both managed and unmanaged memory, you should make a
child finalizer class that releases the unmanaged resources and encapsulates them
in the parent object. Keep in mind that in order for this to work, there cannot be
any strong references to the parent object.

C a u t i o n

Never implement a finalizer that blocks the finalization thread. Remember that there is only one
thread for it, and blocking this thread will prevent resources from being freed.

Finalization is a great feature to have, but it is also very important that you are
aware of the expensive performance implications. Another negative attribute of
finalization is that you do not really have control over when the finalizer will exe-
cute or when the garbage collector will perform cleanup. A solution to these problems
is to implement the dispose pattern which supports both the implicit and explicit
freeing of resources.

The Dispose Pattern
For situations where the lifetime of an object is explicitly known, the dispose pat-
tern is used to release unmanaged resources. Functionality for disposable objects
is implemented through the IDisposable interface by providing an implementation
for the Dispose method. In fact, you never know how your object will be used, so
implementing a finalizer and IDisposable is the proper way of handling the release
of unmanaged resources.

Both the finalizer and the Dispose method will call the same code, and it is advis-
able to route them both to the same function so that the code is maintainable and
in one place only. When the Dispose method is called, it is important to inform the
garbage collector that finalization is not needed. This is done by calling the
GC.SuppressFinalization method.

The following code shows the proper way to implement IDisposable with support
for finalization and multi-threading:

public class YourClass : IDisposable
{

Chapter 34 ■ Playing Nice with the Garbage Collector386

public void Dispose()
{

Dispose(true);
GC.SuppressFinalize(this);

}

protected virtual void Dispose(bool disposing)
{

// Prevent issues with multi-threading
lock (this)
{

if (disposing)
{

// Perform cleanup on managed objects
}

// Perform cleanup on unmanaged objects
}

}

~YourClass()
{

Dispose(false);
}

}

N o t e

The disposing boolean parameter passed into the Dispose method will be true if explicitly called
by the user, and false if called by the garbage collector during finalization.

The following code shows the proper way to implement IDisposable with support
for finalization in a derived class. It is important to note that this code does not
have a Finalize method or a non-parameterized Dispose method because these
methods are inherited from the base class.

public class YourDerivedClass : YourClass
{

protected override void Dispose(bool disposing)
{

// Prevent issues with multi-threading
lock (this)
{

Finalization and the Dispose Pattern 387

if (disposing)
{

// Perform cleanup on managed objects
}

// Perform cleanup on unmanaged objects

base.Dispose(disposing);
}

}
}

Certain cases, like a database connection or network socket, are better suited to a
Close method instead of Dispose. The best way to handle this situation is to have a
Dispose, finalizer, and a Close method that all point to the same function. In most
cases, the Dispose method will be privately declared.

The general rule of thumb is to implement IDisposable and provide a Dispose
method if the class has a finalizer. Also, in situations where you know you are done
with an object, you should call the Dispose method explicitly instead of waiting for
the finalizer to fire.

The C# language provides a great mechanism that automatically disposes objects
that implement the IDisposable interface. The using keyword allows you to speci-
fy a block of code that will call the Dispose method when program execution leaves
the construct.

The following code shows how to use the construct:

using (DisposableType disposableObject)
{

// Use disposableObject for something
}
// At this point the disposableObject.Dispose() method has been called.

Another great feature about the using keyword is that you can be guaranteed the
Dispose method will fire, even if an exception is thrown from within the construct.

N o t e

Implement the dispose design pattern on resources that need to be explicitly freed, and always
implement IDisposable if the class provides a finalizer.

Lastly, throw an ObjectDisposedException from methods where the unmanaged resources are
needed but have already been disposed. The only place you should not do this is in the dispose
method itself because it should be callable any number of times without throwing an exception.

Chapter 34 ■ Playing Nice with the Garbage Collector388

Weak Referencing
As discussed earlier, an object cannot be collected if there is a root pointing to it
(strong reference). However, this is not the only way of referencing an instantiat-
ed object. The GC also supports the notion of weak references. A weak reference
to an object allows the garbage collector to perform collection if needed, but also
allows the application to use the object. The first thing that probably popped into
your head was having a NullReferenceException thrown when the application
attempts to access an object after being collected; using weak references is an issue
of timing.

N o t e

It is important to note that an application must obtain a strong reference to access a weakly refer-
enced object. If this strong reference has been obtained before the garbage collector runs, the
object cannot be collected.

The WeakReference object offers two constructors:

WeakReference(object target);
WeakReference(object target, bool trackResurrection);

The target parameter specifies which object a weak reference should be obtained
for, and the trackResurrection parameter specifies whether or not the
WeakReference should track the target after its Finalize method has been called; the
trackResurrection parameter defaults to false with the first constructor.

A WeakReference that does not track resurrection is known as a short weak refer-
ence, while one that tracks resurrection is known as a long weak reference. It is
advisable to refrain from using long weak references unless necessary; the state of
resurrected objects can be very unpredictable.

N o t e

A long weak reference and a short weak reference will behave identically if the object does not
offer a Finalize method.

Weak references are useful in situations where a certain data structure requires a
lot of memory, and performance begins to degrade or you run out of memory
because the garbage collector has no objects to collect. The most common data
structure that benefits from the use of weak references is a tree structure that has
a lot of references and depth.

Weak Referencing 389

The user might not be requiring the use of a particular area of the tree, so weak
referencing the tree nodes will allow for the garbage collector to collect unused
portions of the data structure if necessary. If a tree node gets collected, you simply
reload that node and its children when you need them again.

As the user navigates away from a particular region of the tree, you can create some
weak references and release the strong references for the objects in that region. If
memory becomes low enough that the garbage collector requires collection, it will
start to reclaim the weakly referenced tree objects. When the user navigates back
to that same region, the application will try to recreate a strong reference for that
tree. If successful, no memory operations are needed, and if the tree has already
been collected, the application will simply reload that region again.

A prime example of using weak references is a directory browser that loads files
and directories into a hierarchical tree. Keeping a weakly referenced tree in memory
is much more efficient than loading all the data from the hard drive. If a file or
directory node is collected, you can simply reload its contents from that location
on the hard drive.

Once the WeakReference has been instantiated to point at the target object, you
should set the strong reference from the root to null. The garbage collector will not
be able to collect the object if any strong references to it remain.

The proper way to release the weak reference and reobtain a strong reference to the
object is by assigning a root to the Target property of the WeakReference object.
If the property returns null, the object was collected by the GC. Another way to
determine whether the object has been collected is to check the IsAlive property
of the WeakReference object.

The following code shows how to create a weak reference in C#:

MyClass instance = new MyClass ();

WeakReference weakReference = new WeakReference(instance);
instance = null; // Object is no longer rooted

if (weakReference.IsAlive)
{

instance = weakReference.Target;
// Object is rooted and can be used again (strong reference)

}
else
{

Chapter 34 ■ Playing Nice with the Garbage Collector390

// Recreate the object
instance = new MyClass();

}

Explicit Control
The automated memory management of the .NET platform is very efficient and
optimized, but certain situations may require direct control over the garbage col-
lector to improve performance. Every application has a fairly unique allocation
profile in terms of memory requirements and the intervals or patterns in which
memory is managed, presenting some opportunities for performance tuning using
explicit control over the garbage collector.

The System.GC type provides functionality for your application to interface with
the garbage collector directly. There are a variety of things that can be done with
this class, such as the ability to induce a collection, wait for the finalization thread
to complete a pass, and query the garbage collector for some useful statistics, like
the maximum number of generations.

Garbage collection is a fairly multi-threaded process, so performance optimiza-
tions typically come in the form of timing. For example, if you run a process that
allocates a substantial number of objects, it is fair to say that you should explicitly
invoke the garbage collector before returning control back to the user. If the user
is already waiting for a long-running process to complete, where is the harm in
running a collection when the process completes, so that the application does not
hit a random pause when the GC finally fires up to release memory that was used?
Your application knows more about how it works than the garbage collector does,
so some strategically placed calls can offer some performance boosts. It is impor-
tant to keep in mind that collections also degrade performance, so use them spar-
ingly and wisely.

One of the most important operations you can do is invoke a collection. There are
two flavors of the GC.Collect method: one version that takes in an integer specifying
which generation to collect, and another version that invokes a collection across all
generations and is the equivalent of calling GC.Collect(GC.MaxGeneration).

GC.Collect(Int32 Generation)
GC.Collect()

N o t e

Normally, you should avoid calling the collection methods explicitly, but as discussed earlier, there
is a definite need for direct control in certain situations.

Explicit Control 391

Another useful operation is the GC.WaitForPendingFinalizers method that suspends
the calling thread until the finalization thread has emptied the f-reachable queue
and all finalizers have been executed. It is uncommon that you should need to call
this method directly unless you know what you are doing.

Aside from statistics like GC.MaxGeneration that returns the maximum number of
generations, you can query any object or WeakReference to determine the genera-
tion that it is currently stored in.

Int32 GetGeneration(Object obj)
Int32 GetGeneration(WeakReference weakRef)

The value returned will be inclusively within the range of 0 and GC.MaxGeneration.

Conclusion
This chapter covered many aspects of the garbage collector intrinsic to the .NET
platform, along with ways to optimize your allocation profile and program flow to
increase performance and responsiveness. First, you were introduced to a high-
level overview of the garbage collector and the purposes that it serves. Then the
discussion became low-level and centered on everything that goes on behind the
scenes. A number of rules and best practices were mentioned, along with some
warnings about possible trouble spots.

Techniques for profiling the allocation profile of your application were also cov-
ered, as well as techniques to properly release unmanaged resources that require
explicit disposal.

While fairly comprehensive, this chapter did not cover absolutely everything about
the .NET garbage collector. The purpose of this chapter was not for you to walk
away with an intimate knowledge of how the GC works, but rather with the
knowledge to develop your applications to take advantage of automated memory
management without suffering much of a performance hit. Some things that were
not covered include the AddMemoryPressure and HandleCollector mechanisms that
were introduced in .NET 2.0.

Automated memory management is a wonderful benefit to using the .NET plat-
form for tools development due to the increased stability and reliability. The
garbage collector will never go away, so learning the specifics of what goes on
behind the scenes will make development and optimization much more straight-
forward.

Chapter 34 ■ Playing Nice with the Garbage Collector392

393

Using Unsafe
Code and Pointers

chapter 35

At some point you have to decide whether you’re going to be a politician or
an engineer. You cannot be both. To be a politician is to champion perception
over reality. To be an engineer is to make perception subservient to reality.
They are opposites. You can’t do both simultaneously.

H. W. Kenton

One of the best features of .NET is the automatic memory management provided
by the Common Language Runtime, reference types, and the Garbage Collector. C#
hides most of its memory management, which makes life a lot easier for developers.
In almost all situations, this censorship from the nitty gritty details of memory
management is a good thing, though the need does arise when low-level access to
memory is needed.

Memory in C++ is accessed and managed through the use of pointers. C# supports
the concept of pointers, but only when absolutely necessary. The use of pointers in
C# is discouraged, though there are a few rare situations that require them.

These situations are:

■ When dealing with existing structures on disk, or when you need direct
access to memory.

■ When using Platform Invoke or Advanced COM that involve structures
with pointers in them.

■ When there is a strong need for performance-critical code, such as applications
that require enhanced performance to make things as “real time” as possible.

Pointers in C# should not be used except for the three situations listed above. Only
use pointers when absolutely necessary.

C a u t i o n

Never use pointers as an attempt to write C code in C#.

Before continuing on, it is important to list the advantages and disadvantages of
using C# pointers.

The advantages are:

■ Enhanced performance and increased flexibility. You can use a pointer to
access and manipulate data in the most efficient way.

■ There have obviously been a large number of Windows and third-party
libraries that were developed prior to the .NET platform. Some functions
may require that pointers be passed as parameters. Though this can be
accomplished with DLLImport and System.IntPtr, it can often be cleaner to
do it with pointers if you are already using them. Pointers offer extensive
compatibility with legacy components.

■ Some situations require that you track memory addresses, in which case a
pointer is the only way to accomplish this.

The disadvantages are:

■ Using pointers in C# increases the complexity of the language syntax. While
C\C++ developers are accustomed to it, C# developers may struggle a bit
with the rarely used concepts.

■ Pointers are much harder to use, and even harder to use safely, than using
reference types. It is quite easy to overwrite other variables, cause stack
overflows, and access areas of memory that do not contain valid data, and
in some cases, you can even overwrite process data for the .NET runtime.
Doing so will result in a fatal application crash, defeating the purpose of
using managed code for robust fault tolerance in the first place.

Now that I have successfully scared you away from using pointers in C#, it is time
to continue on into the implementation and usage details.

Rudiments of Pointer Notation
The concept of pointers is well known and loved by C++ developers, but develop-
ers accustomed to other languages may find the idea and syntax difficult to grasp

Chapter 35 ■ Using Unsafe Code and Pointers394

at times. Because of this, it is important to briefly discuss pointer notation, though
only scratching the surface of a complex topic. If you are new to using pointers, it
is recommended that you do further reading before attempting to use them in
your code.

What is a pointer? A pointer is a variable that holds the memory address of another
type. In C#, pointers are implicitly declared using the dereferencer symbol (*).
After declaring the pointer variable, prefixing the variable with a dereferencer
symbol will allow you to refer to the type located at the memory location held by
the pointer; this is commonly known as dereferencing a pointer.

For example, the following code creates an integer with a pointer to it (intPtr) and
uses integer assignment to set its value to 27.

int* intPtr = 27;

Later on, should you wish to change the integer value, you can use the following
code to set the value to 15.

*intPtr = 15;

C a u t i o n

It is very important that you prefix the variable with the dereferencer symbol when trying to work
with the data.

Consider the following code:

intPtr = 56;

The intent was to set the integer value to 56, but in actuality the pointer will now point to the start
of the four bytes at memory location 56 (which could be anything).

Another symbol that is essential when working with pointers is the address operator
(&) (in the context of pointer notation). Prefixing a variable with this operator will
return the memory address of the variable.

The following code declares an integer and creates a pointer that points to the
location of the integer in memory.

int myNumber = 42;
int* myNumberPtr;
myNumberPtr = &myNumber;

At this time, we have a pointer (myNumberPtr) that points at the memory location
of an integer (myNumber) in memory.

Rudiments of Pointer Notation 395

The following code can now be used to set the value of myNumber to 13 through the
pointer myNumberPtr.

*myNumberPtr = 13;

N o t e

*myNumberPtr can be read as “the integer located at the memory value address held by
myNumberPtr.”

Finally, pointers can also be declared for structs.

Consider the following struct definition and code:

struct CartesianCoord
{

public int x;
public int y;
public int z;

}

CartesianCoord coord = new CartesianCoord();
CartesianCoord* coordPtr = &coord;

You can now use the pointer coordPtr to access public fields of coord.

This can be done with the following code:

(*coordPtr).y;

Or the following equivalent code, which uses the indirection operator:

coordPtr->y;

C a u t i o n

C++ developers are used to declaring statements like the following to save typing:

int* int1, int2;

Those developers would assume that int1 is a pointer to an integer, and int2 is just an integer.
C# handles this statement differently, as the pointer declaration is on the type, not the variable. In
this example, both int1 and int2 are pointers to integers.

Chapter 35 ■ Using Unsafe Code and Pointers396

Using an Unsafe Context
C# code executes in either a safe or unsafe context. Safe is the default, but any use
of pointers requires that an unsafe context be used. The unsafe keyword is used to
denote an unsafe context. Unsafe code is still managed by the Common Language
Runtime, just like safe code, the only difference being that programmers can use
pointers to manipulate memory directly. Unsafe code runs outside of the auto-
matic memory management capabilities provided by the garbage collector, though
the Common Language Runtime is always aware of the code. The unsafe keyword
is an enhancement to make unsafe code a little bit safer. Code executing in an
unsafe context is not verified to be safe, so the code must be fully trusted in order
to execute the unsafe code. Unsafe code cannot be executed in an untrusted envi-
ronment like the Internet.

The unsafe keyword can be applied on methods, properties, constructors (exception
static), and extenders. Running code in an unsafe context is much more efficient
than using references because the garbage collector and an extra layer are bypassed
to decrease overhead. Unsafe code also increases performance by getting rid of
array bounds checking (though you are now responsible for it).

Aside from placing code within an unsafe construct, you must also configure the
compiler to allow unsafe code to be used. This can be done through the property
pages for the project or by using the /unsafe switch flag with csc.exe.

The following code shows how to properly use the unsafe keyword in a couple of
ways.

public void unsafe MyMethod(int* arg)
{

// Use arg parameter here
}

public void MyMethod(int arg)
{

unsafe
{

fixed (int* argPtr = arg)
{

// Use argPtr parameter here
}

}
}

Using an Unsafe Context 397

Pinning Memory with the Fixed Statement
The automatic memory management provided by the Garbage Collector runs in a
background thread, so you can never tell when memory will be assigned to a new
data location. This can create a serious problem when dealing with pointers,
because the pointers will not update their addresses when the memory changes,
resulting in pointers that point at incorrect or invalid memory blocks.

C# supports the fixed statement, which is used to signal that a particular variable
should not be touched by the garbage collector. This is known as memory pinning,
which means that the specified memory is pinned to a particular location, and that
you are guaranteed that the location will remain constant until the code exits the
fixed statement. The fixed statement has similar syntax to the using statement.

The following code shows the fixed statement being used.

byte[] data = new byte[10000];
unsafe
{

fixed (byte* dataPtr = data)
{

// Code using dataPtr here
}

}

Some situations require that you have two fixed variables that use each other. This
is perfectly acceptable by nesting fixed statements. The following code shows this
being done.

byte[] data1 = new byte[10000];
byte[] data2 = new byte[5000];
unsafe
{

fixed (byte* data1Ptr = data1)
{

fixed (byte* data2Ptr = data2)
{

// Code using data1Ptr and data2Ptr here
}

}
}

Chapter 35 ■ Using Unsafe Code and Pointers398

N o t e

The compiler will not even permit a variable address with pointers unless the memory for the vari-
able is pinned within a fixed statement.

Disabling Arithmetic Overflow Checking
Another keyword that is relevant to unsafe pointer usage is the unchecked keyword.
Specifying unchecked allows you to suppress overflow-checking for integral-type
arithmetic operations and conversions. If an expression produces a value that is
outside the range of the destination data type, then the result is truncated. For
example, trying to evaluate the following code will set myNumber equal to -1014837864.

unchecked
{

int myNumber = (int)3181555928472; // Evaluates to -1014837864
}

The unchecked keyword causes the compiler to ignore the fact that the value is too
large for the integer data type. Had the unchecked keyword not been specified, then
the compiler would have thrown compile time errors because the sizes are known
and the values are constant. Otherwise, an OverflowException would have been
thrown at runtime.

You can also use the unchecked keyword as an operator, as in the following example.

public int AddNumbers(int left, int right)
{

return unchecked(left + right);
}

Running code, especially numeric-intensive calculations, within an unchecked
block can boost the overall speed and performance of the executing code. You have
to be careful to watch your data type sizes though.

Allocating High Performance Memory
You can use the keyword stackalloc to allocate a block of memory on the stack. This
only works with value types, and the memory is not subject to garbage collection,
so it does not have to be pinned. The lifetime of the memory block is limited
to the scope of the executing method; stackalloc is only valid in local variable
initializers.

Allocating High Performance Memory 399

N o t e

Stackalloc is very similar to the _alloca method in the C runtime library. Stackalloc depends
on the use of pointers, so you can only use it within an unsafe context.

The memory is only allocated by stackalloc, so initialization is up to you. One
common usage for stackalloc in terms of performance is when dealing with
arrays. The .NET platform provides excellent mechanisms for dealing with arrays,
but the data are still objects instantiated from System.Array and stored on the heap,
so all the related overhead is incurred when dealing with them.

You can allocate enough memory to store 10 integers with the following code.

int* intArray = stackalloc int[10];

There are a couple of ways to access the array members.

You can use *(intArray + i), where i is the index of the array element to access.

*(intArray + 0) = 123;
*(intArray + 1) = 456;
*(intArray + 2) = 789;

You can also use intArray[i] to access the array elements.

intArray[0] = 123;
intArray[1] = 456;
intArray[2] = 789;

Normally, when you access a member outside of the array bounds, an out of
bounds exception will be thrown. When using stackalloc, however, you are access-
ing an address located somewhere on the stack. Writing to an incorrect address
could corrupt a variable, or even return an address from a method currently being
executed.

For example:

int* intArray = stackalloc int[5];
intArray[7] = 123; // This means that (intArray + 7 * sizeof(int)) had

// a value of 123 assigned to it.

C a u t i o n

The moral of the story is, be very careful!

Chapter 35 ■ Using Unsafe Code and Pointers400

Getting Size of Data Types
Just as in C\C++, you can use the sizeof operator to determine the number of
bytes occupied of the given data type. You must do so within an unsafe context.

The following code can be executed to print out a list of data type sizes for handy
reference. As of .NET 2.0, it is optional to use the sizeof operator within an unsafe
context.

unsafe
{

Console.WriteLine(“sbyte: {0}”, sizeof(sbyte));
Console.WriteLine(“byte: {0}”, sizeof(byte));
Console.WriteLine(“short: {0}”, sizeof(short));
Console.WriteLine(“ushort: {0}”, sizeof(ushort));
Console.WriteLine(“int: {0}”, sizeof(int));
Console.WriteLine(“uint: {0}”, sizeof(uint));
Console.WriteLine(“long: {0}”, sizeof(long));
Console.WriteLine(“ulong: {0}”, sizeof(ulong));
Console.WriteLine(“char: {0}”, sizeof(char));
Console.WriteLine(“float: {0}”, sizeof(float));
Console.WriteLine(“double: {0}”, sizeof(double));
Console.WriteLine(“decimal: {0}”, sizeof(decimal));
Console.WriteLine(“bool: {0}”, sizeof(bool));

}

Executing the above code will print out the following:

sbyte: 1
byte: 1
short: 2
ushort: 2
int: 4
uint: 4
long: 8
ulong: 8
char: 2
float: 4
double: 8
decimal: 16
bool: 1

You may be wondering why char prints a size of 2. This is because System.Char
(char) is a Unicode type (two bytes), and sizeof returns the size of the data types
allocated by the CLR. There is another method to get the size of data types after

Getting Size of Data Types 401

marshaling has occurred. System.Runtime.InteropServices.Marshal.SizeOf() returns
the size of a data type when converted to an unmanaged representation. Using
Marshal.SizeOf(char) will return one byte since at this point the char has been con-
verted to a one-byte ANSI character.

You can also get the size of a struct that contains value types. The following code
shows this.

public struct SimpleStruct
{

public char firstChar;
public char secondChar;
public int myInteger;

}

Evaluating sizeof(SimpleStruct) will return 10 bytes with padding, and
Marshal.SizeOf(SimpleStruct) will return 6 bytes.

Example: Array Iteration and Value Assignment
The following example shows how to loop through an array and assign values to
each array element. This example also profiles the elapsed time between using
checked and unchecked arithmetic.

private static void ArrayValueAssignment()
{

byte[] data = new byte[100000000];

int unsafeTime = 0;
int uncheckedTime = 0;

unsafeTime = Environment.TickCount;

unsafe
{

fixed (byte* dataPtr = data)
{

byte* dataByte = dataPtr;

for (int index = 0; index < data.Length; index++)
{

*dataByte++ = (byte)index;
// Can also do: *(dataByte + index) = (byte)index;

}

Chapter 35 ■ Using Unsafe Code and Pointers402

}
}

unsafeTime = Environment.TickCount - unsafeTime;

uncheckedTime = Environment.TickCount;

unsafe
{

unchecked
{

fixed (byte* dataPtr = data)
{

byte* dataByte = dataPtr;

for (int index = 0; index < data.Length; index++)
{

*dataByte++ = (byte)index;
// Can also do: *(dataByte + index) = (byte)index;

}
}

}
}

uncheckedTime = Environment.TickCount - uncheckedTime;

Console.WriteLine(“Unsafe Elapsed Time: “ +
unsafeTime.ToString() + “ ticks”);

Console.WriteLine(“Unchecked Elapsed Time: “ +
uncheckedTime.ToString() + “ ticks”);

}

Example: Data Block Copying
The following example copies the data from a source array into a destination array,
serving as a replacement for Array.Copy().

static void DataBlockCopy()
{

int dataLength = 100000000;

byte[] sourceData = new byte[dataLength];

Example: Data Block Copying 403

byte[] destinationData = new byte[dataLength];

for (int index = 0; index < dataLength; index++)
{

sourceData[index] = (byte)index;
}

UnsafeCopy(sourceData, 0, destinationData, 0, dataLength);

Console.WriteLine(“The first 15 elements are:”);

for (int index = 0; index < 15; index++)
{

Console.Write(destinationData[index] + “ “);
}

Console.WriteLine(“\n”);
}

static unsafe void UnsafeCopy(byte[] source,
int sourceIndex,
byte[] destination,
int destinationIndex,
int count)

{
Debug.Assert(source != null);
Debug.Assert(sourceIndex >= 0);

Debug.Assert(destination != null);
Debug.Assert(destinationIndex >= 0);

Debug.Assert(!(source.Length - sourceIndex < count));
Debug.Assert(!(destination.Length - destinationIndex < count));

unchecked
{

int countDiv = count / 4;
int countMod = count % 4;

fixed (byte* sourcePtr = source, destinationPtr = destination)
{

byte* sourceByte = sourcePtr;
byte* destinationByte = destinationPtr;

Chapter 35 ■ Using Unsafe Code and Pointers404

for (int blockIndex = 0; blockIndex < countDiv; blockIndex++)
{

((int)destinationByte) = *((int*)sourceByte);

destinationByte++;
sourceByte++;

}

for (int blockIndex = 0; blockIndex < countMod; blockIndex++)
{

*destinationByte = *sourceByte;

destinationByte++;
sourceByte++;

}
}

}
}

Example: Win32 API Access
The following example shows how to interact with Win32 API calls through
PInvoke and unsafe pointers. There are alternatives to this approach, but this exam-
ple shows how to do it with unsafe code. This example retrieves the name of the
local machine.

[System.Runtime.InteropServices.DllImport(“Kernel32”)]
static extern unsafe bool GetComputerName(byte* lpBuffer, long* nSize);

private static void Win32APIAccess()
{

byte[] buffer = new byte[512];
long size = buffer.Length;

unsafe
{

long* sizePtr = &size;

fixed (byte* bufferPtr = buffer)
{

GetComputerName(bufferPtr, sizePtr);
}

}

Example: Win32 API Access 405

byte[] nameBytes = new byte[size];

Array.Copy(buffer, 0, nameBytes, 0, size);

Console.WriteLine(“Computer Name: “ + Encoding.ASCII.GetString(nameBytes));
}

Conclusion
Figure 35.1 shows all three examples after execution. Notice the speed difference
between the unsafe context and the unsafe + unchecked context.

This chapter covered the usage of pointers and unsafe code within the C# lan-
guage. There are only a few situations where it should be used, but pointers can
solve a lot of problems when used appropriately.

It is important to keep in mind that unsafe code contexts require elevated securi-
ty permissions to execute, so do not use unsafe code within applications that need
to run under a least privilege account.

Lastly, only use pointers for performance gains if the gain itself is substantial. A
great deal of the .NET framework has been optimized to its fullest potential, and
while you may think your unsafe code implementation is faster than the built-in
functionality, you cannot be certain unless you profile. Even then, if the difference
between your code and the built-in functionality is pretty close, you are better off
using the built-in functionality instead.

Chapter 35 ■ Using Unsafe Code and Pointers406

Figure 35.1 Screenshot of all three examples after execution.

407

Investigating Managed
Code Performance

chapter 36

You cannot teach beginners top-down programming, because they don’t
know which end is up.

C. A. R. Hoare

An important of element of software development, especially when dealing with
important tools and tools that perform complex calculations, is performance and
optimization. Performance testing and optimization techniques for pretty much
every language have been around for quite some time, and developers making the
switch, or developers who are hesitant to make the switch, are worried about code
performance and not having the understanding to write optimized code. The truth
for developers worried about managed code optimizations is that much of the advice
remains the same as it did prior to the introduction of .NET and the managed
runtime.

In this chapter, I will briefly cover two approaches for investigating performance
and then lead into a substantial number of considerations for writing efficient
code for the .NET platform.

Investigating Performance
There are two discrete approaches for investigating performance: white box inves-
tigation and black box investigation. Both approaches have different strengths and
weaknesses, and sometimes it is beneficial to use both approaches to conduct a
robust and thorough performance investigation.

Using the white box approach involves studying the implementation details
behind a particular component or function, and deriving a list of characteristics to
factor into performance testing based on the complexity and perceived cost of
completing a particular task. White box testing is great when trying to understand
the technology in greater detail, and it allows you to easily identify and address
performance pitfalls related to implementation. White box testing makes it very
difficult to produce quantitative performance metrics. Relative performance can
be measured using an order of magnitude, but only on a piece of functionality in
isolation from other components in the system or various software and hardware
configurations. Code that may appear slow or overly complex may run quite fast
on different hardware with a caching strategy or with an optimizing compiler.
Code that may appear efficient has the potential to run extremely slowly or ineffi-
ciently on different hardware or software configurations.

Using the block box approach involves disregarding the implementation details
and instead basing test results on overall execution time. Black box testing is great
in the sense that you can end up with a set of strong and unambiguous metrics to
measure performance, including a fairly precise resolve understanding of the
capacity of a particular test case. The downside to black box testing results from
the nearly infinite number of software and hardware combinations, also known as
a combinatorial explosion. The sheer volume of combinations makes it nearly
impossible to determine a set of distinct systems that tests can be performed against.

Choosing the best approach depends on the type of investigation being conduct-
ed, and how large the system is. White box testing will not suffice for large systems
where there is a massive amount of code, or for systems that rely on third-party
components that do not have source code available. Black box testing is really to
determine which operations or tasks are problematic, making it difficult to deter-
mine exactly where the problem originates, unless the slowdown results from
architecture and the communication between distributed and isolated compo-
nents. Quite often, it makes sense to perform a little bit of white box testing in
complex areas and then perform a thorough investigation of performance using
the black box approach.

Avoid Manual Optimization
Many developers, especially the ones who have been in the industry for a while, are
used to optimizing code so tightly that they are concerned with how the compiler
is going to execute each segment of critical code, and so they use alternate syntax
in an attempt to compile more efficient code. There is no point in trying to perform

Chapter 36 ■ Investigating Managed Code Performance408

low-level optimizations manually. Current compilers on the market are quite
intelligent when it comes to low-level optimizations, even smarter than you. Just
make sure that you enable compiler optimizations when building a final release so
that the compiler can work its magic. Be sure to test your application in release
mode because preprocessor symbols and conditionally compiled function calls can
perform unexpectedly when executed in a different compilation mode. Certain
bugs may be masked in debug mode and only appear in an optimized compilation.

The optimizations that you should be concerned with are high-level, such as mem-
ory allocation, network traffic, and using inappropriate data structures and algo-
rithms. Make sure that you profile your code before attempting to optimize. It is a
waste of time to incorrectly guess where code is suffering from poor performance
and attempt to optimize in an area that does not need it.

Use code analysis tools such as FxCop to help identify performance bottlenecks.
Some bottlenecks are very hard to identify without a robust tool to help you.
Lastly, pass your assemblies through a commercial obfuscator. The main purpose
of an obfuscator is to make it difficult to decompile your application by mangling
your private and internal type and variable names, but some obfuscators can
increase performance by a slight amount through shorter names and optimized
memory layouts.

String Comparison
Pretty much every application performs comparisons between strings, with the
variant being the number of comparisons performed. String equality can be
defined as two strings with the identical sequence of characters, also known as
binary equality. This type of string comparison works for most situations, but
binary equality does not suffice when multiple locales are used, or case sensitivity
matters. The term logical equality is used to describe two strings that are equiva-
lent despite binary differences.

The System.String data type of the .NET framework provides numerous ways to
store and manipulate string data, including methods of performing binary and
logical equality comparisons. Three methods exist that provide the ability to check
for binary equality: two instance methods and one static method. The first
instance method is strongly typed to accept a string parameter, and the other
instance method overrides the Equals method inherited from System.Object. The
overridden method is not recommended unless you are comparing more than just
strings, because this method suffers a performance penalty by needing to perform

String Comparison 409

type checking. The static method uses a performance tuned approach that is
employed throughout the .NET framework. First, a check is performed to see if any
of the strings are null. Then a reference equality check is performed to see if the
two strings refer to the same object. If no result has been returned yet, the virtual
instance method is called.

N o t e

The C# equality operator ==, represented by the MSIL op_Equality, simply makes a call to the
static Equals method of System.String, so you do not have to worry about performance with
this one.

Logical equality is provided through the use of the overloaded Compare method,
which has parameters for locale formatting and case insensitive comparisons.
Unlike the Equals method, which returns a boolean value, the Compare method
returns an integer that describes the lexical difference between the two strings,
with a value of zero stating that the two strings are lexicographically identical.

Being able to perform locale-aware and case insensitive comparisons comes at a
significant performance cost. The cost is dependent on the locale used and the
complexity of the rules related to the locale. Because of the fairly significant per-
formance hit when using the Compare method, it is important to minimize calls to
it whenever possible. One approach is to identify comparisons where case and
locale rules can be ignored, using String.Equals() instead of String.Compare(). This
approach works well for situations where the data originates from back-end or
embedded systems, to name a couple examples. Situations where case and locale
rules cannot be ignored, but binary equality is common, are best served by calling
String.Equals() before String.Compare(). Doing so can result in a considerable per-
formance gain if most of the comparisons exhibit binary equality. The following
code shows this.

string string1 = “This is from one place”;
string string2 = “This is from elsewhere”;
if (string1 == string2 || String.Compare(string1, string2) == 0)
{

// Handle identical strings
}

In terms of case insensitive comparisons, String.Compare() is able to perform these
comparisons without allocating new strings, whereas a call to String.Equals() with
calls to String.ToUpper() will result in two new strings being allocated.

Chapter 36 ■ Investigating Managed Code Performance410

It is a common mistake to think that checking whether the length of a string is zero
is faster than comparing the string to the empty string constant. There is a sliver
more performance when checking the length because only the string metadata
must be examined, but this increase is marginal and it is doubtful that you will see
any measurable performance bonus. It is important to note that you should use
the canonical String.Empty instance as a constant when comparing against an
empty string rather than “” since an allocation will be avoided in this case.

String Formatting
Having the ability to insert, remove, and replace data inside strings is a common
task in almost every application. This functionality is provided through a couple
of mechanisms of the .NET platform and class framework. The first mechanism,
also the easiest to use, is the ToString() method that is available on data types that
inherit from System.Object. The default behavior of this method is to return the
full name of the type, though it can be overridden to support extended function-
ality. The typical implementation will return a partial representation of the class
with the help of the member variables inside the class. Pretty much all the string
formatting features of the .NET framework boil down to using ToString() at some
point. Therefore, it is important that you make sure that this method performs
efficiently and quickly.

Another formatting mechanism is String.Format, which functions like sprintf in
the C realm. This function is used to format a string against a pattern where certain
tokens are substituted with values in the supplied arguments array. This function
is perhaps the slowest of the bunch, because it lacks the efficiency of type over-
loading provided by a class like StringBuilder, causing a number of boxing and
unboxing operations to occur. Classes can also inherit from IFormattable to extend
the formatting capabilities of ToString().

One of the biggest slowdowns when dealing with strings is that they are
immutable, which means that any time a string is modified, a new string object is
created. Immutable strings are great when they are shared frequently and are mod-
ified infrequently. Reading is cheap in terms of performance because locking or
reference counting is unnecessary, and you can avoid abstraction and sharing
schemes. The class framework provides the StringBuilder class, which is used to
perform high-performance string operations against a mutable Unicode character
array. After modifications on the string within a StringBuilder are complete, you
can call ToString() to retrieve the contents of the internal string.

String Formatting 411

N o t e

Calling ToString() on a StringBuilder object will simply reference the internal character array,
but a copy operation occurs as soon as the result is assigned to a string object and further opera-
tions are performed on the StringBuilder. The recommended approach is to only call
ToString() after all modifications on the StringBuilder are complete. Otherwise, it is advis-
able to use the ToString() overload that allows only a substring of the internal character array
to be returned.

StringBuilder manages an internal character buffer that is allocated during instan-
tiation. The initial capacity defaults to an array of 16 characters, but you can spec-
ify a different value for the initial capacity as a parameter in the constructor. When
an operation requires that the internal size of the StringBuilder be increased, a new
array that is double the size of the old one is created, and the old data is copied
into the new array. The reallocation is quite expensive, and it should be avoided as
much as possible. It is highly recommended that you explicitly set the initial capac-
ity if you have enough information to estimate the value that works best for your
situation.

There are some downsides to working with a StringBuilder object over a String
object. The first downside is that StringBuilder only implements a fraction of the
functions offered by String. StringBuilder also incurs a significant overhead cost
when first initialized, so there are times where using StringBuilder for only a hand-
ful of manipulations can actually decrease your performance. The rule of thumb
is to only consider using StringBuilder when the number of manipulations reach-
es double digits. StringBuilder is great to use when appending strings within a
loop. There is no real definitive answer on when to use StringBuilder, because the
performance is dependent on system parameters and design. It may not be such a
bad idea to profile critical code when using StringBuilder or another formatting
mechanism to determine which approach is faster.

Concatenating strings is a form of string formatting, but there are additional per-
formance increases that can be investigated. String.Concat() is, by far, the fastest
and most efficient way to join a couple of strings together. Use this method over
anything else if you can combine all your strings in one call to String.Concat().
Otherwise, you can resort to a more flexible mechanism like StringBuilder if you
need to join many strings together. Never use normal String instances and the
concatenation operator to join strings together; this is the most inefficient way you
could possibly use to accomplish the task.

Chapter 36 ■ Investigating Managed Code Performance412

String Reversal
The unification of text storage and manipulation into a single String data type was
an excellent decision, although the .NET Framework is missing a way to efficient-
ly reverse the contents of a string. String reversal is an uncommon activity but not
extremely rare. There are a number of ways to accomplish string reversal, such as
appending each string character to a StringBuilder in reverse order, generating a
character array and calling Array.Reverse, or calling the StrReverse method in the
Microsoft.VisualBasic.Strings library. All three methods will perform the task, but
they are not the most efficient way to accomplish it.

The fastest way to perform string reversal is by using a character array with each
character from the input string appended to the array in reverse order, afterwards
constructing a new string from the reversed character array.

The following code shows how to do this.

string ReverseString(string input)
{

chars[] chars = new char[input.Length];

int index1 = input.Length -1;
int index2 = 0;

while (index1 >= 0)
{

chars[index1—] = input[index2++];
}

return new string(chars);
}

Compiling Regular Expressions
In a nutshell, regular expressions are a very powerful text manipulation tool that
compresses verbose and suboptimal text manipulation and matching patterns into
a couple of lines composing an efficient regular expression. The .NET framework
provides a number of robust classes for working with regular expressions, like the
Regex type that exists in the System.Text.RegularExpressions namespace. Regex pro-
vides a mechanism to execute a regular expression against a text string. When a
regular expression is set on the Regex object, it is converted to a partially compiled
representation, which is cached for execution during the application lifetime.

Compiling Regular Expressions 413

In order to further increase performance when executing a regular expression,
there is support for pre-compiling a regular expression to MSIL, which will then
be JIT’ed (Just-in-Time compiled) to native code before execution. Pre-compiled
regular expressions are placed in dynamically generated assemblies that can be
loaded at runtime within an application domain. Assemblies cannot be unloaded,
so there is a potential problem with this approach where you will not be able to
unload regular expressions from memory until the application domain itself is
released. To solve this problem, you can persist the dynamically generated assem-
blies to the hard drive and load them at runtime into a second application domain.
This functionality is available through the Regex.CompileToAssembly() method.

The following code shows how to compile a regular expression to a dynamically
generated assembly.

using System;
using System.Reflection;
using System.Text.RegularExpressions;

string name = “AlphaNumericTest”;
string nameSpace = “CompiledExpression”;
string assembly = “RegularExpressionTest”;
string expression = “[^a-zA-Z0-9]”;

RegexOptions options = RegexOptions.None;
RegexCompilationInfo info = new RegexCompilationInfo(expression,

options,
name,
nameSpace,
true);

AssemblyName assemblyName = new AssemblyName();
assemblyName.Name = assembly;
Regex.CompileToAssembly(new RegexCompilationInfo[]{info}, assemblyName);
The following code shows how to use the regular expression that has been com-
piled into the RegularExpressionTest assembly.

using System;
using System.Text.RegularExpressions;
string searchString = “Your Search String Here”;
CompiledExpression.AlphaNumericTest expression

= new CompiledExpression.AlphaNumericTest();
foreach (Match match in expression.Matches(searchString))
{

Chapter 36 ■ Investigating Managed Code Performance414

// Do something with match.Value
}

N o t e

The performance improvement from using precompiled expressions is dependent on the regular
expression used.

Use the Most Specific Type
In the majority of object-oriented programming languages that support inheri-
tance, it is generally possible to use any data type in the inheritance tree to declare
a variable. For example, you could instantiate a SpeedBoat object and reference it
with a variable of type Boat. Unless there is a specific reason, the general rule is to
use the most specific type possible, because doing otherwise can cause performance
problems. An example could be declaring a variable of type Object and storing an
integer with it. In this particular example, Object is a reference type, and integer is
a value type. Treat an integer as an object and you end up with boxing operations.

Luckily, VB.NET is more prone to errors of this nature than C#, because in C# you
have to explicitly cast a reference type storing a value type to that correct type
before using it in arithmetic operations, for example. This explicit casting will give
C# enough information to generate relatively efficient code, although using the
most specific type in the first place would still be the most efficient.

Avoid Boxing and Unboxing
There are two data types in the .NET platform—value and reference—and new
developers can introduce significant performance penalties without fully under-
standing the implications behind boxing and unboxing operations.

Value types are lightweight objects that are allocated on the stack, unless the value
type is allocated as an array element, or if the value type is a field of a reference type.
All primitives and structures are value types that are derived from System.ValueType.
Value types are stack-based, which means that allocating and accessing them is
much more efficient than using reference types.

Reference types are heavyweight objects that are allocated on the heap, unless the
stackalloc keyword is used. Reference layers impart a level of indirection, mean-
ing that they require a reference to access their storage location. These types cannot
be accessed directly, so a variable always holds a reference to the actual object or it

Avoid Boxing and Unboxing 415

is null. Reference types are allocated on the heap, so the runtime must check to see
that each allocation is successful.

A boxing operation occurs when a value type needs to behave like a reference type.
The Common Language Runtime allocates enough memory to hold a copy of the
value type, including the necessary information to create a valid reference type.
There is a significant amount of performance overhead because of the heap allo-
cation and storage of the value type state. This conversion can occur explicitly
through a cast operation, or implicitly by an assignment operation or a method call.

An unboxing operation occurs when a boxed value type is to be explicitly con-
verted back to a value type on the stack. The Common Language Runtime returns
a pointer to the referenced data, and then the data is typically copied to a location
on the stack through an assignment operation. The boxed value type will still
remain on the heap until the garbage collector is able to reclaim it.

It is important to be aware of areas of your code where large numbers of boxing
and unboxing operations occur. Also be aware that the .NET framework has many
methods and properties that can cause implicit conversions to occur when used
with value types. If a method takes an object as a parameter, then value type
instances will be boxed.

Use Value Types Sensibly
Using value types in performance-critical code can lead to some performance
gain, but only if used correctly. Performance can be significantly decreased if value
types are overused or are used inefficiently. Value types are much faster to instan-
tiate and uninstantiate, and they also take up less space in memory. The size dif-
ference between a value type and a reference type on a 32-bit machine is three
words. This is because reference types store the reference to the object data, a sync
block index, and a method table index. Three words may seem insignificant, but
consider situations where you have a large number of objects. You do need to also
consider the performance implications when value types need to behave as
objects, resulting in a boxing and unboxing operation.

Working with structures can also offer the potential for performance improve-
ments. Classes are specified as auto layout so that the CLR can arrange fields in the
optimal manner for speed and memory size, taking byte alignment into account.
Structures are specified as sequential layout by default, which makes things easy
when passing structures to P/Invoke and unmanaged code, because the layout of
the structure easily maps to the structure in unmanaged code. Performance in this

Chapter 36 ■ Investigating Managed Code Performance416

situation is ideal because hardly any marshaling is required. However, using struc-
tures with sequential layout without interacting with unmanaged code is very inef-
ficient. If you are using structures for performance reasons, without the intent to
communicate with legacy code, you can explicitly declare a struct as auto layout
with the following code.

[StructLayout(LayoutKind.Auto)]
public struct MyStructure
{

// …
}

The Myth About Foreach Loops
A common misconception with code optimization is that using a for loop instead
of a foreach loop will offer better performance. In actuality, this advice used to be
correct back when compilers were not intelligent enough to determine the logical
equality between a for and a foreach loop in like situations. This thought is based
on the assumption that an enumerator is instantiated inside a foreach loop to iter-
ate through the elements of a collection, which is not a factor anymore because of
processor speeds and compiler optimization. Using a foreach loop to iterate
through the elements of an array will make no substantial difference in perfor-
mance, if any at all.

To review, writing a for loop like the following code:

for (int index = 0; index < array.Length; index++)
{

// Do processing on array[index]
}

will perform the same as a foreach loop like the following code (assuming an array
of bytes for the sake of argument).

foreach (byte element in array)
{

// Do processing on element
}

There is one situation where a for loop might be more efficient than a foreach
loop, and that is when the size of the collection is a fixed value that you are aware
of when writing the code. Consider the following code.

for (int index = 0; index < 15; index++)

The Myth About Foreach Loops 417

Being able to write a for loop with a constant iteration count will give the JIT com-
piler a lot more flexibility and scope for optimization.

Use Asynchronous Calls
The .NET platform offers mechanisms to provide both asynchronous and syn-
chronous execution. Typically, synchronous execution is used for the bulk of your
application, though some situations warrant an asynchronous model in order to
increase performance and responsiveness. An example would be downloading a
file from a network or the Internet, which is generally a processor-intensive task
depending on the size of the file. The file could be downloaded asynchronously
while the user interface displays the running process of the operation.

An asynchronous model can be extremely advantageous when used correctly, although
it can destroy your performance if used incorrectly.

N o t e

There is a small overhead penalty incurred when using asynchronous calls. When an asynchronous
call is invoked, the security state of the call stack is copied and attached to the thread that is exe-
cuting the asynchronous call. This penalty is insignificant if the callback executes a fair chunk of
code, or if the asynchronous calls are infrequently executed.

Efficient IO Buffer Sizes
The .NET framework provides a number of data buffers that inherit from
BufferedStream. These buffers have a default buffer size value, but you are able to
set the value to any size that you want. Even though you have this freedom, in
almost every case you will be getting sub-optimal performance unless you have the
buffer size set to a value between 4000 and 8000 bytes. Generally, the only time
where a large buffer size is efficient occurs when a very predictable size is being
managed, such as files that are usually around the same size.

Minimize the Working Set
Managed code takes care of many low-level responsibilities and handles them
transparently, but managed code does not always handle things in the most effi-
cient way possible. External assemblies are loaded into the main application
domain when they are used for the first time, which increases memory usage and
decreases performance by a slight amount. Therefore, it is important to minimize
the number of assemblies that you use in order to keep the working set small.

Chapter 36 ■ Investigating Managed Code Performance418

The more types in an assembly, the more memory it will take up and the more
time it will take to be JIT’ed. Consider moving types that are rarely used into sep-
arate assemblies that can be loaded into a second AppDomain on demand. The same
goes for large resources; keep them in external assemblies instead of embedding
them into the main assembly. Lastly, if you are only using a couple methods out of
a fairly large assembly, you might consider implementing your own copy of those
methods to avoid having to load the assembly.

N o t e

You can use the VaDump tool, downloadable from Microsoft.com, to track your working set.You can
also use Performance Counters (perfmon.exe) to give you detailed feedback about a number of
useful statistics like the number of classes that you load.

The .NET platform provides transparent support for automatic memory manage-
ment, but there are some tasks that you should explicitly do in order to design for
optimum performance. The first task is to ensure that Dispose() is called on the
appropriate objects as soon as possible. Also, ensure that you do not reference
objects once you are done using them. References to unused objects will prevent
the garbage collector from collecting and removing the objects from the applica-
tion memory.

Perform Chunky Calls
There are generally two types of calls when working with data across managed and
unmanaged interfaces: “chatty” and “chunky.” Chatty calls are those that occur
quite often and do very little work, while chunky calls are those that occur less fre-
quently, but generally do more work when they occur.

I should mention that chunky calls are not always the best solution. A chatty call
that passes simple data may be less computationally expensive than a chunky call.
The incurred performance costs are cheaper because the data marshaling is not as
complex. P/Invoke, Interop, and Remoting calls all carry significant overhead, so you
want to minimize the number of calls using them. The best approach is to proto-
type both call types early in the development phase so that you can make the best
decision for the solution.

When a call is sent between managed and unmanaged code, there are some events
that transpire in order to facilitate this communication. First, data marshaling
must be performed to get the source data into the appropriate target format for
the receiver. Next, the calling convention signatures must be fixed to pass data

Perform Chunky Calls 419

between the sender and receiver. The next step is to protect callee-saved registers
and switch the threading mode so that the garbage collector does not block
unmanaged threads. Lastly, a frame to handle exceptions is created to supervise
calls into managed code. The events equate to roughly 30 x86 instructions when
using P/Invoke (roughly 10 when marshaling is not required), and roughly 60 x86
instructions when using COM Interop. Therefore, it is important to use P/Invoke
over COM Interop whenever possible to speed up the calls between managed and
unmanaged code.

The biggest slowdown occurs during data translation, such as converting text from
ASCII to Unicode. Classes with explicit layout are extremely cheap, and primitive
types require almost no marshaling at all. Blittable types are those that can be
transferred directly across managed and unmanaged code with no marshaling at
all. These types are byte, sbyte, double, float, long, ulong, int, uint, short, and ushort.
You can also freely pass value types and single-dimensional arrays that contain
blittable types.

Minimize Exception Throwing
One of the best features of the .NET platform is the exception handling model that
is available to all applications. This model offers the ability to develop robust
applications that can handle and respond to exceptions and errors gracefully in
almost all situations. However, this model must be used carefully, or some signifi-
cant performance costs can be introduced into your application. Throwing excep-
tions is expensive in terms of performance, so throw as few as possible. You can
check how many exceptions your application throws at runtime through the use
of Performance Counters (perfmon.exe). Also, be aware that the .NET runtime can
throw its own exceptions. It is advisable to use Performance Counters to check
this, and use the debugger to locate the source of the exceptions.

One myth that circulates around developers working with managed code is that
try/catch blocks introduce performance overhead. The truth is that you only incur
a performance cost when an actual exception is thrown. You can use as many
try/catch blocks as you want. Do not use exceptions to control program flow.

Thoughts About NGen
The methods of a managed application are Just-in-Time compiled (JIT’ed) the
first time they are used during runtime. This dynamic compilation can lead to a
significant startup penalty if the application invokes a lot of methods during startup.

Chapter 36 ■ Investigating Managed Code Performance420

Also, there are many shared libraries in the .NET class framework that incur sig-
nificant overhead on top of your own code. There is a tool provided with the .NET
framework (ngen.exe) that can generate native images of assemblies and store
them in the Global Assembly Cache, essentially precompiling your code for faster
startup times and overall runtime execution in certain situations.

While NGen sounds like the silver bullet for increasing runtime performance,
there are only certain situations when performance can be improved through its
use. Native images cannot be used when crossing application domains, so there is
no real benefit from using NGen for ASP.NET applications. However, generating
native images for Windows Forms can result in a performance increase.

N o t e

NGen must be run on the assemblies after they have been deployed to the target machine. Doing
so allows the application to be optimized for the machine it is installed on.

There are some situations where your application may perform better with JIT
compilation instead of native images. Some optimizations cannot be done with
native images, so make sure that you profile the startup and operating times of
your application while using native images and JIT compilation. You should also
profile combinations of native images and regular assemblies.

Conclusion
This chapter examined performance considerations when developing applications
for the .NET platform. First, two approaches for investigating performance were
discussed: white box and black box. The rest of the chapter focused on perfor-
mance considerations for commonly used and abused areas of everyday .NET
development. A misconception regarding performance optimization is that a consid-
erable amount of time should be spent on optimizing code down to the compiler
level. In reality, especially with .NET, the majority of performance loss results from
application architecture and design. These problems occur at a high level, and can
be identified using black box performance testing.

Conclusion 421

This page intentionally left blank

423

Responsive UI During
Intensive Processing

chapter 37

Complexity is a sign of technical immaturity. Simplicity of use is the real
sign of a well designed product whether it is an ATM or a Patriot missile.

Daniel T. Ling

It is fairly common to use applications that fail to repaint their windows, display-
ing an empty or partially empty frame on the screen. Or you may use applications
that execute a long-running task, ignoring you until the task completes. In some
instances, you may even wish to abort the task rather than wait for completion,
which is not supported by these applications. A responsive user interface is very
important, so it is crucial that you design your application so the user knows the
current state of the application: whether a message sent to the application has been
received, and that the application has not stalled when processing a complex task
or operation. Users want to feel in control of the application, so be sure that the
user can always control the flow of the application.

To fully understand the importance of a responsive user interface, a few common
problems will be addressed that users typically come across. The first problem is a
window that takes a long time to repaint during a time-consuming operation.
During this operation, the application does not give any CPU cycles to the user
interface, which results in the user waiting for the window to update or for key-
board and mouse events to be processed. These wait times make the user interface
seem sluggish, or even cause the application to be unusable.

Another problem occurs when the application performs a long-running task but does
not provide any control to the user during this period. Many times these tasks are
developed to execute in entirety and then return, maybe updating the progress and dis-
playing it to the user, but the user will still not be able to interact with the application
until the task completes. This can lead to a few problems, such as the user being unable
to cancel the task if the need arises, and keeping the user from taking advantage of
other application features that logically should be available during the long process.

While performing a long task, you should make sure the application informs the
user of the progress by periodically updating the window with a progress bar or
similar control. Let the user know that the application is executing normally and
that the task is progressing. Additionally, you should also support interaction by
the user or the ability to access logical features while the task is processing.

For years, one of the most difficult and time-consuming tasks in Windows pro-
gramming has been the development and debugging of multi-threaded solutions.
Developers using .NET typically write asynchronous code using an asynchronous
pattern that returns an IAsyncResult using Begin and End methods. Otherwise,
developers use delegates or an explicit threading technique such as thread pools.
Some developers even resort to writing custom threading systems for various rea-
sons, despite the pain and suffering that occurs during the development of such
solutions. Generally, it is better to have an intrinsic approach, based on infrastruc-
ture, than to build a custom approach from the ground up. Additional patterns
have been introduced in version 2.0 of the .NET framework. One of these new pat-
terns is AsyncOperationManager and AsyncOperationFactory, coupled with a set of
custom events and delegates. While this approach is fairly straightforward to use,
advanced tasks will not benefit from this new mechanism.

An excellent component introduced in .NET 2.0 is the BackgroundWorker class,
which is a convenient way to start and monitor asynchronous operations, with the
ability to cancel the operation and report progress to the user. This chapter shows
how to use BackgroundWorker safely and how to correctly marshal control between
the worker thread and the Windows Forms thread in a thread-safe fashion. The
demo presented in this solution calculates Fibonacci numbers, and will be used to
introduce you to the implementation details of BackgroundWorker.

Implementing the Worker Logic
The first step is to create a new BackgroundWorker object, specify the appropriate set-
tings, and rig the instance up with event handlers. Table 37.1 shows the important
members of the BackgroundWorker class.

Chapter 37 ■ Responsive UI During Intensive Processing424

You can create BackgroundWorker programmatically or by dragging it onto your
form from the Components tab of the Visual Studio toolbox. The example in this
chapter shows programmatic instantiation and configuration. The following code
shows how to instantiate the BackgroundWorker.

backgroundWorker = new BackgroundWorker();
backgroundWorker.WorkerReportsProgress = true;
backgroundWorker.WorkerSupportsCancellation = true;

backgroundWorker.DoWork += new DoWorkEventHandler(backgroundWorker_DoWork);

backgroundWorker.ProgressChanged += new ProgressChangedEventHandler
(backgroundWorker_ProgressChanged);

backgroundWorker.RunWorkerCompleted += new RunWorkerCompletedEventHandler
(backgroundWorker_RunWorkerCompleted);

The DoWork event provides an instance of DoWorkEventArgs as a parameter, which
handles the input, output, and cancellation properties of the worker thread. Table
37.2 shows the properties of DoWorkEventArgs.

Implementing the Worker Logic 425

Table 37.1 Important Members of BackgroundWorker

Member Description

CancelAsync Invoking this method will cancel the progressing task.

CancellationPending Invoking CancelAsync will set this property to true,
signifying that the user has requested cancellation of the task.

DoWork This event is fired when RunWorkerAsync is invoked.

ProgressChanged This event is fired when ReportProgress is invoked.

ReportProgress Invoking this method will fire the ProgressChanged event,
updating the progress of the operation.

RunWorkerAsync Executes the task asynchronously on a worker thread.

RunWorkerCompleted This event is fired when the task is completed or cancelled,
or when an unhandled exception is thrown within the
DoWork event.

WorkerReportsProgress Boolean property that specifies whether or not to report
progress.

WorkerSupportsCancellation Boolean property that specifies whether or not the task can
be cancelled.

Chapter 37 ■ Responsive UI During Intensive Processing426

The following code shows the implementation behind the DoWork event for the
Fibonacci calculator. Notice the exception that is thrown when the compute num-
ber has an invalid value. This is because any values higher than 91 will result in an
overflow with the long data type.

private void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{

if (((int)e.Argument < 0) || ((int)e.Argument > 91))
{

throw new ArgumentException(“Compute number must be >= 0 and <= 91”);
}

e.Result = ComputeFibonacci((int)e.Argument, (BackgroundWorker)sender, e);
}

The following code shows the actual processing logic behind the Fibonacci calcu-
lations. This logic is in its own method because it calculates the numbers using
recursion.

private long ComputeFibonacci(int computeNumber,
BackgroundWorker worker,
DoWorkEventArgs e)

{
long result = 0;

Table 37.2 Properties of DoWorkEventArgs

Property Description

e.Argument Defined as an object, so any arbitrary data type can be used as an input
argument for the DoWork event. This parameter is passed into the
RunWorkerAsync method.

e.Cancel This property allows you to cancel the progressing task. Setting this property to
true will cancel the task and move the context to the RunWorkerCompleted
event with a cancelled status. This property is used in conjunction with the
CancellationPending property to determine whether or not the user has
issued a cancellation request.

e.Result Defined as an object, so any arbitrary data type can be used as an output result
to the RunWorkerCompleted event. This property is a way to communicate the
result or status back to the user interface.

if (worker.CancellationPending)
{

e.Cancel = true;
}
else
{

if (computeNumber < 2)
{

result = 1;
}
else
{

result = ComputeFibonacci(computeNumber - 1, worker, e) +
ComputeFibonacci(computeNumber - 2, worker, e);

}

int percentComplete = (int)((float)computeNumber /
(float)((int)e.Argument) * 100);

if (percentComplete > percentageReached)
{

percentageReached = percentComplete;
worker.ReportProgress(percentComplete);

}
}

return result;
}

N o t e

The DoWork method can complete in three ways: the process completes successfully, the user
requests cancellation, or an unhandled exception occurs.

Reporting Operation Progress
The ProgressChanged is used to report status to the user interface. This event is fired
whenever the ReportProgress method is invoked.

Reporting Operation Progress 427

N o t e

Do not make excessive calls to the ReportProgress method, because each call adds additional over-
head to your background processing, taking longer to complete; however, it is also important to enable
users to witness the current progress of the tasks, making it tricky to find the right balance of use.

The PercentageProgress property of the ProgressChanged event arguments will
return the percentage completed value, set by the ReportProgress method. You can
also access the user state within the ProgressChanged event handler arguments. The
following code shows the implementation details for the progress changed event.

private void backgroundWorker_ProgressChanged(object sender,
ProgressChangedEventArgs e)
{

OperationProgressBar.Value = e.ProgressPercentage;
ResultLabel.Text = String.Format(“Calculating: {0}%”,

e.ProgressPercentage.ToString());
}

BackgroundWorker events are not marshaled across AppDomain boundaries; therefore
you must not use BackgroundWorker to process tasks in more than one AppDomain.
You must be careful not to manipulate the user interface in your DoWork event
handler. The proper way is to communicate with the user interface through the
ProgressChanged and RunWorkerCompleted events.

Supporting User Cancellation
Allowing the user to cancel the progressing task is extremely easy. Just invoke the
CancelAsync method on the BackgroundWorker instance and then handle the
CancellationPending property in the DoWork event appropriately.

private void CancellationButton_Click(object sender, EventArgs e)
{

backgroundWorker.CancelAsync();
CancellationButton.Enabled = false;

}

N o t e

It is important to know that if a call to CancelAsync sets CancellationPending to true just
after the last invocation of the DoWork event, then the code will not have the opportunity to set
the DoWorkEventArgs.Cancel flag to true. This results in the Cancelled flag being set to false
in the RunWorkerCompleted event. This problem occurs because of a race condition.

Chapter 37 ■ Responsive UI During Intensive Processing428

Executing the Worker Thread
BackgroundWorker executes the DoWork event in a separate thread so the user inter-
face remains responsive. Executing the worker thread is very easy; it’s done by invok-
ing the RunWorkerAsync method on the BackgroundWorker. This method optionally
allows you to pass in an argument that the worker logic can use during processing.
The following code shows the implementation details behind the demo that is
available on the Companion Web site for this book.

private void ComputeButton_Click(object sender, EventArgs e)
{

ResultLabel.Text = string.Empty;

ComputeNumberField.Enabled = false;
ComputeButton.Enabled = false;
CancellationButton.Enabled = true;

int computeNumber = (int)ComputeNumberField.Value;
percentageReached = 0;

backgroundWorker.RunWorkerAsync(computeNumber);
}

No matter how the DoWork event completes, whether successfully or in an erro-
neous manner, the RunWorkerCompleted event will always fire, providing an instance
of RunWorkerCompletedEventArgs that contains the status and result of the operation.
This event will allow you to respond appropriately to whatever result is returned
by the worker thread. When an error occurs, you can retrieve the exception object
from the Error property. This property will be null if no errors occurred during
processing. When a cancellation occurs at the request of the user, the Cancellation
property will be set to true. Otherwise, you can retrieve the result from the Result
property if there is one. The following code shows the completed event handler
that is fired when the processing task is finished.

private void backgroundWorker_RunWorkerCompleted(object sender,
RunWorkerCompletedEventArgs e)

{
if (e.Error != null)
{

ResultLabel.Text = String.Format(“Error: {0}”, e.Error.Message);
}
else if (e.Cancelled)
{

Executing the Worker Thread 429

ResultLabel.Text = “Cancelled”;
}
else
{

ResultLabel.Text = e.Result.ToString();
}

ComputeNumberField.Enabled = true;
ComputeButton.Enabled = true;
CancellationButton.Enabled = false;

}

Conclusion
Creating a user interface that is responsive is not that difficult, provided that you
know the techniques required to do so. Your code must divide time between pro-
cessing a long-running task and interacting with the user; one should not be sacrificed
for the other. You cannot think in a linear fashion when building a long-running
task; your application cannot wait around for the task to complete. Think about
a good place in the processing logic to stop and report status back to the user.
Thankfully, you do not have to worry about processing application events while
using the BackgroundWorker object, because this is done behind the scenes for you.

Figure 37.1 shows a screenshot of the demo application provided on the Companion
Web site.

Asynchronous processing can drastically improve the responsiveness of your
application. However, do not assume that an asynchronous model is always the
best approach; sometimes a synchronous model is a better choice. Thankfully, .NET
2.0 simplifies the tasks related to using either execution model.

Chapter 37 ■ Responsive UI During Intensive Processing430

Figure 37.1
Screenshot of the demo application on the Web site.

Techniques
to Enhance

Usability
The best programmers write only easy programs.

Michael A. Jackson

Improving the usability of your tools is a sound business strategy when appropri-
ate, and you can differentiate your work from the competition, and enhance your
success simply by following good engineering practices. Enhanced usability can
reduce development time and costs by ensuring earlier detection of problems.
Problems detected later in development or even during transition can cost 10 to
100 times more to resolve than problems detected early on. Much more testing can
be done on a tool when it is responsive and users can readily understand how to
correctly operate the tool. Making a tool easier for a user to work with will make
it easier for you and your team to accomplish your business objectives. One
important process to follow in order to develop a successful tool is the regular
measurement of user satisfaction; otherwise, you cannot be sure that you are deliv-
ering a successful user experience. User satisfaction objectives must take part in
driving the development of your tools.

PART VII

At this point, you are probably wondering what is meant by usability, and how you
can enhance it. There are many definitions, but essentially, usability is the efficiency
with which a user can perform a required task or business function with a tool.
Efficiency can also spin into multiple examples, but the most common efficiency
metrics are performance, errors, productivity, and user-subjective preferences and
interface characteristics. The chapters in Part VII investigate ways to enhance
usability, mainly from a productivity standpoint. Performance is an important
aspect of usability engineering, but you can read performance-related chapters in
Part VI, “Techniques to Improve Performance.”

A positive user experience is critical to the success of a tool, so it is vital that you
deliver it.

433

Designing an
Extensible Plugin-Based
Architecture

chapter 38

When I am working on a problem, I never think about beauty. I think only
of how to solve the problem. But when I have finished, if the solution is not
beautiful, I know it is wrong.

R. Buckminster Fuller

Many applications provide a mechanism to support extensibility through the use
of external code modules, also known as plugins, which are linked into the appli-
cation at runtime. Plugin support is generally used so that the application can be
extended with additional functionality without the need to recompile the source
code and distribute the executable to users. Some applications have business rules
that change frequently, or they have new business rules added on a regular basis.
Plugins allow business rules to be added or changed easily without recompilation
or redistribution.

The .NET framework and the Common Language Runtime provide a variety of
classes and mechanisms for dynamically loading assemblies at runtime and peer-
ing into the metadata of these assemblies. This dynamic support makes .NET an
ideal platform for plugin-based architectures.

Making your application plugin-aware is also an excellent way to promote a longer
lifetime. While not all applications are suitable for this kind of architecture, many
are, especially within tools development. This chapter will cover the rudiments and
advanced topics surrounding plugin-based architectures and the .NET platform.

Designing a Common Interface
Each plugin is unique in terms of functionality, but there must be some common
elements between all plugins in order to load them with a generic framework, and
this is best accomplished through the use of interfaces. Interfaces are reference
types and contain only abstract members. Interfaces are, in essence, a contract, so
any classes implementing an interface are enforced to implement all members on
the interface. This means that an application only needs to know about the inter-
face in order to communicate with the class.

Information about classes can also be inspected with reflection, so we can use this
common interface’s type to dynamically locate plugin classes within an assembly.
Classes that do not implement this common interface will not be loaded as plugins.

The common interface should be placed in a separate assembly so that the applica-
tion and the plugins can reference the interface as a shared assembly. You can even
go a step further by placing the shared assembly in the Global Assembly Cache so
that the application and plugins do not need local copies to compile or run.

The following code shows the common interface from the example for this chap-
ter. The two methods are used, respectively, to initialize and release plugin
resources. The actual implementation details for these two methods are left up to
the individual plugins.

namespace Plugin.API
{

public interface IPlugin
{

void Initialize();

void Release();
}

}

Embedding Plugin Metadata Information
A common feature of most plugin-aware applications is a plugin manager or
browser that can display a listing of all the plugins referenced by the application.
Some of these browsers go even further by showing information about each plug-
in to describe functionality and author credits.

The same functionality can easily be accomplished by decorating a plugin with an
attribute that describes what the plugin does.

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture434

Figure 38.1 shows an example of a plugin browser. The Component property describes
the short name of the plugin, while the Description property provides a more
lengthy description of what the plugin actually does.

The following code is for the Calculator Subtraction Plugin shown in Figure 38.1.
Notice the PluginAttribute decoration.

namespace Plugin.CalculatorPlugin
{

using API;
using ExampleInterfaces;

[Plugin(Component = “Calculator Subtraction Plugin”,
Description = “This plugin handles the subtraction operator”)]
public class CalculatorSubtraction : MarshalByRefObject,

IPlugin,
ICalculatorPlugin

{
public void Initialize()
{
}

public void Release()
{

Embedding Plugin Metadata Information 435

Figure 38.1 Screenshot of the plugin browser example.

}

public double Operation(double left, double right)
{

return left - right;
}

}
}

N o t e

You may have noticed that the class is decorated with Plugin instead of PluginAttribute. It is
optional to append the Attribute text when decorating a class with an attribute.

The following code shows the PluginAttribute decoration. It would be very easy to
add to this attribute over time if there is additional information you want to be
embedded with each plugin.

namespace Plugin.API
{

[AttributeUsage(AttributeTargets.Class)]
public class PluginAttribute : Attribute
{

private string component = string.Empty;
private string description = string.Empty;

public string Component
{

get { return component; }
set { component = value; }

}

public string Description
{

get { return description; }
set { description = value; }

}
}

}

The PluginAttribute decoration should be located in the same assembly as the
IPlugin interface.

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture436

Building a Proxy Wrapper
Here is where things get slightly more complicated. Typically, many of the plugin
systems created with .NET load external plugin assemblies into the main AppDomain
of the application. Although this works and you can use event-driven plugins to
your heart’s content, these external assemblies can never be unloaded from the
main AppDomain until the application quits. With a lot of loaded plugins, especially
plugins that are only run for a short period of time, the AppDomain can quickly
become swamped with loaded assemblies that degrade performance and consume
valuable system memory.

The solution to this problem does require additional work, but the external plug-
in assemblies will be unloadable. By creating another AppDomain, you can load
external assemblies into it, execute the needed functionality, and then dump the
extra AppDomain when the plugin is no longer needed. There is a catch though.
There is no restriction that can be enforced to stop types within the extra AppDomain
from leaking into the main AppDomain in certain situations.

One particular situation, which frustrated me and required a code refactoring, was
to avoid the use of delegates and events between the two AppDomains. Doing so will
load the plugin class into the main AppDomain, preventing the extra AppDomain from
being unloaded.

You cannot directly instantiate a plugin class using the Activator object directly
from the main AppDomain. You must use a MarshalByRefObject that will serve as a
proxy between the two AppDomains. It is also important that you do not return any
object references or types from the proxy class. Use only types that are available to
the main AppDomain (strings to represent type and interface names, for example).

The extra AppDomain is not found in the proxy class, because the proxy class will be
instantiated within the extra AppDomain. The following code describes the proxy
wrapper; the extra AppDomain code will be covered in the next section.

using System;
using System.IO;
using System.Reflection;
using System.Collections.Generic;

namespace Plugin.Manager
{

using Plugin.API;

public class PluginProxy : MarshalByRefObject

Building a Proxy Wrapper 437

{
List<Type> pluginTypes = new List<Type>();
List<PluginInfo> pluginInfo = new List<PluginInfo>();
List<IPlugin> pluginInstances = new List<IPlugin>();

The following method is used to load a plugin assembly into a temporary
AppDomain and build a collection of information about each class that implements
the IPlugin interface.

public bool LoadAssembly(AppDomain appDomain, byte[] data)
{

try
{

Assembly assembly = appDomain.Load(data);

foreach (Type type in assembly.GetTypes())
{

if (!type.IsAbstract)
{

foreach (Type interfaceType in type.GetInterfaces())
{

if (interfaceType == typeof(IPlugin) &&
type.IsDefined(typeof(PluginAttribute), false))

{
pluginTypes.Add(type);

PluginAttribute pluginAttrib =
type.GetCustomAttributes(typeof(PluginAttribute),

false)[0] as PluginAttribute;

As mentioned earlier, it is important that the proxy does not return any of the
types within the plugin library. We want users to be able to view the plugin
attribute information about each plugin, so the following two lines instantiate a
wrapper class designed to hold the attribute information.

PluginInfo info = new PluginInfo(pluginAttrib.Component,
pluginAttrib.Description);

pluginInfo.Add(info);
}

}
}

}

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture438

return true;
}
catch (Exception)
{

return false;
}

}

The following method is used to determine whether the plugin assembly contains
any plugin classes that implement a particular interface. This is used to determine
which assemblies can handle a particular application component.

public bool ImplementsInterface(string interfaceName)
{

foreach (Type type in pluginTypes)
{

foreach (Type interfaceType in type.GetInterfaces())
{

if (interfaceType.Name.Equals(interfaceName))
return true;

}
}
return false;

}

The following method is used to instantiate all the plugins within an assembly,
execute the Initialize() method, and add the instantiated plugins to a list to keep
track of them.

public void Initialize()
{

bool exists = false;

foreach (Type type in pluginTypes)
{

foreach (IPlugin plugin in pluginInstances)
{

if (plugin.GetType().Equals(type))
{

exists = true;
break;

}
}

Building a Proxy Wrapper 439

if (!exists)
{

IPlugin plugin = Activator.CreateInstance(type) as IPlugin;
ExecuteInitializeMethod(plugin);
pluginInstances.Add(plugin);

}

exists = false;
}

}

The following method loops through all the instantiated plugins and calls the
Release() method.

public void Release()
{

foreach (IPlugin plugin in pluginInstances)
{

ExecuteReleaseMethod(plugin);
}

}

The following method is a wrapper around executing a method of the plugin with
no return value. Remember that we cannot access objects directly from outside of
the proxy.

public void ExecuteMethodNoReturn(string interfaceName,
string method,
object[] parameters)

{
foreach (IPlugin plugin in pluginInstances)
{

foreach (Type interfaceType in plugin.GetType().GetInterfaces())
{

if (interfaceType.Name.Equals(interfaceName))
{

ExecuteMethodNoReturn(plugin,
method,
parameters);

}
}

}
}

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture440

The following method is a wrapper around executing a method of the plugin,
except this time with return values.

public object[] ExecuteMethodWithReturn(string interfaceName,
string method,
object[] parameters)

{
List<object> results = new List<object>();

foreach (IPlugin plugin in pluginInstances)
{

foreach (Type interfaceType in plugin.GetType().GetInterfaces())
{

if (interfaceType.Name.Equals(interfaceName))
{

results.Add(ExecuteMethodWithReturn(plugin,
method,
parameters));

}
}

}

return results.ToArray();
}

The following method is used to return metadata information about all the plugins
within the assembly.

public PluginInfo[] QueryPluginInformation()
{

return pluginInfo.ToArray();
}

#region Plugin Method Invocation

The following method uses reflection to call the Initialize() method directly on
the IPlugin instance.

private void ExecuteInitializeMethod(IPlugin plugin)
{

ExecuteMethodNoReturn(plugin, “Initialize”, null);
}

Building a Proxy Wrapper 441

The following method uses reflection to call the Release() method directly on the
IPlugin instance.

private void ExecuteReleaseMethod(IPlugin plugin)
{

ExecuteMethodNoReturn(plugin, “Release”, null);
}

The following method uses reflection to call a method directly on the IPlugin
instance. This call does not return any values.

private void ExecuteMethodNoReturn(IPlugin plugin,
string methodName,
object[] parameters)

{
MethodInfo method = plugin.GetType().GetMethod(methodName);

if (method != null)
method.Invoke(plugin, parameters);

}

The following method uses reflection to call a method directly on the IPlugin
instance. This call returns values.

private object ExecuteMethodWithReturn(IPlugin plugin,
string methodName,
object[] parameters)

{
MethodInfo method = plugin.GetType().GetMethod(methodName);

if (method != null)
return method.Invoke(plugin, parameters);

return null;
}

#endregion
}

}

Loading Plugins Through the Proxy
With the proxy created, we can now move on to loading plugins and accessing
them through the proxy. The following class wraps each plugin assembly and

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture442

routes messages to and from the proxy object. This class also handles a temporary
AppDomain used to load the plugin assembly independent from the main AppDomain.

using System;
using System.IO;
using System.Security;
using System.Security.Permissions;
using System.Security.Policy;
using System.Collections;

namespace Plugin.Manager
{

using Plugin.API;

public sealed class PluginLibrary
{

private AppDomain appDomain;

private PluginProxy proxy;

private string name = string.Empty;

public string Name
{

get { return name; }
}

The following method is used to load a plugin assembly from the file system into
memory, create a temporary AppDomain with enforced security permissions, and
instantiate the proxy object within the temporary AppDomain. If the plugin file is
source code, then the plugin is compiled and loaded afterwards. The supported source
code languages are C#, VB.NET, and J#. The default settings for the security policy
will deny the ability to compile source code at runtime, but you can either change
the policy file or disable security by commenting out EnforceSecurityPolicy().
Remember to only do this in a fully trusted environment.

public bool Load(DirectoryInfo pluginDirectory, FileInfo plugin)
{

try
{

if (plugin.Exists)
{

using (FileStream stream = plugin.OpenRead())

Loading Plugins Through the Proxy 443

{
byte[] assemblyData = new byte[stream.Length];

if (stream.Read(assemblyData,
0,

(int)stream.Length) < 1)
{

return false;
}

AppDomainSetup setup = new AppDomainSetup();
setup.ApplicationName = “Plugins”;
setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory;
setup.ShadowCopyFiles = “true”;
setup.ShadowCopyDirectories = pluginDirectory.FullName;

appDomain = AppDomain.CreateDomain(“PluginDomain” +
plugin.Name.Replace(“.dll”, “”).Replace(“.”, “”), null, setup);

EnforceSecurityPolicy();

proxy = appDomain.CreateInstanceAndUnwrap(“Plugin.Manager”,
“Plugin.Manager.PluginProxy”) as PluginProxy;

if (plugin.Extension.EndsWith(“cs”) ||
plugin.Extension.EndsWith(“js”) ||
plugin.Extension.EndsWith(“vb”))

{
if (!proxy.CompileAssembly(appDomain, plugin.FullName))
{

return false;
}

}
else if (!proxy.LoadAssembly(appDomain, assemblyData))
{

return false;
}

name = plugin.Name;

return true;
}

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture444

}
else
{

return false;
}

}
catch (IOException)
{

return false;
}

}

public void Unload()
{

if (appDomain == null)
return;

Release();

AppDomain.Unload(appDomain);

appDomain = null;
}

public PluginInfo[] QueryPluginInformation()
{

return proxy.QueryPluginInformation();
}

public void Initialize()
{

proxy.Initialize();
}

public void Release()
{

proxy.Release();
}

public bool ImplementsInterface(string interfaceName)
{

return proxy.ImplementsInterface(interfaceName);
}

Loading Plugins Through the Proxy 445

public bool ImplementsInterface(Type interfaceType)
{

return proxy.ImplementsInterface(interfaceType.Name);
}

public void ExecuteMethodNoReturn(string interfaceName,
string methodName,
object[] parameters)

{
proxy.ExecuteMethodNoReturn(interfaceName,

methodName,
parameters);

}

public void ExecuteMethodNoReturn(Type interfaceType,
string methodName,
object[] parameters)

{
proxy.ExecuteMethodNoReturn(interfaceType.Name,

methodName,
parameters);

}

public object[] ExecuteMethodWithReturn(string interfaceName,
string methodName,
object[] parameters)

{
return proxy.ExecuteMethodWithReturn(interfaceName,

methodName,
parameters);

}

public object[] ExecuteMethodWithReturn(Type interfaceType,
string methodName,
object[] parameters)

{
return proxy.ExecuteMethodWithReturn(interfaceType.Name,

methodName,
parameters);

}

The following two methods are covered later on in the “Enforcing a Security Policy”
section.

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture446

private void EnforceSecurityPolicy()
{

IMembershipCondition condition;
PolicyStatement statement;

PolicyLevel policyLevel = PolicyLevel.CreateAppDomainLevel();

PermissionSet permissionSet = new PermissionSet(PermissionState.None);
SecurityPermission permission
= new SecurityPermission(SecurityPermissionFlag.Execution)
permissionSet.AddPermission(permission);

condition = new AllMembershipCondition();

statement = new PolicyStatement(permissionSet,
PolicyStatementAttribute.Nothing);

// The root code group of the policy level combines all
// permissions of its children.
UnionCodeGroup codeGroup = new UnionCodeGroup(condition, statement);

NamedPermissionSet localIntranet
= FindNamedPermissionSet(“LocalIntranet”);

condition = new ZoneMembershipCondition(SecurityZone.MyComputer);
statement = new PolicyStatement(localIntranet,

PolicyStatementAttribute.Nothing);

// The following code limits all code on this machine
// to local intranet permissions when running in this
// application domain.
UnionCodeGroup virtualIntranet = new UnionCodeGroup(condition,

statement);
virtualIntranet.Name = “Virtual Intranet”;

// Add the code groups to the policy level.
codeGroup.AddChild(virtualIntranet);
policyLevel.RootCodeGroup = codeGroup;

appDomain.SetAppDomainPolicy(policyLevel);
}

Loading Plugins Through the Proxy 447

private NamedPermissionSet FindNamedPermissionSet(string name)
{

IEnumerator policyEnumerator = SecurityManager.PolicyHierarchy();

while (policyEnumerator.MoveNext())
{

PolicyLevel currentLevel = policyEnumerator.Current
as PolicyLevel;

if (currentLevel.Label == “Machine”)
{

IList namedPermissions = currentLevel.NamedPermissionSets;

IEnumerator namedPerm = namedPermissions.GetEnumerator();

while (namedPerm.MoveNext())
{

if (((NamedPermissionSet)namedPerm.Current).Name == name)
{

return ((NamedPermissionSet)namedPerm.Current);
}

}
}

}

return null;
}

}
}

Each instance of the plugin library class represents a plugin assembly or source file
in the plugins directory. Therefore, each plugin has its own temporary AppDomain
that can be unloaded at will without affecting the rest of the system.

Reloading Plugins During Runtime
The majority of plugin-enabled applications load and initialize all plugins when
the application first launches, but plugins would not be reloaded if they had
changed on the file system. The new version of the plugins would not be visible
until the application had relaunched. It would be even better if the application
could detect file system changes and automatically reload plugins that had changed.
This would greatly speed up plugin debugging and development.

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture448

The following class keeps track of the loaded plugins, but it also contains the code
to watch the file system for changes, reloading the plugins when appropriate.

using System;
using System.IO;
using System.Collections.Generic;
using System.Threading;
using System.Windows.Forms;

namespace Plugin.Manager
{

public class PluginCatalogue
{

private FileSystemWatcher fileSystemWatcher = null;
private string lockObject = “{RELOAD_PLUGINS_LOCK}”;
private DateTime changeTime = new DateTime(0);
private Thread pluginReloadThread = null;
private readonly List<PluginLibrary> plugins

= new List<PluginLibrary>();
private bool beginShutdown = false;
private bool active = true;
private bool started = false;
private bool autoReload = true;
private string pluginDirectory = string.Empty;

public event EventHandler ReloadedPlugins;
public event EventHandler UnloadedPlugins;

public List<PluginLibrary> Plugins
{

get { return plugins; }
}

The following property is used to stop and start automatic plugin reloading at
runtime, which is useful if you want to make it a user setting.

public bool AutoReload
{

get
{

return autoReload;
}
set

Reloading Plugins During Runtime 449

{
if (autoReload != value)
{

autoReload = value;

if (!autoReload)
{

fileSystemWatcher.EnableRaisingEvents = false;
ReleasePluginRuntime();
pluginReloadThread = null;
fileSystemWatcher = null;

}
else
{

CreateFileSystemWatcherAndThread();
}

}
}

}

public PluginCatalogue(string pluginDirectory)
{

this.pluginDirectory = pluginDirectory;
}

public void FireUnloadEvent()
{

if (UnloadedPlugins != null)
UnloadedPlugins(this, EventArgs.Empty);

}

The following method creates the FileSystemWatcher object, points it at the plugin
directory, and binds the event handlers to the appropriate method. The reload
plugin thread is also created here.

private void CreateFileSystemWatcherAndThread()
{

DirectoryInfo directory = new DirectoryInfo(pluginDirectory);

if (!directory.Exists)
directory.Create();

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture450

fileSystemWatcher = new FileSystemWatcher(pluginDirectory);
fileSystemWatcher.EnableRaisingEvents = true;
fileSystemWatcher.Changed

+= new FileSystemEventHandler(fileSystemWatcher_Changed);

fileSystemWatcher.Deleted
+= new FileSystemEventHandler(fileSystemWatcher_Changed);

fileSystemWatcher.Created
+= new FileSystemEventHandler(fileSystemWatcher_Changed);

pluginReloadThread
= new Thread(new ThreadStart(this.ReloadPluginsThread));

pluginReloadThread.Start();
}

The following method is used to get a listing of valid plugin files from the plugin
directory. Then the plugins themselves are loaded, initialized, and added to the
plugin list.

private void LoadPluginDirectory()
{

UnloadPluginDirectory();

DirectoryInfo pluginDirectoryInfo
= new DirectoryInfo(pluginDirectory);

foreach (FileInfo pluginFile
in GetPluginFiles(pluginDirectoryInfo))

{
PluginLibrary plugin = LoadPlugin(pluginDirectoryInfo,

pluginFile);

if (plugin != null)
{

plugin.Initialize();
plugins.Add(plugin);

}
}

}

Reloading Plugins During Runtime 451

The following method is used to unload all the plugins and clear the plugin list.
This method is generally used when reloading plugins.

private void UnloadPluginDirectory()
{

bool subsequentCall = false;

foreach (PluginLibrary existingLibrary in plugins)
{

subsequentCall = true;
existingLibrary.Unload();

}

plugins.Clear();

if (subsequentCall)
{

if (UnloadedPlugins != null)
UnloadedPlugins(this, EventArgs.Empty);

}
}

The following method is the starting point for the system at runtime. This method
will create the FileSystemWatcher object and the reload plugins thread, after which
the plugins are loaded from the plugins directory.

public void InitializePluginRuntime()
{

started = true;

if (autoReload)
{

CreateFileSystemWatcherAndThread();
}

ReloadPlugins();
}

The following method is used to stop the FileSystemWatcher and the reload plugins
thread, unloading all the plugins in the process.

public void ReleasePluginRuntime()
{

try

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture452

{
started = false;
UnloadPluginDirectory();
beginShutdown = true;

while (active)
{

Thread.Sleep(100);
}

}
catch
{

//Quietly ignore unload exceptions
}

}

The following method is the logic for the reload plugins thread. This method con-
tinuously loops while active, and the plugins are reloaded when the change time is
set by the FileSystemWatcher object.

protected void ReloadPluginsThread()
{

if (!started)
{

throw new InvalidOperationException(“PluginManager not started.”);
}

DateTime invalidTime = new DateTime(0);

while (!beginShutdown)
{

if (changeTime != invalidTime && DateTime.Now > changeTime)
{

ReloadPlugins();
}

Thread.Sleep(5000);
}

active = false;
}

Reloading Plugins During Runtime 453

The following method is invoked from the ReloadPluginsThread method, and is
used to reload the plugin list from the plugins directory.

private void ReloadPlugins()
{

if (!started)
{

throw new InvalidOperationException(“PluginManager not started.”);
}

lock (lockObject)
{

LoadPluginDirectory();

changeTime = new DateTime(0);

if (ReloadedPlugins != null)
ReloadedPlugins(this, EventArgs.Empty);

}
}

The following method is the event handler for the FileSystemWatcher object. This
handler is invoked whenever the plugin directory changes. A new change time is
set so that the reload thread will fire 10 seconds from the current time.

void fileSystemWatcher_Changed(object sender, FileSystemEventArgs e)
{

changeTime = DateTime.Now + new TimeSpan(0, 0, 10);
}

The following method is used to load a plugin from the specified path. A new
PluginLibrary instance is created for the plugin and returned if successful.

private PluginLibrary LoadPlugin(DirectoryInfo pluginDirectory,
FileInfo pluginFile)

{
bool success = false;

PluginLibrary plugin = null;

try
{

plugin = new PluginLibrary();

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture454

if (plugin.Load(pluginDirectory, pluginFile))
{

success = true;
}

}
catch (Exception)
{

success = false;
}

if (!success)
{

MessageBox.Show(String.Format(“Could not load plugin [{0}].”,
pluginFile.Name));

plugin = null;
}

return plugin;
}

The following method is used to check the loaded plugin list and see if any of the
instances support the specified interface. This is used to return a list of compatible
plugins for the given interface. This method can be considered a caching optimiza-
tion so that the entire plugin list does not have to be checked when invoking a
method on a plugin interface.

public List<PluginLibrary> DeterminePluginTargets(Type interfaceTarget)
{

List<PluginLibrary> targets = new List<PluginLibrary>();

foreach (PluginLibrary library in plugins)
{

if (library.ImplementsInterface(interfaceTarget.Name))
{

targets.Add(library);
}

}

return targets;
}

The following method is used to return a list of valid plugin files from the specified
directory. This list will be the one that the plugin catalogue uses to load all the plugins.

Reloading Plugins During Runtime 455

private FileInfo[] GetPluginFiles(DirectoryInfo pluginDirectory)
{

FileInfo[] plugins;

if (pluginDirectory.Exists)
{

List<FileInfo> filteredPlugins = new List<FileInfo>();

filteredPlugins.AddRange(pluginDirectory.GetFiles(“*.dll”));
filteredPlugins.AddRange(pluginDirectory.GetFiles(“*.cs”));
filteredPlugins.AddRange(pluginDirectory.GetFiles(“*.vb”));
filteredPlugins.AddRange(pluginDirectory.GetFiles(“*.js”));

plugins = filteredPlugins.ToArray();
}
else
{

pluginDirectory.Create();
plugins = new FileInfo[0];

}

return plugins;
}

}
}

Runtime Compilation of Plugins
Plugins are an excellent way to extend an application without the need to recom-
pile the application. However, the plugins themselves must be recompiled when
modified, and the new version must then be deployed to the installation applica-
tions. We can try to improve this by introducing a runtime plugin compiler into
the solution. Doing so will allow us to place source code files in the plugins direc-
tory and have them loaded into the application at runtime as compiled assemblies.
Obviously, you would only want to use this feature in a trusted environment. In
fact, the security policy introduced in this chapter will not permit this kind of code
to execute without readjusting the default settings.

The following code shows the full source code to the plugin factory that is used to
compile plugins at runtime. The only real functionality is in CompilePluginSource(),
where the appropriate CodeDom compiler is created, and many of the most commonly
used class framework libraries are referenced so that they are available to the plugins.

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture456

using System;
using System.IO;
using System.Reflection;
using System.CodeDom;
using System.CodeDom.Compiler;
using System.Collections.Generic;

namespace Plugin.Manager
{

internal class PluginFactory
{

private CompilerErrorCollection compileErrors
= new CompilerErrorCollection();

public CompilerErrorCollection CompileErrors
{

get { return compileErrors; }
}

public Assembly CompilePluginSource(string fileName)
{

return CompilePluginSource(new List<string>
(new string[]
{ fileName }),
null);

}

public Assembly CompilePluginSource(List<string> fileNames)
{

return CompilePluginSource(fileNames, null);
}

public Assembly CompilePluginSource(string fileName,
List<string> references)

{
return CompilePluginSource(new List<string>

(new string[]
{ fileName }),
references);

}

public Assembly CompilePluginSource(List<string> fileNames,
List<string> references)

Runtime Compilation of Plugins 457

{
string fileType = null;

foreach (string fileName in fileNames)
{

string extension = Path.GetExtension(fileName);

if (fileType == null)
{

fileType = extension;
}
else if (fileType != extension)
{

throw new ArgumentException(“All source code files must be “ +
“written in the same language!”);

}
}

CodeDomProvider codeProvider = null;

switch (fileType)
{

case “.cs”:
{

codeProvider = new Microsoft.CSharp.CSharpCodeProvider();
break;

}
case “.vb”:
{

codeProvider = new Microsoft.CSharp.CSharpCodeProvider();
break;

}
case “.js”:
{

codeProvider = new Microsoft.VJSharp.VJSharpCodeProvider();
break;

}
default:
{

throw new InvalidOperationException(“Invalid source code “ +
“file extension!”);

}
}

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture458

CompilerParameters parameters = new CompilerParameters();

parameters.CompilerOptions = “/target:library /optimize”;

parameters.GenerateExecutable = false;

parameters.GenerateInMemory = true;

parameters.IncludeDebugInformation = false;

parameters.ReferencedAssemblies.Add(“mscorlib.dll”);

parameters.ReferencedAssemblies.Add(“System.dll”);

parameters.ReferencedAssemblies.Add(“Plugin.API.dll”);

parameters.ReferencedAssemblies.Add(“Plugin.ExampleInterfaces.dll”);

parameters.ReferencedAssemblies.Add(“System.Configuration.Install.dll”);

parameters.ReferencedAssemblies.Add(“System.Data.dll”);

parameters.ReferencedAssemblies.Add(“System.Design.dll”);

parameters.ReferencedAssemblies.Add(“System.DirectoryServices.dll”);

parameters.ReferencedAssemblies.Add(“System.Drawing.Design.dll”);

parameters.ReferencedAssemblies.Add(“System.Drawing.dll”);

parameters.ReferencedAssemblies.Add(“System.EnterpriseServices.dll”);

parameters.ReferencedAssemblies.Add(“System.Management.dll”);

parameters.ReferencedAssemblies.Add(“System.Runtime.Remoting.dll”);

parameters.ReferencedAssemblies.Add(
“System.Runtime.Serialization.Formatters.Soap.dll”);

parameters.ReferencedAssemblies.Add(“System.Security.dll”);

parameters.ReferencedAssemblies.Add(“System.ServiceProcess.dll”);

parameters.ReferencedAssemblies.Add(“System.Web.dll”);

parameters.ReferencedAssemblies.Add(“System.Web.RegularExpressions.dll”);

parameters.ReferencedAssemblies.Add(“System.Web.Services.dll”);

parameters.ReferencedAssemblies.Add(“System.Windows.Forms.Dll”);

Runtime Compilation of Plugins 459

parameters.ReferencedAssemblies.Add(“System.XML.dll”);

parameters.ReferencedAssemblies.Add(“Accessibility.dll”);

parameters.ReferencedAssemblies.Add(“Microsoft.Vsa.dll”);

if (references != null)
{

foreach (string reference in references)
{

if (!parameters.ReferencedAssemblies.Contains(reference))
{

parameters.ReferencedAssemblies.Add(reference);
}

}
}

CompilerResults results
= codeProvider.CompileAssemblyFromFile(parameters,

fileNames.ToArray());

compileErrors = results.Errors;

if (compileErrors.Count > 0)
{

throw new Exception(“Error(s) occurred while “ +
“compiling source file(s).”);

}

return results.CompiledAssembly;
}

}
}

N o t e

One restriction on the code compilation system presented in this chapter is that each source code
file must be a fully functional module. Plugins cannot be spread over multiple files in the plugins
directory, because each file will be compiled as a standalone plugin.

Enforcing a Security Policy
A common concern when making an application plugin-aware is how code security
can be handled. Malicious plugins can do a lot of damage to the application or
even the operating system itself. This is even more of a concern when allowing

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture460

dynamic runtime compilation of plugins. There are two main approaches to solv-
ing this problem with the .NET platform: code access security and setting a secu-
rity policy on the temporary AppDomain that plugins run under. This chapter will
not cover code access security, but it will discuss how to enforce a security policy.

Windows has a variety of security zones that restrict what applications and web
sites can do under them. The actual restrictions for these security zones can be
customized to your needs.

The following two methods show how to set the security policy of the temporary
AppDomain so that code within it runs under the Local Intranet security zone.

private void EnforceSecurityPolicy()
{

IMembershipCondition condition;
PolicyStatement statement;

PolicyLevel policyLevel = PolicyLevel.CreateAppDomainLevel();

PermissionSet permissionSet = new PermissionSet(PermissionState.None);
permissionSet.AddPermission(

new SecurityPermission(SecurityPermissionFlag.Execution));

condition = new AllMembershipCondition();
statement = new PolicyStatement(permissionSet,

PolicyStatementAttribute.Nothing);

UnionCodeGroup codeGroup = new UnionCodeGroup(condition, statement);

NamedPermissionSet localIntranet = FindNamedPermissionSet(“LocalIntranet”);

condition = new ZoneMembershipCondition(SecurityZone.MyComputer);
statement = new PolicyStatement(localIntranet,

PolicyStatementAttribute.Nothing);
The following code restricts all code on this machine to the Local Intranet per-
missions when running within this AppDomain.

UnionCodeGroup virtualIntranet = new UnionCodeGroup(condition, statement);
virtualIntranet.Name = “Virtual Intranet”;

Add the code group to the policy level.

codeGroup.AddChild(virtualIntranet);

Enforcing a Security Policy 461

The root code group combines all permissions of its children.

policyLevel.RootCodeGroup = codeGroup;

Set the new policy level of the temporary AppDomain.

appDomain.SetAppDomainPolicy(policyLevel);
}

The following method is used to locate a named permission set within Windows.
In this example, we use it to locate the Local Intranet permission set.

private NamedPermissionSet FindNamedPermissionSet(string name)
{

IEnumerator policyEnumerator = SecurityManager.PolicyHierarchy();

while (policyEnumerator.MoveNext())
{

PolicyLevel currentLevel = (PolicyLevel)policyEnumerator.Current;

if (currentLevel.Label == “Machine”)
{

IList namedPermissions = currentLevel.NamedPermissionSets;
IEnumerator namedPermission = namedPermissions.GetEnumerator();

while (namedPermission.MoveNext())
{

if (((NamedPermissionSet)namedPermission.Current).Name == name)
{

return ((NamedPermissionSet)namedPermission.Current);
}

}
}

}

return null;
}

N o t e

The default settings for Local Intranet disable runtime compilation of source code within the tem-
porary AppDomain enforcing it. Runtime code compilation can open the door to malicious scripts,
so it is recommended that you only support this feature in a trusted environment.

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture462

Conclusion
This chapter covered the implementation of an architecture that supports plugins
loaded from the file system. Additional features, such as reloading the plugins
when the plugin directory is modified, and the ability to dynamically compile
source code in the plugin directory at runtime, were covered. There are definitely
areas that could be improved, including the security section. Code access security
could be used, for example, to deny file system access from the plugins. You could
also sign each plugin with a common strong name key, and demand that linked
plugins contain that public key. This would prevent malicious attempts to drop an
unknown plugin into the plugin directory and execute it.

Another modification could be having a class that represents a proxy to an indi-
vidual function within a plugin library. This way, you get improved caching
instead of just caching the supported libraries and then finding the appropriate
function each time you need to invoke it.

The Companion Web site contains the full source code to the plugin system,
including a solid example showing the plugin system in action.

Figure 38.2 shows the main screen of the provided example.

There is also an integrated debug tool that will display the list of assemblies loaded
in the main AppDomain. This was of great use when testing my system to make sure
that plugins were not leaking into the main AppDomain.

Figure 38.3 shows the debug tool in action.

Conclusion 463

Figure 38.2 Screenshot of the main interface for the provided example.

Chapter 38 ■ Designing an Extensible Plugin-Based Architecture464

I advise you to use a similar technique when building your system so that you can
be sure of the same thing.

Figure 38.3 Screenshot of the debug tool in action.

465

Persisting Application
Settings to Isolated
Storage

chapter 39

It’s very good for an idea to be commonplace. The important thing is that
a new idea should develop out of what is already there so that it soon
becomes an old acquaintance. Old acquaintances aren’t by any means always
welcome, but at least one can’t be mistaken as to who or what they are.

Penelope Fitzgerald

Almost every application requires the ability to store session and state informa-
tion. This is especially true when dealing with disconnected applications or appli-
cations that cache data when possible to reduce load times. Traditionally, settings
were persisted to INI files when working with 16-bit Windows, but this approach
had fairly substantial limitations. Maximum file size was a factor when using the
APIs provided by Microsoft, and the settings were stored in flat file format, so hier-
archical relationships could not be represented. Another problem was determin-
ing where INI files should be located. Typically, these files were deployed alongside
the executables or in the Windows directory because it was the only directory
guaranteed to be available on all computers. Additionally, multiple users were not
supported by this mechanism. This deployment strategy created a configuration
nightmare, and was very hard to support and maintain.

Microsoft tried to introduce a new approach to solve these problems by creating
the registry on 32-bit Windows. This solution could represent hierarchical data, so
complex data could be nested to make configuration much cleaner. There was also

no size limit on the amount of data that could be stored. One of the biggest prob-
lems with INI files is deciding where to place the physical files, which is not an issue
with the registry because it is globally accessible. The registry solved a number of
problems with INI configuration, but other problems were introduced in doing so.
With all configuration data for the system stored in a single location, the entire
system slows down at an exponential rate as more entries are added. Having large
amounts of configuration data in the same place also makes finding a particular
entry challenging. Additionally, the registry is only accessible via an API, so backing
up configuration info is extremely difficult. Security is also a big concern, because
it can be risky to allow application access to the registry to save a few configura-
tion settings, especially if the application is untrusted. Lastly, the entire system
depends on the registry, so any accidents using the regedit tool can cripple the
operating system.

The .NET framework introduced application configuration files that allow appli-
cations to be configurable without the need for recompilation of source code. This
approach is widely used by .NET applications, but a major limitation is that this is
a read-only mechanism, because ConfigurationSettings does not support writing.
The app.config files can be manipulated as normal XML documents, but this con-
sidered a hack and bad practice.

A custom solution could be used to save settings as either binary or text to regular
files, but then there are even more deployment and maintenance issues that arise.
Issues like data protection, where to save the files, and additional code to support
loading and saving these files must also be written.

The ideal solution to the mentioned problems would be a mechanism that can
separate files per application or per Windows user so that multiple users on the
same machine can have their own settings. The ability to save arbitrary data is
important, especially if the proposed solution is intended to be generic and widely
reusable. Data should be storable in a variety of formats such as flat text, hierarchi-
cal, or binary. Lastly, the mechanism must be secure, so that untrusted callers like
downloaded executables cannot access sensitive system information. Microsoft
introduced another approach with the .NET framework called isolated storage that
is the recommended approach when the need for data persistence arises.

Concept of Isolated Storage
Isolated storage is basically a virtual folder that only your application can access.
You can create files and directories in your isolated storage and treat it pretty much
like normal disk space. Application users never have to actually know where data

Chapter 39 ■ Persisting Application Settings to Isolated Storage466

is physically located on the hard drive. The physical location for isolated storage
varies for each operating system, so you just have to tell .NET framework to per-
sist data to isolated storage and it handles all the implementation details. Isolated
storage can also be specific to each assembly, or to each Windows user. Perhaps one
of the best features about isolated storage is that the application does not require
file system permissions. This makes it even easier for an application to run under
a least privilege account.

Isolated storage cannot be accessed by a different assembly than the one assigned to
do so. Isolated storage locations for assemblies are even isolated from each other with-
in the same process. The same security restriction applies to different Windows users.

N o t e

It is important to know that isolated storage data is limited to 10 MB per each assembly. Just be
sure to efficiently manage the data placed in isolated storage and clean out cached data when it
is no longer needed.

Accessing Isolated Storage
The code to access isolated storage for this chapter also makes use of binary seri-
alization, generics, and the hashtable collection. The following code shows the
appropriate namespaces that are needed for this functionality.

using System;
using System.IO;
using System.IO.IsolatedStorage;
using System.Collections;
using System.Deployment.Application;
using System.Runtime.Serialization.Formatters.Binary;

The first step for either the load or the save method is to retrieve the isolated stor-
age file that represents the top-level directory in the storage. This object can be
used to manipulate both files and directories. There are a couple different deploy-
ment situations that must be taken into consideration when working with isolat-
ed storage. The differences are later discussed in detail, but at this point you can be
aware that network deployed means that the application has been installed using
ClickOnce. The following code retrieves the appropriate isolated storage depend-
ing on the deployment situation.

private static IsolatedStorageFile OpenIsolatedStorage()
{

Accessing Isolated Storage 467

IsolatedStorageFile storage = null;

if (ApplicationDeployment.IsNetworkDeployed)
{

storage = IsolatedStorageFile.GetUserStoreForApplication();
}
else
{

storage = IsolatedStorageFile.GetUserStoreForDomain();
}

return storage;
}

Now that we have retrieved the isolated storage reference, we can begin saving files
to it. Any type of data can be saved into isolated storage, but the purpose of this
chapter is to show application state persistence.

Our system is going to operate on a single file that will store all the persisted infor-
mation, so we are going to want a data structure to hold our state information
while in memory. This will be accomplished through the use of the hashtable col-
lection. A hashtable will be used to store the state information referenced by
unique key. The save will serialize the hashtable into the isolated storage, while the
load will deserialize the hashtable from the isolated storage and back into object
form. Hashtable cannot be serialized to XML because it inherits from an interface,
but BinaryFormatter can be used instead to serialize it to binary. The following code
shows the save routine for the isolated storage interface.

public static void WriteSetting<KEY, TYPE>(string fileName,
KEY key,
TYPE setting)

{
try
{

IsolatedStorageFile storage = OpenIsolatedStorage();

BinaryFormatter formatter = new BinaryFormatter();
Hashtable settings = null;

using (Stream loadStream = new IsolatedStorageFileStream(fileName,
FileMode.OpenOrCreate, storage))

{
try

Chapter 39 ■ Persisting Application Settings to Isolated Storage468

{
settings = (Hashtable)formatter.Deserialize(loadStream);

}
catch (Exception)
{

// Quietly handle this error
}

}

if (settings == null)
{

settings = new Hashtable();
}

settings[key] = setting;

using (Stream writeStream = new IsolatedStorageFileStream(fileName,
FileMode.Create, storage))

{
formatter.Serialize(writeStream, settings);

}
}
catch (Exception)
{

// Quietly handle this error
}

}

The load routine for the isolated storage interface is just as easy as the save. First,
we check to make sure the settings file exists in isolated storage, and we open it as
a stream if possible. The data from the stream is then sent into BinaryFormatter,
and data is deserialized into a hashtable containing the settings. The appropriate
value referenced by the supplied key is then returned. The following code shows
the load routine for the isolated storage interface.

public static TYPE ReadSetting<KEY, TYPE>(string fileName, KEY key)
{

try
{

IsolatedStorageFile storage = OpenIsolatedStorage();

string[] fileMatches = storage.GetFileNames(fileName);

Accessing Isolated Storage 469

if (fileMatches.Length > 0 && fileMatches[0].Length > 0)
{

using (Stream loadStream = new IsolatedStorageFileStream(fileName,
FileMode.Open, storage))

{
BinaryFormatter formatter = new BinaryFormatter();
Hashtable settings = formatter.Deserialize(loadStream)

as Hashtable;

if (settings != null)
{

return (TYPE)settings[key];
}

}
}

return default(TYPE);
}
catch (Exception)
{

return default(TYPE);
}

}

Using the code is very straightforward, but you may want to know if an applica-
tion is launching for the first time or not so you can save default settings into iso-
lated storage. The following code shows how to determine whether an application
is launching for the first time.

bool firstRun = !ReadSetting<string, bool>(“MySettingsFile.dat”,
“FirstTimeLaunching”);

if (firstRun)
{

WriteSetting(“MySettingsFile.dat”, “FirstTimeLaunching”, true);
}

Levels of Isolation
The whole idea behind isolated storage is that the physical location of stored files
is managed by the .NET framework, not the application directly. Ignoring politics, it
is important to understand how the framework associates an isolated storage location
with a particular application. The association with an isolated storage location all
comes down to how applications are identified by the framework.

Chapter 39 ■ Persisting Application Settings to Isolated Storage470

Every user gets a collection of isolated storages, which are contained in a unique
directory on the hard drive. This prevents interference between different users.
Remember that the physical location of isolated storage files varies among operat-
ing systems, but typically they can usually be found at:

\Documents and Settings\<username>\Local Settings\Application Data\IsolatedStorage

Each record in isolated storage is referenced by a tag. If the assembly is signed, then
this tag is the strong name as described by the Global Assembly Cache (GAC), and its
location on the hard drive is not used for association. If the assembly is not signed,
then the tag is the URL to where the assembly resides on the hard drive. Two identi-
cal copies of an assembly residing in different directories will be allotted separate iso-
lated storages. This does mean that if an unsigned assembly is moved, the association
to that assembly is broken and a new isolated storage will be created for it.

At this point, you may be wondering about the dangers of sharing assemblies
between multiple applications, and corrupting data that does not belong to you.
Another type of identification used by the framework for associations is at the
domain (AppDomain) level. This level refers to the location where the code was exe-
cuted from. A program executed from the local hard drive will have the same
domain as the assembly tag. A program downloaded from the web would have a
domain that is the URL where the program was downloaded from.

Management and Debugging
Isolated storage enforces a 10 MB data size limit per assembly, but it is still impor-
tant to clean up data when it is no longer needed. There is a tool provided with the
.NET framework that handles administration of isolated storage for each user.
This tool is very simple and only offers limited functionality, but it is useful when
debugging your storage.

Typing the command storeadm /help will produce the following usage text:

Microsoft (R) .NET Framework Store Admin 2.0.50215.44
Copyright (C) Microsoft Corporation. All rights reserved.

Usage : StoreAdm [options]
options : [/LIST] [/REMOVE] [/ROAMING | /MACHINE] [/QUIET]
/LIST : Displays the existing isolated storage for the current user.
/REMOVE : Removes all existing isolated storage for the current user.
/ROAMING : Select the roaming store.
/QUIET : Only error messages will be output.
/MACHINE : Select the machine store.

Management and Debugging 471

Execute the demo application without a strong name key. Running the command
storeadm /list will produce results similar to the following:

Microsoft (R) .NET Framework Store Admin 2.0.50215.44
Copyright (C) Microsoft Corporation. All rights reserved.

Record #1
[Domain]
<System.Security.Policy.Url version=”1”>
<Url>file:///C:/GETD/IsolatedStorageDemo.exe</Url>
</System.Security.Policy.Url>

[Assembly]
<System.Security.Policy.Url version=”1”>
<Url>file:///C:/GETD/IsolatedStorageDemo.exe</Url>
</System.Security.Policy.Url>

Size : 1024

Notice that the domain and the assembly Url tags are identical. This means that if
you move the assembly, the association to the isolated storage will be broken and
a new one will be created.

Now give the assembly a strong name key and run the same command again. You
should be shown results similar to the following:

Microsoft (R) .NET Framework Store Admin 2.0.50215.44
Copyright (C) Microsoft Corporation. All rights reserved.

Record #1
[Domain]
<StrongName version=”1”
Key=”00240000048000009400000006020000002400005253413100040000010001007353FE7EBDA40
8B323B72D672E003AF9F09659AF60C233333CDE3C7AC02AC57864B746E0029B3FBC66A31DA8BD75084
27A271E52EA5B7295D97839A038932D4BA50920BE848BDDBB2F536FCB396B9CE422C1AEE47730607D4
D20F22586D4B73AC5A39FA03D1DC796F34E5ABB6041416C13CCE66CDBAAB15D353978332AEB5BB”
Name=”IsolatedStorageDemo”
Version=”1.0.0.0”/>

[Assembly]
<StrongName version=”1”
Key=”00240000048000009400000006020000002400005253413100040000010001007353FE7EBDA40
8B323B72D672E003AF9F09659AF60C233333CDE3C7AC02AC57864B746E0029B3FBC66A31DA8BD75084
27A271E52EA5B7295D97839A038932D4BA50920BE848BDDBB2F536FCB396B9CE422C1AEE47730607D4

Chapter 39 ■ Persisting Application Settings to Isolated Storage472

D20F22586D4B73AC5A39FA03D1DC796F34E5ABB6041416C13CCE66CDBAAB15D353978332AEBC5BB”
Name=”IsolatedStorageDemo”
Version=”1.0.0.0”/>

Size : 1024

Notice now that the Url tag has disappeared, and the public strong name key is
now set. The assembly can now reside at any location on the local hard drive and
remain associated to this isolated storage.

You may at times wish to remove isolated storages. Removing all the storages for
the current user can be done using the storeadm /remove command. This operation
requires elevated permissions, generally admin status for the local machine. Finer
control has to be done programmatically. storeadm is a managed application, so
disassembling the executable will give you an idea of how it works, and how to
enumerate isolated storages for the current user. It is generally common practice
to create a hook in the assembly to remove data in isolated storage when it is no
longer needed.

Conclusion
This chapter discussed traditional methods for storing legacy application data, and
later covered the concept of isolated storage. Ideal uses for isolated storage include
user settings and preferences, queued data waiting for a connection to be estab-
lished to the Internet, and cached data retrieved from web services and databases.

So, having looked at the details of what isolated storage is and how it works, we
looked at some general ideas of when and how to use it form. Do not store user
documents or downloaded assemblies, because users will have a difficult time
locating these documents on the hard drive for transfers or backups. Downloaded
assemblies that are placed in isolated storage will also not be loadable because
there is no path name. Finally, any data you place in isolated storage has the poten-
tial to be read by users because stored data is not encrypted. Do not store private
or sensitive information in isolated storage unless you handle the encryption.

Isolated storage is a great concept, and the .NET framework provides a solid foun-
dation for it. The standard is to use application configuration files (app.config)
when handling read-only settings, and to use isolated storage when you need bidi-
rectional data persistence.

Conclusion 473

This page intentionally left blank

475

Designing a Reusable and
Versatile Loading Screen

chapter 40

I’m a strong believer in being minimalistic. Unless you actually are going to
solve the general problem, don’t try and put in place a framework for solving
a specific one, because you don’t know what that framework should look like.

Anders Hejlsberg

Many large applications have a considerable waiting period that occurs when the
application first launches. One reason can be the loading of numerous dependencies
on external components, such as a plugin that must be interrogated and assimi-
lated into the runtime of the application. Another reason can be a substantial
amount of preprocessing that occurs before the application is handed to the user.
Preprocessing is generally used to generate and cache commonly used data when
the application first starts so that this data is not calculated when the user expects
responsiveness.

Some applications also use the concept of a splash screen, which is basically a load-
ing screen that is only used for aesthetic purposes. These screens typically display
a title image and some supporting text, like copyright messages or development
credits. Splash screens are usually dismissed when a certain amount of time has
elapsed or the user clicks the mouse or presses a key.

As discussed in Chapter 7, “Fundamentals of User Interface Design,” the Principle
of Feedback describes how the application should notify the user of long-running
processes so the user does not suspect that the application has stalled. Almost

every application that has a significant waiting period during startup uses a loading
screen to display the status of long-running processes. Typically, these loading screens
run as modal dialogs that appear centered on top of the underlying application
windows and do not allow the user to interact with anything in the application
until the processing is finished and the loading screen closes.

This chapter will describe some fundamental aspects of loading screens, and then
will focus on implementing a reusable component that will display process status
to the user when an application first starts. The component will also support the
concept of splash screens.

Splash Dialog
The general idea is to build a reusable form that has a variety of customization
options depending on the needs of the project. Splash dialogs can be designed in
virtually any way, so this chapter will cover the features found in the example on
the Companion Web site. The main feature is the ability to specify a background
image that defines the width and height of the form.

There are a couple of properties that must be customized on the default form. The
starting position of the form should be set to center screen, the form should be
displayed without a title box, and the border style should be set to none. Another
good flag to enable is top most, which causes the splash dialog to be shown on top
of all other windows. Lastly, specify the splash dialog to not show up in the task
bar. Splash dialogs should not create additional window entries in the task bar
because they should be considered part of the main window.

The framework presented in this chapter makes use of a class that contains all the
settings and handles the launching of the splash screen dialog. The settings class
passes itself as a reference to the dialog constructor so that the splash screen can
configure the appropriate settings as it launches. The splash dialog is an internal
class within the library, so consumers of the library cannot access the dialog directly,
and must do so through the settings and launcher class.

The following code describes the settings and launcher class in its entirety. I will
not yet explain what each property does, but they will be discussed when needed
as you read on in the chapter. You will need to make sure that you reference the
System.Drawing and System.Collections.Generic namespaces as well.

public class SplashScreen
{

private List<ILoadingJob> _loadingJobs = new List<ILoadingJob>();

Chapter 40 ■ Designing a Reusable and Versatile Loading Screen476

private bool _interruptible = true;
private bool _fading = true;
private bool _displayVersion = true;
private bool _displayStatus = false;
private int _splashInterval = 3000;
private Image _splashImage = null;
private string _windowTitle = string.Empty;
private bool _blackBorder = true;
private string _versionText = string.Empty;

public List<ILoadingJob> LoadingJobs
{

get { return _loadingJobs; }
set { _loadingJobs = value; }

}

public bool Interruptible
{

get { return _interruptible; }
set { _interruptible = value; }

}

public bool Fading
{

get { return _fading; }
set { _fading = value; }

}

public bool DisplayVersion
{

get { return _displayVersion; }
set { _displayVersion = value; }

}

public bool DisplayStatus
{

get { return _displayStatus; }
set { _displayStatus = value; }

}

public int SplashInterval
{

Splash Dialog 477

get { return _splashInterval; }
set { _splashInterval = value; }

}

public Image SplashImage
{

get { return _splashImage; }
set { _splashImage = value; }

}

public string WindowTitle
{

get { return _windowTitle; }
set { _windowTitle = value; }

}

public bool BlackBorder
{

get { return _blackBorder; }
set { _blackBorder = value; }

}

public string VersionText
{

get { return _versionText; }
set { _versionText = value; }

}

public void Launch()
{

(new SplashDialog(this)).ShowDialog();
}

}

It is now time to jump into the meat of our framework, the splash dialog form
itself.

The VersionText property enables the user to set the version of the application to
display in the top-right corner of the splash dialog, and the dimensions of the text
box are dynamically calculated based on the width of the version string specified.

The dialog constructor takes an instance of the settings and launcher class and
configures the appropriate settings for the splash screen.

Chapter 40 ■ Designing a Reusable and Versatile Loading Screen478

When the dialog first loads, it checks to see if it should function as a splash screen
or as a loading screen. Basically, the dialog checks to see if any jobs have been des-
ignated for loading; if there are no jobs, it will function as a splash screen. In splash
screen mode, the dialog will start the display timer that will run for the specified
interval and then close. In loading screen mode, the dialog will remain open until
all jobs have been processed.

The key down and mouse click events call the interrupt method that attempts to
close the splash screen dialog early. The ability to do this is determined by the
Interruptible property in the settings and launcher class.

N o t e

A loading screen cannot be interrupted in our framework because all jobs must complete before
the application can be considered ready for use. Canceling the loading process has the potential to
make the application unstable.

The following code implements the functionality of the splash screen and loading
dialog form.

public partial class SplashDialog : Form
{

private ILoadingJob _currentJob = null;
private SplashScreen _splashScreen = null;
public string VersionText
{

set
{

VersionLabel.Text = String.Format(“Version: {0}”, value);
int offset = this.Width - VersionLabel.Bounds.Right;
Graphics graphics = VersionLabel.CreateGraphics();

Size size = (graphics.MeasureString(VersionLabel.Text,
VersionLabel.Font)).ToSize();

int newX = this.Width - offset - size.Width;

VersionLabel.Bounds = new Rectangle(newX,
VersionLabel.Bounds.Y,
size.Width,
size.Height + 4);

}
}

Splash Dialog 479

public string StatusText
{

set
{

StatusLabel.Text = String.Format(“Status: {0}”, value);
}

}

public SplashDialog(SplashScreen splashScreen)
{

InitializeComponent();

_splashScreen = splashScreen;

if (_splashScreen != null)
{

if (_splashScreen.SplashImage != null)
{

this.Width = _splashScreen.SplashImage.Width;
this.Height = _splashScreen.SplashImage.Height;

this.SplashPanel.BackgroundImage = _splashScreen.SplashImage;
}

VersionLabel.Visible = _splashScreen.DisplayVersion;
StatusLabel.Visible = _splashScreen.DisplayStatus;

DisplayTimer.Interval = _splashScreen.SplashInterval;

if (_splashScreen.BlackBorder)
{

SplashPanel.BorderStyle = BorderStyle.FixedSingle;
}
else
{

SplashPanel.BorderStyle = BorderStyle.None;
}

if (_splashScreen.WindowTitle != null &&
_splashScreen.WindowTitle.Length > 0)

{
this.FormBorderStyle = FormBorderStyle.FixedDialog;

Chapter 40 ■ Designing a Reusable and Versatile Loading Screen480

this.Text = _splashScreen.WindowTitle;
}
else
{

this.FormBorderStyle = FormBorderStyle.None;
}

this.VersionText = _splashScreen.VersionText;
}

}

private void SplashDialog_Load(object sender, EventArgs e)
{

this.Opacity = 1.0;

if (_splashScreen.LoadingJobs == null ||
_splashScreen.LoadingJobs.Count <= 0)
DisplayTimer.Start();

else
ProcessJobs();

}

private void DisplayTimer_Tick(object sender, System.EventArgs e)
{

DisplayTimer.Stop();
this.Close();

}

private void SplashDialog_KeyDown(object sender,
System.Windows.Forms.KeyEventArgs e)

{
InterruptSplash();

}

private void SplashPanel_MouseClick(object sender, MouseEventArgs e)
{

InterruptSplash();
}

private void InterruptSplash()
{

if (_splashScreen.Interruptable)

Splash Dialog 481

{
if (_splashScreen.LoadingJobs == null ||

_splashScreen.LoadingJobs.Count <= 0)
{

DisplayTimer.Stop();
this.Close();

}
}

}

public void RefreshStatus()
{

if (_currentJob != null)
{

this.StatusText = _currentJob.StatusText;
Application.DoEvents();

}
}

public void ProcessJobs()
{

Application.DoEvents();

if (_splashScreen.LoadingJobs != null &&
_splashScreen.LoadingJobs.Count > 0)

{
MethodInvoker refreshInvoker = new MethodInvoker(RefreshStatus);

foreach (ILoadingJob jobObject in _splashScreen.LoadingJobs)
{

_currentJob = jobObject;

if (_currentJob != null)
{

LoadingResult result = _currentJob.Load(refreshInvoker);

switch (result)
{

case LoadingResult.Success:
{

// Generally ignore this return value
break;

}

Chapter 40 ■ Designing a Reusable and Versatile Loading Screen482

case LoadingResult.Warning:
{

// Could log this somewhere or notify the user
break;

}

case LoadingResult.Failure:
{

// Could cancel all remaining jobs
// and perform a rollback
break;

}
}

}
}

this.StatusText = “Finished”;
this.Close();

}
}

}

The splash dialog looks something like Figure 40.1 at this point in time.

As we continue on in this chapter, some more features and functionality will be
added to make the component more robust.

Splash Dialog 483

Figure 40.1 Preview of the splash screen dialog.

Go for the Gusto
We now have the dialog component built for our splash screen launcher, but we
can take it one step further and enhance the visual effects if we want. A nice touch
that is common among many splash screens is the fade-in and fade-out transition
effect. You may skip this step if you do not want this extra functionality, or if you
feel that doing so would not be an effective use of your time.

Thankfully, .NET WinForms support an Opacity property that lets you modify the
transparency factor of a window and all the contained child controls. We can uti-
lize this property in conjunction with a couple of timer objects to create a fading
effect that will make our splash dialogs look really slick!

The fading effect will be orchestrated by two timers in addition to the first one
used to time the duration of the splash dialog.

private void FadeInTimer_Tick(object sender, System.EventArgs e)
{

if (this.Opacity < 0.9)
this.Opacity += 0.1;

else
{

FadeInTimer.Stop();

if (_splashScreen.LoadingJobs == null ||
_splashScreen.LoadingJobs.Count <= 0)

{
DisplayTimer.Start();

}
else
{

ProcessJobs();
}

}
}

The fade-in timer will be started in the form load event instead of the display
timer. When the form is fully visible and if the dialog is timed, the display timer
will fire and begin counting towards closing the dialog. The event code for the dis-
play timer presented earlier will require a small modification to support the new
fading feature. The change is shown in the following code.

private void DisplayTimer_Tick(object sender, System.EventArgs e)
{

DisplayTimer.Stop();

Chapter 40 ■ Designing a Reusable and Versatile Loading Screen484

if (_splashScreen.Fading)
FadeOutTimer.Start();

else
this.Close();

}

Lastly, another timer is used to fade out the window visibility and then close the
window when it becomes hidden. The following code implements the fade out
timer event.

private void FadeOutTimer_Tick(object sender, System.EventArgs e)
{

if (this.Opacity > 0.01)
this.Opacity -= 0.1;

else
{

FadeOutTimer.Stop();
this.Close();

}
}

The load event for the dialog must also be updated to support the new fading
effect. The following code implements the updated dialog load event.

private void SplashDialog_Load(object sender, EventArgs e)
{

if (_splashScreen.Fading)
FadeInTimer.Start();

else
{

this.Opacity = 1.0;

if (_splashScreen.LoadingJobs == null ||
_splashScreen.LoadingJobs.Count <= 0)
DisplayTimer.Start();

else
ProcessJobs();

}
}

The splash interrupt method must also be updated to cancel the active timers and
start the fade out timer, if appropriate. The following code implements the updated
splash interrupt method.

Go for the Gusto 485

private void InterruptSplash()
{

if (_splashScreen.Interruptable)
{

if (_splashScreen.LoadingJobs == null ||
_splashScreen.LoadingJobs.Count <= 0)

{
if (_splashScreen.Fading)

FadeInTimer.Stop();

DisplayTimer.Stop();

if (_splashScreen.Fading)
FadeOutTimer.Start();

else
this.Close();

}
}

}

The last modification that must be performed is near the end of the job processing
method. The following code shows where the change must be done.

public void ProcessJobs()
{

Application.DoEvents();

if (_splashScreen.LoadingJobs != null &&
_splashScreen.LoadingJobs.Count > 0)

{
...

this.StatusText = “Finished”;

if (_splashScreen.Fading)
FadeOutTimer.Start();

else
this.Close();

}
}

Chapter 40 ■ Designing a Reusable and Versatile Loading Screen486

Concept of Loading Jobs
At this point, we have an attractive splash dialog that does not provide much in
terms of processing functionality. The next thing on the agenda is to create a
mechanism where jobs can be designed and plugged into the job manager for exe-
cution. If you have not figured it out yet, we need an interface to do this!

The interface ILoadingJob is described in the following code and should be fairly
simple to understand. The StatusText property will be called by the job manager to
update progress messages. The load method takes a MethodInvoker that is used to
relay update requests back to the job manager during loading (more on this later).

The following code implements the ILoadingJob interface.

public interface ILoadingJob
{

string StatusText
{

get;
}

LoadingResult Load(MethodInvoker refreshInvoker);
}

The load method also returns a result code that indicates the success or failure of the
job. The result codes are described in the following. The values are self-explanatory,
and the job manager can handle each code in a certain way, depending on the
implementation.

public enum LoadingResult
{

Success,
Warning,
Failure

}

The success code is fairly trivial; generally, this result will be ignored and process-
ing will continue. The warning code can be used to alert the user if a potential
problem or risk is identified and leave it up to her to react to it. The error code can
be used to halt further processing and perform a rollback if desired.

Concept of Loading Jobs 487

Responsive Processing
Launching the splash screen is simple enough, but the complexity of the solution
increases when the component must facilitate the processing of jobs. Single-
threaded applications typically hang when a long-running process executes, and
the application must wait to dispatch its usual messages. It is important that the
user interface remain responsive while jobs are being processed.

The MethodInvoker mechanism provides a generic delegate that is used to invoke a
method with a void parameter list. This mechanism can be used when you need a
simple delegate but do not want to create one yourself. MethodInvoker is used by
jobs to notify the application when processing status has changed. The application
defines a method that updates the status text label and calls Application.DoEvents()
to allow the application to update the user interface with the changes. This method
is bound to a MethodInvoker object and is passed to all jobs by the controlling logic.
The ProcessJobs() method has the code that creates a MethodInvoker bound to the
refresh method and then passes it to all jobs being processed.

With the addition of responsive job processing, the loading job component is now
complete and should resemble that shown in Figure 42.2. Notice the addition of
the status text label at the bottom of the form. The visibility of this label is con-
trolled by the DisplayStatus property in the settings and launcher class.

Chapter 40 ■ Designing a Reusable and Versatile Loading Screen488

Figure 42.2 Preview of the splash screen dialog.

Simple Example
Now that development of the component is complete, we can finally start using it!
The example presented in this chapter has a form with two buttons where one
launches a splash screen and the other launches a loading dialog. The user interface
code will not be discussed because it is redundant and rudimentary, but the full
source code can be found on the Companion Web site.

We will start off by building three sample jobs that can be used to test the loading
dialog and show how to properly implement the ILoadingJob interface. Finally, the
code will be shown that properly configures the component to function as a splash
screen or a loading dialog.

The first sample job merely waits for two seconds before completing. This wait
time is to simulate actual processing that would occur if the job did something
remotely useful. The StatusText property will be used by the job manager to
update the processing status, so it is important that this property always return the
most up-to-date description of the operation.

public class SampleLoadingJob1 : SplashScreenLibrary.ILoadingJob
{

public SplashScreenLibrary.LoadingResult Load(MethodInvoker refreshInvoker)
{

refreshInvoker.Method.Invoke(refreshInvoker.Target, new object[0]);
System.Threading.Thread.Sleep(2000);
return SplashScreenLibrary.LoadingResult.Success;

}

public string StatusText
{

get
{

return “Processing Sample Job 1 : Waiting for 2 Seconds”;
}

}
}

You should notice the following line that invokes the method that refreshes the
status description.

refreshInvoker.Method.Invoke(refreshInvoker.Target, new object[0]);

The preceding code should never be altered, but it is important that this line appear
either before a job begins processing or before each task within a job begins processing.

Simple Example 489

The second sample job shows how to execute multiple tasks within a job and cor-
rectly handle the StatusText property. The job executes 10 tasks, each one taking 0.6
seconds to complete.

public class SampleLoadingJob2 : SplashScreenLibrary.ILoadingJob
{

private int _currentTask = 1;

public SplashScreenLibrary.LoadingResult Load(MethodInvoker refreshInvoker)
{

for (_currentTask = 1; _currentTask <= 10; _currentTask++)
{

refreshInvoker.Method.Invoke(refreshInvoker.Target, new object[0]);
System.Threading.Thread.Sleep(600);

}

return SplashScreenLibrary.LoadingResult.Success;
}

public string StatusText
{

get
{

return String.Format(“Processing Sample Job 2 : Task {0} of 10”,
_currentTask);

}
}

}

This sample job works in a very similar way to the second sample job, except that
there are a greater number of tasks to complete and a much shorter waiting peri-
od between tasks.

public class SampleLoadingJob3 : SplashScreenLibrary.ILoadingJob
{

private int _currentTask = 1;

public SplashScreenLibrary.LoadingResult Load(MethodInvoker refreshInvoker)
{

for (_currentTask = 1; _currentTask <= 100; _currentTask++)
{

refreshInvoker.Method.Invoke(refreshInvoker.Target, new object[0]);
System.Threading.Thread.Sleep(50);

}

Chapter 40 ■ Designing a Reusable and Versatile Loading Screen490

return SplashScreenLibrary.LoadingResult.Success;
}

public string StatusText
{

get
{

return String.Format(“Processing Sample Job 3 : Task {0} of 100”,
_currentTask);

}
}

}

The component is ready, and we now have some sample jobs at our disposal to
work with. The last step is to instantiate the settings and launcher class, configure
it appropriately (splash screen or loading dialog), and finally activate it. The fol-
lowing code shows how to configure and launch a splash screen.

SplashScreen splash = new SplashScreen();
splash.BackgroundImage = new System.Drawing.Bitmap(@”PathToSplash.bmp”);
splash.DisplayStatus = false;
splash.DisplayVersion = true;
splash.VersionText = Application.ProductVersion;
splash.DisplayTime = 3000;
splash.Launch();

The code to launch the loading dialog is quite similar to the splash screen, except
the display time is not set, and the job objects are bound to the job manager for
processing. The following code shows how to configure and launch a loading dialog.

SplashScreen splash = new SplashScreen();
splash.BackgroundImage = new System.Drawing.Bitmap(@”PathToSplash.bmp”);
splash.DisplayStatus = true;
splash.DisplayVersion = true;
splash.VersionText = Application.ProductVersion;
splash.LoadingJobs.Add(new SampleLoadingJob1());
splash.LoadingJobs.Add(new SampleLoadingJob2());
splash.LoadingJobs.Add(new SampleLoadingJob3());
splash.Launch();

The background image can also be loaded from the assembly if it has been com-
piled as an embedded resource. Simply add the appropriate bitmap image to the
project, right-click on it, select Properties, and set the Build Action to Embedded

Simple Example 491

Resource. If the assembly is called SplashTest, and the image is called Splash.bmp,
the following code will return a bitmap from the data embedded in the assembly.

using System.Reflection;
Assembly mainAssembly = Assembly.GetExecutingAssembly();
splash.SplashImage = new Bitmap(mainAssembly.GetManifestResourceStream
(“SplashTest.Splash.bmp”));

This approach is generally superior to loading the bitmap from the file system
because the user cannot easily modify or remove the image, and there is one less
file that you have to worry about deploying with your tool.

Conclusion
This chapter provided a reusable and customizable component, suitable for dis-
playing splash screens or loading screens that prohibit users from accessing the
application until processing has finished.

One area that could be improved is where a method is passed into each job to han-
dle refreshing of the status text. This approach was used to decouple the interface
from a lot of the implementation specifics, but it would be an improvement to
refactor the framework where this method invocation is unnecessary.

The full source code to this component can be found on the Companion Web site
in the Chapter 40 folder.

Chapter 40 ■ Designing a Reusable and Versatile Loading Screen492

493

Writing Context Menu
Shell Extensions

chapter 41

Mankind always sets itself only such tasks as it can solve; since, looking at
the matter more closely, we will always find that the task itself arises only
when the material conditions necessary for its solution already exist or are
at least in the process of formation.

Karl Marx

Most developers have myriad tools they have developed over the course of their
projects. Command line tools are a common choice because they are effortless to
develop, and they are easy to integrate with a scripting process. These tools are
moderately easy to operate through the command line, but require a fair amount
of typing to specify settings and files to process. These useful tools can be consumed
by a Windows Forms application, but an even better approach is to integrate with
the Windows shell (Explorer) so that a simple right-click on a particular file could
present options specific to the tools.

A shell extension is a COM object that adds additional functionality to the Windows
shell. There are many different types of extensions that can be developed, such as
a context menu that is presented to the user when she right-clicks on a file with a
certain extension. Shell extensions are in-process servers that facilitate the com-
munication with the shell by implementing common interfaces that the shell
understands.

Microsoft .NET is a powerful platform to develop on, but unfortunately, it is not
yet a native part of Windows. Most applications are still unmanaged, and while
interaction between managed and unmanaged application is possible, managed
and unmanaged applications remain in their own independent worlds.

Windows Explorer is an unmanaged application that cannot differentiate between
a managed application and an unmanaged application. Explorer only understands
how to load COM interfaces, so there is no special base class we can inherit from;
we have to do things the messy way. Shell extensions can be written in a managed
language like C#, but the component must be visible as a COM object and employ
a proxy that the shell can understand. Supposedly, Windows Vista (Longhorn)
provides a variety of managed mechanisms, but our current operating systems do
not work like that.

In this chapter, you will learn how to create a shell extension, and register it with
the Windows shell as a standalone assembly, or integrated within an application.

Unmanaged Interfaces
The first step is to import the native structures, interfaces, types, and methods that
we require in order to build our shell extension.

Every COM interface is associated with a unique GUID (Globally Unique Identifier),
and is a required attribute to specify when importing a COM interface in a .NET
application. When importing a COM interface, you must specify the correct GUID
for the interface as defined in the Win32 registry. Additionally, you must also spec-
ify the interface type to determine how the interface is exposed to COM callers.
The different interface types available are described in Table 41.1.

Chapter 41 ■ Writing Context Menu Shell Extensions494

Table 41.1 Enumerated Types for ComInterfaceType

COM Interface Type Description

InterfaceIsDual Exposes an interface as a dual interface, supporting both
early and late binding.

InterfaceIsIUnknown Exposes an interface that is derived from IUnknown,
supporting only early binding.

InterfaceIsIDispatch Exposes an interface that is a dispinterface, supporting
only late binding.

By default, a COM interface is exposed as dual, but the interfaces needed for shell
extensions do not require late binding, so their types are all set to InterfaceIsIUnknown.

The [GuidAttribute] is used to assign a GUID to the interface. This GUID must be
the correct one to use for the COM interface you are importing, as defined in the
Win32 registry. This is so COM clients can invoke methods of the interface, regard-
less of how the .NET implementation works.

N o t e

.NET interfaces and classes do not require an explicit GUID to be set as they are automatically generated.

The [PreserveSig] attribute is used to specify that there is a direct translation
between the managed signature and the unmanaged entry point. More specifically,
most COM interfaces return method success as an HRESULT, and use a memory
buffer pointer to pass this value back to callers. The default behavior of the CLR is
to automatically transform the managed signature, but the [PreserveSig] attribute
is used to ensure that this transformation does happen.

The IShellExtInit interface is called by the shell, and is used to initialize property
sheets, drag-and-drop handlers, and context menu extensions. The parameters for
this method vary depending on the type of extension, but we will focus on content
menu extensions. The pidlFolder is null when dealing with file objects, or it spec-
ifies the folder for which the context menu is being requested. The objectPointer
identifies the selected files, and the keyProgID identifies the file class of the object
with focus.

[ComImport(), InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
GuidAttribute (“000214e8-0000-0000-c000-000000000046”)]
public interface IShellExtInit
{

[PreserveSig()]
int Initialize(IntPtr pidlFolder, IntPtr objectPointer, uint keyProgID);

}

N o t e

IShellExtInit is only used by property sheet, context menu, and drag-and-drop handler extensions.
Be sure to use the correct interface when building other types of shell extensions.

The IContentMenu interface is used by the shell when creating or merging a context
menu associated with a shell object. This interface can be used to dynamically add
items to a shell object’s context menu.

Unmanaged Interfaces 495

[ComImport(), InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
GuidAttribute(“000214e4-0000-0000-c000-000000000046”)]

public interface IContextMenu
{

[PreserveSig()]
int QueryContextMenu(uint menu,

uint menuId,
int firstCommand,
int lastCommand,
uint flags);

[PreserveSig()]
void InvokeCommand(IntPtr pointer);

[PreserveSig()]
void GetCommandString(int command,

uint flags,
int reserved,
StringBuilder commandString,
int max);

}

The IDataObject interface provides a mechanism through which data can be trans-
ferred; it is also used to handle notifications related to the data, such as changes.
The data transfer mechanism specifies the format of the data, along with the medium
through which the data is transferred.

N o t e

The term data object refers to any object that implements the IDataObject interface.

The IShellExtInit.Initialize() method is given a pointer to an IDataObject that
contains our file objects; we must define the IDataObject interface so that we can
cast the pointer to a data object. The only method we need in this interface is
GetData(), which is supplied with the data format, along with a storage medium
container, and we are given the data itself.

[ComImport(), InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
GuidAttribute(“0000010e-0000-0000-C000-000000000046”)]

public interface IDataObject
{

[PreserveSig()]
int GetData(ref ClipFormat a, ref StorageMedium b);

Chapter 41 ■ Writing Context Menu Shell Extensions496

[PreserveSig()]
void GetDataHere(int a, ref StorageMedium b);

[PreserveSig()]
int QueryGetData(int a);

[PreserveSig()]
int GetCanonicalFormatEtc(int a, ref int b);

[PreserveSig()]
int SetData(int a, int b, int c);

[PreserveSig()]
int EnumFormatEtc(uint a, ref Object b);

[PreserveSig()]
int DAdvise(int a, uint b, Object c, ref uint d);

[PreserveSig()]
int DUnadvise(uint a);

[PreserveSig()]
int EnumDAdvise(ref Object a);

}

There are a number of unmanaged Win32 types that must also be defined so that
the unmanaged methods can use them. There are also several unmanaged types
within the structures that will be covered later. It is also important to note the use
of the [StructLayout] attribute. By default, the CLR automatically chooses a layout
for structure members when compiled. This can lead to format problems when
interacting with COM callers. By specifying LayoutKind.Sequential, the structure
layout is defined in the order in which members appear.

The InvokeCommandInfo structure defined below is known as CMINVOKECOMMANDINFO in the
unmanaged world. It contains information needed by IContextMenu.InvokeCommand()
to execute a context menu command.

[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]
public struct InvokeCommandInfo
{

public uint Size;
public uint Mask;
public uint Window;

Unmanaged Interfaces 497

public int Verb;
[MarshalAs(UnmanagedType.LPStr)]
public string Parameters;
[MarshalAs(UnmanagedType.LPStr)]
public string Directory;
public int Show;
public uint HotKey;
public uint Icon;

}

The MenuItemInfo structure defined below is known as MENUITEMINFO in the unman-
aged world. It contains information about a menu item. This structure is used
when adding new menu items to the context menu for a file object.

[StructLayout(LayoutKind.Sequential)]
public struct MenuItemInfo
{

internal uint Size;
internal uint Mask;
internal uint Type;
internal uint State;
internal int ID;
internal int SubMenu;
internal int BitmapChecked;
internal int BitmapUnchecked;
internal int ItemData;
internal string TypeData;
internal uint Max;
internal int BitmapItem;

}

The ClipFormat structure defined below is known as FORMATETC in the unmanaged
world. It is a generalized clipboard format that describes the format of arbitrary
data. This structure is used when calling the IDataObject.GetData() method.

[StructLayout(LayoutKind.Sequential)]
public struct ClipFormat
{

internal Native.ClipFormatFlags Format;
internal uint DevicePointer;
internal Native.DvAspectFlags Aspect;
internal int Index;
internal Native.TypeMediumFlags Medium;

}

Chapter 41 ■ Writing Context Menu Shell Extensions498

The StorageMedium structure defined below is known as STGMEDIUM in the unmanaged
world. It is a generalized global memory handle used in data transfer operations
like IDataObject.GetData().

[StructLayout(LayoutKind.Sequential)]
public struct StorageMedium
{

public uint Medium;
public uint Global;
public uint ReleasePointer;

}

There are some enumerated values that must also be defined in order for the
unmanaged interfaces and methods to operate. These types are defined in an
internal class called Native so that they are not accessible outside of the assembly.

internal sealed class Native
{

The following flags enumeration is used to determine when a context menu
should be shown. There are many more flags that can be used as a filter, but this
chapter only focuses on one flag, so the rest have been truncated out. The Explore
flag (CMF_EXPLORE) will be set when the context menu is being generated by the shell
from an Explorer mode window.

internal enum QueryContextMenuFlags : uint
{

Explore = 0x00000004
}

When one of the items added by a context menu extension is highlighted, the
IContextMenu.GetCommandString() method is called to request a help text string or a
verb string assigned to the command (canonical). Both ANSI and Unicode strings
can be requested. This functionality is generally used for localization and will not
be covered in this chapter. Feel free to consult MSDN for more information.

internal enum GetCommandStringFlags : uint
{

Verb = 0x00000000, // Canonical verb
HelpText = 0x00000001 // Help text (for status bar)

}

The following flags enumeration is used when specifying the data format for
IDataObject. There are many more format types available, but this chapter only

Unmanaged Interfaces 499

focuses on one type, so the rest have been truncated out. The DropHandle type
(CF_HDROP) is used when transferring the location of a group of existing files.

internal enum ClipFormatFlags : uint
{

DropHandle = 15
}

The following flags enumeration is used when creating menu items. There are
many more flags available, but this chapter only focuses on the following flags, so
the rest have been truncated out. All menu items have the Type flag set, and all
menu items except separators have State and ID, which are standard Win32 menu
flags. SubMenu is fairly self-explanatory; the parent menu has it set because it con-
tains submenu items. The rest of the menu items do not set this flag.

internal enum MaskFlags : uint
{

State = 0x00000001,
ID = 0x00000002,
SubMenu = 0x00000004,
Type = 0x00000010

}

The following flags enumeration is used when accessing data contained in a stor-
age medium (TYEMED). We only define the Global type because that is the only one
we use in this chapter. Global represents a global memory handle.

internal enum TypeMediumFlags : uint
{

Global = 1
}

The following flags enumeration is used when building the data format for
IDataObject.GetData(). There are more types available, but this chapter only focuses
on one type, so the rest have been truncated out. The Content type (DVASPECT_CONTENT)
represents an object that can be displayed as an embedded object inside a con-
tainer. This type is for compound document objects.

internal enum DvAspectFlags : uint
{

Content = 1
}

Chapter 41 ■ Writing Context Menu Shell Extensions500

The following flags enumeration is used when specifying the Type or State prop-
erty of a menu item. Enabled is a state property, which is fairly self-evident. The
String type is used to say that the menu item is displayed as text, and the Separator
type is used to create a separator line menu item.

internal enum MenuFlags : uint
{

Separator = 0x00000800,
Enabled = 0x00000000,
String = 0x00000000

}

The following method creates a new menu and returns a handle to it if successful.

[DllImport(“user32”)]
internal static extern uint CreatePopupMenu();

The following method adds a menu item to an existing menu created with
CreatePopupMenu().

[DllImport(“user32”)]
internal static extern int InsertMenuItem(uint menu,

uint position,
uint flags,
ref MenuItemInfo menuItemInfo);

The following method is used to extract information from a group of files, refer-
enced by a drop handle from IDataObject.GetData(). The file parameter is a zero-
based index into the array of files, and the buffer will be set to the full path to the
file. The max parameter is set to the maximum string length; set it to zero for no
maximum.

[DllImport(“shell32”)]
internal static extern uint DragQueryFile(uint dropHandle,

uint file,
StringBuilder buffer,
int max);

}

You can also use this method to retrieve the number of files referenced by a drop
handle. Set the file parameter to 0xffffffff, the buffer to null, and max to zero.
The result will be the number of files in the query.

Unmanaged Interfaces 501

Reusable Framework
With all of the unmanaged types defined, we can finally jump into the framework
class itself. Reusability is an important consideration when building any component.
There is a lot of functionality that is common to any context menu extension, so
naturally this code will reside in an extendable class. Extensions will inherit from
this base class and configure the necessary options and logic. We will call this class
ShellExtensionBase, it will implement IShellExtInit and IContextMenu, and it will
be abstract so that it cannot be instantiated directly.

public abstract class ShellExtensionBase : IShellExtInit, IContextMenu
{

...
}

The first configurable option is the menu title. This property is the text used for
the context menu entry that contains all the submenu command items.

protected abstract string MenuTitle
{

get;
}

The next configurable option is the list of file extensions that will be associated
with the extension. This can be one to many entries. For example, having .txt
would associate the extension with any text file. If you want to associate the exten-
sion with any file, simply use * (an asterisk) as the extension.

protected abstract string[] Extensions
{

get;
}

Extensions using this framework need a way of registering commands with the
underlying system, and that is the purpose of the following method. The file path
array is passed into the method so that filtering can be done based on the files
selected. This provides a mechanism where dynamic menus can be created.

protected abstract void CommandRegistration(string[] files);

Commands are registered using literal strings. The command strings are used as
the display text for the submenu item, as well as the command identifier itself. The
following method is called when a submenu item is selected on a group of files.

protected abstract void HandleCommand(string command, string[] files);

Chapter 41 ■ Writing Context Menu Shell Extensions502

When an error occurs, it is the job of the following method to handle the error
gracefully.

protected abstract void HandleError(Exception exception);

Even though it’s not necessarily used in our framework, we still need to implement
the IContextMenu.GetCommandString() method to a certain extent.

void IContextMenu.GetCommandString(int command,
uint flags,
int reserved,
StringBuilder commandString,
int max)

{
switch (flags)
{

case (uint)Native.GetCommandStringFlags.Verb:
{

commandString = new StringBuilder(“...”);
break;

}

case (uint)Native.GetCommandStringFlags.HelpText:
{

commandString = new StringBuilder(“...”);
break;

}
}

}

When our context menu extension initializes, we need to get a handle to the data
in the storage medium through the IDataObject interface. The following code
shows how to do this.

int IShellExtInit.Initialize(IntPtr folderPidl, IntPtr pointer, uint keyProgID)
{

try
{

if (pointer != IntPtr.Zero)
{

IDataObject dataObject = Marshal.GetObjectForIUnknown(pointer)
as IDataObject;

ClipFormat format = new ClipFormat();

Reusable Framework 503

format.Format = Native.ClipFormatFlags.DropHandle;
format.DevicePointer = 0;
format.Aspect = Native.DvAspectFlags.Content;
format.Index = -1;
format.Medium = Native.TypeMediumFlags.Global;

StorageMedium medium = new StorageMedium();

dataObject.GetData(ref format, ref medium);

_dropHandle = medium.Global;
}

}
catch (Exception exception)
{

HandleError(exception);
}

return 0;
}

The IContextMenu.QueryContextMenu() method is called whenever the context menu
is supposed to be displayed. This is where the menu is created and populated. First,
the popup menu is created. Then each file in the query is filtered against the exten-
sions array. Then the commands specific to the extension are registered, and the
submenu items are created and added to the parent menu item; finally, the parent
menu item is inserted into the Explorer context menu.

int IContextMenu.QueryContextMenu(uint menu,
uint menuId,
int firstCommand,
int lastCommand,
uint flags)

{
int id = 1;

try
{

if ((flags & 0xf) == 0 ||
(flags & (uint)Native.QueryContextMenuFlags.Explore) != 0)

{
_popupMenu = Native.CreatePopupMenu();

Chapter 41 ■ Writing Context Menu Shell Extensions504

uint fileCount = Native.DragQueryFile(_dropHandle, 0xffffffff, null, 0);

List<string> filteredFiles = new List<string>();

if (fileCount >= 1)
{

for (uint index = 0; index < fileCount; index++)
{

StringBuilder buffer = new StringBuilder(1024);

Native.DragQueryFile(_dropHandle,
index,
buffer,
buffer.Capacity + 1);

string fileExtension = Path.GetExtension(buffer.ToString());

foreach (string filterExtension in Extensions)
{

if (fileExtension == filterExtension)
{

filteredFiles.Add(buffer.ToString());
break;

}
}

}

_fileNames = filteredFiles.ToArray();

_commandIdentifier = (firstCommand + id) - 1;

CommandRegistration(_fileNames);

id = (_commandIdentifier++);
}

MenuItemInfo menuItemInfo = new MenuItemInfo();

menuItemInfo.Size = 48;
menuItemInfo.ID = id++;
menuItemInfo.SubMenu = (int)_popupMenu;
menuItemInfo.TypeData = MenuTitle;
menuItemInfo.Mask = (uint)Native.MaskFlags.Type |

Reusable Framework 505

(uint)Native.MaskFlags.State |
(uint)Native.MaskFlags.SubMenu |
(uint)Native.MaskFlags.ID;

menuItemInfo.Type = (uint)Native.MenuFlags.String;
menuItemInfo.State = (uint)Native.MenuFlags.Enabled;

Native.InsertMenuItem(menu, (uint)menuId, 1, ref menuItemInfo);

AddMenuSeparator(menu, menuId + 1);
}

}
catch (Exception exception)
{

HandleError(exception);
}

return id;
}

The base class exposes a method that is used to register commands with the under-
lying framework and create the submenu items for the context menu. The follow-
ing code shows this method. Specifying – (a hyphen) as the command text will
insert a separator entry, which is useful for cleaning up menus with multiple groups
of commands.

protected void RegisterCommand(string command)
{

_commandPosition++;
_commandIdentifier++;

if (command == “-”)
{

AddMenuSeparator(_popupMenu, (uint)(_commandPosition));
}
else
{

_commands.Add(_commandPosition, command);

AddMenuItem(_popupMenu,
command,
_commandIdentifier,
(uint)(_commandPosition));

}
}

Chapter 41 ■ Writing Context Menu Shell Extensions506

The following method is used to add a submenu item to the parent menu item at
the specified position.

void AddMenuItem(uint menu, string text, int id, uint position)
{

MenuItemInfo menuItemInfo = new MenuItemInfo();

menuItemInfo.Size = 48;
menuItemInfo.ID = id;
menuItemInfo.TypeData = text;
menuItemInfo.Mask = (uint)Native.MaskFlags.ID |

(uint)Native.MaskFlags.Type |
(uint)Native.MaskFlags.State;

menuItemInfo.Type = (uint)Native.MenuFlags.String;
menuItemInfo.State = (uint)Native.MenuFlags.Enabled;

Native.InsertMenuItem(menu, position, 1, ref menuItemInfo);
}

The following method is very similar to AddMenuItem(), except it inserts a separator
into the parent menu item at the specified position.

void AddMenuSeparator(uint menu, uint position)
{

MenuItemInfo separator = new MenuItemInfo();

separator.Size = 48;
separator.Mask = (uint)Native.MaskFlags.Type;
separator.Type = (uint)Native.MenuFlags.Separator;

Native.InsertMenuItem(menu, position, 1, ref separator);
}

As mentioned earlier, IContextMenu.InvokeCommand() is called when a submenu item
is activated from the context menu. This is where we get the command informa-
tion and pass it off to the extension to handle.

void IContextMenu.InvokeCommand(IntPtr pointer)
{

try
{

Type type = typeof(InvokeCommandInfo);

InvokeCommandInfo info = Marshal.PtrToStructure(pointer, type)
as InvokeCommandInfo;

Reusable Framework 507

HandleCommand(_commands[info.Verb - 1].ToString(), _fileNames);
}
catch (Exception exception)
{

HandleError(exception);
}

}

Registration of the extension component is covered later in the chapter, but it is
important that the following two methods are discussed.

The RegisterExtension() method is used to place an entry in the approved shell
extensions (for WINNT), and to associate the extension component with the file
extensions array.

protected static void RegisterExtension(System.Type type,
string[] extensions,
string handlerName)

{
try
{

string guid = InterogateGuid(type);

if (guid.Length > 0)
{

RegistryKey key;

key = Registry.LocalMachine.OpenSubKey(“Software\\” +
“Microsoft\\” +
“Windows\\” +
“CurrentVersion\\” +
“Shell Extensions\\” +
“Approved”, true);

key.SetValue(guid,
String.Format(“{0} shell extension”, handlerName));

key.Close();

foreach (string extension in extensions)
{

string path = String.Format(“{0}\\shellex\\ContextMenuHandlers\\{1}”,
extension,
handlerName)

key = Registry.ClassesRoot.CreateSubKey(path);
key.SetValue(string.Empty, guid);

Chapter 41 ■ Writing Context Menu Shell Extensions508

key.Close();
}

}
}
catch (Exception)
{

throw;
}

}

The UnregisterExtension() method is called to undo the registry changes applied
by the RegisterExtension() method.

protected static void UnregisterExtension(System.Type type,
string[] extensions,
string handlerName)

{
try
{

string guid = InterogateGuid(type);

if (guid.Length > 0)
{

RegistryKey key;

key = Registry.LocalMachine.OpenSubKey(“Software\\” +
“Microsoft\\” +
“Windows\\” +
“CurrentVersion\\” +
“Shell Extensions\\” +
“Approved”, true);

key.DeleteValue(guid);
key.Close();

foreach (string extension in extensions)
{

string path = String.Format(
“{0}\\shellex\\ContextMenuHandlers\\{1}”,
extension, handlerName)

Registry.ClassesRoot.DeleteSubKey();
}

}
}

Reusable Framework 509

catch (Exception)
{

throw;
}

}

The importance of explicitly setting a guid for the extension is vital so that the
Win32 registry can point to the class. The class must be decorated with a [Guid]
attribute so that it can be registered with COM, but the class must also be regis-
tered with Windows, as previously discussed. Rather than hardcode the guid in the
assembly and in the register and unregister methods, the following method uses
reflection to extract the guid value right out of the attribute decoration. This
approach is much more maintainable because the guid is only declared in a single
location. The type passed to this method is the type of the extension class that is
inheriting from ShellExtensionBase; that is where the [Guid] attribute is decorated.

private static string InterogateGuid(Type type)
{

try
{

GuidAttribute[] attributes = type.GetCustomAttributes(typeof(GuidAttribute),
false)
as GuidAttribute[];

if (attributes.Length != 0)
{

return “{“ + attributes[0].Value + “}”;
}

return string.Empty;
}
catch (Exception)
{

throw;
}

}

The base class is now complete, so we can move on to usage. There are two ways
that the extension can be built using our framework; both methods are discussed
in the next two sections.

Chapter 41 ■ Writing Context Menu Shell Extensions510

Sample Usage—Standalone
Using the framework is very easy, and most of the implementation details for the
extension have already been covered. The most notable parts to mention are the
RegisterServer() and UnregisterServer() methods. You will notice the
ComUnregisterFunctionAttribute and ComRegisterFunctionAttribute decorations on
both methods. These attributes specify the methods to call when registering or
unregistering an assembly from COM; this allows for the execution of custom
code during component registration. More on component registration later in this
chapter, but just be aware that these methods are entry points from COM, and
they simply call the RegisterExtension() and UnregisterExtension() methods in
ShellExtensionBase.

[Guid(“45A92DA6-3559-4d20-88F7-552E10779D5A”), ComVisible(true)]
public class StandAloneExtension : ShellExtensionBase
{

protected static string[] _extensions = new string[2] { “.nxe”, “.nxw” };
protected static string _handlerName = “SimpleToolStandAlone”;

protected override string MenuTitle
{

get { return “SimpleTool - Stand Alone”; }
}

protected override string[] Extensions
{

get { return _extensions; }
}

protected override void CommandRegistration(string[] fileNames)
{

RegisterCommand(“Do Something”);
RegisterCommand(“Do Something Else”);
RegisterCommand(“-”);
RegisterCommand(“View Stuff”);
RegisterCommand(“-”);
RegisterCommand(“Simple Command 1”);
RegisterCommand(“Simple Command 2”);

}

protected override void HandleCommand(string command, string[] files)
{

Sample Usage—Standalone 511

StringBuilder buffer = new StringBuilder();

buffer.AppendFormat(“Handle Command ‘{0}’:{1}{1}”,
command,
Environment.NewLine);

foreach (string file in files)
{

string fileName = Path.GetFileName(file);
buffer.AppendFormat(“{0}{1}”, fileName, Environment.NewLine);

}

MessageBox.Show(buffer.ToString());
}

protected override void HandleError(Exception exception)
{

MessageBox.Show(exception.ToString());
}

[System.Runtime.InteropServices.ComRegisterFunctionAttribute()]
internal static void RegisterServer(string description)
{

try
{

RegisterExtension(typeof(SimpleToolExtension),
_extensions,
_handlerName);

}
catch (Exception e)
{

MessageBox.Show(exception.ToString();
}

}

[System.Runtime.InteropServices.ComUnregisterFunctionAttribute()]
internal static void UnregisterServer(string description)
{

try
{

UnregisterExtension(typeof(SimpleToolExtension),
_extensions,
_handlerName);

Chapter 41 ■ Writing Context Menu Shell Extensions512

}
catch (Exception e)
{

MessageBox.Show(exception.ToString());
}

}
}

Standalone shell extensions exist as separate assemblies. This is ideal for extensions
that contain the actual tool logic, or for extensions that cannot be integrated into
the source code of an existing tool.

Sample Usage—Integrated
If you are able to modify the source code to your tool and if it is managed code,
you can integrate the shell extension right into the code base. There are a number
of benefits to this approach, but the most important is ease of deployment.

To start, we generally want to keep the logic called by the extension and the logic
called by the tool in the same location for maintainability. The following code imple-
ments a simple class that processes a collection of files using a specified command.

public static class SimpleTool
{

public static void ProcessFiles(string command,
string[] files,
bool fromExtension)

{
if (fromExtension)
{

StringBuilder buffer = new StringBuilder();

buffer.AppendLine(String.Format(“Handle Command ‘{0}’:”, command));
buffer.AppendLine(“—-”);

foreach (string file in files)
{

buffer.AppendLine(file);
}

System.Windows.Forms.MessageBox.Show(buffer.ToString());
}
else

Sample Usage—Integrated 513

{
Console.WriteLine(String.Format(“Handle Command ‘{0}’:”, command));
Console.WriteLine(“—-”);

foreach (string file in files)
{

Console.WriteLine(file);
}

}
}

}

For the most part, the extension code can stay the same. We will, however, modify
the method that handles menu commands so that it points to the static logic class
for the tool. The fromExtension parameter for SimpleTool.ProcessFiles() is set to
true so that a message box is shown instead of writing the messages to the console.
There is no console when executing the standalone extension.

protected override void HandleCommand(string command, string[] files)
{

SimpleTool.ProcessFiles(command, files, true);
}

As an example, we will create a simple console application. You can pass it several
files as command-line arguments, or you can use a switch to register or unregister
the shell extension with the operating system. The fromExtension parameter for
SimpleTool.ProcessFiles() is set to false so that the messages are written to the
console.

class Program
{

static int Main(string[] args)
{

Console.WriteLine(“SimpleTool.exe - Simple demo to show “ +
“how to link a tool to a shell extension.”);

if (args.Length == 1)
{

string option
= args[0].Replace(‘-’, ‘/’).ToLower(CultureInfo.InvariantCulture);

if (option == “/?” || args[0] == “/help”)
{

Chapter 41 ■ Writing Context Menu Shell Extensions514

Usage();
return 0;

}
else if (option == “/u”)
{

try
{

Assembly assembly = Assembly.GetExecutingAssembly();

RegistrationServices registration
= new RegistrationServices();

registration.UnregisterAssembly(assembly);
SimpleToolExtension.UnregisterServer(“”);

Console.WriteLine(“Extension unregistered successfully”);
}
catch (Exception)
{

Console.WriteLine(“Extension is not currently registered”);
}

}
else if (option == “/r”)
{

try
{

Assembly assembly = Assembly.GetExecutingAssembly();
RegistrationServices registration = new RegistrationServices();

registration.RegisterAssembly(assembly,
AssemblyRegistrationFlags.SetCodeBase);

SimpleToolExtension.RegisterServer(“”);

Console.WriteLine(“Extension registered successfully”);
}
catch (Exception exception)
{

Console.WriteLine(“Extension failed to register: “ +
exception.ToString());

}
}
else

Sample Usage—Integrated 515

{
Console.WriteLine(“Invalid option: “ + args[0]);
Usage();
return 1;

}
}
else if (args.Length >= 2)
{

List<string> files = new List<string>(args);

string command = files[0];

files.RemoveAt(0);

SimpleTool.ProcessFiles(command, files.ToArray(), false);
}
else
{

Usage();
}

return 0;
}

private static void Usage()
{

Console.WriteLine(“/r - Register the shell extension “ +
“for this tool with Explorer”);

Console.WriteLine(“/u - Unregister the shell extension “ +
“for this tool from Explorer”);

}
}

The simple tool shell extension is now built, but it must be registered before it is
functional. The next section covers how to do this.

Component Registration
Before our extension will work, we need to register it with Windows. This involves
a few entries into the registry so the shell is aware of the new functionality, and it
requires installation of the component into the Global Assembly Cache (GAC).

Chapter 41 ■ Writing Context Menu Shell Extensions516

First, you must register the extension assembly as a COM component. When using
a standalone extension assembly, you can do this with the regasm.exe command.
Open the Visual Studio command prompt and execute:

Regasm.exe NameOfYourExtension.dll

This tool creates all the necessary entries to configure the assembly as a COM
object. With the assembly correctly configured for COM, we now need to register
the object as a shell extension. This is done with Win32 registry entries, and the
code for this is in the RegisterExtension() method within ShellExtensionBase.
Remember the RegisterServer() method that was decorated with
ComRegisterFunctionAttribute? Regasm will call this static method automatically
when executed, which is where we then call RegisterExtension() to configure the
registry appropriately. Conveniently, there is also a method for unregistration that
calls UnregisterExtension().

After the object has been successfully configured as a shell extension, the Win32
registry will have new entries for each of the configured file extensions pointing to
the extension class. Figure 41.1 shows the extension registered for an .nxw file.

Extensions that have been integrated with an existing managed tool are typically
in the form of an executable, which will not be successfully registered with Regasm.
To get around this, we simply use the RegistrationServices class of the COM
interop layer, which essentially calls the same functionality that Regasm does, except
programmatically.

You can register the extension integrated in our test console application by exe-
cuting:

SimpleTool.exe /r

Component Registration 517

Figure 41.1 Registry key added for shell extension association.

The /r runs the registration code, which will call the same static method that Regasm
does. Conveniently, you can also use /u to unregister the integrated extension from
Explorer as well.

Lastly, you must install the extension assembly (exe or dll) into the Global
Assembly Cache, including the ShellExtensionBase library so that windows can
find them based on the guid specified in the registry.

You can do this by either executing:

Gacutil.exe –i TheAssemblyToInstall

or by dragging the file into the assembly folder in your Windows directory.

N o t e

You must sign your assemblies with a strong name key in order to install them into the Global
Assembly Cache. You can generate a strong name key with the sn.exe utility, or through the Signing
property page for the project.

After the extension has been successfully registered, the last step is to restart the
explorer.exe process so that your extension can be installed. See the next section
for a way to do this.

If everything has been done correctly, you should now be able to right-click on any
file with a .nxw or .nxe extension (using our example) and be able to see the new
context menu. Figure 41.2 shows this context menu with both extension types installed.

Chapter 41 ■ Writing Context Menu Shell Extensions518

Figure 41.2
Screenshot of the context menu
extension in action.

If you select a command from the extension, you will see a message similar to the
one shown in Figure 41.3.

Running the integrated executable as a normal console application will result in a
message similar to the one shown in Figure 41.4.

Debugging Techniques
Developing and debugging shell extensions has never been an easy task, especially
because the shell holds a copy of the previously loaded DLL. This can lead to prob-
lems overwriting the file or a change not being reflected until the shell is restarted
because of the local copy in memory.

A useful trick is to build a simple Win32 C++ application using the following
code, which will stop and restart the shell, removing the cached copy of the DLL.

#include <windows.h>
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

PSTR szCmdLine, int iCmdShow)
{

HWND hwnd = FindWindow(“Progman”, NULL);
PostMessage(hwnd, WM_QUIT, 0, 0);
ShellExecute(NULL, NULL, “explorer.exe”, NULL, NULL, SW_SHOW);
return 0;

}

Debugging Techniques 519

Figure 41.3
Command executed through the context menu extension.

Figure 41.4 Command executed through the integrated console application.

There are some additional steps that must be taken as well. Here is the usual process
for reloading a new extension dll.

1. Remove the existing extension dll and ShellExtension.dll file from the GAC.

2. Recompile your extension dll.

3. Place your extension and the ShellExtension.dll file back into the GAC.

4. Restart the Windows shell using the above technique.

N o t e

You do not need to register your associations in the registry again unless the guid for your compo-
nent changes.

Conclusion
In this chapter, I discussed what a shell extension is, and how to create a context
menu extension in C#. Although extensions can be tricky to write and debug at
times, they can offer a significant boost to productivity and workflow. There are a
number of types of shell extensions that can be created, but covering them all
would require a book in itself.

It was the intent of this chapter to discuss shell extensions, and then ramp up into
the development of a reusable framework that can be used to quickly develop con-
text menu extensions in the shortest amount of time possible.

Chapter 41 ■ Writing Context Menu Shell Extensions520

Techniques
to Increase

Productivity
Computer /nm./: a device designed to speed and automate errors.

—From the Jargon File

Perhaps the goal of every single company is to increase productivity, and although
the idea may sound simple, actually doing so can be quite a feat to accomplish.
There are many levels where productivity could be increased, but the chapters in
Part VIII will focus on a couple of techniques that can be employed in your tools
to boost productivity for your users. Part VIII focuses on process automation,
while Part VII mainly focused on productivity from a user interface perspective.

Essentially, productivity is the overall measure of an output quantity generated by
a given input quantity. An increase in productivity comes from an existing process
generating a larger output quantity using the regular input quantity. The increase
mainly results from a more efficient use of resources due to process improvements
or other achievements. The chapters in this part describe a couple of techniques
for automating components of your tools in order to produce more output quan-
tity compared to the original approach.

PART VIII

This page intentionally left blank

523

Automating Workflow
Using Job Scheduling

chapter 42

Just because you don’t know a technology, doesn’t mean you won’t be called
upon to work with it.

Mike Bongiovanni

Job scheduling has become an increasingly important role of computers. They are
most effective at automatically carrying out the scheduled routines of an organi-
zation. Some analysts believe that the level of job scheduling and process automa-
tion is altering the way workflow and business is done today. In actuality, the level
of automation used within software products or workflow pipelines is a result of
the growing needs of the industry. The industry is largely responsible for the
increased reliance on enhanced process automation, not the technology itself.

Some common applications for job scheduling include report generation, batch
conversion or compression of game assets, nightly system backups of source code
and game assets, and moving concept art from the “completed” folder on one
artist’s machine into the “to be modeled” folder on another artist’s machine. The
possibilities for this technology and how it relates to workflow enhancement are
nearly limitless.

There are a variety of job scheduling systems on the market that all support an
exhausting number of features, but essentially there are two fundamental compo-
nents: job and scheduler.

A job can be defined as a unit of work orchestrated by a computer to perform a task
in an automated fashion. Multiple jobs can be composed together to form a larger
workflow process, or they can operate independently of each other. Jobs can be run
at a specific date and time or on a reoccurring basis specified by a time span interval.

The job scheduler is typically responsible for the continuous monitoring and noti-
fication of processes and event-driven jobs, scheduling of operational reports, and
the monitoring of performance. Jobs are registered with the scheduler, and it is the
duty of the scheduler to provide the mechanism that ensures the orderly and timely
processing of the jobs at the time or interval specified.

Most of the leading scheduling systems provide a graphical user interface that
offers a single point of control for a distributed environment of processes. This
chapter addresses the development of a reusable core framework that offers a flex-
ible mechanism for generic job scheduling.

Benefits
Most companies have a multitude of processes and workflows that define how
their business operates. There are some significant benefits that result from the
integration of all the disparate processes into a cohesive and automated workflow.

It is a commonly known fact that an automated process will be more reliable and
less prone to error than a human operator. The less time required from human
effort to perform a particular task will free that human effort for assignment to
more thought-intensive problems, resulting in a considerable cost savings.

Another benefit is the increase in productivity. Almost every software company,
especially within the gaming industry, is faced with the dilemma that product
development must be crunched into a seemingly impossible time span. Batch pro-
cessing and workflow automation allow for an increase in the amount of work
performed in a shorter period of time.

Aside from the financial and increased resource gains, there are a number of oper-
ational and quality assurance benefits that result from automation. Human effort
is prone to errors, whereas a properly configured computerized job will execute in
the same manner every time it is run, reducing the probability of error.

Solution Goals
It may seem silly, but the key goal of the solution is to support the automation of
processes. The user should be able to define a job, register the job within the sched-
uler, and feel confident that the process will be executed at the appropriate time.

Chapter 42 ■ Automating Workflow Using Job Scheduling524

Earlier, workflow management was discussed as a common application for job
scheduling, but this chapter is meant to focus on the technology behind the sched-
uling itself, not business process or workflow. Near the end of the chapter, some
goals are discussed that would be applicable to a scheduling system that managed
workflow.

The solution must also ensure that data is efficiently processed in a generic man-
ner. Each job performs a different role, but the core functionality remains the
same. The framework must provide a mechanism to pass arbitrary data through a
job efficiently.

Two job scheduling modes are available: exact and time span. The exact mode
specifies a specific date and time that a job will be executed. The job will fire once
and then be promptly removed from the scheduler. The time span mode specifies
an interval at which a job will be executed on a recurring basis.

Implementation
The namespaces used in the implementation are very simple, shown with the fol-
lowing code. Be sure to reference System.Timers so that you have access to the .NET
Timer object.

using System;
using System.Timers;

As outlined in the solution goals, the core framework will support two different
scheduling modes. The following enumeration will be used within the job and
scheduler components to distinguish between the two modes.

public enum ScheduleMode
{

Exact,
Span

}

The following class implements the event arguments that are passed in the event
handler when a job is executed.

public class JobTriggeredEventArgs : EventArgs
{

private ScheduleMode _mode;
private Object _userData;

Implementation 525

public ScheduleMode Mode
{

get { return _mode; }
}

public Object UserData
{

get { return _userData; }
}

public JobTriggeredEventArgs(ScheduleMode mode, Object userData)
{

_mode = mode;
_userData = userData;

}
}

The following class implements the functionality behind a job and the timing
mechanism that controls it.

public abstract class JobBase
{

private ScheduleMode _mode;
private Timer _jobTimer;
private Object _userData;
private Scheduler _schedule;

protected JobBase(Scheduler schedule, ScheduleMode mode)
{

_schedule = schedule;
_mode = mode;

}

public Timer JobTimer
{

get { return _jobTimer; }
set { _jobTimer = value; }

}

public ScheduleMode Mode
{

get { return _mode; }
}

Chapter 42 ■ Automating Workflow Using Job Scheduling526

public object UserData
{

get { return _userData; }
set { _userData = value; }

}

internal void ElapsedInterval(object sender, ElapsedEventArgs e)
{

if (Triggered != null)
Triggered(sender, new JobTriggeredEventArgs(_mode, _userData));

_schedule.Trigger(_mode, _userData);

if (_mode.Equals(ScheduleMode.Exact))
{

_schedule.Remove(_userData);
}

}

public event EventHandler<JobTriggeredEventArgs> Triggered;
}

The following class describes a job that occurs at a specific date and time.

public class JobExact : JobBase
{

public JobExact(Scheduler schedule,
DateTime startTime,
DateTime finishTime)

: base(schedule, ScheduleMode.Exact)
{

TimeSpan period = finishTime - startTime;

base.JobTimer = new Timer(period.TotalMilliseconds);
base.JobTimer.Elapsed += new ElapsedEventHandler(ElapsedInterval);
base.JobTimer.AutoReset = false;

}
}

The following class describes a job that occurs at a recurring interval.

public class JobSpan : JobBase
{

Implementation 527

public JobSpan(Scheduler schedule, TimeSpan interval)
: base(schedule, ScheduleMode.Span)

{
base.JobTimer = new Timer(interval.TotalMilliseconds);
base.JobTimer.Elapsed += new ElapsedEventHandler(ElapsedInterval);
base.JobTimer.AutoReset = true;

}
}

The final step in implementing a job scheduler is to develop the scheduling com-
ponent itself. At this point, we have two different flavors of jobs that can be regis-
tered: jobs that execute at a particular date and time and jobs that can execute at a
given interval on a recurring basis. Basically, each JobBase object has an internal
timer that is configured for the job, and it is the responsibility of the scheduler to
manage the timers and track all registered jobs. While relatively simple, the sched-
uler is an important part of an automation system. The following code describes
the implementation of the scheduler in its entirety.

using System;
using System.Collections.Generic;

public class Scheduler : IDisposable
{

private SortedList<Object, JobBase> _jobList;

public SortedList<Object, JobBase> JobList
{

get { return _jobList; }
}

public Scheduler()
{

_jobList = new SortedList<Object, JobBase>();
}

public void Add(object key, JobBase job)
{

try
{

_jobList.Add(key, job);
job.UserData = key;
job.JobTimer.Start();

Chapter 42 ■ Automating Workflow Using Job Scheduling528

}
catch (Exception exception)
{

System.Diagnostics.Debug.WriteLine(exception.Message);
throw;

}
}

public void Remove(object key)
{

_jobList[key].JobTimer.Dispose();
_jobList.Remove(key);

}

public JobBase this[object key]
{

get { return _jobList[key]; }
set { _jobList[key] = value; }

}

public void Trigger(ScheduleMode mode, Object userData)
{

if (Triggered != null)
{

Triggered(this, new JobTriggeredEventArgs(mode, userData));
}

}

public void IDisposable.Dispose()
{

foreach (JobBase job in _jobList.Values)
{

job.JobTimer.Dispose();
}

}

public event EventHandler<JobTriggeredEventArgs> Triggered;
}

Implementation 529

Conclusion
In this chapter, I discussed the need for job scheduling, some common uses for it,
and how to implement a framework that provides enough of a mechanism to cre-
ate jobs and register them within a scheduler for execution. At the beginning of
this chapter, it was stated that all scheduling systems have jobs and a scheduler, no
matter what other enhancements or “cool features” are included. Some systems
support a transaction layer that can recover from a job failure and, in some cases,
can even restart the job!

You may also be wondering what type of harness is needed to control the job sys-
tem, and typically a Windows service would do the job nicely. Building a Windows
service is beyond the scope of this chapter, but it would be ideal to place the code
for your job manager within such a service.

Chapter 42 ■ Automating Workflow Using Job Scheduling530

531

MVC Object Model
Automation with CodeDom

chapter 43

“Every minute spent on infrastructure programming is a wasted minute.”

Juval Lowy, .NET Software Legend, April 2003

Users of an application or tool vary in their levels of knowledge and technical
competence. Some users can alter configuration files to optimize the application
for their environment, or access public APIs to extend the software, while others
barely get by with the self-help guides and manuals. Catering to this diversity of
simple users and power users can be quite challenging, and doing so in a clean and
maintainable way is even harder. How can you provide enough advanced func-
tionality to power users, without cluttering up the interface and confusing simple
users? Welcome to the wonderful concept of extensibility.

There are a number of ways to develop an extensible application, such as plugin
support, but one concept that is repeatedly ignored or abused is having a rich
object model that is decoupled from the presentation layer, with support for script
interaction and automation. Almost every Microsoft application, especially those
included in the Office suite, is built on top of a rich object model that has support
for automation. This level of extensibility allows any developer to create and
manipulate content or to automate functionality and actions within the application.
Scripts can be written to extend these applications to suit the needs of the power
users.

Sadly, the majority of applications available do not offer the level of extensibility
that the Microsoft products provide, and this is generally because of budget and

time constraints. The ideal solution to this problem would be a solid and proven
design from the ground up that would pave the way for flexible extensibility sup-
port. Typically, rich object models that support extensibility are developed with
respect to the Model-View-Controller design pattern, but this chapter will present
a slight deviation from this common approach, using .NET delegates to provide a
truly decoupled architecture. This chapter will also show how to embed a com-
mand window, such as the one found in Visual Studio .NET, to write and execute
script macros at runtime within the application.

Advantages of an Automatable Object Model
Many benefits are derived from developing an object model that supports automa-
tion, but I will list only a handful of them since that should be enough to convince
you. One of the biggest benefits is that a rich object model decouples the user
interface from the business logic. Quite often, the user interface is entangled with
business logic and becomes hard to maintain. The user interface code can be so
dependent on the business logic that a single change to the business logic can
break the entire application, and vice versa for changes to the user interface code.
This occurrence is generally a result of developers focusing first on the user inter-
face when they are assigned a task. Building the user interface, even a rough pro-
totype, before the business logic is a bad idea because the design of your business
logic will reflect the constraints and design ideas behind the way your user inter-
face is designed. Business logic should be user interface-agnostic.

A rich object model causes developers to focus on the design behind small units of
work instead of the entire application, or “the big picture.” Focusing on a small
unit of work usually results in cleaner and more reliable code. For example, imag-
ine a part of the application that shows the user a file listing in a tree view.
Normally, a developer would design the system with the tree view control in mind.
A developer thinking about the object model, however, would ignore the fact that
there is a user interface. He would focus strictly on file and directory entities, pro-
cessing functionality such as determining a hierarchical list of files and folders
from a parent folder, and how these entities fit into the rest of the model. The new
functionality in the object model can then be consumed by whatever component
is using it, in this case the user interface of the application. The developer could
now display this relationship of entities in multiple tree view controls, or other
controls altogether, without altering the model. If the user interface had been con-
sidered, he might have been stuck with file loading code mixed in with the code of
the tree view control, forcing him to copy and paste code or refactor.

Chapter 43 ■ MVC Object Model Automation with CodeDom532

Comparison with Model-View-Controller Pattern 533

On the other side of the fence, developers working on the user interface only have
to know that any files added to a collection in the object model are to be displayed
in the appropriate controls. They do not care where these files come from, just so
long as they are notified accordingly when files are made available for display.

Another nice feature of a decoupled object model is the ability to distribute
responsibility for the implementation of certain aspects to different developers
without their having to worry about how the other components work. Again, as
long as the appropriate notifications are fired, the villagers are content. If you have
a developer who shows the file listing in a tree view, she will not care about another
developer who shows the same listing in an HTML page that is generated with XSL
transforms. Both developers only care that the object model contains model
objects that will fire the appropriate notifications when certain situations arise.

Lastly, having an object model that supports automation is a godsend to func-
tional and defect testing. It is very easy to write scripts to test user interface and
business logic behaviors when the underlying architecture supports this automa-
tion natively.

Comparison with Model-View-Controller Pattern
To start, it is important to cover the Model-View-Controller (MVC) pattern before
doing a comparison because this chapter discusses a slightly enhanced version of
MVC. The MVC pattern, or paradigm, encompasses breaking a section or all of an
application into three parts: the model, the view, and the controller.

The model manages information and handles the notification of observers when
the related information changes. The model only contains information and func-
tionality that match a common purpose. If you need to model multiple groups of
unrelated information and functionality, you create multiple models. This is
important so that your business logic remains modular and decoupled. The model
serves as an abstraction of a real world system or process. As an example, a model
could be a relationship between file and directory entries, and could contain func-
tionality to load them from the file system or network. There is no user interface
code for displaying the entities within the model; the user interface code is han-
dled by the views.

The view handles transforming the models to be displayed in an appropriate dis-
play context. A view is usually attached to a single display surface and renders to
that surface using transformed information from the models attached to it. The
view automatically renders the information again when the information in the
model changes. It is quite common to have multiple views attached to the same

model but rendering information to many unique display surfaces. A view can be
composite, containing sub-views that can each themselves contain sub-views. As
an example, a view could be a tree view that will display hard drive files in a hier-
archical fashion.

The controller is the interface point between the user and the application. The con-
troller reads input sent by the user and instructs the model and view to act according
to the type of input received. As an example, when the user clicks a button, the
controller is responsible for determining how the application will respond.

The model, view, and controller form a triumvirate, so they must reference each
other as shown in Figure 43.1.

To explain, an event occurs that propagates to the controller. The controller then
changes the model, the view, or both accordingly. If the model changes, events can
be sent to the views; an example could be a request for a redisplay of information.
If need be, the views can go fetch data from the model to display. This pattern
requires that each view must understand the relationship and schema of the model.

It is for this reason that I present a slightly different spin on this paradigm, using
the native event mechanisms of the .NET platform in an attempt to further decou-
ple this excellent pattern from being directly tied between views and model. The
pattern used in this chapter is basically the Model-View-Controller paradigm,
except .NET delegates, and events are used to pass data between model and views.
Such a variation can resemble Figure 43.2.

Chapter 43 ■ MVC Object Model Automation with CodeDom534

Figure 43.1
Common approach to the
Model-View-Controller pattern.

The variation will still require that the controller know the type of views and
model used, but we should be able to build a system where a view does not need
to know the type of model being observed. You may be wondering why a view does
not know about the controller sending commands to it. This is so there are as few
dependencies as possible, making it easy to swap controllers in and out of the sys-
tem without breaking any references.

A Simple Object Model Architecture
Microsoft Word is an excellent case study when studying object models, but cov-
ering the entire design would be a complete book in itself. Instead, I will give you
a very small overview of a small subset of the object model so that hopefully you
will understand the way the object model in Word is designed. After that I will dis-
cuss the small object model that the example in this chapter employs, along with
some of the more important code snippets.

The root of the Microsoft Word object model starts with the Application class,
which is basically a singleton that provides access to all the toolbars, documents,
windows, menus, status bars, alerts, dialogs, and so forth. The entire application
can be accessed by this singleton, which can do things like manipulate content in
documents, change menu labels, update a status bar, click user interface elements
such as buttons, add command bars, and so forth. As an example, you can display
an open file dialog by calling Application.Documents.Open(). If you need to change
a value such as the title of the document, you do not have to worry about executing

A Simple Object Model Architecture 535

Figure 43.2
Modified version of the
Model-View-Controller pattern.

the code that Word invokes to change a document title. You can instead find the
Document instance in the Application.Documents collection and modify the Name
property. The user interface will automatically reflect the new change, thanks to
the power of an object model that supports automation.

Prior to learning the Model-View-Controller paradigm, I used to think that large
applications like Word or Visual Studio just had a massive amount of code that
performed a whole slew of tasks when an event, such as a file being deleted,
occurred. The complexity and unmaintainability of such a solution gave me shivers.
When I discovered this wonderful pattern, I began to relax and understand that
these applications are actually not that complicated. But experience and learning
from past mistakes is the way to constantly improve and write better code.

The object model for the example in this chapter is far from a real world system.
Instead, it exists solely to show how all the pieces fit together into an architecture
that has decoupled views from the model, and automation script support using
the CodeDom compiler. Showing a full-featured object model in this chapter would
make it even more difficult to understand the underlying principles behind what
this chapter really covers.

The actual implementation details behind the example on the Companion Web
site are covered near the end of this chapter.

Plugin-Based Architectures
I will not talk much about plugin architectures, since this topic is addressed in Chapter
38, “Designing an Extensible Plugin-Based Architecture.” I will, however, discuss
how a robust object model can make your life much easier when building a system
that supports plugin extensibility.

When it comes to extensibility, having a rich object model that supports automa-
tion is ideal for plugin-based architectures. Theoretically, if your object model is
robust enough that you can perform all tasks programmatically, any plugins that
are exposed to this object model can extend all aspects of the application.

Supporting extensibility with a rich object model and plugins reduces the amount
of code that exists in the core assemblies, resulting in a number of advantages. The
first advantage is that your working set is greatly reduced, only loading plugins
when needed (provided you are unloading the assemblies from a second applica-
tion domain when they are no longer in use). A reduced working set results in less
memory being required to run your application, and overall loading and execution
times are reduced.

Chapter 43 ■ MVC Object Model Automation with CodeDom536

In addition to a reduced working set, the core application will be lightweight and
contain very little business logic. Such a design would make patching and repair-
ing the application really easy because you would just have to patch or repair a
subset of the logic that exists within an external plugin assembly.

As an example, say, for instance, that you have a model viewer application, which
renders 3D models that are structured in your proprietary format. You could have
plugins that add import options for different third-party formats to the file menu.
These import plugins could extend the application to be able to handle different
formats and convert the end result into the proprietary format. If you deploy the
application on a machine where importing is unnecessary, you could simply
remove the external assemblies from the plugins directory.

Controlling an Object Model with Scripts
Perhaps the most powerful extensibility feature of an application is the ability to write
scripts to automate processes and use case flows. Automation can lead to a number
of benefits, including a substantial increase in productivity for tedious and repetitive
tasks. Imagine that you have hundreds of source code files, to which you must
prepend a new copyright comment block. You could do this manually, but it could
take you an hour or more, depending on the project. To save a significant amount of
time, you could write a script in Visual Studio .NET that iterates through the docu-
ments in the solution tree and modifies the text within them automatically.

Another excellent application for integrated script support is in the realm of testing:
functional, performance, and defects. A script could be written to verify that a
particular process or flow works, or a script that determines the elapsed running
time for an intensive calculation, or a script that unit tests the user interface and
business logic looking for errors.

As an example, let’s look at the Visual Studio .NET 2005 IDE. One mechanism for
script support is the Command Window, which lets you write a line of code and
instantly execute it. This feature is shown in Figure 43.3.

The Command Window is great for simple evaluations and expressions, but the
functionality of this feature pales in comparison to the power of the macro sup-
port in Visual Studio .NET. As mentioned earlier, almost all Microsoft products
use the same object model, which is probably the most robust object model avail-
able for any application on the market. There are a variety of ways to access this
object model, such as extensions and plugins, but one approach is to script macros
within the IDE. These macros can be saved and reused across projects. Figure 43.4
shows the macro editor in Visual Studio .NET 2005.

Controlling an Object Model with Scripts 537

The interface is very similar to the regular code editor that you are used to, just
with fewer options. After a macro has been written to perform a particular task,
you can map the macro to a key-binding or a toolbar button, or you can access it
directly from the macro explorer pane, as shown in Figure 43.5.

Chapter 43 ■ MVC Object Model Automation with CodeDom538

Figure 43.3
Visual Studio .NET 2005
Command Window.

Figure 43.4
Visual Studio .NET 2005
Macro Editor.

Figure 43.5
Visual Studio .NET 2005 Macro Explorer.

The Microsoft object model takes automation even further and allows you to
record scripts based on actions you perform in the application, which can later be
played back to repeat. This level of extensibility is very powerful, but it’s tricky to
get right. You must build your architecture from the ground up with this level of
extensibility in mind, or you will fail. If you manage to pull it off though, your
power users will kiss the ground you walk on for making their productive lives that
much more enjoyable.

Implementing a C# Command Window
Before moving on to the implementation details behind the object model and the
Model-View-Controller pattern, let’s focus on code generation with CodeDom.
We will use this powerful .NET feature to compile C# code at runtime with which
we can automate our application (through the object model).

We can start by referencing the namespaces that we will be using.

using System;
using System.Text; // For StringBuilder
using System.Reflection; // For the Assembly type
using System.CodeDom.Compiler; // For CSharpCodeProvider support
using System.Collections.Specialized; // For StringCollection
using Microsoft.CSharp; // For CSharpCodeProvider support

Basically, what we are building is a class that can take a string of C# source code
and compile it to an in-memory assembly. This assembly will contain a method
that can be invoked to run whatever script we have written.

namespace SampleApp.Scripting
{

using ObjectModel;

public class ScriptEngine
{

Regardless of the script logic, there will always be identical stub code that must be
compiled in order to generate correct source code that will support runtime
automation. Rather than having the user write the same stub code every time, we
will provide a simple method that takes in a string containing C# code and wraps
it within a default layer of stub code. The following code shows the method to gen-
erate the stub wrapper code. Take note of the namespace, class, and method names.

Implementing a C# Command Window 539

private string StubWrapper(string innerCode)
{

N o t e

The full source code for this method is available on the Companion Web site.

}

The next method is the meat of our scripting engine; it is in charge of building
complete source code, including the stub code, setting up the CodeDom compiler
instance, and building the in-memory assembly for execution. A notable area is the
list of references where you specify the dependencies to include. Keep this refer-
ence list as small as possible for security. The user should only have access to the
functionality you provide.

C a u t i o n

Do not add every class library in the .NET framework for the heck of it. Many problems will arise
from this, including a number of security vulnerabilities, even with code access security configured.
The rule of thumb is to list only the references you need after carefully considering what your users
need access to.

The next important area is where compilation errors are handed. Do not worry
about the code lines that reference ObjectHost; we will cover that shortly. You can,
however, notice the information that is available for each error. We can use this
information to display compilation errors to the user when we build the user
interface for our command window.

Finally, the most important area is near the end, where reflection is used to find
the Run() method within our in-memory assembly after compilation. This method
is then executed to run the script logic sent to this class.

The following method describes the compilation logic for the script engine.

public bool Execute(string innerCode)
{

N o t e

The full source code for this method is available on the Companion Web site.

}
}

}

Chapter 43 ■ MVC Object Model Automation with CodeDom540

The harness code that uses the scripting engine is not overly complex, but is large
enough that it would be a waste of space and reading time to place it all in this
chapter. Rather, I will just show you a couple of screenshots of the command win-
dow, error listing, and script output window.

Figure 43.6 shows our new command window. Clicking Run passes the code with-
in the textbox into the scripting engine and executes it. If no errors are encoun-
tered, the tab control switches to the Output page, otherwise the tab control
switches to the Errors and Warnings page.

As you can see from the code in Figure 43.6, we are trying to initialize an integer
value to a string. Obviously, this will generate a compilation error and inform us
that we are too tired to write any worthwhile code. When attempting to run this
code, you will end up with an error like the one shown in Figure 43.7.

If a script executes successfully, you will be redirected to the Output page of the tab
control, which displays any script output that was printed during execution.
Figure 43.8 shows some output that is printed when executing the example pro-
vided with this chapter.

Implementing a C# Command Window 541

Figure 43.6 Integrated C# command window for automation.

Chapter 43 ■ MVC Object Model Automation with CodeDom542

Figure 43.7 Automation engine compiler errors.

Figure 43.8 Output results shown after execution.

By referencing the object model assembly in the CodeDom instance, we can now
execute any code in the command window that can be expressed in the compiled
code for the application that uses the object model.

Simple Automation and MVC Example
The previous section gave a quick inside look at the example for this chapter, and
now we are going to dive right into the heart of everything. We are going to make
an application that serves no real world applicability, but it demonstrates all of the
concepts discussed in this chapter. To start, we are going to need some sort of data
object to exist in our model, so let’s declare the following entity class.

namespace SampleApp.Entities
{

public class SimpleEntity
{

N o t e

The full source code for this class is available on the Companion Web site.

}
}

N o t e

The full source code for the example will not be presented, so it may be difficult to see how the
assemblies are composed and where each class belongs. It is safe to assume that whatever name-
space a class is declared in is also the name of the assembly in which it resides.

Before covering the event system for our object model, we will need a custom
EventArgs class that can store a SimpleEntity object. This class will be used to trans-
port entity data between views and the controller inside the events.

The following code defines the EventArgs class for SimpleEntity events.

namespace SampleApp.Entities
{

public class SimpleEntityEventArgs : EventArgs
{

N o t e

The full source code for this class is available on the Companion Web site.

Simple Automation and MVC Example 543

}
}

N o t e

The entity object and EventArgs class exist in a separate assembly from the rest of the application,
so that the assembly containing the views does not have to reference the object model assembly.

The example has three sample views, each of which displays the SimpleEntity data
in a different way. The beauty of the Model-View-Controller paradigm is that the
object model does not care about the views, so the user interface code is decoupled
from the business logic. We can also add or remove views without breaking the
object model.

Earlier in this chapter, I gave a very brief overview of how the root level of the
Microsoft Word object model is designed. The accompanying example has a sim-
ilar approach to the Application object, except it is called ObjectHost so that I do not
have to override the type name used by the System.Windows.Forms.Application class.

namespace SampleApp.ObjectModel
{

using Entities;

public class ObjectHost
{

N o t e

The full source code for this class is available on the Companion Web site.

}
}

You probably noticed the EnhancedBindingList class. This class is an inherited ver-
sion of the BindingList collection that exists in System.ComponentModel. This class is
a generic collection template just like List<T>, except it supports event notifica-
tions for when the data in the list changes. These events are used to notify the
views of changes to the data. Unfortunately, the delete event for BindingList does
not store a reference to the object being deleted; it only references the index where
the object used to be stored.

I did not want to have an associated list of references to return the deleted object,
so I added an override for the RemoveItem method so I could store a reference to the
object being deleted. The following code describes the EnhancedBindingList collection.

Chapter 43 ■ MVC Object Model Automation with CodeDom544

namespace SampleApp.ObjectModel
{

public class EnhancedBindingList<T> : BindingList<T>
{

N o t e

The full source code for this class is available on the Companion Web site.

}
}

Our object model is now built (I did not lie when I said it was too simple to be
real-world applicable!) so we can start linking events. The first events we will link
are related to the script engine. Specifically, we want to handle the event for errors
that occur, the event for displaying script output, and the event for code execution
that uses our scripting engine. Additionally, we will tie into the event the handles
application exceptions.

The following code shows how these events are linked and implemented in the
example on the Companion Web site.

namespace SampleApp
{

using ObjectModel;
using Scripting;
using Entities;

public partial class MainForm : Form
{

N o t e

The full source code for this class is available on the Companion Web site.

}
}

We now want to link up some views to display the information contained in the
object model. The first view we will implement is a TreeView that just lists
SimpleEntity nodes under a parent node. The following code shows the event han-
dling for this type of view.

namespace SampleApp
{

Simple Automation and MVC Example 545

Chapter 43 ■ MVC Object Model Automation with CodeDom546

using ObjectModel;
using Entities;

public partial class SimpleView1 : UserControl
{

N o t e

The full source code for this class is available on the Companion Web site.

}
}

This first view resembles the one shown in Figure 43.9 when shown in the running
application.

The second view we will implement is a ListView in detail mode that displays more
information about the entity data than was shown in the first view. The following
code shows the event handling for this type of view.

Figure 43.9 Screenshot of tree style display of the object model data.

namespace SampleApp
{

using ObjectModel;
using Entities;

public partial class SimpleView2 : UserControl
{

N o t e

The full source code for this class is available on the Companion Web site.

}
}

This second view resembles Figure 43.10 when shown in the running application.

Finally, the third view we will implement is to show the power of .NET databinding.
This view is a DataGrid control that is bound to the EnhancedBindingList class that
holds our SimpleEntity objects. We do not need to implement any logic behind

Simple Automation and MVC Example 547

Figure 43.10 Screenshot of list style display of the object model data.

adding and removing objects because this is all handled beautifully by the built-in
features of databound controls.

namespace SampleApp
{

using ObjectModel;
using Entities;

public partial class SimpleView3 : UserControl
{

N o t e

The full source code for this class is available on the Companion Web site.

}
}

This third view resembles the one shown in Figure 43.11 when shown in the running
application.

Chapter 43 ■ MVC Object Model Automation with CodeDom548

Figure 43.11 Screenshot of a DataGrid bound to the object model data.

The DataGrid view is great because we do not have to put in much code to get it up
and running. The downside is a little bit of a performance hit compared to the
other views because of an insane number of reflection calls when the row count
gets fairly high. It’s all about the right tool for the job!

Conclusion
A number of problems arise when an application contains a variety of presenta-
tion layer code, business logic, and data access code. These applications are often
difficult to maintain and extend because of all the dependencies between different
components. Usually any change, even the smallest one, breaks compilation and
calls for a bit of refactoring to get the application back together. Tightly coupled
architectures make it difficult to reuse components, often resulting in copy-paste
solutions or other ungodly hacks. The Model-View-Controller design pattern is
widely used for desktop application development, and I guarantee that you will see
a significant improvement in the overall maintainability and extensibility of your
application if you consider this wonderful paradigm. It will make your application
and components much more reusable, provide you with a decoupling of your
business logic and presentation layer, and cleanly support extensibility mechanisms
such as plugins and integrated scripting.

Integrated scripting is not necessary for many applications, especially small throw-
away tools, but for large applications where you anticipate a fair amount of content
to be created, you should definitely consider implementing some form of automa-
tion support to reduce the time spent on performing tedious and repetitive tasks.
Doing so can save a significant amount of time, money, and patience.

Conclusion 549

This page intentionally left blank

Techniques
for Deployment

and Support
“Dating a girl is just like writing software. Everything’s going to work just
fine in the testing lab (dating), but as soon as you have a contract with a
customer (marriage), then your program (life) is going to be facing new
situations you never expected. You’ll be forced to patch the code (admit
you’re wrong) and then the code (wife) will just end up all bloated and
unmaintainable in the end.”

scott1853

As technology advances, the complexities surrounding deployment and support
increase, causing some concern with the Total Cost of Ownership (TCO). The
endless permutations of hardware, software, and security constraints cause
migraines for deployment managers everywhere. If you cannot get your software
into the hands of your users, and easily, then what good is your software? Some
tools are meant for internal use, where you often know the hardware and software
profile of your target machines, but external tools that are available to the general
public are a different story. External tools require additional machine profile testing,
and they require an efficient way to access any software updates that are available.

PART IX

There is never a single “correct solution” in regards to deployment, as the appro-
priateness of a solution is dependent on project-specific factors. There are, how-
ever, common techniques and approaches that can be applied to your tools when
the time comes, in order to lessen the burden of deployment management.

The chapters in Part IX focus on these techniques and approaches, and show you
some situations where a particular technology is an ideal match for the end solu-
tion. A couple of traditional deployment techniques are covered, as well as tech-
nology that is new to Microsoft .NET 2.0.

553

Deployment and
Versioning with
ClickOnce

chapter 44

Version 1 of any software is full of bugs. Version 2 fixes all the bugs and is
great. Version 3 adds all the things users ask for, but hides all the great stuff
in Version 2.

Fred Blechman

Configuration management has always been an integral component of the soft-
ware development life cycle because its main purpose is to efficiently handle the
evolving nature of software design. The deployment and support of a product
often causes many headaches and problems, especially with regards to updating
the user base with the latest software version. It is for this reason that there is such
a following around thin-client architectures and web-based solutions. A change is
generally only needed in a single location on the server to affect all connected
users. Imagine a company with a thousand machines that use a particular software
application. If it is deployed as a desktop application, you must rely on the user to
perform updates because of the large user base.

There are virtually limitless varieties of machine configurations within the user
base of a software product, and the components and code of desktop applications
must run on all of them. So many different configurations of software can also
lead to the infamous “DLL Hell” that has haunted configuration management for
many years. There is also a large assortment of security profiles within any orga-
nization of reasonable size, so it is important that software run under a diverse
range of security permissions.

There are problems and limitations with web applications, especially when it
comes to performance, security, and browser limitations. The biggest limitation
with a web application is the lack of offline support. Additionally, user interface
functionality is quite poor; things like drag and drop support is very hard or even
impossible to do. Web applications also consume a lot of server resources and
bandwidth because things have to be done with a round trip to the server, followed
by a waiting period. Applications that require print support are limited to “print
screen” with hardly any formatting control. There are some plugins and ActiveX
controls that help to alleviate these problems, but they tend to suffer from the same
deployment problems that a lot of the desktop applications have. The ideal solu-
tion would be to find a balance between web and desktop application deployment.

There have been some past attempts to remove these burdens from configuration
and deployment managers, but no single solution has presented itself that could
solve all the problems. Aside from traditional deployment methods like MSI pack-
ages, the initial release of the .NET 1.0 Framework provided the ability to launch
applications directly from a web site such as http://localhost/application.exe (also
known as href-exes), but this method usually required security policy changes on
the client, which meant that an MSI package had to be run first. This method does
not support the idea of an offline mode.

Recently, a couple of managed libraries were made available that aided in the
updating of application versions. Both the Updater Application Block (UAB) and
Jamie Cool’s AppUpdater libraries support the ability to download new versions
of a product to the desktop, eliminating the security and performance concerns of
href-exes. The downloaded applications are stored on the local disk, so offline
mode was supported.

Version 2.0 of the Microsoft Visual Studio .NET and the Microsoft .NET
Framework provide a new technology called ClickOnce, which allows us to devel-
op desktop applications that are deployed using a safe, system-controlled and
secure installation process, and are updated automatically from a centralized server
location. This is all made possible because .NET applications are designed for
application isolation and zero-impact deployment (also known as xcopy deployment).

This chapter will cover the creation, deployment, launching, and updating of a
ClickOnce application using the Visual Studio 2005 IDE. ClickOnce deployment
can be done manually by copying the files, the application manifest, and the
deployment manifest to the deployment location, but the manual creation of the two
manifest files is beyond the scope of this text.

Chapter 44 ■ Deployment and Versioning with ClickOnce554

N o t e

The .NET Framework SDK includes a tool called MAGE (Manifest Generator and Editor) that pro-
vides both a UI and a command line interface that can create and manipulate the manifest files
that power ClickOnce.

ClickOnce and MSI Comparison
While ClickOnce solves many deployment problems plaguing the software world
right now, it is by no means a “silver bullet” for every deployment scenario. There
will be times when ClickOnce deployment will not suffice, and it would be more
beneficial to use MSI or xcopy deployment instead. The intent of this section is to
educate you on the differences between ClickOnce and MSI deployment so that
you can determine which solution will support the needs of your project.

Both ClickOnce and MSI have a dependency on a runtime that must be installed
on the user’s machine before installation can begin. ClickOnce requires the .NET
2.0 Framework in order to run. This can be installed with an old-fashioned boot-
strapper. MSI files have an MSI runtime that must also be installed, although all
current versions of Windows come preinstalled with this runtime. Again, this run-
time could be installed with an old-fashioned bootstrapper.

The need for user input is very small with a ClickOnce deployment. Two clicks are
needed: one click on the hyperlink to launch the installer, and another click on the
confirmation dialog. The remainder of the installation is a progress bar. This can
be a good thing, but personalization and customization of the install process are
very limited. MSI files generally have wizard pages that can support many differ-
ent types of user input. MSI files can be run in a BasicUI mode that functions in a
fashion quite similar to ClickOnce.

ClickOnce can only install an application per-user. Per-machine installations are
impossible, so multiple users will result in multiple copies of the software on the
machine. MSI files can install on a per-machine basis. ClickOnce is also very
restrictive with the installation directory. Files will always be installed to the My
Applications folder within the My Documents folder. MSI files can install to any
directory specified. You cannot modify the target computer with a ClickOnce
install, whereas an MSI file can access the registry and other parts of the machine.

At this point, you are probably thinking, “What’s so great about ClickOnce if MSI
files provide more functionality and features?”

ClickOnce and MSI Comparison 555

First, ClickOnce deployment takes advantage of application isolation, meaning that
the installed applications are isolated from other applications and the operating
system itself. This protects the user from the infamous “DLL Hell.” MSI installers
replace files and manipulate the registry, which can cause all sorts of problems.

MSI files cannot check for newer versions of the software without the help of addi-
tional tools. ClickOnce installers have this functionality built right into the runtime.

Updates are pushed to users when they request the deployment manifest for the
application. MSI files do not support this functionality, although they can inte-
grate pretty well with management and deployment tools such as SMS and Active
Directory.

Hopefully I did not scare everyone away by pointing out the limitations of ClickOnce.
Overall, ClickOnce is an excellent deployment solution, and it solves many prob-
lems that MSI installers cannot overcome.

Creating the Application
Before we can start discussing ClickOnce deployment, we need to build an appli-
cation that we can work with. The simplest C# Windows Forms project will do, such
as the one shown in Figure 44.1 that has a single button displaying a “Push Me!”
message box.

At this stage when we have a completed product ready, a separate MSI project is
normally created to deploy the files, while Visual Studio 2005 integrates ClickOnce
deployment right into the IDE for the project.

Chapter 44 ■ Deployment and Versioning with ClickOnce556

Figure 44.1
Example application used for deployment.

Publishing the Application
At this stage when we have a completed product ready, a separate MSI project is
normally created to deploy the files. Visual Studio 2005 integrates ClickOnce
deployment right into the IDE for the project. Build your solution so that all the
related binaries are compiled and select the Publish <Application Name> option
from the Build menu, as shown in Figure 44.2.

The first screen of the publishing wizard, as shown in Figure 44.3, asks where you
would like the application to be deployed. This location can be any HTTP 1.1 web
server, ftp server, a file path on the local disk, or a file path on a network drive.

Publishing the Application 557

Figure 44.2
Menu option to configure ClickOnce deployment.

Figure 44.3
Wizard page that prompts
for the deployment path.

The next wizard screen, as shown in Figure 44.4, asks whether the application will
be available offline. If the application is available offline, a local cached copy of it
will be installed so that the last version requested from the online data store will
be launched. Keep in mind that the cached copy can not be the latest version, but
typically this deployment method is used in situations where it is acceptable to
have a slightly older version of the application at certain times. The cached copy is
launched via the shortcut in the Start Menu if offline mode is available; otherwise,
the application is only available by accessing the data store path.

The final screen of the Publishing Wizard, as shown in Figure 44.5, describes
where the application will be published. No additional configuration is required at
this stage, so you can click the Finish button to complete the publishing process.

After the publishing process has completed, you will be redirected to a generated
web page, as shown in Figure 44.6, which contains a button that can execute the
ClickOnce installer. This page has the name of the application, the current version,
and the name of the publisher. Notice that the publisher field is blank. This will be
addressed later in this chapter.

If you mouse over the Install button, you should notice that the link is pointing to an
application manifest (http://localhost/SimpleApplication/SimpleApplication.application,
in this example). This is really the only link you need to give your users to launch
the application. Launching the application will be covered later in this chapter.

Chapter 44 ■ Deployment and Versioning with ClickOnce558

Figure 44.4
Wizard page that prompts
for the deployment mode.

Publishing the Application 559

Figure 44.5 Final wizard page that informs you that the publishing is complete.

Figure 44.6 Screenshot of the web-based installer page.

The application is now deployable, so we can move on to discussing how to go
about launching the application, configuration deployment settings, and pushing
updates.

Launching the Application
The application can be launched by navigating to the application manifest file in
the top-level folder of the deployment location. For this example, the path would
be http://localhost/SimpleApplication/SimpleApplication.application.

Before the application can launch, the ClickOnce runtime must first determine if
the prerequisites are installed, and then determine if the application itself is
installed. The application is launched if both checks are successful; otherwise, an
installer dialog is presented that will install the application along with the neces-
sary prerequisites. The runtime checks are performed while displaying the progress
dialog shown in Figure 44.7.

Because this is the first time the application is launched, you will be prompted
with an installation dialog like the one shown in Figure 44.8. This trust dialog will
describe any warnings that are a result of the security settings for the application
and the installer. One warning in particular is that the publisher is unknown, but
this warning is very easy to fix and will be covered later on, in the deployment con-
figuration section.

Chapter 44 ■ Deployment and Versioning with ClickOnce560

Figure 44.7
Progress dialog shown during
web-based launching.

Figure 44.8
Trust dialog during
application installation.

Click on the More Information… link to view additional information about the
security settings for the installer. Figure 44.9 shows this.

Start the installation process by clicking the Install button on the trust dialog, and
the application will start to be deployed. This is shown in Figure 44.10.

The application is now installed, so all subsequent requests for the application
manifest will result in the application being launched.

With installation and launching covered, it is time to show how to customize the
deployment manifest for your application using the Visual Studio 2005 IDE.

Deployment Configuration
As discussed earlier, the ClickOnce deployment engine is driven by manifest files
that are essentially XML documents. These documents contain various properties

561Deployment Configuration

Figure 44.9
More information about
the trust dialog.

Figure 44.10
Installation dialog for a
ClickOnce deployment.

and settings that ClickOnce uses to deploy your application with a certain degree
of intelligence. These files can be created by hand, but the focus of this topic is on
using ClickOnce with Visual Studio integration.

There are a variety of settings that are accessible through the Publish property page
under project properties. This property page is shown in Figure 44.11.

By clicking on the Options… button, you will be able to set publishing settings
through the Publish Options dialog. This dialog, as shown in Figure 44.12, lets you
specify the publisher, product name, support information, and various deploy-
ment settings, depending on your deployment strategy. It is a good thing to set this
information so that fewer warnings appear in the trust dialog when a user installs
the application.

Large applications typically have external dependencies on libraries or compo-
nents that must be installed prior to using the application. Most notably, the .NET
framework itself is required to run any managed applications. Thankfully, Visual
Studio offers an excellent bootstrapper utility that will install the prerequisites
before allowing ClickOnce to install the application. All of this happens behind the
scenes during an installation and is configured through the dialog that is accessed
by clicking on the Prerequisites… button. Figure 44.13 shows the bootstrapper
configuration screen.

Chapter 44 ■ Deployment and Versioning with ClickOnce562

Figure 44.11 Application configuration page for ClickOnce deployment.

The bootstrapper supports custom prerequisites, but the one downside is that
these prerequisites cannot be updated by ClickOnce.

Deployment Configuration 563

Figure 44.12
Publishing options screen
for ClickOnce.

Figure 44.13
Bootstrapper configuration
screen for ClickOnce.

Chapter 44 ■ Deployment and Versioning with ClickOnce564

Pushing Application Updates
A great feature of ClickOnce deployment is the ability to push new versions of a
product to its users from a centralized location. Applying updates using ClickOnce
is extremely easy, and there are also a few deployment settings that can be specified,
depending on how you want your updates to be given to the users. Some users
really dislike having updates installed automatically, so if appropriate, you can tell
ClickOnce to prompt the users if they wish to install the new updates. You can also
enforce certain minimum versions on the users so that every user has at least a cer-
tain version.

Figure 44.14 shows the configuration screen for application updates. This screen is
accessed by clicking on the Updates… button, and is used to specify the version-
ing strategy used by ClickOnce.

After you make changes to the application, all you need to do is republish the
application, and the new version will be available to users the next time they request
the deployment manifest.

Try making a new noticeable change to our simple application, like the one shown
in Figure 44.15, and republish the application.

With the new update available, navigate to the publish.htm page that is automati-
cally generated by ClickOnce. Remember that we specified the publisher informa-
tion, so there is much more information on this page than before. Figure 44.16
shows the updated web page.

Figure 44.14
Application update configuration
screen for ClickOnce.

Clicking the Install button will apply the new updates and launch the application.

Programmatically Handling Updates
ClickOnce supports a variety of features that generally meet the requirements of
application updating, but times do arise where you want programmatic control

Programmatically Handling Updates 565

Figure 44.15
Screenshot of the version 1.0.0.1 changes
to our application.

Figure 44.16 Screenshot of the republished web install screen.

over how and when updates occur. ClickOnce exposes a programmatic API that
allows you to manually check for updates and apply them. This functionality is
available in the System.Deployment.Application namespace and has a variety of fea-
tures, depending on the need of the custom solution.

The following code shows the easiest way to programmatically check for updates
and synchronously deploy them, but keep in mind that there is much more flexi-
bility in the ClickOnce API than what is shown here.

try
{

ApplicationDeployment updater = ApplicationDeployment.CurrentDeployment;

UpdateCheckInfo updateInfo = updater.CheckForDetailedUpdate();

if (updateInfo.UpdateAvailable)
{

string message1 = “A newer version of this application is available. “;
string message2 = “Do you want to update the application now?”;

if (MessageBox.Show(message1 + message2,
“ClickOnce Demo Updater”,
MessageBoxButtons.YesNo)
== DialogResult.Yes)

{
updater.Update();
MessageBox.Show(“Please shutdown and restart the “ +

“application to start using the new version.”);
}

}
}
catch (DeploymentException exception)
{

MessageBox.Show(exception.Message);
}

When a new version is available and the update is downloaded, the new application
files are placed in the appropriate folder named after the version. The shortcut to
the application is then pointed at the new folder, which requires shutting down the
application and restarting to take advantage of the changes.

Chapter 44 ■ Deployment and Versioning with ClickOnce566

A major advantage of ClickOnce deployment is that the application can be kept
unaware of ClickOnce because there is no need to inherit from base classes or
implement interfaces. However, it is comforting to know that support is there
when you need programmatic control over ClickOnce for your deployment strategy.

Conclusion
In this chapter, you learned about ClickOnce deployment, and how it can quickly
be used to deploy software on user machines, along with a versioning strategy that
can keep the software up to date.

Code access security is beyond the scope of this chapter, so there was not much
discussion around security permissions with ClickOnce applications. This func-
tionality does exist in the publishing system, and there are some great tools that
you can take advantage of to make your life easier.

As mentioned earlier, ClickOnce deployment is a great deployment solution, but
it is not always the method you want for every situation. But for situations where
you want application isolation, ease of use, offline mode, and reliable versioning,
ClickOnce is a solution you can place your trust in.

Conclusion 567

This page intentionally left blank

569

Testing for the
Availability of
the .NET Framework

chapter 45

The only way to learn a new programming language is by writing programs
in it.

Dennis Ritchie

Managed applications on the .NET platform have access to a wealth of features
and prebuilt functionality, dramatically decreasing development time. Deploying
.NET applications is also extremely simple, provided the required runtime is pre-
sent. Managed applications have a dependency on the Common Language
Runtime and the class framework assemblies, and will not function without them.
Deploying these applications generally entails that you check to see if the operat-
ing system has the .NET runtime and, if not, install it. Some installation packagers
have bootstrapper utilities that can automate this process for you, but generally
you are on your own.

One solution is to take the manual approach by attempting to run the application.
If it does not load, you obviously require the .NET runtime. This approach is not
a clean way to handle deployment.

Another solution is to check the Win32 registry for entries, keys like:

HKEY_LOCAL_MACHINE\Microsoft\.NETFramework\policy\v1.1
HKEY_LOCAL_MACHINE\Microsoft\.NETFramework\policy\v2.0

While checking the registry will work in many situations, there are some cases
where the installation folder has been renamed or a service pack has been applied
that will not be reflected with these registry keys.

In this chapter, I present a solution that can determine the list of Common
Language Runtimes that are correctly installed and allow enumeration through
them. The solution will also account for service packs and renamed folder locations.

N o t e

The large segments of source code have been removed from this chapter and are available on the
Companion Web site in order to fit this chapter into the book. Please refer to the source code of
the example in order to clarify any implementation questions.

The Solution
The code in this section forms the solution for this chapter. The code compiles
into a static library that can be reused across multiple projects.

N o t e

The full source code for the solution is available on the Companion Web site.

We do not want a dependency on mscoree, so we use LoadLibrary and
GetProcAddress in order to use the needed functions. The prototype for
FSGetRequestedRuntimeInfo is also copied directly into the source code so that we do
not have a dependency on the header file for mscoree.

typedef HRESULT (__stdcall *FPGetRequestedRuntimeInfo)
(LPCWSTR exe,
LPCWSTR versionPtr,
LPCWSTR configurationFile,
DWORD startupFlags,
DWORD runtimeInfoFlags,
LPWSTR directory,
DWORD directoryLength,
DWORD *directoryLengthPtr,
LPWSTR version,
DWORD buffer,
DWORD* length);

The constructor for the version check class first determines whether the .NET
framework is installed (in any shape or form); then it determines the base instal-
lation path for the .NET framework.

Chapter 45 ■ Testing for the Availability of the .NET Framework570

N o t e

The source code for the constructor is available on the Companion Web site.

The following method is used to find out where the .NET framework base instal-
lation path is. This is done by checking the Win32 registry for the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\InstallRoot

This method caches the installation path as well, so that multiple version checks
do not need to reexecute the code to search the registry.

BOOL CLRVersionCheck::GetInstallationBasePath(TCHAR* basePath, DWORD bufferSize)
{

N o t e

The source code for this method is available on the Companion Web site.

}

The following method returns a list of CLR versions after querying the .NET
framework base installation path.

size_t CLRVersionCheck::EnumerateVersions(std::vector<std::string>& versionList)
{

N o t e

The source code for this method is available on the Companion Web site.

}

The following method enumerates the directories located in the .NET framework
base installation path. It is important to note that not all of these entries will be
valid CLR versions, because EnumerateVersions() will handle the filtering and vali-
dation.

size_t CLRVersionCheck::EnumerateVersionDirectories(std::vector<std::string>&
versionList)

{

N o t e

The source code for this method is available on the Companion Web site.

}

The Solution 571

The following method is used to determine whether a CLR version is actually valid
and active within the operating system. This method is given a version number, and
the GetRequestedRuntimeInfo() method of mscoree is used to validate it.

BOOL CLRVersionCheck::IsVersionAvailable(LPCWSTR frameworkVersion)
{

N o t e

The source code for this method is available on the Companion Web site.

}

Example Usage
Using the version check library is very easy. To start, link to the static library file
(.lib) and include the library header (CLRVersionCheckLib.hpp).

The following code shows a simple console application that enumerates a list of
available .NET framework versions and displays the results.

#include “stdafx.h”
#include <conio.h>

int _tmain(int argc, _TCHAR* argv[])
{

N o t e

The source code for this method is available on the Companion Web site.

Figure 45.1 shows the console application in action.

Chapter 45 ■ Testing for the Availability of the .NET Framework572

Figure 45.1 Screenshot of the console example in action.

Conclusion
This chapter discussed how to determine which versions of the .NET framework
are installed on an operating system, and that they are valid and active. There are
a couple ways to approach this problem, and each method has viable pros and
cons. This method may require more code than simply checking the registry for
the policy entries, but you can be guaranteed that the version list returned from the
library only contains valid and active CLR versions. This technique is extremely
useful for application deployment strategies, though there are other reasons for using
this solution as well.

Conclusion 573

This page intentionally left blank

575

Building and Customizing
an MSI Installer

chapter 46

The fantastic element that explains the appeal of dungeon-clearing games
to many programmers is neither the fire-breathing monsters nor the milky
skinned, semi-clad sirens; it is the experience of carrying out a task from
start to finish without user requirements changing.

Thomas L. Holaday

Many years ago, installing applications was as easy as copying an executable to a
floppy disk and either copying it to a user’s computer or running it directly off the
disk. Computers and software development have advanced to an era where com-
plex logic and tasks can be evaluated and performed, but this advancement has
introduced a new magnitude of installation complexity. Instead of a single exe-
cutable, we now have to install hundreds of files, and even installations spanning
multiple machines in the case of distributed architectures. Some applications even
depend on the registration of shared dependencies and components like COM
objects, MDAC, or the .NET Framework. Some applications have a lot of complex
dependencies on shared components, which many times results in the deployment
nightmare known as “DLL Hell.”

A number of deployment strategies and technologies have been developed to try
and address these concerns. Each approach has a place, because some approaches
are better at deploying certain applications than others. A common approach, and a
relatively straightforward one, is XCOPY deployment. This method of deployment

is most suitable for .NET applications, because assemblies almost never rely on
registry entries created during installation. Deploying an application with XCOPY
deployment entails copying the relevant assemblies to the client computer. These
applications can launch immediately because of the self-describing nature of .NET
assemblies. Assemblies contain all the information necessary to load themselves,
along with locating and loading all required dependencies. The XCOPY approach
is known as zero-impact deployment because the target computer will not break
with varying configurations of the registry or component. You can also uninstall
the application simply by deleting the relevant files without worrying about any
negative side effects. XCOPY deployment is ideal for situations where the applica-
tion is relatively self-contained and can be executed manually. Other situations
invite an alternative approach.

For situations that require a more robust deployment solution, Windows Installer
is the best choice. Windows Installer technology produces installer files with .msi
and .exe extensions that execute an installation process that installs files to specific
location, and performs system configuration and registration, and does so through
a user interface that is simple enough for most users to understand. By wrapping
a complex installation into a user-friendly process, you reduce the total cost of
ownership (TCO) by allowing the users to correctly install and configure your
applications. Windows Installer can even provide a mechanism to repair corrupt-
ed installations if the need arises, making maintenance and support easier than
ever. Corrupted installations using the XCOPY approach require that you manu-
ally replace the bad files or the application in its entirety. Windows Installer also
provides an automatic rollback feature, ensuring that all installed files are cleanly
uninstalled if an installation fails. This feature goes one step further by bringing
the machine back to the state it was in before the installation was initiated.

Visual Studio Installer (VSI) is a technology integrated into Visual Studio 2005
that utilizes the Windows Installer engine. Because MSI installers depend on the
existence of the Windows Installer engine, this dependency can also be installed by
VSI before installation continues.

N o t e

The MSI format resembles a database structure, where setup information is stored along with com-
pressed data files.

In addition to utilizing the Windows Installer engine and manipulating the
Windows file system, Visual Studio Installer also provides a number of additional

Chapter 46 ■ Building and Customizing an MSI Installer576

features to support complex installations. Installers can read and write keys with-
in the Windows registry, including an automated mechanism to register both
COM components and .NET components (within the Global Assembly Cache).
Launch conditions can be used to ensure that all requirements are satisfied before
installation can continue. Launch conditions can check information like the user
and computer name, operating system, presence of the .NET Common Language
Runtime, and if a registry entry or another application exists. Installers can also
prompt the user for different pieces of information, allowing for a customizable
installation process. Custom setup programs or scripts can also be initiated when
the installation completes successfully.

N o t e

A third deployment approach, covered in Chapter 44, “Deployment and Versioning with ClickOnce,”
describes a new technology introduced by Microsoft in .NET 2.0. I recommend that you read this
chapter if you are concerned about automatic updates, smart client installation, and isolation under
a least privilege account. For robust installations, I recommend that you stick with Windows Installer.

This chapter will cover how to create and configure a Visual Studio Installer, along
with showing how to develop custom installer actions for any fancy tasks your
application needs to perform during installation.

Creating a Setup Project
Visual Studio 2005 provides five types of project templates that can be used to
handle the setup and deployment of .NET applications. These templates are avail-
able from the same New Project menu that you create new applications from.
Figure 46.1 shows the New Project dialog for the deployment project templates.

The Setup Project template is used to create a Windows Installer for your applica-
tions. This is the project type that will be covered in this chapter.

The Web Setup Project template is used to create a Windows Installer that can
install a web application to a virtual directory on a web server.

The Merge Module Project template is used to package shared files and compo-
nents into a module that can be shared between multiple setup projects. Merge
modules are only installed during an installation if the files in the merge module
have not yet been installed on the target machine.

The Setup Wizard template is a wizard that helps guide you through the creation
of one of the project templates.

Creating a Setup Project 577

The Cab Project template is used to package files without any installation logic.
This project type is generally used to package files into a single file that can be
deployed onto a web server, so that web browsers can download these components
onto their local machines before installation.

We will start off with an existing Windows Forms application and solution that
will be named SimpleApp. Create a new project in this solution with the Setup
Project template. You will see the new project added to the current solution, as
shown in Figure 46.2.

Chapter 46 ■ Building and Customizing an MSI Installer578

Figure 46.1 Project types for deployment in Visual Studio 2005.

Figure 46.2
New setup project added to current solution.

With our new deployment project, we need to include the compiled executable
from SimpleApp into the installer. This can be done by right-clicking on the setup
project and selecting Project Output from the Add menu. A dialog will be pre-
sented, like the one shown in Figure 46.3, that prompts you to select what output
you want to package with the installer. Select the primary output option; this will
package the built assembly.

As it stands right now, you can build the setup project to produce an installer for
the SimpleApp project, but we will press on to configuration and customization.

Project Configuration
There are all sorts of customizations that can be done on the installer, but the first
area to customize is the properties section for the project. Figure 48.4 shows the
properties section for the SetupDemo project that can be accessed by right-clicking
on the setup project and selecting Properties. There are a number of properties
that you can set; you can see what each property is for by clicking in one of the
property fields and reading the description that appears on the bottom panel.

Once you have tweaked the project properties, you can move on to the various edi-
tors that are available for the installer. The editors are available through the View
menu when you right-click on the setup project.

Project Configuration 579

Figure 46.3
Dialog prompting for the type
of project output to add.

The first editor to cover is the file system editor that allows you to add files and
shortcuts to the installer, such as Start menu items. Figure 46.5 shows the file sys-
tem editor. By default you are presented with three special folders: Application
Folder, User’s Desktop, and User’s Programs Menu. All the executables, libraries,
text files, images, and all other supporting files needed by your application must
reside in the Application Folder. This folder can contain any number of files or
directories in any hierarchy that you want. You can also create shortcuts to files or
executables in the User’s Desktop and User’s Programs Menu folders. Additional
special folders can be created by right-clicking on the parent file system node and
selecting Add Special Folder.

N o t e

Visual Studio Installer reads project dependencies, so you do not need to add components or system
files to your installer, except for ones that cannot be read from the source project, such as databases.

For our installer, we want to create a shortcut to the SimpleApp application on the
desktop. Navigate into the User’s Desktop folder, right-click, and select Create New
Shortcut. This action is shown in Figure 46.5.

Chapter 46 ■ Building and Customizing an MSI Installer580

Figure 46.4
Properties for the SetupDemo
deployment project.

We need to specify where the file within our installation package is located so that
a shortcut can be created. Navigate to the Application Folder, select the primary
output from the SimpleApp project, and click OK (as shown in Figure 46.6). Doing
so will create a shortcut to the SimpleApp executable on the user’s desktop after
installation has completed.

You can see the new shortcut we just created show up in the file system editor, as
shown in Figure 46.7.

The next editor we can use is the file types editor, which is used to associate file
extensions with an application. This editor allows you to register file extensions so
that you do not have to worry about this step programmatically when you launch
your application for the first time. The file types editor is shown in Figure 46.8.

Project Configuration 581

Figure 46.5
File system editor; creating a new shortcut.

Figure 46.6
Selecting a file to create
a desktop shortcut to.

Figure 46.7
Newly created shortcut shown
in file system editor.

The Name property is used to describe the file type within the file types editor. The
Command property specifies what application is launched when this file type is
opened from the file system. The Description property is just what it says, a
description of the file type within the file types editor. The Extensions property is
the most important because it describes which extensions are associated with this
file type registration. The Icon property is used to specify which icon is given to
applications sporting the registered extensions. Finally, the MIME property is used
to describe which mime type is associated with the file mapping. A file mapping
has actions (Open is the action used in this example) which represent verbs that
are passed into the opening arguments along with the file path so that the appli-
cation can handle the file appropriately.

Another useful editor is the registry editor that allows you to manipulate registry
entries on the target computer. This editor can add entries into the Windows reg-
istry from directly within the installer.

To add a key, simply right-click on the node you want to create under and select
New>Key. You can add values such as strings, environment strings, binary values,
and DWORDs.

C a u t i o n

Beware of what you manipulate within the Windows registry; this can be very dangerous. Make
sure you give your keys a distinct grouping and naming.

The registry editor is shown in Figure 46.9.

Chapter 46 ■ Building and Customizing an MSI Installer582

Figure 46.8
Screenshot of the file types editor.

One of the key features of Windows Installer is the ability to display user-friendly
interfaces that make deployment easier and more appealing to the average user. By
default, you are given a standard template for how the user interface looks and
flows, but this can all be modified through the user interface editor, as shown in
Figure 46.10. The user interface editor configures the dialogs that are shown dur-
ing the installation, and it can add new dialogs like user registration.

Finally, the launch conditions editor is used to specify the requirements that must
be satisfied in order for your application to be installed on the target computer.
Searches can be executed against the file system, registry, or previously installed
applications to validate that certain dependencies exist (outside of dependencies
that the installer automatically picks up on). By default, all .NET installations have

Project Configuration 583

Figure 46.9
Screenshot of the registry editor.

Figure 46.10
Screenshot of the user interface editor.

a requirement that the .NET Framework be installed. This condition ensures that
you have everything installed correctly to run .NET applications, and if not, a
bootstrapper can be configured to install the .NET Framework before your instal-
lation is continued. Figure 46.11 shows the launch conditions editor.

Deployment Configuration
With project configuration taken care of, we can move on to deployment config-
uration. Start by opening the Configuration Manager dialog by right-clicking on
the setup project and selecting Properties, and then clicking on the Configuration
Manager button in the top-right corner of the property page. This dialog allows
you to manage multiple build configurations, each with a different group of set-
tings. By default, the Setup Project template creates a configuration for Debug and
a configuration for Release. The Debug mode creates debugging symbols that
make runtime debugging a lot easier, except this mode is not optimized for per-
formance. The Release mode is the opposite; debugging symbols are not created,
and the code is optimized for performance. Be sure to change your active solution
configuration to Release mode before you begin deploying your application. The
Configuration Manager dialog is shown in Figure 46.12.

Chapter 46 ■ Building and Customizing an MSI Installer584

Figure 46.11
Screenshot of the launch conditions editor.

Figure 46.12
Configuration
Manager dialog
within Visual
Studio 2005.

The files in your deployment project can be packaged in a selection of ways. The
first format is to store loose uncompressed files, which basically means that no
compression takes place and the files are stored as they are. This is an ideal
approach because installation speed is important to you. Having uncompressed
files takes a lot less time to install rather than having decompression operations
that have to happen before files can be installed. This solution is ideal for local
computer or network environments where you are not concerned with bandwidth
or download issues. The next approach is to store your files in the setup file, which
means that your files are compressed and stored within the MSI file. This approach
is great for situations where you are concerned with network traffic or user com-
petence; the fewer files you can give users with limited technical ability, the better.
Lastly, you can store your files in Cabinet files (.cab). Basically, files are stored in
external Cabinet files that are referenced by entries in the MSI file. At runtime, the
installer uses these entries to decompress and install the Cabinet files. Cabinet files
are stored alongside the MSI file in the same directory. This solution is ideal for
web deployments or deployments that require interchangeable components for a
variety of configurations.

You have the option of tweaking the compression level to favor different scenarios.
You can select Optimized for Speed, Optimized for Size, or None. Optimizing for
Speed means that files are roughly compressed, resulting in faster compression,
sacrificing a reduction with the amount of compression applied. Optimizing for
Size means that a more intensive compression algorithm is used to shrink the files
as much as possible, resulting in an excellent level of compression at the cost of
additional performance overhead. Lastly, selecting None for the compression
mode will result in files being stored uncompressed within a package (if applica-
ble). You can use this mode with a setup file if you want a fast install with a small
number of files to work with.

Figure 46.13 shows the property page for the setup project configuration.

Many applications rely on the existence of shared components or frameworks
before installation can occur. A solid example of this relationship is the installation
and usage of any .NET application. Client machines must have the .NET runtime
and supporting framework installed, or .NET applications cannot execute. Visual
Studio Installer has a mechanism known as a bootstrapper that executes and com-
pletes successfully before actual installation occurs. This bootstrapper can be con-
figured to make sure that certain key dependencies exist, and to offer methods to
acquire these dependencies if they are not found. Visual Studio Installer requires
Windows Installer 1.5 to be installed on the target computer in order to function.
Windows XP was the first operating system that came bundled with Windows

Deployment Configuration 585

Installer 1.5. Earlier operating systems required that you package a bootstrapper
with your installer to account for the older or nonexistent versions. Including the
bootstrapper increases your installer size by roughly 3MB. You can specify the Web
bootstrapper, which means that the bootstrapper can be downloaded from the
Internet if needed. The benefit of this approach is that the bootstrapper does not
have to be packaged with the installer, thereby reducing the overall size of the
installation package. The bootstrapper is accessed by clicking on the Prerequisites
button in the setup project configuration page, and you will be presented with the
dialog shown in Figure 46.14.

Chapter 46 ■ Building and Customizing an MSI Installer586

Figure 46.13
Property page for
the setup project
configuration.

Figure 46.14
Dialog to configure the
installation bootstrapper.

Custom Installer Actions
Using the boilerplate setup templates is fine and dandy, but applications with any
sort of complexity often require that custom steps be performed during installa-
tion, such as the creation of databases, publishing of reports, user personalization,
product license key evaluation, and so forth. These steps can be performed
through the use of custom installation actions, which are code classes that you can
compile within your solution, and then point the installation process at them. To
start, we will add a new item to the application project, as shown in Figure 46.15.

The item we are adding is an Installer Class (shown in Figure 46.16), which is a
class that is decorated for processing by the Visual Studio Installer. This class inher-
its from Installer, which exists in the System.Configuration.Install namespace.

This class provides four methods (Install, Commit, Rollback, and Uninstall),
which can be overridden to run custom functionality at the appropriate state in
the installer. The example provided with this chapter simply displays a message
box in the constructor; although in a real world implementation you would over-
ride the four methods appropriately.

N o t e

The four override methods of Installer are not always called on the same instance of the class.
Therefore, it is important that each method can run independently of the other methods or class
instances in terms of data persistence and state.

Figure 46.17 shows the simple Installer class implementation provided with the
example for this chapter.

Custom Installer Actions 587

Figure 46.15
Adding a new Project Item.

With our simple custom installer logic built, we need to link it into the setup project.
This is done through the custom actions editor, which is available from the View
context menu item where the other editors are located (as shown in Figure 46.18).

The custom actions editor contains groupings for the four methods of the Installer
class. We are just going to add an action for the Install state, which can be done

Chapter 46 ■ Building and Customizing an MSI Installer588

Figure 46.16 Adding a new Installer Class item.

Figure 46.17 Simple Installer class implementation.

by right-clicking on the Install node and selecting Add Custom Action… as shown
in Figure 46.19.

You will be prompted with a dialog that will ask you to select where the custom
installer class resides. Since we just added the class to the main application, you can
navigate into the Application Folder and select the primary output. This is shown
in Figure 46.20.

The custom action is now linked into the installer and ready to fire when installa-
tion is initiated.

Custom Installer Actions 589

Figure 46.18
Accessing the custom actions editor.

Figure 46.19
Adding a custom action to the Install node.

Figure 46.20
Selecting the primary output as
a source for the installer class.

Deploying the Installer
You can build the installer by right-clicking on the setup project and selecting
build. The bin directory of the setup project on the file system now contains the
MSI and exe files, along with any supporting files used by the installer. This whole
directory can be zipped up and distributed for users to run. Figure 46.21 shows the
welcome screen shown to users running our new installer.

During installation, our custom installer action will execute and display the mes-
sage box, as shown in Figure 46.22.

Chapter 46 ■ Building and Customizing an MSI Installer590

Figure 46.21
Welcome screen shown
to users for SetupDemo.

Figure 46.22
Custom installer action
firing during installation.

Conclusion
This chapter discussed the need for deployment strategies and technologies that
reduce the total cost of ownership, and some approaches with .NET application
deployment. The bulk of the chapter focused on a walkthrough of the construc-
tion of a fairly simple MSI setup project sporting a custom installer action. Visual
Studio Installer can be leveraged to provide professional-looking installation pack-
ages that perform a lot of complex installation and registration activities behind
the scenes, enabling users with limited technical ability to install your software.

Although this chapter only covered the rudiments of Visual Studio Installer, you
should now have enough of a foundation to pursue additional information if nec-
essary on harnessing the robust functionality of MSI packages and the Windows
Installer engine.

Conclusion 591

This page intentionally left blank

593

Determining Binary
File Differences

chapter 47

A complex system that works is invariably found to have evolved from a
simple system that worked… . A complex system designed from scratch
never works and cannot be patched up to make it work. You have to start
over with a working simple system.

John Gall, from Systemantics: How Systems Really Work and How They Fail

In the wonderful world of software development and deployment, products are
generally never released error-free. Even in the rare instance that a product is
rolled out without any internal bugs, issues appear from different hardware and
operating system configurations on the end user’s computer. Whether the issues
are related to security vulnerabilities, application instability, or even a feature that
was not feasible to implement in an earlier version, software generally requires at
least a couple of revisions to keep the people using the software happy and inter-
ested in the product. This chapter will discuss one particular method of updating
older versions in a manner suitable for environments requiring a small memory or
hard drive footprint.

Deployment is a very important topic to address in software development. If a
product you have deployed requires an important update, how will the existing
people using your software receive it? The most popular medium for transferring
data is the Internet, and most auto-update engines utilize it to send new versions
to users. One problem with the Internet is that with such a wide demographic of
users, not everyone has a great connection speed and transfer rate.

Imagine you have a 30 MB data file included with an initial release of your prod-
uct, and in the next update 200 KB is modified. Would it be feasible to have every-
one download the new data file? Such a large file would take a long time to down-
load on a dial-up connection, especially when only a small fraction of the original
data was modified. A better method would be to transmit only the bytes that
changed, and merge them into the existing data file.

An ideal solution would be a utility that could take an old and a new version of a
file, generate a list of differences, and offer a method to both apply and deploy the
data changes to users.

To start, we need an algorithm that can determine a list of differences between two
arbitrary sets of data that are sequentially similar, and do so in a manner that can
transform the old dataset as efficiently as possible.

N o t e

The large segments of source code are available on the Companion Web site. Please refer to the
source code of the example in order to clarify any implementation questions.

What Is Levenshtein Distance?
Devised in 1965 by a Russian scientist named Vladimir Levenshtein, Levenshtein
distance (LD) is an algorithm designed to measure the similarity between two
strings. The metric is also known as edit distance by people who cannot pro-
nounce “Levenshtein,” and it is a measure of the smallest number of deletions,
substitutions, and insertions required to transform one string into another, which
we will refer to as source (s) and target (t), respectively. An edit is either deleting a
character, substituting one character for another, or inserting a character.

Levenshtein distance is a [theta](m x n) algorithm, where m and n are the lengths
of the strings, that computes the edit distance in time proportional to the length
of the source times the length of the target. The greater the edit distance, the more
differences are present between the two strings.

Given:

(s) = “Apple”
(t) = “Apple”
LD(s, t) = 0 because both s and t are identical.

(s) = “Apple”

Chapter 47 ■ Determining Binary File Differences594

(t) = “Apples”
LD(s, t) = 1 because one insertion is required to transform s into t.

(s) = “Apple”
(t) = “Ape”
LD(s, t) = 2 because one substitution and deletion are required to transform s
into t.

This algorithm has been used in DNA analysis, plagiarism detection, speech recog-
nition, document versioning systems, and spell checking. Levenshtein distance is
also known as a generalization of Hamming distance, where only substitutions are
handled and both strings are of equal length.

One of the biggest drawbacks to the Levenshtein distance is the expensive memory
requirements of the algorithm. While the traditional matrix-based approach is
extremely precise, it is only practical to use on small datasets. As soon as the algo-
rithm is used on a large dataset, the exorbitant amount of memory and comparisons
quickly rules out the traditional Levenshtein implementation for our purposes.
For example, 50,000 bytes compared to a similar dataset will result in around 2.5
billion comparisons, and roughly 250 MB of memory.

Using Levenshtein distance would not completely satisfy our requirements, although
the algorithm definitely influenced the solution I’m presenting in this chapter. The
full source code will not be discussed in this chapter in order to make the text easier
to follow, but the Companion Web site has the full source with comments. The
only methods discussed in this chapter are extracted from the core logic of the dif-
ferencing engine. Please refer to the source code for a stronger understanding of
the implementation itself.

Generating a Difference List
The main processing component of the differencing engine is the logic that com-
pares two source buffers and outputs a sequence of transformations that can
transform source data into target data. The following methods in this section com-
pose the majority of the central logic of the engine provided with this chapter.

The following method is roughly the starting point for building the difference list.
A PatchOperation object is passed in that holds the source and target data buffers.
This method initializes a few public properties and fires the PatchOperation off to the
ProcessRange method. Later on, the PatchOperation is passed into BuildDifferencesList
that finalizes all the difference states into the transformation sequence.

Generating a Difference List 595

private static PatchOperation Process(PatchOperation operation)
{

N o t e

The source code for this method is available on the Companion Web site.

}

The following method processes a range of data in the source and target buffers to
pull out any similarities in the data. This method mainly tries to find data that
does not change between the source and target buffers to reduce the overall data
size of the transformation sequence.

private static void ProcessRange(PatchOperation operation,
int targetStart,
int targetEnd,
int sourceStart,
int sourceEnd)

{

N o t e

The source code for this method is available on the Companion Web site.

}

The following method performs the actual extraction of match data within a spec-
ified range.

private static void GetLongestSourceMatch(PatchOperation operation,
PatchState state,
int targetStart,
int targetEnd,
int sourceStart,
int sourceEnd)

{

N o t e

The source code for this method is available on the Companion Web site.

}

The following method compares the specified ranges in the source and target
buffers to determine the length of a match.

Chapter 47 ■ Determining Binary File Differences596

private static int GetSourceMatchLength(PatchOperation operation,
int target,
int source,
int maxLength)

{

N o t e

The source code for this method is available on the Companion Web site.

}

The following method builds the PatchDifference list based on the results in the
PatchOperation object.

private static List<PatchDifference> BuildDifferencesList(PatchOperation operation)
{

N o t e

The source code for this method is available on the Companion Web site.

}

The following method accepts the results of the sequence compilation and builds dif-
ferencing objects that will eventually be serialized into the XML transform document.

private static bool RecordDifference(List<PatchDifference> result,
int targetStart,
int targetEnd,
int sourceStart,
int sourceEnd)

{

N o t e

The source code for this method is available on the Companion Web site.

}

Transforming Data Using a Difference List
Once a listing of all the differences between the two datasets is generated, there are
a couple more steps we must take in order to have all the data required to perform a
transformation.

We must first extract the modified bytes from the new dataset and store them with the
difference list. In order to store the data, we must alter the PatchDifference object
to include an array of bytes specific to the type of change that will be performed.

Transforming Data Using a Difference List 597

There will obviously be no data needed for the NoChange and Delete difference
types.

A new function will be added to loop through the difference list and extract the
modified bytes, storing them in each PatchDifference object. This function is described
in the following code:

public static PatchDifferenceData[] BuildDifferenceData(PatchOperation operation)
{

N o t e

The source code for this method is available on the Companion Web site.

}

The preceding function loops through the difference list, and for insertion and
substitution types, specifies the data associated with the change. We are left with
an array of PatchDifference objects containing the data related to the change. At
this point, the array can be easily serialized into an XML document for an exter-
nal system to use, or we can go one step further and build a complete patching
engine. The example provided with this chapter shows how to do both methods.

In order to successfully transform the old file using the difference data, a particu-
lar sequence of changes must be used. You must remember that the slightest error
when transforming the old data will corrupt the file and make it generally unus-
able. The first change to do is substitution because it does not require any bytes to
be added or removed from the source data, only a direct byte swap.

You want to loop through the difference list once for each difference type. First,
loop and process all the substitution types. Remember that the PatchDifference
object contains the target index in the resultant data, and the data to copy.

After substitution, the next difference type to process is deletion of data. Because
the algorithm does not take other deletion changes into consideration, the data
offsets are incorrect after the first deletion. To solve this, we must define a simple
offset counter that is incremented by the number of bytes removed each time a
deletion occurs. This offset is subtracted from the offset specified in the difference
list so that the correct data is deleted and no buffer overflow occurs.

Lastly, the insertion type is processed to allocate memory for new data being
copied into the resultant buffer. The first step is to allocate a block of memory at
the correct index, with the size specified by the PatchDifference object. Once the
memory exists, the insertion data can be safely copied over.

Chapter 47 ■ Determining Binary File Differences598

System.Collections.Generic.List<byte> is an excellent choice to store the resultant
data because it has many methods that allow for inserting and deleting a range of
elements at a specific index.

The functions in the following code illustrate the process described in the preced-
ing text for transforming data using the difference list.

public byte[] MergeDifferences(PatchDifferenceData[] differenceData)
{

N o t e

The source code for this method is available on the Companion Web site.

}

private List<byte> MergeDifferencePass(PatchDifferenceData[] differenceData,
List<byte> result,
PatchDifferenceType type)

{

N o t e

The source code for this method is available on the Companion Web site.

}

After applying the preceding changes, the old data should have been correctly
transformed into the new data. The Companion Web site shows an example XML
document of how a transformation sequence can look.

Thoughts for Usability and Deployment
A major fault with the algorithm discussed occurs when the source and target files
are hardly similar, and very few duplicate byte sequences are found. This leads to
many recursion and comparison calls. This algorithm works great on datasets that
have a lot of similarities because large sequential patterns allow us to ignore pro-
cessing them, but this is very slow in the opposite situation.

One method of preventing this issue is to make sure that both files selected are
modifications of each other. This is hard to detect when building a patch, but after
the patch is created, you can add in a pretty decent failsafe.

Thoughts for Usability and Deployment 599

In Chapter 19, “Implementing a Checksum to Protect Data Integrity,” an algorithm
was discussed that generated a number based on the byte values in a memory
buffer. This value can be used to detect file corruption and tampering. The same
technique can also be used to be certain the file we are trying to patch is the correct
one.

A checksum can be generated based on the source file and then serialized into the
difference list. When a file is selected to be patched, you can generate a checksum
for it, and only patch the file if the generated checksum matches the value saved in
the difference list.

Employing this method of file verification solves a couple of issues. The obvious
reason is to stop users from patching the wrong files, thus preventing the algo-
rithm flaw discussed previously. Another benefit of using a checksum is that any
files transmitted over the Internet can be verified for integrity.

Aside from source file verification, a reliable distribution system must also be in
place so that users have access to the latest patch files for the software product. As
previously discussed, an excellent transport medium for software updates is the
Internet. A front end could query for the latest version, download the latest patch,
and apply it to an older version of the product.

Compression could also be used on the binary data, which would be a great
enhancement to the patching system because the resultant data size would be
decreased even more. .NET 2.0 introduced the System.IO.Compression namespace
that can accomplish this.

Lastly, another consideration for update generation is the modular structure of
your software. For example, if your software has external modules or assemblies
that are linked into the application at runtime, any updates specific to that library
can be issued in a patch specific to just that file. If you have any modules of code
that will change quite often, a general rule of thumb would be to place them in an
external library and run updates against that file alone.

Conclusion
Aside from building your own patch generator, some third-party tools are readily
available to do the job for you as well. Microsoft InstallShield is one of these tools
that will automatically build an update between two versions of data and offer a
method of transitioning between them. Another excellent deployment tool intro-
duced with .NET 2.0 is ClickOnce; be sure to check it out.

Chapter 47 ■ Determining Binary File Differences600

Why would you want to make your own? Having your own patch creation and
deployment system offers a lot of flexibility, and allows you to build your own
front-end and deployment process that users will access. There are also no licens-
ing fees involved since no third-party software is required.

The accessibility and deployment of software updates is an important aspect of
software development, especially in regards to publicly available tools. If a pro-
gram flaw causes the tool to produce corrupt game content, the program is useless
until it has been updated to produce correct data. By employing a system similar
to the one discussed in this chapter, users will be able to update a tool without los-
ing precious development time.

Conclusion 601

This page intentionally left blank

() (space), 222

* (dereferencer) symbol, 395

— (double hyphen), 222

- (hyphen), 222

/ (forward slash), 222

/// (XML comment lines), 114

: (colon), 222

= (equals), 222

A
abbreviation conventions, 128

accelerator keys, 50

access

custom actions editors, 589

databases

ADO.NET, 233–240

potion database editor, 239–240

isolated storage, 467–470

source code, 81–82

unmanaged code, 363–364

web resources, 327

Win32 API, 405–406

accuracy, intersection tests, 302–303

actions, editing, 589

adapters

design, 85–87

legacy components, 81

adding

installers, 588

references, 306

AddMenuItem() method, 507

Add Reference dialog box, 92

addresses. See pointer notation

ADO.NET

advantages of, 234

databases access, 233–240

object models, 235

aggregation, 80

INDEX

alert objects

consoles, 66–67

interfaces, 62–64

remoting, 69–73

tools, 64–66

windows, 67–69

algorithms

ciphers, 165

CRC-32, 193–198

deflate, 156

efficiency, 47–48

encryption, 164

gzip compression, 156–157

initialization vectors, 168–169

key strength, 166

Levenshtein distance, 594–595

MD5, 197

allocation

garbage collector, 376

high memory, 399–400

analysis, 381. See also profiles

development, 39

feasibility, 38

analyzing

code, 141

FxCop, 132–136

performance, 407–408

API (Application Programming Interface)

profiles, 381–384

Win32 API access, 405–406

Application class, 189

applications

ClickOnce

creating, 556

launching, 560–561

programmatically handling updates, 565–567

publishing, 557–560

pushing updates, 564–565

Clipboard, 338

console, 229–232

applications (continued)

legacy interoperability, 14, 333–344

managed, 341–344

MDI, 243–259

NUnit, 89

plug-ins. See plug-ins

profiling, 382

single instances, 183–184

implementation, 184–187

Visual Basic.NET, 187–191

splash screens. See splash screens

tools. See tools

unmanaged, 340–341

ApplicationServices component, 191

applying

asynchronous calls, 418

asynchronous download systems, 321–330

attributes, COM, 357–360

PropertyGrid control, 208–209

splash screens, 489–492

unsafe context, 397

values to types, 416–417

viewer controls, 289–290

arbitrary data, 157–159

architecture

alert objects

consoles, 66–67

interfaces, 62–64

remoting, 69–73

tools, 64–66

windows, 67–69

design, 58

development plans, 29

.NET Remoting, 335

objects

defining, 61–62

models, 535–536

plug-ins, 46, 536–537

structures, 74–75

tightly coupled, 82

unmanaged COM support, 73–74

arithmetic overflow checking, disabling, 399

arrays, iterating, 402–403

Artificial Studios case study, 22–25

assemblies

debugging, 107

importing, 118

.NET

as COM objects, 355–365

deployment, 364–365

NUnit attributes, 93–98

Assert.AreEqual() method, 98–99

Assert.AreSame() method, 99

Assert class, 98–102

Assert.Fail() method, 101–102

Assert.Ignore() method, 102

Assert.IsFalse() method, 100

Assert.IsNotNull() method, 101

Assert.IsNull() method, 100–101

Assert.IsTrue() method, 99–100

AssignHandle() method, 344

assignment values, 402–403

asymmetric encryption, 164

asynchronous calls, 418

asynchronous download systems, 321–330

asynchronous keyboard polling, 311–314

AsynchronousMouse class, 315–318

asynchronous mouse polling, 306–311

attributes

CategoryAttribute, 201

ClassInterface, 358

COM, 357–360

ComSourceInterfaces, 360

ComVisible, 359

DefaultPropertyAttribute, 201

DispId, 358

Guid, 357

[GuidAttribute], 495

InterfaceType, 358

naming, 125

NUnit, 93–98

[Category], 97

[ExpectedException], 96

[Explicit], 97

[Ignore], 95–96

[SetUp], 94–95

[TearDown], 95

[Test], 94

[TextFixture], 94

[PreserveSig], 495

PropertyOrder, 201, 207

[StructLayout], 497

TypeConverter, 201

Aurora Toolset, 18–22

automating

C# command windows, 539–543

CodeDom, 543–549

workflow, 523

benefits of, 523

implementation, 525–529

solution goals, 523–525

Index604

AutoResetEvent.WaitOne() method, 309

availability, testing .NET, 569–573

avoiding

boxing/unboxing, 415–416

manual optimization, 408–409

B
BackgroundWorker class, 424–427

BaseIntrospectionRule class, 139

batch files

frameworks, 173–175

implementation, 175–181

BeginPrint event, 211

BeginSwapChainRender() method, 257

benefits of .NET platforms, 14–15

binary equality, 409

binary files, 593–594

deployment, 599–600

difference lists, 595–597

Levenshtein distance, 594–595

transforming data using, 597–599

usability, 599–600

bindable class designs, 200–205

BioWare Corporation case study, 18–22

Bitmap objects, 262, 291

black box

approach to unit testing, 90

performance investigation, 407–408

block padding, 165–166

bootstrappers, 563, 585

bounding sphere intersection tests, 300–302

boxing, avoiding, 415–416

buffers, sizing, 326, 418

Build Action property, configuring, 137

building

proxy wrappers, 437–442

shell extensions

component registration, 516–519

debugging, 519–520

implementation, 511–516

reusable frameworks, 502–510

unmanaged interfaces, 494–501

thumbnail control, 271–275

tools, 5–6

viewer controls, 276–289

wrappers, 339–340

built-in D3DX functionality, 303–304

built-in rules, configuring FxCop, 131–132

built-in types, storing, 346–348

buttons, 49, 51

Index 605

C
C#, 9–10

adapter design patterns, 86

CodeDom, 539–543

facade design pattern, 83–84

overview of, 11–12

C++, managed extensions for, 13–14

Cab Project template, 578

caches (GAC), 92, 289, 364–365

Calculate() method, 196

Calculator Subtraction Plug-in, 435–436

callbacks, progress update, 326

Camel case, 128

Canceled property, 176

cancellation, supporting, 428

Cancel method, 177

capitalization, styles of, 122–123

case studies

Artificial Studios, 22–25

BioWare Corporation, 18–22

CategoryAttribute, 201

[Category] attribute, 97

CCW (COM Callable Wrappers), 356–357

GAC, 364–365

channels

registering, 337

Remoting, 69

checkboxes, feedback, 51

checksums, 193–194

functionality, 196–197

implementation, 194–196

integrity, verifying, 197–198

child windows

maximizing, 259

resizing, 246

Choose Toolbox Items dialog box, 289

chunky calls, 419–420

ciphers, 165

block padding, 165–166

modes, 167–168

selecting, 169–170

classes

Application, 189

Assert, 98–102

AsynchronousMouse, 315–318

BackgroundWorker, 424–427

BaseIntrospectionRule, 139

bindable, 200–205

cleanup, 148–150

Clipboard, 346

DataAdapter, 237–238

classes (continued)

DataProvider, 236

DataSet, 235

DataView, 235

helper, 350–353

HttpWebRequest, 322

core system, 325–329

maintaining data state, 323–325

HttpWebResponse, 322

Installer, 587

Mutex, 184

naming, 123

PageSettings, 216

PageSetupDialog, 216

PrintDialog, 215–216

PrintDocument, 211–216

PrintPreviewDialog, 217

RNGCryptoServiceProvider, 166

serializable, creating, 159–161

StringBuilder, 411

System.Timers, 525

TextureHandle, 269

unit testing, 90–91, 102–105

Vector3, 303

ClassInterface attribute, 358

cleanup, exceptions, 148–150

ClickOnce, 553–567

applications

creating, 556

launching, 560–561

programmatically handling updates, 565–567

publishing, 557–560

pushing updates, 564–565

deployment configuration, 561–563

MSI comparison, 555–556

clients, 69

Clipboard, 345–353

built-in types, storing, 346–348

classes, 346

data formats

querying, 350

storing custom, 348–349

ClipFormat structure, 498

Close() method, 236

CLR (Common Language Runtime), 10

profiles, 377–384

code. See also source code

analyzing, 141

CodeDom, 539–543

ECB, 167

flexible command line tokenizers, 221–228

FxCop, 129–130. See also FxCop

Microsoft coding conventions, 121–122

attributes, naming, 125

classes, naming, 123

enumerations, naming, 125

events, naming, 127

interfaces, naming, 123–124

methods, naming, 126

namespaces, naming, 124

parameters, naming, 126

properties, naming, 126–127

static fields, naming, 125–126

styles of capitalization, 122–123

standards, 30–31

unmanaged, accessing, 363–364

CodeDom

automating, 543–549

compiling, 539–543

collecting garbage, 375–376

collision-proof, 197

colon (:), 222

COM Callable Wrappers. See CCW

COM (Component Object Model)

attributes, 357–360

CCW, 356–357

deployment, 364–365

GUIDs, 494

interfaces, 60–61

objects as .NET assemblies, 355–365

RCW, 13

registering, 361–362

unmanaged code, accessing, 363–364

unmanaged support, 73–74

COM Interop, 73

command line, flexible tokenizers, 221–228

Command Window, 537

comments, XML, 113, 116–117

commercial toolsets, 17

Aurora Toolset, 18–22

Reality Engine SDK, 22–25

common interface design, 434

Common Language Runtime. See CLR

communication

Clipboard, 338, 345–353

domain gaps, 77–78. See also domain gaps

IPC, 333–334

managed applications, 341–344

.NET Remoting, 334–338

TCP/IP, 338

unmanaged applications, 340–341

Companion Web site, 219

Index606

comparing strings, 409–411

compilers, 15

JIT, 11

compiling

CodeDom, 539–543

plug-ins at runtime, 456–460

regular expressions, 413–415

Component Object Model. See COM

Component property, 435

components

ApplicationServices, 191

core design, 58–59

legacy, domain gaps, 81

legacy interoperability, 12

.NET, migrating, 60–61

Process, 230

registering, 516–519

reusability, 77–78. See also domain gaps

compositional friction, 78

legacy components, 81

compression

arbitrary data implementation, 157–159

gzip algorithm, 156–157

instances, TestObject, 160

lossless, 156

lossy, 156

serializable objects implementation, 159–161

types of, 156

computing picking rays, 299–300

ComSourceInterfaces attribute, 360

ComVisible attribute, 359

configuration

bootstrapper, 563

Build Action property, 137

ClickOnce deployment, 561–563

FxCop, 131

built-in rules, 131–132

projects

MSI installers, 579–584

UNit, 92–93

properties, debugging, 108

solution, selecting, 118

swap chains, 244

XML documentation files, 113

consistency, principle of, 50

console applications, 229–232

console entry points, 59

consoles, alert objects, 66–67

constructors, custom exceptions, 144–146

Content Team Develops and Supports model, 5

ContextHandle property, 262

Index 607

controllers, MVC, 533–535, 543–549

controls, 49

object models with scripts, 537–539

PropertyGrid
applying, 208–209

bindable class design, 200–205

ordering properties, 205–208

conventions

abbreviations, 128

Microsoft coding, 121–122

attributes, naming, 125

classes, naming, 123

enumerations, naming, 125

events, naming, 127

interfaces, naming, 123–124

methods, naming, 126

namespaces, naming, 124

parameters, naming, 126

properties, naming, 126–127

static fields, naming, 125–126

styles of capitalization, 122–123

cooperative flags, 308

coordinates

OpenGL, 296

screens, transforming, 296–299

copying data blocks, 403–405

core component design, 58–59

core system, 325–329

coverage, domain gaps, 78–79

CRC-32 (Cyclic Redundancy Check), 193

implementation, 194–196

integrity, verifying, 197–198

usage, 196–197

creating. See configuration

<cref> attribute, 116

custom data formats, storing, 348–349

customizing

exceptions, 144–146

MSI installers, 587–589

principle of, 54–55

rules, FxCop, 136–140

splash screens, 484–486

Cyclic Redundancy Check. See CRC-32

D
3d API, 46

DataAdapter class, 237–238

databases

access, ADO.NET, 233–240

potion database editor, 239–240

data blocks, copying, 403–405

data formats

custom, storing, 348–349

querying, 350

DataProvider class, 236

DataSet class, 235

data state, maintaining, 323–325

data types

selecting, 415

sizing, 401–402

DataView class, 235

DCOM (Distributed Component Object Model), 335

DDS (Microsoft DirectDraw Surface), 265

D3DX, applying built-in functionality, 303–304

debugging, 5

isolated storage, 471–473

shell extensions, 519–520

with Visual Studio, 107–108

decompression, 160. See also compression

decryption, 164. See also encryption

Dedicated Tools Team model, 5

DefaultPropertyAttribute, 201

defects, tracking, 33

defining

delegates, 176–177

methods, 176–177

objects, 61–62

properties, 176

deflate algorithm, 156

delegates, 175

defining, 176–177

DeleteCommand property, 236

deployment

binary files, 599–600

ClickOnce, 553–567

COM, 364–365

configuring, 561–563

MSI installer, 584–586, 590

dereferencer (*) symbol, 395

design, 1–2

architecture, 58

bindable classes, 200–205

console entry points, 59

core components, 58–59

development phase, 39–40

domain gaps, 78

entry points, 60

remoting, 60

web, 60

window, 59

interfaces, 49, 434

COM, 60–61

principle of consistency, 50

principle of customization, 54–55

principle of exploration, 52–53

principle of feedback, 51

principle of modality, 53

principle of moderation, 54

principle of refinement, 52

principle of self-evidence, 53–54

principle of transparency, 50–51

legacy components, 81

patterns

adapter, 85–87

domain gaps, 82–87

facade, 82–84

splash screens, 476–483

stakeholders, 4–5

standards, 30

swap chains, 247

thumbnails, 275

tools, 59. See tools

traceability, 45

Developer Ownership model, 5

development

plans, 27

architecture, 29

coding standards, 30–31

defect tracking, 33

design standards, 30

development environments, 33–34

documentation, 31–32

life cycles, 33

production environments, 34–35

requirements, 30

reusability, 29

staging environments, 34

stakeholders, 28–29

testing, 32

Vision section, 28

tools, 37–38

analysis, 39

design, 39–40

implementation, 40–41

models, 4–5

planning, 38–39

devices, DirectInput, 308

dialog boxes

Add Reference, 92

Choose Toolbox Items, 289

Publish Options, 562

splash screens, 476–483

Index608

difference lists

binary files, 595–597

transforming data using, 597–599

Direct3D, 46

Managed loaders, 264–268

MDI applications, 243–259

DirectInput devices, 308

directories, loading textures from, 290

disabling arithmetic overflow checking, 399

DispId attribute, 358

Dispose method, 386–388

Distributed Component Object Model (DCOM), 335

documentation, 53

development plans, 31–32

IntelliSense, 117

MSDN-style .chm, 120

source code, 111–112

generating, 112–114, 117–119

supported XML markup, 114–116

Document property, 215

Documents folder, 367–369

domain gaps, 77–78

compositional friction, 78

coverage, 78–79

design intentions, 78

design patterns, 82–87

entity overlap, 80–81

frameworks, 79–80

legacy components, 81

source code access, 81–82

double hyphen (—), 222

downloading files asynchronously, 321–330

DoWork event, 425–427

DropHandle type, 499

3DS Max interface, navigating, 89–108, 163–172

E
ECB (Electronic Code Book), 167

editing macros, 538

editors

custom actions, 589

interfaces, 583

launch conditions, 584

potion database, 239–240

registry, 583

efficiency metrics, 47–48

Electronic Code Book (ECB), 167

elements, adapter design patterns, 85

embedding plug-in metadata information, 434–436

encapsulation, 81

Index 609

encryption, 164–169

algorithms, 164

asymmetric, 164

block padding, 165–166

ciphers, 165

ICryptoTransform interface, 170–172

initialization vectors, 168–169

key strength, 166

private-key, 164

public-key, 164

symmetric, 164

EndPrint event, 211

EndSwapChainRender() method, 257

Engine Team Develops model, 5

entity overlap, 80–81

entry points, 60

console, 59

remoting, 60

web, 60

windows, 59

WinForms, 67–69

enumerations, naming, 125

environments

development, 33–34

production, 34–35

staging, 34

Epic Games, 25. See also Artificial Studios

equals (=), 222

events

batch files, 175–181

BeginPrint, 211

DoWork, 425–427

EndPrint, 211

exceptions, 150

naming, 127

PrintPage, 211

Exception Handling Application Block, 151

exceptions

FxCop, 134

handling, 143

cleanup, 148–150

creating custom exceptions, 144–146

events, 150

external data, 144

logging, 148

structured exception handlers, 147–148

throwing, 146–147

OverflowException, 399

spell checking, 135

System.ArgumentNullException, 147

System.IO.FileNotFoundException, 147

throwing, minimizing, 420

exchanging data between applications, 333–344

excluding rule violations, 135

Execute method, 176

ExecuteNonQuery() method, 236

ExecuteReader() method, 236

ExecuteScalar() method, 236

executing

queries, 236

threads, 429–430

[ExpectedException] attribute, 96

[Explicit] attribute, 97

explicit control, garbage collectors, 391–392

exploration, principle of, 52–53

expressions, compiling regular, 413–415

Extensible Markup Language. See XML

extensions

managed extensions for C++, 13–14

shell. See shell extensions

external data, handling exceptions, 144

external stakeholders, 4–5

eXtreme Programming (XP), 41

F
facade design patterns, 82–84

feasibility analysis, 38

feedback, principle of, 51

FileAccessNotify delegate, 176

FileAccessProcess delegate, 176

FilePattern property, 176

files

batch, 173–175

binary. See binary files

downloading asynchronously, 321–330

finalization, garbage collectors, 384–386

FindWindow() method, 342

fixed statements, pinning memory with, 398–399

flags, DirectInput devices, 308

flexible command line tokenizers, 221–228

folders

Documents, 367–369

My Recent Documents, 367–369

ForceWriteable property, 176

foreach loops, 417–418

formatting

strings, 411–412

styles, 222

forward slash (/), 222

frameworks

batch files, 173–175

domain gaps, 77–80

compositional friction, 78

coverage, 78–79

design intentions, 78

design patterns, 82–87

entity overlap, 80–81

legacy components, 81

source code access, 81–82

implementation, 175–181

NUnit, testing, 89

reusable shell extensions, 502–510

full-duplex communication, 79

full interoperability, 11

functionality, 4

checksums, 196–197

FxCop

analyzing, 132–136

built-in rules, 131–132

configuring, 131

exceptions, 134

installing, 130–131

rules, customizing, 136–140

G
GAC (Global Assembly Cache), 92, 289

CCW, 364–365

NGen, 421

Game Team Develops model, 5

garbage collection, 15

garbage collector, 373–375

allocation profiles, 376

CLR profiles, 377–384

collecting, 375–376

Dispose method, 386–388

explicit control, 391–392

finalization, 384–386

monitoring, 377–384

weak referencing, 389–391

GDI+ loaders, 263–264

generating

source code documentation, 112–114

XML documentation, 117–119

generic frameworks, 173–175. See also batch files

GetData() method, 346

GetDataObject() method, 346

GetXml() method, 235

Global Assembly Cache. See GAC

Globally Unique Identifier. See GUID

Index610

graphics

applying, 289–290

built-in D3DX functionality, 303–304

Direct3D swap chains, 243–259

intersection tests

bounding sphere, 300–302

improving accuracy, 302–303

managed Direct3D loaders, 264–268

picking rays, computing, 299–300

screen coordinates, 296–299

swappable loader interfaces, 262–263

textures

loading, 290–291

storing information, 268–271

thumbnails, 271–275

tools, 241–242

user events, 276

viewer controls, 276–289

Windows GDI+ loaders, 263–264

groupings, unit testing, 90–91

Guid attribute, 357

[GuidAttribute] attribute, 495

GUID (Globally Unique Identifier), 494

gzip algorithm compression, 156–157

H
half-duplex communication, 79

Handle property, 342

handling

events, 276

exceptions, 143

cleanup, 148–150

creating custom exceptions, 144–146

events, 150

external data, 144

logging, 148

structured exception handlers, 147–148

throwing, 146–147

HasExited property, 230

helper classes, 350–353

high memory allocation, 399–400

histograms, 383

HTTP (Hypertext Transfer Protocol), 322

HttpWebRequest class, 322

core system, 325–329

data state, maintaining, 323–325

HttpWebResponse class, 322

Hypertext Transfer Protocol. See HTTP

hyphen (-), 222

Index 611

I
IContextMenu interface, 495

ICryptoTransform interface, 170–172

IDataObject interface, 346, 496

IDisposable interface, 269

[Ignore] attribute, 95–96

ILoadingJob interface, 487

implementation

batch files, 175–181

checksums, 194–196

compression

arbitrary data, 157–159

serializable objects, 159–161

development phase, 40–41

flexible command line tokenizers, 223–228

job schedulers, 528–529

shell extensions, 511–516

single instances, 184–187

texture handle classes, 269–271

WinForms, 230–232

WMI, 186

worker logic, 425–427

workflows, automating, 525–529

importing

assemblies, 118

structures, 494

IMyComponent interface, 360

increment development, 41

in-game rendering, 23

inheritance

adapter design patterns, 85

multiple, 80

initialization vectors, 168–169

InitializeComponent method, 134

input/output. See I/O

InsertCommand property, 236

Installer class, 587

installing

FxCop, 130–131

MSI installers, 575–577. See also MSI installers

VSI, 576

instances

adapter design patterns, 85

single, 183–184. See also single instances

TestObject, compressing, 160

integration

UDDI, 334

unit testing, 90

IntelliSense on-the-fly documentation, 117

interfaces

aggregation, 80

alert object tool, 62–64

API profiles, 381–384

Aurora Toolset, 18–19

batch files, 175–181

COM, 60–61

design, 49, 434

principle of consistency, 50

principle of customization, 54–55

principle of exploration, 52–53

principle of feedback, 51

principle of modality, 53

principle of moderation, 54

principle of refinement, 52

principle of self-evidence, 53–54

principle of transparency, 50–51

3DS Max, 89–108, 163–172

editors, 583

facade design patterns, 82–84

IContextMenu, 495

ICryptoTransform, 170–172

IDataObject, 346, 496

IDisposable, 269

ILoadingJob, 487

IMyComponent, 360

IShellExtInit, 495

MDI. See MDI

naming, 123–124

NDoc, 119

Reality Engine SDK, 22–23

SDI, 246

splash screens. See splash screens

swappable loader, 262–263

unmanaged, 494–501

InterfaceType attribute, 358

internal stakeholders, 4–5

International Standards Organization (ISO), 44

interoperability, 11

legacy. See legacy interoperability

legacy applications, 14

Inter-Process Communication. See IPC

interruptible property, 479

intersection tests, 296

bounding sphere, 300–302

improving accuracy, 302–303

InvokeCommandInfo structure, 497

I/O (input/output), sizing buffers, 418

IPC (Inter-Process Communication), 333–334

Clipboard, 345–353

.NET, 334–339

IShellExtInit interface, 495

ISO (International Standards Organization), 44

isolated storage

access, 467–470

debugging, 471–473

levels of, 470–471

managing, 471–473

overview of, 466–467

items in recent document lists, managing, 367–369

iteration, 41

arrays, 402–403

J
Java Remote Method Invocation (RMI), 335

JIT (Just-In-Time) compilers, 11

jobs, scheduling, 523–529

Just-In-Time. See JIT

K
keyboards, asynchronous polling, 311–314

KeyDown method, 313

key strength encryption, 166

keywords

stackalloc, 399

unchecked, 399

unsafe, 397

using, 149

L
labels, static, 49

languages

C#, 11–12. See also C#

UML, 44

launch conditions editor, 584

launching ClickOnce applications, 560–561

layering WinForms, 229–232

legacy application interoperability, 14

legacy components, 81

legacy interoperability, 12, 331–332

exchanging data between applications, 333–344

levels of isolated storage, 470–471

Levenshtein distance, 594–595

life cycles

development plans, 33

SDLC, 37

loaders

GDI+, 263–264

Managed Direct3D, 264–268

swappable interfaces, 262–263

Index612

loading

plug-ins, 442–448

textures, 290–291

Logging and Instrumentation Application Block, 151

logging exceptions, 148

logical equality, 409

logic tools, 59

loopback communication, TCP/IP, 338

loops, foreach, 417–418

lossless compression, 156

lossy compression, 156

M
macros

comment tags, inserting, 113

editing, 538

maintainability, 44

maintaining data state, 323–325

Managed Direct3D

loaders, 264–268

Matrix, 298

management

applications, 341–344

CLR, 10

extensions for C++, 13–14

isolated storage, 471–473

items in recent document lists, 367–369

memory, 343, 383

WMI, 185

manual optimization, avoiding, 408–409

matrices, Managed Direct3D Matrix, 298

maximizing child windows, 259

MDI (Multiple Document Interface) applications,
243–259

MD5 (Message Digest 5), 197

measurements, 43–44. See also metrics

memory

allocating high, 399–400

compression. See compression

efficiency, 47–48

fixed statement, pinning with, 398–399

management, 343, 383

.NET CLR Memory performance object, 377

pointers. See pointers

MemoryStream objects, 291

MenuItemInfo structure, 498

menus, 49

placement of, 50

Mesh.Intersect() method, 302

Message Digest 5 (MD5), 197

Index 613

message property rules, 145

messages

building wrappers around, 339–340

WM_COPYDATA, 339

metadata plug-in information, embedding, 434–436

methods

AddMenuItem(), 507

Assert class, 98–102

AssignHandle(), 344

AutoResetEvent.WaitOne(), 309

batch files, 175–181

BeginSwapChainRender(), 257

Calculate(), 196

Close(), 236

defining, 176–177

Dispose, 386–388

EndSwapChainRender(), 257

ExecuteNonQuery(), 236

ExecuteReader(), 236

ExecuteScalar(), 236

FindWindow(), 342

GetData(), 346

GetDataObject(), 346

GetXml(), 235

importing, 494

InitializeComponent, 134

IntelliSense, 117

KeyDown, 313

Mesh.Intersect(), 302

naming, 126

Open(), 236

Present(), 257

Print(), 211

ReadXml(), 235

RegisterExtension(), 508

ReportProgress, 427–428

Run, 189

SendMessage(), 342

SetDataObject(), 346

SHAddToRecentDocs, 368

String.Compare(), 410

String.Equals(), 410

ToString(), 411

UnRegisterExtension(), 509

WaitOne(), 184

WriteXml(), 235

metrics, 43-44

efficiency, 47–48

maintainability, 44

performance, 45

portability, 46

metrics (continued)

reliability, 47

testability, 46

traceability, 44–45

usability, 45

Microsoft coding conventions, 121–122

attributes, naming, 125

classes, naming, 123

enumerations, naming, 125

events, naming, 127

interfaces, naming, 123–124

methods, naming, 126

namespaces, naming, 124

parameters, naming, 126

properties, naming, 126–127

static fields, naming, 125–126

styles of capitalization, 122–123

Microsoft DirectDraw Surface (DDS), 265

Microsoft Intermediate Language. See MSIL

Microsoft Solutions Framework (MSF), 41

middleware, 5

migration

legacy interoperability, 12

.NET components, 60–61

minimizing

exception throwing, 420

working sets, 418–419

modality, principle of, 53

models

automatable object, 532–533

objects

ADO.NET, 235

architecture, 535–536

controlling with scripts, 537–539

tools development, 4–5

Model-View-Controller. See MVC

moderation, principle of, 54

modes

ciphers, 167–168

padding, 165–166

modules, unit testing, 90–91

monitoring garbage collectors, 377–384

mouse

asynchronous polling, 306–311

gestures, 50

MSDN-style .chm documentation, 120

MSF (Microsoft Solutions Framework), 41

MSI installer, 575–577

customizing, 587–589

deployment, 590

projects

configuring, 579–584

creating setup, 577–579

deployment configuration, 584–586

MSIL (Microsoft Intermediate Language), 10

Multiple Document Interface. See MDI

multiple frameworks, 79. See also domain gaps

multiple inheritance, 80

Mutex class, 184

MVC (Model-View-Controller), 533–535, 543–549

My Recent Documents folder, 367–369

N
<name> attribute, 116

named pipes, 339

namespaces

naming, 124

System.Data.Common, 236

System.Security.Cryptography, 197

Visual Basic.NET, 188

naming

attributes, 125

classes, 123

enumerations, 125

events, 127

interfaces, 123–124

methods, 126

namespaces, 124

parameters, 126

properties, 126–127

static fields, 125–126

navigating 3DS Max interfaces, 89–108, 163–177

NDoc, 111

interfaces, 119

source code documentation, 117–119

NDoc tool, 32

.NET, 9–10

assemblies

as COM objects, 355–365

deployment, 364–365

availability, testing, 569–573

benefits of, 14–15

built-in types, storing, 346–348

classes, cleanup, 148–150

CLR Memory performance object, 377

COM. See also COM

components, migrating, 60–61

custom data formats, storing, 348–349

data formats, querying, 350

gzip compression, 156–157

IPC, 334–339

Index614

memory management, 343

overview of, 10–11

Remoting, 334–338

RPCs, 69

Windows Forms, 23

.NET Framework

capitalization styles, 122

cipher modes, 167–168

ciphers, 165

initialization vectors, 168–169

NUnit, 91–92. See also NUnit

network tools, 319–320

downloading files asynchronously, 321–330

Newkirk, Jim, 91

NGen, 420–421

notation, pointers, 394–396

Notify method, 177

NUnit

attributes, 93–98

[Category], 97

[ExpectedException], 96

[Explicit], 97

[Ignore], 95–96

[SetUp], 94–95

[TearDown], 95

[Test], 94

[TextFixture], 94

running, 105–107

testing, 89, 91–92

O
objects

automatable object models, 532–533

Bitmap, 262

loading from textures, 291

COM, 355–365. See also COM

defining, 61–62

IDataObject interface, 346

Managed Direct3D Matrix, 298

MemoryStream, 291

models

ADO.NET, 235

architecture, 535–536

controlling with scripts, 537–539

.NET CLR Memory performance, 377

.NET Remoting, 334–338

processing, 62

request, 322–323

serializable, 159–161

System.IO.System, 196

Index 615

on-the-fly IntelliSense documentation, 117

OpenGL, 46

coordinates, 296

Open() method, 236

operation progress, reporting, 427–428

optimization. See also performance

avoiding manual, 408–409

ordering properties, 205–208

output, custom rule violations, 140

OverflowException, 399

overlap, entity, 80–81

ownership, Developer Ownership model, 5

P
padding modes, 165–166

PageSettings class, 216

page setup, supporting, 216–217

PageSetupDialog class, 216

parallel composition, 79

parameters

naming, 126

prefixes, 222

Pascal case, 123

passwords, key strength, 166

patterns

adapters

design, 85–87

legacy components, 81

design

domain gaps, 82–87

facade, 82–84

MVC, 533–535

performance, 371

analyzing, 407–408

arithmetic overflow checking, disabling, 399

array iteration, 402–403

data block copying, 403–405

data types

selecting, 415

sizing, 401–402

foreach loops, 417–418

garbage collector, 373–375

allocation profiles, 376

CLR profiles, 377–384

collecting, 375–376

Dispose method, 386–388

explicit control, 391–392

finalization, 384–386

monitoring, 377–384

weak referencing, 389–391

performance (continued)

memory

allocating high, 399–400

pinning with the fixed statement, 398–399

metrics, 45

pointer notation, 394–396

regular expressions, compiling, 413–415

strings

comparing, 409–411

formatting, 411–412

reversing, 413

unsafe context, applying, 397

value assignment, 402–403

Win32 API access, 405–405

Performance Counter utility, 377

phases (development), 37–38

analysis, 39

design, 39–40

implementation, 40–41

planning, 38–39

picking rays, computing, 299–300

P/Invoke (Platform Invocation Service), 12–13

pipes, named, 339

plans (development), 27

architecture, 29

coding standards, 30–31

defect tracking, 33

design standards, 30

development environments, 33–34

documentation, 31–32

life cycles, 33

production environments, 34–35

requirements, 30

reusability, 29

staging environments, 34

stakeholders, 28–29

testing, 32

tools, 38–39

Vision section, 28

Platform Invocation Service. See P/Invoke

plug-ins, 46

architecture, 536–537

Calculator Subtraction Plug-in, 435–436

metadata information, embedding, 434–436

proxy wrappers, loading, 442–448

runtime

compiling, 456–460

reloading during, 448–456

security, 461–463

pointer notation, 394–396

policies, code, 129–130. See also FxCop

polling

asynchronous keyboard, 311–314

asynchronous mouse, 306–311

Pool, Charlie, 91

portability, metrics, 46

potion database editor, 239–240

prefixes, parameters, 222

Present() method, 257

[PreserveSig] attribute, 495

previewing, printing, 217–218

principles

consistency, 50

customization, 54–55

exploration, 52–53

feedback, 51

modality, 53

moderation, 54

refinement, 52

self-evidence, 53–54

transparency, 50–51

PrintDialog class, 215–216

PrintDocument class, 211–216

printers, selecting, 215–216

printing

previewing, 217–218

text, 211–215

Print() method, 211

PrintPage event, 211

PrintPreviewDialog class, 217

private-key encryption, 164

PRNG (pseudo random number generators), 166

Process component, 230

processes, IPC, 333–334

processing objects, 62

productivity

automatable object models, 532–533

C# command windows, automating, 539–543

CodeDom, automating, 543–549

jobs, scheduling, 523

MVC, 533–535

object model architecture, 535–536

plug-in architecture, 536–537

profiles

allocation, garbage collectors, 376

API, 381–384

CLR, garbage collectors, 377–384

Profiling API, 381–384

programming

flexible command line tokenizers, 221–228

helper classes, 350–353

Index616

progress

reporting, 427–428

update callbacks, 326

projects

MSI installers

configuring, 579–584

creating setup, 577–579

deployment configuration, 584–586

UNit, creating, 92–93

properties

batch files, 175–181

Build Action, 137

Component, 435

ContextHandle, 262

debugging, 107

defining, 176

DeleteCommand, 236

Document, 215

Handle, 342

HasExited, 230

InsertCommand, 236

Interruptible, 479

message rules, 145

multiple inheritance, 80

naming, 126–127

ordering, 205–208

SelectCommand, 236

splash screens, 476

StandardOutput, 230

UpdateCommand, 236

VersionText, 478

PropertyGrid control

applying, 208–209

bindable class design, 200–205

properties, ordering, 205–208

PropertyOrder attribute, 201, 207

protocols, HTTP, 322

proxy wrappers

building, 437–442

plug-ins, loading, 442–448

pseudo random number generators (PRNG), 166

public-key encryption, 164

publishing ClickOnce applications, 557–560

Publish Options dialog box, 562

pushing updates, 564–565

Q
queries

data formats, 350

executing, 236

Index 617

R
Rational Unified Process. See RUP

RCW (Runtime Callable Wrappers), 13

ReadXml() method, 235

Reality Builder interface, 22–23

Reality Engine SDK toolset, 22–25

recent documents, managing, 367–369

Recent Documents folders, managing, 367–369

Recursive property, 176

references, 53

adding, 306

FxCop SDK, 136

weak referencing, 389–391

refinement, principle of, 52

Register, 73

RegisterExtension() method, 508

registering

channels, 337

COM, 361–362

component, 516–519

registry editor, 583

regular expressions, compiling, 413–415

regular text, printing, 211–215

reliability, metrics, 47

reloading plug-ins during runtime, 448–456

remote procedure calls (RPCs), 69

remoting

alert objects, 69–73

entry points, 60

Remoting (.NET), 334–338

rendering, 257

in-game, 23

reporting operation progress, 427–428

ReportProgress method, 427–428

request objects, 322–323

requirements, development plans, 30

resizing windows, 246

resources, accessing, 327

responsive processing, 488

reusability, 5

development plans, 29

domain gaps, 77–78. See also domain gaps

reusable frameworks, 502–510

reversing strings, 413

RMI (Java Remote Method Invocation), 335

RNGCryptoServiceProvider class, 166

robustness, 15

role-playing game. See RPG

RPCs (remote procedure calls), 69

RPG (role-playing game), 18

rules

FxCop, customizing, 136–140

message property, 145

violations, excluding, 135

Run method, 189

running tests, NUnit, 105–107

Runtime Callable Wrappers (RCW), 13

runtime

compiling plug-ins, 456–460

reloading plug-ins, 448–456

RUP (Rational Unified Process), 38, 41

S
scheduling jobs, 523–529

screen coordinates, transforming, 296–299

scripts, 23

object models, controlling with, 537–539

scrollbars, 49

SCRUM/Agile development, 41

SDI (Single Document Interface), 246

SDLC (Software Development Life Cycle), 37

security

encryption, 164–169

plug-ins, 461–463

SelectCommand property, 236

selecting

ciphers, 169–170

data types, 415

printers, 215–216

self-evidence, principle of, 53–54

SendMessage() method, 342

serializable object compression, 159–161

services

Platform Invocation Services, 339

Web Services, 334

SetDataObject() method, 346

[SetUp] attribute, 94–95

SHAddToRecentDocs method, 368

sharing, IPC, 333–334

shell extensions

component registration, 516–519

debugging, 519–520

implementation, 511–516

reusable frameworks, 502–510

unmanaged interfaces, 494–501

Single Document Interface (SDI), 246

single instances (applications), 183–184

implementation, 184–187

Visual Basic.NET, 187–191

sizing

buffers, 326, 418

data types, 401–402

thumbnails, 271–275

SkipReadOnly property, 176

skunk tools, 3

Software Development Life Cycle. See SDLC

solution configuration, selecting, 118

source code

access, 81–82

documentation, 111–112

generating, 112–114, 117–119

supported XML markup, 114–116

helper classes, 350–353

space (), 222

spell checking exceptions, 135

spheres, bounding intersection tests, 300–302

splash screens, 475–476

applying, 489–492

customizing, 484–486

dialog boxes, 476–483

ILoadingJob interface, 487

responsive processing, 488

stackalloc keyword, 399

stack traces, 146

staging environments, 34

stakeholders, 4–5, 28–29

StandardOutput property, 230

standards

coding, 30–31

design, 30

ISO, 44

statements, pinning memory with fixed, 398–399

static fields, naming, 125–126

static labels, 49

StorageMedium structure, 499

storing

built-in types, 346–348

custom data formats, 348–349

instances

adapter design patterns, 85

isolated storage

access, 467–470

debugging, 471–473

levels of, 470–471

managing, 471–473

overview of, 466–467

texture information, 268–271

StringBuilder class, 411

String.Compare() method, 410

Index618

String.Equals() method, 410

strings

comparing, 409–411

formatting, 411–412

reversing, 413

stripping unit tests, 92

[StructLayout] attribute, 497

structured exception handlers, 147–148

structures

architecture, 74–75

ClipFormat, 498

importing, 494

InvokeCommandInfo, 497

MenuItemInfo, 498

StorageMedium, 499

styles

capitalization, 122–123

formatting, 222

subclassing, 80

subsystems, facade design patterns, 82–84

supported XML markup, 114–116

supporting

cancellation, 428

page setup, 216–217

printers, selecting, 215–216

print preview, 217–218

swap chains, 243–259

configuration, 244

design, 247

swappable loader interfaces, 262–263

symbols, 73

symmetric encryption, 164

System.ApplicationException, 144. See also excep-
tions

System.ArgumentNullException, 147

System.Data.Common namespace, 236

System.Exception, 144. See also exceptions

System.IO.FileNotFoundException, 147

System.IO.System objects, 196

System.Security.Cryptography namespace, 197

System.Timers class, 525

T
tags, XML, 114–116

TCO (total cost of ownership), 576

TCP/IP (Transmission Control Protocol/Internet
Protocol), 338

teams, tools, 7

[TearDown] attribute, 95

temporary buffer sizes, 326

Index 619

testability, metrics, 46

[Test] attribute, 94

testing, 89

development plans, 32

intersection, 296

bounding sphere, 300–302

improving accuracy, 302–303

.NET availability, 569–573

NUnit, 91–92. See also NUnit

running, 105–107

unit, 90–91, 102–105

TestObject instances, compressing, 160

textboxes, 49

[TextFixture] attribute, 94

TextureHandle class, 269

textures

loading, 290–291

storing information, 268–271

third-party middleware, 5

threads, executing, 429–430

throw-away tools, 3

throwing exceptions, 146–147, 420

thumbnails, building, 271–275

thunking, 187

tightly coupled architecture, 82

tokenizers, 221–228

toolbars, placement of, 50

tools, 3

alert objects, 64–66

building, 5–6

development, 37–38

analysis, 39

design, 39–40

implementation, 40–41

planning, 38–39

development models, 4–5

FxCop, 129–130. See also FxCop

graphics, 241–242

logic, 59

NDoc, 32

networks, 319–320

downloading files asynchronously, 321–330

Performance Counter, 377

teams, 7

tlbimp.exe, 14

toolsets, 3

Aurora Toolset, 18–22

commercial, 17

Reality Engine SDK, 22–25

ToString() method, 411

total cost of ownership (TCO), 576

traceability, 44–45

tracking defects, 33

transforming

data using difference lists, 597–599

picking rays, 299–300

screen coordinates, 296–299

Transmission Control Protocol/Internet Protocol. See
TCP/IP

transparency, principle of, 50–51

Two, Michael, 91

TypeConverter attribute, 201

Type Library Importer (tlbimp.exe) utility, 14

types

built-in, 346–348

of compression, 156

DropHandle, 499

importing, 494

IntelliSense, 117

pointers. See pointers

selecting, 415

sizing, 401–402

values, applying, 416–417

type-safety, 15

U
UAB (Updater Application Block), 554

UDDI (Universal Description Discovery and Integration),
334

UML (Unified Modeling Language), 44

unboxing, avoiding, 415–416

unchecked keyword, 399

Unified Modeling Language. See UML

uniform resource identifiers. See URIs

UNit projects, creating, 92–93

unit testing

classes, 102–105

overview of, 90–91

Universal Description Discovery and Integration. See
UDDI

Universal Resource Indicator. See URI

unmanaged applications, 340–341

unmanaged code, accessing, 363–364

unmanaged COM support, 73–74

unmanaged interfaces, 494–501

UnRegisterExtension() method, 509

unsafe context, applying, 397

unsafe keyword, 397

UpdateCommand property, 236

Updater Application Block. See UAB

updates

ClickOnce applications

programmatically handling, 565–567

pushing, 564–565

progress callbacks, 326

URIs (uniform resource identifiers), 322

URI (Universal Resource Indicator), 334

usability

binary files, 599–600

documentation, 32

metrics, 45

usage, checksums, 196–197

use cases, 44

user events, handling custom, 276

users, supporting cancellation, 428

using keyword, 149

utilities. See also tools

FxCop, 129–130

graphics, 241–242

Performance Counter, 377

tlbimp.exe, 14

V
values

assignment, 402–403

types, applying, 416–417

variables. See pointers

Vector3 class, 303

vectors, initializing, 168–169

versioning, ClickOnce, 553–567

VersionText property, 478

viewer controls

applying, 289–290

building, 276–289

views, MVC, 533–535, 543–549

Vision section (development plan), 28

Visual Basic.NET

namespaces, 188

single instances, 187–191

Visual Studio

code analysis, 141

debugging with, 107–108

Visual Studio Installer. See VSI

Vorontsov, Alexei, 91

VSI (Visual Studio Installer), 576

Index620

W
WaitOne() method, 184

waterfall approach, 41

weak referencing, 389–391

web entry points, 60

web resources, accessing, 327

Web Services, 334

Web sites, Companion, 219

white-box approach to unit testing, 90

white box performance investigation, 407–408

Win32 API access, 405–406

windows

alert objects, 67–69

entry points, 59

maximizing, 259

resizing, 246

Windows Clipboard, 345–353. See also Clipboard

Windows Forms, 23

Windows GDI+ loaders, 263–264

Windows Management Instrumentation. See WMI

WinForms

entry points, 67–69

implementation, 230–232

layering, 229–230

WM_COPYDATA messages, 339–340

WMI (Windows Management Instrumentation), 185

worker logic implementation, 425–427

worker threads, executing, 429–430

workflow (automating), 523

benefits of, 523

implementation, 525–529

solution goals, 523–525

working sets, minimizing, 418–419

wrappers

alert object windows, 68–69

building, 339–340

CCW, 356–357

encapsulation, 81

proxy

building, 437–442

loading plug-ins, 442–448

RCW, 13

request objects, 322–323

WriteXml() method, 235

Index 621

X
XCOPY, 576

XML (Extensible Markup Language)

comments, 113, 116–117

database access, 238–239

documentation, 111–112

generating, 112–114, 117–119

supported XML markup, 114–116

XP (eXtreme Programming), 41

xUnits, 91

GOT GAME?

Call 1.800.354.9706 to order
Order online at www.courseptr.comA division of Course Technology

™

Game Testing All in One

1-59200-373-7 ■ $49.99

Game Design, Second Edition

1-59200-493-8 ■ $39.99

Game Interface Design

1-59200-593-4 ■ $39.99

3D Game Engine Programming

1-59200-351-6 ■ $59.99

www.courseptr.com

	Foreword
	Acknowledgments
	About the Author
	Contents
	Introduction
	Part I: Toolset Design Fundamentals
	What Is a Tool? What Is a Toolset?
	Stakeholders: Internal Versus External
	Who Builds the Tools?
	How Large Are Tools Teams?
	Conclusion

	Why Use C#? Why Use .NET?
	Overview of .NET
	Overview of C#
	Legacy Interoperability
	Benefits
	Conclusion

	Examples of Commercial Toolsets
	Case Study: BioWare Corporation
	Case Study: Artificial Studios
	Conclusion

	Everything Starts with a Plan
	Vision
	Stakeholders
	Reusability
	Architecture
	Requirements
	Design Standards
	Coding Standards
	Documentation
	Testing
	Defect Tracking
	Life Cycle
	Development Environment
	Staging Environment
	Production Environment
	Conclusion

	Development Phases of a Tool
	Phase: Planning
	Phase: Analysis
	Phase: Design
	Phase: Implementation
	Conclusion

	Measurement Metrics for Tool Quality
	Metric: Maintainability
	Metric: Traceability
	Metric: Performance
	Metric: Usability
	Metric: Testability
	Metric: Portability
	Metric: Reliability
	Metric: Efficiency
	Conclusion

	Fundamentals of User Interface Design
	Principle of Consistency
	Principle of Transparency
	Principle of Feedback
	Principle of Refinement
	Principle of Exploration
	Principle of Modality
	Principle of Self-Evidence
	Principle of Moderation
	Principle of Customization
	Conclusion

	Distributed Componential Architecture Design
	Architecture Overview
	Core Components
	Specific Tool Logic
	Console Entry Point
	Windows Entry Point
	Other Entry Points
	Architecture Example
	Alternate Architecture Structure
	Conclusion

	Solutions to Bridge Domain Gaps
	Compositional Friction
	Cause: Domain Coverage
	Cause: Design Intentions
	Cause: Framework Gap
	Cause: Entity Overlap
	Cause: Legacy Components
	Cause: Source Code Access
	Relevant Design Patterns
	Conclusion

	Unit Testing with NUnit
	Overview of Unit Testing
	Introducing NUnit
	Creating an NUnit Project
	Attribute Overview
	Expected Outcome Assertion
	A Simple Example
	Running Tests
	Debugging with Visual Studio
	Conclusion

	Code Documentation with NDoc and XML
	Configuring the Project
	Supported XML Markup
	Commenting Example
	Generating the Documentation
	Conclusion

	Microsoft Coding Conventions
	Styles of Capitalization
	Naming Classes
	Naming Interfaces
	Naming Namespaces
	Naming Attributes
	Naming Enumerations
	Naming Static Fields
	Naming Parameters
	Naming Methods
	Naming Properties
	Naming Events
	Abbreviations
	Conclusion

	Enforcing Coding Policies with FxCop
	Installing FxCop
	Creating an FxCop Project
	Configuring Built-In Rules
	Analyzing Your Project
	Building Custom Rules
	Conclusion

	Best Practices for Robust Exception Handling
	External Data Is Evil
	Creating Custom Exceptions
	Throwing Exceptions
	Structured Exception Handlers
	Logging Exception Information
	Mechanisms for Cleanup
	Unhandled and Thread Exception Events
	Conclusion

	Part II: Techniques for Arbitrary Tools
	Compressing Data to Reduce Memory Footprint
	Types of Compression
	GZipStream Compression in .NET 2.0
	Implementation for Arbitrary Data
	Implementation for Serializable Objects
	Conclusion

	Protecting Sensitive Data with Encryption
	Encryption Rudiments
	Selecting a Cipher
	ICryptoTransform Interface
	Conclusion

	Generic Batch File Processing Framework
	Goals
	Proposed Solution
	Implementation
	Conclusion

	Ensuring a Single Instance of an Application
	Early Solutions
	Journey to the Dark Side
	The Solution
	Conclusion

	Implementing a Checksum to Protect Data Integrity
	Implementation
	Usage
	Alternative
	Conclusion

	Using the Property Grid Control with Late Binding
	Designing a Bindable Class
	Ordering Properties
	Using the PropertyGrid
	Conclusion

	Adding Printing Support for Arbitrary Data
	Printing Regular Text
	Supporting Printer Selection
	Supporting Page Setup
	Supporting Print Preview
	Conclusion

	Flexible Command Line Tokenizer
	Formatting Styles
	Implementation
	Sample Usage
	Conclusion

	Layering Windows Forms on Console Applications
	Implementation
	Sample Usage
	Conclusion

	Overview of Database Access with ADO.NET
	Advantages of ADO.NET
	ADO.NET Object Model
	Working with a DataReader
	Working with a DataAdapter
	Working with XML
	Potion Database Editor
	Conclusion

	Part III: Techniques for Graphical Tools
	Using Direct3D Swap Chains with MDI Applications
	What Is a Swap Chain?
	Thoughts for SDI and MDI Applicability
	Common Pitfalls
	The Proposed Solution
	Conclusion

	Constructing an Aesthetic Texture Browser Control
	Swappable Loader Interface
	Windows GDI+ Loader
	Managed Direct3D Loader
	Storing Texture Information
	Building the Thumbnail Control
	Handling Custom User Events
	Building the Viewer Control
	Using the Control
	Loading Textures from a Directory
	Loading Textures from a MemoryStream
	Loading Textures from a Bitmap
	Texture Browser Demo
	Conclusion

	Converting from Screen Space to World Space
	Transforming Screen Coordinates
	Computing the Picking Ray
	Bounding Sphere Intersection Tests
	Improving Intersection Accuracy
	Using Built-In D3DX Functionality
	Conclusion

	Asynchronous Input Device Polling
	Asynchronous Mouse Polling
	Asynchronous Keyboard Polling
	Sample Usage
	Conclusion

	Part IV: Techniques for Network Tools
	Downloading Network Files Asynchronously
	HttpWebRequest and HttpWebResponse
	The Request Object
	Maintaining Data State
	The Core System
	Sample Usage
	Conclusion

	Part V: Techniques for Legacy Interoperability
	Exchanging Data Between Applications
	What Microsoft.NET Provides
	What Microsoft.NET Should Provide
	Building a Wrapper Around WM_COPYDATA
	Conclusion

	Interacting with the Clipboard
	The Clipboard Class and IDataObject
	Storing Built-In Types
	Storing Custom Data Formats
	Querying Available Data Formats
	Complete Solution
	Conclusion

	Using .NET Assemblies as COM Objects
	COM Callable Wrappers (CCW)
	Applying Interop Attributes
	Registering with COM
	Accessing from Unmanaged Code
	Deployment Considerations
	Conclusion

	Managing Items in the Recent Documents List
	Implementation
	Example Usage
	Conclusion

	Part VI: Techniques to Improve Performance
	Playing Nice with the Garbage Collector
	Overview of the Garbage Collector
	Collecting the Garbage
	Allocation Profile
	CLR Profiler and GC Monitoring
	Finalization and the Dispose Pattern
	Weak Referencing
	Explicit Control
	Conclusion

	Using Unsafe Code and Pointers
	Rudiments of Pointer Notation
	Using an Unsafe Context
	Pinning Memory with the Fixed Statement
	Disabling Arithmetic Overflow Checking
	Allocating High Performance Memory
	Getting Size of Data Types
	Example: Array Iteration and Value Assignment
	Example: Data Block Copying
	Example: Win32 API Access
	Conclusion

	Investigating Managed Code Performance
	Investigating Performance
	Avoid Manual Optimization
	String Comparison
	String Formatting
	String Reversal
	Compiling Regular Expressions
	Use the Most Specific Type
	Avoid Boxing and Unboxing
	Use Value Types Sensibly
	The Myth About Foreach Loops
	Use Asynchronous Calls
	Efficient IO Buffer Sizes
	Minimize the Working Set
	Perform Chunky Calls
	Minimize Exception Throwing
	Thoughts About NGen
	Conclusion

	Responsive UI During Intensive Processing
	Implementing the Worker Logic
	Reporting Operation Progress
	Supporting User Cancellation
	Executing the Worker Thread
	Conclusion

	Part VII: Techniques to Enhance Usability
	Designing an Extensible Plugin-Based Architecture
	Designing a Common Interface
	Embedding Plugin Metadata Information
	Building a Proxy Wrapper
	Loading Plugins Through the Proxy
	Reloading Plugins During Runtime
	Runtime Compilation of Plugins
	Enforcing a Security Policy
	Conclusion

	Persisting Application Settings to Isolated Storage
	Concept of Isolated Storage
	Accessing Isolated Storage
	Levels of Isolation
	Management and Debugging
	Conclusion

	Designing a Reusable and Versatile Loading Screen
	Splash Dialog
	Go for the Gusto
	Concept of Loading Jobs
	Responsive Processing
	Simple Example
	Conclusion

	Writing Context Menu Shell Extensions
	Unmanaged Interfaces
	Reusable Framework
	Sample Usage—Standalone
	Sample Usage—Integrated
	Component Registration
	Debugging Techniques
	Conclusion

	Part VIII: Techniques to Increase Productivity
	Automating Workflow Using Job Scheduling
	Benefits
	Solution Goals
	Implementation
	Conclusion

	MVC Object Model Automation with CodeDom
	Advantages of an Automatable Object Model
	Comparison with Model-View-Controller Pattern
	A Simple Object Model Architecture
	Plugin-Based Architectures
	Controlling an Object Model with Scripts
	Implementing a C# Command Window
	Simple Automation and MVC Example
	Conclusion

	Part IX: Techniques for Deployment and Support
	Deployment and Versioning with ClickOnce
	ClickOnce and MSI Comparison
	Creating the Application
	Publishing the Application
	Launching the Application
	Deployment Configuration
	Pushing Application Updates
	Programmatically Handling Updates
	Conclusion

	Testing for the Availability of the .NET Framework
	The Solution
	Example Usage
	Conclusion

	Building and Customizing an MSI Installer
	Creating a Setup Project
	Project Configuration
	Deployment Configuration
	Custom Installer Actions
	Deploying the Installer
	Conclusion

	Determining Binary File Differences
	What Is Levenshtein Distance?
	Generating a Difference List
	Transforming Data Using a Difference List
	Thoughts for Usability and Deployment
	Conclusion

	Index

