

Unreal Tournament
Game Programming
for Teens

John P. Flynt, Ph.D.

with

Brandon Booth

®

© 2007 Thomson Course Technology, a division of Thomson Learning
Inc. All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or
retrieval system without written permission from Thomson Course
Technology PTR, except for the inclusion of brief quotations in a
review.

The Thomson Course Technology PTR logo and related trade dress are
trademarks of Thomson Course Technology, a division of Thomson
Learning Inc., and may not be used without written permission.

Unreal is a registered trademark of Epic Games, Inc. ALL RIGHTS
RESERVED. All other trademarks are the property of their respective
owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s
technical support line or Web site for assistance.

Thomson Course Technology PTR and the authors have attempted
throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the
manufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable.
However, because of the possibility of human or mechanical error by
our sources, Thomson Course Technology PTR, or others, the
Publisher does not guarantee the accuracy, adequacy, or completeness
of any information and is not responsible for any errors or omissions
or the results obtained from use of such information. Readers should
be particularly aware of the fact that the Internet is an ever-changing
entity. Some facts may have changed since this book went to press.

Educational facilities, companies, and organizations interested in
multiple copies or licensing of this book should contact the Publisher
for quantity discount information. Training manuals, CD-ROMs, and
portions of this book are also available individually or can be tailored
for specific needs.

ISBN-10: 1-59863-346-5

ISBN-13: 978-1-59863-346-7

Library of Congress Catalog Card Number: 2006906796

Printed in the United States of America

07 08 09 10 11 PH 10 9 8 7 6 5 4 3 2 1

Publisher and General Manager,
Thomson Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah O’Donnell

Manager of Editorial Services:
Heather Talbot

Marketing Manager:
Heather Hurley

Senior Acquisitions Editor:
Emi Smith

Marketing Assistant:
Adena Flitt

Project Editor:
Jenny Davidson

Technical Reviewer:
Marcia Flynt

PTR Editorial Services
Coordinator:
Erin Johnson

Interior Layout Tech:
William Hartman

Cover Designer:
Mike Tanamachi

CD-ROM Producer:
Brandon Penticuff

Indexer:
Larry Sweazy

Proofreader:
Sara Gullion

Thomson Course Technology PTR, a division of Thomson Learning Inc.
25 Thomson Place ■ Boston, MA 02210 ■ http://www.courseptr.com

http://www.courseptr.com

This book is dedicated to its readers.

To Epic
Although you find a few praises of Epic buried in the text, be aware that a book like this
one would not be possible without the tremendous efforts on the part of many very cool
people at Epic. They have created a fantastic world and an unequalled game development
environment. They have made their work available through the DVD and Internet
resources. Many thanks to Mark Rein, the engineers, developers, writers, and others asso-
ciated with Epic.

Unreal is a registered trademark of Epic Games, Inc.

John
To Emi Smith and Stacy Hiquet for arranging for the publication. To Jenny Davidson, for
watching over the schedule and making it happen. Thanks to the many good people at
Thomson who attend to the work. Many thanks to Brandon for being a great partner and
tolerating my stories about the history of Colorado. Thanks to Marc Rein at Epic for being
positive and responding to phone calls and e-mails. Also, thanks to the engineers at Epic
who characterized UnrealScript Game Programming All in One as a “solid” effort. The good
word from the source has meant everything. To Beth Walker, Adrian Flynt, Amy Flynt,
Kevin Claver, and others for being helpful and supportive in the Unreal effort. To students
at DeVry, NYU, and elsewhere for being themselves. To the folks at SmartDraw who for
years now have been generously providing me with tools to create illustrations. Thanks to
Marcia for the tremendous technical editing effort. You have made this book possible.

Acknowledgments

Acknowledgments v

The story told to the player Pawn object in Chapter 8 is derived from a story the religious
historian Mircea Eliade recounts in a book titled Myths, Dreams, and Mysteries (translated
by Philip Mairet; Harper and Row: New York, 1975). The original story is about a wise and
revered rabbi who lived near Cracow. In Chapter 10, the lines attributed to Groucho Marx
were found at www.quotationspage.com.

Brandon
First and foremost, my thanks go to John for putting in very long hours to make this book
possible in such a short amount of time. Thanks also go to John and Marcia for provid-
ing me with this wonderful opportunity. Thank you to my dear girlfriend, Bonny, for con-
stantly putting up with my busy schedule and for always being there when I need you.
Thank you to my wonderful family whose love, support, and guidance have helped me
immeasurably throughout the years. I love you all! Thank you to all of the other dear
friends and people in my life who have believed in me and helped shape me as a person.
Finally, thank you to my sweet cat, Buddy, for being playful and helping me remember to
always try to have fun.

www.quotationspage.com

John P. Flynt, Ph.D., has taught at colleges and universities, and has authored courses and
curricula for several college-level game development programs. His academic background
includes work in information technology, the social sciences, and the humanities. Among
his works are In the Mind of a Game, Perl Power!, Java Programming for the Absolute
Beginner, UnrealScript Game Programming All in One (with Chris Caviness), Software
Engineering for Game Developers, Simulation and Event Modeling for Game Developers (with
Ben Vinson), Pre-Calculus for Game Developers, (with Boris Meltreger), and Basic Math
Concepts for Game Developers (with Boris Meltreger). John lives in the foothills near
Boulder, Colorado.

Brandon Booth wrote his first program at the age of twelve. He graduated from high
school with an International Baccalaureate diploma and decided to pursue dual degrees in
applied mathematics and computer science at the University of Colorado, Boulder. As a
freshman at CU, he wrote a PC game based on the pattern-based card game Set. His favorite
games include Final Fantasy, Guitar Hero, Kingdom Hearts, Guild Wars, Unreal Tournament,
Half-Life, and Worms Armageddon.

About the Authors

Introduction .xiii

Chapter 1 Getting Started .1
Development Focus .2
Programming .2
The Unreal Level Editor .4
Practices .9
Resources .11
Conclusion .12

Chapter 2 The Basics of UnrealEd .13
Unreal Level Editor .13
A Starter Session with the Level Editor .14
Opening a Level for Your Viewports .17
Select a Map .18

Manipulating 2D Viewports .21
Manipulating the 3D Viewport .22

Building and Running .25
Adjusting Resolution .27
Closing a Map and Exiting the Editor .29
Conclusion .29

Contents

Chapter 3 Basic Programming Activities .31
Starting Points for Writing Code .32
Properties .35

Deriving Properties .37
Class Objects and Distinct Properties .38

Programming Hello World .39
Classes, Packages, and Renaming Your Map 40
Trigger Generalities .41

The Actor Class Browser .41
Deriving a Class and Creating a Package .42
Comments for Code .45
Compiling or Checking Your Syntax .46
Signature Lines .47

Defining a Class .48
Saving and Adding Your Class and Package .50
Placing a HelloWorldTrigger Object in Your Map51
Trigger Property Settings .54
Compiling and Testing Your Code .54
Editing Your Code .55

Accessing Code from the Package .55
Editing Starting with the Icon .57

Conclusion .58

Chapter 4 Developing Your Own Level .59
Creating a Working Area .59

Position, Lights, and Starting Point .62
Camera Preliminaries .62
Surface Textures .67

Enhancing Your Level .71
Adding a Pad and Decoration Texture .71
Working with Versions of a Level .73
Defining a Trigger .74
Adding the StandUpTrigger to Your Level 76

Conclusion .78

Contentsviii

Chapter 5 Data Types .79
Another Version of the Working Area .80
Revisiting the Code .82
Variables and Accessing Them .84

Scope .84
Scope Concerns .86

Data Types .87
Conventions for Naming .88
Naming Practices and Syntax .89
Declaration .90
Initialization .91
Casting and Promotion .92

Operations .93
String Operators .94
Compiling and Testing .96

Constants .97
Conclusion .98

Chapter 6 Functions and Composition .99
Another Version of the Working Area .99

Adding Another Pad .100
Function Fundamentals .102

The Math Class and Its Functions .103
Math Class Functions .106
Local Function Scope .107
Calling Functions within a Function .108

Built-in Functions .110
Classes by Composition .111
Coding the AddNumbersTrigger Class .113

Creating an Instance of a Class .116
Calling a Function by Using a Class Object117
Generating Random Numbers .118
Optimization and Default Values .119
Setting Defaults .119

Multiple Instances .120
Conclusion .123

Contents ix

Chapter 7 Controls, Logic, and Arrays .125
Program Flow .126

Sequential Flow .126
Selection and Repetition Flow .127
The Syntax of Control Statements .128
Flags .130
Return Values’ Control Values .131

The CommandTouchTrigger Class .132
Implementing the CommandTouchTrigger Class 132
Data Members .134
Abstract Classes and Functions .134
Member Functions and Overriding .136
The Super Keyword .137
Detecting Touching .138

Detecting a State Using Selection .139
Casting a Class Object Down to a Subclass Object140
Enumerations and Values for TriggerType 142
Selection Using a Case Statement .143
Compounded Boolean Expressions .145
Testing the CommandTouchTrigger Object 146

Refactoring to Create Random Messages .147
Data Members .150
Member Functions .151
Using if…else if…else .152
Working with Arrays .153
Testing the CommandMessageTrigger Objects 155

Conclusion .156

Chapter 8 Controls, Arrays, and Structures .157
Preparations for the Work Ahead .158

Adding to the Map .159
Adding a New Package .160

The CommandCodeTrigger Class .160
Data Members .164
Code Creation .165
Message Making .166
Reporting Clues Found .166

Contentsx

Refactoring Random Number Generation 169
Testing the CommandCodeTrigger Object 169

Revision .170
Detecting Messages .171
Deriving a Class from Actor .173

Dependencies .178
UnrealEd Strategies .179

Working with Structures .180
Making a Code .182
Assembling Everything .183
Visiting Individual Letters and Getting Status 183
Finding Letters in Ciphers .184
The Whole Code .185

If You’re Down, Listen to a Story .187
Conclusion .191

Chapter 9 Disco World and Other Items .193
Getting Started with Disco World .193
Adding a Tetrahedron .195

Saving the Object as a Static Mesh .198
Replacing the Preliminary Object .199

Extending the KActor Class .200
Writing the Code .201
The SetTimer() Function .202
Values for Vectors .203
The Built-in Vector Data Type .204

Associating Your Static Mesh with a KActor Object 206
Replace the Old Mesh .208
Setting DiscoBall Object Properties .208
Testing Your Object and Its Code .209

Revising the DiscoBall Class .210
Programming the DiscoBallB Class .212
Data Members .215
Initial Conditions .215
Vector Use .216

Conclusion .217

Contents xi

Chapter 10 The KActor and KHinge Classes .219
Preparing for Work .220

TriggerLight Objects .221
Adding a Jump Pad .221
Another Version of the DiscoBall Class .223
Setting the Light Colors and Styles .224
Testing Your Lights .226

Iterating through Objects .226
Defining the DiscoLightTrigger .227
One More TriggerLight Property .230
Add the DiscoLightTrigger Object .230
Settings for the DiscoLightTrigger Object 231

Testing the New DiscoWorld .232
Adding a Message to the DiscoLightTrigger .233
Testing DiscoLightTriggerB .235

DiscoLightTriggerC .236
Adding a KHinge Object .239
Implementing Rotation .243
Finale .245
Conclusion .246

Appendix A Notes on Exporting .247

Appendix B Notes on Restoring Packages .257

Index .271

Contentsxii

About This Book
This book centers on programming. All of the program examples involve the actions within
a map (or level), so you can readily expand on the programs you create during the course
of this book to modify the game. This book focuses on the creation of programs using
UnrealScript. The programs are often made fairly long and involved so that you have a
chance to more fully explore the syntax of UnrealScript and the principles and practices
of object-oriented programming. This book is centered on beginning examples of pro-
gramming, so if you are seeking both an introduction to programming and an introduc-
tion to using the Unreal Level Editor, you are likely to find useful information. All programs
in this book involve working with the Unreal Level Editor.

If you have been working with UnrealScript on an experimental basis and already know
how to do the things this book illustrates, you might still benefit from the book if you have
not studied the game or programming in a formal way. This book uses software engineer-
ing terms to talk about the activities you undertake as you program through the Unreal
Level Editor. It helps you learn technical terms for the actions you perform as you work
with the Unreal Tournament class hierarchy. Such terms can prove helpful as you expand
your knowledge of the game engine into contexts in which people educated as software
engineers or computer scientists lead the discussion.

All the programs involve extending the Actor class or its subclasses. In several instances, you
create classes that augment the visible objects. You use these on the basis of association to
supplement the actions of objects used directly in the game. Some of these classes, such as
the Math class, are purely for illustration. You program and make them work. Others, such
as the Story class provide functionality that you might actually take into the maps.

Introduction

You work with a limited number of classes derived from the Actor class. The goal of the
book is not to provide its readers with a comprehensive knowledge of the Unreal
Tournament class hierarchy. Instead, the focus here is on introducing readers to how to
derive and develop fairly extensive classes that reveal many dimensions about how to work
with UnrealScript, inheritance, composition, the Unreal Level Editor Property dialogs, and
many fundamental aspects of programming.

This book is not about level design, but since its examples involve levels, every attempt is
made to provide step-by-step introductions and discussions of the use of the Unreal Level
Editor. If you do not know what the Unread Level Editor is, then this book should allow
you to get started. You create basic geometry, introduce a few objects, and then use extended
programs to manipulate these things. References are provided to some standard resources
for learning how to use the Unreal Level Editor.

Who Should Read This Book
If you are new to either programming or level development, this book is suitable for you.
If your interests lie only in the area of level development, not in the area of programming,
then there are probably more appropriate books for you. At the same time, even though
most of the projects center on programming, much of the discussion concerns the Unreal
Level Editor, so it helps to have an interest as a programmer in level editing.

This book addresses the fundamentals of computer programming by allowing you to work
with UnrealScript and the Unreal Level Editor. The book uses maps from Unreal
Tournament 2004 in some of its chapters, but most of its contents are based on examples
that you create for yourself. Using the knowledge you acquire from this book, you can begin
exploring how to program a number of events characteristic of Unreal Tournament.

It is not assumed that you have any programming experience. It is assumed, however, that
you can access the Internet for information about how to use the Unreal Level Editor.
Discussion of such resources is provided in the text. Every effort is made to instruct you
about how to use the Unreal Level Editor to supplement your programming activity, and
the text should cover most of the actions you need to perform. Still, it remains important
to keep in mind that a bit of web browsing might help your level-development activities.

You gain familiarity with how to specialize classes and how to use them on the basis of
association. You spend a fair amount of time working with the dialogs that enable you to
set properties of various objects. The focus remains, however, on programming, and the
assumption from the first is that you want to learn how to program with UnrealScript and
in general about programming.

Introductionxiv

The book equips you to understand how object-oriented programming works. You learn
the difference between abstract classes and concrete classes, how inheritance works, and
how to override functions from base classes. You examine many features of the UnrealScript
programming language. With respect to Unreal Tournament itself, you do not play Unreal
Tournament during the course of this book.

As a renowned programmer once said, when programming is not fun something is wrong,
so it should not be inferred from the previous paragraph that this book, as a programming
book, represents something that is not fun. From beginning to end, it is hoped that the
reader finds in it a friendly, hands-on, and fun introduction to programming using
UnrealScript the Unreal Level Editor.

The Advisory
As for readers in general, if you are not familiar with Unreal Tournament, it is good to keep
in mind that the publishers of the game provide an advisory for it. The gist of the advisory
is that people under 17 should not play the game without consulting first with their par-
ents. (See the label for the exact advisory.) That makes the title of this book, which includes
the word “Teens,” stand out.

Epic provides a “stripped down” version for the educational community. This version of
the game engine is made available over the Internet. With just a few minor changes to com-
pensate for the file extensions, you can use this book with the stripped down version.

This book does not make use of the stripped down version, because you can still use pieces
of the commercial version to learn about programming without having to involve your-
self in the deeper dimensions of gameplay. In this book, your attention focuses on how to
derive classes from the classes in the Unreal Tournament class hierarchy, how to use fea-
tures of the Unreal Level Editor, and how to work with the syntax of UnrealScript.

In his documentary film, Bowling for Columbine (2002), Michael Moore recounted a story
of visiting a missile factory near Columbine High School. Columbine High School is
located here in Colorado, where both of the authors of this book were born and live. A few
years ago two students entered the high school and injured or murdered others and then
killed themselves. Michael Moore reported that he found people in the nearby missile fac-
tory unable to view as relevant any connection at all between the acts committed at the
high school and the missiles being produced in the factory.

Missiles definitely kill people. Computer games have not been shown in any definitive fash-
ion to kill people or even lead people to do violent things, but it remains that the problem
might not be so much the depiction of vicarious violence as it is indifference to violence.

Introduction xv

That Epic provides a stripped down version of the game constitutes a particularly forceful
and positive message. It is a statement about self-consciousness that might be said to be
missing in a huge number of places. Thank you, Epic, Atari, and others for this statement.
As mentioned previously, despite the option of going to the stripped down version, this
book invites you to purchase Unreal Tournament 2004 and to work with programming
examples that do not necessarily lead you directly into the game.

The Chapters
Chapter 1 provides you with an overview of some of the key activities you might think
about attending to as you work with the book. These notions might not make much sense
if you are new to Unreal Tournament programming, but if you are aware of them from the
start, they should make sense soon enough and allow you to derive greater enjoyment as
you learn.

Chapter 2 is likely to prove a little irritating if you already have experience with the Unreal
Level Editor. It helps you acquaint yourself with the level editor. It asks you to experiment
with moving around in the viewports and working with the mouse. The exercises are based
on classroom experiences one of the authors has had getting people started with the some-
what complex activity of negotiating navigation in the world space of the viewports.

In Chapter 3, you begin learning about the code editor (or script editor), the Actor class
hierarchy, and the basic syntax of UnrealScript. You create a class derived from the Trigger
class. You use a level from the game.

Chapter 4 involves creating a level for yourself and then performing more programming
to develop another version of a Trigger class to place in the level. You are introduced to the
notion of a class hierarchy, object-oriented programming, and the use of the extends key-
word in relation to inheritance.

Chapter 5 marks the beginning of a sustained study of the syntax of UnrealScript. In this
chapter, the discussion centers on data types and operators.

Chapter 6 furnishes discussions developing functions and systems of classes. You learn
about things like scope and the arguments and return values of functions. You learn about
how classes can be characterized as states and behaviors. You develop a system of classes
that allows you to dynamically spawn an instance of one class within another and in this
way explore the idea of peer classes and class composition.

Chapter 7 offers the first of two chapters that allow you to explore control statements. This
chapter concentrates on sequence and selection. It also introduces you to notions con-
cerning abstract classes and functions, function overriding, and the use of such keywords
as super. You also explore the use of static arrays, structures, and enumerations.

Introductionxvi

Chapter 8 ventures into the world of refactoring. In this case, you develop a very long class
and then break it into three classes that you then use on a composition basis in addition
to investigating the use of repetition controls and dynamic arrays.

Chapter 9 provides you occasions for working with classes you derive from the KActor, Light,
and Trigger classes. You also work with functions of the Vector data type and control the
movement of a static mesh you equip with physics properties.

Chapter 10 finishes off your work by having you work with a TriggerLight object and an
iterator. You also work with such classes as KHinge and KActor to implement some special
effects and in the end add some music.

Appendix A includes notes on how to deal with a few activities in the Unreal Level Editor
that can help you expand your work to include such activities as using ConTEXT and other
editors to develop. You need to go to other books or the Internet for information on exter-
nal editors. Generally, in this appendix, however, the discussion centers on what you do
using the Unreal Level Editor alone.

Appendix B covers how to restore packages.

The CD and Source Materials
On the CD you find all the projects for the book. The material on the CD is also provided
on an Internet site. To obtain the code from the publisher’s website, access
www.courseptr.com/downloads and enter the title of the book.

While you can load the levels and packages and work from there, it is suggested that at
most you just use the *.txt files to access code that you might find difficult to correctly type
for yourself. Build the levels and packages as you go.

When you access a given chapter folder, you find all the material used in that chapter. This
can include the following:

■ Text versions of the source code (*.txt) files. You find the code in two forms. In
the text, all code is identified as residing in *.txt files that you can open with
Notepad. It is suggested that you access these files only with Notepad. This way you
do not introduce font types that corrupt them. When you open them, notice that
they are all set to Courier 12 pt. This ensures that you can copy and paste them
into the Unreal Level Editor code window.

■ UnrealScript (*.uc) files. These files are files that have been exported from the
packages you work with. They are the same as the *.txt files. In fact, to make them
into *.txt files, all you have to do is change the extension. The same applies to con-
verting *.txt files to *.uc files. Generally, these files are for reference only. If you
want to know more about what to do with them, see Appendix A.

Introduction xvii

www.courseptr.com/downloads

■ One or more map (*.ut2) files. The text instructs you when to create new versions,
and you find maps representing the versions for each chapter. To use the *.ut2 files,
you must place the *.u files and *.usx files associated with them in the System and
Static Meshes directories. If you do not have these files in place, then when you try
to run the levels, UnrealEd issues errors.

■ Package (*.u) files. These all go in the UT2004/System directory. Generally, the
best thing to do is to keep them in reserve in case you have problems. Work
through the book and create levels and packages as you go.

■ The mesh and texture (*.usx) files. These are included only when they have been
changed from what you find in the default game directories. For example, if a static
mesh has been generated using one of the brushes used to create primitive geome-
try objects, then you find the static mesh and its package in the folder for the chap-
ter in which it appears.

Introductionxviii

This first chapter primarily focuses on subjects that will be helpful to those who are
making their first journey into programming involving Unreal Tournament. When
you program for Unreal Tournament, you program with UnrealScript. Most of

your programming involves modifying default features of the game. You can use proper-
ties dialogs to learn about most of the default features. All such features are defined in the
code for the classes that make up the Unreal Tournament class hierarchy, which you can
view through the browser that the Unreal Level Editor provides. Through the browser and
in other ways, you can access the code that defines the features of the game and add to
them. Accustoming yourself to the complexities of the Unreal Level Editor can be an exact-
ing chore, but after you get so you can work with the code and manage the features the
code defines, you are well on your way to an endless adventure. In the process, as your
efforts take you into the Unreal development community, if you sustain practices that incor-
porate professional and craft standards, you are more likely to find your explorations ful-
filling. Here are a few topics addressed in this chapter:

■ What it means to modify the features of a game in core programming terms

■ The basic layout of the Unreal Level Editor

■ How to proceed initially so that your work is minimally frustrating

■ What it means to incorporate craft and professionalism into your work

■ Some resources that might he helpful to keep at hand

■ A hearty welcome to you if you are new to the game

1

Getting Started

Chapter 1

Development Focus
Figure 1.1 illustrates what might be viewed as a strategy for learning how to write programs
you can include in Unreal Tournament. If you are just starting out as a programmer, you
face a fairly difficult road. Unreal Tournament now represents over a decade of develop-
ment. The development efforts have focused on professional game developers. Tens of thou-
sands of features are at hand to work with. The Unreal Level Editor offers perhaps 5,000
different contact points. Learning how to combine programming and the Unreal Level
Editor is a justifiably daunting task.

In this book, the activity of working with the Unreal Level Editor is approached on an ele-
mentary basis. No attempt is made to address professional game developers or even peo-
ple who already know a few things about level design or how to program. The goal is to
provide a comfortable beginning for working with the Unreal Level Editor and learning
how to write programs using UnrealScript.

As Figure 1.1 illustrates, as presented in this book, these two activities involve familiariz-
ing yourself with three areas of endeavor. One encompasses being able to structure your
activities with relation to certain concepts and practices that foster successful development
projects. Another consists of understanding the tools (the Unreal Level Editor) used to per-
form the work. A third focuses on comprehending how core programming activities involv-
ing UnrealScript and the Unreal Tournament class hierarchy unfold.

Chapter 1 ■ Getting Started2

Figure 1.1
Strategies for
learning involve
understanding the
challenge.

Programming
The three activities shown in Figure 1.1 extend over a broad spectrum. When you learn
about programming, you concentrate on the syntax of the programming language and the
standard ways that computer programming logic can be applied to the programs you write.
Much of this activity occurs in isolation from your work with level development. You can,
for example, spend hours programming and reprogramming a few lines of code to achieve

a given programming objective. When you are looking at and working with lines of code,
your success depends on the effort you make to understand syntax and programming logic.

At the same time, to program for a level, you must familiarize yourself with the graphical
user interface (GUI) that the Unreal Level Editor provides. To an extent, programming and
level development are inseparable. For this reason, throughout this book, you move back
and forth between writing and understanding programs and developing level features in
which to apply the programs. Your progress as a programmer depends to an extent on your
progress as a level developer, so not knowing how to work with the features of the GUI can
be costly. The same applies in the other direction. When you do not understand specific
features of the syntax of UnrealScript or the Unreal Tournament class hierarchy, you can-
not readily modify the behavior of level features. Figure 1.2 illustrates the basic dynamic
of these two forms of activity.

Programming 3

Figure 1.2 Level development
and programming activities
complement each other.

In the context provided by this book, the work is primarily that of performing simple pro-
gramming tasks. You find a feature of the game and see what you can do with it, or you
write a program that illustrates a standard approach to programming logic and then find
a way to fit this program into the level. For example, in one passage, you write programs
that use the Rand() function to generate messages you retrieve from an array. You then apply
this activity to a Trigger object. When you do this, you follow the path from programming
to features of the game. On the other hand, in another passage, you put Light objects in a
level and then write a program to iterate through them to turn them on or off. In this way,
you proceed from the level to the program.

From a programming perspective, you worry about issues of UnrealScript syntax and the
Unreal Tournament class hierarchy. UnrealScript is not the Unreal Tournament class hier-
archy. It is a scripting or programming language used to develop the Unreal Tournament
class hierarchy. If you have a background that has led you to explore different programming
languages, you probably recognize similarities between UnrealScript and such languages as
C#, Java, and C /C++. It provides a fairly standard body of syntax that allows you to imme-
diately put to work skills acquired from working with other programming languages.

In this book, your programming activities are confined to work you can perform using the
code editor provided with the Unreal Level Editor. Experienced programmers often con-
demn this editor, but if you are starting out and want to concentrate on getting right into
the game, then the best route is through the code scripting window the Unreal Level Editor
provides. The authors have found it fairly satisfying to follow this route. The code editor
is convenient to use, and from the first it is the best route to follow for debugging. For the
2004 version, of course, the darkness of the background, the miniscule proportions of the
font, the lack of a buffer that allows for multiple undo operations, the lack of optional line
numbers, the lack of the ability to save off versions of a given file, and a plethora of other
irritants might lead you to concur with the condemnations voiced by experienced devel-
opers, but it remains that despite the cacophony, if you use the scripting window, you can
go right to work and accomplish much.

T i p

Use the default Windows keys (Control + C and Control + V) to copy and paste your scripts into
Notepad files from the script editing area. Also, as you’ll read later on in the book, remember to set
the font style of Notepad to Courier. Otherwise, your code disappears when you try to transfer it to
or from the script editing window. When the Unreal Level Editor was developed, the powerful text
components now commonly used by application interface developers were not as readily available,
so with subsequent releases of the Unreal Level Editor, the complaints voiced by some are likely to
vanish.

While becoming familiar with the script editor is in many ways as fundamental to your suc-
cess as learning to use the features of the Unreal Level Editor that deal with level features
alone, it remains that the central focus of your programming efforts is using UnrealScript
to access and modify the classes the Unreal Tournament class hierarchy provides. Toward
this end, you concentrate on such things as the uses of the var, local, class, and extends
keywords. You explore how the use of parentheses with the var keyword turns it into a con-
trol that allows you to define a property that is displayed in the properties dialog. Your work
with the syntax grows from these items to encompass many others, such as the use of struc-
tures, enumerations, access modifiers, control statements, built-in data types, and built-in
functions. Hundreds of other specifics come into play. It is a fun, satisfying learning adven-
ture, and as mentioned previously, since UnrealScript resembles other languages, if you
have aspirations to follow the path of programming, this is an excellent beginning.

The Unreal Level Editor
When you learn about the Unreal Level Editor, you become familiar with the extensive
vocabulary that allows you to name features of a level in relation to the culture of Unreal
Tournament and its players and developers. The language used is often confusing and cryp-
tic at first, but over time, its meanings become clear.

Chapter 1 ■ Getting Started4

As Figure 1.3 illustrates, the Unreal Level Editor is designed to allow you to work with the
features of the game using an object architecture. The term architecture in this context refers
to the way the software of the game is designed. The architecture identifies everything you
work with in the level as an object. Each object is associated with a properties dialog. A
properties dialog is a dialog just like those you are used to working with when you use any
Windows application. It provides fields with field names.

The Unreal Level Editor 5

Figure 1.3 An
object architecture
allows you to
change features of
the level.

The field names define the object. You can make an object large or small, for instance, by
providing values to fields that define such characteristics. The fields in the properties exist
because they are defined in the program that creates the object. Each type of object (a light,
an event trigger, a static mesh, and so on) is defined by a program. The programs establish
how the information you provide in the properties dialog changes the object.

The fundamental notion of an object-oriented architecture is that each object can be viewed
largely in isolation from other objects. For this reason, the properties dialog provides a
summary view of each object. It tells you what the object does and what options you have
with respect to controlling it. At the same time, as a programmer, you can move from the
properties dialog to the code and know that in the code you can find the definition of what
you find in the dialog.

Properties dialogs are not the only way available to you for controlling objects. As a pro-
grammer, your focus is on the programs behind the dialogs. The Unreal Level Editor pro-
vides you with a way to modify the programs. There are two general paths to this activity.
The first is that you can access the defining program directly from the object. You do this
by just clicking on the object. The script editor opens, and you see the code that defines
the object.

The other approach is through a browser. A browser is one of nine tabs visible to you in a
dialog you access from the main menu of the Unreal Level Editor. The browsers represent
different categories of objects. For example, you see separate tabs for classes in the Unreal
Tournament class hierarchy, meshes, textures, animations, and music. The tab for the classes
allows you to view source code. For other things, you do not see source code, only prop-
erties that apply to the objects. Such objects usually consist of binary files…files that con-
tain information that defines an object. This information is so dense that it makes little
sense for anyone to ever try to read it. Instead, you use tools like Photoshop, SoundForge,
or Maya to create the files. You then import them into the Unreal Level Editor and work
from there. You select from tabbed browser options to see their properties and use them.

How this happens precisely is the topic of discussion in several chapters to come, but for
now the important thing to understand is that where code is involved, you access the code
directly from the object or indirectly through the properties dialogs. To work with the code,
you open the script editor window. By adding code, you can redefine the behavior of almost
any object you see in the game. Among other things, you can add new fields to the prop-
erties dialog. You can change the way the information in the existing fields is interpreted.
You can do about anything you want.

Working from the object to the code is the primary activity you perform as a programmer.
As Figure 1.4 illustrates, the other part of the activity involves working as a level designer.
This part of the activity encompasses learning the meaning of the icons in the different

Chapter 1 ■ Getting Started6

Figure 1.4 Icons,
the viewports, and
the mouse actions, in
addition to selections
from the top menu,
give you easy access
to most Unreal Level
Editor actions.

palettes you see on the left side of the Unreal Level Editor. Among other things, these
palettes allow you to create the geometric objects you place in the levels. As you use them,
you easily gain competence in their use, but when you first start, be warned that the learn-
ing curve is fairly steep.

Using the tools provided by the Unreal Level Editor recurs as a topic many times in this
book, but with the exception of Chapter 2, the discussion remains fairly cursory. (See the
“Resources” topic in this chapter for information on sources that explain the user inter-
face in detail.)

For now, consider that the main elements of the interface consist of the icons on the left
of the work area, the menu at the top, the actions the mouse invokes, and the four view-
ports. Figure 1.4 illustrates these features. Generally, people begin by applying the naviga-
tion skills they use in the game. This activity tends to be a fairly good approach since most
learning involves, after all, employing what you know to find analogies that allow you to
learn what you do not know. Chapter 2 provides some exercises for absolute beginners, but
even there the objective is one only of inducing people who are new to the GUI to try some
different experiments with the viewports.

The depiction of the mouse in Figure 1.4 is not intended as an insult to anyone’s intelli-
gence. The representation is intended to emphasize the theme that almost every context of
activity in the Unreal Level Editor is associated with several (five or more in some instances)
combinations of keys and mouse actions. If you are used to Photoshop, Maya, CorelDraw,
or any number of other applications, you usually click to open a palette. Then you activate
a feature in the palette and use a left-click of the mouse to perform the action. This is not
the case with the Unreal Level Editor. Palettes are used, but in the main interface, you find
that you can perform some actions only after experimenting at great length with combi-
nations of keys and mouse buttons. This activity might strike you as utterly bizarre at first.
Teaching experiences have led one of the authors to warn people to expect a high degree
of frustration when they first start using the Unreal Level Editor.

The viewports present another point of interest. You perform most of your work in them.
You almost always keep several in view at once. The key to understanding them is to real-
ize that the x coordinates trace movement from right to left or left to right. The y coordi-
nates trace movement from the front to the back or the back to the front, as though you
are looking into the distance. The z axis points up and down. Figure 1.5 isolates the views.

The Unreal Level Editor 7

Figure 1.5 Different
coordinate views allow
you to navigate.

In addition to dealing with the basic GUI features, you also work with four activities over
and over again:

■ Build geometry. Building geometry involves refreshing the settings that the Unreal
Level Editor maintains of the coordinate positions of all of the objects in your
level. This information becomes outdated every time you perform even the small-
est action that changes the position of an object. Generally, you find that almost no
action you want to perform proves easy to perform unless you first build the geom-
etry of your level. Practice doing this often. If you cannot get something to change,
then it is probably because you are clicking on a position in the viewport that no
longer corresponds to the geometrically defined position of the object. What you
see is not what you get. You need to rebuild the geometry to set things right.
Rebuilding is not the same as saving your work. It is instead updating it so that you
can see the actual positions of objects in your level.

■ Build lights. You often need to build the lights. Generally, practice building
“changed” lights every time you make a change to your level. Lighting is not as
important as geometry as you construct objects in your levels, but unless you
refresh lighting regularly, your view of your work can vary enormously from the
current state of your work.

■ Save. The importance of saving cannot be emphasized too much. You save your
map. You also save your classes and the packages that contain your code. These are
not consistently unified activities. You are likely to come across many episodes in
which a programming error causes the Unreal Level Editor to crash. When you
reopen the editor, your work is no longer there. The code editor in the Unreal Level
Editor is extremely unforgiving. You can lose your work in a moment. You can also
corrupt a package fairly easily and lose many hours, days, or weeks of work. The
implications of these reversals become clearer in the chapters to come. For now, just
remember that as you work with code, it is important to 1) compile changes, 2) save
the package, 3) save the level, and 4) make backup copies regularly and consistently.

■ Play/Run the map. In this book, playing a level and running a level are synonymous
terms. The game is a computer program, so after you compile a program you run
it. This book is on programming, so the expression run seems more suitable in
many of the discussions. For a programmer, compiling, building, and running a
program are largely parts of testing. Testing is seeing whether your code works. As
for the specifics at hand, one especially important activity is to build the geometry
of your levels before you run them. Otherwise, unexpected and undesired results
often occur. Train yourself to habitually build the geometry and lighting of a level
before you try to run it.

Chapter 1 ■ Getting Started8

Icons on the top toolbar provide convenient ways to perform such actions as saving your
work, building lighting, and building geometry. Chapter 2 and subsequent chapters remind
you frequently to perform such actions. As has been said before, the Unreal Level Editor is
unforgiving. You lose your work often and painfully unless you get into the habit of work-
ing in a precautionary manner. This involves compiling, building, saving, and backing up
your work in a practiced way. After a time, you get used to the routine, and things become
a lot easier.

Practices
When you learn about practices and procedures, you enter the world of software engineer-
ing. Generally, one of the reasons people often find it difficult to learn from programming
examples produced by hacking is that the examples are not written for others to read.
Hacking has often been characterized as a way that programmers who lack professional
ethics promote their job security. Whatever the characterization, the hacker is by defini-
tion not someone who is part of a community, and so a community that supposedly con-
sists of a group of hackers is not really a community. It is a collection of people who do
not want to be accountable to each other.

Software engineering is much more than some kind of battle with hacking. In fact, that is
a largely insignificant part of the picture. Software engineering is a form of craftsmanship
and an extension of an ages-old tradition of guild society. It consists largely of a set of prac-
tices and ethical standards you maintain along with others who share a common profes-
sion or craft. It allows you to share more readily what you know and to learn more readily
what others have to teach. It calls upon you to conduct yourself decently and respectfully
toward others in your community, and to do what you can to improve the overall quality
of your work and the work of others.

It might be said that in the past Unreal Tournament development culture has been lack-
ing with respect to certain craft and engineering ideals, but this can be said of many pro-
gramming realms. The fact remains that with each passing day, the foul and accusatory
language, the personalized attacks, the hacked and untested code, and other things char-
acteristic of hacker culture are disappearing. As in most other professional settings, on the
Internet it is not uncommon to see advisories that use of vicious language will result in
barred access. The Wiki, UDN, and other sites now offer such advisories. People are becom-
ing more cooperative and friendlier.

From craft and engineering follows code and projects that are developed with greater atten-
tion to coding practices and standards. The goals no longer stop at just making it happen
or doing it. They now extend to thinking about how to do it, planning it, and doing the
job well, with an eye to finding channels to continuous improvement.

Practices 9

In the most immediate context, the tools and practices of software engineering allow you
to understand how the components of the Unreal Tournament class hierarchy fit together.
Using tools such as those provided by the Unified Modeling Language (UML), you are in
a much better position to plan your efforts and produce programs that you can test and
improve.

A simple definition of engineering is that it consists of an activity of planning to build
something and then building it as planned. Everyone has at some time run into games that
suffer from lack of engineering. The result is that unpredictable behaviors often lead to
things that go wrong when you play the game. What is not so evident is that lack of craft
and engineering often make the process of developing a game extremely unpleasant, and
what applies to play and development applies also to learning.

As Figure 1.6 illustrates, dissatisfaction with the end product becomes a concern of a
craftsperson. Craft involves examining the thing your activity results in. Over the centuries,
craft workers have sustained their craft on the basis of the one generation’s examination
of the products of the previous generation.

Chapter 1 ■ Getting Started10

Figure 1.6 Participating in
the development community
is an important step.

Profession centers on practices, and for this reason software engineering is at times said to
present a sharp contrast to craft. There is some truth to this. Software engineers concentrate
on improving processes with the assumption that better processes lead to better products.

Whatever the perspective you take, it remains that when you work as a programmer,
whether as a professional, a hobbyist, a student, or a teacher, if you make efforts to develop
code that you can understand and that others can understand as well, then you embark on
a journey that is likely to carry you a long way.

Resources
Epic has done a wonderful thing by making Unreal Level Editor freely available to the
game hobbyist and educational communities. The action parallels those of Sun when it
fostered the Java programming language and Microsoft when it released DirectX and then
the Express editions of Microsoft Studio and the XNA game development studio. It par-
allels the development of the Perl community and the proliferation of XML and other
technologies.

It remains, however, that the bulk of work with the Unreal Engine has been conducted by
professional developers, and for this reason, the documentation and other resources related
to the game engine tend to be geared toward people who already know what they are doing
and are seeking what amounts to supplemental technical information. For this reason, if
you visit the Unreal Development Network, the information you find tends to be descrip-
tive rather than tutorial in content. In other words, how a given function works is described
in an abstract, technical way, as though you are able to find in such information the prac-
tical, down-to-earth ways that it might be applied. It is sort of like reading a section of a
physics textbook on velocity and acceleration to learn about how to use the brakes of your
bicycle or car.

This approach to providing technical information tends to characterize sites oriented
toward professional developers. It can be highly frustrating for someone who is just seek-
ing to know how to do something simple. For this reason the Wiki pages are often useful.
The Wiki pages provide tutorials that are written by a mixture of amateur and professional
developers. There are enormous holes in the information available, but exemplary efforts
are often present for the areas that are covered.

A growing number of books and Internet sites address programming, level editing, and
other topics associated with Unreal Tournament development. Here are a few resources:

■ Unreal Developer Network (UDN). This is the “official” site for the Unreal Engine.
It is a wonderful resource, but keep in mind that you have access to it based on
your license level. Everyone has some level of access to it. Here is the Internet
address: http://udn.epicgames.com/Main/WebHome

■ Wiki Unreal. This is the most egalitarian realm of the Unreal Tournament pro-
gramming effort. You find many tutorials on starter and more advanced projects.
The information you find involves all aspects of game development. The Internet
address is http://wiki.beyondunreal.com/wiki.

■ UnrealScript programming basics. John Flynt and Chris Caviness, UnrealScript
Game Programming All in One (Thomson, 2006). This book provides a review of
the syntax of UnrealScript. It was used in the composition of this book as a refer-
ence source. It provides extensive information on setting up an editor called

Resources 11

http://udn.epicgames.com/Main/WebHome
http://wiki.beyondunreal.com/wiki

ConTEXT. Such an editor is usually required if you want to go beyond programs
that involve only one class. Although every effort was made to stick with the script
editor, keep in mind that ConTEXT was used to develop some of the longer, multi-
ple-class programs in this book.

■ Level design reference. Jason Busby, Zack Parrish, Joel Van Eenwyk, Mastering
Unreal Technology: The Art of Level Design (Sams, 2005). This book is on the Unreal
Level Editor, not programming. It is often viewed as a reference book.

These sources of information are mentioned because they were used at times during the
composition of this book. The point to keep in mind is that many sources exist, and you
can develop your own resource list as time goes on.

Conclusion
If you are only just beginning your work with the Unreal Engine or Unreal Level Editor,
you can benefit by taking a little time to review some of the actions that can bring the great-
est difficulties and rewards. Among these are starting off with a general grasp of what work-
ing with the Unreal Level Editor involves. When you use the Unreal Level Editor, you can
develop levels using the GUI features of the Editor and add code that redefines the default
objects the Editor provides.

This book concentrates on the programming effort, but to program the features of an
Unreal level, you must use the Unreal Level Editor to complement your programming work.
This activity usually proves greatly satisfying for most people, but to ensure that progress
in learning is steady, it is best to observe a few precautions. One is that what you see depends
on how frequently you built the geometry and lighting of your levels. Frequent building
makes it so you struggle less as you perform development activities. It is also important to
realize that the programs you create are compiled and saved as parts of packages, and the
packages exist separately from the levels. Save and make backup copies of your level work
and your programming work. The chapters of this book provide many discussions of the
specific actions necessary to complete these tasks.

In addition to working with programs and learning how to use the Editor, your work with
the Unreal Engine depends to a great extent on participation in a community that consists
of professionals, hobbyists, and educators. Deriving the greatest benefits from such a com-
munity often depends on contributing to it in a positive way. One key to participation is
to keep some of the notions associated with craft and software engineering in the back-
ground of your efforts. Working with the sense that every program should be developed
with care, as a crafted rather than a hacked effort, allows you to more readily share your
knowledge with others and improve on your efforts with the next round of work. Many
passages of this book provide discussions of ways that you can bring craft and engineer-
ing practices into your work, regardless of your starting place.

Chapter 1 ■ Getting Started12

In this chapter you explore or review a number of activities you perform every time
you enter into a work session with UnrealEd. Key among these activities are opening
a map, navigating through a map, and closing a map. Additionally, you also work with

the browser dialog. In this chapter, you do nothing more than become acquainted with the
tabs and access options the browser dialog provides. In addition to working with the
browser dialog, you also explore how to build and run a map. The map you use in the chap-
ter is of minimum size. Working with a small map allows you to develop a sense of how
long it might take to build a much larger map. While loading and running maps are impor-
tant activities, you also investigate how to change the resolution settings of your display so
that you maximize the performance of your computer for programming purposes. Among
the topics explored in this chapter are the following:

■ Understanding the general layout of the viewports

■ Selecting and loading a map

■ Navigating 2D viewports

■ Navigating 3D viewports

■ Building and running a map

■ Closing out your work with a map

Unreal Level Editor
The formal name for the software application that allows you to change or modify the fea-
tures of Unreal Tournament is the Unreal Level Editor. Epic apparently thought this title a
little pretentious and so they shortened it to UnrealEd. You see UnrealEd on the marquee,

13

The Basics
of UnrealEd

Chapter 2

in any event. In other places, Epic calls it Unreal Editor. In the editor itself, you see it as
Unreal Level Editor.

The level editor has all sorts of nifty options. You probably already know this, but just in
case you don’t, it doesn’t hurt to mention this here. As you’d expect, you can use it to cre-
ate levels from scratch or modify those you already find in the game. Then you can use it
to add lights, bots, ammo, and other things to levels. You can also use it to add code to con-
trol the things in your maps.

The Unreal Level Editor works along the lines you’d expect it to work. You begin with a
map and then add things to it. When you start with a map, you start with the physical lay-
out of the terrain. You then navigate through this terrain and add objects for the game.
Your work begins with a physical layout, not with an abstract body of code.

N o t e

How you want to label different features of a game you are working with depends on your own
preferences. When the difference between a map and a level arises, one distinction to consider is
that a level is a map you have loaded with assets. A map can be viewed as the set of meshes (or
wire frames) you use to create the essential layout or terrain of a level. A level, on the other hand,
contains a map, lights, and other assets that you use to create features of your game world. A level
can also contain several maps.

Starting with the physical terrain of the game reflects the fact that developers of Unreal
Tournament wanted to make game development resemble the production of a play or a
film. One of the first concerns when you produce a film is the setting or the stage.
Everything then unfolds within the space the setting or stage provides.

If you work from the level editor your DVD or CD copy of the game provides, you find
that the Unreal Level Editor is designed for people who want to modify Unreal Tournament.
You can add many things to a level. You can add models, sounds, and textures. You can use
the UnrealScript scripting language to program the things you add to make them behave
in a number of ways. It remains, however, that the Unreal Level Editor does not allow you
to develop things from scratch.

It is certainly the case that you can do almost anything you want using the Unreal engine.
That is part of the reason the Unreal engine is popular among professional developers. Still,
to change the basic game engine, you must acquire a license to allow you to do so. When
you buy the game off the Internet or shelf, you work with a limited view of the game engine.

A Starter Session with the Level Editor
To begin a session with UnrealEd, you select Start > Unreal Tournament 2004 > UT2004
Editor. You then see the Unreal Tournament options shown in Figure 2.1. This is what you
see if you have installed Unreal Tournament 2004 from the DVD or CD.

Chapter 2 ■ The Basics of UnrealEd14

You then see the window for the Unreal Level Editor. Again, Unreal Level Editor is the for-
mal name for UnrealEd. Epic also calls it the Unreal Editor. You are likely to see the stan-
dard set of viewports, as Figure 2.2 illustrates. If you are used to Windows applications, then
you might know a viewport as a panel or window. In Figure 2.2, the four gray or black divi-
sions of the main UnrealEd window are in the viewports.

A Starter Session with the Level Editor 15

Figure 2.1 Select Ut2004
Editor for UnrealEd.

Figure 2.2 You see the standard set of composition frames.

The viewports allow you to view the level or map you are working on in different ways. As
you can see from titles in the upper right of the viewports shown in Figure 2.2, the view-
ports offer you front, side, or top perspectives. The viewport on the lower left of the
UnrealEd window is set up to give you a 3D view of your work. It is titled Dynamic Lighting.
This title changes according to options you select for it.

You do not see anything in the viewports at first because you need to open a level for view-
ing. How to open a level is addressed momentarily.

In addition to the viewports, when you first open UnrealEd, you see a dialog. Figure 2.3
illustrates the dialog in isolation. The name in the title bar for the dialog by default reads
Textures, but if you click on the tabs the dialog provides, the name changes. For this rea-
son, Epic refers to the tabs in the dialog as browsers. You see, for example, a Textures
Browser, an Actor Classes Browser, and a Meshes Browser, among others.

Chapter 2 ■ The Basics of UnrealEd16

Figure 2.3 You invoke
the Textures Browser from
the View menu.

As you know, a texture is more or less like a mask, a tent covering, or a suit of clothes for
a mesh. The Textures Browser allows you to add and choose textures. You deal later on in
this book with the specifics of working with textures. For now, just get used to the notion
that a single dialog furnishes you with many browsers, one of which is for textures. To
explore the use of the dialog and the browsers, try this routine:

1. First, position your mouse cursor on the right border of the dialog and pull the
dialog out so that you see all the tab selections (as shown in Figure 2.3).

2. Then click on the tabs to see the titles in the title bar change. Each tab represents a
browser.

3 Now close the dialog. To accomplish this, click the red control box in the upper-
right corner of the browser dialog. What browser you have in view does not matter.

4. Then move to the main menu of UnrealEd. Click the View option. Figure 2.4 shows
you the browsers you can then access.

5. Select Show Texture Browser. This opens the browser dialog, and you see the Tex-
tures tab in focus. Click the tabs as you did in step 2.

6. Then go back to the View option of the main menu. Select Show Actor Class
Browser. Don’t worry for now what the Actor Class Browser does. That is addressed
soon. You see the browser dialog open with the Actor Class Browser tab in focus.

7. If you feel inclined, try the routine a few more times to explore the different
browsers. When you finish, close the browser dialog so that you see only the four
viewports.

N o t e

To drive home the point, you can either select different browsers from the View menu or click dif-
ferent tabs in the browser dialog. Later on, you see that you can also invoke browsers from the main
toolbar of UnrealEd. UnrealEd provides you different paths to the same set of destinations.

Opening a Level for Your Viewports 17

Figure 2.4 The Texture
Browser is one among many
browsers you find listed in
the View menu.

Opening a Level for Your Viewports
UnrealEd allows you to open any level or map for editing. A level consists of a terrain cre-
ated using a large number of engine assets. An asset is almost anything you can name with
relation to a computer game: a mesh, a texture, an animation, a map, a musical piece, a
sound prop. The list goes on. Likewise, a level consists of a large number of mathemati-
cally generated objects that must be regenerated each time you open or change a level.

The result of the combination of the geometry and assets of a level is that the memory and
processing power required to open a level for editing varies depending on the complexity
of the level. For this reason, in this book an attempt is made to work with fairly simple lev-
els. In addition to being easier to work with for learning purposes, levels that require less
processing also allow you to move more quickly through exercises, because you do not have
to wait for prolonged periods while the editor compiles your changes.

To open a level for viewing in UnrealEd, select File > Open from the main menu of the
Unreal Level Editor.

As Figure 2.5 illustrates, the Open option of the File menu invokes a standard file dialog
for Windows. In the dialog, you see a list of files with *.ut2 extensions. In the Look In field
at the top of the dialog, you see that the files all reside in the Maps directory. A map can
also be called a level. At the bottom of the dialog, in the Files Of Type file, you see that the
files are all of a given type. The type is *.ut2.

Depending on the version of Unreal Tournament you are working with, the file type
changes. The *.ut2 file type designates maps that are appropriate for Unreal Tournament
2004. In this book, all the maps you work with are of this type.

Chapter 2 ■ The Basics of UnrealEd18

Figure 2.5 Levels
reside in the Maps
directory.

Select a Map
To open a map for viewing, position your cursor on the View Menu icon on the top left of
the Open dialog (see Figure 2.5). Click and select Details as the view option. You then see
a list of the maps in the Maps directory with the sizes in kilobytes. As mentioned previ-
ously, the size of a map determines the amount of time required for processing, so when
you are learning to program, an advantage rests in working with a small map because you
have to wait shorter periods of time to view the results of your programming.

In some cases, with large maps, you might have to wait several minutes for UnrealEd to
load or process a given map. It is good to know this from the start. Small maps load rela-
tively quickly, so when you see how long your computer requires to load a small map, then
you can adjust your expectations as you work with larger maps.

Using Figure 2.6 as a reference, scroll down until you see the CTF-1on1-Joust.ut2 listing.
It is one of the smallest maps in the Maps directory. Its size is around 4 megabytes (4000
kilobytes). Click the CTF-1on1-Joust.ut2 map. Then click Open.

After you click Open, the Progress dialog appears while UnrealEd loads the map. You then
see different views of the map in the viewports, as Figure 2.7 illustrates. In the lower-left
viewport, you usually see the 3D Dynamic Light version of the level. The other three view-
ports show you 2D views of the level.

The level you access through the CTF-1on1-Joust.ut2 map consists of a set of halls orga-
nized so that they resemble an “I”. At each end of the long hall you find a statue of the
ancient Egyptian god Anubis and a flag. At one end the statue and the flag are blue. At the
other end they are red. Figure 2.8 illustrates the layout of the level.

When UnrealEd first opens the CTF-1on1-Joust.ut2 map, you do not see viewport images
like those shown in Figure 2.7. This fact provides an occasion for working with some of
the controls UnrealEd provides for manipulating objects in maps. The next few sections
take you through a few basic exercises. Table 2.1 provides a summary of some of the mouse
actions the next few sections review.

N o t e

The ancient Egyptian god Anubis is the son of the gods Nephthys and Set (or possibly Ra). Neph-
thys is usually characterized as a goddess of the dead. She accompanies the dead into the under-
world. Set is the god of pestilence, drought, conflict, and pain, and generally disrupted peace and
anything viewed as healthy. Anubis does not have such a sinister image. He is usually associated
with tombs and the dead. He acts as a judge of the dead, as the scales in Figure 2.9 illustrate. Anu-
bis is among the earliest ancient gods. He was the god of the ancient Egyptian underworld.

Select a Map 19

Figure 2.6 Map sizes determine how long they take to load.

Chapter 2 ■ The Basics of UnrealEd20

Figure 2.7 The four viewports show you different aspects of the level you have opened.

Figure 2.8 The CTF-1on1-
Joust level consists of halls,
flags, and statues of Anubis.

Figure 2.9 Anubis’s image is common in
ancient Egyptian writings. Image source:
http://www.crystalinks.com/anubis.html.

http://www.crystalinks.com/anubis.html

Manipulating 2D Viewports
Changing your views of 2D (Top, Side, and Front) viewports proves fairly easy. As you
change your views, you are changing what might be viewed as the point at which you are
located when you work within the map. To change your location, try these steps:

1. Use the left mouse button to click anywhere in the Top viewport. This activates the
viewport.

2. Then scroll clockwise using the mouse wheel (pull the top of the wheel back) to
pull away from the map. The map decreases in size. Continue until you see all the
features of the map, as shown in Figure 2.7.

3. Position your mouse cursor anywhere in the gray grid area and hold down the left
mouse button. Move your mouse to the left or right or up or down. Center the fea-
tures of the level as shown in Figure 2.7.

4. Adjust the Front viewport. Click it to activate it. Once again, scroll clockwise to
decrease the size of the map until you see all the features as shown in Figure 2.7.

5 Then hold down the left mouse button and move the mouse to the left or right or
up or down to center the features of the level.

6. Adjust the Side viewport. Perform the same actions you performed for the Front
and Top viewports.

Select a Map 21

Table 2.1 Viewpoint Motions*

Viewport Movement Action

2D Left or right Left or right mouse button
2D Up or down Left or right mouse button
2D Forward or back Both buttons and mouse wheel
3D Look up Right mouse button, forward
3D Look down Right mouse button, back
3D Turn left Right mouse button, left
3D Turn right Right mouse button, right
3D Forward Left mouse button, forward
3D Back Left mouse button, back
3D Step left Shift, Right mouse button, left
3D Step right Shift, Right mouse button, right

*As you go, you find that one set of actions allows you to perform more than one of these actions.

Manipulating the 3D Viewport
For the viewport that shows you the 3D viewport, your actions are more involved than
those you use to manipulate the 2D viewports. To adjust the 3D viewport, you use a com-
bination of keyboard keys and mouse buttons. You turn to the left and right, move back-
ward or forward, or look at the ceiling or floor.

To explore these activities, change the mode of the 3D viewport so you can see its color
features. To accomplish this, click in the lower-left viewport (the 3D viewport). Then press
Alt + 5. The title of the viewport changes to Dynamic Light.

Alt + 5 switches the mode of viewing so that you see all the meshes and textures in the map
with lighting applied.

Alternatively, after activating the viewport, you can click an icon on the toolbar of the view-
port to switch to Dynamic Lighting. To accomplish this, click the sixth cube from the left,
as shown in Figure 2.10.

Chapter 2 ■ The Basics of UnrealEd22

Figure 2.10 The
cubes provide
different 3D views.

Turning to the Left and Right

To turn to the right or left in the 3D viewport, click in the viewport to activate it and then
press the left mouse button. Move your mouse approximately an inch straight to the left.
Let up on the mouse button. Repeat this action a few times.

As Figure 2.11 illustrates, when you perform these actions, it is as though you are stand-
ing in one place and turning in a circle on your heels. You rotate in the same direction in
which you move your mouse.

Figure 2.11 You turn
on your heels.

Repeat the left movements until you have gone in a complete circle. Then press the left
mouse button and move your mouse slightly to the right. The map rotates to the left. Again,
it is as though you are standing in one place and then turning on your heels to the right.

Moving Forward and Backward

To move backward or forward in the 3D viewport, press the left mouse button and move
your mouse approximately an inch forward. Let up on the mouse button. When you per-
form this action, you move directly forward in whatever direction you are facing.

To move backward, press the left mouse button and move the mouse approximately an
inch backward. Let up on the mouse button. You move directly backward.

To move in a given direction, you first turn on your heels to the left or the right (as indi-
cated in the previous section). Then you move forward or backward. Figure 2.12 provides
a summary view of this action.

Select a Map 23

Figure 2.12 You
move backward or
forward relative to
the direction you
are facing.

As an exercise, press the left mouse button and move forward or backward slightly until
you are directly in front of the flag. Press the left mouse button and turn so that you see
one of the eyes at the end of the short hallway. Then turn so that you face the eye at the
end of the other hallway.

Looking at the Ceiling and Floor

To rotate your view of the 3D viewport so you can look up, press the right mouse button
and move your mouse approximately an inch forward. As Figure 2.13 illustrates, when you
perform this action, it is as though you look toward the ceiling.

To look at your feet, press the left mouse button and move approximately an inch back-
ward. Let up on the mouse button. If you repeat this action, you can continue rotating your
view until you are looking straight down. The same applies to rotation upward. The rota-
tion stops as 90 degrees, straight up or down.

Moving Directly to the Left or Right

To move to the right side in the 3D viewport, press the Shift key and the left mouse but-
ton. Move your mouse approximately an inch to the right. Release the mouse button. When
you perform this action, it is as though you have stepped directly to the left.

N o t e

Your computer might respond differently to the commands discussed in this chapter. The purpose of
the exercises in this chapter is to give you a chance to practice using the editor if you are new to
UnrealEd.

Press the Shift key and the left mouse button. Move your mouse approximately an inch to
the left. Release the mouse button. When you perform this action, as Figure 2.14 illustrates,
it is as though you have stepped directly to the right.

Chapter 2 ■ The Basics of UnrealEd24

Figure 2.13 To look up,
press the right key and
move your mouse forward.

Building and Running
To compile and run the map you are working with, you first open the map you want to
work with. In this instance, if you have not already done so, open the CTF-1on1-Joust.ut2
map. After it loads, you have several options. You can build certain features of a map, such
as the lights, or you can build all features of the map. In this instance, you want to build
the entire map, and to accomplish this, you click the joystick on the top toolbar of UnrealEd.
Figure 2.15 illustrates the joystick icon.

Building and Running 25

Figure 2.14 Use the
Shift and right mouse
button to move directly
to your right or left.

Figure 2.15 The joystick
icon runs the map.

When you first click the joystick icon, you’ll see a dialog that proves important during your
development efforts. This is the log window. The log window allows you to output mes-
sages to confirm operations in your code. As you can see in Figure 2.16, each line in the
dialog informs you about the state of the build process. When you add your own code, you
can include a call to the Log() function to output your own messages.

Figure 2.16 Log
messages tell you about
the state of the build.

Figure 2.17 shows you the map after it builds and is running. At this point, since you have
made no changes in the map, it behaves just as it would if you were to start it from the
default game. The point here is not to add anything to the game but only to go through
the routine of accessing and running a map.

Chapter 2 ■ The Basics of UnrealEd26

Figure 2.17 The jousting level requires a minimal period of time to compile before running.

If you are an experienced player of Unreal Tournament, you require no instructions about
how to navigate within the game. If you are new to the game, here are the basics:

■ To move forward, press the W key or use the arrow key.

■ To navigate, move the mouse to the left or right.

■ To fire a gun, press the left or right mouse button.

■ To exit the game, press Esc.

■ The joust involves going down the hall, grabbing the flag, and then returning to
your base.

■ To get help, press Esc and then click Help.

N o t e

Running a map involves making it operate for testing or play. This differs from building and com-
piling. When you build a map, you command the compiler to assemble its code and other assets for
compiling. When you compile a map, you tell the compiler to take the code and translate it into the
core language of the game engine. When you run your map, you must first build and compile it. If
you have made no changes, then you do not need to compile or build your map. You can just run it.

Adjusting Resolution
You are probably thoroughly familiar with setting the resolution for your game. For pro-
gramming purposes, it is essential to be fairly specific about how you want to display maps
to ensure that you can proceed with your development activities without long delays. One
approach to this is to reduce the size and resolution of the map display. Toward this end,
after you have the CTF-1on1-Joust.ut2 map running, press the Esc key. As you know if you
are an experienced player of Unreal Tournament, you then see the Configuration window,
as shown in Figure 2.18.

Adjusting Resolution 27

Figure 2.18 Press the Esc key and then click Settings.

In the Configuration window, click the Settings option. This opens the Settings window.
In the Settings window, click the Display tab, as shown in Figure 2.19. In the Resolution
pane, change or confirm the following settings:

■ Set the Resolution field to 800 × 600. To accomplish this, click the drop-down
arrow for the field and select the resolution. When the Confirmation dialog
appears, click Keep Settings.

■ If the Full Screen checkbox is checked, uncheck it. If it is not checked, as shown in
Figure 2.19, leave it unchecked. If you have made changes, when the Confirmation
dialog appears, Click Keep settings.

■ When you finish changing your settings, click Back and then press the Esc key. This
returns you to your game.

Chapter 2 ■ The Basics of UnrealEd28

Figure 2.19 Set your resolution to 800 × 600 and uncheck Full Screen so that you can more easily
test your work.

Closing a Map and Exiting the Editor
As you proceed in this book, you will often first save one of the maps provided with the
game under a name you use for development purposes and then modify the map to accord
with your programming projects. In other instances, you create your own maps and add
them to the game. In this case, you have not made any changes to the CTF-1on1-Joust.ut2
map, and you want to exit it without saving any changes that might have occurred
accidentally.

As you know, to exit the game, you press Esc. You then see the Autoplay dialog. To exit the
play session, click Exit Game. You then click Yes in response to the Are you sure you want
to quit? dialog. When you are working with UnrealEd, you do not exit everything at this
point. You merely return to the editor.

It remains for you to now close out of the map completely. Here are two options:

■ To close the map so that you can start developing your own map, select File > New.
This action clears the viewports and displays a “blank” map.

■ To close the map and exit UnrealEd, select File > Exit.

For these options, if you have made any changes to the map, a dialog queries whether you
want to save your changes. Unless you are working with a level that you have saved to a
custom name or created for yourself, always click No.

It is certainly the case that you can customize the game and then play it. People do this all
the time. Changing a default level of the game so that it provides customized features is
what mod development is all about. However, for present purposes, your goal is not to
change the default game. Instead, it is to acquaint yourself with a few primary modifica-
tion activities. After you have acquainted yourself with these activities, you can then pro-
ceed to modify integral parts of the game.

Conclusion
This chapter has provided a rundown of some of the topics you explore in depth in chap-
ters to come. In other instances, it has provided a review of a few basic activities you per-
form every time you conduct a modification session using UnrealEd. Key notions here are
that you open a map. You can work with a map under the name you find in the default
game configuration, but for learning purposes, you should always rename the maps
you work with to avoid problems. In the next chapter, you proceed in this direction. In
this chapter, your efforts have been confined to just opening a map and exploring it in the
viewports.

Conclusion 29

An important dialog in UnrealEd is the browser dialog. You can invoke this dialog in a
number of ways. It is important enough that when you open a level, it automatically appears
in your work area. You can change browsers by clicking browser tabs in the dialog, or you
can select browsers from the View menu of UnrealEd. In addition, the toolbar icon allows
you to access browsers.

Navigating through a map in UnrealEd provides you work with 2D and 3D viewports of
the map. The two types of viewports require different procedures for navigation, but you
can master these after a brief period of experimentation. The primary movements in the
2D viewports involve vertical and horizontal movements. The primary movements in the
3D viewports are more complex, involving rotation in addition to horizontal movements.

At the center of much that follows in this book is the notion that you can use math to gen-
erate data that you then use to create the events of your game.

Chapter 2 ■ The Basics of UnrealEd30

In this chapter, you write your first program to modify a level in Unreal Tournament.
To perform this work, you first review a few basics. Among the basics are notions such
as classes, base classes, derived classes, and the properties of classes. Given an under-

standing of these basics, you then examine a few of the classes in the Actor class hierarchy.
The Emitter and Light classes are among these classes. For your project you also investigate
the Trigger class. This class proves important because you derive a class you create,
HelloWorldTrigger, from it. To accomplish this deed, you work with the Actor Class Browser
and the code editing window. Using these tools allows you to learn a few things about class
signature lines, member variables of classes, and member functions of classes. You also
learn how to create and work with a package called HelloWorld. In the end, you can play
the level you worked with in the last chapter and see an event that you program become
part of the action. Here are a few of the topics covered in this chapter:

■ Adjusting UnrealEd so you can more easily write code

■ Understanding basics of properties and classes

■ Deriving one class from another

■ Writing a classical program, HelloWorld

■ Compiling and executing your class

■ Editing and recompiling code

31

Basic Programming
Activities

Chapter 3

Starting Points for Writing Code
When you work with Unreal Tournament, you have a number of options open before you.
Among other things, you can create your own level and then add features to it, or you can
begin with a level and modify the elements it contains. Creating a level from scratch involves
a fairly extended body of work, so if you are just starting out and want to see quick pro-
gramming results, a good course of action is to use an existing level and change a few of
its features. Given this beginning, you can then expand your work so that you can explore
a wider number of options.

For starters, open the CTF-1on1-Joust.ut2 map. Chapter 2 provides specific details about
how to locate, open, and navigate through the map. Consult that chapter if you need a
review.

To open the map, select File > Open. You see the Open dialog, as shown in Figure 3.1. Click
the View Menu icon on the right to display the details of files. Scroll down the list until you
find the CTF-1on1-Joust.ut2 map. Select this map and click Open.

Chapter 3 ■ Basic Programming Activities32

Figure 3.1 Select
the 1-on-1 joust map
and click Open.

To make it so that you have more flexibility as you work with the viewports, select View >
Viewports > Floating. This allows you to view adjustable windows in UnrealEd. Take a
moment to resize the windows until they appear approximately as shown in Figure 3.2.

Now enlarge and position the orthogonal viewport as shown in Figure 3.3. You can accom-
plish such tasks by positioning the cursor on the upper-left corner and clicking the left
mouse button. If you click on the title bar of the viewport, you can move it.

Starting Points for Writing Code 33

Figure 3.2 Set your viewports to floating to make them easier to work with.

Figure 3.3 Resize the viewport and face the statue from the long hall.

After you have positioned and resized your viewports as shown in Figure 3.3, click the sec-
ond cube from the right on the task bar for the orthogonal viewport, as shown in Figure
3.4. This action changes the mode of the viewport so that it shows Texture Usage. This
mode of viewing allows you to more easily see a few of the entities in the level.

Chapter 3 ■ Basic Programming Activities34

Figure 3.5 Position your view so that you see the statue of Anubis in the Texture Usage mode.

Figure 3.4 Changing the mode to Texture Usage allows you to more easily see what is in the map.

After you have changed the mode of the view of the viewport to Texture Usage, adjust your
view until you are facing the statue of Anubis that rests behind the blue flag (as shown in
Figure 3.5). You face the statue of Anubis from the long hall of the map. Back away a short
distance so that you see the flag and its base. Seven lightbulbs are in the lower part of the
map. At the top, you see two smaller, bluish lightbulbs. Just beneath the two bluish light-
bulbs at the top, you see a collection of spheres of different colors.

Properties
A property of an entity is something that you can alter to change the entity. Consider a
pencil, for example. You can tell one pencil from another by naming the color of its lead.
The color of the lead is a property of a pencil. What applies to pencils applies to almost
everything you find in a map in Unreal Tournament.

To see how this is so, move your mouse cursor until it is directly over the lightbulb icon in
the right front, as shown in Figure 3.5. Select the lightbulb by clicking the left mouse but-
ton. Then click the right mouse button. A Light Properties dialog appears, as shown in
Figure 3.6.

Properties 35

Figure 3.6 A properties
dialog identifies actions
and values you can
designate for a given
entity.

A properties dialog exists for almost every entity in a map. When you speak in terms of
programming, another term for entity is object. The lightbulb icon represents an object.
An object is an instance of a class. A class is a program that creates a pattern for objects.
You can use this program to create many different objects. Each lightbulb represents an
object of the Light class.

You see the title Light Properties in the title bar of the properties dialog because the dia-
log tells you about features of the program that define the Light class. Another term for
code that creates a property is member variable. You do not see the code for the Light class
when you view the Light Properties dialog. The properties dialog only represents the code.

It also sorts the properties into a set of trays. For each tray, there are usually two or more
properties. The list for any given tray can be fairly extensive. To see how this is so, click on
the tray called Lighting. As Figure 3.7 illustrates, the Lighting tray contains properties that
allow you to regulate such things as whether the light blinks, how far its luminosity reaches,
and whether it casts shadows. The terms you see that begin with “b” or “LT” directly define
what you see in the code for the Light class. These are values you use to directly or indi-
rectly define the properties of the Light class.

To close the properties dialog, click the red control button in the upper-right corner. In the
orthogonal viewport, position your cursor on the base of the blue flag and click the left
mouse button. You see a StaticMeshActor Properties dialog. As with the Light Properties
dialog, this dialog represents the properties of a class. In this case, the class is the class that
creates the base of the flag. Its name is StaticMeshActor. The trays of the dialog provide you
access to specific properties of the class. As with the properties dialog for the Light class
object, each tray might contain a number of properties.

Chapter 3 ■ Basic Programming Activities36

Figure 3.7 Each tray
of the properties dialog
reveals two or more
properties.

Figure 3.8 A properties
dialog exists for the base of
the flag, which is an object
of the StaticMeshActor
class.

Deriving Properties
If you click on the Lighting tray of the StaticMeshActor class, as Figure 3.8 shows, you see
many of the properties you saw with the Light class properties dialog. This is so because
both the Light and StaticMeshActor classes are derived from a common base class. The base
class is named Actor. The classes are all part of a hierarchy of classes. In this hierarchy, Light
and StaticMeshActor are both derived from Actor, and so are all the other classes you work
with in this book.

When you derive one class from another, you reuse code. How this happens is discussed
extensively in the chapters to come, but for now it is enough to concentrate on the few
details Figure 3.9 provides. The Actor class is the base class. The two other classes are the
derived classes.

Properties 37

Figure 3.9 Properties are defined in the code for a class.

In the gray box to the side in the figure, you see a small portion of the code you can find
in the Actor class. This code sets up the values you can assign to the LightType property.
Because these values are defined in the base class (Actor), you can make use of them in all
the classes derived from the base class. This applies to dozens of derived classes.
Understanding this is at the heart of working with UnrealScript and the Unreal Tournament
class hierarchy.

With reference to the sample of UnrealScript code in Figure 3.9, as mentioned before, the
code is taken from the Actor class. This code defines values for one of the LightType prop-
erties. The mechanism in the code used to define the values is called an enumeration.

Discussion of enumerations occurs later in the book. For now, as Figure 3.10 illustrates, it
is enough to know that the values acceptable for the LightType property are created using
an enumeration in the base class. The Light and StaticMeshActor classes are derived from
this class, and this is why you see the same values in the properties dialogs for the Light and
StaticMeshActor classes (see Figures 3.7 and 3.10). The two derived classes reuse the code in
the base class. Such is the nature of a class hierarchy.

Chapter 3 ■ Basic Programming Activities38

Figure 3.10 A common
class, Actor, provides you
with a definition of the
LightType property.

Class Objects and Distinct Properties
When you create an object, the object is of the type of the class you use to create it. In this
respect, then, in the scene you see in Figure 3.5, there are nine objects of the Light type.
The base of the flag is an object of the StaticMeshActor type. If you click on the pillars, you
find that they are also of the StaticMeshActor type, as is the statue of Anubis. If you click on
the flagpole, you find that it is of the xBlueFlagBase class.

If you move up to the top of the two pillars that stand at the arms of the statue of Anubis,
you find clusters of orbs. These are objects of the Emitter class. “Emitter” is short for par-
ticle emitter. You use particle emitters to spray particles at greater or lesser intensities and
distances from a given point.

To review activities in Chapter 2, to build and run the map, click the build icon on the main
menu and then position yourself in the level so that you are looking at the blue state of
Anubis, as shown in Figure 3.11. You see that on the pillars on either side of the blue Anubis
statue, emitters are at work creating glowing fields of light.

Emitter objects produce fluctuating clouds atop the pillars on either side of the statue of
Anubis. You see changing colors because each Emitter class object possesses its own set of
properties. You can add dozens of Emitter objects, each defined with different values for its
properties.

All the objects of a given class share the same properties. On the other hand, you can define
the properties for each object you create so that property values are unique. This notion is
extremely important in the context of object-oriented programming and receives extended
discussion in a later chapter.

Programming Hello World
Given the discussion concerning classes, objects, and properties, you are now in a good
position to write your first body of code for Unreal Tournament. You can write code to
derive your own class. You can create one or more objects of your class. You can define the
properties for each of your objects so that its values are distinct. Specifically, you can derive
a class from the Trigger class. Then you can use one of its properties, Message, to print text

Programming Hello World 39

Figure 3.11 Objects have common properties, but each object maintains its own
set of values for its properties.

to the screen at given moments in your game play. The text that shows allows you to initi-
ate your coding work according to a revered programming tradition. This tradition calls
on you to write a short program that prints “Hello World!”

Classes, Packages, and Renaming Your Map
To write code that you use to control objects in a map, you create a class. The class you cre-
ate is stored in a package. The package is stored in a special directory. You can access it at
any time to modify the classes in it or to add new classes to it.

That is the coding part. The other part pertains to the map. When you create class objects,
you place them in a map. When you do this, you alter the map in expected and unexpected
ways. Since at this point it is important to be able to preserve the default behavior of Unreal
Tournament as much as possible, prior to starting your coding effort, you should save the
map you are working with under a name that differs from its default name.

If you have been working with it in the previous sections, the CTF-1on1-Joust.ut2 map is
still open. If you have not yet opened it, do so now.

To save this map under a new name, select File > Save As. You see the Save As dialog, as
shown in Figure 3.12. In the File name field, type HelloWorld.ut2. Then click Save. After
the save operation concludes, you see the title of your newly renamed map in the title bar
of UnrealEd.

Chapter 3 ■ Basic Programming Activities40

Figure 3.12 Save
your map under a
unique name.

Trigger Generalities
You have already dealt with such classes as StaticMeshActor, Light, and Emitter. To imple-
ment your code for your HelloWorld map, you add an object of yet another class, Trigger.
You do not use this class directly, however. Instead, you derive a class from it, in much the
same way as the Light and StaticMeshActor classes are derived from the Actor class.

Like the other classes you have dealt with so far, the Trigger class is derived from the Actor
class. Unlike other classes, the Trigger class does not provide you with an effect that you
can see. Instead, a Trigger object involves an event. The event can involve something you
can see. In this respect, a Trigger object works in two ways. In the first way, the object makes
it so that some object other than itself changes. For example, a Trigger object can change
a Light object. In the second fashion, the Trigger object can itself embody an event.

In the Hello World program, you use the second approach. You tell the Trigger object to
produce an effect when the player avatar collides with it. As mentioned previously, the effect
consists of issuing a message, “Hello World!”. You see this message in the chat field each
time the player avatar’s movements in the game activate the Trigger object.

The Actor Class Browser
As you saw in Chapter 2, the browser dialog provides you with access to a number of
browsers. Each browser is in fact just a tab in a dialog. One of these is for Actor Classes. As
mentioned earlier, Actor Classes are the classes in the Unreal Tournament class hierarchy
that are derived from the Actor class. These classes are so numerous and important that
they merit their own browser.

The Actor Class Browser allows you to perform three important tasks. The first is to cre-
ate new classes by deriving them from a class in the Actor class hierarchy. Another is to allow
you to create packages in which to place your new classes. The third is to allow you to invoke
the code editing window. In the code editing window, you code and test your classes. In
addition, the Actor Class Browser provides a few menu options that allow you to perform
tasks like accessing previously developed classes and packages and saving the new classes
and packages that you develop.

To view the Actor Class Browser, select View > Show Actor Class Browser. The browser dia-
log appears; it should be familiar now from your work in Chapter 2. As Figure 3.13 illus-
trates, the Actor Class tab displays two fields when you first open it. The top field lists the
classes derived from the Actor class. The list is extensive. The bottom field lists all the pack-
ages that contain these classes.

The Actor Class Browser 41

A package is analogous to a directory. Among other things, a package allows you to store
the code you create for a given map in one place. It also allows you to group together many
classes that work together to provide an event to any number of maps. Any class you
develop must be contained by a class, so you must either create a package when you cre-
ate a new class or add the class you create to an existing package.

To show that a given package contains a given class, you join the name of the class to the
name of the package with a period. The class you are about to create is named
HelloWorldTrigger. It is in the HelloWorld package. To indicate that the HelloWorldTrigger class
is in the HelloWorld package, you type HelloWorld.HelloWorldTrigger. This convention proves
important as the complexity of your programming projects grows and you begin to create
different packages, each of which might contain several classes. In some cases, the classes
in the different packages have the same names. You can access them and distinguish them
without problems using the “fully qualified” package name.

Deriving a Class and Creating a Package
Your mission in the current context is to create a class called HelloWorldTrigger. You must
also create a package for this class, HelloWorld. To proceed with this work, you use the Actor
Class Browser to derive your class from the Trigger class. The Trigger class is derived from
the Actor class.

To start this activity, if you have not done so, from the UnrealEd main menu, select View
Actor Class Browser.

Chapter 3 ■ Basic Programming Activities42

Figure 3.13 The top
field displays the classes
derived from the Actor
class.

In the Actor Class Browser, select View from the main menu and then uncheck the Show
Packages item. You then see only the field containing the names of classes derived from the
Actor class, as shown in Figure 3.14.

The Actor Class Browser 43

Figure 3.14 The Trigger class is found in the Triggers category of classes.

In addition to changing the appearance of the tab so that you see only class names, as shown
in Figure 3.14, verify that the checkbox for the Use ‘Actor’ as Parent? field has been checked.
If it is not checked, then click to check it.

Then scroll down until you see Triggers. After that, scroll a little more until you see the
Trigger class. Triggers is a category of classes. Trigger is a class.

To derive a class from the Trigger class, right-click on the Trigger class. As shown in Figure
3.15, you’ll see a popup dialog. In this dialog, select New.

After you select New, you see the New Class dialog, shown in Figure 3.16. In the Package
field of the New Class dialog, type HelloWorld. In the Name field, type the name of the
class you want to create, HelloWorldTrigger. Then click OK.

As soon as you click OK in the New Class dialog, you see the UnrealEd code editor. Figure
3.17 illustrates the editor. The title bar identifies the class and package you are creating:
HelloWorld.HelloWorldTrigger. The blue pane on the right of the window provides you with
an area in which to type your code. The white pane on the left of the window provides you
with names of any classes you visit when you click on the list of classes in the Actor Class
Browser. In Figure 3.17, three classes have been clicked on at some point:

■ Actor. The Actor class is the primary class in your class hierarchy. Click Actor in the
left pane to view the code for the Actor class. If you do not see Actor, then momen-
tarily activate the Actor Class Browser, scroll to the top of the class list, and click
Actor. Then click Actor in the code editing window. In this way, you can visit the
code for any number of classes. For the Actor class, use the code editor window
scroll bar to scroll through the class. As you can see, the code is extensive. Do not
try to change the code.

■ Trigger. The Trigger class is derived from the Actor class. You derive your class from
the Trigger class. Click on the Trigger item to view the code for the Trigger class.
Use the scroll bar that appears with the code to scroll through the code. Do not try
to change the code.

Chapter 3 ■ Basic Programming Activities44

Figure 3.15 Select
New from the popup
dialog.

Figure 3.16 Name
the package and the
class in the dialog box.

■ HelloWorldTrigger. HelloWorldTrigger identifies the class you are creating. Click on
the HelloWorldTrigger item to activate the code editing window for this class. As
shown in Figure 3.17, when you click on this item, the blue area becomes an active
editor.

The Actor Class Browser 45

Figure 3.17 The code editor allows you to view and edit code for base and derived classes.

Comments for Code
The Actor Class Browser generates a few lines of code automatically. As Figure 3.17 illus-
trates, you see the following lines:

//===
// HelloWorldTrigger.
//===
class HelloWorldTrigger extends Trigger
placeable;

Regardless of what class you start with, you see roughly the same set of lines. The three top
lines are comments. You include comments in your program for your information only.
The compiler ignores comments. To indicate that you want the compiler to read a line of
code as a comment, you use one of two approaches. You can begin the line with two for-
ward slashes at the start of the line, as is the case with the code in Figure 3.17.

You can also create comments by using a forward slash and an asterisk. In this case, you
can comment out several successive lines or a term within a line. This form of comment
requires beginning and ending characters. Here is an example:

/*
Here are a few commented lines
of code

*/

You should always comment your code. While styles of comments differ, it is generally a
good idea to write complete statements. Programmers often capitalize the first word of a
statement. They often do not include a period if the statement consists of only one sentence.

Compiling or Checking Your Syntax
As a general rule, at least when you are first setting out on a coding project, always estab-
lish a firm starting point by performing what is known as a sanity check. A sanity check
allows you to know whether your compiler and the primary set of code you are working
with compile correctly. Toward this end, click the second icon from the right on the code
editor. Refer to Figure 3.18.

Chapter 3 ■ Basic Programming Activities46

Figure 3.18 The
second icon from the
right allows you to
check your syntax.

The term syntax refers to anything you include in a file. As a general rule, it is a good prac-
tice to check your syntax after adding a few lines of code. Avoid the practice of typing many
lines and then trying to discover what is wrong. If you type a few lines and then compile,
you can more easily discover the problems with your code.

If your code contains an error, then the compiler generates an error message. When you
click the second icon in from the left in the code editor, the code that is automatically gen-
erated contains no errors, so you see a message similar to the one shown in Figure 3.19.

Figure 3.19 Click the compile icon and see whether your code contains syntax errors.

On the other hand, if the syntax of your code contains defects, then you see an error mes-
sage. In Figure 3.20, to create an error message, the code sample omits the closing syntax
for the comment.

Error messages are often cryptic at first. However, after you work with a given program-
ming language for a while, you usually get so you can tell what messages refer to. In Figure
3.20, for example, you see this error message:

Error in HelloWorldTrigger, Line10: End of script encountered inside comment

If you reason a little, you can discern the meaning. If a script (your program) ends inside
a comment, then the comment must not be correctly terminated. A comment has a begin-
ning and an end, and it occurs inside of a script. It must be the case that you have not prop-
erly terminated your comment. That is, indeed, what has happened.

N o t e

The message also provides a line number. This bit of information is useful in some ways. Unfortu-
nately, the editor does not provide you a way to go to the line number. If you become desperate
while working on a long script, highlight your code, use Control + V to copy it to the Windows clip-
board, and then paste it into Notepad. You can then select Edit > Go to find the line using the line
number. When you use this approach, highlight the code in Notepad and format it so that it is of the
Courier New font and 12 points in size. This way, you can paste it back into the code editing win-
dow of UnrealEd.

Signature Lines
After the comments that introduce your new class, you see the code that creates the class.
This is known as the signature line of the class. In Figure 3.17, you see two lines of code for
the signature line. These lines could also be shown as one line:

//Class signature line
class HelloWorldTrigger extends Trigger placeable;

The signature line is a statement. A statement is a unit of syntax that you terminate with a
semicolon. You can continue a statement over several lines, but if you do not include the
terminating semicolon, the compiler issues an error.

The Actor Class Browser 47

Figure 3.20 An error report tells you that your code contains a syntax error.

The signature line of your class should be the first line of active code. You can precede the
signature line with comments.

The first term in the line is class. This is a keyword. A keyword is a word that is reserved
as a feature of the syntax of a programming language. When you use the class keyword,
the word immediately following it is the name of your class, in this case, as you know,
HelloWorldTrigger.

The next term, extends, proves fairly complicated to fully explain, but generally it is the key
term involved in deriving one class from another. Like class, it is a keyword of the
UnrealScript programming language. When you derive your class from the Trigger class,
you extend the Trigger class. When you extend something, you add features to what is
already there. That is precisely what deriving one class from another involves.

The term Trigger should be pretty clear by now. That is the name of your immediate base
class. You derive HelloWorldTrigger from the base class Trigger. The Trigger class, to repeat
previous observations, is in turn derived from the Actor class.

The final term in the signature line is also an UnrealScript keyword. The keyword place-
able defines your class so that you place it in the game.

Defining a Class
When you type the code for a class, you define a class. As you have read in previous sec-
tions, you might also refer to such activity as the implementation of a class. The terms are
synonymous in many ways, but as subsequent chapters reveal, to implement code gener-
ally involves about anything you do as a programmer. When you define a class or a part of
a class, however, you perform a fairly specific set of actions. This receives more discussion
later on. For present purposes, however, either term works.

When you define a class, you start with a signature line, as the previous section detailed.
What you type after the signature line of the class becomes part of the class. You develop
only one class in a given file. In the current context, the blue pane is a single file. As men-
tioned before, you can have an unlimited number of classes in a package.

To implement your HelloWorldTrigger class, first click the compile icon to perform a sanity
check on your syntax. (Remember, the compile icon is the second icon in from the left. See
Figure 3.18.)

Next, click in the blue pane, press Enter to set the cursor on a new line. Add the new code
given in the following code sample. Figure 3.21 illustrates the appearance of the text pane
after you enter your code.

Chapter 3 ■ Basic Programming Activities48

//===
// HelloWorldTrigger.
//===
class HelloWorldTrigger extends Trigger placeable;

//#1
//Override a function from the parent class
function PostBeginPlay(){

//#2
//Call a function from the parent class
Super.PostBeginPlay();
//#3
//Assign a value to a member variable of the parent class
Message = "Hello World!";

}

N o t e

Beginner’s point. Compile periodically as you go. Work line by line, but before you type the lines
following comments #2 and #3, type the shell of the function that contains them. These lines are as
follows:

Function PostBeginPlay(){

}

The opening and closing curly braces create a syntactical unit, so you need both of them if you are
not to create a compiler error. Type this shell, compile to check your syntax, and then add the lines
that go between the curly braces.

In the line trailing comment #1, you create a function. More remains to be said about this
in subsequent chapters. For the present context, note that the term function is an
UnrealScript keyword. PostBeginPlay() is the name of a function. In this instance, the func-
tion is one that you can find in a base class. You redefine (override) it in the current class.
This topic receives much more attention later on.

At comment #2, you call a function from a base class. The Super keyword allows you to do
this. You can call a function from a base class if the function you call is defined in the base
class in a way that allows you to call it. A function defined in this way is said to be part of
the interface of the base class. This is a key feature of object-oriented programming, and
you can read much more about this, once again, later on.

The PostBeginPlay() function attends to a number of setup activities for your trigger. It
makes it so that when your player avatar collides with your HelloWorldTrigger object, the
event you anticipate can take place.

Defining a Class 49

In the lines following comment #2, you once again make use of a feature of the base class.
In this case, you are using a property. If you are thinking about the earlier discussion in
this chapter, you are right on target. In this instance, instead of using the Properties dia-
log, you perform your work directly within your code.

Message is the name of the property. As a programmer, as mentioned previously, you can
refer to such a property as a member variable. The equals sign is known as an assignment
operator. You assign the expression “Hello World!” to the member variable Message. When
you assign the expression to this member variable, you can then retrieve it later on. In this
instance, the game retrieves the expression, allowing you to print it over and over again
whenever a collision event occurs.

Chapter 3 ■ Basic Programming Activities50

Figure 3.21 Type the code for your HelloWorldTrigger class and compile often.

Saving and Adding Your Class and Package
After you type the code shown in Figure 3.21, you must save your work. To save your work,
first compile your HelloWorldTrigger class one more time and confirm that the compiler
issues a Success message similar to the message Figure 3.21 illustrates.

Then, select View > Show Packages in the Actor Class Browser. You see the lower field of
the Actor Class Browser. Scroll until you see the HelloWorld package. Put a checkmark next
to HelloWorld, as shown in Figure 3.22.

After that, select File > Save Selected Packages. This saves the package and in the process
your file. However, at this point, you have not yet completely saved your work. Proceed to
the next section.

N o t e

Do not close out of your map prior to placing an object of your newly created class in your map. If
you do so, then UnrealEd does not save the work you have done to create the package and the class.
It will be necessary for you to start over.

Placing a HelloWorldTrigger Object in Your Map
In the previous sections, you created and saved a class and a package for the
HelloWorldTrigger class. It remains, however, that if you do not place an object of the class
you have created in your HelloWorld map, when you close your map, UnrealEd does not
save your work.

For this reason, you must now add an object of the HelloWorldTrigger class to your map.
When you place an object of the type HelloWorldTrigger class in your map, you create an
instance of your class. An object is an instance of a class.

At this point, to make the HelloWorld map visible, click in the orthogonal viewport of
UnrealEd. (This viewport is shown in Figure 3.5.)

Now click the Actor Class Browser to activate it. Scroll to your HelloWorld package in the
lower pane, as shown in Figure 3.23. Click HelloWorld. (Do not click the checkbox.)

Then in the upper pane, navigate to Triggers > Trigger > HelloWorldTrigger and click
HelloWorldTrigger.

Placing a HelloWorldTrigger Object in Your Map 51

Figure 3.22 After clicking
to put a checkmark next to
HelloWorld, select File >
Save Selected Packages.

Now move to the orthogonal viewport of your map. As before, position yourself so that
you are facing the blue statue of Anubis. Click on the second icon from the left in the tool-
bar to change the mode of the viewport to BSP. See Figure 3.24.

Just in front of the right foot of the statue of Anubis, right-click. As shown in Figure 3.25,
this action opens a dialog. Toward the top of the dialog, you see an option that reads “Add
HelloWorldTrigger Here”. Select this option. An instance of your HelloWorldTrigger class
appears in your map.

As Figure 3.26 shows, the instance of your HelloWorldTrigger class is represented by a box
with a switch. This icon represents any object of any class you derive from the Trigger class.

N o t e

To adjust the position of the icon that represents your HelloWorldTrigger object, first click on the
icon itself. To move it forward or backward, first click on the icon. Then press the Shift key and click
and hold the left mouse key button. Move up or down and the icon will move forward or backward.
To move the icon left or right, first click the icon.Then press the Shift key and click and hold the right
mouse key button. Move left or right.

Chapter 3 ■ Basic Programming Activities52

Figure 3.23 Select
the class you want to
add to your map.

Placing a HelloWorldTrigger Object in Your Map 53

Figure 3.24 The BSP mode allows you to see icons more clearly.

Figure 3.25 Place
an instance of the
HelloWorldTrigger
class in your map.

Figure 3.26 A box
with a switch serves
to identify all triggers.

Trigger Property Settings
The icon representing your HelloWorldTrigger object is now in your HelloWorld map. It rests
just in front of the statue’s right foot. To view the properties dialog for your newly created
class, left click the trigger icon to open the properties dialog.

Besides confirming the existence of your class, you can also check one of its properties. The
property you want to check determines whether the trigger can be activated by a collision
event. As Figure 3.27 illustrates, to find this property, click the Collision tray. Verify that
the corresponding value for bCollideActors is set to True.

Chapter 3 ■ Basic Programming Activities54

Figure 3.27 Set the
bCollideActors
property to True.

After you have verified the bCollideActors property is set to True, close the
HelloWorldTrigger Properties window.

At this point, to save your work, from the UnrealEd top menu, select File > Save.

At this point, you can close the Actor Class Browser and the code editing window for your
class.

Compiling and Testing Your Code
You have developed a class and positioned an object of your class in the HelloWorld map.
Now you can test the performance of the object. To accomplish this task, click the Play
Map! icon on the main UnrealEd toolbar. UnrealEd builds and compiles your map.

After the game is running, to invoke the HelloWorldTrigger event, navigate down the hall-
way to a position in front of the blue statue of Anubis. Approach the right foot of Anubis
(the left foot as you face the statue). Move the gun back and forth. As you approach, after
a few tries, you see the “Hello World!” message as shown in Figure 3.28.

Editing Your Code
After you develop a body of code, you often return to it to add to it or modify it. To see
how you can accomplish this task, assume that you want to add words to the message your
class object issues. The new message reads “Hello World of Unreal Tournament.”

There are several approaches to editing your code. One involves starting from the Actor
Class Browser. This is the approach you are likely to use if you open UnrealEd for a new
work session. The other involves working directly with a given class object in a way that
does not require you to start from the Actor Class Browser. You are likely to use this
approach if you have a work session started and are testing your code as you go.

Accessing Code from the Package
Suppose you are resuming a work session after closing out of UnrealEd. You want to access
a class in a package you have created.

To use this approach, start by opening the Actor Class Browser.

Then in the Actor Class Browser, select File > Open Packages.

Editing Your Code 55

Figure 3.28 As you approach the right foot of Anubis, you collide with your
HelloWorldTrigger object and see the “Hello World!” message.

As Figure 3.29 shows, you see a list of *.u files. These are files that contain code for vari-
ous packages. In this case, you see one called HelloWorld, which is the package you created.
In this package is the HelloWorldTrigger class. Select the HelloWorld.u file and click Open.

Chapter 3 ■ Basic Programming Activities56

Figure 3.29 The
*.u file identifies
code for packages.

After you click open in the Open Class Package dialog, the fields in the Actor Class Browser
are refreshed. Click the Actor tree and navigate to the Trigger class and find
HelloWorldTrigger. Then click HelloWorldTrigger to open the code editing window.

You can now enter new code for your class. Here is the altered version of the code:

//===
// HelloWorldTrigger.
//===
class HelloWorldTrigger extends Trigger placeable;

//#1
//Override a function from the parent class
function PostBeginPlay(){

//#2
//Call a function from the parent class
Super.PostBeginPlay();

//#3
//Assign a value to a member variable of the parent class
Message = "Hello World of Unreal Tournament!";

}

In this code, you alter only the last line, making the message “Hello World of Unreal
Tournament!”

To check your syntax, click the second icon from the right, Compile Changed Scripts. After
the script compiles, leave the code editing window open for now.

Then go to the lower field of the Actor Class Browser and click the checkbox next to the
HelloWorld package. After that, select File > Save Selected Packages.

Since you have already placed an instance of the HelloWorldTrigger class in your HelloWorld
map, you can immediately test your work. To do so, click the compile icon in the toolbar
of UnrealEd. Your map compiles and executes with the new version of your code. Play the
level and invoke the action. As Figure 3.30 illustrates, you see your new message.

Editing Your Code 57

Figure 3.30 Your changes create a new message.

Editing Starting with the Icon
Suppose that you are intensely involved in your map development and spot something you
want to fix immediately, without fussing around with the Actor Class Browser. To accomplish
this, you need only to find the icon for the class that you want to edit and right-click on it.

Toward this end, find the icon for your HelloWorldTrigger class in your HelloWorld map.
Right-click on it. As Figure 3.31 illustrates, this opens a dialog. Toward the bottom of the
dialog you find the Edit Script option.

When you select this option, the Actor Class Browser and the code editing window open.
Use the same approach you used in the previous section to alter your code. First, edit and

compile the code using the second icon from the right in the code editing window, Compile
Changed Scripts. In this instance, you might change the text to “You have violated Anubis’s
sanctity. Back off!!!”

After you alter and compile the code, check the HelloWorld package and select File > Save
Selected Packages. You can then recompile the map to see your changes.

Conclusion
If you are new to programming and UnrealEd, then this chapter might have struck you as
something along the lines of a whirlwind tour of a fairly complex game editing environ-
ment. That is largely what it was. In this chapter you explored notions that involved both
programming and using the editor. Working in both worlds might seem a little daunting,
but the more you learn, the more you can learn. Essential programming concepts in this
chapter included those of deriving one class from another, defining a class, and working
with member functions and variables. You also used the Actor Class Browser and the code
editing window. You developed a class called HelloWorldTrigger, which you placed in a pack-
age called HelloWorld.

The work you have performed has been fairly limited, but at the same time, it provides a
powerful beginning. When you derive one class from another, you begin an activity that
underlies everything you do when you work with the Unreal Tournament class hierarchy.
UnrealScript and the fairly vast collection of classes allow you to do almost anything you
want to do, but in every instance, to reach this power, you must first derive your class from
a base class. In this chapter, you dealt only with the Trigger class. You can now begin work
on many other classes.

Chapter 3 ■ Basic Programming Activities58

Figure 3.31 Click
with the right mouse
button on the
HelloWorldTrigger
object and select Edit
Script.

In this chapter, you follow a path that diverges from the path you followed in Chapter
3. In this chapter, you create a level from scratch. The level you create remains simple,
consisting of a cube that you define with Light, Trigger, and PlayerStart objects. This

simple scenario allows you to further expand your skills, so that you see the essential ele-
ments of a level and how you build activities necessary as you add lighting or geometry to
a level. You work with a cube brush (or pattern) to add a geometric form to a level. You
also work with a sheet object. You then add textures to the geometric forms, and these give
your level a theme. Here are a few of the topics covered:

■ Adding a cube to a level to create a chamber

■ Selecting a texture package

■ Applying textures to different surfaces

■ Using a sheet entity to create a floor tile

■ Adding PlayerStart and Light objects

■ Specializing a Trigger object and placing it in your level

Creating a Working Area
In the last chapter, you worked with the CTF-1on1-Joust.ut2 and added a trigger. In this
chapter, you follow a different approach, one that involves creating a work area from
scratch. Toward this end, you create a cubic area.

To create a cubic work area, select File > New from the main menu of UnrealEd. UnrealEd
refreshes the viewports so that you see only the basic grid features. Then select File > Save
and save the new map as Ch04Area. Figure 4.1 illustrates the situation at hand.

59

Developing
Your Own Level

Chapter 4

If you do not see the four viewports, from the main menu of UnrealEd, select View >
Viewport > Configure. Then select the option on the left. This displays the three 2D view-
ports and the Dynamic Lighting viewport.

Now you add a cubic area (a room) to your map. To create a cubic work area, right-click
on the Cube Brush icon in the brush primitive area of the toolbox on the left margin of
the UnrealEd window. Figure 4.2 illustrates the brush primitive area and the Cube Brush
icon.

Chapter 4 ■ Developing Your Own Level60

Figure 4.1 Save your
work as Ch04Area.

Figure 4.2 Right-click
the Cube Brush icon in
the brush primitive
section of the toolbox.

When you right-click the Cube Brush icon, you see the CubeBuilder dialog, as shown in
Figure 4.3. Click the fields and change the values as follows:

■ Height 600

■ Width 1000

■ Breadth 1000

Do not change the other field values. Figure 4.3 illustrates the values you supply to the
fields of the CubeBuilder dialog. When you are finished, click Build. You see the red wire
brush or frame for the cube appear in all four of the viewports.

Next, left-click the Subtract icon in the constructive solid geometry area of the toolbar, as
shown in Figure 4.4. This carves out a hollow cube from the space of your map.

When you click the icon for geometry subtraction, in the Dynamic Light viewport you
immediately see the hollow cube with the default textures applied to it. Figure 4.5 provides

Creating a Working Area 61

Figure 4.3 Set the Height, Width,
and Breadth values of the cube brush. Figure 4.4 To carve out a cube from the

space of the map, click the Subtract icon on
the constructive solid geometry palette.

Figure 4.5 When you first view the cube, click to the far wall to give it focus.

a view of the initial cube. In this view, you are looking into the cube from a position out-
side it. If you do not immediately see the default textures applied to the cube, click on the
Textured icon, the fourth icon from the left in the Dynamic Light toolbar.

To explore the cube from the inside, press the left mouse button and move forward, into
the center of the chamber. Then press the right mouse button and move your mouse to
view the four interior walls and the ceiling and floor.

Position, Lights, and Starting Point
The size of the chamber you have created is roughly six times as high as a character in the
game, so to position the camera so that it is more in line with what you might see from the
point of view of the character, move to the side 2D viewport. Use the mouse wheel to size
the cube brush so you can see its entirety.

As a point of review, the viewport for the side and other views provides you with two wire
frames. One is yellow when you click it. The other is red. The red wire frame is a pattern
(brush) that you can use to generate any number of meshes or geometrical forms. The pat-
tern is used whenever you click the Build button in the CubeBuilder dialog.

In this instance, you are working with only one geometrical form, so your use of the cube
wire frame is limited. You can move it aside by clicking on it with the left mouse button
and holding down the Control key. This allows you to move it out of the way. After that,
work with the yellow wire frame, which represents the geometrical object you see in the
Dynamic Light view.

Camera Preliminaries
To reposition the camera, left-click the Eye icon in the yellow box, which represents the
camera. The icon turns green. With the camera selected, press the Shift key and click the
left mouse button to move the camera down until you have positioned it roughly as shown
in Figure 4.6. Do this in all of the 2D viewports. When you click in the Dynamic Light
viewport again, you see the camera view adjusted to accord with the new position. Use the
motions mentioned previously to explore the chamber.

PlayerStart Objects

To make it so you can build your chamber, add PlayerStart and Light objects. Generally,
you create only one instance of a PlayerStart class when you define a level. A PlayerStart
object allows Unreal Tournament to know where to establish the focus of the level when
you first activate it. On the other hand, you often create a number of Light objects.

Chapter 4 ■ Developing Your Own Level62

Creating a Working Area 63

Figure 4.6 After you select the Camera icon, press Shift and left-click to position the
camera at eye level.

To add a PlayerStart object, work in the Dynamic Light viewport. Move forward into the
chamber until you can see three of the walls, as shown in Figure 4.7. Then right-click and
select Add Player Start Here. Representing a PlayerStart object, a Joystick icon appears in
the location you have designated in the chamber (see Figure 4.8).

The joystick appears roughly in the center of the floor area, as Figure 4.8 illustrates. To
reposition the Player Start icon, click on it to select it. Then hold down the Shift key and
the left or right mouse button to move it to the sides or forward or backward. Move it so
that it is toward the front of the chamber. This gives you a longer perspective on the room
when you initialize your session of play.

To make it so that your player avatar is firmly positioned on the floor level, right-click the
Player Start icon and select Align > Snap to Floor.

After adding the PlayerStart object, perform a build to adjust the geometry of your level.
When you add features to a level, they are often not appropriately positioned relative to
each other. Performing a build of the geometry allows you to adjust them. Figure 4.9 illus-
trates the position of the Build Geometry icon. Click the icon to perform the build. Notice,
also, that icons allow you to perform builds of lighting. You use these later in the current
chapter.

Chapter 4 ■ Developing Your Own Level64

Figure 4.7 Right-click and select Add Player Start Here.

Figure 4.8 To build the level, you must first place a player icon in it.

Figure 4.9 Before trying to test play your level, click the Build Geometry icon on the main menu
toolbar.

When you do not build your level, the geometry can make it so that your player avatar is
accidentally buried in a wall. When you start to play your level, the player avatar is imme-
diately killed. This prevents you from being able to navigate in your level to test it. If you
encounter this situation, exit the play mode and in the edit mode click the Build Geometry
icon on the main menu toolbar.

The Command Line

If you have not done so, build the geometry of your level and then click the Play Map icon
to play it. Navigate around the chamber and observe the behavior of the gun. After you
have completed your testing session, press the tilde key (~) to invoke the command prompt.
When you invoke the command prompt, you see only the lower half of your level.

The command prompt for Unreal Tournament allows you to issue a number of test com-
mands. Among other things, you can use it to type commands that immediately exit you
from your test session. Accordingly, to exit the session, type exit at the prompt.
(Alternatively, you can type quit.) You can type lowercase or uppercase characters.

When you press the Enter key, the game immediately terminates and returns you to your
editing session. Figure 4.10 illustrates a test session after you have typed the tilde key and
the exit command.

Creating a Working Area 65

Figure 4.10 Type exit or quit to return to the editor from a session of testing.

Lighting

In addition to adding a PlayerStart object, you must add a Light object to your map. Unless
you add a light, when you try to play your map, you see only what the flashes that accom-
pany the firing of weapons allow you to see.

To add a Light object, right-click in the middle area of the ceiling. Select Add Light Here,
as shown in Figure 4.11. As you have seen before, a lightbulb represents the Light object.

Chapter 4 ■ Developing Your Own Level66

Figure 4.11 Right-click and select the Add Light Here option.

What applied to the geometry of your level also applies to the lighting. You must build it
after you implement. As Figure 4.9 shows, the icons you use to build lighting for your level
are located immediately to the right of the Build Geometry icon. One icon builds all Light
objects in your level. The other builds only those you have newly added. Click the Build
Lighting icon. After you click the Build Lighting icon, the appearance of your level changes
fairly significantly, as Figure 4.12 illustrates.

As a final lighting task, left-click the Lightbulb icon and open the Light Properties dialog.
In the dialog, open the LightColor tray and set the properties to these values, as shown in
Figure 4.13.

LightBrightness 150

LightHue 43

LightSaturation 144

To recompile your lighting, click the Build Changed Lighting icon on the top toolbar. This
icon is the second on the left from the Build Geometry icon.

Surface Textures
To provide variety in the appearance of the walls, floor, and ceiling of the chamber, you
apply textures to surfaces. A texture is a 2D image that provides a surface for almost any
geometrical form you create in your levels.

To apply textures, select View > Show Texture Browser from the top menu. (Alternatively,
you can click the Texture Browser icon.) In the Texture Browser, select File > Open. You
see the Open Texture Package dialog, as shown in Figure 4.14.

Creating a Working Area 67

Figure 4.12 Click the Build Lighting icon on the top toolbar.

Figure 4.13 Set the
light properties to
values that increase
the brightness of the
chamber.

The Open Texture Package dialog displays a list of texture collections. The *.utx extension
identifies each collection. Each *.utx file contains one or more textures and represents a
specific theme.

Click the AlleriaArchitecture.utx file. Then click Open.

When you click Open, you include the textures in the AlleriaArchitecture group in the list
you can immediately access using the browser. After you open the AlleriaArchitecture tex-
ture group, any textures that you use in your level remain available to you during subsequent
development sessions. To access those you have not yet used, you must reopen the group.

To see all the texture groups that have been used, click the Full tab. Beneath the tab, click
the top drop-down list. This list shows you the texture groups. The list you see does not
include all the texture groups in the Textures directory.

To examine the AlleriaArchitecture texture group, select AlleriaArchitecture from the top
drop-down list, as Figure 4.15 shows. Within the texture group, you can view categories of
textures. The lower of the two drop-down lists provides the categories of the textures.
Among the categories are Walls, Ceilings, and Floors. After you select a category, you use
the scroll bar to view the individual items in a category. The title of each texture appears
at the bottom of the texture as you scroll through the list.

To apply textures to the wall, floor, and ceiling surfaces of your level, perform these
operations:

■ In the Dynamic Light viewport, click on one of the walls of your chamber. The
lighter color indicates that you have selected it. Then right-click. You see a drop-
down menu. From the Select Surfaces option, select Adjacent Walls. If you then
turn the camera on the walls of your chamber, you can see that all the walls are
selected.

Chapter 4 ■ Developing Your Own Level68

Figure 4.14 Select
the texture from the
Open Texture Package
dialog.

■ Now move to the Texture Browser. Select Walls from the lower of the two drop-
down lists. Scroll through the Walls textures until you see wal02AL. Click the sam-
ple view of the texture in the Texture dialog. This applies it to the four walls.

■ To apply a texture to the ceiling of your chamber, click on the ceiling surface. Then
in the Texture Browser, select Ceilings from the lower of the drop-down lists. Scroll
to cel02AL and click the sample view of the texture in the Texture dialog.

■ For the floor, select Floors from the lower of the drop-down lists. Scroll to flr02AL
and click the sample view of the texture in the Texture dialog.

After you have applied the textures, click the Build Changed Lighting and Build Geometry
icons on the top toolbar of UnrealEd. These actions refresh your work and give you a proper
view of the level with its textures, as Figure 4.16 illustrates.

After clicking the Build Changed Lighting and Build Geometry icons, click the Play Map
icon. Figure 4.17 illustrates the appearance of your map after the game starts.

Creating a Working Area 69

Figure 4.15 Scroll to view all of the items in the category.

Chapter 4 ■ Developing Your Own Level70

Figure 4.16 The textures have been applied to the walls, floor, and ceiling.

Figure 4.17 Textures from the AlleriaArchitecture texture group give your chamber
a unique appearance.

Enhancing Your Level
You have created the basic features of a map. Among these features are a geometrical form
that you subtracted from the space of the map, a PlayerStart object, and a Light object. To
create the geometrical form (a cube), you used the cube brush. You added textures to the
floor, walls, and ceiling of the cube. Now you are in a position to enhance the cube. One
enhancement is to add a sheet to the floor to mark the place for an event. A second draws
on your work in Chapter 3, where you learned about Trigger objects.

As in Chapter 3, you can create a trigger by specializing the Trigger class of the Unreal
Tournament class hierarchy. Specialize is another term for what you do when you inherit
or extend a base class. You add attributes or functions to the base class object that define
it in a narrower way. Making a Trigger object issue the expression “Hello World!” was one
form of specialization.

Adding a Pad and Decoration Texture
Before proceeding with the work of adding a trigger, first place a tile on the floor of your
chamber. This tile provides you with a place in which you can position a trigger. To add a
tile, first right-click the Sheet icon in the brush primitive area of the toolbar on the left of
UnrealEd. (See Figure 4.18.)

A sheet is more or less equivalent to a tile or a rug. In this case, you want it to be large
enough to accommodate a texture with a distinctive decoration. Accept the default size of
the sheet, which is 256 by 256, as Figure 4.19 illustrates.

Enhancing Your Level 71

Figure 4.18 Right-click the
Sheet icon to add a tile.

Figure 4.19 The default size of the
sheet is 256 by 256.

To create the sheet, you add it to your level. When you created the cube for your chamber,
you subtracted a geometrical form. Adding a geometrical form differs from subtracting a
form; instead of cutting away space from the map, you are creating an entity that fills space.
You use the Add button on the toolbar to add geometry, as Figure 4.20 illustrates. Click on
the Add icon in the constructive solid geometry area of the toolbar to add a sheet to your
level.

Chapter 4 ■ Developing Your Own Level72

Figure 4.20 Click
the Add button to add
geometry.

Figure 4.21 Place the sheet flush to the floor in the right far corner.

You work with the Top, Front, and Side viewports to position the sheet. Imagine that you
are facing the chamber. Figure 4.21 illustrates the three viewports with the sheet in them.
To move the sheet, press the Shift key and left-click on the geometric form. Place the sheet
against the back wall, to the right. Place it flush with the floor.

To select a texture for the sheet, open the Texture Browser. In the browser, select File >
Open and the AlleriaArchitecture.utx file. Then in the lower of the drop-down fields, select
Decorations and the JumpPad texture, as shown in Figure 4.22.

Click on the sheet and then on the texture to assign the JumpPad texture to your sheet. The
result is that the sheet displays a distinctive circular entity in the corner of your chamber,
as Figure 4.23 reveals. Click the Build Geometry and Build Changed Lighting icons to
refresh your level. Then click the Run Map icon to test your level.

Enhancing Your Level 73

Figure 4.22 Select the
JumpPad texture from the
AlleriaArchitecture group.

Figure 4.23 You see a tile with a circle in the corner of
the chamber.

Working with Versions of a Level
Iterative and incremental approaches to development are at the basis of most approaches
to extending programming projects. When you iterate, you do something over and over.
When you increment, you add something each time you iterate. Most programmers work
in an incremental, iterative way. They do things over and over again, and they add details
one at a time.

Iteration involves two types of activity. The first is to add an element and then build to see
if everything still works. The second involves your overall project. With your overall pro-
ject, you save successive versions of your work. As Figure 4.24 illustrates, you might save
the level as LevelV01, LevelV02, and so on. Each version represents a single work session
or a significant portion of a single work session.

If you commit several hours to a given work session, you might save your work to a new
version after the first hour or so. Saving versions provides a way to avoid losing a great deal
of work if something goes wrong.

In the current context, you created a basic geometrical form with player start and lighting
functionality added. You then added a tile to the floor. Such work represents a fairly sig-
nificant body of work (at least for beginners), so saving this work to a new version proves
a good idea.

Accordingly, if your Ch04Area level is not open, open it. Then select File > Save As, and
save it is Ch04Area02.ut2. Click the Play Map icon and verify that your new version com-
piles. Exit the play session by using the tilde (~) and typing quit.

Defining a Trigger
In this phase of your development activity, you develop a Trigger class. As you did in
Chapter 2, you specialize the Trigger class. To begin this work, select View > Show Actor
Class Browser. In the class tree, navigate to Actor > Triggers > Trigger. Right-click on Trigger
and select New. The New Class dialog appears, as shown in Figure 4.25. Name your new
package Ch04Area. Name the class you derive from the Trigger class StandUpTrigger.

Chapter 4 ■ Developing Your Own Level74

Figure 4.24 Save
different versions of
your work.

Figure 4.25 Create a
new package and a
subclass of the Trigger
class.

Click OK in the New Class dialog. This action opens the code editing window. You see the
signature of the StandUpTrigger class definition. (See Figure 4.26.)

In the code editing window, implement the code for the StandUpTrigger class so that it reads
as follows:

//==
// StandUpTrigger.
//==
class StandUpTrigger extends Trigger placeable;
//#1 Declare a member variable
// so that it appears in the properties dialog
var (Message) string StandUpMessage;
function PostBeginPlay(){

Super.PostBeginPlay();
//#2
// Assign the value to the parameter

Message = StandUpMessage;
}

In the lines following comment #1, you define a member variable for the StandUpTrigger
class. The member variable (or property) is named StandUpMessage. At the same time, you
use the var keyword to broaden your definition of the variable so that it can appear in the
Properties dialog under a given tray. In this instance, the name of the tray is Message.

When you accompany the var keyword with parentheses, the word you place between the
parentheses becomes the name of a tray. If no such tray exists, then the compiler creates a
tray of the name you have designated. If a tray by this name already exists, then the mem-
ber variable appears in the named tray.

You can add several member variables to a given var tray. To add a variable, you assign it
to the tray using the assignment operator. In the code trailing comment #2, you assign the
StandUpMessage variable to the Message tray.

Click the Compile icon (the second from the left) to compile the script for the class. Then
save the Ch04Area package. To accomplish this, if necessary, first select View > Show Packages.
Then in the lower field, find the Ch04Area package and click the checkbox. After that, select
File > Save Selected Packages.

Enhancing Your Level 75

Figure 4.26 You
see the signature of
your new class.

Adding the StandUpTrigger to Your Level
To add an instance of your newly created StandUpTrigger class to your level, first access the
Actor Class browser and click to set the focus of the StandUpTrigger, as Figure 4.27 shows.

Chapter 4 ■ Developing Your Own Level76

Figure 4.27 Select
the StandUpTrigger.

After you select StandUpTrigger from the class list in the Actor Class Browser, move to the
Dynamic Light viewport. Navigate to a position above the circular entity and right-click.
Select Add StandUpTrigger Here. Then, as Figure 4.28 illustrates, move to the Top view-
port and position the trigger in the approximate center of the sheet.

To provide your trigger with a statement for the StandUpMessage property, click the Trigger
icon to open the properties dialog. As Figure 4.29 illustrates, you now see the Message tray.
Click the Message tray to see your StandUpMessage property. To the right of the property name,
you see a field. Type Stand up and be counted in this field.

Additionally, as shown in Figure 4.30, find the Trigger tray and click it. As Figure 4.30 illus-
trates, assign 1.0 to the RepeatTriggerTime property. Assign 2.0 to the ReTriggerDelay prop-
erty. Setting these values makes it so that you can eliminate the occurrence of multiple
messages when you trigger the event that corresponds to the StandUpTrigger object. Even if
you activate the trigger several times in a row in intervals of less than a second, two sec-
onds elapse before your message is refreshed.

Click the Build Geometry and Build Change Lighting icons on the top toolbar. Then select
File > Save to save your work. Now click the Run Map icon and test your level. Figure 4.31
provides a view of the message you see when you invoke the trigger event.

Enhancing Your Level 77

Figure 4.28 Position the StandUpTrigger object directly above the circular entity.

Figure 4.29 Set the
StandUpMessage property.

Figure 4.30 Set the
ReTriggerDelay and the
RepeatTriggerTime
properties.

Conclusion
In this chapter, you have implemented a level from scratch and developed it iteratively
through two versions. In the first version, you created the geometry and lighting for the
level. In the second iteration, you added a specialized Trigger class, StandUpTrigger. In the
StandUpTrigger class you use the var keyword to create a Message tray to hold a property,
StandUpMessage. The member variable you use to define this property is of the string type.
Because you define it using the var keyword, the property in the properties dialog, you can
set it by typing a text message into the field that corresponds to it.

To the forms of your level, you added textures. The textures allow you to set themes and
establish purposes for the geometrical forms. For the walls, floor, and ceiling of your level,
you use the textures of the AlleriaArchitecture group. This group possesses a strong metal
theme. In this group you also find a Decoration texture, which allows you to create a tile
on the floor of your level that makes it easier to locate your trigger.

Developing a level in an incremental, iterative way allows you to add and test features as
you go. If your work generates problems you cannot overcome, then you can revert to the
previous version and try again. In this chapter, your two versions of the Ch04Area level
allow you to first add a cube and sheet and apply textures to them. You then work on adding
a specialized Trigger object. Although the work involved in these two phases of activity is
limited, the pattern you establish when you perform your work iteratively and incremen-
tally proves highly beneficial as your projects grow in complexity.

Chapter 4 ■ Developing Your Own Level78

Figure 4.31
You see a
message when
you invoke the
trigger event.

The goals of this chapter are to expand on the discussion of the code provided in
the last chapter and to lay the groundwork for work in the next chapter. Through
each revision of your code, you add a few new elements and create the opportu-

nities for exploring different features of the Unreal Tournament class hierarchy and the
UnrealScript programming language. In this chapter, you deal with issues of scope and
accessibility and the use of different data types. The focus is on primitive data types,
although some mention is made of abstract data types, which you have been exposed to as
you have worked with specializing the Trigger class. Primitive data types are sometimes
called built-in data types. You employ data types to define identifiers or variables. These
are generally known as operands. Operators make it possible to do things with operands.
In light of this, you view the standard operators for both primitive and abstract data types.
In the end, you work with concatenation operators, which are designed to work almost
exclusively with data of the string type. By implementing the CommandTrigger class, you are
able to put concatenation to work to join and display a message. What you do in this chap-
ter remains largely preliminary. In later chapters, you put operators and data types to work
in a large number of ways. Here are a few topics covered in this chapter:

■ Examining variables in close detail

■ How the public and private keywords control access

■ Distinguishing class from function scope

■ Applying primitive data types of identifiers

■ Naming conventions and requirements for identifiers

■ Looking closer at the operators used for all data types

79

Data Types

Chapter 5

Another Version of the Working Area
Start by saving the work you completed in Chapter 4 to another version. For the current
session, save your Ch04Area02 as Ch05Area01. To complete this task, first open
Ch04Area02.ut2. Select File > Save As from the main menu. Then type the new name in
the File name field and click Save, as shown in Figure 5.1.

Chapter 5 ■ Data Types80

Figure 5.1 Save your work
from Chapter 4
toCh05Area01.ut2.

To set up the level so that you can work with a new type of Trigger object, create a second
jump pad. Recall that you implemented a sheet mesh and then added the jump pad from
the Decorations group of the AlleriaArchitecture texture file. You can now reuse this work
by duplicating it. To duplicate your jump pad, move to the top viewport and right-click
the existing jump pad. Then from the drop-down menu, select Duplicate.

After you have duplicated the sheet entity, you can then press Shift and the left mouse key
to move the duplicated jump pad upward in the top viewport, as Figure 5.3 illustrates.
Position it in the adjacent corner of your cube. You can then move to the side viewport to
adjust the jump pad so that it is visible above the floor.

After you have positioned the new jump pad, click the Build Lighting and Build Geometry
icons on the top menu to make it visible. Figure 5.4 shows you the Dynamic Light view of
the two jump pads. The Trigger icon hovers above the jump pad you created in Chapter 4.

Another Version of the Working Area 81

Figure 5.2 Right-click
the existing jump pad to
duplicate it.

Figure 5.3 Use
the Shift key to
move the duplicate
jump pad.

Revisiting the Code
To add features to your code, start by accessing the Actor Class Browser. Open the Ch04Area
package, and access the StandUpTrigger class. Navigate to the Trigger class and right-click on
Trigger. In the New Class dialog, enter Ch04AreaU as the name of the class. This is the name
of an existing package. UnrealEd recognizes the old package so it adds the class you are cre-
ating to it. It does not overwrite the existing package. For the name of the class, type
CommandTrigger. Click OK.

The shell of the class is created and the code editing window opens. You see the name of
the new class in the signature line. To make use of some of the code you have already writ-
ten, click the Compile Changed Scripts icon and then close the code editing window for
the CommandTrigger class.

Then right-click and select Edit Script to open the StandUpTrigger class for editing. In the
code editing window, select all the code for the class. To select the code, position the cur-
sor at the top of the edit area and hold down the left mouse key. Trace over the lines from
top to bottom. UnrealEd highlights the selected lines. When you reach the end of the code,
release the left mouse key. The lines remain highlighted. Then press Control + C to copy
the lines into the Windows clipboard.

After you have copied the lines, close the code editing window for the StandUpTrigger class.
Open the code editing window for the CommandTrigger class. Click to position the cursor in
the lines following the signature line of the CommandTrigger class and press Control + V.
Windows copies the lines into the edit area. Now delete the signature and comment lines
for the StandUpTrigger class, so that your code appears as follows:

Chapter 5 ■ Data Types82

Figure 5.4 The jump
pads are the same except
for the trigger.

//===
// CommandTrigger.
// See CommandTriggerV1.txt
//===
//#1
class CommandTrigger extends Trigger placeable;

//#2
var (Message) string StandUpMessage;

function PostBeginPlay(){
Super.PostBeginPlay();
Message = StandUpMessage;

}

As a review point, preceding comment #1, you change the name of the class as identified
in the opening comments. A reference to the text file for the source code resource file is
included. The compiler does not read commented code, but such code helps you identify
the class when you access it. You also change the name of the class in the class signature
line. As the line following comment #1 shows, you change the name of the class to
CommandTrigger. The class still specializes (through the extends keyword) the Trigger class.
The placeable keyword designates that an object you create with the class can be placed in
the game.

It is not necessary to change anything in the remainder of the code. In the lines following
comment #2, you declare a member variable of the string type. You define this variable so
that it appears in the Message tray of the Properties dialog. The class contains an overrid-
den function, PostBeginPlay(). This is a function that you inherit from a base class. You also
use the Super keyword to call a version of the PostBeginPlay() function that resides in a base
class. Much more on such topics as function overriding and the use of base classes will be
presented later.

Click the Compile Changed Scripts icon and check for errors. If you encounter an error,
then check your code against the sample to ensure that you have not accidentally deleted
the wrong line or inserted an error. In this way you use code you have already written to
create a new class. There are easier approaches to doing this, but for now, you can use the
functionality of the Actor Class Browser and the default Windows key actions to move code
from one class to another.

Revisiting the Code 83

Variables and Accessing Them
A closer examination of the use of variables allows you to work more readily with many
programming tasks. Toward this end, for review consider once again that in your
CommandTrigger class, you create a variable called StandUpMessage. When you create this vari-
able, you use the var keyword. You follow the var keyword with parentheses. Inside the
parentheses, you type the term Message. The combination of the keyword, the parentheses,
and Message makes it so that you see the Message tray in the properties dialog. You also see
the StandUpMessage variable associated with it.

You use the var keyword to create class member variables. A class member variable is a vari-
able that you identify with all the activities of a class. You can see how this is so if you con-
sider a couple of applications of the var keyword.

In one application you use the var keyword to define a variable that appears in the prop-
erties dialog. The properties dialog is created by a set of classes that exist separately from
your class. When you access the StandUpMessage variable using these classes, it is visible to
those classes. Figure 5.5 illustrates a situation in which the StandUpTrigger variable is visi-
ble to other classes.

Chapter 5 ■ Data Types84

Figure 5.5 A variable
can be visible to other
classes.

You can also use the var keyword to define variables that you cannot use outside of your
class but that you can use anywhere inside your class. Such a variable is still a class mem-
ber variable. However, if you try to assign a value directly to it from outside the class (using
the properties dialog or other approaches), you are not able to do so. Such a variable is vis-
ible only within the class.

Scope
Visibility is a technical concept you apply to all the variables and functions you include in
your class definitions. Visibility has to do with scope. Scope, simply defined, is what you
can see or use given that you are working in a certain context, such as that of a function, a
class, or a package. Two of the most important keywords relating to the scope of classes in
UnrealScript are public and private. These keywords control how the elements in your pro-
grams can be accessed. They are sometimes referred to as access modifiers.

When you define a variable so that it is visible only within a class, the scope of the variable
is private. When you define a variable so that you can access it from other classes, then the
scope of the variable is public. Figure 5.6 illustrates how the public and private keywords
affect the scope of variables or functions. A private variable can be accessed only within
the class. A public variable can be accessed both within the class and from other classes.

Variables and Accessing Them 85

Figure 5.6 Access
modifiers control the
visibility of variables
and functions.

By default, when you define a variable using either var or var(), the variable you define is
public. The keyword var does not alone make the variable public. Instead, by definition,
unless you specifically identify the scope of a variable you create as part of your class def-
inition, it is public. However, when you formally define a variable or a function, you do
use the keywords public and private. In this way, you show clearly the scope you want to
control access to the variable or function. To explore the issue of scope further, add lines
to your CommandTrigger class so that it appears as follows:

//===
// CommandTrigger.
// See CommandTriggerV2.txt
//===
class CommandTrigger extends Trigger placeable;

//#1 Scope of the class but visible outside
var (Message) public string StandUpMessage;
var (Message) public string CommandMessage;

//#2 Scope of the class but visible only inside
var private string DefaultMessage;

function PostBeginPlay(){
Super.PostBeginPlay();

//#3 Scope of the function, which is also
// inside the scope of the class
DefaultMessage = "Move yet again.";
Message = StandUpMessage;

}

In the line accompanying comment #1, you add a second member variable to the class. The
name of this member variable is CommandMessage. As mentioned previously, you use the var
keyword to define the variable as a class member variable. At the same time, you also use
the public keyword in your definition of the variable. Use of the public keyword explicitly
defines the variable as one that you want programmers to be able to access outside the class,
through the properties dialog or otherwise.

It remains that if you did not include the public keyword, you could still access the mem-
ber variable from outside the class. You have seen how this is so in previous work with your
class. As mentioned before, to make your intentions clear as a programmer, you use the
access control word to define your variable.

In the parentheses that follow the var keyword, you type Message. When you use the var key-
word to designate a message, you are formally defining the variable as one that can be used
outside the class.

In the lines accompanying comment #2, you create a third variable, DefaultMessage. Your
definition of this variable differs from those of the previous variables. With this definition,
you use the private keyword along with the var keyword. You do not follow the var key-
word with parentheses. The private keyword makes it so that you cannot access the
DefaultMessage variable outside the scope of the CommandTrigger class. Also, when you do not
use the parentheses to associate Message with the variable, the variable does not appear in
the properties dialog. Generally, outside the class, it is not possible to know of the existence
of the DefaultMessage variable.

Scope Concerns
The DefaultMessage variable is private and so is not visible outside the CommandTrigger class.
It remains visible inside the class, however, and you use it there. A few lines after defining
this member variable, you assign a line of text to it: “Move yet again.” The fact that you
define the variable in one place and use it in another proves to be fairly important. You
define it in the scope of the class; you use it in the scope of a function.

Classes have scope and so do functions. The scope of an UnrealScript class is the file in which
you create the class. The scope of an UnrealScript function is restricted to the area described
by the opening and closing braces of the function. Consider the PostBeginPlay() function:

function PostBeginPlay(){
// line left out
//#3 Scope of the function, which is also
// inside the scope of the class
DefaultMessage = "Move yet again:";
Message = StandUpMessage;

}

Chapter 5 ■ Data Types86

The function keyword designates the start of the definition of the function, just as the var
keyword designates the start of the definition of a class variable. The name of the func-
tion is PostBeginPlay. The opening and closing parentheses following the name of the func-
tion provide you a way to introduce information to the function. (This topic is discussed
in detail later on.) After the opening and closing parentheses, you find an opening curly
brace ({). The opening curly brace is the start of the scope of the function. A few lines of
code follow, and then you find a closing curly brace (}). This marks the end of the scope
of the function. The area between the opening and closing braces is called the function
block.

As Figure 5.7 illustrates, when you put lines of code in a function block, you partially seal
them off from the rest of your program. If you are writing code for the PostBeginPlay()
function, you cannot access a variable you have defined in the NextPlay() function. On the
other hand, if you are working within either the PostBeginPlay() function or the NextPlay()
function, then you can access variables defined in the scope of the class. This is why you
can make use of the DefaultMessage variable within the PostBeginPlay() function to assign a
line of text to it.

Data Types 87

Figure 5.7 When you
define a variable at the
scope of a class, you can
access it from anywhere
within your class whether it
is public or private.

Data Types
Class scope and function scope are key concepts in object-oriented programming, so they
are elaborated in several passages of this book. Another key concept is that of data types.
UnrealScript provides you with two primary ways of defining the values you use. One is
through primitive data types. The other is through abstract data types. Figure 5.8 provides
a summary view of these two categories of data.

The Trigger class is an abstract data type, as is the CommandTrigger class you derive from it.
You create abstract data types using the class and extends keywords. In this and previous
chapters, you have already developed several abstract classes. Much more discussion of this

activity remains. For now, it is befitting to give some attention to the humbler variety of
data. The primitive data types consist of such data types as int, float, string, and byte. Table
5.1 provides a summary discussion of the primitive data types.

Chapter 5 ■ Data Types88

Figure 5.8 You work with
two basic categories of data.

Table 5.1 Primitive Data Types

Data Type Description

bool This data type allows you to deal with two basic values: true and false. The terms true
and false are keywords in UnrealScript. false has a numerical value of 0. true has a
numerical value of 1. You can assign true, false, 0, or 1 to a variable of the bool
type. By convention, Unreal Tournament programmers prefix a small “b” to the name
variables of the bool type. For example, bLightIsOn.

byte This data type allows you to store numbers up to 255. A byte value cannot be
negative.

int This data type handles numbers between –12147483648 and 12147483647 if you are
working with a 32-bit processor. Integers do not include decimal points.

float This data type handles numbers in the same range as integers, but they also include
decimal points.

string This data type handles collections of characters. You identify strings with double
quotes.

Conventions for Naming
In the CommandTrigger class, you define three variables of the string type. Since UnrealScript
is not case-sensitive, you can designate the name of a data type with capital or lowercase
letters. By convention, programmers usually type the keywords that designate the primi-
tive data in lowercase, as shown in Table 5.1. On the other hand, they capitalize the names
of abstract data types (Trigger, Actor, and so on).

When you create a variable, at a minimum you combine a data type keyword with an iden-
tifier. An identifier is the word you use as a variable. The terms variable and identifier are
largely synonymous. The difference is that a variable is a term to which you have assigned
a value. An identifier is just a term you have declared to receive a value.

Conventions apply to how you name identifiers. Many programmers capitalize the names
of identifiers that designate abstract data types—for example, Trigger, MeshObject, DamageType,
and so on. If an identifier for an abstract data type consists of more than one word joined
with others, all the words are capitalized.

For the identifiers relating to primitive data types, two conventions are common. One is
to start the name of the identifier with a lowercase letter. If the identifier consists of two
or more words, then words after the first word are capitalized. For example, you might use
either DefaultMessage or defaultMessage as the name of the CommandTrigger variable. When you
adopt a convention, it is generally considered a good programming practice to observe it
throughout your code.

One other convention is to use Hungarian notation. This is where the use of the prefix b
for identifiers of the bool type originates. Such notation originated with a famous pro-
grammer associated with Microsoft who developed naming standards for data types.
Different versions of this notation have evolved over time, and in many cases, program-
ming style manuals say not to use them. Still, it remains that they come in handy at times,
and many programmers still use them.

Naming Practices and Syntax
Whatever convention you adopt, it is a good idea to observe the practice of naming your
variables, functions, and classes in meaningful ways. One approach involves mnemonic
naming conventions. In other words, you name an identifier so that when you read it you
get a clue about what it does. Likewise, avoid using single letters or expressions of two or
three letters to name identifiers.

Here are a few examples of identifier names that reflect questionable programming prac-
tices:

int m;
Trigger A;
int xisksneoisls;
string CrappyStuff;
float mmmmmmm;

You can grasp intuitively why some identifiers reflect questionable practices. If you name
an identifier m for an integer, you have no idea what m means. If you name a class A, you are
in the same situation. What does the A class do? If the programmers at Epic had named the
Actor class A, would that have been helpful? Likewise, using identifiers like CrappyStuff is
fun, but if you read your code a year latter, it is almost a certainty that you will find such
names irritating and possibly nauseating. As for identifiers that are based on creative neol-
ogisms, the problem is that since they are not based on common dictionary words, to use

Data Types 89

them, you must learn wholly new words. The identifier xisksneoisls might have potentials
in a science fiction or fantasy context, but try typing it without errors three times in a row.

Other practices are dictated by the compiler. As you might expect, you cannot use a key-
word (also known as a reserved word) as an identifier. Use of symbols as a part of an iden-
tifier can also create problems. Likewise, try to avoid using numbers at the ends or
beginnings of your identifier names. Here are a few problem situations:

float 000997;
Trigger TouchTrigger03;
string ?!PillarName;
int Joy=Ride;
float class;

The list of possible error situations extends indefinitely, but using a number with no char-
acters to name an identifier makes it impossible for the compiler to recognize your iden-
tifier as an identifier. Numbers are numbers. Identifiers need to contain at least one
character. The Trigger example is a little harder to explain, but the gist of the matter is that
the compiler does not like file names that end with numbers. Remember that a file name
must be the same as the class it contains. If that’s so, then you can see why there is a prob-
lem. If you want to include a number, then you might use Touch03Trigger.

Starting an identifier with symbols such as ! and ? can generate compiler errors because
the compiler tries to read the meaning of the symbol. The same applies to use of symbols
within a name. The compiler does not process spaces, so if you use Joy=Ride as an identi-
fier, the compiler reads this statement as an assignment operation in which you are assign-
ing the value stored in Ride to the variable Joy. As for the use of a keyword such as class for
an identifier name, the compiler cannot recognize the keyword as anything except a key-
word, regardless of how you might qualify it with other keywords, such as float.

Declaration
To declare an identifier, you precede the identifier with a keyword that designates the data
type of the identifier. Technically, when you declare an identifier, you just associate it with
a data type. To associate an identifier with a data type, you precede the name of the iden-
tifier with the name of the data type. This creates a variable that can hold a value that con-
forms to the data type.

You can add other qualifiers when you declare an identifier. For example, as the use of pub-
lic, private, and var are illustrated, you can precede the name of the identifier with a key-
word to designate the scope of the variable or its intended use. In addition to public, private,
and var, local is a commonly used keyword used to provide access and scope information.
The local keyword allows you to designate identifiers at the function scope. Here are some
examples of how to declare variables:

Chapter 5 ■ Data Types90

//declare an integer identifier
var int NumberOfTries;
var float AmountOfCash;
var float NumberOfPlanets;
var string NameOfPawn;
var byte ShortCount;
var bool bLightIsOn;

These variables can all be accessed on a public basis. If you want to control access to them,
then you insert an access control word, such as public or private:

var public float AmountOfCash;
var private int NumberOfPlanets;
var public string NameOfPawn;
local string NameOfPawn;

As mentioned before, if you want to make the variable appear in one of the Properties trays
(or tabs), then you use the form of the var keyword that allows you to designate the Property
tray you want to use:

var(Message) public string NameOfPawn;
var(Message) public byte ShortCount;
var(Light) public bool bLightIsOn;

Initialization
When you assign a value to a variable, you initialize it. As you have already seen, you use
the assignment operator to assign values. To initialize a variable, you use a value that is
valid for the variable. You cannot, for example, assign a word to a value of the byte type.
Nor can you assign a class object of the Trigger type to a variable of a string type. Here is
an example of how to declare and then initialize variables:

//Declare
Var int NumberOfDoors;
Local float AmountOfPower;
// Initialize
NumberOfDoors= 12;
AmountOfPower = 456467.44

In both instances, you first declare the variable. Then on a line that follows, you assign a
value to it. You declare and then initialize the variable. Your initialization does not need to
come on the line immediately following the declaration. You saw in the CommandTrigger class,
for instance, that you could initialize the DefaultMessage variable inside a function placed
later in body of the class.

Data Types 91

In many instances, you might combine declaration and initialization:

Var int NumberOfDoors = 10;
Local float AmountOfPower = 456467.44;

In the programs in this book, you find a number of variations on declaration and initial-
ization. How this activity takes place depends on the context.

Casting and Promotion
In some cases, you can assign data that appears to be of one type to a variable you have
defined for another type. Consider, for example, assigning a number to an identifier you
have defined for a string:

string ForceLevel = 23;

Such statements work because UnrealScript is defined so that in some cases it automati-
cally converts one data type to another through assignment. Generally, with strings, you
can almost always assign a number to the identifier. The result is that the number is con-
verted into characters. The number 23, for example, becomes a text string consisting of the
characters “2” and “3”.

A concept related to automatic casting is data promotion. Generally, data types represent
reserved memory spaces. A memory space is analogous to a box. The box for a byte vari-
able is very small. The box for an int variable is larger than the box for a byte variable but
smaller than the box for a float variable. Figure 5.9 illustrates how a variable of a data type
can be promoted to that of another.

Chapter 5 ■ Data Types92

Figure 5.9 You can
assign the values stored in
variables of smaller data
types to those of larger
data types.

Data promotion allows you to assign values of variables you have defined using smaller
data types to variables you have defined using larger data types. You can assign the value
of an int variable, for example, to a variable you have defined as using a float variable.

The reverse is not true, however. One example of this might involve initializing an int vari-
able with a decimal value. Here is how this might happen:

var int NumberOfShots;
NumberOfShots = 23.44;

You use a decimal value to initialize an int (integer) variable. The compiler might allow
you to perform this action, but if you try to use the initialized variable later in your pro-
gram, you find that the compiler has implicitly truncated your value so that you get only
the integer portion of the number. In other words, 23.44 becomes 23.

Operations
Identifiers are only part of the story. A general term for an identifier or variable is operand.
When you assign a value to an operand, you use an operator. The assignment operator (=)
is the operand you use to accomplish this task. The primitive data types are all defined to
work with a set of operators, as are the abstract data types.

Table 5.2 provides an overview of the operators UnrealScript provides. All of these work
with the numeric data types. A few work with strings. A few also work with abstract data

Operations 93

Table 5.2 UnrealScript Operators

Operators Discussion

= The assignment operator. The value on the right is assigned to the variable on
the left: CountOfLights = 5.

() Parentheses for grouping. You can use parentheses to group other operators.
- ! ~ ++ -- These are unary operators, which means that you apply them directly to a single

variable: Count++.
** Exponent operator. Raise one number to the power of another: 10**3 = 1000.
* / % = + - Multiplication, division, modulus, assignment, addition, and subtraction

operators are the primary operators you use with numbers. The % sign is called
the remainder or modulus operator: 5 % 2 = 1.

< > The operators for less than (<) and greater than (>) allow you evaluate two
numbers in relation to each other: 2 < 5. Such operations return values of true
or false.

<= >= Less than or equal to (<=) and greater than or equal to (>=) allow you to
include the numbers you evaluate in your control statement. The operations
return values of true or false.

== != Equal to and not equal to serve to establish a categorical basis of evaluation.
The operations return values of true or false.

~= Approximately equal. The operator applies to both numbers and strings. For
strings, it allows case-insensitive comparisons. For numbers, it allows a range of
0.0001 between the numbers. Returns true or false.

+= -= *= /= Numeric compound assignment operators. With each of these operators, you
begin with a variable on the left, perform the operation with another variable
(or number) on the right, and then assign the result of the operation back to the
variable on the left: NumberOfBats += 5. If NumberOfBats is 5 to start with, then
the statement leaves it equal to 10.

types. Whether an operator works with a given data type (including the string data type)
depends on whether the developers of UnrealScript have defined the operator in the appro-
priate way. In the chapters that follow, the uses of these operators are explained more exten-
sively as you use them in different programs.

String Operators
While the operators listed in Table 5.2 are common to many primitive and abstract data
types, it remains that some operators are defined to apply only to variables of the string
type. Chief among these are the operators that allow you to combine the values (or text
expressions) you assign to string variables with each other. Consider what happens if you
begin by defining two string variables this way:

FirstOth = "I swear 'tis better"
SecondOthLine = " to be much abused"

You can combine these lines from Othello (Act III, line 335) so that the two lines are joined
into one. To do so, you use a concatenation operator. UnrealScript provides several such
operations. Here is a third version of the CommandTrigger class that uses concatenation.

//===
// CommandTrigger.
// See CommandTriggerV3.txt
//===
class CommandTrigger extends Trigger

placeable;
var (Message) public string StandUpMessage;
var (Message) public string CommandMessage;

var private string DefaultMessage;
//#1
var private string FirstOthLine;
var private string SecondOthLine;

function PostBeginPlay(){
Super.PostBeginPlay();
//#2
//Assign initial values
FirstOthLine = "I swear 'tis better";
SecondOthLine = "to be much abused";

//#3
//Concatenate the lines

Chapter 5 ■ Data Types94

DefaultMessage @= FirstOthLine ;
DefaultMessage @= SecondOthLine;
Message = DefaultMessage;

}

In the lines associated with comment #1, you declare two member variables of the string
type. These variables are private, so you must set their values and use them inside the class.
At comment #2, you define the variables by assigning two parts of a line from Shakespeare’s
Othello to them. While you declare the variables at class scope, you define them in the scope
of the PostBeginPlay() function. Within the scope of this function, in the lines associated
with comment #3, you use one of the string concatenation operators to build the complete
line of the play.

You use the type of concatenation operation that is known generally as a compound oper-
ator. The two operators that are compounded work along the lines mentioned in Table 5.2
for compound numeric operators. You start with a given value. In this case, it is the
DefaultMessage variable with no value assigned to it. You then assign the line of text con-
tained by the FirstOthLine variable to it. Then in the second use of the concatenation oper-
ator, you append the line of text stored in the SecondOthLine variable. You could continue
to concatenate lines in this way until you had many more lines.

If you were to use the assignment operator (=) each time you assigned a value to the
DefaultMessage variable, you would wipe out the information you have previously assigned
to the variable. Concatenation allows you to continue to add new information.

Table 5.3 provides you with a summary of the operators that apply to the string type. Only
three of these are compound operators. As the table reveals, the @= operator inserts a space
between the text you concatenate. For this reason, in the CommandTriggerV3.txt exam-
ple, you do not include an extra space at the beginning of the second line of quoted text.

Operations 95

Table 5.3 String Operators

Operator Discussion

= Simple assignment of one string to another.
@ Combines two strings and inserts a space between them.
$ Combines two strings with no space between them.
@= Combines the string to the left with the string to the right and assigns the result back

to the string to the left. Inserts a space between the strings.
$= Combines the string to the left with the string to the right and assigns the result back

to the string to the left. Inserts no space between the strings.
-= Removes all occurrences of the string to the left from the string to the right.

Compiling and Testing
After all of this discussion of scope and data types, it is time to put some of the code you
have developed to work. Toward this end, work in the Actor Class Browser and if you have
not done so yet, type the code for the CommandTriggerV3.txt example in the code edit-
ing window for the CommandTrigger class. Click the Compile Changed Scripts icon to test and
compile your code as you go.

After you have finished entering your code, scroll to the Ch04Area package and click the
checkbox next to it. Select File > Save Selected Packages from the top menu. Then in the
Class tree, click CommandTrigger to make it the active class.

Next, activate the Dynamic Light viewport for the Ch05Area01 level. As shown in Figure
5.10, position the cursor above the newly added jump pad. Right-click and select Add
CommandTrigger Here. After you add the trigger, position it in the center of the pad and
slightly above it, as you did with the StandUpTrigger object. Click the Build Changed Lighting
and Build Geometry icons on the top menu to refresh your work as you go. Then left-click
and open the properties dialog for the CommandTrigger object. Open the Trigger tray. Set
RepeatTriggerTime to 2.0. Set ReTriggerDelay to 1.0.

Given that you have created an instance of your new trigger and placed it above the jump
pad, you can then click the Play Map icon and view your work. Figure 5.11 illustrates the
concatenated line from Othello as it appears in the message area of the player view.

Chapter 5 ■ Data Types96

Figure 5.10 Position the CommandTrigger object and then configure its properties.

Constants
Before bringing this chapter to an end, one topic remains that proves important in a num-
ber of contexts. This is the concept of a constant. A constant is an identifier that holds a
value that you cannot change. To define a constant, you use the const keyword. When you
declare a constant, since its value cannot be changed during the course of your program,
you must also initialize it. Here is an example of how to define an identifier as a constant:

const RADIUSOFSAFETY = 40;
const POWEROFSHOT = 10;

Constant values prove important in situations in which you want to prevent anyone from
changing a given value at any point in the use or development of your program. You can
define a class data member as a constant and then use it repeatedly in contexts in which
you require a specific, determined value. When you learn about arrays in the next chapter,
you see one important application of constants. In other respects, UnrealScript provides a
few constants for you. Among these are the value of pi and the maximum value of an inte-
ger. You use the keyword (or constant name) PI to retrieve the value of pi. You use MAXINT
to retrieve the maximum value of an integer. Here is how you might use PI in a statement
in your program:

PI * (RadiusOfCircle * RadiusOfCircle);

Constants 97

Figure 5.11 The message you see reflects the work of concatenation operators.

Nothing more is needed than to use the constant name. Programmers usually capitalize
the names of constants. This is an old programming convention used with a multitude of
programming languages. It is purely a convention. A word in all caps designates an iden-
tifier to which you cannot reassign values.

N o t e

The PI constant is defined in a core class of the Unreal Tournament class hierarchy. This is known as
the Object class. It is the class from which all other classes are derived. Much more remains to be
said about the Object classes in subsequent chapters.

Conclusion
In this chapter, you have dealt extensively with review of a few things you accomplished in
the last chapter and with the fundamentals of understanding how classes are laid out.
Subjects such as scope and access control might seem unimportant, but as you work your
way into situations involving complex class definitions, controlling the ways your classes
are used and understanding, in turn, how other classes can be used depends on under-
standing scope and access. Additionally, learning about primitive data types and the oper-
ators that apply to them tends to be fairly slow going. Still, you can accomplish nothing
without using operators. As with scope and access issues, laying out the basics at this point
puts you in a position to go far in future explorations. Much remains to be done with regard
to exploring basics, but with the notions you now have in place, you can begin work on
such things as the built-in functions of UnrealScript control statements, and programs that
involve implementing your own functions and the more complex aspects of abstract data
types.

Chapter 5 ■ Data Types98

In this chapter you define a class called Math that you use on the basis of composition
with a new Trigger class called AddNumbersTrigger. To accomplish this task, you review
how variables and functions account for the state and behavior of a class. You then

explore the specifics of how to create functions. This exploration includes examining return
types and argument lists, among many other things. After dealing with the basics of func-
tions, you explore a few of the built-in functions that you get with the Unreal Tournament
Object class. Among the functions you explore is the Rand() function, which generates ran-
dom numbers. You then turn to developing a class from scratch. This is the Math class. After
you have the Math class in place, you develop the AddNumbersTrigger. When you create this
class, you work with the spawn keyword to dynamically create an instance of the Math class.
In this way, you add a new dimension to your class package, one that incorporates peer
classes. Among the topics included in this chapter are these:

■ State and behavior for a palm tree object

■ How to define the return type of a function

■ Creating argument lists

■ Where to find such functions as Int() an Chr()

■ How to create an instance of a class dynamically

■ Using cascaded function calls to optimize your code

Another Version of the Working Area
As in Chapter 5, begin by opening the map you worked on in the last chapter and save it
to a new version. The version for Chapter 5 is Ch05Area01.ut2. Select File > Save As from
the main menu. In the Save As dialog, enter Ch06Area01, the name of your new version. See
Figure 6.1. 99

Functions and
Composition

Chapter 6

You save the work you completed in Chapter 5 to a version you can work with in this chap-
ter because the work in this chapter builds on the functionality you have implemented to
specialize the Trigger class. In this chapter, you go in several different directions, adding
new jump pads and several instances of a class called AddNumbersTrigger.

After you have saved the new version of the level, click the Build Changed Lighting and
Build Geometry icons on the top menu to refresh the level. Then click the Play Map icon
to test run it.

N o t e

In this chapter, you continue to use the Ch04Area package. In the source code files for this chapter,
you find a version of the Ch04Area package that includes the classes you create in this chapter. You
can also find the source code in *.txt files in the Chapter 6 source code directory. Appendix A pro-
vides optional discussion of how to work with your code outside the editor.

Adding Another Pad
After you have saved and tested the Ch06Area01 map, duplicate one of the existing jump
pads and place it in an open corner. As in Chapter 5, you can perform this task most read-
ily if you work in the top viewport. Click the right mouse button and select Duplicate from
the drop-down menu. Position the new jump pad as shown in Figure 6.2.

N o t e

In Figure 6.2, in addition to the new jump pad, you also see a new light. As you know from previ-
ous exercises, to add a Light object, you right-click and select Add Light Here.

Chapter 6 ■ Functions and Composition100

Figure 6.1 Save your
previous work to a new
version.

After you add your new jump pad, your map allows you to move between three jump pads.
Figure 6.3 illustrates the jump pads as they appear in your updated level. As in previous
examples, note that the meshes and other objects are left disproportionately larger to make
it easier to depict them in illustrations. You can resize your own to accord with your own
sense of proportion.

Another Version of the Working Area 101

Figure 6.2 Duplicate
one of the existing jump
pads and place it in a
corner.

Figure 6.3 Three jump
pads provide you with
locations you can use to
test your code.

Function Fundamentals
To create the classes in this chapter, you work extensively with functions you define on a
custom basis. Functions are one of the two main elements of class definitions. Class data
members are the other main element. Data members allow you to establish values that you
can use in all functions of a class.

With reference to Figure 6.4, another way of expressing this is to say that a class data mem-
ber establishes the state of a class. Functions regulate the behavior of a class. To understand
what state and behavior involve, imagine a palm tree.

Classes are usually models of entities you find in the world or want to recognize distinctly
in your game. An entity can be described according to its qualities. A palm tree, for exam-
ple, has a number of palms. It has a trunk, and the trunk possesses a thickness. The palm
tree has a height. It also has coconuts, and you can identify these by counting them. Finally,
you can view a palm in terms of its age. Each of these qualities is an aspect of the state of
a palm tree.

The state of a palm tree changes. The trunk of a palm can grow thicker. A palm tree ages.
The number of coconuts can increase or decrease. The palm tree can grow in height. Such
changes constitute the behavior of a palm tree.

To define a class to represent a palm tree, you can create data members to represent its state.
As Figure 6.4 illustrates, NumberOfCoconuts accounts for the coconuts, and Height accounts
for the height. Likewise, to cover the changing states of the palm tree, you can create func-
tions with names like ChangeNumberOfCoconuts() or ChangeHeight(). Every class defines an
entity in terms of its state and its behavior.

Functions allow you to control the behavior of a class object. In the various versions of the
Trigger class you have created, when you have defined the PostBeginPlay() function, for
example, you have set up a way to determine how your class object behaves. You have also

Chapter 6 ■ Functions and Composition102

Figure 6.4 A palm
tree can be described by
its state and behavior.

used the Message property to set the message the class issues. Many other functions and vari-
ables in the base Trigger class might be called to attend to other aspects of the state and
behavior of your class.

To the many functions and variables that you can use from base classes, you can add your
own custom functions and variables. When you define a function, you add a specific type
of behavior to your class. When you add a variable, you define a quality of its state.

The Math Class and Its Functions
In Chapter 5, you dealt extensively with the data members of classes. In this chapter, you
continue work with data members, but you extend your work to include defining whole
classes. Toward this end, you work extensively with functions.

Figure 6.5 illustrates a class named Math. The Math class contains five functions. Each func-
tion possesses a name that clearly identifies what the code it contains does. Each function
likewise defines an aspect of the behavior of the class. The functions together attend to the
responsibility of the class.

In this instance, the responsibilities of the Math class focus on basic arithmetic. The Add()
function, for example, adds numbers. Likewise, the Multiply() function multiplies one num-
ber by another.

Each function has a given theme. When you define the function, you place code in it that
attends to its theme in its scope. Isolating the code in this way allows you to put all the code
that attends to a given task in a specific place. In each instance, the functions work in iso-
lation from each other. The code within the scope of each function is not visible to the
other functions.

Function Fundamentals 103

Figure 6.5 Functions
provide ways to isolate and
name specific activities
within a class.

Here is the code for the Math class shown in Figure 6.5. You can find this class in the code
in the Chapter 6 folder and the *.u file for the Ch04Area package. The Math.txt code pro-
vides the implementation of the Math class.

//==
// Math.
// See Math.txt
//==
class Math extends Actor;
// #1
// Takes two arguments of the type float
// and returns a value of the type float
public function float Add(float NumA, float Numb){

return NumA + NumB;
}

public function float Subtract(float NumA, float Numb){
return NumA - NumB;

}

public function float Multiply(float NumA, float Numb){
return NumA * NumB;

}

public function float DivideAbyB(float NumA, float Numb){
// #2
// Declare a variable that is not
// Visible to other functions

local float Result;
Result = 0;
if(NumB != 0){
Result = NumA/NumB;

}
return Result;

}

public function float AverageTwoNumbers(float First, float Second){
local float ResultingNumber;

// #3
// Call add from within the class
// Assign the returned value of Add()
ResultingNumber = Add(First, Second);

Chapter 6 ■ Functions and Composition104

// #4
// When you assign a new value, you clear the old
ResultingNumber = DivideAbyB(ResultingNumber, 2.0);
return ResultingNumber;

}

Table 6.1 provides specific information on the named features of the functions in the Math
class. Subsequent sections discuss the code in detail.

Function Fundamentals 105

Table 6.1 Terms for Definition of a Function

Term Discussion

Access modifier You have dealt with access modifiers before. The keywords most commonly used are
public and private. When a function is public, you can call it from outside of your
class. When a function is private, its use is restricted to the scope of the class in
which you define it.

Return type A function provides you with a value or some other item when you call it. What it
provides is always data of a given type. When you define a function, then, you
define its return type. This is the data type designation that starts the signature line
of the function. If a function does not return a value, then you do not need to
specify its return type.

Name of the Generally, when you name a function, capitalize it. If you use more than one word,
function capitalize each word. This is the case with AverageTwoNumbers(), in the Math class

example.
Argument list The argument list of a function defines the data you can submit to the function. The

Add() function adds two numbers. The argument list defines the two numbers the
function accepts. A function does not have to have an argument list.

Argument Each identifier you include in an argument list for a function must have a data type.
data type The data type of both of the arguments for the Add() function is float.
Argument Each argument for a function must have a name. You should identify arguments
identifier with names that help someone who is using your code understand what the

arguments are for. NumA and NumB might not be the best identifier names, but the
user of the code still gets the idea that two numbers are being used.

return The return keyword makes it so that your function supplies the result of its
operations to you when you call it. A function does not need to return a specific
value.

Argument To use an argument in the scope of your function, you just name it. In the Add()
function, if you want to use the first number, then you type NumA. If you want to use
the second number, then type NumB. You can use arguments over and over again.

Calling When you call a function, you use it. To use a function, you name the function and
supply arguments to it. To use the Add() function within your class to add two and
two, you type Add(2,2);

local You use this keyword to define the scope of variables used for specific functions. A
local variable is visible only within the function in which you define it.

Figure 6.6 provides discussion of the features of the Add() function in the Math class. If you
understand the Add() function, then you can understand the other functions in the class.
As mentioned previously, Table 6.1 provides extended discussion of the terms used to
describe the features. In essence, in addition to its name, each function is defined accord-
ing to its accessibility, its arguments, and the type of its returned value. See the next few
sections for specific discussion of the functions and other features of the Math class.

Chapter 6 ■ Functions and Composition106

Figure 6.6 Table
6.1 furnishes detailed
descriptions of the
elements of a
function.

Math Class Functions
In the code that follows comment #1 in the Math class, you define the Add() function. The
rest of the functions are defined in roughly the same way. Each function definition begins
with a statement of the access you want to allow the function. In the Math class, all of the
functions are given public access. This means that when you use the class to develop another
class (as happens later on in this chapter), you can access all the functions it contains.

Each function has a name, as you might expect, and following the name comes parenthe-
ses in which you define the arguments of the functions. A function can have an unlimited
number of arguments, but programmers usually limit the number to only a few. Each argu-
ment is a part of the argument list for the function, and each argument in the argument
list has an identifier and a data type. For the Add() function, one argument is named NumA.
This argument has a data type of float.

All of the functions in the Math class return values. To return a value, you use the return key-
word. You define the type of the return value in the first or signature line of the function.
The keyword following the access modifier defines the return type. All returned values of
the functions in the Math class are of the float type.

Local Function Scope
In the lines following comment #2 in the code sample for the Math class, you add a local
variable to the definition of the DivideAbyB() function. A local variable is visible only within
the function in which you define it. You define a local variable by qualifying it with the key-
word local. Within the DivideAbyB() function, the local variable you define is named Result.
You can use this variable only within the DivideAbyB() function.

N o t e

The DivideAbyB() function contains a statement that takes this form:

if(NumB != 0){

Result = NumA/NumB;

}

This is known as a selection statement, and the syntax and uses of such statements are considered
in greater detail in Chapter 7. This particular statement prevents division by 0.

If you tried to access the Result variable defined in the DivideAbyB() function within any of
the other functions, the compiler would issue an error message. Figure 6.7 provides a
mocked up version of the Math class in which the Result variable is defined in the
DivideAbyB() function and then called in the Multiply() function. This action causes an error
because the variable is not defined for use in the Multiply() function. It is defined only in
the DivideAbyB() function. When used outside the scope of the function in which you define
it, the compiler reports that the variable is “bad” or missing.

Function Fundamentals 107

Figure 6.7 Local variables have meaning only within the functions in which you define them.

To eliminate the error, you must define the Result variable in the Multiply() function. You
can use approximately the same lines you see in the DivideAbyB() function definition. Here
is how the corrected code might look:

public function float Multiply(float NumA, float NumB){
// Declare a variable that is not
// visible to other functions

local float Result;
Result = 1;
return NumA * NumB + Result;

}

public function float DivideAbyB(float NumA, float NumB){
// Declare a variable that is not
// visible to other functions
local float Result;
Result = 0;
// Lines left out

}

That you define two local variables with the name Return creates no problem for the com-
piler. The variables are not visible outside the functions in which you define them, so they
exist as two separate entities.

N o t e

The code in this section has been created only to demonstrate the use of local variables. Do not
change the definition of the Math class unless you want to test the concepts. If you change the class,
you can always use the Math.txt file to retrieve the proper version of the class.

Calling Functions within a Function
When you develop classes, you often call functions within functions. In the lines follow-
ing comment #3 in the definition of the Math class, you find the following line:

AddedNumbers = Add(First, Second);

You call the Add() function within the AverageTwoNumbers() function. In the lines following
comment #4, you also call the DivideAbyB() function. In both cases, when you call a func-
tion defined in the class, you call it using only its name and the arguments needed for it.
As a general rule, you can access any function in the class from within any function within
the class.

Chapter 6 ■ Functions and Composition108

When you call the Add() function, you supply two arguments to it. The Add() function
processes the arguments and returns their sum. You assign the sum to a local variable,
AddedNumbers. The return action of functions all work in a similar way. You supply argu-
ments, the function you call processes the arguments, and then you receive the returned
value by assigning it to a variable.

Assigning the returned value of a function is not the only way you can process returned
values, but it is one of the easiest to understand. You use the assignment operator to assign
the returned value to a variable. When you assign the returned value of the Add() function
to the AddedNumbers variable, note that the data type of AddedNumbers and the return type of
the Add() function are the same. Both are of the float type. The type of the variable to which
you assign a returned value should be the same as the return type of the function that
returns the value.

N o t e

The type of the variable to which you assign a returned value should be the same as the return type
of the function that returns the value, but in some cases, the two types can vary. Recall the discus-
sions of automatic data conversion in Chapter 5. Suppose a function returns a value of the int type.
You assign the returned value to a variable of the float type. What happens? The returned value is
likely to be automatically converted from the int to the float type. Here is an example:

public function int ReturnAnInt(){

return 2;

}

public function float AverageTwoNumbers(float First, float Second){

local float AddedNumbers;

// The returned value differs from that of the

// variable to which the value is assigned

AddedNumbers = ReturnAnInt();

// Lines left out

return AddedNumbers;

}

The ReturnAnInt() function takes no arguments and always returns the same number, 2. You call it
in the scope of the AverageTwoNumbers() function and assign its returned value to ResultingNumber,
a local variable of the float type.The compiler does not generate an error because the int data type
can be converted to the float data type.

Function Fundamentals 109

Built-in Functions
Although you spend much time programming your own functions, UnrealScript provides
you with a fairly large set of built-in functions. They are built-in functions because they
are ready for you to use. You can use such functions for a variety of purposes.

Most of them are defined in the Unreal Tournament Object class. The Actor class is derived
from the Object class. The Object class is the most basic of the UnrealScript classes.

The built-in functions allow you to do things like find the square root of a number or deter-
mine if a word is embedded in a given body of text. You can also call on a built-in func-
tion to generate random numbers. This you do later in this chapter.

It is beyond the scope of the current discussion to review all these functions. Table 6.2 dis-
cusses a few of the many available functions. The names of the functions in the table show
the types of arguments used by the functions. Preceding the names of most of the func-
tions is the type of the data the function returns. If the function does not return a value,
then no return data type is shown.

Chapter 6 ■ Functions and Composition110

Table 6.2 Selected Built-In Functions

Function/Constant Discussion

float FRand() This function provides you with a random number that ranges in value
from 0 to 1. The numbers you see are less than 1, never equal to it. To use
this function, you multiply the number it provides you by another number,
such as 10. For example, it might return 0.4. If you multiply by 10, then the
number you get is 4. You can shift numbers to any extent you want. If you
want numbers in the range of 1000s, then you use an expression such as:
1000 * FRand().

int Rand(int) This function provides you with random integers. To use this function, you
supply it with an integer that establishes the maximum value of the range
of numbers it generates. It generates numbers that start at 0 and go to
one less than the value you supply. For example, if you use Rand(10), then
it supplies you with random numbers ranging from 0 to 9.

float RandRange This function works along the same lines as the Rand() and FRand()
(float, float) functions, but now you can more accurately define the numbers you want

to see. You can designate the minimum and maximum values of the range
of randomly generated numbers.

float Abs(float) The absolute value of a number is its distance from zero in a positive or
negative direction. This function returns the absolute value of any number
you supply to it. The absolute value of –5 is 5, as is the absolute value
of 5.

float Sqrt(float) This function gives you the square root of the number you supply to it. The
square root of 16 is 4.

Classes by Composition
When you create a class like the Math class, you cannot use it directly as an object in your
level. Instead, you make use of it by making it part of a class that you do use in your level.
In this way, you can call the functions from the Math class and use them as needed. You do
have to re-create them in the class you place in your level. When you use a class in this way,
one class is said to be composed of another. The overall relation between the two classes is
called composition.

In all of the programming examples you have worked with so far, you have derived one
class from another. When you do this, you use the extends keyword in the signature line of

Classes by Composition 111

float Square(float) This function gives you the square of the number you supply to it. The
square of 5 is 25.

float Cos(float A) This function is one among many trigonometry functions. This one returns
the cosign of an angle. You have to supply the value of the angle in
radians. Discussion of what a radian is lies beyond the scope of the current
discussion. Generally, however, you can convert any angle into radians. If
you want to convert degrees to radians, just divide by 180.

string Chr(int) This returns a character that represents the ASCII value you provide as an
argument. ASCII means American Standard Code for Information
Interchange. Letters have numeric equivalents. For capital letters, “A” is 65,
“B” is 66. For lowercase letters, “a” is 90 and “b” is 91. Use of the ASCII
code is somewhat antiquated because the standard has been incorporated
into an international standard called Unicode, which covers the thousands
upon thousands of characters used in all languages. ASCII provides you
with 255 fairly useful characters. For example, for a line return, you can use
Chr(10). For the letter Pi, use Chr(227). For infinity Ch(236).

int Int() This function converts the number you are working with to an integer.
Technically, when you use this function, you are casting a number to an
integer. UnrealScript provides you with functions that allow you to convert
other numbers in the same way: Float() and Double() are among these.

int Len(string) This function tells you the number of letters in a line of text, including
blank spaces. For example, Len("Work hard.") consists of 10 characters.
The quotes only identify the characters and are not evaluated. The period
and the blank space are evaluated.

ReplaceText(string, This function is an example of one of the many built-in functions that ask
string, string) you to supply more than one piece of information. It allows you to replace

a portion of a source or target string with another string. It takes three
arguments. The first argument is the source or target string. The second
argument provides the string you want to replace in the target string. The
third argument furnishes the replacement string you want to end up with.

the class definition. To create a class called Math class, for example, you use this signature
line:

class Math extends Actor;

Along similar lines, to derive a class called AddNumbersTrigger from the Trigger class, you use
this signature:

class AddNumbersTrigger extends Trigger placeable;

In each case, you derive the class you create from a base class. The class you create is a sub-
ordinate class in a class hierarchy.

Deriving one class from another, also known as inheritance, is a key activity of program-
ming with UnrealScript, because UnrealScript is an object-oriented programming lan-
guage, and object-oriented programming involves deriving one class from another. Your
derived class specializes the base class. Your derived class inherits the variables and func-
tions from the base class. In this way, your versions of the Trigger class have made use of
the base Trigger class. In this way, likewise, the Math class draws on the Actor class.

In contrast to derivation, you can use classes on the basis of composition. Composition
involves creating an instance of one class inside another. You are making it so that one class
is composed of one or more instances of another class.

When you define the AddNumbersTrigger class, you declare a member variable called
AddNumbersTrigger. This variable is of the Math class type. You use this member variable to
access the functions in the Math class. The functions in the Math class in this way become
available to you as you develop the AddNumbersTrigger class. Specifically, because the
AddNumbersTrigger class is composed of an instance of the Math class, you can call the Add()
function of the Math class. This function helps you develop a message that includes added
numbers.

Figure 6.8 provides a Unified Modeling Language (UML) class diagram that shows you
how the class hierarchy you create unfolds when you include both derived and composed
classes. (For further discussion of the UML, see the sidebar, “UML Views”.)

The arrows with the hollow tips in Figure 6.8 show that you derive such classes as
CommandTrigger and AddNumbersTrigger from the Trigger class. The line with the diamond tip
shows a relation of composition between the AddNumbersTrigger class and the Math class.
While you derive the other classes from the base class, you create an instance of the Math
class within the AddNumbersTrigger class. There is no derivation involved in this relationship.
Because of this, the AddNumbersTrigger and Math classes are said to be peer classes.

Chapter 6 ■ Functions and Composition112

Coding the AddNumbersTrigger Class
Here is the code that implements the AddNumbersTrigger class. Discussion of specific features
of the class follows.

//==
// AddNumbersTrigger.
// See AddNumbersTrigger.txt
//==
class AddNumbersTrigger extends Trigger placeable;

var (Message) string NumbersMessage;
// #1
// Data member for Math class
var private Math NumberFromMath;
// Data members for random numbers
var private int RandNumberA,

RandNumberB;

function PostBeginPlay(){
Super.PostBeginPlay();
// #2
// Set the values here rather than in the
// the Properties dialog
ReTriggerDelay = 1.0;
RepeatTriggerTime = 2.5;

Coding the AddNumbersTrigger Class 113

Figure 6.8 Use
inheritance and
composition to create
events in your game.

// #3
// Generate the random numbers
// and assign them to the data members
RandNumberA = Rand(25);
RandNumberB = Rand(25);
// #4
// Pass the arguments to the function
NumbersMessage = GetMessage(RandNumberA ,RandNumberB);
Message = NumbersMessage;

}

public function string GetMessage(int FirstNum,
int SecondNum){

local string NumberString;
local int SumOfNumbers;
// #5

// Create an instance of the Math class
NumberFromMath = spawn(class 'Math');

// #6
// Use the instance of the Math class to
// call the Add() Method
// Convert the float to an integer
// Create a text message

SumOfNumbers = Int(NumberFromMath.Add(FirstNum, SecondNum));
NumberString = FirstNum @ " added to " @ SecondNum

@ " is " @ SumOfNumbers ;
return NumberString;

}

To create the AddNumbersTrigger class, open the Actor Class Browser and click on the Trigger
class as you have when creating classes in previous chapters. Activate the Ch04Area package
if it is not already active. Then add the code for the AddNumbersTrigger class to the code edi-
tor. If you want to access the text for the source code, see the AddNumbersTrigger.txt in
the Chapter 6 source folder.

Chapter 6 ■ Functions and Composition114

Coding the AddNumbersTrigger Class 115

UML Views

The Unified Modeling Language (UML) is a formal engineering approach to planning and repre-
senting the object-oriented programs you create using UnrealScript and other object-oriented pro-
gramming (or scripting) languages. Figure 6.9 illustrates two of the classes you create in this chapter,
the Math and AddNumbersTrigger classes.

As Figure 6.9 shows, a UML class diagram usually consists of three compartments. In the top com-
partment, you name the class that the diagram represents. In the middle compartment, you list the
member variables of the class. In the bottom compartment, you list the member functions of the
class.

The symbols used with the class diagram allow you to know details. To indicate the access permis-
sions you assign the variable or function, you use a plus sign (+) to show that it is public and a minus
sign (–) to show that it is private. You follow the name of a variable with a colon and the keyword
that identifies its data type. You follow the name of a function and a keyword that identifies the
data type of its returned value. If the function does not return a value, you use the term void. In C++,
which is the language used to create the Unreal engine, void is a keyword used to show a function
does not return a value.

To accommodate the complexity of packages, the UML provides you with a package diagram. A
package diagram uses a tabbed box to show the name of your package. You then use arrows with
dotted lines to show the classes you have included in your package. Figure 6.10 illustrates a pack-
age diagram for the Ch04Area package.

Figure 6.9 UML
diagrams provide a quick
and easy way to capture
the main details of your
classes.

Creating an Instance of a Class
In the code following comment #1 in the AddNumbersTrigger class, you declare four data
members for the class. As previous discussions have emphasized, declaration involves
assigning a data type to an identifier. The four identifiers you define in this way employ
three data types: int, string, and Math. Here are the lines that accomplish this work:

var (Message) string NumbersMessage;
var private Math NumberFromMath;
var private int RandNumberA,

RandNumberB;

In each instance, when you declare the identifiers, you tell the compiler that you want to
associate a given identifier with a given data type. You do not yet assign a value to the iden-
tifier.

Use of the Math data type introduces a new element to your activities as an UnrealScript
programmer, because this is the first time you make use of a data type that you create.

The Math class furnishes you with several functions. When you call functions within a class,
you need only to name the function you want to call. You observed how this worked when
you called the Add() and DivideAbyB() functions within the AverageTwoNumbers() function.

When you want to use a function a given class provides within another class, more work
is needed. You must create an object for the class from which you want to call functions.
More specifically, you must create an instance of the class from which you want to call func-
tions. In the AddNumbersTrigger class, after declaring the NumberFromMath identifier for the Math
class instance at the class scope, your next stop is within the GetMessage() function. There
you create an instance of the Math class to assign to the identifier. The line that accomplishes
this task is associated with comment #5:

Chapter 6 ■ Functions and Composition116

Figure 6.10 A package
diagram allows you to
account for the classes you
have included in a package.

// #5
// Create an instance of the Math class
NumberFromMath = spawn(class 'Math');

To create an instance of a class, you employ the spawn keyword. The spawn keyword tells the
compiler to dynamically construct a class object. When you dynamically construct an object,
you tell the compiler to allocate memory for the object while your program is running. As
an argument for the spawn keyword, in parentheses following the keyword you use the class
keyword followed in single quotes by the name of the data type you want to use to create
an object. In this case, the data type is Math.

Calling a Function by Using a Class Object
After you use the spawn keyword to create an instance of the Math class, you then have on
hand a defined class object called NumberFromMath. Using this object, you can access all the
public functions in the Math class. To access the functions, you use the Math object, the dot
operator, and the name of the function you want to call. In this instance, you call the Add()
function. You find the call in the lines associated with comment #6:

SumOfNumbers = Int(NumberFromMath.Add(FirstNum, SecondNum));

You make the call using a cascaded function call. A cascaded function call involves using a
call to a function as the argument of another function.

To show how this works, consider first the basic function call. You use the class object,
NumberFromMath, to call the Add() function:

NumberFromMath.Add(FirstNum, SecondNum);

This constitutes the basic act of calling the function from the composed class. You might
assign the returned value of the function to the SumOfNumbers variable in this way:

SumOfNumbers = NumberFromMath.Add(FirstNum, SecondNum);

As you know from having implemented the Math class, the Add() function requires two argu-
ments. These are the numbers you want to add. Here you supply values stored in two local
variables, FirstNum and SecondNum. The returned value of the Add() function is the sum of the
values of the two arguments you supply. As the definition of the function shows, the type
of the returned value is float. That you use NumberFromMath to call the function makes no
difference. The statement still returns the sum of the two numbers.

The only problem is that when you perform this operation, by default the function returns
numbers that possess several places of precision, so rather than seeing 4, you see 4.0000.
Such a number proves excessive for current purposes, so to get rid of the zeros you need
to convert the number to a different form.

Coding the AddNumbersTrigger Class 117

Toward this end, you embed the returned value in another function. In this case, the other
function is a special type of function. This is the Int() function. You use it to cast the float
value to an int value:

SumOfNumbers = Int(NumberFromMath.Add(FirstNum, SecondNum));

The final few lines in the function create the line of text you display in the game when the
trigger is activated:

NumberString = FirstNum @ " added to " @ SecondNum
@ " is " @ SumOfNumbers ;

When you concatenate numbers with a string, the numbers are automatically converted
into string values. You repeatedly use the concatenation operator (@) to join the parts of
the text message together. In this way, you create a string that tells you the two numbers
you are adding and the result of the addition.

Generating Random Numbers
Creating an instance of the Math class and then calling the Add() function allows you to cre-
ate a line of text that you assign to the NumberString variable. You declare the NumberString
variable in the context of the GetMessage() message function. The GetMessage() function has
a return type of string. The string returned text that might read along the following lines:

23 added to 23 is 46

To make it so that you can assign the line of text to the Message property and make it dis-
play as you play your level, you call the GetMessage() method in the scope of the
PostBeginPlay() function. Here are the lines, associated with comment #3, that perform this
work:

//#3
// Generate the random numbers
// and assign them to the data members
RandNumberA = Rand(25);
RandNumberB = Rand(25);
//#4
// Pass the arguments to the function
NumbersMessage = GetMessage(RandNumberA, RandNumberB);
Message = NumbersMessage;

To generate values that you can use to define the RandNumberA and RandNumberB variables,
you call the Rand() function. As discussed previously, this is a built-in function defined in
the Object class. Its argument sets the maximum number of the value you obtain from the
function.

Chapter 6 ■ Functions and Composition118

You make two calls to the Rand() function, and in each case you submit the returned num-
bers to the GetMessage() function. You assign the message to the NumbersMessage variable. You
then assign the value of NumbersMessage to the Message variable. This action is performed
once each time you create an instance of the AddNumbersTrigger class. For each instance of
the class you create, the set of numbers is likely to be different, so the text you display is
also likely to be different.

Optimization and Default Values
You could do things much more efficiently by rewriting the code that defines your text so
that you make calls to the Rand() function part of a cascading statement and then assign
the returned value of the GetMessage() function directly to the Message variable. However,
for purposes of initial exploration, it is best to avoid such optimized measures. Here is the
optimized version:

Message = GetMessage(Rand(25), Rand(25));

Optimization eliminates the need for the RandNumberA, RandNumberB, and NumbersMessage vari-
ables. Experienced programmers do not necessarily always optimize their code. There can
be much benefit from writing code that shows the general flow of activity embedded in a
program. Still, excessively redundant code can slow down your programs.

Setting Defaults
In the lines associated with comment #2, you use two member variables to set properties
that determine the frequency and duration of the messages your Trigger object displays.
Here is the code:

// #2
// Set the values here rather than in the
// Properties dialog
ReTriggerDelay = 1.0;
RepeatTriggerTime = 2.5;

You have access to the ReTriggerDelay and RepeatTriggerTime member variables because they
are defined in the parent Trigger class. If you look in the Trigger class definition, you find
the following lines:

var() float RepeatTriggerTime;
// if > 0, repeat trigger message at this interval is still touching other
var() float ReTriggerDelay;
// minimum time before trigger can be triggered again

These variables are defined without the public keyword. When defined in this way, they
are by default public, so you can access them directly in derived classes. As discussed
previously, for each instance of the Trigger class you create in your level, you can set such

Coding the AddNumbersTrigger Class 119

values using the Properties dialog, as Figure 6.11 illustrates. On the other hand, you can
save work if you set the values in your definition of the class.

Chapter 6 ■ Functions and Composition120

Figure 6.11 To handle default values, you define them when you implement your class.

Multiple Instances
Each time you create an instance of the AddNumbersTrigger class, you call the Rand() function
to set the values of the RandNumberA and RandNumberB variables. These in turn you pass the
GetMessage() function, which creates a line of text. As defined for the AddNumbersTrigger class,
the Rand() function is called only when you create an instance of your class. You create an
instance of the class when you compile your level.

To investigate some of the implications of this activity, delete the Trigger objects you have
previously added to your Ch06Area01 map and replace them with instances of the
AddNumbersTrigger class, as shown in Figure 6.12. When you finish, you should have created
three instances of the class and placed each above a jump pad.

Since you have already set the ReTriggerDelay and RepeatTriggerTime values in the definition
of the class, do not use the Properties dialog. Click the Build Changed Lighting and Build
Geometry icons. Then click the Play Map icon.

Figure 6.13 illustrates the text generated when your player avatar encounters one of the
triggers. If you go from trigger to trigger, you see the same text output, but the numbers
vary according to those generated when the class object is constructed.

Multiple Instances 121

Figure 6.12 Delete
previous instances of
your classes and place
three instances of the
new class in your
level.

Figure 6.13 Each jump pad trigger generates a different set of random numbers.

N o t e

The jump pad has been left disproportionately large for purpose of illustration. Resize it to accord
with your sense of proportion. To remove features from the display, press Alt and the minus (–) key.

In addition to the line of text, you also see an icon for each instance of the AddNumbersTrigger
class that you put in your level. Viewed in isolation the icon appears as shown in Figure
6.14. This icon appears when you use the spawn keyword to create an instance of a trigger.

Chapter 6 ■ Functions and Composition122

Figure 6.14 An
icon shows that you
have used the spawn
keyword.

When you play the level, if you type the tilde to open the command area, you see a report
of the messages your triggers issue. As Figure 6.15 shows, with three triggers, you generate
only three sets of numbers.

As a final note, if you want to even up your text report, you can use the Chr() function with
an argument of 9, which is the ASCII code for a tab character. You might use this state-
ment to create the text:

NumberString = FirstNum @ Chr(9) @ " added to " @ Chr(9)
@ SecondNum @ " is " @ Chr(9)
@ SumOfNumbers;

Figure 6.16 shows you the revised output. Aligning columns can improve the appearance
of any number of data displays, so such formatting functions as Chr() can be useful.

Conclusion 123

Figure 6.15 You get a unique set of numbers for each object you instantiate.

Figure 6.16 Tabs
change the alignment of
your text.

Conclusion
You have dealt with some fairly abstract notions in this chapter. At the same time, you have
added a vast new dimension to your programming activities by investigating how to use
composition to make use of peer classes. When you develop the Math class, you create a peer
class for the AddNumbersTrigger class. At the same time, you also create a class that you can
use on a composition basis with any other class you develop. Composition, like inheritance
(or specialization) is one of the key activities involved in object-oriented programming.

When you developed the Math class, you had the chance to take a close look at how to define
functions. Functions are important parts of classes. They tend to the behavior of classes.
When you explore functions, you also extend your understanding of how important scope
can be in the development and use of classes. A variable defined in the local scope of a
function cannot be used in other functions.

The work you performed in this chapter sets the stage for activities in Chapter 7. Among
other things, you are now ready to begin working with control structures, reference, and
different uses of the Pawn class.

Chapter 6 ■ Functions and Composition124

In this chapter you explore the use of control statements. Along the way, you deal with
a large number of supplementary topics, such as what characterizes abstract and con-
crete classes, and how and why you override a function provided to you from a base

class. You also begin to dig deeper into the Unreal Tournament class hierarchy, examining
in detail features of the Actor, Pawn, and Trigger classes. Among these features are the
IsRelevant() and Touch() functions. While pursuing these activities, you investigate the idea
of program flow and see that sequence, selection, and repetition allow programmers to
exercise all the actions required to create computer programs. In this chapter, the empha-
sis is on sequence and selection. In Chapter 8, you find extended examples of repetition.
You also add to your store of tools by examining the use of Boolean logic and compound
operations. To put your knowledge to work you develop several new classes, one that con-
sists of a few hundred lines of code. These classes define the CommandTouchTrigger and
CommandMessageTrigger objects. As you develop these classes, in addition to expanding your
use of built-in functions, you incorporate new devices, such as enumerations and arrays.
Such devices tremendously expand the complexity of the classes you create. Among spe-
cific topics are these:

■ Understanding the sequential flow of programs

■ How to override a function

■ Using compound Boolean expressions

■ Creating selection statements

■ Working with enumerated values

■ Using built-in expressions to create messages

125

Controls, Logic,
and Arrays

Chapter 7

Program Flow
When you define a class such as the CommandTrigger class in Chapter 6, you do so by adding
to a fairly large program consisting of many thousands of lines of code, but the file you
work in as you develop your class can also itself be viewed as a program. Regardless of the
scope of programming activity you examine, both when you compile a program and when
you execute it, the flow of activity that takes place generally proceeds from the start to the
end of the program.

The flow of activity in a program takes place through the statements a program contains.
Statements consist of combinations of operators and operands, and you usually terminate
them using a semicolon. A statement is a unit of syntax the compiler recognizes as a com-
plete unit. For this reason, when you see error messages, they usually tell you about a given
statement because the compiler reads one statement after another as it makes its way
through your program. When it encounters one that it cannot understand, it stops. At this
point, you have written a multitude of statements.

Sequential Flow
As Figure 7.1 illustrates, if you define a variable named Counter, the line with which you
define it is a statement, as is the line with which you initialize it. Following the definition
of the variable, among an unlimited number of possibilities, you might write three suc-
cessive statements in which you use the increment operator (++) to increase the value
assigned to the variable. Each line on which you use the increment operator and that you
terminate with a semicolon constitutes a statement.

As the program moves through the statements shown in Figure 7.1, it progresses sequen-
tially. One statement executes and then the next. The program continues to execute until
it reaches the last statement, and then it terminates. This is the default flow of all programs
you write with UnrealScript. In fact, this is the default flow of computer programs gener-
ally because it reflects how the central processing unit (CPU) of your computer works. It
begins a process at the first statement, proceeds to the next, and continues on until it reaches
the last statement. Figure 7.1 shows but one of the many operations you can perform using
the sequential flow of a program.

Chapter 7 ■ Controls, Logic, and Arrays126

Figure 7.1 The default
flow of a program is
sequential.

Selection and Repetition Flow
While the sequential flow of a program provides an effective way to perform a multitude
of programming tasks, UnrealScript and most other programming languages also provide
you with ways to alter the sequential flow of a program. One of these is called selection. The
other is called repetition. Together, sequence, selection, and repetition allow you to perform
all the actions required to develop any program. This generalization might sound impos-
sible, but computer scientists over the decades have again and again confirmed it. Just three
basic activities make possible the flow of all computer programs.

Saying that three basic activities make all computer programs possible overly simplifies
matters, however. Selection and repetition can become extraordinarily involved activities.
It remains, however, that even if they become endlessly complex, the more you explore
their uses the more you find that sequence and repetition usually involve a relatively lim-
ited number of expressions. Figure 7.2 shows you some of the selection and repetition state-
ments UnrealScript provides.

As Figure 7.3 illustrates, each of the three types of program flow has a distinct purpose.
Sequence characterizes the overall flow of the program, one statement progressing to the
next. Selection allows you to provide your program with alternative paths of flow.
Repetition allows you to make it so that your program repeats given statements over and
over again.

Program Flow 127

Figure 7.2 Sequence, selection,
and repetition underlie all
programming activity.

Figure 7.3 Each type of flow possesses distinctive
characteristics.

The Syntax of Control Statements
Selection and repetition are made possible by specific types of statements that involve com-
mon syntactic elements. Figure 7.4 illustrates these syntactic elements. The top section of
the figure displays a selection statement. In the bottom section, the figure displays a repe-
tition statement.

Each statement involves three syntactic elements. The first is the control keyword. The con-
trol keyword identifies the type of action you want to perform. It is sometimes accompa-
nied by other keywords, but it remains primary.

In close association with the control keyword is the control expression. You enclose the con-
trol expression in parentheses. Depending on the keyword you use, you place the control
expression before or after the control keyword. For the if and while keywords, as Figure 7.4
shows, the control expression follows.

Chapter 7 ■ Controls, Logic, and Arrays128

Figure 7.4 Three basic
syntax features describe most
control statements.

In addition to the control keyword and the control expression, you create a control block.
The control block usually opens with an opening curly brace and closes with a closing curly
brace. There are a few exceptions to this, but it is good to observe this as a general pro-
gramming practice. All the statements you include in the braces are governed by the con-
trol expression. You can place as many statements in a block as you want. You can also place
other control statements in the block. Such structures are called embedded selection state-
ments or embedded repetition statements, depending on the type of control statement used.

The most complex part of a control statement is the control expression. The basic type of
control expression contains a logical expression that usually takes two forms, as Figure 7.5

illustrates. The first form involves two operands and an operator. In this case, you make
use of any of a number of the operators UnrealScript provides to create an expression that
compares the value you have assigned to one operand to the value you have assigned to
another operand.

Program Flow 129

Figure 7.5 Control expressions involve using all the standard operators.

In the first example on the left in Figure 7.5, the equality operator allows you to compare
the value assigned to FirstValue to the value assigned to SecondValue. The data types of the
objects should be the same so that the equality operator can compare the values, but what
matters most centrally is whether the values assigned to the operands are equal. If they are
equal, then the flow of the program enters the control block, and all statements in the block
are executed. If the values are not equal, then the flow of the program skips over the state-
ments in the program.

The second example on the left in Figure 7.5 illustrates another common logical expres-
sion. In this instance, you seek to discover when one value is not equal to another. A typi-
cal scenario in this situation is the one you encountered in Chapter 6, in the definition of
the Math class. There, a selection statement in the DivideAbyB() function evaluated the
denominator of a division operation to determine if it was not equal to 0:

if(NumB != 0){
Result = NumA/NumB;

}

To prevent division by 0, you evaluate whether the number you have supplied as the denom-
inator is not equal to 0. Only in this instance do you allow the division to take place.

The third and fourth examples on the left in Figure 7.5 show the use of single expressions
that consist of one operator and one operand. The first of the expressions tests for whether
FirstValue contains any value greater than 0. If you assign 0 to a variable, the variable eval-
uates to false. This expression, then, tests to determine whether the value is greater than
zero.

When you deal with primitive data types, if no value has been assigned to a variable, then
the variable usually contains by default a value of zero. If the data type of the variable is
bool, then the value of a variable you have not initialized is false. If the data type is of an
abstract type, then it holds a null or none value, which for practical purposes is the same as
0. A selection or repetition statement evaluates null, 0, and false as false.

Flags
In the last of the examples in Figure 7.5, you use the negation operator to qualify the
FirstValue operand. In this case, the expression evaluates true if FirstValue is 0, null, or false.
As an example, consider a situation in which you create a variable of the bool type called
FirstValue. The variable allows you to control how many times you are going to perform a
given action. In this case, the action involves creating an Actor object. Here is a bit of code
that might perform such an operation:

Var bool FirstVar;
// Later in your program
FirstVar = false;
// Still later in your program,
// in a function that repeatedly executes
// The negation of false is true
if(!FirstVar){

//Create the Actor object
FirstVar = true;

}

You want to create the Actor object only once. You use FirstValue as a flag. When your pro-
gram starts, you set the value of FirstValue to 0 or false. You then embed the code that cre-
ates the Actor object in the if selection statement. When the selection statement evaluates
the variable, it finds that the negative of false is true, so the flow of your program enters
the control block and creates the Actor object.

Chapter 7 ■ Controls, Logic, and Arrays130

After you perform the statement, within the control block you set the FirstValue variable
to true. Following this action, the flow of your program exits the block but cannot again
enter it, because when the selection expression evaluates the FirstValue variable, it finds it
set to true, and the negative of true is false.

When you use a variable in this way, you use it as a flag. The selection statement in which
you use it is called a toggle. As you see in the code that defines the CommandTouchTrigger class,
many functions return bool values that allow you to control the activities of your program
on this basis.

T i p

Initially setting a flag to false is not the only way to create a toggle. You can just as easily set the
flag to true. In this case, the logic follows the same course. You set the flag to false after you per-
form the operation you want to toggle.

Return Values’ Control Values
In addition to expressions that consist of operands and operators, you can also use the val-
ues functions return to control selection and repetition statements. You see such actions
frequently used in most of the classes in the Unreal Tournament hierarchy. Here is an exam-
ple of a typical situation:

var int FirstVar;
FirstVar = 12;
if(IsThisValid(FirstVar)){

// Perform an action
}
// The definition of the function used in the selection statement
function bool IsThisValid(int Value){

local bool Evaluation = false;
if(Value > 10){

Evaluation = true;
}
return Evaluation;

}

The IsThisValid() function checks any integer value you provide to it as an argument and
determines if the value is greater than 10. The return type of the function is bool. If the
value is greater than 10, the function returns true. If the value is 10 or less than 10, the func-
tion returns false. You use a call to the function to control the selection statement. You call
it in place of using an explicitly stated control expression.

Program Flow 131

The CommandTouchTrigger Class
The CommandTouchTrigger class allows you to create a trigger that differs from those you have
viewed in previous chapters. You can program a trigger so that it responds to the state of
another object. In this instance, the object to which it responds is a Pawn. Pawn objects, like
Trigger objects, are specialized versions of the Actor class. Pawn objects provide a way to add
animated character meshes to your levels. One important Pawn object is the one associated
with the player, which you see when you activate a level and press F4.

The state and behavior of the object that provides the player Pawn objects are fairly com-
plex, but in this chapter, you concentrate on only its position and whether it is standing or
crouching. By assessing the value of the member variable that stores the crouching status
of the Pawn object, you can control the actions your trigger performs.

To implement the CommandTouchTrigger class, begin as in previous chapters by creating a new
version of your level. Begin in this case with the Ch06Area01.ut2 map. Save this as
Ch07Area01.ut2. After you have saved the level, Click the Build Changed Lighting and Build
Geometry icons. Then click the Play Map icon to test it. Press the tilde key and type EXIT
to return to the editor.

Having completed a sanity check, delete the three icons for the existing Trigger objects, so
that your level contains only the three jump pads. This now puts you in a position to add
three instances of the CommandTouchTrigger class after you have implemented the code for it.

Implementing the CommandTouchTrigger Class
To implement the code for the CommandTouchTrigger class, open the Actor Class Browser. In
the lower of the fields, click to activate the Ch04Area package. In the top field, navigate to
the Trigger class, right-click, and select New. In the dialog, type Ch04Area for the package
name and CommandTouchTrigger for the class name. Click OK to generate the class signature
line and open the code editor.

To implement the class, type or copy the CommandTouchTrigger.txt listing into the code
editor. The CommandTouchTrigger.txt file is located in the Chapter 7 code folder. Here is
the code for the class. Extensive review of its specific features follows.

//===
// CommandTouchTrigger
// See CommandTouchTrigger.txt
//===
class CommandTouchTrigger extends Trigger placeable;

// #1
// data members for messages and random numbers
var private string FirstMessage;

Chapter 7 ■ Controls, Logic, and Arrays132

var private string SecondMessage;
var private int RandomNumber;

function PostBeginPlay()
{

// #2
// Call PostBeginPlay() in the parent class (Trigger)
Super.PostBeginPlay();
Message = FirstMessage;

}// end PostBeginPlay()

// #3
// As defined in the parent class,
// Touch() is called when an actor touches the trigger.
function Touch(actor Other)
{

// #4
// Can the touching Actor object affect this Trigger object
if (IsRelevant(Other))
{

// #5
// Cast the Other reference and determine
// if the pawn is crouching
if (Pawn(Other).bIsCrouched){

// #6 Generate a random number and display a message
// relevant to crouching pawns
RandomNumber = Rand(10);
SecondMessage = "Get up!" @ RandomNumber;
Message= SecondMessage;

}// end if
else{

// #7 The actor's pawn is not crouching
RandomNumber = Rand(10);
FirstMessage = "Get down!" @ RandomNumber;
Message = FirstMessage;

}// end else
// #8 Call the parent class version of Touch()
super.Touch(Other);

}// end outer if
}// end Touch()

The CommandTouchTrigger Class 133

Data Members
The CommandTouchTrigger class becomes visible in your level primarily as a message that
reports the state of your player Pawn object. Two of the three data members, FirstMessage
and SecondMessage, attend to messages. You declare these data members in the code follow-
ing comment #1. They are both of the string data type. You define both as private, mean-
ing that they cannot be accessed directly from outside the class.

In addition to the two data members that attend to the messages the class issues, you declare
a data member of the int type (RandomNumber) to accommodate values you generate using
the Rand() function. Initially, this activity is trivial. You merely append the value assigned
to the RandomNumber variable to the end of the text you issue for a message. In subsequent
iterations of the CommandTouchTrigger class in this chapter, however, you use the RandomNumber
variable to arrive at more interesting results.

Abstract Classes and Functions
The CommandTouchTrigger class contains two functions. These are the PostBeginPlay() and the
Touch() functions. Before discussing the specific features of these functions, it is in many
ways helpful to discuss their origins in the Unreal Tournament hierarchy and how it is that
you use them in the implementation of the CommandTouchTrigger class.

Key concepts in this regard are abstract classes, concrete classes, and function overriding. As
Figure 7.6 illustrates, both the Actor and the Trigger classes are abstract classes. The formal
definition of an abstract class is a class that contains an abstract function.

An abstract function is a function that you declare without defining it, much as you declare
a member variable without defining it. Here are how the PostBeginPlay() and Touch() func-
tions are declared abstractly in the Actor class.

// As defined in the Actor class
event PostBeginPlay();
event Touch(Actor Other);

The keyword event is in some ways the equivalent of the keyword function, but it designates
in this instance functions that are abstract. Declared in this way, these functions make the
class in which they are declared abstract.

From a formal point of view, when you derive a class from an abstract class, the derived
class remains abstract unless you define all the abstract functions the derived class inher-
its from the abstract class. As Figure 7.6 shows, the Triggers class is derived from the Actor
class. It does not define any functions. It remains abstract. The Trigger class is derived from
the Triggers class. It defines functions and it is not abstract. Here are partial signature lines
of the three classes:

Chapter 7 ■ Controls, Logic, and Arrays134

class Actor extends Object abstract /*code left out */;
class Triggers extends Actor abstract /*code left out */;
class Trigger extends Triggers /*code left out */;

As the signature lines show, to declare a class abstract, you use the abstract keyword. While
the signature lines of the Actor and Triggers classes contain the abstract keyword, the sig-
nature line of the Trigger class does not. Likewise, the signature line of the
CommandTouchTrigger class also lacks the abstract keyword:

class CommandTouchTrigger extends Trigger;

The CommandTouchTrigger Class 135

Figure 7.6 When you
override a function, you
write a new version,
but you can use the
super keyword to bring
forward the old version
to include it in your
new version.

The Trigger and CommandTouchTrigger classes are referred to as concrete classes. They are con-
crete because you can create instances of them. This is not the case with abstract classes.
You do not use abstract classes directly; instead, you derive classes from them. In the classes
you derive from them, you define the abstract functions the abstract classes contain.

When programmers create abstract classes or functions, they do so because they seek to
create patterns for derived classes. This is evident with the Triggers class. It brings forward
all the functions of the Actor class and presents them as a pattern for all the classes you cre-
ate to specialize the Trigger class. The functions it brings forward become fundamental fea-
tures of the concrete classes derived from the Trigger type.

Member Functions and Overriding
As the discussion of abstract and concrete classes indicates, abstract classes invite you to
define certain functions. This is what happens in the creation of the Trigger class. To make
this a concrete class, all the functions declared abstractly in the Actor class are defined. The
PostBeginPlay() and the Touch() functions fall into this category.

As it stands, however, when you get to your class, the CommandTouchTrigger class, you inherit
defined versions of these functions. The class that provides them to you is not abstract, so
you can use the defined versions as is or create your own versions of them. When you cre-
ate your own versions, you override them.

As Figure 7.6 illustrates, when you override a function, you remake it in a specific class con-
text. It already exists in a concrete, defined form in a parent class. Instead of initially defin-
ing the function, your use of it involves redefining it for a specific purpose.

When you override a function, you use the exact signature line of the function you find in
the parent line and create a new set of statements for the function. Your actions instruct
the compiler to replace the previous version of the function with your new version.

In the implementation of the CommandTouchTrigger class, you override two functions. The
PostBeginPlay() function is necessary as a starting point for the activities of Trigger objects.
It attends to the initialization of the Trigger objects. Among other things, it assigns values
to the Message property. You have seen this many times at this point.

The Touch() function attends to detecting activities in other objects in your program. Since
this is the first time you have sought information about an object with which your Trigger
object might have contact, you have not before had need of it.

Chapter 7 ■ Controls, Logic, and Arrays136

The Super Keyword
When you override a function from a parent class, you wipe the slate clean for the func-
tion and start over. Associated with comment #2 in the CommandTouchTrigger class, you see
these lines:

function PostBeginPlay(){
// #2
super.PostBeginPlay();
Message = FirstMessage;

}

Associated with comment #8, you see this line:

Super.Touch(Other)

When you define the PostBeginPlay() and Touch() functions in the CommandTouchTrigger class,
your code declares to the compiler that you want to erase the previous versions of the func-
tions as defined in the Trigger class and replace them with your own.

With respect to the PostBeginPlay() function, your definition involves two lines of code. It
remains, however, that there are many statements in the version of the PostBeginPlay() func-
tion in the Trigger class that you still want to use. To see how this is so, here is the code for
the function as defined in the Trigger class:

// As defined in the Trigger class
function PostBeginPlay(){

if(!bInitiallyActive){
FindTriggerActor();

}
if(TriggerType == TT_Shoot){

bHidden = false;
bProjTarget = true;
SetDrawType(DT_None);

}
bSavedInitialActive = bInitiallyActive;
bSavedInitialCollision = bCollideActors;
// Lines left out

}

What these lines accomplish need not be explained in detail at this point in the discussion,
but the general story is that they attend to initializing data members of the Trigger object.
In the class you derive from the Trigger class, you still use these data members, and it

The CommandTouchTrigger Class 137

remains necessary to continue to initialize them. To make it so that you can initialize them
without having to rewrite the code, do so in your own definition of the PostBeginPlay()
function, you include the following line:

super.PostBeginPlay();

As Figure 7.7 illustrates, the super keyword calls to the version of the PostBeginPlay() func-
tion defined in the Trigger class. Calling the parent version in the definition of the
PostBeginPlay() function you implement in the CommandTouchTrigger class pulls all the func-
tionality implemented in the function as defined in the parent class into the function as
defined in the derived class. You can use the super keyword in this way to access any pub-
lic, defined function in the parent class.

Chapter 7 ■ Controls, Logic, and Arrays138

Figure 7.7 The super
keyword allows you to call
functions defined in the
parent class.

N o t e

Although not shown in the current code samples, in addition to public and private, UnrealScript
provides a third access modifier keyword. This is the protected keyword. A protected member func-
tion or data member can be accessed by a derived class but not by a peer class. In the examples
given in Chapter 5, you could not access a function in the Math class defined with the protected
access modifier. To access such a function or data member, you must extend the Math class.

Detecting Touching
You also override the Touch() function in the definition of the CommandTouchTrigger class. The
definition of the Touch() function in the Trigger class is much more extensive than the def-
inition of the PostBeginPlay() function. To include this functionality from the parent class,
as with the PostBeginPlay() method, you use the super keyword. The call using the super key-
word occurs in association with comment #8.

Since the Touch() function is an overridden function, the signature line of the Touch() func-
tion in the CommandTouchTrigger class precisely conforms to the signature line of the Touch()

function as defined in the parent class. You see this signature line in the code following
comment #3:

function Touch(Actor Other){

The argument of the function is of the Actor type. The Touch() function is called when an
Actor object in your level collides with your CommandTouchTrigger object. In the broadest
terms, one object collides with another when the two objects simultaneously occupy the
same virtual space. The Touch() function detects when other objects collide with a Trigger
object. It can detect objects selectively or generally. In this context, you can designate that
it should detect all Actor objects in your level by setting the bCollideActors property to true.

Detecting a State Using Selection
In the lines associated with comment #4 of the CommandTouchTrigger class definition, you call
the IsRelevant() function. The IsRelevant() function is defined to return a bool value. Its
argument is of the Actor type. It takes as its argument the Other object you have passed to
the Touch() function. The Other object is any object of the Actor type that collides with your
Trigger object.

Not all Actor objects are suitable as objects to activate your trigger. You determine the Actor
objects that are suitable by setting the TriggerType property of your Trigger object. The
IsRelevant() function determines if the Actor is allowed by TriggerType setting. If it is suit-
able, then the IsRelevant() function returns true.

You use an if statement to evaluate the value the IsRelevant() function returns. This form
of selection statement is known as a single selection statement. If the expression is true, then
the flow of your program enters the block for the statement. If the expression is not true,
then the single selection statement tells the flow of your program to skip its block and go
to the closing bracket, which in this instance is commented with the expression end outer
if. Selection statements of this type provide a specific set of actions that execute only if the
control expression is true. They do not designate specific actions to be performed if the
control expression is false. Here is the code:

// #4
if (IsRelevant(Other)){

// #5
// Cast the Other reference and determine
// if the pawn is crouching
if (Pawn(Other).bIsCrouched){

// #6 Generate a random number and display a message
// relevant to crouching pawns
Message= SecondMessage;

}// End inner if

Detecting a State Using Selection 139

else{
// #7 The actor's pawn is not crouching
Message = FirstMessage;

}//end else
}// End outer if

As you see in the lines following comment #5, within the outer if block is an if…else selec-
tion statement. Such a statement extends the logic of the if selection statement, because
with this type of selection, you can cover both true and false outcomes of a control expres-
sion.

The if…else statement consists of two parts. The first part, an if selection statement, eval-
uates the Other object to determine if a value of true has been assigned to the bIsCrouched
data member. If this is so, then the flow of the program enters the block associated with
the if statement, and the text defined for SecondMessage (“Get up!”) is assigned to the Message
property (see comment #6).

If a value of false is assigned to the bIsCrouched data member, then the flow of the program
passes to the else block, and the text defined for the FirstMessage data member (“Get down!”)
is assigned to the Message property (see comment #7).

Unlike the single selection statement, the if…else statement enables you to cover the paths
that correspond to the two possible states of the bIsCrouched data member. Either the Actor
object is crouched (the Shift key is down and the value of bIsCrouched is true) or the Actor
object is standing (the Shift key is not down and the value of bIsCrouched is false). Your pro-
gram uses the selection statement to ensure that your Trigger object issues messages to
cover both states.

Casting a Class Object Down to a Subclass Object
The argument to the Touch() and IsRelevant() functions is of the Actor type. In the Trigger
class, you find the functions defined in this way:

function Touch(Actor Other)
function IsRelevant(Actor Other)

When you test the value of the bIsCrouched data member following comment #5, however,
you test an object of the Pawn type. You do so because the bIsCrouched data member is of the
Pawn class, not the Actor class. The Pawn class is derived from the Actor class. Here is the line
that performs this action:

if (Pawn(Other).bIsCrouched){

Chapter 7 ■ Controls, Logic, and Arrays140

When you define an argument for a function using a parent data type, then any variable
of a data type derived from the parent data type can also be used as an argument to the
function. This makes sense with the Touch() and IsRelevant() functions, because you want
to work with all the classes derived from the Actor class. In many cases, however, when you
pass an argument in this way, the object you pass might have data members or member
functions not found in the parent class. When you try to access these data members or
member functions using the parent class object, an error results.

Casting the argument down to the type of the derived object becomes necessary. When you
cast a type down, you cast it from the parent to the derived type. Casting a parent object
to the type of a derived object restores the definition of the derived object so that special-
ized data members and member functions can be accessed.

To cast a parent object down to the type of a derived object, you use a special type of func-
tion. The name of this function is identical to its data type. The casting function for the
Pawn class is Pawn(). The casting function takes the parent object as its argument, and it
returns an object of the derived type. Here is the isolated cast you find in the code follow-
ing comment #5:

Pawn(Other);

The statement returns an object of the Pawn type. You might rewrite this expression in this
way:

Pawn MyPawn;
MyPawn = Pawn(Other);

The Pawn class gives you access to the bIsCrouched data member. Since this data member is
defined as public in the Pawn class, you can access it with the dot operator, just as you would
a function. If you had on hand the MyPawn object, then you might write this code:

Pawn MyPawn;
MyPawn = Pawn(Other);
if(MyPawn.bIsCrouched){

// Lines execute
}

To use fewer lines, you combine the cast with the dot operator and the name of the accessed
data member:

if(Pawn(Other).bIsCrouched){
// Lines executed

}

Detecting a State Using Selection 141

N o t e

To review a little, the Pawn class is a specialized version of the Actor class that is usually employed
to represent a player or characters. Pawn objects are almost always associated with meshes.The Pawn
class proves important and complex because it is the primary way that you interact with the game.
Working with objects of the Pawn class involves experimenting with meshes, collision dynamics, and
assets such as sounds, weapons, and the game inventory. It is also the case that you deal with spe-
cialized states, such as crouching.

Enumerations and Values for TriggerType
As mentioned previously, the IsRelevant() function evaluates objects based on the
TriggerType property. If you access the Actor Class Brower and click on the Trigger listing
in the class list, the code editor opens with the code for the Trigger class definition. At the
top of definition, the TriggerType property is defined using an enumeration. The keyword
used to designate enumerations is enum. An enumeration is an abstract data type that allows
you to define three things: a data type, an identifier of the enumeration type, and a set of
values you can use for the data type. In the first few lines of the Trigger class, you find this
code:

var() enum ETriggerType
{

TT_PlayerProximity,
TT_PawnProximity,
TT_ClassProximity,
TT_AnyProximity,
TT_Shoot,
TT_HumanPlayerProximity,
TT_LivePlayerProximity

} TriggerType;

The data type is named ETriggerType. The name of the instance of this data type you cre-
ate is TriggerType. The values you can assign to the TriggerType variable are prefixed with
TT_. Given the var keyword, the property these lines add to the Trigger class is TriggerType,
which you find in the Trigger Properties tray.

When you define an enumeration, the items in the comma-delimited list are called ele-
ments. You can add as many elements as you want. By default, the first element possesses
a numerical value of 0. Each time you add an element, the value of the added element is
one greater than the previous value.

Chapter 7 ■ Controls, Logic, and Arrays142

The enumeration provides, then, a way to escape having to use numbers to set properties.
As Figure 7.8 illustrates, the integer value of TT_PlayerProximity or the other values you
assign to the TriggerType property are not important. You select only the name of the ele-
ment. The value of TT_LivePlayerProximity is 6.

Detecting a State Using Selection 143

Figure 7.8
Enumerated values
provide you with
values for the TriggerType
property.

Selection Using a Case Statement
In addition to if and if…else statements, you can use an extended form of selection that
involves several keywords. This is known as the switch structure. A representative use of a
switch structure can be found in the definition of the IsRelevant() function in the Trigger
class. (To find it, you use the Find utility of the code editor.) This function determines
whether the Actor object your Trigger object has encountered should elicit a response from
your Trigger object. To set your Trigger object so that it knows which Actor objects fall into
this category, you assign one or another of the enumerated values to the TriggerType prop-
erty, as was discussed in the previous section.

When you call the IsRelevant() function, the function evaluates the value set for the
TriggerType property against the possible types and determines on this basis whether your
trigger object should interact with it. To view the specifics of this activity, here is the code
for the IsRelevant() function in the Trigger class. It has been truncated and rewritten in this
context so that it conforms to the standard syntax definition given for the switch selection
statement for UnrealScript:

// This is a modified version of what you find in the class
// Trigger::IsRelevant()
// See IsRelevantSelection.txt
function bool IsRelevant(actor Other){

local bool Relevance;
// Lines left out
// class data member defined by Properties
switch(TriggerType)
{

case TT_HumanPlayerProximity:
Relevance = (Pawn(Other) != None)

&& Pawn(Other).IsHumanControlled();
break;
case TT_PlayerProximity:

Relevance = (Pawn(Other) != None)
&& (Pawn(Other).IsPlayerPawn()
|| Pawn(Other).WasPlayerPawn());

break;
case TT_LivePlayerProximity:

Relevance = (Pawn(Other) != None)
&& Pawn(Other).IsPlayerPawn();

break;
// Lines left out
case TT_AnyProximity:

Relevance = true;
break;
case TT_Shoot:

Relevance = ((Projectile(Other) != None)
&& (Projectile(Other).Damage >= DamageThreshold));

break;
default:

// No relevancy found
Relevance = false

}// End switch structure
return Relevance;

}// End IsRelevant()

Following the switch keyword, in parentheses you provide the argument you want to eval-
uate. In this instance, the argument is the TriggerType property you define using the enu-
meration. As discussed in the previous section, you then assign one of the enumerated
values to it in the properties dialog. Since the TriggerType data member is defined at class
scope, it can be accessed in the scope of the IsRelevant() function. When the IsRelevant()
function is called, it uses this property to evaluate which flavor of Actor is relevant to your
Trigger object.

In the structure of the switch statement, you include case statements. Each case statement
consists of the case keyword followed by the term you want to compare to the switch argu-
ment. After this comes a colon. The colon defines the beginning of the block for the case.
Within the block you place all of the statements you want to associate with the case. To
close the block, you use the break keyword.

Chapter 7 ■ Controls, Logic, and Arrays144

The flow of your program enters the switch structure through the argument you provide
following the switch keyword. It continues to the case that satisfies the argument you pro-
vide. It skips all cases that do not satisfy your argument. If you have set the TriggerType
property to TT_PlayerProximity, then it skips the block for the first case
(TT_HumanPlayerProximity) and goes into the block for the second case. After executing the
statements for this block, when it reaches the break keyword, it skips to the end of the case
structure.

In the event that the argument supplied to the switch argument satisfies none of the cases,
you can set up a default clause. In this case, if something has gone wrong, so that the value
assigned to TriggerType corresponds to no defined case, then the default clause handles the
situation.

In each instance, the case statements shown for the IsRelevant() function makes use of the
Relevance variable, which is of the bool type and is defined locally. The flow of the program
passes to a given case, and expressions evaluate characteristics of the Actor object you pass
to the IsRelevant() function. The result is then assigned to the Relevance variable. At the end
of the function, the value stored in the Relevance variable is returned.

Compounded Boolean Expressions
The case statements in the IsRelevantSelection.txt example provide a number of expres-
sions that fall into the category of compound Boolean expressions. In a previous section, you
dealt with relational operators and their use with operands in single expressions. Here you
see how single expressions can be combined into more complex expressions. Consider the
case for the TT_PlayerProximity value:

Relevance = (Pawn(Other) != None)
&& (Pawn(Other).IsPlayerPawn()
|| Pawn(Other).WasPlayerPawn());

This compound expression uses one relational operator (!=) and two Boolean compound
operators. (&&, ||). Figure 7.9 provides a summary of how these compound operators work.

The AND operator (&&) joins two expressions. Each of the joined expressions is enclosed
in parentheses. The first of these expressions determines whether a Pawn object has been
created:

(Pawn(Other) != None)

If the Pawn object is not equal to the value assigned to the None keyword, then the Pawn object
exists and the result returned by the not-equal-to expression is true. This is the first term
or condition of the compound expression.

Detecting a State Using Selection 145

The second term is itself a compound expression. This expression uses the OR compound
operator (||). The OR operator returns a true result if either of the terms it joins is true.
In other words, if one is false and one is true, it returns true. Likewise, if both are true, it
also returns true. Only if both are false does it return false.

The OR operator compounds the returned values of the IsPlayerPawn() and WasPlayerPawn()
functions of the Pawn class. Either or both of these can be true, and if so, then the com-
pounded statement returns true.

This leaves the AND operator. The AND operator returns true only if both of the expres-
sions it compounds are true. Given this situation, for a true value to be assigned to the
Relevance variable, these conditions must be met:

(The Pawn object is not equal to None)
AND
(The IsPlayerPawn() returns true OR The WasPlayerPawn() returns true)

Compounded Boolean expressions are evaluated from left to right, so when the compiler
reads this statement, if it finds that the Pawn != None expression is false, it reads no more
and assigns false to the Relevance variable.

Chapter 7 ■ Controls, Logic, and Arrays146

Figure 7.9 Boolean
operators allow you to
create compound
expressions.

Testing the CommandTouchTrigger Object
To test your class, create instances of the CommandTouchTrigger and place them in the
Ch07Area01 level. When you place the CommandTouchTrigger objects in the level, because you
are not using the spawn keyword as a part of the class, you no longer see the gargoyle icon.
As Figure 7.10 illustrates, when you activate the trigger, you see “Get down!” or “Get up!”

messages followed by a randomly generated number. The “Get up!” message appears when
you hold down the Shift key.

The difference between this specialization of the Trigger class and those you have dealt with
previously is that you can now generate unique events every time the player Pawn object
encounters a CommandTouchTrigger object. Before, you saw the same message over and over
again. The new version of the Trigger class responds differently, according to whether the
player Pawn object is crouching or standing, and for each interaction between the player
Pawn object and the CommandTouchTrigger object, you see a newly generated random number.

Refactoring to Create Random Messages
Refactoring is a term used to describe the activity of revising your code. It refers to a fairly
formal process that several excellent books on software engineering describe in detail.
Generally, however, you can say that refactoring involves changing your code to improve
its performance or make it easier to understand.

Refactoring can involve almost anything you do to a program. You can divide functions
that perform several actions so that you end up with two or more functions that perform
single actions. If a group of functions in a given class attends to actions that you can more

Refactoring to Create Random Messages 147

Figure 7.10 Each time the Pawn touches the trigger, a unique message is generated.

clearly understand and use if you view them in isolation, then you can create a second class
and put them in it. You then call the functions from this class using an object of the refac-
tored class, much as you did the functions in the Math class.

One of the most frequent activities grouped under the heading of refactoring involves
inspecting your classes for redundant code and finding ways to create functions that can
be called in place of the redundant code. To accomplish this task, you examine the redun-
dant code to find out what it does. You create a function or functions to attend to this activ-
ity. In place of the redundant code, you then use function calls.

To refactor the code for the CommandTouchTrigger class, you begin with the code you have
worked with in the previous sections of this chapter and save it as a new class. This class is
titled CommandMessageTrigger. This class also goes in the Ch04Area package. In this version of
the code, you remove code from the Touch() function that creates the message and place it
in a function called MakeMessage(). You then call the MakeMessage() function in the Touch()
function to provide text for the Message property.

To supplement the MakeMessage() function, you create a second function, GetMessageText().
In the second function, you work with an array. Arrays can contain several objects, prim-
itive or abstract. In this context, you work with the string data type, creating an array that
holds a variety of messages from which you select for the Message value when your Trigger
objects encounter the player Pawn object. Here’s the code.

//===
// CommandMessageTrigger
// See CommandMessageTrigger.txt
//===
class CommandMessageTrigger extends Trigger placeable;

// #1
// Data members for messages and random numbers
var private string FirstMessage;
const NUMOFMESSAGES = 6;
// Define an enumeration
enum PState{

UP,
DOWN

};

function PostBeginPlay()
{

FirstMessage = "Go!";
Super.PostBeginPlay();
Message = FirstMessage;

}// End PostBeginPlay()

Chapter 7 ■ Controls, Logic, and Arrays148

function Touch(actor Other)
{

if (IsRelevant(Other))
{

// #2
if (Pawn(Other).bIsCrouched){ // down state

Message= MakeMessage(PState.DOWN);
}// End if
else{ // up state

Message= MakeMessage(PState.UP);
}// end else
super.Touch(Other);

}// End outer if
}// end Touch()

private function string MakeMessage(PState state){
// #3
local int RandomNumber;
local string ActionMessage;
RandomNumber = Rand(NUMOFMESSAGES);
// #4
// Build messages on the basis of up or down state
if(state == PState.UP){

ActionMessage @= "Get down!";
ActionMessage @= GetMessageText(RandomNumber);

}
else if(state == PState.DOWN){

ActionMessage @= "Get up!";
ActionMessage @= GetMessageText(RandomNumber);

}
else {

ActionMessage = "Okay.";
}
return ActionMessage;

}

private function string GetMessageText(int index){
// #5
// Define a static array of the string type
local string PawnMessages[NUMOFMESSAGES];
local string TMessage;

Refactoring to Create Random Messages 149

// #6
// Assign text values to elements
PawnMessages[0]= "Watch out behind you!";
PawnMessages[1]= "Turn to your left!";
PawnMessages[2]= "Get ready to go!";
PawnMessages[3]= "Did you see the danger?";
PawnMessages[4]= "Can we move again?";
PawnMessages[5]= "How many did you see?";
// #7
// Retrieve an element from the array
if(index < NUMOFMESSAGES && index >= 0){

TMessage = PawnMessages[index];
}
return TMessage;

}

You can represent the CommandMessageTrigger using a UML diagram. The diagram reduces
the features of the class to their essential aspects. As Figure 7.11 shows, the definition of
the class consists of three data members and four member functions. Since this class spe-
cializes the Trigger class, to glimpse the full features of the class, it would be necessary to
see a UML diagram of the Trigger class. Still, in the current context, the diagram serves to
show you the relevant features of the class you are dealing with.

Chapter 7 ■ Controls, Logic, and Arrays150

Figure 7.11 A UML
diagram of the
CommandMessageTrigger
class shows the
essentials.

Data Members
In the line associated with comment #1 in the CommandMessageTrigger class definition, you
create a data member of the string type, FirstMessage. You no longer need more than one
data member to handle text messages. After declaring the FirstMessage data member, you
create an enumeration. The definition of this enumeration differs from the definition you
worked with in the Trigger class, because in this case you define the enumeration so that it
does not have a corresponding property identifier. Instead, you use it in a fixed way. As you
see later on, if you want to use the values of the enumeration, you type PState.UP or

PState.DOWN. Even if this seems odd, it is still much more convenient than trying to remem-
ber number values to designate when a Pawn object is in a standing or crouching position.
A third data member is the NUMOFMESSAGES constant. Constants are by default of the int type.
This constant serves in several places to allow you to know the number of messages you
create for the CommandMessageTrigger objects to issue as it interacts with the player Pawn object.

Member Functions
As the UML diagram in Figure 7.11 shows, you implement four functions in the
CommandMessageTrigger class. You have dealt with the PostBeginPlay() and Touch() functions
before. These are both overridden functions from the Trigger() class. While you add func-
tionality to these functions, you also use the super keyword to access the functionality
defined in the parent versions.

Of the two functions you define from scratch, the MakeMessage() function creates a message
based on its evaluation of whether the player Pawn object is crouching or standing. To
accomplish this, it makes use of the Rand() function to generate a random number each
time you call it. When you use the random number in the call to the GetMessageText() func-
tion, you generate a different text message for each random number.

To trace the flow of activity in the class, you can start at comment #2, in the overridden
definition of the Touch() function. There you make calls to the MakeMessage() function. The
argument to the MakeMessage() function is of the PState type. As mentioned previously, this
data type allows two arguments, PState.UP and PState.DOWN. When the player Pawn object is
crouching, you submit the PState.DOWN value to the MakeMessage() function. When it is stand-
ing, you submit PState.UP. The value tells the MakeMessage() function what kind of message
to create.

The definition of the MakeMessage() function occurs in the lines accompanying comment
#3. Within this function, you declare two local variables, RandomNumber and ActionMessage.
RandomNumber is a local version of the variable you defined in the previous version of the class
at the class scope. Now you move it to the scope of the MakeMessage() function. To initial-
ize the RandomNumber variable each time the MakeMessage() function is called, you use the
NUMOFMESSAGES constant as an argument to the Rand() function.

The ActionMessage variable is of the string type. It serves to allow you to build messages. To
build the messages, you use actions you have seen before. You use the concatenation oper-
ator to append text through repeated statements. In this instance, the statements take sev-
eral forms. In addition to “Get up!” and “Get down!” you include messages you get from
an array in the GetMessageText() function.

Refactoring to Create Random Messages 151

Using if…else if…else
The MakeMessage() function uses a form of a selection statement that extends those discussed
earlier. This is the if…else if…else selection structure, which appears in association with
comment #4. The structure of this selection statement works like that of the switch state-
ment, but rather than using such terms as switch, case, and break, it extends the use of the
if statement to else if. You can add as many else if refrains as you want. You commonly
see this pattern:

if(condition){
}else if(condition){
}else if(condition){
}else{
}

Chapter 7 ■ Controls, Logic, and Arrays152

Selection Variations

While the switch statement uses the default keyword to catch arguments that do not fit into any
of the tested categories, the if…else if…else selection structure uses the else clause of the struc-
ture. Any value that does not prove true for the if or else…if clauses is processed by the else block.

As a comparison or possible source for an exercise, here is how you might implement the if…else
if…else selection structure as a switch statement:

switch(state){
case PState.UP:

ActionMessage @= "Get down!";
ActionMessage @= GetMessageText(RandomNumber);

break;
case PState.DOWN:

ActionMessage @= "Get up!";
ActionMessage @= GetMessageText(RandomNumber);

break;
default:
ActionMessage = "Okay.";

}// End switch

For practical purposes, the if…else if…else and switch selection structures accomplish the same
task. The switch statement is preferable in situations that are seeking to increase the performance
of your code. In the CommandMessageTrigger.txt file, you find both forms of selection. One form is
commented out. You can test the concept by changing the commenting and recompiling.

In the MakeMessage() function, the structure opens with an if statement that tests whether
the value assigned to the state argument is equal to the PState.UP. If this is true, then you
create a text message that consists of “Get down!” concatenated with text provided by the
GetMessageText() function.

If the if statement does not evaluate to true, the flow of the program passes to the else if
refrain of the structure. The else if refrain tests the value assigned to the state argument
to determine if it is equal to PState.DOWN. If this is true, then you create a text message that
consists of “Get up!” concatenated with the text the GetMessageText() function provides.

If you had other options, as you did in the IsRelevant() function, you might continue to
add many more else if statements. At the end of the structure, you could then use an else
refrain to provide a default block. This works just like the default element of the switch
statement. If the value assigned to state is not equal to any of the values given by the if and
else if conditions, then the statement assigns “Okay” to the ActionMessage variable.

Working with Arrays
In the code associated with comment #5 of the definition of the CommandMessageTrigger class,
you declare an array. As mentioned previously, the primary responsibility of the
GetMessageText() function is to provide you with a set of text messages that your
CommandMessageTrigger object can issue when the player Pawn object encounters it. The array
makes this possible.

An array is a set of variables of a specific type that you can access using a single identifier.
In this case, the type is the string type. The identifier is PawnMessages. When you declare an
array, you must indicate right at the start how many elements you want to be able to access
using the identifier. For PawnMessages array, you use the NUMOFMESSAGES constant. In the code
associated with comment #1, you define this constant with a value of 6. You then use it in
the declaration of the PawnMessages array in this way:

local string PawnMessages[NUMBEROFMESSAGES];

Declaration of an array involves using the name of the array followed by square brackets.
In the brackets you indicate the number of items you want to store in the array.

Figure 7.12 illustrates the basic concept of an array. You can view the PawnMessages identi-
fier as designating the starting point of the storage activity. The staring point is 0. You store
the first value in association with 0. The next you associate with 1. Each variable value is
associated with a memory address. The addresses are designated by indexes.

Refactoring to Create Random Messages 153

In the context the array provides, the variable is called an element. Each element is char-
acterized by the size of the data type used to define it. Since the index values of the ele-
ments begin with 0, you can view the indexes as numbers that multiply the size of the
element. To find the location of the first element, the complier multiplies by 0. To find the
location of the second element, the compiler multiplies by 1. Such a way of determining
the locations of the elements means that the highest index value is one less than the num-
ber of elements you define for the array.

The number of elements you can store in an array turns out to be an important concern.
Since only so many places are allocated for storage of elements when you define an array,
if you use an index that is larger than the number of memory spaces you have designated,
you get a compiler error. The error indicates that you have exceeded the bounds of the array.
In other words, you have gone outside the bounds of the memory reserved for the array.

As the lines following comment #6 show, to assign a value to an element, you use brackets
at the end of the name of the array. Within the brackets you use an index number to indi-
cate the element to which you want to assign a value. To access a value you have assigned
to an element, you use the same approach.

In the lines associated with comment #7, you employ a compound Boolean expression to
verify that the value of the index argument is equal to or greater than 0 and less than the
value of NUMBEROFMESSAGES. Since NUMBEROFMESSAGES has been assigned a value of 6, the less than
operator (<) restricts the size of index numbers to the range extending only to 5. This oper-
ation ensures that the number you use for the index is not outside the bounds of the array.

Chapter 7 ■ Controls, Logic, and Arrays154

Figure 7.12 The indexes of arrays designate the locations of individual array elements.

If the value of the index number is within bounds, then you use it to access one of the val-
ues stored in the array and assign it to the local TMessage variable. In the last statement in
the GetMessageText() function, a copy of this variable is returned by the function.

Testing the CommandMessageTrigger Objects
To test the CommandMessageTrigger class, open the Ch07Area01 level. Save it as Ch07Area02.
Delete one of the existing Trigger objects and put a CommandMessageTrigger object in its place.
Figure 7.13 illustrates the messages the CommandMessageTrigger object generates. Now you see
that the messages change each time the player Pawn object encounters a CommandMessageTrigger
object. You also are able to see that the message starts with “Get up!” if the player Pawn object
is crouching. It starts with “Get down!” if the player Pawn object is standing.

Refactoring to Create Random Messages 155

Figure 7.13 The CommandMessageTrigger objects generate changing text messages
selected randomly from an array.

Conclusion
This chapter has involved you with a set of programming tasks that have led to the cre-
ation of the most involved classes yet. The emphasis has remained on using UnrealScript
to develop the logic of programs, but in the process, with the exploration of control struc-
tures, you have entered a realm in which you can now implement any number of classes
that carry out complex chores. The knowledge you acquire through exploration of this
chapter provides a basis for investigating a number of scenarios that involve more extended,
graphically oriented events. Text messages can provide an excellent way to learn about pro-
gramming, but it remains that a key objective is to create visual and sound effects that make
greater use of the powers of the Unreal Tournament class hierarchy.

Chapter 8 continues to develop the themes you encounter in this chapter. The
CommandTouchTrigger and CommandCodeTrigger classes allow you to explore topics, such as enu-
meration, that you can put to work as you take much of this functionality of these classes
through another iteration that leaves you with a system of classes and many fairly complex
operations that illustrate the uses of selection combined with repetition. Given that ground-
ing, it is possible to then proceed into programs that are less involved and yet make more
use of the Unreal Tournament hierarchy and the graphical and other features of the Unreal
Tournament development environment.

Chapter 7 ■ Controls, Logic, and Arrays156

In this chapter you create a fairly complex set of classes that brings forward code from
Chapter 7. Your explorations include use of logic, selection, and repetition. To start
with, you expand on the work you have done on the CommandMessageTrigger. In this iter-

ation, you add several functions that create a “code” that can become the basis of a game
the player Pawn engages in as it goes from location to location and encounters events. The
class you develop to implement this functionality is called CommandCodeTrigger. The code for
this class serves as the basis of a project that involves refactoring its functions into a pack-
age consisting of three peer classes. Toward this end, you create the CommandGoalTrigger,
CodePlay, and Story classes. By placing the functionality in separate classes, you are able to
reduce the complexity of your project while extensively increasing the range of actions avail-
able to you as you develop your level. In addition to the work of creating a system of classes,
you also explore the use of another way to create abstract data types. This approach involves
the struct keyword. You create a data type called CodeStatus that allows you to trace the
process of discovering a code. You also revisit arrays, this time to implement a dynamic
array. The array you develop allows the player Pawn object to hear a story told as it visits the
different event points in the level. Among the topics in this chapter are the following:

■ Generating codes

■ Using repetition statements

■ Refactoring classes to create systems of classes

■ Creating customized data types using structures

■ Creating dynamic arrays

■ Making further use of built-in functions

157

Controls, Arrays,
and Structures

Chapter 8

Preparations for the Work Ahead
As mentioned in the introduction, you develop a total of five abstract data types in this
chapter. You write hundreds of lines of code to do so, and you create a new package to hold
your work. The project you undertake consists of two phases. In the first phase, you develop
a “bloated” class called CommandCodeTrigger. This class contains functions that generate ran-
dom messages as the player Pawn objects interact with it, and it adds to this the generation
of codes (or ciphers) that the player Pawn can try to discover as it moves from event to event.

Bloated classes characterize almost all programming efforts. You begin working on a given
programming project. You add features to the class you work on. Soon the class consists of
hundreds of lines of code and possibly several different types of responsibilities. In this
chapter, you see the CommandCodeTrigger incorporates both the generation of random mes-
sages and the creation of codes for the player Pawn object to try to discover.

After a time, bloated classes tend to become extremely difficult to work with. When some-
thing goes wrong with them, you can find it almost impossible to fix them. The compila-
tion of the classes requires more time. It becomes easier to add code to them that causes
them to malfunction. When they malfunction, if you have all of the functionality of your
level tied up in them, then the play comes to an abrupt halt.

You have seen refactoring at work in previous chapters. You have also explored the notion
of a set of peer classes used on a composition basis. Now you put this knowledge to work
to refactor a bloated class and refactor its responsibilities into peer classes. The two peer
classes allow you to exert greater control over your programming and increase the scope
and sophistication of the events in your level. Figure 8.1 shows you the general scheme of
activities. You start by developing one “large” class. You end with three smaller classes in a
new package.

Chapter 8 ■ Controls, Arrays, and Structures158

Figure 8.1 You start
with a bloated class
and end with three
smaller ones in a new
package.

The folder the arrow points at in Figure 8.1 represents another Unified Modeling Language
(UML) representation of your work. The diamonds at the ends of the lines show that the
CommandGoalTrigger class is composed of instances of the CodePlay and Story classes. The
enclosing tab folder shows you that the three classes are part of a single package, Ch08Area.

Adding to the Map
First open Ch07Area01 map and save it as Ch08Areal01. Build the lighting and geometry and
then click the Play Map icon and test play the map.

Although it has been the assumption all along that you have been adding details to your
maps as you go, at this point it might be helpful to in some way enhance your level so that
one event position is more visible than others. This can augment your testing efforts.

Figure 8.2 illustrates a map with a few wall panels that isolate one of the jump pads. The
panels you see are duplicates of the AlleriaHardware jWallC01AL static mesh. They have been
sized to be tall and thin. On top of the wall panels is the AlleriaHardware jCeilingB01AL mesh.
Also, the level contains four lights. The map contains four jump pads and four triggers.
The Trigger icons shown are of the CommandMessageTrigger type or the CommandTouchTrigger
type, but for starters, you can choose from any objects in the Ch04Area package. The cham-
ber contains one jump pad and one Trigger object.

Preparations for the Work Ahead 159

Figure 8.2 Enhance
our level so that you
isolate a jump pad
and one of the
Trigger objects.

Adding a New Package
After you have in some way enhanced your map to isolate one of the Trigger objects, access
the Actor Class Browser. Navigate to the Trigger class listing under Triggers. Right-click and
select New. Type Ch08Area for the package name. Type CommandCodeTrigger for the class name.
Click OK. Compile the class file with only the signature line and opening commentary as
a sanity check. Click the Ch08Area package, and select Save Selected Packages.

The CommandCodeTrigger Class
As mentioned in Chapter 7, repetition control statements allow you to use control expres-
sions to repeatedly execute a set of statements. The for and while statements fall into this
category. In the CommandCodeTrigger class, you use such statements in the ReportCodeFound()
and MakeCode() functions.

You can find the code for this new iteration of your specialization of the Trigger class in
the CommandCodeTrigger.txt file in the Chapter 8 code folder. As you can see from a cur-
sory glance at the code, the definition includes the functionality you have previously devel-
oped but adds several new elements. In addition to the use of repetition statements, it
incorporates a number of selection statements and several built-in functions, such as
InStr(), Rand(), RandRange(), Int(), and Chr(). Here is the code for the class. Subsequent sec-
tions discuss it in detail.

//===
// CommandCodeTrigger
// See CommandCodeTrigger.txt
//===
class CommandCodeTrigger extends Trigger placeable;

// data members for messages and random numbers
var private string FirstMessage;
// #1
var private string CodeForSearch;
const NUMOFMESSAGES = 6;
enum PState{

UP,
DOWN

};
const CODELENGTH = 8;
const NUMOFTRIES = 20;
const LOWASCII = 97;
const HIGHASCII = 122;

Chapter 8 ■ Controls, Arrays, and Structures160

function PostBeginPlay()
{

FirstMessage = "Go!";
Super.PostBeginPlay();
Message = FirstMessage;
// #2
CodeForSearch = MakeCode(CODELENGTH);

}// end PostBeginPlay()

function Touch(actor Other)
{

if (IsRelevant(Other))
{

if (Pawn(Other).bIsCrouched){ // down state
Message= MakeMessage(PState.DOWN);

}// end if
else{ // up state

Message= MakeMessage(PState.UP);
}// end else

Super.Touch(Other);
}// end outer if

}// end Touch()

private function string MakeMessage(PState state){
local int RandomNumber;
local string ActionMessage;
RandomNumber = Rand(NUMOFMESSAGES);

// Build messages on the basis of up or down state

if(state == PState.UP){
ActionMessage @= "Get down! ";

// #3
// Reveal the code
ActionMessage @= "Here is the code: ";
ActionMessage @= GetCodeForSearch();

}

The CommandCodeTrigger Class 161

else if(state == PState.DOWN){
ActionMessage @= "Get up! - ";
//Convey a message
ActionMessage @= GetMessageText(RandomNumber);
//find a letter of the code
// #4
ActionMessage @= ReportCodeFound(CodeForSearch);

}
else {

ActionMessage = "Okay.";
}
return ActionMessage;

}

private function string GetMessageText(int index){
// Define a static array of the string type
local string PawnMessages[NUMOFMESSAGES];
local string TMessage;
// Assign text values to elements
PawnMessages[0]= "Watch out behind you!";
PawnMessages[1]= "Turn to your left!";
PawnMessages[2]= "Get ready to go!";
PawnMessages[3]= "Did you see the danger?";
PawnMessages[4]= "Can we move again?";
PawnMessages[5]= "How many did you see?";
// Retrieve an element from the array
if(index < NUMOFMESSAGES && index >= 0){

TMessage = PawnMessages[index];
}
return TMessage;

}

private function string MakeCode(int limit){
local int Ctr;
local string Code;
//Control for the while statement
Ctr = 0;
// #5
while(Ctr < limit){

// Build a string using random numbers
// Convert the numbers to letters
Code $= Chr(GenerateRandom());

Chapter 8 ■ Controls, Arrays, and Structures162

// Increment the count
Ctr++;

}// end while
return Code;

}

// #6
private function int GenerateRandom(){

local float high, low;
Low = LOWASCII;
High = HIGHASCII;
// Return an integer in a range
return Int(RandRange(Low , High));

}

// #7
private function string GetCodeForSearch(){

return CodeForSearch;
}

private function string ReportCodeFound(string Code){
local string SelectedLetter, Report;
local int Ctr;

// #8
for(Ctr = 0; Ctr < NUMOFTRIES; Ctr++){

// Cast numbers to a string
SelectedLetter = Chr(GenerateRandom());
// See if it is in the string
//# 9
// Use compound Boolean to determine if
// the letter is in the code range
if(InStr(Code, SelectedLetter) >= 0

&& InStr(Code, SelectedLetter) <= CODELENGTH){
Report @= "Okay, you have found part of the code: ";
// Add the letter to the report
Report @= SelectedLetter;
break;

}// End if
}// End for
return Report;

}

The CommandCodeTrigger Class 163

As with the definition of the CommandMessageTrigger class in Chapter 7, a UML diagram can
provide a convenient summary of the features of the CommandCodeTrigger class. As Figure 8.3
illustrates, you define eight data members and eight functions for the class. The
PostBeginPlay() and Touch() methods are overridden. The six others are custom. The
MakeMessage() and GetMessageText() are changed little from the previous version. The
MakeCode(), ReportCodeFound(), GenerateRandom(), and GetCodeForSearch() functions are new.
The functions are divided into two main groups, those that provide an interface and those
that support the interface. The interface functions are public; the others are private.

Chapter 8 ■ Controls, Arrays, and Structures164

Figure 8.3 You
define four new
functions in the
CommandCodeTrigger
class.

The MakeCode() function includes a while repetition statement that creates a unique “code”
that your player Pawn object can discover as it encounters CommandCodeTrigger objects. The
ReportCodeFound() function uses a for repetition statement to examine the code to simulate
the activity of discovery. Both of these functions are called from the MakeMessage() func-
tion. The GenerateRandom() function wraps the RandRange() function, allowing you to conve-
niently convert the values returned to integers. The GetCodeForSearch() function is an
example of an accessor function. As for the new data members of the class, you add four.
One regulates the difficulty of code discovery. The others allow you to create code mes-
sages.

Data Members
The CommandCodeTrigger class includes eight data members. As you can see in the lines asso-
ciated with comment #1, you add a CodeForSearch data member. This allows you to track the
code the player avatar searches for. The type of the data member is string. You also add the

CODELENGTH data member to set the length in characters of the code. A code consists of a set
of randomly generated letters. You can vary the length by changing the value you assign to
CODELENGTH, but for starters, you assign 8 to this data member.

You use a NUMOFTRIES data member to set the “difficulty” of the discovery process. Discovery
involves using a randomly generated letter to “guess” one of the letters that constitutes the
code. The higher this number, the easier it is to make a correct guess. You assign 20 to this
data member. This means that each time the player Pawn object encounters a
CommandCodeTrigger object, up to 20 randomly generated letters might be used to make a
guess. If you want to make the guess harder, lower the value you assign to NUMOFTRIES.

Two further data members are LOWASCII and HIGHASCII. These values establish a range of
numbers that you can use with the RandRange() function to generate letters to make up a
code. In the ASCII code, lowercase “a” possesses a value of 97. Lowercase “z” possesses a
value of 122. The numbers from 97 to 122 account for all the lowercase letters. (If you want
uppercase letters, then you can use values from 65 through 90.)

Code Creation
The most important function call for creating code occurs in the PostBeginPlay() function.
In the lines trailing comment #2, you call the MakeCode() function. When you call the
MakeCode() function, the argument you provide to it is CODELENGTH. As mentioned previously,
the value of this data member is set to 8.

The MakeCode() function is defined in the lines associated with comment #5. In this func-
tion, you use a while repetition statement. To control this statement, you create a local vari-
able named Ctr. You initialize it with a value of 0. In the control expression of the while
statement, you test to discover whether the value of Ctr is less than the value assigned to
limit. The argument to the function sets the value of limit, and it is equal to CODELENGTH (8).

The while statement repeats 8 times and with each repetition calls the GenerateRandom() func-
tion. It repeats only 8 times because with each repetition the value of Ctr is incremented
by 1. When this value grows to be equal to 8, the control expression evaluates as false, and
the flow of the program exits the while block.

As the while block repeats, the GenerateRandom() function returns int values in the range
extending from 97 through 122. You call the Chr() function to convert these numbers into
letters. You then use the concatenate operator to successively assign the letters without
spaces to the Code variable. In this way, you form a string of 8 randomly generated charac-
ters that serves as your code.

The CommandCodeTrigger Class 165

Message Making
In the lines trailing comment #3, you add a call within the MakeMessage() function. This call
is to the GetCodeForSearch() function. You can find the definition of the GetCodeForSearch()
function in the lines accompanying comment #7. It provides an example of an accessor func-
tion. An accessor function is a function that does one thing. It returns the value stored in
a given data member of a class.

An accessor function serves in many contexts as the only way that users of a class can gain
access to the value stored in a data member of a class. The reason for this is that if the data
member is defined as private, then it is not possible to access the data member directly out-
side the class. Defining data members as private is generally considered good object-ori-
ented practice. The practice is known as data hiding. Data hiding stipulates that the data
member names a class contains should remain hidden from the user of the class. If users
of the class want to access the values the data members hold, they should have to use acces-
sor functions.

UnrealScript is set up so that in addition to using accessor functions, you use properties.
The properties you see displayed in the Properties dialog are a form of accessor. You can
assign values to the data members of a class without seeing them directly. This works for
the variables you qualify using the var keyword followed by parentheses. For other types
of var variables, you might want to hide them. If so, then you can use accessor functions.
To create such a function, you declare the data member as private and the accessor func-
tion as public. The accessor function returns the value assigned to the data member it rep-
resents. The GetCodeForSearch() function returns the value stored in the CodeForSearch data
member. Prefixing the word “Get” to the name of the represented data member is a com-
mon way of naming accessor functions.

Within the CommandCodeTrigger class, you can access several of the data members directly.
Those you can access directly are constants or enumerated values. Such values cannot be
changed and so are left public.

Within the MakeMessage() function (see comment #3), you assign the value returned by the
GetCodeForSearch() function to the ActionMessage variable. This gives you a way to see the
entire code when the player Pawn object in the non-crouching state encounters the
CommandCodeTrigger object.

Reporting Clues Found
At comment #4 in the MakeMessage() function, you call the ReportCodeFound() function. The
argument for this function is the CodeForSearch data member. You might just as easily call
the GetCodeForSearch() function, but in this case the more direct approach is used since the
accessor function is designed to be a part of the interface of the class. Functions in the class
can access the data member directly.

Chapter 8 ■ Controls, Arrays, and Structures166

N o t e

You directly access the value assigned to CodeForSearch. Within your class, accessing the values of
data members using accessor functions is often the best approach. Function calls require more pro-
cessing than directly accessing data members. Within a class, if you access a data member by name
you maintain the practice of data hiding. Outside the class, as mentioned previously, directly access-
ing non-constant data members violates the practice of data hiding.

The ReportCodeFound() function returns a single letter representing one of the 8 letters in
the code string. Reporting the finding of a single letter is a way to make the player Pawn
object’s actions more interesting. It also opens the door to the possibility of extending the
actions of the level so that after the player finds all the letters, a goal event is initiated. At
this stage of development, you see only the reported find of a letter.

The ReportCodeFound() function is defined in the code associated with comment #8. In this
function, you make use of a for repetition statement. The for repetition statement is one
of the most fundamental statements in programming. As Figure 8.4 illustrates, you use
three expressions to control its actions. You begin by declaring a control variable, such as
Ctr. Then, in the first term of the control expression, you assign a starting value to this vari-
able. It is common to use 0.

In the second term, you include an expression that can be evaluated to limit the action of
the for statement. For this value, you use the NUMOFTRIES data member. You allow the for
block to repeat until Ctr increases to a value of NUMOFTRIES. At this point, it is no longer less
than NUMOFTRIES, and the flow of the program does not again enter the block.

For the third term, you provide a way to increase the value of the control variable. In this
case, you use Ctr++, again a common approach to incrementing the value of a control. You
can use any of the increment operators. For example, to increase the value in steps of 2,
you might use Ctr += 2 rather than Ctr++.

The CommandCodeTrigger Class 167

Figure 8.4 The for
repetition statement has
three terms of control.

As the for block repeats, you call the GenerateRandom() function. As mentioned previously,
this function generates random integer values. By making the returned value of the func-
tion an argument to the Chr() function, you convert it into a letter. The value the
GenerateRandom() function returns is in the range from 97 to 122, so you potentially get all
the letters of the alphabet. As it is, given the assigned value of NUMOFTIMES, only 20 letters can
be generated with each call of the function. These letters you assign to the SelectedLetter
variable, which is defined locally and of the string type.

Then comes a selection statement. This statement uses a compound Boolean expression to
accomplish two tasks. The first task involves calling the InStr() function. This is one of the
built-in functions for the string data type. It takes two arguments. The first argument is
text you want to search for a given character or set of characters. The second argument is
the character or set of characters you want to find. The InStr() function returns the start-
ing position in the string of the character or character set you are looking for.

If the InStr() function finds that any letter assigned to the SelectedLetter variable is any-
where in the eight-letter string assigned to the Code variable, it reports the starting position
of the letter. As a safety measure, the selection statement verifies that the starting position
is greater than or equal to 0 (which is the first “position” in any string) and less than or
equal to the length of the string (CODELENGTH). After verifying this is true, the selection state-
ment then creates a report.

The report consists of the text,“Okay, you have found part of the code:” concatenated with
the character found. The report is assigned to the Report variable, which like the
SelectedLetter variable is defined locally and of the string type. The function then returns
a copy of this variable.

Note the use of the break statement at the end of the selection block. The use of break makes
it so that the for repetition terminates as soon as a letter in the code is identified. In this
way, even if it might be possible for the for block to repeat 20 times, if a letter in the code
is generated before that point, the break keyword causes the flow of the program to imme-
diately exit the for block and the return action of the function to immediately return the
found letter.

Chapter 8 ■ Controls, Arrays, and Structures168

Refactoring Random Number Generation
As mentioned previously, the GenerateRandom() function is a wrapper for the built-in
RandRange() function. A wrapper function is a function that you create that makes it easier
than it would be otherwise to use a built-in function (or any function obtained from a class
or group of classes you incorporate into your program).

The RandRange() function creates a problem because it uses two arguments of the float type
to set a range for the random values it generates. It generates values of the float type. To
establish the range for random numbers in the CommandCodeTrigger class, however, you cre-
ate the LOWASCII and HIGHASCII data members. Both of these are defined as constants, and
constants are of the type integer (int). They do not work as valid arguments for the
RandRange() function. Add to this that the Chr() function, which converts ASCII numbers
into letters, requires int values. Since the RandRange() function returns a float value, it cre-
ates a problem here, too.

You address such problems by creating a wrapper function. As you can see in the code asso-
ciated with comment #6, to overcome the problem of using the LOWASCII and HIGHASCII data
members as arguments, you declare and define local variables of the float type named Low
and High. You assign the values of the LOWASCII and HIGHASCII data members to these vari-
ables and implicitly promote them to the float type.

On the other side, you use the Int() function to convert the returned value of the RandRange()
function into an int value. This becomes the returned value of the GenerateRandom() func-
tion. In this way, in different contexts in the CommandCodeTrigger class, when you need ran-
dom numbers of the int type to generate letter values using the Chr() function, you can
easily do so.

Testing the CommandCodeTrigger Object
To test the CommandCodeTrigger class, replace an instance of one of the classes you developed
earlier and replace it with an instance of the CommandCodeTrigger class. To reduce the num-
ber of text messages you see, in the Properties dialog, set the RepeatTriggerTime and
ReTriggerDelay properties to 5 each.

When you play the map, periodically press the Shift key to make the Player pawn crouch.
After you have activated the CommandCodeTrigger object a few times, you are likely to see a
message that part of the code has been discovered. Figure 8.5 illustrates the message that
results from the action of the CommandCodeTrigger object.

The CommandCodeTrigger Class 169

Revision
The CommandCodeTrigger class provides a few variations of behavior based on the stand and
crouch actions of the player Pawn object. As Figure 8.6 shows, addition of two forms of
behavior to the class makes it more interesting, but at the same time, the code for the class
becomes harder to understand and maintain. Although the CommandCodeTrigger class remains
relatively small, consisting of roughly 150 lines of code, it sets a pattern that characterizes
the development of many classes. Adding functionality to a class both increases its size and
tends to blur its responsibilities.

Chapter 8 ■ Controls, Arrays, and Structures170

Figure 8.5 Add a CommandCodeTrigger object to your level and test it.

Figure 8.6 Asking
what a bloated class
does introduces
opportunities for
creating new classes.

Generally, a class should have one responsibility. All the functions in it should attend to
this one responsibility. When you find that a class is doing different things, such as both
providing the player with a game that involves simulating guessing and creating random
messages, then it is time to begin assessing how the class can be refactored. Refactoring in
this case involves creating two new classes, as was discussed earlier in this chapter.

Detecting Messages
The first responsibility that might be considered in the CommandCodeTrigger class involves the
activity of guessing about the ciphers or codes that the class automatically generates. A
Trigger object is concerned with detecting collisions. Generating ciphers and simulating
guessing activities do not fall under this heading.

The solution to the problem lies in taking all the activity involving generating ciphers and
guessing the letters they contain and placing it in another class. When any class derived
from the Trigger class needs to include ciphers and guessing, it can then use an object of
this class and with a few statements access the needed functions.

Toward this end, you begin by developing the CommandGoalTrigger class, which is the
CommandCodeTrigger class without the extra functions.. This class lacks the functions that gen-
erate messages and simulate a cipher guessing game. It attends primarily to detecting
whether a player Pawn object is standing or crouching. On the basis of this activity, it then
calls two other classes to retrieve messages or invoke actions relative to a guessing game.
The other classes are called CodePlay and Story and receive close attention in the sections to
come. Here is the code for the CommandGoalTrigger class. Discussion of specific features in
the code follows.

//==
// CommandGoalTrigger.
// See CommandGoalTrigger.txt
//==
class CommandGoalTrigger extends Trigger

placeable;
var private string FirstMessage;
// #1
// var private CodePlay Score;
// var private Story StoryToTell;

enum PState{
UP,
DOWN

};

Detecting Messages 171

function PostBeginPlay()
{

// #2
// Score = spawn(class'CodePlay');
// Score.MakeCode();

// StoryToTell = spawn(class'Story');
// StoryToTell.MakeStory();

FirstMessage = "Go!";
Super.PostBeginPlay();
Message = FirstMessage;

}// end PostBeginPlay()

function Touch(actor Other)
{

if (IsRelevant(Other))
{

if (Pawn(Other).bIsCrouched){ //down
Message = MakeMessage(PState.DOWN);

}// end if
else{ // up state

Message = MakeMessage(PState.UP);
}// end else
Super.Touch(Other);

}// end outer if
}

private function string MakeMessage(PState state){
local string ActionMessage;
if(state == PState.UP){

// #3
ActionMessage @= "Goal - Get down! ";
// ActionMessage @= Score.ProvideCodeMessage();

}
else if(state == PState.DOWN){

// #4
ActionMessage @= "Goal - Get up! - ";
// ActionMessage @= StoryToTell.TellStory();

}

Chapter 8 ■ Controls, Arrays, and Structures172

else {
ActionMessage = "Okay.";

}
return ActionMessage;

}

Type the code for the CommandGoalTrigger and compile it. Note that eight lines have been
commented out. Leave these lines commented out for now. Their use depends on the imple-
mentation of the CodePlay and Story classes, so if you do not comment them out, your com-
piler issues errors. For now, you do not yet need the class to interact with the other two
classes. Place an object of this class in your Ch08Area01 map and verify that it issues the “Goal
– Get up!” and “Goal – Get down!” messages.

As far as the other classes go, you see them first mentioned in the lines associated with com-
ment #1. There, you declare two data members. One of the data types is CodePlay. The other
is Score. After declaring identifiers for these two new data types, within the PostBeginPlay()
function following comment #2 you use the spawn keyword to create instances of the classes
and assign them to the identifiers.

After you create instances of the classes, you call the MakeCode() and MakeStory() functions.
For the CodePlay class, the MakeCode() function generates a code that becomes the object of
a game of discovery. For the Story class, the MakeStory() function creates a story and makes
it available for display, a line at a time, as you play your level.

In the lines associated with comment #3, you use the instances of the two classes to call the
ProvideCodeMessage() and TellStory() functions. These functions are called over and over
again, depending on whether the player Pawn object is crouching or standing, and the mes-
sages vary according to actions attended to in the Story and CodePlay classes. The
MakeMessage() function does nothing more than call two functions, but even with this brief
interaction, the class accesses many more actions than those you implemented in dozens
of lines in the CommandCodeTrigger class. This is the goal of refactoring.

Deriving a Class from Actor
Providing ciphers and guessing activities is the primary responsibility of the CodePlay class.
To create this class, access the Actor Class Browser. Right-click the Actor class. In the New
Class dialog, type Ch08Area for the package name and CodePlay for the class name. After you
generate the shell of the class, click the Compile Changed Scripts icon on the code editor.
Then click the Ch08Area package check box and select File > Save Selected Packages. You can
now begin developing the code for the CodePlay class.

Deriving a Class from Actor 173

The code for the class follows, but before you start typing, read the section that follows
titled “Dependencies.” This discussion both reviews features of the class and provides you
a strategy for entering the code so that you can build the class a step at a time.

//===
// CodePlay.
// CodePlay.txt
//===
class CodePlay extends Actor placeable;
// #1 Data Members

// Create a structure with three members
struct CodeStatus{

var string Letter;
var bool Found;
var int Times;

};
// These are public because constant
const CODELENGTH = 8;
const LOWASCII = 97;
const HIGHASCII = 122;
const NUMOFTRIES = 50;

// #2 Use the struct type to declare an array
var private CodeStatus AttemptedFinds[CODELENGTH];
var private string CodeForSearch;
var private string MessageAboutCode;
var private string Report;

// The interface consists of a few public functions
// ========= Interface of Code Class ================
// Create the code (use in PostBeginPlay())

function public MakeCode(){
local int Ctr;
while (Ctr < CODELENGTH){
CodeForSearch $= Chr(GenerateRandom());
Ctr++;

}
}

// #3
// Provide messages for Message property

function public string ProvideCodeMessage(){
RunCodeFinder();

Chapter 8 ■ Controls, Arrays, and Structures174

return CodeForSearch $ MessageAboutCode $ Report;
}

// Accessor for the text of the code
function private string ShowCode(){

return CodeForSearch;
}

// Most functions cannot be accessed outside the class
// ========= Functions the Interface uses ================
function private int GenerateRandom(){

local float High, Low;
Low = LOWASCII;
High = HIGHASCII;
return Int(RandRange(Low, High));

}
// #4
// Wrap calls to the private functions of the class

function private RunCodeFinder(){
SetGoals();
DetectLetter();
CheckForCompleteCode();
CreateReport();

}

// #5
// Use Right() and Left() built-in functions
// to sequentially retrieve letters and place
// them in the Letter member of the array elements.
// Initialize all Founds with false.
// Initialize all Times to 0.

function private SetGoals(){
local int Ctr;
Ctr = 0;
while(Ctr < CODELENGTH){
AttemptedFinds[Ctr].Letter

= Right(Left(CodeForSearch, Ctr+1), 1);
AttemptedFinds[Ctr].Found = false;
AttemptedFinds[Ctr].Times = 0;
Ctr++;

}
}

Deriving a Class from Actor 175

// #6
// Gather the information on the status of each
// attempted discovery and assign it to Report

function private CreateReport(){
local int Ctr;
Report="";
while(Ctr < CODELENGTH){
Report $= AttemptedFinds[Ctr].Letter

$ AttemptedFinds[Ctr].Found
$ AttemptedFinds[Ctr].Times;

Ctr++;
}

}

// #7 Embedded while statements with a selection statement
// While the number of tries allowed
// While each letter in the code string
// Compare a randomly generated letter
// with the letter in the Letter member
// If the letters match
// set Found to True
// increment Times

function private DetectLetter(){
local int Ctr, Itr;
Ctr =0;
while(Ctr < NUMOFTRIES){

Itr = 0;
while(Itr < CODELENGTH){

if(AttemptedFinds[Itr].Letter == Chr(GenerateRandom())){
AttemptedFinds[Itr].Found = true;
AttemptedFinds[Itr].Times++;

}// end if
Itr++;

}// end inner while
Ctr++;

}// end outer while
}// end Detect

Chapter 8 ■ Controls, Arrays, and Structures176

//#8 For the length of the code string
// Find all the letters that have been found
// If all letters have been found, show code complete
// If all letters have not been found, say keep looking

function private CheckForCompleteCode(){
local int Itr, Goal;
Itr = 0;
Goal = 0;
while(Itr < CODELENGTH){
if(AttemptedFinds[Itr].Found == true){
Goal++;
if(Goal == CODELENGTH){
MessageAboutCode = "Great! You found the complete code!" ;
CodeForSearch="";
MakeCode();
SetGoals();
break;;

}else{
MessageAboutCode = "Still incomplete. Keep looking." ;

}// end inner if else
}// end outer if
Itr++;

}// end while
}// end Check

Figure 8.7 illustrates the contents of the CodePlay class. The two UML diagrams show essen-
tial views of the data members and the functions. On the right, you see a UML represen-
tation of a structure. The CodePlay class contains the definition of the structure, CodeStatus.
How you work with structures receives detailed discussion later on in this chapter.

The CodePlay class possesses several of the same features you saw in the CommandCodeTrigger
class. The difference here is that the functionality of the class focuses only on creating codes,
assessing the codes a letter at a time when prompted to do so by events of the game, and
reporting whether or not the code has been found.

Figure 8.7 represents the functions of the class in two categories. In the upper part of the
lower (functions) division, three of the functions constitute the interface of the class. These
are public functions. They are the only functions you call from the client class. The client
class in this instance is the CommandGoalTrigger class. You saw in the discussion of the code
for the CommandGoalTrigger class how two of the interface functions are called.

Deriving a Class from Actor 177

The only function of the interface not called is the ShowCode() function. This function does
exactly what it says it does. It provides a message that reveals the whole cipher or code to
you. While it is not included in the calls of functions in the version of the CommandGoalTrigger
class shown previously, you can easily change the situation by including another line of
code in the MakeMessage() function and assigning the returned code to the ActionMessage
variable.

The private functions of the class are all designed to support the interface of the class. No
reason exists for the client class to access them. They attend to creating a cipher and the
actions related to playing a game in association with the cipher. The ProvideCodeMessage()
serves to channel all of this activity to the client class with a single function call.

Dependencies
The CommandGoalTrigger class is fairly small when you compare it with many of the classes
in the Unreal Tournament hierarchy. If you are relatively new to programming with
UnrealScript, however, it can present several challenges if you enter the code line by line
from scratch.

Chapter 8 ■ Controls, Arrays, and Structures178

Figure 8.7 UML
diagrams show the
essentials of the
class and the
structure.

Developing a class that attends to multiple, complex tasks involves considering from the
first the order of dependencies. Figure 8.8 summarizes the order in which you need to
implement the code for the CodePlay class.

Deriving a Class from Actor 179

Figure 8.8 Attention to the order of dependency make implementation in steps possible.

UnrealEd Strategies
Here are a couple of steps you can use as you implement a class like CodePlay.

1. After you have used the Actor Class Browser to create the class, you can uncom-
ment the code associated with comment #1 in the CommandGoalTrigger class. This
allows you to see if the CommandGoalTrigger class recognizes the class.

2. Attend to declaring the CodeStatus structure and all the other data members of the
CommandGoalTrigger class.

3. Then implement the GenerateRandom() and MakeCode() functions. You create the Gener-
ateRandom() function first and then MakeCode() function. You can then uncomment
the code associated with comment #2 in the CommandGoalTrigger class.

If you want to see the code, then you can implement the ShowCode() function and call it in
the MakeMessage() function in the CommandGoalTrigger class. Here is an example of how you
can accomplish this.

if(state == PState.UP){
ActionMessage @= "Goal - Get down! ";
// Temporary test code
ActionMessage @= Score.ShowCode();

}
else if(state == PState.DOWN){
// lines left out

You see an eight-character code displayed whenever the player Pawn object is in a standing
position.

As you know, you must compile the CodePlay object before you can use it. As for the
CommandGoalTrigger class, you have options. You can recompile it after changing the CodePlay
class to incorporate the functionality of the CodePlay class. Until you want to do that, you
do not need to worry about the CommandGoalTrigger class. The CommandGoalTrigger class calls
whatever version of the CodePlay class you have available.

Subsequent sections of this chapter discuss the CodePlay code in detail. You can develop
SetGoals(), CreateReport(), DetectLetter(), and CheckForCompleteCode() functions in isolation
from each other. Other functions cannot be developed in isolation. Previous chapters have
offered a number of opportunities to develop such functions. In this case, you need only
to apply a little more planning to your work. When you finish the four primary functions,
you include calls to these functions in the RunCodeFinder() function. This function groups
the flow of the activity of the class in one place. You make this function private to conceal
it from user classes. You then provide the user access to it through the ProvideCodeMessage()
function, which is public.

Working with Structures
In the lines following comment #1, you create an abstract data type known as a structure.
The keyword associated with structures is struct. To declare a structure, you employ the
keyword struct followed by the name of the data type you are creating. A structure, like a
class, is a type of data. After you define it, you can use it over and over to create variables,
just as you do any other abstract data type.

When you create a structure, you include one or more members. To define a member, you
use the var keyword, the data type of the member, and then the name of the member. The

Chapter 8 ■ Controls, Arrays, and Structures180

members can be of any data type you choose. After you define a member, you access it
using the dot operator. For each instance of a structure you create, the members possess
unique values.

A structure is a way of conveniently grouping a set of data members together. In this case,
the structure contains three members. One is of the string type, Letter; one is of the bool
type, Found; and one is of the int type, Times. The name of the data type is CodeStatus, and
you use it to track the status of each letter of the eight-letter ciphers you work with when
in the CodePlay class. If you have a cipher that reads “mudrsizo”, each letter can be tracked
according to its identity, the number of times it has been detected, and whether or not it
has not been detected. (The goal of the game is to guess all the letters at least once.)

To create an instance of a structure, you proceed in the same way you proceed with the cre-
ation of an instance of any other data type. The only difference is that you cannot assign
values directly to the identifiers you create. Instead, you use the dot operator to access the
structure member. Then you assign the values. Here is an example of declaring and defin-
ing an instance of the CodeStatus data type:

// Declare it
CodeStatus FirstLetter;
// Assign values to the members
FirstLetter.Letter = "m";
FirstLetter.Found = false;
FirstLetter.Times = 1;

As you see in the code for the CodePlay class, you can treat the member of a structure like
any other variable as long as you continue to reference it using the name of the structure
identifier that it is associated with. Here are a few examples:

// Concatenate two letters and assign them to a third string
SummaryString.Letter = FirstLetter.Letter @ SecondLetter.Letter;
// Add two Times and assign the sum to a third
SummaryString.Times = FirstLetter.Times + SecondLetter.Times;
// Evaluate the value and then assign a new value to it
if(SecondLetter.Found == true){

SecondLetter.Found == false;
}

As you might expect, if you can use data types you create using a structure just as you use
any other type of data, then you can also use it to create an array. In the declaration asso-
ciated with comment #2, you define an array in this way:

var private CodeStatus AttemptedFinds[CODELENGTH];

Working with Structures 181

This declaration creates a set of eight CodeStatus elements in an array called AttemptedFinds.
You can then use the array to call the members of the CodeStatus elements as the name of
the identifier for the elements. You use an index within square braces to indicate the ele-
ment you want to access, just as you do with other arrays. Here are some examples:

//Add 1 to the Times member of the third element of the array
AttemptedFinds[2].Times += 1;
//Set the Found member of the second element of the array to true
AttemptedFinds[1].Found = true;

Making a Code
The MakeCode() and GenerateRandom() functions work together. You have already seen how to
implement the GenerateRandom() function. The MakeCode() function is implemented in the
lines preceding comment #3. Implementation involves the use of a while repetition state-
ment. The while statement works along predictable lines. The flow of the program reaches
the control expression. If the value assigned to Ctr is less than the value assigned to CODE-
LENGTH, then the flow of the program enters the while block. Within the block, it repeats
eight times, calling the GenerateRandom() function. With each call of this function, an inte-
ger ranging in value from 97 through 122 is returned. You call the Chr() function to con-
vert it into a letter and then employ the concatenation operator to create a string of eight
letters. To control the while statement, you increment Ctr once each time the block repeats.

The cipher or code itself is assigned to a data member of the class. This is the CodeForSearch
data member. Given that you assign the code to this data member, you can then imple-
ment the ShowCode() function. This accessor function exists solely for the purpose of return-
ing the value of this data member, and as mentioned earlier, it provides a convenient tool
for testing.

In the lines following comment #3, you define the ProvideCodeMessage() method. Notice that
this function calls the RunCodeFinder() function. If you comment out the call to the
RunCodeFinder() function, you can begin testing this function right away in the
CommandGoalTrigger class, right along with the ShowCode() function. Here is the commented
form:

function public string ProvideCodeMessage(){
// Comment out while developing your class
// RunCodeFinder();
return CodeForSearch $ MessageAboutCode $ Report;

}

You can leave the return statement because it uses only the data members of the class. Given
that you comment out the call to RunCodeFinder(), then you can work from the ShowCode()

Chapter 8 ■ Controls, Arrays, and Structures182

function alone, without the RunCodeFinder() function. If you go this route, remember to
remove your comments when you have satisfied dependencies. Here is how your test ses-
sion might look in the CommandGoalTrigger class given the use of comments in the
ProvideCodeMessage() function:

if(state == PState.UP){
// #3
ActionMessage @= "Goal - Get down! ";
ActionMessage @= "Goal - Get down! ";
// Lines commented out within ProvideCodeMessage()
// You call the function, but get only a limited response
ActionMessage @= Score.ProvideCodeMessage();
// Call the accessor function, temporarily, to see the code
ActionMessage @= Score.ShowCode();

}
else if(state == PState.DOWN){
// Lines left out

Assembling Everything
In the lines accompanying comment #4, you define the RunCodeFinder() function. Due to its
dependencies, this is the last function you can develop, so the most you can do early on is
type its signature line and opening and closing braces. Comment out the four function
calls within it. This function serves to organize and group the activities of the class so that
they can be seen in one place. You make the function private so that users of the class can-
not see the inner workings of the class. To have public access to services the function pro-
vides, the users call the ProvideCodeMessage() function, which as you have already seen is
part of the interface of the class.

Visiting Individual Letters and Getting Status
In the lines following comment #5, the SetGoals() function attends to setting up the values
for each letter in the eight-letter cipher. To attend to this task, you use another while repe-
tition statement. The while control allows the block to repeat eight times. Its action is con-
trolled by the value of CODELENTH. The Ctr variable is incremented by 1 each time the flow
of the program enters or reenters the control block.

To visit each letter in the cipher string, you use a combination of the Right() and Left()
functions. These are built-in functions that you obtain from the Object class of the Unreal
Tournament class hierarchy. The functions work in the same general manner. The Right()
function extracts a designated number of letters from the end of a string. Of its two argu-
ments, the first designates the string. The second designates the number of letters.

Working with Structures 183

The Left() function works in the same way, except that it extracts a designated number of
letters from the front of a string. To make it so that you can go through the letters of the
cipher, from beginning to end, and successively assign them to the elements of the
AttemptedFinds array, you use the returned value of the Left() function as the first argument
of the Right() function. When the flow of the program enters the while block the first time,
the Left() function extracts a string from the start of the series of eight letters. The length
of this string increases by one letter with each iteration of the while block. On the other
hand, the Right() function simply takes the last letter of the string.

The first time through, you get the first letter and the Right() function returns it. The sec-
ond time through, you get two letters, and the Right() function returns the second letter.
The third time, you get the third letter. In this way, you get one letter each with each repeat
of the block and assign it to the element the Ctr variable designates. In the end, each Letter
member of each of the CodeStatus elements in the AttemptedFinds array contains one letter.

As for the other CodeStatus members, Times and Found, you set them to default values. So far
the search for the letter in the cipher has not started, so the letters have been found 0 times.
Likewise, you assign false to the Found member. This member remains false until the let-
ter is found the first time and remains true after that.

In the lines associated with comment #6, you once again use a while control statement to
access the elements in the AttemptedFinds array. This time around, the purpose for access-
ing the elements is to merely extract information about them. The CreateReport() function
is a reporting function. It takes information from the three members of each of the
CodeStatus elements in the array and concatenates it into a long string that tells you the
identify of the letter, whether its Found status is True or False, and how many times each let-
ter has been found. The string is pretty ugly but serves to add to the excitement of the
search. The result is assigned to the Report data member, which the ProvideCodeMessage()
function uses as part of its output. Here is an example of the information assigned to the
Report data member:

aTrue2uTrue2sTrue1sTrue1kTrue2gFalse0oTrue4dTrue2

Each letter appears first, following by the bool value reporting its Found status. Then you
see the number of times it has been found. Only the “g” at this point remains unfound.

Finding Letters in Ciphers
The implementation of the DetectLetter() function occurs in association with comment
#7. This function guesses the identity of letters. The game of guessing or finding letters in
the codes or ciphers involves using the GenerateRandom() function. This function makes the
guesses. In this implementation of the CodePlay class, you make it so that guessing a letter
in a cipher is not hard. Each time the player Pawn object approaches a CommandGoalTrigger
while standing, the DetectLetter() method iterates through the eight letters 50 times.

Chapter 8 ■ Controls, Arrays, and Structures184

Making the guess involves two while statements and an embedded selection statement. The
pseudocode in the comments preceding the function review the flow of the function specif-
ically. The outer while block repeats NUMOFTRIES times (50). The inner while block traverses
all the letters in the cipher. For each letter, the GenerateRandom() function provides an inte-
ger value in the ASCII lowercase letter range, which the Chr() function converts into a let-
ter. The if selection statement tests whether the character assigned to the Letter member
of the CodeStatus element equals this letter. If so, then a true value is assigned to the Found
member associated with the letter, and the Time attribute is incremented by 1. In this way,
all finds are recorded.

The Whole Code
In the lines associated with comment #8, the CheckForCompleteCode() function examines the
Found member of each of the elements of the AttemptedFinds array to see if it is set to true.
If all the elements are set to true, then the code has been solved, and the player can see a
message of congratulations for having guessed all the letters in the code. If a guess is made,
however, and not all the Found members for the letters yet report true, then another mes-
sage is generated. This reads, “Sill incomplete. Keep looking.”

Checking for completeness involves a while repetition statement with embedded selection
statements. The while statement iterates through the letters of the cipher. The first of the
selection statements checks the Found member of each of the letters to see if its status has
been set to true. If this is so, then the Goal variable for the string is incremented by 1. The
Goal variable is defined locally.

In an embedded if…else statement, the value of Goal is checked against the value assigned
to CODELENGTH. This value is 8, as you know well by now. When an expression for the if state-
ment renders true, then the message of congratulations is issued. If the cipher has been
solved, then it is also time to create a new cipher, so the MakeCode() function is called, along
with the SetGoals() function. You also assign an empty string to the CodeForSearch data
member. The use of the break keyword in the first if statement causes the while loop to
terminate.

N o t e

This is probably an opportunity for the addition to the class of a new function called Reset(). Any
takers?

The CheckForCompleteCode() function updates the MessageAboutCode data member. The value
stored in this data member, along with those of the Report and CodeForSearch data mem-
bers, allows the player of the level to see statements about the status of the guessing activ-
ity. The message you see in Figure 8.9 shows the information these three data members
convey when the detection process is still incomplete. With the NUMBEROFTRIES data member

Working with Structures 185

value set to 50, the player Pawn object usually encounters the CommandGoalTrigger object five
or six times before a message indicating success is issued.

N o t e

In Figure 8.9, note that quite a bit of jargon follows the basic message. This is more or less an activ-
ity of showing your progress so far. If you look closely, you see, for the first two letters in the cipher
the following information:

LFALSE0RTRUE2

If you add spaces, the message is a little easier to read:

L FALSE 0 R TRUE 2

You see information that tells you L is still false, that it is in position 0 in the cipher and R has been
found and is in position 2 in the cipher. You can exclude such information from the report by com-
menting out the call to the CreateReport() function in the RunCodeFinder() function (following com-
ment #4).

If you want to change the message so that the information is less garbled, then in the definition of
the CreateReport() function following comment #6, change the concatenation operators so that $=
becomes @= and $ becomes @. This places spaces between the characters. If you then view the log
(using ~), you can see the complete messages, which take two or more lines due to the additional
spaces.

Chapter 8 ■ Controls, Arrays, and Structures186

Figure 8.9 When you stand, you hear whether you have found the complete code (see the note).

Figure 8.10 provides a view of logged messages. If you inspect the messages through sev-
eral cycles of play, you can see that each time the cipher is solved, CodePlay class generates
a new code. The game goes on.

If You’re Down, Listen to a Story 187

If You’re Down, Listen to a Story
The use of random messages has provided a means of diversion, but a more interesting
approach to life in a given level involves displaying messages that tell a part of a story with
each new event. To make this possible, you create the Story class. The Story class contains
a story that you store, line by line, in an array. The array this time around differs from those
you have seen before. It is a dynamic array. This array allows you to add items as you go.

To create the Story class, open the Actor Class Browser. Right-click on the Actor class and
select New. In the New Class dialog, type Ch08Area for the package name and Story for the
class name. When the code editor opens, click the Compile Changed Scripts icon. Then
click to activate the Ch08Area package and select File > Save Selected Packages. You are then
ready to go.

Figure 8.10 The log allows you to see the guessing game unfold an event at a time.

As soon as you have compiled the signature line of the class, you can uncomment the dec-
laration and definition lines for the Story class in the CommandGoalTrigger class. Type and test
all the rest of the class before removing the comments from the line containing
StoryToTell.TellStory(). Here is the code for the class:

//===
// Story.
// See Story.txt
//===
class Story extends Actor placeable;

var private string ActionMessage;
var private int Next;
// #1
// Dynamic array
var private Array<string> Story;

// Goes in MakeMessage
public function string TellStory(){

local string StoryLine;
StoryLine = GetLineOfStory();
return StoryLine;

}

// Goes PostBeginPlay
public function MakeStory(){

CreateStory();
}
#2
private function CreateStory(){

// Assign text values to elements
Story[0]= "In a village";
Story[1]= "Once there lived a holy man";
Story[2]= "He was poor";
Story[3]= "His house had a dirt floor";
Story[4]= "His house had a stove";
Story[5]= "This man had a dream";
Story[6]= "Three times he had the dream";
Story[7]= "And so he thought it from God";
Story[8]= "Of going to a city";
Story[9]= "And a palace in the city";
Story[10]= "Where he, poor man";
Story[11]= "Would find a treasure";
Story[12]= "He went to the city";

Chapter 8 ■ Controls, Arrays, and Structures188

Story[13]= "It was far away";
Story[14]= "And in the city he found the palace";
Story[15]= "It was well guarded";
Story[16]= "And a guard stopped him ";
Story[17]= "\"What are you doing here?\" the guard demanded ";
Story[18]= "\"I had a dream to come here, to this palace";
Story[19]= "\"Do not be foolish, said the guard";
Story[20]= "\"I once had a dream that a poor holy man would come here";
Story[21]= "\"And I would follow him home, to a village far away";
Story[22]= "\"And behind his stove would in his wretched home ";
Story[23]= "\"A treasure would be buried ";
Story[24]= "\"Go home, old one, and do not believe foolish dreams.\"";
Story[25]= "So the holy man thanked the guard.";
Story[26]= "After many days, he arrived home.";
Story[27]= "Behind his stove he started digging.";
Story[28]= "Soon he found the buried treasure.";

}
// #3
private function string GetLineOfStory(){

local string TMessage;
// Retrieve an element from the array
if(Next < Story.Length){

TMessage = Story[Next];
Next++;

}else{
Next = 0;

}
return TMessage;

}

To define the Story class, you first create the data members of the class. As you can see in
the lines associated with comment #1, declaration of a dynamic array involves using a tem-
plate. A template is characterized most by the name of the template data type followed by
a set of angle braces (<>). In this case, the data type is Array. Within the angle braces, you
follow Array with a specification of the type of data you want to store in the array. In this
case, it is data of the string type. You then furnish the name of the array. In this case, the
name of the array is Story.

To add elements to a dynamic array, you can proceed in the same way that you proceeded
when you added elements to a static array. In this instance, however, you do not need to
worry about the length of the array. As the term dynamic implies, the array automatically
expands every time you increase the value of the index you use to designate the position
of the element you want to add.

If You’re Down, Listen to a Story 189

After declaring the data array, you can proceed to implement the CreateStory() function.
This activity occurs in association with comment #2. This function serves to add a narra-
tive of 29 lines to the Story array. To add the lines, you assign the line, in quotes, to the index
with which you want to associate it. This is a familiar routine by now. The only feature that
might seem a little strange is the use of a slash within some of the quotes. A slash is used
to indicate an escape character. An escape character tells the compiler to view a given char-
acter (such as opening or closing quotation marks) as literal, so it is not read as part of the
syntax of the programming language. To create words in quotations, then, you use \" to
make the quotation marks appear as part of the string.

Following comment #3, you can then write the code for the GetLineOfStory() function. This
function uses the data member Next to traverse the array, retrieving its elements, start to
end, and returning the line retrieved through the TMessage variable. When you have called
the function a number of times equal to the length of the array, then the value of Next is
set back to 0, and the telling of the story begins again.

One new item is the Length property of the Array class. You access it using the dot operator.
Story.Length returns the number of items in the array. This property tells you the number
of items in the array. It is important to remember this. The number of items is 29, not 28.
The Length property does not track index values. It tracks the number of elements.

The TellStory() function provides one of the two interface functions for the class. It calls
the private GetLineOfStory() function and assigns the returned line to the StoryLine data
member. It then returns the value assigned to StoryLine.

Like the CodePlay class, the Story class includes an interface function that initializes the infor-
mation it provides to its client class. This is the MakeStory() function. It calls the CreateStory()
function. As with the CodePlay class, a public function wraps a private function to keep the
inner workings of the class from being exposed in the client class.

You call the MakeStory() function in the PostBeginPlay() method of the CommandGoalTrigger
class. You then call the TellStory() function in the DOWN selection block of the MakeMessage()
function.

Place an instance of the CommandGoalTrigger in the level. Figure 8.11 shows the event as trig-
gered in association with a jump pad placed in the chamber discussed previously. To make
it so that the story unfolds at a leisurely pace, set the RepeatTriggerTime and ReTriggerDelay
properties of the object to 5 each. Position the player Pawn object in proximity to the jump
pad and hold down the Shift key. The story unfolds a line at a time. If you let up and attend
to other actions, have no fears. When you return, the story remains where you left off.

Chapter 8 ■ Controls, Arrays, and Structures190

Conclusion
If you examine the classes in this chapter, you can probably find several ways to improve
on the “game” of discovering a “code”. As it is, when the various functions report codes or
discovered pieces of a code, the game is not yet real. At best, the messages you see have the
appearance of a game.

Still, the purpose of the CommandCodeTrigger class is to illustrate several practical program-
ming activities that involve UnrealScript and the Unreal Tournament class hierarchy. By
implementing the functions in this chapter, you broaden your understanding of control
structures, Actor classes, and other features of UnrealScript and in this way make progress
toward larger programming problems.

The CommandGoalTrigger class allowed you to develop a set of classes that made interaction
with your level a bit more interesting. Granted, text messages leave a great deal to be desired,
but it still stands that given the use of such things as structures, built-in functions, enu-
merations, compound logical operations, arrays, and selection and control statements, the
classes you end up with contain many potentials for subsequent development efforts.

Conclusion 191

Figure 8.11 When you stoop now, the gargoyle tells you a story.

Can you now implement a class that provides a random message service? Define it as you
do in the CommandGoalTrigger class as a data member. Initialize it in the PostBeginPlay()
method. Then call it in the MakeMessage() function. How can you make it so that you can
use a third type of message? Or how about adding a feature to the CodePlay class that makes
a player a winner only after solving five ciphers? Or suppose you have your own stories,
such as those from Aesop’s Fables. Suppose you want to hear half a dozen stories rather than
just one. What would you do to make this possible? And don’t forget that pesky matter of
the Reset() function in CodePlay.

Chapter 8 ■ Controls, Arrays, and Structures192

In this chapter, you work with a class derived from the KActor class and a static mesh
object that you create using the sphere brush. You make it so that the static mesh can
be moved around your level. To manipulate the object, you use values you assign to a

Vector object and then pass an argument to the Velocity property of the KActor class. You
learn about a few more built-in functions. One in particular is the vect() function, which
is defined to create Vector objects. You also review the SetTimer() function, which enables
you to control the rate at which a KActor object can move the static mesh associated with
it. Among the topics in this chapter are the following:

■ Creating a static mesh object

■ Creating a KActor class

■ The Vector class as a data type

■ Functions to use with Vector objects

■ Code for controlling events

■ Placing a KActor object in your level

Getting Started with Disco World
In this chapter, you develop a class you derive from the KActor class. The KActor class is often
identified as a key physics class in the Unreal Tournament class hierarchy. Among many
other things, you can associate a static mesh with a KActor class. When you do this, you then
have on hand a static mesh object that you can move around your level.

193

Disco World and
Other Items

Chapter 9

Throughout this book, the work involved in creating maps has been reduced to a mini-
mum with the assumption that this is something you want to pursue on your own.
Although that practice remains in place in this chapter, as a starter map, if you want to
work from absolute zero, so to speak, you can access the Ch09Disco00.ut2 file in the Maps
directory for Chapter 9. This map provides a cube with textures, nothing more. This map
is a remake of the previous cube level. Here are the textures applied:

■ Walls—AlleriaTerrain.Wal23AL

■ Floor—AlleriaTerrain.Flr04AL

■ Ceiling—Cel04AL

Figure 9.1 gives you a view of the map. A feature missing at this point is a static mesh rep-
resenting a large ball of ice. You create this static mesh. You then associate it with a class
you derive from the KActor class.

Chapter 9 ■ Disco World and Other Items194

Figure 9.1 The
AlleriaTerrain texture
package provides assets
you can use as a
starting point.

Preliminaries

In this chapter, you perform operations that require the Unreal Engine to be able to process the
details of maps on an extremely refined basis. For this reason, the setting of your display must be
set as shown in Figure 9.2. To adjust your settings, the best approach is to exit UnrealEd and open
Unreal Tournament. Wait a few seconds for the introductory screens to display and then press the
Esc key. Click the Settings option. Click the Display tab. On the right side of the window under
Options, set all options to High or Highest. Then click Back and exit the game. The Display options
are saved so that they become the default values for UnrealEd.

Adding a Tetrahedron
The first order of business is to create an object that you can move around your level using
the KActor object. You can use classes you derive from the KActor class to control any num-
ber of objects, but as a starter project, creating a static mesh representing a large ice ball
keeps things simple.

Your objective is to create a tetrahedral brush object. In less cumbersome language, you
create a sphere. You change this object into a static mesh. The name you assign to the ice
ball is DiscoBall. The name you assign to the KActor object you associate with the ice ball
is also DiscoBall. One item is a static mesh file. The other is a code file. That they possess
the same name makes it easier to remember them in association with each other.

First, to create the spherical object that you transform into a static mesh, begin work with
the Texture Browser. Open the Texture Browser before you start on any other work. You
should select the texture to use for the surface of the ice ball prior to using the tetrahedron
brush to create the ball.

As shown in Figure 9.3, select File > Open from the Texture Browser to access the
AlleriaTerrain.utc texture package. After you open the package, select the AlleriaTerrain
ground option and the ice01AL texture. Click the texture to make it active.

Now right-click on the tetrahedron (or sphere) builder brush. The icon for the brush is
located in the brush primitive area at the bottom of the palette, as Figure 9.4 shows.

Adding a Tetrahedron 195

Figure 9.2 Developing
KActor objects requires that
you set your Display
options to the highest level.

In the TetrahedronBuilder dialog, set the Radius property to 120. Assign 3 to the
SphereExtrapolation property. The value of SphereExtrapolation establishes the number of
vertices on the sphere. The higher the number, the more it looks like a sphere. Click Build
at this point. See Figure 9.5.

Now move to the Add icon in the CSG Operations area (see Figure 9.4). Click the Add icon
on the top left. The brush appears in the viewports. Work with the sphere object as it
appears in the Top 2D viewport.

Chapter 9 ■ Disco World and Other Items196

Figure 9.3 Select the
texture before you use
the brush to create the
tetrahedral object.

Figure 9.4 Setting the SphereExtrapolation property to 3 reduces the
compilation time but results in a fairly crude object.

If you have not done so, click Build in the TetrahedronBuilder dialog. Then Press Shift and
left-click to move the red brush object away and expose the newly created tetrahedron
object. Position the ice ball at the top, in the middle, and toward the back of the cube. Figure
9.6 shows the front view. Adjust the lighting or add more lights.

Adding a Tetrahedron 197

Figure 9.5 Click Build
after you set the
properties.

Figure 9.6 The Top
viewport shows the
object toward the back.

Click the Build Geometry and Build Lighting icons. You should immediately see an ice ball
in the Dynamic Light viewport. If you do not, delete your work, go to the Texture Browser,
and select the texture. Then use the Add icon to add another sphere and click Build in the
TetrahedronBuilder dialog. Save your level when you are done. Keep in mind that this is
just a temporary object. You will shortly delete it and replace it with another object.

Saving the Object as a Static Mesh
You save the primitive object as a static mesh so that you can more readily associate it with
the class you derive from the KActor class. The object you create with a brush is not tech-
nically a static mesh. You can apply physics to a static mesh fairly easily.

To convert the brush object to a static mesh, work in the Top 2D view and right-click on
the brush object. Select Convert > To Static Mesh.

As Figure 9.7 illustrates, you see a New Static mesh dialog that displays three properties.
Name the Package Ch09Disco. Name the Group Disco. In the field corresponding to the Name
property, type DiscoBall. Click OK.

Chapter 9 ■ Disco World and Other Items198

Figure 9.7 The static
mesh is identified by its
package, its group, and
its name.

The actions you perform in the New Static Mesh dialog generate a static mesh that remains
in a provisional state until you save it. To save the static mesh, activate the Static Mesh
Browser, as shown in Figure 9.8. Select Ch09Disco as the static mesh package. Locate the
DiscoBall item in the lower list. Then from the menu of the Static Meshes dialog, select File
> Save.

Figure 9.8 Save
your created static
mesh.

Note that in the Save Static Mesh Package dialog, the name of the package is Ch09Disco.utx.
Static meshes are automatically saved to the StaticMeshes directory, as Figure 9.9 shows.
All static meshes have the same file type and are placed in the same location. After you click
Save to save the new static mesh package, leave the Static Mesh browser open. Then from
the UnrealEd top menu, select File > Save to save your level.

Adding a Tetrahedron 199

Figure 9.9 Save
the static mesh
package.

Replacing the Preliminary Object
You can now replace the temporary brush with a static mesh. To accomplish this, in the
2D Top viewport, locate the sphere you previously created and delete it. After you have
deleted the temporary object, click the Build Geometry icon to refresh the geometry of
your level. If an image of the tetrahedron object remains in the Dynamic Light viewport,
this action should clear it away.

If the Static Mesh Browser is not still active, activate it. Right-click the DiscoBall static mesh
to select it. It resides, of course, in the Ch09Disco package in the Disco group.

Then move to the Dynamic Light viewport and right-click above the light, in the position
previously occupied by the temporary object. As shown in Figure 9.10, select Add Static
Mesh: ‘Ch09Disco.Disco.Discoball’.

You then immediately see the DiscoBall static mesh. Work in all the viewports to adjust its
position to accord with Figure 9.11. Select File > Save from the top menu and save your
level.

Extending the KActor Class
As Figure 9.12 illustrates, your next step is to permanently associate a class you derive from
the KActor class with the DiscoBall static mesh. KActor is a class that is convenient for per-
forming actions involving physics. You permanently associate the DiscoBall static mesh with
the DiscoBall class. Then, you create an instance of the DiscoBall class; in addition, you auto-
matically create an instance of the DiscoBall static mesh.

Chapter 9 ■ Disco World and Other Items200

Figure 9.10 Select
Add Static Mesh.

Figure 9.11 The DiscoBall
static mesh object occupies
the position previously
occupied by the temporary
object.

Figure 9.12 You can
specialize the KActor class
and then permanently
associate the specialized
class with a static mesh
object.

First, you specialize the KActor class. Toward this end, open the Actor Class Browser and
navigate to the KActor listing. Right-click and select New. As shown in Figure 9.13, in the
New Class dialog, enter Cho09Disco as the name of the package and DiscoBall as the name
of the class. Click OK.

Extending the KActor Class 201

Figure 9.13 Create
the DiscoBall class.

Figure 9.14 Save your
KActor object to the
Ch09Disco package.

You see the signature of the class in the code editor, as usual. To save this first version, click
the Save Change Script icon. You see the newly specialized version of the KActor class in the
Actor Class Browser, as shown in Figure 9.14. To save your work, activate the Ch09Disco
package and select Save Selected Packages from the top Actor Classes Browser.

Writing the Code
The code you write for the DiscoBall class accomplishes three tasks. It adjusts a few vari-
ables before the level begins to execute. It sets the duration of an event timer as the class is
instantiated. It then regulates the motions of its associated object as it executes. The code
for the first version of the class is given in the DiscoBall.txt listing in the code folder for
Chapter 9. After you enter the code, activate the Ch09Disco package and select Save Selected
Packages. Here’s the code:

//===
// DiscoBall.
// See DiscoBall.txt
//==

class DiscoBall extends KActor placeable;
// This function gets called before anything happens to the object.
// It is called to set up all the objects
// with relation to the actions for the level generally
function PreBeginPlay() {

// # 1
// Sets the timer to go off every 9 seconds
// The 'true' argument means call the Timer
SetTimer(9.0, true);

}
function PostBeginPlay() {

// # 2
// Sets the initial velocity vector to point down
// The speed of movement is 90 units
// The arguments defined x, y, and z coordinates
Velocity = vect(0, 0, -90);

}
function Timer() {

// # 3
// Flip the velocity vector around
Velocity = (-1) * Velocity;

}

The SetTimer() Function
In the lines following comment #1, you call the PreBeginPlay()function. As the name implies,
this function allows you to set parameters concurrent with the initialization of the KActor
object. The utility of this function becomes evident if you consider that it is useful to be
able to set parameters that define the starting condition of your object. In this function,
you call the SetTimer() function. This function defines the units that govern the duration
of a timer pulse relative to the object being created.

When you provide an argument of 9.0 to the SetTimer() function, you tell the timer to allow
9 units of duration to elapse between changes. The argument of true tells the SetTimer()
function to audit each pulse the game engine provides.

Chapter 9 ■ Disco World and Other Items202

Values for Vectors
In the code associated with comment #2, you define a familiar function—the PostBeginPlay()
play function. Within this function, you call the vect() function, which defines a vector. A
vector is basically an arrow (ray) that has direction and magnitude. Direction is described
by the x, y, and z coordinates of the world space. Magnitude is described by the number of
UT space units an object moves in a given period of time.

The vect() function formats the data you provide it as a structure (an object of the Vector
data type) and then assigns this value to the Velocity property. The Velocity property is also
of a structure (Vector) data type. This property tells the object how many units and in what
direction to move each time the SetTimer() function allows the game engine to prompt it
to move. If you consider each impulse to be a second, then every 9 seconds the game allows
the object to move 90 units.

As Figure 9.15 illustrates, when you use a vector, you designate movement and direction,
so by combining x, y, and z values, you can move your object in any direction relative to
its position in the world space of the level.

Extending the KActor Class 203

Figure 9.15 The vect()
function allows you to
designate directions of
movement.

In the lines associated with comment #3, you multiply the current value of the Velocity
property by –1 to reverse the movement of the object. When you multiply the Vector data
type by –1, the multiplication operator is defined so that it acts on all three members of
the vector. Vector math stipulates that when you multiply a vector in this way, each of the
members of the vector is multiplied by the same number.

The Built-in Vector Data Type
The Vector structure is defined along with the built-in functions in the Object class of the
class hierarchy. You use the Vector data type to manipulate 2D and 3D objects. As with any
other data type, you can use the Vector data type to declare variables in local or class scope.

As the discussion in Chapter 8 revealed, when you define a structure, you define data mem-
bers for it, much as you do a class. In Chapter 8, you worked with a structure in some ways
analogous to a 2D vector. When you work with the Vector data type, you work with a 3D
data type. Here is how these two structures can be defined:

//3D vector – defined in this way as a built-in data type
struct Vector{
var float x;
var float y;
var float z;

};
//2D vector
struct Vector{

var float x;
var float y;

};

The data members of the built-in data type are defined as float values. As the example
shows, they are identified simply as x, y, and z.

In addition to the Vector type itself, the Object class provides definitions of overloaded oper-
ators. How to define overloaded operators lies beyond the scope of his book, but the pur-
pose of such activities is to make it so that you can use standard math (and other) operators
with objects of an abstract class in the same way that you use them with variables of the
primitive data types.

For the Vector class, you find such operators as *,*=,+,-,-=,/,/=, and ==. To consider the impli-
cations of overloaded operators, suppose you define two Vector objects in this way:

local Vector VectorA, VectorB;
// Assign values
VectorA = vect(2,3,4);
VectorB = vect(3,4,5);

As mentioned previously, the vect() function defines values to the Vector objects. How
this happens becomes evident momentarily. As it is, however, if you want to add these two

Chapter 9 ■ Disco World and Other Items204

Vector objects using standard operators, you must access the value assigned to each mem-
ber of each vector. The procedure might proceed as follows:

// Define a vector to hold the sum
local Vector VectorC;
VectorC.x = VectorA.x + VectorB.x;
VectorC.y = VectorA.y + VectorB.y;
VectorC.z = VectorA.z + VectorB.z;

This activity tends to be fairly cumbersome. If you have to add several such Vector objects,
you would soon refactor your code to crate a function. One recourse in this respect might
be a function you name AddVectors(). You might define it in this way:

function Vector AddVectors(Vector VectA, Vector VectB){
local Vector VectorC;
Vect.x = VectA.x + VectB.x;
Vect.y = VectA.y + VectB.y;
Vect.z = VectA.z + VectB.z;
Return VectC;

}

You could then proceed as follows:

VectorC = AddVectors(VectorA + VectorB);

UnrealScript defines a math operator that you use in place of the AddVectors() function.
You can then carry out the operation in this way using the overloaded addition operator:

VectorC = VectorA + VectorB;

You can also carry out operations of this type:

VectorC = 2 * VectorB;

When you use the multiplication operator in this way, you multiply each of the values
assigned to the members of the Vector object by 2.

In addition to overloaded operators, the Vector class provides built-in functions. Among
these you find the VRand() function, which generates a vector that contains random values.
The values the VRand() function supplies to the Vector object it generates all lie between 0
and 1, so the function works along the line of the FRand() function. It supplies three ran-
dom values rather than one. It also works along the same lines as the Vect() function, for
it processes all the values in the vector.

Extending the KActor Class 205

If you write your own vect() function, it unfolds along the following lines:

function Vector vect(float x, float y, float z){
Vector Vect;
Vect.x = x;
Vect.y = y;
Vect.z = z;
Return Vect;

}

Associating Your Static Mesh with a KActor Object
You can associate physics properties with a static mesh. To accomplish this, you work with
both the Actor Class Browser and the Static Mesh Browser. You toggle between them as you
work.

First select the DiscoBall listing in the Static Mesh Browser, as Figure 9.16 shows. If you
have closed out of your session since the last section, access this static mesh in the Ch09Disco
static mesh (*.usx) package. After you click on the DiscoBall listing, the name of the static
mesh resides in the UnrealEd buffer.

Chapter 9 ■ Disco World and Other Items206

Figure 9.16 Select
the DiscoBall static
mesh.

Then right-click on the DiscoBall class in the Actor Class Browser and select Default
Properties, as shown in Figure 9.17. The Default Properties dialog applies to all objects of
a class, not just specific instances. You want all objects of the DiscoBall class to be associ-
ated with a DiscoBall static mesh.

You see the Default Properties dialog for the DiscoBall object. Click the Display tray, as
shown in Figure 9.18. Find the StaticMesh property and click the adjacent field. Then click
the Use button. The name of the static mesh object stored in the buffer immediately fills
the field. The static mesh object is now associated with the DiscoBall object. Close the
Default Properties dialog.

Associating Your Static Mesh with a KActor Object 207

Figure 9.17 Select Default
Properties from the menu.

Figure 9.18 In the
Display tray find the
StaticMesh field.

Save your work. To accomplish this, select the DiscoBall class in the Actor Class Browser.
Confirm that you have the checkbox activated for the Ch09Disco package, and select File >
Save Selected Packages.

Replace the Old Mesh
If you have not done so already, access the Dynamic Light viewport. Delete the static mesh
you created as a placeholder. Open the Actor Class Browser. Access the DiscoBall class in
the KActor class tree and click to activate it. Then right-click in the Dynamic Light view-
port and select Add DiscoBall Here.

Figure 9.19 illustrates that the new object closely resembles the old. The differences are
concealed, but if you click the object, the Properties dialog informs you that it possesses
properties related to physics. The next section deals with these properties in greater detail.

Chapter 9 ■ Disco World and Other Items208

Figure 9.19 The
KActor object replaces
the static mesh.

Setting DiscoBall Object Properties
In the previous section, you employed the Default Properties dialog to associate the
DiscoBall static mesh with the DiscoBall class. This created an object that you can instanti-
ate at any time to create a dynamic ice ball.

Even if all DiscoBall objects are associated with the DiscoBall static mesh, each DiscoBall
object possesses its own set of properties. For the current scenario, it is necessary to set a
few of these.

To set the properties, refer to Figure 9.20 and right-click the DiscoBall object you have placed
in your level and open the Properties dialog. Open the KParams tray and access the
KarmaParams.myLevel tree item. Then under this access the KarmaParams branch. Find the
KStartEnabled property and set it to True.

Next move to the Movement tray. In this tray, find the Physics property. Select the
PHYS_Projectile item from the list. This enumerated value allows the object to move in a
path that is characterized by a straight line. Be sure to save your work.

Testing Your Object and Its Code
When you test your level, you might need to make some adjustments to eliminate errors.
One error you are likely to encounter occurs when the path you have set for your DiscoBall
objects takes the object outside the bounds of the cube that defines your level. This situa-
tion is illustrated in Figure 9.21. You probably will not have the chance to fully anticipate
this problem prior to running your level, so do not be surprised if the ball proceeds along
its trajectory, passes into the wall of the cube, and then freezes.

Exit play and access the 2D Side viewport. Press the Control key and the left mouse but-
ton to reposition the DiscoBall object so that it is fairly high in the cube. The timer action,
combined with the number of units you assign to the vect() arguments determines the dis-
tance the cube travels. If the DiscoBall object passes into the wall of the cube, then it freezes.
Run the level and adjust the position of the ball until it goes up and down on a continu-
ous basis.

Figure 9.22 illustrates the player Pawn object in the foreground. When the Vector z member
value is set to –90 and the x and y values are set to 0, then the ball proceeds upward to nearly
touch the ceiling. At that point, it descends until it nearly touches the floor.

Associating Your Static Mesh with a KActor Object 209

Figure 9.20 Set the
KStartEnabled and Physics
properties for the object.

Revising the DiscoBall Class
You can revise the DiscoBall class to turn it into something resembling a moving target for
the player Pawn object to practice shooting at. In this implementation of the class, you add
code that creates a square path for the ball. To revise the class, repeat the procedure that
you followed in the first part of this chapter to derive a class from the KActor class. Start by
saving the Ch09Disco00.ut2 file to Ch09Disco01.ut2.

Chapter 9 ■ Disco World and Other Items210

Figure 9.21 Testing
allows you to adjust the
starting position of the
DiscoBall object so it
remains free of the
boundaries of your cube.

Figure 9.22 The initial
version of the DiscoBall
class provides an object
that proceeds along a
vertical path extending
from ceiling to floor.

You can reuse the DiscoBall static mesh. You need only to add it to another class. To create
the new class, here is the procedure:

1. Open the Static Mesh Browser. Access the Ch09Disco package. Then access the Dis-
coBall static mesh. Click on it to store its name in the buffer.

2. Click the Actor Class Browser tab. Activate the Ch09Disco package. Access the KActor
class in the class tree. Right-click and select New. In the New Class dialog, type
Ch09Disco for the package name and DiscoBallB for the class name. Click OK.

3. After you see the signature line for the class in the code editor, click the Compile
Changed Scripts icon. Then in the Actor Class Browser select File > Save Selected
Packages.

4. Now locate the DiscoBallB class in the KActor class tree. Right-click to view the
Default Properties dialog. Click the Display tray and find the StaticMesh property.
Click to activate the StaticMesh field and click the Use button.

5. Now save your class once again.

6. In the Dynamic Light viewport, right-click and select Add DiscoBallB here. At this
point, you see the ball of ice, as before.

7. Save your level.

8. Click the DiscoBallB object and open the Properties window. Click the Karma tray.
Click the KParams tray. Click the KarmaParams tray. For the KStartEnabled property, select
True.

9. Click the Movement tray and set the Physics property to PHYS_Projectile. Close the
properties window and save your level.

These steps leave you with a DiscoBallB object in your level. But it helps if you position the
ice ball object and adjust the camera and other features of the level to make testing your
code easier. Refer to Figure 9.23 for approximate settings.

N o t e

Although it is difficult to tell from Figure 9.23, the size of the DiscoBallB object has been reduced.
As a reminder, to scale objects, you click the Actor Scaling icon, hold down the Control key, and press
the right or left mouse buttons.

Revising the DiscoBall Class 211

Programming the DiscoBallB Class
The objective in defining the DiscoBallB class involves making it so that the ice ball follows
a simple path described by changing vector coordinates. This path is a square, as shown in
Figure 9.24. The ball continues to travel in this pattern for as long as the level remains
active. The course followed begins on the x axis, moving in a positive direction. It then
turns and moves downward on the z axis. It then completes its course by returning on the
x axis in a negative direction and then climbing along the z axis to return to its starting
point.

Chapter 9 ■ Disco World and Other Items212

Figure 9.23 Positioning
the DiscoBallB object so
that it can complete its
course.

Figure 9.24 The
ball of ice travels in
a square.

The code for the DiscoBallB class is given in the DiscoBallB.txt code sample in the folder
for Chapter 9. Here is the code for the class:

//===
// DiscoBallB
// DiscoBallB.txt
//===
// #1
class DiscoBallB extends KActor placeable;
var private int Next;
var private float TimerD;
enum SIDES{

TOP,
LEFT,
BOTTOM,
RIGHT

};
const PATHS = 4;
var Vector Square[PATHS];

// #2
function PreBeginPlay() {

// Called once to set initial values
SetTimeD(9.0);
// From the KActor class
SetTimer(TimerD, true);
// Set for this class
Next = 0;

}

// #3
private function CreatePaths(){

Square[SIDES.TOP] = vect(40.0 ,0, 0);
Square[SIDES.LEFT] = vect(0, 0, -40.0);
Square[SIDES.BOTTOM] = vect(-40.0 ,0, 0);
Square[SIDES.RIGHT] = vect(0, 0, 40.0);

}

// Accessor for the array
private function Vector GetPath(SIDES path){
return Square[path];

}

Revising the DiscoBall Class 213

function PostBeginPlay() {
Velocity = vect(0 , 0, 0);
CreatePaths();

}

// #4
function Timer() {

ChangePath();
}

// #5
// Sets initial values for the time durations
// Call once to set the initial state of the class
private function SetTimeD(float dur){

if(dur < 0){
dur = 0;

}
TimerD = dur;

}

// #6
// Creates a "square" path for the object
private function ChangePath(){
if(Next == SIDES.TOP){

// positive x direction
Velocity = GetPath(SIDES.TOP);
Next++;

}else if(Next == SIDES.LEFT){
// negative z direction
Velocity = GetPath(SIDES.LEFT);
Next++;
}else if(Next == SIDES.BOTTOM){
// negative x direction
Velocity = GetPath(SIDES.BOTTOM);
Next++;

}else if (Next == SIDES.RIGHT){
// positive z direction
Velocity = GetPath(SIDES.RIGHT);
Next = SIDES.TOP;

}else{
Next = SIDES.TOP;

}
}

Chapter 9 ■ Disco World and Other Items214

Data Members
In the code that follows comment #1, you set up several data members to take care of the
actions of the DiscoBallB class. The Next data member allows you to control which side of
a square you want the ball to follow. You create the SIDES enumeration to furnish values
you can use in a number of ways. For one thing, you compare the values with the Next data
member to control the path of a moving object. You also use this enumeration to identify
Vector references that you store in the Square array. The TOP, LEFT, BOTTOM, and RIGHT mem-
bers of the SIDES enumeration provide you with values ranging from 0 to 3. As mentioned
in previous chapters, when you create an enumeration, you no longer have to worry about
specific numerical values. Instead, the names of the members of the enumeration serve in
place of confusing number values. In this respect, TOP allows you to select the top of a
square path. The other members designate the other three sides. You finish off the data
member declarations by creating a static array of the Vector type. This array contains the
vector values that guide your moving object. To define this array so that you can store all
the vector values in it needed to navigate a square route, you define the PATHS constant,
which is set at 4.

Initial Conditions
Inside the PreBeginPlay() function, in the lines trailing comment #2, you call the SetTimerD()
function. Such a function is known technically as a mutator function. A mutator function
sets the value of a data member. It is the obverse of an accessor function. The SetTimerD()
mutator function allows you to set values for the TimerD data member. Use of the prefix of
“Set” for mutator function is a common programming practice.

You defined the SetTimerD() function in the lines affiliated with comment #5. The function
performs a common task among mutator functions. It uses an if selection statement to
check for an acceptable argument for the TimerD attribute. If you supply a value less than
0, then the function resets your value to 0.

Continuing with the lines following comment #2, after the call to the SetTimerD() function,
you call the SetTimer() function that you inherit from the base class. As arguments for this
function, you employ the TimerD data member and the true keyword. After this function
call, you then initialize the Next data member to 0. This sets the first control value you use
in the ChangePath() method to access vector values to guide the ball in its movement along
the first side of the square.

The next section deals with the code accompanying comment #3. In the lines accompany-
ing comment #4, you define the Timer() function. The Timer() function remains the pri-
mary function of the class, for in this function you introduce the changes you want to make
in your KActor object with each pulse of the timer. In other words, you issue instructions

Revising the DiscoBall Class 215

that move the ball around the square. The Timer() function in this version of the class con-
trols only one object. You might easily change things to make it control many more. To
make it so that the Timer() function is not cluttered up with confusing code, you refactor
your code and create the ChangePath() function. This function is explained in the next sec-
tion, along with the CreatePaths() function.

Vector Use
As mentioned previously, you create the Square array to store values of the Vector type. By
storing Vector values in this array, you make them available for controlling how you move
the KActor object around the level. To set the values for this array and then to access the val-
ues to change the position of the KActor object, you implement two functions. These are
the CreatePaths() and ChangePath() functions.

As defined in the lines following comment #3, the CreatePaths() function employs the vect()
function four times in succession to assign Vector references defining the path the DiscoBall
object is to follow. To designate the indexes of the Square array for the assignments, you use
the members of the SIDES enumeration. Figure 9.24 illustrates the values you use to create
the vectors.

Immediately after the definition of the CreatePaths() function, you see the definition of the
GetPath() function. The GetPath() function is an accessor function for elements from the
Square array. Notice that the argument type for the function is defined using the SIDES data
type. Use of this data type helps ensure that legitimate values are used for the function.

The code for the ChangePath() function trails comment #6. This function consists of an
if…else if…else selection structure that makes repeated use of the calls to the GetPath() func-
tion. Each stanza of the control structure checks the value of Next against one of the enu-
merated values. The first time the ChangePath() function is called in the Timer() function,
the value of Next is 0, which corresponds to the SIDES.TOP value. The flow of the program
enters this block and sets the Velocity data member by retrieving the SIDES.TOP Vector val-
ues from the Square array. To retrieve the values, a call is made to the GetPath() function.
After assigning the value, the GetPath() function returns a value to the Velocity data mem-
ber; then you increment the value of Next by 1. Use of the enumerated values makes it pos-
sible to easily understand and control the flow of activities.

Each time the Timer() function is called, it in turn calls the ChangePath() function, and with
each call of the ChangePath() function, the value of Next is incremented and another set of
Vector values is retrieved using the GetPath() function. In this way, four sets of Vector val-
ues are retrieved from the Square array, and four different definitions of vectors are assigned
to the Velocity data member. The value of Next starts at SIDES.TOP. When it reaches
SIDES.RIGHT, it is reset to SIDES.TOP.

Chapter 9 ■ Disco World and Other Items216

Figure 9.25 illustrates the DiscoBallB object as it moves within the map. To shoot at the ball,
it is best to leave the player Pawn unseen.

Conclusion 217

Figure 9.25 The DiscoBallB
object moves in a square
pattern and offers the player
Pawn an opportunity to melt the
ice with a little target practice.

Conclusion
In this chapter, you have developed a class that allows you to put the physics of the game
engine to work to create an object that moves around your level. Working with such objects
allows you to apply structures and control statements in new ways. They also expose a num-
ber of opportunities for adding animated items to your levels that you can create on a
wholly customized basis. The process remains the same for all such objects. You use the
brushes to create graphical primitives. You convert these into static meshes. You then asso-
ciate the meshes with a class you derive from the KActor class. In the end, you can refine
your techniques for controlling the object by customizing the code you write for the class
or by setting the properties of the object to achieve built-in effects.

This page intentionally left blank

In this chapter you continue with the work you performed in the previous chapter. In
addition to working with the KActor class, you examine the use of the TriggerLight and
KHinge classes and explore how to develop another specialized version of the Trigger

class. In this instance, you develop a class that employs a foreach() control to iterate through
the Actor objects in your level to change their properties dynamically. You also explore a
few supplementary topics, such as how to work with sound. This chapter is the last in this
book. The projects you pursue represent a few among many that you might engage in using
the skills you have gained through this book. This and the other work you have performed
represent a beginning. At the same time, such work reveals that the Unreal Tournament
class hierarchy provides you with possibilities that extend in many directions and far
beyond the scope of this book. With the projects this book offers, it is hoped that you have
been able to make a good start on what turns out to be an endlessly satisfying exploration
of the Unreal Engine and the activities of programming and developing levels. Among the
topics in this chapter are the following:

■ Developing a TriggerLight class

■ Working with Light objects

■ How to iterate through objects of a given type

■ Creating the DiscoTriggerLight class

■ Creating messages from Groucho Marx

■ Rotating a KActor and adding sound

219

The KActor and
KHinge Classes

Chapter 10

Preparing for Work
As in previous chapters, begin your work by saving the previous work you have performed
to a new version. In this case, access the Ch09Disco01.ut2 map and save it as
Ch10Disco01.ut2. In this chapter, you do not create a new package. You use the Ch09Disco
package.

In this version of the map, perform some preliminary work at this point to make things a
little easier as you go. First, save your map to a new version, as mentioned above. Then,
with the new map open, replace the DiscoBallB object with the DiscoBall object. For review,
to accomplish this, open the Actor Class Browser. Access the Ch09Disco package. Navigate
to the KActor listing in the class list. Click the DiscoBall class to make it active.

Then, in the Dynamic Light viewport, click to activate the DiscoBallB object and delete it.
In its place, right-click and select Add DiscoBall Here. After you add the DiscoBall object,
access the KarmaParams tree in the Karma tray and set the KStartEnabled property to True.
Then in the Movement tray, set the Physics property to PHYS_Projectile. You can now test your
map. The ice ball moves up and down. Adjust its position as needed until it moves through
its complete cycle of motion without running into the floor or ceiling. If this happens, as
you know, the ball can freeze. (See Chapter 9 for review of the DiscoBall object. Also, see
Figure 10.1.)

Chapter 10 ■ The KActor and KHinge Classes220

Figure 10.1 Position the TriggerLight objects in the corners and the Light object in the middle beneath
the DiscoBall object.

TriggerLight Objects
The TriggerLight class is a specialized version of the Light class. One of the leading charac-
teristics of the TriggerLight class is that it provides you with a number of enumerated val-
ues under the InitialState property, as Figure 10.2 illustrates. The initial state of a
TriggerLight object characterizes how it behaves after you trigger it. In this case, you set the
light so that you can change its initial state so that in some cases when you trigger it, it is
turned off.

Preparing for Work 221

Figure 10.2 Set
the bInitiallyOn
property to True in
the TriggerLight
Properties dialog.

You already have at least one Light object in your level. Refer to Figure 10.1 as you go. Place
the existing Light object in your level directly beneath the DiscoBall object. Place the four
TriggerLight objects in the corners. To find the TriggerLight class, look in the Actor Class
Browser under the Light class.

As Figure 10.2 illustrates, for each of the lights, temporarily access the LightColor tray of
the Properties dialog and set the LightBrightness attribute for each light, center and cor-
ners, to 50. Additionally, access the TriggerLight tray and set the bInitiallyOn property
to True.

Adding a Jump Pad
In previous chapters, you have set up a jump pad to identify the position of the trigger. At
this point, add a jump pad for the Trigger object you develop later in the chapter. Position
the jump pad in a corner to make it convenient to find. Figure 10.3 shows you the Top
viewport with the jump pad positioned in the corner. See Chapter 4 for a discussion of
how to create a jump pad.

After creating the jump pad and setting the position and properties of the DiscoBall, Light,
and TriggerLight objects, test your level. As Figure 10.4 illustrates, the ice ball should move
from the top to the bottom of the level.

Chapter 10 ■ The KActor and KHinge Classes222

Figure 10.3 Position
a jump pad in the
corner.

Figure 10.4 The ice ball moves from the top to the bottom of the level, and five
lights are in place.

Another Version of the DiscoBall Class
Now that you have the basic level in place, you can modify its features in a deeper way. The
first change is to create a new version of the DiscoBall class. To accomplish this task, open
the Actor Class Browser and access the KActor and Ch09Disco package. Create a new class that
extends the KActor class. Call it DiscoBallC. Include it in the Ch09Disco package. Save the pack-
age and the class. Here is the code for the class.

//==
// DiscoBallC.
// See DiscoBallC.txt
//==
class DiscoBallC extends KActor placeable;
// #1
// Adjust the time to 6
function PreBeginPlay() {

// # 1
SetTimer(6.0, true);

}
function PostBeginPlay() {

// # 2
// Sets the initial velocity vector to point down
// The speed of movement is 60 units
// The arguments defined x y and z coordinates
Velocity = vect(0, 0, -60);

}
function Timer() {

// # 3
// Flip the velocity vector around
Velocity = (-1) * Velocity;

}

To create this class, you can copy the code from the DiscoBall class. (Control + A selects
code, and Control + V pastes it.) The only changes you make to the original, aside from
the comments, are the name of the class, the time setting for the StartTimer() function, and
the unit you assign to the z coordinate in the vect() function (–60).

After you make these changes, here is a review of how you associate the DiscoBall class with
the DiscoBall static mesh.

Preparing for Work 223

You can reuse the DiscoBall static mesh. You need only to add it to another class. To create
the new class, here is the procedure:

1. Open the Static Mesh Browser. Access the Ch09Disco package. Then access the Dis-
coBall static mesh. Click on it to store its name in the buffer.

2. Click the Actor Class tab. Activate DiscoBallC class.

3 Now locate the DiscoBallC class in the KActor class tree. Right-click to view the
Default Properties dialog. Click the Display tray and find the StaticMesh property.
Click to activate the StaticMesh field and click the Use button.

4. Now save your class once again.

5. Delete the old DiscoBall object and then, in the Dynamic Light viewport, right-click
and select Add DiscoBallC here. At this point, you see the ball of ice, as before. Save
your level.

6. Set properties. To accomplish this, click the DiscoBallC object to open the Properties
dialog. Click the KParams tray. Click the KarmaParams tray. For the KStartEnabled prop-
erty, select True. Then click the Movement tray and set the Physics property to
PHYS_Projectile. Close the properties window and save your level.

After you complete these steps, test your level with the DiscoBallC object. If necessary, adjust
the position of the Light, TriggerLight, and DiscoBall objects so that as the DiscoBall object
descends, it does not become completely black.

Setting the Light Colors and Styles
You have now placed and positioned five lights in your level. You now can add some color
to this lighting by the properties of the Light and TriggerLight objects. To set the proper-
ties, click the respective light properties. As Figure 10.5 illustrates, access the Events,
LightColor, and Lighting trays for each of the objects. Refer to Table 10.1 as you go.

With respect to the “Light” column in Table 10.1, these designations are purely arbitrary.
There is no “Light” property. The important point is to work around the perimeter of the
chamber from light to light and assign values to the five properties shown. Then go to the
center and assign values to the center light. Save your work when you finish.

The setting for the LightEffect property of the light in the center of your level is LE_Disco.
This setting creates an effect that resembles that of the mirrored balls typical of
discotheques.

As you set the light values, periodically click the Build Changed Lighting icon. Although
Figure 10.6 shows shades of gray, in the Dynamic Light viewport, you see the lights change
to accord with the colors you have assigned to them.

Chapter 10 ■ The KActor and KHinge Classes224

Preparing for Work 225

Figure 10.5
Add some color
to the lights.

Table 10.1 Settings for the Light and TriggerLight Objects

Light Brightness Hue Saturation LightEffect Tag

TriggerLight1 50 197 0 LE_None DiscoLight
TriggerLight2 50 83 0 LE_None DiscoLight
TriggerLight3 50 173 0 LE_None DiscoLight
TriggerLight4 50 254 0 LE_None DiscoLight
Center 100 43 0 LE_Disco Light

Figure 10.6 Lights change colors as you assign hues to them.

Testing Your Lights
As Figure 10.7 reveals, when you run the program, you see the lights change as the ball
moves. The ball displays red, green, purple and blue, and yellow lights, reflecting the hue
values you have set for the lights. Notice that the yellow light displays spots of yellow light,
simulating a discoteque ball.

Chapter 10 ■ The KActor and KHinge Classes226

Figure 10.7 The effect of setting the center light to Disco.

Iterating through Objects
When you program events for a level, you can use a control that allows you to pass through
all the objects you have placed on a level and identify them on a selective basis to change
them. The control that allows you to accomplish this work is the foreach() control. The
foreach() control works like the for and while repetition statements, but its control mech-
anism is not a control variable that you declare and set. Instead, as Figure 10.8 illustrates,
it uses a background array that stores the identities of all the Actor objects in your level.
When you call the foreach() control, it traverses or iterates through this array and allows
you to visit each object on your level.

If a control is designed to iterate through objects of a base class, such as the Actor class,
then among the objects it detects are all classes derived from the base class. As Figure 10.9
illustrates, as the foreach() control iterates through the different objects of the level, it can
access properties in those cases that are defined in the base class. In this way, the control
allows you to change those properties.

Iterating through Objects 227

Figure 10.8 The
foreach() control iterates
through objects of the
types you designate.

Figure 10.9 The Light
and TriggerLight classes
are derived from the Actor
class, so the foreach()
control detects them if you
program it to seek all
objects of the Actor type.

Defining the DiscoLightTrigger
To make use of the foreach() action, you define the DiscoLightTrigger class. This class incor-
porates the foreach() control to allow you to access all the Light and TriggerLight objects in
your level. As you access these objects, you can change their properties. Among other things,
you can turn the lights on and off.

To create the DiscoLightTrigger class, you specialize the Trigger class. Follow the usual rou-
tine to perform this task. Access the Trigger class in the Actor class hierarchy. In the New
Class dialog, enter DiscoLightTrigger as the class name and Ch09Disco as the package name.
Here is the code for the class.

//==
// DiscoLightTrigger.
// See DiscoLightTrigger.txt
//==
class DiscoLightTrigger extends Trigger placeable;
function Touch(Actor Other)
{

// #1
// Create a local variable for the TriggerLight class
local TriggerLight SomeTriggerLight;
// #2
if (ReTriggerDelay > 0)

{
if (Level.TimeSeconds - TriggerTime < ReTriggerDelay){

return;
}
TriggerTime = Level.TimeSeconds;

}
// # 3 Iterate through the Actors (TriggerLight objects)
foreach DynamicActors(class 'TriggerLight',

SomeTriggerLight, Event) {
// # 4
// Trigger this actor
SomeTriggerLight.Trigger(Other, Other.Instigator);

}// end foreach
// #5
if (RepeatTriggerTime > 0){

SetTimer(RepeatTriggerTime, false);
}

// Note: Do not call Super.Touch(Other) here
// This class handles the trigger event on its own.

}

Chapter 10 ■ The KActor and KHinge Classes228

When you specialize the Trigger class, your work centers on the Touch() function. At com-
ment #1, you create a local variable of the TriggerLight type, SomeTriggerLight. This variable
allows you to identify objects of the TriggerLight type in your level. You could just as eas-
ily declare an object of the Light or Actor type to serve in this role, but to make the process
of iteration more efficient, you designate a search object at the TriggerLight level.

At comment #2, you include a selection statement that prevents the trigger from being acti-
vated in an unwanted manner. The code first uses a selection statement to determine
whether the ReTriggerDelay value is greater than 0. In the test expression, you subtract the
number of system ticks allowed for the life of the trigger from the time at which the trig-
ger is activated. If the difference is less than the time allowed for the delay of the reset of
the trigger (ReTriggerDelay), then the function returns and no further actions are performed.
If the time is not less, then the value assigned to TimeSeconds is assigned to TriggerTime.

The result of this action is that you can then go to the code following comment #5. This
action prevents the SomeTriggerLight object from being initialized several times in succes-
sion, causing the lights to flash on and off before arriving at a steady on or off state.

At comment #3, you employ the foreach() control statement. In what amounts to the most
central action of the entire class, the statement calls the DynamicActors() function, which
takes three arguments. The first argument is the class that you want to discover in the
process of iteration. As mentioned previously, this could be either the Light or Actor class.
To make the process more efficient, you choose a level of class generality that accords with
the TriggerLight class. This is the TriggerLight class itself. If you were working with several
classes derived from the Trigger class, then you would use the Trigger class itself.

The next argument in the DynamicActors() function is the local variable defined above,
SomeTriggerLight. The DynamicActors() function momentarily copies the class object of the
type you have designated to this variable so that it can work with it. The third argument
identifies a property in the object that you access. This argument identifies the Event you
set in the Events tray of the TriggerLight and DiscoLightTrigger Properties dialog. You have
already set the Event property for the TriggerLight objects. You will shortly set this property
for the DiscoLightTrigger object.

For each type of object with the designated Event, the foreach() control initiates an action.
In this instance, in the lines associated with comment #4, you define the action. The action
constitutes calling the Trigger() function. The Trigger() function calls on the objects it com-
municates with to turn off or on.

Iterating through Objects 229

One More TriggerLight Property
You set one more property in addition to those named in Table 10.1 for the four
TriggerLight objects. This is the InitialState property in the Object tray. For each of the
TriggerLight objects, open the Properties dialog and set the InitialState property to the
TriggerToggle value, as Figure 10.10 illustrates. When you assign this value, the light issued
by each object toggles on or off each time it is visited by the foreach action.

Chapter 10 ■ The KActor and KHinge Classes230

Figure 10.10 Set
the InitialState
property to
TriggerToggle.

Add the DiscoLightTrigger Object
Now that you have attended to the definition of the TriggerLight class and the final con-
figuration of the TriggerLight objects, add a TriggerLight object to your level just over the
jump pad. To accomplish this, first access the Actor Class Browser and activate the
DiscoLightTrigger class in the Trigger tree, as shown in Figure 10.11. Then, in the Dynamic
Light viewport, position the cursor above the jump pad and right-click. Select Add
DiscoLightTrigger Here.

Figure 10.11 Select
the DiscoLightTrigger
object and place it
above the jump pad.

Figure 10.12 illustrates the trigger over the type of jump pad. As you can see, the situation
does not differ from what you have seen several times in previous exercises.

Iterating through Objects 231

Figure 10.12 Position
the DiscoLightTrigger
above the jump pad and
then configure its settings.

Settings for the DiscoLightTrigger Object
Given that you have placed a DiscoLightTrigger object above the jump pad, you can now
configure its properties. First, access the Events tray. Locate the Event property in the Events
tray and type DiscoLight, as illustrated in Figure 10.13. This is the Event value you have set
for all the DiscoLight objects (see Table 10.1). The two property names must match exactly
for the foreach control to detect their correspondence.

Figure 10.13 Set the
Event, RepeatTriggerTime,
and ReTriggerDelay
properties.

In addition to the Event property, in the Trigger tray of the DiscoLightTrigger Properties dia-
log set the RepeatTriggerTime property to 5 and the ReTriggerDelay property to 4. These set-
tings prolong the trigger event so that you can see the effect of the triggered action.

N o t e

The RepeatTriggerTime property controls the amount of time the trigger waits before it can be
triggered again. The ReTriggerDelay property controls the amount of time the trigger waits from
the time the actor touches it to the time it triggers an event. In this case, this time extends from the
moment the player Pawn object touches the trigger and the moment you see the lights turn on
or off.

Testing the New DiscoWorld
When you test run the level, it starts with the lights on, as Figure 10.14 illustrates.

Chapter 10 ■ The KActor and KHinge Classes232

Figure 10.14 The level opens with the lights on.

Move the player Pawn figure to the jump pad. At this point, the lights turn off. Now, each
time the player Pawn figure initiates a new action with the DiscoLightTrigger object, the lights
are toggled on or off. If you position the player Pawn object on the DiscoLightTrigger object,
the lights turn off or on every few seconds. Figure 10.15 shows you the level with the lights
off. The glow affiliated with the ice ball is the Light object, which is not affected by the tog-
gling action initiated by the DiscoLightTrigger object.

Adding a Message to the DiscoLightTrigger 233

Figure 10.15 The DiscoLightTrigger object turns the lights off.

Adding a Message to the DiscoLightTrigger
To increase the level of interactivity the map provides, you can modify the DiscoLightTrigger
class so that it issues a message. Toward this end, implement a second version of the
DiscoLightTrigger class. To accomplish this, first save the Ch10Disco01.ut2 map as
Ch10Disco02.ut2. Delete the DiscoLightTrigger object and replace it with the
DiscoLightTriggerB object after you implement the code and configure the object.

Continue working from the Ch09Disco package. To develop the class, follow the usual rou-
tine. In the Actor Class Browser, navigate to the Trigger listing and select New Class. In the

New Class dialog, type Ch09Disco as the package name and DiscoLightTriggerB as the class
name. After you save the shell of the new class, you can then copy in the code from the
DiscoLightTrigger class and add the few new lines required for a version that issues a mes-
sage. Here is the code for the new class. The lines you add are in bold.

//==
// DiscoLightTriggerB.
// See DiscoLightTriggerB.txt
//==
class DiscoLightTriggerB extends Trigger placeable;

var private bool Toggle;
function Touch(Actor Other)
{

local TriggerLight SomeTriggerLight;
// #1 access the base class Message data member
// Assign a value using a newly defined function
Message = GetMessage();
if (ReTriggerDelay > 0){

if (Level.TimeSeconds - TriggerTime < ReTriggerDelay){
return;

}
TriggerTime = Level.TimeSeconds;

}// end if

foreach DynamicActors(class 'TriggerLight', SomeTriggerLight, Event){
SomeTriggerLight.Trigger(Other, Other.Instigator);

}
// #2 Access the message value
if((Message != "") && (Other.Instigator != None)){

// Send a string message to the touching class object.
Other.Instigator.ClientMessage(Message);

}
if (RepeatTriggerTime > 0){

SetTimer(RepeatTriggerTime, false);
}

}//end Touch
// #3 Provide a message
private function string GetMessage(){

if(Toggle == False){
return "Change the lights!";

}
}

Chapter 10 ■ The KActor and KHinge Classes234

At comment #1 in the DiscoLightTriggerB, you make a call to the class member function
GetMessage(). This function is defined in association with comment #3. It tests for the value
of Toggle, which is an inherited class attribute. If this value is set to False, then the function
returns a line of text, Change the lights!

At comment #2, you attend to a few housekeeping chores associated with messages. To
accomplish this, you create an if selection statement that makes use of a compound
Boolean AND operator. This determines that the value of the Message data member is not
empty and the Message can be processed by an Instigator object. If this statement evaluates
to True, then you send a message.

Testing DiscoLightTriggerB
As Figure 10.16 reveals, when you activate the new version of the specialized Trigger class
object, the behavior of the lights is the same as before, but now you see a text message when
the player Pawn object activates the trigger.

Testing DiscoLightTriggerB 235

Figure 10.16 Implement the functionality to issue messages.

DiscoLightTriggerC
As an extra project, create a class called DiscoLightTriggerC. Use the Ch09Disco package. Save
the Ch10Disco02.ut2 level to a new version, Ch10Disco03.ut2. Derive the class from the
Trigger class, just as you did with the DiscoLightTrigger and DiscoLightTriggerB classes. This
time around, instead of deleting the first object, duplicate the jump pad and position the
duplicated jump pad so that it lies near the first one.

To implement this class, use the DiscoLightTriggerC.txt code sample. This class definition
allows you to bring forward some of the work you performed with arrays and that Rand()
function in previous chapters. In this instance, you create a class that issues messages ran-
domly taken from a collection of quotes by Groucho Marx. Figure 10.17 shows the level
with one of Groucho Marx’s lines.

As with the previous class, to configure the DiscoLightTriggerC object, locate the Event prop-
erty in the Events tray and type DiscoLight, as illustrated in Figure 10.14. This is the Event
value you have set for the DiscoLight objects (see Table 10.1). The two property names must
match exactly.

Chapter 10 ■ The KActor and KHinge Classes236

Figure 10.17 Groucho Marx adds levity to the level.

In addition to the Event property, set in the Trigger tray of the DiscoLightTriggerC Properties
dialog, set the RepeatTriggerTime property to 5 and the ReTriggerDelay property to 4. These
settings prolong the trigger event so that you can see the effect of the triggered action. Here
is the code for the DiscoLightTriggerC class. You can find it in the DiscoLightTriggerC.txt
file.

//==
// DiscoLightTriggerC.
// See DiscoLightTriggerC.txt
//==
class DiscoLightTriggerC extends Trigger placeable;
// #1
var private bool Toggle;
const QUOTES = 10;
var private string GrouchoSays[QUOTES];
// #2
function PostBeginPlay(){

SetQuotes();
}
function Touch(Actor Other)
{

local TriggerLight SomeTriggerLight;
Message = GetMessage();
if (ReTriggerDelay > 0){

if (Level.TimeSeconds - TriggerTime < ReTriggerDelay){
return;

}
TriggerTime = Level.TimeSeconds;

}// end if

foreach DynamicActors(class 'TriggerLight', SomeTriggerLight, Event){
SomeTriggerLight.Trigger(Other, Other.Instigator);

}
// Access the message value
if((Message != "") && (Other.Instigator != None)){

// Send a string message to the touching object.
Other.Instigator.ClientMessage(Message);

}
if (RepeatTriggerTime > 0){

SetTimer(RepeatTriggerTime, false);
}

}// end Touch

Testing DiscoLightTriggerB 237

// #3 Provide a message
private function string GetMessage(){

local string Quote;
if(Toggle == False){

Quote = GetQuote();
}else{

Quote = "";
}
return Quote;

}
// #4
private function string GetQuote(){

local int QuoteNumber;
local string WhatHeSays;
QuoteNumber = Rand(QUOTES);
if(QuoteNumber < QUOTES){

WhatHeSays = GrouchoSays[QuoteNumber];
}
return WhatHeSays;

}
// #5
private function SetQuotes(){

GrouchoSays[0] = "Either he's dead or my watch has stopped. ";
GrouchoSays[1] = "And I want to thank you for all the " $

"enjoyment you've taken out of it. ";
GrouchoSays[2] = "All people are born alike - " $

"except Republicans and Democrats. ";
GrouchoSays[3] = "I don't care to belong to a club that " $

"accepts people like me as members. ";
GrouchoSays[4] = "I must confess, I was born at a very early age. ";
GrouchoSays[5] = "I worked my way up from nothing "$

"to a state of extreme poverty. ";
GrouchoSays[6] = "Military intelligence is a contradiction in terms. ";
GrouchoSays[7] = "No man goes before his time - " $

"unless the boss leaves early. ";
GrouchoSays[8] = "The secret of life is honesty and fair dealing." $

" If you can fake that, you've got it made. ";
GrouchoSays[9] = "A hospital bed is a parked" $

" taxi with the meter running. ";
}

Chapter 10 ■ The KActor and KHinge Classes238

The code for this class involves changes that are more extensive than those for the previ-
ous class but all involve familiar activities. At comment #1, you add a constant, QUOTES, and
initialize it with 10. You then use the constant to create an array called GrouchoSays.

In the comments associated with comment #2, you override the PostBeginPlay() function
from the base class. Within this function you call the SetQuotes() function, which you define
in the lines trailing comment #5. The SetQuotes() function is private and takes no argument.
Its purpose is to allow you to assign 10 quotes from Groucho Marx to the GrouchoSays array.
There are much more elegant approaches to performing such operations, but this approach
keeps everything on the most simple level, so it is easy to debug. The lines assigned often
consist of two or more concatenated strings. This is to make it so that the code can be read-
ily displayed in this book and more easily read in the editor.

In the lines accompanying comment #3, you call the GetQuote() method. You assign the value
the function returns to a locally defined variable of the string type, Quote. You then return
Quote so that it can be assigned to the Message property, as in the previous version of the
class.

In the lines associated with comment #4, you define the GetQuote() function. To define the
function, you declare a local variable of the int type to record random numbers. You also
declare a local variable of the string type to process quotes from the GrouchoSays array. To
retrieve a quote, you call the Rand() function. You use the QUOTES constant, so the function
returns values extending from 0 to 9, which all lie safely in the boundaries of the GrouchoSays
array. However, just to make sure, you also implement a selection statement that checks
that the value generated by the Rand() function is always less than 10.

Adding a KHinge Object
Save Ch10Disco03.ut2 as Ch10Disco04.ut2 and again continue working from the CH09Disco
package. This time around, you add a KHinge object to your level. To add this object, you
are not required to write any new code. However, adding the object gives you a chance to
explore yet another class in the class hierarchy and to explore a few new properties.

This time around, start by opening the Static Mesh Browser. Select File > Open, and search
through the *.usx files until you find the Pipe_staticmeshes.usx package, as shown in Figure
10.18.

From the File menu of the Static Mesh Browser, select Open. Within the browser, you then
see the contents of the package. Set the Category field to General and select the pipegear
mesh, as shown in Figure 10.19.

Now move to the Dynamic Light viewport of your level. Right-click and select Add Karma
Actor. The pipegear object appears in your level. Position it against the floor or against one
of the walls, as shown in Figure 10.20. This figure shows you a side view of the map.

Adding a KHinge Object 239

Chapter 10 ■ The KActor and KHinge Classes240

Figure 10.18 Begin
by accessing a static
mesh package.

Figure 10.19
Select the pipegear
mesh.

Figure 10.20 Position
the pipegear mesh against
one of the walls.

When you add a static mesh as a Karma object, it can process information provided by the
physics engine. Karma in the Unreal Engine refers to physics, which relates to all aspects
of movement in a level. When you right-click and select Add Karma Actor, you add a sta-
tic mesh as a Karma object. Such an object can readily interact with the world.

To configure the Karma object, click on it to open its properties dialog. Find the Karma tray,
navigate through the KarmaParams tree to the KStartEnabled property. As shown in Figure
10.21, set this property to True.

Now click Build All and Play Map and test run the map. If you have positioned the KActor
object (pipegear) as shown in Figure 10.21, it falls to the floor and topples over. It then
slides across the floor and comes to rest against the opposing wall.

Adding a KHinge Object 241

Figure 10.21 Set
KStartEnabled to True.

Problems with Physics

If your Karma object does not fall to the floor or in some other fashion move when you first run your
level, the problem is likely to be the Display settings for your game. There are two approaches to
solving this problem.The first is to access the Settings dialog in your game.As shown in Figure 10.22,
set the Display settings to High. This provides the amount of detail to allow the physics engine to
operate correctly.

You can also set the Karma properties dialog for the Karma Actor object. To accomplish this, again
access the Karma tray and then navigate through the KarmaParams tree until you see the hHighDetail
property. Set it to False, as shown in Figure 10.23.

Chapter 10 ■ The KActor and KHinge Classes242

Figure 10.22 Set the
Display settings to High.

Figure 10.23 Set the
bHighDetailOnly property
to False.

Implementing Rotation
Given that your Karma Actor object is now in place, open the Actor Class Browser and nav-
igate to the KActor and then the KConstraint and KHinge classes, as shown in Figure 10.24. As
you might expect, a KHinge object is something that rotates. You can tie a KHinge object to a
KActor object so that the motion of the KActor object centers on the KHinge object. The result
is that the KActor object rotates around the hinge.

Implementing Rotation 243

Figure 10.24 Select
KHinge from the Actor
Class Browser.

After selecting the KHinge class in the Actor Class Browser, find a position in front of and
as close to the middle of the pipegear object as possible. Right-click and select Add KHinge
Here. The icon for KHinge appears as shown in Figure 10.25. Hold down the Control but-
ton and right-click and drag the mouse to rotate the arrow extending from the KHinge until
it points straight at the KActor object to create the center of rotation.

Figure 10.25 The red
arrow that appears with
the KHinge class shows
the line of rotation for
the hinge.

When you create an instance of the KHinge class, the hinge appears with a red arrow. The
arrow indicates the axis of rotation. If you were putting in a KHinge for a door, then the
arrow would point straight up or down. Set the properties for the KHinge as follows. Refer
to Figure 10.26:

■ Click the KHinge object and open its properties dialog. Find the KarmaConstraint tray.
Click the KConstraintActor1 property. A field appears, as shown in Figure 10.26. Click
the Use button. The name in the field changes, and you see a KActor identified.

■ Move down in the list of the KarmaConstraint tray and find the KHingeType property.
Set its value to HT_Motor.

■ Set KDesiredAngularVel to 65536. You use this figure because the game uses UI units
instead of radians or degrees. 65536 is one full rotation per unit time.

■ Set KMaxTorque to 100.

Chapter 10 ■ The KActor and KHinge Classes244

Figure 10.26 Set
the KHinge properties.

Now save, Build All, and run your level. Figure 10.27 illustrates the pipegear object on the
far wall. It spins as the ball goes up and down. If you use an object of the DiscoLightTriggerC
class in the level, you also see messages from Groucho. Welcome to the Discotheque!

N o t e

You can set the desired angular velocity to be negative to make it spin the other way. The KDe-
siredAngVel is the KarmaConstraint tray. To reverse the spin, set the value to –65536.

To duplicate the pipegear and KHinge objects, hold down the Control key and click to select both of
them. From the top UnrealEd menu, select Edit > Duplicate to make copies. You must copy both the
KActor (pipegear) object and the KHinge object as a pair. If you copy only the KHinge object, then the
system is confused and the spinning stops. Move this new pair to a position along the wall or ceil-
ing. The effects of nine or so gears, four spinning one way, five the other, adds an interesting effect.

Finale
One further action you can take to close out your work both in this chapter and in this
book involves adding your own music track. To accomplish this, from the top UnrealEd
menu, select View > Level Properties. Click to open the Audio tray. In the Audio tray, you see
a Song property, as shown in Figure 10.28. Type the name of a song in this field. The songs
available to you are in the Songs folder under UT2004. Song files have an *.oog extension.
When you type the name, leave off the file extension.

Finale 245

Figure 10.27 The pipegear object rotates while the ice ball goes up and down.

Figure 10.28 Add
your own song to
the level.

Conclusion
This chapter brings to an end this venture involving programming in the Unreal Level
Editor. If you have worked through the examples in this book from the position of a com-
plete beginner, then you deserve much praise for your effort. Chances are, along the line,
some of the code proved difficult to implement.

It is also the case that the features of Unreal Tournament are so numerous that it is impos-
sible to address all of them in a book of this size. As mentioned in Chapter 1, the Internet
resources remain one of your best bets for continuing your development activities after
you establish a grasp of the essentials. We hope this book has provided you with such a
grasp. If you feel you have only made a beginning, then that is a good sign.

In this chapter, you explored development of several different classes from the class hier-
archy. The classes you have worked with have constituted only a few of the many that com-
pose the Unreal Tournament class hierarchy. Full exploration of all of the classes amounts
to a task that is likely to involve you in years of programming.

This book is written as Epic is preparing to release a new version of Unreal Tournament.
You need not fear that the skills you developed during this exploration of the 2004 version
of the game engine will for this reason be useless. The fact is that in past releases, most of
the classes in the hierarchy have remained similar to or the same as their previous versions.
When changes do occur, as you might expect, they often make the classes easier to use and
provide more pronounced features.

It is hoped that this book has offered you a place to start on your own path to both work-
ing with and showing others how to work with Unreal Tournament programming. As men-
tioned in Chapter 1, the richness of the culture can be tremendously facilitated if those
who participate in it do so in the spirit of cooperation and sharing.

If it is the case that your involvement with Unreal Tournament programming extends
beyond the classroom or your efforts as a hobbyist, then there is no reason to doubt that
your steps might lead to a game development organization. Many companies have endorsed
the Unreal Engine. Many games have been and will be built with it. The prospects are excit-
ing. Best of luck in all you do!

Chapter 10 ■ The KActor and KHinge Classes246

When you create a package using the Actor Class Browser, UnrealEd creates a
*.u file and places it in the Unreal Tournament System directory. Figure A.1
illustrates the Ch04Area.u file, which you created during your work session

for Chapter 4.

When you create a package using UnrealEd, the only visible sign of your work is the *.u
file that appears in the System directory. You see no source code other than what you see
when you use the code editor to view the script for the class.

247

Notes on
Exporting

Appendix A

Figure A.1 The
System directory
hosts *.u files,
among others.

Exporting Files
You can save the code you write in the code editor in UnrealEd by exporting it. Generally,
you should periodically export your work so that you have backup versions of it. Exporting
your code at the end of the day and then copying the exported files to an archive directory
provides you with a way to recover if a package is corrupted. The following two sections
show you two ways to export your code.

Export Starting from the Icon in Your Level
One approach involves exporting the code from an instance of a given class you have placed
in your level. To use the StandUpTrigger object as a starting point (see Chapter 4), you might
begin in the Dynamic Lighting viewport. Right-click the Trigger icon. Then in the pop-up
menu, select Edit Script. See Figure A.2.

Appendix A ■ Notes on Exporting248

Figure A.2 Right-click
and select Edit Script.

The code editor then opens, as Figure A.3 illustrates. From the main menu of the code edi-
tor, select File > Export Changed Scripts. Whether you have actually changed the script
does not matter. Any open script is a “changed” script. The file is saved to a folder in the
UT2004 directory named after the package.

For understanding the confirmation dialog, see the section titled “Confirming Exportation.”

Exporting Files 249

Figure A.3
Export the active
script.

Export from the Actor Class Browser
As you are working in the Actor Class Browser, navigate to the class you want to export. As
Figure A.4 illustrates, right-click on the name of the class. From the pop-up menu, select
Edit Script. This opens the code editor. From the menu of the code editor (as shown in
Figure A.3), select File > Export Changed Scripts.

For understanding the confirmation dialog, see the section titled “Confirming Exportation.”

Confirm the Exportation of the File
After you select Export Changed Script from the top menu of the code editor, you see the
Export Classes to .uc Files dialog, as Figure A.5 shows. The crux of the matter is that you
are creating an editable text (*.uc) file. This file is saved to a directory named after the
package that contains your file. Click Yes. After the dialog vanishes, click to close the code
editor.

Appendix A ■ Notes on Exporting250

Figure A.4 Select
the file and then use
File > Save Changed
Scripts to export the
file.

Figure A.5 You save
the text of your script and
can recompile it later.

Viewing Exported Files
When you export your code, UnrealEd creates a package directory for you and places your
code file in it. The package directory for your StandUpTrigger file is named after the Ch04Area
package, because this is the package that contains the StandUpTrigger class. To see the name
of the package UnrealEd creates, view the title bar of the code editor (shown in Figure A.3).

To find the package directory, start on your default (C:) drive. If you have installed Unreal
Tournament using the default installation settings, you find the UT2004 directory at the
root level, as shown in Figure A.6. If you have exported a file from the Ch04Area package in
UnrealEd, then it’s in your Ch04Area directory in the UT2004 directory.

Viewing Exported Files 251

Figure A.6 When you
export a script, UnrealEd
generates a package
directory with a Classes
subdirectory.

When UnrealEd exports your script, it creates a package directory with the name you des-
ignate for the package in the Actor Class Browser. The package directory contains another
directory named Classes. In the Classes directory, as shown in Figure A.6, you find all the
files you have exported from a given package. In this case, you see only one file, because
only one class has been exported. This is the source code file for your StandUpTrigger class.
Such files have a *.uc file. You can open them with Notepad.

N o t e

You can open the file with any text editor. One popular editor is ConTEXT. You can find out many
ways to use this editor in UnrealScript Game Programming All in One (Thomson, 2006).

When you open the *.uc file using Notepad, you see the same code you have seen in the
code editor, as Figure A.7 shows.

Appendix A ■ Notes on Exporting252

Figure A.7 Notepad
displays your *.uc files
after you have
exported it.

Exporting Packages
Another approach to working with your code involves exporting a complete package of
classes. Exporting entire packages is often the best policy, because it is almost always the
case that dependencies exist between classes in a given package. In the Ch08Area package,
for example, the CommandGoalTrigger class depends on the Story and CodePlay classes.

To export the classes in a package, start in the Actor Class tab. If the packages field of the
tab is not visible, select View > Show Packages.

N o t e

It is not necessary for any given level to be open in UnrealEd. Also, if you do not see the package
you want to export, then select File > Open Package. Select the package from the directory.

In the bottom field of the Actor Class tab, scroll to the package you want to export. In Figure
A.8, you see the Ch08Area package. To select this package, click the adjacent check box.

When you select the package, you select all the classes it contains. Now proceed to the top
menu. Select File > Export Changed Scripts. True, as Figure A.9 reveals, you do not see a
reference to packages, only to “changed scripts,” but the package is implied. The classes are
in the package.

Viewing Exported Files 253

Figure A.8 Check
the box next to the
package you want to
archive.

Figure A.9 Exporting
the package will export
all files within the
package.

As Figure A.10 illustrates, you then seen a dialog that asks you to confirm that you are
exporting classes to *.uc files. The dialog is confusing because it seems to be saying that
you are doing something that disrupts your ability to continue to use the package. As it is,
you are just copying the code to files outside the *.u file used by the Unreal Level Editor.
Click Yes.

Appendix A ■ Notes on Exporting254

Figure A.10 Click
Yes to confirm you
want to copy the code
to *.uc files.

Figure A.11
After you export
your classes, you
see them in a
Classes
subdirectory.

Viewing Exported Package Files
To find the files that constitute the exported package, navigate to the UT2004 directory.
Assuming you have exported one of your packages, find a folder UnrealEd has created. The
folder has the same name as the package you exported.

Click to open this folder. You see a Classes folder within the package folder. Click to open
the Classes folder. As Figure A.11 illustrates, you now see the *.uc files UnrealEd has cre-
ated for your classes.

UnrealEd does not delete directories, so if you have exported a class from a given package
before, the same package directory is used. The code files are overwritten.

Recovery
You compile a *.uc file using class files, but this activity lies beyond the scope of this appen-
dix. See UnrealScript Game Programming All in One (Thomson, 2006) for precise, step-by-
step procedures for compiling packages. After you have compiled a package, you select File
> Open package from the top menu of the Actor Class Browser.

In this setting, if you export your files, you can copy them to a backup or archive directory
and have them on hand if things go wrong. As shown in several chapters, if you open the
files in Notepad and set the font to 12 pt Courier, you can use the Alt + C and Alt + V keys
to copy the text into the code editor of the Unreal Level Editor.

Viewing Exported Package Files 255

This page intentionally left blank

Files Used for Unreal Tournament
In this appendix, you see a few types of files mentioned repeatedly. Table B.1 provides a
summary of these files. Refer to it in subsequent sections to orient yourself.

N o t e

Before you perform any of the actions in this appendix, close Unreal Tournament and the Unreal
Level Editor.

Figure B.1 shows you the directories in which you find the files of the different types. The
UT2004 directory contains all others. In the Maps directory, you find the files you create
for your levels. These are of the *.ut2 type. In the StaticMeshes directory, you find package
files for your static meshes. You create static meshes in Chapters 9 and 10. The files used
to configure Unreal Tournament (*.ini) and to store the compiled versions of your class
files (*.u) you find in the System directory. The *.uc files are the source code files. These
reside in directories you can create when you export class files (discussed in Appendix A).
You can also create such directories manually.

257

Notes on
Restoring Packages

Appendix B

Appendix B ■ Notes on Restoring Packages258

Table B.1 Important File Types

File Type Description

*.ini Files of this type contain a list of all the packages included when you build Unreal
Tournament. The UT2004.ini file is located in the System directory. It is essential to be
very careful when you work with this file. Make a backup version of the file called
UT2004.ini_backup before you perform the tasks named in this appendix.

*.uc Files of this type contain the text of UnrealScript programs. The discussion in Appendix A
covers how to create such files. This appendix (B) shows you how to use them to create
a new package file. Such files reside in the Classes directory in the package directory.
Such directories do not exist unless you create them. You can create them manually
through Windows or using the Unreal Level Editor (as discussed in Appendix A).

*.usx This is a static mesh file. This file resides in the Static Meshes directory. For the final
chapters of the book, you encounter errors if this file is not present or has been
corrupted. You create the files from scratch, but if you use material from the CD, you
must place the static mesh files in the Static Mesh directory before you can build your
level.

*.ut2 This is the level file. It contains most of what you use for your basic level. However, if
you have customized UnrealScript files (class files) or assets, such as dynamic meshes,
then you must also have these at hand in the right directories before you can open the
*.ut2 file.

*.u Files of this type are your package files. In this appendix (B) you explore how to create
this file using the ucc make command. Using this command, you compile the *.uc files
for your package to generate a *.u file. You can then manually load the *.u file into the
Unreal Level Editor by using the File menu option of the Actor Classes tab of the
browser.

Figure B.1 While the
System directory contains
several types of files, other
directories are characterized
by the single type of file they
contain.

Restoring Corrupted Packages
Here is a general view of the tasks you perform to restore a package. Subsequent sections
of this appendix discuss these tasks in detail:

■ Set up a package directory that includes a Classes subdirectory. Place the backup
UnrealScript files in this directory. See “Placing Source Files in a Package Direc-
tory” for specific directions.

■ Delete the corrupted package (*.u) file. This file resides in the System folder. See
“Deleting a Corrupted *.u File” for specific instructions.

■ Add or Verify the EditPackages line in the initialization file. See “Verify the Edit-
Packages Line.”

■ In the Unreal Level Editor, open the newly generated package. See “Accessing the
New Package.”

Placing Source Files in a Package Directory
Let’s assume that you have a package called Ch04Area and that somehow it has become cor-
rupted. If it is corrupted, you can tell if you try to open the level that uses the package.
Among other things, the level does not open and you get a message that says that a given
class is missing or that the package is corrupted. The level (*.ut2 files) is still fine. It is just
that the package containing the classes you have developed has been corrupted.

You have on hand a set of files that contain the code for the classes in the Ch04Area package
either from having saved the package as shown in Appendix A or as provided on the CD.
These files are in the Classes directory under the Ch04Area directory. They are all *.uc files.

You use the *.uc files to generate a new package file. To accomplish this, you must compile
them using a compiler program that Unreal Tournament provides.

To begin this work, you first create a package directory under the UT2004 directory. If you
are restoring the Ch04Area package, then you name this directory Ch04Area. If a directory
by this name already exists, you can rename the previously existing directory or move it to
an archive directory. Within the package directory, you create a directory named Classes,
as shown in Figure B.2. In the Classes subdirectory you place your code (*.uc) files.

Placing Source Files in a Package Directory 259

Renaming a Corrupted *.u File
When you create a package in the Unreal Level Editor, you create a *.u file. This file con-
tains the primary code for all of your classes. If this file becomes outdated or in some other
way corrupted, then you can no longer open the level associated with it.

To make is so that you can again use your level, you must restore the *.u file. To restore the
*.u file, you first find the corrupted version of the file in the UT2004 system directory. To
find this file, navigate to the C: drive of your computer and find the UT2004 directory.
(You find the UT2004 directory on the C: drive if you have followed the standard installa-
tion routine for Unreal Tournament.)

Figure B.3 illustrates the positions of the UT2004/System after a standard installation. At
the top of the list is the Ch04Area.u file. To find a specific *.u file, scroll through the files
in the directory. If you do not find the *.u file you are looking for, it is probably the case
that it has been deleted. If it has been deleted, you can replace it, as the next section shows.

Appendix B ■ Notes on Restoring Packages260

Figure B.2 Set up
directories for your
package and the
classes it contains.

Figure B.3 The
UT2004\System directory
contains the *.u files.

If the corrupted version of the package file is in the System folder, then start by renaming
it with an “_old” extension. Suppose, for example, that you have a corrupted file with this
name:

Ch04Area.u

To rename it in Windows, click on it to activate the change option and then modify its
name so that it appears this way:

Ch04Area.u_old

Windows might issue a warning that you are changing the file type, but this is okay. At this
point, you can create a new *.u file. To accomplish this task, it is necessary to work in a
DOS window using a command prompt. The next section details this activity.

N o t e

Rather than deleting files, rename them. Avoid deleting files. As long as you have not deleted your
original files if you fail to perform a restoration procedure correctly, you can always go back to where
you started. As a general policy, until you know exactly what you are doing, it is best to rename and
place files you want out of the way in an archive directory.

Generating a New Package (*.u) File
You cannot successfully complete the actions discussed in this section unless you have com-
pleted the action detailed in the previous two sections. If you have not completed those
actions, do so now. At this point, it is assumed that you have completed the following tasks:

■ Placed copies of all the class files you want to restore in a package directory for the
package you want to re-create. For instructions on how to accomplish this task, see
the section titled “Restoring Corrupted Packages.”

■ In the System directory of Unreal Tournament, rename the *.u file for the cor-
rupted package. In this book, this is likely to be the HelloWorld.u, Ch04Area.u,
Ch08Area.u, or Ch09Area.u. As an example, you rename Ch04Area.u as
Ch04Area.u_old.

Now you are ready to regenerate a new *.u file. The next section describes this activity in
detail. It is a bit involved, so follow the discussion closely. Try to review it in its entirety
before you start work. The main steps are as follows:

Verify the existence of the EditPackages line in the UT2004.ini file. See the section titled
“Verify the EditPackages Line.”

Use the appropriate command to generate a new package. See the section titled “Compiling
a New Package File.”

Generating a New Package (*.u) File 261

Verify the EditPackages Line
Before you can regenerate the package (*.u) file, check to see that the Unreal Level Editor
knows that the package exists. To accomplish this, navigate to the System directory and
find the UT2004.ini file, as shown in Figure B.4.

Appendix B ■ Notes on Restoring Packages262

Figure B.4 Find the
UT2004.ini file in the
UT2004\System directory.

Figure B.5 Verify
or add an
EditPackages line.

In Windows, right click on the UT2004.ini file and select Notepad to open the file. Then
select File > Find and search for EditPackages, as shown in Figure B.5.

EditPackages is a special term that Unreal Tournament uses to identify the packages
it includes when you run it. In Figure B.5, you see that a line is included for the Ch04Area
package.

If you are working with the Ch04Area package, then the line you are looking for looks like
this:

EditPackages=ChO4Area

Scroll up and down to find the line in the UT2004.ini file. If you see the line for your pack-
age already included, verify that the spelling is correct for your package. Then close the file.

If you do not see an EditPackages file for your package, then you must add one.

To add an EditPackages line, first position the cursor at the end of the last EditPackages
line and press Enter. This action positions your cursor on the next line.

Now that you have a blank line, verify that the cursor is at the start of the blank line, and
type the EditPackages statement for your package. If you are working with the Ch04Area
package, here is what you type:

EditPackages=ChO4Area

Figure B.6 shows you how this line appears after you have typed it. The cursor resides in
the position after the last character typed.

After you add the EditPackages line, carefully check it to confirm that every character in
the line is correct. Then select File > Save from the top Notepad menu and close the
Ut2004.ini file. Now you are ready to recompile your package.

Generating a New Package (*.u) File 263

Figure B.6 An
EditPackages directive
exists for each package
included in the build.

Compiling a New Package File
To complete this bit of work, you must first complete all of the work detailed in the previ-
ous sections of this appendix. Review these sections to confirm that you have completed
the preliminary work. This work involves these steps:

■ You have set up a Classes directory for your package and have included in this
directory all the class files you want to include in your package.

■ You have renamed the old package file in the System directory if such a file exists.

■ You have verified that the UT2004.ini file contains an EditPackages line for the
package you want to generate.

Now you can regenerate a new package (*.u) file for your classes. Toward this end, go to
your desktop in Windows and open a DOS window. To open a DOS window, from the Start
button of Windows, select Run. In the Run field, type cmd, as shown in Figure B.7.

Appendix B ■ Notes on Restoring Packages264

Figure B.7 Select
Start > Run and type
cmd to open a DOS
window.

N o t e

The screenshots of the DOS window in the figures that follow feature a white background. You can
set the background to white and the text to blank if you use the Properties options of the DOS win-
dow. These are accessed through the control button in the upper left of the window. For more infor-
mation about configuring windows, see John Flynt, UnrealScript Game Programming All in One
(Thomson, 2006).

Figure B.8 illustrates the DOS window. After you have invoked the DOS window, type a
series of CD commands to change directories to activate the Unreal Tournament System
directory. Figure B.8 illustrates these commands. The first is CD ../.. which moves the direc-
tory location up two directory levels to the C: (or root) directory. Your system is likely to
show a similar opening window. You type this command alone to move up a directory:

CD ..

To move down a directory, you type CD and then the name of the directory, as shown in
the commands, to move down from the root directory to the UT2004 and System direc-
tories in Figure B.8.

Compiling a New Package File 265

Figure B.8 Issue CD commands to navigate to the UT2004\System directory.

Now that you have activated the System directory, you can issue a command that regener-
ates your package. The specific details how this happens are beyond the scope of this book.
For more information, see the book named previously.

You need to issue only one command. Here is the command you issue.

ucc make

Type it as shown in Figure B.9 and press Enter. Note that you can type the command in
either lowercase or uppercase letters.

Figure B.9 The UCC
MAKE command invokes
the Unreal Tournament
compiler.

After you issue the UCC MAKE command, the compiler for Unreal Tournament begins to exe-
cute. The classes you have placed in the Ch04Area directory (for example) are accessed. A
new *.u file for the Ch04Area package is generated.

The process of regenerating files for your program takes a short while, usually less than a
minute. The time depends on the speed of your computer. While the compiler is running,
you see a series of messages displayed in the DOS window. In this context, the only one of
interest is the one that reports your package has been generated. Figure B.10 illustrates what
you see if you regenerated the Ch04Area package. In this case, you see Ch04Area - Release,
showing that the compiler has accessed your package. Other lines show the successful com-
pilation of other packages you might have created (such as Ch08Area in Figure B.10).

Appendix B ■ Notes on Restoring Packages266

Figure B.10 You see a report for your newly compiled package.

To verify the existence of the new package (*.u) file in the System directory, issue this com-
mand:

DIR *.u

Figure B.11 illustrates the command and the report that follows. The DIR command causes
the system to display the contents of a directory. After the report is issued, scroll up the
DOS window to find the *.u file.

Figure B.11 The new *.u file appears in the System directory.

Accessing the New Package
After you regenerate a package, open the Unreal Level Editor and access the Actor Class
Browser.

Do not yet open the level in which you encountered difficulties. Use the blank level that
appears by default.

From the View menu, select Show Packages. Then select File > Open Package, and select
your newly generated *.u file (Ch04Area.u, for example) from the list, as shown in Figure
B.12. Even if you can already see the package in the list, this action allows you to verify the
existence of the package and refreshes the settings in the Unreal Level Editor.

At this point, you can again try to access the level in which you have encountered difficul-
ties. The next section provides points you might use for troubleshooting.

Troubleshooting 267

Figure B.12 If your new
package is not visible in the
Package list, select File >
Open Package and select it
from the System directory.

Troubleshooting
Errors usually appear to you in two ways. One way is less nerve-wracking than the other.
The gentler path involves encountering an error dialog that tells you that a given object is
corrupt. The less gentle path involves trying to start the Unreal Level Editor or Unreal
Tournament and encountering a “general protection” fault. You cannot even start the edi-
tor or the game. The next few sections discuss things you might try if you encounter errors.

Do This First
First, do not always trust an error message if you have opened the Unreal Level Editor and
everything has been working well. You might get a dialog that tells you that a level or pack-
age file is corrupted. It could be that this is not so. It might be that a parameter in the Unreal
Level Editor has not been updated. To test this case, save and close your level and then the
Unreal Level Editor and then reopen them. The problem might go away. What happens in
reality is that many values are refreshed in the Editor, and this is what solves the problem.

Bad Objects
When you place an object in a level, it can become “bad” if you do not have a compiled
package that supports it. This can happen in a number of ways. One way is that the object
in your level is no longer “synchronized” with the compiled class. This basically means
that the object you are trying to use represents an outdated version of the class in a given
package.

A level with a bad object often opens. Only when you try to run or build it do you encounter
an error message or a general protection fault. If you see an error dialog that warns you
about the missing object, stop there.

The dialog might tell you that a class is not synchronized or that a class is corrupted. The
message is very complex and convoluted, but if you read it closely, you can find a reference
to a missing or defective class.

Do not try to run (play) your level. Do not try to rebuild your level. Instead, first find the
objects in the level of the type identified as defective, delete them, and replace them from
your new package.

After you have replaced the objects, save your level. Close it and reopen it. With luck, the
error dialog no longer appears, and you can proceed with builds.

Unreal Tournament or the Level Editor Refuse to Open
When Unreal Tournament or the Level Editor refuses to open, you usually see a general
protection fault. This usually happens if you have inadvertently deleted a package (*.u) file.

As mentioned above, the UT2004.ini file lists all the *.u files the System directory is sup-
posed to contain. If one of these has been deleted, then Unreal Tournament refuses to open.

Assume, for instance, that you have been working with the Ch04Area.u file. You close a ses-
sion and then a day later try to go back to work. You encounter a general protection fault
when you try to open either Unreal Tournament or the Unreal Level Editor.

The error message usually identifies the missing package. If not, you can reason through
your actions to discover where you might have accidentally deleted a package.

Appendix B ■ Notes on Restoring Packages268

You can check for a missing package if you navigate to the System directory in a DOS ses-
sion and issue the Dir *.u command, as shown above. Or you can just go into Windows
Explorer and check the file list. If you have deleted a package, it does not appear in the file
list for the System directory.

Even then, this might not be the problem. You need to perform an additional action to
make certain that the missing package file is the real problem. It is a problem only if Unreal
Tournament is really trying to access it. As mentioned previously, you find out what files
Unreal Tournament is trying to access by inspecting lines in the EditPackages section of
the UT2004.ini file.

To proceed, use Notepad to open the UT2004.ini file. This file resides, as you know, in the
UT2004\System directory. Use the Find utility to search for the EditPackages lines.

If the line that calls to a missing package is there, then you have found the problem. To
eliminate the problem, comment out the line that calls the nonexistent package.

To comment out the line, type a semicolon at the beginning of the line. Here is an exam-
ple of how you might comment out the EditPackages line for the Ch04Area package:

EditPackages=UTV2004c
EditPackages=UTV2004s
;EditPackages=Ch04Area
EditPackages=Ch08Area
CutdownPackages=Core

After commenting out the line, save and close the UT2004.ini file.

Then in the System directory, issue the UCC MAKE command. This rebuilds Unreal
Tournament. At this point, you are likely to be able to again open the game and the Editor.

For instructions on how to re-create the package you have accidentally deleted and include
it back in the game, go to the beginning of this appendix and follow the instructions. The
procedure is exactly the same, except, obviously, you have no old or corrupted package
(*.u) file to delete.

Missing Asset Files
A sound, texture, mesh, or other file is known as an asset file. For the projects you work
with in this book, you usually work with just *.uc and *.ut2 files, but in Chapters 8, 9, and
10, this situation changes. For these projects, your work extends to using static mesh files.
You generate these files from your projects for this book, but if you use the levels on the
CD without working through the steps needed to construct them, then you must place the
static mesh files (*.usx) in the Static Meshes directory.

Troubleshooting 269

This page intentionally left blank

271

INDEX

&& (AND) operator, 145
++ (increment) operator, 126
<> (angle braces), 189
= (assignment) operators
{} (curly braces), 87
|| (OR) operator, 146
~(tildes), 65
2D viewports, navigating, 21
3D viewports, navigating, 22–25

A
abstract classes, functions, 134–136
abstract data types, 87. See also data types
abstract keyword, 135
accessing

code from packages, 55–57
maps, 26
static mesh packages, 240
variables, 84–87

access modifiers, 84
actions

mouse, 6
properties, 35

Actor class, 37, 44
deriving, 173–180

Actor Class Browser, 41–48, 206
files, exporting from, 249–250

AddedNumbers variable, 109

Add() function, 103
adding

classes, 50–51
color to lights, 225
elements to dynamic arrays, 189
features to code, 82–83
geometry, 72
jump pads, 71–73, 100–101, 221–222
Light objects, 66
maps, 51–53, 159
messages in DiscoLightTrigger class, 233–235
objects

DiscoLightTrigger class, 230–231
KHinge class, 239–242

packages, 50–51, 160
PlayerStart objects, 63
tetrahedral brush objects, 195–200
textures to decorations, 71–73
triggers to levels, 76–78
work areas, 60

AddNumbersTrigger class, 113–120
Add Player Start Here, selecting, 64
aligning text, 123. See also positioning
AlleriArchitecture texture group, 68–70
AND (&&) operator, 145
angle braces (<>), 189
applying

structures, 180–187
textures, 68–69

architecture, objects, 5
archiving packages, 253
Array class, 190
arrays, 125, 153–155, 157

declaring, 190
dynamic, 187

assembling structures, 183
assets, engines, 17
assigning hues, 225
assignment operators (=), 50
associating

identifiers, 90
static mesh, KActor class, 206–210

AverageTwoNumbers() function, 108

B
backward, moving, 23
base classes, 49
behavior, controlling, 102
bHighDetailOnly property, 242
binary files, 6
bloated classes, 158
blocks

control, 128
for, 168
functions, 87
if statements, 140

Boolean expressions, compounded, 145–146
brightness, increasing, 67
browsers, 6

Actor Class Browser, 41–48, 206, 249–250
Static Mesh Browser, 206
Texture Browser, 16, 67, 195

brushes, adding tetrahedron, 195–200
BSP mode, 53
Build Changed Lighting icon, 69
Build Geometry icon, 69
building. See also formatting

chambers, 62–65
geometry, 8
lights, 8

Build Lighting icon, 67
built-in functions, 110–111
built-in vector data types, 204–206
Busby, Jason, 12

C
calling

cascaded function calls, 117
functions, 108–109

cameras, positioning, 62
capitalization, 88–89
cascaded function calls, 117
case statements, 143–145
casting

classes, 140–142
data types, 92–93

categories, viewing textures, 69
Caviness, Christopher, 11
ceilings

surface textures, 67
viewing, 23–24

central processing unit. See CPU
chambers

building, 62–65
surface textures, 67

ChangePaths() function, 216–217
characteristics of program flow, 127
Ch04Area package, 75
CheckForCompleteCode() function, 185
checking syntax, 46–47
ciphers, finding letters in, 184–185
classes

abstract, functions, 134–136
Actor, 37, 44, 173–180
Actor Class Browser, 41–48
adding, 50–51
AddNumbersTrigger, 113–120
Array, 190
base, 49
bloated, 158
casting, 140–142
CodePlay, implementing, 179–180
CommandCodeTrigger, 160–170

detecting messages, 171–173
revision, 170–171
testing, 169–170

CommandMessageTrigger, 148, 155
CommandTouchTrigger, 132–139, 146–147
CommandTrigger, 82

concatenation, 94
scope, 85

Index272

by composition, 111–113
creating, 40
defining, 48–50
deriving, 42–45, 112, 173–180
diagrams, 115
DiscoBall, 201–202, 223–224

configuring object properties, 208–209
revising, 210–217
testing, 209–210
vectors, 216–217

DiscoBallB
data members, 215
programming, 212–214

DiscoLightTrigger
defining, 227–229
messages, 233–235
objects, 230–231

DiscoLightTriggerB, testing, 235–239
DiscoLightTriggerC, 236–239
Emitter, 38
HelloWorldTrigger, 45, 51–53
implementing, 48–50
instances

creating, 116–117
deleting, 121

KActor, 193–195, 200–206, 219
KHinge, 219, 239–242
Light, 35, 62–65
Math, functions, 103–106
objects, 38–39
Pawn, 141
peer, 112
PlayerStart, objects, 62–65
properties, 37. See also properties
saving, 50–51
scope, 86
signature lines, 47–48
StandUpTrigger, 75
state, 102
StaticMeshActor, 36
Story, 187–191
Trigger, 39, 41, 44

adding jump pads, 221–222
properties, 54

TriggerLight, objects, 221
variables, 87

class keyword, 48
clicking joystick icons, 25
closing maps, 29–30
code, 2. See also programming

AddNumbersTrigger class, 113–120
CommandCodeTrigger class, 165
comments, 45
compiling, 54–55, 96–97
DiscoBall class, 201–202, 209–210
editing, 55–58
features, adding, 82–83
packages, accessing, 55–57
program flow, 126–131
starting points for writing, 32–35
structures, 182–183, 185
testing, 54–55, 96–97, 101

CODELENGTH data member, 165
CodePlay class, implementing, 179–180
colors, configuring lighting, 224–225
CommandCodeTrigger class, 160–170

messages, detecting, 171–173
revision, 170–171
testing, 169–170

command line, work areas, 65
CommandMessageTrigger class, 148

testing, 155
CommandTouchTrigger class, 132–139

testing, 146–147
CommandTrigger class, 82

concatenation, 94
scope, 85

comments, code, 45
communities, development, 10
Compile Changed Scripts icon, 83
Compile icon, 74
compiling, 49. See also building

code, 54–55, 96–97
jousting level, 26
maps, 25–27
syntax, 46–47

composition
classes by, 111–113
functions, 99
work areas, 99–101

composition frames, 15

Index 273

compounded Boolean expressions, 145–146
concatenation operators, 94
Configuration window, 28
configuring

bHighDetailOnly property, 242
classes, 40
DiscoBall object properties, 208–209
flags, 131
functions, 49
light colors and styles, 224–225
lighting, 67
packages, 42–45
properties, 96
sheets, 72
values, 119
work areas, 59–70

Confirmation dialog box, 28
confirming exportation of files, 250
constants, 97–98

NUMOFMESSAGES, 153
controls, 125, 157

blocks, 128
expressions, 128
keywords, 128
repetition statements, 167
statement syntax, 128–130

conventions, naming, 88–89
coordinate views, 7
copying

jump pads, 81
scripts, 4

CPU (central processing unit), 126
craftsmanship, 9
CreatePaths() functions, 216–217
CubeBuilder dialog box, 60
cubes

navigating, 62
viewing, 61

cubic work areas, 59. See also work areas
curly braces ({}), 87

D
data members, 134

CommandCodeTrigger class, 164–165
DiscoBallB class, 215
refactoring, 150

data types, 79, 87–93
built-in vector, 204–206
casting, 92–93
promotion, 92–93
variables, accessing, 84–87
work areas, 80–82

declaring
arrays, 153, 190
identifiers, 90–91

decorations, adding textures, 71–73
DefaultMessage variable, 86
default program flow, 126
Default Properties dialog box, 206
default values, 119
defining

classes, 48–50
constants, 97–98
DiscoLightTrigger class, 227–229
functions, 105
Story class, 189
triggers, 74–75
values, 87. See also data types
variables, 85

deleting instances, 121
dependencies, Actor class, 178–179
deriving

classes, 42–45, 112, 173–180
properties, 37–38

detecting
messages, CommandCodeTrigger class,

171–173
state, 139–147
touching, 138–139

DetectLetter() function, 184
development

approaches to, 73
communities, 10
levels, 3
overview of, 2

diagrams
classes, 115
packages, 116

dialog boxes
Confirmation, 28
CubeBuilder, 60
Default Properties, 206

Index274

Light Properties, 35
New Class, 44, 74
Open, 18, 32
Open Texture Package, 67
Properties, 83
Save As, 99
TetrahedronBuilder, 196

directories, Maps, 18
DiscoBallB class

data members, 215
programming, 212–214

DiscoBall class, 201–202, 223–224
object properties, configuring, 208–209
revising, 210–217
testing, 209–210
vectors, 216–217

DiscoLightTriggerB class, testing, 235–239
DiscoLightTriggerC class, 236–239
DiscoLightTrigger class

defining, 227–229
messages, adding, 233–235
objects, adding, 230–231

Disco World. See also KActor class
overview of, 193–195
testing, 232–233
tetrahedral brush objects, 195–200

distinct properties, 38–39
DivideAbyB() function, 108
duplicating jump pads, 81, 100–101
DynamicActors() function, 229
dynamic arrays, 187

E
editing

code, 55–58
CommandCodeTrigger class, 170–171
DiscoBall class, 210–217

editors, Unreal Level Editor. See Unreal Level
Editor

Edit Script
exporting from, 248–249
options, 57

Eenwyk, Joel Van, 12

elements
accessing, 84
arrays, 153–155
interfaces, 7

embedded repetition statements, 128
embedded selection statements, 128
Emitter class, 38
engines, assets, 17
enhancing levels, 71–78
enumerations, TriggerType property, 142–143
error-checking code, 46–47
errors, names, 90
Esc key, 27
exiting UnrealEd, 29–30, 65. See also closing
exporting, 247

files, 248–250
confirming, 250
viewing, 251–255

packages, 252–254
expressions

compounded Boolean, 145–146
control, 128

extending KActor class, 200–206
eye-level, positioning cameras, 63

F
features, adding to code, 82–83
fields, modifying values, 60
files

binary, 6
exporting, 248–250

confirming, 250
viewing, 251–255

recovery, 255
StandUpTrigger, 251

flags, 130–131
floating viewports, 33
float variable, 92
floors

surface textures, 67
viewing, 23–24

flow, 126–131
repetition, 127
selection, 127
sequential, 126

Index 275

for blocks, 168
formatting

functions, 49
instances, classes, 116–117
packages, 42–45
random messages, 147–155
sheets, 72
tetrahedral brush objects, 195–200
text, aligning, 123
work areas, 59–70

forward, moving, 23
frames, composition, 15
functions

abstract classes, 134–136
access modifiers, 85
Add(), 103
AverageTwoNumbers(), 108
blocks, 87
built-in, 110–111
calling, 108–109
cascaded calls, 117
ChangePaths(), 216–217
CheckForCompleteCode(), 185
composition, 99
CreatePaths(), 216–217
creating, 49
defining, 105
DetectLetter(), 184
DivideAbyB(), 108
DynamicActors(), 229
fundamentals, 102–109
GenerateRandom(), 164
GetCodeForSearch(), 164
GetLineOfStory(), 190
IsRelevant(), 139
IsThisValid(), 131
keywords, 87, 134
Left(), 183
local variables, 107–108
MakeMessage(), 152
MakeStory(), 190
Math class, 103–106
member

overriding, 136
refactoring, 151

Multiply(), 103
mutator, 215
NextPlay(), 87
overriding, 134–135
PostBeginPlay(), 49, 83, 137
PreBeginPlay(), 215
Rand(), 118
RandRange(), 164
ReportCodeFound(), 167
Reset(), 185
ReturnAnInt(), 109
return values, 131
Right(), 183
RunCodeFinder(), 183
scope, 86
SetTimer(), 202
SetTimerD(), 215
TellStory(), 190
Timer(), 215
Touch(), 137
Trigger(), 229
work areas, 99–101

G
GenerateRandom() function, 164
generating random numbers, 118–119, 121, 169
geometry

adding, 72
building, 8
levels, modifying, 63

GetCodeForSearch() function, 164
GetLineOfStory() function, 190
graphical user interfaces. See GUIs
groups, static mesh, 198
GUIs (graphical user interfaces), 3

H
Hello World, programming, 39–41
HelloWorldTrigger class, 45

maps, adding, 51–53
hues, assigning, 225
Hungarian notation, 89

Index276

I
icons, 6

Build Changed Lighting, 69
Build Geometry, 69
Build Lighting, 67
Compile, 74
Compile Changed Scripts, 83
exporting from, 248–249
joysticks, 25
Lightbulb, 66
moving, 52
PlayerStart, repositioning, 63
Sheet, 71

identifiers, 88
constants, 97–98
declaring, 90–91

if…else statements, 140, 152–153
if statements, 139, 152–153
implementing

classes, 48–50
CodePlay class, 179–180
CommandTouchTrigger class, 132–133
rotation, 243–245

increasing brightness, 67
increment (++) operator, 126
individual letters, 183–184
inheritance, 112
initializing variables, 91–92
InitialState property, 230
instances

classes, creating, 116–117
deleting, 121
multiple, 120–123

instantiating objects, 123
interfaces. See also browsers

base classes, 49
elements, 7
GUIs, 3

IsRelevant() function, 139
IsThisValid() function, 131
iterating objects, 226–232

J
jousting level, compiling, 26
joystick icons, 25
jump pads

adding, 71–73, 100–101
duplicating, 81
resizing, 122
Trigger class, adding, 221–222

JumpPad texture, 73

K
KActor class, 193–195, 219

extending, 200–206
static mesh, associating, 206–210
tetrahedral brush objects, creating, 195–200

keys
Esc, 27
navigating, 7
tildes (~), 65

keywords
abstract, 135
case statements, 143–145
class, 48
control, 128
function, 87, 134
local, 90
None, 145
placeable, 83
private, 84
public, 84
spawn, 117, 122
Super, 49, 135, 137–138

KHinge class, 219
objects, adding, 239–242

L
labels, game features, 14
languages, 2, 112. See also programming; UML
Left() function, 183
letters

ciphers, finding in, 184–185
individual, visiting, 183–184

Index 277

levels
development, 3
enhancing, 71–78
exporting from, 248–249
geometry, modifying, 63
jousting, compiling, 26
object architecture, 5
opening, 17–18
testing, 64
triggers, adding, 76–78
Unreal Level Editor. See Unreal Level Editor
versions, 73–74

Lightbulb icon, 66
Light class, 35

objects, 62–65
LightEffect property, 224
Light Properties dialog box, 35
lights

building, 8
colors and styles, configuring, 224–225
properties, configuring, 67
testing, 226
work areas, 66–67

lines, signatures, 47–48
local keyword, 90
local variables, functions, 107–108
logic, 125
log messages, 25

M
MakeMessage() function, 152
MakeStory() function, 190
maps

accessing, 26
adding, 51–53, 159
closing, 29–30
compiling, 25–27
Disco World, 194–195
playing, 8–9
renaming, 40
running, 8–9, 25–27
saving, 8, 40
selecting, 18–25

Maps directory, 18

Mastering Unreal Technology: The Art of Level
Design, 12

Math class functions, 103–106
member functions

overriding, 136
refactoring, 151

members
data, 134

CommandCodeTrigger class, 164–165
refactoring, 150

variables, 35
menus, View, 16
mesh

pipegear, positioning, 240
replacing, 208
static, 198–199. See also static mesh

messages
CommandCodeTrigger class, 166, 171–173
DiscoLightTrigger class, adding, 233–235
logs, 25
random, 147–155, 187

modes
BSP, 53
Texture Usage, 34

modifying
levels, geometry, 63
programs, 5
resolution, 27–28
values, 60
windows, 32

mouse actions, 6
moving

forward and backward, 23
icons, 52
jump pads, 81
scripts, 4

multiple instances, 120–123
Multiply() function, 103
mutator functions, 215

N
names

conventions, 88–89
maps, 40
static mesh, 198
syntax, 89–90

Index278

navigating
cubes, 62
2D viewports, 21
3D viewports, 22–25
keys, 7

New Class dialog box, 44, 74
NextPlay() function, 87
None keyword, 145
numbers

random, generating, 118–119, 121
random, refactoring, 169

NUMOFMESSAGES constant, 153
NUMOFTRIES date member, 165

O
objects

architecture, 5
casting, 140–142
classes, 38–39
CommandCodeTrigger, testing, 169–170
CommandMessageTrigger, testing, 155
CommandTouchTrigger, testing, 146–147
DiscoBall

configuring, 208–209
testing, 209–210

DiscoLightTrigger class, adding, 230–231
Emitter class, 38
instantiating, 123
iterating, 226–232
KHinge class, adding, 239–242
Light class, 62–65
maps, adding, 51–53
PlayerStart class, 62–65
preliminary, replacing, 199–200
static mesh, saving as, 198–199
tetrahedral brush, formatting, 195–200
TriggerLight

positioning, 220
overview, 221

Open dialog box, 18, 32
opening

levels, 17–18
Texture Browser, 195

Open Texture Package dialog box, 67

operators, 93–97
AND (&&), 145
assignment (=), 50
concatenation, 94
increment (++), 126
OR (||), 146
strings, 94–95

optimization, 119
OR (||) operator, 146
overriding

functions, 134–135
member functions, 136

P
packages, 40–41

adding, 160
archiving, 253
Ch04Area, 75
code, accessing, 55–57
creating, 42–45
diagrams, 116
exporting, 252–254
saving, 50–51
static mesh, 198, 240

panels, 6. See also viewports
Parrish, Zack, 12
particle emitter, 38
pasting scripts, 4
Pawn class, 141
peer classes, 112
PI constant, 97–98
pipegear mesh, positioning, 240
placeable keyword, 83
PlayerStart class objects, 62–65
playing, maps, 8–9
positioning

cameras, 62
jump pads, 222
pipegear mesh, 240
TriggerLight objects, 220

PostBeginPlay() function, 49, 83, 137
practices, software engineering, 9–10
PreBeginPlay() function, 215
preliminary objects, replacing, 199–200
primitive data types, 87. See also data types

Index 279

private keyword, 84
program flow, 126–131
programming

AddNumbersTrigger class, 113–120
code, starting points for writing, 32–35
DiscoBallB class, 212–214
Hello World, 39–41
overview of, 2–4, 31
properties, 35–39

programs, modifying, 5
promotion, data types, 92–93
properties, 35–39

bHighDetailOnly, 242
configuring, 96
deriving, 37–38
DiscoBall, configuring, 208–209
distinct, 38–39
InitialState, 230
LightEffect, 224
lighting, configuring, 67
SphereExtrapolation, 196
Trigger class, 54
TriggerType, 142–143

Properties dialog box, 83
public keyword, 84

Q
quitting. See closing; exiting

R
Rand() function, 118
random messages, 187

creating, 147–155
random numbers

generating, 118–119, 121
refactoring, 169

RandRange() function, 164
recovering files, 255
refactoring, 147–155

random numbers, 169
renaming maps, 40
repetition flow, 127
repetition statements, 167

replacing
mesh, 208
preliminary objects, 199–200

ReportCodeFound() function, 167
reports

clues found, 166–168
error, 46–47

repositioning. See also moving; positioning
cameras, 62
PlayerStart icons, 63

Reset() function, 185
resizing

jump pads, 122
viewports, 33

resolution, modifying, 27–28
resources, 11–12
ReturnAnInt() function, 109
return values, 131
revising. See editing
Right() function, 183
rotating

implementing, 243–245
views, 23–24

RunCodeFinder() function, 183
running maps, 8–9, 25–27

S
Save As dialog box, 99
saving

classes, 50–51
maps, 8, 40
objects as static mesh, 198–199

scope, 84–87
local functions, 107–108

scripts, copying/pasting, 4
selecting

maps, 18–25
pipegear mesh, 240
textures, 73, 196

selection flow, 127
selection statements

MakeMessage() function, 152
state, detecting, 139–147

sequential flow, 126

Index280

sessions
starting, 14–17
testing, 65

SetTimerD() function, 215
SetTimer() function, 202
Sheet icon, 71
sheets, creating, 72
signatures, lines, 47–48
single selection statements, 139
sizing sheets, 71
software engineering, 9
sorting properties, 35
spawn keyword, 117, 122
SphereExtrapolation property, 196
StandUpTrigger class, 75
StandUpTrigger file, 251
starting

points, works areas, 62
sessions, 14–17

state
classes, 102
detecting, 139–147

statements
case, 143–145
controls

repetition, 167
syntax, 128–130

embedded repetition, 128
embedded selection, 128
if, 139, 152–153
if…else, 140, 152–153
selection

detecting state, 139–147
MakeMessage() function, 152

single selection, 139
switch, 144

static mesh
KActor class, associating, 206–210
objects, saving as, 198–199
packages, accessing, 240

StaticMeshActor class, 36
Static Mesh Browser, 206
status, 183–184
Story class, 187–191
strings, operators, 94–95

structures, 157
applying, 180–187
assembling, 183
code, 182–183, 185
switch, 143

styles, configuring lights, 224–225
subclasses, casting objects, 140–142
Super keyword, 49, 135, 137–138
surface textures, 67–70
switch statements, 144
switch structures, 143
syntax, 2. See also programming

compiling, 46–47
control statements, 128–130
naming, 89–90

System Directory, 247

T
tabs, 123
TellStory() function, 190
testing

code, 54–55, 96–97, 101
CommandCodeTrigger class, 169–170
CommandMessageTrigger class, 155
CommandTouchTrigger class, 146–147
DiscoBall class, 209–210
DiscoLightTriggerB class, 235–239
DiscoWorld, 232–233
levels, 64
lighting, 226

tetrahedral brush objects, creating, 195–200
TetrahedronBuilder dialog box, 196
text, aligning, 123
Texture Browser, 67

opening, 195
textures

applying, 68–69
categories, viewing, 69
decoration, adding, 71–73
selecting, 73, 196
surfaces, work areas, 67–70

Textures browser, 16
Texture Usage mode, 34
themes, textures, 68
tildes (~), 65

Index 281

Timer() function, 215
toggles, creating, 131
Top viewport, 197
Touch() function, 137
touching, detecting, 138–139
trays, sorting properties, 35
Trigger class, 39, 41, 44

jump pads, adding, 221–222
properties, 54

Trigger() function, 229
TriggerLight class

objects, 221
positioning, 220

triggers
CommandTouchTrigger class, 132–139
defining, 74–75
levels, adding, 76–78

TriggerType property, 142–143
turning left and right, 22–23
types

of data. See data types
of flow, 127

U
UDN (Unreal Developer Network), 11
UML (Unified Modeling Language), 10, 112

CommandMessageTrigger class, 150
views, 115

Unified Modeling Language. See UML
Unreal Developer Network. See UDN
UnrealEd, 4, 13–14

exiting, 29–30, 65
levels, opening, 17–18
maps, selecting, 18–25
resolution, modifying, 27–28
sessions, starting, 14–17
work areas, creating, 59–70

Unreal Level Editor. See UnrealEd
UnrealScript Game Programming All in One,

11–12

V
values

configuring, 119
constants, 97–98
default, 119
defining, 87. See also data types
modifying, 60
properties, 35
return, 131
TriggerType property, 142–143
for vectors, 203

variables
accessing, 84–87
AddedNumbers, 109
arrays, 153–155
class, 87
declaring, 90–91
DefaultMessage, 86
defining, 85
as flags, 131
float, 92
initializing, 91–92
local, functions, 107–108
members, 35

vectors
built-in data types, 204–206
DiscoBall class, 216–217
values for, 203

versions, levels, 73–74
viewing

categories, textures, 69
ceilings, 23–24
cubes, 61
files, exporting, 251–255

View menu, 16
viewports, 6, 15

2D, navigating, 21
3D, navigating, 22–25
floating, 33
levels, opening, 17–18
resizing, 33
Top, 197

Index282

views
coordinate, 7
rotating, 23–24
UML, 115

visibility, 84

W
walls, surface textures, 67
Wiki Unreal, 11
windows, 6. See also viewports

Configuration, 28
modifying, 32

work areas
adding, 60
cameras, positioning, 62
command line, 65
creating, 59–70
data types, 80–82
functions, 99–101
lighting, 66–67
pads, adding, 100–101
surface textures, 67–70

writing
code, starting points for, 32–35
syntax. See syntax

Index 283

Call 1.800.648.7450 to order
Order online at www.courseptr.com

Programming tips and art techniques
for the game developers of tomorrow.

Check out advanced books and the full Game Development series at

WWW.COURSEPTR.COM/GAMEDEV

Beginning Game
Level Design

ISBN: 1-59200-434-2
$29.99

Beginning
Math Concepts for
Game Developers
ISBN: 1-59863-290-6

$29.99

Beginning Java 5
Game Programming

ISBN: 1-59863-150-0
$29.99

Beginning
Game Programming

ISBN: 1-59200-585-3
$29.99

THE BEGINNING SERIES
FROM COURSE PTR

WWW.COURSEPTR.COM/GAMEDEV
www.courseptr.com

Call 1.888.270.9300 to order
Order online at www.courseptr.com

Game Art for Teens
ISBN: 1-59200-307-9 ■ $29.99

Blogging for Teens
ISBN: 1-59200-476-8 ■ $19.99

Digital Music Making for Teens
ISBN: 1-59200-508-X ■ $24.99

Game Programming for Teens,
Second Edition

ISBN: 1-59200-834-8 ■ $29.99

Digital Filmmaking for Teens
ISBN: 1-59200-603-5 ■ $24.99

Microsoft Visual Basic
Game Programming for Teens

ISBN: 1-59200-587-X ■ $29.99

Game Design for Teens
ISBN: 1-59200-496-2 ■ $29.99

Web Design for Teens
ISBN: 1-59200-607-8 ■ $19.99

Let it Out!

You’ve Got a Great Imagination…

www.courseptr.com

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and conditions. If,
upon reading the following license agreement and notice of limited warranty, you cannot agree to the
terms and conditions set forth, return the unused book with unopened disc to the place where you
purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc. You
are licensed to copy the software onto a single computer for use by a single user and to a backup
disc. You may not reproduce, make copies, or distribute copies or rent or lease the software in whole
or in part, except with written permission of the copyright holder(s). You may transfer the enclosed
disc only together with this license, and only if you destroy all other copies of the software and the
transferee agrees to the terms of the license. You may not decompile, reverse assemble, or reverse
engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Thomson Course Technology PTR to be free of physical defects in
materials and workmanship for a period of sixty (60) days from end user’s purchase of the book/disc
combination. During the sixty-day term of the limited warranty, Thomson Course Technology PTR will
provide a replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY
OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL THOMSON COURSE
TECHNOLOGY PTR OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING
LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF
THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFT-
WARE, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY
ARISE, EVEN IF THOMSON COURSE TECHNOLOGY PTR AND/OR THE AUTHOR HAS PREVI-
OUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
THOMSON COURSE TECHNOLOGY PTR AND THE AUTHOR SPECIFICALLY DISCLAIM ANY
AND ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF
MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM
ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR LIM-
ITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MIGHT
NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to choice of
law principles. The United Convention of Contracts for the International Sale of Goods is specifically
disclaimed. This Agreement constitutes the entire agreement between you and Thomson Course
Technology PTR regarding use of the software.

	Contents
	Introduction
	Chapter 1 Getting Started
	Development Focus
	Programming
	The Unreal Level Editor
	Practices
	Resources
	Conclusion

	Chapter 2 The Basics of UnrealEd
	Unreal Level Editor
	A Starter Session with the Level Editor
	Opening a Level for Your Viewports
	Select a Map
	Manipulating 2D Viewports
	Manipulating the 3D Viewport

	Building and Running
	Adjusting Resolution
	Closing a Map and Exiting the Editor
	Conclusion

	Chapter 3 Basic Programming Activities
	Starting Points for Writing Code
	Properties
	Deriving Properties
	Class Objects and Distinct Properties

	Programming Hello World
	Classes, Packages, and Renaming Your Map
	Trigger Generalities

	The Actor Class Browser
	Deriving a Class and Creating a Package
	Comments for Code
	Compiling or Checking Your Syntax
	Signature Lines

	Defining a Class
	Saving and Adding Your Class and Package
	Placing a HelloWorldTrigger Object in Your Map
	Trigger Property Settings
	Compiling and Testing Your Code
	Editing Your Code
	Accessing Code from the Package
	Editing Starting with the Icon

	Conclusion

	Chapter 4 Developing Your Own Level
	Creating a Working Area
	Position, Lights, and Starting Point
	Camera Preliminaries
	Surface Textures

	Enhancing Your Level
	Adding a Pad and Decoration Texture
	Working with Versions of a Level
	Defining a Trigger
	Adding the StandUpTrigger to Your Level

	Conclusion

	Chapter 5 Data Types
	Another Version of the Working Area
	Revisiting the Code
	Variables and Accessing Them
	Scope
	Scope Concerns

	Data Types
	Conventions for Naming
	Naming Practices and Syntax
	Declaration
	Initialization
	Casting and Promotion

	Operations
	String Operators
	Compiling and Testing

	Constants
	Conclusion

	Chapter 6 Functions and Composition
	Another Version of the Working Area
	Adding Another Pad

	Function Fundamentals
	The Math Class and Its Functions
	Math Class Functions
	Local Function Scope
	Calling Functions within a Function

	Built-in Functions
	Classes by Composition
	Coding the AddNumbersTrigger Class
	Creating an Instance of a Class
	Calling a Function by Using a Class Object
	Generating Random Numbers
	Optimization and Default Values
	Setting Defaults

	Multiple Instances
	Conclusion

	Chapter 7 Controls, Logic, and Arrays
	Program Flow
	Sequential Flow
	Selection and Repetition Flow
	The Syntax of Control Statements
	Flags
	Return Values’ Control Values

	The CommandTouchTrigger Class
	Implementing the CommandTouchTrigger Class
	Data Members
	Abstract Classes and Functions
	Member Functions and Overriding
	The Super Keyword
	Detecting Touching

	Detecting a State Using Selection
	Casting a Class Object Down to a Subclass Object
	Enumerations and Values for TriggerType
	Selection Using a Case Statement
	Compounded Boolean Expressions
	Testing the CommandTouchTrigger Object

	Refactoring to Create Random Messages
	Data Members
	Member Functions
	Using if…else if…else
	Working with Arrays
	Testing the CommandMessageTrigger Objects

	Conclusion

	Chapter 8 Controls, Arrays, and Structures
	Preparations for the Work Ahead
	Adding to the Map
	Adding a New Package

	The CommandCodeTrigger Class
	Data Members
	Code Creation
	Message Making
	Reporting Clues Found
	Refactoring Random Number Generation
	Testing the CommandCodeTrigger Object

	Revision
	Detecting Messages
	Deriving a Class from Actor
	Dependencies
	UnrealEd Strategies

	Working with Structures
	Making a Code
	Assembling Everything
	Visiting Individual Letters and Getting Status
	Finding Letters in Ciphers
	The Whole Code

	If You’re Down, Listen to a Story
	Conclusion

	Chapter 9 Disco World and Other Items
	Getting Started with Disco World
	Adding a Tetrahedron
	Saving the Object as a Static Mesh
	Replacing the Preliminary Object

	Extending the KActor Class
	Writing the Code
	The SetTimer() Function
	Values for Vectors
	The Built-in Vector Data Type

	Associating Your Static Mesh with a KActor Object
	Replace the Old Mesh
	Setting DiscoBall Object Properties
	Testing Your Object and Its Code

	Revising the DiscoBall Class
	Programming the DiscoBallB Class
	Data Members
	Initial Conditions
	Vector Use

	Conclusion

	Chapter 10 The KActor and KHinge Classes
	Preparing for Work
	TriggerLight Objects
	Adding a Jump Pad
	Another Version of the DiscoBall Class
	Setting the Light Colors and Styles
	Testing Your Lights

	Iterating through Objects
	Defining the DiscoLightTrigger
	One More TriggerLight Property
	Add the DiscoLightTrigger Object
	Settings for the DiscoLightTrigger Object

	Testing the New DiscoWorld
	Adding a Message to the DiscoLightTrigger
	Testing DiscoLightTriggerB
	DiscoLightTriggerC

	Adding a KHinge Object
	Implementing Rotation
	Finale
	Conclusion

	Appendix A: Notes on Exporting
	Appendix B: Notes on Restoring Packages
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

